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SUMMARY

Acoustic power transfer, or ultrasonic power transfer (UPT) more specifically, has re-

ceived growing attention as a viable approach for wireless power delivery to low-power

electronic devices. It has found applications in powering biomedical implants, sensors in

sealed metallic enclosures, and sensors deep in the ocean. The design of an efficient UPT

system requires coupled multiphysics modeling to establish strategies toward maximiz-

ing the transferred power. This work, first, investigates different analytical and numerical

models to analyze the performance of UPT systems to increase the transferred power. Var-

ious electromechanical models are developed to represent the transducer (transmitter or

receiver) and overall system dynamics for a broad range of aspect ratios covering the di-

verse UPT applications. The main challenges that limit UPT system efficiency such as

attenuation, power divergence, and reflection due to impedance mismatch issues are in-

vestigated using the developed models. These effects are investigated at the system level

with an application to transfer power through metallic barriers using bonded piezoelectric

disc transducers. A complete system for transferring power from the battery of a trans-

mitter to the DC load of a receiver is designed and simulated, then experimentally tested.

The experimental results of the system agree well with the modeling predictions, and the

system is able to deliver 17.5 W to a DC load with a total DC-to-DC efficiency of 66%.

A second system with a portable and detachable dry-coupled transmitter is also experi-

mentally tested. The dry-coupled system is able to deliver 3 W of DC power with 50%

efficiency from a 9 V battery. Novel approaches using acoustic metamaterials/phononic

crystals are introduced to enhance the efficiency of UPT through wave focusing. Specif-

ically, two 3D phononic crystal structures based on air in a 3D-printed polymer matrix

are introduced to manipulate acoustic waves both under water and in air. Two designs

for gradient-index lenses are fabricated and experimentally characterized to focus acoustic

waves on a piezoelectric receiver, thereby dramatically enhancing the power output. Fi-

xx



nally, acoustic and electrical impedance matching are investigated for sending both power

and data using ultrasonic waves. Several impedance matching techniques are proposed to

maximize transducer bandwidth, power efficiency, as well as sensitivity for underwater data

transfer. A novel approach is introduced for achieving simultaneous power and data trans-

fer using frequency multiplexing with a single transducer. The introduced designs allow

for configurable matching for maximizing power efficiency, maximizing data transfer, or

simultaneously sending power to the transducer while receiving data with lower bandwidth.

xxi



CHAPTER 1

INTRODUCTION

1.1 Motivation

Smart connected electronic devices are becoming ubiquitous in our everyday lives thanks

to developments in ultra-low-power electronic circuits. These circuits allow for the devel-

opment of wireless devices that are capable of sensing and influencing their environments

and communicating their state, all while consuming minimal power. This has motivated

their integration into devices deployed in traditionally inaccessible locations such as inside

the skull [1], in nuclear waste containers [2] or deep in the ocean [3, 4]. Their presence

in such extreme locations prevents powering via wires and requires other practical means

for power delivery. Energy harvesting devices could be used to collect energy from their

environment and convert it into useful electrical energy [5–10]. However, if the ambient

energy is limited, external energy can be supplied using a wireless power transfer system.

Electromagnetic (inductive) wireless power transfer is a popular solution when the sep-

arating distance between the transceivers is small and the medium is air [11–13]. However,

some environments present a challenge for efficient electromagnetic waves propagation.

For example, electromagnetic waves cannot penetrate deep into conductive materials such

as metals. They are also not suitable for underwater applications because of high attenua-

tion. In biomedical applications, strict regulations are imposed on the human exposure to

electromagnetic waves which restricts their usage [14]. Moreover, the energy transfer effi-

ciency of magnetically coupled transducers decreases drastically with increased separation

distance compared to the transceiver size [15].
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Acoustic Power Transfer (APT) or Ultrasonic Power Transfer (UPT)1 systems do not

suffer from these limitations and have recently found applications in transmitting energy

through metallic walls [16–18], powering wireless sensors along industrial pipelines [19,

20], powering bio-medical implants [21], and powering underwater sensors [3, 4], among

others. In each of these applications, ultrasonic waves solve a unique set of challenges for

power transfer and communication. The opportunities for UPT in the biomedical, through-

metal (aerospace and military), and underwater applications are discussed next.

1.2 Opportunities for Ultrasonic Power Transfer

Biomedical technology researchers have been developFing UPT systems for powering and

communicating with miniature implanted medical devices (IMDs). Minute ultrasonic-

powered devices with (sub)millimeter dimensions are investigated for general health mon-

itoring and rehabilitation [22–27], enhancing tumor treatment [28, 29], for neural record-

ing [1, 30] and stimulation [31–37], realizing a brain-machine interface [38, 39], and reti-

nal stimulation [40] to name a few. Ultrasonic power is being considered since the United

States Food and Drug Administration (FDA) limits the electromagnetic power that can be

transmitted safely through the human body to 0.1 mW/mm2 while the limit for ultrasonic

waves is much higher at 7.2 mW/mm2 [41]. Ultrasonic waves also have a much smaller

wavelength compared to electromagnetic waves at the same frequency which allows for

the use of smaller receivers and thus smaller implants. This allows for transmitting at

lower frequencies compared to RF devices which leads to lower attenuation, lower tissue

heating and allows for deeper implants [37, 42]. Ultrasonic power delivery and communi-

cation could be one of the enabling technologies for concepts such as the body area network

(BAN) [43, 44]
1Between the two naming options, the more general is “acoustic power transfer” to include power trans-

fer systems that use any region of the acoustic frequency spectrum. However, the term “ultrasonic power
transfer” is more common since most applications involve frequencies in the ultrasonic regime [15].
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Ultrasonic waves are also the only viable approach for deep underwater wireless power

and data transfer solutions [45]. While optical and radiofrequency (RF) based solutions

exist, their operation is typically limited to short distances on the order of tens of meters

due to the large attenuation of electromagnetic waves [45, 46]. Underwater wireless ultra-

sonic sensor nodes are investigated for ocean monitoring and tracking climate change [47,

48], increasing underwater communication bandwidth [49], tracking marine life [50–52],

and as markers for aiding the navigation of autonomous underwater vehicles [53], among

other applications. They could also be leveraged for concepts such as the underwater in-

ternet of things [54–57]. Most of the devices developed in the underwater literature are

battery-powered which limits their lifespan given the difficulties in retrieving and replac-

ing the batteries. Recent efforts have investigated ultrasonic waves for both powering and

communicating with underwater sensor nodes [3, 4, 58, 59].

Lastly, ultrasonic (acoustic) waves are used to send power and data to electronics placed

inside solid metallic enclosures [60, 61]. Since, sensitive electronics are usually sealed in-

side metallic enclosures to shield them from electromagnetic interference, the presence of

any gaps or slots in the enclosure results in electromagnetic leakage and reduces the shield-

ing performance. Structural gaps are also undesirable to ensure the structural integrity of

the metallic enclosure in scenarios such as powering sensors placed on the external surface

of an aircraft, spacecraft, or submarine. UPT is also used for supplying power to sensors

placed in sealed hazardous environments such as nuclear waste containers. The ability to

send power through metals allows for using sealed structures for sealing the hazard elimi-

nating the risk associated with battery replacement. Weather protection and waterproofing

are among other benefits of UPT, as charging ports introduce the risk of water damage.

Full metal casings coupled with UPT could be a viable approach to remove charging ports

while providing maximum structural integrity for the device.
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1.3 Ultrasonic Power Transfer Challenges

Most of the UPT systems surveyed (Figure 1.1) consist of a piezoceramic transmitter (TX)

connected to an electric power source/circuit, and a piezoelectric receiver (RX) which is

integrated into an electronic device to be powered (or to an electrical storage component).

TX converts the source electric power into mechanical (elastic/acoustic) waves which can

travel through the medium. RX then captures this power and converts it back to usable

electric power with the aid of an energy harvesting circuit and power regulation electronics.

Load

Power source

TX

RX

Acoustic waves

Piezoelectric 
receiver

Piezoelectric 
transmitter

Signal 
conditioning

Figure 1.1: Schematic of a typical wireless UPT system.

Several power loss mechanisms reduce the efficiency of UPT systems. The most im-

portant factors are summarized in Figure 1.2 and they include:

• Attenuation: The amount of power dissipated depends on the medium and the

frequency. For example, biological tissue has large attenuation above 60 dB/m at

1 MHz [62].2 Metals have an attenuation below 50 dB/m at 1 MHz for many al-

loys [63] which is higher than water with an attenuation around 0.3 dB/m at 1 MHz [64].
2An attenuation of 3 dB/m means that half of the power is dissipated as the wave travels 1 m in the

medium.
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• Beam divergence: Some of the power generated by TX diverges in the medium and

never reaches RX. The amount of divergence depends on the aperture of TX and

its size compared to the wavelength which also depends on the frequency. As the

frequency of operation increases, a more focused/directional beam can be generated

and less power diverges in the medium.

• Impedance mismatch: The difference in the acoustic or electrical impedance be-

tween any two successive components of a UPT system causes power to be reflected

and reduces the system efficiency. For example, the acoustic impedance of PZT,

which is the most common material used in piezoelectric transducers (35 MRayl), is

comparable to that of metals (15 MRayl to 60 MRayl for common metals); however,

it is much higher than that of water and tissues (1.5 MRayl). This reduces the effi-

ciency of the system unless effort is made to acoustically and electrically match the

transducer to the medium.

A large portion of the UPT system characteristics depends on its frequency of operation.

Given a system with transducers of a fixed size, as the frequency of operation increases,

the transducers become more directional (beam divergence losses decrease); however, the

power absorbed by the medium increases. The attenuation in the medium is an intrinsic

property that cannot be reduced without changing the medium itself. Thus, the attenuation

imposes a hard limit on the operating frequency, while the divergence losses impose a

softer limit subject to improvement by refocusing the diverged waves. On the other hand, a

given transducer can only operate efficiently if driven near its resonance frequency which

depends on its thickness. Thus, typically larger transducers are required for exciting lower

frequencies efficiently.

The nature of a given UPT application imposes different limitations for UPT system

design. Through-metal UPT is usually used for short distances ranging from a few mil-

limeters to a few centimeters with a little restriction on the size of the transducer. This

allows for minimizing divergence losses by using transducers with large apertures and op-
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Figure 1.2: Loss mechanisms in ultrasonic power transfer systems (adapted from Ref.
[65]).
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erating at a high frequency. In biomedical UPT, the attenuation is higher, and the size of RX

is restricted depending on the location of the implant, but the power requirements are low.

For underwater applications, the attenuation is very low compared to other mediums, and

the transducer size is usually unrestricted. However, the distance requirements are large,

ranging from a few meters to tens of kilometers which restricts the practical frequency

range to lower frequencies to avoid attenuation (typically below 1 MHz down to tens of

kHz). The UPT system in this case becomes limited by divergence losses.

The limits imposed by each UPT application on the transducer shape and operating fre-

quency present new challenges for the modeling and design of the UPT system in general,

and the transducers in particular. Common analytical models for piezoelectric transduc-

ers are derived with certain assumptions about the transducer shape. These assumptions

are seldom satisfied in practical UPT applications which makes it important to state them

clearly, and use the correct model depending on the transducer shape.

1.4 Transducer Modeling and Aspect Ratio Effects

Several analytical techniques exist in the literature to model piezoelectric transducers. Per-

haps the most common are Krimholtz, Leedom, and Matthae (KLM) and Mason [66] equiv-

alent circuit models. These equivalent circuit models are convenient and can be easily sim-

ulated using available circuit analysis tools [67]; however, their accuracy and applicability

depend on the dimensions of the transducer, specifically its aspect ratio (β = h/a where

h is the height or thickness and a is the radius). When derived from first principles (rather

than identified from experiments), KLM and Mason models are best suited for extreme

aspect ratios: the thickness expander plate (thin infinite plate assumption) which can only

be used for very small β, or the length expander bar which is limited to very large β. In

practical APT systems, these assumptions are difficult to satisfy due to size limitations on

the dimensions of RX. Size and frequency constraints lead to transducers with moderate

aspect ratios [68–71].
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Analytical models based on the continuum elastodynamics of the transducers have also

been investigated [72–75]. While these models offer insights into the factors affecting the

power conversion capabilities of the transducers, their applicability is limited to transducers

with extreme aspect ratios. To overcome these limitations experimentally, the parameters

of both the equivalent circuit and analytical models are usually fit to the response of the

actual transducers when they cannot be accurately modeled as a thin bar or a thin plate.

This limits the utility of such models when the response of the transducer is critical to

UPT system performance and prevents optimization in the design phase. The limits of

existing models, as well as new models based on the Rayleigh, and Bishop rod theories are

discussed in Chapter 2 [76].

Each application of UPT has a commonly used range for the transducers aspect ratio.

Through-metal applications usually use thin-plate transducers operating at high frequen-

cies. Underwater systems, on the other hand, use lower frequencies with moderate aspect

ratio transducers while biomedical applications use large plate transducers as transmitters

and small moderate aspect ratio transducers as receivers. This introduces a different set of

challenges for each system related to either attenuation, divergence, impedance mismatch,

or a combination of them. These challenges are analyzed while studying their most relevant

applications in the following sections, and throughout the dissertation.

1.5 System-Level Analysis and Efficiency

Through-metal UPT is highly efficient compared to other UPT applications owing to low

attenuation in metals and low distance requirements which allow for the use of highly di-

rectional thin plate transducers operating at high frequencies (typically in the neighborhood

of 1 MHz) for power transfer. These factors facilitate neglecting diffraction losses in the

system and allow for using simple 1D models to study its performance. The 1D approxima-

tions facilitate studying the interactions between different components of the UPT systems
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such as the transducers, the driving circuit, and the energy harvesting circuits which helps

in pinpointing the key factors limiting the system efficiency.

Through-metal UPT was first suggested by Hu et al. in 2003 [16]. Since then, multi-

ple research groups have investigated its realization albeit with different motivations. The

NASA Jet Propulsion Laboratory (JPL) explored supplying high power through titanium

barriers for space exploration applications [77]. They were able to power a 100 W in-

candescent lamp with a peak ultrasonic efficiency of 88% using air-backed piezoelectric

transducers operating at 750 KHz [78]. They later demonstrated 1 kW of power transfer

with 84% ultrasonic efficiency using a pair of Tonpliz transducers operating at 25 kHz [79].

Researchers from the Rensselaer Polytechnic Institute focused on simultaneously transmit-

ting power and data transfer through thick steel barriers (submarine steel) [80, 81]. They

demonstrated simultaneous 50 W (@1MHz) power transfer and 17.37 Mbps (@4MHz) data

transfer using two separate transducers mounted on the same 2.5” thick steel wall [2]. They

also tested the limits of power transfer using 2.5 cm diameter piezoelectric tiles operating at

1 MHz and demonstrated 141 W power transfer with an ultrasonic efficiency of 67% before

failure [82].

Most of the surveyed through-metal UPT literature only reported the measured ultra-

sonic (AC-to-AC) efficiency from simulations [16, 78, 83–85] or experiments [77, 82, 86,

87]. Attempts to compare experimental to simulated AC-to-AC efficiency showed signif-

icant discrepancies [88, 89]. Moreover, only a few publications discussed the efficiency

of the system with energy harvesting electronics. Lawry et al. [2], Yang et al. [90] and

Tseng et al. [91] reported the AC-to-DC efficiency by including a full-bridge rectifier

in their experiments; however, they did not report the overall DC-to-DC efficiency which

includes the driving electronics.

