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SUMMARY

Evolutionary Transitions in Individuality (ETIs) describe the history of increasing com-

plexity of life and emergence of hierarchical organization in an elegant framework. Each

transition is characterized by a group of independent individuals coming together and form-

ing a group that eventually can undergo Darwinian evolution and turns into a new individual

level. One of the prominent examples of ETIs is the emergence of multicellularity. In this

thesis I address two key questions about the transition to multicellularity: The emergence

of heritability of higher level traits and its relationship to cell-level traits.

First, I discuss how the heritability of newly-formed group traits emerges as groups

emerge. We introduce a simple theoretical model for calculating group-level trait heri-

tability, where the trait is the linear function of a cell-level trait. For cases in which the

relationship is more complex than a linear function, we developed a statistical simulation

to model and explore different kinds of analytical functions based on biological exam-

ples of relationship between cell-level traits and collective-level traits. Finally, using the

snowflake yeast model system we did an experiment that shows an ecologically relevant,

emergent trait in a nascent multicellular organism can have a higher heritability across a

range of conditions than the unicellular-level trait on which it is based.

The evolution of complex multicellularity presents an apparent paradox: nascent mul-

ticellular organisms are thought to require (relatively) large size to evolve complex traits,

but at the same time maintaining large size requires complex organization at the cell and

group levels. This poses a chicken and egg problem between large size and cellular devel-

opment. Here, we show that over the course of a year snowflake yeast can increase its size

multiple orders of magnitude with minimal change at the cell level by taking advantage of

the physical properties of granular entangled materials.

xvi



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Overview

Life on earth has evolved from organic molecules capable of simple and erroneous repli-

cation [1] to on one hand clonal Posidonia oceanica spanning over thousands of acres and

surviving for tens of thousands of years [2] and on the other hand Homo sapiens capable

of changing the Earth’s climate over the span of few centuries thus triggering a mass ex-

tinction event [3]. This colossal increase in structural complexity has happened due to the

forces of natural selection and evolution acting continuously over billions of years through

a semi-random process of trial and error.

One of the main features of life on earth is its hierarchical structure across many levels

spanning from molecular to macroscopic scales [4, 5, 6]. For example, a bee colony is

made out of bees that are themselves are composed of different organs and each of them

have different type of cells. This trends continues until molecular level. While there are

many different processes at multiple length scales responsible for this increase in the com-

plexity and emergence of hierarchy of life, there are a few events in the history of life that

explain the majority of changes known as major evolutionary transitions (METs). Example

of such transitions are: origin of life, emergence of prokaryotes, formation of multicellular

organisms, and evolution of eusociality [4]. A subset of METs are characterized by in-

dividual entities capable of replication that cooperate to form a group that is itself a new

entity that can undergo Darwinian evolution. This process is known as an “Evolutionary

Transition in Individuality” (ETI)[7]. One of the most notable examples of an ETI is the

evolution of multicellularity from unicellular life, which is the focus of this thesis.

While there is general agreement about benefits of multicellularity, such as avoiding
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predation, protection against toxins, and division labor [8, 9], the processes by which this

transition has happened are still unknown, and there are many open questions on this topic.

In this thesis we focus on two problems in two different stages of the transition to multi-

cellularity. First we focus on the first steps of an ETI where individuals form groups. For

these groups to be themselves individuals, they need to go through the cycle of reproduc-

tion, variation, and selection (i.e., the Darwinian algorithm). It is possible for an individual

to be under selection pressure if it has heritable traits (phenotypes) that can be selected for.

While these newly formed groups consist of individuals with heritable traits, group-level

traits are not necessarily heritable as well.

In the first part of this thesis, through system-agnostic mathematical modeling and com-

puter simulations, we show how heritability of group-level traits can emerge as groups are

forming. We tested some of the predictions of our analysis using snowflake yeast model

system.

In the second part, through a long term evolution experiment we show that the size of a

nascent multicellular organism can increase multiple orders of magnitude via biophysical

changes by selection for larger size over a year, and we subsequently explore the underlying

physical principles that enable this change. This work shows that large size in multicellular

organisms can evolve without first evolving complex developmental traits.

1.2 Multicellularity

1.2.1 Background

Few events in the history of life have had more profound effects as the transition from uni-

cellularity to multicellularity. Once only composed of unicellular life, today multicellular

organisms account for most of the biomass on Earth. Plants alone represent ∼ 80% of

biomass on the planet [10]. This transition has happened at least 25 times across all three

domains of life [11] in many different forms and has two main modes. First, unrelated cells

come together and form groups; this process is known as aggregative multicellularity and
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is limited to terrestrial and semi-terrestrial micro-organism[12, 13]. The second method

is when cells stay together after reproduction and form a group with a uniform genetic

background. If this process involves a mechanism to ensure the genetic uniformity for the

following multicellular generation, it results in clonal development[14, 15]. The majority

of complex multicellular organisms, organisms with 3D structure and genetically prede-

termined developmental program [8], that have sophisticated developmental networks and

internal structure have some form of clonal development [8, 16, 17].

The first step in the transition to multicellularity before evolving complex traits was

forming new groups [4, 18]. For these groups to be considered individuals there must

be a shift in selection from cell-level traits to group-level traits [19]. However, for this

shift to happen group traits have to be heritable[20, 21]. These emergent phenotypes are

functions of cell−level phenotypes unless one believe in phenotypes at the group−level

are autonomous from underlying cell traits, a philosophical position tantamount to mys-

ticism [22]. The function that relates cell-level traits and group-level traits could be very

complicated and may not have a closed analytical form; nonetheless, there is a relation-

ship between these two levels of traits. After a new level of selection is established, the

next step is evolving larger size. Most of the benefits of multicellularity, such as avoiding

predation [23, 24], extra−cellular cooperation [25, 26] and protection against hostile envi-

ronment [27, 28], are correlated with higher number of cells per group. It is believed that

nascent multicellular organisms needed some level of developmental network and complex

traits such as division of labor for the maintenance of large size [8]. However, large size

is also considered a prerequisite to evolving complex traits and structures [12, 11]. This

poses a chicken and egg problem for the development of early multicellular organisms. The

main consensus is that some of the phenotypes required to support large size preceded the

evolution of large size [8], but the idea that large size can evolve first has not been refuted.

Directly studying “how” and “why” multicellularity emerged in the nature is almost

impossible since the last transition to multicellularity happened million of years ago [12]
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and we have a limited number of fossils from the early stages of this transition [8]. Com-

plementary methods such as comparing extant multicellular taxa to their relatives using

phylogenetic mapping as a genomic route to study this question [29, 30] but the biggest

drawback of this method is the lack of information about ecological factors, our large un-

certainty in the timing of events [31], and missing genomes of extinct organisms.

1.2.2 Experimental evolution of multicellularity

In addition to the above retrospective approach, experimental evolution of multicellular-

ity provides a perspective method for studying this transition which has the advantage of

tractability in both phenotype and genome level. While it is impossible to replicate the

exact conditions and details of the early stages of our multicellular ancestors in the lab, it is

possible to study the general properties of this phenomena through experimental evolution

of a model system [32, 33, 34]. Since this method lacks some disadvantages of the other

methods, combining all approaches can provide a more complete image of this transition.

For example phylogenetic analysis of Volvocine green algae supported experimental evo-

lution have shown multiple origination events followed by reverting to unicellular form in

their history [35, 35, 36].

One of approach to study de novo evolution of multicellularity is to subject unicellular

Saccharomyces cerevisiae, (baker’s yeast) to selection under gravity for rapid settling in

a tube. After two months of daily selection, clonal clusters of yeast called ”Snowflake

yeast” reported in 10 independent populations [32]. These clusters are formed because of

mutations in ACE2 transcription factor which halt production of chitinase enzyme in cells.

In the absence of this enzyme when mother and daughter cells stay together because they

cannot digest the chitin ring that connects them. This process results in a tree like structure

in which every cell is only connected to their mother and their direct offspring. If a single

cell−cell bond fails the cluster fractures into two smaller clusters (Figure 1.1) [32, 34, 37].
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Figure 1.1: Serial block-face scanning electron microscopy of snowflake yeast clusters
reveals the tree like structure of the cluster. Removing each node from the cluster can result
in fracture. Black circles and lines illusterate the parental relationshop between different
cells. Scale bar= 10.µm

Upon emergence, snowflake yeast clusters have all of the properties of an Darwinian

individual and can be treated as a new level of selection. They have a characteristic size at

which they fracture, which acts a mechanism for group-level reproduction [37]. They have

heritable group-level traits that can be selected for [32]. Finally, because of their structure
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and clonality, different clusters have different genetic backgrounds [38]. These properties

combined with the tractability and simplicity of this particular approach to experimental

evolution have created an exceptional opportunity to study the early stages of the transition

from unicellularity to multicellularity.

1.3 Heritability and Transition to Multicellularity

One key to explaining life’s hierarchy and biological complexity is the ability to understand

how a new group emerges from the interactions between existing individuals to become

itself an individual capable of undergoing Darwinian evolution? In this process, the funda-

mental level of evolution transfers from the lower-level unit to the higher-level unit [4]. One

such area of particular interest is the transition from single-celled to multicellular organ-

isms. For this transition to happen a two-step process is needed: first, individuals evolve to

form a robust collective [7, 39], and then the level at which selection acts shifts from indi-

viduals to groups. Here we focus on groups that their members are have the same genotype

also known as a colony. These colonies have traits that did not exist in the unicellular pop-

ulation, for example colony diameter, colony shape, and number of cells per colony. These

traits are potentially subject to natural selection. How effective such selection will be in

changing group-level traits depends on the heritability of the trait.

To be considered an individual, the new group should be able to go through the cycle

of reproduction, variation, and selection (one cycle of the Darwinian algorithm). Natural

selection requires heritable variation in traits that affect fitness at the level at which selec-

tion happens [40]. The breeder’s equation (R = h2S , where R equals the change in the

mean trait value in the population, h2 is the narrow sense heritability, the proportion of trait

variation explained by additive genetic variation, and S is the strength of selection) model

selection pressure and heritability contribute equally to the adaptive response [41](Fig-

ure 2.3). For simplicity, we consider asexual populations, for which the relevant measure

of heritability is broad-sense heritability, H2, the proportion of phenotypic variation ex-
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plained by all genetic variation [41]. The response to selection in an asexual population,

then, is R = H2S. When selection acts on a trait, that trait’s heritability determines the

extent of the response in the population. Hence, multicellular heritability is crucial for

shifting adaptation from unicellularity (lower level) to multicellularity (higher level) [42,

32].

Figure 1.2: Relationship between selection, heritability and the response to selection. Top
middle shows an distribution of a trait in an initial population with mean X0. The in-
dividuals in the green area with mean X1 are selected to reproduce (selection pressure
S = X1 − X0. If the trait is not heritable (h2) the new generation has the same mean
as the parent population (bottom left). If the trait has a very high heritability in the given
condition then the mean of the trait for the new generation is X1.

It should be noted that heritability is not an intrinsic feature of individual organisms but

rather a statistical property of the population at a given time that depends on many factors,

such as structure of the population and the background environment [43]. Hence, estimates

of heritability for a trait in one population can be very different from another population

of the same organism [14, 21] depending on the environment and the genetic background.

Here, we looked at the ratio of heritability of cell-level traits to group-level traits across a

wide range of variables.

There has been a great body of work trying to understand the selective pressures that
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could have created the right conditions for the emergence of multicellularity [24, 44, 25,

45]. However, according to the breeder’s equation, heritability is just as important as the se-

lection pressure for predicting the outcome of evolutionary processes. However, heritability

has largely been ignored in the literature [46, 20], or taken to be artificially high (e.g., 1

for microbial communities) [47, 48, 49, 50, 51, 52, 53, 54, 55]. In this thesis, we explore

the emergence of heritability of newly formed groups and its relationship to the underlying

cell-level traits through a combination of analytical modeling, computer simulations, and

experiments with snowflake yeast as a proxy for nascent multicellular organisms. Although

here we are focusing on the transition to multicellularity, our results are likely valid for any

two adjacent levels of individuality that have similar relation to what we have investigated

here.

1.4 Evolution of Macroscopic Size in nascent multicellular organisms

Life started on earth at the molecular level and has explored many different niches including

increased in both size and complexity through evolution by natural selection [56, 57, 58].

Today, there is 22 orders of magnitude difference in size between a typical bacteria and

blue whale the largest known animal [59]. If we classify viruses as organisms and consider

clonal colonies such as Pando ( a male male Populus tremuloides [60]) as a single organism

then there will be 30 orders of magnitude difference between them. It is widely believe that

the difference in size correlates changes in shape and structure [8]. To illustrate this point

Bonner gives the example of commissioning an engineer to build two bridges one over

Hudson river and another over a narrow creek. Because of the sheer difference in size,

these two bridges are likely going to be built with different designs and materials [58]. The

same principle applies to living organisms. For an egg to a mature human our shape and

structure change significantly [57, 61].

This change in structure usually manifests itself as an increase in complexity [9, 57,

8]. According to the size-complexity “rule”, the number of cell types in an organism (as
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a proxy for organismal complexity) increases with the notional number of cells in that

organism [57] Figure 1.3. This rule generally holds up on almost all different level of

hierarchy of life: There is strong positive correlation between genome size and cell length

in most kingdoms of eukaryotes [62, 63] but interestingly they are independent for bacteria

or archaea [64]. On the level of eusocial organisms, phylogenetic comparative analysis

and empirical studies have shown that colony size is a predictor of both reproductive and

non-reproductive division of labor in ants [65, 66]. The same pattern have been observed

in bees [67]. Finally number of occupations in a society has increases as the population

and physical size of cities grow [68]. Of course like almost any other “rule” or “law” in

biology there are many exception to this rule to and there can be changes in size without

any change in the complexity or even decreasing it [69].

Figure 1.3: number of cell type is generally increasing with the number of cells per organ-
ism [56].

Here we focus primarily on the evolution of large size in nascent multicellular organ-

isms. It is believed that the same evolutionary force that led to the emergence of first

multicellular organisms also favored larger size in the early stages of this transition [32, 39,

70]. One example of such a selection pressure is predation, which has long been considered
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as an ecologically plausible cause for increase in size [57, 71, 72]. The green alga Chlorella

vulgaris evolved a small stable colonies after being subjected to predation by the fagellate

Ochromonas vallescia [24]. In a more recent study, Herron and colleagues exposed cultures

of the unicellular green alga Chlamydomonas reinhardtii to selection by the filter-feeding

predator Paramecium tetraurelia, a unicellular eukaryote. They reported De nove evolution

of multicellular structures in two out of five population subject to this selection regime, and

none of the unselected control populations within 750 asexual generations [73].

