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Za neustálou podporu zvı́davosti a zvědavosti.



ACKNOWLEDGEMENTS

There is so much to be grateful for. I am grateful to everyone who has made this work

possible, pleasurable, or useful. What follows is an incomplete list.

I am grateful to my committee, my advisor Turgay Ayer and the committee members

Mehmet Ayvaci, David Goldsman, Pinar Keskinocak, and Karthik Ramachandran for much

constructive feedback. I am also proud to acknowledge all the research collaborators who

have been involved in the research that led to these dissertation chapters (Turgay Ayer,

Mehmet Ayvaci, Zeynal Karaca, Srinivasan Raghunathan, and Pinar Keskinocak).

I was blessed with many other inspiring research collaborators during my PhD. Some

resulted in fame and knowledge, some in my further education, grateful for all of them!

These included:

• Laurie Garrow and Greg Macfarlane from the School of Civil Engineering at Georgia

Tech

• George Rust, Anne Gaglioti, Junjun Xu, Peter Baltrus, Lilly Immergluck, Luceta

McRoy, Khusdeep Malhotra, Shun Zhang, and others at Morehouse School of Medicine

• Andres Rodrigues Ruiz, Suzette LaRoche, Hiba Arif, Atul Vats, Larry Olson, Wendy

Book, and others from Emory Healthcare and Children’s Healthcare Atlanta. Also

Emily Gilmore from Yale School of Medicine and other collaborators from the Crit-

ical Care EEG Monitoring Research Consortium.

• Mustafa Ozkaynak from the University of Colorado Denver

• Georgia Tech student collaborators: Qing Li and Mingyoung Jo as well as two tal-

ented undergraduate researchers, Lianyan Gu and Diem Tran.

• Lori Houghtalen for teaching collaboration

iv



I also cannot forget many researchers in the past who steered me toward the research

route, which ultimately led to this PhD. Some among these researchers, professors, and

scientists are Michel Mandjes, Ton Dieker, Karma Dajani, Roberto Fernandez, Andre Hen-

riques, David Stanovsky, Ludek Zajicek, Petr Holicky, Jan Trlifaj, Pavel Jelinek, Antonin

Fejfar, and Michal Farnik.

I am grateful for all the excellent research environments that I passed through, but such

environments are not created just by researchers. Many other staff members need to work

hard to keep the environment productive and supportive. At Georgia Tech, these included

Alan Erera, Amanda Ford, Pam Morrison, Dima Nazzal, Paul Kvam, Edwin Romeijn, and

many others. And of course, thanks also to Thomas Holmquist, for always being there

to fix my computer. I am also grateful to the Georgia Tech Communications Center for

taking my English writing and speaking from “unintelligible” to “horrible but occasionally

understandable.” Special thanks to Jane Chisholm, for taking me through several Commu-

nications classes.

During the PhD summers, I was given several opportunities to put my newly-learned

skills into practice during summer projects and internships. For this, I am grateful to my

advisor that he allowed such distractions, with the foresight that they would benefit me in

the future. And then I am grateful to my summer colleagues and friends who welcomed

me enthusiastically and helped me learn. A very incomplete list of these benefactors would

include Rayid Ghani, Lauren Haynes, Joe Walsh, Brian McInnis, Ivana Petrovic, Fernanda

Alcala Durand, John Croley, Esther Bongenaar, Winfried Theis, Thomas Rasmussen, Ga-

narajan Govindarajan, Remco de Ruiter, Jorrit Van Der Togt, Philip Jonathan, Onno de

Noord, Stijn Bierman, and Jose Gonzalez Martinez. And of course, great thanks to my

current colleagues at Google for putting up with all my grumbling about the thesis writing

process.

When speaking about practical experience, I also need to mention my two industry

mentors from the Georgia Tech Student Alumni Association mentoring program: Vincent

v



Emanuele and Jason LaRoche. They played a pivotal role in steering my learning to use

my theoretical knowledge for real-world impact.

I am also grateful to the people and organizations who also showed me the way to use

those skills and that impact to actually influence what matters, to positively shape the world,

now (at least a bit!) and in the future. Many of the aforementioned individuals played a

role; additionally, I would like to highlight three particular organizations: Data Science for

Social Good, 80,000 Hours, and Giving What We Can.

And now is the time for the friends! Thanks to Anthony Bonifonte, Qiushi Chen,

Can Zhang, Zhaowei She, Caglar Caglayan, and Andrew ElHabr from my research group

for creating an intellectual but fun group – also grateful for our weekly lunches. Then,

many other friends from Georgia Tech (yes, I am missing so many on this list; and the

order is very random): Geet Lahoti, Tony Yaacoub, Yassine Ridouane, Amy Musselman,

Jeff Pavelka, Burak Kocuk, Beste Basciftci, Ezgi Karabulut, Toyya Pujol, Ethan Mark,

Kevin Ryan, Na Yeon Kim, Seyma Guven, Mathias Klapp, Yuan Li, Richard Birge, Murat

Yildirim, Weihong Hu, Ruilin Zhou, Evren Gul, Fang Cao, Linwei Xin, Mina Georgieva,

Tonghoon Suk. And then, our Graduate Student Advisory Team: Daniel Silva, Matt Plum-

lee, Tonya Woods, Erin Garcia, Ben Johnson, Shanshan Cao, Luke Marshall, and, among

the old guard, Vinod Cheriyan and Mallory Soldner. And then, friends from the past lives

who connect me back. Geoffrey Wielingen, Stein Andreas Bethuelsen, and Danny Chan

from our studies in the Netherlands. Then, from Charles University, Adela Skokova, Lida

Divisova, Frantisek Zak, Gabriela Tethalova, Pavel Hajek, Marcel Sebek, Pavol Pseno,

Lenka Slavikova, Hana Krulisova, and others. And another long list for GYBU, including

Eva Pauliova, Alena Stojdlova, Kristina Richterova, Helena Kalaninova, Radek Doubrava,

Lenka Mikulickova, Anna Janurova, Katka Cmuntova, Hanka Ruzickova, Jana Oltova, Jan

Buchar, Vojtech Luhan, Lukas Kindl, Ondrej Burda, and many more.

Special thanks to the several of you who actively kept me sane during the PhD process:

Prami Sengupta, Yasaman Mohammadshahi, Minkyoung Kang, Adam Raz, and Vu Pham

vi



Quynh Lan.

Finally, I am grateful to my family in Czechia for supporting my incessant travel bug

and unquestioningly helping me in pursuing all these experiences. Thank you, grandma,

father, sister, and brother.

Anyway, happy that there are so many people that I can be grateful for. I still feel there

are many missing. There are others who I have not mentioned for the lack of space or

for failings of my memory. If you are reading this and you think you should have been

acknowledged, you are probably right. In such case, please also send me an e-mail, I will

get you a coffee, and we can reconnect.

vii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xviii

Chapter 1: The Impact of Health Information Exchanges on Emergency De-
partment Length of Stay . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Health Information Exchange (HIE) . . . . . . . . . . . . . . . . . 7

1.1.2 Emergency Departments . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Literature Contributions . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Hypothesis Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 The Role of Teaching Status . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 The Role of Crowdedness . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Patient-related Factors: Severity and Complexity . . . . . . . . . . 16

1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Variables of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 19

viii



1.4 Study Design and Econometric Specifications . . . . . . . . . . . . . . . . 22

1.4.1 Main Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Robustness of the Main Analysis . . . . . . . . . . . . . . . . . . . 25

1.4.3 Alternative Analyses and Robustness Checks . . . . . . . . . . . . 29

1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.1 Descriptive Results . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.2 Results from the Overall Analyses . . . . . . . . . . . . . . . . . . 35

1.5.3 Results from Alternative Analyses . . . . . . . . . . . . . . . . . . 37

1.5.4 Variation among HIE Networks . . . . . . . . . . . . . . . . . . . 38

1.5.5 Results for Interaction Analyses . . . . . . . . . . . . . . . . . . . 39

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.6.1 Moderators of HIE and Length of Stay Relationship . . . . . . . . . 43

1.6.2 HIE Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.6.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 45

1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 2: Physician Integration in Bundled Payments . . . . . . . . . . . . . . 50

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.1.1 Current Bundling Initiatives by the CMS . . . . . . . . . . . . . . . 54

2.1.2 Common Features of Bundling Initiatives . . . . . . . . . . . . . . 55

2.1.3 Motivating Example: Bundling Coronary Artery Bypass Grafting
at the Maine Heart Center . . . . . . . . . . . . . . . . . . . . . . . 56

2.1.4 Retrospective vs. Prospective Bundling . . . . . . . . . . . . . . . 57

ix



2.1.5 Key Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.1.6 Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2 Initial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2.1 Fee-for-service (FFS) Payment Model and Analysis . . . . . . . . . 67

2.2.2 Bundled Payment Model and Analysis . . . . . . . . . . . . . . . . 69

2.3 Observable Coproduction Model . . . . . . . . . . . . . . . . . . . . . . . 81

2.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.3.2 Analysis of the Base Coproduction Model . . . . . . . . . . . . . . 88

2.3.3 Analysis of the General Coproduction Model . . . . . . . . . . . . 96

2.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.4.1 Quality-aware Hospital . . . . . . . . . . . . . . . . . . . . . . . . 102

2.4.2 Physicians as Salaried Employees (Salary model) . . . . . . . . . . 107

2.4.3 Risk-averse Model . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.4.4 Physician-Driven Model . . . . . . . . . . . . . . . . . . . . . . . 113

2.5 A Machine-learning Approach to Identify Common Service Bundles and
Clinical Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

2.6.1 Managerial and Policy Implications . . . . . . . . . . . . . . . . . 120

2.6.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 123

Chapter 3: Flexible Bed Management . . . . . . . . . . . . . . . . . . . . . . . . 128

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

x



3.4 Threshold and Reservation Policies . . . . . . . . . . . . . . . . . . . . . . 132

3.4.1 Policy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.4.2 Structural Properties of Threshold and Reserve-k-Beds Policies . . 135

3.4.3 Suboptimality of Threshold and Reserve-k-Beds Policies in Real-
istic Bed Management Settings . . . . . . . . . . . . . . . . . . . . 137

3.5 Generalized Reservation and Threshold Reinforcement Learning (GREAT-
RL) Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.5.1 Generalized Reservation And Threshold (GREAT) Policy: Definition139

3.5.2 A Reinforcement Learning Implementation of GREAT-RL Policy . 140

3.6 Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.6.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.6.2 Benchmark Policies . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.7.1 Managerial Implications . . . . . . . . . . . . . . . . . . . . . . . 146

Appendix A: Health Information Exchanges: Supplemental Content . . . . . . 149

A.1 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.2 Disease Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.3 Going Paperless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Appendix B: Bundled Payments: Supplemental Content . . . . . . . . . . . . . 154

B.1 Supplemental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.1.1 Cases for Figure 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.1.2 Solutions of the Quality Model . . . . . . . . . . . . . . . . . . . . 156

xi



B.1.3 Full Quality Model . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.1.4 Variation-focused Model . . . . . . . . . . . . . . . . . . . . . . . 161

B.1.5 Supplementary Results for the Coproduction Model . . . . . . . . . 168

B.1.6 Supplementary Results for the Physician-Driven Model . . . . . . . 170

B.1.7 Comparing the Coproduction and the Physician-driven model: Case
Ψ→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.1.8 Physician-driven Model in the Principal-agent Framework . . . . . 173

B.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.2.1 Initial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.2.2 The Quality Model . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.2.3 The Salary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.2.4 The Full Quality Model . . . . . . . . . . . . . . . . . . . . . . . . 196

B.2.5 Observable Coproduction Model . . . . . . . . . . . . . . . . . . . 212

B.2.6 Physician-driven Model . . . . . . . . . . . . . . . . . . . . . . . . 221

Appendix C: Flexible Bed Management: Supplemental Content . . . . . . . . . 225

C.1 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.2 Proof of Theorem 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

C.3 Proof of Proposition 3.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

C.4 Simulation Setup: Scenario Generation . . . . . . . . . . . . . . . . . . . . 250

C.5 Reservation Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

C.6 Threshold Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

C.7 Assumptions for Structural Results . . . . . . . . . . . . . . . . . . . . . . 259

C.8 Counterexamples: Specific Parameterization . . . . . . . . . . . . . . . . . 260

xii



C.9 Counterexamples: Generalized Framework . . . . . . . . . . . . . . . . . . 261

C.10 Simulation Program Design . . . . . . . . . . . . . . . . . . . . . . . . . . 261

C.11 Additional Results for Section 1.5 . . . . . . . . . . . . . . . . . . . . . . 263

C.12 Results for additional Reservation and Threshold policies . . . . . . . . . . 265

C.13 Sensitivity Analysis for Unequal Boarding Time . . . . . . . . . . . . . . . 266

C.14 Patient Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

C.15 Choice of k for the Reserve k Beds Policy . . . . . . . . . . . . . . . . . . 268

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

xiii



LIST OF TABLES

1.1 Description of variables used in analyses . . . . . . . . . . . . . . . . . . . 20

1.2 Treat-and-release emergency department visits’ length of stay and total vol-
ume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3 Regression results for full-set analyses . . . . . . . . . . . . . . . . . . . . 36

1.4 Regression results for Alternative Analyses . . . . . . . . . . . . . . . . . 38

1.5 Regression results for the HIE Networks analysis . . . . . . . . . . . . . . 39

1.6 Regression results for interaction analyses . . . . . . . . . . . . . . . . . . 40

2.1 List of symbols in the Initial model . . . . . . . . . . . . . . . . . . . . . . 65

2.2 Summary of notation used. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.3 Logistic regression estimates for a model predicting the probability of the
expensive pathway using care topics. . . . . . . . . . . . . . . . . . . . . . 118

3.1 Notation for indices, sets, and parameters . . . . . . . . . . . . . . . . . . 133

3.2 Notation for calculated metrics used in the policies . . . . . . . . . . . . . 133

3.3 Parameters for Example 3.4.1. . . . . . . . . . . . . . . . . . . . . . . . . 137

3.4 Parameters for Example 3.4.2. . . . . . . . . . . . . . . . . . . . . . . . . 138

3.5 List of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1 Correlation matrix between study variables . . . . . . . . . . . . . . . . . . 150

A.2 Regression results for disease analyses . . . . . . . . . . . . . . . . . . . . 152

xiv



A.3 Regression results for Going-paperless analysis . . . . . . . . . . . . . . . 153

C.1 Percentage difference in average per-patient value between a benchmark
policy and the GREAT-RL policy on the 3-by-3 set of scenarios. . . . . . . 264

xv



LIST OF FIGURES

1.1 EDs under pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Depiction of Subsamples Used in the Study . . . . . . . . . . . . . . . . . 23

2.1 Gainsharing amount by physician alignment. Notice that the maximum is
not attained at Ψ̄ but rather at Ψ̄ + 1

2
(I0 − ∆c

2wb
), as explained in the main text. 74

2.2 The shaded regions indicate when bundling is preferred, with views from
different angles. The variables are ρ = ∆rp

2wb
, γ = ∆c

2wb
, χ = I0 − (1−Ψ). . 75

2.3 Savings as a function of Ψ under bundled payments. The y-scales of rBP

and rFFS−rBP are not comparable. For other cases of parameters, the figure
does not differ dramatically, even though the bounds of Ψ where bundling
occurs may vary (even down to 0 or up to 1). Furthermore, the right, linear
part of rBP may be decreasing rather than increasing. Details are given in
Appendix B.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4 Comparison of efficiency frontiers for ∆c < ∆rp. . . . . . . . . . . . . . . 81

2.5 Comparison of efficiency frontiers for ∆c > ∆rp. . . . . . . . . . . . . . . 81

2.6 Cost Savings in BP vs. FFS. . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.1 Distribution of relative normalized rewards (see the text for the definition)
by policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.2 Performance in Different Scenario Regions: Illustrative Summary. . . . . . 144

C.1 Average per-patient value by boarding-to-misallocation ratio, relative to
Greedy policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

C.2 Average secondary assignment rate on 3x3 scenarios . . . . . . . . . . . . 265

xvi



C.3 Average boarding time on 3x3 scenarios . . . . . . . . . . . . . . . . . . . 266

C.4 Distribution of relative normalized rewards by policy for reservation and
threshold policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

C.5 Average relative normalized reward by variation in boarding penalty for
scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

C.6 Distribution of relative normalized rewards for different values of k in Re-
serve k Beds policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

xvii



SUMMARY

The overarching objective of the research described in this dissertation is to analyze

some pressing healthcare problems in various areas, ranging from health IT to payment

models and healthcare operations, using mathematical and economic models. Analytical

models have been at the forefront of the recent transformational efforts in healthcare (see

e.g., Reid et al. (2005), Obermeyer and Emanuel (2016), Romeijn and Zenios (2008), Bates

et al. (2014)). The dissertation comprises three chapters corresponding to three research

projects: 1) econometric evaluation of Health Information Exchanges, 2) game-theoretical

modeling of the Bundled Payments financing model, and 3) queueing algorithm design

for Bed Management with overflows in hospitals. This dissertation has been a result of

many collaborations, reflecting the wider trends in both healthcare and research. Next, we

provide a more detailed overview of each of these chapters.

In Chapter 1, we study health information exchanges (HIEs), and especially their role

in emergency departments (EDs). HIEs are expected to improve poor information coor-

dination in EDs; however, whether and when HIEs are associated with better operational

outcomes remains poorly understood. In this work, we study HIE and length of stay (LOS)

relationship using a large dataset from the Healthcare Cost and Utilization Project consist-

ing of about 7.4 million treat-and-release visits made to 63 EDs in Massachusetts. Overall,

we find that HIE adoption is associated with a 10.2% reduction in LOS and the percentage

reduction increases to 14.8% when the hospital is part of an integrated health system or

to 21.0% when a patient has a previous visit to an HIE-carrying hospital. We further find

that 1) teaching hospitals benefit more from HIE adoption compared with non-teaching

hospitals, 2) patients with severe or multiple comorbid conditions spend less time in the

ED under HIE presence. Together, these results imply that 1) HIE adoption reduces overall

ED LOS, 2) wider HIE adoption would scale up the benefits for individual hospitals, 3)

magnitude of the association between HIE and LOS is higher when financial incentives for
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HIE adoption are stronger (e.g., integrated health systems), and 4) the size of the reduction

depends on certain contextual moderating factors. Given that HIEs are a key component

of healthcare delivery and ongoing reforms, we believe that our findings have important

implications and may inform policymakers regarding the nationwide HIE adoption.

Chapter 2 is concerned with one of the emerging new payment models in healthcare, the

bundled payments. Under the prevailing fee-for-service payments (FFS), hospitals receive

a fixed payment, while physicians receive separate fees for each treatment or procedure

performed for a given diagnosis. Under FFS, incentives of hospitals and physicians are

misaligned, leading to large inefficiencies. Bundled payments, an alternative to FFS unify-

ing payments to the hospital and physicians, are expected to encourage care coordination

and reduce ever increasing healthcare costs. However, as hospitals differ in their relation-

ships with physicians in influencing care (level of physician integration), it remains unclear

what spectrum of physician integration will facilitate bundling. There is a lack of both

academic and practical understanding of hospitals and physicians bundling incentives. Our

study builds on and expands the recent Operations Management literature on alternative

payment models. We formulate game-theoretic models to study (1) the impact of the level

of integration between the hospital and physicians in the uptake of bundled payments, (2)

cost and quality characteristics of a care context that facilitate bundling, and (3) when fea-

sible, the consequences of bundling with respect to overall care quality and costs/savings

across the spectrum of integration levels. We find that (1) hospitals with high physician

integration or with low physician integration are less likely to gain from bundled payments,

while the hospitals that lie in between these two cases will likely benefit the most; (2)

although bundled payments are likely to decrease costs, quality may also decrease; (3) ini-

tiatives that promote quality awareness in hospitals may dampen the incentives for bundling

in hospitals with independent physicians, whereas they are likely to enhance incentives for

bundling in hospitals with salaried physicians. Our findings have important managerial

implications for both hospitals and payers: (1) in deciding whether to enroll in bundled
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payments, hospitals should consider their level of physician integration, and (2) payers

should be aware of and account for potential negative effects of bundling, including a pos-

sible quality reduction, or even a cost increase. Based on our findings, we expect that a

widespread use of bundled payments may trigger further market concentration via hospital

mergers or service-line closures.

Chapter 3 focuses on the problem of patient boarding in emergency departments before

they are accepted to hospital internal wards. In particular, we are interested in hospital

patient-bed matching and bed pooling when ED patients who cannot be accommodated by

the most appropriate internal ward can be redirected to other internal ward that can care

for them. To this end, we first discuss two commonly used policies in the literature, reser-

vation and threshold policies, proving their favorable structural properties under special

conditions, and their limitations in more general settings. We then introduce our novel

“Generalized Reservation and Threshold Reinforcement Learning” (GREAT-RL) policy,

demonstrate how it generalizes threshold and reservation policies, and describe our rein-

forcement learning implementation. In an extensive numerical simulation, we show how

the GREAT-RL policy outperforms the reservation and threshold policies as well as other

applicable policies in the literature. The numerical results suggest substantial potential im-

provements in operational metrics and patient outcomes once we are able to deploy the

policies in hospital practice.
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CHAPTER 1

THE IMPACT OF HEALTH INFORMATION EXCHANGES ON EMERGENCY

DEPARTMENT LENGTH OF STAY

1.1 Introduction

The United States have experienced a steady increase in the total number of visits to emer-

gency departments (EDs) and a decrease in the total number of operating EDs in the past

two decades. Between 1992 and 2012, annual ED visits increased faster than the growth in

the U.S. population, leading to a cumulative increase of 47% in the number of ED visits.

During the same years, the number of EDs decreased from 5,035 to 4,460 (a 11% decline),

and hospitals reduced the total number of beds by 118,939 (a 13% decline) (American Hos-

pital Association 2014b) as demonstrated in Figure 1.1. As a result, the average length of

stay (LOS) for an ED visit has steadily been increasing over years, especially for treat-and-

release patients (Pitts et al. 2012, Pines et al. 2010). Factors such as poor coordination, lack

of communication between the ED and the patient’s primary care provider, and unavailabil-

ity of the patient’s medical history at the point of care have exacerbated the growing prob-

lem of increased LOS and ED crowding nationwide (Bodenheimer 2008), leading to the

so called “crowdedness epidemic” (Institute of Medicine 2006c, Pines et al. 2008a). With

annual visits exceeding 130 million, EDs are currently under extreme pressure to reduce

the ever-increasing LOS (Emerman 2012, Pallin et al. 2013).

LOS is a key measure of ED throughput and a marker of overcrowding (National Qual-

ity Forum 2009, Medicare 2013, Hwang and Concato 2004). ED LOS is also a critical

component of ED quality assurance monitoring and is negatively correlated with patient

satisfaction, length of hospital stay, morbidity, and mortality (Carr et al. 2007, Chalfin et al.

2007). Furthermore, LOS is a reasonable proxy for resource consumption and is important
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(a) The number of ED visits
has been rising. . .

(b) . . . while the number of EDs
has been decreasing.

Figure 1.1: EDs under pressure

for planning and management of care (Pallin et al. 2013). In 2008, the National Quality

Forum approved the median time from ED arrival to departure as the main quality measure

related to ED LOS. Although there is no consensus on the acceptable range for ED LOS,

a 90th percentile of ED LOS less than 8 hours for patients admitted to the hospital and

4 hours for those that are not admitted (called the “treat-and-release patients”) have been

commonly recommended and used (Fee et al. 2012, Weber et al. 2011, CAEP 2009).

Health information technology (HIT), in particular health information exchange (HIE),

has the potential to fundamentally transform the delivery of healthcare (President’s Coun-

cil of Advisors on Science and Technology 2010). HIE is an electronic means for trans-

ferring patient records among various healthcare providers, which offers many potential

benefits, including increased operational efficiency, real-time access to patients’ past data,

improved care quality, and reduced administrative overhead (Walker et al. 2005, Halamka

2013, Tzeel et al. 2011). In order to accelerate the adoption of HIT, the U.S. government

issued the HITECH Act in 2009 (Blumenthal 2010), which led to the establishment of

the “Meaningful Use” program. The Meaningful Use program aims to increase the use of

electronic health records (EHRs) and HIEs to improve quality, safety, efficiency, and care
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coordination, and reduce health disparities (Blumenthal and Tavenner 2010). Starting in

2014, Stage 2 of the Meaningful Use Program has focused on advanced clinical processes

including HIEs and required the coordination of care across delivery settings. In addition

to incentive payments, the Office of the National Coordinator for HIT has committed $564

million to support state HIE programs. Mainly due to these initiatives, HIEs have recently

experienced rapid growth and adoption, with the percentage of hospitals with a functional

HIE surging from 41% in 2008 to 76% in 2014 (Mahajan 2016). Going forward, it seems

that the role of HIEs would be even further amplified as the sharing of health information

is incorporated into the Meaningful Use Stage 3 (DeSalvo and Haque 2015, Jacob 2015).

Existing qualitative research identifies several mechanisms through which the HIE co-

ordinates care and subsequently influences LOS (cf. Rudin et al. 2011, Thorn et al. 2013,

Kuperman and McGowan 2013). These mechanisms include that: 1) HIEs may reduce the

number of duplicate prescriptions and repeated procedures and diagnostics (Lammers et al.

2014, Tzeel et al. 2011), and hence decrease LOS due to direct time savings, 2) by allow-

ing access to additional information, HIEs may enhance clinicians’ understanding of the

underlying problem and hence improve the quality of diagnosis and treatment (Hincapie

et al. 2011, Thorn et al. 2013), which may in turn lead to either an overall increase in LOS

(because of the need for more thorough examination of the patient) or a decrease in LOS

(because of more efficient diagnosis), and 3) HIEs may disrupt existing clinical workflow,

inflict additional administrative workload, and increase information overload (Scott et al.

2005, Bhargava and Mishra 2014, Goh et al. 2011, Kuperman and McGowan 2013), and

hence lead to an increase in LOS. Furthermore, these potential relationships between HIE

adoption and LOS could be moderated by many factors (e.g., the type of the hospital, the

load at the ED, the type of the patients served).

However, as the widespread adoption of HIEs is a recent phenomenon, compelling

quantitative evidence on the relationship between HIE and operational outcomes has been

very limited (Rudin et al. 2014). In particular, research into the HIE and ED LOS relation-
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ship has remained elusive primarily because of data limitations. As such, the purposes of

our study are 1) to assess the interplay between HIE adoption and overall ED LOS, and 2)

to examine some of the moderators of this relationship that are important in care delivery

workflow. In particular, in addition to studying the overall effect, we investigate the HIE

and LOS relationship in the context of the organizational setting (teaching vs. non-teaching

hospitals or integrated vs. non-integrated healthcare systems), the operational environment

in the ED when the patient arrived (crowded vs. non-crowded), and patient-related factors

that could drive the need for information (severity level, primary diagnosis, and existence

of comorbid conditions).

To address our research questions, we use 2009-2013 Healthcare Cost and Utilization

Project (HCUP) State Emergency Department Databases (SEDD), which are maintained by

the Agency for Healthcare Research and Quality (AHRQ) through a Federal-State-Industry

partnership. This is a unique dataset which, to our knowledge, is the largest and the most

comprehensive used for the purpose of testing HIE and LOS relationship in a system-

atic way. We obtained information about hospital characteristics (e.g., teaching status and

bed size) from 2009-2013 American Hospital Association (AHA) Annual Survey Database

and linked them to SEDD files using hospital identifiers. We estimated median household

income of the patient’s ZIP Code of residence from the 2009-2013 U.S. Census Bureau

Databases and used it as a proxy for socioeconomic status, which is known to be corre-

lated with ED LOS (Karaca and Wong 2013). We obtained information about HIE adop-

tion using Health Information Management Systems Society (HIMSS) Analytics Database

and linked it to SEDD using Medicare provider numbers. Finally, we collected hospital-

reported Meaningful Use data from the Center for Medicare and Medicaid Services (CMS)

for testing the robustness against measuring implementation rather than use.

Using our dataset, we develop multivariate regressions that control for patient and hos-

pital characteristics to examine the relationship between the HIE adoption and LOS in the

ED. Exploiting the variation in HIE adoption decisions across hospitals and years in our
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dataset, we use a quasi-experimental setup where hospitals are divided into control (those

who never adopted HIE or had HIE during the entire study period) and treatment (these

adopt HIE at some point within the study period) groups, corresponding to a difference-in-

differences (DID) estimation (Wooldridge 2010). Our analyses account for possible con-

founders that may affect LOS both at the hospital level (e.g., hospital bed size, teaching sta-

tus) and the patient level (e.g., demographics, socioeconomic factors, severity/complexity,

and time indicators).

We make several key contributions in this paper. First, this research is among the first

to study the link between adoption of an advanced information technology, namely HIEs,

and operational efficiency in EDs, as measured by LOS. To our knowledge, the only stud-

ies that examined the value of information sharing for the ED LOS are two small-scale

observational studies conducted in the context of diabetes (Speedie et al. 2014) and heart

failure (Connelly et al. 2012). On the other hand, large scale studies examining the impact

of HIT adoption either considered other forms of IT such as Electronic Medical Records

(EMR) adoption (c.f., Lee et al. (2013a)) or analyzed the impact of HIE on other outcomes

such as the imaging rate reduction (c.f., Lammers et al. (2014)). Our results suggest that,

overall, HIE is associated with a 10.2% reduction in LOS for treat-and-release ED patients.

By quantifying the relationship between LOS and HIE, our study can inform policy mak-

ers, hospital managers, and researchers about overall HIE and LOS relationship in the ED.

Hospital managers are interested in reducing LOS in the ED because such reduction can

lead to increased revenue for reasons such as increased patient satisfaction, reduced rate of

patient leaving the ED without being seen due to long wait times, or higher throughput.

Second, we show that wider HIE adoption would scale up the benefits for individual

hospitals. In particular, by tracking patients over time, we are able to show that the LOS

reduction due to HIE significantly improves when patients go to the EDs with HIE in their

subsequent visits following an initial visit to an ED with HIE. More specifically, the per-

centage reduction for patients visiting an ED with functional HIE increases to 21.0% when
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the patient has a previous visit to an HIE-carrying hospital, as compared with the overall

reduction of 10.2% for an arbitrary patient. For the latter, we enhance the analysis around

the overall adoption vs. LOS relationship by incorporating a use index based on hospitals’

actual utilization of different HIE functionalities as reported under the Meaningful Use

program and show that hospitals that effectively use HIE benefit more from HIE adoption

in terms of LOS. More specifically, we find that the percentage reduction in LOS is about

22.2% with effective use, as compared with the average reduction of 10.2%.

Third, the richness of our dataset enabled us to separate the magnitude of HIE and LOS

relationship under different contexts (e.g., teaching status of the hospital, crowdedness of

the ED, severity/complexity of the patient, revisits, and integrated health systems). This is

important because, as highlighted by Rudin et al. (2014), HIE evaluation studies thus far

have not properly studied contextual factors that moderate the value of HIE. Our analyses

of such factors suggest the following: 1) teaching hospitals are more likely to benefit from

the HIE adoption in terms of LOS compared with non-teaching hospitals, 2) patients who

arrive to crowded EDs spend more time on average, and they experience even higher LOS

in EDs with HIE, 3) severe patients or patients with comorbid conditions on average spend

less time in the ED under HIE presence, and 4) the magnitude of the association between

HIE and LOS depends on the patient’s primary disease/condition. We believe this detailed

level of analysis provides deeper insights into HIE and LOS relationship in the ED.

Finally, this paper contributes to the ongoing discussion of how the Patient Protection

and Affordable Care Act (ACA) might affect access, cost control, and care coordination.

The comprehensive healthcare reform that Massachusetts enacted in April 2006 is widely

viewed as a mini-model of the ACA implementation (Chandra et al. 2011). More specif-

ically, the Massachusetts law required that all individuals have access to affordable cover-

age and mandated that they obtain health insurance, with some subsidized options available

(McDonough et al. 2008). In that regard, the Massachusetts experiment may provide in-

valuable lessons about access, cost control, and care coordination for other states and the
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federal government, particularly as the ACA is being implemented. Our analyses on Mas-

sachusetts data further contribute to this discussion by estimating the impact of HIE on

ED LOS, which can be translated into potential cost savings from hospitals’ perspective,

increased access to healthcare from patients’ perspective, and better care coordination from

physicians’ and patients’ perspective. Furthermore, our findings can inform the healthcare

policymakers regarding the nationwide HIE adoption and its relation to access, cost control,

and care coordination.

1.1.1 Health Information Exchange (HIE)

Early HIE attempts began in 1990s (Johnson et al. 2008). Later initiatives that are still

active include the Indianapolis Network for Patient Care and Research (Overhage et al.

1995), starting in 1994, and the MidSouth e-Health Alliance (Johnson et al. 2008) in 2006.

For instance, in Indianapolis, IN, Marc Overhage and William Tierney served as professors

of medicine (Overhage et al. 1995). Then, they added another professional responsibility:

the design and implementation of an HIE in Indianapolis. In a grant-funded project, they

strove to share information among multiple organizations and to study how this sharing,

this HIE, would affect care and its cost. They turned to a wide range of clinical partners

across Indianapolis for collaboration, including clinicians in EDs and community health

centers, pharmacists, health maintenance organization (HMO) administrators, and home-

less care workers. They intended, among other objectives, to evaluate ED testing and drug

prescribing. This intention indicated a shift in how healthcare information should be com-

municated. In fact, traditionally, EDs would wastefully test unknown patients, and patients

would inaccurately disclose their drug usage.

The implementation of HIE was initially gradual. It has, however, increased in pace in

the late 2000s as the HITECH Act was passed (Blumenthal 2010), and clinicians became

aware of the HIE benefits (Wright et al. 2010). Such increased adoption is what the cre-

ators of HITECH Act apparently had in mind when they proposed the act that would invest

7



heavily in HIT in the environment of rapidly developing IT throughout the US. In fact, after

the HITECH adoption, the percentage of hospitals with electronic health records has grown

dramatically, from 9% in 2008 to 76% in 2014, and continues to increase (Charles et al.

2015). During the same period, the number of hospitals engaging in some HIE has risen

from 41% to 76% and presumably has become more sophisticated as the overall EHR in-

frastructure has improved as well. In 2015, HIE initiatives were further supported by CMS

through the incorporation of HIE requirements in the third stage of the Meaningful Use

requirements (for Medicare & Medicaid Services 2015). HIE has also benefited the shift

across healthcare toward alternative payment models that require more effective care coor-

dination, information sharing, and resource allocation (Buntin et al. 2010). For instance,

Thorn et al. (2013) report that many physicians in large, urban EDs that they studied would

routinely turn to HIE as part of their efforts to improve patient care, reduce repeated testing,

identify hidden allergies, or disambiguate unreliable information. One of the physicians in

the study even described HIE as a “life-saving tool.”

Some effects of HIE are known but not many and not with certainty. Recently, two

reviews thoroughly examined the research on the effects of HIE, and the authors were

disappointed by the lack of high-quality evidence (Rahurkar et al. 2015, Rudin et al. 2014).

Notably, past research has evaluated the impact of HIE in terms of reduced imaging and

testing (Lammers et al. 2014, Ross et al. 2013, Ayabakan et al. 2013, Bailey et al. 2013),

cost savings (Frisse et al. 2012, Tzeel et al. 2011, Overhage et al. 2002), patient satisfaction

(Vest and Miller 2011), readmissions (Jones et al. 2011), and hospital and ED visit rates

(Vest 2009). However, similar to the broader HIT literature, empirical studies assessing the

impact of HIE on operational measures are lacking. Such operational measures are exactly

what we are considering in this study.
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1.1.2 Emergency Departments

Many people experienced an ED first when they could not find a physician’s appointment.

After they would finish their ED appointment, they might return home, read newspapers,

watch TV, and learn about “real”, nerve-wrecking ED stories. In the stories, patients would

be rushed by an ambulance into the depths of the hospital, sprinting for their life, endan-

gered by a critical cardiac condition or a deadly road accident. In fact, ED clinicians fluc-

tuate between both of these extremes, with about 13% ED patients being non-urgent, 15%

emergent, 35% urgent, and the rest somewhere in between (Institute of Medicine 2006c).

Clinicians get to know diverse patients, from infants brought by their parents with bron-

chitis or otitis media, young adults with car injuries or severe depression, uninsured adults

without other source of care, all the way to elderly with pneumonia or heart conditions

(Skinner et al. 2014, DeLia and Cantor 2009). Taken together, these examples illustrate sev-

eral main aspects of EDs that distinguish them from other healthcare providers: EDs serve

patients who cannot obtain care elsewhere, for financial, insurance, or availability reasons,

provide emergency care needs such as trauma, support physician practices, and often serve

as the first point of entry for mental-health patients (Institute of Medicine 2006c).

The Institute of Medicine (2006c) recounts a case of one typical urban ED and trauma

center that is chronically overburdened, serving 80 patients instead of the 40 that it was

designed for. Of these patients, about one third is boarding (waiting for a bed to open

an internal ward), and many others are waiting for more than seven hours. Not only is

the patient care in the ED compromised, but the ED limits outside access by diverting

ambulances. In this story, if five new car accident patients arrive, the ED could not care

for them adequately. Eventually, ED clinicians will have weathered another busy day.

Sometimes, patients suffer from nothing more than inconvenience; other times, some of

the patients may suffer from adverse outcomes. Although this ED is a part of a large, urban

medical center with a level 1 trauma center, its story is far from unusual.

In 2012, there were 4,460 active EDs in the US, with this number still decreasing
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(American Hospital Association 2014b). Among the EDs, 52% report having more than

10% of admitted patients stay in the ED for more than six hours (Horwitz et al. 2010), 45%

report sometimes diverting ambulances (Burt et al. 2006), and 90% report boarding patients

before hospital admission (Rabin et al. 2012). About 39% of ED directors report that their

EDs are crowded every day (Moskop et al. 2009a). Overwhelmed and crowded EDs are

not unhealthy just because of the inconvenience to the patients (Pines et al. 2008b). In fact,

extended length of stay and crowded hallways can cause adverse outcomes, impair care

quality, worsen care access, and trigger hospital losses (Hoot and Aronsky 2008). Some

EDs, such as the ones in the Boston Medical Center or Grady Health System, use indus-

trial engineering, operations research, and other state-of-the-art approaches to prevent and

alleviate the negative consequences of crowding (Institute of Medicine 2006c). But other

EDs still approach crowding only reactively (Rabin et al. 2012). The rural and urban EDs

that serve particularly disadvantaged patient populations are of particular concern to public

health (Trzeciak and Rivers 2003).

This emergency is why the Institute of Medicine was commissioned to study and rec-

ommend how to improve the country’s EDs and the entire emergency system (Institute of

Medicine 2006c,b,a). “[A] growing national crisis in emergency care is brewing,” states

one of the reports in the introduction. More attention to EDs represents an opportunity to

improve the nation’s ED system. We obviously have no silver bullet, but success stories of

some EDs (Rabin et al. 2012) suggest that striving for improvement is a worthy aim.

1.1.3 Literature Contributions

Our work contributes to two broad streams of research: a) impact of health IT on clinical

and operational outcomes, and b) healthcare operations management. In the broad HIT

literature, studies assessing impact of HIT mostly considered quality metrics (e.g., Menon

and Kohli (2013), Ruben et al. (2009), DesRoches et al. (2010)), while others have con-

sidered the impact of HIT on financial and efficiency outcomes. In particular, based on
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aggregate economic analyses, research has focused on the impact of HIT on costs (Menon

and Lee 2000, Borzekowski 2009), revenues (Menon et al. 2000, Devaraj and Kohli 2003,

Kohli and Devaraj 2003, Ayal and Seidman 2009), and productivity (Lee et al. 2013b).

However, several other studies have shown that these aggregate level results do not neces-

sarily hold when more granular metrics were used (e.g., Himmelstein et al. (2010), Agha

(2014), Kennebeck et al. (2012a)). As a result, despite massive investments, the benefits of

HIT are not deeply understood (Jones et al. 2014).

Specifically in the HIE literature, past research has evaluated the impact of HIE in

terms of reduced imaging and testing (Lammers et al. 2014, Ross et al. 2013, Ayabakan

et al. 2013, Bailey et al. 2013), cost savings (Frisse et al. 2012, Tzeel et al. 2011, Overhage

et al. 2002), patient satisfaction (Vest and Miller 2011), readmissions, and ED revisits

(Jones et al. 2011, Shy et al. 2016), and hospital and ED visit rates (Vest 2009). For more

details about the recent findings, we refer the reader to excellent reviews by Goldzweig

et al. (2009) and Jones et al. (2014) on the impact of HIT and by Rudin et al. (2014) and

Rahurkar et al. (2015) on the impact of HIE.

Our research also contributes to the healthcare operations management literature at the

interface of IT. To date, some management studies have focused on the relationship between

IT and operational outcomes in non-ED settings. For example, Goh et al. (2011) conducted

an elaborate qualitative study on workflow changes during the adoption of EHRs. Lahiri

and Seidmann (2012) discussed how information gaps in healthcare could disrupt down-

stream clinical workflow in a large radiology network. Bhargava and Mishra (2014) stud-

ied how technology adoption impacted physician productivity and found differences in the

level of productivity gains among different primary care specialties and across time periods.

Bavafa et al. (2013) studied the impact of e-visits, a form of telehealth, on health outcomes

and physician productivity and showed that e-visits complemented traditional office visits

but could not replace them. Dobrzykowski and Tarafdar (2015) analyzed how local infor-

mation exchange using EMR affected the communication between physicians and patients
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and find that increased information exchange improves patient-provider communication.

Angst et al. (2011) studied whether the sequence in which various HITs were adopted mat-

tered in terms of overall hospital performance including LOS and found that the sequence

was an important predictor of performance. While all of these studies focused on health

IT and operations management interface, we are not aware of any large-scale studies that

analyzed the interplay between HIE adoption and LOS in ED settings, which is the focus

of our study.

1.2 Hypothesis Development

In this section, we motivate and formulate our hypotheses about the impact of HIE adoption

on the ED LOS. We start with an overall HIE and LOS relationship.

As we briefly discussed in the introduction, HIE may affect LOS through several path-

ways. Below, we discuss how reduced redundancy, changes in decision processes, and

workflow effects due to new technology adoption may play a role in the relationship be-

tween HIE and LOS.

First, recent research has shown that HIE adoption leads to a substantial reduction in re-

dundant imaging (Lammers et al. 2014), laboratory testing, and medication ordering (Hebel

et al. 2012, Speedie et al. 2014). For instance, an HIE in New York allowed clinicians to di-

rectly query patients’ information and access to their laboratory and radiology reports, the

most commonly used HIE functionalities, resulting in significant reductions in the number

of tests ordered (Campion et al. 2013). Given that the recent increases in ED occupancy

rates are associated with increased use of diagnostic and treatment procedures such as blood

tests, advanced imaging, and intravenous fluids (Pitts et al. 2012), HIE adoption may lead

to a reduction in LOS by reducing the number of tests ordered, thus directly saving time.

Second, additional information accessed through HIE can either increase or decrease

the efficiency of the decision-making process and hence may lead to a change (in either

direction) in LOS (Hincapie et al. 2011). For instance, in the presence of HIE, clinicians
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may access otherwise absent patient history and identify patients with chronic pain or those

with possible substance abuse problems (Johnson et al. 2008, Hincapie et al. 2011). Al-

though the relationship between more efficient decision making and LOS is difficult to

isolate, Stiell et al. (2003) were able to track the prevalence of information gaps among

emergency physicians and the influence of these gaps on the eventual LOS. In particular,

their study showed that the presence of information gaps such as unavailable medical his-

tories or laboratory test results was associated with more than one hour of additional LOS.

On the other hand, it is also possible that HIE could exacerbate the information overload

facing ED physicians and subsequently result in impaired decision making (Ash et al. 2004,

Spencer et al. 2004), leading to increased service duration and hence increased LOS.

Third, similar to the impact of other information technologies on workflow (Goh et al.

2011), the presence of HIE may significantly change the clinical management of a patient in

ED (Franczak et al. 2014). Further, the changes introduced by the information technologies

into the processes, which in some cases cause disruptions, may not lead to the expected

benefits (Dranove et al. 2014, Bhargava and Mishra 2014). Hence, the process-changing

effect of HIE could be associated with increased LOS.

Finally, the well-known distinction between technology adoption and use/access may

play a role in the quantification of HIE and LOS relationship. Previous research reports

that the actual rates of HIE access may vary. Rudin et al. (2014), in their recent systematic

review on HIE, document that the HIE access rates vary between 2% and 10%, while

Halamka (2013) argues that in their institution and possibly elsewhere, the access rates

might be much higher. These observations highlight that HIE use may be driven by local

context and implementation factors, including practice-related factors, patient condition,

past utilization, age, comorbidities, crowdedness, race/ethnicity (Yaraghi et al. 2015, Vest

et al. 2011, Rudin et al. 2011, 2014). Some of the purposes for which physicians reported

HIE as the most useful are better decision making, identifying substance abuse, reviewing

a patient’s medications, and reducing excessive imaging and testing (Thorn et al. 2013,
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Hincapie et al. 2011). Under the circumstances in which HIE is more beneficial, use may

be more likely (e.g., see Yaraghi 2015, for a good discussion around the incentives and

HIE’s value generation process). As compared to use, adoption captures the overall effect

similar to other large scale HIE evaluation studies (e.g., Jones et al. 2011, Lammers et al.

2014, Vest and Miller 2011). The more frequent use of HIE would increase the value

derived from its adoption – positive or negative.

In summary, the aggregate effect of HIE on LOS will likely depend on many factors.

As we discussed above, some of these factors may lead to an increased LOS while others

may reduce it. However, interviews with practicing ED physicians suggest that the overall

expectation is that HIE would most often help in reducing the LOS (Thorn et al. 2013).

We also remark that the use relates to the idiosyncrasies of an actual implementation at a

micro level whereas we focus on the relation between the HIE adoption and LOS at a high

level. We also note that access to and use of HIE will enhance the overall observed value

of adoption, capturing the benefit at an aggregate average use level. Given the discussion

around expected HIE impact on LOS, we formulate

Hypothesis 1 (a): HIE adoption leads to reduced ED LOS.

Hypothesis 1 (b): Increased use of HIE leads to an increased reduction in LOS.

1.2.1 The Role of Teaching Status

There has been extensive research on how teaching and non-teaching hospitals differ in

terms of care delivery, process characteristics, and outcomes (Papanikolaou et al. 2006).

To summarize, in addition to being home for medical education, teaching hospitals differ

from non-teaching hospitals in several ways such as providing care more often for complex

patients (Koenig et al. 2003), providing specialized services such as a neonatal intensive

care unit or a trauma center (American Hospital Association 2009), treating rare diseases,

serving indigent patient populations, conducting biomedical research (Ayanian and Weiss-

man 2002), and using advanced technology more often (e.g., (Jha et al. 2009)). Indeed,
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compared with non-teaching hospitals, teaching hospitals are known for their relentless

pursuit of innovation and use of technology (American Association of Medical Colleges

2014). Given these differences, differentiating the role of HIE adoption in these two dif-

ferent hospital organizational structures may prove useful and may in turn provide insights

for policymakers, payers, patients, and researchers.

As innovators, teaching hospitals were among the early adopters of HIE (Jha et al.

2009). Consequently, many of the initial evaluation studies were based on local or regional

datasets from HIEs originating in teaching hospitals (e.g., Johnson et al. 2008, Halamka

2013, Finnell et al. 2003), and these studies have served as a de facto benchmark on ex-

pectations from HIE. However, given that teaching hospitals only account for 20% of all

the US hospitals (American Hospital Association 2014a), it is important to assess the value

of HIEs comprehensively in a representative cohort of hospitals, including non-teaching

hospitals.

Teaching hospitals may benefit more from HIE for at least two reasons. First, teach-

ing hospitals are usually technologically advanced, with some forms of internal informa-

tion sharing infrastructure. Empirical evidence suggests that many large teaching hospitals

have long been sharing information internally (Miller and Tucker 2014), which could make

it easier for them to engage in and adapt to external information-sharing activity when it

becomes available. Second, HIE needs to be a part of regular clinician workflow for ef-

fective use (Kuperman and McGowan 2013, Halamka 2013), which teaching hospitals are

more likely to accomplish. This is because other forms of HIT are more common and are

typically already part of the workflow in teaching hospitals; and this past experience may

lead to more effective use of HIE, and hence a larger reduction in LOS. Therefore, we

formulate

Hypothesis 2: Teaching hospitals benefit more from HIE in terms of the reduction in

ED LOS, compared with non-teaching hospitals.
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1.2.2 The Role of Crowdedness

Crowdedness is a major potential barrier against the effective utilization of an advanced

technology especially in ED setting because of the time- and information-sensitive nature

of ED-specific care (Ben-Assuli et al. 2012). This is because despite all their advantages,

advanced HITs including HIEs may sometimes have disruptive effects on the workflow

(Kennebeck et al. 2012b, Kuperman and McGowan 2013), which may not be tolerable in

crowded EDs.

Ineffective technology under extreme workload is consistent with adaptive and anoma-

lous behavior observed also in other service operations (Bendoly et al. 2006, Chan and

Green 2013). In particular, several studies in different settings and industries have shown

that as the workload or crowdedness increases, workers change their behavior. For in-

stance, Tan and Netessine (2014) have shown that waiters tended to speed-up in crowded

restaurant settings. Similarly, in healthcare, clinicians suffering from overload in crowded

settings were shown to speed-up by avoiding some of the procedures that they deemed

non-critical (Batt and Terwiesch 2012, Kc 2014, Kuntz et al. 2014, Powell et al. 2012).

In this regard, one of the “non-critical” processes considered by the ED clinicians may be

accessing and utilizing HIE, which could hence be skipped when the ED is crowded (Vest

et al. 2011). Overall, this suggests that the benefit of HIE might shrink for patients arriving

to a crowded ED. Hence, we formulate

Hypothesis 3: Patients visiting a crowded ED will benefit less from HIE in terms of a

reduction in LOS, compared with those visiting a non-crowded ED.

1.2.3 Patient-related Factors: Severity and Complexity

Another pressing issue in the ED in regards to deriving value from HIEs is the patient-

related factors at a given care instance. In exploring the patient-related factors, we are

motivated by the concepts of task complexity, task urgency, and the interdependency be-

tween the two in the management literature (Campbell 1988, Reddi and Carpenter 2000,
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Bozarth et al. 2009). Both the complexity and the urgency of a task relate to processing of

information, and affect how the task is fit for the use of information technology and how

the use of information technology for the task is perceived by the userperceived as fit in

realizing the benefits of information technology (Goodhue 1995). In the context of our

study, treatment of a patient can be viewed as a task. Urgency of a case in the ED setting

is typically determined by the severity of the case, which is measured by the Emergency

Severity Index (ESI) (Gilboy et al. 2012) and is typically proxied by the mode of ED ar-

rivals, i.e. walk-ins vs. ambulance arrivals (Rucker et al. 1997, Larkin et al. 2006). On the

other hand, complexity of a case is captured by the co-existence of multiple comorbid con-

ditions, which is commonly measured by the Charlson comorbidity index (Charlson et al.

1987, Shwartz et al. 1996).

The need for coordinated information is higher for patients with severe conditions and

for those suffering from multiple comorbid conditions. Severe patients visiting EDs often

require coordination of multiple specialists (Risser et al. 1999) and will be typically subject

to multiple procedures (Baumann and Strout 2007), which makes the information coordi-

nation critical. Similarly, patients with multiple comorbidities (i.e., simultaneous presence

of multiple conditions), who we call “complex patients”, may require good information

management because of potential complications that may arise due to comorbid conditions

(Stiell et al. 2003). The need for coordinated information for severe or complex patients

therefore makes such patients a natural test bed for assessing the value of HIE adoption in

terms of a process measure such as LOS.

There is evidence that advanced information technologies improve the quality of care

more for severe or complex patients in non-ED care settings (McCullough et al. 2013).

However, while interviews with physicians indicate that they also consider HIE more use-

ful for patients with multiple conditions or those that are difficult to treat (Rudin et al. 2011),

the question of whether the LOS will improve also for such patients in the fast-paced ED

setting remains unanswered. With better information management through coordination
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with HIE, we expect that the process efficiency will increase and would be amplified for

severe or complex patients, who need better information coordination. Although the actual

use may vary from instance to instance, overall, the adoption and therefore the actual pres-

ence of the HIE technology would be associated with an average benefit for the patients

of similar severity or complexity. As such, we will test the following two hypotheses for

patient-related factors moderating the HIE and LOS relationship:

Hypothesis 4a: Severe patients visiting EDs with HIE will have shorter LOS than those

visiting EDs without HIE.

Hypothesis 4b: Complex patients visiting EDs with HIE will have shorter LOS than

those visiting EDs without HIE.

1.3 Methods

1.3.1 Data

Our data sources included 2009-2013 HCUP Massachusetts SEDD files (Agency for Health-

care Research and Quality (2014)), AHA Annual Survey Database (American Hospital As-

sociation 2014a), U.S. Census Bureau Databases, and HIMSS Analytics Database (HIMSS

2010), and the CMS Meaningful Use (MU) database (CMS 2016). In general, the SEDD

provide detailed diagnoses, procedures, and patient demographics including age, gender,

race, and insurance coverage (i.e., Medicare/Medicaid, private insurance, other insurance,

and uninsured). As part of the HCUP Project, AHRQ negotiates with data organizations

that maintain statewide data systems to acquire hospital-based data, processes the data into

research databases, and subsequently releases a subset of the data to the public with a signed

data use agreement. Some data elements are considered too sensitive by these data orga-

nizations for general release to the public. However, under the terms of their agreements

with AHRQ, some AHRQ staff may use these more sensitive data for analysis. For this

study, the Massachusetts Division of Health Care Finance and Policy granted permission to

AHRQ for internal use of the data elements, admission time and discharge time. The key
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variable, ED LOS, is expressed in minutes, measured as the difference between admission

time and discharge time. This dataset also includes unique encrypted patient identifiers that

enabled us to track them across times and institutions.

We have linked the SEDD data to the AHA databases using unique hospital identifiers

and then merged the resulting files to HIMSS and MU databases using unique Medicare

provider numbers. The AHA database allowed us to obtain hospital characteristics such as

teaching status and bed size. We used information technology variables from the HIMSS

database to identify adoption of HIE over time. After linking all these datasets and ex-

cluding the visits that were made to a few hospitals with missing Medicare identification

numbers, our final database after contained almost all (about 7.4 million) treat-and-release

visits made to 63 EDs in the entire state of Massachusetts.

Before closing this section, we remark that treat-and-release ED visits are ideally suited

to study the association between HIE adoption and LOS because 1) treat-and-release ED

visits account for about 81% of all ED visits in the U.S. (National Center for Health Statis-

tics 2013), and 2) in contrast to ED patients admitted to the hospital, the LOS for treat-

and-release patients is not much sensitive to hospital circumstances unrelated to the ED

itself such as inpatient bed availability (Emerman 2012, Ding et al. 2010, McClelland et al.

2011).

1.3.2 Variables of Interest

In this section, we describe several variables of special interest in detail. All the substantive

variables considered in our models are presented in Table 1.1. First, the restricted part of the

dataset contains exact admission and discharge times, which allows us to compute the exact

LOS expressed in minutes, the dependent variable in our model, for every single ED visit.

The calculated LOS captures the sum of the waiting time and the service time for a patient

(Welch et al. 2011). We apply the logarithmic transformation to LOS and use log(LOS) in

our regression analysis, which is consistent with the published literature (Bartel et al. 2014,

19



Table 1.1: Description of variables used in analyses

Variable Description Source
log(LOS) Logarithm of the ED length of stay, AHRQ Intramural SEDD

expressed in minutes, measured as the difference
between admission time and discharge time

HIE 1 if HIE was available during the visit. HIMSS
See the Data section for assumptions about HIE availability.

Year XX Year dummy variable for XX=10,11,12,13 AHRQ Intramural SEDD
Crowded 1 if the ED was crowded on the patient’s arrival. AHRQ Intramural SEDD

(see the Data section for crowdedness definition)
CCI 1 if the patient’s Charlson Comorbidity Index for the visit ≥ 2, 0 otherwise. Calculated from SEDD
Transport 1 if the patient arrived in an ambulance or a helicopter, 0 otherwise. AHRQ Intramural SEDD
Female 1 if the patient is female, 0 otherwise AHRQ Intramural SEDD
Age group Dummy-coded age in years: < 1, 1− 5, 6− 11, 12− 18, 19− 34, AHRQ Intramural SEDD

35− 44, 45− 54, 55− 64, 65− 74, 75+
Race/Ethnicity A dummy-coded categorical variable: Hispanic, AHRQ Intramural SEDD

non-Hispanic white, black, Asian, other
Insurance A dummy-coded categorical variable for the primary expected payer: AHRQ Intramural SEDD

1) Medicare, 2) Medicaid, 3) private, 4) uninsured (i.e., self-pay or no charge), 5) other
High Income 1 for the upper 3rd and 4th quartile of median household income AHRQ Intramural SEDD

of the patient’s ZIP code, 0 for others (1st and 2nd quartiles)
Weekend 1 if admitted on weekend, 0 otherwise. AHRQ Intramural SEDD
Monday 1 if admitted on Monday, 0 otherwise. AHRQ Intramural SEDD
Teaching 1 for teaching hospitals, 0 for others. A hospital is considered to be a teaching hospital AHA
Hospital if it has an AMA-approved residency program,

is a member of the Council of Teaching Hospitals,
or has a ratio of full-time equivalent interns and residents to beds of 0.25 or higher.

Large Bedsize 1 if hospital bed is 100+ (rural hospitals), 200+ (urban non-teaching hospitals), AHA
or 425+ (urban teaching hospitals). 0 otherwise.

CCS Patient diagnosis dummy-coded through the CCS scheme. AHRQ Intramural SEDD
MU A weighted average of the fulfillment of five HIE-related Meaningful Use measures. CMS MU reports

Kc 2014) and is supported by formal statistical evaluation (Marazzi et al. 1998).

Another key variable is HIE adoption, which is captured in the HIMSS database. We

observe this variable on a yearly basis. Because adoption of HIE may have a delayed

impact, and we observe the HIE adoption variable on a yearly basis, we use a one-year

post-adoption lag to label hospitals as HIE implementing hospitals, which is a commonly

used approach in the literature (Lammers et al. 2014, Appari et al. 2013, McCullough et al.

2013). For instance, if a hospital is labeled in the HIMSS database as adopting HIE in

2009, we code it as having HIE in 2010 (but not in 2009). To explore the robustness of this

approach, we also conduct our analysis with a two-year post-adoption lag instead.

To capture patients’ overall medical condition, we use patient comorbidity and severity.

