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SUMMARY 

Industrial manipulators are becoming more and more commonplace in the 

manufacturing world, but they have two major drawbacks compared to their more 

traditional machine tool and gantry-style counterparts: low global accuracy and low 

stiffness. While the repeatability of industrial manipulators is high, their low global 

accuracy is an issue when teaching the robot all the necessary points in an application 

becomes too time expensive. Low stiffness becomes an issue for processes with high 

external forces, such as machining. These processes can both statically deflect the end-

effector and dynamically vibrate it. Both cases result in deviation from the nominal path, 

and thus accuracy tolerances may not be achieved. 

Much research has been dedicated to modeling industrial robot stiffness both in the 

static and dynamic sense. These models are then often used to choose optimal robot 

configurations which will minimize deflections due to external forces for a given task. 

However, the pose which optimally minimizes dynamic deflections may not be the same 

as the one which optimally minimizes static deflections. In this thesis, the efficacy of pose 

optimization in minimizing the external force-induced deflections of the end-effector by 

using a static versus dynamic stiffness model approach is analyzed. A set of guidelines is 

determined as to what each respective optimization offers and when to use each one. 

To address the low global accuracy of off-the-shelf industrial manipulators, the 

most common practice is robot calibration. This involves calibrating the geometry, 

stiffness, and other observable properties of the robot to more accurately represent where 

the end-effector will end up given an arbitrary position command. However, there is a limit 
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to how accurate these offline methods can make the manipulator. For even higher accuracy, 

it is necessary to close the loop with external sensors. Real-time external feedback for 

industrial manipulators for reaching accuracy tolerances better than 0.1 mm is a relatively 

recent development. As such, most methods focus on sensing only the position and 

orientation of the end-effector. For applications where the velocity and angular velocity 

need to be measured accurately, however, there is no established method using typical 

industrial sensors. This thesis addresses this issue by introducing a sensor fusion method 

of state-estimation of the industrial manipulator end-effector using inertial and laser tracker 

measurements. Different methods of fusing the data are compared, and their benefits to the 

overall state-estimation of the end-effector are analyzed. 

Finally, closed-loop control of industrial manipulators has presented another 

challenge: how to model the closed-loop system. Most industrial robot controllers will 

accept real-time inputs only in the form of Cartesian or joint angle pose offsets. This makes 

it difficult to incorporate knowledge of the robot’s dynamics into the closed-loop model, 

because dynamics relate forces and torques to the output motion of the robot, but pose 

offset commands contain no information about the corresponding force or torque. This 

issue is addressed in this thesis by introducing a novel method of representing pose offset 

commands with their “equivalent” forces. It is demonstrated that this new method allows 

for a good enough approximation of the closed-loop system to predict closed-loop stability 

offline, something that has thus far been impossible to do



 

1 

 

CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Modern industrial manipulators are designed to be repeatable, meaning that they can 

be commanded to reach historical poses to a high degree of accuracy. However, their 

volumetric (global) accuracy is lacking in comparison. Thus, the most accurate 

implementation of industrial manipulators is the “teaching” method, where the robot is 

manually driven to a set of poses, those poses are “taught” to it, then it executes programs 

which require it to reach the taught poses in some sequence. For manufacturing 

applications that only require discrete pose accuracy such as pick and place, spot welding, 

or part scanning, the teaching method is viable, though it does incur an increasing time cost 

when more poses are required to be manually taught for a given application. On the other 

hand, when it comes to applications which require the robot to accurately follow complex 

trajectories, such as machining (e.g. milling), teaching is no longer an efficient option, and 

the trajectory-following accuracy will be limited by the robot’s global accuracy. 

In addition to their global accuracy, industrial robots’ compliance under external 

loads has been a limiting factor in their application to many manufacturing tasks, 

particularly machining [1]. High in-process forces and torques, which are characteristic of 

such tasks, cause the end-effector (EE) to deflect from its nominal trajectory, resulting in 

a drop in the trajectory-following accuracy. These forces can be static (constant), such as 

in a pick and place application with heavy loads, or dynamic (time-varying), such as in 

milling. Static forces will cause static deflections of the end-effector, while dynamic forces 
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will cause vibration of the robot structure, which results in time-varying end-effector 

deflections. 

The volumetric accuracy limitations of industrial manipulators can be addressed 

through robot calibration, to an extent, but for the highest accuracies, external sensor 

feedback is necessary. Real-time closed-loop control of industrial manipulators has proven 

effective, but there is room for improvement. Most methods only consider position or 

orientation measurements, which are relatively straightforward because highly accurate 

industrial sensors, such as laser trackers, can measure them directly. When it comes to 

velocity or angular velocity measurements, they are either typically ignored or simply 

computed by differentiating the position and orientation data. Differentiating live 

measurement data amplifies any noise present in the data, even if filtering methods are 

used to reduce this effect. Lacking sensors that can measure velocity or angular velocity 

directly and accurately, the question arises as to whether a combination of existing 

industrial sensors can be used improve the estimation of these quantities over typical 

methods. 

Industrial manipulators also present a unique challenge when it comes to closed-loop 

feedback. This arises from the fact that most industrial robot controllers only allow for real-

time commands in the form of Cartesian or joint pose offsets. Thus, the user can input a 

pose offset, but then the robot controller determines what joint torques will be applied to 

reach that commanded offset. This might not be an issue if the structural vibrations of the 

industrial manipulator induced by high-jerk motions did not play a significant role in the 

instantaneous defection of the end-effector, but, as will be presented in this thesis, they do. 

There are several methods of modeling these robot dynamics, but they all follow the form 
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of relating input forces/torques to the output vibration of the robot. This presents a problem 

in applying these models to model the closed-loop system of industrial robots because the 

forces and torques associated with each pose offset command are unknown. This problem 

has not yet been addressed, and because of it, closed-loop controller implementations for 

industrial robots all must be tuned manually by iteratively running the application 

trajectories and adjusting controller gains until a satisfactory steady-state error is achieved. 

As for addressing the error introduced by high external forces applied to the end-

effector, traditional methods involve selecting robot configurations that maximize the 

robot’s stiffness and thus minimize the undesirable deflections. However, compliance-

based pose optimization can yield different solutions depending on whether the compliance 

model is a “static stiffness” (zero-order) model or a “dynamic stiffness” (second-order) 

model. So far, there are no guidelines as to which models should be applied when. This is 

not only an issue when it comes to determining the optimal pose for a given task, but also 

when it comes to deciding the amount of effort that should be put into stiffness model 

calibration for a given industrial robot. Stiffness models vary significantly in their 

complexity and the corresponding calibration effort needed to implement them. Ideally, the 

robot user should be able to put in the smallest possible calibration effort to achieve the 

desired accuracy for a given application. 

The impact of addressing these shortcomings in industrial manipulators is to make 

them more viable alternatives to traditional CNC and gantry style systems in the 

manufacturing world. Especially compared to monumental gantry systems, industrial 

manipulators present a lower cost and much more reconfigurable option. However, the 



 4 

majority of contemporary manipulators are used in handling and assembly operations, 

while less than 2% of manipulators purchased are used for material removal processes [1]. 

1.2 Research Objectives 

The last section outlined some important issues which still exist when it comes to 

improving the global accuracy and stiffness of industrial manipulators. The following 

research objectives are designed to address these issues: 

1. Compare the efficacy of pose-optimization using static versus dynamic stiffness 

models and develop a set of guidelines for a choosing the appropriate model and 

how they should be used in a manufacturing setting. 

2. Develop a more accurate method for estimating the velocity components of the 

state of the robot end-effector using a sensor fusion of common industrial 

sensors. 

3. Develop a method for incorporating knowledge of robot dynamics into a closed-

loop system model that is accurate enough to permit model-based controller gain 

tuning. 

1.3 Thesis Outline 

This thesis will be organized as follows. Chapter 2 includes a comprehensive 

literature review covering past work in industrial robot calibration, closed-loop control, 

and state-estimation methods. Chapter 3 covers the experiments and analysis done to 

compare the efficacy of pose-optimization using static and dynamic stiffness models. 

Chapter 4 includes an analysis of sensor fusion methods for improved state-estimation of 
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robot end-effectors using industrial sensors. Chapter 5 presents a new method that allows 

knowledge of robot dynamics to be used to predict closed-loop stability of an industrial 

robot. Finally, Chapter 6 covers overall conclusions and recommendations for future work.  
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CHAPTER 2. LITERATURE REVIEW 

A review of the literature relevant to accuracy improvement in industrial 

manipulators is presented in this chapter. The review is divided into the areas of robot 

calibration, compliance modeling in industrial manipulators, real-time feedback, and 

improved state estimation with sensor fusion. 

2.1 Robot Calibration 

A robotic manipulator’s pose is fully defined by its joint values. Thus, there exists 

an input-output relationship between the input joint values and the output location and 

orientation of the end-effector. For a typical off-the-shelf manipulator, this relationship is 

provided in the form of the geometric transforms between each joint of the robot. While 

knowing these transforms allows one to have an estimate of where the end-effector will go 

given a set of joint commands, transform errors, compliance effects, gear backlash, and 

other sources of error reduce the quality of that estimate. Robot calibration refers to the 

effort to model the input-output relationship between the joint state and end-effector 

location of the robot as accurately as possible to minimize the volumetric positioning errors 

of the robot. 

2.1.1 Kinematic Calibration 

Kinematic robot calibration refers to calibrations which only address errors in the 

geometric transforms between the robot joints and do not consider other sources such as 

compliance or backlash. For most industrial manipulators, this is equivalent to calibrating 
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the link lengths and joint orientations of each link. Sometimes, the transform between the 

robot coordinate frame and an external world frame is also considered. 

The most direct method of kinematic calibration is to directly measure the geometry 

of the robot through experimentation. Circle-Point Analysis [2] is an example of such a 

strategy, where each robot joint is rotated individually, then the origin and direction vector 

of the joint can be identified as the center and normal of the circle that was swept by the 

arm, respectively. More commonly applied are model regression methods [3-5]. Here, the 

robot is commanded to move to a large variety of poses within its workspace and the 

corresponding end-effector location is measured each time. Then, the best-fit geometric 

model is calibrated via a regression, which minimizes the error between the predicted 

locations of the end-effector computed using the geometric model and the actual measured 

locations. Other methods of note include forming virtual closed kinematic chains by 

pointing a laser attached to the end-effector at a stationary target [6] and iterative methods 

where calibration parameters are recomputed until convergence after each measured robot 

motion [7, 8]. 

2.1.2 Non-Kinematic Calibration 

Non-kinematic calibrations, despite their name, calibrate the same parameters as 

kinematic calibrations, but also add parameters to address non-geometric sources of error. 

Most commonly, the additional calibration parameters attempt to model robot compliance. 

In the simplest case, they take the form of constants representing a linear or torsional spring 

stiffness at each robot joint[9-15]. More comprehensive calibrations attempt to model the 

compliance of the links by treating them as flexible beam elements [16]. Besides 
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compliance, other modelled non-kinematic parameters include the nonlinear behavior of 

the last robot joint [17] and the effect of temperature [18]. While non-kinematic 

calibrations capture more sources of error than kinematic calibrations and so typically 

result in higher robot accuracies, their trade-off is that a higher calibration effort is required 

to provide sufficient data to be able to model the additional non-kinematic parameters. 

2.1.3 Non-Parametric Calibration 

Non-parametric calibrations are purely data-driven models, meaning that model 

parameters to be calibrated are not identified before-hand, but instead the input-output 

relationship between the joint state and end-effector position is learned from the 

experimental data alone. These methods are well-suited for capturing error that is difficult 

to model parametrically, or which comes from unknown sources. Typically, for robot 

calibration, a parametric model is used as an initial estimate of the end-effector position, 

then a non-parametric model is used to predict the error in that estimate.  Data-driven 

modelling techniques for robot calibration can include fitting polynomial functions of the 

joint angles to predict end-effector position error [19, 20], training regression models to 

predict Cartesian error based on the similarity of the robot configuration in joint or 

Cartesian space [21-24], and training artificial neural networks (ANNs) to predict end-

effector error given the input commands to the robot [25-31]. 

2.2 Compliance Modeling 

Some robot compliance modelling is included in non-kinematic robot calibrations, 

but it is mainly calibrated on the deflections caused by the gravity load of the links of the 

manipulator itself. For applications with high external loadings, such as the machining 
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processes of milling and drilling, the robot calibration can serve as an initial guess for the 

compliance. However, more dedicated compliance models, including dynamic models 

which capture the robot’s vibrational properties, are often necessary for accurate force-

induced deflection prediction. In this thesis, “static stiffness models” refer to zero order 

systems, which always output the same predicted deflection regardless of the frequency of 

the input force, and “dynamic stiffness models” refer to second order systems with mass 

and damping terms whose deflection outputs are a function of both the frequency and 

magnitude of the input forces. 

2.2.1 Static Stiffness Modeling 

Modern static stiffness models can be broken up into two categories: those that 

consider link flexibility [32, 33] and those that do not [34-37]. The latter models are 

referred to as “joint stiffness models” because all the compliance is assumed to occur at 

the joints of the manipulator. They are simpler models, in that they have a lower number 

of parameters to calibrate, and so typically require less calibration effort. However, they 

do not capture any link deformation effects, so they are not as accurate as those that do. 

Models which consider link deformation typically do so by calibrating six parameters for 

each joint instead of a single stiffness parameter, three for each translational direction and 

three for each rotational direction. Some static stiffness models also include parameters to 

capture friction and backlash effects [38] and to address the influence of gravity 

compensators on large manipulators [39]. 

Calibrating static models is done by applying a known external load to the 

manipulator and measuring the associated (steady-state) deflection of either the end-
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effector or the joints directly (Figure 1). Gravity-based loads are most common, though 

sometimes reaction forces are used by clamping the end-effector to a rigid surface and 

driving the robot [38]. The deflection of the robot is captured either using external 

measurement systems or by reading the manipulator’s internal encoder values [32-35, 37-

39]. 

 

Figure 1 – Example static stiffness calibration setup. 

2.2.2 Dynamic Stiffness Modeling 

Traditional dynamic manipulator models [40-44] are of the form: 

 τ = M(𝜃𝜃)�̈�𝜃 + 𝑁𝑁(𝜃𝜃, �̇�𝜃) (1) 

Here, q is the vector of manipulator joint positions, τ is the vector of torques applied to the 

joints, M(θ) is the pose-dependent mass matrix, and 𝑁𝑁(𝜃𝜃, �̇�𝜃) captures centrifugal, Coriolis, 

friction, and gravitational effects. Like the first form of static models, in most cases, they 
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treat the manipulator links as being infinitely stiff. Exceptions include work where the 

robot links are modeled as Bernoulli beams [45]. These analytic models have the drawback 

that they have a strong dependence on how well the geometry and mass properties of the 

manipulator structure are known, information which is usually limited in the case of 

industrial manipulators. Thus, more recent dynamic models are either purely data-driven, 

or hybrid models which include a parametric base model augmented by data-driven models 

obtained through experimentation [46-51]. By fitting models to the data, it is possible to 

capture sources of vibration which are difficult to model parametrically, such as the 

unknown internal components of the robot links. 