Figure 1.4: Larger size that be advantages against predation. A filter-feeder rotifer is fed
both uni (labeled red) and multicellular (labeled blue)yeast. The multicellular yeast is too
big and can’t be eaten hence the stomach of the predator is completely red. [33]

Another factor that could have played a role in the evolution of multicellularity is co-

operation [74]. For example, budding yeast, Saccharomyces cerevisiae, cannot directly

metabolize sucrose, a disaccharide, so they need to first break it down to two monosaccha-

rides by secreting invertase and then importing the products into the cell. Because sucrose

is broken down extracellularly, in low sugar density environments, single cells can not cap-

ture enough sugar to grow. Koschwanez and colleagues, through experimental evolution,

showed that yeast cells can overcome this by forming clonal clusters while increasing inver-

tase expression. This strategy allows them to produce a large quantity of this public good,
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while also ensuring that cheaters that do not make invertase do not invade the group since

the cluster is clonal [45, 25]. Another type of cooperation is coming together to over come

a physical constraint. An example of this type of cooperation is seen in Volvocalean Green

Algae. Single cells are negatively buoyant and use their flagellar to avoid sinking [75].

Some genuses of this order like Gonium and Volvox form groups wherein cells arrange on

the surface of a spherical extracellular matrix and beat their flagellar together to swim more

efficiently. This cooperation enables them to stay near the water’s surface, where there is

more light and CO2 [76].

All the aforementioned examples are focused on the origins of simple multicellular or-

ganisms, while the evolution of complex multicellularity have been mostly overlooked. It

is widely believed that relatively large size is a necessary precursor for the evolution of

complex multicellular traits and an increase in the number of cells, with its concomitant

increase in group size, can confer several advantages, such as division of labor and spe-

cialization [57, 77, 8, 78]. But to support large three-dimensional size, new mechanisms

are necessary to transport oxygen and nutrients to the interior and to remove waste [8].

To solve this chicken and egg problem, Knoll and Hewitt hypothesize that large size, cell

differentiation, and metabolism together create a positive feedback loop [79]. As nascent

multicellular organisms emerge, simple innovations like gap junctions, that directly con-

nect the cytoplasm of two cells, can allow gradual increase in size and thickness which

consequently increases the difference between interior and exterior environment. This dif-

ference between surface and interior can promote cell differentiation in a way that helps

transferring nutrients and oxygen from the surface inward [56].

We used the snowflake yeast model system to study the evolution of macroscopic body

size in nascent multicellular organisms. Previous studies have shown how oxygen can

limit the size of the clusters [80]. Here we report the emergence of a new phenotype in

snowflake yeast that is orders of magnitude larger than its ancestor clusters. To the best of

our knowledge this is the first time that a macroscopic nascent multicellular organism has
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evolved in the lab from a microscopic ancestor. We show that these macroscopic clusters

can resist macroscopic forces and do not fracture when a single cell-cell bound fails, as

their snowflake yeast ancestors do, allowing them to change their material properties sig-

nificantly by just sheer force of evolution. While this work does not attempt to claim a

generality of its results nonetheless it shows that in contrast to conventional wisdom it is

possible to evolve macroscopic three-dimensional bodies without very complicated struc-

tures such as vascular systems to support it.
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CHAPTER 2

EMERGENCE OF TRAIT HERITABILITY IN MAJOR TRANSITIONS

2.1 Summary

The evolution of multicellularity was vital step in both increasing the complexity of life

and providing immense potential for life to explore new scales. A crucial component of

this paradigm is that after the transition in complexity or organization, adaptation occurs

primarily at the level of the new, higher−level unit. For group-level adaptations to occur,

though, group −level traits—properties of the group, such as group size-must be herita-

ble. Since group−level trait values are functions of lower−level trait values, group−level

heritability is related to lower level heritability. However, the nature of this relationship

has rarely been explored in the context of major transitions. We examine relationships be-

tween cell−level heritability and group−level heritability for several functions that express

group−level trait values in terms of cell−level trait values. For clonal populations, when

a group-level trait value is a linear function of cell−level trait values and the number of

cells per group is fixed, the heritability of a group−level trait is never less than that of

the corresponding cell-level trait and is higher under most conditions. For more compli-

cated functions, group-level heritability is higher under most conditions, but can be lower

when the environment experienced by groups is heterogeneous. Within-genotype variation

in group size reduces group-level heritability, but it can still exceed cell-level heritability

when phenotypic variance among cells within groups is large. These results hold for a

diverse sample of biologically relevant traits. Rather than being an impediment to major

transitions, we show that, under a wide range of conditions, the heritability of group−level

traits is actually higher than that of the corresponding cell−level traits. High levels of

group−level trait heritability thus arise “for free,” with important implications not only for
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major transitions but for multilevel selection in general.

2.2 Introduction

Major transitions, or evolutionary transitions in individuality, are a framework for under-

standing the origins of life’s hierarchy and of biological complexity [9]. During such a

transition, a new unit of evolution emerges from interactions among previously existing

units. This new unit, or group, has traits not present before the transition and distinct from

those of the units that comprise it (e.g. cells). These group-level traits can potentially

be under selection. Over the course of the transition, the primary level of selection shifts

from the cell (lower-level unit) to the groups (higher-level unit), for example, from cells to

multicellular organisms or from individual insects to eusocial societies.

As we showed in the previous chapter, the breeder’s equation of quantitative genetics

dictates that heritability and strength of selection contribute equally to the adaptive re-

sponse. Hence, Evolution by natural selection requires heritable variation in phenotypes

that affect fitness at the level at which selection occurs [81]. When a group-level trait is

exposed to selection, it is group-level heritability (the heritability of the group-level trait)

that determines the magnitude of the response. Group-level heritability of traits is thus

necessary for group-level adaptations, but the emergence of group-level heritability during

a major transition has often been assumed to be difficult. For example, Michod consid-

ers the emergence of group-level heritability through conflict mediation a crucial step in

major transitions [21, 44, 61]. Simpson says that “From the view of some standard the-

ory, these transitions are impossible,” in part because cell-level heritability greatly exceeds

group-level heritability [8].

Major transitions can be conceptualized as a shift from MLS1 to MLS2, in the sense

of Damuth and Heisler [81], as in Okasha [82] (see also Godfrey-Smith [20], Shelton and

Michod [83]). In MLS1, properties of the cells are under selection; in MLS2, it is the

properties of the groups. Although our biological analogies are presented in terms of cells
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as cells and multicellular organisms as groups, our model is system agnostic and could

be extended to any pair of levels. Whether or not collective-level fitness in MLS2 is a

function of particle-level fitness is a matter of some disagreement (for example, Rainey and

Kerr say no [84]). However, group-level phenotypes must be functions of cell-level trait

phenotypes. The function may be complex and involve cell-cell communication, feedbacks,

environmental influences, etc., but it is still a function that is, in principle, predictable from

cell-level trait values.

According to Michod [85], “. . . the challenge of ETI [evolutionary transitions in indi-

viduality] theory is to explain how fitness at the group level in the sense of MLS2 emerges

out of fitness at the group level in the sense of MLS1.” But fitness, or selection, is only

half of the breeder’s equation. Predicting the response to selection requires an estimate of

heritability.

The relationship between the heritability of cell-level traits and that of group-level traits

has rarely been considered in the context of major transitions, leading Okasha [86] to won-

der, “Does variance at the cell level necessarily give rise to variance at the group level?

Does the heritability of a group character depend somehow on the heritability of cell char-

acters? The literature on multi-level selection has rarely tackled these questions explicitly,

but they are crucial.” Similarly, Goodnight [87] says, “...we really do not have a good un-

derstanding of what contributes to group heritability, how to measure it, or even how to

define it.”

While the role of selection has often been considered in the context of major transi-

tions, the role of trait heritability has been relatively neglected. We examine relationships

between cell-level heritability and group-level heritability for several functions that express

group-level trait values in terms of cell-level trait values. For the simplest (linear) function,

we derive an analytical solution for the relationship. For more complex functions, we em-

ploy a simulation model to explore some biologically relevant relationship over a range of

conditions.
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2.3 Analytical Model

2.3.1 Cell Level Heritability

We assume that the population is reproducing asexually at both levels, so broad-sense her-

itability (H2) is the proper measure of heritability and is defined as the proportion of phe-

notypic variation explained by all genetic variation. Based on this definition we can define

heritability as the correlation coefficient between phenotype values of parents and offspring

(Fisher, 1918):

H2 ≡ Corr(P, P ′) =
E[(P − P )(P ′ − P ′)]

V ar(P )
(2.1)

We can define P and P ′ as phenotypic values that are a sum of three terms: a purely genetic

part (G with mean G and variance σ2
G), an environmental part (E with mean 0 and variance

σ2
E), and developmental noise (S with mean 0 and variance σ2

S):

P = G+ E + S (2.2)

P ′ = G+ E ′ + S ′ (2.3)

Here we assume that the mutation rate is zero; hence parent and offspring have the same

genetic value (G) and cells reproduce asexually. If there is no temporal correlation except

for the same genotype between offspring and parents then P = P ′ and we can rewrite the

numerator of heritability as:

E[(P − P )(P ′ − P )] = E[PP ′]− P 2
= σ2

G (2.4)

So the heritability of the cells is equal too:

H2
c =

σ2
G

σ2
G + σ2

S + σ2
E

(2.5)
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2.3.2 Group Level Heritability

For a clonal group like snowflake yeast and that parents and off springs have the same

genotype we :

Y =
N∑
i=1

Pi (2.6)

Y ′ =
N ′∑
i=1

P ′i (2.7)

HereN is the number of cells in a group (with meanN and variance σ2
N = N×CVN where

CVN is the coefficient of variation for the number of cells per group in the population).Here

we assume that N is independent of size of cell in the group and all cells within each group

are experiencing the same environmental effect. Since all cells within a group have the

same genotype we can rewrite the relationship between group level and cell level phenotype

as:

Y = NG+NE + ΣN
i=1Si (2.8)

Y ′ = N ′G+N ′E + ΣN
i=1S

′
i (2.9)

All random variables are independent so for V ar(Y ) we will have:

V ar(Y ) = E[Y 2]− E[Y ]2 (2.10)

We can also write that as:

V ar(Y ) = V ar(NG) + V ar(NE) + V ar(ΣN
i=1Si) (2.11)
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The first term on the r.h.s is equal to:

V ar(NG) = E[(NG)2]− E[NG]2 (2.12)

Because N and G are independent we can write:

V ar(NG) = E[N2]E[G2]−N2
G

2
(2.13)

We also know that for a random variableX we have σ2
X = E[X2]−X2

. So, we can rewrite

(6) as:

V ar(NG) = (σ2
N +N

2
)(σ2

G +G
2
)−N2

G
2

(2.14)

= N
2
[(1 + CV 2

N)σ2
G + CV 2

NG
2
] (2.15)

For the V ar(NE) we can write the same thing. The only difference is that E = 0 so we

have:

V ar(NE) = N
2
(1 + CV 2

N)σ2
E (2.16)

The third one is different from the last two since it’s the sum of N identical, independent

random variables when N itself is a random variable. So we have:

V ar(ΣN
i=1Si) = Σ∞n=1P (N = n)

∫
dsP (Σn

i=1Si = s)(Σn
i=1Si)

2 (2.17)
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The integral part is the variance of n independent random variables which is equal to nσ2
S:

V ar(ΣN
i=1Si) = Σ∞n=1P (N = n)nσ2

S (2.18)

= σ2
SΣ∞n=1P (N = n)n (2.19)

= Nσ2
S (2.20)

So in total for V ar(Y ) we have:

V ar(Y ) = N
2
[(1 + CV 2

N)(σ2
G + σ2

E) + CV 2
NG

2
] +Nσ2

S (2.21)

First we calculate group level heritability using coefficient of correlation:

E[(Y − Y )(Y ′ − Y ] = E[Y Y ′]− Y 2
(2.22)

= E[(NG+NE + ΣN
i=1Si)(N

′G+N ′E ′ + ΣN ′

i=1S
′
i)]− E2[NG+NE + ΣN

i=1Si]

(2.23)

= E[NN ′G2]− E2[NG] (2.24)

Assuming that N and G are independent we can write:

E[(Y − Y )(Y ′ − Y ] = E2[N ]E[G2]− E2[N ]E2[G] (2.25)

= E2[N ](E[G2]− E2[G]) (2.26)

= N
2
σ2
G (2.27)

Hence the group level heritability is equal to:

H2
g =

N
2
σ2
G

N
2
[(1 + CV 2

N)(σ2
G + σ2

E) + CV 2
NG

2
] +Nσ2

S

(2.28)
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Which for the large N will approach:

lim
N→∞

H2
g =

σ2
G

(1 + CV 2
N)(σ2

G + σ2
E) + CV 2

NG
2 (2.29)

Therefore, the ratio of group to cell heritability in the limit of large N is:

lim
N→∞

H2
g

H2
c

=
σ2
G + σ2

E + σ2
S

(1 + CV 2
N)(σ2

G + σ2
E) + CV 2

NG
2 (2.30)

Note that if the variation in the number of cells per group is very small ( CV 2
N = 0 ), the

group-level heritability is always higher than the cell-level heritability. Stochastic variation

in cell traits around the group’s genetic mean reduces the heritability of lower-level indi-

viduals by increasing phenotypic variation. By averaging across the all cells in a group, we

subdue the effects of the variation in trait values. This decreases the phenotypic variation at

the group level, hence increasing the group-level heritability relative to individuals. Also,

in Equation 2.28 both σ2
E and σ2

G have the same coefficients and power so their effect on

the relative heritability is identical.

2.4 Simulation Model

For most biologically interesting traits, the relationship between cellular-level and multicellular-

level trait values is more complicated than a linear sum. We simulate more complicated

phenotype relationships using a numerical simulation. In our model, cells grow in clonal

groups, which reproduce by forming two new groups with the same genetic mean but dif-

ferent number of cells per each group. For the sake of simplicity, we have assumed that the

number of cells in each group in the population is sampled from a normal discrete distribu-

tion with mean N and coefficient of variation of CVN . The initial population is founded by

ten genetically distinct clones, each with a different genetic mean for cell size. Each clone

contains ten identical groups.
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We examine the consequences of three different sources of variation affecting the rel-

ative heritability of group- and cell-level traits. The first and the most fundamental one

is intrinsic reproductive noise that has a normal distribution with standard deviation σ2
S .

Stochastic variation in cell traits around the genetic mean reduces the heritability of lower-

level individuals and higher-level groups by increasing phenotypic variation. By averaging

across multiple cells, however, groups subdue the effects of the variation in trait values and

take advantage of the fact that the noise is random. This increases their relative heritabil-

ity compared to individuals. The second source of noise is environmental variation. We

assumed that all cells in a group are experiencing the same environmental noise, so we

modified the phenotype of cells in each group with a random number that is drawn from a

normal distribution with mean 0 and standard deviation σ2
E . This modifier is the same for

all cells in a group but different for each group. The last source of variation is the number of

cells per group, N . This variable doesn’t affect the phenotype of the cells; however, since

the phenotype of the group depends on N , it affects the final relative heritability. Like the

other two variables, N is drawn from a normal distribution with a mean that is the same for

every group during the simulation and coefficient of variation CV 2
N .