In particular, to capture a patient’s comorbid conditions, we use Charlson comorbidity

index (CCI), a widely-used index to quantify the presence of multiple conditions (Murray

et al. 2006, Charlson et al. 1987). Also, to capture the severity of a patient’s condition,
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we use the mode of transportation, which indicates whether patients arrived in the ED via

an ambulance/helicopter or via their own means. The mode of transportation is a strong

indicator of the urgency of the need for healthcare services, and is therefore a good proxy

for the true severity (Rucker et al. 1997, Larkin et al. 2006). In an alternative analysis

(later defined as Disease Analysis), we use the primary diagnosis code of each ED visit

to identify the primary diagnosis for that visit. For this purpose, we use HCUP’s clinical

classification of diseases (CCS) in identifying the diagnosis codes associated with each ED

visit, collapsing the ICD-9 and ICD-10 codes into 258 clinically meaningful categories,

which we label as CCS (Senathirajah et al. 2011).

Lastly, teaching status of hospitals and ED crowdedness at the time of patient’s arrival

were two other key variables in our analysis. To determine teaching status, we directly use

the Teaching-hospital variable from the AHA data as described in HCUP data dictionary

(HCUP 2014). For ED crowdedness, past studies used various measures such as waiting

time, service time, the fraction of patients leaving without being seen, census in the waiting

room, or census in the ED (Batt and Terwiesch 2015, 2012, Anderson et al. 2014, Song

et al. 2014, Hwang and Concato 2004). Our approach approximates the relative census

in the ED. In particular, we leverage our database by first creating a volume measure in

the ED of a particular hospital across a given year and then identifying the volume for a

given hour at any day. Combining the volumes for a given hour across the year, we obtain

a distribution of volumes. We then use a year- and ED-specific volume threshold above

which we label the ED as crowded and non-crowded otherwise. Specifically, we use the

0.75 quantile (ED- and year-specific) as the threshold to label an ED as crowded (Batt and

Terwiesch 2012).

In addition to these key variables, our analyses require formulating additional variables,

which we summarize next. In an alternative analysis (“the Index Visit Analysis”), we

capture multiple ED visits using HCUP revisit variables. If the same patient visited the

hospital multiple times in a given year, the HCUP would include separate records in the
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respective HCUP database for each visit. To facilitate analyses that focus on multiple

hospital visits by the same person, AHRQ created a set of supplemental variables that

can be linked to the HCUP state-level databases to track multiple (repeat) patient visits

in the hospital setting, while adhering to strict privacy regulations. The encrypted patient

identifiers together with the revisit variable allow tracking one person over multiple years

and institutions, hence we are able to identify all the revisits (i.e., all subsequent visits by

the same patient). In our Disease Analysis, we use the primary and secondary diagnosis

codes of each ED visit record to associate a disease with a particular visit (Senathirajah

et al. 2011).

We account for confounding effects that influence LOS by including factors that are re-

lated to patients and the hospitals. Consistent with the extant literature on LOS-influencing

factors in the ED, we control for demographic factors (age group, gender, race/ethnicity),

time indicators (year, day of week: Monday/ other weekday/ weekend), socioeconomic

status (expected primary payers, the quartile of the patient’s zip code median income), and

hospital size.

1.4 Study Design and Econometric Specifications

We develop empirical models to assess the impact of HIE on ED LOS. As schematized

in Figure 1.2, we group the hospitals appearing in our dataset into three subsets based on

their adoption timing and status between the years 2009 and 2013 as i) hospitals that never

adopted HIE during our study period (referred to as the Never-Adopters group), ii) hospitals

that had HIE since the beginning of our study period (referred to as the Always-HIE group),

iii) hospitals that adopted HIE during our study period (referred to as the Adopters group).

We employ a difference-in-differences (DID) approach to compare the LOS between

the control and treatment groups. When interpreting our results, we do not highlight statis-

tical significance according to conventional frequentist hypothesis testing. This is because,

with large samples such as ours, interpretation of results should be based on the effect sizes
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Figure 1.2: Depiction of Subsamples Used in the Study

and the uncertainty around the estimates instead of making conclusions based on p-values

(Lin et al. 2013). Consistent with this approach, we draw on the most recent recommen-

dations by the American Statistical Society: 1) capture the uncertainty in the estimates via

standard errors and 2) highlight practical significance of the effects by providing easily-

interpretable percentages (Wasserstein and Lazar 2016). That is, when presenting the re-

sults of regressions, we report the estimated effect (marginal percentage change in LOS),

followed by the regression coefficient and and cluster-robust standard errors (accounting

for clustering of visits within hospitals). This allows the reader to both see the effect size

and calculate confidence intervals easily, a good practice recommended for empirical in-

formation systems research with large sample sizes (Lin et al. 2013).

1.4.1 Main Analysis

In our main analysis, we assess the LOS for an arbitrary visit to an HIE hospital as com-

pared with an arbitrary visit to a non-HIE hospital. This perspective evaluates the overall

value of health information sharing with respect to LOS in the ED setting by comparing

Adopters to Never-Adopters subsets of hospitals (Figure 1.2a). Letting the indicator vari-

able HIEh,t denote the HIE adoption status for hospital h in year t, we formulate a linear

model, which we call Overall model, to estimate the association between HIE and ED LOS
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as follows:

log(LOSv,h,t) = β0 + β1HIEh,t + β2Crowdedv,h,t + β4Teachingh + β6CCIv,h,t

+ β8Transportv,h,t + β10Xv + β11Xh + γ1zt + γ2Treath + εv,h,t,

(Overall)

where Crowdedv,h,t is the indicator for the hour of the visit v to hospital h during its

crowded hours in year t, Teachingh is the teaching status of the hospital h, CCIv,h,t is the

Charlson comorbidity index for visit v to hospital h in year t, Transportv,h,t is the indicator

for the mode of transportation for visit v to hospital h in year t. Xv includes visit-level

control variables (age group, gender, race/ethnicity, insurance, income) and Xh includes

hospital-level control variables (bed size), and zt is the fixed effect variable for year t.

Lastly, Treath is the dummy variable for treatment group, indicating whether hospital h

is in the Adopters group and the variable εv,h,t captures the unobserved factors that change

over visit v, hospital h, and time t.

To test the hypotheses on moderation effects, we formulate an analogous model to

Overall model that captures interactions as follows:

log(LOSv,h,t) = β0 + β1HIEh,t + β2Crowdedv,h,t + β3HIEh,tCrowdedv,h,t

+ β4Teachingh + β5HIEh,tTeachingh + β6CCIv,h,t + β7HIEh,tCCIv,h,t

+ β8Transportv,h,t + β9HIEh,tTransportv,h,t

+ β10Xv + β11Xh + γ1zt + γ2Treath + εv,h,t.

(Interactions)

For alternative analyses, we create a sample based on visits to Always-HIE group (be-

comes the control) and those to Adopters group (becomes treatment). As for the model

specifications, we retain the variable definitions as before, and in addition, introduce the

interaction term HIE Trh,t := HIEh,t × Treath as the variable of interest in our model-
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ing setup, which will take a value of 1 for hospitals in the Adopters group after the time of

HIE adoption, and be 0 otherwise. Then, based on this variable, we estimate the association

between HIE adoption and LOS as follows:

log(LOSv,h,t) = β0 + β1HIE Trh,t + β2Crowdedv,h,t + β4Teachingh + β6CCIv,h,t

+ β8Transportv,h,t + β10Xv + β11Xh + γ1zt + γ2Treath + εv,h,t,

(Alternative)

When analyzing the role of moderation effects on this subsample, we again utilize the

Interactions model given above, where HIEh,t is replaced with HIE Trh,t.

While our quasi-experimental setup is a well-established approach to limit confound-

ing effects, our estimation of the impact of HIE adoption on LOS based on Overall model

could potentially be subject to endogeneity because 1) hospitals that perform poorly in

terms of LOS may self-select into the HIE adoption, 2) more efficient hospitals may decide

to adopt HIE earlier, and 3) hospitals may adopt concurrent LOS-improving initiatives to-

gether with HIE. We mitigate this potential endogeneity and demonstrate the validity of our

results through i) conducting robustness checks as described in § 1.4.2 and ii) identifying

relatively more homogeneous subsets of hospitals where comparability of treatment and

control groups are less of a concern due to financial or operational incentives as described

in § 1.4.3. Below we describe these analyses in more detail.

1.4.2 Robustness of the Main Analysis

Fixed Effects (F.E.) Analysis: We estimate our models with hospital fixed effects (along-

side time fixed effects) to capture time-invariant differences across hospitals in any observ-

able or unobservable predictors, such as differences in hospital quality metrics, managerial

skills, or patient population (Litwin et al. 2012). The inclusion of hospital fixed effects ro-

bustifies our analysis if, for instance, the hospitals that adopt HIE have other time-invariant

characteristics that also help them decrease LOS more effectively. We operationalize the
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Fixed Effects model by estimating Model-Overall with hospital fixed effects, uh, replacing

the indicator Treath and the hospital-level control variables Xh. Hospital and year fixed

effects account for unobservable factors related to a hospital or time-based trends.

Disease Analysis: The effect of HIE on LOS is also likely to vary across disease

groups. In particular, for some diseases, HIE can directly reduce the over-utilization of

ED resources and hence reduce LOS (e.g., by reducing the rate of radiological imaging or

laboratory testing, Lammers et al. 2014, Frisse et al. 2012), while for others, HIE may just

provide more clinical background, leading to no change or even an increase in LOS. This

line of reasoning is further supported by the observations that clinicians use HIE less fre-

quently for certain conditions, presumably expecting that more information would change

their behavior little (Vest et al. 2011). In addition to capturing the clinical complexity of a

patient by CCI variable, we further conduct robustness on the main analysis by including

diagnosis codes (i.e., the indicators for the CCS codes) associated with each visit. The

robustness check with CCS help us identify possible differences in HIE’s value in terms of

the relationship with LOS in the context of different diseases/conditions.

Pre-trend Analysis: For a robust DID estimation, parallel trends in the control and

treatment groups are preferable (Bertrand et al. 2004). When there is heterogeneity in the

treatment and the control groups in regards to the efficiency before adoption, the observed

post-adoption reduction in LOS in the Adopters group may be attributable to pre-adoption

trends in hospitals belonging to this group. To address this concern, we estimate the Pre-

trend model by adding pre-adoption year dummies to the Overall model. The dummy

variable for focal hospital takes the value one in the year preceding the HIE adoption and

zero otherwise.

Use Analysis: Our main analysis around adoption provides an aggregate effect based

on average use. Per our discussion in § 1.2, the actual use rates could vary at the hospital

level, and it is expected that any impact of HIE would scale up with increased level of

use. To validate this intuition that the observed HIE effect would be even stronger under
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actual use, we proxy the rate of access to HIE based on the use data as reported in the

CMS’s Meaningful Use program. Specifically, we interact the HIE adoption variable with

the reported use under the CMS Meaningful Use program (denoted by MU) and include it

in the Overall model.

The criteria under the Meaningful Use incentive program were established by CMS

to measure not just adoption of health information technology but actual “meaningful”

use thereof (Blumenthal and Tavenner 2010). We create the MU variable by aggregating

the variables from the Meaningful Use Program menu objectives that relate to HIE use.

Namely, we measure the proportion of fulfilled HIE-related menu objectives that the hos-

pitals attest to regarding the following: (1) “Provide summary of care record for patients

referred or transitioned to another provider or setting,” (2) “Submit electronic data on re-

portable laboratory results to public health agencies,” (3) “Submit electronic syndromic

surveillance data to public health agencies,” (4) “Perform medication reconciliation be-

tween care settings,” and (5) “Submit electronic immunization data to immunization reg-

istries or immunization information systems.” For the attestation process, first, a random

patient population is selected regarding a menu objective. Then, the hospital’s attestation

for performing the objective is deemed satisfactory based on a threshold as specified in

the Meaningful Use Program. For example, the menu objective (1) is deemed as achieved

when a summary of care record is provided for more than 60% of randomly chosen patients

who are referred or transitioned to another provider or setting.

Instrumental Variable Analysis: In addition to Fixed Effects, and Use Analysis

as well as several robustness checks that we introduce later, we further implemented an

instrumental variable (IV) estimation approach to address any potential endogeneity prob-

lems. The IV should explain the variation in hospitals’ HIE adoption decisions but not the

variation in LOS except that through the IV. As such, we propose and use the number of

security-related software applications that a hospital has, recorded in the HIMSS survey,

as the IV in our analysis (HIMSS 2010). Using the “number of security-related software
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applications” as the IV, we apply two-stage least squares (2SLS) to the Overall model with

hospital fixed effects. A variable indicating the number of the IT-security investments is

a good IV because communication-related IT adoption, such as HIE adoption, exposes

the hospital to additional security risks; therefore, HIE-adopting hospitals will likely en-

hance their IT security by investing in more security technologies.1 However, an increased

number of IT security investments is not expected to be correlated with the operational

efficiency in the ED. We remark that our choice of IV is also consistent with the prior

research that used non-clinical health IT adoption as an instrument to endogeneity due to

time-varying unobserved factors (c.f., Hydari et al. 2014).

The second IV that we considered is the hospital-wide information strategy “to go pa-

perless,” as recorded in the HIMSS survey (HIMSS 2010). Past research has shown that

hospitals’ strategy to go paperless triggers the adoption of HIT across different departments

in a hospital (Sands et al. 1997, Dykstra et al. 2009). As such, it is expected the strategy of

going paperless would be correlated with HIE adoption decisions. On the other hand, the

literature on going paperless does not suggest that hospitals with this objective would sys-

tematically make major operational changes in the ED other than IT adoption (Sands et al.

1997, Dykstra et al. 2009, Vezyridis et al. 2011). Hence, using the “going paperless” strat-

egy as the IV, we apply two-stage least squares (2SLS) to the Model-Overall with hospital

fixed effects.

It is possible that a hospital adopting HIE in the ED would change processes around

its effective use, however, workflow redesign is a critical part of any technology adoption

to realize its value (Goh et al. 2011), and hence such a change, if exists, should not bias

our results. We also remark that concurrent adoption of EMRs with HIEs could potentially

confound our estimates, because simultaneously adopted EMRs would also correlate with

going paperless strategy. However, our analysis has shown that only two hospitals out of 63

adopted both advanced EMR and HIE during the study period, However, our analysis has

1The first stage of IV estimation corroborates our intuition with an effect size of 1.6%.
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shown that only few hospitals adopted both advanced EMR and HIE during the study period

(4% of all %visits in our sample), and none of them did so in the same year. Excluding

the simultaneous adopters from our sample, and reestimating the coefficients accordingly

provided similar insights. Hence, we believe concurrent adoption of EMR technologies in

the ED setting does not affect our findings.

We have also considered as HIE the “HIE concentration in the vicinity”. To define

“vicinity”, we consider areas called hospital referral regions (HRR) as defined in Wennberg

and Cooper (1996). To define our IV, we counted for each year and each hospital, what the

percentage of HIE adoption was among other hospitals in the same HRR. We reason that

hospitals may be more induced to adopt HIE if many other hospitals nearby adopted be-

cause then HIE can provide more information. At the same time, we would not expect that

HIE at other hospitals would directly affect LOS in the hospital in question. Unfortunately,

the hospitals in our dataset fell under only five different HRR, which did not yield enough

variation to leverage this IV.

1.4.3 Alternative Analyses and Robustness Checks

In addition to the robustness around the Overall model, to further strengthen our results,

we conduct alternative robustness and falsification tests using systematically created sub-

samples. We select subsamples based on i) financial incentives of hospitals that makes

information exchange and therefore actual use more likely (Systems Analysis), ii) choice

of a more uniform set of hospitals so as to mitigate endogeneity concerns around hospitals’

self-selection into HIE adoption (Adopters Only or Matched Analyses), iii) conditioning

on a previous visit to an HIE hospital for assuring the usefulness of HIE in the subsequent

visits (Index Analysis).

(Integrated) Systems Analysis: We acknowledge that some of the hospital character-

istics that are unobservable to us may influence operational performance. To address this

potential confounding effect, we conduct the (Integrated) Systems Analysis which focuses
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on a more homogeneous sample of hospitals. In particular, we restrict our focus to hospitals

belonging to a “centralized health system”, which is defined as a “delivery system in which

the system centrally organizes hospital service delivery, physician arrangements, and insur-

ance product development,” representing the highest degree of integration in the American

Hospital Association survey (Bazzoli et al. 1999). Therefore, if two hospitals are part of

the same system, it is expected that their approach to care quality, cost-consciousness, and

management would be similar. For example, the adoption and implementation of HIE for

hospitals within the same hospital systems are more likely and incentives for using the

shared information are stronger (De Brantes et al. 2006). In our Systems Analysis, because

some of the hospitals from the same system in our sample varied in their HIE adoption

timings, the confounding effect of differing control and treatment groups is mitigated in

our DID setup. To conduct Systems Analysis, we use Overall model with hospital fixed

effects and estimate it on the sub-sample of integrated health systems.

Furthermore, the ED physicians in these hospitals are motivated to use HIE at least for

patients from within other system hospitals and physicians, and the factors influencing the

HIE use may vary less across the hospitals within one system. Our results in Table A.2

show a decrease in ED LOS after HIE adoption for non-teaching hospitals but an increase

for teaching hospitals. Other interactions remain largely consistent with the previous find-

ings. Major barriers to information sharing are competitive concerns and interoperability

Kuperman and McGowan (2013), McCarthy et al. (2009a), Shapiro et al. (2007). These

concerns should be irrelevant or alleviated for hospitals within the same system. Indeed,

Vest (2010) found that system hospitals are more likely to both adopt and actually imple-

ment HIE while hospitals in competitive environments are less likely to do so.

Adopters-only Analysis: As discussed earlier, organizational differences between HIE-

adopting and non-adopting hospitals may confound our analyses (Robinson et al. 2009).

Some of the previously presented analyses such as Hospital Fixed Effects account for time-

invariant characteristics of hospitals, while the System Analysis creates a more uniform set
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of hospitals to be included in the control and treatment groups. To further alleviate any con-

cerns about a potential self-selection bias, we also present Adopters-only Analysis, where

we exclude the non-adopters and conduct the analysis based only on HIE-adopting hospi-

tals and those that had HIE throughout the entire study period (recall that the corresponding

subsample is called Adopters Sample). This subsample of HIE-adopter ensures a uniform

occurrence of IT diffusion in our subsample and leads to more uniform set of hospitals with

increased similarity of control and treatment groups with respect to HIE adoption behav-

iors/tendency. Because these characteristics may also influence operational performance,

adopters-only analysis is expected to shed light on any confounding effects.

Matching Analysis: In addition to all of the above mentioned endogeneity-related

analyses, we also conduct a matching analysis where we match hospitals into the two

groups. A formal matching method such as propensity score matching is the preferable

method in such cases. However, despite having a large sample in terms of number of vis-

its, the limited number of hospitals in the Adopters or Never-Adopter groups hinders us

from performing such an analysis. As an alternative, we match the hospitals based on the

strongest reported predictors of HIE adoption: teaching status, hospital size (number of

beds), and patient volume (e.g., Adler-Milstein and Jha 2014). More specifically, we create

a subsample of Adopters and Never-adopters based on exact matching of the combination

of these features, where seven hospitals are included in the final analysis in each group.

In addition to Systems, Adopters-only, and Matching Analyses creating a more compa-

rable control and treatment groups (albeit somewhat informally in the case of Matching

Analysis), the fact that Massachusetts is a small state with similar hospitals in terms of in-

frastructure provides further support and strengthens the thought that treatment and control

groups are mostly similar.

Index Visit Analysis: If the improvement in LOS is in fact attributable to HIE, one

would expect that a patient should, on average, observe higher benefits in her subsequent

visits following an initial visit. Building upon this idea, our Index Visit Analysis considers
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a subsample of patients where an initial visit to an HIE-carrying hospital is ensured. By

comparing the subsequent ED LOS for visits to HIE-carrying hospitals against non-HIE

hospitals, our Index Visit Analysis quantifies the value of HIE among patients who had their

first visit to an ED with HIE. In other words, the Index Analysis serves as a falsification

test where if there is indeed a causal link between HIE and ED LOS, then the observed

ED LOS in the Index Analysis should be higher than that observed in the Overall Analysis.

Otherwise, this Index analysis would falsify a causal relationship in the overall analysis,

which estimates the average effect of HIE.2

To create the Index Sample, we initially select individuals with multiple ED visits from

2009 through 2013 from the Adopters Sample. Next, we subset this data to patients with at

least one visit to any ED setting with HIE. Then, we identify the first visits to EDs with HIE

for these patients and keep their entire subsequent visits (to EDs with and without HIEs) in

our analytic files. Such patients, also termed as high utilizers or “frequent fliers” (Griswold

et al. 2005), substantially burden EDs (LaCalle and Rabin 2010), and in line with our line of

thoughts, clinicians generally expect HIE to help more substantially to this subpopulation

(Thorn et al. 2013). In some sense, by controlling for the availability of information from

an initial visit, we are increasing the chances of the index visit information being accessible

to the caregivers in subsequent visits.

For the Index Analysis, we modify the Alternative model and replace the variable

HIE Trh,t with HIE Tr(next)h,t which takes value 1 for any visit to an ED with HIE

where the patient’s first visit is restricted to be an HIE hospital. Then, we estimate the

2We remark that even in the case when a patient does not have a prior visit to a hospital with HIE, there
may still be information available through other sources that may be shared via HIE. Such information may
come from labs, radiologists, pharmacies, and physician offices, etc.
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relationship between HIE adoption and LOS in the Index Sample using:

log(LOSv,h,t) = β0 + β1HIE Tr(next)h,t + β2Crowdedv,h,t + β3Teachingh + β4CCIv,h,t

+ β5Transportv,h,t + β6Xv + β7Xh + γ1zt + γT reath + εv,h,t.

(Index)

1.5 Results

1.5.1 Descriptive Results

We begin our analysis with a descriptive comparison of ED LOS based on HIE adoption

statuses of hospitals. Table 1.2 presents the summary statistics stratified by the variables

of interest and the groups of patients that we use in different analysis: 1) Never-adopters

group, 2) Adopters group prior to HIE adoption, 3) Adopters group after HIE adoption,

and 4) Always-HIE group. We observe a sizable difference in ED LOS distribution across

cohorts. In particular, among the Adopters group, both mean and median LOS were lower

in post HIE adoption period compared with pre-adoption period, while mean and median

LOS were similar in the Always HIE and Never-adopters groups. The ratio of patients

visiting a crowded ED to a non-crowded ED, severe to non-severe patients, and patients

with CCI<2 to those with CCI≥2 are similar in HIE and non-HIE hospitals. Ratio of visits

happening to teaching in comparison to non-teaching hospitals is substantially higher in

HIE-carrying hospitals for both subsets. This is expected because teaching hospitals are

more likely to adopt HIE and therefore higher proportion of HIE visits would belong to the

teaching hospitals. While treat-and-release visits are made by persons of all age, most of the

visits belong to patients who are between 19 and 54 years old. This is not surprising because

older patients are much more likely to be admitted to a hospital than being discharged.

Lastly, while we do not present it in the table, we remark that most of the ED visits are paid

by private insurance (38%), followed by Medicaid (27%) and Medicare (16%). We present

the correlation matrix between all variables (except age) in the appendix, Table A.1.
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1.5.2 Results from the Overall Analyses

In Table 1.3, we present the main results based on Overall model with three main estimation

methods: i) OLS estimation with time fixed effects, ii) estimation with hospital and time

fixed effects, iii) estimation using IV along with the time and hospital fixed effects.

As we observe from this table, the impact of HIE adoption in treatment group (as cap-

tured by HIE in models (1)-(6)) on the average LOS per ED visit is negative. That is,

HIE adoption decreases the LOS in all estimation methods, which is in line with our Hy-

pothesis 1 (a). Based on model (1), the estimated average reduction for adopter hospitals is

6.1%. Given that the average LOS in these hospitals before adoption is 231 minutes, this

practically corresponds to about 14 minutes average reduction in ED LOS, a highly signif-

icant reduction in the ED setting. As for the analyzed contextual variables (i.e., teaching

status, patient severity and complexity), all three estimation methods lead to the expected

signs for other relevant coefficients. In particular, teaching hospitals have on average longer

LOS, presumably due to more complicated case mix of patients and the practice of more

advanced care compared with non-teaching hospitals; patients who arrive to crowded EDs

experience longer LOS as expected from basic queueing theory; and severe and complex

patients stay longer, as their treatment may simply require more time.

The robustness check that controls for specific disease conditions captured by model

(2) produces consistent estimates of HIE and LOS relationship with model (1). The results

from the Fixed Effects Analysis in model (3) indicate a 10.2% decrease in LOS among

Adopters, which translates to a 23 minutes reduction in LOS, following the HIE adoption.

This result implies that while adopter hospitals may differ on their persistent characteris-

tics (captured by the fixed effects), these differences do not confound the HIE and LOS

relationship. The small and positive effect sizes and relatively larger standard errors for

the pre-trend dummies in Models (4) and (5) indicate that adopting hospitals do not have a

downward trend of LOS before adoption, and provide further support for causality between

HIE adoption and reduced ED LOS.
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Table 1.3: Regression results for full-set analyses

Variables	 (1)	
Overall	

(2)	
Overall	CCS	

(3)	
Overall		
F.E.	

(4)	
Pre-trend	

(5)	
Pre-trend	CCS	

(6)	
Instrumental	

F.E.	

(7)	
Use	

HIE	 -6.11%	
-0.063	(0.001)	

-6.28%	
-0.065	(0.001)	

-10.23%	
-0.108	(0.001)	

-6.01%	
-0.062	(0.001)	

-6.11%	
-0.063	(0.001)	

-19.50%	
-0.216	(0.013)	

22.21%	
0.201	(0.007)	

Crowded	 5.23%	
0..51	(0.001)	

6.06%	
0.059	(0.001)	

5.22%	
0.051	(0.001)	

5.25%	
0.051	(0.001)	

6.06%	
0.059	(0.001)	

5.22%	
0.051	(0.001)	

4.21%	
0.041	(0.001)	

Teaching	 24.61%	
0.220	(0.001)	

22.38%	
0.202	(0.001)	

	 24.53%	
0.219	(0.001)	

22.36%	
0.202	(0.001)	

	 32.06%	
0.278	(0.001)	

Charlson	 19.12%	
0.175	(0.002)	

13.24%	
0.124	(0.002)	

17.43%	
0.161	(0.001)	

19.16%	
0.175	(0.002)	

13.22%	
0.124	(0.002)	

18.18%	
0.167	(0.002)	

15.97%	
0.148	(0.004)	

Transport	 47.85%	
0.391	(0.001)	

24.57%	
0.220	(0.001)	

44.37%	
0.367	(0.001)	

47.80%	
0.391	(0.001)	

24.57%	
0.220	(0.001)	

45.21%	
0.373	(0.001)	

50.14%	
0.406	(0.002)	

HIE	Lag	Dummy	 	 	 	 0.25%	
0.003	(0.001)	

0.47%	
0.005	(0.001)	

	 	

MU	x	HIE	 	 	 	 	 	 	
	

-40.99%	
-0.528	(0.0216)	

CCS	 NO	 YES	 YES	 NO	 NO	 NO	 NO	
Visit	Controls	 YES	 YES	 YES	 YES	 YES	 YES	 YES	

Hospital	Controls	 YES	 YES	 NO	 YES	 NO	 NO	 YES	
Year	F.E.		 YES	 YES	 YES	 YES	 YES	 YES	 YES	

Hospital	F.E.	 NO	 NO	 YES	 NO	 YES	 YES	 NO	
Observations	 7,421,302	 7,420,025	 7,421,302	 7,421,302	 7,420,025	 7,297,001	 1,942,568	

R2	 0.09	 0.27	 0.14	 0.09	 0.27	 0.13	 0.10	
	

Note: The first number denotes the estimated percentage change, the second number the corresponding regression coefficient, and the
third number the robust standard error. The symbol “x” indicates the presence of the specific controls or the fixed effects in the model
while no entry suggests they are absent.

The Use Analysis in model (7) addresses the question of whether size of the effects

is strengthened by increased use. The negative coefficient estimate for the MU × HIE

suggests that the effect of HIE is higher as the hospital tends to use the HIE-related features

more. This finding confirms our intuition in Hypothesis 1 (b) and supports the practitioners’

expectation as argued in Halamka (2013).

In reference to IV analysis, we note that the first-stage results from the 2SLS confirm

that our proposed IV—the number of security-related IT implementations—is correlated

with HIE adoption (results presented in the Appendix). The second-stage results as cap-

tured by model (6) are in the same direction as the results from the prior analyses with an

effect size of 19.5%, even though the IV results exhibit a relatively higher standard error, as

expected. We also note that the Cragg-Donald F statistic is significant and our instrument

meets the Stock and Yogo (2002) strength test. The result based on IV analysis further cor-

roborates our findings and is notable because estimation using an instrument, in principle
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overcomes many endogeneity threats, including simultaneity (e.g., hospitals that set on the

journey of improving LOS also start implementing HIE) or omitted variable bias. On the

other hand, despite the favorable and consistent findings based on the IV Analysis, we ac-

knowledge that finding a strong instrument is not an easy task. In that regard, we note that

other robustness checks and alternative analysis as presented next provide further evidence

on our hypothesized relationship between HIE and LOS. We include the results from the

“going paperless” analysis in the appendix.

1.5.3 Results from Alternative Analyses

Next, we turn our attention to the results on specific patient and hospital populations as

presented in Table 1.4. In particular, we present the results for various estimations based

on Systems, Adopters-Only, Matched, and Index Analyses. These analyses 1) serve as

robustness checks because we restrict our data to study more homogeneous populations

and 2) work as a generalization check to show that our main findings hold qualitatively in

different settings, though the size of the HIE impact varies.

The Main Sample consists of eight centralized systems in Massachusetts, where hos-

pitals within a system are typically more homogeneous compared with other hospitals and

would have stronger incentives to use HIE when exchanging information with the affili-

ated system hospitals. The estimation uses fixed effect and robust standard errors clus-

tered within the systems, and in line with our expectations, shows that the impact of HIE

(-14.8%) is qualitatively similar and quantitatively stronger than the estimates from the

Overall Analysis with fixed effects as in model (3) (-10.2%). Similar to the Systems Anal-

ysis, the results from Adopters-only and the Matched Analyses, which were also concerned

with the possible non-homogeneity in the hospitals falling into the control and treatment

groups, are consistent with the previous estimations.

Recall from Section 1.4.3 that in contrast to an arbitrary patient that we study in the

Overall Analysis, Index Analysis studies those patients with multiple ED visits who had at
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Table 1.4: Regression results for Alternative Analyses

Variables	 (8)	
Overall	Systems	

F.E.	CCS	

(9)	
Adopters		
Only	

(10)	
Overall	
Matched	

(11)	
Overall	Matched	

F.E.	CCS	

(12)	
Index	

(13)	
Index	F.E.	

HIE	(or	HIE_Tr)	 -14.84%	
-0.161	(0.004)	

-6.91%	
-0.072	(0.001)	

-15.31%	
-0.166	(0.002)	

-6.43%	
-0.067	(0.002)	

-10.24%	
-0.108	(0.002)	

-21.03%	
-0.236	(0.004)	

Crowded	 9.78%	
0.093	(0.002)	

4.83%	
0.047	(0.001)	

8.38%	
0.081	(0.002)	

8.92%	
0.085	(0.001)	

5.40%	
0.053	(0.001)	

5.59%	
0.054	(0.001)	

Teaching	 	 20.08%	
0.183	(0.001)	

17.89%	
0.165	(0.002)	

	 21.58%	
0.195	(0.001)	

	

Charlson	 9.66%	
0.092	(0.004)	

24.48%	
0.219	(0.002)	

17.87%	
0.164	(0.003)	

11.55%	
0.109	(0.003)	

24.53%	
0.219	(0.004)	

18.31%	
0.168	(0.004)	

Transport	 21.26%	
-0.193	(0.002)	

45.85%	
0.377	(0.001)	

35.07%	
0.301	(0.002)	

16.03%	
0.149	(0.002)	

59.19%	
0.465	(0.002)	

56.69%	
0.449	(0.002)	

CCS		 YES	 NO	 NO	 YES	 NO	 NO	
Visit	Controls	 YES	 YES	 YES	 YES	 YES	 YES	

Hospital	Controls	 NO	 YES	 YES	 NO	 YES	 NO	
Year	F.E.		 YES	 YES	 YES	 YES	 YES	 YES	

Hospital	F.E.	 YES	 NO	 NO	 YES	 NO	 YES	
Observations	 965,281	 4,860,829	 1,306,700	 1,306,700	 1,840,425	 1,840,425	

R2	 0.32	 0.09	 0.13	 0.30	 0.09	 0.14	
 

Note: The first number denotes the estimated percentage change, the second number the corresponding regression coefficient, and the
third number the robust standard error. The symbol “x” indicates the presence of the specific controls or the fixed effects in the model
while no entry suggests they are absent.

least one previous ED visit to an HIE-enabled hospital. We expect such frequent utilizers

of EDs to benefit more from HIE. In line with this intuition, we find that such patients

on average experience a 10.2% reduction in LOS, compared with a 6.1% reduction for an

arbitrary patient as captured by the Overall Analysis in model (1) of Table 1.3. Similarly,

when estimated with hospital fixed effects, we observe a 21.5% reduction in this population,

compared with a 10.2% reduction from the Overall Analysis in model (3) of Table 1.3.

1.5.4 Variation among HIE Networks

Depending on the year within our timespan, Massachusetts had about four HIE networks.

Specifically, within our period, the following HIE networks were present: MaShare, Mas-

sachusetts Health Data Consortium, New England Healthcare EDI Network, CHAPS, Mas-

sachusetts eHealth Collaborative, and South Eastern Massachusetts Regional Health Infor-

mation Organization. Since different networks may mean varying experience for adopting

hospitals, we could explicitly test this variation. To do so, in our fixed-effect overall model,

we could model the HIE coefficient as random, varying by the exchange network. This
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would allow us to estimate the variation across exchanges, and test whether this variation

is statistically significant. This analysis would need to assume that there are no differential

trends within hospitals in different networks. Unfortunately, many hospitals did not report

their HIE network. There was a wide variation in the number of hospitals participating in

different networks. In fact, a plurality of hospital visits do not even have HIE reported (we

denote it as HIE Network unknown). Among the others, there is still substantial variation

(see Table 1.5).

Table 1.5: Regression results for the HIE Networks analysis

Coefficient HIE Networks
HIE Network unknown 0.6% 0.006 (0.001)
HIE Network 1 -13.7% -0.148 (0.001)
HIE Network 2 -25.9% -0.299 (0.002)
HIE Network 3 26.8% 0.237 (0.002)
HIE Network 4 0.0% 0.000 (0.002)
Controls:Visit x
Controls:Hospital x
FE: Year x
FE: Hospital
N 4,687,266
R2 0.09

Note: The first number denotes the estimated percentage change, the second number the corresponding regression coefficient, and the
third number the robust standard error. The symbol “x” indicates the presence of the specific controls or the fixed effects in the model
while no entry suggests they are absent.This analysis includes only the adopter hospitals. The baseline group are the visits that occurred
before HIE was implemented.

1.5.5 Results for Interaction Analyses

In Table 1.6, we present the results with interactions based on variations of Overall and

Adopters-only Analysis estimations to assess the effects of the moderating variables on the

HIE-LOS relationship, as conjectured in Hypotheses 2-4. While the interaction results are

consistent both in direction and standard errors across the five analyses, below, we discuss

in detail the results from the Overall and Adopters-only estimations as these estimations,

unlike the fixed effects counterparts, explicitly capture hospitals’ teaching status.
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Table 1.6: Regression results for interaction analyses

Variables	 (14)	
Overall	

(15)	
Overall	F.E.	

(16)	
Overall	CCS	

(17)	
Adopters	Only	

(18)	
Adopters	Only	

MU	
HIE	(or	HIE_Tr)	 1.18%	

0.012	(0.002)	
-8.98%	

-0.094	(0.001)	
0.35%	

0.003	(0.001)	
-1.67%	

-0.017	(0.002)	
18.98%	

0.174	(0.005)	
Crowded	 5.50%	

0.054	(0.001)	
5.46%	

0.053	(0.001)	
6.32%	

0.061	(0.001)	
5.09%	

0.050	(0.001)	
5.11%	

0.050	(0.002)	
Teaching	 26.67%	

0.236	(0.001)	
	 24.30%	

0.218	(0.001)	
22.42%	

0.202	(0.001)	
18.03%	

0.166	(0.003)	
Charlson	 20.42%	

0.186	(0.002)	
19.43%	

0.178	(0.002)	
14.32%	

0.134	(0.002)	
29.94%	

0.262	(0.003)	
31.88%	

0.277	(0.006)	
Transport	 48.82%	

0.398	(0.001)	
45.59%	

0.376	(0.001)	
25.27%	

0.225	(0.001)	
47.08%	

0.386	(0.001)	
43.94%	

0.364	(0.003)	
HIE	(or	HIE_Tr)	

	x	Crowded	
-1.50%	

-0.015	(0.002)	
-1.38%	

-0.014	(0.002)	
-1.61%	

-0.016	(0.002)	
-1.02%	

-0.010	(0.002)	
-1.58%	

-0.016	(0.04)	
HIE	(or	HIE_Tr)	

	x	Teaching	
-9.48%	

-0.100	(0.002)	
	 -8.73%	

-0.091	(0.001)	
-7.04%	

-0.073	(0.002)	
-17.93%	

-0.198	(0.004)	
HIE	(or	HIE_Tr)	

x	Charlson	
-6.73%	

-0.070	(0.004)	
-6.73%	

-0.070	(0.004)	
-3.90%	

-0.040	(0.004)	
-11.95%	

-0.127	(0.004)	
-14.13%	

-0.152	(0.008)	
HIE	HIE	(or	HIE_Tr)	

	x	Transport	
-4.27%	

-0.044	(0.002)	
-4.47%	

-0.046	(0.002)	
-3.56%	

-0.036	(0.002)	
-3.10%	

-0.032	(0.002)	
-6.41%	

-0.066	(0.004)	
MU	x	HIE_Tr	 	 	 	 	 -36.48%	

-0.454	(0.011)	
CCS	 NO	 NO	 YES	 NO	 NO	

Visit	Controls	 YES	 YES	 YES	 YES	 YES	
Hospital	Controls	 YES	 NO	 YES	 YES	 YES	

Year	F.E.		 YES	 YES	 YES	 YES	 YES	
Hospital	F.E.	 NO	 YES	 NO	 NO	 NO	
Observations	 7,421,302	 7,421,302	 7,420,025	 4,860,829	 1,083,086	

R2	 0.09	 0.09	 0.27	 0.09	 0.09	
 

Note: The first number denotes the estimated percentage change, the second number the corresponding regression coefficient, and the
third number the robust standard error. The symbol “x” indicates the presence of the specific controls or the fixed effects in the model
while no entry suggests they are absent.

Similar to existing studies (Le and Hsia 2014, Karaca et al. 2012), the regression results

for Overall Analysis (Adopters-only Analysis) show that the average LOS per ED visits

to teaching hospitals is 26.7% (22.4%) higher than the one for non-teaching hospitals.

However, HIE adoption decreases the ED LOS in teaching hospitals by additional 9.5 (7.0)

percentage points compared with non-teaching hospitals for an arbitrary patient. These

findings corroborate Hypothesis 2 that teaching hospitals can possibly leverage their HIE

capabilities more, as compared with non-teaching hospitals.

Patients arriving at a crowded ED on average wait longer, which is expected and consis-

tent with the existing studies (Batt and Terwiesch 2012, Kc 2014). Perhaps more interest-

ingly, we observe that HIE adoption is associated with more reduction in LOS in patients

arriving at a crowded setting as compared with a non-crowded setting, specifically an addi-

tional 1.5 percentage points relative reduction for an arbitrary patient. The result conflicts
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with the hypothesized effect of HIEs under crowded settings. However, the small percent-

age reduction in crowded settings suggests that for an average patient in a crowded ED,

HIE still decreases LOS, but the differential effect as compared with non-crowded setting

is very small, and is dominated by the main effect due to crowding. Hence, although nega-

tive, the small effect of HIE in crowded vs. non-crowded settings hinders us from making

a definitive judgment on the moderation analysis for Hypothesis 2.

For clinically complex patients (measured by CCI) and severe patients (proxied by

transportation), in line with the findings of the previous studies (Herring et al. 2009, Tanabe

et al. 2004), we find that such patients on average stay longer in EDs; yet HIE adoption is

associated with a reduction in LOS. In particular, under the Overall (Adopters-only) Anal-

ysis, as compared with non-complex patients, clinically complex patients spend on average

20.4% (29.9%) more time and HIE reduces the LOS by an additional 6.7% (12%) for such

patients. Similarly, Overall (Adopters-only) Analysis suggests that compared with non-

severe patients, severe patients spend substantially more time in the ED, an increase of

48.8% (47.1%), and HIE reduces the LOS on average by an additional 4.3.% (3.1%) for

such patients. Therefore, our findings support Hypotheses 4a and 4b.

1.6 Discussion

In this study, we explore how the adoption of HIE affects ED LOS, an important mea-

sure of operational performance in EDs. Past research on HIE has been narrowly focused,

considering the effect of HIE on reducing radiological imaging and laboratory testing, ED

and hospital admissions, and aggregate cost of care (Rahurkar et al. 2015). This limited

research attention was possibly due to limited data availability. By using LOS data for the

entire state of Massachusetts, we were able to establish a stronger research design and over-

come some of the data challenges. In particular, the Massachusetts Division of Health Care

Finance and Policy granted a special permission for the sensitive data elements, including

exact admission and discharge times from which the ED LOS can be calculated. The data
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fields are restricted to be used internally by AHRQ, and we were fortunate to utilize the

strengths of this dataset in overcoming some of the challenges faced by the prior research.

Moreover, the granular nature of our dataset allowed us to study HIE effect on LOS under

various hospital and patient related factors.

Our findings indicate that overall, HIE adoption is associated with an improvement in

LOS, a somewhat widely believed but empirically not well established result. We fur-

ther find that the HIE-LOS relationship is subject to sizable moderation effects by several

other factors including a hospital’s teaching status, crowdedness of the ED at the hour

of patient arrival, clinical severity/complexity of the patients, and the type of the index

disease/condition. In particular, we find that teaching hospitals observe substantial LOS

benefits with the adoption of HIE as compared with non-teaching hospitals, and patients

arriving at a crowded ED benefit less from HIE in terms of LOS. For clinically severe and

complex patients, we find that HIE adoption is associated with even lower LOS, possibly

due to higher need for information coordination for such patients. Our additional analyses

suggest that the LOS reductions due to HIE differ with respect to diseases/conditions and

the presence of previous history of a visit to an ED with HIE.

We believe our results may help healthcare administrators decide whether or not to

adopt HIE. In particular, many healthcare administrators and other stakeholders have ques-

tioned the business case for and the sustainability of HIEs (Adler-Milstein et al. 2013).

In that regard, our findings based on large-scale data analysis could reliably inform the

stakeholders regarding the adoption decisions, especially given the ED throughput being a

significant concern for the managers (Helm et al. 2011a, Handel et al. 2010, Pallin et al.

2013). Furthermore, the contextual analysis may further help the managers in tailoring

their HIE adoption decisions to the specific settings they operate in and the type of patients

that their ED serves.
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1.6.1 Moderators of HIE and Length of Stay Relationship

Teaching hospitals have historically been experiencing longer waiting times, partially due

to serving more uninsured and Medicaid patients with clinically complex conditions (Grover

et al. 2014). Also, teaching hospitals are among the first adopters of HIE and are well po-

sitioned to adopt HIE effectively due to their past experience in HIT as explained before.

Our analysis suggests that teaching hospitals could further improve their longer LOS (com-

pared with non-teaching hospitals) and mitigate some of the pressure due to the so-called

crowdedness epidemic by adopting HIE.

With respect to crowdedness, we observe that LOS decreases due to HIE less. Opera-

tions management literature suggests that overloaded clinicians typically spend less time on

non-critical activities. And indeed, our findings suggest that in HIE-carrying hospitals, ED

physicians are apparently unable to utilize HIE as productively when the ED is crowded.

Given that some of the resistance to HIE implementation comes from physicians who sus-

pect that using HIE will disrupt their workflow and make them less productive, especially

when hospital is crowded and physicians are under heavy workload (Rudin et al. 2011),

we believe our finding confirms these worries and suggests that hospital administrators and

HIE providers must focus on making HIE more user friendly and less disruptive.

Our findings regarding patient-related factors suggest that HIE adoption is associated

with shorter LOS for clinically severe and complex patients. This is likely because of

higher information coordination needs among these patients. Capturing how HIE affects

the quality of care is beyond the scope of this study, but based on previous research, we are

inclined to believe that the quality also improves. In particular, past research suggested that

additional information collected via HIT improves the quality of care more significantly in

severe and complex patients. For example, McCullough et al. (2013) studied the impact of

EHR in the inpatient setting on different diagnoses and found that the use of EHR improved

the quality of care only little in average cases but more significantly in severe cases. A

complementary study by Haque (2014) focuses on the impact of EHR on inpatient LOS
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and finds some decrease in LOS for non-complex patients but no decrease in complex

patients. While it is difficult to make a definitive statement on quality implications for the

severe or complex patients, we believe that our research is a critical first step in showing

the differential effect of HIE on LOS depending on patients’ conditions, while highlighting

the need for more focused research in this area.

1.6.2 HIE Use

We do not observe in our data the HIE use for individual ED visits, and we acknowledge

that the actual rates of access may vary. Rudin et al. (2014) in their recent systematic re-

view on HIE document that the HIE access rates mostly ranged from 2% to 10%, a low

rate relative to the need, and highlight that the HIE use may be driven by local context and

implementation factors including the patient’s condition, past utilization, age, comorbidi-

ties, crowdedness, race/ethnicity. To our knowledge, the studies that employed HIE use

data were restricted to typically only one exchange network or just a few hospitals (e.g.,

Overhage et al. 2002, Frisse et al. 2012, Yaraghi et al. 2015, Vest et al. 2014). By con-

sidering adoption, our study only captures the overall effect, similarly to other large scale

HIE evaluation studies (e.g., Jones et al. 2011, Lammers et al. 2014, Vest and Miller 2011).

We also remark that the use relates to the idiosyncrasies of an actual implementation at a

micro level whereas we focus on the relation between the HIE adoption and LOS at a high

level. Assuming that our results are valid and that HIE adoption indeed decreases LOS for

a typical patient, the effect we find would possibly be larger should the use data be avail-

able. Indeed, in Systems Analysis, because we consider hospitals that are part of integrated

health systems which are more likely to be financially incentivized to use the HIE, we ob-

serve higher improvement in LOS consistent with our intuition. (Vest et al. 2013, 2011,

Rudin et al. 2011). While we do not explicitly model HIE use, could be in general inter-

ested in both the frequency of use and in the effect per use, but our analysis will confound

these two quantities, only capturing the overall effect of HIE adoption. However, this is
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similar to other large scale evaluation studies of HIE that have been conducted to the date

(e.g., Jones et al. 2011, Lammers et al. 2014, Vest and Miller 2011). Our research differs

from and complement the HIE use studies in the following senses: 1) previous research re-

ports fairly consistent association between HIE adoption and various forms of quality and

efficiency gains, 2) access rates vary and they are low relative to the potential need (Rudin

et al. 2014), 3) use relates to the idiosyncrasies of an actual implementation at a micro

level whereas we focus on the association between the HIE adoption and LOS at a high

level, and 4) assuming that our results are valid and that HIE adoption indeed decreases

LOS for a typical patient, the effect we find would possibly be larger should the use data be

available. By considering adoption, our study only captures the overall effect as similar to

other large scale HIE evaluation studies. Since we are unaware of any large-scale dataset

with HIE use data available, we see these two types of studies, large-scale on HIE adoption

and small-scale on HIE use, as complementary. Finally, we note that a study with the same

dataset that would have the HIE use information available would find the main HIE coef-

ficient with the same sign but possibly larger (assuming that our results are valid and that

HIE indeed decreases LOS for a typical patient).

1.6.3 Limitations and Future Work

Our study has limitations. First, although our quasi-experimental setup and use of longitu-

dinal data for an entire state provide a strong empirical basis for analysis, and we have done

our best to address endogeneity concerns by using appropriate estimation procedures, one

may still worry if causality has been fully established. Fixed Effects Analysis addresses

endogeneity that would arise due to secular time trends or time-invariant hospital-specific

factors correlated with HIE’s impact on LOS. Instrumental Variable Analysis with hospi-

tal fixed effects further addresses the endogeneity concerns and helps us obtain consistent

estimates. Index Analysis uses strong sub-sample design where the proposed relationship

should hold strongly. Systems Analysis provides a more uniform set of hospitals in the
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treatment and control groups. We believe that these estimation methods and subsample-

based robustness checks help us alleviate any serious concerns regarding the endogeneity.

Second, our calculated LOS corresponded to the sum of the waiting time and the service

time for a patient (Welch et al. 2011). While ideally one would separately consider waiting

and service times to identify the HIE effect on each of these components of the total service

duration, we were not able to separate out the waiting and the treatment durations because

of the way the time logs are coded in our dataset.

Third, while we acknowledge that reduced LOS does not always mean simultaneous

improvement in other metrics (e.g., quality metrics), we unfortunately cannot assess the

impact of HIE on other metrics concurrently with the LOS due to data limitations. Fi-

nally, our definition of crowdedness could be improved by considering the patients who are

eventually admitted. Despite this limitation, our volume estimate used in the crowdedness

definition is a good proxy because treat-and-release patients comprise 81% of all ED visits

(National Center for Health Statistics 2013).

Following Dranove et al. (2014)’s approach we define basic EMR when the hospital

has adopted either of the clinical data repository, clinical decision support, or order en-

try/communication, and advanced EMR when the hospital has adopted one of the more

advanced EMR capabilities such as computerized provider order entry or physician docu-

mentation. Using these definitions, we found that all hospitals in our sample already had

basic EMR, and most of them also already had advanced EMR. Advanced EMR had been

adopted by only few hospitals during our study period. Moreover, only two hospitals out of

63 adopted both advanced EMR and HIE during the study period and none of them did so

in the same year. Excluding the simultaneous adopters from our sample, and reestimation

provides similar insights. Hence, concurrent adoption of EMR technologies does not affect

our findings.
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Patient Choice of ED

Emergency departments might attract more patients by advertising a short waiting time.

This practice seems to emerge around early 2010’s along with national reporting initiatives

(Emerman 2012, Members of the Emergency Medicine Practice Committee 2012). As we

argued in Section 1.4.1 for the instrumental variable, the literature suggests that this was not

the case in 2000’s and this might not have yet been so common in Massachusetts because

of the emergency care is so highly demanded. We could further check that HIE does not

drive (directly or indirectly through changing LOS) patient choices of ED, which could in

turn influence LOS. To do so, we might consider the following model:

log(Volumeh,t) = β0 + β1HIEh,t + β2 log(Volumeh,t−1) + γ1zt + εh,t, (1.1)

where Volumeh,t is volume in hospital h in year t, and the rest is similar as in the Overall

model. We would test whether β1 6= 0, in which case HIE might influence patient volumes

and hence care choices which could be worrisome for our analysis.

Severity and Complexity

Our measures of severity and complexity are indirect and we would like to validate them

using alternative measures. For severity, the ideal measure would be the triage score, but

this one is not available. For complexity, a good measure would be the effort put into

treating a patient. Medicare measures such effort using so-called “relative value units” for

physician procedures. However, counting these for the visit in question might cause endo-

geneity. Therefore, we instead propose the following alternative measure for complexity:

We restrict our attention to the patients with multiple ED visits whose latest visit was not

preceded by another ED visit in the past month (to exclude frequent ED patients). We focus

on their latest visits. For these, we translate their past procedure codes into relative value

units and then average these. This average is then included as an alternative measure of
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complexity. We then compare for this same patient population the coefficient sign for the

analysis using this measure with the sign for the analysis using CCI, we expect these will

go in the same direction.

HIE Implementation and LOS Variability

We could further support the hypothesis of the effect of HIE by studying the variability

of LOS after the HIE implementation. Specifically, we would expect that the variability

of LOS will increase if HIE is being used. The variability would be the result of possible

multiple scenarios when a patient is treated. In addition to care pathways available before

HIE implementation, some patients will have HIE information available, which will lead

to a different LOS (often lower and maybe sometimes higher). Hence, suddenly, even for

patients that would previously had the same distribution of LOS, there are suddenly more

possible distribution, depending on whether and how HIE would be used.

1.7 Conclusions

Our analysis fills an important gap in the literature as it is among the first to study HIE

and operations relationship. While previous HIE research has focused predominantly on

utilization measures, we are not aware of any prior large-scale study that considered the

association between HIE and LOS in the ED setting. As HIE gains critical mass (Adler-

Milstein et al. 2013) and richer sources of data become available, we believe that more work

needs to be conducted at the intersection of HIT and healthcare operations. Our research

may motivate future studies to assess the relationship between HIE and more granular LOS

measures or other operational performance metrics.
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CHAPTER 2

PHYSICIAN INTEGRATION IN BUNDLED PAYMENTS

The U.S. healthcare system suffers from poor coordination, large inefficiencies, and mis-

aligned incentives. As a result, the healthcare system in the U.S. incurs high costs and

often delivers low quality of care compared with many other developed countries (Davis

et al. 2014). The U.S. healthcare spending is estimated to range from 3 to 4 trillion dollars

(Patel 2016), of which about one third was being wasted (Berwick and Hackbarth 2012).

From an efficiency standpoint, new payment models are viewed as important tools in re-

ducing the overall healthcare costs and improving quality. However, while promising in

value, many of the new payment models are unproven and the true impact on providers and

overall healthcare system is yet to be seen. Therefore, understanding the financial incen-

tives of providers and characterizing conditions that are essential for achieving the aimed

objectives of these new payment models is critical (Schoen 2016).

The U.S. healthcare system generally uses separate methods for reimbursing hospitals

and physicians for the services they provide. Typically, hospitals receive a fixed payment

per visit specific to a standardized grouping of diseases, called the diagnosis-related group

(DRG)-based prospective payment model. In contrast, physician payments are made on a

fee-for-service (FFS) basis where physicians are reimbursed separately for every service

provided and procedures performed around the visit. In the remainder of this chapter, we

will refer to the DRG-based prospective payments for hospitals and FFS-based payments

for physicians services together as the FFS model, as widely done in the literature (Me-

chanic and Altman 2009, McClellan 2011). As a result of this disparate payment setup,

incentives of hospitals and physicians are misaligned. The hospital can be financially bet-

ter off by eliminating services to reduce costs, while the physicians can be financially better

off by increasing the number of services. The overuse of medical services is associated
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with higher costs, while there continues to be a heated debate on whether the resulting

quality is better or worse (Fisher et al. 2003, Grady and Redberg 2010). Under such mis-

aligned incentives, physicians and hospitals often fail to coordinate care and subsequently

forego opportunities to improve quality and decrease costs (Mehrotra and Hussey 2015).

To better align the incentives, the Center for Medicare and Medicaid Services (CMS),

the largest payer of healthcare services in the U.S., introduced bundled payments, which

aims to combine hospital and physician reimbursements for an entire episode of care into

one payment. For example, for an episode of knee surgery, the payer pays a fixed, bundled

amount to the hospital (or “convener”) to cover all related services and procedures, includ-

ing tests, treatments, as well as physician fees. Such a “bundle” typically includes fees

of the surgeon, the anesthesiologist, the hospital, and the costs of rehabilitation, implants,

and other medical devices. The hospital bears the financial risk due to uncertainty in the

costs incurred during the episode and is also responsible for coordinating and reimbursing

the physicians. In return, the hospital may keep any savings or share these with physi-

cians using gainsharing, a mechanism that allows hospitals to induce physicians to make

cost-conscious decisions in alignment with hospital’s incentives, which is not allowed in

FFS-based models (Froimson et al. 2013).

Bundled payments offer some opportunities in improving healthcare services and de-

livery. The bundling of payments is expected to realign the incentives for hospital and

physicians, misalignment of which is currently plaguing the healthcare industry. Engaging

physicians in containing hospital costs could mitigate the overuse problem, and therefore

help in reducing the excessive healthcare costs. In addition, by eliminating one of the

two separate billing systems, one for hospital payment and one for physician payment, the

lump sum payments to involved parties could also decrease the high administrative costs,

currently accounting for a quarter of all hospital spending (Mehrotra and Hussey 2015).

However, despite their promise of improved efficiency, bundled payments are often

resisted by the physicians, which typically deters hospitals from more widely enrolling

51



in bundled payments (Tsai et al. 2015). Physicians resist because they believe bundled

payments may encroach on their autonomy, constrain how they practice medicine, and

possibly reduce their profits, which is why physicians have been previously excluded from

the hospital DRG-based payments in FFS models (Mehrotra and Hussey 2015).

Hospitals differ in their relationships with physicians in influencing care (typically re-

ferred to as level of alignment or level of integration in care coordination), and subsequently

in their influence on care intensity. Some hospitals constrain physicians by developing care

protocols thus substantially limiting physician autonomy while other hospitals leave most

treatment decisions completely to physicians (Burns and Muller 2008). For example, inte-

grated hospital systems and larger hospitals typically have more standardized care proto-

cols as well as more aligned physicians (Bloom et al. 2013). On the other hand, stand-alone

nonprofit hospitals are de facto physician-controlled, and therefore the management in such

hospitals may find it difficult to restrain physicians’ excessive treatment choices (Pauly and

Redisch 1973, Sloan 2000). The hospital’s capability to influence physician’s care inten-

sity, which we henceforth refer to as physician alignment, determines the cost and quality

of care. While bundled payments are expected to promote cost reduction, it remains un-

clear whether they are suitable for all hospitals or only for certain types of hospitals in the

spectrum of alignment levels.

Because the interest in bundled payments has reemerged only recently with a perceived

commitment from the CMS for implementing them, there has been an increasing interest in

the subject by the Operations Management (OM) researchers. Gupta and Mehrotra (2014)

take the payer’s perspective and examine how bundled payment contracts that providers

propose should be selected by CMS, the major bundled payments contractor. On the other

hand, Adida et al. (2016) consider how contending healthcare payment models (including

bundled payments) appear from the perspective of a single integrated risk-averse provider

and how the models impact patient selection, intensity of care, and the system payoff. A pa-

per by Andritsos and Tang (2018) compares how readmissions occur under fee-for-service,
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pay for performance, and bundled payments. Finally, Han et al. (2017) consider the strate-

gic interaction of hospitals when determining care quality under bundled payments. While

we also consider bundled payments, our focus is very different than the above mentioned

studies. In particular, we study the interaction between the hospital and physician and focus

on the implications of this interaction on bundling decisions and corresponding outcomes.

Considering the role that physicians play in determining the financial bottom line of hos-

pitals and the idiosyncrasies of hospital-physician relations that we discussed earlier, our

work makes the first attempt in healthcare operations literature to study the interdependency

between hospitals and physicians, the resulting trade-offs, and the obstacles for setting up

a bundled payment model for the payers.