 Dynamic models based on a form of (1) are typically calibrated by driving the 

manipulator along known trajectories and recording the corresponding joint torques. Data-

driven models are calibrated by applying a known impulse or cyclic force to the end-

effector, then measuring the corresponding vibration using external sensors. The downside 

to these methods is that the calibration process must be repeated at discrete locations within 

the robot’s workspace, the dynamic properties are predicted using a regression or other 

learning technique which interpolates the properties between locations where experiments 

were conducted. 

2.2.3 Compliance-Based Compensation and Pose Optimization 

Once a compliance model is calibrated, if the process forces are known or can be 

predicted, it is possible to predict and compensate for the deflections of the robot induced 

by these forces. Extensive research has been done on compliance-based compensation 

using both static models [52-58] and dynamic stiffness models [59, 60]. Compensation 
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methods all derive from the principle that if deflection is predicted in a certain direction, it 

should be compensated by making the component of commanded robot motion in the 

negative of that direction larger than initially planned. 

For applications that are fully defined using fewer degrees of freedom than the robot 

has available, there is a redundancy in possible robot poses which can be used to perform 

the task. For example, a drilling task is fully defined using 5 constraints because the 

orientation about the axis of the tool is unconstrained, so a six degree of freedom robot can 

use an infinite number of (reachable) poses to achieve the same drilling task. Because 

compliance is pose-dependent, it is possible to solve an optimization problem to select 

poses for a given task, which will minimize the deflection of the end-effector. As for 

compliance-based compensation, pose optimization to minimize deflection has been 

achieved using both static models [61-65] and dynamic stiffness models [66, 67]. What is 

lacking in the literature is a comparative study of pose-optimization between using static 

and dynamic compliance models to determine when one outperforms the other. This topic 

is covered in this dissertation. 

2.3 Real-Time Position Feedback 

No matter how comprehensive a robot calibration or compliance model is, it is never 

perfect. To account for the error in robot positioning left over after calibration, 

compensation, and optimization techniques have been implemented, it is necessary to 

measure it with an external sensor and correct it iteratively or in real-time. Feedback control 

of industrial robots is a relatively new area of research, with early works implementing 

iterative pose compensation [68, 69] or exploring the effectiveness of real-time feedback 
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using various sensors such as secondary encoders [70], optical measurement systems [71, 

72], and laser trackers [73] (Figure 2). The latest research on real-time feedback has 

included comparing six degree-of-freedom (DoF) control versus three DoF control [74], 

implementing feedback on large-scale multi-robot systems [75], and reducing backlash 

error and sensor synchronization jitter on complex closed-loop trajectories [76].  

 

Figure 2 – Example closed-loop robotic milling setup with a laser tracker.
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 Because of the relatively smooth (low-acceleration) application trajectories and 

high accuracy of the sensors used for feedback, controller schemes in the literature have 

been kept relatively simple, usually in the form of PI [73, 74], PD [76], or PID [71, 77]. 

These schemes have the added benefit of being relatively easy to tune manually, so they 

can be implemented even without a good closed-loop transfer function for the robot system. 

In fact, because most industrial robot controllers are configured to only accept real-time 

inputs in the form of Cartesian or joint space offsets, obtaining a good closed-loop transfer 

function of the system is difficult because the input forces are unknown. Developing better 

closed-loop transfer functions that allow for offline controller tuning will be a subject of 

this thesis. 

2.4 Improved State Estimation with Inertial Sensors 

The sensors used for real-time feedback of industrial robots (as covered in the 

previous section) have high position and orientation estimation accuracy, most often in the 

form of laser trackers or optical tracking systems. Inertial sensors, on the other hand, can 

measure the acceleration and angular velocity components of the end-effector state. 

Because of the drift associated with integrating acceleration and angular velocity 

measurements to get position and orientation estimates, however, they are rarely used on 

their own (except for iterative compensation [78]). Outside of industrial robot applications, 

inertial sensors are most often combined with a low-frequency position and/or orientation 

sensor which corrects for the drift associated with integrating the inertial data [79-84]. 

However, these applications do not have especially strict accuracy tolerances, and so this 

type of sensor fusion is not used in industrial robotics. 
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In fact, the use of inertial sensors for state estimation of industrial robots is still a 

relatively new area of research. In [85], data from an inertial measurement unit (IMU) is 

fused with the position and orientation estimate of the end-effector derived from the robot’s 

forward kinematics. An Extended Kalman Filter (EKF) and Particle Filter (PF) are 

compared in their ability to provide better real-time pose estimation and the ground truth 

is measured by a camera-based metrology system. The accuracy estimation is shown to 

significantly improve with the sensor fusion, but it is still not as accurate as using a more 

expensive laser tracker or optical measurement system to directly measure the position and 

orientation. Fusion with an optical tracking system is achieved in [86] using a Kalman 

Filter, and in [87] using an Unscented Kalman Filter and Particle Filter. Both works achieve 

higher position and orientation accuracy estimation with the sensor fusion. However, laser 

trackers have higher position measurement accuracy than camera-based systems, so it is 

unclear whether the position estimation could be improved by fusion with inertial data. 

Also, other parts of the state, including velocity and angular acceleration, are not 

considered by the existing literature. Finally, motion experiments in these works consist of 

translation only, so the difference in perceived acceleration by two different sensors on a 

rigid body is not a factor. 

Also not present in the industrial robot literature involving fusion of inertial and 

position/orientation data is an analysis of the effects of sensor-to-sensor geometric 

transform error. This error is studied, for example, in [88], in the context of vehicle 

navigation. The sensitivity of the state estimation accuracy to the error in alignment of the 

sensor coordinate systems dictates the requirements for accurate fixturing and calibration 
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of the sensors. For translational motions, it is sufficient to know the orientation of each 

sensor’s coordinate system, but for rotational motions, their origins must be known as well. 

2.5 Summary 

A review of the literature identifies some key gaps in knowledge regarding 

accuracy improvement of industrial manipulators including: 1) how to determine whether 

to utilize a static or dynamic stiffness model for a given application, 2) how to model a 

closed-loop system with an industrial robot controller well enough to predict closed-loop 

stability offline, and 3) whether the accuracy of the state estimation of the end-effector 

can be improved by adding inertial data, even if a top-of-the-line position/orientation 

sensor is already available and in use. Addressing the first two gaps has significant time 

and cost saving implications, by minimizing the stiffness model calibration effort in the 

first case, and by doing away with manual controller tuning for every new application 

trajectory in the second. Filling the last gap amounts to an overall improvement in current 

methods of end-effector state estimation for the relatively low cost of an IMU compared 

to the already used laser trackers and optical tracking systems. The remainder of the 

thesis will cover each of these gaps in knowledge and how they were addressed.  
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CHAPTER 3. POSE OPTIMIZATION USING STATIC AND 

DYNAMIC STIFFNESS MODELS 

3.1 Introduction 

This chapter explores the differences in application of both static and dynamic 

stiffness models for pose-optimization to reduce force-induced deflections on the end-

effector. Both static and dynamic stiffness models are calibrated on a Kuka KR 500-3 serial 

manipulator. Then, a well-established mechanistic milling force model [89] is used to 

predict the forces on the end-effector for given experimental milling parameters. Using the 

predicted forces as inputs to the two calibrated stiffness models, optimal poses are selected 

using each model to minimize the deflection induced by cutting forces. The performance 

of each optimization is compared for a range of cutting conditions selected such that the 

frequencies of the cutting forces match the resonant frequencies of the robot in some cases 

and are far from the resonant frequencies in others. From the results, the discussion aims 

to answer the question of when it is appropriate to use each type of stiffness model for pose 

optimization, and what can be done in terms of adjusting cutting parameters to additionally 

minimize deflections. 

3.2 Static and Dynamic Stiffness Models 

A Kuka KR 500-3 has six rotational joints, the first three of which, referred to as the 

“arm” joints, mostly contribute to the translation of the end-effector, and the last three of 

which, referred to as the “wrist” joints, mostly contribute to the rotation (Figure 3). In 

milling, the orientation of the tool about the tool axis is unconstrained. For a six degree of 
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freedom manipulator, such as the KR 500-3, this means that an infinite number of pose 

configurations can be valid for any given milling task. Because the tool used in this work 

is not colinear with axis 6 of the robot, changing this degree of freedom (the orientation 

about the spindle axis) will correspond to a rotation in all joints of the robot, thus 

significantly altering its pose. By altering the pose, the robot’s stiffness properties are, in 

turn, altered, and thus the potential for pose optimization arises. Note that pose 

optimization for milling is not limited to robots of this type and so long as a manipulator 

has at least six degrees of freedom, there is an optimization problem to be solved for 

maximizing the pose-dependent stiffness. 

 

Figure 3 – Axis configuration of the KR 500-3 [90]. 
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3.2.1 Static Stiffness Model Calibration 

As covered in the literature review, there are many strategies for capturing the pose-

dependent static stiffness of a serial manipulator. For this work, a six-parameter model is 

chosen where each joint is modelled as a linear torsional spring. This model is chosen over 

more complex ones, such as those in [32, 33, 38, 39], because it has a lower calibration 

cost and does not require extensive knowledge of the friction and structural properties of 

the robot links. Importantly, it is a static model, so it will always predict the same deflection 

no matter the frequency content of the process forces. This property is key in comparing it 

to dynamic stiffness models, whose deflection predictions are highly influenced by the 

process force frequency content. 

To calibrate the static, six parameter model, both the complete pose (CP) method 

[36] and the decoupled partial pose (DPP) method are utilized [37]. Both methods are 

calibrated using the same experimental approach, but the DPP method decouples the 

stiffness computation of the wrist joints from that of the arm joints to better condition the 

calibration problem. The experimental approach entails applying a known wrench to the 

end-effector, 𝐹𝐹, using a gravitational load and measuring the corresponding translational 

and rotational deflections using three laser tracker targets (Figure 4). The applied wrenches 

were both directly vertical gravity loadings and directional loadings applied via a pulley. 

Directional loadings were chosen such that all robot joints experienced a significant torque 

for at least some of the loading cases. 
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Figure 4 – Schematic of the static stiffness model calibration experimental setup. Both 
a vertical loading example (left) and a directional loading example (right) are 
pictured. 

To model the active stiffness of the joints (with joint motors actively resisting 

deflection), the robot was constantly commanded to move back and forth for the smallest 

possible distance allowable. This prevents the brakes from engaging and allows the 

stiffness to be modelled while the robot is attempting to resist the external force-induced 

deflections, as it does in application. External wrenches were measured using a flange-

mounted force/torque sensor (ATI Omega 160) and the corresponding deflections were 

measured using a Leica AT960 laser tracker. The tracker has a maximum permissible error 

of +/- 15 μm with + 6 μm/m. It was positioned no more than 3 m from its targets for a given 

experiment to avoid loss in accuracy with distance. 

The deflection of the end-effector is given as a function of the joint stiffness values 

and pose of the robot by: 



 21 

 ∆𝑋𝑋 = 𝐽𝐽(𝜃𝜃)(𝐾𝐾𝜃𝜃 − 𝐾𝐾𝑐𝑐)−1𝐽𝐽(𝜃𝜃)𝑇𝑇𝐹𝐹 (2) 

𝐽𝐽(𝜃𝜃) represents the pose-dependent robot Jacobian, which describes the relationship 

between end-effector wrenches and joint torques, 𝐾𝐾𝜃𝜃 is the diagonal joint stiffness matrix, 

𝐾𝐾𝑐𝑐 is the complementary stiffness matrix, which describes the change in stiffness of the 

robot due to a small change in its pose from a given deflection, ∆𝑋𝑋 is the 6-dof deflection 

of the end-effector, and 𝐹𝐹 is the external wrench. Following the methodology of [36], the 

influence of the complementary stiffness matrix was minimized by selecting poses which 

were far from singularity (by ensuring the inverse condition number of the normalized 

Jacobian is large). Using these poses, (11 simplifies to: 

 ∆𝑋𝑋 = 𝐽𝐽(𝜃𝜃)𝐾𝐾𝜃𝜃−1𝐽𝐽(𝜃𝜃)𝑇𝑇𝐹𝐹 (3) 

Equation (3) is used in the CP method. The DPP method, however, computes the arm joint 

stiffness values first. It does this by transforming the end-effector wrench to the wrist, then 

using: 

 ∆𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐽𝐽(𝜃𝜃)𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐾𝐾𝜃𝜃123
−1𝐽𝐽(𝜃𝜃)𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑇𝑇 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (4) 

Here, ∆𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 refers to the linear displacement of the center of the robot’s spherical wrist, 

𝐽𝐽(𝜃𝜃)𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the robot Jacobian defined for the center of the wrist, 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the external 

wrench applied to the wrist, and 𝐾𝐾𝜃𝜃123 is the diagonal joint stiffness matrix for the arm 

joints. Once 𝐾𝐾𝜃𝜃123 is calculated, the wrist joint stiffness values are computed using: 
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 ∆𝑋𝑋 = 𝐽𝐽(𝜃𝜃)𝐾𝐾𝜃𝜃123
−1𝐽𝐽(𝜃𝜃)𝑇𝑇𝐹𝐹 + 𝐽𝐽(𝜃𝜃)𝐾𝐾𝜃𝜃456

−1𝐽𝐽(𝜃𝜃)𝑇𝑇𝐹𝐹 (5) 

Note that 𝐽𝐽(𝜃𝜃) in (5) is defined up to the end-effector and ∆𝑋𝑋 refers to the linear 

displacement of the end-effector.  

 Calibration experiments were conducted at ten poses (Table 1) and loading 

directions. Poses and loading directions were chosen such that sufficient torques were 

applied to each joint and the influence of 𝐾𝐾𝑐𝑐 was minimized. To compute the joint torques 

for a given calibration experiment, the following relation was used: 

 𝜏𝜏 = 𝐽𝐽(𝜃𝜃)𝑇𝑇𝐹𝐹 (6) 

where, 𝜏𝜏 represents the joint torques. End-effector deflections were predicted using (3) for 

the CP method and (4) and (5) for the DPP method. The Euclidean norm of the difference 

between the measured and predicted end-effector deflections was minimized using a 

nonlinear least squares approach to solve for 𝐾𝐾𝜃𝜃. The calibrated joint stiffness values for 

each method are given in Table 2. These values are consistent with trends identified for 

other industrial manipulators of this type and payload in terms of approximate magnitudes 

and in that the arm joints have a higher stiffness than the wrist joints [36, 37, 91, 92]. The 

DPP method yielded a lower stiffness value for every joint compared to the CP method. 