First, we examine the effect of developmental noise and environmental variation inde-

pendently for the example of cells within nascent multicellular organisms. For a linear re-

lationship, group size is simply the sum of the sizes of cells within the group. For both cells

and groups, heritability is assessed by calculating the slope of a linear regression on parent

and offspring phenotype[88]. In this simple case, mean group-level heritability is always

greater than or equal to cell-level heritability. Only when σs = 0 (i.e., when all cells within

a group have identical phenotype) are cell- and group-level heritability equal, in agreement

with the analytical model. Greater developmental instability for cell size increases the ad-

vantage of group-level heritability over cell-level heritability Figure 2.1a. Larger groups,

which average out cellular stochasticity more effectively, experience a greater increase in

heritability than smaller groups Figure 2.1a. Note that the simulations run in Figure 2.1a
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reflect a patchy environment in which environmental effects on cell size within groups are

large (σE = 0.25). While our model is not explicitly spatial, when σE is high, different

groups experience different environmental effects on their mean cell size, simulating the

effects of a patchy environment. Increasing the magnitude of these environmental effects

on cell size diminishes the difference in heritability between groups and cells, but mean

group-level heritability is still greater than cell-level heritability for all parameter combina-

tions (Figure 2.1b).

The volume of the cellular group, which is simply the sum of the cell volumes within

it, represents the simplest function mapping cellular to multicellular trait values. We now

consider more complicated nonlinear functions relating cellular to multicellular trait values,

some of which have biological relevance to the evolution of multicellularity. The first

nonlinear group−level trait we consider is its diameter. Large size is thought to provide

a key benefit to nascent multicellular groups when they become too big to be consumed

by gape−limited predators [89, 89, 73]. For a group that is approximately spherical, the

trait that actually determines the likelihood of being eaten is diameter, which is therefore

an important component of fitness. For geometric simplicity, we assume that the cells

within the group are pressed tightly together into a sphere. group volume (Figure 2.2a)

and diameter (Figure 2.2b) exhibit similar dynamics, with group-level heritability always

exceeding cell-level heritability and being maximized under conditions of strong cell size

stochasticity (high σS) and no environmental heterogeneity (low σE).
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Figure 2.1: Group−level heritability of size is greater than cell level heritability for size.
In a, we hold the effect of the environment fixed (standard deviation σE = 0.25) and vary
the degree of developmental instability for cell size σS : 10−4 (purple), 0.0625 (blue),
0.125 (green),0.1875 (yellow), 0.25 (red). In the absence of developmental instability for
size, group and cell−level heritabilities are identical. Greater developmental instability
increases relative group−level heritability. b Here, we hold developmental instability fixed
at σS = 0.25, an vary between group environmental effects on cell size from σ2

E : 10−4

(purple) to 0.25 (red). When developmental instability is nonzero, larger groups improve
group level heritability. We ran ten replicates of each parameter combination and simulated
populations for nine generations of growth.
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Next, we consider swimming speed as a function of cell radius. We based this simu-

lation on the hydrodynamics model of volvocine green algae derived by Solari et al[76].

For simplicity, we modeled 32-celled, undifferentiated groups (GS colonies in [76]), which

would be similar to extant algae in the genus Eudorina. In this model, the swimming force

of cells is independent of cell size, so, as cells get larger, the group will become heavier

(more negatively buoyant) without a corresponding increase in total swimming force, and

therefore, its upward swimming speed will decrease. Thus, upward swimming speed is a

monotonically declining function of cell radius (Figure 2.2c inset), unlike the functions for

volume and diameter (Figure 2.2a, b insets), both of which are monotonically increasing.

Nevertheless, the general behavior of heritability is very similar to the previous ones, and

for a wide range of parameter values, the group-level trait has a higher heritability than the

cell−level trait (Figure 2.2c)

Next, we consider a function describing a group’s survival rate in the presence of a

predator that can only consume groups below a certain size. We calculated the survival rate

as a logistic function of the group’s radius, effectively assuming that predation efficiency

drops off quickly when groups reach a threshold size (Figure 2.2d inset). As with the previ-

ous functions (Figure 2.2a–c), group-level heritability is greater than cell-level heritability

for much of the trait space and is maximized under conditions of high cellular stochasticity

(σS) and low environmental heterogeneity (σE; Figure 2.2d).

Finally, we consider the case in which the simplifying assumption of constant cell num-

ber does not hold. Instead, the number of cells per group at maturation fluctuates around

the genetic mean N . In this case, each group reproduces two new groups, but the number

of cells in each new group before they reproduce is a random variable drawn from a normal

distribution with mean N and coefficient of variation CVN (the coefficient of variation for

a normal distribution is the ratio of standard deviation to the mean). We chose to represent

variation in the number of cells per group as CVN instead of standard deviation so that the

scale of variation would not change with the size of the groups.
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Figure 2.2: Relative heritability of various group−level traits to cell−level heritability for
different mapping functions. Here, we examine the heritability of four multicellular traits
that depend on the size of their constituent cells, relative to cellular heritability for size. The
relationship between the size of the cells within groups and the multicellular trait are shown
as insets. We consider three biologically significant traits with different functions mapping
the size of cells within the group onto group phenotype. The heritability of group size (a)
and diameter (b) is always higher than cell−level heritability for size and is maximized
when cellular developmental noise is greatest and among−group environmental effects are
smallest (lower right corner). We modeled swimming speed (c) based on the model of So-
lari et al[76]. for volvocine green algae. We also considered survival rate under predation
as a logistic function of radius (d). Like a and b, group−level heritability is highest rela-
tive to cell−level heritability when environmental heterogeneity is minimal. Pink contours
denote relative heritability of 1. In these simulations, we consider 32 cell groups grown for
seven generations. The colormap denotes group−level heritability divided by cell−level
heritability for size across 1024 σS , σE combinations.

Unlike the developmental and the environmental variation, variation in cell number

affects the heritability of groups-level traits but not the heritability of cells-level traits.

Therefore, we expected that increasingCVN would decrease the ratio of group-level to cell-

level heritability. For the simplest case, we consider the size of the groups and its relation to
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the size of the cells in the group and test the effect of each factor on the relative heritability

comparing the groups to the cells. According to equation 5, when developmental and

environmental noise are fixed, groups demonstrate higher heritability compared to cells for

low values of CVN but lower heritability compared to cells for higher values of CVN . To

test this effect, we calculated the relative heritability of size (volume) for groups and cells

across 1024 combinations of σ2
S and CVN ranging from 0 to 0.25. The simulation shows

that the CVN has a strong effect on group-level heritability (Figure 2.3). The purple line

in Figure 2.3 represents the inflation line and it is a line with constant slope and intercept

zero. This result is in agreement with the theoretical inflation line (black dash line). By

equating the r.h.s of Equation 2.30 to 1, we have:

CVN =
σ2
S√

σ2
E + σ2

G +G
2

(2.31)

2.5 Discussion

When unicellular organisms form a colony, traits inevitably come into being that previously

did not exist. Regardless of the nature of that trait there should be a relation between this

newly emerged traits and traits of individuals that formed the group. This relation can

be as simple as sum of lower-level traits like size of a group is the aggregate of the size

of the individuals in the groups or it could be very complicated and involving feedback

loops and non-analytical functions. According to the breeder’s equation these new traits’

response to selection depends on their heritability. Here we showed that one can calculate

that heritability if they know two things: the heritability of underlying cell-level traits and

the function that maps the cell-level traits to the group-level trait. Estimating the former

is straightforward; if we can define the latter, we can in principle predict the efficacy of

selection on the new trait.

We derived an analytical formula for the simplest for a clonal group where the group-
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Figure 2.3: Relative heritability of group size to cell size when the number of cells per
group varies. When the coefficient of variation for cell number per group (CVN ) is low,
group-level heritability is always higher than cell-level heritability, but this advantage is
undercut by increased variation in cell number. The ratio of group to cell-level heritability
is maximized when developmental instability in cell size ( σ2

S) is large and variation in the
number of cells per group is low. The purple contour denotes a ratio of group-level to cell-
level heritability of 1 (inflation line). In these simulations, we consider group with a genetic
mean of 32 cells grown for 7 generations. The colormap denotes group-level heritability
divided by cell-level heritability for size across 1024 σ2

S , CVN combinations. The dash line
is the theoretical inflation line.

level trait is the sum of underlying cell-level traits (like size). When cell number is constant

and the group-level trait value is a linear function of the cell-level trait values, the organis-

mal heritability turns out to be a simple function of the cell-level heritability. In contrast to

claims that cell-level heritability is always higher than group-level heritability [46] we have

shown that for a wide range of analytical functions the group-level heritability is higher than

the corresponding cell-level trait heritability.

This analytical result is a step toward understanding the relationship between heritabili-

ties at two adjacent hierarchical levels, but the assumptions of constant particle number and

linear function are restrictive. The simulation model shows that the results are somewhat

dependent on the function relating the trait values at the two levels. However, these func-
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tions were chosen to be diverse, and the behavior of the relative heritabilities is nevertheless

qualitatively similar, increasing with cellular developmental variation (σS), decreasing with

environmental heterogeneity (σE), and exceeding 1 for most of the parameter space.

Although, we have not (and cannot) comprehensively test the universe of all possible

functions mapping group-level traits to particle-level traits, we have explored a small num-

ber of biologically relevant functions, ranging from extremely simple (volume) to some-

what more complex (swimming speed, survival under predation). We do not claim that the

high heritabilities estimated for these group-level traits would apply to all such traits, and

a full accounting of possible functions is beyond the scope of this study. Rather, we have

shown that for at least some such functions, the resulting group-level traits can have higher

heritability than their cell-level trait counterpart, and thus be altered by selection, early in

an evolutionary transition in individuality.

All four of the group-level traits in the simulation models are potentially biologically

relevant. Volume and diameter are both aspects of size, which can be an important compo-

nent of fitness both in evolutionary transitions in individuality [76] and in life history evo-

lution [57]. Swimming speed is a measure of motility, which has selective consequences

for a wide range of organisms, including many animals and microbes. For planktonic or-

ganisms, a positive upward swimming speed provides active control of depth, allowing

some control over light intensity (for autotrophs) and prey abundance (for heterotrophs).

Survival under predation obviously has important fitness implications for many organisms,

and both theoretical and experimental evidence implicate predation as a possible selective

pressure driving the evolution of multicellularity. Kirk, for example, suggests that a “pre-

dation threshold” above which algae are safe from many filter feeders may have driven

the evolution of multicellularity in the volvocine algae [90]. Microbial evolution experi-

ments in the algae Chlorella and Chlamydomonas have shown that predation can drive the

evolution of undifferentiated multicellular clusters [73, 91, 92, 91].

In our simulations, we examined the effects of three independent sources of phenotypic
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variation affecting the relative heritability of particle and group-level traits. Stochastic

variation in cell size around the clone’s genetic mean reduces the absolute heritability of

cells and groups by introducing non-heritable phenotypic variation. By averaging across

multiple cells, however, groups reduce the effects of this phenotypic variation, providing

them with a relative heritability advantage over cells.

We also considered the effect of environmental heterogeneity in which all of the cells

within a groups are affected in the same manner (σE). Groups are disproportionately af-

fected: each group is assessed a different size modifier, but all of the cells within these

groups are affected in the same manner. As a result, groups experience n-fold more stochas-

tic events (where n is the number of cells per group), which reduces their heritability rel-

ative to cells. The influence of these sources of variation is evident in the contour plots

of Figure 2.2: the relative heritability of groups to cells is maximized when the cellular

stochastic variation is high and environmental heterogeneity low (lower right corner of the

plots).

Finally, we considered variation in the number of particles per group. Such variation

substantially reduces the heritability of a group-level trait. Even with reasonably large

variation in group size, though, the group-level trait retains most of the heritability of the

particle-level trait on which it is based (for example, 55% at a CVN in particle number of

0.25).

A large number of previous studies have addressed heritability in the context of multi-

level or group selection. Heritability above the individual level has been called group heri-

tability (e.g., [93]), populational heritability (e.g., [94]), community heritability (e.g., [95]),

and heritability of the family mean [88]. These prior treatments differ from ours in one or

more of the following respects: they are concerned with the evolution of individual-level

traits rather than group level traits (particle- rather than group-level in our terminology),

are based on MLS1 rather than MLS2 models, and are focused on narrow-sense rather than

broad-sense heritability. Furthermore, few previous studies have addressed these questions
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in the context of the major transitions. Without attempting a comprehensive review, we

summarize several such studies, and important differences from our own, below.

Queller [93] presents a useful reformulation of the Price equation for selection at two

levels:

∆X = Sbh
2
b + Swh

2
w (2.32)

in which ∆X is the change in average trait value, Sb and Sw are the selection differentials

between groups and within groups, respectively, and h2b and h2w are the heritabilities of

the group-level and individual-level traits, respectively. This formulation partitions the

response to selection on a particle-level trait into withinand among-group change, but the

focus is still on particle-level traits. Our focus is on the evolution of group-level traits. In

the terminology of Damuth and Heisler [19], our focus is on MLS2, while Queller’s is on

MLS1. In addition, Queller makes no attempt to derive the relationship between group-

level heritability and cell-level heritability.

Michod and Roze [44] have previously modeled the relationship between particle-evel

and group-level heritability of fitness during a major transition. However, as Okasha [86]

points out, the heritability of fitness only ensures that mean population fitness will increase

over time. For selection to result in directional phenotypic change, it is phenotypes that

must be heritable. Furthermore, Michod and Roze focused on within-organism genetic

change. Our models assume that such change is negligible, as is likely to be true early in a

transition, when groups (e.g., nascent multicellular organisms) presumably include a small

number of clonally replicating particles (e.g., cells).

Okasha [95] considers heritability in MLS1 (which he refers to as group selection 2)

and MLS2 (his group selection 1) but does not attempt to derive a relationship between

heritabilities at two levels. Knowing the ratio of heritabilities is necessary, though not
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sufficient, to predict the outcome of opposing selection at two levels and so has important

implications for group-level traits that arise from cooperation among cells. The presumed

higher heritability of the cell-level traits has been seen as a problem for the evolution of

cooperation that benefits the group []. Our results show that this problem does not always

exist, though we would need to know not only the relative heritabilities but also the relative

strengths of selection to predict the outcome of opposing selection at two adjacent levels.

Several previous papers have shown that group-level heritability (group-level heritabil-

ity in our terminology) exists and can be substantial. Slatkin [], for example, showed that

one measure of group-level heritability, fraction of total variance between lines, is substan-

tial both in an analytical model and in the Tribolium experiments of Wade and McCauley

[40][]. Under some conditions, the between-line variance of a linear trait such as the one

we consider in our analytical model exceeds the within-line variance.

Bijma et al. [41, 42] and Wade et al. [43] showed that variance in the total breeding

value of a population can be increased, even to the point of exceeding phenotypic variance,

by interactions among individuals. Our model does not consider (or require) interactions

among individuals. Further, their model and empirical example are exclusively concerned

with individual-level traits (particle-level traits in our terminology), for example, survival

days in chickens. They do not estimate group heritability as such and judge that “it is

unclear how this parameter should be defined or estimated.”

Goodnight [96] addresses the effect of environmental variance at two scales on the

responses to individual and group selection in Arabidopsis thaliana. Although Goodnight’s

study focused on an individual-level trait (leaf area, thus an MLS1 scenario) of an obligately

sexual organism (thus narrow-sense heritability), our results (shown in Fig. 3) showed

analogous effects. In both cases, environmental variation at a fine scale (analogous to

our σS) increased the efficacy of group selection relative to individual selection, while

environmental variation among demes (analogous to our σE) had the opposite effect. Wade

[97] examines a similar case from a theoretical perspective and finds that increased relative
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efficacy of group selection results from environmental variation among particles decreasing

particle-level heritability.