Our findings suggest the following. First, in regards to who will benefit and who will

lose in a bundled payment environment, we confirm the experts’ expectation that hospitals

with very loosely aligned physicians would not benefit from bundling and be better off

under FFS. However, somewhat unexpectedly, we also find that the hospitals with highly-

aligned physicians in general are less likely to benefit as well; and that those hospitals

which lie in between these two cases in the spectrum of alignment levels will benefit the

most (Theorem 2.2.1 and Proposition 2.2.2). Second, in regards to quality implications

of bundling, we characterize hospital care contexts where the quality will deteriorate un-

der bundled payments (Proposition 2.2.3). We demonstrate how the payer can employ

quality constraints to prevent the quality from decreasing excessively and, we find that

FFS can sometimes be the better choice when the payer worries about quality (Theorem

2.2.2). Further, we show that quality initiatives that motivate hospitals to safeguard quality,

such as the ongoing Hospital Readmissions Reduction Program, might actually demoti-

vate hospitals from adopting bundled payments (Corollary 2.4.1). Finally, we extend our

model to capture a setting where physicians are hospital employees (salaried physicians),

as opposed to being paid for care services independently from hospitals—a specific case of

highly aligned physicians. We find that initiatives that further hospitals’ accountability for
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care quality may dampen the incentives for bundling in hospitals with independent physi-

cians, whereas they are likely to enhance incentives for bundling in hospitals with salaried

physicians.(Proposition 2.4.2 vs. Corollary 2.4.1).

The rest of this chapter is organized as follows. In Section 2.1, we introduce some key

concepts that will be present throughout the paper and also review the relevant literature.

In Section 2.2, we introduce and analyze our Initial model. In Section 2.3, we discuss

a “Coproduction” model suggested by one of our reviewers. The Coproduction model

includes quality awareness from both the hospital and the physicians, and, in contrast to

the Initial model, it includes “observable” transfer payments, not dependent on unobserved

efforts. Next, we extend the Initial model in Section 2.4 to consider a Quality-aware model,

a model with salaried physicians (“Salary model“), a model with explicit modeling for risk

aversion, and finally a Physician-driven model where physicians control care. In Section

2.5, using real data, we present a data-driven approach to construct clinical pathways, a key

concept in our analysis. Finally, we summarize and conclude in Section 2.6.

2.1 Background

In this section, we provide background information, summarize some of the key concepts

related to bundled payments, and review related literature.

2.1.1 Current Bundling Initiatives by the CMS

Currently, there are several BP initiatives, which differ mainly with respect to how they are

implemented. The oldest of these initiatives, the “Bundled Payments for Care Improve-

ment” (BPCI) program, is the largest one among the existing BP initiatives and is based

on voluntary participation. More specifically, the BPCI allows providers to apply volun-

tarily for bundling in any or all of 48 designated conditions (DRGs, such as major joint

replacement of the lower extremity, acute myocardial infarction, congestive heart failure,

or simple pneumonia and respiratory infections). The BPCI program involves four sub-
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models: BPCI Models 1–4 vary primarily with respect to being prospective or retrospec-

tive and inclusion or exclusion of post-acute care in addition to acute care services. Under

retrospective models, providers operate financially in the same way as in FFS, but the bud-

gets are reconciled against a virtual BP setup after each accounting period; while under

prospective models, providers are paid directly through a bundled payment, not just virtu-

ally through a reconciliation process. Another relatively less common and mandatory BP

program called “Comprehensive Care for Joint Replacement (CCJR)” builds upon BPCI

Model 2 and only applies to joint replacement DRGs in select metropolitan areas. More

recently, the CMS has introduced BPCI Advanced, a program mostly similar to BPCI with

some minor differences. Most notably, in BPCI Advanced, program requirements have

been further simplified with the elimination of alternative options, i.e. unlike regular BPCI,

BPCI Advanced does not have sub-models. As of writing this manuscript, the CMS con-

tinues to actively experiment with alternative models with variations in implementation

details, and it is possible to see new models forthcoming in the near future. However, de-

spite all their differences in implementation details, it would be fair to say that all of these

BP models share some common features that make it possible to analyze BPs at a broader

level from an incentive alignment perspective. In the following, we summarize and discuss

these general features that are critical from an incentive alignment perspective.

2.1.2 Common Features of Bundling Initiatives

The overarching feature of the existing bundled payment models is the move to a system

where the payer provides a single fixed payment for an episode of care around a DRG

(e.g., knee surgery); in the status quo, hospitals are paid a fixed amount on a prospective

basis (i.e., DRG) while physicians are paid based on the intensity of care provided (i.e.,

all the services provided). Under BP, a “convener” such as the hospital is responsible for

distributing the payments to involved parties. Typically, the convener continues to pay the

physicians based on delivered intensity. However, unlike FFS, physicians may be paid extra
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in BP based on savings achieved, a mechanism called gainsharing, which is disallowed

under the status quo. Indeed, gainsharing is a common and critical feature in all bundled

payment initiatives, and hence, we further describe this mechanism in greater detail next.

Gainsharing has long been promoted by experts for aligning hospitals and physicians

(Wilensky et al. 2007, Grandusky and Kronenberg 2006). Through gainsharing, hospitals

reward physicians for the savings realized when physicians use more standardized supplies,

choose cheaper devices when appropriate, and, more generally, help reduce unnecessary

utilization. In contrast, under the standard FFS model, the physicians often lack incen-

tives to decrease the utilization; indeed, a higher utilization means larger financial gains for

them. Despite its promise, both the CMS and related legislation such as the Stark Laws

and the Civil Monetary Penalties Law have prohibited or discouraged gainsharing in the

past because of antitrust concerns. Recently, the CMS authorized limited use of gainshar-

ing (limited for example by capping the payments and placing constraints on quality) in

demonstration initiatives for BP (Froimson et al. 2013).

While there are many different ways to implement gainsharing between the hospital and

physicians, these contracts are unfortunately often proprietary. However, the publicly avail-

able records from BPCI participants suggest that gainsharing is almost universally prevalent

when physicians are involved (Dummit et al. 2015) and that the gainsharing mechanisms

were setup to reward physicians for realized efficiencies with respect to care intensity. The

conceptualization of gainsharing in our models was chosen to reflect these realities.

2.1.3 Motivating Example: Bundling Coronary Artery Bypass Grafting at the Maine

Heart Center

We present an example that motivated our models, based on the presentation by the Maine

Heart Center and their coronary artery bypass grafting (CABG) bundling (Cutler and Seekins

2014). Their bundled payments are based on the BPCI Model 2, which covers the acute

hospital stay and post-acute care. Next, we describe some of the salient features in their
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bundled payment program. They describe four care pathways that encompaas different

modes of post-acute care: 1) home health agency, 2) skilled nursing facility (SNF), 3)

home (no further care), or 4) inpatient rehabilitation. Most of their CABG episodes costs

are evenly distributed between $20000 and $50000, but several ”outlier” episodes involv-

ing a readmission or prolonged inpatient rehabiliation incur much higher costs. The BPCI

contract is with CMS, so it outlines certain minimum quality requirements. The CMS also

requires a 2% discount compared to the pre-bundled payments FFS period.

They also describe how they redesigned their care, including changes to care pathways.

First, they standardized and streamlined their home health and SNF pathways, which re-

duced costs. Next, they focused on reducing readmissions, to improve quality and also

decrease costs. Finally, they critically inspected the home health pathway and moved pa-

tients who did not needed to the home pathway. Notably, since BPCI Model 2 assumes

”retrospective bundled payment”, the center did not have to make substantial infrastructure

or IT investments.

2.1.4 Retrospective vs. Prospective Bundling

To date, bundled contracts have been mostly retrospective, that is, all providers continue to

receive individual FFS payments based on their standard reimbursement rates. Under this

model, at the end of the year, CMS (payer) compares the total reimbursed amount with the

pre-established, discounted bundle price (benchmark). If the providers succeeded in care

redesign, and the amount spent is less than the benchmark, CMS pays the difference to the

providers. Otherwise, the providers have to repay CMS. Since the retrospective payments

allow providers to experiment with bundling without substantially changing their existing

operations, retrospectively paying the FFS rate under bundled payments has been the de-

fault, and by far the most common among the nt bundled payment models (CMS 2014,

Dummit et al. 2015). As such, we consider and focus on retrospective models in this study.

On the other hand, under a prospective bundling model, the hospital receives a single, lump
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sum payment from CMS and then distributes the payment among all the providers involved

in the episode of care. Clearly, implementing a prospective bundling model is more costly

to set up; therefore compared with the retrospective models, prospective models have been

less common so far.

2.1.5 Key Drivers

Healthcare administrators, experts, and analysts suggest several key drivers affecting provider’s

decision to engage in bundled payments for a given care episode (i.e. an ”extended DRG”).

While we do not model all of them, we list them here for future reference and research. An

oft-cited deterrent of bundling for hospitals and physicians are the initial investment costs.

These include new information and accounting systems, advancements in cost measure-

ment, and defining care episodes. However, retrospective bundled payments do not require

much of these and be typically set up without large upfront costs. Additionally, hospitals

also face a require 3-3.5% discount to CMS compared to the current practice.

Despite these drawbacks, some hospitals still seek out bundled payment opportunities.

First, they see it as an opportunity to learn for the future of healthcare, the future with new

payment models. Even CMS notes that “competencies learned in bundled payment position

physicians for success in value-based contracting,” and that bundled payments provide an

“opportunity to work and learn from others nationally and receive data.” Indeed, CMS

offers the hospital claims information that they could not access otherwise. Furthermore,

bundled payments need not be sudden: CMS offers a trial period (“Phase 1”) when it shares

claims with providers, so that they can learn the true cost of their operations, but they do

not suffer from any cost implications if they exceed the budget.

However, the hospitals that eventually decide to participate in the bundled payments are

challenged in other ways. First, in contrast to fee-for-service, the hospital actually bears

the consequences of cost variation throughout the episode, having to hedge against outlier

patients. In fact, American Hospital Association (2013) suggest that “episode types should
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be selected that have enough variation to provide opportunities for cost reduction, but not

so much variation as to pose excessive risk to the organization.” Related to the cost vari-

ation is the question of patient volume: the higher the volume, the lower variation in the

mean hospital profit. Vice versa, small hospitals do not hazard entering bundled payment

contracts because they face formidable episode cost variation. Furthermore, hospitals need

high patient volume is important to amortize the startup and administrative costs of devel-

oping and implementing the bundles (Ridgely et al. 2014). To further motivate hospitals

to bundle, some propose that hospitals should be rewarded by increased patient volumes

(i.e., market share), either from payers or patients (if payers motivate them, for example

by a promise of lower copays or better quality). In addition to cost variation, hospitals

must be wary of quality implications. In fact, the contract with CMS stipulates minimal

requirements on bundle quality. For instance, some participants in BPCI Models 2 and 3

are required to track B-CARE measures and, if they choose so, other measures as well.

For hospitals and physicians alike, bundling may also interact with other pay-for-

performance initiatives. For instance, for readmissions (the HRRP program), high read-

mission rates for certain conditions lead to cuts in CMS reimbursements for all conditions.

Furthermore, hospitals may worry about their reputation tarnished by being on the list of

penalized hospitals. Notably, all the conditions currently subject to HRRP are high-volume,

so potentially good bundling targets. As another example of a pay-for-performance initia-

tive, the value-based payment (VBP) program monitors several different quality measures

across all conditions and again, the adjustments apply to all CMS reimbursements.

Finally but very importantly, bundled payments impose on hospitals a coordination

problem (Ridgely et al. 2014). Specifically, on the provider side, bundled payments require

involvement of several different providers, including hospitals and physicians. Notably,

about a half of the BPCI Model 4 initiatives are centered around a convening organization

other than a hospital. And in fact, according to Hussey et al. (2012), most bundled-payment

initiatives so far faced a resistance from providers.
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2.1.6 Relevant Literature

Here, we describe the relevant literature, namely OM literature, health economics litera-

ture on care coordination among providers and medical and health policy literature on the

expectations and organizational perspectives about bundled payments.

Payment Models in Operations Literature

Recent Operations Management (OM) literature explored various aspects of payment mod-

els in the healthcare context. Ata et al. (2013) investigate how existing CMS policies for

hospice reimbursement tie to providers’ patient selection decisions, and they propose an

improvement over the current policy. Several studies investigate the role of performance-

based payment models in various contexts. Taking a social planner’s perspective, Lee and

Zenios (2012) find the socially optimal decisions in regards to implementing payment poli-

cies based on process compliance vs. outcomes for the End-Stage Renal Disease (ESRD)

patients. In a principal-agent framework, Jiang et al. (2012) propose a penalty-based con-

tract for coordinating providers’ capacity allocation decisions to ensure timely access to

outpatient services while Zhang et al. (2016) study readmission penalties implemented un-

der the Hospital Readmissions Reduction Program and show the unintended consequences

of benchmarking when setting the penalty thresholds.

Because the interest in bundled payments has reemerged only recently with a perceived

commitment from the CMS to implement them, there has been an increasing interest in

the subject by the OM researchers. Gupta and Mehrotra (2014) take the payer’s perspec-

tive and examine how bundled payment contracts that providers propose should be selected

by CMS, the major bundled payments contractor. On the other hand, Adida et al. (2016)

consider how contending healthcare payment models (including bundled payments) appear

from the perspective of a single integrated risk-averse provider and how the models impact

patient selection, intensity of care, and the system payoff. A working paper by Andritsos

and Tang (2018) compares how readmissions occur under fee-for-service, pay for perfor-
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mance, and bundled payments. Finally, Han et al. (2017) consider the strategic interaction

of hospitals when determining care quality under bundled payments. While we also con-

sider bundled payments, our focus is very different than the above mentioned studies. In

particular, we study the interaction between the hospital and physicians and focus on the

implications of the level of integration on bundling decisions and corresponding outcomes.

Considering the role that physicians play in determining the financial outcomes of hospitals

and the idiosyncrasies of hospital-physician relations that we discussed earlier, our work

makes the first attempt in healthcare operations literature to study the interdependence be-

tween hospitals and physicians, the resulting trade-offs, and the obstacles for setting up a

bundled payment model for the payers.

Health Economics Literature

In the health economics literature, several papers study care coordination among providers.

While these studies are relevant to ours from a modeling perspective, our work is distinct

as we explore when bundling occurs and what is needed for care coordination, and discover

how the hospital and the physicians are likely to react to the most recent bundled payment

initiatives. Harris (1977) provides a modeling framework to study incentive relationships

and interactions between hospital management and physicians. Ma (1994) wrote a semi-

nal paper that theoretically models care delivery coordination by hospitals and physicians,

which also partially motivates our model setup. Crainich et al. (2008) extend this work

by incorporating features from international health systems. Custer et al. (1990) propose

a model of how physicians react to the Prospective Payment System (implemented in the

80s), and how this affects the hospital under several different modes of hospital-physician

coordination. Boadway et al. (2004) model the two-way contracts among doctors, hospi-

tals, and a social planner where the purpose of the contracts is to address the inefficien-

cies due to information asymmetry around patient severity. Huang and McCarthy (2015)

explore how coordination between the hospital and physicians changes as the insurance
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market shifts.

While relevant from a modeling perspective, all of these studies are concerned with

prior payment mechanisms and are not directly applicable to current bundled payment

models. In this regard, two studies published in the 1990s and 2000s in the wake of ear-

lier bundled payment discussions are relevant to our work. The first one by Jelovac and

Macho-Stadler (2002) focuses on the payer’s problem in terms of the contract design with

the hospital and the physicians. The second one, a short note by Dor and Watson (1995),

examines the coordinating split of a bundled fee for an efficient outcome. The authors con-

clude that there is a clear need for investigating i) the role of varying hospital-physician

alignment in bundling decisions, ii) the efficiency implications of quality contracts when

offered alongside bundling, which, in some sense, motivate our work.

Medical and Health Policy Literature

Bundled payments as an alternative to FFS have for long interested health-policy researchers.

While most of this literature is qualitative, we summarize the relevant findings concerning

bundled payment models and physician-hospital relationships.

Bundled Payments and Expectations Bundled payments are expected to better control

care intensity (utilization), encourage high quality, promote provider coordination and inte-

gration but can be readily implemented (Mechanic and Altman 2009). These expectations

are largely speculative. For instance, Hussey et al. (2012) conduct a thorough literature

review and find that almost all existing work were observational or descriptive. The study

reports a consistent drop in intensity with ambiguous quality impact among the reviewed

articles, however, the body of evidence was rated as low due to concerns about bias, con-

founding, a lack of design and contextual factors.

Another stream of research addresses questions around how to form bundles. For in-

stance, Dobson et al. (2012) analyze historical Medicare claims data and provide widely-
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cited guidelines on how to define, price, and manage a bundle. Sood et al. (2011) review

the existing evidence and focus on which conditions to choose for bundling and how to

choose the bundle episode length. Ridgely et al. (2014) describe an unsuccessful bundled

payments initiative, Prometheus in California, to inform future bundled payments initia-

tives. Finally, many studies from physician communities discuss how bundled payments

will affect the physicians and how physicians should react (e.g., Bozic et al. 2014, Shih

et al. 2015, Mukherji and Fockler 2014, Brill et al. 2014).

Bundled Payments and Organizational Perspectives Health policy studies also explore

how new payment models relate to physician-hospital relationships. The new payment

models are expected to further encourage ongoing provider integration (Mechanic and Alt-

man 2009). Gaynor and Town (2012) review the effects of such consolidation under the

employment model, while Casalino et al. (2008) and Berenson et al. (2007) highlight the

rise of physician-owned facilities, particularly ambulatory surgery centers and physician-

owned hospitals that directly compete with traditional hospitals. Friedberg et al. (2015)

survey physician practices about how they perceive and worry about new payment models.

They find that the new payment models may induce some physicians to more closely col-

laborate with hospitals, force them to face higher expectations, but possibly also provide

them with opportunities to improve care quality.

Bundling in other industries The concept of “bundling” exists in industries outside of

healthcare, but the concept has a somewhat different meaning. In healthcare, bundling

embodies essentially two ideas: 1) price transparency and 2) a healthcare procedure as a

well-defined product (e.g., a surgery with all related services included and with a warranty).

It is uncommon for patients to want to buy the components of the bundle separately (e.g.,

spend three days in a nursing home without having the surgery first). In contrast, tradition-

ally, bundling refers to deciding how to combine and sell several independent products as a

larger “product bundle” (Venkatesh and Mahajan 2009), often with the purpose of charging
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customers more. However, the components of the bundle are in principal independent, and

customers might legitimately want to buy them separately. Interestingly, there is a setting

in healthcare that bundles in this more traditional sense, so-called group purchasing.

2.2 Initial Model

As discussed earlier, under the prevailing FFS model, physician and hospital incentives do

not align well, which leads to inefficiencies in the care delivery. The potential success of

bundling, on the other hand, is argued to depend on the cooperation between the hospital

and physicians in cost reduction and quality improvement efforts (Mechanic and Altman

2009). Our Initial model studies the incentive alignment problem between the hospital and

physicians, and analyzes, in the spectrum of level of alignment/integration, when bundling

becomes attractive for both parties. The model captures main dynamics of the coordination

problem by considering index admissions1 in hospitals with non-salaried physicians, where

the hospital is profit-driven and quality of care is predominantly determined by physician

efforts. Later, we extend the Initial model to capture cases where a) the hospital is also cog-

nizant of quality in addition to being profit-driven and the readmissions are also accounted

for (Section 2.4.1), and b) physicians are salaried employees of the hospital (Section 2.4.2).

Without loss of generality, we build our model around payments made for a single med-

ical condition such as knee-replacement, characterized by a DRG categorization. For ex-

ample, a patient with “major joint replacement or reattachment of lower extremity without

major complications” will be assigned DRG 470 and another patient with “simple pneu-

monia and pleurisy without complications” will be assigned DRG 195 for billing purposes.

Under the FFS model, once the care is complete, the hospital will receive predetermined

amounts for the respective DRGs regardless of the costs for treating the patient; whereas

physician is paid separately for each service he provides. Bundled payments, on the other

hand, brings the hospitals and phsycian payments together, by paying a single lump-sum

1Index admission corresponds to the initial admission in a care episode.
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amount for a given DRG (e.g., 470-knee replacement), which is then shared between the

hospital and physician.

Table 2.1 summarizes the variables that appear in the Initial model. Next, we describe

the key model components.

Table 2.1: List of symbols in the Initial model

r1,p, r2,p Physician reimbursement for pathway 1, 2.
c1, c2 Per-patient costs for inpatient, acute pathway 1, 2.
∆c Cost differential for hospital ∆c = c1 − c2.
∆rp Revenue (reimbursement) differential for physicians: ∆rp = r1,p − r2,p.
I = I(ih, ip) ∈ [0, 1] The intensity of care, capturing fraction of patients assigned to the more expensive pathway.
I0 Optimal value of I that maximizes care quality outcomes.
ih ∈ [0, 1] Hospital influencing effort (toward the cheaper pathway).
ip ∈ [0, 1] Physician influencing effort (toward the costlier pathway); between 0 and 1.
Ψ ∈ (0, 1) Physician alignment coefficient.
T Gainsharing amount (relative to physician’s effort).
rh Hospital reimbursement under FFS.
F FFS
h , F FFS

p , FBP
h , FBP

p Per-patient objective functions for the hospital/physicians under FFS/BP.
wb Physician benevolence coefficient.
x∗, x] A solution feature under FFS, respectively bundled payments (x can be any symbol).
rFFS Total payment from the payer under FFS.
rBP Total payment from the payer under bundled payments.
R0 Baseline readmission rate.
c′1, c

′
2, cΩ Per-patient costs for post-acute pathway 1, 2, and for a readmission respectively.

ιp, ιh Physicians’, respectively the hospital’s best response functions.

A key feature in our analysis is the concept of a clinical pathway, which represents

the set of medical procedures a patient in a given DRG category follows, including di-

agnostic tests, medications, and consultations, conducted during care delivery (De Bleser

et al. 2006). In practice, when providers treat a condition, they often vary in terms of the

clinical pathways chosen, resulting in different ranges of costs and health outcomes. Un-

der FFS, because each service is billed for separately, hospitals and physicians tend to not

worry much about identifying and coordinating on a common clinical pathway. In con-

trast, because cost accounting is a bigger concern under bundled payments, hospitals and

physicians need to better understand their common clinical pathways and identify the most

cost-effective ones.

For any given condition, without loss of generality, we consider two pathways, one

being more intensive (and costly), and the other one being less intensive (and cheaper).

For the ease of interpretation, we assume that the costlier pathway is a superset of the

cheaper pathway, with more procedures performed. The corresponding costs to the hos-
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pital for these pathways are respectively captured by c1, and c2, where c1 > c2, and the

corresponding reimbursements to the physician are respectively captured by r1,p, and r2,p,

where r1,p > r2,p. We denote the payments to the hospital under FFS using rh. Lastly,

we remark that physician costs are not directly related to care intensity (Weiss 2003), and

hence are not included in the analysis.

For each DRG, there is a level of care intensity, I0 ∈ [0, 1] that corresponds to the “best”

clinical outcome from the “patient perspective” without cost concerns. In what follows, we

refer to I0 simply as “quality-maximizing” intensity. I0 then captures the fraction of pa-

tients that should be assigned to the more expensive pathway when financial considerations

are put aside, and the only objective is to maximize outcomes from patients’ perspective

(e.g., I0 = 0.65 for a specific DRG implies when the objective is to maximize care quality,

65% of patients should follow the more intense and costlier pathway). Typically, optimal

patient outcomes are achieved at an interior point of the support [0, 1] for care intensity, be-

cause both overtreatment and undertreatment lead to suboptimal patient outcomes (Fisher

et al. 2003, Doyle et al. 2015). The practiced level of care intensity, I , however often devi-

ates from the optimal level of care intensity. In particular, given that the hospital is paid a

fixed DRG-based rate under the FFS, it may try to reduce the cost by influencing physician

practices through various means such as care protocols to reduce the intensity.2 In contrast

to the hospitals, the physician aims to increase the intensity in order to provide appropriate

quality of care and sometimes to also increase their profit margin. As such, similar to the

established literature in health economics and policy (Dor and Watson 1995, Jelovac and

Macho-Stadler 2002, Crainich et al. 2008), we model the practiced care intensity, I , to be

jointly produced by the hospital and physicians as follows:

I(ih, ip) := (1− ih)Ψ + (1−Ψ)ip, (2.1)

2Such hospital-driven intensity reduction was observed during the transition to the DRG-based system
in the 80s from the cost-based reimbursement, where hospitals were paid based on average cost of a patient
per-diem and the length of stay. At that time, hospitals were able to reduce the average length of stay for
non-surgical patients from 9.4 days to 7.2 days within only a few years (Altman 2012).
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where intensity I represents the practiced level of care intensity and captures the fraction

of patients assigned to the more expensive pathway, ih ∈ [0, 1] represents the physician

influencing effort, ip ∈ [0, 1] is the hospital influencing effort, and Ψ ∈ (0, 1) is the physi-

cian alignment coefficient. Physician alignment (also referred to as physician integration)

is a well-established and widely studied concept in medical and health economics liter-

ature, and is defined as the degree to which physicians share the same mission, vision,

and objectives with their hospital systems and work toward their success (Shortell et al.

2001, Ma 1994, Huang and McCarthy 2015). Empirical research has found that physicians

within large group practices, those physicians that receive a stipend, and older physicians3

in general have higher alignment level with the hospital (Shortell et al. 2001).

2.2.1 Fee-for-service (FFS) Payment Model and Analysis

In the Initial model, we assume the hospital’s objective is to reduce costs and increase its

profits while the physicians weigh both their monetary benefits and the patient’s interest as

captured by the quality of care. This dichotomy in physician’s behavior between monetary

benefits and some measure of benevolence, altruism, or professionalism is well established

and is used widely in the health economics literature (e.g., Ellis and McGuire 1986), and

is captured by the physician benevolence coefficient wb in our analysis. We model FFS

case, the status quo, as a Nash equilibrium of a single-stage game where hospital and

physician simultaneously choose their effort levels. The utility functions for the hospital

and physician are characterized as:

F FFS
h = rh − c1I(ih, ip)− c2(1− I(ih, ip))

F FFS
p = −wb(I(ih, ip)− I0)2 + r1,pI(ih, ip) + r2,p(1− I(ih, ip)).

(2.2)

3The authors of the conducted empirical work argue that this is perhaps due to lower level of competi-
tiveness and fewer available alternatives older physicians have, given that they are at the later stages of their
career.
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We remark that F FFS
h and F FFS

p respectively represent the average per-patient utility for

the hospital and physician. Under FFS, the hospital receives a single DRG-based payment,

rh, and incurs costs due to patients receiving care via either the costly or cheaper pathway.

In contrast, the physician receives pathway-dependent payments and incurs disutility due

to any deviation from the optimal care intensity. The following lemma characterizes the

physician preference if the care intensity is solely determined by her.

Lemma 2.2.1. Under FFS, the physician’s utility function is maximized when the level of

care intensity I is equal to I0 + ∆rp
2wb

.

The above lemma shows that, under FFS, the physician prefers to increase the care in-

tensity beyond the optimal care intensity, I0, by the benevolence-adjusted financial motives,

∆rp
2wb

, when the hospital has no influence on the care intensity. As expected, the financial

motives, measured by the physician payment/revenue differential between the costly and

cheaper pathways, ∆rp, increases the extent of deviation while the benevolence factor,

wb, decreases the extent of deviation from the optimal care intensity. Next, we present an

intuitive but helpful result, which states that the optimal intensity under FFS (i.e., status

quo) is inversely related to the physician alignment. That is, the higher the alignment, the

lower the intensity (i.e., more patients will follow the cheaper pathway). Let I∗ denote the

equilibrium intensity under FFS, then the following lemma provides an upper bound for I∗.

Lemma 2.2.2. The equilibrium intensity under FFS is bounded from above by 1−Ψ, that

is

I∗ ≤ 1−Ψ. (2.3)

Lemma 2.2.1 and 2.2.2 together imply that, under FFS, physicians would be inclined to

set the optimal intensity level to I0 + ∆rp
2wb

, whenever they can; however, when physicians

are highly aligned with the hospital, the level of alignment dominates the physicians’ finan-
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cial incentives to set the intensity at the benevolence-adjusted level, hence the equilibrium

intensity would be bounded by 1−Ψ.

In the following result, we fully characterize the optimal intensity under FFS as a func-

tion of the physician alignment level, Ψ. In particular, we show that in hospitals with

non-salaried physicians, where physician alignment is lower than a certain threshold, Ψ̄,

the equilibrium intensity under FFS is driven by the physicians only and is set to the max-

imizing value of the physician utility function, I0 + ∆rp
2wb

. On the other hand, in hospitals

where physician alignment is higher than this threshold Ψ̄, physician utility maximizing

intensity, I0 + ∆rp
2wb

, becomes larger than the maximum intensity level, 1 − Ψ (by Lemma

2.2.2), and hence the intensity level is set to its maximum value, 1 − Ψ. We define this

threshold value Ψ̄ in the lemma below, and throughout the remainder of this paper, we refer

to those hospitals with Ψ > Ψ̄ (Ψ < Ψ̄) as hospitals with high (low) physician alignment.

Lemma 2.2.3 (Status-quo intensity). The equilibrium intensity under FFS, I∗, is given by

I∗ =


I0 + ∆rp

2wb
if Ψ ≤ Ψ̄

1−Ψ otherwise

where

Ψ̄ := 1− I0 −
∆rp
2wb

(2.4)

2.2.2 Bundled Payment Model and Analysis

In line with the commonly practiced retrospective bundled payments models, we assume

that the hospital is initially operating under FFS. The hospital is then offered bundled pay-

ments, under which the hospital is allowed to reward the physicians for cooperating with

the hospital for cost reductions through a gainsharing contract. In studying the equilibrium

under the bundled setting, we consider a two-stage game, where the hospital first offers a
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gainsharing contract to the physicians and sets its effort, and then, in response, the physi-

cians choose their effort. We derive the subgame perfect Nash equilibrium using backward

induction.

While under FFS, the hospital and physicians are paid separately, under bundled pay-

ments, the hospital (or its parent health system) is responsible as the “convener” to receive

and distribute the payment. The total payment under BP, which is paid to the hospital and is

shared with physicians, is captured by rBP. We note that rBP accounts for all the costs from

the services included in the bundle, in addition to hospital payment. In line with the retro-

spective bundled payment practice, we assume that the hospital reimburses the physicians

at the FFS rates, but the hospital can now also pay an additional gainsharing amount that is

proportional to the physicians’ influencing effort toward the cheaper pathway, i.e, (1−ip)T ,

to the physicians to incentivize them to reduce costs by reducing intensity. Hence, the de-

cision variables are ih and T (gainsharing) for the hospital and ip for the physicians. Then,

the hospital’s and physician’s utility functions under the bundled payments become:

F BP
h = rBP − (c1 + r1,p)I(ih, ip)− (c2 + r2,p)(1− I(ih, ip))− (1− ip)T

F BP
p = −wb(I(ih, ip)− I0)2 + r1,pI(ih, ip) + r2,p(1− I(ih, ip)) + (1− ip)T.

(2.5)

Bundling will occur if each of the stakeholders—the physicians, the hospital, and the

payer—has higher payoffs, compared with FFS. Clearly, in order for the hospital not to

lose compared with the FFS, the total payments to the physicians under bundled payments

should not be too high, and the overall payment to the hospital from the payer under bun-

dled payments, rBP, should not be too small. This means that in addition to rBP being less

than rFFS (the total payment from the payer under FFS, including hospital and physician

reimbursements), the difference should not be too high in absolute terms. As we study

the effect of hospital-physician alignment on bundled payments in this paper, we state

this payer-relevant condition4 as an assumption below and characterize the hospital and

4Note that if this condition is not satisfied, that is, if the payment by the paper under BP is too small, then,
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physician-related conditions for bundling in Theorem 2.2.1.

Assumption 2.2.1. rFFS − rBP is not too large; specifically

0 <rFFS − rBP ≤



(∆c+ ∆rp)(1− I0 −Ψ)− 1

2wb
·
[

T 2

(1−Ψ)2

− T

(1−Ψ)
(∆c+ 2∆rp − 2wb(1− I0 −Ψ)) + ∆rp(∆c+ ∆rp)

]
,

if Ψ ≥ Ψ̄

∆r2
p

2wb
− 1

2wb
·
[

T 2

(1−Ψ)2
− T

(1−Ψ)
(∆c+ 2∆rp − 2wb(1− I0 −Ψ)) + ∆r2

p

]
,

if Ψ ≤ Ψ̄

,

where T is quantified later in Proposition 2.2.1, ∆c is the cost differential, and ∆rp is

the revenue differential between the pathways.

The following theorem characterizes the incentives for bundling in the context of physi-

cians’ alignment with hospital.

Theorem 2.2.1 (When do they bundle?). Suppose the condition in Assumption 2.2.1 holds.

Then, hospitals and physicians will bundle if and only if:

|Ψ− Ψ̄| < ∆c+ ∆rp
2wb

(2.6)

Theorem 2.2.1 has several important implications. First, we observe that the follow-

ing factors are critical for bundling to occur: i) hospital influence relative to physician in

determining the care intensity (physician alignment), ii) the financial incentives for each

party as determined by cost and revenue differentials, iii) optimal care intensity associ-

ated with the disease condition (I0 as captured within Ψ̄) relative to physician alignment

(Ψ − Ψ̄) and iv) physician’s level of care for quality (as measured by the benevolence

clearly bundling will not be feasible.
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factor wb). Because bundling is a joint decision under conflicting incentives, it is intu-

itive that the relative influence matters in bundling decisions. The incentives of physicians

and hospitals respectively manifest in the cost and revenue differentials, and therefore, the

chance of bundling increases with increasing differentials. In some sense, the cost and rev-

enue differentials represent the cost saving and revenue enhancement opportunities from

hospital’s and physicians’ perspectives, respectively. Second, we observe that when the

physician alignment level and the care intensity threshold (Ψ̄) are within a range defined

by the cost and revenue differentials, hospital and physician will bundle. Given the care

intensity threshold, bundling will not occur in hospitals with too high physician alignment

or with too low physician alignment. An intuitive explanation for this interesting finding

is as follows. We know from Lemma 2.2.3 that as the physician alignment level increases,

level of care intensity under FFS decreases. Thus, in hospitals where physician alignment

is high, most of the potential cost savings would have been already realized under FFS,

and there would be very little room for further cost reduction and hence savings through

bundled payments. On the other hand, in hospitals with low physician alignment, level of

care intensity under FFS would be higher than the preferred intensity from patient’s per-

spective (I0), and hence there will be more opportunities for cost-reduction via bundling.

However, in the bundling scenario, the relative revenue loss for physicians outweighs the

revenue gain from cost reduction. Physicians, therefore, will not have enough incentives

to cooperate with the hospital and engage in bundling activities, and given the loose level

of alignment, hospital lacks the power to influence physicians and integrate them to the

bundling initiatives. As such, when physician alignment level is low, although there is

much room for cost-reduction, bundling will not occur.

Next, in Proposition 2.2.1, we characterize the optimal solution when bundling occurs,

and highlight the role of gainsharing, an incentive mechanism for physicians that is not

allowed under FFS.

Proposition 2.2.1 (Optimal solution and the role of gainsharing). If bundling occurs as
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outlined in Theorem 2.2.1, then the optimal solution becomes the following:

ih = 1,

T = 2wb(1−Ψ) min{1

2
(I0 +

∆c+ 2∆rp
2wb

− (1−Ψ)), I0 +
∆rp
2wb
},

ip =
1

1−Ψ
(I0 +

∆rp
2wb
− T

2wb(1−Ψ)
)

(2.7)

In this case, it always holds that T > 0.

One notable finding in Proposition 2.2.1 is that the gainsharing amount, T , is always

positive, which is in line with the expert opinions that gainsharing is critical in moving

bundled payments forward (Froimson et al. 2013). Intuitively, this is because while the

hospital would be inclined to minimize intensity, the physicians in return may resist and

attempt to keep the intensity as high as it was in FFS. Therefore, in order for the hospital

to incentivize physicians to reduce the level of care intensity, the hospital would have to

compensate physicians through gainsharing.

Gainsharing aims to get physicians to cooperate in cost reduction efforts, which in turn

creates value for hospitals. Under the bundled payments, physicians would also be inter-

ested in how much gainsharing, as a “value-based” part of their compensation, they actually

receive. We characterize the gainsharing amount T as a function of the physician alignment

factor Ψ. The amount that is gainshared with physicians is maximal at Ψ = Ψ̄+ 1
2
(I0− ∆c

2wb
),

first increasing with physician alignment but later decreasing, as showed in Figure 2.1. For

lower physician alignment level values, Ψ < Ψ̄ + 1
2
(I0 − ∆c

2wb
), an increase in the level of

physician alignment requires larger gainsharing to compensate physicians’ higher financial

loss from bundling. For higher physician alignment level values, Ψ > Ψ̄ + 1
2
(I0 − ∆c

2wb
),

an increase in the physician alignment requires smaller gainsharing because reduced cost

saving opportunities along with better cooperating physicians facilitate a reduction.
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Ψ

T

1 + I0 − ∆c
2wb

0

(∆c−2I0wb)(∆rp+2I0wb)
2wb

1− 1
2(I0 + ∆c+2∆rp

2wb
)

Ψ̄− ∆c+∆rp
2wb

= Ψ̄ + 1
2(I0 − ∆c

2wb
)

Figure 2.1: Gainsharing amount by physician alignment. Notice that the maximum is not
attained at Ψ̄ but rather at Ψ̄ + 1

2
(I0 − ∆c

2wb
), as explained in the main text.

Alternative parameterization

Here, we provide a version of Theorem 2.2.1 using an alternative parameterization, a pa-

rameterization that allows plotting the feasible region in three dimensions of key variables:

physician integration, cost differential, and revenue differential. This allows us to infer

some new insights and derive certain previous insights more easily.

Corollary 2.2.1 (When do they bundle? (Version with χ, γ, ρ)). Let ρ = ∆rp
2wb

, γ = ∆c
2wb

,

and χ = I0 − (1 − Ψ), and suppose the condition in Assumption 2.2.1 holds. Then, the

hospital and physicians will benefit from bundling if:

γ > χ ≥ −ρ, or (2.8)

−ρ > χ > −(γ + 2ρ) (2.9)

We scale physician integration, the cost differential, and the revenue differential and

define three corresponding variables in Corollary 2.2.1. Namely, we denote the optimal

intensity-adjusted physician alignment using χ, the benevolence-adjusted cost differential

using γ, and the benevolence-adjusted revenue differential using ρ. To better present the
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Figure 2.2: The shaded regions indicate when bundling is preferred, with views from dif-
ferent angles. The variables are ρ = ∆rp

2wb
, γ = ∆c

2wb
, χ = I0 − (1−Ψ).

insights from Corollary 2.2.1, we visualize the trade-off between the three factors in Figure

2.2, where the shaded regions represent the instances in which bundling is preferred. From

this figure, we observe the following. First, we confirm that, as expected by healthcare

experts, bundling would be more appealing when opportunities for savings on hospital

costs (i.e., ∆c) are high. In particular, we observe that when the cost differential between

the pathways is very high, hospital and physicians choose to bundle regardless of revenue

differentials and the level of integration. Second, we observe that bundling is mostly likely

when physician alignment level is about 1 − I0 (i.e. χ = 0), and it becomes progressively

more difficult when physician alignment deviates (in either direction) from this level.

One implication is that bundling is a good option when both optimal care intensity, I0,

and physician integration level are not simultaneously high or simultaneously low. This is

because if the optimal required care intensity, I0, is high and integration level is low, under

FFS, then most patients would be treated through the costly pathway, and some would expe-

rience overtreatment. Hence, with bundling, there would be opportunity for cost reduction

by reducing overtreatment. On the other hand, if I0 is low, bundling would be profitable

only if the physician integration level is high. This is because in this case, because of the
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hospital influence, physicians’ would make at least some patients go through the costlier

pathway under FFS, which implies that there would be a room for cost reduction under

BP. This is because, in hospitals where physician integration is already too high, most of

the potential cost savings would have been already realized under FFS, and there would be

very little room for further cost reduction and hence savings through bundled payments. In

such hospitals, bundling would be only desirable when the cost differential is very large.

Third, we observe that bundling also becomes difficult as physician alignment level de-

creases further below from 1− I0. However, unlike the case when alignment level is above

1− I0, bundling is still preferable even when the hospital cost differential is low, as long as

the physician revenue differential (∆rp) is high enough. This is because under the bundled

payments, unlike FFS, the hospital assumes the responsibility for reimbursing the physi-

cians. Hence, if the physician reimbursement is high, the hospital may decrease intensity

and save on physician reimbursement in addition to hospital costs, then gainshare part of

the savings with the physicians to keep them involved while still keeping some savings for

itself. Hence, we see that while bundling is very sensitive to the hospital savings opportuni-

ties (∆c), it is less sensitive to the saving opportunities on physician reimbursement (∆rp).

Overall, these findings suggest that, in addition to the hospital savings opportunities (∆c),

saving opportunities based on physician reimbursement is also very critical.

Savings under bundled payments

In the previous section, we have characterized the conditions under which bundling is

preferred and the corresponding optimal solution. In this subsection, we analyze the ex-

tent of savings achieved under bundled payments as the alignment level Ψ changes. Let

Σ := rFFS − rBP, the difference between the total reimbursement under FFS and the min-

imal acceptable reimbursement under bundled payments, to represent the overall savings

from bundled payments. Then, we have the following result characterizing the overall sav-

ings from bundled payments as a function of the physician alignment level, Ψ:
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Proposition 2.2.2. When bundling is feasible and preferred, in hospitals with relatively low

physician alignment (i.e., Ψ ≤ Ψ̄), increasing alignment level leads to higher savings. In

contrast, in hospitals with relatively higher physician alignment (i.e., Ψ ≥ Ψ̄), increasing

alignment level further leads to lower savings. More specifically, for i]p > 0, the savings

are given by:

Σ =



(∆c+ 2∆rp − 2wb(1− I0 −Ψ))2

8wb
, if Ψ ≤ Ψ̄

(∆c+ 2wb(1− I0 −Ψ))2

8wb
, if Ψ ≥ Ψ̄

,

and the savings Σ are maximized when Ψ = Ψ̄, as also illustrated in Figure 2.3.

Figure 2.3 visualizes Proposition 2.2.2. As seen from this figure, savings initially in-

crease, with the highest savings occurring when Ψ = Ψ̄, and then decrease as the alignment

level further increases. Interestingly, this result implies that hospitals that have the oppor-

tunity for highest savings from bundling are not the ones with very high or low physician

level alignment, but instead are the ones with moderately high level of physician alignment.

A conclusive matching of alignment levels and specific hospital types is a difficult task.

However, some good examples to hospitals with high, low, and moderate physician align-

ment levels could be integrated healthcare systems, stand-alone hospitals in competitive

markets, and stand-alone community hospitals in less competitive markets, respectively.

Based on these examples, the result in Proposition 2.2.2 implies that when bundling is fea-

sible, integrated networks or stand-alone hospitals in competitive markets are expected to

achieve relatively lower savings, compared with stand-alone community hospitals in less

competitive markets. Although such a finding may appear counterintuitive at first, it has

an intuitive explanation: inefficiencies, and hence the potential for savings, are highest in

hospitals with low physician alignment. As the alignment level increases, the proportion
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of these savings that is realized, increases. Then, at a certain threshold alignment level,

all potential savings are realized, and as the alignment level further increases, the room for

savings tends to decrease.

Ψ1− I0 − ∆c+2∆rp
2wb

1 + I0 − ∆c
2wb

Ψ̄

0 1

Case

I0 < ∆c
2wb

I0 +
∆c+2∆rp

2wb
> 1

∆c
2wb

> I0 +
∆rp
2wb

rBP

rFFS − rBP

Figure 2.3: Savings as a function of Ψ under bundled payments. The y-scales of rBP and
rFFS − rBP are not comparable. For other cases of parameters, the figure does not differ
dramatically, even though the bounds of Ψ where bundling occurs may vary (even down
to 0 or up to 1). Furthermore, the right, linear part of rBP may be decreasing rather than
increasing. Details are given in Appendix B.1.1.

Intensity and quality

In this subsection, we analyze how care intensity and quality will be influenced by bundled

payments.

Corollary 2.2.2. The optimal care intensity under bundled payments, I], is less than that

under the FFS, where I] is given by

I] = I0 +
∆rp
2wb
− T

2wb(1−Ψ)
≤ I∗. (2.10)

Corollary 2.2.2 corroborates experts’ intuition that, compared with FFS, bundled pay-

ments are expected to decrease intensity, and hence utilization and costs, which underlies

the motivation of CMS to implement bundled payments (Mechanic and Altman 2009).

However, it is unclear whether this decreased intensity would lead to a decrease or an in-

crease in quality, which we investigate next.
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Let ∆Q represent the extent of deviation from the optimal care intensity under FFS

and bundled payments, i.e., ∆Q := |I∗ − I0| − |I] − I0|, where I∗ > I] > 0. ∆Q > 0

implies less deviation from the optimal care intensity, I0, under bundled payments, which

may be interpreted as quality improvement under bundled payments as compared with

the FFS. On the other hand, the higher the deviation from the optimal care intensity under

bundled payments is (i.e., |I]−I0|), the lower ∆Q becomes, which may eventually become

negative, implying a reduction in quality.

Proposition 2.2.3. Compared with FFS, quality of care under bundled payments may de-

crease or increase, depending on the physician alignment level, Ψ. In particular:

1. For Ψ ≥ Ψ̄, we have

∆Q =



1
2
(1−Ψ− I0 − ∆c

2wb
) > 0 if I0 + ∆c

2wb
< 1−Ψ

1
2
(3(1−Ψ− I0)− ∆c

2wb
) ≶ 0 if I0 < 1−Ψ < I0 + ∆c

2wb

1
2
(I0 + Ψ− 1− ∆c

2wb
) < 0 if 1−Ψ < I0.

(2.11)

2. For Ψ < Ψ̄,

∆Q =


−1

2
(I0 + ∆c−2∆rp

2wb
− (1−Ψ)) can be < or > 0 if I0 + ∆c

2wb
≥ 1−Ψ

1
2
(I0 + ∆c+2∆rp

2wb
− (1−Ψ)) = 2wb(1−Ψ)T > 0 if I0 + ∆c

2wb
< 1−Ψ

(2.12)

Proposition 2.2.3 presents a somewhat surprising result, which suggests that the care

quality under bundled payment may increase or decrease, depending on the hospital and

physician alignment level.
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When the Payer Adjusts Payments to Achieve Certain Quality

Our analysis in Section 2.2.2 suggests that under bundled payments, intensity decreases

and the associated quality may decrease or increase when a hospital is allowed to operate

as an unconstrained profit maximizer. Expecting the intensity reduction with a concern for

quality, it is plausible that under BP, the payer may set quality guarantees. Namely, he

may set a lower bound on I] by paying just enough for the hospital to raise the quality at or

above I]. The analysis then corresponds to the characterization of the efficiency frontier for

payments vs. the achievable quality. Our main findings are summarized in the following

theorem.

Theorem 2.2.2. When the payer sets minimum quality requirements, three scenarios are

possible:

(1.) If I∗ > I0, when bundling occurs, the resulting quality under bundled payments may

be lower or higher than that under the FFS.

(2.) If I∗ < I0 and ∆rp > ∆c, then a higher quality level can always be achieved for

cheaper with bundled payments than FFS.

(3.) If I∗ < I0 and ∆rp < ∆c, then a higher quality level may be achieved for cheaper

with FFS, compared with bundled payments.

Figures 2.4 and 2.5 illustrate Cases 2 and 3 in Theorem 2.2.2, respectively. Perhaps the

more interesting case is Case 3 presented in Figure 2.5, which implies that the payer may

reach high quality more easily under FFS than under bundled payments. In other words,

when the physician reimbursement differential between the two pathways is lower than

the hospital cost differential, FFS may offer higher quality for lower cost. While this is a

somewhat counterintuitive result, there is a reasonable explanation: under FFS, increasing

intensity (hence in this case quality) increases physician reimbursement but not hospital
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reimbursement. Hence, if ∆rp is relatively low compared to ∆c, the payer can easily and

cheaply motivate physicians, and FFS is then more desirable if high quality is required.

A typical example for ∆rp < ∆c may be the common problem faced by the hospitals

when physicians’ preference of implants determine the cost of knee replacement to the

hospital. When the choice is between a cheaper and an expensive implant, the two pathways

is determined by physician’s implant choice. The procedure conducted by the physician

may be similar in both cases (i.e., ∆rp is small), but the hospital incurs a higher cost when

the expensive implant is used (∆c is large). In contrast, ∆rp > ∆cmay hold, for instance, if

the physician can order additional laboratory or radiological testing in the costlier pathway

which generates relatively higher revenues for physicians, even though the cost differential

for the hospital may be lower as compared with revenue differential for the physician.

II] I0

rBP]

I∗

rFFS∗

rBPI0

rFFSI0
FFS

BP

Figure 2.4: Comparison of efficiency
frontiers for ∆c < ∆rp.

II] I0

rBP]

I∗

rFFS∗

rBPI0

rFFSI0

FFS

BP

Figure 2.5: Comparison of efficiency
frontiers for ∆c > ∆rp.

2.3 Observable Coproduction Model

Based on the referee comments, we propose another model, where the gainsharing is de-

pending on an observable quantity, namely I instead of ip. Per referees’ request, we also

immediately include the hospital quality concern, something that only constituted an ex-

tension for the Initial model (see Section 2.4.1). In order to make a model with these two

changes solvable, we also need to change the game structure of the bundled payments: In

the first stage, the hospital offers the gainsharing amount T , and in the second stage, the
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hospital and physicians jointly optimize for ih and ip. With this perspective in mind, we are

ready to describe the model. In this section, we repeat some background information from

the Initial model in order to make this section self-contained.

In this “Coproduction” model, thee care delivery is co-produced by physicians and

the hospital. This proposed model considers quality and financial concerns by both the

hospital and physicians. In Sections 2.3.1 and 2.3.1, we present the key components of

the general modeling framework. Then, in Section, 2.3.2, we analyze a special case where

only the hospital is quality concerned, which provides a simple baseline for understanding

key dynamics. Later, in Section 2.3.3, we analyze the more general case introduced in

Section 2.3.1 for a complete analysis. Finally, in Section 2.4.4, we consider an alternative

“Physician-driven“ model where physicians are the sole drivers of the care delivery, in

contrast to the Coproduction model. While the Coproduction modeling setup would be

representative of most hospitals in the US system, this Physician-driven model would be

especially relevant to the physician-controlled hospitals.

2.3.1 Setup

Intensity of Care under the Coproduction Model

As discussed earlier, under the prevailing FFS model, physician and hospital incentives

are not well-aligned, leading to increased costs and inefficiencies in care delivery. While

introduced as a potential remedy for this incentive alignment problem, the potential success

of BP depends on the effectiveness of coordination between the physician and the hospital

and hence the level of integration between the these two entities (Mechanic and Altman

2009). Our Coproduction model is developed to analyze the effectiveness of bundling in

addressing the incentive alignment problem and the resulting cost and quality outcomes

in the spectrum of physician integration levels. The model captures the main dynamics of

the coordination problem by considering index admissions5 in hospitals with non-salaried

5Index admission corresponds to the initial admission in a care episode.
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physicians. Unless included in the main text, all proofs are included in the online appendix.

Without loss of generality, we build our model around payments for a single medical

condition such as knee-replacement, characterized by a DRG categorization. For example,

a patient with “major joint replacement or reattachment of lower extremity without major

complications” will be assigned DRG 470 and another patient with “simple pneumonia and

pleurisy without complications” will be assigned DRG 195 for billing purposes. Under the

FFS model, once the care is complete, the hospital receives a predetermined amount of

payment for each DRG regardless of the costs for treating the patient; whereas physician is

paid separately for each service she provides. BP, on the other hand, bring the hospital and

physician payments together, by paying a single lump-sum amount for a given DRG (e.g.,

DRG 470 – knee replacement), which is then shared between the hospital and physicians.

Table 2.2 summarizes the variables that appear in our analyses, followed by a description

of the key model components.

Table 2.2: Summary of notation used.

r1,p, r2,p Physician reimbursement for pathway 1, 2.
c1, c2 Per-patient costs for pathway 1, 2.
∆c Cost differential for hospital; ∆c = c1 − c2.
∆rp Revenue (reimbursement) differential for physicians; ∆rp = r1,p − r2,p.
I = I(ih, ip) ∈ [0, 1] Care intensity, interpreted as the fraction of patients assigned to the more expensive pathway.
I0 Quality-maximizing care intensity from the patient’s perspective.
ih ∈ [0, 1] Hospital influencing effort (toward the cheaper pathway).
ip ∈ [0, 1] Physician influencing effort (toward the costlier pathway).
Ψ ∈ (0, 1) Level of physician integration.
T Gainsharing amount (relative to care intensity).
rh Hospital reimbursement under FFS.
F FFS
h , F FFS

p , F BP
h , F BP

p Respective objective functions for the hospital/physicians under FFS/BP (per patient).
wb Physician quality concern.
wq Hospital quality concern.
x∗, x] Respective solution feature under FFS and BP (x can be different variables).
rFFS Total payment from the payer under FFS.
rBP Total payment from the payer under BP.
ιp, ιh Respective best response functions of the hospital and physicians.
Σ Total surplus under BP, to be distributed between the payer and the hospital.
πp Physician surplus under BP.
∆Q Quality difference between FFS and BP (> 0 means worse quality under bundling).

A key feature in our analysis is the concept of a clinical pathway, which represents

the set of medical services and procedures a patient follows for a given DRG, including

diagnostic tests, medications, and consultations, conducted during care delivery (De Bleser
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et al. 2006). In practice, when providers treat a condition, they often vary in terms of the

clinical pathways chosen, resulting in different ranges of costs and health outcomes. Under

FFS, because each service is billed for separately, hospitals and physicians tend to not

worry much about care coordination through cost-effective clinical pathways. In contrast,

because cost accounting is a bigger concern under BP, hospitals and physicians need to

better understand their common clinical pathways and standardize the choice of the most

cost-effective ones.

For any given condition, we consider two pathways, one being more intensive (and

costly), and the other one being less intensive (and cheaper). For example, for DRG 470

(joint replacement), compared with the less intensive (and cheaper) pathway, the more

intensive (and costlier) pathway may include an additional day of hospital stay, additional

X-rays and MRIs, and use of a more advanced robotic technology during surgery. For

the ease of interpretation, we assume that the costlier pathway is a superset of the cheaper

pathway, with a higher volume or intensity of the procedures performed. The corresponding

costs to the hospital for these pathways are respectively captured by c1 and c2 (c1 > c2)

while the corresponding reimbursements to the physician are respectively captured by r1,p

and r2,p (r1,p > r2,p).6 Lastly, we denote the payments to the hospital under FFS using rh.

For each DRG, there is a level of care intensity, I0 ∈ [0, 1] that corresponds to the “best”

clinical outcome from the “patient perspective” without cost concerns. In what follows, we

refer to I0 simply as “quality-maximizing” intensity. The practiced level of care intensity,

I , however, may deviate from the quality-maximizing intensity. In particular, depending

on the payment model adopted, hospitals and physicians may have different preferences

for the practiced level of intensity. For example, under FFS-based payments, while physi-

cians, who are paid separately for each service, are incentivized to operate above I0 due to

financial motivations, hospitals, being paid a fixed flat rate for a given DRG, would prefer

6We remark that we do not explicitly model physician costs as a function of care intensity. However, such
a relationship can be easily captured by interpreting physician reimbursements,r1,p and r2,p, as cost-adjusted
reimbursements.
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to reduce costs and hence lower intensity. In this case, the hospital may choose to influence

physician practices through various means, such as care protocols.7 In this case, intensity

is “coproduced” by the physician and the hospital. To model the coproduction of care, we

follow the established literature in health economics (Dor and Watson 1995, Jelovac and

Macho-Stadler 2002, Crainich et al. 2008) and model the practiced care intensity, I , to be

jointly produced by the hospital and physicians as follows:

I ≡ I(ih, ip) := (1− ih)Ψ + (1−Ψ)ip, (2.13)

where ih ∈ [0, 1] represents the hospital influencing effort, ip ∈ [0, 1] is the physician influ-

encing effort, and Ψ ∈ (0, 1) is the physician integration coefficient. Physician integration

(sometimes also referred to as hospital and physician alignment) is a well-established and

widely studied concept in medical and health economics literature, and is defined as the

degree to which physicians share the same mission, vision, and objectives with their hos-

pital systems and work toward their success (Shortell et al. 2001, Ma 1994, Huang and

McCarthy 2015).

The co-produced intensity I captures the fraction of patients assigned to the more ex-

pensive pathway. Note that the two extreme points, I = 0 and I = 1, correspond to the

cases where all patients go through the less intensive pathway and more expensive pathway,

respectively; and the intermediate values of I (e.g., I = 60%) are interpreted as fraction I

of patients going through the more intensive pathway and (1 − I) fraction going through

the less intensive pathway. We finally remark that when I < I0, underprovision of care is

prevalent; and when I > I0, overprovision of care is prevalent.

7Such hospital-driven intensity reduction was observed during the transition to the DRG-based system
in the 80s from the cost-based reimbursement, where hospitals were paid based on average cost of a patient
per-diem and the length of stay. At that time, hospitals were able to reduce the average length of stay for
non-surgical patients from 9.4 days to 7.2 days within only a few years (Altman 2012).
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Hospital and Physician Objectives

In this section, we model hospital and physician objectives and the corresponding utility

functions. Specifically, we first model the FFS case, the status quo. In line with the com-

monly practiced BP models, we assume that the hospital is initially operating under FFS

and is next offered BP. The hospital’s objective is to reduce costs and therefore increase its

profits, while maintaining high quality of care. The physicians also weigh both patients’

health outcomes and satisfaction as captured by the quality of care, and their own mon-

etary benefits. We remark that this dichotomy between quality concern (or benevolence

or altruism) and financial benefits in providers’ objectives is well established empirically

(Chandra et al. 2012) and widely adopted in the literature (e.g. Ellis and McGuire 1986,

Kolstad 2013). Given this setup, the utility functions for the hospital and the physician

under FFS are defined as follows:

F FFS
h = rh − c1I − c2(1− I)− wq(I − I0)2,

F FFS
p = −wb(I − I0)2 + r1,pI + r2,p(1− I),

(2.14)

where F FFS
h and F FFS

p respectively represent the average per-patient utility for the hospital

and the physician. Under FFS, the hospital receives a single DRG-based payment, rh, and

incurs costs due to patients receiving care via either the costlier or cheaper pathway. In

addition, the hospital incurs disutility (e.g., reduction in reputation, modulated by the hos-

pital quality concern, wq) in case of any deviation from the quality-maximizing intensity.