The research discussed so far has focused on permanently bonded systems in which

both the transmitting and the receiving transducers are meant to remain adhered to the

metallic enclosure. For charging portable devices, and for other devices that do not require

9



continuous power delivery, it is useful to have a detachable charger which is only used when

the device needs to be supplied with power. Moss et al. [92] developed a detachable UPT

system that uses attracting magnets to hold the transducers while in operation. Their design,

however, required the use of a liquid couplant which is inconvenient since it contaminates

the surface, or drys out and requires frequent reapplication. An approach for simulating,

realizing, and characterizing a complete through-metal UPT system with dry coupling is

discussed in Chapter 3.

1.6 Reducing Beam Divergence in Ultrasonic Power Transfer Systems

The efficiency and range of a UPT system can be improved through innovative solutions

aiming to improve the directivity of TX and focus energy on RX while operating at lower

frequencies. This is particularly useful for underwater applications to power wireless nodes

placed deep in the ocean, for example. Phononic crystals (PCs) and metamaterial-based

approaches have shown promising results for controlling acoustic waves in space, and are

investigated for enhancing UPT in Chapter 4 [93, 94].

1.6.1 Phononic Crystals

PCs are ordered engineered structures consisting of a periodic array of inclusions in a ho-

mogeneous background [95]. The inclusions are usually made from materials that have a

large impedance contrast with respect to the background medium. The periodicity of the

inclusions introduces wave bandgaps due to destructive interference of the scattered wave

which is known as Bragg scattering. The first Bragg bandgap happens when the wave-

length of the incident waves is twice the scattering periodicity. For larger wavelengths,

the PC can be considered as a homogeneous material with effective properties that depend

on the shape and size (their volumetric filling fraction) of the inclusions in addition to the

material properties of both the background medium and the inclusions. PCs are studied

by considering a unit cell of the crystal and assuming periodic boundary conditions. The

10



effective crystal properties ( wave speed and acoustic impedance) can be deduced by solv-

ing an eigenvalue problem associated with the periodic boundaries. These properties could

then be engineered to desirable values by changing the shape and size of the inclusions.

1.6.2 Gradient Index Phononic Crystals in Water

Gradient-Index Phononic Crystals (GRIN-PCs) allow for engineered control of wave prop-

agation beyond what could be achieved using traditional materials. In GRIN-PCs, the ef-

fective refractive index profile is varied in space by gradually adjusting the lattice structure

of the material, thereby steering the direction of propagating waves. Since the effective

acoustic impedance usually follows the gradual variation of the refractive index, reflec-

tions that might arise from the steering process can be minimized. Different designs for

gradient-based and gradient-index materials have been suggested to guide [96, 97], mode-

convert[98–100], focus [101–107], compress [108], absorb [109–111], transmit [112] and

retroreflect [113] elastic and acoustic waves, in addition to other exotic applications such as

realizing acoustic black holes [114] and asymmetric transmission [115]. Practical realiza-

tions of GRIN-PCs have focused on 2D devices as in Lamb [116–118] and Rayleigh [99,

119] waves. Other realizations involved 2.5D approaches in which the variation of the

refractive index occurs in a single plane [120–125].

In underwater acoustic applications, metals are commonly used to construct PCs [103,

125–129]. Since manufacturing metals into complex 3D structures is a challenging task,

most of the literature has been limited to 2.5D realizations in the form of ordered metal-

lic rods or shells. Additive manufacturing presents a viable approach for fabricating or-

dered 3D structures; however, 3D printing complex metallic structures is still a challenging

task [130].

In-air realization of acoustic GRIN-PCs has been recently reported for sonic frequen-

cies [131]. The large impedance contrast between 3D-printed polymers and air was used

to achieve the gradient-index variation required to enable a GRIN-PC Luneburg lens. The

11



same approach, however, cannot be easily applied to GRIN-PCs for underwater applica-

tions, since the impedance contrast between polymers and water is relatively small. A new

design for underwater GRIN-PCs using 3D-printed polymers as the background material

and air as the inclusion material is discussed in Chapter 4 with application towards enhanc-

ing the performance of an underwater UPT systems.

1.6.3 Gradient Index Phononic Crystals in Air

A few publications [15, 132] have looked into using acoustic power to transfer power

through air mainly due to the huge impedance mismatch between air and piezoelectric

materials which reduces the efficiency of the system significantly. Nevertheless, the ef-

ficiency of in-air power transfer systems could be significantly enhanced by focusing the

transmitted waves at RX [133, 134]. Moreover, audio-frequency acoustic waves, i.e., sound

waves, are abundantly available in everyday life, they exhibit a low power density, which

has limited the power harvested from air-borne sound to mostly nano-Watt level [135]. To

efficiently convert acoustic energy to electrical power, sound needs to be focused and lo-

calized at RX location. A GRIN-PC solution for focusing sound waves in air could thus be

used for enhancing both energy harvesting systems and power transfer systems.

While the literature on acoustic power transfer in air is limited, many researchers have

looked into focusing acoustic waves for enhancing the performance of sound energy har-

vesters. For example, Helmholtz resonators with energy harvesters built into their cavity

walls have been proposed to localize airflow energy with various configurations [136–139].

Other forms of resonators, such as tube and quarter-wave resonators, have also been used

to harvest acoustic energy by combining them with piezoelectric diaphragms [140, 141].

Acoustic/elastic phononic crystals (PCs) and metamaterials have also been proposed to en-

hance the performance of energy harvesters by focusing or localizing acoustic/elastic wave

energy at the harvester location [142–145]. Other effort includes the use of metasurfaces
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by coiling up space for the confinement and enhanced harvesting of acoustic energy [146]

as well as spatial grading to trap and harvest elastic wave energy [147].

GRIN-PCs have also been used to focus acoustic waves [148]. Climente et al. [102]

fabricated a 2D gradient index sonic crystal lens based on the hyperbolic secant profile to

focus airborne sound. More recently, along with advancements in 3D printing technology,

Xie et al. [131] succeeded in fabricating 2.5D and 3D Luneburg lenses capable of focus-

ing acoustic waves in air. The circular/spherical (in 2D/3D) profile of the Luneburg lens

allows incident plane waves to be focused on the other side of the lens regardless of their

direction. This was exploited to enhance the performance of ultrasonic imaging using a

2.5D lens operating around 40 kHz [131]; however, no numerical or experimental results

were reported for the 3D Luneburg lens. Hyun et al. [149] designed a 2.5D GRIN-PC lens

made of 3D-printed ABS cylinders to focus acoustic waves between 250 Hz and 1 kHz on

an energy harvester (receiver) with a peak observed in an acoustic duct system.

In-air implementations of GRIN-PC lenses for enhancing sound energy harvesting and

power transfer are discussed in Chapter 4.

1.7 Acoustic and Electrical Impedance Matching for Power and Data Transfer

Power reflection due to impedance mismatch should be minimized in order to maximize

the system efficiency. However, if the power reflection is controlled (modulated) through

varying the electrical impedance connected to RX, it could be used to transmit data back to

the source. This is known as impedance modulation or backscatter communication, and it

has been investigated by researchers from different disciplines simultaneously with UPT [1,

3, 37, 91, 150–152].

The simultaneous power and data transfer ultrasonic systems in the literature included

a PZT transmitter which is connected to an electrical power source (power amplifier) and

sends power to a piezoelectric receiver which is either connected to a sensor for collect-

ing data or an actuator for providing some stimulation to its environment. Depending on
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the system complexity, communication between the two devices could be designed so that

data is only sent from TX to the RX (downlink communication), i.e., for sending excitation

commands [2, 31, 32, 34, 36, 153], or from RX to TX only (uplink communication) to

transmit sensor data and device status [1, 4, 22, 24, 26, 27, 30, 91, 154–157], or in both

directions either simultaneously (full-duplex) [81, 158] or in turns (half-duplex/time mul-

tiplexing) [37, 80, 83, 159–161]. Downlink communication can be as simple as switching

between turning TX on and off, i.e., on-off keying (OOK) [32], or the data could be packed

in narrow frequency communication channels such as orthogonal frequency division mul-

tiplexing (OFDM) for a higher throughput [2].

Uplink communication has more restrictions compared to downlink since the power

available to the wireless node is limited. While active approaches (exciting the transducer to

send data) have been proposed for uplink communication, their realization usually involves

toggling between storing enough power and transmitting the uplink data [4, 24]. This

limits the uplink throughput since no communication occurs while the wireless node is

being charged. It also requires the use of a large capacitor or a battery to store the data

which might not be feasible in space-limited applications such as in biomedical implants.

Ultrasonic backscatter is a passive uplink communication approach in which the re-

flected ultrasonic signal from RX is modulated to send the uplink data. Backscattering

works by changing the electrical impedance connected to the piezoelectric receiver which

in turn changes its acoustic impedance and the amplitude of the reflected ultrasonic signal.

By switching between absorbing and reflecting the ultrasonic waves, uplink communica-

tion could be established with minimal power from RX. Only a low-power single transistor

with a driving circuit is required to establish uplink communication using backscatter which

greatly reduces the hardware complexity compared to active approaches. The majority of

the surveyed literature incorporated some variation of backscattering in their simultaneous

ultrasonic power and data transfer system designs [26, 58, 81, 159].
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A fundamental limitation in state-of-the-art simultaneous power and backscatter sys-

tems is that for communication to happen, incident ultrasonic power intended for powering

the system needs to be reflected. This reduces the power available to the wireless device,

limiting its range and throughput. Ozeri et al. [155] attempted to address this by imposing

a small change in the load connected to the transducer instead of completely shorting it.

However, this approach only offers a compromise between communication sensitivity and

power harvesting.

Another limitation commonly acknowledged in the biomedical literature is the use of

commercial ultrasound transducers as power and data transmitters for convenience [34, 37,

59, 161]. Since commercial transducers are usually optimized for bandwidth (for imaging

and NDT applications), their sensitivity and power conversion efficiency is much lower

than those of a transducer optimized for low loss applications. The performance of the

developed simultaneous power and backscatter systems could thus benefit from optimizing

the transmitter for simultaneous power and data transfer operation.

Acoustic and electrical impedance matching for simultaneous power transfer and backscat-

tering communication is discussed in Chapter 5.

1.8 Dissertation Outline

The rest of the dissertation is organized as follows. First, the background, opportunities,

and challenges for using acoustic waves to transfer energy through the human body, through

metals, and underwater are presented in Chapter 1.

In Chapter 2, standard theories for modeling thickness-mode piezoelectric transducers

are reviewed. Models based on the Rayleigh and Bishop rod theories are then developed to

analyze transducers (transmitter or receiver) with various aspect ratios. Results from these

models are compared with experimental data and finite-element analysis to determine the

range of aspect ratios in which they are valid. In addition, fluid loading effects on the

predictions of all models are investigated. The resulting models are used to analyze the
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effect of aspect ratio on the performance of the transducer when operated as TX or RX in

an UPT setting.

Chapter 3 covers a system-level study of ultrasonic power transfer through metals in

which power is delivered from an electrical DC source to a DC load. The chapter covers

a typical configuration in which the transducers are bonded to the metallic barrier, as well

as a new design for achieving efficient power transfer with a detachable dry-coupled trans-

mitter. Transmission line 1D models based on the transfer matrix method are developed for

analyzing the performance of the ultrasonic system. The analytical predictions of key sys-

tem parameters such as the ultrasonic efficiency and voltage transfer function are compared

to experimental results and numerical simulations. The efficiency of the different electrical

and mechanical components of the system are discussed, as well as, the overall DC-to-DC

efficiency of the system, highlighting bottlenecks in system performance. A dry-coupled

detachable through-metal UPT is also developed to provide efficient power transfer without

the need for a liquid couplant. Low attenuation soft elastomers are experimentally tested

with a magnetic setup to evaluate the dry-coupled efficiency. Samples with different ma-

terials and thicknesses are tested to select the best configuration for the dry-coupling. A

portable/battery-operated detachable power transmitter is then fabricated, and the DC-to-

DC operation of the system is characterized experimentally to find the power transfer levels

as well as the total system efficiency.

Chapter 4 is dedicated to the reduction of divergence losses through wave focusing and

collimation. Two designs for a phononic crystal based lens for in-air and underwater oper-

ation are introduced to enhance the power output of a UPT system. An acoustic phononic

crystal based on structured air inclusions in a 3D-printed polymer is introduced for focus-

ing ultrasonic waves under water. The GRIN-PC lens is simulated using the finite element

method, 3D-printed, then experimentally verified. Two lenses are used at the transmitter

and receiver of an underwater UPT system to enhance its performance. A second GRIN-PC

targeting in-air operation in the audio frequency range is designed and simulated using the
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finite element method. The 3D printed lens is experimentally tested to validate its design.

It is then used to enhance the performance of a piezoelectric diaphragm receiver placed

at its focal point. The output power enhancement due to the introduction of the lens is

experimentally verified for different resistor values.

Chapter 5 studies the effect of acoustic and electrical impedance matching on the per-

formance of an ultrasonic system designed for simultaneous power and data transfer using

impedance modulation. The factors affecting power/signal reflection due to impedance

mismatch are analyzed analytically. The effect of using one and two acoustic matching

layers on the bandwidth and sensitivity of RX are compared analytically. An approach for

simultaneous acoustic and electrical impedance matching is introduced to maximize the

bandwidth of the transducer. Several air-backed underwater transducers with no acoustic

matching and with two-layer acoustic matching are fabricated. Their electrical and acoustic

reflection as well as their electrical impedance are experimentally measured and compared

to analytical predictions. The effect of varying the acoustic matching layers’ thickness on

the electrical impedance is also determined. A circuit for maximizing the bandwidth and

sensitivity of the transducer for data transfer is then tested experimentally. Another circuit

for achieving uninterrupted simultaneous power and data transfer using a single transducer

is also implemented and tested.

Finally, Chapter 6 discusses the main conclusions of this work. The main contributions

to the literature are highlighted, and potential future work is outlined.
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CHAPTER 2

ASPECT RATIO-DEPENDENT PIEZOELECTRIC TRANSMITTER AND

RECEIVER DYNAMICS

The design of an efficient UPT system requires accurate models to describe its individ-

ual components as well as the interaction between them. Most of the available analytical

models for the bulk piezoelectric transducers used in UPT are limited to either thin rod or

thin plate transducers. However, transducers with moderate aspect ratios are often used,

especially at the receiver end.

In this chapter, several continuum analytical models are derived from first principles to

approximate the response of a thickness-mode piezoelectric transducer, where each model

is applicable within a specific range of aspect ratios. The validity range of the models

are investigated by comparing their numerical predictions to the values obtained using

finite element method (FEM) simulations as well as experimental measurements of the

impedance of thickness-mode PZT transducers. The introduced models are represented in

S-parameters (i.e. scattering parameters) matrix form [162–164], which can be easily im-

ported to the abundantly available circuit simulators such as those used in Chapter 3. This

facilitates integrating their design in conjunction with other electrical components involved

in the UPT system. The analytical and numerical methods are then used to analyze the

effect of aspect ratio on the generated pressure from the transducers when used as TX and

on the generated electrical power when used as RX.