Goodnight [87] considers the ratio of group-level heritability to individual-level her-

itability (in the narrow sense) using contextual analysis. Although this paper does not

provide a formula to calculate this ratio, its inequality 5 sets a minimum bound (with the

assumption that selection at the two levels is in opposition). As in our analyses, Good-

night shows that group-level heritability can exceed individual-level heritability in some

circumstances.

Several simplifying assumptions underlie our models, most importantly the genetic

identity of particles within groups. This condition only applies to a subset of the major

transitions. Queller recognized two subcategories within Maynard Smith and Szathmáry’s

[4] list of transitions, which he called “egalitarian” and “fraternal” transitions [46]. Briefly,

egalitarian transitions involve particles that may be genetically distinct, or even from dif-

ferent species, such as the alliance of a bacterium with an Archaean that gave rise to the

eukaryotic cell. Fraternal transitions are those in which the particles are genetically similar

or identical, such as the origins of eusociality and of most multicellular lineages.

Because of our assumptions of asexual reproduction and genetic identity among par-

ticles, we cannot generalize our results to all types of major transitions. Egalitarian tran-

sitions will not normally meet this criterion. A possible exception is aggregative multi-

cellularity, as seen in cellular slime molds and myxobacteria, when assortment is so high

that fruiting bodies are genetically uniform. This is probably uncommon [98], but it does

happen [99]. Transitions in which reproduction of particles is obligately sexual, such as the

origins of eusociality, also violate this assumption.

A better fit for our models is clonal multicellularity, which is probably the most com-

mon type of major transition. An incomplete list of independent origins of clonal multi-

cellularity includes animals; streptophytes; chytrid, ascomycete, and basidiomycete fungi;

florideophyte and bangiophyte red algae; brown algae; peritrich ciliates; ulvophyte green
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algae; several clades of chlorophyte green algae; and filamentous cyanobacteria [50–53].

In most cases, the early stages in these transitions probably violated the assumption of uni-

form particle number per group, but our simulations show that our main results are robust

to reasonable violations of this assumption.

One example that does approximate all of our assumptions is that of the volvocine

green algae, an important model system for understanding the evolution of multicellular-

ity. Volvocine algae undergo clonal reproduction only occasionally punctuated by sex, are

small enough that within-group mutation probably has negligible phenotypic effects, and

have cell numbers that are under tight genetic control.

2.6 Conclusion

A great deal of work has gone into understanding the selective pressures that may have

driven major evolutionary transitions. However, heritability is just as important as the

strength of selection in predicting evolutionary outcomes. We have shown that, given

some simplifying assumptions, heritability of group-level traits comes “for free;” that is, it

emerges as an inevitable consequence of group formation. Qualitatively, this result holds

across a wide range of parameters and for a diverse sample of biologically relevant traits.

group-level heritability is maximized (relative to particle-level heritability) when pheno-

typic variation among particles is high and when environmental heterogeneity and variation

in group size are low. Understanding the emergence of trait heritability at higher levels is

necessary to model any process involving multilevel selection, so our results are relevant to

a variety of other problems.
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CHAPTER 3

NASCENT MULTICELLULAR ORGANISMS POSSESS NOVEL TRAITS

SUBJECT TO ADAPTATIVE EVOLUTION

3.1 Summary

The existence of multicellular organisms is an outcome of evolutionary processes operat-

ing on populations of unicellular organisms [100]. Dozens of unicellular lineages from all

three domains of life have independently evolved multicellularity [11, 8], leading in each

case to the emergence of multicellular-level traits that did not exist before the transition

[101]. For these traits to evolve through natural selection, some of their phenotypic varia-

tion must be due to genetic variation, i.e. they must have non-zero heritability [102]. The

necessity of heritability for adaptive evolution has been seen as a problem for evolutionary

transitions to multicellular life [46, 103, 104, 105, 42, 85]: a reorganization subsequent to

the origin of multicellularity is presumed necessary to explain the emergence of heritabil-

ity at the multicellular level. Here we show that an ecologically relevant, emergent trait in

a nascent multicellular organism has higher heritability across a range of conditions than

the unicellular-level trait on which it is based. These results suggest that nascent multicel-

lular organisms are Darwinian individuals capable of adaptive evolution [20], possessing

heritable variation in traits that are likely to affect fitness [40]. Thus the formation of mul-

ticellular structures as such generates novel traits that are subject to evolution by natural

selection.

3.2 Introduction

Life on Earth has been, predominantly unicellular. At various times, particular unicellular

populations have evolved multicellular structures, bodies, or thalli. In some cases, these
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now multicellular populations massively diversified, giving rise to the major radiations of

multicellular life: plants, animals, fungi, and various groups of seaweeds. In other cases,

they left few descendants, or none.

Our focus here is on the first steps in the transition to multicellular life: the evolution

of multicellularity per se and the early evolution of nascent multicellular populations. A

necessary early step in the transition from unicellular to multicellular life is the evolution

of a mechanism of cell to cell adhesion [106, 107, 70]. In some cases, the population

may have already expressed a multicellular phenotype plastically, as is known to happen

in some algae and choanoflagellates, and the transition in question is from facultative to

obligate multicellularity. In other cases, the multicellular phenotype may be entirely novel,

resulting in a transition from a purely unicellular population to an obligately multicellular

one. Both processes have been observed in microbial evolution experiments in which a

selective pressure was applied to unicellular laboratory populations [32, 33, 108, 73].

The resulting populations consist of clusters of related cells, or colonies. These colonies

have traits that did not exist in the unicellular population, for example colony diameter,

colony shape, and number of cells per colony. These traits are potentially subject to natural

selection. How effective such selection will be in changing the trait value depends on the

heritability of the trait.

The breeder’s equation of quantitative genetics shows that a trait’s response to selection

(R) is the product of the selective coefficient (S) and the heritability of the trait under se-

lection (h2): R = h2S. Heritability in this formulation is the narrow-sense heritability, the

proportion of phenotypic variation explained by additive genetic variation, and this formu-

lation predicts the response to a given strength of selection in an obligately sexual popula-

tion [41]. For simplicity, we consider asexual populations, for which the relevant measure

of heritability is broad-sense heritability, H2, the proportion of phenotypic variation ex-

plained by all genetic variation [41]. The response to selection in an asexual population,

then, is R = H2S [41].
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Thus we could, in principle, predict the response of a nascent multicellular population

to a given strength of selection if we could predict H2. Doing so is not trivial, though.

Heritability is not an inherent property of organisms or species. Rather, it is a population-

level statistical measure that applies only to a particular trait in a particular population at a

particular time.

Our approach to estimating the heritability of traits in a nascent multicellular population

relies on the relationship of colony-level traits to cell-level traits. All colony-level traits

can, in principle, be expressed as functions of cell-level traits, though in many cases these

functions will be so complex as to be intractable [102]. They may, for example, include

cell-cell communication, complex feedbacks, and interactions with the environment, such

that cell-level phenotype is only one of several arguments. Our focus is on an emergent

colony-level trait the value of which is a function of a single cell-level trait.

In multicellular ’snowflake’ yeast, colony size (number of cells per cluster) is a simple

function of cell aspect ratio. Through a combination of analytical models, simulations, and

experimental manipulations, we show that heritability of colony size exceeds that of cell

aspect ratio across a wide range of conditions.

3.3 Results

3.3.1 Analytical model.

Prior work examining experimentally-evolved multicelluar ’snowflake’ yeast have shown

that there is a linear relationship between the size to which clusters grow before they divide

and cellular aspect ratio [37, 109]. Specifically, more elongate cells increase the size to

which clusters can grow by reducing cellular crowing within the cluster interior, slowing

the rate of stress accumulation that ultimately causes the group to fracture. Using this rela-

tionship as a starting point, we developed a theoretical model for describing the relationship

between the heritability of cellular aspect ratio, which is directly affected by mutations, and

that of number of cells at division, which is an emergent property of aspect ratio.
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First, we calculate broad sense heritability as the correlation coefficient between parental

phenotype α (cellular aspect ratio) and offspring phenotype α′ for cellular aspect ratio, par-

titioning the phenotype into its key components [110]:

H2 ≡ Corr(α, α′) =
E[(α− α)(α′ − α′)]

V ar(α)
(3.1)

Where:

α = G+ E + S α′ = G+ E ′ + S ′ (3.2)

In this equation G is the genetic mean of aspect ratio, E are environmental effects, and S is

developmental noise. Here we assume that S is a white noise, with mean zero and variance

(σ2
S).

If there is no temporal correlation except for the same genotype between offspring and

parents, then α = α′ and we can rewrite the numerator as:

E[(α− α)(α′ − α)] = E[αα′]− α2 = σ2
G (3.3)

So the heritability of aspect ratio is equal to:

H2
α =

σ2
G

σ2
G + σ2

S + σ2
E

(3.4)

If N is a linear function of the mean of cellular aspect ratio, then N will also a linear

function ofG, because all the cells in a clonal cluster will have the same genetic mean value

for aspect ratio. But because developmental noise S is random and different for each cell,

its expected value for all the cells in a cluster is zero. We also consider developmental noise

at the cluster level, ε, which accounts for internally-generated (i.e., not environmental) vari-
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ation in cluster phenotype. So forN we have: N = a(G+E+ε), N = aG, V ar(N) =

a2(σ2
G + σ2

E + σ2
ε ). Given these equations, the heritability of the number of cells at division

in the simplest form is equal to:

H2
N =

σ2
G

σ2
ε + σ2

E + σ2
G

(3.5)

so the ratio of the heritability of the number of cells per cluster and cell size is equal to:

H2
N

H2
α

=
σ2
S + σ2

E + σ2
G

σ2
ε + σ2

E + σ2
G

(3.6)

Thus, in principle, an emergent multicellular trait (cluster size at division) can be more

heritable than the underlying cellular trait, as long as σ2
ε > σ2

S (Figure 3.1).

Figure 3.1: Heritability of number of cells at fracture (H2
N ) is higher than that of cellular

aspect ratio (H2
c ) whenever cellular developmental noise (σ2

S)is higher than collective level
developmental noise (σ2

ε ).
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3.3.2 Experimental setup

We experimentally examined the relative heritability of mutations affecting both a cellular

trait (cellular aspect ratio) and an emergent multicellular trait (number of cells in the cluster

at division) using the snowflake yeast model system [32]. We deleted three cell cycle

regulatory genes (AKR1, ARP8, CLB2, generating a range of mutants that varied in their

mean cellular aspect ratio. In each case, we generated otherwise isogenic unicellular and

multicellular versions of these strains by leaving ACE2 functional, or deleting the ACE2

open reading frame, respectively [34] (Figure 3.1a).

In both unicellular and multicellular isolates, we measured the cellular aspect ratio of

cells that were only a single division old, ensuring that we did not introduce phenotypic

variation due to varying cell age. Whether or not ACE2 was active did not significantly

affect cellular aspect ratio in any of our genotypes (Figure 3.2b, t = −0.96, p = 0.33 for

wild type, t = 1.12, p = 0.26 for ∆ARP8, t = −.69, p = 0.49 for ∆AKR1, t = −0.29,

p = 0.76 for ∆CLB2; two-tail t-tests).

To measure the number of cells at fracture we first measured the packing fraction (φ)

of each genotype and their size at fracture (Vcl) using time-lapse microscopy. We also

measured the volume of cells (vce)for each genotype and using the formula φ = Nvce/Vcl

calculated number of cells at fracture (Figure 3.3a). These results are in agreement with

the computer simulation (Figure 3.3d) and previous studies [109]. This agreement suggests

that our genetic manipulation only changes one phenotype that is relevant for the number

of cells at fracture. It may very well cause other phenotypic changes at the cell level but

they don’t have any noticeable effect on the cluster-level phenotype that we are interested

in.

3.3.3 Simulation population

A trait’s heritability is a statistical feature of a population, not an inherent property of an

organism, and is highly sensitive to population composition ([43]). We used a variance
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Figure 3.2: Yeast genotypes used in this study. a) yeast genotypes in combination with
functional (top row) or nonfunctional (second row) ACE2. Bottom row shows bright−field
images of ACE2 knockouts. b) distribution of cell aspect ratio for each genotype with
ACE2 (yellow bars) and without ACE2 (blue bars).

partitioning approach to calculate the heritability of cellular aspect ratio and group size at

division from our experimental data (see supplementary material). Because each genotype

has a different genetic mean cellular aspect ratio, heritability depends on the frequency

of each genotype in the population (Equation 3.6). For example, at equal frequencies, a

population that consists of wild type snowflake yeast and the ∆Akr1 mutant has a lower

genetic variation compared to a population of wild type and the ∆Clb2 mutant. There-

fore, we measured the heritability of both cellular aspect ratio and cluster size at division
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Figure 3.3: A)distribution of cell aspect ratio (top) and number of cells at fracture (bottom)
for ACE2 knockout genotypes. B) relationship between cellular aspect ratio and number of
cells per cluster in ACE2 knock outs. Empirical measurements (blue dots) are shown with
standard deviations. The lines how simulation results with the shaded area representing
one standard deviation area around the mean for each value. Experimental results are in
good agreement with simulations, and both show strong linear relation between the two
parameters (r2 = 0.99, y = 2718.05 ∗ x − 2780.83 for simulation and r2 = 0.96, y =
2549.83 ∗ x− 2526.60 for experimental results.

by simulating all possible hypothetical populations by bootstrapping (up to an N = 1000)

without replacement from our experimental data (Figure 3). To avoid uniform populations

first we fixed one genotype’s frequency f1 at 5%. Then we looked at all different possible

populations composed of three remaining genotypes with the condition that sum of their
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frequencies is equal to 95% (f2 + f3 + f4 = 95%). In nearly all possible populations, the

multicellular trait, cell number at division, is more heritable than the underlying cell-level

trait, cellular aspect ratio, despite the fact that aspect ratio is the only trait being modified

via mutation.

Figure 3.4: Heritability of a colony-level trait exceeds that of the corresponding cell-level
trait over a wide range of simulated populations. Each triangle plot represents one type of
heritability for a possible 3-way combination of the four genotypes at different frequencies
(fourth genotype held constant at 5% in each case). a) Cell-level heritability for all possible
3-way combinations of genotypes. b) Collective-level heritability for all for example pos-
sible 3-way combination of genotypes. c) Ratio of two heritabilities for all possible 3-way
combinations of genotypes.
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Discussion

We have shown that an emergent multicellular trait, group size at division, is a linear func-

tion of a cell-level trait, cell aspect ratio, in snowflake yeast. Furthermore, the value of the

cell-level trait is independent of whether or not the cell is in a multicellular body. Taken

together, this means that the multicellular trait value can be predicted from the cell-level

trait value, even before the population has become multicellular.

In agreement with a previous analytical model [102], we have shown that the heritability

of the multicellular trait is generally higher than the underlying cellular trait. Although the

ratio of the two heritabilities depends on the proportion of each genotype in the population,

it is in nearly all cases greater than one. While it might seem surprising that an emergent

multicellular trait can be more heritable than a cell-level trait directly encoded for by genes,

multicellular groups possess a powerful advantage over isolated cells: the ability to average

out stochastic variation in cellular phenotype.