This is most likely because of a scaling issue that arises with the CP method. The CP 

method is minimizing the difference between screw displacements, while the DPP method 

is only minimizing the difference between linear displacements. Given that the angular 

displacements are much smaller in magnitude than the linear displacements, the cost 

incurred by the angular displacements in the minimization process can underrepresent the 
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physical displacement. The result is that the solution estimates the robot to be stiffer than 

it really is. To confirm this, stiffness values were recomputed using the CP method after 

scaling up the angular displacements by a factor of 10, which resulted in a joint stiffness 

solution of [2.13, 1.59, 1.12, 1.89, 0.26, 0.17] MNm/rad, which is a lower arm joint 

stiffness than the solution yielded by the DPP method. Additionally, as a check, the joint 

stiffness values were recomputed assuming 𝐾𝐾𝑐𝑐 was not negligible, and the resulting values 

differed from the given solutions by < 10 𝑁𝑁𝑁𝑁
𝑤𝑤𝑟𝑟𝑟𝑟

. Finally, the KR 500-3 has a gravity 

compensator which changes the effective stiffness of Joint #2 as a function of the robot 

configuration by up to 30% [39]. To address this influence, the joint stiffness values were 

recomputed after allowing Joint #2’s stiffness to vary by up to 50%. Stiffness-based pose 

optimization yielded the same solutions with the recomputed values, and so, at least for the 

poses used in this work, an accurate calibration of the gravity compensator is not necessary. 

Once the joint stiffness values are known, the Cartesian stiffness at any pose is given by: 

 𝐾𝐾𝑥𝑥 = 𝐽𝐽−𝑇𝑇𝐾𝐾𝜃𝜃𝐽𝐽−1 (7) 

 A final consideration for this calibration is that it was assumed that the spindle 

stiffness was much higher than the robot’s Cartesian stiffness at any pose. To confirm this, 

a finite element (FE) analysis was performed on a model of the spindle. The stiffness at the 

least stiff point in the model, which corresponded to the tool tip, was computed to be 231 

MN/m. This was compared to the robot stiffness by computing the Cartesian stiffness for 

the experimental poses used in this work and using the largest singular value of the 

Cartesian stiffness matrix to represent the maximum robot stiffness at that pose. This 
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yielded a maximum robot stiffness of 12 MN/m, thus validating the high spindle stiffness 

assumption. 

Table 1 – Robot joint angles (degrees) for static stiffness calibration poses 

Test No. 𝜽𝜽𝟏𝟏 𝜽𝜽𝟐𝟐 𝜽𝜽𝟑𝟑 𝜽𝜽𝟒𝟒 𝜽𝜽𝟓𝟓 𝜽𝜽𝟔𝟔 
1 19.67 -52.14 117.9 11.86 -66.08 -4.84 
2 26.35 -32.54 123.49 -8.99 -90.81 -0.15 
3 58.28 -10.5 105.98 42.39 -115.04 -2.57 
4 44.71 -70.81 58.16 138.51 -41.63 -125.84 
5 -23.13 -85.41 80.84 70.31 83.63 -71.78 
6 2.39 -34.82 69.97 115.13 72.1 176.98 
7 25.21 -55.7 130.03 169.88 72.17 -179.78 
8 42.99 -40.39 97.42 -177.38 72.1 -179.8 
9 42.99 -57.91 110.04 -155.79 51.1 -179.83 
10 28.12 -55.4 84.06 -167.6 27.07 -179.85 

Table 2 – Calibrated joint stiffness values 

Method 𝑲𝑲𝜽𝜽𝟏𝟏 (𝑴𝑴𝑴𝑴𝑴𝑴
𝒓𝒓𝒓𝒓𝒓𝒓

) 𝑲𝑲𝜽𝜽𝟐𝟐 (𝑴𝑴𝑴𝑴𝑴𝑴
𝒓𝒓𝒓𝒓𝒓𝒓

) 𝑲𝑲𝜽𝜽𝟑𝟑 (𝑴𝑴𝑴𝑴𝑴𝑴
𝒓𝒓𝒓𝒓𝒓𝒓

) 𝑲𝑲𝜽𝜽𝟒𝟒 (𝑴𝑴𝑴𝑴𝑴𝑴
𝒓𝒓𝒓𝒓𝒓𝒓

) 𝑲𝑲𝜽𝜽𝟓𝟓 (𝑴𝑴𝑴𝑴𝑴𝑴
𝒓𝒓𝒓𝒓𝒓𝒓

) 𝑲𝑲𝜽𝜽𝟔𝟔 (𝑴𝑴𝑴𝑴𝑴𝑴
𝒓𝒓𝒓𝒓𝒓𝒓

) 
CP 3.93 3.46 2.77 1.57 0.24 0.17 
DPP 2.86 2.36 1.67 0.24 0.16 0.14 

3.2.2 Dynamic Stiffness Model Calibration 

The dynamic stiffness model calibration follows the method developed in [49]. 

Figure 5 shows the experimental modal analysis test setup for a single robot configuration. 

At each configuration, an impulse is applied using an instrumented impact hammer (PCB 

086D05) and the vibration response in the excitation direction is measured by a single-axis 

accelerometer (PCB 352A21) mounted at the tool tip. The experiments were conducted in 

the X, Y, and Z Cartesian directions (see Figure 7 for directional reference) for each robot 

configuration. Figure 6 shows a representative Frequency Response Function (FRF) in the 

Cartesian X direction. Note that the FRF shows multiple modes of vibration in addition to 

a single maximally compliant mode. As reported in [49, 93-95], the compliance of the non-
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dominant modes is considered negligible, and only the most compliant mode is modelled. 

Thus, the tool tip equations of motion along a single axis (assuming negligible initial 

conditions) for a given robot configuration can be written as a second order transfer 

function with inertia, damping, and stiffness coefficients of the form: 

 𝑚𝑚�̈�𝑥(𝑡𝑡) + 𝑐𝑐�̇�𝑥(𝑡𝑡) + 𝑘𝑘𝑥𝑥(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) (8) 

Unlike in the static model, the external forces are now time varying. To fit the mass, 

damping, and stiffness coefficients for a given pose and direction, the second order system 

that best fit the FRF’s most compliant mode (blue dashed line in Figure 6) was used. To 

develop the complete dynamic model, experiments were repeated for each Cartesian X, Y, 

Z direction at discrete positions within the robot’s workspace corresponding to the test 

locations in (Table 4). At each pose, the end-effector was rotated in ten degree increments 

about the spindle axis to span the range of possible poses at each location. 

It should be noted that this method of dynamic model calibration does not account 

for cross-coupling effects in the vibration modes. In other words, an excitation force along 

a given direction is assumed to only produce vibration in that same direction. In the recent 

literature on dynamic modelling of industrial robots, this is common practice. However, to 

account for cross-coupling, one strategy would be to fit additional second order systems to 

each XY, YZ, XZ direction. Theoretically, this should better predict the full vibration of 

the end-effector for a given excitation force, but it substantially increases the calibration 

effort needed for the dynamic model, and it is unclear how much of an improvement can 

be gained. As a check, experimental modal analysis was performed at three test poses to 

determine the magnitude of the compliance in non-excitation directions in comparison to 
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that of the excitation direction. The results are displayed in Figure 42 and Figure 43 in 

Appendix A. They show that vibration in directions orthogonal to the excitation direction 

is much smaller compared to the vibration along the excitation direction, thus supporting 

the decision to neglect these modes. A more detailed exploration of the extent of pose-

dependent cross-coupling vibration effects for serial manipulators is considered outside the 

scope of this thesis. 

 

Figure 5 – Robot modal test setup 

 



 27 

 

Figure 6 – Measured end-effector FRF (solid line) and the corresponding second 
order transfer function fit (dashed). 

 

To determine the modal vibration properties for unsampled regions of the robot’s 

workspace, a data-driven Gaussian Process Regression (GPR) model was used [96]. GPR 

is a supervised learning technique which computes the best non-parametric function to fit 

a set of observations. These non-parametric functions are assumed to be Gaussian 

Processes, meaning that they can be specified by their mean and covariance functions. 

Taken from [96], given a set of noisy training observations, 𝑦𝑦, and observed outputs, 𝑓𝑓∗, 

their joint probability distribution can be defined as: 
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 �
𝑦𝑦
𝑓𝑓∗
� = 𝒩𝒩�0, �𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼 𝐾𝐾(𝑋𝑋,𝑋𝑋∗)

𝐾𝐾(𝑋𝑋∗,𝑋𝑋) 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗)
�� (9) 

Here, 𝐾𝐾 is the covariance matrix and 𝑋𝑋 and 𝑋𝑋∗ are the training and test input parameters, 

respectively. 𝜎𝜎𝑛𝑛2 is the variance of the Gaussian noise of the observations. GPR uses a 

Gaussian generator to iteratively generate sets of functions specified by their mean and 

covariance matrices until a function is found which best fits the observed data. Once this 

best-fit function is determined, the most probable output to an input vector not used in 

training can be predicted using: 

 𝑓𝑓∗� = K(𝑋𝑋∗,𝑋𝑋)[𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1𝑦𝑦 (10) 

The covariance of the corresponding prediction can also be computed as: 

 cov(𝑓𝑓∗) = K(𝑋𝑋∗,𝑋𝑋∗) − 𝐾𝐾(𝑋𝑋∗,𝑋𝑋)[𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1𝐾𝐾(𝑋𝑋,𝑋𝑋∗) (11) 

For interpolating the dynamic model parameters between poses, a single GPR model 

was trained for each X, Y, Z direction and each mass, stiffness, and damping coefficient 

for a total of 9 models per pose. The input vector used to predict the dynamic model 

parameters at a given pose consisted of the Cartesian location of the end-effector and 

orientation, A, about the spindle axis. Once the dynamic parameters are known, robot 

deflections can be predicted for a given input time-varying force by integrating the second 

order transfer function (8) twice with respect to time. The computed dynamic parameters 

for the poses used in this work are reported in Table 16 in Appendix A. The values for k 

represent a Cartesian stiffness and are analogous to the values in the first three rows and 
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columns of the Cartesian stiffness matrix computed using the static model in (7). Table 17 

in Appendix A gives the stiffness and frequency of the second most dominant mode of 

vibration at each test configuration. The high stiffness values relative to those of the most 

dominant modes support the exclusion of non-dominant modes from the dynamic models 

developed in this work. 

Finally, given the high stiffness of the tool compared to the manipulator, most linear 

tool tip deflection due to rotational vibration of the manipulator was assumed to be captured 

by the data-driven dynamic modeling technique. While not covered here, future work could 

involve capturing the rotational vibration of the end-effector using multiple accelerometers 

mounted at different locations on the end effector. Alternatively, a joint vibration model 

could be calibrated, but these models rely on the assumption of infinitely stiff links, and on 

accurate knowledge of the geometric and inertial properties of the manipulator links, which 

is often not known for industrial manipulators. 

3.3 Pose Optimization 

The redundant degree of freedom present when milling with a six-axis robot is 

represented by the angle about the axis of the spindle, which can range from -180 to 180 

degrees or less depending on joint limit boundaries. This range can also be additionally 

constrained by workspace obstacles, but for the purposes of this study, it is assumed that 

no such constraints exist. The angle about the spindle axis is designated as “A” as in Figure 

7. To capture the range of possible poses for a given point along the milling path, an 

exhaustive search is used over the range of possible A angles in 1-degree increments. As a 

check that this increment is small enough to accurately capture the variation in stiffness 
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over poses, optimal A angles were computed using a 0.5-degree increment and the resulting 

solutions were within 1 degree of those computed using the 1 degree increment. The cost 

function of the optimization is designated as the second norm of the linear deflection of the 

end-effector. Depending on the application, it may be more desirable to optimize stiffness 

along a particular direction, but in the interest of generality, it is assumed that deflection in 

any direction is equally undesirable for these experiments. 

 

Figure 7 – Optimization of angle “A” about the spindle axis. 

3.3.1 Milling Force Modeling 

To predict the deflections for a given pose, it is necessary to know the external 

forces being applied on the end-effector. In this work, a well-established mechanistic 

milling force model is used [89]. The infinitesimal tangential, radial, and axial milling 

forces at milling cutter immersion angle 𝜙𝜙 with respect to the ith milling cutter tooth are 

given as: 

 𝑑𝑑𝐹𝐹𝑤𝑤,𝑤𝑤 = [𝐾𝐾𝑤𝑤𝑡𝑡 + 𝐾𝐾𝑤𝑤𝑐𝑐ℎ𝑤𝑤(𝜙𝜙, 𝑧𝑧)]𝑑𝑑𝑧𝑧 (12) 

 𝑑𝑑𝐹𝐹𝑤𝑤,𝑤𝑤 = [𝐾𝐾𝑤𝑤𝑡𝑡 + 𝐾𝐾𝑤𝑤𝑐𝑐ℎ𝑤𝑤(𝜙𝜙, 𝑧𝑧)]𝑑𝑑𝑧𝑧 (13) 
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 𝑑𝑑𝐹𝐹𝑟𝑟,𝑤𝑤 = [𝐾𝐾𝑟𝑟𝑡𝑡 + 𝐾𝐾𝑟𝑟𝑐𝑐ℎ𝑤𝑤(𝜙𝜙, 𝑧𝑧)]𝑑𝑑𝑧𝑧 (14) 

Here, subscripts e and c represent the edge force and cutting force coefficients, respectively 

(Table 3), z represents the integration height along the helix angle of the cutter, and ℎ𝑤𝑤(𝜙𝜙, 𝑧𝑧) 

represents the undeformed chip thickness (related to the feed) for a given immersion angle 

and axial height along the helix. The integration of infinitesimal forces followed by the 

transformation to a fixed coordinate system results in: 

 
𝐹𝐹𝐹𝐹 = �� �−𝑑𝑑𝐹𝐹𝑤𝑤,𝑤𝑤 cos𝜙𝜙𝑤𝑤(𝑧𝑧) − 𝑑𝑑𝐹𝐹𝑤𝑤,𝑤𝑤 sin𝜙𝜙𝑤𝑤(𝑧𝑧)�𝑑𝑑𝑧𝑧

𝑟𝑟

0

𝑁𝑁

𝑤𝑤=1

 (15) 

 
𝐹𝐹𝑇𝑇 = �� �𝑑𝑑𝐹𝐹𝑤𝑤,𝑤𝑤 sin𝜙𝜙𝑤𝑤(𝑧𝑧) − 𝑑𝑑𝐹𝐹𝑤𝑤,𝑤𝑤 cos𝜙𝜙𝑤𝑤(𝑧𝑧)�𝑑𝑑𝑧𝑧

𝑟𝑟

0

𝑁𝑁

𝑤𝑤=1

 (16) 

 
𝐹𝐹𝐴𝐴 = �� �𝑑𝑑𝐹𝐹𝑟𝑟,𝑤𝑤�𝑑𝑑𝑧𝑧

𝑟𝑟

0

𝑁𝑁

𝑤𝑤=1

 (17) 

Here, 𝐹𝐹𝐹𝐹, 𝐹𝐹𝑇𝑇, and 𝐹𝐹𝐴𝐴 represent the forces in the feed, transverse, and axial directions at a 

given milling cutter immersion angle, 𝜙𝜙, which is incremented by a pre-determined time 

step and the force calculation is repeated. Note that the effect of cutter axis offset runout is 

assumed to be negligible for purposes of the current analysis. 
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Table 3 – Edge and cutting force coefficients used for force prediction. 