Similarly, the physician receives pathway-dependent payments and incurs disutility due to

any deviation from the quality-maximizing intensity (modulated by the physician quality

concern, wb).

While under FFS the hospital and physicians are paid separately, under BP, their pay-

ments are “bundled.” Under bundling, the hospital (or its parent health system) is respon-
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sible as the “convener” to receive and distribute the payment. The total payment under BP,

which is paid to the hospital and is shared with physicians, is captured by rBP. The amount

rBP accounts for all the costs of services included in the bundle, in addition to the hospital

payment.

In line with the prevailing bundled payment practice (Dummit et al. 2015), the hospital

continues to reimburse the physicians at the FFS rates. However, unlike FFS practice,

under BP, the hospital can also reward the physicians for cooperating with the hospital in

cost reduction efforts, a practice referred to as gainsharing, which is not allowed under FFS

models. That is, in addition to the exerted effort level, ih, the hospital has a second decision

variable under BP, denoted by T , which represents the maximum amount it can share with

the physician to incentivize cost reduction. The size of this gainsharing amount decreases

as the physicians are less cooperative with the hospital in reducing costs, and is inversely

proportional to the realized intensity (equivalently, proportional to (1 − I)). That is, the

lower the realized intensity, the higher the fraction of patients undergoing cheaper pathway

is; hence, as the realized intensity decreases, savings increase and therefore gainsharing

amount also increases. Then, the hospital’s and the physician’s utility functions under the

BP are as follows:

F BP
h = rBP − (c1 + r1,p)I − (c2 + r2,p)(1− I)− wq(I − I0)2 − (1− I)T,

F BP
p = −wb(I − I0)2 + r1,pI + r2,p(1− I) + (1− I)T.

(2.15)

In studying the BP case, we consider a two-stage game where the hospital first announces

T , the gainsharing contract, and then the hospital and the physicians simultaneously choose

their respective efforts ih and ip. We derive the subgame perfect Nash equilibrium using

backward induction.

In our base case analysis presented in 2.3.2, for simplicity of the analysis and ease

of presentation, we omit the quality concerns by the hospital wq by setting it to zero and

only consider the quality concerns by the physicians, i.e. wb > 0. Practically, this setting
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corresponds to the case where the physician is the main driver of the quality. While this

is a simplified setting, as we show later in the analysis of the general case in 2.3.3, the

findings that we obtain through this simpler case are parallel to those for the general case

with wq > 0.

In the next subsection, we analyze the base case in which care quality is solely driven

by physicians (we henceforth refer to it as the Base model). Next, in Section 2.3.3 , we an-

alyze the more general case in which hospital is also quality concerned (called the General

model), and draw parallels between the two sets of results. In our analyses, we consider

that bundling will occur if both the hospital and physicians have strictly higher payoffs

compared to the FFS setting, and the total amount of the payments to these two stakehold-

ers are lower (so that the payer will save). We also remark that in practice, payer decides

on rBP for a given rFFS, which is estimated based on historical reimbursements.

2.3.2 Analysis of the Base Coproduction Model

We start with characterizing the equilibrium intensity under FFS as a function of the physi-

cian integration level, Ψ. In particular, we show that in hospitals where physician integra-

tion is lower than a certain threshold, Ψ̄, the equilibrium intensity under FFS is driven by

the physicians only and is set to the maximizing value of the physician utility function,

I0 + ∆rp
2wb

. On the other hand, in hospitals where physician integration is higher than this

threshold Ψ̄, FFS equilibrium intensity is co-produced by the hospital and physicians and

is set to its maximum value, 1−Ψ. We define this threshold value Ψ̄ above which the care

is co-produced in the lemma below, and throughout the remainder of this paper, we refer to

those hospitals with Ψ > Ψ̄ (Ψ < Ψ̄) as hospitals with high (low) physician integration.
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Lemma 2.3.1 (Status-quo intensity). The equilibrium intensity under FFS, I∗, is given by

I∗ =


I0 + ∆rp

2wb
if Ψ ≤ Ψ̄

1−Ψ otherwise

where

Ψ̄ := 1− I0 −
∆rp
2wb

(2.16)

Two observations follow from Lemma 2.3.1. First, under FFS, the physician oper-

ating under low level of integration (i.e., Ψ ≤ Ψ̄) prefers to increase the care intensity

beyond the quality-maximizing intensity, I0, by the quality-adjusted financial motives,

∆rp
2wb

. As expected, the financial motives, measured by the physician payment/revenue dif-

ferential between the costly and cheaper pathways, ∆rp, increase the extent of deviation

while the physician quality concern, wb, decreases the extent of deviation from the quality-

maximizing care intensity.

Second, when the level of integration is high (i.e. Ψ ≤ Ψ̄), the equilibrium intensity un-

der FFS (i.e., status quo) is inversely related to the physician integration. That is, higher the

level of integration, the lower the intensity, therefore more patients following the cheaper

pathway (to see this, note that when Ψ = Ψ̄, I∗ = I0 + ∆rp
2wb

, and gradually decreases

afterwards as Ψ is increased further).

We remark that when evaluated together, these two observations based on Lemma 2.3.1

suggest that under FFS, physicians would be inclined to set the intensity level to I0 + ∆rp
2wb

,

whenever they can; however, when physicians are highly integrated with the hospital, the

level of integration dominates the physicians’ financial incentives to set the intensity at the

quality-adjusted level, hence the equilibrium intensity would be bounded by 1 − Ψ.8 Key

8In this Base model in which the hospital is not quality concerned and a pure profit maximizer, ih would
be set to 1 so as to minimize costs and maximize profit. On the other hand, when the model is extended as in
Section 2.3.3 to capture the quality concern of the hospital in addition to that of physicians, then ih could be
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qualitative results continue to hold in the general case presented in Section 2.3.3. Although

this finding is somewhat intuitive, it reassures the validity of our model. Next, we examine

when BP is beneficial for all parties, i.e., hospital and physicians (as well as the payer), as

captured by their utility functions.

Theorem 2.3.1 (When does bundling benefits all parties?). Payers, hospitals, and physi-

cians will all benefit from bundling if and only if the following conditions hold:

(Hospital/physician coordination condition):

∆c+ 2∆rp > 2wb(1− I0) (2.17)

(Physician incentives condition):

Ψ ≤ Ψ+ =:
2wb(1− I0) + ∆c

4wb
(2.18)

(Payer savings and alignment condition):

Ψ ≤ Ψ0 =:
(∆c+ 2wb(1− I0))2

8wb(∆c+ ∆rp)
(2.19)

We have the following insights from Theorem 2.3.1. Inequality (2.17) is the coordina-

tion condition for bundling to occur. Note that under BP, hospital and physicians operate

as a single entity and share savings. Condition (2.17) says that the potential size of the

total amount of financial gain through bundling (as measured by revenue differentials plus

cost differentials) should be higher than the potential incentives for overtreatment, as mea-

sured by 2wb(1 − I0). To see this, note that (1 − I0) corresponds to the potential room

for overtreatment, and when multiplied by wb, the quantity corresponds to the minimum

financial gain that the physician is willing to accept in exchange of overtreatment. Then,

set to a value < 1. We remark that, as compared with the General model, this Base model may overestimate
the practiced care intensity I; yet, the Base model is general enough to capture the main dynamics and better
reflects the key trade-offs when studying hospital-physician interaction
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the condition says that the potential amount of financial gain under bundling should be at

least as high as the financial gain that could be achieved through overtreatment under FFS,

as otherwise it would be difficult to convince physicians to coordinate care under BP.

Condition (2.18) says that there are two critical factors to incentivize physicians for

bundling. First, the size of potential incentives for overtreatment, captured by (1 − I0)

should be large enough. This is because, otherwise, there will not be enough room for in-

tensity reduction, resulting in savings through bundling and hence gainsharing with physi-

cians. Second, cost differential between expensive and cheaper pathway, ∆c, should be

high enough, as otherwise, physician financial gain due to cost-savings won’t be high even

if the size of overtreatment in the system is reduced significantly. Finally, the inequality

suggests that it is easier to incentivize physicians for bundling in hospital systems with

lower physician integration, as measured by Ψ (see more on this in the following para-

graph).

Inequality (2.19) is payer’s savings condition around physician integration. The in-

equality suggests that bundling may be easier, and hence savings are expected to be larger,

in hospital systems with lower physician integration, and becomes progressively more dif-

ficult as the initial level of physician integration increases. The intuition behind this finding

is that in hospital systems with low level of physician integration (prior to bundling), there

is more inefficiency and hence potential for cost reduction. This is because when physician

integration is low, physicians are more powerful and can more easily practice overtreatment

leading to inefficiencies in the system. Whereas in hospital systems with initially high level

of physician integration, there is less inefficiency under FFS and hence smaller room for

savings through bundling.

Lemma 2.3.2 characterizes the optimal amount of gainsharing under bundling, an in-

centive mechanism for physicians that is not allowed under FFS.9

Lemma 2.3.2 (Role of gainsharing). When bundling occurs as outlined in Theorem 2.3.1,

9The full characterization of the optimal solution is given in Lemma B.1.2 in Appendix B.1.5.
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the gainsharing amount, T , is always positive and is given by:

T = min(∆rp + 2I0wb,
1

2
(−2wb(1− I0) + ∆c+ 2∆rp)) > 0. (2.20)

The gainsharing amount T being always positive under bundling is consistent with the

expert opinion that gainsharing is critical in advancing BP (e.g., see Froimson et al. 2013).

Intuitively, this is because in order for the hospital to incentivize physicians to reduce the

level of care intensity, the hospital needs to compensate physicians through gainsharing.

Assessment of Outcomes Under Bundled Payments

In the following set of results, we analyze how BP will influence outcomes, including

care intensity, costs/savings, and quality of care under the setup that physicians care about

quality and hence exert some positive efforts, i.e. i]p > 0. We start with intensity as follows.

Corollary 2.3.1 (Intensity under BP vs. FFS). The equilibrium intensity under BP, I], is

less than that under the FFS, I∗, where I] is given by

I] = I0 +
∆rp
2wb
− T

2wb
≤ I∗. (2.21)

Corollary 2.3.1 corroborates experts’ intuition that, compared with FFS, BP is expected

to decrease intensity, and hence utilization and costs, which underlies the motivation of

CMS to implement BP (Mechanic and Altman 2009). However, it is unclear whether this

decreased intensity would lead to a reduction or an increase in quality, which we investigate

next.

Let ∆Q be the difference in the extent of deviation from the quality-maximizing care

intensity under FFS and BP, representing the quality difference between the two regimes.

Specifically, let ∆Q := |I∗ − I0| − |I] − I0|, where I∗ > I] > 0. Then, ∆Q > 0

implies smaller deviation from the quality-maximizing care intensity, I0, under BP, which

can be interpreted as quality improvement under BP as compared with the FFS. Conversely,
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∆Q < 0 implies higher deviation from the quality-maximizing care intensity under BP as

compared with FFS, and hence indicates a quality reduction due to bundling.

Proposition 2.3.1 (Quality under BP vs. FFS). Compared with FFS, quality of care under

BP may decrease or increase, depending on the physician integration level, Ψ. In particu-

lar:

I. If integration is low, i.e., Ψ < Ψ̄, overprovision of services characterizes FFS. In such

a case, BP will improve quality (i.e., ∆Q > 0) if

∆c

2wb
< ∆rp(1− I0) (2.22)

and worsen it otherwise.

II. If integration is high, i.e., Ψ > Ψ̄, then both underprovision and overprovision of

services can characterize FFS. If the former was the case (i.e. if 1−Ψ < I0), then the

quality under BP is expected to be even worse. If it was the latter (i.e. overprovision,

1−Ψ > I0), then BP will improve quality (∆Q > 0) if

∆c

2wb
+ 2Ψ < 3(1− I0). (2.23)

Proposition 2.3.1 suggests that the care quality under BP may decrease or increase,

depending on the level of physician integration along with other factors. It is especially

worth noting that in hospital systems with low Ψ (and hence higher inefficiency due to

overtreatment) as in Part I, we find that bundling payments will improve quality, as long as

Condition (2.22) is satisfied, which ensures that the intensity is not reduced too much under

BP. The intuition behind this finding is as follows: recall that from Corollary 2.3.1, we

found that the intensity under BP would be reduced. In hospital systems with low level of

physician integration (where overprovision of care is prevalent), some decrease in intensity

through BP would result in reduction in overprovisioning and hence quality improvement.
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However, too much decrease in intensity would ultimately result in underprovision of care

(and hence quality reduction), which is characterized by Condition (2.22). This finding

is important because it says bundling payments will work in the intended direction both

in terms of quality and costs especially in hospital systems with low level of physician

integration and hence high level of inefficiencies.

On the other hand, in hospital systems with higher level of integration as in Part II, qual-

ity may go in either direction after bundling, depending on the size of over/under provision

of care prior to bundling. This is because when the level of physician integration is high,

the hospital has stronger influence on the physician’s care provision behavior. As a result

of this interaction, both overprovision or underprovision of services under FFS are possible

in this case. If overprovision was persistent under FFS, then the interpretation would be

similar to that of the first case and Condition (2.23) plays a similar role as in Condition

(2.22). On the other hand, if underprovision was persistent, a further reduction in intensity

as a result of BP would lead to a quality reduction.

Finally, we analyze the extent of cost reduction (realized by the payer) under BP as

the integration level Ψ changes. Let Σ := rFFS − rBP, the difference between the total

reimbursement under FFS and the minimal acceptable reimbursement under BP, represent

the overall savings from BP. Then, we have the following result characterizing the overall

cost reduction under BP as a function of the physician integration level, Ψ:

Proposition 2.3.2 (Cost Savings in BP vs. FFS). When bundling is feasible and preferred,

in hospitals with relatively low physician integration (i.e., Ψ ≤ Ψ̄), savings are highest. As

the physician integration increases beyond Ψ̄, the savings start to decrease and ultimately

disappear altogether when physician integration is beyond Ψ̃ := min(Ψ0,Ψ+), where Ψ0,

and Ψ+ are the bounds for the feasibility of bundling from Theorem 2.3.1. More specifically,

the savings are characterized as follows:
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Σ =



(∆c+ 2∆rp − 2wb(1− I0))2

8wb
, if Ψ ≤ Ψ̄

(∆c+ 2wb(1− I0))2

8wb
− (∆c+ ∆rp)Ψ, if Ψ̄ ≤ Ψ ≤ Ψ̃ := min(Ψ0,Ψ+).

Proposition 2 provides the following insights: we find that when alignment level is

below Ψ̄, savings are highest. This is because, as we have shown earlier, care intensity

and hence also inefficiencies are highest in hospitals with low physician integration. As a

result, those inefficient hospitals under FFS with low physician integration have the highest

potential for savings.10 As the integration level increases further beyond Ψ̄, hospitals have

increasingly more influence on physician’s choice of care intensity under FFS. As a result,

the higher Ψ, the less inefficiencies under FFS are, and hence smaller room for savings

under BP.

Given these results, it is pertinent to discuss what type of hospitals would have the

highest potential for savings through bundling in real world. We remark that conclusive

matching of alignment levels with specific hospital types is not an easy task as there will

be many factors at play in determining alignment level. However, a case for high hospital

and physician alignment could be large integrated healthcare systems (Budetti et al. 2002).

In contrast, a case for low hospital and physician alignment could be stand-alone specialty

(e.g., surgical) hospitals. Based on these examples, the result in Proposition 2.3.2 imply

that when bundling is feasible, integrated systems are expected to achieve relatively lower

savings compared with stand-alone specialty hospitals.

10Under low physician integration (i.e. Ψ < Ψ̄), because physicians are the sole drivers of the intensity
under FFS and hospitals have no influence on the intensity (and hence costs), savings are constant and do not
depend on Ψ.
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2.3.3 Analysis of the General Coproduction Model

In this section, we generalize the results from the Base model, by introducing back the

quality concern of the hospital. That is, we now focus on analyzing the General model

given by (2.14) and (2.15).

Each result presented in this section mirrors a corresponding result presented in the

base case analysis presented in Section 2.3.2. After presenting each result, we compare

and contrast it to its base case analogue and discuss implications. As before, we start with

the FFS analysis and characterize the equilibrium intensity under FFS as a function of the

physician integration level, Ψ, as follows:

Lemma 2.3.3 (Status-quo intensity). The equilibrium intensity under FFS, I∗, is given by

I∗ =


I0 + ∆rp

2wb
if Ψ ≤ Ψ̄

1−Ψ if Ψ̄ ≤ Ψ ≤ Ψ̂

I0 − ∆c
2wq

if Ψ ≥ Ψ̂

where Ψ̄ := 1− I0 −
∆rp
2wb

, Ψ̂ := 1− I0 +
∆c

2wq
.

This result is the analogue of Lemma 2.3.1 in Section 2.3.2. As we see from a compar-

ison of the two results, the results are almost identical with the exception that in Lemma

2.3.3, an additional third scenario appears for the value the realized intensity can attain.

Specifically, we see an additional case with very high physician integration, Ψ > Ψ̂, where

the hospital chooses to keep the intensity higher so as to maintain quality. In contrast to the

Base case, the equilibrium intensity under FFS is also bounded from below, a bound that

becomes binding for Ψ > Ψ̂. This is because the hospital is now also quality concerned.

Similar to the base case, we proceed with analyzing when bundling payments would

be preferred by all parties and present the results in Theorem 2.3.2 below. As before, we

focus on the setup that physicians care about quality and hence exert some positive efforts,
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i.e. i]p > 0.

Theorem 2.3.2 (When bundling benefits all parties?). Payers, hospitals, and physicians

will all benefit from bundling if and only if the following conditions hold:

(Hospital/physician coordination condition):

∆c+ ∆rp(2 + wq/wb) > 2wb(1− I0) (2.24)

(Physician incentives condition):

Ψ < Ψ]
+ =:

2(wb + wq)(1− I0) + ∆c

(4wb + 2wq)
(2.25)

(Payer savings and alignment condition):

Ψ < Ψ]
0 =: (1− I0) +

∆c+ ∆rp
2wq

−

1

2wq

√
∆r2

p + 2(∆c− 2(1− I0)wq)∆rp +
2

2wb + wq
(∆c2 + 2wq(1− I0)(∆c− (1− I0)))

(2.26)

Findings in Theorem 2.3.2 are parallel to that of Theorem 2.3.1. The primary differ-

ence of the theorem is the additional impact of wq, the hospital quality concern variable,

on incentive dynamics for bundling. First, the inequality in (2.24) characterizes incentives

for coordination against overtreatment. In comparison to the base case, hospital’s quality

concern strengthens the left hand side of the inequality, namely the expected benefits of co-

ordination. An increase in hospital’s quality concern will make this coordination condition

easier to satisfy. Second, the addition of hospital quality concern reinforces the incentives

for avoiding overtreatment as it increases the right hand side of the inequality in (2.25). In

comparison to base case, physicians have more incentives to bundle as Ψ]
+ > Ψ+. Finally,

although a one-on-one comparison is not easy to make, the inequality in (2.26) reflects the
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spirit of its analogue in (2.19) and suggests that bundling becomes progressively more dif-

ficult as physician integration increases. Overall, the theorem also suggests that efforts for

making hospitals more quality concerned could facilitate bundling. Therefore, healthcare

reform efforts focusing on coupling quality with payments (e.g., value-based adjustments

to hospital payments) could further align hospitals and physicians to bundle.

Lastly, before closing this subsection, we note that we characterize the optimal gain-

sharing amount under bundling when hospital is quality concerned in Equations (B.35) and

(B.37) in the Appendix. Similar to the base case, we observe that gainsharing is an essen-

tial element of bundling and is always positive in successful bundling arrangements (cf.

Lemma 2.3.2).

Assessment of Bundling Outcomes Under the General Model

In the remainder of this section, similar to the base case analyses, we focus on how BP is

expected to change outcomes; i.e., care intensity, costs/savings, and quality of care when

both the hospital and physicians are quality concerned.

As for the intensity, we show that the the corresponding result is quite similar to that

in Corollary 2.3.1, and that intensity is expected to decrease under BP (the results are

formally presented in Corollary B.1.1 in the Appendix). However, it is unclear whether this

decreased intensity would lead to a decrease or an increase in quality, which we investigate

next. As before, let ∆Q be the difference in the extent of deviation from the quality-

maximizing care intensity under FFS and BP, representing the quality difference between

the two regimes. Then, we have the following result, which is analogous to Proposition

2.3.1.

Proposition 2.3.3 (Quality under BP vs. FFS ). Compared with FFS, quality of care

under BP may decrease or increase, depending on the physician integration level, Ψ. In

particular:

I. If integration is low, i.e., Ψ < Ψ̄, then overprovision of services characterizes FFS;
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and in that case BP will improve quality (i.e., ∆Q > 0) if

∆c

2wb
< (1− I0) + ∆rp

2wb + wq
2wb

(2.27)

and worsen it otherwise.

II. If integration is moderate, i.e., Ψ̂ > Ψ > Ψ̄, then both underprovision and overprovi-

sion of services are possible under FFS. If the former is the case (i.e. if 1− Ψ < I0),

then the quality under BP is expected to be even worse. If the latter is the case (i.e.,

overprovision of services, 1−Ψ > I0), then BP will improve quality (∆Q > 0) if

∆c

2wb
+ Ψ(2wb + wq) < (1− I0) + (1− I0)(2wb + wq) (2.28)

and worsen it otherwise.

III. If integration is high, i.e., Ψ > Ψ̂, then underprovision of services characterizes FFS;

and in that case BP will worsen the quality by magnifying the level of underprovision.

As we see above, results in Proposition 2.3.3 are quite similar and analogous to the

results in Section 2.3.2. The intuition for Parts I and II parallels those of base case as in

Proposition 2.3.1. In particular, the quality improvement under bundling will be a function

of (1) hospital and physician integration and (2) trade-offs in terms of over- or underprovi-

sion of services under FFS as a result of the level of alignment. Namely, when overprovi-

sion of services characterize FFS, bundling may improve quality when incentives for cost

reduction is relatively less as compared with incentives for achieving quality-maximizing

care intensity. One difference in the general case is that conditions for quality improvement

(Conditions 2.27 and 2.28) are easier to satisfy in comparison to the base case (i.e., larger

bounds). This is intuitive because, under general case, both the hospital and the physicians

are quality-concerned while under the base case only the physician is quality concerned.

Another difference from the base case is Part III of the proposition in which quality always
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deteriorates when hospital and physicians are highly aligned. The intuition of the finding

is similar in that, under high alignment, underprovisioning characterizes FFS and bundling

will further reduce intensity. Such a reduction will only worsen quality.

Next, we analyze the extent of cost reduction/savings realized by the payer under BP

as the integration level Ψ changes. As before, let Σ := rFFS − rBP, the difference between

the total reimbursement under FFS and the minimal acceptable reimbursement under BP,

represent the overall savings from BP. Then, under general case, we have the following

result characterizing the overall savings from BP, which is the analogue of Proposition

2.3.2 in the base case.

Proposition 2.3.4 (Cost Savings in BP vs. FFS). When bundling is feasible and preferred,

hospitals with relatively lower physician integration (i.e., Ψ ≤ Ψ̄) enjoy the highest sav-

ings. As the physician integration increases beyond Ψ̄, the savings start to decrease and

ultimately disappear altogether when physician integration is beyond Ψ̃] := min(Ψ]
0,Ψ

]
+),

bounds for the feasibility of bundling from Theorem 2.3.2. More specifically, we have:

Σ =



(∆rp(2wb + wq) + (∆c− 2(1− I0)wb)wb)
2

4w2
b (2wb + wq)

if Ψ ≤ Ψ̄

(∆c+ 2(1− I0)(wq + wb))
2

4(2wb + wq)
− (∆c+ ∆rp + 2(1− I0)wq)Ψ + wqΨ

2 if Ψ̄ ≤ Ψ ≤ Ψ̃]

(2.29)

Figure 2.6 visualizes Proposition 2.3.4 for a certain set of parameter values. We observe

that the results from Proposition 2.3.4 are parallel to those following from its analogue,

Proposition 2.3.2. That is, when alignment level is below Ψ̄, savings are highest. As the

alignment level increases further beyond Ψ̄, hospitals have increasingly more influence on

physician’s choice of care intensity under FFS, and as a result, the room for savings under

BP becomes smaller.
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Σ

Ψ̄ Ψ̂Ψ̃]

Figure 2.6: Cost Savings in BP vs. FFS.

2.4 Extensions

Hospitals are businesses that provide health services to make profits and rely on the physi-

cians to provide high quality. However, some hospitals may value high-quality care in

addition to the quality arising from physicians’ altruism. Indeed, health economics litera-

ture suggests that non-profit hospitals tend to value quality more than for-profit hospitals

(Chang and Jacobson 2012). In addition, reimbursement mechanisms that tie the hospital

payments to value (i.e., quality) is becoming more common, as in the case of performance-

based payment models. Under a performance-based payment model, hospital payments are

adjusted based on quality performance (Rosenthal and Dudley 2007), as in the readmis-

sion penalties discussed earlier (Andritsos and Tang 2018, Zhang et al. 2016). Consistent

with this theme, Section 2.4.1 extends the Initial model to capture the bundling decisions

of a hospital whose utility function incorporates the resulting quality into their decision

making beyond what physicians decide on. Then, in Section 2.4.2, we extend the Quality-

aware model to analyze a setting where physicians are salaried employees of the hospital,

physicians and hospitals contractually agree on a compensation with a pre-established per-

formance requirements from the physicians. This latter analysis is relevant and important

because several qualitative studies have discussed that different physician compensation
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models lead to differences in incentives and that hospital-physician integration through

physician employment is a promising direction for success under new payment models,

including bundled payments (Lee et al. 2012, OMalley et al. 2011). In Section 2.4.3, we

extend the Initial model to explore the specification under which the hospital is risk-averse,

possibly because a serious downside from the bundled payments might endanger the entire

viability of the hospital operations, which was raised as a potential hospital motivation for

instance in Dobson et al. (2012). Finally, in Section 2.4.4, we study the “Physician-driven“

model where the physicians are the main determinant of the quality of care, a setup that

may correspond for instance to physician-driven hospitals. This model can be also seen

can be viewed as an opposite to the Salary model from Section 2.4.2 in the continuum of

arrangements in terms of hospital power.

2.4.1 Quality-aware Hospital

As we discussed earlier, hospitals differ with respect to quality valuations. In this section,

we consider a Quality-aware hospital model, which extends the Initial model by consider-

ing utility reduction that quality-conscious hospitals experience as the practiced intensity

deviates from the optimal care intensity. We scale the deviation from the optimal intensity

with a factor of wFFS
q (respectively wBP

q ) under FFS (respectively under BP) which denotes

the dollar weight that a hospital places on per unit quality. In the Quality-aware model, the

hospital’s and physician’s utility functions under FFS and BP are given by:

F FFS
h = rh − c1I(ih, ip)− c2(1− I(ih, ip))− wFFS

q (I(ih, ip)− I0)2,

F FFS
p = −wb(I(ih, ip)− I0)2 + r1,pI(ih, ip) + r2,p(1− I(ih, ip)),

F BP
h = rBP − (c1 + r1,p)I(ih, ip)− (c2 + r2,p)(1− I(ih, ip))− wBP

q (I(ih, ip)− I0)2 − (1− ip)T,

F BP
p = −wb(I(ih, ip)− I0)2 + r1,pI(ih, ip) + r2,p(1− I(ih, ip)) + (1− ip)T.

(2.30)
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Our analysis in this section considers the case where wBP
q = wFFS

q =: wq, namely the

hospital’s valuation of quality does not change in a bundled payment setup as compared

with the FFS. Alternatively, in the Appendix, we also consider another practical case where

wBP
q > wFFS

q , which indicates a lower disutility from lower quality under the FFS. This

second case captures the possibility that hospitals could make a profit from the readmission

stay under the FFS, resulting in a lower care provision during the index admission (while

however patients are typically seen by different providers in readmissions, compared with

index admissions). In contrast, under a bundled payment setup, the initial admission and

readmissions will be bundled into one as both are part of a single episode.

Overall, our results resemble those of the Initial model with the exception that under the

Quality-aware model, bundling is more difficult and the implied quality is no lower than

that of the Initial model. In particular, under the quality-aware hospital setup, some FFS

arrangements are a priori strictly superior to any bundling scenario (Corollary 2.4.1) where

physicians’ and payer’s incentives are no longer fully aligned (Proposition 2.4.1). Although

bundling is less likely under the Quality-aware model, when realized, the quality may be

higher than that under the Initial model (Corollary 2.4.3). We proceed with presenting our

main findings and start with a result which is the analogue of Lemma 2.2.3 in the Initial

model.

Lemma 2.4.1 (Status-quo intensity under FFS). The equilibrium intensity under FFS I∗

is given by

I∗ =


I0 + ∆rp

2wb
if Ψ ≤ Ψ̄

1−Ψ if Ψ̄ ≤ Ψ ≤ Ψ̂

I0 − ∆c
2wq

if Ψ ≥ Ψ̂

where

Ψ̂ := 1− I0 −
∆c

2wq
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Note that the first two cases correspond to the cases in Lemma 2.2.3. The third case

occurs in hospitals with highly aligned physicians, where setting intensity as 1 − Ψ as in

Lemma 2.2.3 would imply much deviation from the optimal care intensity I0, which is not

preferred when both physician and hospital are quality-conscious. As such, in this case,

the intensity is bounded below by I0− ∆c
2wq

. Next we present a result analogous to Theorem

2.3.1, assuming that the difference between rFFS and rBP will be small enough to allow for

hospital profitability, as in Assumption 2.4.1.

Assumption 2.4.1. rFFS − rBP is not too large; specifically:

0 < rFFS − rBP ≤



1
4w2

b (2wq+wb)
(wq∆rp + wq(∆c+ 2∆rp)− 2w2

b (1− I0 −Ψ))2

if T ≤ Tmax, Ψ ≤ Ψ̄

1
4w2

b
(2I0wb + ∆rp)(wq∆rp + 2wb(−I0wq + ∆c+ ∆rp)− 4w2

b (1−Ψ))

if T > Tmax, Ψ ≤ Ψ̄

1
4(2wb+wq)

(∆c+ 2wb(1− I0 −Ψ) + 2wq(1− I0 −Ψ))2

if T ≤ Tmax, Ψ ≥ Ψ̄

(−2I0(wb + wq) + ∆c+ wq(1−Ψ))(1−Ψ)

if T > Tmax, Ψ ≥ Ψ̄

,

Under the Quality-aware model, hospital’s and physicians’ simultaneous interest in

bundling does not necessarily translate into payer benefiting from bundling, which in turn

results in many special cases in the solution space. For clarity of the presentation, in the

following result, we present only one case, which is analogous to Theorem 2.2.1. The in-

terpretation is also very similar to that of Theorem 2.2.1, but is applicable in a more limited

setting. The full set of solutions is included in the Appendix, in Proposition B.1.2.
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Proposition 2.4.1 (When do they bundle?). Suppose the condition in Assumption 2.4.1

holds. Then, hospitals and physicians will bundle if:

∆c ≥ 2I0wq + 2wb(1 + I0 −Ψ), Ψ ≤ 1− I0 −
∆rp
2wb

, (2.31)

∆rp
2wb
· (wq
wb

+ 1) +
∆c

2wb
> Ψ̄−Ψ, and

∆rp
2wb

+
∆c

2(wb + wq)
> −(Ψ̄−Ψ).

(2.32)

In the Initial model, getting physicians on board was sufficient to align hospital-physician-

payer trio. Under the Quality-aware model, the payer will bundle only in certain cases, of

which one is presented in Proposition 2.4.1: when the opportunities for savings are high

(implied by T = Tmax) and the physicians are not aligned well with the hospitals (implied

by Ψ ≤ 1 − I0 − ∆rp
2wb

), bundling would occur as long as Condition (2.32) holds. This

condition is an almost immediate equivalent of Condition (2.6) in Theorem 2.2.1 except i)

the lower and upper bounds for the distance from the critical threshold for the physician

alignment level, |Ψ̄ − Ψ|, are shifted, ii) the bounds are no longer symmetric around the

critical threshold Ψ̄, iii) the alignment range where bundling is feasible may be smaller or

larger as compared with the Initial model depending on the parameter values.

Corollary 2.4.1. When Ψ ≥ 1 − I0 + ∆c
2wq

, bundling is not attractive for hospitals and

physicians.

Hospitals can gain from bundled payments by decreasing intensity. However, this will

often also decrease quality as well. When a hospital is concerned about the quality (as in

the Quality-aware model), an increase in cost savings due to decreasing intensity may or

may not outweigh the utility losses from decreasing quality. Many new payment mech-

anisms tie payments to quality, which in our framework essentially is the value of the

hospital quality objective (specifically, it would increase wq). Corollary 2.4.1 character-
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izes the region where bundling is not a profitable proposition for the hospitals and the

physicians where an increase in wq suggests a wider range of Ψ values. Hence, increas-

ing wq makes bundling more difficult. This observation warns CMS and other payers that

they must be cautious when combining bundled payments with other quality-improving

payment mechanisms (which would make the hospitals value the quality more). Indeed,

we already see that hospitals participating in bundled payments complain about such con-

flicting payment mechanisms (Dummit et al. 2015). An uncareful launch of bundling and

performance-based programs can discourage hospitals from bundling or it can lead them

to incur losses, if bundling was mandatory. In the following result, we compare how a

quality-aware hospital achieves different quality outcomes under bundled payments than a

quality-blind hospital as in the Initial model. The Quality-aware model can be considered

as the FFS vs. the bundled payment mechanism where the payer simultaneously offers

performance-based payment programs to hospitals.

Corollary 2.4.2. Under bundling, the intensity decreases as compared with the FFS.

Corollary 2.4.2 compares care intensity under the FFS vs. the bundled payments for

quality-aware hospitals, which is in line with the findings from the Initial model (see Corol-

lary 2.3.1).

Corollary 2.4.3.

(1.) If Ψ ≥ Ψ̄, then the quality under bundling will be the same under the Initial model

and the Quality-aware model.

(2.) If Ψ < Ψ̄, then the quality under bundling will be higher in the Quality-aware model

if
∆c−∆rp

2wb
< Ψ̄−Ψ. (2.33)

and higher in the Initial model otherwise.
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Corollary 2.4.3 has important implications for the payer in designing the payment

mechanism and setting the quality expectations from it. When combining the bundled

payments with performance-based programs (e.g., wq > 0), a payer should be careful in

the implementation and should account for i) the hospital-physician alignment levels, and

ii) cost and revenue differentials for the disease condition. For hospitals with highly aligned

physicians (Ψ ≥ Ψ̄), the quality will remain same when performance-based programs are

jointly offered with bundling. However, for hospitals that work with less-aligned physi-

cians (Ψ < Ψ̄), combining performance-based programs with bundling may increase the

quality as intended, or may lead to an unintended reduction of quality. Corollary 2.4.1 and

2.4.3 together imply that a payer should carefully balance the expected savings, incentives

for bundling, and the quality implications when deciding to jointly offer the bundled and

performance-based payment programs.

2.4.2 Physicians as Salaried Employees (Salary model)

In this section, we consider a salaried model setup, which represents a smaller but sizable

portion of hospitals. Under the salaried setup, we find that the equilibrium intensity under

FFS may be lower or higher in comparison to non-salaried setups (Lemma 2.4.2). However,

even when the equilibrium FFS intensity is lower in comparison to non-salaried setups, it

is still possible to bundle under some conditions. Further, among hospitals with salaried

physicians and similar cost and revenue differentials, those that value quality highly are

more likely to bundle; which is in contrast to the finding that quality-aware hospitals that

do not employ physicians are less likely to bundle if they value quality highly (Proposition

2.4.2). Comparing the Salary model with the corresponding non-salaried analog based on

the Quality-aware model, we find that bundling will be more feasible when cost savings

between the pathways are low to moderate (Theorem 2.4.1).

When physicians are salaried employees, they are not active decision makers for bundling;

instead the hospital pays physicians a fixed salary and collects the physician’s part of the
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reimbursement itself. Therefore, the modeling is decision-theoretic (henceforth referred to

as the Salary model), rather than a game-theoretical model, where Ψ = 1. Similar to Sec-

tion 2.4.1, we consider a setting where the hospital is quality-conscious (i.e. wq > 0), and

at the end of this section, we compare the Quality-aware and the Salary models (Theorem

2.4.1). Given this setup, the hospital’s utility function under FFS is given by

F FFS
h = rh − rS − (c1 − r1,p)I(ih)− (c2 − r2,p)(1− I(ih))− wq(I(ih)− I0)2, (2.34)

where rS is the salary paid to physicians, prorated to a single patient visit. On the other

hand, under bundled payments, the utility function is given by

F BP
h = rBP − rS − c1I(ih)− c2(1− I(ih))− wq(I(ih)− I0)2. (2.35)

We also assume that the hospital’s concern for quality, wq, and also the salary to the physi-

cians, rS , is the same under FFS and bundled payments. This is reasonable because hospi-

tals generally do not provide additional financial motivation to physicians, beyond possible

gainsharing (Dummit et al. 2015).

Lemma 2.4.2 (Status-quo intensity). The status quo FFS intensity I∗ is given by

I∗ = min[I0 −
∆c−∆rp

2wq
, 1]+. (2.36)

Lemma 2.4.2 suggests that the optimal care intensity under the Salary model is lower

than the optimal care intensity under the Initial model and it can be lower or higher than the

same under the Quality-aware model. Next, we characterize when hospitals with salaried

physicians would be better off with bundling.11

11When bundled payments and FFS lead to same payments to hospitals and cost to the payer, we break the
tie in favor of the bundled payments as coordination and less administrative costs are more desirable for the
payer.
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Proposition 2.4.2 (When do they bundle?). The hospital will bundle iff

∆c < ∆rp + 2wqI0 (2.37)

and rBP is high enough.12

Proposition 2.4.2 is a simple yet insightful finding. Based on the inequality (2.37),

under the Salary model, the decision to bundle depends on the cost differential between

pathways relative to potential gains from bundling. Specifically, the left-hand side of the

inequality in (2.37) represents the opportunities for cost savings, and the right-hand side

represents potential gains from i) payer’s reimbursement of physician services that are paid

to the hospital and ii) the value derived from the optimal quality. One important implication

of this result is that among hospitals with salaried physicians and similar cost and revenue

differentials, those that value quality highly are more likely to bundle. Note that this result

is in contrast to the finding that quality-aware hospitals that do not employ physicians are

less likely to bundle if they value quality highly. The key intuition for this difference in

these two results is the following. In the case of salaried physicians, since the hospital

receives a higher physician payment for the more expensive pathway from the payer but

pays the physicians a fixed salary, the hospital has an incentive to increase the intensity of

care under FFS. However, under bundled payments, the hospital does not have such an in-

centive and hence tends to reduce the intensity. The increase in hospital utility through this

reduction in intensity is higher if the hospital values quality highly, and hence a hospital

that values quality highly is more likely to bundle if it has salaried physicians. On the other

hand, when the physicians are not salaried employees of the hospital, since the physicians

have an incentive to choose a high intensity and the hospital will have to compensate the

physicians to reduce the intensity, a hospital that values quality highly will have to com-

pensate the physicians more (or equivalently limit the reduction in intensity consistent with

12The specifics for the conditions on rBP are provided in the appendix

109



the valuation of the quality). This causes bundling to be less profitable compared to FFS

for a hospital that values quality highly in case of non-salaried physicians. One example of

such hospitals are academic medical centers, which typically salary the physicians and at

the same time value quality highly. Indeed, in line with our findings, observational studies

show that academic medical centers are more eager to bundle (Tsai et al. 2015).

Proposition 2.4.3 (Optimal solution). If bundling occurs as outlined in Proposition 2.4.2,

then the optimal solution is as follows:

I] = [I0 −
∆c

2wq
]+. (2.38)

Moreover, the care intensity decreases under bundled payments.

The optimal care intensity under bundling of the Salary model is lower than that of the

FFS, and not higher than the optimal care intensity under bundling of the Quality-aware

model (Lemma 2.4.1). The comparatively lower care intensity in settings where hospitals

and physicians are highly aligned, as in the Salary model, emphasizes the importance of

performance-based payment models. To achieve good quality, payers should offer bundling

and performance-based payment models simultaneously (i.e., wq � 0) to ensure good

quality (i.e., limwq→∞[I0 − ∆c
2wq

] = I0) in salaried settings or settings where hospitals and

physicians are highly aligned.

The next theorem compares the Salary model with the Quality-aware model. Although

physicians do not manage costs and do not assume any risk for low-quality care in salaried

settings, they are highly aligned with hospitals.

Theorem 2.4.1. Consider a hospital with highly-aligned physicians (Ψ → 1). Then the

following provides a characterization of bundling under the quality and the salary models:

(1.) There are cases when the hospital would bundle under the Salary model but not under

the Quality-aware model, namely, when ∆c < 2wqI0 (relatively low savings).
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(2.) There are cases when the hospital would bundle under the Quality-aware model but

not under the Salary model, namely, when ∆c−∆rp > 2wqI0 (relatively high savings).

(3.) Bundling may occur under both models when 2wbI0 + 2wqI0 < ∆c < ∆rp + 2wqI0

(relatively moderate savings).

Theorem 2.4.1 emphasizes the role of salaried physicians and the resulting bundling in-

centives for hospitals, physicians, and the payers when physicians are highly aligned with

the hospitals. The race between the hospital’s valuation of quality and the savings op-

portunities with intensity reduction due to bundling determine the difference between the

salaried and non-salaried settings. When hospital’s valuation of quality is higher than the

cost savings as in part (1.) of the theorem, the Salary model indicates presence of sufficient

incentives for bundling whereas the independence of physicians under the non-salaried set-

ting suggests FFS as a better option for hospitals and physicians. When the hospital’s cost

savings relative to physicians’ revenue reduction is larger than hospital’s valuation of qual-

ity as in part (2.) of the theorem, the non-salaried setting allows for hospital and physician

alignment in bundling decisions whereas the hospitals operating in the salaried setting will

not have the incentives to bundle because they would be already operating efficiently under

the FFS. When savings are moderate as in part (3.) of the theorem, bundling occurs under

both models with highly aligned physicians. Neither high nor low savings opportunities

provide a balanced incentive environment for both the physicians and the hospital, thus

facilitating bundling.

2.4.3 Risk-averse Model

Prior studies on bundled payments have highlighted the role of risk. For instance, an influ-

ential analysis (Dobson et al. 2012) commissioned by the American Hospital Association

postulated four conditions that a hospital should consider when selecting DRGs suitable

for bundling. One of the conditions is the “appropriate amount of variation in Medicare

payment to achieve efficiency gains, but not so much that the risk of multiple outlier cases
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outweighs the reward.” The risk enters under the more expansive definitions of bundled

payments that also include post-acute care. Indeed, most hospitals do not control post-

acute care providers, so these hospitals cannot predict the overall episode costs so well.

At the same time, hospitals, especially the smaller ones, tend to be risk averse. This risk

aversion then hinders the adoption of bundled payments.

In this risk-averse model, the FFS problem remains unchanged. Indeed, under the FFS,

the hospital does not care about post-acute care costs. However, under bundled payments,

the hospital suddenly becomes responsible for the these costs, c̃′i (i ∈ {1, 2}), which are

highly uncertain. In what follows, we assume that each acute pathway results in different

post-acute care costs, and we formulate the hospital’s and physician’s problem as follows:

F BP
h = rBP − (c1 + c̃′1 + r1,p)I(ih, ip)− (c2 + c̃′2 + r2,p)(1− I(ih, ip))− (1− ip)T,

F BP
p = −wb(I(ih, ip)− I0)2 + r1,pI(ih, ip) + r2,p(1− I(ih, ip)) + (1− ip)T,

(2.39)

where c̃′i (i ∈ {1, 2}) are random variables. Therefore, in contrast to the previous models,

the hospital is now trying to maximize a stochastic utility function. For instance, if the

risk aversion is expressed through the exponential utility function and normally distributed

post-acute care costs, model (2.39) results in a hospital-driven mean-variance optimization

problem. This simplified problem is what we will focus on. Specifically, this assumption

means that c̃′i ∼ N (c′i, σ
2
i ). Then, equivalently, the hospital can optimize the following:

F BP
h = rBP − (c1 + c′1 + r1,p)I(ih, ip)− (c2 + c′2 + r2,p)(1− I(ih, ip))− (1− ip)T

− α

2
(σ2

1I(ih, ip)
2 + σ2

2(1− I(ih, ip))
2)

(2.40)

where α is the coefficient of risk aversion, and we defined ζi := α
2
σ2
i . Now, we are ready

to state an analog of Proposition 2.3.1:
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Proposition 2.4.4 (When do they bundle?). (1.) There will be a case similar to Proposi-

tion 2.3.1 where T > 0, with the conditions to satisfy being

∆rp
wb

(ζ1 + ζ2) + ∆c+ ∆c′ + 2(∆rp + I0ζ1 − (1− I0)ζ2) > 2wb(1− I0 −Ψ)

(2.41)

∆c+ ∆c′ > 2((ζ1 + ζ2)Ψ− ζ1 − wb(1− I0 −Ψ)). (2.42)

This case is profitable for physicians, and often, it will also be profitable for the payer

(paying rBP high enough), as long as ζi are not too high.

(2.) There will be cases with T = 0 that resemble the cases from FFS, when none of the

parties benefits, and the hospital loses from having to bear the risk from post-acute

care.

(3.) There will also be a case with T = 0 that is different from FFS cases, where the hospi-

tal is trying to increase intensity because the cheaper pathway has much uncertainty

(ζ2 high and ∆rp
2wb

< 1− I0). This may be profitable for the physicians and may or may

not be profitable for the payer.

2.4.4 Physician-Driven Model

In this section, we analyze an alternative model in which physicians are the sole drivers

of the care delivery and are only indirectly influenced by the hospital. This alternative

model is in contrast to the model we considered earlier where the care delivery and hence

intensity were co-produced by the hospital and physicians (the Coproduction model). We

remark that while coproduction of care is applicable to a wide range of hospitals, modeling

physicians as the sole driver of care may be appropriate in certain settings where physicians

are highly influential. We show throughout the remainder of this section that the results

from this alternative model are mostly qualitatively similar to those from the co-production
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models. For brevity, we present results relating to “when bundling benefits all parties?”

and “quality” results, which are slightly different than their analogues in the co-production

model case. We present the full set of results from the physician-driven model in Appendix

B.2.6.

In physician-driven model, physicians are the sole drivers of the intensity; i.e. we have

I ≡ ip. While the hospital has no influence on the intensity directly, it can indirectly influ-

ence the physician’s behavior. More specifically, when making the care delivery decisions,

the physician considers hospital’s expectation of cost reduction, which deters the physician

from practicing overprovision of care (captured by care intensity in the model). We model

this indirect influence of hospital on the physician behavior by−IΦ in the physician’s pay-

off function, where the intensity I is set solely by the physician and Φ captures the level

of hospital’s influence. Note that Φ = 0 means physicians are fully autonomous in their

decisions with no hospital influence and hospital influence increases with increasing Φ. We

then have

F FFS
p (I) = −wb(I − I0)2 + r1,pI + r2,p(1− I)− IΦ,

F FFS
h (I) = rh − c1I − c2(1− I),

(2.43)

and

F BP
p = −wb(I − I0)2 + r1,pI + r2,p(1− I) + (1− I)T − IΦ,

F BP
h = rBP − (c1 + r1,p)I − (c2 + r2,p)(1− I)− (1− I)T.

(2.44)

Given the payoff functions (2.43) and (2.44) for this alternative model, we assess when

bundling is desirable for all parties in the next theorem.

Theorem 2.4.2 (When bundling benefits all parties?). Hospitals and physicians will bundle

if the following condition holds:
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(Hospital/physician coordination condition):

∆c+ 2∆rp > 2wb(1− I0) + Φ (2.45)

We observe that overall, Theorem 2.4.2 is analogous to Theorem 2.3.1 but simpler, with

only one condition to satisfy. Specifically, the interpretation for Condition (2.45) is similar

to that of Condition (2.17), but we no longer need analogues for Conditions (2.18) and

(2.19). This is because, Conditions (2.18) and (2.19) implied low physician integration as

necessary conditions, and in physician-driven scenario where physicians are the sole drivers

of care delivery, obviously physicians have higher level of autonomy and hospitals have low

influence on physicians’ care delivery decisions. Hence such conditions are automatically

satisfied and no longer needed. Similarly, the results for quality, presented in the next

proposition, are analogous to that of Proposition 2.3.1.

Proposition 2.4.5 (Quality under BP vs. FFS). Compared with FFS, quality of care under

BP may increase or decrease, depending on the physician integration level Φ:

I. If integration is low, Φ < ∆rp, then overprovision of services characterizes FFS; and

in that case BP will improve if either

2(1− I0)wb > ∆c+ Φ (2.46)

or

2wb(1− I0 + 2∆rp − 2Φ) > ∆c+ Φ > 2(1− I0)wb. (2.47)

II. If integration is high, Φ > ∆rp, then underprovision of services characterizes FFS;

and in that case bundled payments will worsen the quality by magnifying the level of

underprovisioning.

Similar to the Coproduction models, both the level of hospital influence as well as the

status quo care intensity under FFS (under- or overprovision of services) determine qual-
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ity outcomes. Particularly, if overprovisioning characterizes the FFS quality can improve

under bundling when hospital influence (and/or potential cost savings) are low enough. If

underprovisioning characterizes FFS, however, the quality is expected to deteriorate under

bundling.

2.5 A Machine-learning Approach to Identify Common Service Bundles and Clini-

cal Pathways

We demonstrated in Sections 2.2, 2.3, and 2.4 that the costs associated with different clini-

cal pathways play a key role in determining whether the current efforts related to bundling

are likely to be successful. Consequently, it is imperative for hospitals and physicians to

better understand and manage their combined costs resulting from different clinical path-

ways before proposing bundled payments to a payer or accepting a payer’s proposal for

bundled payments. However, identifying the common clinical pathways may be quite com-

plicated (Curran et al. 2005). In particular, although specific pathways are well established

and understood by some hospitals, especially the ones with strong information technology

capabilities, they are less obvious to most hospitals. Therefore, an important issue to ad-

dress when considering bundling decisions is how to identify these “naturally-occurring”

pathways with different costs via a data-driven approach.

Our purpose in this section is to illustrate a practical machine learning method to iden-

tify such pathways using historical data. We remark that the “pathways” that inform

bundling decisions may not necessarily represent actual “physical” pathways, but rather

different ways of delivering care, resulting in different costs. For instance, a more ex-

pensive pathway may mean using a more expensive implant, ordering several unnecessary

tests, or prescribing special drugs.

The machine learning method we propose uses an Institutional Review Board-exempted

dataset obtained from a hospital specializing in orthopedic surgery. Standard and re-

producible orthopedic surgeries such as knee/hip replacement are considered as ideal for
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bundling. Therefore, to illustrate our proposed approach, we use cost data for DRG 470,

corresponding to knee replacement. Our dataset is obtained from a hospital specializing

in orthopedic surgery and includes 364 visits of DRG 470 made over a span of about two

years, which is a volume comparable with the hospitals that are actually engaged in bun-

dled payments for this DRG under the BPCI program. In addition to detailed information

on costs and a breakdown of charges, our dataset included demographic information, in-

surance type, additional diagnoses, BMI, and a code for attending and assisting physicians.

The machine learning method we propose consists of two stages.

(Stage 1): In this stage, we characterize “service bundles” from patient charges us-

ing Latent Dirichlet Allocation (LDA) model. LDA is a three-level hierarchical Bayesian

model, in which each item of a collection is modeled as a finite mixture over an under-

lying set of topics, namely, a set of tests and services provided (Blei et al. 2003). LDA

is commonly used in text mining, where a number of documents is available, and each

document comprises several (unobserved) topics with different frequencies. The words in

the documents are randomly drawn according to the topics. The goal is to determine how

words relate to different topics and how different topics are represented in each document.

Analogously, in our problem, each word corresponds to a charged service, each topic cor-

responds to bundles of services (“service bundles”, e.g., a blood draw and laboratory tests)

that typically occur together, and each document corresponds to a patient.

(Stage 2): In this stage, we identify the cost clusters using Gaussian mixture regres-

sion for a given DRG. The mixing probabilities depend on the service bundles (or “topics”)

identified in Stage 1 and the costs are controlled for other relevant factors such as patient

demographics. These final cost clusters then represent different pathways resulting in dif-

ferent costs for the same DRG.

Results. In our analysis, we assume normally distributed costs within each cluster.

We fitted the clusters and costs jointly using the expectation-maximization algorithm and

determined the number of clusters using the Bayesian Information Criterion (Leisch 2004).
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The analysis of actual data yielded two cost clusters with the following statistics:

• c1 ≈ $19400, σ1 ≈ $5000, I ≈ 0.18,

• c2 ≈ $8700, σ2 ≈ $260, (1− I) ≈ 0.82,

Table 2.3: Logistic regression estimates for a model predicting the probability of the ex-
pensive pathway using care topics.

Estimate Std. Error Pr(>|z|)
(Intercept) -2.35 0.67 0.0004

topic 1 1.24 0.86 0.15
topic 2 1.94 0.85 0.02
topic 3 -1.10 1.42 0.44
topic 4 0.10 0.96 0.92
topic 5 1.14 0.85 0.18
topic 6 2.62 0.84 0.002
topic 7 3.19 1.03 0.002
topic 8 -1.20 1.36 0.38
topic 9 -0.38 1.11 0.73

where ci is the estimated average cost for pathway i and σi represents the estimated

standard deviation of cost in pathway i. Similarly as in our theoretical models, intensity I

represents the fraction of patients following the more expensive pathways and corresponds

to the mixing probability of the more expensive pathway.

Our LDA analysis revealed that these cost clusters are partially explained by a set of

service bundles—topics—as shown in Table 2.3. In the logistic regression estimates, a

more positive coefficient for a topic indicates that the patients receiving the related service

bundle are more likely to end up in the more expensive pathway. Similarly, a more negative

coefficient for the topic indicates that the patients receiving the related service bundle are

more likely to end up in the cheaper pathway. Altogether, the degree of presence of service

bundles corresponding to the topics determines the overall probability of patient care being

in the expensive.
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Discussing these results with the executive team of the collaborating hospital, we found

out that some of these service bundles do play a substantial role in total cost, and that some

of them could be avoidable.13 For instance, one of the topics with a positive coefficient

corresponds to a particular brand of an implant, presumably an expensive one. Another

topic (not significantly associated with the expensive pathway) corresponds to lab testing,

including services such as sodium testing, potassium testing, chloride sera, hemoglobin

testing, hematocrit testing, and a charge for a blood analyzer that the hospital was using.

Other topics include drug combinations that are often administered together. The topics

in the table that are not significant correspond to treatment patterns that are not correlated

with either of the pathways; they instead correspond to treatment variations that on average

incur similar costs.

The numerical exercise using real data demonstrated that the machine-learning ap-

proach could identify different inpatient clinical pathways. We further emphasize that such

identification can be a starting point for hospital management and does not necessarily

validate the insights we obtained from the analytical modeling. Our demonstration using

a small number of observations suggests that the proposed method can i) help in better

understanding of the costs associated with various pathways, ii) can encourage wider im-

plementation of the optimal pathways once hospitals identify proper patient subgroups for

each pathway, and iii) can be a primer for an empirical approach when evaluating whether

switching to bundled payments is profitable based on the existing care patterns as defined

by clinical pathways. Future research can extend our analysis to larger and richer datasets

to provide a deeper understanding of cost clusters.

2.6 Discussion

The emerging payment models offer a new business model for healthcare organizations

and is set to change the way healthcare is delivered. In this work, we studied alignment
13We disguise the service bundles and refer to them as topics in order not to reveal the cost structure of the

collaborating hospital.
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of hospitals and physicians in the face of bundled payments. While a few previous studies

have also studied bundled payments, no prior operations management study has considered

care coordination and physician-hospital power struggle, which is acknowledged to be a

key factor in this space (Goldsmith et al. 2016). Our study also adds to the understanding

of the characteristics of medical conditions that are ideal for bundling. Different medical

conditions are characterized by different quality requirements, treatment intensities, and co-

ordination needs (Sood et al. 2011, Tsai et al. 2015); for example, while bundled payments

are widely touted for use in knee replacement or hip replacement, they are not brought up

as much in the context of stroke, where appropriate quality measures are critical but not

yet well developed, costs along the entire episode of care are not well understood, and new

payment models and gainsharing are less familiar to physicians-neurologists (McClellan

et al. 2014). Our analysis could be a starting point for hospitals in determining required

features of a medical condition for structuring the discussions around bundling.

We found that: i) hospitals with very low or very high levels of physician alignment

are not ideal for bundling, and they may be worse off under bundled payments compared

with FFS; ii) to engage physicians, hospitals need to gainshare, a mechanism that was not

available in traditional FFS-based payment models; iii) bundled payments will decrease

care intensity and, unless carefully regulated, bundling may also lead to a reduction in care

quality, and iv) in an environment where hospitals are also held accountable for quality,

the incentives for bundling will differ in hospitals employing salaried physicians than those

where physicians are independent contractors.

2.6.1 Managerial and Policy Implications

While the finding that bundling is not ideal for hospitals with very low physician align-

ment is more intuitive, the finding that hospitals with very high physician alignment are not

ideal for bundling is counter-intuitive. Physicians that are not well aligned with hospitals

are unlikely to give up on their power, and hence it is more difficulty to coordinate care
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and reduce system inefficiencies (such as redundant medical exams). On the other hand,

while highly aligned hospital and physicians are able to further coordinate care, the extent

of inefficiencies, and hence the room for improvement is small in such hospitals. Because

the total historical cost under FFS is taken as the benchmark in determining the rates un-

der bundled payments, highly-aligned hospital and physicians may tend not to lower their

margins by engaging in bundling initiatives.

There are important implications of our findings around the impact of the extent of

physician alignment on hospitals’ tendency to bundling. In general, physicians tend to be

less aligned in competitive hospital marketplaces with access to alternatives (Wholey and

Burns 1991, Burns et al. 2001). In contrast, physicians would expected to be more aligned

in markets where health systems dominate, e.g. Intermountain Healthcare dominates in the

state of Utah. Because the physician labor market is currently mostly undersupplied (Daly

2016), we anticipate physician presence or absence in competitive or monopolistic markets

will determine the alignment spectrum. First, under the voluntary bundled payment mod-

els, the predominant form which is likely to grow further, hospitals with highly aligned

physicians are unlikely to adopt bundled payments. However, this may not be a concern

from a societal perspective, as such hospitals are already performing cost-efficiently and

less of a burden in the overall healthcare costs. Second, as hospital with lowly aligned

physicians lack the power to coordinate care and induce efficient care, the voluntary bun-

dled payments will be ineffective in reducing inefficiencies and hence unnecessary costs

in such hospitals. Third, because hospitals with a moderate-level physician alignment are

more likely to embrace bundled payments, such hospital and physician groups are set to

gain from the voluntary model. This would further hurt the low-alignment, inefficient hos-

pitals that compete with the moderate-alignment hospitals. This could lead to mergers

(which we expect to increase hospital power and thus alignment) or service-line closures,

thereby further concentrating the market.