In the following, dynamics of thickness-mode piezoelectric transducers (TX or RX) are

studied analytically, and transducer models based on the thin rod, Rayleigh (also known

as Rayleigh-Love), Bishop (also known as Rayleigh-Bishop) and thin plate assumptions

are derived using energy approaches in Section 2.1. The electrical impedance of select

transducers is measured experimentally and compared to the analytical predictions and to
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numerical simulations in Section 2.2. The effect of transducer’s aspect ratio on its per-

formance is analyzed when used as a TX in Section 2.3 and as an RX in Section 2.4. A

summary of the findings of the work and concluding remarks are presented in Section 2.5.

2.1 Thickness-Mode Dynamics of a Piezoelectric Transducer with Circular Cross

Section

A continuum of piezoelectric material is governed by the piezoelectric constitutive equa-

tions, which are given in their stress-charge form by:

T = CES − eTE (2.1)

D = eS + εSE (2.2)

where T and S are the mechanical stress and strain vectors, E and D are the electric

field and electric displacement vectors respectively, CE is the stiffness matrix at constant

electric field, εs is the electric permittivity matrix at constant strain and e is the piezoelectric

coupling matrix. Structural (mechanical) and dielectric losses are considered in the form

of complex elastic and dielectric constants:

CE = CE
undamped (1 + jγ) ,

εS = εSundamped(1 + jδ) (2.3)

where γ and δ are the structural and dielectric loss factors.

A cylindrical piezoelectric transducer with height h and radius a is considered (Fig-

ure 2.1a). The transducer is poled in the longitudinal (z) direction, and thin metallic elec-

trodes are deposited on its circular faces. The lateral components of the electric field and the

electric displacement vanish; therefore, Equation (2.1) and Equation (2.2) can be expanded
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Figure 2.1: (a) Schematic of a piezoelectric rod transducer, (b) three-port element repre-
sentation, and (c) incident and reflected voltage and pressure waves on the transducer.

and simplified to:

T1 = C11S1 + C12S2 + C13S3 − e31E3 (2.4)

T2 = C12S1 + C22S2 + C13S3 − e31E3 (2.5)

T3 = C13S1 + C13S2 + C33S3 − e33E3 (2.6)

T4 = C44S4 (2.7)

T5 = C44S5 (2.8)

T6 =
C11 − C12

2
S6 (2.9)

D3 = e31S1 + e31S2 + e33S3 + ε33E3. (2.10)

where the index 3 indicates the polarization direction, and (1,2) indicate the directions

normal to the polarization vectors. Indices (4-6) follow Voigt notation to represent shear

stresses and strains. In the cylindrical coordinates (r, θ, z), the mechanical strain is related
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to the displacement field by [165]:

S1 =
dur
dr

, S2 =
1

r

(
duθ
dθ

+ ur

)
, S3 =

duz
dz

,

S4 =
1

r

duz
dθ

+
duθ
dz

, S5 =
dur
dz

+
duz
dr

S6 =
1

r

(
dur
dθ
− uθ

)
+
duθ
dr

(2.11)

where ur, uθ and uz are the displacements in r, θ and z directions respectively. The modified

Hamilton’s principle for a piezoelectric volume is given by [166, 167]:

∫ t2

t1

δ
(
T − U +We +Wnc

)
dt = 0 (2.12)

where T is the total kinetic energy, U is the total potential (elastic) energy,We is the electric

energy stored in the transducer, and Wnc is the work due to the non-conservative forces

acting on the rod including the external mechanical and electrical forces. These terms are

given by:

T =
1

2

∫
V

ρ
(
u̇2r + u̇2θ + u̇2z

)
dV (2.13)

U =
1

2

∫
V

6∑
i=1

TisidV (2.14)

We =
1

2

∫
V

E3D3dV (2.15)

Wnc =

∫
S

(
trur + tθuθ + tzuz − qφ

)
dA (2.16)

where ρ is the mass density, V is the volume, S is the external surface of the transducer, t is

the external traction acting on the surface of the transducer, q is the external surface charge

density, and φ is the electric potential applied to the surface.

The response of the transducer cannot be estimated analytically unless certain assump-

tions are made regarding the displacement fields inside it. These assumptions can be made
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when the aspect ratio (β = h/a) of the transducer is very high (thin rod, Rayleigh, and

Bishop theories) or very low (thickness vibration of an infinite plate).

2.1.1 Classical Thin-Rod Model

For a symmetric thin rod transducer, the lateral and shear stresses are assumed to be very

small i.e.,:

T1 = T2 = T4 = T5 = T6 = 0 (2.17)

The longitudinal displacement uz is assumed to have the form:

uz = u (z, t) (2.18)

and the electric potential φ(z, t) is related to the electric field E3 by:

E3 = −∂φ
∂z
. (2.19)

Substituting Equation (2.17) - Equation (2.19) into Equation (2.11) and Equation (2.4) -

Equation (2.10) yields:

T3 = C33u
(1,0) (z, t) + e33φ

(1,0) (z, t)−
2C13

(
C13u

(1,0) (z, t) + e31φ
(1,0) (z, t)

)
C11 + C12

(2.20)

D3 = e33u
(1,0) (z, t)− ε33φ(1,0) (z, t)−

2e31
(
C13u

(1,0) (z, t) + e31φ
(1,0) (z, t)

)
C11 + C12

(2.21)

where the superscript (m,n) indicates themth derivative with respect to z and the nth deriva-

tive with respect to t. Substituting Equation (2.17) - Equation (2.21) in Equation (2.13) -

Equation (2.16) and neglecting the lateral inertia terms (u̇r = u̇θ = 0) yield the formula for

the conservative energies inside the rod in terms of the longitudinal displacement u(z, t)
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and electric potential φ(z, t):

T =
1

2

∫
V

ρ
(
u(0,1) (z, t)2

)
dV (2.22)

U =
1

2

∫
V

((
C33 −

2C2
13

C11 + C12

)
u(1,0) (z, t)2

+

(
e33 −

2C13e31
C11 + C12

)
φ(1,0) (z, t)u(1,0) (z, t)

)
dV (2.23)

We =
1

2

∫
V

((
ε33 +

2e231
C11 + C12

)
φ(1,0) (z, t)2

−
(
e33 −

2C13e31
C11 + C12

)
u(1,0) (z, t)φ(1,0) (z, t)

)
dV (2.24)

For the rod shown in Figure 2.1a, the non-conservative work is given by:

Wnc = P1 (t)u (0, t) + P2 (t)u (h, t)−Q (t)φ (h, t) (2.25)

where Q(t) is the total electric charge flowing into or from the transducer’s domain. Sub-

stituting Equation (2.22) - Equation (2.24) back into Equation (2.12), taking the variation

of the integral with respect to u(z, t) and φ(z, t) and performing integration by parts yields

the electromechanical governing equations:

ρu(0,2) (z, t)− Cu(2,0) (z, t) + eφ(2,0) (z, t) = 0 (2.26)

eu(2,0) (z, t)− εφ(2,0) (z, t) = 0 (2.27)

and the boundary conditions:

−Ap
(
Cu(1,0) (z, t) + eφ(1,0) (z, t)

)
+ P1,2 (t) = 0

∣∣
z=0,h

(2.28)

δu (z, t) = 0|z=0,h (2.29)

Ap
(
eu(1,0) (z, t)− εφ(1,0) (z, t)

)
−Q (t) = 0

∣∣
z=0,h

(2.30)

δφ (z, t) = 0|z=0,h (2.31)
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where

C = C33 −
2C2

13

C11 + C12

, e = e33 −
2C13e31
C11 + C12

,

ε = ε33 +
2e231

C11 + C12

(2.32)

and Ap is the cross-sectional area of the transducer. Equation (2.28) and Equation (2.29)

are the mechanical natural and essential boundary conditions, while Equation (2.30) and

Equation (2.31) are the electrical natural and essential boundary conditions, respectively.

The solution of Equation (2.27) is obtained by integration:

φ (z, t) =
e

ε
u (z, t) + c1z + c2 (2.33)

The value of c1 could be found by substituting Equation (2.33) in the electrical natural

boundary condition Equation (2.30)

c1 =
Q (t)

Apε
(2.34)

The value of c2 is arbitrary since it represents the absolute electric potential. The potential

difference between the electrodes is given by:

V (t) = φ(h, t)− φ(0, t)

=
h

Apε
Q (t) +

e

ε
(u (h, t)− u (0, t)) (2.35)

Substituting Equation (2.27) in the first equation of motion, Equation (2.26), yields the

mechanical wave equation:

ρu(0,2) (z, t)− CD
u(2,0) (z, t) = 0 (2.36)
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where C
D

= C + e2/ε is the reduced stiffness of the bar at constant charge (open-circuit

conditions). Assuming harmonic plane-wave solution of the form

u (z, t) = Aue
j(ωt−kz) +Bue

j(ωt+kz) (2.37)

where k = ω/c is the wavenumber, ω is the angular frequency of the wave, c = (C
D
/ρ)1/2

is the speed of sound in the transducer, and Au, Bu are the complex amplitudes of the for-

ward and backward traveling displacement waves. The value ofAu andBu can be evaluated

from the mechanical boundary conditions given by Equation (2.28) or Equation (2.29).

A more general approach for the estimation of the response of the transducer is to con-

sider it as a 3-port element and focus on relating the inputs and outputs of these elements

in a generic sense. In this approach, the interface matching conditions given by Equa-

tion (2.28), Equation (2.29) and the electrical boundary conditions Equation (2.35) can be

used to express a scattering matrix which relates incident and reflected waves at each port

(both electrical and mechanical waves). The transducer scattering matrix S is given by:


B1

B2

Bv

 = S


A1

A2

Av

 =


S11 S12 S13

S21 S22 S23

S31 S32 S33



A1

A2

Av

 (2.38)

where A1, B1, A2, B2 are the incident and reflected pressure waves on faces 1 and 2, while

Av, Bv are the incident and reflected voltage waves on the electrodes as shown in Fig-

ure 2.1c.

To evaluate the scattering matrix, the total pressure on both faces P1(t) and P2(t) as well

as the voltage across the electrodes V (t) are written in the form of incident and reflected
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waves, as shown in Figure 2.1c, in the form:

P1 (z1, t) = A1e
i(ωt−kmz1) +B1e

i(ωt+kmz1) (2.39)

P2 (z2, t) = A2e
i(ωt−kmz2) +B2e

i(ωt+kmz2) (2.40)

V (t) = (Av +Bv) e
iωt (2.41)

and the acoustic velocities (vn (zn, t)), and electric current flowing into the transducer are

then given by:

v1 (z1, t) =
1

Zm

(
A1e

j(ωt−kmz1) −B1e
i(ωt+kmz1)

)
(2.42)

v2 (z2, t) =
1

Zm

(
A2e

j(ωt−kmz2) −B2e
j(ωt+kmz2)

)
(2.43)

I (t) =
Av −Bv

Ze
ejωt (2.44)

where km = ω/cm is the wavenumber of the external medium, Zm = ρmcm is the acoustic

impedance of the external medium, ρm and cm are the mass density and speed of sound in

the surrounding medium (surrounding fluid) and Ze is an the reference electric impedance

usually chosen to be 50 Ω.

Applying continuity conditions to both the mechanical and electrical interfaces:

u(0,1) (0, t) = v1 (0, t) , u(0,1) (h, t) = −v2 (0, t) (2.45)

I(t) =
dQ

dt
(2.46)
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and substituting Equation (2.39) - Equation (2.41) in Equation (2.28), Equation (2.35), and

Equation (2.45) yields:

ApZeeω (A2 +B2) e
jhk + j (Av −Bv) e

jhke

+ jApZekω
(
Au −Bue

2jhk
) (
e2 + C

D
ε
)

= 0 (2.47)

(Av −Bv) e+−jApZeωε (A1 +B1) + ApZekω (Au −Bu)
(
e2 + C

D
ε
)

= 0 (2.48)

ε(Av +Bv) =
(
A
(
−1 + e−jhk

)
+B

(
−1 + ejhk

))
e− j (Av −Bv)h

ApZeω
(2.49)

jωApZm (Au +Bu) = A1 −B1 (2.50)

jωApZme
−jhk (Au +Bue

2jhk
)

= −A2 +B2 (2.51)

Equation (2.47) - Equation (2.51) can be arranged into matrix form:

M1

[
B1 B2 Bv Au Bu

]T
= M2

[
A1 A2 Av

]T
(2.52)

where M1 and M2 are (5x5) and (5x3) system matrices. The scattering matrix is then given

by:

S = M3M
−1
1 M2 (2.53)

where

M3 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 (2.54)
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2.1.2 Rayleigh Model

The thin rod assumption neglects the lateral inertia of the rod which limits its applicability

to rods with very large β values (i.e. very slender rods). The Rayleigh rod theory includes

the effect of lateral inertia by assuming the displacement fields for an axisymmetric thin

rod to have the form [165]:

uz = u(z, t), ur = −νru(1,0)(z, t), uθ = 0 (2.55)

where ν = C13/(C11 +C12) is Poisson’s ratio. This model can be used for transducers with

lower aspect ratios up to the limit where radial and shear deformations start affecting the

response of the transducer.

As for the thin-rod case, the electric potential is assumed to have the form φ(z, t).

Equation (2.55) can then be used alongside Equation (2.33) to express the strain fields in-

side the rod by substituting them in Equation (2.11), which in turn can be used to express

the stresses and electric displacements through Equation (2.4) - Equation (2.10). Substi-

tuting everything into the energy equations Equation (2.13) - Equation (2.16), neglecting

the shear stresses (T4 and T5), taking the variation of the integral with respect to u(z, t)

and φ(z, t), then performing integration by parts yields the electromechanical governing

equations:

Apρu
(0,2) (z, t) = ApCu

(2,0) (z, t) + Apeφ
(2,0) (z, t) + Ipν

2ρu(2,2) (z, t) (2.56)

eu(2,0) (z, t)− ε33φ(2,0) (z, t) = 0 (2.57)

and the boundary conditions:

−ApCu(1,0) (z, t)− Apeφ(1,0) (z, t)− Ipν2ρu(1,2) (z, t) + P1,2 (t) = 0|z=0,h (2.58)
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δu (z, t) = 0|z=0,h (2.59)

Ap
(
eu(1,0) (z, t)− ε33φ(1,0) (z, t)

)
−Q (t) = 0|z=0,h (2.60)

δφ (z, t) = 0|z=0,h (2.61)

where Ip is the polar moment of inertia of the rod. The electrical equation of motion

Equation (2.57) has the same form as the thin-rod case Equation (2.27), and thus its solution

is also given by Equation (2.35) except for replacing the modified electric permittivity (ε)

with (ε33). Substituting back in Equation (2.56) yields:

Apρu
(0,2) (z, t) = ApC

D
u(2,0) (z, t) + Ipν

2ρu(2,2) (z, t) (2.62)

The solution of Equation (2.62) can be written in the form:

u (z, t) =
(
Aue

−jkz +Bue
jkz
)
ejωt (2.63)

where k is given by:

k = ω

√
Apρ

ApC
D − Ipν2ρω2

(2.64)

As with the thin rod case, the electrical and mechanical continuity conditions can be used

to construct the scattering matrix using Equation (2.53).