Coefficient Value 
𝐾𝐾𝑤𝑤𝑡𝑡 6.0899 ∗ 103 N/m 
𝐾𝐾𝑤𝑤𝑐𝑐 9.0377 ∗ 108 Pa 
𝐾𝐾𝑤𝑤𝑡𝑡 6.6017 ∗ 103 N/m 
𝐾𝐾𝑤𝑤𝑐𝑐 2.9379 ∗ 108 Pa 
𝐾𝐾𝑟𝑟𝑡𝑡 1.1169 ∗ 103 N/m 
𝐾𝐾𝑟𝑟𝑐𝑐 2.7783 ∗ 108 Pa 

 To verify the prediction of the cutting forces, cutting tests were conducted on a 

workpiece mounted on a three-axis piezoelectric force dynamometer (Kistler 9257b) with 

a sampling rate of 1 kHz. The cutting parameters (feed rate, axial and radial depths of cut, 

spindle speed) were selected to cover the same range of parameters used in the stiffness 

optimization experiments described in the subsequent sections. These tests indicated that 

the mean and variance of the forces could be predicted using the mechanistic milling model 

to within 10% of what was measured by the dynamometer and, more importantly, the 

dominant frequencies of the forces could be predicted to within 1 Hz of what was measured. 

Some discrepancy between the prediction and measured forces is expected for robotic 

milling due to the deflection of the tool during cutting [97]. Nevertheless, the close match 

in magnitude and even more precise match in frequency of the predictions to the measured 

forces makes predicting the milling force a viable strategy for pose optimization, which is 

further supported by the experimental results detailed in the subsequent sections. 

3.3.2 Static Stiffness Based Optimization 

To predict the end-effector deflections using the static model, the 2-norm of the 

predicted maximum force vector for a given milling operation is used as input (Figure 8). 

For each pose corresponding to each possible A angle, the deflection is computed, and the 
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optimal pose is chosen to be the one with the smallest deflection. This is equivalent to 

minimizing the objective function: 

 ‖∆𝑋𝑋‖ = ‖𝐾𝐾𝑥𝑥(𝜃𝜃)−1𝐹𝐹‖ (18) 

Here, ∆𝑋𝑋 represents the screw deflection of the end-effector caused by the external wrench, 

𝐹𝐹. 𝐾𝐾𝑥𝑥(𝜃𝜃) is the pose-dependent Cartesian stiffness matrix of the robot. There is a potential 

scaling issue that arises because the magnitudes of the angular deflections are smaller than 

that of the linear ones, so linear deflections may incur a disproportionate cost. However, in 

practice, angular deflections were measured to be very small (< 0.1°), so they were assumed 

to be negligible, and optimization aimed only to minimize the predicted linear deflections. 
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Figure 8 – Measured and predicted milling force magnitudes. The 2-norm of the peak 
force is used for static stiffness model-based pose optimization. 

3.3.3 Dynamic Stiffness Based Optimization 

Like for the static case, predicted milling forces were utilized for the dynamic 

stiffness-based optimization. However, instead of taking the peak forces as inputs, the full 

time-varying milling forces were used as inputs to the second order transfer functions of 

the dynamic models. The deflections were simulated for each possible A angle, and the 

optimal pose was designated as the one which minimizes the maximum 2-norm of the 

deflections. In other words, the maximum amplitude of the tool tip vibration was 

minimized (Figure 9). The corresponding objective function to be minimized is: 
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𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥(𝑡𝑡)) = �

𝐹𝐹(𝑡𝑡) − 𝑐𝑐(𝜃𝜃)�̇�𝑥(𝑡𝑡) − 𝑘𝑘(𝜃𝜃)𝑥𝑥(𝑡𝑡)
𝑚𝑚(𝜃𝜃)

𝑑𝑑𝑡𝑡2
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

0
 (19) 

Here, 𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥(𝑡𝑡)) is the maximum predicted deflection, 𝐹𝐹(𝑡𝑡) are the time-varying cutting 

forces, and 𝑚𝑚(𝜃𝜃), 𝑐𝑐(𝜃𝜃), and 𝑘𝑘(𝜃𝜃) are the pose-dependent mass, damping, and stiffness 

parameters determined from the corresponding dynamic models, respectively. 𝑡𝑡𝑁𝑁𝑟𝑟𝑥𝑥 is the 

time at which the predicted maximum deflection occurs for a given cut. 

 This optimization strategy does not account for poses where process-induced 

dynamic instabilities such as mode coupling and regenerative chatter can occur. However, 

the focus of this work is on minimizing force-induced deflections due to robot stiffness 

using static versus dynamic models, not to compare the two model-based optimizations’ 

effectiveness in minimizing chatter. However, since the mass and stiffness parameters are 

known for a given pose, it is possible to check for the possibility of model coupling chatter 

[98]. The poses used in this work were confirmed not to be susceptible to mode coupling 

chatter. In addition, a quick analysis of the deflections presented in the results reveals a 

lack of significant regenerative chatter.  
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Figure 9 – 2-Norm of the simulated deflections (δ) as a function of time. The maximum 
amplitude of the deflections is minimized in the dynamic model-based optimization. 

3.4 Experimental Setup 

To compare the effectiveness of static and dynamic stiffness model-based pose 

optimizations, the two independent variables selected for experiments were location of the 

workpiece in the robot workspace and the frequency content of the milling forces. The 

location in the workspace is an important factor because it determines the set of poses that 

are achievable for a given milling operation. By varying the workspace location, both the 

range of pose-dependent static and dynamic stiffness properties available for the pose 

optimization are altered, thus it is possible to gain insight into which conditions favor one 
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model-based optimization over another. The second variable, the frequency content of the 

milling forces, only affects the dynamic stiffness-based optimization. The hypothesis is 

that the dynamic model-based optimization will attempt to select poses for which the 

resonant frequencies are far from those of the milling forces. The static model, having no 

knowledge of the robot’s resonant frequencies, may underperform in cases where the 

statically optimal pose happens to correspond to one whose resonant frequencies match 

those of the cutting forces. Milling force magnitude was fixed because it only scales the 

predicted deflections and does not affect the solution for the optimal pose. 

3.4.1 Choosing Locations in the Workspace 

To ensure a broad range of possible robot dynamics were captured, workspace 

locations were selected such that the natural frequencies of the robot exhibited different 

trends across the reachable A angles at each location. Some locations were selected for 

which the natural frequencies (𝜔𝜔𝑛𝑛) had significant variation across poses (Figure 10). Note 

that the lack of smoothness in the 𝜔𝜔𝑛𝑛 plots is caused by the GPR interpolation of 𝜔𝜔𝑛𝑛 

between sampled points. Other locations were chosen for which the natural frequencies did 

not significantly vary across reachable A angles (Figure 11). Note that the configuration 

displayed in Figure 11 is close to singular and would likely be avoided in practice. For 

experimental purposes, however, it is good to consider as a comparison point between static 

and dynamic pose optimization for a case where the dynamic model may not be able to 

drive the optimal pose solution’s natural frequencies away from those of the milling forces. 

It is hypothesized that the dynamic stiffness model-based optimization should outperform 

the static one for poses in which the natural frequencies vary significantly, as it should have 

more of an opportunity to select a pose which minimizes resonance from cutting forces. 
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Conversely, the static model cannot account for these changing dynamics with robot pose 

and cannot therefore leverage them to select the theoretically most optimal pose. 

Finally, to verify that a good range of the robot’s stiffness characteristics was 

captured across the selected locations in the workspace, the maximum static stiffness, 

corresponding to the largest singular value of the Cartesian stiffness matrix, of the robot 

was evaluated at each experimental workspace location. Between nonsingular poses, the 

maximum stiffness values varied within 20% of each other and between close-to-singular 

and nonsingular poses, they varied over 100%. This indicates that the experimental poses 

covered a good range of relatively low and high static stiffness regions of the robot’s 

workspace. 
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Figure 10 – Predicted robot natural frequencies in the three orthogonal directions of 
the robot base frame as a function of angle A. In this case, the natural frequencies in 
the Y direction significantly vary with A. The TCP is located at X: -10.73, Y: -2400.47, 
Z: 303.41 mm. In the pictured configuration, A=0°. 
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Figure 11 – Predicted robot natural frequencies in the three orthogonal directions of 
the robot base frame as a function of angle A. In this case, the natural frequencies do 
not significantly vary with A. The TCP is located at X: 11.16 mm, Y: -3100.09 mm, Z: 
303.19 mm. In the pictured configuration, A=0°. 
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3.4.2 Milling Parameters 

Milling was performed on an Aluminum 6061 workpiece. The cutting parameters 

were selected such that the magnitude of the milling forces was large enough to cause 

measurable end-effector deflections which exceeded the robot’s repeatability (+/- 0.08 

mm). A constant radial depth of cut of 6.35 mm, constant axial depth of cut of 5.08 mm, 

and a constant feed per tooth of 0.526 mm per tooth were used. The cutting tool was a 25.4 

mm diameter uncoated high-cobalt content high speed steel with two helical teeth and a 

helix angle of 30 degrees (Kennametal Inc., Latrobe, PA). All cuts were performed dry and 

in the climb milling mode. To vary the frequency of the milling forces, the spindle speed 

was varied, but the feed rate was adjusted in each case such that the feed per tooth remained 

constant for all cuts. 

3.4.3 Measuring Deflections 

A Leica AT960 laser tracker with a six degree of freedom target (Leica T-Mac) 

mounted on the robot was used to measure deflections of the end-effector. The tracker can 

measure at 1 kHz with an error of < 0.0254 mm, which was confirmed by measurement of 

reference scale bars whose lengths are known to within 0.0025 mm. The transformation 

between the tracker target and tool tip was calibrated prior to experimentation. During 

cutting, position and orientation measurements were captured and transformed to the tool 

tip to determine the tool tip deflections. 
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Figure 12 – Left: laser tracker (Leica AT960). Right: 6-dof target (Leica T-Mac) 
mounted on the end-effector. 

3.4.4 Results 

Table 4 lists the experimental parameters. At each test location, a set of two 

peripheral end milling cuts was performed: one using the static stiffness optimization and 

one using the dynamic stiffness optimization. All experiments were performed with the 

cutting tool pointing along the negative robot Z axis. Each set of two cuts was performed 

once at a spindle speed that generates time-varying milling forces with frequency content 

close to the natural frequencies of the robot, and again at a spindle speed high enough to 

be far from the dominant natural frequencies of the robot. The tooth passing frequency is 

determined from the spindle speed by: 

 
Tooth passing frequency =  

spindle rpm
60

∗ number of teeth (20) 
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 Note that the static stiffness optimization will always converge to the same solution 

regardless of spindle speed. For the static stiffness optimizations, both the CP and DPP 

models yielded the same solutions, so the optimal A angle to which they converged is 

reported as a single value in the results. The first two workpiece locations (test numbers 1-

8) were in regions of the workspace where the robot dynamics varied significantly with 

angle A. Predicted deflections for each A angle are depicted in Figure 13 for test numbers 

1-4. The Euclidean norm of the corresponding measured deflections from experimentation 

are depicted in Figure 14. The predicted deflections as a function of A for test numbers 5-

8 are depicted in Figure 15 and the corresponding measured deflections are depicted in 

Figure 16. Table 5 lists the mean and standard deviations of the deflections for test numbers 

1-10, for reference. 

Table 4 – Experimental parameters by test number. TCP refers to the cutting tool tip. 

Test 
No. 

Tooth 
Passing 

Frequency 
(Hz) 

TCP X 
(mm) 

TCP Y 
(mm) 

TCP Z 
(mm) 

Optimization 
Approach 

Optimal 
“A” 

Angle 
(deg) 

Natural 
Frequency 

Range 
(Hz) 

1 64.5 -10.73 -2400.47 303.41 Static 110 10-68 
2 64.5 -10.73 -2400.47 303.41 Dynamic 52 10-68 
3 107.5 -10.73 -2400.47 303.41 Static 110 10-68 
4 107.5 -10.73 -2400.47 303.41 Dynamic 49 10-68 
5 60.0 615.9 -2400.92 304.47 Static 110 9-67 
6 60.0 615.9 -2400.92 304.47 Dynamic 45 9-67 
7 107.5 615.9 -2400.92 304.47 Static 110 9-67 
8 107.5 615.9 -2400.92 304.47 Dynamic 45 9-67 
9 25 -0.25 -2111.24 291.63 Static 110 11-25 
10 25 -0.25 -2111.24 291.63 Dynamic 53 11-25 
11 60.0 11.16 -3100.09 303.19 Static 12 7-18 
12 60.0 11.16 -3100.09 303.19 Dynamic 20 7-18 
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Table 5 – Measured deflections by test number. 

 

Figure 13 – (a) Maximum Euclidean norm of the predicted deflections using the CP, 
DPP static stiffness models, and dynamic models as a function of A for test numbers 
1 and 2. (b) Predicted deflection norms using the dynamic stiffness model for test 
number 4. The red dots indicate the A angle corresponding to the minimum predicted 
deflection. 

 

Test No. Mean Deflection (mm) Standard Deviation of Deflections (mm) 
1 0.42 0.19 
2 0.17 0.08 
3 0.19 0.03 
4 0.15 0.03 
5 0.27 0.15 
6 0.25 0.07 
7 0.19 0.03 
8 0.19 0.04 
9 0.46 0.28 

10 0.49 0.28 
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Figure 14 – Euclidean norm of the measured deflections for test numbers 1-4 for a 
tooth passing frequency of (a) 64.5 Hz and (b) 107.5 Hz. The lower frequency is within 
the range of the robot’s natural frequencies at this pose while the higher one is not. 
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Figure 15 – (a) Maximum Euclidean norm of the predicted deflections using the CP, 
DPP static stiffness models, and dynamic models as a function of A for test numbers 
5 and 6. (b) Predicted deflection norms using the dynamic stiffness model for test 
number 8. 
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Figure 16 – Norm of the measured deflections for test numbers 5-8 for a tooth passing 
frequency of (a) 60.0 Hz and (b) 107.5 Hz. The lower frequency is within the range of 
the robot’s natural frequencies at this pose while the higher one is not. 

 Test numbers 1-8 seem to confirm the hypothesis that a dynamic model-based 

optimization can outperform a static one when the milling force frequencies approach the 

natural frequencies of the robot (Figure 14a and Figure 16a). This is evident from the 

smaller 2-norm of the deflections seen in the dynamic-model based optimizations. 

However, for the high spindle speed tests (3,4,7,8), where the milling force frequencies 

were outside the range of the natural frequencies of the robot, the difference in mean 

measured amplitude of the end-effector deflection between the static and dynamic stiffness 
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optimizations was < 0.025 mm (Figure 14b and Figure 16b), which is less than the robot 

repeatability. Thus, for the high spindle case, neither model has a clear advantage. 