Although it is routinely estimated and widely recognized as useful in predicting re-

sponses to selection in clonally reproducing multicellular organisms [47, 48, 49, 50, 51,

52, 53, 54, 55], H2 is typically assumed to be 1 in asexually reproducing microbes [111,

112, 113, 114, 115, 116]. This assumption is so widespread that the concept of heritability

is rarely addressed in discussions of microbial evolution; rather, the response to selection

is simply assumed equal to the strength of selection (R = S). However, H2 is never 1

for a continuously varying trait in a real population. Because broad-sense heritability is

defined as the ratio of genetic variance to total phenotypic variance, which includes genetic

variance, the only way for H2 to equal 1 is for there to be zero non-genetic variance.

In reality, phenotypic heterogeneity is widespread even among genetically identical

individuals reared in carefully controlled environments. This phenomenon is well doc-

umented among microbes, but it is also true for diverse plants, fungi and animals [117]

and for traits as diverse as gene expression [118, 119], antibiotic [120] and formaldehyde
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[121] resistance, motility [122] and phototaxis [123], cell number [124], predator evasion

behavior [125], and number of sense organs [126].

3.4 Conclusion

While the emergence of multicellular heredity is widely regarded as a major challenge in

this major evolutionary transition [95, 82, 127], we show that multicellular heredity may

in fact arise “for free”, without any additional evolutionary change required. This has sev-

eral implications. First, it means that, immediately after formation, simple multicellular

groups like snowflake yeast will be capable of multicellular adaptation, assuming that se-

lection acts on the emergent multicellular traits. Second, high multicellluar heritability

facilitates multicellular responses to selection. This may be especially important in cases

where selection on cell-level fitness and multicellular fitness are acting in opposite direc-

tions. For example, recent work [80] has shown that mutations in ARP5 and GIN4 arise

during snowflake yeast experimental evolution, increasing group size but decreasing cellu-

lar growth rate by 6.2 and 10.2%, respectively. Over time, the accumulation of mutations

like these which decrease cell-level fitness may act as an evolutionary ’ratchet’, limiting op-

portunities for evolutionary reversion to unicellularity and thereby entrenching the lineage

in a multicellular state [42]. These results provide mechanistic context for the emerging

context that the transition to multicellularity is less constrained than previously thought

[44, 46].
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CHAPTER 4

DE NOVO EVOLUTION OF MACROSCOPIC MULTICELLULARITY

4.1 Summary

The evolution of large size is fundamentally important for multicellularity, creating novel

ecological opportunities and driving the origin of increased organismal complexity. Yet

little is known about how readily large size evolves, particularly in nascent multicellular

organisms that lack genetically-regulated multicellular development. Here we examine

the interplay between biological, biophysical, and environmental drivers of macroscopic

multicellularity using long-term experimental evolution. Over 600 daily transfers ( 3,000

generations), multicellular snowflake yeast evolved macroscopic size, becoming more than

19,000 times larger while still remaining clonal. This happened through sustained bio-

physical adaptation, evolving increasingly elongate cells that initially reduced the strain of

cellular packing, then facilitated branch entanglement so that fracture would require break-

ing many cellular bonds. As a result, individual multicellular yeast became over a million

times more biophysically tough. 4/5 replicate populations show evidence of directional

selection, with mutations becoming significantly enriched in genes affecting the cell cycle

and budding processes. Macroscopic size only evolved in a treatment incapable of aero-

bic metabolism, demonstrating how limiting oxygen can constrain the evolution of larger

size. Taken together, this work shows how selection acting on the emergent properties of

simple multicellular groups can drive sustained biophysical adaptation, an early step in the

evolution of increasingly complex multicellular organisms.
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4.2 Introduction

Complex multicellularity has independently evolved in five eukaryotic lineages (animals,

plants, fungi, red algae and brown algae), increasing organismal size by up to multiple

orders of magnitude [8, 128, 129]. Size plays a fundamental role in the evolution of mul-

ticellularity, allowing organisms to explore novel ecological niches [12], affords protection

from the external environment [74, 130], and underlies the evolution of cellular differentia-

tion [56, 57, 77, 131, 132]. The evolution of macroscopic size has been hypothesized to be

a key driver of increased organismal complexity, creating a selective incentive to solve chal-

lenges of nutrient and oxygen transportation that are otherwise inescapable consequences

of diffusion limitations [8, 58]. However, little is known about how simple clusters of cells

evolve macroscopic size, and whether selection for size itself can be a driver of multicellu-

lar innovation.

The evolution of macroscopic size presents a fundamental challenge to nascent multi-

cellular organisms, requiring the evolution of biophysical solutions to evolutionarily novel

stresses that act over previously-unseen multicellular length scales [133, 134, 135, 37].

Indeed, while prior work with yeast and algae have shown that novel multicellularity is rel-

atively easy to evolve in vitro, these organisms remain microscopic, typically growing to a

maximum size of tens to hundreds of cells [91, 45, 32, 33, 73]. Extant multicellular organ-

isms, which have been under selection for size for hundreds of millions of years, have

evolved a number of developmentally-regulated mechanisms for increasing biophysical

toughness, or reducing the rate at which stress accumulates [136, 137, 138]. In the absence

of genetically-regulated multicellular development, however, we do not know how, or even

whether, nascent multicellular organisms can evolve the increased biophysical toughness

required for the evolution of macroscopic size.

Here we examine the interplay between biological, biophysical, and environmental

drivers of macroscopic multicellularity using long-term experimental evolution. We subject
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snowflake yeast, a model of undifferentiated multicellularity, to 600 rounds ( 3,000 gener-

ations) of daily selection for increased size. Because oxygen is thought to have played a

key role in the evolution of macroscopic multicellularity, we evolved snowflake yeast with

either anaerobic or aerobic metabolism. All five of our anaerobic replicate populations

evolved macroscopic size, while all aerobic populations remained microscopic through the

duration of the experiment. Macroscopic size evolved through two sequential steps in all

five replicate populations. First, snowflake yeast increased the length of their constituent

cells, which delays fracture caused by packing-induced strain [37]. Next, they evolved to

entangle branches of connected cells such that a single cell-cell separation no longer causes

multicellular fracture. Together these adaptations increased the toughness of individual

clusters by more than a million-fold, increasing average size by more than 19,000-fold. Se-

quencing reveals evidence for directional selection, with mutations occurring at especially

high frequency in genes affecting the cell cycle (which affects cellular aspect ratio) and

budding processes.

4.3 Results

All five populations of anaerobic snowflake yeast evolved macroscopic size, with individual

clusters visible to the naked eye (Figure 4.1a). In contrast, snowflake yeast capable of

metabolizing oxygen remained relatively small, likely due to competition for limiting O2

[80]. The evolved populations increased their mean cluster radius from 16 µm to 434 µm

(Figure 4.1b, p < 0.0001, F5, 13321 = 2100, Dunnett’s test in one-way ANOVA-stats),

a > 19, 000-fold increase in volume. In cellular terms, this corresponds to an average

increase from 100 to 450, 000 cells per cluster. The maximum size of evolved macroscopic

snowflake yeast was 1.1 mm, which is comparable to the size of an adult Drosophila [139].

In this paper we focus on the anaerobic populations, examining the biophysical and genetic

mechanisms underlying the evolution of macroscopic size.

The evolution of macroscopic multicellularity occurred via two distinct phases (Fig-
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Figure 4.1: Increase in size in experimental evolution of macroscopic multicellularity in 5
independent population of snowflake yeast populations.

ure 4.1B). Over the first 100 days of evolution, we saw remarkable parallelism- all five

replicate populations evolved a 2-fold increase in radius (from 16.7µm to 33.6µm; p <

0.0001, F5, 27005 = 4518, Tukey’s HSD, one-way ANOVA) with no significant differ-

ence only minimal among-replicates variance (range in pairwise difference of mean is

0.11 − 0.53µm stats). At this point, they entered a period of stasis, waiting anywhere

from 50 days in population L5 to 300 days in population L1 before rapidly evolving fur-
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ther size increases. Such stasis is a classical outcome of the stochastic nature of evolution,

and is expected when phenotypic variation is mutationally limited [71]. The wide among-

population variance in the duration of evolutionary stasis suggests that the evolution of

macroscopic size was more challenging than the initial evolution of increased size, which

was highly parallel.

The evolution of macroscopic multicellularity is fundamentally a biophysical challenge.

Throughout the experiment, snowflake yeast cells evolve to be more elongate, increasing in

average aspect ratio from 1.2 to 2.7 (Figure 4.2ab; p < 0.0001, F5, 1993 = 206.2, Dun-

nett’s test in one-way ANOVA). Initially, this increases cluster size by reducing cell-cell

strain caused by cellular packing [37]. Indeed, prior to the evolution of macroscopic size,

cluster size was a roughly linear function of aspect ratio (Figure 4.2b; R2 = 0.72, p <

0.0001, Y = 41.12 ∗ X − 27.77), but this relationship is discontinuous upon the evo-

lution of macroscopic size (Figure 4.2b). Using a 3D biophysical simulation of growth

and fracture in the ancestor [109], we find that increasing cellular aspect ratio should de-

crease the cluster’s packing fraction (proportion of the cluster’s volume that is occupied

by cells; Figure 4.2d), which should increase size by by avoiding cell-cell collisions. Ex-

perimentally, we found remarkable concordance with theoretical expectations, but only for

early timepoints (Figure 4.2e). Initially, as our yeast evolved more elongated cells, they

also formed less densely packed clusters, but around aspect ratio 2 experimental results

began to diverge from our simulation. Indeed, the relationship between cellular aspect

ratio and cluster packing fraction was reversed, with increasingly elongated cells driving

more densely packed clusters (up to a packing fraction of 0.45 in Line 2 at 600 days, Fig-

ure 4.2e). While the initial evolution of increased size closely matches our prior biophysical

models [37, 109], the divergence we see concordant with the evolution of macroscopic size

suggests that snowflake yeast have evolved a novel biophysical mechanism for increased

cluster toughness.

To determine if macroscopic yeast are simply aggregates of multiple clusters, we la-
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beled a single-strain isolate of macroscopic snowflake yeast taken from Line 2, t600 (hence-

forth referred to as GOB1413-600) with either GFP or RFP. After 24h of co-culture, all mul-

ticellular clusters remained monoclonal, excluding aggregation as a potential mechanism

(Figure C.8). We excluded flocculation as a mechanism by demonstrating that GOB1413-

600 was insensitive to proteinase K, a protease that cleaves extracellular flocculation pro-

teins that can prevent yeast cells from aggregation [140](see Figure C.10).

To examine the possibility that macroscopic snowflake yeast are growing large while re-

maining as a single, topologically-connected component, we imaged yeast via Serial Block

Face Scanning Electron Microscopy (SBF-SEM). This technique allows us to image the in-

terior of clusters that is impossible to image with light-based microscopy, ultimately allow-

ing us to map their internal architecture with nanometer precision [141]. Surprisingly, in-

dividual macroscopic snowflake yeast were composed of multiple disconnected ‘branches’

of connected cells. For example, the connections to the tan and olive cellular branches

shown in Figure 4.3 are severed, but they remain within the interior of the cluster. This is

a sharp contrast with the ancestral growth form, in which clusters form a single connected

component. Within macroscopic clusters, separate branches contact, intercalate, and even

wrap around each other (Figure 4.3a). As these clusters are densely packed, moving one

component would require moving many other components as well. Based on these obser-

vations, we hypothesized that branches are entangled, in a manner reminiscent of physical

gels [142] and entangled granular materials [143]. Entanglement provides a mechanism for

branches of cells to remain in the same, densely packed group after cell-cell bonds break.

To test whether branch entanglement underlies the evolution of macroscopic size, we

must first formally define entanglement. Inspired by string knotting analysis [144, 143]

we constructed the convex hull of each connected component, which denotes the smallest

convex polyhedron that can fit the connected component (see Figure C.9). If two convex

hulls overlap, then the connected components are entangled. Two connected components

belong to the same entangled component if there is a path from one to the other that only
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Figure 4.2: Cell-level phenotypic changes generate a shift in biophysical organization in
snowflake yeast. A) Individual clusters of these macroscopic snowflake yeast adopt a mod-
ular growth form in which the group is composed of thousands of snowflake-shaped mod-
ules. Time-lapse microscopy and fluorescence tagging experiments demonstrate that these
do not aggregate to form a group, but like their ancestor, grow clonally from cells that are
within a propagule. B) While the ancestor had a strictly polar budding pattern, large clus-
ters evolved to branch from their sides. C and D) show the parallel evolution of elongated
cell shape, resulting in an increase in average aspect ratio from 1.2 to 2.7 (p < 0.0001,
F5,1993 = 206.2, Dunnett’s test in one-way ANOVA). E) Early in their evolution (aspect
ratio 1-2.3), cluster size is an approximately linear function of cellular aspect ratio (Inset;
p < 0.0001, y = 41.1x−27.8, r2 = 0.72). This relationship does not hold for higher aspect
ratios. F) Volume fraction changes for the line 2 and simulation as a function of cellular
aspect ratio. The experiment diverges from the simulation at around aspect ratio of 2.

moves along entangled components (Figure 4.3b).

For entanglement to underlie macroscopic size, the largest entangled component must
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be able to resist mechanical stress, meaning that there must be an entangled component that

spans the majority of the cluster [145]. In analyses of 10 randomly selected subvolumes

from different macroscopic snowflake yeast clusters, we found that the largest entangled

component contains 93%+/−2% of all connected components. This observation supports

the hypothesis that entanglement between cell branches can prevent cluster fracture in the

event that a cell-cell bond fails.

As a further check, we investigated the mechanics of macroscopic snowflake yeast.

Strain stiffening is a signature of entangled chains [146, 147, 143, 148]. When entan-

gled chains are compressed, their effective stiffness increases with increased strain. This

enables entangled materials to withstand stress orders-of-magnitude greater than their non-

entangled counterparts, a property necessary for achieving macroscopic size [143]. Con-

versely, as the ancestor is not entangled, it is not expected to exhibit strain-stiffening be-

havior. We measured the stress response of 10 macroscopic snowflake yeast clusters under

uniaxial compression using a macroscopic mechanical tester (Zwick Roell Universal Test-

ing Machine). We repeated the same experiment for the ancestral snowflake yeast clusters

using an atomic force microscope (AFM Workshop LS-AFM). While the stress-strain plot

for the ancestor is linear (r2 = 0.97 + / − 0.2 average of 10 samples) (Figure 4.3c inset),

macroscopic snowflake yeast clusters have a convex stress-strain curve (Figure 4.3c) and

can support stresses as large as 7 MPa without failing. Thus, entanglement both enables

separate branches within macroscopic snowflake yeast to stay together and allows them to

endure the large stresses necessary for growth to macroscopic size.