2.1.3 Bishop Model

The Bishop rod theory accounts for the coupling between longitudinal and radial displace-

ments inside the rod through the shear elastic modulus C44. Following the same energy

approach yields slightly more involved governing equations

Apρu
(0,2) (z, t) + C44Ipγ

2u(4,0) (z, t) =

ApCu
(2,0) (z, t) + Apeφ

(2,0) (z, t) + Ipν
2ρu(2,2) (z, t) (2.65)

29



eu(2,0) (z, t)− ε33φ(2,0) (z, t) = 0 (2.66)

and boundary conditions:

− ApCu(1,0) (z, t)− Apeφ(1,0) (z, t) +

Ipν
2
(
C44u

(3,0) (z, t)− ρu(1,2) (z, t)
)

+ P1,2 (t) = 0

∣∣∣∣
z=0,h

(2.67)

u(2,0) (z, t) = 0
∣∣
z=0,h

, δu (z, t) = 0|z=0,h (2.68)

δu(1,0) (z, t) = 0
∣∣
z=0,h

(2.69)

Ap
(
eu(1,0) (z, t)− ε33φ(1,0) (z, t)

)
−Q (t) = 0

∣∣
z=0,h

(2.70)

δφ (z, t) = 0|z=0,h (2.71)

Again, the electrical governing equations are the same as those obtained from the Rayleigh

assumption, yielding a simplified mechanical governing equation in the form:

Apρu
(0,2) (z, t) + C44Ipν

2u(4,0) (z, t) = ApC
D
u(2,0) (z, t) + Ipν

2ρu(2,2) (z, t) (2.72)

The solution of Equation (2.72) can be written in the form:

u(z, t) =
(
Au1e

−jk1z +Bu1e
jk1z + Au2e

−jk2z +Bu2e
jk2z
)
ejωt (2.73)

where

k21,2 =
ρIpν

2ω2 − ApC
D − Ape2

2C44Ipν2

±

√
4ApC44Ipν2ρω2 +

(
ApC

D
+ Ape2

ε
− Ipν2ρω2

)2
2C44Ipν2

(2.74)
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As with the Rayleigh case, the electrical and mechanical interface matching conditions

can be used to construct the scattering matrix. The main difference is the additional two

mechanical boundary equations introduced in Equation (2.67) - Equation (2.69).

The interface matching equations could then be arranged in matrix form:

M1

[
B1 B2 Bv Au1 Bu1 Au2 Bu2

]T
= M2

[
A1 A2 Av

]T
(2.75)

where, in this case, M1 and M2 are (7x7) and (7x3) system matrices. The scattering matrix

is then given by:

S = M3M
−1
1 M2 (2.76)

and

M3 =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

 (2.77)

2.1.4 Infinite Plate Model

When the lateral dimensions of the transducer are much larger than its thickness (very low

aspect ratio β), the lateral strains are neglected compared to the strain in the thickness

direction, and only the thickness vibrations of the transducer are taken into consideration.

i.e.:

uz = u(z, t)

Following a similar procedure as the thin rod case and substituting S3 = duz
dz

= u(1,0)(z, t)

into Equation (2.6) and Equation (2.10) yields:

T3 = C33u
(1,0) (z, t) + e33φ

(1,0)(z, t) (2.78)
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D3 = e33u
(1,0) (z, t)− ε33φ(1,0) (z, t) (2.79)

Substituting Equation (2.78) and Equation (2.79) in the energy Equations [ Equation (2.13)

- Equation (2.16)] and then into Hamilton’s principle Equation (2.12) then taking the vari-

ation of the integral with respect to u(z, t) and φ(z, t) and performing integration by parts

yields the electromechanical governing equations:

ρu(0,2) (z, t)− Cu(2,0) (z, t) + e33φ
(2,0) (z, t) = 0 (2.80)

e33u
(2,0) (z, t)− ε33φ(2,0) (z, t) = 0 (2.81)

and boundary conditions:

−Ap
(
C33u

(1,0) (z, t) + e33φ
(1,0) (z, t)

)
+ P1,2 (t) = 0

∣∣∣∣
z=0,h

(2.82)

δu (z, t) = 0|z=0,h (2.83)

Ap
(
e33u

(1,0) (z, t)− ε33φ(1,0) (z, t)
)
−Q (t) = 0

∣∣
z=0,h

(2.84)

δφ (h, t) = 0|z=0,h (2.85)

which are very similar to Equation (2.26) - Equation (2.31) in the thin rod case with the only

difference being that the system constants (C33, e33, ε33) are used instead of the reduced

constants (C, e, ε). Since the governing equations have the same form as the thin rod case,

the same solution approach could be used to reach the simplified mechanical governing

equation in the form:

ρu(0,2) (z, t)− CDu(2,0) (z, t) = 0 (2.86)

where CD = C33 + e33
ε33

is the stiffness of the plate at constant electric displacement (open-

circuit conditions).
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Equation (2.86) has a harmonic plane-wave solution in the form:

u (z, t) = Aue
j(ωt−kz) +Bue

j(ωt+kz) (2.87)

k =
ω

c1

where c1 = (CD/ρ)1/2 is the bulk speed of sound in the plate and Au, Bu are the complex

amplitudes of the forward and backward traveling displacement waves.

As with the thin rod case, the electrical and mechanical interface matching conditions

can be used to construct the scattering matrix using Equation (2.53). It should be noted

that the scattering matrix obtained in this case would be identical to that expressed by

considering both KLM and Mason’s thickness expander-plate equivalent circuits since they

are derived from the same assumptions. These assumptions constrain the applicability of

these models to certain aspect ratios for the transducer, which is investigated in Section 2.2.

2.2 Resulting Dynamics and Comparison of the Analytical Models

The accuracy of the analytical models’ predictions is investigated next through comparisons

to FEM simulations and experimental measurements of the impedance of PZT transducers

with various aspect ratios under different loading conditions.

2.2.1 Numerical Model

COMSOL Multiphysics® [168] was used to construct a 2D-axisymmetric model for a cylin-

drical piezoelectric transducer. A coupled multi-physics model was constructed to model

the behavior of the transducer both in vacuo (air)1 and submerged in a fluid (water/oil).

Piezoelectric elements which include direct structural-electrostatic coupling were used to

discretize the transducer, and acoustic elements were used for the medium surrounding the

1Note that for these stiff piezoelectric transducers, air (in the experiments) is a good approximation of in
vacuo condition.
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transducer. Both domains were discretized using a free triangular mesh with 10 elements

per wavelength of the generated acoustic waves inside the fluid medium. This ensures ac-

curate sampling of the waves in all domains, since the wavelength inside PZT for both

shear and longitudinal waves is larger than the acoustic wavelength in air, water and oil.

The boundaries of the piezoelectric and acoustic domains were coupled to model the

acoustic-structure interaction. Furthermore, radiation boundary conditions on the external

boundaries of the medium were enforced to minimize reflection from the boundaries and

simulate an infinite medium. The voltage of the nodes on each face of the transducer were

coupled together and connected to lumped electrical circuit elements to model the electrical

connections to the transducer (i.e. a voltage supply when the transducer is used as a TX

and a load resistance when used as an RX).

2.2.2 Experimental Validation

The electrical impedance of two cylindrical piezoelectric transducers, supplied by Steiner

& Martins inc., were measured both in air and in oil using a Solartron SI 1260 impedance

analyzer. Since the impedance of air is much smaller than that of piezoelectric ceram-

ics, measurement in air represents free boundary conditions on the transducer. Oil, being

an electrically non-conductive fluid, was selected to avoid adding insulating layers to the

transducer which might have affected its performance. The dimensions of the first trans-

ducer were 10 mm in diameter and 25 mm in height (β = 5) to represent a moderately

thick rod, while the second one had a 14 mm in diameter and 12 mm in height (β = 1.7)

representing a cylinder of moderate diameter to height. Both transducers were made of a

modified PZT-5 with a thin layer of sliver electrodes on each circular face. Thin wires were

soldered to the edge of each electrode to connect the transducers to the signal analyzer. The

same wires were used to suspend the transducers both in air and in oil.

The impedance was recorded at each frequency and averaged over an integration time

of 0.2 s with a linear frequency spacing of 500 Hz. The mass density and dielectric permit-
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tivity of the transducers were measured experimentally, and the piezoelectric and elastic

constants of the transducers material were identified using a least-squares regression algo-

rithm to fit the FEM to experimental impedance measured for the β = 1.7 transducer in air.

The measured/identified material properties are summarized in Table 2.1.

Table 2.1: Measured/Identified material properties of modified PZT-5

Property ρ C11 C12 C33 C44 e31 e33 ε11/εo ε33/εo Qm

Unit kg/m3 GPa GPa GPa GPa C/m2 C/m2

Value 7560 139 92 107 22 −7.2 19 1460 1064 156

2.2.3 Electrical Impedance in Air

Figure 2.2 shows the magnitude plot of the electrical impedance in air for both transducers.

The results obtained experimentally are compared to those obtained using the numerical

and the different analytical models. The boundary conditions for the transducer in air

resembles a free-free boundary in the analytical and FEM models. To obtain the impedance

of the transducer using FEM, a voltage source was connected between the two electrodes

of the transducer, and natural free boundary conditions were applied to all surfaces of the

transducer.

The results of the analytical model were generated using Qucs open source circuit sim-

ulation package [169]. A voltage source was connected to the electric port (port 3) of

the scattering matrix (evaluated from Equation (2.53) and Equation (2.76) and short cir-

cuit (zero impedance) was connected to the acoustic ports (ports 1 and 2). To find the

impedance for both cases, the applied voltage was divided by the electric current flowing

to the transducer.

For the β = 5 transducer (Figure 2.2a), an excellent agreement is observed between

the experimental results and FEM, Rayleigh and Bishop models. The thin rod model for
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Figure 2.2: Comparison of the electrical impedance in air for two cylindrical transducers
with aspect ratios (a) β = 5 and (b) β = 1.7. Experimental results are compared with those
estimated numerically using FEM and analytically using thin rod, Rayleigh and Bishop rod
theories.

this aspect ratio predicts 2% higher resonance and anti-resonance frequencies. This indi-

cates that the effects of lateral inertia cannot be neglected for this aspect ratio or lower.

The predictions of both Rayleigh and Bishop models are quite similar, with the relatively

simplified Rayleigh model producing slightly more accurate results. This behavior is ex-

pected for relatively thin rods, since the Rayleigh model tends to better approximate the

FEM prediction of a continuous cylinder at low frequencies (around the first mode of the

transducer) while it deviates more quickly for higher frequencies [165].

For the β = 1.7 transducer (Figure 2.2b), only the FEM model completely captures the

experimental impedance, while all the analytical models predict higher values for the first

thickness resonance (95 kHz) of the transducer. While the thin rod approximation is clearly

not appropriate for this aspect ratio, predictions of the Rayleigh and Bishop only deviate

3% higher than the FEM value. The analytical models fail to capture the first radial res-

onance appearing around (146 kHz). This is because all the investigated theories are pure

longitudinal theories (with one kinematic variable). Even though the effects of lateral iner-

tia are accounted for in Rayleigh and Bishop models, lateral modes are still not considered

in the kinematics of the problem. For this aspect ratio, the lateral and longitudinal modes
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appear at the same frequency neighborhood, and coupled longitudinal/radial modes start to

appear.

The accuracy of the analytical predictions when changing β is investigated in Fig-

ure 2.3. The resonance frequency of the first thickness mode is plotted against β while

keeping the transducer height hp = 12 mm constant. As β approaches one, the effects

of lateral inertia become more prominent as evident from the frequency shift in the FEM

results. Since the Rayleigh and Bishop theories include these effects, they follow the same

trend predicted by the FEM up to β < 2, where the effects of lateral resonance cause a

dramatic increase in the error of both models compared to FEM.

Figure 2.3: In-air resonance frequency of the first thickness mode of a PZT transducer (
hp = 12 mm) versus the aspect ratio β. Frequency values are shown in solid lines, and
percentage errors relative to FEM are shown in dashed lines of the same color.

2.2.4 Electrical Impedance in Oil

For most practical applications, thickness mode transducers are rarely used in air due to

the large impedance mismatch between PZT and air. In many applications, either one

face of the transducer or the entire transducer is embedded in a solid or liquid domain

which would change its dynamic response. To investigate the validity of the analytical

models in such conditions, the impedance of the investigated transducers was measured

while the transducers were submerged in soybean oil (c = 1465 m/s and ρ = 917 kg/m3)
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[170]. To capture the effect of fluid loading, the fluid domain around the transducer was

included in the simulation and coupled acoustic structure boundaries were applied between

the structural and acoustic domains.

The presence of the transducer in a fluid domain is accounted for using the unbaf-

fled acoustic radiation impedance Zrad present on the two acoustic ports of the analytical

models. The value of this impedance represents the effect of the fluid on the two circular

faces of the transducer. This is compared to the simpler baffeled radiation impedance case,

where the circular face of the transducer is surrounded by a hard baffle, i.e the transducer

is radiating into a half-space.

The radiation impedance of a circular radiator depends mainly on the relation between

the wavenumber in the fluid (km) and the radius of the radiator (a). Simple approximate

formulas for the unbaffled radiation impedance only exist for the cases where kma � 1

and kma� 1. For the investigated aspect ratios kma is 1.14 and 2.9 for β = 5 and β = 1.7

respectively, which does not allow using such approximations. In this case, the radiation

impedance becomes too complicated to be expressed analytically, since the pressure field

generated by the transducer is not only dependent on the radiating face, but also the back

and lateral sides of the transducer. Neglecting the interactions between the back and lateral

sides of the transducer, the radiation impedance can be estimated from Ref. [171]. The

resulting formula is complex enough that normalized plots [172] are often used directly

instead of the formula itself.

Effect of fluid loading on the electrical impedance of both transducers is shown in

Figure 2.4. A very good agreement is observed between the experimental and FEM results

for both transducers. Since lateral fluid loading is neglected, the analytical models predict

higher/sharper resonance values when the value of β is small enough for lateral stresses to

be substantial, but not too small that the lateral surface area becomes negligible. Generally,

for β > 10 or β < 0.1, the effect of lateral fluid loading is very small and could be safely

ignored.
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Figure 2.4: Comparison of electrical impedance in oil for two cylindrical transducers with
aspect ratios (a) β=5 and (b) β=1.7. Experimental results are compared with those esti-
mated numerically and analytically.

2.3 Effect of Aspect Ratio on the Performance of a Thickness-Mode Transmitter

When the transducer is operating as a TX, the main design objective is to provide direc-

tional focused ultrasonic waves at the maximum allowed level towards RX. Usually the

size of TX is less constrained than the size of RX (within practical limitations). Also, the

boundary conditions of TX (side loading/backing) are often easier to control than those of

RX. For resonant operating transducers, surrounding the back and sides of the transducer

with air seems to be the best approach to maximize the energy generated at the front face

of TX [68, 173]. For many energy transfer applications like biomedical implementations

and those involving solid (e.g. metal) walls, this represents the easiest approach as TX is

usually naturally surrounded by air. Consequently, TX is connected to the medium through

one face only, which makes it easy to create a hard baffle around this face to maximize the

energy transferred towards RX, and improve the directionality of the generated acoustic

beam. This also facilitates the analytical modeling of TX since free boundary conditions

could be assumed on the back and sides of the transducer.