There have been opposing views about the role of gainsharing in bundled payments,
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which is used by hospitals as a device to coordinate with physicians. On the one hand,

gainsharing is recognized to play a crucial role in bundled payments (Froimson et al. 2013),

but on the other hand, the importance of gainsharing is underplayed (American Hospital

Association 2013). Our findings reinforces the former view that the hospitals and other

conveners should take gainsharing into account from the outset, when considering bundled

payments. Our study is a first attempt on paving the way for determining how gainsharing

proceeds can be quantified (as represented by T in our modeling) and in doing so, how the

role of care intensity, quality, and pathways can be assessed.

Third, we showed that the intensity will decrease under bundled payments, but this

may sometimes lead to a lower quality. The payer can use two standard approaches to

avoid this. First, it may set quality thresholds, and second, it may set stop-gain limits to

avoid excessive cost savings. Imposing a quality threshold may be challenging because

quality is often multidimensional and defining the right quality measures and risk adjusting

based on patient severity may be difficult to achieve (Dranove and Jin 2010). As for the

second approach, we have showed that the quality decreases, particularly the case when the

opportunities for savings are large. The second approach of stop-gain provisions seem more

promising through which hospital and physicians may choose to reduce the truly unneeded

care that are also a source of cost. However, stop-gain provisions may further shift the risk

to providers and, in return, providers’ incentives for bundling may reduce.

Finally, an organizational choice made by hospitals—whether or not physicians are

employees—could have an impact on incentives for bundling. Our analysis suggests that,

when hospitals value quality highly, a salaried physician setup may be more accommo-

dating for bundling in contrast to a setup where physicians are independent contractors to

hospitals. The implications for the hospital management is that, when engaging in bun-

dled payments, the existing physician employment structure should be considered. From

a policy-making perspective, organizational structures should be taken into account when

offering bundled payments, especially in an era of value-based payment incentives.
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2.6.2 Limitations and Future Work

Our model has numerous limitations and could be variously extended. We outline some

of these extensions in the upcoming paragraphs. One of the main limitations is that we

do not study in depth the post-acute care and associated hospital risk aversion. While we

have outlined a simplified model in Section 2.4.3, the risk aversion is probably one of they

key drivers of bundled payments non-adoption and hence worthwhile to study in depth. In

fact, many hospitals derive profits from their bundles largely because of savings on post-

acute care, and for such hospitals, our findings may not be accurate. Although the topic

of risk aversion has been touched on by other researchers (Adida et al. 2016), this is an

area with much research potential. Relatedly, while we studied the coordination between

the hospital and its physicians, researchers will encounter another degree of complexity

when also modeling the post-acute coordination. There will often be multiple post-acute

providers and decreasing costs for the hospital may mean pitting them against each other,

stopping contracting with some and requiring lower costs from others.

Related to care coordination is the problem of convening the bundle. This term refers

to the need to administer the money collected from the care episode (bundle) and distribute

them to the various care providers, including the hospital, physicians, and post-acute care

providers. Currently, most bundled payment models assumes that the administrator, also

termed the “convener”, is the hospital. However, this arrangement materialized more by

convenience and coincidence than contemplation. However, in general, policymakers and

healthcare administrators would be interested to know who is the best suited to assume the

role of the convener and how to distribute the bundled payment among providers.

While payers can use prevailing FFS prices to initially price the bundle (Dong et al.

2011), it is unclear how bundles would be repriced in future (Rosen et al. 2013). Repric-

ing the bundled payment would be needed because of technological innovation and other

input changes. This issue replicates the same problem with original hospital DRG-based

payments, which replaced cost-based reimbursement. In the flow of the time, DRG-based
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payments disconnected from the reality as providers embraced new technology. Therefore

nowadays, many DRG are overcompensated and many are too low to cover the costs.

While our model assumes that hospitals and physicians focus on the present, real-world

hospital administrators also care for the long term. They need a long-term planning model,

particularly with the healthcare changes under way and ahead. For instance, under the re-

cent MACRA act, physicians will have to choose in the upcoming years either to stay under

fee-for-service with stringent pay-for-performance incentives or transition to participating

in new payment models, including bundled payments. On the other hand, hospitals need

to choose which conditions to bundle and possibly which other new payment initiatives

to adopt, with the view of learning for the future when new payment initiatives become

mandatory.

Although we have touched the question of conflicting incentives in our Quality-aware

model, the interaction of bundled payments with other new payment initiatives remains

a widely open topic. For instance, the Prometheus bundled payments pilot in California

failed partially because it collided with existing capitation arrangements (Ridgely et al.

2014). Also, some providers participate both in bundled payments and accountable care

organizations (Dummit et al. 2015). Finally, many providers must participate in “pay for

performance” schemes that modify their payoff under FFS. Therefore, it seems that the

topic of blended payment models is worth further exploration.

Our model considers only a simple, linear gainsharing arrangement with physicians,

but more complicated arrangements exist in practice. One can ask whether hospitals could

offer more sophisticated gainsharing contracts to induce physician integration more effec-

tive. Furthermore, what if multiple physicians are involved in a bundle, are game-theoretic

approaches to gainsharing needed? This endeavor to capture more complex gainsharing

arrangement could draw on the extensive literature on optimal contract design (Bolton and

Dewatripont 2005). Related to the concerns studied by the contract theory is the common

knowledge of the optimal intensity I0. In our models, we assume that both the physicians
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and the hospital know the quality-optimal intensity I0. However, this is often probably not

the case. In fact, it seems that physicians vary in intensity of care and rely on incentives

and local customs exactly when they are uncertain about what the optimal intensity of care

should be (Sirovich et al. 2008).

Another limitation is that we only model two pathways. However, the case of multi-

ple pathways can be partially reduced to the two-pathways case and furthermore the two-

pathways case embodies a natural dilemma of the hospital administrator. Specifically, let’s

assume first that there are multiple pathways. Then when we start bundled payments prepa-

rations, we can initially merge the cheaper pathways together and the costlier pathways

together, ideally in a way that the hospital saves the most from moving a patient from the

costly “superpathway” to the cheap superpathway. Furthermore, if the hospital’s process

is very complex and there would be many pathways capturing many combinations of care,

the hospital could consider as the cheap pathway the “most efficient care” case while as the

expensive pathway the most common care or the “least efficient care encountered.” Hence,

we believe that our decision to consider two pathways does not lose too much generality.

Finally, we argue that the two-pathways case capture the most common decision-making

of administrators: Indeed, questions asked will typically be binary, such as “should I pro-

vide this treatment or not,” “should I use the existing implant or search for a cheaper one,”

“should the patient receive and X-ray or not.” More generally, the expensive pathway will

often be the status quo while the cheaper pathway will be the standard of care after a po-

tential care redesign.

It is unclear how long the duration of the coverage by bundled payments should be,

in other words, how many days from patient hospital admission are covered. Currently,

some BPCI models offered 30, 60, or 90 days “episode length”, mostly focusing on 90

days. That is, within 90 days, all more-or-less related services must be covered by the

providers and are included in the bundle. However, how long and how flexible the episode

length or other episode definition should be is a question. This relates to a separate question
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of defining the bundle: Which services should be included and are related to the bundle?

Too narrow definitions stifle provider innovation but too extensive definitions put providers

at risk for unrelated costs. This but bundled payments question is closely related to the

“warranty” stream of research within the operations management community. Therefore,

researchers may begin to explore this question from several extensive warranty literature re-

views (Blischke and Murthy 1992, Murthy and Blischke 1992a,b, Murthy and Djamaludin

2002). Particularly relevant in the healthcare context may be the design of bundle episodes

with low “failure” rate, episodes that pass the required quality guarantees smoothly (Chen

et al. 1998).

In the current model, we also do not consider fixed implementation costs of bundling as

they would not influence the qualitative outcomes given FFS or bundled payments. How-

ever, fixed costs may influence the hospital’s decision to actually switch from FFS to bun-

dled payments or the hospital’s outcomes if it is forced to bundle. This perspective may

justify why CMS has first introduced retrospective bundling schemes, in spite of being

critized by some healthcare experts who may view retrospective bundling only as “just a

new pay-for-performance system” (Miller 2015). However, fixed implementation costs for

a full-fledged prospective bundling scheme from the outset may be prohibitive for most hos-

pitals, as demonstrated for instance by the large-scale failed Prometheus bundling project in

California (Ridgely et al. 2014). Therefore, we speculate that CMS only uses retrospective

bundling to help hospitals overcome prohibitive initial fixed costs and this is also suggested

by how CMS positions its differeent BPCI models and advertises that the hospitals might

need to

Given the foundations laid by our and related studies of bundled payments, authors in

the coming years need to explore emerging data sources related to bundled payments and

validate some of the findings shown here. Furthermore, data will open for investigation

many assumptions that we put forward. For example, how does the physician concern for

quality compare to the one of the hospital. Or, how to assess the physician level of align-
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ment using modern data sources that were not available 25 years ago when the first physi-

cian alignment studies were conducted. Answers to these questions would be of interest

not only to academicians but also to hospital administrators and healthcare policymakers

interested in new payment models to make the healthcare system more effective, efficient,

and affordable.
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CHAPTER 3

FLEXIBLE BED MANAGEMENT

3.1 Introduction

About 12.6 million emergency department (ED) visits every year in the U.S. result in a hos-

pital admission (National Center for Health Statistics 2016). Typically, there is a preferred

(primary) hospital unit for each admitted patient, depending on the patient’s condition. For

example, a patient with congestive heart failure might be best served by the cardiology unit,

whereas a patient with pneumonia might be better placed in the pulmonary unit. When a

bed in a patient’s the primary unit is not available, the patient may have to be assigned to

a non-primary unit or wait (“board”) in the ED. Treatment in a non-primary unit is associ-

ated with higher risk of inpatient mortality and increased rate of medical errors (Song et al.

2019, Komajda et al. 2003, Hodgetts et al. 2002, Goulding et al. 2015). On the other hand,

extended ED boarding times are also associated with poor health and operational outcomes,

such as impaired clinical coordination, increased rate of medical errors, delays in receiving

necessary care, ED overcrowding, and ambulance diversion (Moskop et al. 2009b, Insti-

tute of Medicine 2006c). Therefore, there is a trade-off between assigning patients to a

non-primary unit versus boarding them in the ED, and a lack of clear guidelines regarding

these decisions (Proudlove et al. 2007), which we refer to as the “flexible bed management

problem.”

In this study, we develop data-driven solution approaches to balance the key trade-off

faced in bed management: whether to assign an admitted patient to a secondary unit or

board in the ED, when a bed in the primary unit is not available. Specifically, we propose

a novel “Generalized Reservation and Threshold Reinforcement Learning” (GREAT-RL)

policy, which generalizes two commonly used policies in the literature, reservation and
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threshold policies, and outperforms them in extensive numerical analyses. Furthermore,

the GREAT-RL policy can be practically implemented, as it can be parameterized through

reinforcement learning.

The remainder of this paper is organized as follows. In Section 3.2, we review the

relevant literature. In Section 3.3, we present the model formulation for the flexible bed

management problem. In section 3.4, we discuss reservation and threshold policies, their

favorable structural properties under special conditions, and their limitations in more gen-

eral settings. In Section 3.5, we introduce the GREAT-RL policy framework, demonstrate

how it generalizes threshold and reservation policies, and describe our reinforcement learn-

ing implementation. In Section 3.6, we describe the numerical simulation study and discuss

the results. Finally, in Section 3.7, we summarize our findings and provide recommenda-

tions to hospital operations managers.

3.2 Literature Review

This research contributes to several streams in the literature, including: (a) queueing sys-

tems in healthcare (see Gupta (2013) for a review), and (b) revenue management.

Prior research on improving ED boarding times includes analysing the effect of surge

occupancy through econometric analysis (Long and Mathews 2018), studying the effects of

bed pooling through discrete-event simulation (Thomas Schneider et al. 2018), identifying

novel nurse staffing policies using many-server asymptotics (Véricourt and Jennings 2011),

and designing early discharge strategies (Dobson et al. 2010). Other relevant work include

scheduling for overflows and secondary assignments between internal units (Thompson

et al. 2009) or for stepdown units in intensive care units (ICU) (Armony et al. 2018). Our

study differs from these by focusing on the assignments of patients from the ED to the

internal units (beds) and primary vs. secondary assignment options during this transition.

Another stream of research focuses on admission decisions to the units, with policies

employing future information (Xu and Chan 2016), measurement on different time-scales
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(Dai and Shi 2017), coordinated admissions (Helm et al. 2011b), and urgency-based priori-

tization (Deglise-Hawkinson et al. 2018). While relevant, studies in this stream of literature

do not consider primary and non-primary units for patients.

Several papers consider trade-offs between boarding and misallocation (i.e., allocation

to secondary units). Kilinc et al. (2019) consider this trade-off in a setup with two patient

classes and two units. Griffin et al. (2012) also investigate the trade-off but do not propose

an algorithm that would perform effectively across a diverse set of scenarios. Ouyang et al.

(2020) capture a similar trade-off between ICU and general ward admissions through a

patient-state model where the patient condition deteriorates faster in the general ward. Dai

and Shi (2019) tackle the problem using the value function approximation methodology

assuming the same treatment time distribution across patient classes.

Revenue management models consider similar demand-supply assignment decisions

(Talluri and Van Ryzin 2006). When item substitution is allowed (similar to primary

vs. secondary units), customers can choose among several items, with applications in air-

line overbooking (Karaesmen and Van Ryzin 2004), retail inventory problems (Smith and

Agrawal 2000), and assemble-to-order manufacturing (Shumsky and Zhang 2009). These

models parallel our notions of assignment to primary and secondary units but do not con-

sider the possibility of waiting for a primary assignment, i.e., boarding is not allowed. Other

researchers explore algorithms for dynamic supply-demand matching problems, e.g., allo-

cating inventories to sequentially-arriving demand (Ma and Simchi-Levi 2017), allocating

advertisements through online stochastic matching (Bahmani and Kapralov 2010, Man-

shadi et al. 2012), or assigning vehicles for dynamic routing (Spivey and Powell 2004).

These models feature a finite inventory that is assigned whereas in our setting, the in-

ventory (beds) is renewable. Our work also relates to due date management literature in

make-to-order manufacturing settings (Savaşaneril et al. 2010, Hafızoğlu et al. 2016, Ke-

skinocak and Tayur 2004) where arriving customers are quoted due dates and then decide

whether to place an order; the flexible bed management problem has a similar renewable
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capacity as in due date management, but all the demand must be met and there are different

resource types.

In various contexts, researchers studied reservation and threshold policies (e.g., see Tal-

luri and Van Ryzin (2006)), which we show to be special cases of our proposed GREAT-RL

policy (Proposition 3.5.1). More complex policies include simulation-based reservation

(Bertsimas and De Boer 2005), limited-information (Lan et al. 2008), and nested reserva-

tion policies (Brumelle and McGill 1993). Threshold policies are effective, e.g., in (clas-

sical) inventory management (Arrow et al. 1951), rental systems (Papier and Thonemann

2010), and call-center routing (Zhan and Ward 2013). The GREAT-RL policy generalizes

these reservation and threshold ideas while also being amenable to reinforcement learning,

which allows wider applicability.

3.3 Problem Formulation

To analyze the flexible bed management problem, we employ a queueing framework where

patients with different clinical conditions i ∈ {1, . . . , I} (“patient classes”) are assigned to

units j ∈ {1, . . . , J}. The notation used throughout the manuscript is summarized in Table

3.1.

In unit j, there are κj beds, of which oj ≤ κj are occupied and εj = κj − oj are empty

at a given time. There is a misallocation penalty πi,j for assigning a patient of class i to unit

j, where πi,j = ∞ if patient class i cannot be served in unit j. The misallocation penalty

would depend on the specific setting (e.g., determined by a team of medical professionals

and operations managers in the hospital).

For patient class i: (i) If j = arg minj′∈J πi,j′ , then j is a primary unit and (i, j) is

a primary pair, denoted by indicator function χi,j = 1. (ii) Otherwise, if minj∈J ′ πi,j′ <

πi,j <∞, unit j is a secondary unit and (i, j) is a secondary pair. When πi,j <∞, the pair

(i, j) is an eligible pair, denoted by the indicator function ηi,j = 1. The sets of all primary

and eligible pairs are denoted by X and E, respectively.
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A patient who waits in the ED before being assigned to a bed is a “boarding patient” and

incurs a boarding penalty bi per unit time for patient class i. The boarding penalty captures

the dynamics that a boarding patient may not receive the most appropriate treatment, while

consuming scarce ED resources and potentially preventing other patients from receiving

timely care in the ED.

We next describe the system dynamics. At any point in time, the system is in state

S := ({Qi}, {oij}), where Qi denotes the number of patients of class i in the boarding

queue and oij is the number of patients of class i served in unit j (hence, Oj =
∑

i oij , the

total number of patients in unit j, i.e., occupancy of unit j). When a bed becomes available,

it can be assigned to a boarding patient or “reserved” for a future patient. Patients of class

i arrive for a bed assignment (i.e., after their assessment in the ED, they are admitted for

inpatient treatment and become ready for bed assignment) according to a Poisson process

with arrival rate λi. When a patient is ready for assignment, depending on the availability

of beds and the condition of the patient, she can be either assigned to an eligible unit right

away or wait (i.e., join the boarding queue). When a patient from class i is assigned to a

bed in unit j, the service time is exponentially distributed with rate µij .

The objective is to minimize a weighted sum of boarding and misallocation penalties.

We identify effective policies under a variety of parameters and discuss the practical impli-

cations of the proposed policies. For the special case where all misallocation penalties are

equal, we normalize the misallocation penalty to 1 and set the boarding penalty as b > 0

(boarding-to-misallocation ratio).

3.4 Threshold and Reservation Policies

In this section, we structurally analyze threshold and reservation policies, which are com-

monly used in the literature and constitute the backbone for our proposed GREAT-RL pol-

icy in Section 3.5. We start by formally defining threshold and reservation policies in

Section 3.4.1 and in Section 3.4.2 we establish the optimality properties of these policies
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Table 3.1: Notation for indices, sets, and parameters

i ∈ {1, . . . , I} Patient classes
λi Arrival rate for patient class i
bi Boarding penalty for patient class i
Qi Number of patients of class i boarding
j ∈ {1, . . . , J} Hospital units
κj Capacity (number of beds) of hospital unit j
εj Number of empty beds in hospital unit j
χij , X Primary pair indicator function and set of primary pairs
ηij , E Eligibility indicator function and set of eligible pairs
πij Misallocation penalty for pair (i, j)
b Unified boarding penalty if b1 = b2 = . . . = bI ,

also referred to as boarding-to-misallocation ratio when πij = 1 ∀i, j
µij Service rate for pair (i, j)
µi Unified service rate for patient class i when µij are equal ∀j
Oj, oij Occupancy of hospital unit j, total and by class i, respectively
S System state, S = ({Qi}, {oij})

Table 3.2: Notation for calculated metrics used in the policies

Wij Waiting time of class i for unit j (Section 3.4)
τi,j Threshold in the threshold policy (Section 3.4)
Ωj Opportunity cost of assigning a patient to unit j (Section 3.4)
Bi Expected total boarding time for a patient of class i (Section 3.4)
wi Maximum elapsed boarding time of class i patient (Section 3.5)
α Admission function (Section 3.5)
σ Scheduling function (Section 3.5)
ρ Primary pair utilization (Section 3.6)
ζ Standard deviation of service times (Section 3.6)
β Variation of utilization (Section 3.6)
yij Steady state occupancy probabilities for class i in unit j (Section 3.6)

under certain conditions. In Section 3.4.3, we demonstrate scenarios where these policies

may not perform well, which motivate our proposed GREAT-RL policy. Please refer to

Tables 3.1 and 3.2 for notation.
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3.4.1 Policy Definitions

Threshold Policy

In a threshold policy (see Algorithm 1), if primary pair (i, j) becomes available for assign-

ment, it is assigned immediately; otherwise, secondary pair (i, j) (if available) is assigned

if Qi > τi,j , i.e., if Qi is higher than a certain threshold τi,j , defined as follows:

Algorithm 1: Threshold Policy
Input: Set of thresholds τi,j

1 if patient p arrives then
2 if primary unit j for p has free beds then
3 Assign p to j

4 else if J ′ := {j : τip,j′ < Qip} 6= ∅ then
5 Assign ip into j′ ∈ J ′ where j′ = arg minj∈J πip,j

6 else if bed becomes available in unit j then
7 if primary patient p for j is waiting then
8 Assign p to j

9 else if I ′ := {ι : τι,j < Qι} 6= ∅ then
10 Assign i′ ∈ I ′ into j for i′ = arg mini∈I πi,j

τi,j =

⌊
πij + Ωj

bi ·Bi

⌋
, (3.1)

Recall that πij is the misallocation penalty for assigning patient class i to unit j and Ωj

is the opportunity cost of assigning a patient to unit j at this point in time (considering

the potential arrival of future patients who may be primary for unit j). Bi is the expected

boarding time for a patient of class i at this point in time (until their assignment). Hence, the

nominator and the denominator in τi,j are the estimated cost and benefit of the assignment

(i, j), respectively.

We approximate the opportunity cost Ωj by considering the expected time until a newly

assigned patient departs and accounting for the boarding penalty for primary patients, ar-
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riving for unit j in the interim:

Ωi,j =
∑
i′∈Ij

λi′

µi +
∑

i′′∈Ij λi′′
·( 1

µi
− 1

µi +
∑

i′′∈Ij λi′′
)·bi′ , where Ij = {i′ : χi′,j = 1, i′ 6= i}.

We estimate the expected boarding time as, Bi = 1/(µi
∑

j χijκj).

Reservation Policy (Reserve k Beds Policy)

A reservation policy allows for secondary assignments but “reserves” a certain number of

beds to be used solely by primary patient classes. Formally, if a primary pair becomes

available for assignment, it is assigned immediately. Otherwise, secondary pair (i, j) is

assigned if oij and Oj are not “too high.” Reserve k Beds policy reserves k > 0 beds

in each unit for the primary class, and the remaining beds can be occupied by secondary

classes, as formalized in Algorithm 2.

Algorithm 2: Reserve k Beds policy
Input: Reservation level k

1 if patient p arrives then
2 if primary unit j for p has free beds then
3 Assign p to j

4 else if secondary unit j′ for p has > k empty beds then
5 Assign p to j′ = arg minj′′∈J πip,j′′

6 else if bed becomes available in unit j then
7 if primary patient p for j is waiting then
8 Assign p to j

9 else if secondary patients for j are waiting from classes I ′ and j has > k
empty beds then

10 Assign to j a waiting patient from class i = arg mini∈I′ πi,j

3.4.2 Structural Properties of Threshold and Reserve-k-Beds Policies

In this section, we study the conditions under which reservation or threshold policies are

optimal. The insights from this analysis shape our proposed GREAT-RL policy in Sec-
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tion 3.5, which builds upon reservation and threshold policies while addressing their key

limitations.

Throughout this section, for analytical tractability, we consider systems with two patient

classes and two units and assume that pairs (1, 1) and (2, 2) are primary. For ease of

interpretation, we consider a constant boarding-to-misallocation ratio b. The proofs are

presented in Appendices C.1 and C.2.

Theorem 3.4.1 (Optimality of the Threshold Policy). Suppose that each unit has one bed

and that µij ≡ µ and πij
b
> 1 for i 6= j. Then, a threshold policy, with (class-dependent)

thresholds Ni is optimal.

Next, we proceed with showing the optimality of the reservation policy under special

conditions on stationary assignment.

Theorem 3.4.2 (Optimality of the Reservation Policy). Consider the special case where

the first unit has only one bed and π1,2 = ∞ and class 2 patients can be assigned to unit

1 at a stationary rate `21 ≥ 0. Then the optimal policy features a nontrivial secondary

assignment rate `21 > 0 and reserves the bed in unit 1 for the primary class under the

following condition:

0 >
π21

λ2

+ b
∂

∂`21

[(1− `21)EW22(`21) + `21 EW21(`21)]`21=0 > −Ξ, (3.2)

where `22 := λ2 − `21 and Ξ is the marginal boarding cost incurred by patient class 1 due

to the assignment of some class 2 patients to unit 1.

We note that Ξ and the waiting times EW22, EW21 can be computed analytically, as

shown in the proof, in the Appendix C.2.

Theorem 3.4.2 shows that reserving beds for primary class patients may be preferable

to unrestricted secondary patient assignments. That is, even when a secondary assignment

improves the objective function for the patients from the secondary class (the first inequality
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in (3.2)), that benefit may be outweighed by the longer boarding times (and penalties) for

the primary class (the second inequality in (3.2)). Hence, the theorem outlines how the

reservation policy improves the objective function by balancing boarding and misallocation

penalties among multiple classes, which is an insight motivating the GREAT-RL policy in

Section 3.5.

3.4.3 Suboptimality of Threshold and Reserve-k-Beds Policies in Realistic Bed Management

Settings

Prior literature has shown that threshold and reservation policies are promising in many

applications (e.g., Talluri and Van Ryzin (2006), Papier and Thonemann (2010), Bertsimas

and De Boer (2005)). While these policies may be optimal in simplified settings (as shown

in Theorems 3.4.1 and 3.4.2), they are likely to be suboptimal in more general and practical

settings, particularly in systems with multiple units and patient classes, as we illustrate in

the following two examples.

Example 3.4.1. The Reserve-k-Beds policy is not optimal in a system with three patient

classes and three units. In particular, it can be outperformed by a simple dynamic policy.

We sketch the example here and defer parameter details to the Appendix C.8. Consider

a system with three patient classes (C1, C2, C3), three units (U1, U2, U3), each with 1 bed,

and the parameters summarized in Table 3.3. Then the Reserve-k-Beds policy will assign

Table 3.3: Parameters for Example 3.4.1.

(a) Misallocation penalties.

U1 U2 U3

C1 0 0.1 ∞
C2 ∞ 0.1 0
C3 ∞ ∞ 0

(b) Patient class characteristics.

λ µ b
C1 high high high
C2 high high low
C3 very low very low high

C1 to U1 or U2, assign C3 to U3, and assign C2 to U2 or U3. However, this policy will be

outperformed by a dynamic policy where assignments of C2 to U2 are allowed if patients

from C3 are present but not allowed if they are not.
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Example 3.4.2. The Threshold policy may not be optimal in a system with three patient

classes and three units.

For the exact parameterization, please again refer to the Appendix C.8. There are again

three patient classes and three units, with one bed each. The parameters are described in

Table 3.4. A static threshold policy will assign C2 to U2, C3 to U3, and C1 to either U1 or

Table 3.4: Parameters for Example 3.4.2.

(a) Misallocation penalties.

U1 U2 U3

C1 0 1 ∞
C2 ∞ 0 0
C3 ∞ ∞ 0

(b) Patient class characteristics.

λ µ b
C1 low low low
C2 moderate moderate high
C3 long long very high

to U2 if the number of patients from C1 waiting exceed a threshold. However, this policy,

regardless of the threshold selected, can be outperformed by a dynamic policy that assigns

C1 to the secondary unit U2 if and only if U3 is empty.

In summary, while reservation and threshold policies gained much attention in the liter-

ature and are promising for the bed management problem, they may perform suboptimally,

and even sometimes poorly, due to the aforementioned inherent limitations. In the next

section, we propose a generalized policy that builds upon threshold and Reserve-k-Beds

policies, while addressing their key limitations, and hence improving their performance.

3.5 Generalized Reservation and Threshold Reinforcement Learning (GREAT-RL)

Policy

In this section we propose in Section 3.5.1 the Generalized Reservation and Threshold

Reinforcement Learning (GREAT-RL) policy, which introduces flexibility to overcome the

limitations of reservation and threshold policies (as discussed in Section 3.4), especially in

complex systems with multiple units and patient classes, while maintaining their success

under special settings. Furthermore, the GREAT-RL policy can be easily parameterized

through reinforcement learning, as illustrated in Section 3.5.2.
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3.5.1 Generalized Reservation And Threshold (GREAT) Policy: Definition

GREAT-RL policy, outlined in Algorithm 3, goes through two steps at each iteration: first,

the policy determines a subset of eligible pairs to allow for assignment, and second, it scores

each pair in the subset and assigns the pair with the highest score. Formally, the first step

is implemented through an admission function α(.), where α(i, j, S) = 1 if pair (i, j) is

recommended for assignment under state S, and α(i, j, S) = 0 otherwise. The second step

is implemented through a scheduling function σ(i, j, S), which assigns a real-valued score

to each pair. While a well-performing scheduling function σ(.) can be derived from the

queueing literature, the admission function α(.) is specific to the flexible bed management

problem and can be fine-tuned through reinforcement learning as demonstrated in Section

3.5.2.

Algorithm 3: GREAT-RL Policy
Input: Admission function α; scheduling function σ

1 if patient p arrives then
2 if primary unit j for p has free beds then
3 Assign p to j

4 else if Ap = {j : α(ip, j, S) = 1} 6= ∅ then
5 Assign p to j′ = arg maxj′′∈Ap σ(ip, j

′′, S)

6 else if bed becomes available in unit j then
7 if primary patient p for j is waiting then
8 Assign p to j

9 else if Aj = {i : α(i, j, S) = 1} 6= ∅ then
10 Assign to j a waiting patient from class i = arg maxi′∈Aj σ(i′, j, S)

Next, we show that GREAT-RL policy generalizes Reserve-k-Beds and Threshold poli-

cies:

Proposition 3.5.1. The GREAT-RL policy framework generalizes the Reserve-k-beds pol-

icy and Threshold policy. In particular, these two policies can be emulated by the GREAT-

RL policy under a particular choice of α and σ.
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The proof is included in the Appendix C.3. In the following section, we demonstrate

an RL implementation of our proposed GREAT-RL policy.

3.5.2 A Reinforcement Learning Implementation of GREAT-RL Policy

For Step 1 of the GREAT-RL policy, we consider the Gcµ scheduling function (σ(i, j, S) =

biµijwi(S) ) (Van Mieghem 1995).

We estimate admission function α(.) through the one-step actor-critic reinforcement

learning algorithm (Sutton and Barto 2018). Two key ingredients of the actor-critic-type

algorithms are the policy function and the value function, both estimated in the course of

the algorithm (Sutton and Barto 2018). We estimate the policy function for each eligible

pair by inverse logit with the following features: the number of waiting patients (queue)

for each patient class (Qi for i ∈ 1, . . . , I), and the number of patients from each class

assigned (occupancy) in each unit (oij for i ∈ 1, . . . , I , j ∈ 1, . . . , J). We determine the

value function learning rate using the REINFORCE algorithm in (Sutton and Barto 2018)

and the policy function learning rate by a fixed learning rate and an adaptive learning rate

(c.f. (Sutton and Barto 2018), Section 9.6).1

3.6 Computational Study

We compare the performances of the GREAT-RL and benchmark policies via a computa-

tional study. Section 3.6.1 describes the computational setup, Section 3.6.2 lists the bench-

mark policies, and Section 3.6.3 presents the results.

3.6.1 Experimental Design

Parameterization

In the computational study, we vary four parameters:

1The later numerical study includes for each scenario the learning rate that performed better for that
scenario.
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• Utilization of primary pairs ρ =
∑

i λi/
∑

i µi

• Boarding-to-misallocation ratio b

• Standard deviation of service time distribution ζ , such that µi = 1 + ζ∆µi where

µi ∼ N(0, 1) for every i ∈ I

• Variation in utilization of primary pairs β, such that ρi = λi/µi ∼ Beta(α, β), where

α is selected such that E[
∑

i λi/
∑

i µi] = ρ

The considered intervals for these parameters and for constants are listed in Table 3.5. For

a single set of parameters, we use the term scenario. For each scenario, we generate µi, λi

and the interarrival and service time random variables multiple times, calling each one of

these instantiations an instance. Each instance is used to evaluate each policy, using com-

mon random numbers (Nelson 2013). The GREAT-RL admission function is estimated on

separate instances before the main evaluation. We generate 24 scenarios based on the Latin

hypercube design and generate 10 instances for each scenario, for a total of 240 instances,

which is a sufficient size to statistically test the mean difference in performance metrics be-

tween policies. Each instance consists of 50,000 arrival events, selected empirically based

on the variance of the per-patient reward. There is a warm-up period of 2,500 arrivals

selected empirically based on average waiting times.

Table 3.5: List of Parameters

Parameter Interval
Number of patient classes 4
Number of units 4
Number of beds per unit 10
Fraction of primary pairs 0.3
Utilization of primary pairs ρ (0.5, 0.99)
Boarding-to-misallocation penalty ratio b (0.1, 1.0)
Standard deviation of service times ζ (0.0, 0.5)
Variation of utilization β (1.0, 5.0)

Details of parameter estimations and scenario generation are described in the Appendix

C.4. The details of the implementation are provided in the Appendix C.10.
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3.6.2 Benchmark Policies

We consider four benchmark policies: Strict, Greedy, Generalized cµ (“Gcµ”), and LEWC-

p. The Strict and Greedy policies are simple baselines while Gcµ and LEWC-p had been

considered in the literature. The Strict policy assigns a patient to a bed in their primary

unit if such a bed is available and boards the patient otherwise. The Greedy policy assigns

patient to the unit with the lowest misallocation penalty available on patient arrival. When a

bed becomes available, the policy assigns the patient with the lowest misallocation penalty.

The Gcµ policy (Van Mieghem 1995), assigns patient p from patient class ip such that the

following product is maximal:

wp · bip · µip , (3.3)

where wp is the longest waiting time for a currently waiting patient from patient class ip

(Van Mieghem 1995). The LEWC-p policy extends the GCµ policy by adding to (3.3) a

term proportional to πij (Kilinc et al. 2019).

Observe that the GREAT-RL policy generalizes all these four policies because the ad-

mission and scheduling functions in GREAT-RL can be chosen as follows:

• For Greedy policy: α(i, j) = 1, σ(i, j) = −πij (Section 3.6.2).

• For Strict policy: α(i, j) = 0, σ(i, j) = −πij (Section 3.6.2).

• For Gcµ policy: α(i, j) = 1, σ(i, j) = biµijwi(t) (Van Mieghem 1995).

• For LEWC-p policy: α(i, j) = 1{bi/µi > πijyij} and then

σ(i, j) =
biQi∑
j∈J yijµi

− πij
yijQi∑
j∈J yij

, (3.4)

where yij are estimated optimal steady state occupancy probabilities (Kilinc et al.

2019).
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3.6.3 Results

Overall Performance

In Figure 3.1, each point corresponds to the relative normalized reward (relative to the

Greedy policy) for one policy evaluated on one instance. The relative normalized reward

for policy P on an instance is defined as
−

∑
k(πPpk

+bPpk
)

|{pk}|
− −

∑
k(πGpk

+bGpk
)

|{pk}|
, where {pk} is the

set of patients in the instance, πpk and bpk denote the actual realized values of misalloca-

tion and boarding penalties for the patient and superscripts P and G denotes whether the

realized value was under the evaluated policy or the Greedy policy. The boxplots visualize

the distribution of the relative normalized reward for a policy across all instances. The

differences in means are statistically significant at level 0.05.

Figure 3.1: Distribution of relative normalized rewards (see the text for the definition) by
policy

Figure 3.1 illustrates that the GREAT-RL policy outperforms the benchmarking poli-

cies. The Strict policy performs well when the boarding-to-misallocation ratio and utiliza-
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tion are low but performs poorly in other cases. Gcµ performs or slightly better than the

Greedy policy. LEWC-p performs slightly better than GCµ in some cases but poorly in

other cases.

Performance in Different Parameter Regions

We assess the sensitivity of policy performance to the parameters specifically looking at

a) the utilization and b) the boarding-to-misallocation ratio. The results are summarized

in Figure 3.2: The GREAT-RL policy performs strongly in regions with moderate utiliza-

Figure 3.2: Performance in Different Scenario Regions: Illustrative Summary.
Note 1: “Behavior” refers to the structure of the policy, “performance” refers to the value of the objective function.

Note 2: Specific values of utilization and boarding-to-misallocation ratio are illustrative and will depend on the hospital layout and
other parameters.

tion and boarding-to-misallocation ratio (the middle region in Figure 3.2). When either the

utilization or the boarding-to-misallocation ratio are high (the upper right corner in Fig-

ure 3.2), the boarding penalty dominates, and the performance of GREAT-RL compares

to that of Gcµ. If either the utilization or the boarding-to-misallocation ratio are very low

(the bottom left corner of Figure 3.2), the Strict policy performs strongly, and the assign-
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ment decisions taken by GREAT-RL policy tend to mimic those of the Strict policy. More

detailed discussion is provided in the Appendix C.11.

Behavior of the GREAT-RL policy

This section interprets the behavior of the GREAT-RL policy, i.e. how the policy actually

assigns patients to units:

1. When the utilization is low or the boarding-to-misallocation ratio is low (as shown in

the lower left region of Figure 3.2), then the GREAT-RL policy tends to only assign

primary pairs, behaving similarly to the Strict policy.

2. When the utilization is very high or the boarding-to-misallocation ratio is very high

(as shown in the upper right region of Figure 3.2), then the GREAT-RL policy tends

to treat primary and secondary assignments equivalently, behaving similarly to the

Gcµ policy.

3. In the middle region of Figure 2, the GREAT-RL policy tends to only assign a cer-

tain subset of secondary pairs and treat them equivalently with primary pairs, hence

behaving similarly to a static GCµ policy with a smaller set of eligible pairs.

4. Finally, there are cases in the middle region where the GREAT-RL policy tends to be

a more complex dynamic policy.

3.7 Conclusions

In this paper, we considered the flexible bed management problem: how to assign beds

in hospital internal units in the presence of boarding and non-preferred, secondary units.

This is a critical problem because patients suffer both when they are assigned to their non-

preferred unit as well as when they board for too long. The problem is further complicated

by the patient competition for a limited number of beds. To address the problem, we
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first prove two results on optimality properties of threshold and reservation policies under

special conditions with two units and two patient classes. However, these policies are not

optimal in general scenarios with multiple units and patient classes. Thus, we propose

a novel Generalized Reservation and Threshold Reinforcement Learning policy (GREAT-

RL), which generalizes the threshold and reservation policies, performs well in a wider

range of settings, and can be easily parameterized using reinforcement learning. In an

extensive simulation study, the GREAT-RL policy outperforms both naive and state-of-the-

art policies on a set of diverse and complex scenarios.

3.7.1 Managerial Implications

Our results offer intuitive bed management strategies for hospital operations managers. The

choice of the strategy depends on the utilization and boarding-to-misallocation ratio in the

hospital. The utilization figures are usually available to the operations managers through

the midnight census data. The boarding-to-misallocation ratio is less commonly known,

but we estimate this ratio to range between 0.05 and 0.30 when patients are assigned to

clinically inappropriate units (e.g., surgery unit instead of cardiology unit) and higher when

they are assigned to acceptable but still non-primary units (e.g., internal medicine instead

of cardiology).2

Equipped with their estimates of utilization and boarding-to-misallocation ratio, the

operations managers can adopt the following heuristic strategies derived from Figure 3.2

and Section 3.6.3:

1. When utilization is low (e.g., below 50%) and secondary units are medically inap-

propriate, then operations managers should only assign to primary units.

2. When utilization is very high (e.g., above 90%) or secondary units offer a quality of

care comparable to the primary units, then operations managers may ignore the dis-

2We derive this range by combining the estimates from Song et al. (2019), Sun et al. (2013), and McCarthy
et al. (2009b).
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tinction between the primary and secondary units and purely maximize throughput,

adopting for instance the Gcµ policy.

3. In other cases, the operations manager should allow a limited number of secondary

pairs to be assigned without limits while disallowing all other secondary assignments.

To determine the exact number of allowed secondary pairs, the operations manager

can gradually allow additional secondary pairs until the emergency department is no

longer crowded. When selecting secondary pairs, the operations manager should first

focus on patient classes that suffer from the longest boarding times and the secondary

pairs that are the most medically appropriate.
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APPENDIX A

HEALTH INFORMATION EXCHANGES: SUPPLEMENTAL CONTENT

A.1 Correlation Matrix
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A.2 Disease Analysis

Here, we provide supplementary results for the subsets of patients corresponding to major

diseases. This analysis can be seen as a supplement of the severity and complexity analysis.

The effect of HIE on LOS is also likely to vary across disease groups. In particular,

for some diseases, HIE can directly reduce the over-utilization of ED resources and hence

reduce LOS (e.g., by reducing the rate of radiological imaging or laboratory testing (Lam-

mers et al. 2014, Frisse et al. 2012)), while for others, HIE may just provide more clinical

background, leading to no change or even an increase in LOS. This line of reasoning is

further supported by the observations that clinicians use HIE less frequently for certain

conditions, presumably expecting that more information would change their behavior little

(Vest et al. 2011).

To analyze possible differences in HIE’s value in terms of the relationship with LOS

in the context of different diseases/conditions, we build upon the setup for the Index Visit

Analysis and separately run regression models for the visit subsets belonging to select

conditions. In particular, consulting with an ED physician as well as screening the HIE

literature in the ED setting, we choose two diseases/conditions to analyze the HIE and

LOS relationship in the specific context of revisits to the ED for 1) strains-and-sprains, and

2) headache.

When we consider the effect of HIE in the context of patients visiting the ED for spe-

cific diseases/conditions, we find that the magnitude of the HIE effect differs by the dis-

ease/condition considered. In particular, the results presented in Table A.2 show that the

average ED LOS decreases substantially for headache (by 11.4%) and less so for strains-

and-sprains (by only 3.6%). This confirms our initial expectations based on our discussions

with ED physicians that there is significant variation in headache cases, which can origi-

nate from several underlying problems (e.g., inflammation of cranial and spinal nerves,

migraine, blood clots), and “in deciding which test to perform, emergency physicians must
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assess pretest risk for the condition” (Edlow et al. 2009). Hence, additional information ob-

tained through HIE from the previous headache-related visits may allow the physicians to

better assess the risk and identify the needed tests more effectively. This in turn may lead

to lower LOS. A typical case would be drug-seeking patients presenting in the ED with

headache. Without prior information, a physician needs to perform substantial testing to

discover that patients’ concerns are not genuine. However, if HIE is present, the physician

sees that the patient had multiple prior visits to other providers, and possibly these even

include a note that the patient sought drugs. In contrast to headache, strains-and-sprains

typically require a diagnosis by an x-ray or a workup with little patient-to-patient variation

(Marx et al. 2010). Hence, the physicians will usually not change the treatment choices

much regardless what they see in a patient’s prior history. Hence, HIE is not expected to

improve LOS much, which is also what we observe.

Table A.2: Regression results for disease analyses

Coefficient Headache Index Sprains Index
HIE Tr -11.4% -0.12 (0.021) -3.6% -0.037 (0.017)
Crowded 6.2% 0.061 (0.008) 9.0% 0.086 (0.006)
Teaching 14.5% 0.135 (0.008) 25.1% 0.224 (0.006)
Charlson 29.2% 0.256 (0.026) 21.4% 0.194 (0.036)
Transport 17.0% 0.157 (0.01) 38.5% 0.326 (0.008)
Controls:Visit x x
Controls:Hospital x x
FE: Year x x
FE: Hospital
N 47,914 75,366
R2 0.06 0.08

Note: The first number denotes the estimated percentage change, the second number the corresponding regression coefficient, and the
third number the robust standard error. The symbol “x” indicates the presence of the specific controls or the fixed effects in the model
while no entry suggests they are absent.

A.3 Going Paperless

Here, in Table A.3, we present the second-stage results for the “going paperless” IV. These

results are based on the restricted dataset, 2009-2011.

152



Table A.3: Regression results for Going-paperless analysis

Coefficient Overall IV
HIE Tr -12.7% -0.136 (0.012)
Crowded 6.5% 0.063 (0.001)
Charlson 19.4% 0.177 (0.002)
Transport 44.5% 0.368 (0.001)
Controls:Visit x
Controls:Hospital
FE: Year x
FE: Hospital x
N 5,795,033

Note: The first number denotes the estimated percentage change, the second number the corresponding regression coefficient, and the
third number the robust standard error. The symbol “x” indicates the presence of the specific controls or the fixed effects in the model
while no entry suggests they are absent.
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APPENDIX B

BUNDLED PAYMENTS: SUPPLEMENTAL CONTENT

B.1 Supplemental Results

B.1.1 Cases for Figure 2.6

Here, we discuss the alternative cases for Figure 2.6 in the main text. Consider Ψ-vs-rBP

plots. Consider the following alignment thresholds:

• Ψ− = 1− I0 − ∆c+2∆rp
2wb

: No bundling below this point

• Ψ̄ = 1 − I0 − ∆rp
2wb

: The threshold between the low-alignment and high-alignment

bundling regimes

• Ψmax = 1− I0 + ∆c−2∆rp
2wb

: The maximum of the quadratic portion of rBP, assuming

it is attained.

• ΨT = 1 + I0 − ∆c
2wb

: The threshold beyond which rBP ceases to be quadratic and

becomes linear.

• Ψ+ = 1− I0 + ∆c
2wb

: No bundling above this point

In addition to these definitions, we observe that rBP is continuous in Ψ̄ (whether it

is quadratic or linear at that point). With these definitions, we immediately see several

aspects:

• If ∆c
2wb

> I0, then Ψ+ > 1 so bundling occurs anytime when there is high alignment.

At the same time, ΨT < 1, so rBP is linear on the right part. In contrast, if ∆c
2wb

< I0,

then rBP is entirely quadratic and bundling does not occur under very high levels of

alignment.
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• If ∆c > ∆rp, then Ψ̄ < Ψmax, else Ψmax < Ψ̄.

• Ψmax < Ψ+, so the maximum is attained unless the quadratic part is cut off by the

linear part (ΨT < Ψmax).

• If I0 + ∆c+2∆rp
2wb

< 1, then alignment for bundling is bounded below (Ψ− > 0),

otherwise it is not.

• If ∆c
2wb

> ∆rp
2wb

+ I0, then the linear part of rBP is increasing, else it is decreasing. If

it is increasing, it must be that Ψ̄ < Ψmax. Also, this condition is equivalent with

ΨT < Ψmax.

Let’s consider the cases for rFFS − rBP:

• If Ψ > Ψ̄ and T < Tmax, then

rFFS − rBP = wb
(Ψ− (1 + ∆c/(2wb)− I0))2

2

• If Ψ > Ψ̄ and T = Tmax, then

rFFS − rBP = 2wb(1−Ψ)
∆c/(2wb)− I0

2

• If Ψ < Ψ̄ and T < Tmax, then

rFFS − rBP = wb
(Ψ− (1− I0 − (∆c+ 2∆rp)/(2wb)))

2

2

• If Ψ < Ψ̄ and T = Tmax, then

rFFS − rBP = 2wb(Ψ− (1− (∆c+ 2∆rp)/(2wb)))
∆rp/(2wb) + I0

2

We now distinguish cases where variants of Figure 2.6 would be qualitatively different:
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(1a) Ψ+ < 1, Ψ− > 0, then Ψ̄ can be anywhere relative to Ψmax.

(1b) Ψ+ < 1, Ψ− < 0, then Ψ̄ can be anywhere relative to Ψmax.

(2a+2b) Then, Ψ+ > 1, ΨT < Ψmax, and the linear part of rBP is increasing. We further

explore what happens to Ψ̄ and Ψ−: We have ΨT > Ψ̄ when 2I0 >
∆c−∆rp

2wb
and this

holds when the linear part of rBP is increasing because ∆c > ∆rp. We can have Ψ−

either positive or negative, both are possible. The derivative of rBP is continuous at

ΨT .

(3a+3b) Ψ+ > 1, Ψmax < ΨT , and the linear part of rBP is decreasing. We further explore

what happens to Ψ̄ and Ψ−. We have ∆c
2wb

< I0 + ∆rp
2wB

. Since Ψ+ > 1, we have

∆c
2wb

> I0. The relationship between ∆c and ∆rp is unclear. In case ∆c < ∆rp

(so Ψ̄ > Ψmax), the inequality Ψ̄ > ΨT can only hold if 2I0 <
∆c−∆rp

2wb
, which is

impossible because ∆rp > ∆c. Hence Ψ̄ < ΨT . It seems that Ψ− can be either

positive or negative.

B.1.2 Solutions of the Quality Model

We assume 0 < wFFS
q ≤ wBP

q are hospital quality concerns under FFS, respectively BP, and

wb > 0.

Proposition B.1.1 (Optimal solution). The optimal solution cases in the Quality model are

as follows:

1. If

∆rp
wb

+
∆c+ 2∆rp

wBP
q

> 2
wb
wBP
q

(1− I0 −Ψ),

∆c > 2(wb + wBP
q )(−1 + I0 + Ψ),

∆c ≤ 2I0w
BP
q + 2wb(1 + I0 −Ψ)

(B.1)
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then

ih = 1

ip =
1

2wb(1−Ψ)
(∆rp −

T

1−Ψ
+ 2wbI0)

T = Tlow ≡
(1−Ψ)

wb

∆rp(w
BP
q /wb) + ∆c+ 2∆rp + 2wb(−1 + I0 + Ψ)

2wb + wBP
q

(B.2)

2. If

∆rp
wb

+
∆c+ 2∆rp

wBP
q

> 2
wb
wBP
q

(1− I0 −Ψ),

∆c > 2(wb + wBP
q )(−1 + I0 + Ψ),

∆c ≥ 2I0w
BP
q + 2wb(1 + I0 −Ψ)

(B.3)

then

ih = 1

ip = 0

T = Tmax ≡
(1−Ψ)

wb
(
∆rp
wb

+ 2I0)

(B.4)

3. If

∆rp
wb

+
∆c+ 2∆rp

wBP
q

< 2
wb
wBP
q

(1− I0 −Ψ) or

∆c < 2(wb + wBP
q )(−1 + I0 + Ψ) and

2wb(1− I0 −Ψ) ≥ ∆rp

(B.5)
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then

ih ∈ [[
2wb(Ψ− I0)−∆rp

Ψ
]+, 1]

ip =
1

2wb(1−Ψ)
(∆rp + 2wb(I0 − (1− ih)Ψ))

T = 0

(B.6)

Then I] = I0 + ∆rp
2wb

.

4. If

∆rp
wb

+
∆c+ 2∆rp

wBP
q

< 2
wb
wBP
q

(1− I0 −Ψ) or

∆c < 2(wb + wBP
q )(−1 + I0 + Ψ) and

2wb(1− I0 −Ψ) < ∆rp < 2wBP
q (−1 + I0 + Ψ)−∆c.

(B.7)

then

ih =
1− I0

Ψ
+

∆c+ ∆rp
2wBP

q Ψ

ip = 1

T = 0

(B.8)

Then I] = I0 − ∆c+∆rp
2wBP

q
.

5. If

∆rp
wb

+
∆c+ 2∆rp

wBP
q

< 2
wb
wBP
q

(1− I0 −Ψ) or

∆c < 2(wb + wBP
q )(−1 + I0 + Ψ) and

∆rp > 2wBP
q (−1 + I0 + Ψ)−∆c.

(B.9)
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then

ih = 1

ip = 1

T = 0

(B.10)

Then I] = 1−Ψ.

B.1.3 Full Quality Model

In this section, we will provide the full range of solutions for the quality model, without

restrictions on wb, wFFS
q , wBP

q , except that wBP
q ≥ wFFS

q . We present these cases only for

completeness and do not refer to them in the main text. In the main text, we provide only

the part of results that are interesting and that provides insights.

Lemma B.1.1 (Full case of Lemma 2.4.1). There are 7 different FFS cases to characterize

under the full quality model:

(HM) If

Ψ < Ψ̄ and
wb
wFFS
q

∆c+ ∆rp ≥ 0 (B.11)

, then

ih = 1, ip =
2I0 + ∆rp

2wb(1−Ψ)
(B.12)

(HH) If

Ψ > Ψ̄ and Ψ > 1− I0 +
∆c

2wFFS
q

, (B.13)
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then

ih = 1, ip = 1 (B.14)

(LL) If

∆rp
2wb
≤ Ψ− I0 and

∆c

2wFFS
q

≤ I0 −Ψ, (B.15)

then

ih = 0, ip = 0 (B.16)

(LH) If

∆rp
2wb
≥ 1− I0 and 1−Ψ +

∆c

2wFFS
q

≤ 0, (B.17)

then

ih = 0, ip = 1 (B.18)

(LM) If

Ψ− I0 ≤
∆rp
2wb
≤ 1− I0 and

wb
wFFS
q

∆c+ ∆rp ≤ 0, (B.19)

then

ih = 0, ip =

∆rp
2wb

+ I0 −Ψ

1−Ψ
(B.20)

160



(MH) If

0 < 1− I0 +
∆c

2wFFS
q

< Ψ and
wb
wFFS
q

∆c+ ∆rp ≥ 0, (B.21)

then

ih =
1− I0 + ∆c

2wFFS
q

Ψ
, ip = 1 (B.22)

(ML) If

0 < Ψ− I0 +
∆c

2wFFS
q

< Ψ and
wb
wFFS
q

∆c+ ∆rp ≤ 0, (B.23)

then

ih =

∆c
2wFFS

q
− I0 + Ψ

Ψ
, ip = 0 (B.24)

Now, we explore the required rBP and the payer’s and physicians’ surpluses. For that,

we need to consider all combinations of FFS and BP, that is, the solutions from Proposition

2.4.1 and Lemma B.1.1. Note that the more likely case with wFFS
q > 0 was covered in

Proposition 2.4.1 and its proof. This proposition only additionally considers the cases with

wFFS
q < 0.

Proposition B.1.2 (When do they bundle and how much does it cost?). There are 35 pos-

sible cases, from which bundling could occur in 25.

B.1.4 Variation-focused Model

In this section, we cast the provider’s bundling dilemma as a decision problem, present

a general model and solve a special case of it. Our approach considers the difference
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in the provider’s income between the current (fee-for-service) payment system and the

bundled payment opportunity after an appropriate care redesign. The care redesign problem

is explicitly captured to recognize that the structure of the bundled payments program will

affect the provider’s response. In modeling bundled payments, we draw on the current

BPCI initiative by CMS.

The presented model currently entails three key simplifying assumptions:

• No coordination among providers

• Only one condition

• Short-term perspective: No ”learning for the future” motivations or ”changing land-

scape” concerns, other than what can be represented as current fixed costs or benefits.

Therefore, we can view this model as appropriate for a specialized ”all-in” hospital, such

as a surgery or rehabilitation center.

General Framework

We assume that the hospital is weighing the expected patient-related net margin (that is,

revenue minus expenses) currently under fee-for-service IFFS and the income it would re-

ceive under bundled payments IBP. The hospital is risk averse, and it will therefore adopt

bundled payments only if E[U(IBP] > E[U(IFFS)] > 0, where U is a risk-averse utility

function. The utility function that we assume in this work is the CARA utility function

U(x) := − exp(−αx) for some parameter α, which is in accordance with previous liter-

ature (e.g. (Fuloria and Zenios 2001)). Drawing on the framework from Ma (1994), we

assume that trying to implement bundled payments, the hospital may exert quality efforts

q and cost-reduction efforts ρ and these enter the income function under bundled payments

IBP. In contrast, we assume that the income function under FFS is already optimized, but

we still retain it in the model to facilitate comparisons.
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We assume that the profit margin function under FFS is

IFFS = N(
m∑
i=1

νiri −
m∑
i=1

νic0,i), (B.25)

where N is the number of patients, assumed constant, m is the number of care pathways,

νi is the fraction of patients following pathway i (
∑

i νi = 1), ri is the FFS reimbursement

for pathway i and c0,i being the average cost of care on pathway i. Next, we assume that

the income function under bundled payments, as a function of ρ, q, has the form

IBP(ρ, q) = N(rBP −
m∑
i=1

ν̃i(ρ) · c̃i(ρ, q)− ν̃Ω(ρ, q)c̃Ω)rBP. (B.26)

Here, ν̃i, c̃i are the new, optimized patient fractions and costs under bundled payments, ν̃Ω

is the number of patients who will suffer from complications and cΩ are the costs of compli-

cations. The reimbursement under bundled payments would be rBP = (1 − d)
∑m

i=1 νir0,i,

but let’s keep it as it is for now. We assume that the complications ”pathway” Ω would have

been paid for under FFS, so it does not appear in Equation (B.25). We also assume that ν̃Ω

is on top of the regular care, that is, we still have
∑m

i=1 ν̃i = 1. Regarding the costs, we as-

sume that c̃i and c̃Ω are random, normally distributed with c̃i(ρ, q) ∼ N (ci(ρ, q), σ
2
i ), c̃Ω ∼

N (cΩ, ζ
2). However, we note that the assumption of c̃Ω being Γ-distributed would still lead

to a computationally (if not analytically) tractable model and would have a nice actuarial

interpretation. We do not consider any uncertainty in original FFS costs because we as-

sume the hospital has these ”under control”, as opposed to the new setting after the care

redesign. In the following, we focus on the bundled payment component and we derive the

utility of the bundled profit IBP(ρ, q). But note that (B.25) and so to compare the utility

under FFS vs bundled payments, it is enough to compare the resulting bundled-payments

utility to (B.25).

We now compute the expression E[U(IBP)] applying the transformation x 7→ − log(−x)
α

,

and per patient (that is, dividing byN ) to obtain the certainty equivalent yields the objective
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function for hospital to optimize with respect to the effort parameters associated with the

care redesign (ρ and q):

F (ρ, q) = rBP −
m∑
i=1

ν̃i(ρ) · ci(ρ, q)−
α

2

m∑
i=1

(ν̃i(ρ, q)σi)
2 − ν̃Ω(ρ, q)cΩ −

α

2
(ν̃Ω(ρ, q)ζ)2

(B.27)

After optimizing, the hospital knows if it breaks even and perhaps even profits from bun-

dled payments, as well as what efforts are necessary to get the most from bundling. This

functional form is flexible and allows hospitals to apply their own estimated parameters.

If needed, this form can be further extended by considering separate effort parameters for

different pathways. We assume that the hospital will try to solve (B.27) numerically. How-

ever, in the following, we also derive a closed-form solution for a simplified case, which

allows us to state some general insights.

Simplified Model

All parametersw with a subscript in the following correspond to some weights which could

be specified or estimated.We consider the following simplifying assumptions:

• We will assume, without losing much generality, that the effort setting under FFS is

q = 0, ρ = 0, 0 ≤ ρ ≤ 1, and Q0 ≤ Q(q, ρ) where Q0 corresponds to some lower

bound on quality measures tracked by CMS and Q the function capturing this, and

0 ≤ q ≤ qH performance based on the exerted quality and cost-reduction efforts. As-

sume also q = 1 corresponds to a ”maximal quality”. Similarly, ρ = 1 corresponds

to the point of diminishing returns on cost reduction and streamlining, and we require

ρ ≥ 0 because of the widely believed assumption that FFS reimbursements encour-

age so much waste that new payment models cannot encourage hospitals to do even

worse in this aspect under new payment models, that is, their cost reduction efforts

cannot profitably be lower than under FFS.
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• Rate of adverse events ν̃Ω = ν̃Ω,0(wΩ · (qH − q) + wΩ,ρ).