 For test numbers 9-10, the predicted natural frequencies of the robot varied by < 10 

Hz over the range of possible A angles (Figure 17). This location in the workspace was 

chosen to compare the effectiveness of each pose optimization when the dynamic 

properties do not vary significantly with pose. The predicted and measured deflections are 

displayed in Figure 18 and Figure 19, respectively. The large magnitude of the measured 

deflections indicates that when the resonant modes of the robot cannot be avoided through 

pose optimization, both models struggle to prevent severe vibration. 
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Figure 17 – Predicted natural frequency versus angle A for test numbers 9-10. 

 

Figure 18 – Predicted deflection versus angle A for test numbers 9-10. 



 50 

 

Figure 19 – Measured deflections for test numbers 9-10. The cutting force frequency 
is 25 Hz, which falls within the range of the robot’s natural frequencies at this pose. 

 So far, the results shown have depicted cases where the static and dynamic model-

based optimizations yielded significantly different solutions. However, this is not always 

the case, as can be seen for the location corresponding to test numbers 11-12 (Figure 20). 

The optimal pose solutions returned by the static and dynamic stiffness-based 

optimizations are a function of the workspace location and milling parameters and may or 

may not diverge depending on those factors. 

 A quantitative summary of the deflection results is presented in Table 6. If all test 

parameters other than whether a dynamic or static compliance model was used to perform 

the optimization are disregarded, dynamic model-based optimizations performed better 

with a mean deflection value of 0.56 mm compared to the static model’s 0.65 mm. 

However, a t-test between the static and dynamic-based optimizations rejects the null 

hypothesis with a p-value of 0.285 corresponding to a 71.5% confidence. The large p-value 

reflects the nuance inherent in the benefits of using a static versus dynamic compliance 

model. In other words, factors like the sensitivity of the dynamics to the pose at a given 
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workspace location and the process parameters such as cutting force frequency are 

significant and should be considered in the comparison, as was demonstrated throughout 

this section. 

Table 6 – Maximum Deflections by Test Number 

 

 

 

 

 

 

Figure 20 – Predicted deflections for test numbers 11-12. 

3.4.5 Effect of Optimization on Machining Accuracy 

While the focus of this work was on comparing the effectiveness of static and 

dynamic stiffness optimizations in minimizing deflections of the end-effector, the end-

Test No. Optimization Approach Max Deflection 
(mm) 

1 Static 0.98 
2 Dynamic 0.63 
3 Static 0.27 
4 Dynamic 0.26 
5 Static 0.55 
6 Dynamic 0.40 
7 Static 0.26 
8 Dynamic 0.28 
9 Static 1.18 
10 Dynamic 1.22 
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application goal is to allow robotic machining to produce parts with better tolerances. 

Figure 21 displays a box and whisker plot of the measured errors in the axial and radial 

depths of cut. The errors were measured using a coordinate measurement machine (CMM) 

by measuring the depths of cut relative to a reference surface, then comparing these values 

to the nominal depths of cut. The “x” ticks denotate the mean values, the boxes indicate 

the densest quartile of measurements, and the vertical lines extending from the boxes show 

the variation in error for each measured cut surface. These plots correspond to test numbers 

5-6, which were run with milling force frequencies within the range of the robot’s natural 

frequencies at the location. The low axial depth of cut error is expected because the milling 

forces in the axial direction (Z) were low relative to the other directions. The radial depth 

of cut error plots confirm that the dynamic stiffness optimization outperforms the static 

optimization for the case that the natural frequencies of the robot approach those of the 

milling forces. The data also confirms that the laser tracker measurements of end-effector 

deflection correlate well with the geometric error in the finished part. 
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Figure 21 – Axial and radial depth of cut error measurements for test numbers 5-6. 

3.5 Summary 

This chapter compared the effectiveness of using static and dynamic models to select 

the optimal pose for robotic milling by minimizing the predicted deflections. Results 

indicate that a dynamic model-based optimization has more success reducing force-

induced deflections when milling forces approach the resonant frequencies of the robot and 

when the task is in a location for which the robot can substantially alter its natural 

frequencies through a change in pose. For the other cases of when milling forces do not 

approach the robot natural frequencies or for workpiece locations where the range of 

available poses does not allow for a shift in the natural frequencies of the robot, there was 

no significant advantage in using the dynamic model to select the optimal pose over the 

static one. 
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Results also indicate that being able to control location of the workpiece in the 

robot’s workspace and the cutting parameters can be a more powerful tool than pose 

optimization. As mentioned, the location in the workspace can determine what poses are 

available for the stiffness optimization to choose from, so locations should be chosen such 

that the range of achievable robot natural frequencies is large. Adjusting the cutting 

parameters, namely, the frequency of the cutting forces, is perhaps the most powerful tool 

one has in reducing deflections. If the spindle speed can be adjusted such that the tooth 

passing frequency is far from any of the resonant modes of the robot, then both a static and 

dynamic model-based optimization will produce the best results. 

In practice, the results from this chapter indicate that a basic dynamic model of the 

robot is useful to have even if it is not used for pose optimization specifically. If the model 

can describe how the resonant frequencies of the robot vary with pose to an approximate 

level, it can be used to select for optimal workspace locations and cutting parameters for 

milling, which, according to the results of this chapter, can be even more important than 

selecting the optimal pose. The motivation for this chapter was to answer the question of 

what kind of model should one calibrate on their manipulator if they plan to use it for high-

force processes with time-varying forces such as milling. An analysis of the deflections 

produced via different pose optimizations for different workspace locations and cutting 

parameters has shown that the best answer is an approximate (low-calibration effort) 

dynamic model. This model should be used to select the optimal workspace locations and 

cutting parameters to minimize deflections if that is an option. However, if the constraints 

of the task are such that cutting parameters and workspace location must be fixed, higher 
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resolution (more poses used in training) dynamic model should be calibrated to select the 

optimal poses for machining. 
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CHAPTER 4. STATE ESTIMATION OF A ROBOT END-

EFFECTOR USING LASER TRACKER AND INERTIAL SENSOR 

FUSION 

4.1 Introduction 

The goal of this chapter is to quantify the benefits and limitations of supplementing 

real-time laser tracker data with inertial data from an Inertial Measurement Unit (IMU) to 

improve the accuracy of the overall state estimation of the robot end-effector. Data are 

fused using an Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and 

Particle Filter (PF). Purely translational paths and paths with both translation and rotation 

are considered to assess the effectiveness of the three fusion techniques for the linear 

(former) and nonlinear (latter) case. In addition, the effects of sensor bias and noise 

characteristics are investigated to determine the limits of sensor performance beyond which 

data fusion provides no substantial benefit. Experiments are conducted first in simulation, 

then on hardware using an industrial manipulator. 

4.2 Methods 

4.2.1 Modeling the State 

The position, orientation, and their first and second derivatives comprise the full 

state of the robot end-effector to be estimated. The translational part of the state is modelled 

as: 
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 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + �̇�𝑥𝑘𝑘∆𝑡𝑡 + �̈�𝑥𝑘𝑘∆𝑡𝑡2 (21) 

 �̇�𝑥𝑘𝑘+1 = �̇�𝑥𝑘𝑘 + �̈�𝑥𝑘𝑘∆𝑡𝑡 (22) 

 �̈�𝑥𝑘𝑘+1 = �̈�𝑥𝑘𝑘   (23) 

Here, 𝑥𝑥 is a 3-vector representing the 3D Cartesian position of the end-effector, subscript 

𝑘𝑘 represents the sample number, and ∆𝑡𝑡 indicates the sample time. This model assumes 

that the sensor rate is high enough that acceleration change between samples can be 

approximated as zero. The rotational part of the state is modelled as: 

 𝑞𝑞𝑘𝑘+1 = 𝑞𝑞𝑘𝑘 + �̇�𝑞𝑘𝑘∆𝑡𝑡 + �̈�𝑞𝑘𝑘∆𝑡𝑡2 (24) 

 �̇�𝑞𝑘𝑘+1 = �̇�𝑞𝑘𝑘 + �̈�𝑞𝑘𝑘∆𝑡𝑡 (25) 

 �̈�𝑞𝑘𝑘+1 = �̈�𝑞𝑘𝑘 (26) 

 

Here, the orientation is represented as a quaternion, 𝑞𝑞, whose derivatives are expressed in 

terms of the orientation, angular velocity, and angular acceleration as: 

 �̇�𝑞 =
1
2
𝜔𝜔𝑞𝑞 (27) 

 �̈�𝑞 = �−
1
4
‖𝜔𝜔‖2 +

1
2
�̇�𝜔� 𝑞𝑞   (28) 
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The angular velocity term, 𝜔𝜔, is a quaternion with real part equal to zero and imaginary 

part equal to the three Cartesian components of the angular velocity of the end-effector. 

Note that all non-scalar multiplications in (27) and   (28) are quaternion multiplications. 

Like for the translational equations, the assumption is made that the sensor rate is high 

enough that angular acceleration changes between samples can be approximated as zero. 

The full state is thus 19 dimensional: position, velocity, acceleration, angular velocity, and 

angular acceleration have three components each, and orientation has four components 

because of the quaternion representation. 

4.2.2 Experimental Setup: Simulation 

To quantify the accuracy of the state estimation, the ground truth state should be 

known to within at least an order of magnitude better than what the sensors used in the 

estimation can measure. Because laser trackers can achieve position measurement 

accuracies of less than 0.015 mm, it is difficult to find a sensor which is both ten times as 

accurate with the same distance range (~1 m) of a laser tracker. Because of this, 

experiments are first set up in simulation using MATLAB Simulink software so that the 

ground truth state is known at all times to within machine precision. 

End-effector test trajectories were selected to be sine waves in space with a constant 

tangential velocity, or “feed rate”. Purely translational motions are referred to as “3-axis” 

moves while motions with translation and rotation are referred to as “5-axis” moves 

because there is no rotation about the axis of the tool (Figure 22). Sine waves are used 

because they include both close-to-linear motions with almost no acceleration between the 

troughs and peaks and highly nonlinear motions with high accelerations at the troughs and 
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peaks. 5-axis motions are used to incorporate rotation because they are representative of 

most industrial robotic operations that require high accuracy in the end-effector state 

estimation (e.g., painting, milling, drilling, and welding). The feed rate is kept constant 

because this is the norm for most milling and painting tasks and because it allows it to be 

an easily adjusted parameter to scale the linear and angular accelerations that the end-

effector undergoes for a given trajectory. The sine waves were of 0.0762 m amplitude with 

a spatial frequency of 19.685 cycles/m. This shape was selected to provide a good scaling 

of linear and angular accelerations with feed rate. 

 

Figure 22 – Sample tool motion for a 3-axis motion (left) and 5-axis motion (right). 
For the 5-axis motion, the tool axis is constrained to remain normal to the path. 

 The laser tracker measures position and orientation for the state estimation while 

the IMU measures acceleration and angular velocity. Both sensors are set to measure at 

1000 Hz, so no differentiation or integration of measurements is necessary between sensor 
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cycles. For 3-axis motions, the state equations are linear, and data are fused using a Kalman 

Filter (KF) and Particle Filter (PF) [99]. The process and measurement noise covariance 

matrices (Q and R, respectively) for the KF are based on the accuracy of the sensors and 

on which parts of the state are directly measurable (see Appendix B for details). The KF, 

Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and PF all use the state 

transition equations (21-28) combined with sensor measurements to output estimates of the 

state at each sample time. These estimators are used because they are the norm in the recent 

literature when fusing inertial data with other position sensors, and because they represent 

a tradeoff between speed and robustness to non-linear systems. Kalman Filters and their 

variants are extremely fast but can struggle to capture non-linear behaviors. The Extended 

Kalman Filter only relies on a first order Taylor series expansion to linearize the system, 

while the Unscented Kalman Filter improves the robustness to non-linearity by linearizing 

around “sigma” points which can better capture the shape of a non-linear motion [100]. 

The UKF thus improves the accuracy from a 1st order Taylor series expansion to a 3rd order 

one for nonlinear systems. Particle Filters, on the other hand, are the most robust to 

nonlinearities but also the most computationally expensive. They do not rely on any 

linearization, but instead propagate a large number of possible states, called particles, 

through the state transition equations to form the initial estimate. The propagated particles 

are then resampled using a weighted sampling which favors particles whose state estimates 

are closer to the measurement data provided by the sensors [99]. The computational 

expense grows with the number of particles used, as does the robustness of the estimation 

to nonlinearity. For the hardware used in this study, a value of 1000 particles was the limit 

beyond which real-time estimation could no longer be achieved with the PF. 
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 A range of sensor parameters is used in quantifying the accuracy of the state 

estimation. The laser tracker and IMU measurements are corrupted by varying levels of 

Gaussian white noise and the IMU measurements are additionally offset by biases of 

varying size. Also, because the tracker target and IMU location cannot physically occupy 

the same space, they are separated by a six-dimensional coordinate transformation. This 

transformation is chosen to represent a real end-effector present in the laboratory with 

translational part equal to [-180, -100, 120] mm and rotational part approximately equal to 

a 180 degree rotation about the y axis (Figure 7 for reference). For reference, the sine waves 

are oriented such that z is a sinusoidal function of x (Figure 22). To explore the effects of 

sensor transform error, this transform is corrupted by varying levels of error. Both 

translational and rotational transform errors are applied to the z axis to maximize their 

effects on estimation accuracy. For a rotating rigid body, two points on the body perceive 

acceleration differently. Thus, the acceleration of the tracker target relative to that of the 

IMU is given as: 

 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛼𝛼 × 𝑟𝑟 + 𝜔𝜔 × (𝜔𝜔 × 𝑟𝑟) (29) 

Here, 𝑎𝑎 indicates acceleration, 𝛼𝛼 and 𝜔𝜔 are the angular acceleration and velocity of the 

end-effector, respectively, and 𝑟𝑟 is the position vector from the IMU to the tracker target. 

For the experiments, the position of interest for the state estimation is located on the tracker 

target, so the acceleration and angular velocity measured by the IMU are transformed 

according to (29). 

 The baseline and offset parameters for the simulation experiments are given in 

Table 7. The sensor bias and noise parameters are modeled after a Leica AT960 laser 
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tracker measuring a Leica T-Mac target and a Gladiator Technologies Landmark 60 IMU. 

Most parameters are taken from the sensors’ technical specifications except for those of 

the orientation measurement accuracy of the T-Mac, which is taken from [101]. Noise 

values are represented as standard deviations of Gaussian white noise. These sensors are 

selected because they are both top of the line in terms of accuracy characteristics and data 

rates, and so are good “best case” representations of sensors for the state estimation. The 

baseline sensor fusion technique is a KF for 3-axis motions and an EKF for 5-axis motions 

because they represent the lowest computational cost for each motion type. The baseline 

feed rate is selected to match typical feed rates for machining aerospace materials such as 

aluminum and carbon fiber. Finally, sensor transform errors are set to zero for baseline, 

representing a perfect calibration of the various coordinate frames, then increased until the 

error is large enough that the sensor fusion no longer provides a benefit to the overall state 

estimation. 
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Table 7 – Simulation Experiment Parameters and Values 

Parameter Baseline Offset 
Position sensor noise (mm) 0.0064 0.064, 0.64 
Orientation sensor noise (deg.) 0.015 0.15, 1.5 
Angular velocity sensor bias 
(deg./s) 

0.0008 0.008, 0.08, 
0.8, 8 

Angular velocity sensor noise 
(deg./s/√Hz) 

0.0016 0.016, 0.16 

Acceleration sensor bias (m/s2) 0.00025 0.0025, 
0.025 

Acceleration sensor noise 
(m/s2/√Hz) 

0.00039  0.0039, 
0.039 

State estimator KF/EKF PF 
Sample time (s) 0.001 0.002, 0.01 
Feed rate (mm/s) 42.33 21.17, 4.233 
Sensor transform translation error 
(mm) 

0.000 0.254, 2.54 

Sensor transform orientation error 
(deg.) 