The coupled performance of the transducer is then easily analyzed analytically by con-

necting a voltage source to the electrical port (port 3), assuming one of the acoustic ports

(port 1) to be free (short circuit/zero impedance), and applying the baffled piston radiation
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impedance to the other acoustic port (port 2). The radiation impedance of a baffled piston

(Zrad) is readily available in literature in the form [64]:

Zrad = Zm

(
1− J1 (2kma)

kma
+ j

H1 (2kma)

kma

)
(2.88)

where J1 and H1 are the first order Bessel and Struve functions. The surface velocity of

port 2 represented by the current flowing through Zrad could then be used to estimate the

pressure field outside the transducer by solving the Rayleigh integral [64]:

P (r, z) =
iωρmUo

2π

∫
dS

e−jkmR

R
dS (2.89)

The effect of aspect ratio on the performance of the transducer could be evaluated using

two approaches: (1) the height of the transducer could be fixed, and hence its resonance

frequency, while its radius is varied to change the aspect ratio. This means that the volume

of the transducer would change as its aspect ratio changes. (2) The volume of the transducer

could be kept fixed while varying the aspect ratio (i.e. changing the relative values of

both its radius and its thickness). Since the efficiency of receivers and energy harvesters

is usually characterized by the output power per unit volume of the material, the second

approach will be followed.

A cylindrical transducer with constant volume of 1 cm3 made of modified PZT-5 is

considered. The aspect ratio is varied between β = 10 (thin rod case), β = 5 (thick rod),

β = 1 (comparable height to radius cylinder), and β = 0.1 (thick plate).

All the analytical models considered in this work assume that the velocity across the

face of the transducer is constant. This is an approximation as the longitudinal velocity

of the surface varies with the radius of the transducer. This behavior is difficult to capture

analytically but could be captured in the FEM simulation. In order to compare the ana-

lytical predictions with the FEM ones, the average surface velocity of the transducer Uo is

compared in both cases.
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Figure 2.5 shows the effect of aspect ratio of the transducer at constant volume on the

average surface velocity of its face when generating ultrasonic waves in water. For all

transducers, the electric field applied to the transducer is kept constant at 1 kV/m (as a

convenience) which corresponds to an applied voltage v ≈ 32, 20, 7, 2 V for aspect ratios

β = 10, 5, 1, 0.1 respectively.

Figure 2.5: Effect of aspect ratio on the average normal surface velocity of the transducers.
The aspect ratio is varied between (a) β = 10, (b) β = 5, (c) β = 1, and (d) β = 0.1. The
insets show surface plots of the distribution of the surface velocity in the axis direction of
the transducer (z-direction). In all cases, the applied electric field is the same (1 kV/m).

As shown in Figure 2.5a and Figure 2.5b, the analytical models capture the effect well

for thin and moderately thick rods (β = 10, 5), since the fluid loading of the domain is only

applied to the front face of the transducer.

For moderately thick plates (β = 0.1), the infinite plate approximation captures the

resonance of the plate; however, it tends to overestimate the average surface velocity of
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the transducer as shown in Figure 2.5d. The higher order radial modes of thick plates

affect the first thickness mode, yielding a non-uniform normal velocity on the surface of

the transducer as shown in the inset of Figure 2.5d which causes the discrepancy between

FEM and analytical predictions. Keeping the same thickness and decreasing the aspect ratio

further to β = 0.01 (also Figure 2.5d) causes the FEM response to converge towards the

thin plate (infinite plate) approximation. However, this aspect ratio (β = 0.01) might not

be practical especially for air backed transducers due to structural strength considerations.

For β = 1 (Figure 2.5c) both lateral and longitudinal modes are highly coupled yielding

inaccurate estimations of the normal surface velocity for both the thin plate and Bishop

approximations. The longitudinal mode is still dominant in this aspect ratio, as shown in

the inset of Figure 2.5c; however, the radial and longitudinal mode coupling results in lower

overall surface velocity for all the coupled modes.

The FEM nearfield pressure plots of the considered transducers are summarized in Fig-

ure 2.6. The directivity of the transducer improves with reducing β since the pressure di-

rectivity is only controlled by the relationship between the wavelength inside the medium

and the radius of the radiator kma. For the considered aspect ratios, kma at resonance varies

between kma = 0.6, 1, 3.6, and 95.5 respectively. This shows that, although the average

surface velocity for the thin rod case is relatively higher compared to the other cases, the

generated pressure field is almost spherical, and the generated pressure diverges in an open

medium making it less suitable for operating as TX, and perhaps more suitable for RX

applications since it will be less sensitive to the angle of incidence.

2.4 Effect of Aspect Ratio on the Performance of a Thickness-Mode Receiver

We consider the case in which RX is completely submerged in an unbounded medium and

subject to an acoustic plane wave with an amplitude of Pi = 1 kPa incident normal to

its front circular face. Similar to the TX case, a constant volume of 1 cm3 of modified

PZT-5 and the same aspect ratios are considered. The load resistance connected across the
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Figure 2.6: Effect of aspect ratio on the near field sound pressure level (SPL) generated
by the baffled TX estimated using FEM for (a) β = 10, (b) β = 5, (c) β = 1, and (d)
β = 0.1. The color contour inside the transducer represents the normalized velocity in the
axial direction.
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electrodes of the transducer is varied across a wide range of resistance values to capture

optimum load resistance for maximum power output. The frequency of excitation for each

aspect ratio is varied around the expected first longitudinal mode of TX.

The RX case presents a challenge for the analytical models considered here for all

aspect ratios. For thin and thick rods, fluid loading and pressure incident from the side

face cannot be neglected, and for plates, higher order radial modes appear alongside the

thickness mode which are not accounted for in the analytical models. For the cases where

β ≈ 1, it is even more involved since the pressure field around the transducer becomes too

complicated for any analytical approach to the problem. Exceptions to these limitations

are the extreme cases where the transducer is a very thin long rod (β � 1) or a very large

thin plate (β � 1); however, these cases are of limited practical importance for a single

thickness mode RX.

A numerical approach is then the most applicable approach to tackle the RX problem.

The FEM model results for the output power for different aspect ratios are shown in Fig-

ure 2.7. For each aspect ratio, the load resistance was varied to ensure that the peak power

output of RX is captured. It is observed that as β decreases, the optimum load resistance

decreases. This is because the capacitance and resonance frequency of the transducer in-

creases with reduced values of β which decreases the effective electrical impedance of the

transducer. It should be noted that for β = 1 case, a different trend for the power out-

put is observed when the resistance is higher than the optimum value of 1 kΩ. Multiple

thickness and radial modes are coupled for this aspect ratio, and they are affected by the

electromechanical coupling differently. Modes which are better coupled to the electrical

domain tend to shift to higher frequencies as the connected resistance increases causing

increased bandwidth, but lower amplitude.

The maximum absolute power output among all the considered cases was that of the

lowest value for β (Figure 2.7d), since the normal area to the incident acoustic intensity is

the largest for this case. Another factor to be considered is the ratio of the output electric
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Figure 2.7: Effect of the aspect ratio on the power output of RX. The transducers are
submerged in water and subjected to incident plane harmonic waves of amplitude (1 kPa)
and the power output under different values for the load resistance is estimated using the
FEM for (a) β = 10, (b) β = 5, (c) β = 1, and (d) β = 0.1. The normalized displacement
amplitude of the transducers are shown in the insets.
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Figure 2.8: Output power of RX at the optimal load when completely submerged inside the
fluid medium versus the flushed case where only the front face of the transducer is coupled
to the fluid and the other faces are free. The aspect ratio is varied between (a) β = 10, (b)
β = 5, (c) β = 1, and (d) β = 0.1. The insets show the acoustic intensity stream lines
for the submerged case.The normalized displacement amplitude of the transducers are also
shown.
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power (Πo) to the acoustic power incident normal to the transducer face (Πi):

Πi =
P 2
i Ap

2ρmcm
(2.90)

where Pi is the pressure amplitude of the incident acoustic wave. In this case, the perfor-

mance of the rod transducer (Figure 2.7a,b) is found to be better than that of the low β case

(Figure 2.7d). The output power for higher values of β is in fact higher than the incidence

acoustic power on the front face of the transducer.

This discrepancy can be explained by considering Figure 2.8, where the power output of

the submerged transducer is compared to a flushed transducer where the medium is coupled

to the transducer from the front face only. For the β = 10 case, the output power is much

higher in the submerged case, when it is compared to the flushed case. This indicates that

the acoustic power is not captured by the front face only, but also the lateral and rear faces

of the transducer.

Additionally, the intensity streamlines (shown in the insets of Figure 2.8a) indicate that

the area of the effective acoustic power captured by this aspect ratio (β = 10) is larger than

just the normal face area of the transducer. This can be explained by comparing the lateral

dimensions of the transducer to the incident wavelength. Since kma < 1 for this case, the

transducer is effectively a point receiver, and its directivity is almost spherical as shown

in the TX case (Figure 2.6a). In contrast, for the β = 0.1 case (Figure 2.8d), the acoustic

power from the submerged transducer is less than the flushed one. This stems from the fact

that for the submerged case, a portion of the acoustic power received by the front face of

the transducer is radiated from the back face as expected when kma� 1.

Another aspect to consider is the strength of the longitudinal mode, and how well it is

excited by the incident acoustic waves. When considering the maximum absolute power

output for the β = 5 case, we find that it is smaller than the β = 10 case even though

it has higher normal area intercepting the incident acoustic waves. This is because the
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longitudinal mode for higher β values is less coupled to the lateral motion and thus the

incident acoustic waves are converted more efficiently into longitudinal motion, and hence

generates more electric power. It also explains the degraded peak power output of the β = 1

case where the longitudinal and lateral motions are strongly coupled, and no dominant

mode is observed. As a result, peak power output is smaller compared to all the other

cases.

2.5 Conclusions

Several continuum analytical models for estimating the thickness-mode dynamics of a

piezoelectric transducer with a cylindrical shape have been investigated with a focus on

the effect of aspect ratio. When the radius of the transducer is very small (i.e. β > 10),

the thin rod analytical model can be used to predict the surface velocity of the transducer

around its resonance frequency. The Rayleigh and Bishop rod models can be used to pre-

dict the surface velocity of rod transducers with (β > 3) around their resonance frequency

given that the lateral sides of the transducer are not fluid loaded. When the diameter of the

transducer is comparable to its length (β ≈ 2), the longitudinal and lateral motion (hence

modes) are strongly coupled, and they become difficult to model analytically. Only when

the radius of the transducer is very large compared to its thickness (β < 0.1), the thin plate

thickness vibration continuum model can be used to describe behavior of the transducer.

All the considered analytical models could not predict the effect of fluid loading on

the lateral sides of the transducer, which becomes significant when the diameter of the

transducer is comparable to its length. The analytical models are also not accurate for

modeling the fluid loaded transducer except for cases with extreme aspect ratios (β � 1 or

β � 1).

For receiver applications of the transducers, the electric power generated by a rod-like

receiver (β = 10) was higher than acoustic power incident on its front face. The effective

receiving area of the transducer was higher than the normal area to the incident acoustic
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wave. This indicates that arrays of rod like transducers might be more efficient than a plate

like receiver of the same size. Also, since the directivity of the rod like receiver is almost

spherical, it would be less sensitive to variations in the angle of incidence of the acoustic

beam (e.g. due to misalignment of the transmitted beam with respect to the receiver axis),

making it a more effective omnidirectional receiver.

Such broad range of aspect ratios are relevant to power transfer problems. For instance

Chapter 3 and Chapter 5 use transducers with β = 0.14 which could be approximated by

thin plate models with some limitations discussed in Chapter 3. Chapter 4, on the other

hand, uses transducers with β = 1.7 for low frequency underwater power transfer, and thus

a finite element model will be used to simulate it without considering analytical models.

It should be noted that for applications in which the acoustic power needs to be sent

for a short distance with a high power density such as in power transfer through metals

applications, it makes sense to use directional transmitters and receivers with low β values

to reduce the power dissipated in the medium and maximize the efficiency. A thin plate

transducer model will be discussed in the context of a complete ultrasonic power transfer

system for sending power through metallic barriers in the next chapter.
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CHAPTER 3

SYSTEM-LEVEL ANALYSIS WITH A FOCUS ON POWER TRANSFER

THROUGH METALLIC BARRIERS

In this chapter, the elements needed for a through-metal UPT system are analytically mod-

eled, and the key factors for assessing the system performance such as the efficiency and

voltage transfer function are analyzed. A base through-metal UPT system with bonded

transducers is studied to highlight the effect of different mechanical components on the

performance of the system and to point out bottlenecks that hinder efficient system opera-

tion. The design and selection of interfacing circuits such as power amplifiers and bridge

rectifiers are discussed while highlighting designs that are more suited for UPT systems.

A dry-coupled through-metal UPT system is then developed for practical detachable

and portable operation. A setup that relies on attracting magnets is designed to provide

good contact between the transmitter and the metallic barrier. Elastomers with different

thickness and elasticity values are investigated to determine the most suitable material for

dry coupling. The detachable system is experimentally tested with the best elastomer to

estimate its total efficiency, and the maximum power that it could deliver to a DC load.

3.1 Analytical Modeling

A simple representation for a through-metal power transfer system is shown in Figure 3.1.

It consists of a transmitting and receiving piezoelectric disc transducers with the metallic

wall in the middle. The transducers can be mounted on the metallic wall using a glue

(epoxy, polyurethane, cyanoacrylate, etc.) or a coupling gel (glycerin, honey, ultrasound

gel, etc.). The accurate modeling of the coupling (bonding) layer is important since it has a

strong influence on power transmission, especially at higher frequencies. The transmitter is

connected to a power source with a certain impedance Zsc capable of applying a voltage Vi,
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while the receiver is connected to a resistive load RL. For high-frequency systems similar

to the one considered in Figure 3.1, the lateral dimensions of the transducer are usually

much larger than its thickness which allows for assuming 1D propagation of ultrasonic

waves from the transmitter to the receiver and neglecting lateral propagating waves. The

validity of this approximation for the base model will be assessed in Section 3.2.3.

Vi RLTX RX

Coupling/bonding layers

Metallic wall

Figure 3.1: Basic configuration of a through-metal UPT system for AC input and AC out-
put.

Transmission line models (1D waveguide models) are commonly used for predicting

the behavior of 1D ultrasonic systems [84, 92, 174]. These models are typically valid for

frequencies above 100 kHz where the wavelength of the propagating waves is smaller than

the thickness of the metallic wall. For low-frequency systems operating below 100 kHz,

lumped parameter models and lumped circuit elements become more appropriate [18, 175],

since the wavelength becomes much longer than the thickness of the system.

A 1D ultrasonic system can be modeled as a series of cascaded elastic/acoustic layers

representing different components of the system. Each elastic layer could be modeled as a

two-port element with a 2x2 matrix relating the acoustic pressure and velocity at each port.

Among the different representations that could be used for modeling 2-port elements (S-
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parameters, Z-parameters, Y-parameters,...etc), the transfer matrix (also known as ABCD

parameters in radiofrequency (RF) literature) simplifies the algebraic manipulations needed

to solve the system. The transfer matrix relates the force and velocity at the input of a layer

F1, v1 to the output F2, v2 by:

F1

v1

 = T

F2

v2

 , T =

T11 T12

T21 T22

 (3.1)

where velocity directions are shown in Figure 3.2a. The elastic transfer matrix is analogous

to the electric transfer matrix (Figure 3.2b) with forces replaced by applied voltages and

velocities by electric currents.

For an ultrasonic system consisting of n cascaded layers, the transfer matrix of the

overall system can be represented by a single transfer matrix Tsys calculated by multiplying

layer matrices:

Tsys = T1T2...Tn (3.2)

The transfer matrix of a passive elastic layer with acoustic impedance Zn and thickness hn

can be calculated from the relation:

Tn =


cos (knhn) jZnAn sin (knhn)

j
sin (knhn)

ZnAn
cos (knhn)

 (3.3)

where kn = ω/cn is the wavenumber of the ultrasonic wave in layer n, cn is the speed of

sound in the layer, and An is the surface area of the layer. Equation (3.3) could be used to

calculate the transfer matrices for the metallic and bonding layers shown in Figure 3.1.