• We only consider two pathways, one “costly” and one “cheaper” because this should

be already sufficient to capture the richness of the care pathway redesign. We assume

that a hospital tries to stream some of the patients from the costlier pathway to the

cheaper one. Let the costly pathway be i = 1 and the cheaper pathway i = 2.

• ν̃i = νi + wδ,iρ.

• Consider the following functional forms for ci:

ci = c0,i + wγρ− wξq + γ0,i, (B.28)

here γ0,i is the fixed cost of bundling per patient assigned to this pathway. In the

above equation, we could also in principle allow for an additional term wtih ρ2. This

function does not include quality, but quality is instead reflected in the probability

of complications. In this model, quality essentially only counteracts the increased

number of complications due to care redesign, up to a certain upper bound on quality.

I note that considering ci = c0,i + wγρ − wξq + γ0,i instead, that is, incorporating a

linear term for costs, also leads to a reasonably solvable model.

For convenience, we make a number of additional assumptions which somewhat de-

clutter the final result, but they could be easily avoided; we also introduce some additional

notation for this case m = 2:

• Assume σi ≡ σ.

• Set 2ζ = cΩ, this corresponds to the random cost of complications varying mostly

between [0, 4cΩ]. We can then simplify the certainty equivalent for the cost of com-

plications from (wΩ · (qH − q) + wΩ,ρ)cΩ + α
2
((wΩ · (qH − q) + wΩ,ρ)ζ)2 to just

−2
α

+ α
8
((wΩ · (qH − q) + wΩ,ρ)cΩ + 4

α
)2 and let just Kα := −2

α
.
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• Now, define ν̃i = νi±ρδ, with plus for the cheaper pathway and minus for the costly

pathway, that is, we are redirecting patients from the costlier pathway to the cheaper

pathway.

• Let γ := c0,1−c0,2
2

; note that this term is larger than zero under our assumption that

the first pathway is the costly one.

• γ0 := ν1γ0,1 + ν2γ0,2 (average fixed cost per patient)

• At this point, we are not looking at the boundary conditions on ρ and q, but these will

often be active. For instance, in this baseline model that we don’t have quality in the

cost, q will be probably typically at its upper bound.

With all these assumptions and some additional calculations, the objective function now

reads

F (ρ, q) = rBP −
m∑
i=1

ν̃i(ρ) · ci(ρ)− α

2

m∑
i=1

(ν̃i(ρ)σi)
2 − ν̃Ω(ρ, q)cΩ −

α

2
(ν̃Ω(ρ, q)ζ)2

= rBP − (ν1 − ρδ)(c0,1 + γ0,1)− (ν2 + ρδ)(c0,2 + γ0,2) + wγρ

− α

2
[((ν1 − ρδ)σ)2 + ((ν2 + ρδ)σ)2] + (R0 − wΩq + wΩ,ρρ))2ζ2]− ν̃Ω(ρ, q)cΩ

= rBP − ν1c0,1 − ν2c0,2 − ν1γ0,1 − ν2γ0,2

+ ρδ(c0,1 − c0,2)− ρδγ0,1 − ρδγ0,2

+ wγρ− wξq

− α

2
[(ν2

1 + ν2
2)σ2 + 2ρδ(ν2 − ν1)σ2 + 2ρ2δ2σ2]

− −2

α
− α

8
((R0 − wΩq + wΩ,ρρ)cΩ +

4

α
)2

= rBP − c̄0 − γ0 + ρ
δγ

2
+ wγρ− wξq

− ασ2(ρδ +
ν2 − ν1

4
)2 − Ω(ρ, q)

+
2

α
− σ2α

4

(B.29)
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where some constants are omitted (including a constant term with σ2).

I maximized (B.29), using Mathematica for some of the tedious computations. The

resulting formula F (ρ̄, q̄) with optimized parameters ρ̄, q̄ follows:

F =rBP − γ0 − c̄0 +
(ν1 − ν2)(γδ + wγ)

4δ
− wξ(αcΩR0 + 4)

αcΩwΩ

+
wξwΩ,ρ(ν1 − ν2)

4δwΩ

+
2w2

ξ

αc2
Ωw

2
Ω

+
(wγwΩ − wξwΩ,ρ + γδwΩ)2

4α2δ2σ2w2
Ω

+
2

α
− σ2α

4

(B.30)

The optimized ρ and q values are also available. The formula if we incorporate q in the cost

function is slightly more complicated, but has a similar flavor. Again, we note this result

may be somewhat different if the boundary conditions on q or ρ are met. From (B.30), we

now directly see the profit from the bundled payment contract and we can compare this

equation to the profit under FFS in (B.25). The equation is very sensitive to the value of α.

With the start of bundling, many analysts have suggested that there is a tradeoff between

too little variation (because there is than nothing left to optimize) and too much variation

(too much risk born by the provider). In our model, this tradeoff corresponds to postulating

γ = Kγσ for some constant Kg, in other words, it ties the cost variation between the care

pathways to the variation within them. This tradeoff is a testable assumption which may

depend on disease. Even for DRGs that theKg assumption holds, the “sweet-spot theorem”

may not. Indeed, the sweet-spot theorem essentially says that F will be quadratic in σ > 0.

The subterm of F containing σ is 1
4
(Kγ(ν1 − ν2)σ − σ2α + 2Kwγ

α2δσ
+

w2
γ

α2δ2σ2 ) Assuming

now wγ = 0 (no traditional cost cutting), this leads to the sweet spot σ = Kγ(ν1−ν2)

2α
.

Notably, this sweet spot exists only for ν1 > ν2, that is, the volume on the costly pathway

is substantial. Furthermore, this vaulue very much depends on how risk averse the hospital

is. The formula γ = Kγσ is an empirical hypothesis which we can test.
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If we include quality in the cost function, the functional form containing σ becomes

1

4
(Kγ(ν1 − ν2)σ − σ2α +

2K(wγ − (wΩ,ρ/wΩ)wξ)

α2δσ
+

(wγ − wξ(wΩ,ρ/wΩ))2

α2δ2σ2
).

It is hard to say if we can now ignore the 1
σ

and 1
σ2 .

Regarding the volume, typically the fixed costs may depend on volume (γ0 = γt/n

for some total γt) and the hospital risk aversion will depend on volume: α = α0/n But

we assume it is constant within the same hospital, which justifies the CARA assumption.

Actually, α = α0

nβ
seems more reasonable? We might have β < 1 (observed in farmers;

IRRA), but also β > 1? This does not behave nicely as it indicates that the profit per patient

goes to infinity as n increases. This probably has to do with the boundary conditions which

ρ will hit as n increases, respectively α decreases.

B.1.5 Supplementary Results for the Coproduction Model

.

Lemma B.1.2 characterizes the equilibrium solution when bundling occurs and high-

lights the role of gainsharing in the base case.

Lemma B.1.2 (Optimal equilibrium under BP in the Base Model). When bundling occurs

as outlined in Theorem 2.3.1, the solution becomes as follows:

T = min(∆rp + 2I0wb,
1

2
(−2wb(1− I0) + ∆c+ 2∆rp)) > 0

i]h = 1

i]p = max(0,
1

4wb(1−Ψ)
(2(1 + I0)wb −∆c))

(B.31)

We see from Lemma B.1.2 that gainsharing amount, T , is always positive. Positive

gainsharing helps hospital to incentivize physicians to reduce the level of care intensity.

The proof is parallel to the proof of Lemma B.1.4 (presented later in Appendix B below),

and we therefore omit it.

168



Lemma B.1.3 (Equilibrium solutions under FFS in the General Model). The equilibrium

solutions under FFS are as follows:

I. If Ψ ≤ Ψ̄, then

i∗h = 1, i∗p =
1

1−Ψ
(I0 +

∆rp
2wb

) (B.32)

II. If Ψ̄ ≤ Ψ ≤ Ψ̂, then

i∗h = 1, i∗p = 1 (B.33)

III. If Ψ ≥ Ψ̂, then

i∗h =
1

Ψ
(I0 −

∆c

2wq
), i∗p = 1 (B.34)

Lemma B.1.4 (Equilibrium solutions under BP in the General Model, case T > 0). Under

BP, there are two feasible solutions with T > 0:

I.

i]h = 1

i]p =
2(wb + I0(wb + wq))−∆c

2(2wb + wq)(1−Ψ)

T =
wb(∆c− 2(1− I0)wb)

2wb + wq
+ ∆rp

(B.35)

This solution is equilibrium if

2(wb + I0(wb + wq)) > ∆c > 2(wq(I0 + Ψ− 1) + wb(I0 + 2Ψ− 1)) and

∆rp(2 + wq/wb) + ∆c > 2(1− I0)wb.

(B.36)

II.

i]h = 1

i]p = 0

T = 2I0wb + ∆rp =: Tmax.

(B.37)
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This condition requires

∆c > 2(wb(1 + I0) + I0wq). (B.38)

Lemma B.1.5 (Equilibrium solutions under BP in the General Model, case T = 0). Let

Ψ1 = Ψ̄ and Ψ2 = 1 − I0 + ∆c+∆rp
2wq

. Under BP, there are three feasible solutions with

T = 0: As the first step, we show that not all all parties will benefit if T = 0.

I. If Ψ ≤ Ψ1, then

i]h = 1, i]p =
1

1−Ψ
(I0 +

∆rp
2wb

) (B.39)

II. If Ψ1 ≤ Ψ ≤ Ψ2, then

i]h = 1, i]p = 1 (B.40)

III. If Ψ ≥ Ψ1, then

i]h =
1

Ψ
(I0 −

∆c+ ∆rp
2wq

), i]p = 1. (B.41)

Corollary B.1.1 (Intensity under the General Model). The realized care intensity under

BP, I], is less than that under the FFS, and is given by

I] =


0 if ∆c > 2(1 + I0 + wqI0)

I0 − ∆c−2(1−I0)wb
2(2wb+wq)

if ∆c < 2(1 + I0 + wqI0).

(B.42)

for the cases that bundling is preferable.

B.1.6 Supplementary Results for the Physician-Driven Model

We list additional results from the physician-driven model, parallel to the results from the

coproduction model. The proofs follow the same logic as in the proofs of the coproduction

model results, and hence we omit them.
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Lemma B.1.6 (Status-quo intensity). The equilibrium intensity under FFS, I∗ ≡ i∗p, is

given by

I∗ =


I0 + ∆rp−Ψ

2wb
if Ψ ≤ Ψ̄

0 otherwise

where

Ψ̄ := ∆rp + 2wbI0. (B.43)

Corollary B.1.2 (Intensity under BP vs. FFS). The equilibrium intensity under BP, I], is

less than that under the FFS, I∗. Furthermore, I] is given by the following expression:

I] ≡ i]p = max(I0 +
∆rp −Ψ− T

2wb
, 0) ≤ max(I0 +

∆rp −Ψ

2wb
, 0) = I∗. (B.44)

Proposition B.1.3 (Quality under BP vs. FFS). Compared with FFS, the quality of care

under BP may decrease or increase, depending on the physician integration level, Ψ. In

particular:

I. If integration is low, i.e., Ψ < ∆rp, overprovision of services characterizes FFS. In

such a case, BP will improve quality if

2(1− I0)wb + 2∆rp > ∆c+ 3Ψ (B.45)

and worsen it otherwise.

II. If integration is high, i.e., Ψ > ∆rp, then underprovision of services characterizes

FFS. Then BP will further decrease intensity and hence quality.
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B.1.7 Comparing the Coproduction and the Physician-driven model: Case Ψ→ 0

Let’s examine the special case with Ψ→ 0 when we expect the Coproduction and Physician-

driven models be somewhat comparable.

Corollary B.1.3 (Scenarios in the Coproduction model for Ψ→ 0).

• FFS:

I∗ =


I0 + ∆rp/2, if 1− I0 >

∆rp
2

1, if 1− I0 <
∆rp

2

(B.46)

• BP

ih = 1

T = 2 ·min{1

2
(I0 +

∆c+ 2∆rp
2

− 1), I0 +
∆rp

2
}

ip = I0 +
∆rp

2
− T

2

(B.47)

We will get ip = 0 iff ∆c/2 > 1 + I0

We notice that in both the Coproduction and the Physician-driven model, as Ψ → 0, if

∆c is high enough, there will be a bound on T and i]p = 0, otherwise i]p ∈ (0, 1).

Corollary B.1.4 (Comparing surplus). Surplus varies somewhat across the two scenarios.

Corollary B.1.5 (Comparing quality and intensity). Under FFS, there was always overtreat-

ment. In both models, Coproduction and Physician-driven, the quality can either increase

or decrease.

Corollary B.1.6 (When do they bundle?).
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• Coproduction: Under the following conditions:

∆c > 2(1− I0 + wqI0) and

∆c > ∆rp(2 + wq) + 2(1− I0)(3 + 2wq) and 1− I0 >
∆rp

2
or

(∆c+ (2(1− I0)(1 + wq))
2

4(2 + wq)
> ∆c+ ∆rp + (1− 2I0)wq and 1− I0 <

∆rp
2

(B.48)

• Physician-driven: The case-independent conditions are as follows:

wq(∆c+ 3∆rp−2(2− I0)wq) + (∆c+ 2∆rp−1−4(1− I0)wq)−2(1− I0) > 0

(B.49)

and

2I0(1 + wq) + ∆rp > 1 (B.50)

. Next come four case-dependent conditions on physician surplus, which we do not

write out in detail anymore.

B.1.8 Physician-driven Model in the Principal-agent Framework

In this section, we explore how we can profitably cast the physician-driven model from

Section 2.4.4 into the principal-agent framework. Indeed, observe that in the physician-

driven model, we model the utility of both the physician and the hospital, but it is only

the physician who chooses the intensity while the hospital only enter the game through the

gainsharing amount T . We can therefore see the hospital as the principal and the physician

as an agent in the principal-agent framework. Here, we prove the concept by modeling a

simple symmetric-information principal-agent setup and use it to derive the optimal gain-

sharing contract. At the end, we discuss how the proof of concept could be further extended

to answer other questions of interest.
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To derive the optimal gainsharing contract for the physician-driven model, we adapt the

setup from Section 2.4.4 but with several additional assumptions to simplify the exposition:

• Assume that the hospital is mandated to bundle, so its utility function equals F FFS
h =

F BP
h . On the other hand, the physicians have the option to not participate and leave

with F FFS
p as their utility. Equivalently, they can always choose to take T = 0 in

F BP
p . This assumption corresponds to the real-world situation where the CMS forces

hospitals as the main BP participant, but the hospital needs to negotiate with other

parties to make them involved.

• Assume Φ = 0, so the hospital can only influence the physicians through gainsharing.

• Assume I0 + ∆rp/(2wb) < 1

Now, instead of linear gainsharing as in Section 2.4.4, the hospital can now offer an arbi-

trary payoff function T (I). We now follow the standard principal-agent framework under

the simplest setting of perfect information (Macho-Stadler and Pérez-Castrillo 2020) to

solve for T and derive the optimal hospital utility. First, we assess the value of the physi-

cian’s reservation utility, i.e. when the physician does not accept the contract, opting for

T = 0. As in the original physician-driven model, we find that I∗ = I0 + ∆rp/(2wb) and

F FFS
p (I∗) = r2,p + I0∆rp +

∆r2
p

4wb
. The participation constraint for this problem then reads as

follows:

max
T,I
− (∆c+ ∆rp)I − T (I)

s.t. − wb(I − I0)2 + ∆rpI + r2,p + T (I) ≥ r2,p + I0∆rp +
∆r2

p

4wb
,

(B.51)

where the right-hand side of the constraint is the reservation utility. We can substitute
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J := I − I0 and solve for an equivalent problem:

max
T ∗,J
− (∆c+ ∆rp)J − T ∗(J)

s.t. − wbJ2 + ∆rpJ + T ∗(J) ≥ ∆r2
p

4wb
,

(B.52)

where T ∗(J) = T (I − I0) is a substituted version. We observe that the inequality in (B.52)

can always be made binding, otherwise the hospital can just decrease T ∗ while increasing

its utility. This yields the optimal gainsharing contract

T ∗(J) = wbJ
2 −∆rpJ +

∆r2
p

4wb
(B.53)

or equivalently:

T (I) = wb(I − I0)2 −∆rp(I − I0) +
∆r2

p

4wb
. (B.54)

Solving then for the optimal I] by the hospital yields I] = I0 − ∆c
2wb

(or 0 if this term was

lower than 0). Compared to the option without gainsharing (T = 0), the hospital gains an

additional amount

F BP
h (I], T (I]))− F FFS

h (I∗) =
(∆c+ ∆rp)(4I0wb + ∆c+ ∆rp)

4wb
> 0. (B.55)

We have thus derived the optimal gainsharing contract for the hospital, extending the

previously-assumed linear model.

We end with two additional potential applications:

• We could assume that the physician effort is unobserved and that the hospital cost.

What would be the implications for the optimal contract?

• We could use the same framework to derive the optimal contract for the more com-

plex coproduction model in Section 2.3.
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B.2 Proofs

B.2.1 Initial Model

Proof. Proof of Lemmas 2.2.1, 2.2.2, and 2.2.3: Differentiating F FFS
h , we see that this

derivative is always positive, so the hospital will choose i∗h = 1, regardless of the physi-

cians’ response. The physician utility function under ih = 1 is then F FFS
p (ip) = −wb((1−

Ψ)ip− I0)2 + ip∆rp(1−Ψ) + r2,p. Optimizing this with respect to ip ∈ [0, 1] yields ip = 1

if Ψ ≥ Ψ̄ and ip =
I0+

∆rp
2wb

1−Ψ
otherwise. Given that in both of these cases ip ≥ 0, we have

I∗ = 0 ·Ψ + ip · (1−Ψ), which completes the proof of Lemma 2.2.1.

Lemma 2.2.2 follows from the observation that I(1, ip) ≤ I(1, 1) = 1−Ψ and the fact

that i∗h = 1. Lemma 3 follows from the optimal value of intensity as cited in Lemma 1

combined with the boundary value from Lemma 2.

We next present the proof of Proposition 2.3.2, which characterizes the optimal solution

and is used in proving Theorem 2.3.1.

Proof. Proof of Proposition 2.3.2: We are seeking a sequential equilibrium of a two-stage

game using backward induction. Therefore, we first compute the physicians’ (second-

stage) best response. Optimizing F BP
p for given ih and T as a function of ip yields the

optimal response ιp(ih, T ) = arg maxip∈[0,1] F
BP
p (ih, ip, T ), which is specified as

ιp := ιp(ih, T ) =
1

2wb(1−Ψ)
(∆rp −

T

1−Ψ
+ 2wb(I0 − (1− ih)Ψ)) (B.56)

when the expression in (B.56) lies within of (0, 1). In the case when the expression in

(B.56) lies outside (0, 1), the physician response is equal to 0 (if (B.56) is below 0) or to 1

(if (B.56) is above 1).

In calculating hospital’s response, we first consider the case where ιp(ih, T ) is strictly

between 0 and 1 and address the boundary cases later. Plugging ιp into F BP
h and differenti-
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ating with respect to ih and T yields

∂

∂ih
F BP
h (ih, ιp(ih, T ), T ) =

TΨ

1−Ψ
,

∂

∂T
F BP
h (ih, ιp(ih, T ), T ) =

−2T + (1−Ψ)(∆c+ 2∆rp − 2wb(1− I0 − ihΨ))

2wb(1−Ψ)2
.

(B.57)

This implies that (ignoring the physicians’ boundary conditions for now) for T > 0, the

hospital will aim to increase ih as much as possible, up to ih = 1. For T = 0, the hospital

is indifferent over ih ∈ [0, 1], so we can just work with the case ih = 1 without loss of

generality. We can now derive a condition separating T = 0 from T > 0 when ih = 1. For

this, we check the derivative of F BP
h (ih, ιp(ih, T ), T ) with respect to T evaluated at T = 0

and ih = 1 when ip = 1. If the derivative is positive, we will have T > 0, otherwise T = 0.

This yields the following condition for T > 0:

∆c+ 2∆rp
2wb

> 1− I0 −Ψ. (B.58)

Next, we focus on deriving the optimal solution values under two cases, T > 0 and T = 0.

In both cases, we will also address the boundary cases for ip.

Case T > 0: When T > 0, ih = 1. The optimal value is computed by setting the second

equation in (B.57) to zero. Doing so, we get the following:

T =
1

2
(1−Ψ)(∆c+ 2∆rp − 2wb(1− I0 −Ψ)). (B.59)

Now, we need to check the boundary conditions for ιp. To ensure that ιp ≥ 0 and the

hospital is not gainsharing with physicians more than it needs, we must have

T ≤ (1−Ψ)(2I0wb + ∆rp). (B.60)

177



We conclude that T is the minimum of (B.59) and (B.60). In particular, if ∆c > 2wb(1 +

I0 − Ψ), then (B.60) holds and otherwise (B.59) holds. Finally, we need to ensure ιp < 1,

which requires

T ≥ (1−Ψ)(∆rp − 2wb(1− I0 −Ψ)). (B.61)

Comparing the above with (B.59) implies the condition

∆c

2wb
> −1 + I0 + Ψ. (B.62)

If ip = 1, then we can assume that the hospital sets T = 0 without any loss of generality.

Hence, we have T > 0 if and only if (B.58) and (B.62) hold.

Case T = 0: Recall that T = 0 only occurs if either (B.58) or (B.62) does not hold.

For T = 0, the hospital could, in principle, arbitrarily set ih, which would always be

countered by the physicians so that the overall intensity (and hospital utility) remains the

same. However, this arbitrariness of ih may not entirely be the case when the physicians’

response is bounded. We know from (B.56) that ih increases with ip. Hence, let i−h be

maximal such that ιp(i−h , 0) = 0 and i+h be minimal such that ιp(i+h , 0) = 1. Then the

hospital profit function F BP
h (ih, ι(ih, 0), 0) is constant for ih ∈ [i−h , i

+
h ], but can be further

increased for ih > i+h (indeed, the derivative of ∂
∂ih
F BP
h (ih, 1, 0) = (∆c + ∆rp)Ψ > 0).

We therefore distinguish two cases: i+h ≥ 1 (in which case any ih ∈ [i−h , i
+
h ] is optimal) or

i+h < 1 (in which case ih = 1 is optimal). The condition i+h < 1 is equivalent to ι(1, 0) > 1

(so that the boundary condition becomes binding). In other words,

∆rp
2wb

> 1− I0 −Ψ, (B.63)
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or, equivalently, Ψ > Ψ̄. We note that i−h corresponds to the level of ih such that the

physicians would choose ιp(i−h , 0) = 0. This implies

i−h =
1

Ψ
(Ψ− I0 −

∆rp
2wb

). (B.64)

To summarize, when T = 0, the two cases are

1. Ψ > Ψ̄, and then ih = 1, the physicians respond with ip = 1 and I] = 1−Ψ

2. Ψ ≤ Ψ̄, and then ih ∈ [i−h , 1], the physicians respond with ιp(ih) and I] = I0 + ∆rp
2wb

.

This finalizes the cases, and concludes the proof.

Proof. Proof of Theorem 2.3.1 and Proposition 2.3.2: In proving these results, we will

show that the payer, the hospital, and the physicians all benefit (or at least do not lose) from

bundled payments when condition (2.6) holds. For physicians and the hospital, we assume

their benefit must be strictly positive, and for the payer, it must be at least non-negative.

We consider two cases separately, T = 0 and T > 0.

Case T = 0: When T = 0 and Ψ > Ψ̄, the resulting practiced intensity I under BP is the

same as in the FFS case. Hence, the physicians payoff function would be the same as in the

FFS and hence they would not be interested in bundling. On the other hand, when Ψ < Ψ̄,

the resulting intensity and payoffs (F BP
h , and F BP

p ) will be the same regardless of what ih

the hospital chooses. This is because whatever ih < 1 the hospital chooses, the physicians

can choose ip such that the intensity will be the same as when the hospital chooses ih = 1

under FFS.

Case T > 0: From the analysis of case T = 0 above, we know that physicians will not

be interested in bundling unless T > 0. In the proof of Proposition 2.3.2, we have seen

that T > 0 if and only (B.58) and (B.62) hold. Hence, it remains to characterize when the
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physicians, the hospital, and the payer all benefit under T > 0. Starting with the physicians,

we need to show that F BP
p − F FFS

p is positive. We analyze this by considering all possible

three cases with respect to the integration level:

• Ψ > Ψ̄ and i]p > 0 : Then

F BP
p − F FFS

p =
(∆c− 2wb(−1 + I0 + Ψ))2

16wb
> 0, (B.65)

which follows from (B.62).

• Ψ > Ψ̄ and i]p = 0 : Then

F BP
p − F FFS

p = wb(1−Ψ)2 > 0. (B.66)

• Ψ < Ψ̄ and i]p > 0: Then

F BP
p −F FFS

p =
(∆c− 2∆rp + 6wb(1− I0 −Ψ))(∆c+ 2∆rp − 2wb(1− I0 −Ψ))

16wb
> 0

(B.67)

because the first product term in the numerator is positive as a result of the condition

in Lemma 2.2.3 and the second product term is also positive due to (B.58).

• Ψ < Ψ̄ and i]p = 0: Then

F BP
p − F FFS

p =
(2I0wb + ∆rp)((2− I0 − 2Ψ)2wb −∆rp)

4wb
> 0 (B.68)

because the first product term in the numerator is clearly positive and the second

product term in the numerator is also positive due to (2.4).

We also need to ensure that rBP is high enough so that hospital is better off under BP.

From this definition of rBP, we need to determine the required rBP, such that F BP
h > F FFS

h .

Depending on the level of integration (i.e. Ψ > Ψ̄ vs. Ψ < Ψ̄), F FFS
h takes a different
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expression and we explore the two cases separately. Finally, we will need to show that the

payer benefits or at least does not lose. For that, we define ∆π := rBP− rh− r2,p− I∗∆rp,

the payer surplus, which is exactly the difference between the bundled payment and the

previous total payment under FFS. We analyze the following cases:

• If Ψ > Ψ̄ and i]p > 0, then

∆π = −(∆c+ 2wb(1− I0 −Ψ))2

8wb
< 0 (B.69)

• If Ψ > Ψ̄ and i]p = 0, then

∆π = (2I0wb −∆c)(1−Ψ) (B.70)

Then, (B.70) is negative because i]p = 0 requires ∆c
2wb
≥ I0 + (1−Ψ) > I0.

• If Ψ ≤ Ψ̄ and i]p > 0, then

∆π = −(∆c+ 2wb(1− I0 −Ψ))2

8wb
< 0 (B.71)

• If Ψ ≤ Ψ̄ and i]p = 0, then

∆π = −(2I0wb + ∆rp)(∆c+ ∆rp − 2wb(1−Ψ))

2wb
< 0. (B.72)

Then, (B.72) is negative because of Condition (B.58), which completes the proof.

Proof. Proof of Corollary 2.3.2: This proof follows directly from the proof above because

Σ in Corollary 2.3.2 is equal to ∆π defined above.

Proof. Proof of Proposition 2.2.3: This result follows directly by computing the intensity

and ∆Q from Proposition 2.3.2. Without loss of generality, assume i]p > 0. Then, intensity
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under BP is given by:

I] = I(1, ιp(1, T )) = I(1, ιFFS
p − T

2wb(1−Ψ)2
) = I0 +

∆rp
2wb
− T

2wb(1−Ψ)
. (B.73)

For computing ∆Q, we consider the following two cases separately:

1. Ψ ≥ Ψ̄:

∆Q = |I∗ − I0| − |I] − I0| = |1−Ψ− I0| − |
∆rp
2wb
− T

2wb(1−Ψ)
|

= |1−Ψ− I0| − |
∆rp
2wb
− 1

2
(I0 +

∆c+ 2∆rp
2wb

− (1−Ψ))|

= |1−Ψ− I0| −
1

2
|I0 +

∆c

2wb
− (1−Ψ)|.

(B.74)

From (B.74), (2.11) directly follows.

2. Ψ < Ψ̄:

∆Q = |I∗ − I0| − |I] − I0| =
∆rp
2wb
− |∆rp

2wb
− T

2wb(1−Ψ)
|

=
∆rp
2wb
− |∆rp

2wb
− 1

2
(I0 +

∆c+ 2∆rp
2wb

− (1−Ψ))|

=
∆rp
2wb
− 1

2
|I0 +

∆c

2wb
− (1−Ψ)|.

(B.75)

from which (2.12) follows, which completes the proof.

Proof. Proof of Theorem 2.2.2:

We first describe our approach and then connect to the findings in the theorem. Recall

that the hospital can adjust both ih and T in solving the first stage of a two-stage problem,

where it uses the physician response function in its utility function: Fh(ih, ιp(ih, T ), T ).

Recall also the characterization of the practiced intensity under BP, I], from Equation (2.10)

and consider a case where I] < I0. Suppose in this case that the payer wants the hospital

to increase the practiced intensity to I2 > I] so that a desired quality level I2 is achieved.
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If the hospital is to achieve this intensity, then it could adjust its gainsharing amount for the

desired intensity, denoted by T2, to

T2 := T ] − 2wb(1−Ψ)(I2 − I]), (B.76)

where T ] is what the gainsharing amount would be when there are no constraints on quality

under bundled payments. Plugging (B.76) back into the condition on rBP in Proposition

2.3.1 results in the following minimum payment value by the payer to induce the hospital

to improve quality from I] to I2:

∆rBP ≡ rBP
2 −rBP

] =
(I2 − I])

1−Ψ
((1−Ψ)(∆c+2∆rp−2wb(1−I0−(I2−I])−Ψ))−2T ]) = 2(I2−I])2wb.

(B.77)

Notice that rBP
2 is then the bundled payment that the payer needs pay to ensure the intensity

I2 > I]. Also note that the hospital, physicians, and the payer are all still incentivized to

bundle.

Under FFS, the hospital is more constrained in affecting the quality. The only time that

the hospital can impact intensity to improve quality is when I∗ = 1 − Ψ < I0 (otherwise

it is always optimal to set ih = 1 for the hospital). The extra cost to the hospital is then

∆rFFS = ∆c(I2 − I∗) while the overall new reimbursement from the payer is rFFS
2 =

rh + r2,p + I2∆rp.1

We know from the previous results that the payer benefits at the unconstrained levels

of intensity (i.e., I∗ for FFS and I] for BP), that is, rBP < rFFS. At the same time, the

payer reimbursement at the optimal intensity I0 is rBP
I0
− rFFS

I0
= (∆c−∆rp)(−1 + I0 + Ψ).

Since the payment is linear in intensity, we can derive that when ∆rp < ∆c, the payer may

reach high quality more easily under FFS than under bundled payments. In other words,

when the physician reimbursement differential between the two pathways is lower than the

hospital cost differential, FFS may offer higher quality for lower cost. This is unsurprising

1Observe that if we juxtapose the curves defined by rFFS
2 (I2) and rBP

2 (I2), we obtain Figures 2.4 and 2.5.
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because under FFS, increasing intensity (hence in this case quality) increases physician

reimbursement but not hospital reimbursement. Hence, if ∆rp is relatively low compared

to ∆c, quality improvements under FFS are relatively more attractive. In contrast, for

∆rp > ∆c, the bundled payments will always offer better quality at a lower cost. Finally,

if I∗ > I0, that is, FFS leads to overtreatment, BP may lessen overtreatment, but may

also lead to undertreatment in which case the BP quality may be lower. Hence, the quality

contrast between BP and FFS is a priori unclear (Case 1). This discussion finalizes the

proof of Theorem 2.2.2.

B.2.2 The Quality Model

Proof. Proof of Lemma 2.4.1 In this proof, we analyze the behavior of F FFS
h , F BP

h , and

explore their maxima. An optimal solution is a two-dimensional maximum of these two

functions. Hence, we differentiate F FFS
h , F BP

h , and compute the best response in the interior.

There is no joint best response in the interior for ιh(ιp(ih)) = ih and ιp(ιh(ip)) = ip. Next,

we check the boundary solutions, whenih = 0 or ih = 1 and ip = 0 or ip = 1 occurs.

Specifically, we have the following cases:

• ih = 1, ip < 1: Then we have

ιp(1) =
2I0wb + ∆rp
2wb(1−Ψ)

, (B.78)

and

I = I0 +
∆rp
2wb

. (B.79)

Hence, by the condition on ιp(1) that ιp(1) < 1, this scenario (ih = 1, ip < 1) holds

whenever

∆rp ≤ 2wb(1−Ψ− I0), (B.80)
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as before, else ip ≥ 1. Formally,

ιh(ιp(1)) = 1 +
wb∆c+ wFFS

q ∆rp

2wbwFFS
q Ψ

, (B.81)

which is always larger than 1, as needed.

• ih = 1, ip = 1: This joint response occurs when (B.80) does not hold. Then the

hospital needs
1− I0

Ψ
+

∆c

2wFFS
q Ψ

≥ 1, (B.82)

in other words,
∆c

2wFFS
q

+ 1− I0 ≥ Ψ. (B.83)

• ih = 0. This case is impossible. Indeed, if ip = 0, this gives the condition

∆rp
2wb

< −(I0 −Ψ) (B.84)

for the physicians and

I0 −Ψ >
∆c

2wFFS
q

(B.85)

for the hospital, and obviously they cannot both hold simultaneously. The condition

on ip = 1 gives
∆c

2wFFS
q

+ (1− I0) ≤ 0 (B.86)

for the hospital, which obviously does not hold. Finally, if (B.86) does not hold and

we have ip < 1, then the condition for ih = 0 is wb∆c + wFFS
q ∆rp ≤ 0, which never

holds.

• Case 0 < ih < 1. Then we must have ip = 1 or ip = 0. Assume first that ip = 1.
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This assumption implies

1 +
wb∆c+ wFFS

q ∆rp

2wbwFFS
q (1−Ψ)

≥ 1, (B.87)

a condition that is automatically satisfied. Second, for the hospital we must have

0 <
2wFFS

q (1− I0) + ∆c

2wFFS
q Ψ

< 1, (B.88)

the last condition holds for wFFS
q > 0 if

∆c < 2wFFS
q (−1 + I0 + Ψ) (B.89)

and for wFFS
q < 0, the required condition is

−2wFFS
q (1− I0) > ∆c > −2wFFS

q (1− I0 −Ψ). (B.90)

Now consider ip = 0. Then on the physician side, we need ιp(ιh(0)) ≤ 0. This

condition is impossible.

This captures all feasible cases in lemma, and concludes the proof.

Proof. Proof of Proposition B.1.1:

The physicians’ best response function remains the same as in the base model:

ιp(ih, T ) =
1

2wb(1−Ψ)
(∆rp −

T

1−Ψ
+ 2wb(I0 − (1− ih)Ψ)). (B.91)

For the hospital, the derivative with respect to ih also remains the same:

∂

∂ih
F BP
h (ih, ιp(ih, T ), T ) = T

Ψ

1−Ψ
. (B.92)
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Hence, ih = 1 whenever T > 0. We first consider T > 0. The optimal T is given by

Tlow = (1−Ψ)
wBP
q ∆rp + wb(∆c+ 2∆rp)− 2w2

b (1− I0 −Ψ)

2wb + wBP
q

. (B.93)

Formula for Tlow in (B.93) is larger than zero if

∆rp
wb

+
∆c+ 2∆rp

wBP
q

> 2
wb
wBP
q

(1− I0 −Ψ). (B.94)

In order for condition in (B.94) to have an impact on the value of ip, that is to change it to

for ιp < 1, we need

∆c > 2(wb + wBP
q )(−1 + I0 + Ψ). (B.95)

Finally, ιp = 0 will occur when the gainsharing amount is set to a maximum denoted by

Tmax such that

Tmax = (1−Ψ)(2I0wb + ∆rp). (B.96)

This condition prevails when

∆c ≥ 2I0w
BP
q + 2wb(1 + I0 −Ψ). (B.97)

Next, we consider the T = 0 case. Under the optimal intensity ih, the derivative with

respect to ih is 0, so there will be an “indifference region”, an interval of values for ih such

that the resulting intensity is the same for all ih in this interval. Consider first the case when

ιp(ih, 0) ∈ (0, 1) for ih ∈ [0, 1]: Then it does not matter what ih is chosen, in other words,

the indifference region for ih is the entire unit interval. It is easy to see that ιp is increasing

with ih, so we can consider ιp(1, 0) and ιp(0, 0). We have that ιp(1, 0) = 1 when

∆rp
2wb
≥ 1−Ψ− I0. (B.98)
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We have ιp(0, 0) = 0 when
∆rp
2wb
≤ Ψ− I0 (B.99)

Consider the smallest point i+h such that ιp(i+h , 0) = 1 and largest point i−h such that

ιp(i
−
h , 0) = 0. In both points (i−h and i+h ), the derivative w.r.t. ih is (∆c+∆rp+

wBP
q ∆rp

wb
)Ψ >

0. Hence, the hospital will never choose a quantity below i−h , i.e., below the indifference

interval. However, the other point, i+h , is more interesting. The hospital will seek a point

above i+h , in particular, it would ideally choose the point

i∗h =
2wBP

q (1− I0) + ∆c+ ∆rp

2wBP
q Ψ

, (B.100)

unless
∆c+ ∆rp

2wBP
q

≥ −1 + I0 + Ψ, (B.101)

in which case i∗h = 1.

The respective intensities for ih indifferent, at i∗h, and at 1 are then given by,

I] = I0 +
∆rp
2wb

(at ih indifferent)

I] = I0 −
∆c+ ∆rp

2wBP
q

(at i∗h; follows from (B.100))

I] = Ψ (at ih=1)

Proof. Proof of Proposition 2.4.1: We need to ensure that both physicians and hospital

benefit, while the payer does not lose under BP, compared with FFS. That is, we need:

F BP
p (i]h, i

]
p, T

]) > F FFS
p (i∗h, i

∗
p) , F BP

h (i]h, i
]
p, T

]) > F FFS
h (i∗h, i

∗
p) and rBP < rh + r2,p + I∗∆rp.

Similar to the analysis before, we consider the cases T = 0 and T > 0 separately.
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Under T = 0, bundling does not occur, and we derive the conditions under T > 0. In the

following, we explore the two cases.

Case T = 0: As we discussed in an earlier proof, there are three cases, depending on

conditions (B.98) and (B.101):

1. The case when the hospital is indifferent for varying ih. Because, hospital payoff is

the same irrespective of ih, we simply take ih = 1, ip = ιp(1, 0)

2. The hospital exerts the influencing effort ih above the indifference region where ih <

1 also holds. Then ip = 1 and ih given by (B.100).

3. The hospital exerts the maximal ih where ih = 1, ip = 1.

We match the above cases to those in Lemma 2.4.1, and then we determine if the compar-

ison of the BP and FFS payoffs can give rise to bundling. Note that, showing the intensity

being the same under the FFS and the BP is enough to show that bundling will not occur.

The hospital is indifferent for all ih under bundled payments only when Ψ ≤ Ψ̄. This

fact leads to the same intensity I∗ = I] = I0 + ∆rp
2wb

under BP and FFS, so there will be no

bundling.

The case in (B.9) can on the one hand arise from Ψ ≤ Ψ̄ if the first and third conditions

in (B.9) hold and 1 − I0 − Ψ > 0. In this case, bundling would lead to a reduction in

intensity to the extent that physicians would lose and therefore bundling will not occur.

The case (B.9) can also arise from Ψ̄ ≤ Ψ ≤ Ψ̂ if the second and third conditions in (B.9)

hold. In this case, intensity is the same, 1 − Ψ, under both FFS and BP, so bundling will

not occur. Case (B.9) can also arise from Ψ ≥ Ψ̂, again, if the second and third conditions

hold. This case will not be appealing for the physicians to bundle either.

Finally, the case (B.7) can only arise from Ψ ≥ Ψ̂. When Ψ ≥ Ψ̂, it follows that the

physicians actually lose, so bundling will not occur. We also check if (B.7) and (B.1) might

occur as two simultaneous equilibria. Suppose F BP
h (1, ιp(1, T ), T ) > F BP

h (1, ιp(1, 0), 0)
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and F BP
h (1, ιp(1, T ), T ) < F BP

h (ιh(1), 1, 0) co-occur. In this case, both solutions would be

local optima and we can compare the corresponding objective values. However, we will

argue that this does not occur. First, they could only occur together under the scenario

Ψ̄ ≤ Ψ ≤ Ψ̂. But then, one finds out that conditions for (B.7) actually cannot occur under

Ψ̄ ≤ Ψ ≤ Ψ̂. Indeed, we then have that the condition Ψ ≤ Ψ̂ conflicts with the right-hand

side of the third equation in (B.7).

Case T > 0: Again, we need to first compute F BP
p (i]h, i

]
p, T

])− F FFS
p (i∗h, i

∗
p) to determine

the physician benefit/loss. First, consider Ψ ≥ Ψ̂. In this case, bundling is not possible be-

cause the second condition in (B.1) cannot hold. Let us then consider the payoff difference

under the two cases Ψ ≤ Ψ̄ and Ψ̄ ≤ Ψ ≤ Ψ̂.

• For Ψ ≤ Ψ̄: If T reaches Tmax, the smallest amount of gainsharing such that ιp(1, Tmax) =

0, the physicians clearly benefit. On the other hand, if it stays at at a level Tlow below

Tmax, we write:

F BP
p (1, ιp(1, Tlow), Tlow)− F FFS

p (1, ιFFS
p (1))

= −wq∆rp + wb(∆c+ 2∆rp) + 2w2
b (−1 + I0 + Ψ)

4wb(2wb + wq)2
·

(wq∆rp + 6w2
b (−1 + I0 + Ψ) + wb(−∆c+ 2∆rp + 4wq(−1 + I0 + Ψ))).

(B.102)

The first product term is clearly positive which follows from the first inequality in
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(B.1). As for the second one, we show that it is less than 0 such that

wq∆rp + 6w2
b (−1 + I0 + Ψ) + wb(−∆c+ 2∆rp + 4wq(−1 + I0 + Ψ))

≤ wq∆rp + 6w2
b (−1 + I0 + Ψ) + wb(−2wb(−1 + I0 + Ψ) + 2∆rp + 2wq(−1 + I0 + Ψ))

≤ wq∆rp + 6w2
b (−1 + I0 + Ψ) + wb(∆rp + 2wq(−1 + I0 + Ψ))

≤ 4w2
b (−1 + I0 + Ψ) < 0.

(B.103)

Hence, overall, the physicians will benefit.

• In case Ψ̄ ≤ Ψ ≤ Ψ̂, physicians will also clearly benefit.

Now, we compute rBP ≥ −(F BP
h (i]h, i

]
p, T

]) − F FFS
h (i∗h, i

∗
p, T

∗)), where rBP is excluded

from the F BP
h formula. Of course, we need to distinguish the cases for different I∗ low-

integration vs. moderate-integration levels and T low or high.

To see how the payer likes the scenario in this bullet point, we would compute

rBP − rh − r2,p −∆rpI
∗. (B.104)

In contrast to the base model, not all solutions that are appealing for the physicians are also

appealing for the payer. The payer conditions are relatively complicated and we do not list

all of them. However, for an illustration, we provide below the payer surplus (or deficit)
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when Ψ ≤ Ψ̄ and conditions from (B.1) both hold:

∆π =
1

4w2
b (2wb + wBP

q )
(wBP

q w
FFS
q (2I0 + ∆rp)

2

− 2wb(2I0 + ∆rp)(2I0(−1 + wBP
q )wFFS

q − wBP
q ∆c− (wBP

q + wFFS
q )∆rp)

+ 4w3
b (2I

2
0w

FFS
q − I0∆c+ (∆c+ 2∆rp)(−1 + Ψ))

+ 4w4
b (−1 + I0 + Ψ)2

+ w2
b (4I

2
0 (−4 + wBP

q )wFFS
q − 4wBP

q ∆rp + (∆c+ 2∆rp)
2 + I0(8∆c− 4wBP

q ∆c+ 8∆rp − 8wFFS
q ∆rp) + 4wBP

q ∆rpΨ)).

(B.105)

B.2.3 The Salary Model

Proof. Proof of Lemma 2.4.2: The hospital’s best response in the interior is

i∗h = 1− I0 +
∆c−∆rp

2wq
. (B.106)

The solution is equal to one if

∆c−∆rp ≥ 2wqI0 (B.107)

and equal to zero if

∆rp ≥ 2wq(1− I0) + ∆c. (B.108)

Plugging in the formula for I , this yields the desired result.

Proof. Proof of Propositions 2.4.2 and 2.4.3: Taking a similar approach as in Lemma 2.4.2,
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the optimal hospital solution under bundled payments is

i]h = 1− I0 +
∆c

2wFFS
q

. (B.109)

This is always larger than 0, but the case i]h ≥ 1 must be again treated separately. In

particular i]h = 1 if

∆c ≥ 2wFFS
q I0. (B.110)

We first compute the difference F BP
h (i]h) − rBP − F FFS

h (i∗h), which yields several cases.

This yields the lower bound on rBP that the hospital will require for bundling to occur. We

then check if the payer is not worse off, i.e. whether rBP satisfies rBP < rh + r2,p + I∗∆rp

(note that rBP is a strict lower bound, so for the payer not to be worse off, the inequality has

to be strict). Let us consider the cases:

• If

−2wq(1− I0) ≤ ∆c−∆rp and ∆c ≤ 2wqI0, (B.111)

then

rBP > rh + r2,p + ∆rpI0 −
∆rp(2∆c−∆rp)

4wq
. (B.112)

The payer can save as much as
∆r2

p

4wq
> 0. (B.113)

• If

−2wq(1− I0) ≤ ∆c−∆rp ≤ 2wqI0 and ∆c ≥ 2wqI0, (B.114)

then

rBP > rh + r2,p +
(2I0wq −∆c+ ∆rp)

2

4wq
. (B.115)
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The payer can save as much as

∆r2
p − (∆c− 2I0wq)

2

4wq
≥ 0, (B.116)

which is positive because

∆c− 2wqI0 ≤ ∆rp. (B.117)

• If

∆c−∆rp ≥ 2wqI0, (B.118)

then

rBP > rh + r2,p. (B.119)

In this case, the payer cannot generate enough to recuperate the costs, and hence,

bundling will not occur.

• If

−2wq(1− I0) ≥ ∆c−∆rp and ∆c ≥ 2wqI0, (B.120)

then

rBP ≥ rh + r2,p − wq(1− 2I0)−∆c+ ∆rp. (B.121)

The payer saves

∆c+ (1− 2I0)wq > 0, (B.122)

This is positive because

∆c ≥ 2wqI0. (B.123)

• If

−2wq(1− I0) ≤ ∆c−∆rp ≤ 2wqI0 and ∆c ≤ 2wqI0, (B.124)
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then

rBP ≥ rh + r2,p +
(2I0wq −∆c)2

4wq
. (B.125)

The payer saves
(∆c− 2I0wq)

2

4wq
> 0. (B.126)

• If

−2wq(1− I0) ≥ ∆c−∆rp and ∆c ≤ 2wqI0, (B.127)

then

rBP ≥ rh + r2,p −∆rp +
(2(1− I0)wq −∆c)2

4wq
. (B.128)

The payer saves
(∆c+ 2(1− I0)wq)

2

4wq
> 0. (B.129)

This completes the analysis of all of the cases, and concludes the proof.

Comparing the Salary and Quality models

Proof. Proof of Theorem 2.4.1: Our objective is to identify the conditions under which

bundling would be preferred in at least one of the following two models: quality model and

salary model.

We first analyze the cases when both models lead to bundling. Consider the case in the

quality model where Ψ → 1. We then always have I0 + Ψ − 1 > 0. Note that (B.1) is

impossible because the second and the third conditions contradict each other. If both (B.3)

and Ψ ≤ Ψ̄ hold, then from (2.37)

∆c < ∆rp + 2wbI0 < 2(wb + wBP
q )I0, (B.130)

which contradicts the second condition in (B.3). Hence, if bundling occurs under the
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salaried model, then we must have Ψ̄ ≤ Ψ ≤ Ψ̂ and (B.3). Note that under Ψ → 1,

neither condition (B.1) nor Ψ ≤ Ψ̄ will ever hold in the quality model. Therefore, there are

cases when bundling occurs under the quality model but not in the salary model.

Next, we demonstrate a case where the Salary model can lead to bundling but not the

Quality model. Specifically, we are focusing on the case Ψ̄ ≤ Ψ ≤ Ψ̂, and we see that

∆c ≥ 2wqI0, which leaves us with cases (B.120) and (B.114). Also, we see that bundling

can occur in the salary model under the parameter values that would not lead to bundling

in the quality model, namely when 2wqI0 > ∆c.

B.2.4 The Full Quality Model

Proof. Proof of Lemma B.1.1 As before, we seek Nash equilibria,

• There is no interior solution. That is, there is no point, (ih, ip) ∈ (0, 1)2, such that

ιp(ιh(ip)) = ip and vice versa.

• There are two possibilities for a solution with ih = 1. This requires ιp(1) = i∗p and

ιh(i
∗
p) ≥ 1 for some i∗p. Consider the three potential cases for ih = 1:

(H1.1) ip ∈ (0, 1), then ιp(1) = 2I0+∆rp
2wb(1−Ψ)

. Hence, this must be lower than 1, which

requires ∆rp
2wb
− (1− I0 −Ψ) < 0, which is equivalent to Ψ < Ψ̄. Furthermore,

it must hold that ιh(ip) ≥ 1. This requires wb
wFFS
q

∆c+ ∆rp ≥ 0.

(H1.2) ip = 1. From the above, we deduce that ιp(1) ≥ 1 which happens if Ψ > Ψ̄.

Furthermore, we need to have ιh(1) ≥ 1. That happens if ∆c
2wFFS

q
> −(1−I0−Ψ),

that is Ψ > 1− I0 + ∆c
2wFFS

q
.

(H1.3) There is no solution with ip = 0 because ιp(1) > 0

• There are solutions with ih = 0. Again, we review different physicians’ choices

separately:
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(H0.1) We can have ip = 0 if ∆rp
2wb
≤ Ψ− I0. Then (to ensure ιh(0) ≤ 0), we also need

∆c
2wFFS

q
≤ I0 −Ψ.

(H0.2) We can have ip = 1 if ∆rp
2wb
≥ 1− I0. Then (to ensure ιh(1) ≤ 0), we also need

1− I0 + ∆c
2wFFS

q
≤ 0.

(H0.3) We can have ip ∈ (0, 1), if ιp(0) ∈ (0, 1). From the previous, this requires

1− I0 >
∆rp
2wb

> Ψ− I0. Then (to ensure ιh(ιp(1)) ≤ 0), we also need wb
wFFS
q

∆c+

∆rp ≤ 0.

• There are solutions with ih ∈ (0, 1). Here, it remains to consider two cases for

physician response because the interior solution is impossible:

(Hi.1) ip = 1. This will happen if ιp(ιh(1)) ≥ 1 and ιh(1) ∈ (0, 1). For the first

condition, we need wb
wFFS
q

∆c + ∆rp ≥ 0. For the second one, we need 0 <

1− I0 + ∆c
2wFFS

q
< Ψ.

(Hi.2) ip = 0. This will happen if ιp(ιh(0)) ≤ 0 and ιh(0) ∈ (0, 1). The first happens

if wb
wFFS
q

∆c+ ∆rp ≤ 0 while the second one requires 0 < Ψ− I0 + ∆c
wFFS
q
< Ψ.

Here, we will provide bundled payments solutions under the full quality model. We

postpone quantifying rBP to the next proposition.

Proposition 2.4.1 (Complete Characterization). Not taking feasibility into account, there

are five cases of bundling solutions:

(G0) If

1 < I0 + Ψ +
∆c+ 2∆rp

2wb
+
wBP
q

2w2
b

∆rp and

I0

wBP
q

wb
+ (1 + I0 −Ψ) >

∆c

2wb
and

∆c > 2(wb + wBP
q )(1− I0 −Ψ),

(B.131)
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then

ih = 1

ip =
2I0w

BP
q + 2wb(1 + I0 −Ψ)−∆c

2(2wb + wBP
q )(1−Ψ)

T = (1−Ψ)
2w2

b (−1 + I0 + Ψ + ∆c+2∆rp
2wb

) + wBP
q ∆rp

2wb + wBP
q

(B.132)

(GM) If

1 < I0 + Ψ +
∆c+ 2∆rp

2wb
+
wBP
q

2w2
b

∆rp and

I0

wBP
q

wb
+ (1 + I0 −Ψ) ≤ ∆c

2wb
and

∆c > 2(wb + wBP
q )(1− I0 −Ψ),

(B.133)

then

ih = 1

ip = 0

T = 2wb(1−Ψ)(I0 +
∆rp
2wb

)

(B.134)

(N0) If

1 ≥ I0 + Ψ +
∆c+ 2∆rp

2wb
+
wBP
q

2w2
b

∆rp or

∆c ≤ 2(wb + wBP
q )(1− I0 −Ψ) and

Ψ ≤ Ψ̄

(B.135)
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then

ih ∈ [max(0,
Ψ− I0 − ∆rp

2wb

Ψ
), 1]

ip ∈ [max(0,

∆rp
2wb
− (1− ih)Ψ + I0

(1−Ψ
), 1]

T = 0

(B.136)

(NM) If

1 ≥ I0 + Ψ +
∆c+ 2∆rp

2wb
+
wBP
q

2w2
b

∆rp or

∆c ≤ 2(wb + wBP
q )(1− I0 −Ψ) and

Ψ > Ψ̄ and
∆c+ ∆rp

2wBP
q

< 1− I0 −Ψ

(B.137)

then

ih =
1

Ψ
(1− I0 +

∆c+ ∆rp
2wBP

q

)

ip = 1

T = 0

(B.138)

(N1) If

1 ≥ I0 + Ψ +
∆c+ 2∆rp

2wb
+
wBP
q

2w2
b

∆rp or

∆c ≤ 2(wb + wBP
q )(1− I0 −Ψ) and

Ψ > Ψ̄ and
∆c+ ∆rp

2wBP
q

≥ 1− I0 −Ψ

(B.139)
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then

ih = 1

ip = 1

T = 0

(B.140)

Proof. Proof of Proposition 2.4.1 As in the previous BP models, we solve for a two-stage

equilibrium. In the first stage, the hospital sets ih and T while in the second stage, physi-

cians set ip. We solve it by backward induction, but we distinguish three cases depending

on T > 0 and ip = 1, ip = 0, ip ∈ (0, 1). Note that for T > 0, we have the derivative of

Fh > 0, so the hospital will choose ih = 1.

Let’s compute the hospital response in face of this.

1. ip ∈ (0, 1): Then the derivatives of Fh w.r.t. ih and T are TΨ
(1−Ψ)

as before and

respectively, the optimal T is

T0 = (1−Ψ)
2w2

b (−1 + I0 + Ψ + ∆c+2∆rp
2wb

) + wBP
q ∆rp

2wb + wBP
q

. (B.141)

Hence, T0 will be positive unless

1 ≥ I0 + Ψ +
∆c+ 2∆rp

2wb
+
wBP
q

2w2
b

∆rp, (B.142)

from which we deduce the first condition. Now, we only need to ensure that under

these conditions, ip ∈ (0, 1). Plugging T0 and ih = 1 back into ιp gives:

i]p = 2wb
I0

wBP
q

wb
− ∆c

2wb
+ (1 + I0 −Ψ)

2(2wb + wBP
q )(1−Ψ)

. (B.143)
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Hence, i]p will be within (0, 1) if

I0

wBP
q

wb
+ (1 + I0 −Ψ) >

∆c

2wb
and

∆c > 2(wb + wBP
q )(1− I0 −Ψ).

(B.144)

We next consider the other cases.

2. ip = 0: Then the hospital will just stop with T such that ip hits 0, and it will not go

further. This means

Tmax = 2wb(1−Ψ)(I0 +
∆rp
2wb

), (B.145)

as before.

3. T = 0: This case may mean, that ∆c ≤ 2(wb + wBP
q )(1 − I0 − Ψ) and ip stays at 1

or it may mean that T0 would be negative, i.e.,

1 < I0 + Ψ +
∆c+ 2∆rp

2wb
+
wBP
q

2w2
b

∆rp. (B.146)

In any case, as we discussed elsewhere, there will be an indifference zone for ih

for the ranges of ip such that ιp(ih) ∈ (0, 1), but if this range does not cover the

entire range of ih, the hospital can also choose to go above or below the indifference

zone. We have ιp(ih) =
∆rp
2wb
−(1−ih−I0)Ψ

1−Ψ
. This term is increasing as ih increases. The

derivative of F BP
h w.r.t. ih is decreasing with ih and is positive at i−h , the largest point

such that ip = 0. Hence, the hospital will always prefer ih in the indifference zone

over lower ih. The derivative is also positive at i+h , the largest point in the indifference

zone (unless i+h exceeds 1). The indifference zone spans up to ih = 1 if ιp(1, 0) ≤ 1,

which is the case if ∆rp
wb
− (1−Ψ− I0) ≤ 0, that is, Ψ ≤ Ψ̄. Otherwise, the hospital

has the chance to improve its utility by increasing ih beyond the indifference zone.
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The optimal ih is then

ih =
1

Ψ
(1− I0 +

∆c+ ∆rp
2wBP

q

). (B.147)

This expression is larger than one (hence the optimum being one) if ∆c+∆rp
2wBP

q
≥ 1 −

I0 −Ψ and otherwise the optimum is the quantity from (B.147).

Proof. Proof of Proposition B.1.2 We consider all pairs of cases from the above two propo-

sitions and ask the following questions: 1) Is the combination feasible? That is, are the

values of the parameters that give rise to the combination compatible? 2) If bundling is to

occur, would physicians benefit?, 3) If bundling is to occur, would the payer benefit? Note

that we are unable to fully evaluate the feasibility of all the cases. There is also a condition

on rBP, that is case dependent, but we do not list it below. However, the formula for the

payer’s profit includes it and assumes that the payer pays the hospital this minimal rBP. We

label the cases in format (FFS case-BP case).