In addition to changes in cellular shape, macroscopic snowflake yeast have evolved

significant changes in the geometry of budding. Rather than budding being completely

restricted to distal cellular poles, as it was in the ancestor, it now also occurs at the cells’

sides, creating right-angled branches (Figure 4.2 e&f). Side branching may promote entan-

glement by increasing the angle of budding, allowing recursive growth such that branches

reenter the cluster interior.
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Figure 4.3: (a) Example of two entangled connected components inside a sub volume of a
microscopic snowflake yeast rendered from the SBF-SEM images. (b) Progressive build of
a sub-volume by many entangled connected components in four steps. (c) Stress vs strain
for macroscopic snowflake yeast clusters in blue and the ancestor in red. The shaded area
shows 1 standard deviation based on 10 repeated measurements. Macroscopic snowflakes
experience strain stiffening. Inset: Stress strain plot for the ancestor. The shaded area
shows 1 standard deviation based on 10 repeated measurements. Unlike the macroscopic
snowflakes, the ancestor’s curve is linear without any strain stiffening.

To uncover the genomic basis of multicellular adaptation, we sequenced the genomes

of a single strain from each of the five populations to independently evolve macroscopic

multicellularity after 600 transfers (Figure 4.4 a&b). 4/5 populations had a dN/dS ratio

> 1.0 for potentially fixed mutations (Figure 4.4c), indicating that directional (or positive)

selection has played a major role in allele frequency changes in these populations. The

one population with a dN/dS ratio below 1, population 3, also evolved macroscopic mul-

ticellularity considerably later than the other replicate populations, suggesting a potential

connection between the evolution of macroscopic size and directional selection.

The evolution of elongated cells is primarily driven by non-silent mutations affecting

cell cycle progression, as this significantly enriched Gene Ontology (GO) category con-

tains the largest number of genes (21 genes,p = 4.68e− 10). In S. cerevisiae, delays in the

progression of the cell-cycle result in more elongated cells . Furthermore, the evolution of

elongated cell shape seems to be driven by mutations within the ‘filamentous growth’ GO

category (9 genes, p = 0.01). In parallel to variants affecting cellular elongation, we find
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Figure 4.4: Whole-genome sequencing reveals the dynamics of molecular evolution and
the genetic basis of cell-level changes. (a) and (b) show the number and types of mutations
in evolved single strains from each population. (c) GIN4, a kinase controlling the size of
cellular bud necks with a potential strengthening effect on connections between cells, is
mutated in two independent populations. (d) Genetic engineering of cell lengthening (i.e.,
AKR1 and ARP5) and bud-scar strengthening (i.e., GIN4) mutations in the ancestral (i.e.,
bottom left) background increased multicellular size. (e) The list of non-silent mutations is
significantly enriched for genes controlling cell-cycle progression (23 genes, p = 4.68e −
10) and filamentous growth (6 genes, p = 0.0103). Mutation on both is known to result
in the formation of elongated cell shape in yeast []. Outside of these searchable GO-term
categories, there is a substantial enrichment for genes with potential effects on the budding
index, random budding pattern, and larger bud neck size (15 out of 41 genes with non-silent
mutations). (f) Spatial analysis of functional enrichment [149] of non-silent mutations show
enrichment for mitosis (p = 1.11E− 06) and cell polarity pathway (p = 1.74E− 05). Co-
clustering of mutations in these genetic networks implies adaptive changes in the shape of
cells or the direction of the bud site.

many nonsynonymous mutations in genes with known roles on cellular budding. Among

these, four genes increase budding index (CDC25, CLB2, FAT3, YCF1), and four genes

generate random budding in yeast (BUD22, EDE1, RPS18B, SLA1), which may play a
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role in the evolution of the side-budding phenotype. Moreover, we see mutations in eight

genes that have previously been shown to increase the size of buds (AKR1, ARP5, CLB2,

GIN4, PRO2, RPA49, RSC2, PHO81), two of which are mutated in two independent pop-

ulations, indicating parallelism (i.e., PHO81 and GIN4) [150, 151]. All else equal, larger

bud necks should increase the amount of cell wall shared between mother and daughter

cells, increasing the strength of the cell-cell connection.

4.4 Discussion

Nascent multicellular organisms face a distinct biophysical challenge, encountering physi-

cal forces acting on evolutionarily novel length scales that threaten to disrupt this new level

of biological individuality. Here we show that snowflake yeast, a model system of undif-

ferentiated multicellularity, were capable of evolving macroscopic size over 600 days of

directed evolution. Macroscopic snowflake yeast are readily visible to the naked eye, con-

taining hundreds of thousands of clonal cells. They evolved this remarkable increase in size

via two distinct biophysical innovations. First, they evolved more elongate cells, increasing

cluster size by reducing the density of cellular packing (and thus the rate at which strain

accumulates) within the cluster. Next, they evolved branch entanglement, which allows

multicellular groups to remain physically attached even when individual cellular connec-

tions are severed. This critical innovation increased the physical strength of multicellular

groups one million-fold. Genetics summary.

To our knowledge, this is the first long-term evolution experiment to directly show how

simple multicellular organisms evolve increased complexity. Snowflake yeast do not pos-

sess evolved systems of developmental control over multicellular morphology- they were

synthetically created from a unicellular ancestor at the start of this experiment by delet-

ing the ace2 transcription factor, and have had little prior opportunity to gain multicellular

adaptations. Instead, they demonstrate how, prior to the evolution of development, novel,

heritable multicellular traits can arise as an emergent property of changes in the traits of
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constituent cells. Two cell-level innovations appear to have played a key role in the evo-

lution of macroscopic size: elongate cells and side-budding. Increased cell length initially

reduces strain generated from cellular packing, which is the primary manner in which size

increased early in the experiment, and subsequently facilitates entanglement by reducing

the number of cells that are required to make a loop. This process may be accelerated by

side budding.

Our results depend on the fact that snowflake yeast grow as topologically-structured

groups with permanent cellular bonds, and we would not necessarily expect similar bio-

physical exaptation in organisms with alternative means of group formation. These fea-

tures, however, make it well suited as a model system for the lineages that have ultimately

evolved complex multicellularity. Of the five lineages that independently evolved complex

multicellularity (animals, plants, red algae, brown algae, and fungi), all but animals pos-

sess permanent cell-cell bonds, and early multicellular lineages are inferred to have been

topologically structured [152]. While animals do not currently have permanent cell-cell

bonds, little is known about their ancestral mode of cellular adhesion. Indeed, their closest

living relatives, the choanoflagellates, form topologically structured multicellular groups

with permanent cell-cell bonds [153, 154].

Despite daily selection for increased size, macroscopic multicellularity only evolved in

our anaerobic, rather than aerobic lineages. This is further evidence that oxygen, rather

than acting to promote the evolution of macroscopic multicellularity, may in fact act as a

powerful constraint on the evolution of large size. Oxygen can increase cellular growth

by increasing ATP yield from metabolism [155], and allowing growth on non-fermentable

carbon [156]. When oxygen availability within an organism is limited by diffusion, large

size can be maladaptive by reducing the ability of interior cells to utilize this valuable

resource [80]- this is a constraint that anaerobic organisms simply do not face. The positive

effect of oxygen on multicellular size [8] may only be realized when it reaches high levels,

as happened around 0.6 Ga [157].
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4.5 Conclusion

Broadly speaking, our results demonstrate that rapid multicellular innovation is possible,

even in the absence of genetically-regulated multicellular development. The evolution of

macroscopic size required the evolution of new physical mechanisms increasing organismal

toughness, which itself required fundamental changes in the shape and behavior of the cells

within the organism. Selection acting on the emergent properties of multicellular groups

thus created ample opportunity for sustained adaptive evolution underlying the origin of

novel multicellular phenotypes, providing the first in vitro experimental demonstration of

how selection for larger size can itself be a powerful driver of increased organismal com-

plexity.
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CHAPTER 5

CONCLUSION

5.1 Summary of Findings

Understanding how a new group capable of undergoing Darwinian evolution emerges from

the interactions between existing individuals is essential to understand emergence of com-

plexity and hierarchy in life. In this process, the fundamental level of evolution transfers

from the lower-level unit to the higher-level unit [4, 21, 87]. There has been many stud-

ies about the relationship between the fitness of the higher- and lower-level. However, for

selection and adaptation to happen, heritability is as important as selective pressure. Here,

we focused on the emergence of multicellularity from unicellular life forms and looked

at two problems related to this: First the heritability of group level traits, and second the

emergence of macroscopic size in nascent multicellular organisms.

The outcome of a selection process depends on both the strength of the selection and the

heritability of the trait of interest. However the role of heritability of group-level traits and

its relationship to heritability of cell-level traits was unclear. Here, through a combination

of analytical models, computer simulations, and experiments we examined this relation-

ship. First, we showed that heritability of group-level traits emerges as the groups form.

Second, for a wide range of variables and for different ecologically relevant traits, heri-

tability of group-level traits is higher than the heritability of cell-level traits, as group traits

emerge from an average over individual cell level traits, minimizing the effect of random

noise at the individual cell level.

On the second project, we used the snowflake yeast model system to study the evolu-

tion of large group size in nascent multicellular organisms. We observed the emergence

of macroscopic-sized clusters in five out of five populations of anaerobic snowflake yeasts.
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Although different populations reached macroscopic size at different times, they followed

similar general patterns of increasing size over time. Moreover, they reach macroscopic

size without any visible sign of evolving developmental structures that are ubiquitous in

present complex organisms such as vascular system [8, 79]. We demonstrated that physics

played an important role in their formation. If any cell-cell connection fails in the ances-

tor clusters they fracture into two smaller clusters. However, branches of cells inside the

macroscopic clusters are physically entangled, and as a result clusters do not fracture when

a single bond between cells breaks. Furthermore, entanglement makes the cluster much

tougher than their ancestors, enabling them to endure large mechanical stresses.

Although these results are not generalizable to every incident of the evolution of com-

plex multicellular organisms, nonetheless they provide a proof of concept for: first, evo-

lution of large size without extensive genetic and developmental innovation in very short

time in evolutionary time scale; second, how early multicellular organisms could have used

simple mechanisms to resist forces much greater than those relevant to their unicellular

ancestor.

5.2 Future Work

One possible direction to take is to understand how nonlinear relationships between cell-

level and group-level traits impact heritability. Understanding heritability is as important

as the magnitude of selective pressure in a major transition in individuality. We have shown

that the heritability of group traits, under certain conditions, emerges from the heritability

of cell level traits as a consequence of averaging over the developmental noise. Here, we

only studied the interplay between σS , σE and CVN for the simplest case of size, both

theoretically and experimentally. But the relationship between group traits and cellular

traits are not always simple linear functions. For more complex functions we presented

only the simulation results for the case of no variation in the cell numbers per group. It is

neither practically possible to test all possible analytical functions nor have we made such
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a claim. What we have shown here is that for a wide range of functions relating group traits

to cellular traits the group level heritability is higher than the cell-level heritability and can

be altered by selection at the group-level.

Bourrat [158, 159] has claimed in a recent analytical study that when group-level traits

are nonlinear functions of cell-level traits the group-level heritability is lower than cell-

level heritability. This result is in contradiction to our simulation results. So, one natural

direction for this project is to develop a theoretical framework to consider nonlinear func-

tions which is essential for understanding the emergence of more complex higher-level trait

heritability.

Our preliminary simulations and model carry assumptions that limit their generalizabil-

ity to more complex systems: they assume asexual reproduction at both the cell and group

levels, zero mutation, no selection, clonal groups, and that heritability of a trait doesn’t

change from one generation to the next. Because of these assumptions, the current model

is a statistical model rather than a full-fledged evolutionary model. Therefore, I plan to de-

velop an analytical model and a computer simulation to look at the changes in heritability

across multiple generations and track its changes in the presence of mutation and selec-

tion. The next step would be to add sexual reproduction to the model. This would set the

stage for expanding the scope of the model to accommodate the evolution of eusociality in

insects such as ants or bees.

Our experimental evolution results demonstrate that innovation at the multicellular level

is possible even without genetically-regulated developments that are usually considered

prerequisites for increasing size. However, there are still many unanswered questions about

the dynamics of evolution of macroscopic size. While we showed that entanglement is re-

sponsible for increased size, we don’t know how clusters avoid fracturing before reaching

entanglement since entanglement requires higher packing fraction than has been seen be-

fore in granular chain materials [143]. Moreover, the shape and geometry of cells and

budding scars have changed continuously over the run time of the experiment. We need to
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answer a few fundamental questions: how are cells able to create these knots and what key

innovations make knot formation possible? Do they grow large because of side budding or

in spite of it?

Another important direction is to continue the evolution experiments that are underuti-

lized tools for studying the transition to multicellularity. Nature is full of surprises and can

often find ways that we would not have thought about beforehand. For example, the main

goal of this experiment when it started was to investigate the role of oxygen in the evolution

of early multicellularity [80]. However, it led to surprising results that unveiled the role of

physics in emergence of macroscopic size. There many questions that could be answered

with this experiment such as: What are limits of size that this clusters can reach and what

are the liming factors? Would they evolve division of labor between outer cells and cells

near the surface of the clusters?
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APPENDIX A

TRAIT HERITABILITY IN MAJOR TRANSITIONS

A.1 One way ANOVA to calculate heritability in populations with different geno-

types

Let’s assume that we have N clonal lineages and each has ni members where i is from

1 and N . For the simplest case we can assume a linear model for the phenotype of each

individual:

xij = µ+ fi + εij (A.1)

xij: The phenotype of the jth member of the ith family.

fi: The effect of the ith family where: fi ∼ N (0, σ2
f )

εij: The residual and random effect dues to all other variables: εij ∼ N (0, σ2
ε ) From which

we have:

σ2
x = σ2

f + σ2
ε (A.2)
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We can partition the total variation on phenotype in the population into the sum of

variance of contributing factors by using a one-way ANOVA. We define heritability as:

H2 =
σ2
f

σ2
f + σ2

ε

(A.3)

The denominator of equation 8 is the total phenotypic variation in the population while the

numerator is the part of variation that’s due to the genetic variation in the population. Our

goal is to estimate the numerator (σ2
f ) from experimental data by using a one way ANOVA.

Now we estimate the heritability of a quantitative trait for a collection of clonal organ-

isms that has N different genotypes and each genotype has ni member for i from 1 to N

(unbalanced clonal population). For ANOVA for the some of squares for among genotype

variation we have:

SSf =
N∑
i=1

ni(xi − x)2 =
N∑
i=1

1

ni
x2i• −

1

T

2

x•• (A.4)

Not that T =
∑
ni is the total number of organisms; xi• is the average phenotypic value

of the genotype i and x•• is the mean phenotype value of the whole population. Because we

have N different genotype the degree of freedom is (N − 1). Hence for the means squares

we get:

MSf = SSf/(N − 1) (A.5)
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The expected value is the mean squares then is:

E[MSf ] =
1

N − 1
(E[

N∑
i=1

1

ni
x2i•]−

1

T
E[x2••] (A.6)

=
1

N − 1
(Tµ2 + Tσ2

f +Nσ2
ε − Tµ2 − 1

T

∑
n2
i − σ2

ε (A.7)

=
1

N − 1
(T − 1

T

N∑
i=1

n2
i )σ

2
f + σ2

ε (A.8)

Now we calculate within-genotype variation:

SSw =
N∑
i=1

ni∑
j=1

(xij − xi•)2 =
N∑
i=1

ni∑
x2ij −

∑ 1

ni
x2i• (A.9)

The degree of freedom here is T − N . Hence for the expected value of mean square we

have:

E[MSw] =
1

T −N
(E[

N∑
i=1

ni∑
x2ij]− E[

∑ 1

ni
x2i•]) (A.10)

=
1

T −N
(Tµ2 + Tσ2

f + Tσ2
ε − Tµ2 − Tσ2

f −Nσ2
ε ) (A.11)

= σ2
ε (A.12)

Combining the results of equations 13 and 17, we can drive an expression of σ2
f :

σ2
f = (MSf −MSw)

N − 1

T −
∑ n2

i

T

(A.13)

Hence the heritability is equal too:

H2 =

(MSf −MSw) N−1

T−
∑ n2

i
T

(MSf −MSw) N−1

T−
∑ n2

i
T

+MSw
(A.14)
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A.1.1 Strain Construction.