The piezoelectric layers, on the other hand, cannot be represented directly as a 2-port

transfer matrix since they possess a third electrical port in addition to the two mechanical

ports, and are thus represented as a 3-port element. For a thin plate transducer model, the

electrical and mechanical equations of motion can be organized instead into the impedance
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V1 V2

I1 I2
Electrical
transfer 
matrix

F1 F2

v1 v2
Elastic 
transfer 
matrix

F1 F2

v1 v2
Piezoelctric 
impedance

matrix

V3
I3

(a) (b)

(c)

Ealstic 
scattering

matrix

(d)

Figure 3.2: Transfer matrix parameters for (a) an elastic layer and (b) an electrical circuit.
(c) The impedance matrix representation for a piezoelectric transducer. (d) The scattering
matrix representation for an elastic layer.

matrix (Z-parameters) form as [176]:



F1

F2

V3


= Zp



v1

v2

I3


, Zp = −j



Zp cot(kphp) Zp csc(kphp)
h̄33
ω

Zp csc(kphp) Zp cot(kphp)
h̄33
ω

h̄33
ω

h̄33
ω

1

ωCp


(3.4)

where Zp = ρpcpAp is the mechanical impedance of the piezoelectric layer, h̄33 = e33/ε
s
33

is known as the transmitting coefficient, e33 is the piezoelectric voltage constant, εs33 is the

permittivity at constant strain, kp = ω/cp is the wavenumber in the piezoelectric layer,

and Cp = εs33Ap/hp is the piezoelectric layer capacitance at constant strain (i.e. when

mechanically clamped). The directions for the velocities and current used to deduce the

impedance matrix in Equation (3.4) are defined as shown in Figure 3.2c.

Assuming that the acoustic impedance Zb at the backside of the transducer is known,

Equation (3.4) could be reduced to the transfer matrix form by substituting the relation:

F2 = −ZbApv2 (3.5)
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This yields the transfer matrix for a piezoelectric layer operating as a receiver:

Tr =

C/A D −BC/A

1/A −B/A

 (3.6)

where

A = Z31 −
Z32Z21

Zb + Z22

(3.7)

B =
Z32Z23

Zb + Z22

− Z33 (3.8)

C = Z11 −
Z12Z21

Zb + Z22

(3.9)

D =
Z12Z23

Zb + Z22

− Z13 (3.10)

and Zij are elements of the piezoelectric impedance matrix given in Equation (3.4).

The transfer matrix for a layer operating as a transmitter is given by:

Tt =

 B/D BC/D − A

−1/D −C/D

 (3.11)

Please note that Equation (3.11) is not simply the matrix inverse of the transmitter as the

order of the ports is different.

For power transfer applications, the backside of the piezoelectric layer is typically left

exposed to air (Zb ≈ 0) since its impedance is much lower than piezoelectric materials, and

thus virtually no power is lost through the backside of the transducer.

The equivalent transfer matrix for the system shown in Figure 3.1 can be calculated by

multiplying transfer matrices of the cascaded layers:

Tsys = TtTbTwTbTr (3.12)
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where Tb,Tw are the transfer matrices for the bonding layers and the metallic wall respec-

tively.

3.1.1 Modeling Attenuation

Accurately modeling wave attenuation is crucial for estimating the efficiency of UPT sys-

tems; however, attenuation is a complex phenomenon with several factors contributing

to the total attenuation even in a homogeneous medium. Attenuation is also frequency-

dependent in most materials which further complicates its characterization and reporting

in literature. A phenomenological approach for defining attenuation involves defining a

complex wavenumber:

k = ω/c− jα (3.13)

where α is a frequency dependent attenuation coefficient. α defines an exponential decay

for a propagating wave given by:

A(x, t) = Aoe
j(ωt−kx)

= Aoe
−αxe−j

ω
c
xejωt (3.14)

where Ao is the initial amplitude of the wave, and Aoe−αx is the attenuated amplitude after

traveling a distance x. The attenuation coefficient α has the units of Np/m; however, it is

commonly reported with the units dB/mm in the ultrasonics literature where:

α[Np/m] =
20 log10 (e)

1000
α[dB/mm]

=
8.686

1000
α[dB/mm] (3.15)
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The use of the unit [dB/mm] stems from the typical approach for estimating α experimen-

tally by calculating the decay in wave amplitude in decibels:

α[dB/mm] =
20 log10

(
A(x)
Ao

)
x[mm]

(3.16)

α can also be related to the material loss factor (η) commonly used for representing damp-

ing of low frequency vibrating systems. The loss factor η is defined by considering a

complex elasticity matrix to represent hysteric damping in a material1:

C̄ = C(1 + jη) (3.17)

The quality factor Q = 1/η is also used in place of η in some conventions. While η is

constant for most metals at frequencies below 5 MHz, η (or more generally α) is frequency-

dependent in polymers and composite materials [63].

The relation between η and α could be derived from the relation between the wavenum-

ber and the elasticity of the material. The complex wavenumber is given by:

k = ω/c− jα

= ω/c̄ (3.18)

where c̄ is the complex wave speed which is defined for longitudinal waves as:

c̄ =

√
C33(1 + jη)

ρ
(3.19)

Using Equation (3.18) and Equation (3.19) the relationship between α and η could be de-

duced as:

α = −Im
{

ω

c
√

1 + jη

}
(3.20)

1Note that η is sometimes referred to as the mechanical loss tangent (tan δ) of the material.
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For small values of η, the binomial approximation 1√
1+jη
≈ 1− j η

2
could be used to further

simplify the relation to:

α =
ωη

2c
=
πηf

c
(3.21)

While Equation (3.21) represents a good approximation for attenuation in many solids, a

more generalized form is necessary to describe complex damping behavior. This form is

usually a polynomial in frequency defined as:

α =
∑

Cnf
n (3.22)

where Cn are the attenuation coefficients commonly given in the units [dB/m/MHzn] and

n are integer or rational exponents used to fit attenuation measured experimentally.

A common model for attenuation in homogeneous metals is given by Mason and Mc-

Skimin [177]:

α = Cdf + CRf
4 (3.23)

where Cd = πη/c is the viscous damping coefficient, and CR is the Rayleigh scattering

coefficient. The term CR is attributed to the scattering of the waves from the grain bound-

aries of the metal which becomes important at higher frequencies (i.e. above 5 MHz for

most metals). For more information about damping mechanisms for ultrasonic waves and

the values of the attenuation coefficients for various solids, please refer to Ref. [63] for an

excellent discussion.

In a 1D model, other forms of power losses could be modeled in the form of a frequency-

dependent attenuation as well. This includes the power lost to exciting shear waves and

other lateral modes in the structure, as well as other forms of power losses due to the lateral

and angular misalignment between the transducer and the receiver, among others. While

some of these forms of attenuation could be accounted for in the 1D model by fitting at-

tenuation coefficients to experimental results, other forms are more complex and require

higher fidelity models (such as a FEM) to capture the 2D and 3D effects. The need for such
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models will depend on the aspect ratio of the transducer and its directionality as previously

discussed in Chapter 2.

3.1.2 Performance Metrics

Several key metrics could be used to assess the performance of through-metal UPT systems.

The metrics include the voltage transfer function, the input and output impedance, but

perhaps the most important metric is the power transfer efficiency which relates the useful

output power of the system to the total input power. We will focus first on quantifying the

operating efficiency of the ultrasonic system (ηUS) when it is connected to a standard 50 Ω

load. Here, ηUS is defined as the ratio of the electrical power consumed by the electric load

to the electric power input to the ultrasonic system2. It does not account for the electrical

power reflected to the power source by the ultrasonic system due to impedance mismatch.

The total efficiency of the UPT system includes ηUS as well as that of the other UPT system

components such as the power amplifier and AC-to-DC conversion. The performance of the

ultrasonic system can be assessed by only knowing its equivalent transfer matrix elements

and the load impedance.

The elements of the system transfer matrix (calculated from Equation (3.12)) relate the

input and output voltages and currents to the ultrasonic system by the relation:

Vin
Iin

 =

T11 T12

T21 T22


Vout
Iout

 (3.24)

2The terms ”ultrasonic system” and ”mechanical system” will be used interchangeably throughout this
chapter.
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By substituting the load impedance relation Vout = ZLIout into Equation (3.24), and as-

suming a known voltage Vin is applied to the system we arrive to:

Vout =
VinZL

T11ZL + T12
(3.25)

Iout =
Vin

T11ZL + T12
(3.26)

Iin =
T21ZL + T22
T11ZL + T12

Vin (3.27)

The voltage Frequency Response Function (FRF), also known as voltage transfer function

or voltage gain of the ultrasonic system, is given by:

Vout
Vin

[dB] = 20 log10

(
ZL

T11ZL + T12

)
(3.28)

The real input and output power to the system could be defined as:

Pin =
1

2
re (VinI

∗
in) (3.29)

Pout =
1

2
re (VoutI

∗
out) (3.30)

where the exponent ∗ indicates the complex conjugate. The operating ultrasonic efficiency

is then given by:

ηUS =
Pout
Pin
× 100% (3.31)

The ultrasonic efficiency depends on the properties of the layers of the system, and on how

well the system is matched to the electrical load. The main factor limiting the operating

efficiency of the 1D ultrasonic system model is the attenuation present in the system. For

a completely lossless system, the operating efficiency is 100% regardless of reflections,

and hence it is critical to accurately model the attenuation to reliably predict the efficiency.
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Given the presence of inevitable attenuation in the system, internal reflections contribute to

the degradation of the system efficiency. When the impedance of all the UPT domains are

well-matched, the ultrasonic waves travel once through the domain without reflection ex-

periencing minimum attenuation. The presence of impedance mismatches causes multiple

internal reflections in each layer, and thus the traveling wave experiences additional atten-

uation each time it is reflected back and forth in the system which reduces the efficiency.

The amount of reflection at an interface between two domains can be better visualized

using the scattering matrix which relates incident waves (voltage or force) to the reflected

and transmitted waves. For a two-port domain, the scattering matrix is defined as:

F−1
F−2

 =

S11 S12

S21 S22


F+

1

F+
2

 (3.32)

where F+
1 &F+

2 are the complex incident force (pressure) on ports 1& 2 of the system,

and F−1 &F−2 are the pressure coming out of the system as shown in Figure 3.2d. For

example, if F+
1 is the pressure incident to the system F−1 is the reflected pressure, and F−2

is the transmitted pressure. The scattering matrix can also be defined for voltage signals (

V +, V −) depending on whether the domain port is electrical or mechanical.

The scattering matrix elements can only be defined with respect to a particular impedance

at each port of the system. This impedance represents the domain from which the waves

are incident on the port. In radiofrequency (RF) circuits, it is customary to select this

impedance as 50 Ω which is a standard reference impedance to which standard electrical

devices are matched such as coaxial cables used to connect the components, the output

impedance of signal generators, and the input and output impedance of commercial RF

power amplifiers to name a few. For the mechanical ports, however, the choice of the ref-

erence impedance does not need to follow RF standards, and thus it could be selected as

the mechanical impedance of a common medium of operation such as water for example.

Please note that the mechanical impedance is defined as ZmAm where Zm is the charac-
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teristic acoustic impedance of the medium in Rayleighs and Am is the effective area of the

medium or the area of the transducer for piezoelectric domains.

The elements of the scattering matrix could be calculated from the transfer matrix using

the relations [178]3:

S11 =
T11Z2 + T12 − T21Z∗1Z2 − T22Z∗1
T11Z2 + T12 + T21Z1Z2 + T22Z1

(3.33)

S12 =
2Z2(T11T22 − T12T21)

T11Z2 + T12 + T21Z1Z2 + T22Z1

(3.34)

S21 =
2Z1

T11Z2 + T12 + T21Z1Z2 + T22Z1

(3.35)

S22 =
T22Z1 − T21Z1Z

∗
2 − T11Z∗2 + T12

T11Z2 + T12 + T21Z1Z2 + T22Z1

(3.36)

where Z1 and Z2 are the reference impedance for ports 1 and 2 respectively. S11 and

S22 represent the complex reflection coefficients with respect to ports 1 and 2 respectively

while S12 and S21 are the complex transmission coefficients. The elements of the scattering

matrix could be evaluated experimentally using a vector network analyzer (VNA) or by

simultaneously measuring the input voltage and current to one port of the UPT system and

the output voltage on a reference load (50 Ω) connected to the other port. The relations

between the input impedance, voltage transfer function, and the S-parameters are given

by [180]:

S11 =
Zin/Z1 − 1

Zin/Z1 + 1
(3.37)

S21 =
Vout
Vin

(1 + S11) (3.38)

3Please note that in RF literature, the scattering matrix is usually defined in terms of power waves a =
V/
√
Z which changes the definition of S21 and S12 by the ratio of the port impedance. Please see Refs. [162,

178, 179] for more details on power waves.
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Note that since most through-metal UPT systems operate in the long-wavelength region of

RF waves (below 10 MHz) the actual electric impedance of the coaxial cables used have a

negligible effect on the performance of the system unless they are tens of meters long.

3.2 Benchmark System Performance

In this section, the practical implementation of the through-metal UPT (shown in Fig-

ure 3.1) will be discussed first to establish the practical model geometry and physical

parameters. The performance of the system will then be characterized analytically, nu-

merically using the FEM, and experimentally. The performance of the 1D analytical model

will then be compared to 2D FEM model predictions and experimental results to assess the

validity of the 1D approximations for the considered system.

3.2.1 Experimental Validation

A piezoelectric transducer with a radius 15 mm and a thickness of 2.1 mm, supplied by

Steiner & Martins inc., was selected as a compromise between 1) maximizing the directiv-

ity of the transducer to minimize energy lost to lateral propagation, 2) minimizing the atten-

uation by keeping the frequency as low as practically possible, 3) keeping the impedance

of the transducer close to 50 Ω to ensure compatibility with commercial RF equipment,

and 4) keeping the dimensions of the transducer reasonably small. The transducer ma-

terial was selected to be a hard PZT ceramic (PZT-4/SM111) which has a high-quality

factor compared to other piezoelectric ceramics thus minimizing the power dissipated in

the transducer. The material properties of the transducer are summarized in Table 3.1, and

the reduced properties for the 1D piezoelectric transducer are summarized in Table 3.2.

An anodized aluminum wall was used in the experiment (Figure 3.3) to limit electrical

cross-talk between the piezoelectric tiles that might interfere with the measurement. A

thin layer of gold was then deposited on each side of the wall to facilitate the electrical

connection to the electrode in contact with the wall. The transducer was then bonded to
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Table 3.1: Material properties of Steminc SM111 (modified PZT4)

Property ρ C11 C12 C33 C44 e31 e33 ε11/εo ε33/εo Qm tan δ

Unit kg/m3 GPa GPa GPa GPa C/m2 C/m2 %

Value 7900 140 84 138 27 -8.97 14.36 1450 1400 500 0.4

Table 3.2: Material properties used in the transducer 1D model

Property ρp cp h̄33 CD
33 Cp Qm tan δ

Unit kg/m3 m/s kV/mm GPa nF %

Value 7900 4706 2594 175 1.9 500 0.4

Table 3.3: Dimensions and material properties of elastic layers in the base model

Property ρ E ν c Z α Thickness

Unit kg/m3 GPa m/s MRayl dB/mm/MHz mm

Aluminum 2700 69 0.33 6153 16.6 0.004 3.1

3M DP460 epoxy 1100 4 0.35 2416 2.66 0.5 0.005

the aluminum wall using epoxy in a vacuum bonding procedure to ensure minimum epoxy

thickness and avoid any trapped air bubbles. A thin bonding layer of thickness 10 µm was

achieved using 3M DP-460 high shear strength epoxy. The exact material properties of

DP-460 epoxy were not readily available in the literature, so an average value for epoxy

resins was used instead. The material properties of the different passive solid layers are

summarized in Table 3.3.