0 0.1, 1, 10 

4.2.3 Experimental Setup: Hardware 

Simulation results, discussed later, showed that the largest benefit of the sensor 

fusion was in the velocity estimation. To confirm the results, hardware experiments were 

set up using the same instruments as in the simulation. The robot used was a Kuka KR 500-

3 serial manipulator which can report its pose at a rate of 250 Hz. Motion experiments 

indicated that the robot has an average global positioning error of 0.5 mm, which is 

consistent with findings for other industrial robots [8, 11, 13, 15, 17, 102-104]. This allows 

the Leica AT960 measurement to be used as ground truth to assess the effectiveness of 

fusing the reported robot pose data with IMU data. 

Because the feed rate cannot be specified for this robot for a sinusoidal motion, 

experimental trajectories were made to be linear and circular moves, which capture the 
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same linear and nonlinear shapes of a sine wave. Experiments were conducted at three 

different feed rates for both 3-axis and 5-axis motions (Table 11). Linear motions were 1 

m in length while circular motions had the robot complete a semicircle of radius 0.25 m. 

For the 5-axis motions, the end-effector rotated 60 degrees from the beginning to the end 

of the motion (Figure 23). This rotation was selected to be as high as possible without 

exceeding the angular acceleration limits of the robot joints to complete the motion. 

 

Figure 23 – Example 5-axis motion. The end-effector rotates by 60 degrees from the 
pose pictured on the left to the pose pictured on the right. 

4.3 Results 

4.3.1 Estimation of Measured Quantities in Simulation 

For the baseline experiment parameters, state estimation of the measurable parts of the state 

(position, orientation, acceleration, and angular velocity) exhibited marginal to no 

improvement with sensor fusion (Table 8). If a sensor is made less accurate than the 

baseline, however, fusion does improve the estimation accuracy of the parts of the state 

directly measured by the less accurate sensor ( 
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Table 9). This is analogous to the findings of [86] where the position measurement made 

by an optical measurement system, which is less accurate than a laser tracker, was 

improved by fusion with acceleration measurements. A comparison of the mean position, 

acceleration, and angular velocity estimation errors between the first two columns of  Table 

8 and the last two columns of Table 9 indicates that though fusion with a less accurate 

sensor improves the accuracy of the quantity measured by that sensor, it still cannot achieve 

the same accuracy as when using a better sensor alone. 

Table 8 – Baseline Estimation Performance 

Parameter Tracker/IMU 
alone 

Sensor fusion 

3-axis 5-axis 3-axis 5-axis 
Position estimation mean error (mm) 0.0089 0.0089 0.0089 0.0089 
Position estimation std. error (mm) 0.0066 0.0066 0.0066 0.0066 
Orientation estimation mean error (deg.) N/A 0.012 N/A 0.11 
Orientation estimation std.error (deg.) N/A 0.0092 N/A 0.17 
Acceleration estimation mean error (m/s2) 0.0001

8  
0.0006
1 

0.0001
2 

0.0004
0 

Acceleration estimation std error (m/s2) 0.0001
3  

0.0010 0.0001
0 

0.0001
0 

Angular velocity estimation mean error (deg/s) N/A 0.070  N/A 0.062 
Amgular velocity estimation std error (deg/s) N/A 0.054  N/A 0.046 
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Table 9 – Benefits of Fusion for Less Accurate Sensors 

Offset sensor parameter Value Mean error 

(sensor only) 

Mean error (sensor 

fusion) 

3-axis 5-axis 3-axis 5-axis 

Tracker noise (mm) 0.64 0.889 0.889 0.41 0.41 

Acceleration sensor noise 

(m/s2) 

0.0039  0.0018 0.0020 0.00048 0.00049 

Angular velocity sensor 

noise 

0.16 

deg/s/√Hz 

N/A 0.70 

deg/s 

N/A 0.35 

deg/s 

4.3.2 Velocity and Angular Acceleration Estimation in Simulation 

The simulation experiments revealed that velocity estimation sees the biggest 

benefit in the full state estimation from the fusion of the tracker and IMU data (Figure 24 

and Figure 25). These plots are over a five second simulation window for the baseline 

experimental parameters listed in Table 7. For estimating velocity using only laser tracker 

measurements, a four-point linear regression was used to fit a slope to the last four position 

measurements. This reduces some of the noise amplification which would result from a 

direct differentiation of the tracker measurements at the cost of filtering out some higher 

frequency changes in the velocity. The spikes in error seen around 1.8 s correspond to a 

peak in the sine wave trajectory, which is where linear and angular accelerations are 
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highest. In the 5-axis motion, this peak represents the most nonlinear behavior in the state 

because it corresponds to the most rapid orientation change. 

 

Figure 24 – Velocity estimation simulation results for the 3-axis experiments. (a) and 
(b) are the x and z velocity estimations plotted with ground truth, respectively, and 
(c) and (d) are the respective velocity estimation error plots. 
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Figure 25 – Velocity estimation simulation results for the 5-axis experiments. (a) and 
(b) are the x and z velocity estimations plotted with ground truth, respectively, and 
(c) and (d) are the respective velocity estimation error plots. 

 The velocity estimation results indicate that for the linear and close-to-linear parts 

of systems (like the 5-axis motion in between sine wave peaks), a KF (for 3-axis) or 

EKF/UKF (5-axis) performs a better estimation than a 1000 particle PF. However, the 

advantage of the PF becomes clear for the highly nonlinear orientation change around the 

peak of the sine wave, where its estimation is more accurate than that of both the EKF and 

UKF. 
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 Angular acceleration estimation accuracy shows about a 45% improvement for 

baseline experiment parameters everywhere except at the peaks of the sine wave (Figure 

26). At the peaks, the fusion performs worse than the IMU alone because of the inability 

of the EKF and UKF to handle the highly nonlinear rapid rotation. However, the EKF and 

UKF still outperformed the PF in the estimation, most likely because more than 1000 

particles would be needed for the PF to accurately capture the nonlinearity in the motion. 

The improvement in the angular acceleration estimation with sensor fusion shown in these 

plots is consistent through all the simulation experimental conditions except for increased 

sample time, in which case fusion does not provide an improvement in the estimation. The 

biggest reason for estimating the angular acceleration, however, is because of its influence 

in the perceived linear acceleration by the IMU as detailed in equation (29). Noting this, 

the angular acceleration estimation needs only to be accurate enough so that it does not 

corrupt the linear acceleration estimation so much that the velocity can no longer be 

accurately estimated with fusion. 
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Figure 26 – Y angular acceleration estimation simulation results for the 5-axis 
experiments. (a) plots the estimation and ground truth and (b) plots the estimation 
error. 

4.3.3 Sensitivity Analysis 

To check the requirements necessary for the hardware used to still provide state 

estimation benefits with fusion, a sensitivity analysis was performed by varying the bias 

and noise of the sensors, sensor-to-sensor transform calibration error, and sample time. 

Table 10 shows the minimum requirements in these parameters for the velocity estimation 

to be better with fusion than by using the tracker alone. The velocity estimation was chosen 

as the component of the state estimation to compare because it improved the most with 

fusion for baseline conditions. Each value in Table 10 represents the limit for that 

parameter assuming all other parameters are baseline. The 5-axis case has a higher 

sensitivity to the sensor parameters because of the relationship between the IMU and 

tracker target accelerations. Note that translational sensor-to-sensor transform error does 

not impact the 3-axis estimation because in that case, both the IMU and laser tracker target 

perceive the same motion. The sample time limit is largely due to the assumptions made in 
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the state model that linear and angular accelerations remain constant between sample times. 

For a larger sample time, this assumption becomes less and less accurate, and so the 

algorithms used to fuse the IMU and tracker data, which rely on a good state transition 

model, become inaccurate. Finally, for the range of feed rates tested, the benefits of fusion 

did not change substantially, so feed rate is not listed as a parameter in the table. 

Table 10 – Minimum Requirements for Sensor Fusion Benefits 

Parameter 3-axis  5-axis  

Acceleration sensor noise (m/s2) < 0.1  < 0.1  

Acceleration sensor bias (m/s2) < 0.001  < 0.001  

Angular velocity sensor noise (deg./s) N/A < 0.1  

Angular velocity sensor bias (deg./s) N/A < 1  

Sensor transform orientation error (deg.) < 10  < 0.1 

Sensor transform translation error (m) No constraint < 0.1  

Sample time (s) < 0.01 < 0.01 

4.3.4 Hardware Results 

The velocity estimation results for the motions performed on the real hardware can 

be seen in Table 11. In each case, fusion of the IMU and robot Cartesian data measurements 

exhibited significant improvement in the velocity estimation accuracy over using the robot 

pose data alone. Specifically, the mean error was reduced by up to 37% for 3-axis motions 

and up to 35% for 5-axis motions. The results are consistent with the simulation results in 
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that the estimation accuracy is improved by sensor fusion even though the robot joint 

encoder is a noisier sensor than the laser tracker. 

Table 11 – Hardware Results 

 No End-Effector Rotation Continuous End-Effector Rotation 

Motion 
Type 

Linear Move Semicircular Move Linear Move Semicircular Move 

Feed 
rate 
(mm/s) 

21.17 42.33 63.50 21.17 42.33 63.50 21.17 42.33 63.50 21.17 42.33 63.50 

Robot 
Mean 
Error 
(mm/s) 

0.93 0.80 0.93 0.93 2.03 0.97 0.80 0.97 1.10 0.85 1.02 1.23 

Fusion 
Mean 
Error 
(mm/s) 

0.76 0.51 0.51 0.64 1.27 0.64 0.64 0.64 0.72 0.64 0.72 0.80 

Robot 
Std 
Error 
(mm/s) 

0.93 1.27 2.07 0.85 2.33 1.74 0.72 1.61 1.99 0.85 1.52 2.33 

Fusion 
Std 
Error 
(mm/s) 

0.55 0.34 0.34 0.34 1.35 0.38 0.42 0.42 0.55 0.38 0.47 0.59 
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4.4 Summary 

An investigation into sensor fusion of inertial measurements with laser tracker 

measurements revealed that velocity estimation can be significantly improved compared 

to what can be estimated using a laser tracker alone. Detailed results were acquired through 

simulation experiments, then the velocity estimation was performed on real hardware, 

where it was shown that the estimation can be improved via fusion with IMU data even 

when using robot data for the position measurement instead of a laser tracker. Finally, 

sensor bias and noise characteristics, transform error, and sample rates were varied to 

determine the quality of sensors and sensor calibrations needed to achieve benefits from 

fusion. 

The main question motivating this chapter of whether the state estimation can be 

improved at all by adding inertial data to laser tracker measurements has been answered 

affirmatively for the case of the velocity and angular acceleration measurements. Because 

of the low cost of an IMU compared to a laser tracker, this makes it a lucrative investment 

for applications where the best possible velocity estimation is desired. The current state-

of-the-art for accurate velocity measurement is dominated by high speed cameras and 

short-range laser displacement sensors. However, these kinds of sensors have a limited 

range and so are not practical for use in applications with the volumetric scale such as those 

performed by industrial robots. Thus, the fusion of laser tracker and IMU data should be 

the best strategy to obtain the highest possible accuracy in velocity estimation of an 

industrial robotic end-effector. 
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CHAPTER 5. A NEW METHOD FOR CLOSED-LOOP 

STABILITY PREDICTION IN INDUSTRIAL ROBOTS 

5.1 Introduction 

This chapter addresses a major hurdle that comes with controlling industrial robots 

in real-time via closed-loop feedback from external sensors, which concerns the difficulty 

in modeling the closed-loop system when input joint motor torques are not known. Because 

real-time commands in industrial robots come in the form of Cartesian or joint position 

offsets, the closed-loop system is commonly modeled using a naïve assumption that each 

real-time command is executed by the robot controller within the system cycle time with 

minimal to no error. In practice, this naïve assumption does not hold due to uncaptured 

sources of error present in each commanded motion, and so without a good closed-loop 

model of the system, it is necessary to manually tune feedback controller gains through 

trial-and-error. In this chapter, these unknown major sources of error in robot motion from 

real-time commands are identified and a new data-driven method of modeling them is 

presented. Then, it is demonstrated how the new model can be used to tune feedback 

controllers offline in simulation rather than manually through trial-and-error 

experimentation with the robot. 

5.2 Approach 

The approach used to achieve stability prediction in this chapter is as follows: 

1. Test potential sources of error for real-time commanded motion 

a. Controller delay 
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b. Command magnitude 

c. Commanded acceleration 

d. Jerk-induced dynamics 

2. Identify the major error sources and construct a model which allows them to be 

used for closed-loop stability prediction. 

3. Evaluate the model for experimental closed-loop trajectories. 

5.3 Methods 

5.3.1 Hardware Setup 

As in the other chapters, experiments were conducted using a Kuka KR 500-3 serial 

manipulator controlled by a Kuka KR C4 controller. A Leica AT960 laser tracker was used 

to measure end-effector motions. Time-stamped laser tracker measurements were 

transmitted via EtherCAT (EtherCAT Technology Group) to a TwinCAT software 

program (Beckhoff Automation), then again transmitted via UDP (User Datagram 

Protocol) to a Python server communicating at 1000 Hz. This server simultaneously 

communicated with the KR C4 controller via UDP using the Kuka Robot Sensor Interface 

(RSI) at 250 Hz. Figure 27 illustrates the hardware diagram corresponding to the real 

hardware pictured in Figure 28. 
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Figure 27 – Hardware diagram illustrating communication between the servers (blue) 
and measuring instruments (orange). 

5.3.2 Controller Delay 

As is the case for all real digital systems, there is delay present in the closed-loop 

system studied here. Delay being a well-understood factor in predicting closed-loop 

stability, it is necessary to have some understanding of it for a given system. Here, the 

delay is captured by conducting step response experiments. The amount of time between 

the input command and the beginning of the measured output motion is defined as the 

controller delay (Figure 29). The laser tracker timestamps were used to capture this delay, 

which was estimated to be 0.052 seconds. 
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Figure 28 –Hardware setup. 