All yeast strains were produced from a Y55 strain background made homozygous at all

loci via sporulation and selfing, as previously described by the Ratcliff laboratory[34]. All

strains were based on the GOB8 strain bearing a homozygous deletion of the ACE2 open

reading frame with the KanMX cassette resulting in an ace2∆ :: KANMX/ace2∆ ::

KANMX , producing small constitutively multicellular snowflake yeast.

Cell-lengthening mutations were chosen from previous work showing that disruption

of CLB2 results in an alteration of filamentous growth[160], and screens of genes known

to alter the aspect ratio or filamentous growth form of yeast cells[161]

Strains were produced via standard yeast genetics protocols. Cells were transformed

via standard yeast lithium acetate + polyethylene glycol transformation protocols[162]. All

deleted genes were deleted via transformation using PCR products of plasmid pYM25[163],

creating ends-out gene deletion cassettes bearing the hygromycin-resistance hphNTI gene

with 50 base pairs of flanking sequence just outside of each reading frame. Sequences can

be seen in Table Table A.1. Upon selection of heterozygous deletion strains on YPD +

hygromycin plates, colonies heterozygous for lengthener mutations were sporulated and

tetrads dissected onto YPD + hygromycin plates, and spores allowed to self-mate before

single-colony purification for analysis.

A.1.2 Measuring packing fraction of clusters:

To measure the packing fraction of each genotype, we took 1mL of each cell culture and

stained them with Dapi using the following protocol: First we transferred 500µL of each

cell culture to 1.5 ml Eppendorf tubes and replaced the YEPD media with 500µL of 70%

ethanol. Then we shake the tubes at 1300rpm for 5 minutes at 25◦C and washed the

ethanol. Then added 1% PBS solution to the tubes and 1µL of Dapi for each 1mL of the

PBS solution and vortexed vigorously. Then incubes the tubes for 5 minutes Then incubes

the tubes for 5 minutes at 25◦C. After that we transferred 100µL of each tube to a new
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Table A.1: Oligonucleotides used for strain construction

Oligo Sequence
clb2∆ F CCAAGAAGCCTTTTATTGATTACCCCCTCTCTCTCTTCATTGATCTT

ATAGatcgatgaattcgagctcg
clb2∆ R GGACATTTATCGATTATCGTTTTAGATATTTTAAGCATCTGCCCCTC

TTCgacatggaggcccagaatac
akr1∆ F TCCGTTTCGTCTAGATAAAAAAACACTTCTTTGTTCAGAGTAGCTAA

TTGatcgatgaattcgagctcg
akr1∆ R TGATAAAAGGCTAAAATATACAGTTTCTCCTAATGAAAACAACAAAA

TTTgacatggaggcccagaatac
arp8∆ F TAAATTACTAGTCAATAGTACATAAATACAGGGATACAATCGCACCT

AACatcgatgaattcgagctcg
arp8∆ R TGCAAAGACCTTTCAGAAAAAAAGATAACAAAAACTTCCATATGCAT

ATCgacatggaggcccagaatac

tube and diluted it with 1mL of 1% PBS solution. Then we carefully pipted one cluster on

a slide and imaged it in bright field (Figure A.1a) to calculate the area of the clusters. From

this we calulated the effective raduis of cluster as:

reff =

√
Area

π
(A.15)

We approximated volume of clusters by calculating the volume of a sphere with R =

reff . Then we put a cover on top of it and pressured it until we reached a cell monolayer

(Figure A.1b) and imaged the nuleus of each cell (Figure A.1c) so we can count the number

of cells in each cluster (Ncell). We approximate the volume of cells (Vcell) for each genotype

by calculating the volume of a prolate ellipsoid that its minor and major axis are equal to

short and long axis of a cell respectively. Using these information and the formula:

φ =
Ncell ∗ Vcell
Vcluster

(A.16)
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Figure A.1: a) Bright field image of a cluster. b) bright field image of a crushed cluster
until it is a cell monolayer. c) Image of cell’s nucleus.
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APPENDIX B

LONG TERM EVOLUTION EXPERIMENT

Long-term experimental evolution. In order to generate our ancestral snowflake yeast for

the long-term evolution experiment, we started with a unicellular diploid yeast strain (Y55).

In this yeast, we replaced both copies of ACE2 transcription factor using a KANMX resis-

tance marker (ace2::KANMX/ace2::KANMX) and obtained a snowflake yeast clone (Sup-

pTable primers). From this ∆ ace2 snowflake yeast, we selected a randomly reproduced

‘petite’ (p-) mutant. Due to a large deletion in its mitochondrial DNA, this snowflake yeast

is unable to respire its carbon, and therefore metabolically ‘anaerobic’. Starting with this

isogenic ancestral clone (p-), we evolved five independent replicate populations. Snowflake

yeast were grown in 10 ml YEPD (1% yeast extract, 2% peptone, 2% dextrose) in 25x150

mm culture tubes for 24 hours at 30◦C with 225 rpm shaking. To apply selection for large

size, we performed settling selection at the end of every 24-hour growth period. We trans-

ferred 1.5 ml of daily culture into eppendorf tubes, let them settle by gravity for 3 minutes,

discarded the top 1.45 mL of the culture, and only transferred the bottom 50µl of the set-

tlement into a fresh culture for the next round of growth and settling selection. All the

pipetting is done using wide bore filtered pipette tips (Thermo ScientificTM). In total, we

applied 600 rounds (days) of growth and settling selection. By inoculating a portion of each

daily culture in YEP-Gly (1% yeast extract, 2% peptone, 2% glycerol) for every 10-15 days,

we made sure that our snowflake yeast populations were not contaminated by facultatively

aerobic yeast, and only after that we prepared frozen glycerol stocks and archived them at

−80◦C.

Measuring and analyzing multicellular size data. In order to measure multicellular size

over 600 days of evolution, we used a standard visualization protocol for each sample.

Since variation in size of all populations from all time points spans a 4-orders of magnitude
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range, we used a camera with a 5X objective allowing us to measure the area of clusters

larger than 200µm. To prepare populations for imaging, we revived evolved frozen cultures

from 12 time points with 50 days of intervals. We then inoculated each sample recapitulat-

ing their daily growth conditions experienced during the experimental evolution. After 5

rounds of growth, we transferred 1ml of each culture to 1.5ml eppendorf tubes. We added

1ml of sterile water to each well of 12-well culture plates. We gently vortexed each culture

and diluted them in the water. Each plate was gently shaken so that an even spread of cells

covered the bottom of the well. We placed a small piece of wire in the bottom of each well

as a calibration standard. We took images of each population using a Nikon camera using

the following settings:a 5X lens, and 200 for ISO, and 5.6 aperture. To suspend the camera,

we used a tripod and oriented straight down over the culture plate using the level on the

tripod. The lens zoom was kept consistent at 5X magnification, and we made small adjust-

ments to the height of the tripod to control focus. Finally, we set the self-timer function to

minimize vibrations from touching the camera while taking the images.

Next, we analyzed the size data in each image by measuring the two-dimensional area

of each cluster. The images were opened in [NIS-Elements AR] and exported to .tiff file

format for manipulation using a combination of Photoshop (V.20) and ImageJ. We mea-

sured the width of the wire in pixels systematically for each picture in Photoshop. Then in

ImageJ, the wire width in pixels was set to a standard-length of 1000 units using the ‘Set

Scale’ function. Once the scale was set, we used an imageJ Macro script to calculate the

two-dimensional area of each individual cluster in the picture. We finally converted the

standard arbitrary units of area measurements to microns (µm) using a specific conversion

ratio calculated using the wire in each image.

Testing aggregative vs. clonal development. To rule out the possibility of aggrega-

tive growth in our macroscopic snowflake yeast populations, we tagged macroscopic single

strain isolates from 600 days evolved frozen populations with a red or green fluorescence
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Figure B.1: A representative size distribution plot for ancestral (dotted line) and 600 days
evolved populations.

protein. To do that, we amplified prTEF GFPN ATMX construct from pFA6a-eGFP plas-

mid and prTEF dTOMATO NATMX construct from pFA6a-tdTomato plasmid. We then

separately replaced URA3 open reading frame with GFP or dTOMATO constructs in an

isogenic single strain isolate by following the LiAc transformation protocol (primers, and

strains are listed in SuppFileX). We selected transformants on Nourseothricin Sulfate (Gold

Biotechnology Inc., U.S.) YEPD plates and confirmed green or red fluorescent protein ac-

tivity of transformed macroscopic clusters by visualizing them under a Nikon Eclipse Ti

inverted microscope. In order to test whether they develop through clonal or aggrega-

tive growth, we first inoculated GFP or dTOMATO expressing clones individually for

overnight. We then mixed the two cultures in equal volume and diluted 100-fold into a

10 ml fresh culture. We grew five replicates of mixed-cultures for five consecutive days of

growth. Finally, we washed each culture in 1ml sterile water, and visualized 50 individual

clusters from each replicate under both red and green fluorescent channels. After over-

laying images taken at both fluorescent channels, we counted the number of macroscopic
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clusters that are green or red or a mixture of both colors.

Aspect ratio data collection and analysis. To measure cellular aspect ratio of all five

populations with 50 days of intervals that is spanning 600 days of experimental evolution,

we first inoculated 61 samples for overnight at 30◦C (1 ancestor + 5 replicates at 12 time

points). Following the same growth protocols as in our cluster size measurements, we grew

these samples for five consecutive days. At the final day, we transferred 200 µl of each

culture into tubes with fresh YEPD and grew them for 12 hours. Next, we stained samples

in calcofluor-white and imaged and analyzed them as explained earlier. For each sample

on average, we analyzed 453 number of individual cells.

DNA extraction and genome sequencing. In order to extract DNA for whole-genome

sequencing, we isolated single clones from our ancestral strain and each of the evolved

replicate population from three different time-points (i.e. 200, 400, and 600 days). We in-

oculated these 16 samples in YEPD for 12 hours and extracted their genomic DNA using a

commercially available kit (Amresco, Inc. VWR USA). We measured DNA concentration

using a Qubit fluorometer (Thermo Fisher Scientific, Inc.). We prepared genomic DNA

library for 16 samples using NEBNext Ultra DNA Library Prep Kit for Illumina (New

England Biolabs, Inc). We quantified the quality of genomic DNA library using the Ag-

ilent 2100 Bioanalyzer system that is located at the Genome Analysis Core Laboratories

at Georgia Institute of Technology (Agilent Technologies, Inc). Finally, whole-genomes

were sequenced using the HiSeq 2500 platform (Illumina, Inc) by the Genome Analysis

Core Center located in the Petit Institute, Georgia Tech. As a result, we obtained 150

paired-end (R1 & R2) FASTQ reads from two lanes (L1 & L2).

Bioinformatic analysis. For our bioinformatics analysis. We used the ‘bash command-

line interface’ on a Linux platform. To identify de novo mutations (single nucleotide

changes, or ‘SNPs’, and small insertion / deletions, or ‘indels’) in the ancestral and evolved

genomes, we first filtered out low quality reads using a sliding window approach on Trim-

momatic (v0.39). We aligned reads to the yeast reference genome (S288C, SGD) using
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an algorithm in the BWA software package (i.e. BWA-MEM). Next we used the genome

analysis toolkit (GATK) to obtain and manipulate .bam files (Broad Institute). Duplicate

reads were marked using the Picard - Tools (MarkSuplicates v2.18.3). We called SNPs

using two different tools, i.e. GATK4 HaplotypeCaller (v4.0.3.0) and FreeBayes (v1.2.0).

We validated SNP calls by comparing results obtain by two independent tools. For in-

dels, we simply used the output from HaplotypeCaller. To filter variants according to their

quality and depth scores and to generate an overview of statistical outcome of the variant

calling step, we used the latest version of VCFTOOLS (). Finally, after manually checking

each variant call by visualizing SAM files and VCF files on Integrative Genomics Viewer

(IGV), we extracted de novo variants by making a pairwise comparison of each VCF file

of evolved samples against the VCF file of the ancestral genome by using bcftools-isec

(v1.10). Lastly, we annotated evolved mutations using SnpEff (v4.3T).
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APPENDIX C

SERIAL BLOCK-FACE SCANNING ELECTRON MICROSCOPY

Specimen preparation for SBF-SEM. We first fixed samples 2% formaldehyde (fresh

from paraformaldehyde (EMS)) with 2mM calcium chloride at 35°C for 5 minutes. Then

we removed them and fixed them for an additional 2-3 hours on ice in the same solution.

Then we incubated the sample in a solution of 3% potassium ferrocyanide + 0.3M CB

+ 4mM CaCl2 added to equal vol of 4% aqueous osmium tetroxide (OsT) on ice for an

hour under vacuum. Then we washed them and incubate them at room temperature in

thiocarbohydrazide (THC) and ddH2O solution followed by en bloc uranyl acetate and

lead aspartate staining (Deerinck et al., 2010, Ngo et al., 2016, Williams et al., 2011).

Serial block-face imaging. We did the imaging using a Zeiss Sigma VP 3View. This

system has Gatan 3View SBF microtome installed inside a Gemini SEM column. For this

work, clusters that were embedded in resin were typically imaged at 2.5 keV, using 50-100

nm cutting intervals, 50 nm pixel size, beam dwell time of 0.5-1 µsec and a high vacuum

chamber.

SEM Image analysis. The initial format of images was dm3 which then converted to

tiff using GMS3 software. Then we cleaned them and pass them through a gaussian filter

in Python. Using interactive learning and segmentation toolkit (ilastik) we segmented im-

ages into 3 parts: live cells, dead debris, and the background. We then imported segmented

HDF5 files in python. First, we identified connected cells using the nearest neighbor al-

gorithm to identify connected cells. We call a set of connected cell inside a subvolume, a

connected component. Then using a 3D extention of gift-wrapping algorithm we extracted

the convex hull of each connected components.

Visualization of SEM images. We repeated all the steps mentioned in the previous

section until we get the cleaned segmented files. Then instead of running the nearest neigh-
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Figure C.1: a) a rendered view of subvolume of a macroscopic snowflake yeast cluster. b)
Each connected component inside that cube has been colored differently. c) All connected
components that belong to the largest entangled component are red and everything else has
been deleted.

bor algorithm we dilate them so we could get each individually that steps is necessary so

we could create a mesh of individual cells using Mathematica’s Mesh tool. After creating

the surface mesh of each individual cell we imported a whole subvolume in Rhino6. Then

we manually identified cell to cell connections and colored each connected component

differently.