The experimental setup shown in Figure 3.3 was used to characterize the performance

of the UPT system. The system was excited with a frequency sweep from 100 KHz to

10 MHz generated by an Agilent 33250A 80 MHz arbitrary waveform generator. The actual

voltage applied to the input piezoelectric tile was measured as close to the tile as possible
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using a 10x oscilloscope probe connected to a Tektronix TDS5034B digital oscilloscope.

The current supplied to the tile was measured simultaneously using a Tektronix P6022

AC current probe. A 50 Ω 1% precision resistor was connected to the output tile, and a

CalTest CT4068 differential oscilloscope probe was used to measure the output voltage.

The differential probe was used to ensure that the output tile was floating, and that it was

not coupled to the input signal via the oscilloscope mains earth connection.

Signal generator
Oscilloscope

Power amplifier

Anodized 
aluminum

Input to TX
Input current

Input voltage

Output 
voltage

TX

Chirp

Trigger signal

Figure 3.3: Experimental setup for characterizing the performance of the developed
through-metal UPT.

3.2.2 Numerical Model

A high-fidelity FEM was used to evaluate the validity of the approximations made by the

1D analytical model, and the influence of lateral modes on system performance. An ax-

isymmetric piezoelectric-structural-circuit model was constructed using the material prop-

erties, and dimensions summarized in Table 3.3. The element size was chosen so that at

least 5 elements are used per wavelength at the highest studied frequency. Isotropic struc-

tural damping was used to model the attenuation in the different elastic layers as well as

the piezoelectric layers. Dielectric losses in the piezoelectric layer were also included in

the analysis. The aluminum wall was modeled with an extended radius of 25 mm and with

non-reflecting boundary conditions at the lateral edge. Extending the wall further did not

show a significant change in the calculated performance of the system, given that the ma-
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jority of the elastic waves were localized between the piezoelectric transducers as shown in

Figure 3.4.
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Figure 3.4: A cross-section in the base UPT FEM model showing Von Mises stress mag-
nitude distribution calculated numerically when the system is excited with a steady-state
10 V sinusoidal voltage at 1.025 MHz.

3.2.3 Benchmark Results and Discussion

The voltage FRF and efficiency of the UPT system are summarized in Figure 3.5. The 1D

analytical predictions are compared to the 2D axisymmetric numerical results, and to the

experimental measurements of the system. A very good agreement is observed between

the voltage and efficiency predictions of the numerical model and the experimental results.

The influence of lateral and radial modes of the system is visible in the form of a “noisy”

response for both the voltage FRF and efficiency in the experimental and numerical results.

These fluctuations are not captured by the 1D analytical model; however, it still accurately

approximates the profile of the voltage FRF as shown in Figure 3.5a. As shown in Fig-

ure 3.5b, the analytical model over-predicts the efficiency of the system for most of the

considered frequencies as it does not include the power lost to exciting the lateral modes.

The analytical predictions, thus, represents an envelope for the maximum theoretical effi-
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ciency for a given configuration, and the actual efficiency achieved is usually lower. The

peak experimental operating efficiency for the base system was 83% at 1.025 MHz.
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Figure 3.5: (a) Voltage FRF between the input and output piezoelectric transducer. (b)
Operating (ultrasonic) efficiency of the system. The experimental results are compared to
1D analytical model and numerical model predictions.

The performance of the system is further analyzed by considering a larger frequency

range for the voltage FRF and efficiency as shown in Figure 3.6. Three classes of overlap-

ping peaks at different frequency intervals are observed in the response due to the resonance

of the different components of the system. As shown in Figure 3.6a, the piezoelectric trans-

ducer resonance dominates the overall response of the system with global peaks at odd mul-

tiples of the thickness resonance of the transducer seen around 1.1, 3.3, 5.5, and 7.7 MHz.

The voltage FRF is minimum around even multiples of the transducer resonance around

2.2, 4.4, 6.6, and 8.8 MHz, since the electrical and mechanical domains do not couple at

the even modes of piezoelectric transducers [176, 181]. Using a thinner transducer would

shift these global peaks to higher frequencies and increase the interval between them.

The second class of resonances originates from the standing waves in the aluminum

wall (frequencies at which the thickness of the wall is an integer multiple of the pres-

sure waves traveling through it). The sharpness of these resonance peaks depends on the

impedance mismatch between the metal and the piezoelectric domain. The frequency in-
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terval of these peaks depends mainly on the thickness of the aluminum wall with thicker

walls resulting in smaller intervals.

The third class of resonances is related to higher-order radial modes in the transducers,

and they appear as a noisy response around the fundamental frequency of the transducer.

The strength of these modes depends on the aspect ratio of the transducer, and their effect

diminishes for higher odd multiples of the transducer resonance.
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Figure 3.6: (a) Voltage FRF between the input and output piezoelectric transducer. (b)
Operating (ultrasonic) efficiency of the system. The experimental results are compared to
the 1D analytical model and numerical model predictions over frequencies ranging from
0.5 MHz to 10 MHz.

3.2.4 Maximum Achievable Efficiency

As discussed in Section 3.1.2, the UPT system efficiency is limited by two mechanisms: 1)

the attenuation of the different elements as the waves propagate from the source to the load,

and 2) wave reflection between the different components of the system. While attenuation

is an inherent property of the materials used, and can only be enhanced by using lower

loss materials, losses due to reflection can be reduced by matching the input and output

impedance of the system to the source and load impedance values. It can also be reduced by

matching the impedance between the different elastic layers. The use of acoustic matching
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layers, however, might introduce additional attenuation to the system which might be larger

than the reduction of reflection losses.

For the mechanical system, the maximum achievable efficiency occurs when the reflec-

tions at the input and the output of the system are minimized. This maximum efficiency

can be calculated by determining the impedance that is required at the input and output of

the system to minimize the reflections (simultaneous conjugate matching). This efficiency

only depends on the system parameters and could be calculated using the relation [180]:

ηmax =
1

1− |ΓS|2
|S21|2

1− |ΓL|2

|1− S22ΓL|
× 100% (3.39)

where the matched source and load reflection coefficients (ΓS,ΓL) are given by:

ΓS =
B1 ±

√
B2

1 − 4|C1|2
2C1

(3.40)

ΓL =
B2 ±

√
B2

2 − 4|C2|2
2C2

(3.41)

where:

B1 = 1 + |S11|2 − |S22|2 − |∆|2 (3.42)

B2 = 1 + |S22|2 − |S11|2 − |∆|2 (3.43)

C1 = S11 −∆S∗22 (3.44)

C2 = S22 −∆S∗11 (3.45)

∆ = S11S22 − S12S21 (3.46)

Figure 3.7 shows the maximum achievable efficiency for the benchmark system com-

pared to the operational efficiency obtained when the receiver is terminated with a 50 Ω

resistor. The results show that the peak operational efficiency of the system (at 1.025 MHz)

is very close to the maximum achievable efficiency which means that the system is closely
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matched to 50 Ω at this frequency. The peak of the maximum achievable efficiency is

inversely proportional to the frequency which is expected since it is only limited by the

attenuation present in the system. At higher frequencies, however, the difference between

the maximum efficiency and the operational efficiency is large which indicates that the

impedance mismatch is large. Electrical impedance matching can thus be used to enhance

the operating efficiency around the higher transducer resonance frequencies (i.e 3.3, 5.5,

7.7 MHz, etc).
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Figure 3.7: (a) Operating (ultrasonic) efficiency of the base system obtained numerically
compared to the maximum achievable efficiency calculated using Equation (3.39). The
frequency range from 0.5 MHz to 2 MHz is shown in (b).

3.3 Transducers with Wrap-around Electrodes

Transducers with wrap-around electrodes, as shown in Figure 3.8, allow for easy electrical

access to the bonded side of the transducer without the need for using the metallic wall as

a common electrical connection or gold plating electrodes on top of the anodized metallic

wall as discussed in Section 3.2.1. The wrap-around electrode portion of the transducer,

however, does not contribute to the active area of the transducer, and introduces asymme-

tries in the active transducer geometry which might excite additional lateral modes limiting

the efficiency of the structure.
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In this section, four transducers with wrap-around electrodes but different shapes, thick-

ness, and area are investigated. Their performance will be compared to the base model

which uses transducers with full coverage electrodes. Additionally, the sensitivity of the

UPT system performance to transducer size and shape variation will also be discussed.

An anodized aluminum plate with a thickness of thickness 1/4” (6.35 mm) was consid-

ered, and a pair of transducers were bonded at the center of the plate as shown in Figure 3.8.

Three circular SM111 (ct. Table 3.1) transducers with dimensions of 30 mm x 2.1 mm (the

same as the base model), 15 mm x 1 mm, and 10 mm x 0.5 mm were considered as well as

a rectangular transducer with dimensions of 20 mm x 15 mm x 2.1 mm.

The voltage FRF and operating efficiency for the considered transducers are shown in

Figure 3.9. Since the plate used for this set of experiments is twice the thickness of that

used in the base model, the wall resonances visible in Figure 3.9a are closer in frequency

compared to Figure 3.6a. For the 30x2.1 (1MHz) transducer, the peak operating efficiency

(80% as shown in Figure 3.9) is only slightly lower than that observed in the base model

(83%) using the same transducer dimensions (Figure 3.9b). The transducer used in the

base model had full coverage electrodes which suggests that the presence of wrap-around

electrodes has a limited effect on the operating efficiency when the transducers are aligned

properly. On the other hand, the rectangular transducers had the wrap-around part of the

electrode at the corner as shown in Figure 3.8d which made it impossible to align the wrap-

around part of the transmitting and receiving transducer. This contributed to the reduction

in the peak efficiency (50% for the rectangular tile vs 80% for the circular tile). The diffi-

culty of aligning the rectangular transducers as well as other corner effects may have also

contributed to the loss of efficiency. The efficiency of the rectangular tiles is, however,

expected to improve if transducers with opposite wrap-around corners are used.

The results for the higher frequency tiles show the expected trend of reduction in ef-

ficiency as the frequency of operation increases. The smaller transducers are also more

sensitive to alignment issues which most likely contributed to the reduced operating ef-
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(a) 30 mm x 2.1 mm (1 MHz) (b) 15 mm x 1 mm (2 MHz)

(c) 10 mm x 0.4 mm (5 MHz) (d) 20 mm x 15 mm x 2.1 mm (1 MHz)

Figure 3.8: Experimental setup for through-metal UPT systems using circular transducers
with dimensions (a) 30 x 2.1 mm, (b) 15 x 1 mm (c) 10 x 0.5 mm, and (d) a rectangular
transducer with dimensions 20 x 15 x 2.1 mm.
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ficiency. As shown in Figure 3.9b, the 15x1 (2 MHz) and 10x0.5 (5 MHz) transducers

showed a peak efficiency of 67% and 61% respectively. The peak efficiency obtained by a

thin transducer around its resonance (10 x 0.5 transducer for example) was larger than that

obtained by using the higher-order modes of a thicker transducer (third mode of the 30 x

2.1 transducer).
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Figure 3.9: Experimental (a) voltage FRF and (b) operating efficiency for UPT systems
for the transducers shown in Figure 3.8.

3.4 Interfacing Circuits

For a working implementation of a UPT system, it is necessary to consider the interfac-

ing electronics in addition to the ultrasonic system itself. The essential components for a

minimal functional UPT system are shown in Figure 3.10. Electric power is commonly

available in DC form either directly from a battery or through rectified AC mains. In order

to excite the ultrasonic system, the available DC power needs to be converted to an AC

signal at the peak efficiency/power transfer frequency of the system. The AC signal is sup-

plied from a signal generation circuit connected to drive a power amplifier circuit designed

to operate efficiently at the system frequency.

A rectified DC output is also required for most modern electric devices. Since few

electrical loads can directly operate using the raw high-frequency AC power at the output
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of the ultrasonic system, an AC-to-DC rectifier circuit is usually needed at the output of

the ultrasonic system. The rectified DC power could then be used to charge a battery (or a

supercapacitor) or it could be directly used to drive an electrical load.

Common driving and rectifying circuits include active nonlinear components such as

transistors and diodes. Therefore, a nonlinear circuit solver is needed for characterizing

the overall performance of the system. Since UPT systems are modeled and characterized

in the frequency domain, a nonlinear harmonic balance (HB) solver is better suited for

simulating the system compared to more commonly used time-domain-based software such

as SPICE or SIMULINK. The harmonic balance method directly solves for the steady-

state system response at the fundamental frequency of excitation and its harmonics which

is usually faster than simulating many time steps before the time-domain solver reaches

steady-state operation [182].

Battery

Signal
generator

Power
amplifier

AC/DC
rectifier

Electric
load

Mechanical 
systemDC power

AC signal AC power

DC voltage

TX RX

Coupling 
layers

AC power DC power

Figure 3.10: A block diagram showing the essential components for a through-metal UPT
system and the flow of power between them.

3.4.1 AC-to-DC Conversion

Several rectification circuit configurations could be used with UPT systems. When the

output voltage is much higher than the forward bias voltage of two diodes (typically around

1 V per diode), a full bridge configuration such as that shown in Figure 3.11a could be used

73



for achieving the conversion efficiently. For lower voltages, a voltage doubler circuit such

as that shown in Figure 3.11b could be used instead. The voltage doubler circuit both

rectifies the AC input signal and doubles the output DC voltage compared to a full-bridge

configuration. Since the voltage is doubled, the output impedance of the system is also

doubled, which limits the amount of current the system can supply. The diodes in the

circuits shown in Figure 3.11 could also be replaced with active elements (transistors), to

eliminate the diode voltage drop and improve the efficiency in low power applications [183,

184].

(a)

(b)

Figure 3.11: (a) Full bridge AC-to-DC rectifier circuit (b) Half-wave voltage doubler cir-
cuit.

For UPT systems operating in the low MHz frequency range, it is beneficial to select

Schottky diodes with fast recovery time to minimize the power loss while switching. It

is also important to carefully select the smoothing capacitors. Low equivalent circuit in-

ductance (ESL) capacitors are necessary to ensure proper smoothing of the output voltage.

Usually the larger the capacitor value, the larger its parasitic inductance (ESL) which limits

its bandwidth and frequency of operation. Even the leads of the capacitor introduce enough
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parasitic inductance to limit its bandwidth and thus surface mount components with very

short leads are preferred to larger through-hole components.

To ensure a smooth DC output from the rectifier with minimum ripple, multiple capaci-

tors with an order of magnitude difference in capacitance can be used in parallel. The larger

capacitors provide enough current for a smooth DC operation, and the smaller capacitors

filter out the high-frequency signal components. The exact value of the capacitors used is

dependent on the circuit configuration, but values ranging between 0.01, 0.1, 1, and 10 µF

are a good ballpark for low MHz UPT systems.