 

Figure 29 – Representative step response of the Kuka KR 500-3. The delay is 
computed as the time between the input command and the start of the initial 
measured motion of the end-effector. 
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5.3.3 Error Sources for Motion from Real-Time Commands 

The first potential factors contributing to real-time commanded motion error 

investigated were command magnitude and path acceleration. It was initially thought that 

a given motion would have error that was proportional to the magnitude of its 

corresponding command. It was also hypothesized that the robot controller would struggle 

to achieve high end-effector accelerations because of the limitations in the torque outputs 

of the motors and so motions with high acceleration would result in higher command-

induced error. 

Command magnitude was ruled out as a significant contributing factor to motion 

error via constant velocity linear motion experiments. In these experiments, the robot was 

sent a Cartesian relative motion command every 12 ms, which means that it was 

commanded to offset its current Cartesian position by the commanded amount. For 

constant velocity motion, the subsequent input commands were identical, each offsetting 

the robot Cartesian position by the same amount over the 12 ms cycle. For the set of 

velocities of 20, 40, 80, and 120 mm/s, chosen to represent typical machining feed rates 

for hard and soft materials, the measured average command error was 0.02 mm in every 

case. This indicates that despite velocity commands having a higher magnitude, their 

associated error did not grow proportionally as hypothesized. 

To examine the effect of path acceleration, circular motion experiments were used. 

By fixing the radius of the circle and changing the tangential velocity (feed rate), it is 

straightforward to apply a constant magnitude acceleration to the end-effector towards the 

center of the circle. If the hypothesis holds true, the robot should struggle to maintain the 
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inward acceleration necessary to stay on the circular path for higher tangential velocities 

and so the resulting circles should be larger than nominal. However, experimental results 

show that this is not what happens in practice (Figure 30). There is higher error at the higher 

feed rates, but the error source is unclear. It should be noted that the circular trajectories 

were achieved by a set of many small linear motions, which means that faster trajectories 

have fewer commands per unit path length, which could be a source of the error seen at the 

higher feed rates. 

 

Figure 30 – Open-loop circular path experiments. Motion starts at the right side of 
the circle and moves clockwise. The expected result, that higher feed rates would 
produce larger circles, did not occur. 

 With command magnitude ruled out and path acceleration having an unclear 

relationship with motion error, it was necessary to formulate a new hypothesis for the major 

error sources. A close look at the robot response to individual commands, such as in Figure 

29, reveals that there is a significant amount of residual vibration from the high-jerk 

accelerations involved in the sudden start and stop of the end-effector motion. A high-jerk 

acceleration must be induced by a large impulse force, which, for a second order system 



 80 

such as described in (8), results in a large vibration. This motivated the hypothesis that 

structural vibrations caused by high-jerk accelerations of the end-effector are the biggest 

source of error in real-time commanded motion. To confirm this hypothesis, experimental 

modal analysis using an impact hammer was conducted at the pose whose step response is 

pictured in Figure 29. The tests yielded a frequency response function, which was then 

compared to the frequency content of the vibration data for the single-command robot 

experiment (Figure 31). The 17 Hz peak in Figure 31a is in the range of natural frequencies 

of the robot captured by the impact hammer test in Figure 31b (16-22 Hz). The results 

confirm that the resonant modes of the robot dominate the robot vibration response from 

the single-command experiment. Thus, structural vibration induced by motion commands 

is identified as a major error source when controlling industrial manipulators in real-time. 
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Figure 31 – Example frequency response of the robot measured from (a) command-
induced vibration and (b) impact hammer experiment. The peak in (a) is at 17 Hz and 
is in the vicinity of the natural frequencies of the robot measured in (b). The y axis 
units reflect a measured vibrational response in (a) and the frequency response 
function in (b). 

 

5.3.4 The Equivalent Force Model 

Traditional dynamic models present an input/output relationship between 

forces/torques and motion of the system. This makes it difficult to apply them for real-time 

control of industrial robots, because the real-time commands in industrial robots come in 

the form of position or joint offsets for which the associated forces/torques are unknown. 

To address this, real-time commands are modelled by their “equivalent force” on the end-

effector as follows: 

 
𝐹𝐹𝑒𝑒𝑒𝑒 =

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐2

 (30) 
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This formulation assumes that the end-effector undergoes a constant acceleration for the 

duration of the command cycle time. Also note that a mass term is not present, so the 

equivalent force does not represent a real force on the end-effector unless that end-effector 

has constant acceleration and unit mass. It is instead a scaled approximation of the forces 

input to the end-effector. 

 Using the equivalent force definition, it is straightforward to construct second order 

dynamic models for discrete robot poses analogous to how they would be constructed using 

experimental modal analysis, as documented in [49]. Instead of applying an impulse force 

to the end-effector via an impact hammer, however, an equivalent force is applied by 

issuing a single position offset real-time command. By fitting a second order system model 

to the measured vibrational response, it is possible to estimate the mass, damping and 

stiffness parameters. Note again that these parameters are only valid under the equivalent 

force representation and represent a scaled approximation of the real mass, damping and 

stiffness of the end-effector. To facilitate this process, a MATLAB software application 

was created to allow for easy calibration of the dynamic parameters given a known input 

equivalent force and output measured vibration (Figure 32). 
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Figure 32 – Software application implemented to estimate the dynamic properties of 
the robot using the equivalent force model for a given pose and force/motion 
direction. The parameters to be estimated are m (mass), c (damping), and k (stiffness). 

 To capture the dynamic parameters for all possible poses of the manipulator would 

be prohibitively costly. However, the KR 500-3 used here shares a common attribute with 

heavy payload manipulators of its kind in that end-effector translation is mostly dominated 

by rotation of its first three joints, while the last three joints mostly contribute to end-

effector rotation (Figure 3). Because joint 1 only rotates the arm about its base, joints 2 and 

3 are the primary contributors to the overall arm configuration for a given pose. Assuming 

that the last three “wrist” joints have little influence on the pose-dependent dynamics [105], 
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the evaluation of the dynamic parameters can be constrained to only the joint 2 - joint 3 

configuration space. 

 Because of its success in calibrating the real dynamic properties of the robot, to 

interpolate between end-effector dynamics captured at sampled poses, the same strategy of 

applying a Gaussian Process Regression (GPR) to the data is applied as in Chapter 2. The 

process is entirely analogous except that equivalent forces are used here instead of real 

forces as inputs to the dynamic model. Thus, one GPR model is trained at each pose for 

each Cartesian direction x, y, z and each dynamic parameter m, c, k for a total of 9 

individual models. The sampling strategy to determine how many poses in the joint 2 - 

joint 3 space to sample is developed and evaluated in Section 0. 

5.3.5 Applying the Equivalent Force Model to Predict Stability 

Because it was hypothesized that only non-smooth accelerations cause significant 

command-induced error, it is not necessary to model every command sent to the robot as 

an equivalent force. For simplicity, it is assumed that robot trajectories are followed with 

a constant feed rate, a valid assumption for most precision manufacturing tasks involving 

curvilinear paths characterized by gradual curves such as in machining, welding, or 

painting. Under this assumption, only commands that induce non-smooth accelerations are 

modelled as equivalent forces as in: 

 𝐹𝐹𝑒𝑒𝑒𝑒 = 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐 − 𝐹𝐹𝑓𝑓𝑒𝑒𝑒𝑒𝑐𝑐 (31) 

Here, 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐 is defined as in (30) and 𝐹𝐹𝑓𝑓𝑒𝑒𝑒𝑒𝑐𝑐 is defined as: 
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𝐹𝐹𝑓𝑓𝑒𝑒𝑒𝑒𝑐𝑐 =

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑐𝑐𝑡𝑡𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐

 (32) 

Note that the above forces are scalar quantities defined only in the feed direction. Any 

components of the commanded equivalent force not in the direction of the feed are 

automatically considered to induce non-smooth accelerations because they apply sudden 

steering to the trajectory of the end-effector. The final equivalent force to be input into the 

dynamic model is a vector of the equivalent forces modelled for each Cartesian direction. 

Note that as in Chapter 3, this means that the dynamic response in orthogonal directions 

(i.e. cross-coupling) is not captured. 

 Once the GPR models to predict pose-dependent dynamics are trained, it becomes 

possible to predict closed-loop stability for arbitrary smooth paths with constant feed rates. 

This is done by simulating the motion of the end-effector for a prescribed trajectory and 

closed-loop controller gain (Figure 33). The simulation is iterated in steps equivalent to the 

cycle time of the robot controller (4 ms). For the first step, the open-loop command sent to 

the robot is determined by the nominal trajectory. For this step, the robot motion is 

considered to have no error and to occur after the calibrated robot delay controller delay 

(52 ms). For subsequent steps, the motion error is computed as the difference between the 

current measured position of the end-effector and where it was commanded to go in the 

previous step. This error is input into the feedback controller which produces a position 

correction. This correction is input into the second order dynamic model predicted by the 

trained GPR model and the corresponding motion error is outputted. The simulation 

continues to run for the duration of the robot trajectory and stability is determined by 
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whether the end-effector position error reaches a steady-state value, oscillates, or grows 

unbounded. 

 

Figure 33 – Generalized block diagram of the real closed-loop system. 

5.4 Experimental Setup and Results 

5.4.1 Experiment Design 

To calibrate the equivalent force dynamic model, 16 poses were sampled in the 

joint 2 – joint 3 space (Table 12). GPR models were trained on the poses and used to predict 

the equivalent force dynamics for 6 validation poses (Table 13). To evaluate the 

effectiveness of the motion error-prediction from the GPR model in predicting closed-loop 

stability, the robot was run through a series of trajectories in the x-y plane of the form: 

 𝑐𝑐 = 50.8sin (2𝜋𝜋 ∗ (0.0098)𝑥𝑥) (33) 

Sine wave trajectories were used because their inherent oscillation can compound the 

oscillations caused by overly aggressive feedback gains and so typically require more 

manual experimental gain tuning than straight lines or large-radius curves. The amplitude 

and frequency of the sine wave were chosen to match typical experimental trajectories 

performed using this robot, such as described in Chapter 4. The feed rate was set at 42.33 

mm/s and trajectories were run for 15 seconds. 
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Table 12 – Robot poses used to calibrate equivalent force model. 

Pose number Joint 2 (deg) Joint 3 (deg) 
1 -33.96 113.53 
2 -31.26 98.33 
3 -26.47 81.25 
4 -19.33 60.68 
5 -46.14 115.56 
6 -41.59 100.18 
7 -35.48 83.05 
8 -27.42 62.67 
9 -57.62 114.56 
10 -51.05 99.27 
11 -43.49 82.17 
12 -34.31 61.7 
13 -67.45 110.6 
14 -59.08 95.65 
15 -50.15 78.59 
16 -39.74 57.71 

 

Table 13 – Robot poses used to evaluate the stability prediction capabilities of the 
equivalent force model. 

Pose number Joint 2 (deg) Joint 3 (deg) 
17 -38.53 107.42 
18 -34.02 91.33 
19 -49.4 107.92 
20 -43.22 91.79 
21 -59.1 105.55 
22 -51.27 89.57 

  

A proportional (P) controller was applied to error in the y direction of motion as 

defined in (33). P control was used to limit the number of controller parameters influencing 

the stability of the closed-loop system to 1. However, the methodology presented in 5.3.5 

can be applied to an arbitrary feedback controller scheme. To avoid potential timing 
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synchronization issues associated with a temporally defined trajectory, only the y 

coordinate was controlled with feedback, which allows the nominal coordinates at any 

given point in the path to be fully defined by the measured x coordinate. 

For each validation pose in Table 13, the robot was run through a series of “x” and 

“y” directional sine waves. The x directional sine waves refer to trajectories where the x 

coordinate, as defined in (33), corresponds to the world x coordinate (Figure 34) and y sine 

waves refer to trajectories where the x coordinate defined in (33) corresponds to the world 

y coordinate. For each sine wave direction, trajectories were executed with increasing P 

gains until the closed-loop system became unstable. Because of the higher stiffness of the 

robot for x directional sine waves, P gains were incremented by 0.1, whereas the P gains 

were incremented by 0.01 for the less stiff y direction. The gains corresponding to stability 

and instability were recorded and compared to the stability predictions of the equivalent 

force model. 
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Figure 34 – World coordinate system used in the closed-loop hardware experiments 
and example sine wave motions. 

5.4.2 Results and Discussion 

Figure 35 and Figure 36 depict examples of the measured experimental trajectories 

versus the predicted performance by the naïve and GPR equivalent force models. In both 

cases, the equivalent force model is able to predict that the trajectory error grows 
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unbounded for the unstable gain, which the naïve model is unable to do. The plots show 

the stable P gain and the trajectory up to the point of instability. The sudden termination of 

the measured motions (black lines) occurs because the increasing error causes the robot 

controller to trip a maximum joint torque fault and force a stop before the run is completed. 

It should be noted that the equivalent force model does not always predict the exact moment 

when the error begins to grow unbounded in the trajectory every time. This is a limitation 

of the assumption that all robot motion error is caused by structural vibration. Other factors 

such as gear backlash and calibration error between the external sensor (laser tracker) and 

robot coordinate system are not modelled, meaning that the error prediction is an 

approximation. However, the purpose of this work is to be able to predict the stability of a 

gain over an entire trajectory, so pinpointing the moment when instability occurs is outside 

the scope of this work. Finally, the naïve model shown in the plots is the same as that 

defined in Section 5.1 but with the addition of the robot controller delay. The full set of 

measured versus predicted stable and unstable controller gains is given in Table 14. 

Results show that the equivalent force model is able to predict the closed-loop 

stability up to a P gain resolution of 0.02 for this robotic system, trajectory, and control 

scheme. The gain prediction resolution may vary depending on the accuracy of the data 

available to calibrate the equivalent force model, the specific dynamics of the robot used, 

and the feedback controller scheme (P, PI, PID, etc.). In practice, it is recommended to 

choose controller gains conservatively, meaning two or three gain increments smaller than 

the maximum stable gain, to provide a margin of error for ensuring a stable closed-loop 

system. If accuracy tolerances are not met with these conservative gains, then it may be 
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necessary to incrementally increase them to achieve the desired accuracy. 

 

Figure 35 – Example closed-loop measured and predicted trajectory for a x-direction 
run with a stable P gain of 0.2 (left) and an unstable gain of 0.3 (right). This data is 
from the pose 17 experiments. 

 

Figure 36 – Example closed-loop measured and predicted trajectory for a y-direction 
run with a stable P gain of 0.02 (left) and an unstable gain of 0.04 (right). This data is 
from the pose 19 experiments. 

 As mentioned, the gains corresponding to the y direction trajectories were 

incremented in much smaller increments than for the x direction. The variation in the 

stiffness of the robot in certain directions thus influences the range of stable gains available 

for each direction. In application, this result can be used for trajectory selection. If possible, 
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one should select the trajectory with the largest range of stable gains to get the maximum 

accuracy improvement from the closed-loop corrections. 

Table 14 – Closed-loop stability prediction results. 