Protol for teating yeast cell with Proteinase K: We put five of the cluster culture in

200µL buffer (10mM Tris-HCl; 2.5mM MgCl2; 0.5mM CaCl2) only as a control. We put

five more cluster culture in 190 L buffer with 10µL Proteinase K (stock 20 mg/mL), and

incubated at 37 degrees. After 24 hours there was no visible difference between control

and test.

C.1 List of mutations in long term evolution experiment

Time point CHROM POS ID REF ALT

200 chrII 70494 . T C

200 chrIV 1030371 . G A

200 chrIV 1072032 . C A

200 chrIV 1491567 . C T
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200 chrVI 241348 . G A

200 chrIX 264825 . C T

200 chrX 647857 . C T

200 chrXI 129811 . A T

200 chrXII 136624 . G A

200 chrXII 300286 . T C

200 chrXII 358973 . T A

200 chrXII 1034858 . C A

200 chrXII 1049381 . C T

200 chrXIII 497151 . G A

200 chrXV 12943 . A G,T

200 chrXVI 657408 . T C

400 chrII 175966 . C T

400 chrII 345533 . G T

400 chrII 510383 . G A

400 chrII 753615 . C T

400 chrIII 32815 . C G

400 chrIII 180899 . C T

400 chrIII 270040 . T G

400 chrIII 302884 . G C

400 chrIV 962144 . A G

400 chrIV 996345 . G A

400 chrIV 1366870 . T A

400 chrIV 1491567 . C T

400 chrV 290178 . C T

400 chrV 311445 . A G

400 chrVII 440719 . G A
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400 chrVII 947016 . GT G

400 chrVII 957744 . T C

400 chrVIII 35684 . G T

400 chrVIII 206068 . G A

400 chrVIII 331646 . G C

400 chrVIII 395918 . A G

400 chrIX 245658 . G GT

400 chrX 356756 . G A

400 chrX 647857 . C T

400 chrXI 95688 . C T

400 chrXI 326897 . G A

400 chrXII 38567 . G A

400 chrXII 358973 . T A

400 chrXII 846594 . T C

400 chrXIII 41404 . C T

400 chrXIII 599761 . T C

400 chrXIII 877410 . T G

400 chrXIV 312963 . A G

400 chrXIV 441767 . G A

400 chrXV 515311 . A T

400 chrXVI 119171 . A G

600 chrII 175966 . C T

600 chrII 345533 . G T

600 chrII 510383 . G A

600 chrII 753615 . C T

600 chrIII 180899 . C T

600 chrIII 270040 . T G
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600 chrIII 302884 . G C

600 chrIV 76906 . CT C

600 chrIV 76913 . T C

600 chrIV 962144 . A G

600 chrIV 996345 . G A

600 chrIV 1366870 . T A

600 chrIV 1491567 . C T

600 chrV 311445 . A G

600 chrV 435871 . G T

600 chrVII 440719 . G A

600 chrVII 947016 . GT G

600 chrVII 957744 . T C

600 chrVIII 35684 . G T

600 chrVIII 206068 . G A

600 chrIX 419497 . G A

600 chrX 356756 . G A

600 chrX 647857 . C T

600 chrXI 37223 . G C

600 chrXI 95688 . C T

600 chrXI 326897 . G A

600 chrXII 846594 . T C

600 chrXIII 23985 . G T

600 chrXIII 41404 . C T

600 chrXIII 192219 . C A

600 chrXIII 540385 . G T

600 chrXIII 873863 . C T

600 chrXIV 312963 . A G
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600 chrXV 515311 . A T

600 chrXV 922197 . C T

600 chrXVI 306976 . C G

600 chrXVI 824288 . G A

Table C.1: List of mutations of lane 1

time point CHROM POS ID REF ALT

200 chrII 240583 . T C

200 chrII 269323 . C T

200 chrII 316449 . G T

200 chrII 396491 . T C

200 chrIV 196814 . C T

200 chrVI 39330 . T A

200 chrVII 827598 . G C

200 chrVII 957729 . G T

200 chrX 97522 . C T

200 chrX 531865 . C A

200 chrXII 760972 . G C

200 chrXIII 270186 . A T

200 chrXVI 261622 . G T

400 chrI 174689 . C T

400 chrII 316449 . G T

400 chrIV 196814 . C T

400 chrIV 727219 . C A

400 chrIV 798775 . G T

400 chrIV 1352513 . C A

400 chrIV 1465417 . C A
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400 chrV 511671 . G T

400 chrVI 44136 . C A

400 chrVI 106610 . C G

400 chrVII 118671 . A G

400 chrVIII 166245 . C A

400 chrIX 63538 . C T

400 chrIX 177398 . C A

400 chrX 97522 . C T

400 chrX 727311 . G A

400 chrXI 421775 . C T

400 chrXII 232533 . C T

400 chrXII 613034 . G A

400 chrXII 846614 . G C

400 chrXIII 20340 . A G

400 chrXIII 770418 . C G

400 chrXIV 126725 . A T

400 chrXIV 358252 . C T

400 chrXV 183069 . G T

400 chrXV 253030 . A G

400 chrXV 774188 . T TA

400 chrXV 1020658 . G C

400 chrXVI 148716 . GACAGCACCAACC G

400 chrXVI 778763 . G A

600 chrI 174689 . C T

600 chrII 316449 . G T

600 chrIV 17952 . T C

600 chrIV 17955 . C T

80



600 chrIV 196814 . C T

600 chrIV 384185 . G T

600 chrIV 395622 . A T

600 chrIV 727219 . C A

600 chrIV 896107 . A G

600 chrIV 1352513 . C A

600 chrIV 1465417 . C A

600 chrV 289356 . A G

600 chrV 419511 . T G

600 chrV 511671 . G T

600 chrVI 44136 . C A

600 chrVI 106610 . C G

600 chrVII 118671 . A G

600 chrIX 63538 . C T

600 chrIX 177398 . C A

600 chrX 97522 . C T

600 chrX 149239 . G C

600 chrXI 421775 . C T

600 chrXII 66331 . C G

600 chrXII 232533 . C T

600 chrXII 613034 . G A

600 chrXIII 20340 . A G

600 chrXIII 770418 . C G

600 chrXIV 126725 . A T

600 chrXIV 181556 . G T

600 chrXIV 358252 . C T

600 chrXIV 513315 . C T
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600 chrXV 183069 . G T

600 chrXV 253030 . A G

600 chrXV 774188 . T TA

600 chrXV 1020658 . G C

600 chrXVI 148716 . GACAGCACCAACC G

600 chrXVI 778763 . G A

Table C.2: List of mutations of lane 2

Time point CHROM POS ID REF ALT

200 chrII 316464 . C G

200 chrV 319276 . T TAAGAACAAAAAG

200 chrVII 783134 . C G

200 chrIX 164271 . C T

200 chrX 568812 . G C

200 chrXI 176362 . G A

200 chrXI 513913 . C A

200 chrXIV 440500 . G A

200 chrXV 962650 . A G

200 chrXVI 797232 . C A

400 #CHROM POS ID REF ALT

400 chrII 316464 . C G

400 chrII 732905 . C A

400 chrIV 91153 . T C

400 chrIV 119927 . C T

400 chrIV 1464160 . A C

400 chrV 319276 . T TAAGAACAAAAAG

400 chrVII 609913 . C A
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400 chrVII 783134 . C G

400 chrVIII 325431 . G A

400 chrX 300724 . C A

400 chrXI 45164 . C A

400 chrXI 144474 . C A

400 chrXI 176362 . G A

400 chrXII 175255 . A G

400 chrXII 269373 . A C

400 chrXIII 58614 . G T

400 chrXIII 299580 . G A

400 chrXIII 481828 . A C

400 chrXIV 440500 . G A

400 chrXIV 685594 . T C

400 chrXVI 773079 . C A

400 chrXVI 797232 . C A

600 #CHROM POS ID REF ALT

600 chrII 46915 . T G

600 chrII 216219 . C T

600 chrII 316464 . C G

600 chrII 539550 . T C

600 chrIV 91153 . T C

600 chrIV 119927 . C T

600 chrIV 1464160 . A C

600 chrV 152031 . T A

600 chrV 300896 . G A

600 chrV 319276 . T TAAGAACAAAAAG

600 chrV 440250 . C A
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600 chrVI 193319 . A G

600 chrVII 50653 . G T

600 chrVII 609913 . C A

600 chrVII 783134 . C G

600 chrVII 1003344 . T C

600 chrXI 176362 . G A

600 chrXI 664249 . G A

600 chrXII 887984 . G T

600 chrXIII 58614 . G T

600 chrXIII 223185 . G A

600 chrXIII 299580 . G A

600 chrXIII 481828 . A C

600 chrXIII 581107 . G A

600 chrXIV 440500 . G A

600 chrXIV 634759 . G A

600 chrXIV 685594 . T C

600 chrXV 330038 . G A

600 chrXV 552901 . A G

600 chrXV 962650 . A G

600 chrXVI 773079 . C A

600 chrXVI 797232 . C A

Table C.3: List of mutations of lane 3

Time point CHROM POS ID REF ALT

200 chrII 143658 . C T

200 chrII 749620 . AC A

200 chrIV 446557 . C A
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200 chrIV 694712 . C A

200 chrV 565447 . C A

200 chrVII 926037 . A T

200 chrVIII 352802 . C T

200 chrX 222679 . G T

200 chrX 648651 . G A

200 chrXI 238416 . G A

200 chrXI 340719 . A C

200 chrXI 535395 . C T

200 chrXII 752787 . C T

200 chrXIII 633706 . C A

200 chrXIII 885896 . T G

200 chrXIV 602464 . G A

200 chrXV 171754 . C A

200 chrXV 334739 . C G

200 chrXV 416132 . A C

200 chrXVI 324770 . T C

400 chrII 749620 . AC A

400 chrIV 446557 . C A

400 chrIV 575880 . A C

400 chrV 180969 . T G

400 chrV 230025 . G A

400 chrVII 225455 . G T

400 chrVIII 408357 . C T

400 chrX 64825 . A T

400 chrX 222679 . G T

400 chrX 545912 . C T
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400 chrX 648651 . G A

400 chrXI 52153 . G A

400 chrXI 73457 . G A

400 chrXI 89753 . G A

400 chrXI 89754 . C A

400 chrXI 238416 . G A

400 chrXI 506585 . T A

400 chrXI 535395 . C T

400 chrXII 752787 . C T

400 chrXIII 633706 . C A

400 chrXIV 602464 . G A

400 chrXV 135575 . A G

400 chrXV 334739 . C G

400 chrXV 727817 . C T

400 chrXVI 21259 . C T

400 chrXVI 324770 . T C

400 chrXVI 379696 . G A

400 chrXVI 892348 . C A

Table C.4: List of mutations of lane 4

Time point CHROM POS ID REF ALT

200 days #CHROM POS ID REF ALT

200 chrI 87619 . T G

200 chrIV 751898 . T C

200 chrIV 1074350 . G A

200 chrV 86402 . G T

200 chrIX 256210 . G A
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200 chrXII 240259 . G T

200 chrXV 884102 . A G

400 chrII 173895 . G A

400 chrII 427526 . A G

400 chrIV 88043 . G A

400 chrIV 198682 . C A

400 chrIV 451353 . TACC T

400 chrV 83112 . C A

400 chrV 519003 . C T

400 chrVI 221444 . G A

400 chrVII 185682 . A T

400 chrVII 642643 . G A

400 chrVII 749093 . C G

400 chrVII 808461 . A G

400 chrVII 955515 . G A

400 chrVIII 40034 . G C

400 chrX 282015 . C A

400 chrX 648705 . G T

400 chrX 715727 . C T

400 chrXI 143509 . C T

400 chrXI 520188 . G A

400 chrXII 850697 . A G

400 chrXII 886620 . C T

400 chrXIV 224748 . G T

400 chrXV 324488 . T TA

400 chrXVI 897565 . C T

600 chrI 37165 . G T
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600 chrII 91979 . G C

600 chrII 129347 . G T

600 chrII 427526 . A G

600 chrII 765986 . A T

600 chrIII 68202 . G A

600 chrIV 88043 . G A

600 chrIV 376607 . C A

600 chrIV 451353 . TACC T

600 chrIV 757452 . T C

600 chrIV 757454 . A G

600 chrIV 1110025 . T C

600 chrV 443248 . G A

600 chrV 519003 . C T

600 chrVI 221444 . G A

600 chrVII 164451 . G T

600 chrVII 185682 . A T

600 chrVII 608931 . C T

600 chrVII 642643 . G A

600 chrVII 749381 . C A

600 chrVII 808461 . A G

600 chrVII 955515 . G A

600 chrVIII 311049 . T A

600 chrX 648705 . G T

600 chrXI 92279 . A T,AT

600 chrXI 520188 . G A

600 chrXII 37172 . G A

600 chrXII 493579 . A G
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600 chrXII 842525 . C G

600 chrXII 850697 . A G

600 chrXIII 916665 . G C

600 chrXV 713872 . C G

600 chrXVI 111595 . A T

600 chrXVI 196719 . G T

600 chrXVI 756147 . C T

600 chrXVI 897565 . C T

Table C.5: List of mutations of lane 5
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Figure C.2: Barred spiral galaxy NGC 1300 photographed by Hubble telescope. While
the galaxy in the photo is not our sun, it does emit light, much like our sun. Image credit:
NASA.
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Figure C.3: Stained macroscopic cluster with heavy metals before embedding them in resin
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Figure C.4: Stack of SBF-SEM images
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Figure C.5: Example of a raw SBF-SEM image
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Figure C.6: Example of a segmented SBF-SEM image using ilasktik

Figure C.7: Example of a segmented SBF-SEM image using ilasktik
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Figure C.8: To determine if macroscopic yeast are simply aggregates of multiple clusters,
we labeled a single-strain isolate of macroscopic snowflake yeast taken from Line 2, t600
with either GFP or RFP. After 24h of co-culture, all multicellular clusters remained mono-
clonal
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Figure C.9: Example of convex hull for a connected component inside a macroscopic
snowflake yeast cluster

Figure C.10: Example of convex hull for a connected component inside a macroscopic
snowflake yeast cluster
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[4] E. Szathmáry and J. M. Smith, “The major evolutionary transitions,” Nature, vol. 374,
no. 6519, pp. 227–232, 1995.

[5] A. H. Van de Ven and D. N. Grazman, “Evolution in a nested hierarchy,” Variations
in organization science, pp. 185–209, 1999.

[6] M. Grene, “Hierarchies in biology,” American Scientist, vol. 75, no. 5, pp. 504–
510, 1987.

[7] S. A. West, R. M. Fisher, A. Gardner, and E. T. Kiers, “Major evolutionary transi-
tions in individuality,” Proceedings of the National Academy of Sciences, vol. 112,
no. 33, pp. 10 112–10 119, 2015.

[8] A. H. Knoll, “The multiple origins of complex multicellularity,” Annual Review of
Earth and Planetary, vol. 39, pp. 217–239, 2011.
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