Consider the cases:

(HM-G0) : The physician surplus is

− 1

4wb(2wb + wBP
q )2)

(−4I2
0 (w2

b (4 + (−8 + wb)wb) + 2wb(2 + (−4 + wb)wb)w
BP
q

+ (−1 + wb)
2(wBP

q )2)

+ (wBP
q ∆rp + wb(∆c+ 2∆rp) + 2w2

b (−1 + Ψ))

· (wBP
q ∆rp + wb(−∆c+ 2∆rp + 4wBP

q (−1 + Ψ)) + 6w2
b (−1 + Ψ))

+ 4I0wb((w
BP
q )2∆rp + wbw

BP
q (∆c+ 4∆rp) + w2

b (∆c+ 4∆rp + 4wBP
q (−1 + Ψ))

+ 6w3
b (−1 + Ψ)))

(B.148)
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This expression needs to be positive. The payer surplus is

1

4w2
b (2wb + wBP

q )
(wBP

q w
FFS
q (2I0 + ∆rp)

2

− 2wb(2I0 + ∆rp)(2I0(−1 + wBP
q )wFFS

q − wBP
q ∆c− (wBP

q + wFFS
q )∆rp)

+ 4w3
b (2I

2
0w

FFS
q − I0∆c+ (∆c+ 2∆rp)(−1 + Ψ))

+ 4w4
b (−1 + I0 + Ψ)2

+ w2
b (4I

2
0 (−4 + wBP

q )wFFS
q − 4wBP

q ∆rp + (∆c+ 2∆rp)
2

+ I0(8∆c− 4wBP
q ∆c+ 8∆rp − 8wFFS

q ∆rp) + 4wBP
q ∆rpΨ)),

(B.149)

which again has to be positive.

(HM-GM) : The physician surplus is

(I2
0 (4− 8wb)− 4I0wb(∆rp + 2wb(−1 + Ψ))−∆rp(∆rp + 4wb(−1 + Ψ)))/(4wb)

(B.150)

This needs to be positive. The payer surplus is

1

4w2
b

(4I2
0 (−w2

bw
BP
q + (−1 + wb)

2wFFS
q )

+ ∆rp(w
FFS
q ∆rp + 2wb(∆c+ ∆rp) + 4w2

b (−1 + Ψ))

+ 4I0(wFFS
q ∆rp + wb(∆c+ ∆rp − wFFS

q ∆rp) + 2w3
b (−1 + Ψ)))

(B.151)

which again has to be positive.

(HM-N0) : The physician surplus here would be zero, so bundling will not be feasible.

(HM-NM) : The physician surplus would be negative, so bundling will not be feasible.

(HM-N1) : The physician surplus would be negative, so bundling will not be feasible.

(HH-G0) : This solution seems feasible. Furthermore, the physician surplus will always be
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positive. The payer surplus will be

1

4(2wb + wBP
q ))

(∆c2 + 4w2
b (−1 + I0 + Ψ)2+

+ 4wBP
q (−1 + I0 + Ψ)(−∆c+ wFFS

q (−1 + I0 + Ψ))

+ 4wb(−1 + I0 + Ψ)(−∆c+ 2wFFS
q (−1 + I0 + Ψ))),

(B.152)

which must be positive for bundling to occur.

(HH-GM) : This solution might be jointly feasible. The physicians will benefit. The payer

surplus will be

− I2
0 (wBP

q − wFFS
q )− 2I0(wb + wFFS

q ) + (1−Ψ)(∆c+ (1−Ψ)wFFS
q ). (B.153)

This seems most likely to be negative, so bundling would most likely not happen.

(HH-N0) : This will not be possible because the condition for (N0) clashes with Ψ ≥ Ψ̄, which

is needed for the HH case.

(HH-NM : Then the physician surplus is

1

4wb
(−∆c−∆rp − 2wb(1− I0 −Ψ))(∆c+ 3∆rp − 2wb(1− I0 −Ψ)). (B.154)

The first product term will be negative, and the second one positive, overall therefore

negative, so the physicians will not want to bundle.

(HH-N1) : Then the physician surplus will be zero, so the physicians will not want to bundle.
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(LL-G0) : The physician surplus is

1

4(2wb + wBP
q )2)

(4(wBP
q )2∆rp(1− 2Ψ) + 4w3

b (−3 + I2
0 + I0(6− 14Ψ) + Ψ(6 + Ψ))

+ wb(4I
2
0 (wBP

q )2 + ∆c2 + 4(wBP
q )2Ψ2 − 4I0w

BP
q (∆c+ 2wBP

q Ψ)

+ 4wBP
q (∆c+ 4∆rp − (∆c+ 8∆rp)Ψ))

+ 4w2
b (4∆rp − 8∆rpΨ−∆c(−1 + I0 + Ψ) + 2wBP

q (−1 + I2
0 + I0(2− 6Ψ) + Ψ(2 + Ψ)))),

(B.155)

which has to be positive for bundling to occur. The payer surplus is

1

4(2wb + wBP
q )

(4I2
0w

BP
q w

FFS
q

+ ∆c2 − 4wBP
q ∆rp + 4wBP

q (∆c+ 2∆rp)Ψ + 4wBP
q w

FFS
q Ψ2

+ 4w2
b (−1 + I0 + Ψ)2

− 4I0w
BP
q (∆c+ 2wFFS

q Ψ)

+ 4wb(2I
2
0w

FFS
q −∆c− 2∆rp + Ψ(3∆c+ 4∆rp + 2wFFS

q Ψ)− I0(∆c+ 4wFFS
q Ψ)))

(B.156)

(LL-GM) : The physician surplus is

∆rp + I0wb(2− 4Ψ)− 2∆rpΨ + wbΨ
2. (B.157)

The payer surplus is

− I2
0 (wBP

q − wFFS
q )−∆rp − 2I0(wb(1−Ψ) + wFFS

q Ψ) + Ψ(∆c+ 2∆rp + wFFS
q Ψ).

(B.158)

(LL-N0) : Then, physicians will always benefit. The payer might benefit if the following is
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positive:

I2
0w

FFS
q − ∆rp(w

BP
q ∆rp + 2wb(∆c+ ∆rp))

4w2
b

+ (∆c+ ∆rp)Ψ + wFFS
q Ψ2 − I0(∆c+ ∆rp + 2wFFS

q Ψ).

(B.159)

Note that wFFS
q < 0 in this FFS case.

(LL-NM) : Similarly as before in the NM case, the physician surplus will be negative, so there

will be no bundling.

(LL-N1) : The physician surplus will be

(1− 2Ψ)(∆rp + (2I0 − 1)wb), (B.160)

which needs to be positive for bundling. The payer surplus will be

wFFS
q (I0 −Ψ)2 − (∆c+ ∆rp)(1− 2Ψ)− wBP

q (1− I0 −Ψ)2 (B.161)

(LH-G0) : The physician surplus is

1

4(2wb + wBP
q )2)

(wb(−2(−1 + I0)(wb + wBP
q ) + ∆c)2

− 4(wb(2(−1 + I0)wb(3wb + 2wBP
q ) + (wb + wBP

q )∆c) + (2wb + wBP
q )2∆rp)Ψ

− 4w2
b (3wb + 2wBP

q )Ψ2)

(B.162)
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The payer surplus is

1

4(2wb + wBP
q )

(∆c2 + 4w2
b (−1 + I0 + Ψ)2

+ 4wBP
q ((−1 + I0)2wFFS

q + ∆c− I0∆c+ ∆rpΨ)

+ 4wb(2(−1 + I0)2wFFS
q + ∆c− I0∆c+ ∆cΨ + 2∆rpΨ))

(B.163)

(LH-GM) : The physician surplus is

wb(1− (I0 +
2∆rp
2wb

)Ψ). (B.164)

The payer surplus is

wFFS
q − 2I0(wb + wFFS

q )− I2
0 (wBP

q − wFFS
q ) + ∆c+ Ψ(2I0wb + ∆rp). (B.165)

(LH-N0) : The physicians will always benefit. The payer surplus is as follows:

(1− I0)2wFFS
q + (∆c+ ∆rp)(1− I0 −

∆rp
2wb

)− wBP
q ∆r2

p

4w2
b

. (B.166)

This will be negative, note that 1− I0 − ∆rp
2wb

< 0 because of the condition of (LH).

(LH-NM) : In this case, the physician surplus will be negative. Hence, no bundling.

(LH-N1) : The physician surplus is

−Ψ(∆rp − wb(2− 2I0 −Ψ)). (B.167)

The payer surplus is

wFFS
q (1− I0)2 + Ψ(∆c+ ∆rp)− wBP

q (1− I0 −Ψ)2. (B.168)
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(LM-G0) The physician surplus is

1

4wb(2wb + wBP
q )2

(wBP
q ∆rp + wb(∆c+ 2∆rp) + 2w2

b (−1 + I0 + Ψ))

(wBP
q ∆rp + 6w2

b (−1 + I0 + Ψ) + wb(−∆c+ 2∆rp + 4wBP
q (−1 + I0 + Ψ)))

(B.169)

The payer surplus is

1

4w2
b (2wb + wBP

q )
(wBP

q w
FFS
q ∆r2

p + 2wb∆rp(w
FFS
q ∆rp + wBP

q (∆c+ ∆rp))

+ 4w3
b (∆c+ 2∆rp)(−1 + I0 + Ψ)

+ 4w4
b (−1 + I0 + Ψ)2

+ w2
b (∆c

2 + 4∆c∆rp + 4∆rp(∆rp + wBP
q (−1 + I0 + Ψ))))

(B.170)

(LM-GM) : The physician surplus is

− 1

4wb
(2I0wb + 2∆rp)(∆rp − 2wb(2− I0 − 2Ψ)). (B.171)

The payer surplus is

1

w2
b

(−4I2
0w

2
bw

BP
q + 4I0w

2
b (∆c+ ∆rp − 2wb(1−Ψ))

+ ∆rp(w
FFS
q ∆rp + 2wb(∆c+ ∆rp)− 4w2

b (1−Ψ)).

(B.172)

(LM-N0) : Here, the physicians will not benefit, so this scenario is not possible.

(LM-NM) : Here, the physicians will lose money, so this scenario is not possible.

(LM-N1) : Again, the physicians will be losing money.
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(MH-G0) : The physician surplus is

1

4(2wb + wBP
q )2(wFFS

q )2
(2(wBP

q )2wFFS
q ∆rp(∆c− 2wFFS

q (−1 + I0 + Ψ))

− 4w3
b (−∆c2 + 3(wFFS

q )2(−1 + I0 + Ψ)2)

+ wb((w
BP
q )2∆c2 + (wFFS

q )2∆c2 − 4wBP
q w

FFS
q (−2∆c∆rp + wFFS

q (∆c+ 4∆rp)(−1 + I0 + Ψ)))

+ 4w2
b (−wFFS

q (−2∆c∆rp + wFFS
q (∆c+ 4∆rp)(−1 + I0 + Ψ))

+ wBP
q (∆c2 − 2(wFFS

q )2(−1 + I0 + Ψ)2)))

(B.173)

The payer surplus is

1

4(2wb + wBP
q )wFFS

q

(wFFS
q ∆c2 + 4w2

bw
FFS
q (−1 + I0 + Ψ)2

− 2wb(∆c+ 2∆rp)(∆c− 2wFFS
q (−1 + I0 + Ψ))

− wBP
q (∆c2 + 2∆c∆rp − 4wFFS

q ∆rp(−1 + I0 + Ψ)))

(B.174)

(MH-GM) : The physician surplus is:

∆rp(1−Ψ)− I2
0wb − I0(∆rp − 2wb(1−Ψ)) +

∆c(wb∆c+ 2wFFS
q ∆rp)

4(wFFS
q )2

(B.175)

The payer surplus is

−1

4wFFS
q

(4I2
0w

BP
q w

FFS
q + ∆c2 + 2∆c∆rp

− 4I0w
FFS
q (∆c+ ∆rp − 2wb(1−Ψ)) + 4wFFS

q ∆rp(1−Ψ)).

(B.176)

(MH-N0) : The physicians will always benefit. The payer surplus will be

− 1

4w2
bw

FFS
q

(wBP
q w

FFS
q ∆r2

p + 2wbw
FFS
q ∆rp(∆c+ ∆rp) + w2

b∆c(∆c+ 2∆rp)).

(B.177)

209



(MH-NM) : The physician surplus will be

1

4wb(wFFS
q )2

((wb + wFFS
q )∆c+ 3wFFS

q ∆rp)(wb∆c− wFFS
q (∆c+ ∆rp)). (B.178)

The payer surplus will be

−1

4w2
bw

FFS
q

(−2wbw
FFS
q (∆c+ ∆rp)

2 + wBP
q w

FFS
q (∆c+ ∆rp)

2w2
b∆c(∆c+ 2∆rp)).

(B.179)

(MH-N1) : The physician surplus will be:

−1

4(wFFS
q )2

(−∆c− 2wFFS
q (1− I0 −Ψ))(2wFFS

q ∆rp + wb(∆c− 2wFFS
q (1− I0 −Ψ))).

(B.180)

The payer surplus will be:

− 1

4wFFS
q

(∆c(∆c+ 2∆rp) + 4wFFS
q (∆c+ ∆rp)(1− I0 −Ψ) + 4wBP

q w
FFS
q (1− I0 −Ψ)2)

(B.181)

(ML-G0) : The physician surplus will be

1

4(2wb + wBP
q )2(wFFS

q )2
(2(wBP

q )2wFFS
q ∆rp(∆c− 2wFFS

q (−1 + I0 + Ψ))

− 4w3
b (−∆c2 + 3(wFFS

q )2(−1 + I0 + Ψ)2)

+ wb((w
BP
q )2∆c2 + (wFFS

q )2∆c2 − 4wBP
q w

FFS
q (−2∆c∆rp + wFFS

q (∆c+ 4∆rp)(−1 + I0 + Ψ)))

+ 4w2
b (−wFFS

q (−2∆c∆rp + wFFS
q (∆c+ 4∆rp)(−1 + I0 + Ψ))

+ wBP
q (∆c2 − 2(wFFS

q )2(−1 + I0 + Ψ)2))).

(B.182)

210



The payer surplus will be

1

4(2wb + wBP
q )wFFS

q

(wFFS
q ∆c2 + 4w2

bw
FFS
q (1− I0 −Ψ)2

− 2wb(∆c+ 2∆rp)(∆c+ 2wFFS
q (1− I0 −Ψ))

− wBP
q (∆c2 + 2∆c∆rp + 4wFFS

q ∆rp(1− I0 −Ψ)))

(B.183)

(ML-GM) : The physician surplus will be

∆rp(1−Ψ)− I2
0wb − I0(∆rp − 2wb(1−Ψ)) +

∆c(wb∆c+ 2wFFS
q ∆rp)

4(wFFS
q )2

.

(B.184)

The payer surplus will be

−1

4wFFS
q

(4I2
0w

BP
q w

FFS
q + ∆c2 + 2∆c∆rp − 4I0w

FFS
q (∆c+ ∆rp − 2wb(1−Ψ))

+ 4wFFS
q ∆rp(1−Ψ)).

(B.185)

(ML-N0) : The physicians will always benefit. The payer surplus will be

−1

4w2
bw

FFS
q

(wBP
q w

FFS
q ∆r2

p + 2wbw
FFS
q ∆rp(∆c+ ∆rp) + w2

b∆c(∆c+ 2∆rp)).

(B.186)

(ML-NM) : The physician surplus will be

1

4wb(wFFS
q )2

((wb + wFFS
q )∆c+ 3wFFS

q ∆rp)(wb∆c− wFFS
q (∆c+ ∆rp)). (B.187)
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The payer surplus will be

−1

4w2
bw

FFS
q

(−2wbw
FFS
q (∆c+ ∆rp)

2 + wBP
q w

FFS
q (∆c+ ∆rp)

2 + w2
b∆c(∆c+ 2∆rp)).

(B.188)

(ML-N1) : The physician surplus will be

−1

4(wFFS
q )2

(−∆c− 2wFFS
q (1− I0 −Ψ))(2wFFS

q ∆rp + wb(∆c− 2wFFS
q (1− I0 −Ψ))).

(B.189)

The payer surplus will be

−1

4wFFS
q

(∆c(∆c+ 2∆rp) + 4wFFS
q (∆c+ ∆rp)(1− I0 −Ψ) + 4wBP

q w
FFS
q (1− I0 −Ψ)2)

(B.190)

B.2.5 Observable Coproduction Model

Proof. Proof of Lemma B.1.3. We seek a Nash equilibrium for ip and ih. Equilibrium

conditions require:

ιFFS
p (ιFFS

h (ip)) = ip (B.191)

ιFFS
h (ιFFS

p (ih)) = ih (B.192)

where ιFFS
p ιFFS

h are the best response functions such that these responses respectively max-
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imize Fp and Fh. We write the corresponding first order conditions as

ιFFS
p (ih) = {ih :

∂

∂ip
F FFS
p (ih, ip) = 0} =

2wb(I0 − (1− ih)Ψ) + ∆rp
2wb(1−Ψ)

. (B.193)

ιFFS
h (ip) = {ip :

∂

∂ih
F FFS
h (ih, ip) = 0} =

2wq(Ψ− I0 + ip(1−Ψ)) + ∆c

2wqΨ
(B.194)

In the above equilibrium conditions, observe that there exists no solution with both the

hospital and physician responses are in the interior (i.e., 0 < ip, ih < 1). We therefore

consider solutions with at least one of ip, ih at the boundary. We find three non-dominated

solutions on the boundary: ip < 1, ih = 1; ip = ih = 1; and ip = 1, ih < 1. The respective

solutions are given in (B.32), (B.33), and (B.34) in Lemma 2.3.3. Because the second

derivatives are negative, that is

∂2

∂i2p
F BP
p (ih, ip) = −2wb(1−Ψ)2 < 0 (B.195)

∂2

∂i2h
F BP
h (ih, ip) = −2wqΨ

2 < 0 (B.196)

hold, both F FFS
p and F BP

h are strictly concave with respect to ip and ih. Hence, the solutions

presented are also global optimums.

Proof. Proof of Lemmas B.1.4 and B.1.5. We seek an equilibrium of a two-stage game

where the hospital announces T in Stage 1, and then the hospital and the physicians simul-

taneously choose their efforts ip, ih in Stage 2. We proceed by backward induction in three

steps as follows:

1. Stage 2: solving for ip and ih given arbitrary T ≥ 0,

2. Stage 1: finding optimal T if i]p and i]h from Stage 2 are given,

3. Substitute optimal T back into Stage 2 solutions and verify that the solutions are

feasible.
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Stage 2: Assume that T ≥ 0 from the first stage is given. Then, Stage 2 reduces

to a two-player game with ih and ip being the decision variables of the hospital and the

physicians, respectively. In such a game, both parties attempt to maximize their response

functions given the other party’s response. Then, the optimal response functions for the

hospital and physicians respectively can be computed as

ιh(ip, T ) = arg max
ih

F BP
h (ih, ip, T ) =

∆c+ ∆rp + 2wq(Ψ + ip(1−Ψ)− I0)− T
2wqΨ

ιp(ih, T ) = arg max
ip

F BP
p (ih, ip, T ) =

∆rp + 2wb(I0 + ih −Ψ)− T
2(1−Ψ)

(B.197)

when they are interior solutions, i.e., 0 < ιh < 1 or 0 < ιp < 1 respectively; and are equal

to 0 or 1 otherwise. Equilibrium conditions are given as:

ιh(ιp(ih), T ) = ih, (B.198)

ιp(ιh(ip), T ) = ip. (B.199)

Based on equilibrium conditions, hospital and physician responses cannot be simultane-

ously in the interior range, i.e., 0 < ip, ih < 1. This leaves us with eight alternative

solutions where either ip or ih is at the boundary.

Stage 1: Let candidate solutions i]p and i]h from Stage 2 be given. We let Fτ (T ) :=

F BP
h (i]h, i

]
p, T ) be the hospital’s conditional payoff function, and observe that in this stage,

we are seeking the quantity arg maxT Fτ . We solve for this quantity by reviewing the eight

possible combinations of i]p and i]h (depending on i]p = 0, i]p = 1, i]p ∈ (0, 1) and similar

for i]h), which reveals the following:

• If both i]p and i]h are at the boundary or if i]p = 1, it can be verified that d
dT
Fτ < 0 for

any T > 0, so the hospital will choose T = 0. We notice that the game in this case

is the same as in FFS solutions covered in Lemma 2.3.3, with solutions described
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in Lemma B.1.3. However, in the current case, ∆c is replaced by ∆c + ∆rp in the

definition of F FFS
h from (2.2). By substituting this replacement into the conditions of

Lemma B.1.3, we get conditions (B.39), (B.40), and (B.41). By substituting into the

definitions of Ψ̄ and Ψ̂, we get Ψ1 and Ψ2 respectively, which concludes the proof of

Lemma B.1.5. In the following, we will focus on the cases with T > 0 for Lemma

B.1.4.

• Solutions with i]h = 0 are dominated by solutions with i]h = 1 (i.e., F BP
h is larger for

i]h = 1), so they will not occur in the equilibrium.

• i]p = 0 implies that T is larger than certain threshold, and the hospital will set exactly

this threshold (because F BP
h decreases beyond this threshold). Let Tmax be the T

threshold when i]h = 1.

• Among the set of solutions with i]p = 0, i]h ∈ (0, 1], and T ≥ Tmax, the physicians

are indifferent, but the hospital attains maximal F BP
h for T = Tmax and ih = 1.

Therefore, the solutions with i]h ∈ (0, 1), i]p = 1 are infeasible.

Then, given ih = 1 and the response function for ip > 0 given from (B.197), we find from

the first order condition that the optimal T is as follows:

T =
wb(∆c− 2(1− I0)wb)

2wb + wq
+ ∆rp. (B.200)

This solution is valid for ip > 0, while for ip = 0, the solution becomes

T = Tmax = 2I0wb + ∆rp. (B.201)

Substituting T > 0 back: This analysis leaves us with only two equilibrium cases when

T > 0: The first case as 0 < T < Tmax, and the other one as T = Tmax. For the first

case, as derived earlier, only the solutions with ih = 1 are feasible. This then results in T
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determined according to (B.200) and ip determined from (B.197) with T substituted, which

is given in the first part of Lemma in (B.35). The conditions for the first set of solutions in

Lemma B.1.4, namely conditions in (B.36), correspond to the following requirements:

• 0 < ip < 1 and

• T > 0

respectively. For the second case with T = Tmax, we have shown that ip = 0 and ih = 1.

Condition (B.38) then corresponds to ip ≤ 0 and equivalently T ≥ Tmax.

Proof. Proof of Corollary B.1.1. First, we observe that we can directly compute Condition

(B.42) by substituting i]h and i]p in the definition of I in the two cases described in Lemma

B.1.4.

Second, we need to show that I] < I∗. We proceed by cases. For the case I] = 0, we

observe that I∗ > 0 when bundling is preferable, i.e., when Ψ ≤ Ψ̂. Therefore, I] < I∗ in

this case.

If I] > 0, it follows from Lemmas B.1.3 and B.1.4 that i∗p − i]p = T
2(1−Ψ)

> 0. At the

same time, when bundling is preferable, we have i∗h = i]h = 1. Therefore, substituting these

values into the definition of I , we derive the following:

I] = I(i]h, i
]
p) = (1−Ψ)i]p = (1−Ψ)(i∗p −

T

2(1−Ψ)
) < (1−Ψ)i∗p = I(i∗h, i

∗
p) = I∗.

(B.202)

This completes the proof.

We next present the proofs of the results presented as part of the General Case in Section

2.3.3. The Base Model results follow as special cases of the proofs for the General Case.

Proof. Proof of Lemma 2.3.3. The analog of this result in the Base Case is Lemma 2.2.3.

The solutions can be derived from Lemma B.1.3 by substituting i∗p and i∗h in the definition

of I .
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Proof. Proof of Theorem 2.3.2. The analog of this result in the Base Case is Theorem

2.3.1. Our strategy to prove the theorem will be as follows:

1. Analyze all equilibrium solutions from Lemmas B.1.4 and B.1.5

2. For each of the equilibrium solutions, identify if the payer, the hospital, and the

physicians all benefit from bundling as stated in the theorem. If they benefit, under

what additional conditions?

3. The specific conditions that need to be tested for each equilibrium solution are as

follows:

(a) F FFS
p (i∗h, i

∗
p) < F BP

p (i]h, i
]
p, T ) (the physicians benefit)

(b) F FFS
h (i∗h, i

∗
p) < F BP

h (i]h, i
]
p, T ) (the hospital benefits)

(c) rBP < rFFS (the payer benefits).

We begin with the equilibrium solutions from Lemma B.1.5, the case T = 0. We

compare the BP solutions from Lemma B.1.5 to the solutions under FFS from Lemma

B.1.3. We find four distinct regions of the solution space:

1. Ψ < Ψ̄: Then the FFS and BP solutions are equal (i∗p = i]p, i
∗
h = i]h), therefore

F FFS
p = F BP

p , so physicians do not benefit.

2. Ψ̄ ≤ Ψ < Ψ̂: Then the FFS and BP solutions are equal, so physicians do not benefit.

3. Ψ̂ ≤ Ψ < Ψ2: Then the following holds:

F BP
p −F FFS

p = (
1

4w2
q

)(∆c−2wq(−1+I0+Ψ))(2wq∆rp+wb(∆c+2wq(−1+I0+Ψ))).

(B.203)

We find that the first product term is positive, the second one is negative by the

condition Ψ ≥ Ψ̂, and the third one is positive because of the condition Ψ ≥ Ψ̂

(which implies −1 + I0 + Ψ > 0). Therefore, F BP
p − F FFS

p < 0, so the physicians

lose.
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4. Ψ2 ≤ Ψ: Then

F BP
p − F FFS

p = −∆rp(2∆c+ ∆rp + 2wq + ∆rp)

4wq
< 0, (B.204)

so the physicians lose.

We conclude that under either of the cases with T = 0, the parties do not prefer bundling.

Next, we analyze the first equilibrium solution from Lemma B.1.4, the case 0 < T <

Tmax from (B.35). We first exclude the region with high integration (Ψ > Ψ̂) from the

consideration. Indeed, in this case, physicians set i]p = 1, so the hospital can set T = 0

without any negative consequences. But for T = 0, we have already showed the parties do

not prefer bundling.

We next investigate the cases of low and moderate integration (Ψ ≤ Ψ̂). We start

with the payer savings condition. Under low integration (Ψ < Ψ̄), the payer achieves the

following savings:

rFFS − rBP =
(wb(∆c− 2(1− I0)wb) + (2wb + wq))

2

4w2
b (2wb + wq)

. (B.205)

This term is always positive, so the payer benefits. Under moderate integration, the payer

achieves the following savings:

rFFS−rBP =
(∆c+ 2(1− I0)(wb + wq))

2

4(2wb + wq)
−(∆c+∆rp+2(1−I0)wq)Ψ+wqΨ

2. (B.206)

The term in (B.206) is lower than (B.205). Then, when we solve for the constraint rFFS −

rBP > 0 from (B.206), we find condition (2.26) from the theorem.

We next focus on the hospital benefit part. Under low integration, the hospital benefits

under the following condition:

F BP
h (i]h, i

]
p, T )− F FFS

h (i∗h, i
∗
p) =

(∆rp(2wb + wq) + wb(∆c− 2(1− I0)wb))
2

4w2
b (2wb + wq)

. (B.207)
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This term is always positive, equal to the payer benefit. Therefore, the hospital benefits.

Under moderate integration, the hospital condition is the same as the payer condition from

(B.206). Therefore, the hospital benefits exactly when the payer condition (2.26) satisfied.

Next, we focus on the physician benefit part. We analyze function F BP
p (i]h, i

]
p, T ) −

F FFS
p (i∗h, i

∗
p) to find the following:

∂

∂Ψ
[F BP
p (i]h, i

]
p, T )− F FFS

p (i∗h, i
∗
p)] =


0 if Ψ ≤ Ψ̄

∆rp + 2wb(−1 + I0 + Ψ) if Ψ̄ ≤ Ψ ≤ Ψ̂.

(B.208)

The second term is positive by the definition of Ψ̄. Therefore, the function is first constant

and then increasing. Therefore, we only need to show that the function F BP
p (i]h, i

]
p, T ) −

F FFS
p (i∗h, i

∗
p) is positive when substituting Ψ = Ψ̄. After this substitution, we find the

following:

F BP
p (i]h, i

]
p, T )− F FFS

p (i∗h, i
∗
p)|Ψ=0

=
1

4(2wb + wq)2
· (∆c+ 2wb(1− I0)(3wb + wq)− (2wb + wq)∆rp) · (∆c+ ∆rp(2 + wq/wq)− 2(1− I0)wb)

(B.209)

By the definition of Ψ̄, we have ∆rp ≤ 2wb(1− I0) at Ψ = Ψ̄, so the first term is positive.

Next, the second term is positive because of Condition (2.24). Therefore, the physicians

always benefit when T > 0. To finalize the list of conditions for Theorem 2.3.2, we need

to include the conditions that characterize the equilibrium condition from Lemma B.1.4:

1. Condition for i]p < 1. From this condition, we derive Condition (2.25) of the theorem.

2. From condition T > 0, we derive Condition (2.24) of the theorem.

Finally, we still need to investigate the second case in Lemma B.1.4, the case T = Tmax.

This case is actually subsumed by the proof of the case with 0 < T < Tmax at the limit

T → Tmax. Specifically, we have i]p < 1 and T > 0 automatically and Condition (2.26) is
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still applicable as is.

Proof. Proof of Proposition 2.3.3. The analog of this result in the Base Case is Proposition

2.3.1.

Let ∆Q := |I] − I0| − |I∗ − I0|. To prove the proposition, we need to characterize

the cases when the quality under BP deteriorates (∆Q > 0) and when the quality improves

(∆Q < 0). Overall, we find six cases (the combination of i]p > 0 vs i]p = 0 and Ψ < Ψ̄

vs Ψ̄ < Ψ < Ψ̂ vs Ψ > Ψ̂). We also need to distinguish whether I∗ − I0 is positive

(overtreatment under FFS) or negative (undertreatment). We first list several facts that we

will use repeatedly:

• Intensity under BP will decrease. This fact is from Corollary B.1.1.

• There is overtreatment under FFS when Ψ < Ψ̄. This follows from Lemma 2.3.3.

• We can determine the values of I] from B.1.4 and the values of I∗ from Lemma 2.3.3.

We now focus on the following feasible cases:

1. Ψ < Ψ̄ and overtreatment under BP (i.e., ∆c < 2(1− I0)wb): Then BP will improve

quality because we know that the intensity under BP is lower than under FFS, so

there is less undertreatment. This condition is covered by (2.27) of the proposition.

2. Ψ < Ψ̄ and undertreatment under BP (i.e., ∆c ≥ 2(1 − I0)wb). Then the following

holds:

∆Q =
1

2
(
∆c− 2(1− I0)wb

2wb + wq
− ∆rp

wb
) (B.210)

This condition is equivalent to Condition (2.27) of the proposition.

3. Ψ̄ < Ψ < Ψ̂ and there is undertreatment under FFS (i.e., 1−Ψ < I0): Then there is

undertreatment under FFS too and the quality differential must decrease. We observe

this decrease because the intensity under BP is lower than under FFS.

220



4. If Ψ̄ < Ψ < Ψ̂ and there is overtreatment under FFS (i.e., 1− Ψ > I0): The quality

differential is

∆Q =
∆c− 2(1− I0)(3wb + wq)

2(2wb + wq)
+ Ψ. (B.211)

This condition is equivalent to Condition (2.28).

5. Ψ > Ψ̂: Then there is undertreatment already under FFS. Since we have observed

that the intensity decreases under BP, there will be even more undertreatment under

BP. Hence, BP will decrease quality.

Proof. Proof of Proposition 2.3.4. The analog of this result in the Base Case is Proposition

2.3.2. We derive the statements about the shape of the savings function straightforwardly

by analyzing Σ from (2.29) as a univariate function of Ψ. Therefore, we are left to derive

equations in (2.29). Here, we follow the definition of Σ = rFFS− rBP and the definitions of

rFFS and rBP. If we combine expand the latter definitions, we get the following:

rFFS = rh + r2,p + I∗∆rp

rBP = −(F BP
h (i]h, i

]
p, T )− rBP − F FFS

h (i∗h, i
∗
p)).

(B.212)

We next use the equilibrium results from Lemmas B.1.3 and B.1.4 on I∗, i∗h, i∗p, i
]
h, i]p,

and T , substitute these into the formulas for rFFS and rBP, and substitute rBP and rFFS into

the definition of Σ. We then derive the two equations in (2.29) by using the equilibrium

solutions for Ψ ≤ Ψ̄ and Ψ̄ < Ψ < Ψ̂ respectively.

B.2.6 Physician-driven Model

Proof. Proof of Theorem 2.4.2. The proof of this theorem is similar to the proof of Theo-

rem 2.3.2. We employ the following strategy:
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1. Exhibit the equilibrium solutions

2. Use the equilibrium solutions to characterize when bundling is preferable, i.e., the

hospital, the physicians, and the payer all benefit.

We first solve for the equilibrium solutions. Recall that in this game, the hospital first

chooses the gainsharing amount T , and physicians then select their response ip. We solve

this game by backward induction. Given T , the physicians respond optimally as follows:

i]p = I0 +
∆rp −Ψ− T

2wb
. (B.213)

If we substitute (B.213) back into the hospital objective function, we express optimal T as

follows:

T =
1

2
(∆c+ 2∆rp − 2(1− I0)wb −Ψ). (B.214)

We briefly enumerate the equilibrium solutions (they are similar to the equilibrium solu-

tions in Lemmas B.1.4 and B.1.5 in the main model):

• We get T = 0 if ∆c+ 2∆rp ≤ 2(1− I0)wb + Ψ (the condition for ip < 1, which was

required in the main model, is always satisfied)

• We get T = Tmax = 2I0wb + ∆rp −Ψ and ip = 0 if ∆c+ Ψ > 2(1 + I0)wb

• Otherwise, T is given by (B.214). In particular, the following condition holds:

∆c+ 2∆rp > 2(1− I0)wb + Ψ. (B.215)

Having established the equilibrium solutions, we proceed to prove the theorem. In the

proof, we review the equilibrium solutions one by one. In case T = 0, we see similar BP

solutions as the FFS solutions but with ∆c+ ∆rp substituted in the hospital profit function

for ∆c. There are three cases, and neither of them is beneficial for all parties. We omit a

222



detailed proof because the structure of solutions is similar to the case of T = 0 in the proof

of Theorem 2.3.2.

We next consider cases for 0 < T < Tmax. Depending on i∗p, we derive three cases:

• If i∗p = 1, then the physician surplus is

(2(1− I0)wb + ∆c+ Ψ)2

16wb
, (B.216)

which is positive. The payer and hospital surplus is

Σ =
(∆c+ Ψ + 2(1− I0)wb)

2

8wb
, (B.217)

which is also positive. Hence, under this condition, all parties prefer bundling.

• If 0 < i∗p < 1, then the physician surplus is

−(−6(1− I0)wb −∆c+ 2∆rp − 3Ψ)(−2(1− I0)wb + ∆c+ 2∆rp −Ψ)

16wb
.

(B.218)

The second term is positive by condition (B.215), while the first one is negative

because Ψ + 2(1− I0)wb > ∆rp which follows from condition i∗p < 1.

The payer and hospital surplus is

Σ =
(∆c+ 2∆rp −Ψ− 2(1− I0)wb)

2

8wb
, (B.219)

which is positive.

• For the case i∗p = 0, we observe that we always have i]p ≤ i∗p, and the inequality

would be strict if T > 0. The hospital will therefore choose T = 0, which will not

lead to physician benefit, as we have already shown.

To prove the theorem in case T = Tmax, we would follow a similar but simpler struc-
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ture. We find that the conditions are special cases of the case with 0 < T < Tmax and in

particular, the condition for T = Tmax is already subsumed in Equation (2.45). We omit a

detailed proof.

Reviewing these conditions, we infer that bundling is preferred exactly when T > 0,

which is equivalent to the condition listed in Theorem 2.4.2.

Proof. Proof of Proposition 2.4.5. The proof is analogous to the proof of Proposition 2.3.3

and follows from a direct comparison of |I]−I0| with |I∗−I0|. In the current case, i]p = I]

and i∗p = I∗. We omit the details.
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APPENDIX C

FLEXIBLE BED MANAGEMENT: SUPPLEMENTAL CONTENT

C.1 Proof of Theorem 3.4.1

Our proof strategy extends the proof from Koole (1995). Without the loss of general-

ity, we only need to show that the threshold policy is optimal when deciding to assign

a patient of class 1 to unit 2. The argument for class 2 is symmetric. We will denote by

V (x1, x2, n11, n12, n22, n21) the value function with xi being the number of waiting patients

of class i and nij being the number of patients of class i served in unit j. The goal is to min-

imize the value function. We denote by V k the expected value over the next k transitions

and by W k the value after the transition but before the action.

We prove the theorem in two steps:

1. Show that the bed in unit 2 is always used when the primary patient class (class 2) is

waiting and the same holds for bed in unit 1. (Lemma C.1.1)Victoria Beach

2. Show that the value function is monotone (non-increasing) and submodular in the

number of patients of class 1 waiting. (Lemmas C.1.2 and C.1.4)

Assume that all three lemmas hold. Then the theorem follows from the following consid-

erations:

• If unit 1 is empty, then waiting patients of class 1 are assigned there by Lemma C.1.1.

• If unit 1 is occupied, then by submodularity, we have V (x1 +2, 0, 1, 0, 0, 0)−V (x1 +

1, 0, 1, 0, 0, 0) ≥ V (x1 + 1, 0, 1, 1, 0, 0)− V (x1, 0, 1, 1, 0, 0). By monotonicity then,

either we always have V (x1 + 1, 0, 1, 0, 0, 0) ≤ V (x 1, 0, 1, 1, 0, 0) for any x1 or

there exists x1 such that V (x1 + 1, 0, 1, 0, 0, 0) > V (x1, 0, 1, 1, 0, 0) and this holds
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for any y1 > x1 as well, so it is optimal to assign the patient of class 1 to unit 2 if and

only if there are x1 + 1 or more patients of class 1 waiting.

• We observe that this is a threshold policy.

Therefore, in the rest of the proof, we focus on proving the Lemmas.

Lemma C.1.1. In a setting with two patient classes and two units, a set of sufficient condi-

tions for a primary pair to be assigned whenever possible is as follows:

b1 =b2 ≡ b (a)

µ1 =µ2 ≡ µ (b)

πji
bj
≥1 for i 6= j (c)

Proof. Proof of Lemma C.1.1. Without loss of generality, we can assume that π11 = π22 =

0. We need to prove the following:

V k(x1, x2, n11 + 1, n12, n21, n22) < V k(x1 + 1, x2, n11, n12, n21, n22) and

V k(x1, x2, n11 + 1, n12, n21, n22) < V k(x1, x2, n11, n12 + 1, n21, n22)

(C.1)

for all k, xi, and nij with n21 + n11 = 0 for Class 1 and similarly for Class 2. We will

proceed by induction on k, simultaneously for patient class 1 and 2. We will only show

the proof for patient class 1 but will refer to the induction hypothesis for k′ < k for either

class. We can assume that at each transition, we assign at most one patient, either because

a new patient has arrived or because a patient occupying a unit has left. If it was optimal

to make multiple assignments, we could have made one of the assignments earlier while

saving on boarding costs, which would contradict optimality.

Let β be the maximum transition rate (for uniformization), β = λ1 + λ2 + 2µ. We start
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the induction with case k = 0. Then, V 0 is the average cost for one period:

V 0(x1, x2, 1, n12, n21, n22)− V 0(x1 + 1, x2, 0, n12, n21, n22) = (π11 − b)/β = −b/β < 0,

V 0(x1, x2, 1, n12, n21, n22)− V 0(x1, x2, n11, 1, n21, n22) = −π12/β < 0

(C.2)

which was to be shown

Next, we consider k ≥ 0. We write down the V k+1 under all three cases from (C.1).

The value function if the open unit is left empty is as follows:

V k+1(x1 + 1, x2, n11, n12, n21, n22) =

(b(x1 + x2 + 1) + π12n12 + π21n21)/β+

(1/β)(λ1W
k(x1 + 2, x2, n11, n12, n21, n22)+

λ2W
k(x1 + 1, x2 + 1, n11, n12, n21, n22)+

µ · n12W
k(x1 + 1, x2, n11, (n12 − 1)+, n21, n22)+

µ · n22W
k(x1 + 1, x2, n11, n12, n21, (n22 − 1)+)+

β′/β W k(x1 + 1, x2, n11, n12, n21, n22)),

(C.3)

where β′ is the residual dummy transition rate; β′ = 2µ−µ(n21 +n22). The value function
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if the patient is assigned to the primary unit is as follows:

V k+1(x1, x2, n11 + 1, n12, n21, n22) =

(b(x1 + x2) + π12n12 + π21n21)/β+

(1/β)(λ1W
k(x1 + 1, x2, n11 + 1, n12, n21, n22)+

λ2W
k(x1, x2 + 1, n11 + 1, n12, n21, n22)+

µ · 1 ·W k(x1, x2, n11, n12, n21, n22)+

µ · n12W
k(x1, x2, n11 + 1, (n12 − 1)+, n21, n22)+

µ · n22W
k(x1, x2, n11 + 1, n12, n21, (n22 − 1)+)+

β′′/β W k(x1, x2, n11 + 1, n12, n21, n22)),

(C.4)

with β′′ = 2µ − µ(1 + n21 + n22). The value function if the patient is assigned to the

secondary unit is as follows (this case requires n12 + n22 = 0):

V k+1(x1, x2, n11, n12 + 1, n21, n22) =

(b(x1 + x2) + π12(n12 + 1) + π21n21)/β+

(1/β)(λ1W
k(x1, x2, n11, n12 + 1, n21, n22)+

λ2W
k(x1, x2 + 1, n11, n12 + 1, n21, n22)+

µ · 1 ·W k(x1, x2, n11, n12, n21, n22))+

β′′/β W k(x1, x2, n11, n12 + 1, n21, n22)).

(C.5)

Note that β′ − β′′ = µ.

To prove (C.1), we will first compare the second to third value function ((C.4) to (C.5))

and then first to second ((C.4) to (C.3)).

We compare (C.4) and (C.5) term-by-term:

• The difference in the penalty term is π12 in favor of (C.4).
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• For λ1: By induction hypothesis (IH), we derive:

W k(x1 + 1, x2, n11 + 1, n12, n21, n22) = min(V k(x1, x2, n11 + 2, n12, n21, n22),

V k(x1, x2, n11 + 1, n12 + 1, n21, n22),

V k(x1 + 1, x2, n11 + 1, n12, n21, n22))

≤ V k(x1, x2, n11 + 1, n12 + 1n21, n22)

W k(x1 + 1, x2, n11, n12 + 1, n21, n22) = V k(x1, x2, n11 + 1, n12 + 1, n21, n22).

(C.6)

Hence, the term from (C.4) is smaller or equal.

• For λ2, recall that for a comparison with n12 +n22 = 0 is necessary. Then, the induc-

tion hypothesis yields W k(x1, x2 + 1, n11, n12 + 1, n21, n22) = V k(x1, x2, n11, n12 +

1, n21, n22 + 1). By the induction hypothesis, this quantity is larger or equal to

V k(x1, x2, n11 + 1, n12, n21, n22 + 1), which is by the induction hypothesis equal

to W k(x1, x2 + 1, n11 + 1, n12, n21, n22).

• For the departure scenarios, recall that
∑

ij nij = 0. Hence, both departure terms are

equal to µ ·W k(x1, x2, 0, 0, 0, 0) and are equal.

• The residual terms are (β′′/β)·W k(x1, x2, 1, 0, 0, 0) and (β′′/β)·W k(x1, x2, 0, 1, 0, 0).

Write W k as a minimum over different actions leading to V k:

W k(x1, x2, 1, 0, 0, 0) = min( V k(x1 − 1, x2, 1, 1, 0, 0),

V k(x1, x2 − 1, 1, 0, 0, 1),

V k(x1, x2, 1, 0, 0, 0))

W k(x1, x2, 0, 1, 0, 0) = min( V k(x1 − 1, x2, 1, 1, 0, 0),

V k(x1, x2 − 1, 0, 1, 1, 0),

V k(x1, x2, 0, 1, 0, 0)).
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Here, the first terms (V k(x1 − 1, x2, 1, 1, 0, 0)) are equal. For the second terms,

V k(x1, x2 − 1, 1, 0, 0, 1) < V k(x1, x2 − 1, 0, 1, 1, 0) by a two-fold application of the

induction hypothesis. And for the third term, V k(x1, x2, 1, 0, 0, 0) < V k(x1, x2, 0, 1, 0, 0)

by induction hypothesis. Hence, the first minimum is applied over a set of pointwise

lower values. We conclude that W k(x1, x2, 1, 0, 0, 0) ≤ W k(x1, x2, 0, 1, 0, 0).

Combining these term-by-term findings, we derive:

V k+1(x1, x2, n11 + 1, n12, n21, n22)− V k+1(x1, x2, n11, n12 + 1, n21, n22) ≤ −π12/β < 0

(C.7)

Next, we compare the second value function against the first value function ((C.4)

against (C.3)). We again compare term-by-term:

• For the penalty term, the difference is b/β is in favor of (C.4).

• For λ1 term,

W k(x1 + 2, x2, 0, n12, 0, n22) = min(V k(x1 + 1, x2, 1, n12, 0, n22), V k(x1 + 2, x2 − 1, 0, 0, 0, 1))

≥ min(V k(x1 + 1, x2, 1, n12, 0, n22), V k(x1 + 1, x2 − 1, 1, 0, 0, 1))

≥ W k(x1 + 1, x2, 1, n12, 0, n22).

(C.8)

where we used the induction hypothesis in limiting the cases for the first equal-

ity, used the induction hypothesis for the second inequality, and in the third in-

equality observed that both states under the minimum can be reached from state

(x1 + 1, x2, 1, n12, 0, n22).

• For λ2 term, there are two cases:

1. If n12 +n22 = 0, then W k(x1, x2 + 1, n11 + 1, n12, n21, n22) = V k(x1, x2, n11 +

1, n12, n21, n22+1) by induction hypothesis while λ2W
k(x1+1, x2+1, n11, n12, n21, n22) =
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min(V k(x1, x2 +1, n11 +1, n12, n21, n22), V k(x1 +1, x2, n11, n12, n21, n22 +1))

and either of these terms is lower than V k(x1, x2, n11 + 1, n12, n21, n22 + 1) by

induction hypothesis

2. If n12 + n22 = 1, then the states that can be reached from (x1, x2 + 1, n11 +

1, n12, n21, n22) in (C.4) are the same that can be reached from (x1 + 1, x2 +

1, n11, n12, n21, n22) in (C.3), with the exception of (x1 + 1, x2, n11, n12, n21 +

1, n22). Then, we can compare V k(x1, x2 + 1, n11 + 1, n12, n21, n22) against

V k(x1 + 1, x2, n11, n12 + 1, n21, n22). We can assume that we follow the same

actions in (x1 + 1, x2, n11, n12 + 1, n21, n22) as we do in (x1, x2 + 1, n11 +

1, n12, n21, n22) (the transition rates are the same), until the patient in unit 1

departs, and then we assign the additional patient from class 1 to unit 1, and we

reach the same state in both cases. Over that period (say, k transitions), we incur

additional cost k · b in case (C.4) while cost k · π21 in case (C.3). By condition

(c), we conclude that the expected value for (C.4) is superior or equal.

• For departure term combined with the residual term, the terms that differ are as fol-

lows:

(1/β)(µW k(x1, x2, n11, n12, n21, n22) + β′′W k(x1, x2, n11 + 1, n12, n21, n22))

for (C.4) against the following:

(1/β)(β′W k(x1 + 1, x2, n11, n12, n21, n22))
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for (C.3). Recall that β′ = µ+ β′′, which implies:

β′W k(x1 + 1, x2, n11, n12, n21, n22) = µW k(x1 + 1, x2, n11, n12, n21, n22)

+β′′W k(x1 + 1, x2, n11, n12, n21, n22)

≥ µW k(x1, x2, n11, n12, n21, n22)

+β′′W k(x1 + 1, x2, n11, n12, n21, n22)

= µW k(x1, x2, n11, n12, n21, n22)

+β′′V k(x1, x2, n11 + 1, n12, n21, n22)

≥ µW k(x1 + 1, x2, n11, n12, n21, n22)

+β′′W k(x1, x2, n11 + 1, n12, n21, n22)

Here, the second line is obvious (the state with more waiting patients has lower value,

everything else being equal), the third line follows from the induction hypothesis, and

the fourth line follows because V k(x1, x2, n11 + 1, n12, n21, n22) is one of the terms

entering the minimum over which W k(x1, x2, n11 + 1, n12, n21, n22) is computed.

Combining all term-by-term steps, we conclude that V k+1(x1, x2, n11 + 1, n12, n21, n22)−

V k+1(x1 + 1, x2, n11, n12, n21, n22) ≤ −π12 < 0, which we wanted to show.

Lemma C.1.2. The value function is monotone (nondecreasing) in xi. That is:

V (x1 + 1, x2, n11, n12, n21, n22) ≥ V (x1, x2, n11, n12, n21, n22)

V (x1, x2 + 1, n11, n12, n21, n22) ≥ V (x1, x2, n11, n12, n21, n22)

(C.9)

for any x1, x2, n11, n12, n22, n21 ≥ 0.

Proof. Proof of Lemma C.1.2 We again prove the lemma by induction on k, showing the
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proof for class 1. For k = 0, the following holds:

V 0(x1 + 1, x2, n11, n12, n22, n21)

= b·(1+x1+x2)+π12n12+π21n21 > b·(x1+x2)+π12n12+π21n21 = V 0(x1, x2, n11, n12, n22, n21),

(C.10)

so the statement is true for k = 0.

For k > 0, we write

V k+1(x1, x2, n11, n12, n21, n22) =

(b(x1 + x2) + π12n12 + π21n21)/β+

(1/β)(λ1W
k(x1 + 1, x2, n11, n12, n21, n22)+

λ2W
k(x1, x2 + 1, n11, n12, n21, n22)+

µ · n11W
k(x1, x2, (n11 − 1)+, n12, n21, n22)+

µ · n12W
k(x1, x2, n11, n12, (n21 − 1)+, n22)+

µ · n21W
k(x1, x2, n11, (n12 − 1)+, n21, n22)+

µ · n22W
k(x1, x2, n11, n12, n21, (n22 − 1)+)+

β′′′/β W k(x1, x2, n11, n12, n21, n22)),

(C.11)

and similarly with x′1 := x1 + 1 (we call this case C ′ and the case with x1 as C) We

distinguish two cases:

1. If x1 > 0, then any action taken in case C ′ can be also taken in case C. Let ∗ denote

the variables before the action and ∗∗ after the optimal action taken in case C ′. Then,

the following holds:

W k(x∗1 + 1, x∗2, n
∗
11, n

∗
12, n

∗
21, n

∗
22) = V k(x∗∗1 + 1, x∗∗2 , n

∗∗
11, n

∗∗
12, n

∗∗
21, n

∗∗
22) >

V k(x∗∗1 + 1, x∗∗2 , n
∗∗
11, n

∗∗
12, n

∗∗
21, n

∗∗
22) ≥ W k(x∗1, x

∗
2, n

∗
11, n

∗
12, n

∗
21, n

∗
22), (C.12)
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where the second inequality holds by induction hypothesis and the third inequality

because the action was taken to be optimal for case C ′ but not necessarily for case C.

2. If x1 = 0, then the previous argument holds except when the optimal action for case

C ′ is to assign a patient of class 1 but there has not been an arrival from class 1. Then

in case C, it is impossible to take the assignment action. Then in case C, consider

the case of not doing anything. Then the state after the action is the same for C ′ and

C except that in C ′, there is one additional patient assigned in one of the beds. Then,

it is possible in state C to replicate the actions from state C ′ until the departure of the

patient assigned in case C ′, which in C will correspond to a transition without a state

change if the two cases were coupled on the same probability space. In this case, the

penalty accumulated over this trajectory will be the same between C ′ and C if the

patient was originally assigned to unit 1 and will be higher for C ′ if the patient was

assigned to unit 2 (accruing an additional misallocation penalty). In either case, we

conclude that the value function in state (1, x2, n11, n12, n21, n22) was higher (worse)

than in state (0, x2, n11, n12, n21, n22).

In both cases, we conclude that (C.9) holds.

Next, we show a lemma that will simplify the proof of the submodularity condition.

Lemma C.1.3. Let the following hold:

f(x+ 1, 0) + f(x+ 1, 1) ≤ f(x+ 2, 0) + f(x, 1)

f(x+ 1, 0) + f(x, 1) ≤ f(x, 0) + f(x+ 1, 1).

(C.13)

Then the following holds:

f(x+ 1, 0)− f(x, 1) ≤ f(x+ 2, 0)− f(x+ 1, 1) (C.14)
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Proof. Proof of Lemma C.1.3 Clearly, the first condition in (C.13) is just rearranged (C.14).

Hence, the statement is trivial.

Lemma C.1.4. The value function is submodular in xi. That is:

V (x1 +2, 0, 1, 0, 0, 0)−V (x1 +1, 0, 1, 0, 0, 0) ≥ V (x1 +1, 0, 1, 1, 0, 0)−V (x1, 0, 1, 1, 0, 0)

(C.15)

for any x1 ≥ 0 and mutatis mutandis for x2 and for n21 = 1 instead of n11 = 1.

Proof. Proof of Lemma C.1.4 Observe that by Lemma C.1.1, we can focus on the cases

with x2 = 0 and n11 + n21 = 1. We proof the statement by induction on k, showing that if

the statement holds for V k+1, it also holds for W k and V k, in parallel for class 1 and class

2. By Lemma C.1.3, we will not show the submodularity directly, but instead show the pair

of conditions from (C.13), namely:

Ṽ (x1 + 2, 0) + Ṽ (x1, 1) ≡ V (x1 + 2, 0, 1, 0, 0, 0) + V (x1, 0, 1, 1, 0, 0)

≥ V (x1 + 1, 0, 1, 1, 0, 0) + V (x1 + 1, 0, 1, 0, 0, 0) ≡ Ṽ (x1 + 1, 1) + Ṽ (x1 + 1, 0)

(C.16)

Ṽ (x1, 0) + Ṽ (x1 + 1, 1) = V (x1, 0, 1, 0, 0, 0) + V (x1 + 1, 0, 1, 1, 0, 0)

≥ V (x1, 0, 1, 1, 0, 0) + V (x1 + 1, 0, 1, 0, 0, 0) = Ṽ (x1, 1) + Ṽ (x1 + 1, 0), (C.17)

where we write Ṽ (y, i) := V (y, 0, 1, i, 0, 0) and similarly with W̃ . Given the conditions

on equal service times, it is clear that the case with n21 = 1 is equivalent to n11 = 1, with

value functions equal up to a constant multiple of π21.

First, the following holds for k = 0:

Ṽ 0(x1 + 2, 0) + Ṽ 0(x1, 1) = b(2x1 + 2) + π12 = Ṽ 0(x1 + 1, 1) + Ṽ 0(x1 + 1, 0)

Ṽ 0(x1, 0) + Ṽ 0(x1 + 1, 1) = b(2x1 + 1) + π12 = Ṽ 0(x1, 1) + Ṽ 0(x1 + 1, 0).

(C.18)
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This shows (C.16) and (C.17) for k = 0.

Next, let k > 0, the statement (C.15) holds for V k, and we show that it also holds for

W k and V k+1. We then proceed to show the following statements (in this order):

1. Show that (C.16) holds for W k

2. Show that (C.17) holds for W k

3. Show that Lemma C.1.5 holds for k

4. Show that Lemma C.1.6 holds for k

5. Show that (C.16) holds for V k+1

6. Show that (C.17) holds for V k+1

Then the lemma will be proven.

We first show that the condition from (C.16) holds for W k. There are cases depending

on the optimal action under x̃1 = x+ 2:

• If the optimal action is to assign to the secondary unit under x̃1 = x1 + 2, then the

following holds:

W̃ k(x1+2, 0)+W̃ k(x1, 1) = Ṽ k(x1+1, 1)+Ṽ k(x1, 1) = W̃ k(x1+1, 1)+W̃ k(x1, 1),

(C.19)

which is the first equation in (C.16). Here, we have used that W̃ (y, 1) = Ṽ (y, 1) for

any y because both beds are occupied.

• If the optimal action is to not assign to the secondary unit under x̃1 = x1 + 2, then

the following holds:

W̃ k(x1 + 1, 0) + W̃ k(x1 + 1, 1) ≤ Ṽ k(x1 + 1, 0) + Ṽ k(x1 + 1, 1)

≤ Ṽ k(x1 + 2, 0) + Ṽ k(x1, 1) = W̃ k(x1, 1) + W̃ k(x1 + 2, 0),

(C.20)
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where we used the definition of W k as a minimum over V k in the first inequality and

the inductive hypothesis for the second inequality.

Next we show that condition (C.17) holds for W k. We again distinguish cases depend-

ing on the optimal action:

• If the optimal action under x1 is to wait, then the following holds:

W̃ k(x1 + 1, 0) + W̃ k(x1, 1) ≤ Ṽ k(x1 + 1, 0) + Ṽ k(x1, 1) ≤ Ṽ k(x1, 0) + Ṽ k(x1 + 1, 1)

= W̃ k(x1, 0) + W̃ k(x1 + 1, 1).

(C.21)

Here, the first inequality followed from the definition of W k and the second inequal-

ity from the inductive hypothesis.

• If the optimal action under x1 is to assign to the secondary department, then the

following holds:

W̃ k(x1 + 1, 0) + W̃ k(x1, 1) ≤ Ṽ k(x1, 1) + Ṽ k(x1, 1)

(∗)︷︸︸︷
≤ Ṽ k(x1 − 1, 1) + Ṽ k(x1 + 1, 1)

= W̃ k(x1, 0) + W̃ k(x1 + 1, 1),

(C.22)

where (∗) follows from a successive application of inductive hypothesis for (C.16)

and then (C.17).

We would next prove Lemmas C.1.5 and C.1.6. The proofs are fairly long, so we

provide them at the end of the proof of this Lemma C.1.4.