Pose number Predicted 
max. stable P 

gain for x 
direction 

Actual max. 
stable P gain 

for x direction 

Predicted 
max. stable P 

gain for y 
direction 

Actual max. 
stable P gain 

for y direction 

17 0.2 0.2 0.03 0.04 
18 0.2 0.2 0.03 0.04 
19 0.2 0.2 0.01 0.02 
20 0.2 0.2 0.01 0.02 
21 0.2 0.2 0.01 0.02 
22 0.2 0.2 0.02 0.02 

 When the equivalent force is not aligned with the directions used to calibrate the 

equivalent force models, it must be decomposed into its components. For thoroughness, an 

additional set of experiments was conducted at pose 19 for directions not aligned with x or 

y. The trajectories were equivalent to those already used but rotated 30, 45, and 60 degrees 

below the world x axis (Figure 37). Experimental results confirm that the stability 

prediction is successful with a stable gain resolution of 0.02 (Figure 38). It should be noted 

that the measured trajectories depicted in Figure 38 do not terminate early for the unstable 

case. Instead, they exhibit heavy oscillation because they depict the boundary of stability. 

Raising the gain any higher results in an immediate maximum torque fault triggered by the 

robot controller at the start of the trajectory. Also, there is a quirk of simulating feedback 

in the local y direction (as defined in (33)) only that any local x error is propagated 

throughout the simulation. This has no impact on the previous experiments, which were 

aligned with the x or y axes because all the vibrational error was contained in the direction 

of the corrections. However, for the rotated trajectories, because the world x and y dynamic 
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properties are not equivalent, when predicted vibrational error is summed from the x and y 

directions, some error is accumulated in the x direction (Figure 38a). This accumulated x 

error does not affect the stability prediction, however, because the local y feedback 

controller ignores it. 
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Figure 37 – Directions of off-axis experiments. 

 

Figure 38 – Off-axis experiments. Figures (a) and (b) show the 45 degree rotated runs 
with P gains of 0.03 and 0.05 respectively. Figures (c) and (d) show the 60 degree 
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rotated runs with P gains of 0.04 and 0.06 respectively. Note that in (d), the actual 
data is the same as in (c) because the real system was already unstable at a P gain of 
0.04 and so a run at a P gain of 0.06 was not conducted. 

5.4.3 Sampling the Joint Space 

The 16 pose sampling provided a good enough density to get accurate stability 

prediction. However, it would be useful to have a sampling strategy guideline for selecting 

the number of calibration poses for the equivalent force model. To develop this guideline, 

calibration experiments were conducted with increasingly dense sample sizes (Figure 39). 

Sampling steps were decreased from 15 degrees to 5 degrees in steps of 2.5 degrees, 

corresponding to an increase in sampled poses from 8 to 60. An equivalent force model 

was trained for each data set corresponding to each sampling density. To compare the 

ability of the models to capture the dynamic properties over the joint 2 – joint 3 space, the 

product of the mass (m) and stiffness (k) values was plotted across the joint space (Figure 

40 and Figure 41). The product of m and k is proportional to the undamped vibration of the 

system for a given impulse input, so it is chosen as the metric for comparing the different 

models because it captures the most relevant information for closed-loop stability 

prediction (the motion error corresponding to the initial vibration after each command). 
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Figure 39 – Example sampling schemes of the joint 2 – joint 3 space. The experimental 
points represent poses 1-22 (for reference), while the orange points indicate the poses 
to be used for the corresponding uniform sampling density. 

 

Figure 40 – Mass (m) times stiffness (k) plots over the joint 2 – joint 3 space for the 
world x direction. They correspond to models trained with a 15 degree (a), 10 degree 
(b), and 5 degree (c) pose sample step. 
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Figure 41 – Mass (m) times stiffness (k) plots over the joint 2 – joint 3 space for the 
world y direction. They correspond to models trained with a 15 degree (a), 10 degree 
(b), and 5 degree (c) pose sample step. 

 From Figure 40 and Figure 41, it is clear that for very low sampling densities, the 

GPR models default to close-to-constant mean values across the entire joint space. Only 

with denser sampling is it possible to capture the overall shape of the dynamic properties 

over the joint space. Table 15 lists the average percentage change of the m*k value between 

GPR models trained on data gathered from decreasing sample steps (increase pose 

sampling densities). The table shows that there is a large difference when going from 

extremely sparse to somewhat dense sampling, but that these differences drop off as the 

samplings approach their densest values. The data suggests that in practice, a sample step 

of no more than 10 degrees should be used to avoid the GPR models predicting a constant 
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mean value across the joint space. To determine the upper limit for the sampling density, a 

practical metric is to increase sampling density until the change in m*k between successive 

sample steps falls below the repeatability value of the equivalent force model calibration. 

The calibration repeatability is defined as the average amount by which the calibrated 

dynamic model parameters (m, c, and k) change between impulse experiments conducted 

at the same location and direction. For the experiments conducted in this work, this 

repeatability value was 15%. 

Table 15 – Percent change of average m*k between data of decreasing sample steps. 

Direction 15° to 12.5° 12.5° to 10° 10° to 7.5° 7.5° to 5° 
X 22% 4% 8% 8% 
Y 15% 50% 24% 18% 

 

5.5 Summary 

This Chapter aimed to improve the feedback controller design process for industrial 

robots by alleviating the need for manual gain tuning experimentation. To do this, first the 

major sources of real-time commanded motion error were identified to be robot controller 

delay and structural vibration of the robot. Then, the equivalent force model was 

established as an approximate model for the robot dynamics, which can be directly 

implemented as a control system plant model for an industrial robot controller, even though 

the controller can only take position/joint offsets as inputs. This model is used to predict 

closed-loop stability by simulating closed-loop trajectories and identifying which feedback 

controller designs result in stable versus unstable performance. 
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The most significant impact of this method of stability prediction is the time and cost 

saved by eliminating the need for iterative runs on application trajectories for manual gain 

tuning. If one considers a robotic system that performs a large variety of closed-loop 

trajectories in its application, the feedback controller would need to be re-tuned to get stable 

and optimal performance for each individual trajectory. With the new method, this retuning 

can be done quickly in simulation. 

Finally, another benefit of the equivalent force model is that it allows for optimal 

trajectory direction selection. In the case that multiple trajectory orientations are viable 

options for a given application, it is possible to identify which of these orientations allow 

for the most aggressive controller gains to be implemented while still maintaining closed-

loop stability. The more aggressive gains can allow for an overall higher closed-loop 

accuracy of the system. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the major conclusions of this dissertation and lays out 

some recommendations for possible future work. 

6.1 Conclusions 

6.1.1 Static Versus Dynamic Stiffness Modeling for Pose Optimization 

Pose optimization based on static and dynamic stiffness models was performed for 

various regions of the robot workspace and cutting conditions. Experimental data suggests 

that dynamic stiffness model-based optimization outperforms static-model based 

optimization when process forces approach the natural frequencies of the robot and when 

the space of possible arm configurations for the workspace location of the task contains 

poses with substantially different dynamic properties. Additionally, data shows that 

modifying the process parameters (e.g. spindle speed) to avoid excitation of the robot 

dynamics is a more powerful method for reducing deflections than pose optimization alone. 

Finally, it is demonstrated that when robot dynamics are not excited, a static model-based 

optimization performs comparably to a dynamic model-based optimization. This means 

that if process parameters can be configured to avoid excitation of the robot dynamics, a 

low-calibration effort static model is the recommended choice for calibrating a compliance 

model of the robot. 
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6.1.2 State Estimation Using Laser Tracker and Inertial Data 

Simulation and hardware experiments were conducted to evaluate the accuracy of 

the end-effector state estimation with and without data fusion of position/orientation data 

with inertial data. Results indicate that while the directly measured quantities are not 

significantly improved, linear velocity estimation can be improved by up to 95% and 

angular acceleration estimation can be improved by up to 45%. Additionally, Kalman Filter 

estimations outperform a Particle Filter with 1000 particles for cases of linear or close-to-

linear systems, but the Particle Filter performs better for highly nonlinear systems, such as 

when undergoing rapid rotation. Finally, a sensitivity analysis reveals the bounds of sensor 

bias and noise characteristics, sampling rate, and sensor-to-sensor transform error beyond 

which fusion is no longer beneficial. 

6.1.3 Stability Prediction for Industrial Robots 

A new method of stability prediction for closed-loop systems involving industrial 

robots is presented. The new method addresses the issue that the forces and torques 

associated with real-time commands sent to the robot are unknown by modeling real-time 

corrections by their “equivalent force”. This equivalent force is based on the assumption 

that each real-time correction is achieved through a constant acceleration over the cycle 

time of the robot and that the end-effector has unit mass. Closed-loop trajectory following 

experiments indicate that the new method allows for stability prediction of a proportional 

controller for a resolution of 0.02 in the proportional gain. This stability prediction can be 

performed in simulation, and thus alleviates the need to do manual experimental gain-

tuning for every new closed-loop trajectory the robot needs to be run through. 
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6.2 Original Contributions 

The original contributions contained in this dissertation are as follows: 

1. The circumstances under which using a dynamic stiffness model for pose 

optimization to minimize deflections is better than using a static stiffness model are 

identified through experimentation. 

2. The benefits to a full state estimation of the end-effector gained by adding an 

inertial measurement unit to a system already containing a laser tracker are 

quantified and identified to be greatest in velocity and angular acceleration 

estimation. Kalman Filtering techniques are compared against Particle Filters for 

achieving the sensor fusion, and a sensitivity analysis is performed on the accuracy 

of the state estimation given different sensor bias and noise characteristics, sample 

rate, and transform error. 

3. A new method for predicting closed-loop stability in systems involving industrial 

robots is presented and tested. This method allows for closed-loop controllers to be 

tuned in simulation rather than experimentally. 

6.3 Recommendations for Future Work 

Based on the work done in this dissertation and the relevant literature, the most 

accurate industrial robotic system can be achieved by performing extensive robot 

calibration and compliance modeling, estimating the state in real-time using laser tracker 

and inertial sensors, and by correcting the state in real-time via closed-loop feedback. Some 

possible direct extensions of this research include using the robot calibration to tune the 

state transition noise parameters as a function of pose for improved state estimation, adding 
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rotational deflection as part of the cost in pose optimization, examining the efficacy of 

active braking to increase joint stiffness, and fusing force/torque measurements with the 

inertial and laser tracker data for state estimation. A more general question that remains is 

how important the offline calibration methods are to the overall closed-loop performance. 

For example, if a robot’s state is estimated and controlled using highly accurate sensors 

with high data rates, how well can it compensate for process-induced deflections even 

without a compliance model? Conversely, if only lower-end sensors are available for 

feedback, can an accurate robot calibration and compliance model bring the closed-loop 

accuracy to be in line with a system with the best sensors? 

One other avenue of research that could benefit from this and related work is 

industrial robot design. Knowing the importance of compliance and closed-loop feedback, 

it should be possible to design manipulators with easy-to-model compliance and with more 

sophisticated tools for implementing feedback. Additionally, the sensors needed for 

feedback could all be built-in to the manipulator all with well-known transforms, 

eliminating the sensor-to-sensor transform error that comes with adding external sensors. 

Finally, while this thesis provides some guidelines for practical implementation, such 

as when to use a dynamic versus static compliance model, there is room for developing a 

more comprehensive, automated approach to accurate control of industrial manipulators. 

The end goal would be an application that takes process parameters (workspace location, 

depths of cut, spindle frequency, etc.) as inputs, then outputs the optimal robot 

configurations and closed-loop gains to achieve the task. Additionally, any process 

parameters that are not locked can be given as a range that the application can optimize 

over. For example, if the spindle frequency must be between 250-500 Hz for a given cut, 
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the application would select the best frequency which maximizes the expected accuracy of 

the operation. The theoretical work for developing this sort of application is contained in 

this thesis, so all that remains is the software engineering and algorithm development to 

realize it.  
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APPENDIX A. DYNAMIC MODEL PARAMETERS 

Table 16 – Dynamic model parameters at each test pose. 

 

Table 17 – Second most dominant modes at each test pose. 

 

Test No. m (Kg) c (Ns/m) k (MN/m) 
x y z x y z x y z 

1 166.5 41.1 281.5 3261.3 1486.3 281.5 1.900 5.500 1.206 
2 174.8 223.6 281.4 4047.9 6526.0 281.4 2.790 5.967 1.206 
3 166.5 41.1 281.5 3261.3 1486.3 281.5 1.900 5.500 1.206 
4 173.7 212.2 281.4 4165.3 6527.9 281.4 2.974 5.405 1.206 
5 165.3 36.9 207.8 4124.0 1653.8 207.8 2.098 5.204 0.820 
6 252.7 75.8 185.4 6286.9 4630.5 185.4 3.346 2.415 0.787 
7 165.3 36.9 207.8 4124.0 1653.8 207.8 2.098 5.204 0.820 
8 252.7 75.8 185.4 6286.9 4630.5 185.4 3.346 2.415 0.787 
9 190.2 352.1 352.5 3373.0 5749.9 352.5 2.204 2.596 1.520 
10 234.0 358.4 377.2 5285.4 7255.4 377.2 3.114 3.079 1.791 
11 338.8 398.0 206.1 5209.0 7709.2 206.1 0.479 5.722 0.556 
12 351.7 380.7 240.2 5436.9 7779.0 240.2 0.500 5.499 0.690 

Test No. k (MN/m) Freq (Hz) 

x y z x y z 
1 40 26 700 48 24 50 
2 80 20 200 60 25 82 
3 40 26 700 48 24 50 
4 80 20 200 60 25 82 
5 100 10 250 60 28 55 
6 12 14 300 26 25 47 
7 100 10 250 60 28 55 
8 12 14 300 26 25 47 
9 20 11 150 26 48 70 
10 11 17 100 26 26 90 
11 8 100 100 66 90 92 
12 8 100 100 66 90 92 
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Figure 42 – Test poses used to check cross coupling effects. 
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Figure 43 – Frequency responses from experimental modal analysis at each test pose 
used to check for cross coupling. Note that the vibration in the direction of the 
excitation is much larger than in the other directions. 
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APPENDIX B. KALMAN FILTER NOISE COVARIANCE 

MATRICES 

 The values of the process noise covariance matrix for the KF used in Chapter 4 

were chosen to reflect the amount of information going into each part of the state when it 

is updated. The position value is updated with the most information because it depends on 

all three parts of the linear state: the past position, velocity, and acceleration (see (21)). 

Acceleration, on the other hand, is updated with the least information because it is assumed 

to be constant (see   (23)). Thus, the first 3 diagonals, associated with the position state 

variables (x, y, z), are smaller than the subsequent values associated with velocity, which 

are in turn smaller than those associated with acceleration. The process noise covariance 

matrix (Q) is diagonal with entries of: 

10−4[2.54, 2.54, 2.54, 21.2, 21.2, 21.2, 98.1, 98.1, 98.1] 

For the measurement noise covariance matrix (R), values were chosen to match the sensor 

specifications. The reduced matrix (with only position and acceleration associated terms) 

is diagonal with diagonal entries of: 

[4.03 ∗ 10−11, 4.03 ∗ 10−11, 4.03 ∗ 10−11, 1.54 ∗ 10−4, 1.54 ∗ 10−4, 1.54 ∗ 10−4] 
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