Next, we show that condition (C.16) holds for Ṽ k+1 if it holds for Ṽ k and W̃ k. We
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write

Ṽ k+1(x+ 1, 0) + Ṽ k+1(x+ 1, 1) =

(c(x1 + 1, 0, 1, 0, 0, 0) + c(x1 + 1, 0, 1, 1, 0, 0))/β +
1

β
( (C.23)

λ1(W k(x1 + 2, 0, 1, 0, 0, 0) +W k(x1 + 2, 0, 1, 1, 0, 0))+ (C.24)

λ2(W k(x1 + 1, 1, 1, 0, 0, 0) +W k(x1 + 1, 1, 1, 1, 0, 0)+ (C.25)

µ(W k(x1 + 1, 0, 0, 0, 0, 0) +W k(x1 + 1, 0, 0, 1, 0, 0))+ (C.26)

µ(W k(x1 + 1, 0, 1, 0, 0.0) +W k(x1 + 1, 0, 1, 0, 0.0))+ (C.27)

(β − λ1 − λ2 − 2µ)(W k(x1 + 1, 0, 1, 0, 0.0) +W k(x1 + 1, 0, 1, 1, 0.0))) (C.28)

We demonstrate that inequality (C.16) holds for each of the lines (C.23)–(C.28):

• For (C.23):

(c(x1+1, 0, 1, 0, 0, 0)+c(x1+1, 0, 1, 1, 0, 0)) = b(x1+1+x1+1)+π12 = b(x1+2)+b(x1)+π12

= (c(x1 + 2, 0, 1, 0, 0, 0) + c(x1, 0, 1, 1, 0, 0)) (C.29)

• For (C.24), the inequality

W k(x1 + 2, 0, 1, 0, 0, 0) +W k(x1 + 2, 0, 1, 1, 0, 0) ≤

W k(x1 + 3, 0, 1, 0, 0, 0) +W k(x1 + 1, 0, 1, 1, 0, 0),

follows directly from the induction hypothesis for (C.16) and W k.
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• For (C.25), the following holds:

W k(x1 + 1, 1, 1, 0, 0, 0) +W k(x1 + 1, 1, 1, 1, 0, 0) (C.30)

= V k(x1 + 1, 0, 1, 0, 0, 1) + V k(x1 + 1, 1, 1, 1, 0, 0) (C.31)

= V k(x1 + 1, 0, 1, 0, 0, 1)− cπ12 + V k(x1 + 1, 1, 1, 0, 0, 1) (C.32)

W k(x1 + 2, 1, 1, 0, 0, 0) +W k(x1, 1, 1, 1, 0, 0) (C.33)

= V k(x1 + 2, 0, 1, 0, 0, 1) + V k(x1, 1, 1, 1, 0, 0) (C.34)

= V k(x1 + 2, 0, 1, 0, 0, 1)1− cπ12 + V k(x1, 1, 1, 0, 0, 1). (C.35)

That (C.32) is less or equal than (C.35) follows from Lemma C.1.5.

• For (C.26) with x1 > 0, a patient of class 1 will be assigned to unit 1 and the state-

ment holds by induction hypothesis for V k.

• For (C.26) with x1 = 0, we have

W k(1, 0, 0, 0, 0, 0) +W k(1, 0, 0, 1, 0, 0) = V k(0, 0, 1, 0, 0, 0) + V k(0, 0, 1, 1, 0, 0)

∗︷︸︸︷
≤ V k(1, 0, 1, 0, 0, 0)+V k(0, 0, 0, 1, 0, 0) = W k(2, 0, 0, 0, 0, 0)+W k(0, 0, 0, 1, 0, 0)

(C.36)

The inequality (∗) is proved similarly by induction as later inequality (C.55), so we

skip a detailed proof.

• For (C.27) with x1 ≥ 0, we have

W k(x1+1, 0, 1, 0, 0.0)+W k(x1+1, 0, 1, 0, 0.0) ≤ W k(x1+2, 0, 1, 0, 0.0)+W k(x1, 0, 1, 0, 0.0)

(C.37)

and the inequality holds by invoking both (C.16) and (C.17) for W k and summing

239



the two inequalities.

• For (C.28), the inequality (C.16) holds because we have already shown that if it holds

for V k, it holds for W k.

Finally, we show that condition (C.17) holds for Ṽ k+1 if it holds for Ṽ k and W̃ k.

Ṽ k+1(x+ 1, 0) + Ṽ k+1(x, 1) =

(c(x1 + 1, 0, 1, 0, 0, 0) + c(x1, 0, 1, 1, 0, 0))/β +
1

β
( (C.38)

λ1(W k(x1 + 2, 0, 1, 0, 0, 0) +W k(x1 + 1, 0, 1, 1, 0, 0))+ (C.39)

λ2(W k(x1 + 1, 1, 1, 0, 0, 0) +W k(x1, 1, 1, 1, 0, 0))+ (C.40)

µ(W k(x1 + 1, 0, 0, 0, 0, 0) +W k(x1, 0, 0, 1, 0, 0))+ (C.41)

µ(W k(x1 + 1, 0, 1, 0, 0.0) +W k(x1, 0, 1, 0, 0.0))+ (C.42)

(β − λ1 − λ2 − 2µ)(W k(x1 + 1, 0, 1, 0, 0.0) +W k(x1, 0, 1, 1, 0.0))) (C.43)

We demonstrate that inequality (C.17) holds for each of the lines (C.39)–(C.43):

• We derive the inequality for (C.39) directly from the inductive hypothesis for (C.17)

for W k.

• For (C.40), we have

W k(x1 + 1, 1, 1, 0, 0, 0) +W k(x1, 1, 1, 1, 0, 0) (C.44)

= V k−1(x1 + 1, 0, 1, 0, 0, 1) + V k−1(x1, 1, 1, 1, 0, 0) (C.45)

W k(x1, 1, 1, 0, 0, 0) +W k(x1 + 1, 1, 1, 1, 0, 0) (C.46)

= V k−1(x1, 0, 1, 0, 0, 1) + V k−1(x1 + 1, 1, 1, 1, 0, 0) (C.47)

That (C.45) is less or equal to (C.47) follows from Lemma C.1.6.
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• For (C.41) for x1 > 0, a patient from class 1 will be placed in unit 1 in all cases and

then we use the inductive hypothesis for (C.17) for V k.

• For (C.41) for x1 = 0, we have

W k(1, 0, 0, 0, 0, 0) +W k(0, 0, 0, 1, 0, 0) = V k(0, 0, 1, 0, 0, 0) + V k(0, 0, 0, 1, 0, 0)

(∗)︷︸︸︷
≤ V k(0, 0, 0, 0, 0, 0)+V k(0, 0, 1, 1, 0, 0) = W k(0, 0, 0, 0, 0, 0)+W k(1, 0, 0, 1, 0, 0)

(C.48)

and inequality (∗) can be proved by induction on k (the non-trivial cases of the V k

expansion are the departures; these end up resulting in the same set of scenarios, so

both sides are then equal).

• For(C.42), we have

W k(x1+1, 0, 1, 0, 0.0)+W k(x1, 0, 1, 0, 0.0) ≤ W k(x1+2, 0, 1, 0, 0.0)+W k(x1, 0, 1, 0, 0.0),

(C.49)

which follows by combining (C.16) and (C.17) for W k and applying the inductive

hypothesis for these cases.

• For (C.43), the inequality (C.17) holds because we have already shown that if it holds

for V k, it holds for W k.

We conclude with proving Lemmas C.1.5 and C.1.6.

Lemma C.1.5.

V k(x1+1, x2+1, 1, 0, 0, 1)−V k(x1, x2+1, 1, 0, 0, 1) ≤ V k(x1+2, x2, 1, 0, 0, 1)−V k(x1+1, x2, 1, 0, 0, 1)

(C.50)

for any x1 ≥ 0, x2 ≥ 0
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Proof. Proof. The equation clearly holds for k = 0. For k > 0, we expand V k as usual.

For λ1, λ2, both units are occupied, apply induction. For µ, the terms are always equal for

x1 ≥ 1.The only difficult cases are the following:

1. x2 = 0 and the patient corresponding to n22 departs: Then the following two sets of

equalities and inequalities hold:

W k(x1 + 1, 1, 1, 0, 0, 0)−W k(x1, 1, 1, 0, 0, 0)

= V k(x1 + 1, 0, 1, 0, 0, 1)− V k(x1, 0, 1, 0, 0, 1)

= V k(x1 + 1, 0, 1, 1, 0, 0)− V k(x1, 0, 1, 1, 0, 0)

= W k(x1 + 1, 0, 1, 1, 0, 0)−W k(x1, 0, 1, 1, 0, 0)

W k(x1 + 2, 0, 1, 0, 0, 0)−W k(x1 + 1, 0, 1, 0, 0, 0)

(∗)︷︸︸︷
≥ W k(x1 + 1, 0, 1, 1, 0, 0)−W k(x1, 0, 1, 1, 0, 0)

For (∗), we have used the induction hypothesis for W k and (C.16). This shows the

inequality for this part of the V k expansion.

2. x1 = 0 and n11 departs. We need to show the following:

W k(1, x2+1, 0, 0, 0, 1)+W k(1, x2, 0, 0, 0, 1) ≤ W k(2, x2, 0, 0, 0, 1)+W k(0, x2+1, 0, 0, 0, 1)

(C.51)

The following holds:

W k(1, x2 + 1, 0, 0, 0, 1) +W k(1, x2, 0, 0, 0, 1) = V k(0, x2 + 1, 1, 0, 0, 1) + V k(0, x2, 1, 0, 0, 1)

(C.52)

W k(2, x2, 0, 0, 0, 1) +W k(0, x2 + 1, 0, 0, 0, 1) = V k(1, x2, 1, 0, 0, 1) +W k(0, x2 + 1, 0, 0, 0, 1)

(C.53)

There are two cases:
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(a) Either W k(0, x2 + 1, 0, 0, 0, 1) = V k(0, x2, 0, 0, 1, 1). Then

V k(1, x2, 1, 0, 0, 1) +W k(0, x2 + 1, 0, 0, 0, 1)

= V k(1, x2, 1, 0, 0, 1) + V k(0, x2, 0, 0, 1, 1)

= V k−1(1, x2, 1, 0, 0, 1) + V k(0, x2, 1, 0, 0, 1) +
π21

µ

(C.54)

Then comparing with (C.52), the term V k(0, x2, 1, 0, 0, 1) is canceled and it

remains to be seen that V k(0, x2 + 1, 1, 0, 0, 1) ≤ V k(1, x2, 1, 0, 0, 1) + π21

µ
.

This follows by a coupling argument where we follow a suboptimal strategy for

V k(0, x2 + 1, 1, 0, 0, 1) to mimic what the other side is doing, but when there

would be assigned of class 1 to unit 1, we will instead assign class 2, incurring

an additional loss of at most π21

µ
on average.

(b) If W k(0, x2 + 1, 0, 0, 0, 1) = V k(0, x2 + 1, 0, 0, 0, 1), then we need to compare

the following terms:

V k(0, x2+1, 1, 0, 0, 1)+V k(0, x2, 1, 0, 0, 1) ≤ V k(1, x2, 1, 0, 0, 1)+V k(0, x2+1, 0, 0, 0, 1),

(C.55)

and show that the first is less or equal. We can prove this by induction on k,

drawing on previous induction hypotheses. We expand V as usual:

V k+1(0, x2 + 1, 1, 0, 0, 1) + V k+1(0, x2, 1, 0, 0, 1) =

(c(0, x2 + 1, 1, 0, 0, 1) + c(0, x2, 1, 0, 0, 1))/β +
1

β
( (C.56)

λ1(W k(1, x2 + 1, 1, 0, 0, 1) +W k(1, x2, 1, 0, 0, 1))+ (C.57)

λ2(W k(0, x2 + 2, 1, 0, 0, 1) +W k(0, x2 + 1, 1, 0, 0, 1))+ (C.58)

µ(W k(0, x2 + 1, 0, 0, 0, 1) +W k(0, x2, 0, 0, 0, 1))+ (C.59)

µ(W k(0, x2 + 1, 1, 0, 0, 0) +W k(0, x2, 1, 0, 0, 0))). (C.60)
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Inequalities for lines (C.56) and (C.58) are obvious: the first case follows by

simple algebra, while the second case from the induction hypothesis for (C.55).

For (C.57), we have:

W k(1, x2 + 1, 1, 0, 0, 1) +W k(1, x2, 1, 0, 0, 1) =

V k(1, x2 + 1, 1, 0, 0, 1) + V k(1, x2, 1, 0, 0, 1) ≤

V k(2, x2, 1, 0, 0, 1) + V k(0, x2 + 1, 1, 0, 0, 1) =

W k(2, x2, 1, 0, 0, 1) +W k(1, x2 + 1, 0, 0, 0, 1), (C.61)

where the inequality holds because of the inductive hypothesis of (C.50) with

x1 = 0.

For (C.60) combined with (C.59) , we have, if x2 = 0:

W k(0, 1, 0, 0, 0, 1)+W k(0, 0, 0, 0, 0, 1)+W k(0, 1, 1, 0, 0, 0)+W k(0, 0, 1, 0, 0, 0)

= W k(0, 1, 0, 0, 0, 1)+V k(0, 0, 0, 0, 0, 1)+V k(0, 0, 1, 0, 0, 1)+V k(0, 0, 1, 0, 0, 0)

= A+ V k(0, 0, 1, 0, 0, 0) = A+W k(0, 0, 1, 0, 0, 0) ≤

= A+W k(1, 0, 1, 0, 0, 0)

= W k(1, 0, 1, 0, 0, 0)+V k(0, 0, 0, 0, 0, 1)+V k(0, 0, 1, 0, 0, 1)+W k(0, 1, 0, 0, 0, 1)

W k(1, 0, 1, 0, 0, 0)+W k(0, 1, 0, 0, 0, 0)+W k(1, 0, 0, 0, 0, 1)+W k(0, 1, 0, 0, 0, 1),

(C.62)

where A = V k(0, 0, 0, 0, 0, 1) +V k(0, 0, 1, 0, 0, 1) +W k(0, 1, 0, 0, 0, 1) and the

inequality follows from monotonicity.
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For (C.60) combined with (C.59) , we have, if x2 > 0:

W k(0, x2 + 1, 0, 0, 0, 1) +W k(0, x2, 0, 0, 0, 1)

+W k(0, x2 + 1, 1, 0, 0, 0) +W k(0, x2, 1, 0, 0, 0) =

W k(0, x2+1, 0, 0, 0, 1)+W k(0, x2, 0, 0, 0, 1)+V k(0, x2, 1, 0, 0, 1)+V k(0, x2−1, 1, 0, 0, 1)

= B +W k(0, x2, 0, 0, 0, 1) + V k(0, x2 − 1, 1, 0, 0, 1)

≤ B + V k(0, x2, 0, 0, 0, 1) + V k(0, x2 − 1, 1, 0, 0, 1)

≤ B + V k(1, x2 − 1, 1, 0, 0, 1) + V k(0, x2, 0, 0, 0, 1)

= V k(0, x2, 1, 0, 0, 1) +W k(0, x2 + 1, 0, 0, 0, 1)+

V k(1, x2 − 1, 1, 0, 0, 1) + V k(0, x2, 0, 0, 0, 1)

= W k(1, x2, 0, 0, 0, 1) +W k(0, x2 + 1, 0, 0, 0, 1)+

W k(1, x2, 1, 0, 0, 0) +W k(0, x2 + 1, 0, 0, 0, 0), (C.63)

where B = V k(0, x2, 1, 0, 0, 1) + W k(0, x2 + 1, 0, 0, 0, 1) and the second in-

equality follows from monotonicity.

Lemma C.1.6.

V k(x1+1, x2, 1, 0, 0, 1)−V k(x1, x2, 1, 0, 0, 1) ≤ V k(x1+1, x2+1, 1, 0, 0, 1)−V k(x1, x2+1, 1, 0, 0, 1)

(C.64)

Proof. Proof. We prove the statement by induction on k. We expand V k+1 as usual. The

terms corresponding to arrivals and to the cost are straightforward.

The difficult cases are the boundary cases for departures:

245



1. x1 = 0 and n11 departs: We have the following

W k(0, x2 + 1, 0, 0, 0, 1)−W k(0, x2, 0, 0, 0, 1)

(∗)︷︸︸︷
≤ W k(0, x2 + 1, 0, 0, 1, 1)−W k(0, x2, 0, 0, 1, 1)

= V k−1(0, x2 + 1, 0, 0, 1, 1)− V k−1(0, x2, 0, 0, 1, 1)

= V k−1(0, x2 + 1, 1, 0, 0, 1)− V k−1(0, x2, 1, 0, 0, 1)

W k(1, x2 + 1, 0, 0, 0, 1)−W k(1, x2, 0, 0, 0, 1)

= V k−1(0, x2 + 1, 1, 0, 0, 1)− V k−1(0, x2, 1, 0, 0, 1)

In (∗), we have used the induction hypothesis for x2 and W k.

2. x2 = 0 and n22 departs: We have

W k(x1 + 1, 0, 1, 0, 0, 0)−W k(x1, 0, 1, 0, 0, 0)

(∗)︷︸︸︷
≤ W k(x1 + 1, 0, 1, 1, 0, 0)−W k(x1, 0, 1, 1, 0, 0)

= V k−1(x1 + 1, 0, 1, 1, 0, 0)− V k−1(x1, 0, 1, 1, 0, 0)

= V k−1(x1 + 1, 0, 1, 0, 0, 1)− V k−1(x1, 0, 1, 0, 0, 1)

W k(x1 + 1, 1, 1, 0, 0, 0)−W k(x1, 1, 1, 0, 0, 0)

= V k−1(x1 + 1, 0, 1, 0, 0, 1)− V k−1(x1, 0, 1, 0, 0, 1)

In (∗), we have used the induction hypothesis.

C.2 Proof of Theorem 3.4.2

To prove Theorem 3.4.2, we need to show that there is a set of parameters such that:
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1. The value of secondary assignment is positive when considering only the expected

value of the flexible class, V2(λ21) (otherwise, the statement of the theorem is trivial),

and

2. The value of secondary assignment is negative when considering the expected value

of both classes, V (λ21).

Indeed, we can formulate the theorem as comprising the following two statements:

0 > − ∂

∂λ21

V2(λ21),

0 >
∂

∂λ21

(−V2(λ21) + V1(λ21)),

(C.65)

under a certain nonempty set of parameters. We describe the proof for the case with µij =

µi′j′ for i, i′ ∈ I, j, j′ ∈ J , but this condition can be relaxed. We start the proof by

separately considering the case with reservation (λ21 = 0) and without reservation (λ21 >

0).

In the case with reservation, we observe the following system dynamics:

• Class 2 experiences M/M/n2.

• Class 1 experiences M/M/1

• Waiting and boarding times follow from standard queueing theory.

• No misallocation penalties are incurred.

Next, in the case without reservation, Class 1 has non-preemptive priority for Unit 1 but

Class 2 can assign a (λ21/λ2) fraction of its arrivals to Unit 1 to be served when no patients

of Class 1 are waiting. Under a fixed λ21, Class 2 experiences waiting times that can be

derived using queueing models with priority (Adan and Resing (2002), Section 9). We use

superscript R to denote the reservation case and N the non-reservation case. We then have

the expected value functions as follows:
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• For the reservation case:

V = b · (λ1 EW
R
1 (M/M/1) + λ2 EW

R
2 (M/M/n2)) (C.66)

The waiting times WR
i follow from the basic queueing theory:

– Class 1 experiences M/M/1. Hence:

EWR
1 =

ρ1

1− ρ1

· (1/µ1). (C.67)

– Class 2 experiences M/M/n2. Hence:

EWR
2 (λ2) = ΠW (λ2) · 1

1− λ2/(n2µ2)
· 1

n2µ2

(C.68)

where ΠW (λ2) is the so-called delay probability (see Adan and Resing (2002)

formula (5.1) for the exact expression).

• For the no-reservation case:

V = b · (λ1 EW
N
1 + λ21 EW21(λ21) + λ22 EW22(λ22) + λ21π21, (C.69)

where we can write EWN
2 = λ21 EW21(λ21) + λ22 EW22(λ22). We also have the

following expression for the waiting times:

– From eq (9.1) in Adan and Resing (2002):

EWN
1 =

ρ1/µ
2
1 + λ21/µ

2
2·

1− ρ1

= EWR
1 +

λ21/µ
2
2

1− ρ1

(C.70)
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–

bEWN
2 (λ22) = b(λ22 EW22(λ22) + λ21 EW21(λ21))

= b
λ22

λ2

ΠW (λ22) · 1

1− λ22/(n2µ2)
· 1

n2µ2

+
(1− λ22)

λ2

·

b(
ρ1/µ

2
1 + (1− λ22)/µ2

2·
(1− ρ1)(1− ρ1 − (1− λ22)/µ2)

+ π21/b)

= b · ( 1

n2µ2

· λ22

λ2

λ22

1− λ22/(µ2n2)

(
(nn2

2 /n2!)λn2
22

(1− λ22/(µ2n2))
∑n2−1

ν=0
nν2λ

ν
22

ν!
+ (nn2

2 /n2!)λn2
22

)

+ (1− λ22

λ2

)
ρ1/µ

2
1 + (1− λ22)/µ2

2·
(1− ρ1)(1− ρ1 − (1− λ22)/µ2)

+ π21/b).

(C.71)

We now demonstrate a case where the value of secondary assignment is positive for C2

but negative overall. We first derive a condition for the value for C2 to be positive. We

consider a limiting scenario λ22 ∼ n2µ2, and subsequently λ2 ∼ λ22 with λ21 being small.

Continuing the calculation from (C.71), we approximate as follows:

bEWN
2 (λ22) ≈ b(

λ22

λ2

· 1

1− λ22/(µ2n2)
+(1−λ22

λ2

)
ρ1/µ

2
1 + (1− λ22)/µ2

2·
(1− ρ1)(1− ρ1 − (1− λ22)/µ2)

)+(1−λ22

λ2

)π21.

(C.72)

In this formula, if we have ρ2 ≡ λ2/(µ2n2) � ρ1, the first term predominates. Hence,

the value of C2 is maximized with λ22 < λ2, which is equivalent to λ21 > 0. At the same

time, the gain for C2 can be made arbitrarily small by adjusting π21. Finally, we know

from (C.70) that the loss for C1 is positive and does not depend on π21. Hence, we have

demonstrated that we can adjust parameters such that the value of secondary assignment

for C2 is positive, the loss from this secondary assignment for C1 outweighs the gain for

C2, so that the overall objective value is negative if secondary assignment is allowed. This

proves that the reservation of the bed for C1 can improve the overall objective value.

We conclude the theorem by observing that− ∂
∂λ21

V2(λ21) = π21

λ2
+b ∂

∂λ21
[(1−λ21)EW22(λ21)+
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λ21 EW21(λ21)] by (C.69) and that − ∂
∂λ21

V2(λ21) = −b 1/µ2
2

1−ρ1
= −Ξ, which follows from

(C.69) and (C.70).

C.3 Proof of Proposition 3.5.1

Each instance of the GREAT-RL policy is characterized by its scheduling function σ and

admission function α. It is easy to see the following settings of σ and α reproduce the

Reserve-k-beds policy and Threshold policy respectively:

• Reserve-k-beds policy: α(i, j) = 1{(1− χi′,j)oi′,j < κj − k}, σ(i, j) = −πij

• Threshold policy: α(i, j) = 1{Qi > τij}, σ(i, j) = −πij

C.4 Simulation Setup: Scenario Generation

This section details how, given parameter ranges from Table 3.5, we generate a set of

scenarios for the numerical study.

First, we generate parameter sets by Latin Hypercube sampling from the four-dimensional

hypercube characterized by the parameter intervals in Table 3.5. The algorithmic steps to

generate a scenario from a parameter set are as follows:

1. Generate I patient classes and its single primary unit, so that I = J . Without loss of

generality, assign labels so that patient class i has primary unit j = i.

2. Set the number of beds per unit.

3. Randomly generate secondary pairs from all potential non-primary pairs, indepen-

dently with a specified probability

4. Save the configuration, derived from steps 1–3, for all scenarios within a sample

of scenarios for one evaluation. For the configuration, generate common random

numbers as follows:
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• Random numbers for service time variation ∆µi from N(0, 1) for each class

• Random numbers for utilization variation ∆ui from U(0, 1) for each class

5. Boarding-to-misallocation ratio determines the boarding penalty given the misallo-

cation penalty equal to 1.0

6. service rate for each class: µi = 1 + ζ ·∆µi

7. Primary utilization for each class, ρi, drawn from the Beta distribution using ∆u,

with the beta parameter provided by variation in utilization β and alpha parameter

set such that the mean utilization equals ρ.

8. Arrival rate per class, λi = ρi · µi · κi

In total, we draw 24 parameter sets (scenarios) and generate 10 instances for each sce-

nario.

C.5 Reservation Policies

In this section, we revisit the concept of reservation policies from Section 10 and introduce

more advanced reservation policies.

Definition A reservation policy allows for secondary assignments but “reserves” a certain

number of beds for use by patients from the primary class. More formally, if a primary pair

becomes available for assignment, it is assigned immediately. Otherwise, secondary pair

(i, j) will be assigned if oij and Oj are not “too high,” i.e., some beds may be reserved for

the primary class when occupancy is high. Section 10 described the Reserve-k-beds policy,

here we propose further extensions.

Static Reservation Policy (“RS”). This approach expands the Reserve-k-beds policy

to consider separate k for each unit, an approach adapted from the n-class static single-
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resource capacity control algorithm in revenue management. Consider all eligible pa-

tient classes and group the classes into patient class sets that share the same misallocation

penalty. For example, if there are two primary classes, they are grouped into a single class

set with the combined arrival process. We define the revenue from each patient assignment

inversely proportional to the patient class’ misallocation penalty. If classes vary in board-

ing penalties, these differences would also be incorporated into the revenue definition. To

compute the reservation levels for each class set, we define a capacity control model, solved

through dynamic programming, as in (Talluri and Van Ryzin 2006). To ensure that each

patient class has at least one eligible unit, we further introduced an adjustment to account

for the increasing boarding cost over time. This results in Algorithm 4. Here, ip denotes

the patient class for patient p. We specify the revenue function ρ as follows

R(i, j;φ) = rij/µij + φ(bi), (C.73)

where φ is a function to translate the boarding penalty to revenue. We will later describe

several possible forms of this function.

Algorithm 4: Static Reservation Policy
Input: Rij := R(i, j, φ) revenue function with φ given / precomputed

1 Bij ← ComputeBookingLimits() // See Algorithm 5
2 while Patient p arrives or Unit j frees a bed do
3 if arrival then
4 j′ ← arg maxj Ripj for j with Bipj > Oj;
5 if j′ exists then
6 Assign ip to j′

7 else if departure then
8 i′ ← arg maxi(Bij, Rij) for i with waiting patients;
9 if Bi′j > Oj then

10 Assign patient of class i′ in j

Our implementation of function ComputeBookingLimits is based on the static

booking limits algorithm from Revenue Management (see Talluri and Van Ryzin (2006),

252



Section 2.2.2) and is described in Algorithm 5. By {i}, we refer to the patient class set that

contains class i. To determine φ from (C.73) while also ensuring that all patient classes can

Algorithm 5: ComputeBookingLimits
Output: Bij , the booking limits

1 for j ∈ J do
2 Order {i} in decreasing order according to Rij;

// Computes horizon
3 Tj ←

ExpectedT imeUntilABedBecomesEmptyIfOccupiedByPrimaryClasses(j);

4 for i ∈ {i} do
// Dynamic programming

5 Di ∼ Pois(λi, Tj) // Demand distribution
6 Vi(x) = ED[rij min(Di, (x− yi−1)+) + Vi−1(x−min(Di, (x− yi−1)+))];
7 yi = max{x : ri+1,j < Vi(x)− Vi−1(x)};
8 for i ∈ {i} do
9 Bij = κj − yi

be assigned, we proceed iteratively:

1. Initialize the patient “revenue” for each department based on the misallocation policy

and arbitrary constants for the boarding penalty φ(b). Then, compute the booking

limits as described in Algorithm 5.

2. Generate new booking limits iteratively:

(a) Compute new φ from equation (C.73) based on the estimated waiting time of

each class from the M/M/c model

(b) Recompute the booking limits using using the new revenue function

(c) Stop when a stopping criterion is met. This stopping criterion could be a limit

on the number of iterations or a simulated annealing-style stopping when the

booking limits “do not change much” anymore.

3. Once the iteration stopped, the final booking limits are the ones to use for the reser-

vation policy.
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The entire calculation in steps 1 to 3 takes place before the simulation is started, so the

resulting policy is static. We propose two directions for further improvement:

1. Improve the aforementioned iterative algorithm with a better search: For instance,

one could implement a tabu-search-style iteration over the space of the booking lim-

its.

2. Instead of iterating, determine the booking limits using machine learning or opti-

mization based on actual simulation results.

Dynamic Reservation Policy (“RD”). Next, we develop a policy adapted from what is

called in revenue management as n-class dynamic single-resource capacity control. We

define the algorithm formally in Algorithm 6. Heuristically, the policy can be defined as

follows:

1. Whenever a patient arrives or departs, if the arriving patient has a primary unit avail-

able or the unit opened has a primary patient class waiting, match the patient to its

primary unit.

2. Otherwise, compute the marginal revenue and booking limit for all patient-department

pairs for (if patient arrival) all open eligible units for the patient or (if a unit has a

patient departed) all pairs of patient classes with waiting patients that are eligible

for the unit. If there are multiple patient-unit pairs where the booking limit allows

assignment, choose the pair with the highest marginal revenue. We compute the

booking limit and the marginal revenue using an algorithm based on the dynamic

reservation dynamic program from (Talluri and Van Ryzin 2006), with the following

major modifications:

• The horizon of the dynamic program is determined using the expected service

time of the patient class considered.
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• The expected revenue from the assignment is based on the service-time-adjusted

misallocation penalty and expected boarding penalty incurred by the patient

class if the patient is not assigned.

• The expected opportunity cost is based on the dynamic program, accounting

for the arrivals and revenues of the other patient classes that are eligible for the

unit.

To state the algorithm formally, we define the revenue function as follows:

R(i, j, S) = rij/µij + b̂i(S), (C.74)

where S is the state of the system and b̂i(S) is the estimated boarding cost incurred by a

patient of class i until the next bed is available. The adjusted revenue function R′(i, j, S)

is defined in Algorithm 7 and captures the opportunity cost of the patient assignment. The

revenue to go is computed through dynamic programming, based on the following recur-

sion:

V (t, x) =
∑
i′∈I′

λ′i′(r(i
′, j, S)− (Vt+1(x)− Vt+1(x− 1)))+ (C.75)

where I ′ is the set of other patient classes that can use department j and λ′i is the arrival rate

after uniformization, t represents time steps, and x the number of patients in unit j. We then

compute the dynamic booking limits similarly as the dynamic booking limits algorithm in

Talluri and Van Ryzin (2006), Section 2.5.

C.6 Threshold Policies

In this section, we revisit the concept of threshold policies from Section 3.4.1 and introduce

more advanced policies.

Definition. A threshold policy schedules waiting patients to a secondary unit if the board-

ing queue is long and keeps them waiting otherwise. Formally, if primary pair (i, j) be-
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Algorithm 6: Dynamic Reservation Policy
Input: R(i, j, S) revenue function; R′(i, j, S) adjusted revenue function

1 while Patient p arrives or unit j frees a bed do
2 if arrival then
3 if Primary unit j′ for p has empty beds then
4 Assign p in j′

5 else
6 j′ ← arg maxj R

′(ip, j, S) for j with empty beds;
7 if j′ exists and R′(ip, j′, S) > 0 then
8 Assign ip to j′

9 else if departure then
10 if Primary class i for j has waiting patients then
11 Assign i in j

12 else
13 i′ ← arg maxiR

′(i, j, S) for i with waiting patients;
14 if R′(i′, j, S) > 0 then
15 Assign patient of class i′ in j

Algorithm 7: Adjusted revenue function ρ′(i, j, S)

Input: S system state, i patient class, j department
Output: R′(i, j, S) adjusted revenue evaluation
// Computes horizon

1 T ← ExpectedTimeUntilDepartureWithPatientScheduled(j);
2 V (t, ξ)← ComputeRevenueToGo(i, j, S, T ), t = 1, . . . , T, ξ = 0, . . . , (κj −Oj)

// See (C.75)
3 x← κj −Oj;
4 ∆V ← V (1, x)− V (1, x− 1);
// Adjusted revenue

5 ρ′(i, j, S)← ρ(i, j, S)−∆V

256



comes available for assignment, it is assigned immediately. Otherwise, the pair is assigned

if Qi is higher than a certain threshold, Qi > τ(i, j). The threshold may be static or depend

on the system state, parameterized by the threshold function τ(i, j, S). We formalize this

class of policies in Algorithm 8. In the main manuscript, we described a first-order thresh-

Algorithm 8: Threshold Policy
Input: Threshold function τ

1 if patient p arrives then
2 if A primary unit j for p has free beds then
3 Assign p to j

4 else if J ′ := {j : τ(ip, j
′) < Qip} 6= ∅ then

5 Assign ip into j′ ∈ J ′ with πip,j′ minimal

6 else if bed becomes available in unit j then
7 if Primary patient p for j is waiting then
8 Assign p to j

9 else if I ′ := {ι : τ(ι, j) < Qι} 6= ∅ then
10 Assign i′ ∈ I ′ into j for i′ with πi′,j minimal

old policy, which we henceforth call Threshold policy T1. We next discuss further options

for the threshold function τ .

Threshold policy T2: We consider a patient class for which a patient arrived or a unit

cleared. First, we compute time until either of the primary units for this patient class opens,

To. In policy T2, we base this calculation on the current state of the hospital rather than

a static calculation as in T1. After To, we assume that the patient class is assigned with

a certain probability based on other primary classes for the units. This probability can be

estimated by Little’s Law, which stipulates that the long-term fraction of each class i in the

unit should be equal to λi/µi, assuming none of the classes have multiple eligible units.

Aggregating over all primary units of this class, we then compute the expected time until

being assigned to any primary unit, during which patients will be boarding. This expected

boarding time is multiplied by the boarding penalty to derive the expected boarding cost per
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patient if not assigned. Hence, the threshold function for policy T2 is defined as follows:

τ
(2)
i,j (t) = b

πij + Ω
(1)
i,j

B
(2)
i (t)

c

B
(2)
i (t) = bi/(

∑
j′

χi,j′(
∑

p∈Uj′ (t)

µp) ·
λi/µi∑

ι∈I χι,j′λι/µι
),

(C.76)

where Ω
(1)
ij refers to the estimate from policy T1 and Uj(t) are patients present in unit j at

time t.

Threshold policy T3: This policy assumes that the considered class competes for beds

with all other classes that are eligible for a given unit. This contrasts with T2, which only

assumes competition with other primary classes. Therefore, the definition of the threshold

function is as follows:

τ
(3)
i,j (t) = b

πij + Ω
(1)
i,j

B
(3)
i (t)

c

B
(3)
i (t) = bi/(

∑
j′

χi,j′(
∑

p∈Uj′ (t)

µp) ·
λi/µi∑

ι∈I ηι,j′λι/µι
)

(C.77)

Threshold policy T4: In this policy, we base the boarding cost calculation on steady state

waiting times. First, we determine the steady state assignment by linear programming,

for instance by minimizing excess capacity as in Kilinc et al. (2019). Let steady state

assignment fractions be y = yij . Given the assignments, we approximate waiting times

using the M/M/c model for each class, assuming the number of available beds for each

class corresponding to the optimal assignment, with these beds dedicated for the respective

classes. The waiting time is then estimated as W (M/M/c)
i := WM/M/

∑
j yij(λi, µi), where

the right-hand side can be computed as in the standard M/M/c model (formula (5.3) in
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(Adan and Resing 2002)).Hence, we get the following threshold function:

τ
(4)
i,j = b

πij +O
(1)
i,j

B
(4)
i (t)

c

B
(4)
i = bi ·W (M/M/c)

i

(C.78)

C.7 Assumptions for Structural Results

We discuss four assumptions required by Theorems 3.4.1 and 3.4.2 from Section 3.4 of the

main text.

Assumption 1. The boarding penalty per unit of time is the same for all patient classes:

bi = b for i ∈ I for constant boarding-to-misallocation ratio b.

Observe that the boarding penalty represents three factors: 1) that a boarding patient

consumes scarce ED resources, 2) that they are not necessarily getting the ideal treatment

(which could be afforded in the patient’s primary unit), and 3) they are potentially prevent-

ing other patients from receiving timely service in the ED. The assumption indicates that

the first and third factors predominate as these factors are likely to be similar for all patients

while the second factor could vary.

Assumption 2. Each patient class has one primary unit.

This assumption reflects that in most hospitals, a unit corresponds to a different clinical

specialty (e.g., neurology, cardiology, orthopedics), and there is a single ideal unit for each

patient class.

Assumption 3. The service time rate, µij depends on the patient class served but not the

unit. That is, µi ≡ µij = µij′ for j, j′ ∈ J, i ∈ I .

This assumption suggests that the patient treatment and its duration are only dependent

on the patient condition, and different units will treat the same patient class with the same

efficiency.
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Assumption 4. The service time rate, µij depends on the unit but not the patient class

served. That is, µij = µi′j for i, i′ ∈ I, j ∈ J .

This condition indicates a specialized hospital or hospital subdivision where patient

classes are all clinically similar.

C.8 Counterexamples: Specific Parameterization

Here, we provide the counterexample parameterization for Propositions 3.4.1 and 3.4.2.

Counterexample against Reserve-k-beds Policy. The parameters are as follows:

• Three units (U1, U2, U3), each with one bed

• 1/λ1 = 1/λ2 = 1.1, 1/λ3 = 100

• b1 = 20, b2 = 1, b3 = 20

• µ1 = µ2 = 1, µ3 = 0.01

Counterexample against Threshold Policy. The parameters are as follows:

• Three units (U1, U2, U3), each with one bed

• 1/λ1 = 1.1, 1/λ2 = 4, 1/λ3 = 20

• b1 = 0.5, b2 = 50.0, b3 = 0.1

• µ1 = 0.1, µ2 = 0.5, µ3 = 0.1

• Patient class 1 is secondary for U2, with π12 = 1. Patient class 2 is primary for both

U2 and U3.

260



C.9 Counterexamples: Generalized Framework

Here, we describe a generalization of counterexamples from Section 3.4.3 against a broader

family of reservation and threshold policies, which we term local policies. To define the

local policy, consider the flexible bed management queueing system as a bipartite graph.

The nodes in this graph are 1) units and 2) patient classes, with an edge between unit U and

a patient class C if (C,U) is an eligible pair. A policy is local if a decision at a node (e.g., a

threshold for a patient class queue or a reservation level in a unit) is only dependent on state

variables at the node itself and on adjacent nodes. We will say that a queueing system has

long-distance dependencies if the graph has paths of length two or longer. We argue that

local reservation and threshold policies may perform poorly in systems with long-distance

dependencies. This can be seen by generalizing the counterexamples from the Appendix

C.8, where there are three connected units and patient classes, the third patient class has

very long interarrival times, so the third unit effectively serves as additional service capacity

for patient classes from other units when the third patient class is not being served. Then,

a policy that is local does not make decision at unit 1 with awareness of the availability of

beds in unit 3, which will make the policy suboptimal.

C.10 Simulation Program Design

We implemented the simulation module in Python and now describe it in detail.

We begin with the input and output. The input of each simulation instance is a scenario

parameterized as in Section 3.6.1 and a parameter indicating the policy. The output includes

the objective value and various secondary measures such as the percentage of secondary

(“off-service”) assignments and mean boarding time. The output also includes the detailed

sequence of arrivals and departures. We run the simulation for a period of user’s choice and

compute metrics over this entire period. We use common random numbers for arrival and

service times for all policies within each simulation scenario. The input is provided as two
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lists: one of policies and one of scenarios. The list of scenarios must reference scenarios

defined as files in the YAML configuration language. A single YAML configuration file

contains all the parameters other than the policy required to run the simulation:

• Definition of the units: Their names and capacity

• Definition of the patient classes: The class’ boarding penalty rate, misallocation

penalty for each acceptable unit and arrival and service distributions.

• Stopping criteria: Either the maximum number of (virtual) days to run the simulation

or the maximum number of arrivals to generate

The high-level classes to specify policies are Policy and its subclass, MarkovPolicy,

which handle all interactions with the other classes. Subclassing the MarkovPolicy

class, the user only needs to indicate the behavior of the policy on the arrival or on the depar-

ture. The user can access the state of the system and through the Hospital class, which

we discuss in detail in the next paragraph. We provide the StaticThresholdPolicy

class for easy experimentation with threshold approximations, where it is enough to specify

the computation of thresholds. Subclassing this class, the user only needs to specify how

to compute the thresholds.

The high-level design of the rest of the simulation code is as follows. The main script

reads the specified policies and settings and initializes the Sim class, which manages the

runtime. The Sim class constructs the policy and controls the simulation. The three main

components are the following objects:

1. An object of class Settings, which is responsible for reading and initializing the

settings from the YAML configuration file as well as saving the arrival and service

times across different policies applied for these settings (i.e., the common random

numbers).

2. An object of class Hospital, which encapsulates the state of the system. The
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hospital further manages objects of classes Patient and Department, which

capture states of particular patients and units.

3. An object of class Timer, which triggers events (arrivals and departures) and medi-

ates the interaction between the state of the system, the policies, and the simulation

runtime. The timer also stops the simulation once the stopping criterion is met.

The code is available upon request.

C.11 Additional Results for Section 1.5

We first discuss the results of Section 3.6.3 in more detail. We derive the findings and

in particular Figure 3.2 through a series of numerical experiments. Our first experiment

considers nine different scenarios, varying across three levels of the utilization and three

levels of the boarding-to-misallocation ratio (“3-by-3”), on a grid with ρ ∈ {0.5, 0.85, 0.95}

(low, moderate, and high utilization) and boarding-to-misallocation ratio in {0.1, 0.5, 1.0}

(low, moderate, high). The other parameters were held constant, with the standard deviation

of service times equal to zero and variation of utilization equal to 1.0. Table C.1 lists the

results. Since the GREAT-RL policy always dominates, the results are presented as percent

differences between the average per-patient value of the GREAT-RL policy and the other

policies. Gcµ performs well under high-utilization scenarios, which is consistent with the

theoretical results from Van Mieghem (1995). The Strict policy performs poorly in every

scenario except for the lowest utilization and boarding-to-misallocation ratio.

In our second numerical experiment, we fix utilization equal to 0.85, the standard de-

viation of service times to 0.0 and the variation in utilization to 1.0, while varying the

boarding-to-misallocation ratio. Figure C.1 visualizes the relative value of different poli-

cies as a function of the boarding-to-misallocation ratio. Again, the GREAT-RL policy

dominates overall. GCµ approaches the GREAT-RL performance as the boarding compo-

nent predominates, and the Strict performance approaches the performance of GREAT-RL
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Table C.1: Percentage difference in average per-patient value between a benchmark policy
and the GREAT-RL policy on the 3-by-3 set of scenarios.

Scenario Policy
Utilization / b-m ratio GCµ Greedy LEWC-p Strict
Low, low 91% 65% 62% 0%
Low, moderate 19% 3% 3% 215%
Low, high 18% 3% 4% 490%
Moderate, low 47% 45% 69% 185%
Moderate, moderate 8% 14% 28% 419%
Moderate, high 1% 14% 23% 554%
High, low 1% 18% 40% 144%
High, moderate 1% 30% 48% 216%
High, high 0% 23% 45% 204%

Figure C.1: Average per-patient value by boarding-to-misallocation ratio, relative to
Greedy policy.
Note: For higher boarding-to-misallocation ratios, the Strict policy performance is off-the-chart negative, thus the corresponding point

is not displayed.

as the boarding component vanishes.

In our third numerical experiment, we study the optimal policies in terms of the two

components of the objective function, the secondary assignment penalties and boarding
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time. Figures C.2 and C.3 demonstrate the breakdowns of average secondary assignment

fraction and the average boarding time for six of the 3x3 scenarios from Section 3.6.3. In

the subfigure header, the first number corresponds to the utilization and the second one

to the boarding-to-misallocation ratio. All results are averaged over 100 instances. The

GREAT-RL algorithm achieves boarding times similar to Gcµ (which does not consider

misallocation penalties) while attaining lower secondary assignment rates than Gcµ and all

other policies except for the Strict policy.

Figure C.2: Average secondary assignment rate on 3x3 scenarios

C.12 Results for additional Reservation and Threshold policies

Figure C.4 demonstrates the performance of the GREAT-RL policy and reservation and

threshold policies from Appendices C.5 and C.6 on the hypercube set of scenarios from

Figure 3.2. The GREAT-RL policy dominates when measured by either the mean or median

performance across scenarios. The dynamic reservation policy also performs well but is
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Figure C.3: Average boarding time on 3x3 scenarios

more complex than the typical policy learned by the GREAT-RL algorithm.

C.13 Sensitivity Analysis for Unequal Boarding Time

To assess the sensitivity of the GREAT-RL policy to the variation in boarding times, we

assess robustness on several scenarios with unequal boarding times, with the following pa-

rameters: The baseline utilization beta equals 1.0, there is no service time variation, utiliza-

tion equals 0.85, and boarding-to-misallocation ratio equals 0.1 before applying boarding

penalty variation. There are four settings of the boarding penalty standard deviation, with

five scenarios for each, then evaluated over ten instances. The averages are reported in

Figure C.5. We observe no substantial differences in the performance of the GREAT-RL

policy.
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Figure C.4: Distribution of relative normalized rewards by policy for reservation and
threshold policies

C.14 Patient Transfers

While this has not been the case in the hospital we worked with, one hospital in the lit-

erature reported assigning patients to secondary units and later transferring them when a

primary unit becomes available (Thompson et al. 2009). Thompson et al. (2009) formu-

lates a model and objectives different from the flexible bed management setup, but our

setup could be extended to handle such “patient transfers” scenarios. Specifically, we can

estimate the probability P τ
i that a patient of class i will be transferred to a primary unit

j1 before finishing the service in secondary unit j2 and, given the transfer, the average

amount of time T τi that the patient would spend in the primary rather than secondary unit.

We can then use these estimates to adjust the misallocation penalties in the flexible bed
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Figure C.5: Average relative normalized reward by variation in boarding penalty for sce-
nario

management model, hence using adjusted penalties π′i,j defined as

π′i,j := πi,j − P τ
i · T τi · (πi,j2 − πi,j1). (C.79)

C.15 Choice of k for the Reserve k Beds Policy

We offer general guidelines and simulation insights on how to choose k for the Reserve k

Beds policy. First, we observe that k = 0 translates to the Greedy policy while k → ∞ to

the Strict policy. Next, we note that from the M/M/c queueing theory one would expect that

in scenarios with many beds, Reserve k Beds policies with larger values of k will indeed

quickly behave like the Strict policy because there are rarely many patients waiting. Figure

C.6 demonstrates these theoretical insights in a simulation study. Note that the units in

these scenarios had between 10 and 30 beds. First, the Reserve 1 Bed and Reserve 2 Beds
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Figure C.6: Distribution of relative normalized rewards for different values of k in Reserve
k Beds policies.
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offer the highest median normalized rewards, higher than the Greedy policy, which serves

as a baseline. Second, the Reserve k Beds policies do not perform well in scenarios with

very high utilization, which can be seen by the very heavy bottom tail of scenarios with low

performance. Third, the Reserve k Beds policies with high k do indeed perform similarly

as the Strict Policy.

Thus, heuristically, we recommend choosing k = 1 except for scenarios with very high

utilization where Reserve k Beds policies should not be used at all. When it is possible, we

further recommend running an actual simulation to establish the most appropriate value of

k more accurately.
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Hafızoğlu, A Baykal, Esma S Gel, Pınar Keskinocak. 2016. Price and lead time quotation for
contract and spot customers. Operations Research 64(2) 406–415.

Halamka, John. 2013. Health information exchange for emergency department care is on the right
trajectory. Annals of Emergency Medicine 62(1) 25–27.

Han, Zheng, Mazhar Arikan, Suman Mallik. 2017. Can bundled payment cure the ills of fee-for-
service? An equilibrium analysis. Extended abstract .

Handel, Daniel, Joshua Hilton, Michael Ward, Elaine Rabin, Frank Zwemer, Jesse Pines. 2010.
Emergency department throughput, crowding, and financial outcomes for hospitals. Academic
Emergency Medicine 17(8) 840–847.

Haque, Rezwan. 2014. Technological innovation and productivity in service delivery: Evidence
from the adoption of electronic medical records. Job market paper, Harvard Business School.

Harris, Jeffrey. 1977. The internal organization of hospitals: some economic implications. The Bell
Journal of Economics 467–482.

HCUP. 2014. Description of data elements. Available at http://www.hcup-us.ahrq.gov/
db/vars/hosp_teach/kidnote.jsp. Last accessed 3/30/2015.

Hebel, Esteban, Blackford Middleton, Maria Shubina, Alexander Turchin. 2012. Bridging the
chasm: effect of health information exchange on volume of laboratory testing. Archives of
Internal Medicine 172(6) 517–519.

Helm, Jonathan, Shervin AhmadBeygi, Mark Van Oyen. 2011a. Design and analysis of hospital ad-
mission control for operational effectiveness. Production and Operations Management 20(3)
359–374.

Helm, Jonathan E, Shervin AhmadBeygi, Mark P Van Oyen. 2011b. Design and analysis of hospi-
tal admission control for operational effectiveness. Production and Operations Management
20(3) 359–374.

Herring, Andrew, Andrew Wilper, David Himmelstein, Steffie Woolhandler, Janice Espinola, David
Brown, Carlos Camargo. 2009. Increasing length of stay among adult visits to U.S. emergency
departments, 20012005. Academic Emergency Medicine 16(7) 609–616.

Himmelstein, David, Adam Wright, Steffie Woolhandler. 2010. Hospital computing and the costs
and quality of care: a national study. The American Journal of Medicine 123(1) 40–46.

HIMSS. 2010. HIMSS Analytics database. http://www.himssanalytics.org/home/index.aspx. The
Dorenfest Institute for H.I.T. Research and Education, HIMSS Foundation, Chicago, Illinois.

Hincapie, Ana Lucia, Terri Warholak, Anita Murcko, Marion Slack, Daniel Malone. 2011. Physi-
cians’ opinions of a health information exchange. Journal of the American Medical Informat-
ics Association 18(1) 60–65.

278

http://www.hcup-us.ahrq.gov/db/vars/hosp_teach/kidnote.jsp
http://www.hcup-us.ahrq.gov/db/vars/hosp_teach/kidnote.jsp


Hodgetts, Timothy J, Gary Kenward, Ioannis Vlackonikolis, Susan Payne, Nicolas Castle, Robert
Crouch, Neil Ineson, Loua Shaikh. 2002. Incidence, location and reasons for avoidable in-
hospital cardiac arrest in a district general hospital. Resuscitation 54(2) 115–123.

Hoot, Nathan, Dominik Aronsky. 2008. Systematic review of emergency department crowding:
Causes, effects, and solutions. Annals of Emergency Medicine 52(2) 126–136.e1.

Horwitz, Leora, Jeremy Green, Elizabeth Bradley. 2010. Us emergency department performance
on wait time and length of visit. Annals of emergency medicine 55(2) 133–141.

Huang, Sean Sheng-Hsiu, Ian McCarthy. 2015. Hospital alignment with physicians as a bargaining
response to commercial insurance markets. Working Paper Available at SSRN 2612879.

Hussey, Peter, Andrew Mulcahy, Christopher Schnyer, Eric Schneider. 2012. Bundled payment:
Effects on health care spending and quality. Evidence report/technology assessment no. 208,
Agency for Healthcare Research and Quality, Rockville, MD.

Hwang, Ula, John Concato. 2004. Care in the emergency department: how crowded is overcrowded?
Academic Emergency Medicine 11(10) 1097–1101.

Hydari, Muhammad Zia, Rahul Telang, William Marella. 2014. Saving patient ryancan advanced
electronic medical records make patient care safer? Available at SSRN 2503702 .

Institute of Medicine. 2006a. Emergency care for children: growing pains. National Academies
Press.

Institute of Medicine. 2006b. Emergency Medical Services At the Crossroads. The National
Academies Press.

Institute of Medicine. 2006c. Hospital-based emergency care: At the breaking point. The National
Academies Press.

Jacob, Julie. 2015. On the road to interoperability, public and private organizations work to connect
health care data. Journal of American Medical Association 314(12) 1213–1215.

Jelovac, Izabela, Inés Macho-Stadler. 2002. Comparing organizational structures in health services.
Journal of Economic Behavior & Organization 49(4) 501–522.

Jha, Ashish, Catherine DesRoches, Eric Campbell, Karen Donelan, Sowmya Rao, Timothy Fer-
ris, Alexandra Shields, Sara Rosenbaum, David Blumenthal. 2009. Use of electronic health
records in U.S. hospitals. New England Journal of Medicine 360(16) 1628–1638.

Jiang, Houyuan, Zhan Pang, Sergei Savin. 2012. Performance-based contracts for outpatient medi-
cal services. Manufacturing & Service Operations Management 14(4) 654–669.

Johnson, Kevin B, Cynthia S Gadd, Dominik Aronsky, Kevin Yang, Lianhong Tang, Vicki Estrin,
Janet K King, Mark Frisse. 2008. The MidSouth eHealth Alliance: use and impact in the
first year. AMIA Annual Symposium Proceedings, vol. 2008. American Medical Informatics
Association, 333.

Jones, Spencer, Mark Friedberg, Eric Schneider. 2011. Health information exchange, health infor-
mation technology use, and hospital readmission rates. AMIA Annual Symposium Proceedings,
vol. 2011. American Medical Informatics Association, 644.

Jones, Spencer, Robert Rudin, Tanja Perry, Paul Shekelle. 2014. Health information technology:
An updated systematic review with a focus on Meaningful Use. Annals of Internal Medicine
160(1) 48–54.

Karaca, Zeynal, Herbert Wong. 2013. Racial disparity in duration of patient visits to the emergency
department: Teaching versus non-teaching hospitals. Western Journal of Emergency Medicine
14(5) 529.

279



Karaca, Zeynal, Herbert Wong, Ryan Mutter. 2012. Duration of patients’ visits to the hospital
emergency department. BMC Emergency Medicine 12(1) 15.

Karaesmen, Itir, Garrett Van Ryzin. 2004. Overbooking with substitutable inventory classes. Oper-
ations Research 52(1) 83–104.

Kc, Diwas. 2014. Does multitasking improve performance? Evidence from the emergency depart-
ment. Manufacturing and Service Operations Management 16(2) 168–183.

Kennebeck, Stephanie Spellman, Nathan Timm, Michael Farrell, Andrew Spooner. 2012a. Impact
of electronic health record implementation on patient flow metrics in a pediatric emergency
department. Journal of the American Medical Informatics Association 19(3) 443–447.

Kennebeck, Stephanie Spellman, Nathan Timm, Michael Farrell, Andrew Spooner. 2012b. Impact
of electronic health record implementation on patient flow metrics in a pediatric emergency
department. Journal of the American Medical Informatics Association 19(3) 443–447.

Keskinocak, Pinar, Sridhar Tayur. 2004. Due date management policies. Handbook of quantitative
supply chain analysis. Springer, 485–554.

Kilinc, Derya, Soroush Saghafian, Stephen Traub. 2019. Dynamic assignment of patients to primary
and secondary inpatient units: Is patience a virtue. Under review .

Koenig, Lane, Allen Dobson, Silver Ho, Jonathan Siegel, David Blumenthal, Joel Weissman. 2003.
Estimating the mission-related costs of teaching hospitals. Health Affairs 22(6) 112–122.

Kohli, Rajiv, Sarv Devaraj. 2003. Measuring information technology payoff: A meta-analysis of
structural variables in firm-level empirical research. Information Systems Research 14(2) 127–
145.

Kolstad, Jonathan. 2013. Information and quality when motivation is intrinsic: Evidence from
surgeon report cards. American Economic Review 103(7) 2875–2910.

Komajda, M, F Follath, K obot Swedberg, J Cleland, JC Aguilar, A Cohen-Solal, R Dietz,
A Gavazzi, WH Van Gilst, R Hobbs, et al. 2003. The Euroheart Failure Survey programme:
a survey on the quality of care among patients with heart failure in Europe: Part 2: treatment.
European heart journal 24(5) 464–474.

Koole, Ger. 1995. A simple proof of the optimality of a threshold policy in a two-server queueing
system. Systems & Control Letters 26(5) 301–303.

Kuntz, Ludwig, Roman Mennicken, Stefan Scholtes. 2014. Stress on the ward: Evidence of safety
tipping points in hospitals. Management Science URL http://dx.doi.org/10.1287/
mnsc.2014.1917. Published Online on May 19, 2014.

Kuperman, Gilad, Julie McGowan. 2013. Potential unintended consequences of health information
exchange. Journal of General Internal Medicine 28(12) 1663–1666.

LaCalle, Eduardo, Elaine Rabin. 2010. Frequent users of emergency departments: the myths, the
data, and the policy implications. Annals of Emergency Medicine 56(1) 42–48.

Lahiri, Atanu, Abraham Seidmann. 2012. Information hangovers in healthcare service systems.
Manufacturing and Service Operations Management 14(4) 634–653.

Lammers, E., J. Adler-Milstein, K. Kocher. 2014. Does health information exchange reduce redun-
dant imaging? Evidence from emergency departments. Medical Care 52(3) 227–234.

Lan, Yingjie, Huina Gao, Michael O Ball, Itir Karaesmen. 2008. Revenue management with limited
demand information. Management Science 54(9) 1594–1609.

Larkin, Gregory Luke, Cynthia Claassen, Andrea Pelletier, Carlos Camargo. 2006. National study
of ambulance transports to United States emergency departments: importance of mental health
problems. Prehospital and Disaster Medicine 21(02) 82–90.

280

http://dx.doi.org/10.1287/mnsc.2014.1917
http://dx.doi.org/10.1287/mnsc.2014.1917


Le, Sidney, Renee Hsia. 2014. Timeliness of care in US emergency departments: An analysis of
newly released metrics from the Centers for Medicare & Medicaid Services. JAMA Internal
Medicine 174(11) 1847–1849.

Lee, Donald, Stefanos Zenios. 2012. An evidence-based incentive system for Medicare’s End-Stage
Renal Disease Program. Management Science 58(6) 1092–1105.

Lee, Jinhyung, Yong-Fang Kuo, James Goodwin. 2013a. The effect of electronic medical record
adoption on outcomes in US hospitals. BMC Health Services Research 13(1) 1.

Lee, Jinhyung, Jeffrey McCullough, Robert Town. 2013b. The impact of health information tech-
nology on hospital productivity. The RAND Journal of Economics 44(3) 545–568.

Lee, Thomas H, Albert Bothe, Glenn D Steele. 2012. How geisinger structures its physicians
compensation to support improvements in quality, efficiency, and volume. Health Affairs
31(9) 2068–2073.

Leisch, Friedrich. 2004. Flexmix: A general framework for finite mixture models and latent class
regression in r. Journal of Statistical Software 11(1).

Lin, Mingfeng, Henry Lucas, Galit Shmueli. 2013. Research commentary-Too big to fail: large
samples and the p-value problem. Information Systems Research 24(4) 906–917.

Litwin, Adam, Ariel Avgar, Peter Pronovost. 2012. Measurement error in performance studies of
health information technology: Lessons from the management literature. Applied Clinical
Informatics 3(2) 210–220.

Long, Elisa F, Kusum S Mathews. 2018. The boarding patient: Effects of ICU and hospital occu-
pancy surges on patient flow. Production and operations management 27(12) 2122–2143.

Ma, Ching-to Albert. 1994. Health care payment systems: cost and quality incentives. Journal of
Economics & Management Strategy 3(1) 93–112.

Ma, Will, David Simchi-Levi. 2017. Online resource allocation under arbitrary arrivals:
Optimal algorithms and tight competitive ratios. Working Paper Available at SSRN:
https://ssrn.com/abstract=2989332.
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