3.4.2 Power Amplifiers

Common power amplifier circuits consist of one or more power transistors, with impedance

matching and filtering circuits designed to optimize their performance for specific band-

width, and power requirements. Metal oxide semiconductor field-effect transistors (MOS-

FETs) are ideally situated to operate with the maximum efficiency at low MHz frequency

range. Compared to other common types of transistors such as bipolar junction transistors

(BJTs), isolated gate bipolar transistors (IBJTs), and other types of FETs, they offer faster

switching times with high power handling capabilities and low drain to source resistance

RDS (low ON resistance).

Depending on how the transistor is biased and operated, several classes of power ampli-

fier designs can be used to drive the UPT system. In linear power amplifier classes (class A,

class B, and class AB) shown in Figure 3.12a-c, the transistor operates in its active region

(i.e. the resistance of the transistor varies proportionally with the input signal to generate

the output power signal). In class A designs, the transistor is biased at the center of its ac-

tive region, and thus the transistor is always on, and it dissipates power even when no signal

is present at its input (the gate for MOSFETs). The result is a linear output with low har-

monic distortion, but at the expense of a maximum theoretical efficiency of 50% [185]. In

Class B, the transistor is biased to work for only half a sinusoidal cycle, and is thus turned
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off when no signal is present. This improves the efficiency of the device up to a maximum

of 76.8% [185], but introduces higher-order harmonics due to the clipping of the output

signal. Class AB operates the transistor at a conduction angle between (180◦ and 360◦),

thus providing a trade-off between the linearity of class A and the improved efficiency of

class B. All power amplifier classes could be operated in a push-pull configuration where

two transistors are used simultaneously with each transistor handling half of the sinusoidal

cycle. This has the advantage of allowing for more power to be delivered and reduces the

nonlinearities present in class B and class AB designs.

For efficiency-centric applications such as UPT, switching mode power amplifier de-

signs (such as class D and class E) offer improved efficiency over linear designs. In switch-

ing mode power amplifiers, the transistor operates as a switch, i.e. either fully ON or fully

OFF. Since the transistor has the lowest resistance when it is fully ON, it dissipates much

lower power compared to operating in the active region.

In class E designs (Figure 3.12d), the transistor is used to drive a resonating circuit

near its resonance. The transistor in class E amplifiers ideally only switch when the output

voltage is zero (ZVS), and thus the power dissipated during switching is minimized. For

these reasons, the efficiency of class E amplifier designs can theoretically reach 100% [186]

with practical implementations reaching a total efficiency higher than 90% [187]. These

advantages come at the expense of a narrower operating bandwidth, and limited flexibility

in controlling the output power of the amplifier which stems from the need for accurately

tuning the operating point of the amplifier to achieve ZVS operation. Optimum class E

operation can be achieved by tuning its frequency of operation, the inductor value, and the

duty cycle of the driving square wave signal. The characteristics of class E power amplifiers

are nevertheless well suited for power transfer applications which have motivated recent

efforts aiming at tuning class E amplifier designs to be used for inductive power transfer

applications [187–192] as well as UPT [193].
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(a) Class A (b) Class B

(c) Class AB (d) Class E

Input signal

Output signal

Resonant filtering
 circuit

Figure 3.12: Power amplifier design classes depending on how the power transistor is
biased and the nature of the excitation signal (sinusoidal vs. square wave).
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3.4.3 Class E Amplifier Design for UPT

In this section, we investigate the design of class E power amplifiers for operation with

piezoelectric UPT systems. We suggest a design that relies on the resonant mechanical

system to double as the filtering circuit of the amplifier. This reduces the required electrical

power components to a single feed inductor connected to the DC power supply.

Class E power amplifiers traditionally rely on the resonant circuit shown in Figure 3.12d

to provide the transient response required for the amplifier operation and to filter the square

wave driving signal to generate an output sinusoidal signal. Since piezoelectric UPT sys-

tems are resonant and capacitive in nature, the system itself could provide the transient

response required for the operation of the amplifier, and the harmonics generated are fil-

tered mechanically providing a clean sinusoidal output at the piezoelectric receiver. This

tight integration, however, requires a coupled electromechanical model for optimizing the

operation of the amplifier.

A coupled electromechanical harmonic balance circuit simulation was constructed to

design the proposed amplifier using Keysight Advanced Design System (ADS) software as

shown in Figure 3.13. The dynamics of the mechanical system is exported from the FEM

model as a touchstone file (S-parameters representation) and then imported into ADS as

indicated in Figure 3.13. A FQP30N06 power MOSFET (manufactured by ON Semicon-

ductors inc.) was selected for the design because of its low ON resistance (RDS = 40 mΩ)

and fast switching time (t(max)on = 210 ns). The feed inductor was tuned to provide ZVS

conditions at the peak efficiency frequency of the mechanical system (1.025 MHz). The

parasitic inductance from the TO-220 package of the MOSFET as well as the wires con-

nected to the mechanical system are included in the model.

A Raspberry Pi Pico microcontroller was used to provide a programmable square wave

signal to the power amplifier circuit as shown in Figure 3.14. The microcontroller was

connected to a UCC27423P high-speed MOSFET gate driver Integrated Circuit (IC). The

gate driver was used to supply the large instantaneous current required to drive the power
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Figure 3.13: A circuit simulation using the harmonic balance method for a class E amplifier
connected to the base model shown in Figure 3.1.
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transistor. The Raspberry Pi Pico was programmed to supply a square wave signal with

adjustable frequency to the MOSFET driver IC. The frequency and the duty cycle of the

signal were controlled using two trimming potentiometers connected to the analog inputs

of the microcontroller as shown in Figure 3.14. The circuit was designed to operate with

5-15 V DC supply levels allowing for direct operation from a single 9 V alkaline battery or

a 7.2 V lithium-ion battery pack.

Figure 3.14: The printed circuit board of the designed class E power amplifier with a mi-
crocontroller used as a variable square wave generator and the MOSFET driving circuitry.
The different components of the circuit are highlighted.

3.5 UPT with an Integrated Power Amplifier (DC-to-AC Operation)

The performance of the UPT system with an integrated class E amplifier is evaluated in this

section. The simulated and experimental results for the input and output voltage waveforms

to and from the system are shown in Figure 3.15 when a 12 V power supply is used to drive

the circuit. An excellent match is observed between the experimental measurements and

the simulated waveforms. In Figure 3.15a, the input voltage to the ultrasonic system is zero

when the MOSFET is turned ON in the time interval between 0 and 0.5 µs, and it swings

sinusoidally depending on the system dynamics when the MOSFET is switched OFF as
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shown in the interval between 0.5 and 1 µs. The output of the system is a mechanically

filtered sinusoidal signal, nevertheless, as shown in Figure 3.15b.
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Figure 3.15: Simulated and experimental (a) input and (b) output voltage waveforms to and
from the ultrasonic system as supplied from the designed power amplifier. The simulation
results are obtained from the circuit shown in Figure 3.13.

For an efficient operation of class E power amplifiers, a ZVS condition must be achieved

which depends on the mechanical system properties, operating frequency, driving circuit

duty cycle, and the feed inductance value. Since the operating frequency and the mechan-

ical system properties are fixed, the amplifier is tuned by adjusting the duty cycle and the

feed inductor value. Figure 3.16 shows the voltage waveform at the MOSFET drain (input

to the ultrasonic system) for a tuned operation when ZVS is achieved vs detuned opera-

tion. In the detuned operation, the transistor switches off when the drain voltage is not zero

causing high-frequency oscillations due to the parasitic components in the circuit.

The total DC power supplied to drive the amplifier circuit (including the driving cir-

cuitry) was measured by using an Agilent E3641A DC power supply with a current readout.

In order to quantify the total DC-to-AC efficiency of the UPT system with the integrated

amplifier, the input DC voltage to the amplifier was varied from 5-16 V and both the in-

put power to the ultrasonic system, and the output power was recorded. The operating
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Figure 3.16: Experimental MOSFET drain voltage when the amplifier operation is tuned
by selecting a proper feed inductor (4.7 µH) versus the detuned operation when a different
inductor is used (10 µH in the case shown).

efficiency from a DC supply was calculated from:

ηDC−AC =
Po
PDC

× 100% (3.47)

where Po is the output AC power supplied to a 50 Ω resistive load and PDC is the total DC

power supplied to the system including the power needed to drive the microcontroller and

the gate driving circuit (a constant current of 90 mA).

The total DC-to-AC efficiency is shown in Figure 3.17a vs the DC supply voltage. The

detuned efficiency is also shown in the same figure to highlight the importance of tuning the

amplifier. The efficiency of the detuned system drops sharply at 12 V which is most likely

caused by overheating of the transistor due to inefficient operation. The system shows a

peak DC-to-AC efficiency of 77% for tuned operation. The efficiency drops to 60% for

lower power transfer because of the overhead of powering the microcontroller and driving

circuit. The efficiency of the ultrasonic system was measured to be 89% at peak DC-to-AC

efficiency, and thus the efficiency achieved by the class E amplifier was 86.5% including

the power needed to drive the amplifier driving circuit. As shown in Figure 3.17, the system

was able to deliver 9 W of power to a 50 Ω load with a 16 V input. The system output power
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was only limited by the breakdown voltage of the MOSFET used and could thus deliver

larger output power with a higher rated transistor as discussed in the following section.
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Figure 3.17: (a) DC-to-AC experimental system efficiency vs DC input voltage. The effi-
ciency is calculated by dividing AC output power supplied to a 50 Ω load by the total input
DC power. (b) The output power vs the input DC voltage supplied.

3.6 Overall System Performance (DC-to-DC Operation)

The full DC-to-DC operation for the UPT system was then studied by adding a full bridge

rectifier as discussed in Section 3.4.1. The circuit shown in Figure 3.18 is used to simulate

a complete through-metal UPT system that transfers power supplied from a DC source

to DC power consumed by a load. A CDBHM260L-HF full-bridge Schottky rectifier is

used at the output of the UPT to convert the ultrasonic system’s AC output power into DC

power. The power transistor used in Section 3.5 was upgraded to an IRFBV4019PBF power

MOSFET capable of handling 150 V to allow for using a larger DC voltage supply. The

circuit was implemented experimentally and the steady-state results are compared to the

simulation predictions in Figure 3.19. An excellent agreement between the simulations and

experimental measurement is observed for both the input and output voltage waveforms.

The experimental results, however, show larger oscillations compared to simulations when

the MOSFET is turned ON (i.e. when the input voltage is close to zero) which is caused by

other electrical parasitics not captured by the model. The experimental DC output shows
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slight ripples compared to the simulations which is caused by the ESL of the smoothing

capacitors used as discussed in Section 3.4.1.
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Figure 3.18: Harmonic balance simulation of a complete through-metal DC-to-DC UPT
system.
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Figure 3.19: Input voltage (Vi) and output voltage (Vo) waveforms (see Figure 3.18) of
the complete DC-to-DC UPT system operated from a 20V power supply. The simulated
waveforms obtained using the circuit shown in Figure 3.18 are compared to experimental
measurements.

The DC supply voltage to the system was then varied from 5-20 V to study its effect on

the system efficiency and output power. The total input power from the DC power supply
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and the output DC power delivered to a 50 Ω as well as a 100 Ω load were recorded, and

then used to calculate the total system efficiency (DC-to-DC) efficiency:

ηtot =
PDCo
PDCi

× 100% (3.48)

= ηampηUSηrec (3.49)

As shown in Figure 3.20, the DC-to-DC efficiency to a 50 Ω load remained constant

around 68% for VDC above 8 V. For lower VDC values the efficiency of the system drops

quickly due to inefficient amplifier operation. This is likely caused by insufficient MOSFET

gate drive voltage and the reduced bridge rectifier efficiency. The efficiency of the system

drops to 66% when driving a 100 Ω load which is expected due to the power reflection

caused by the impedance mismatch between the UPT system and the load. The system

was capable of delivering 17.5 W of useful DC power which was limited by reaching the

current limit of the DC power supply employed.
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Figure 3.20: (a) Total experimental system efficiency vs DC input voltage. The efficiency
is calculated by dividing output power supplied to a 50 Ω load by the total input DC power.
(b) The DC output power vs the input DC voltage supplied.

The recorded input amplifier drain voltage and DC output voltage waveforms are shown

in Figure 3.21 for the tested DC supply voltage range. As shown in Figure 3.21, the am-

plitude of the voltage ripple due to transistor parasitics seems to increase when the supply
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voltage is increased. The ripples are caused by a slightly detuned operation of the amplifier

which can be adjusted by actively adjusting the duty cycle of the driving signal and using

a different DC feed inductor value more suited for the full DC-to-DC operation of the sys-

tem. The ripple of the output DC voltage (Figure 3.21b&c) seems to also increase with

the amplitude of the output voltage which is expected since the amplitude of the ripple is

directly proportional to the supplied DC voltage. Also, note that the ripple observed for the

50 Ω load is larger than that for the 100 Ω load which is expected since the current demand

is larger. The UPT system used was capable of supplying 17.5 W (30 V& 0.59 A) to a 50 Ω

load, and 16 W (40 V& 0.4 A) to a 100 Ω load using a 20 V power supply.
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Figure 3.21: Experimental (a) amplifier drain voltage and (b&c) DC output voltage wave-
forms when (b) a 50 Ω load and (c) a 100 Ω loads were used. The waveforms are measured
at the DC supply voltage levels shown in the color bar.
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3.7 Dry-coupled Detachable Power Transfer System

It is useful to have a detachable charger (transmitter) for many portable devices, while the

receiver remains bonded inside the device. Efficient detachable UPT operation requires

good mechanical contact between the transducer and the metallic enclosure, which is typi-

cally achieved either through permanent bonding as discussed in the previous section or by

using a liquid or gel couplant. A detachable system for power transfer through a metallic

wall was first proposed by Moss et al.. They used two 4.2 MHz piezoelectric discs bonded

to neodymium rare earth magnets to transfer power through an aluminum wall. The mag-

nets were used to align the two transducers, and to provide the force necessary to hold the

transducers against the wall. Up to 34% efficient power transfer was achieved using a high

impedance ultrasonic gel couplant to provide the contact between the transducers and the

wall. The use of ultrasonic gel couplants is however inconvenient in many situations since

they either dry out during operation, require frequent reapplication, or leave traces that are

difficult to remove and might accelerate corrosion.

Dry coupling of piezoelectric transducers has been investigated in the non-destructive

testing (NDT) industry since the 1960s [194]. Dry ultrasonic pulse echo measurements

at elevated temperatures were achieved by momentary coupling through impact using a

steel hammer [195–197], and through rolling contact using a steel roller under pressure

[198]. More recently, Bhadwal et al. [199] suggested using annealed silver as a soft layer to

couple a 3 MHz lithium niobate piezoelectric transducer to a low carbon steel block. They

needed to apply pressure of 12.7 MPa to achieve a similar performance to that obtained

with ultrasonic gel.

Rubbers and elastomers have also been proposed for dry contact NDT [194]. Compared

to other solids, they require the least force to deform, and thus could be forced to fill the

microscale voids between two hard surfaces (i.e. between the transducer and the metallic

surface as shown in Figure 3.22). Drinkwater et al. [200, 201] designed an ultrasonic
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wheel probe made of a low loss rubber material to achieve dry coupling. The developed

probes operated reliably at frequencies below 500 kHz, but their performance was sensitive

to orientation when a 10 MHz transducer was used.

Ultrasonic transmission through a dry solid-solid interface is a complex problem to ad-

dress especially when one of the solids is an elastomer. Many parameters can affect the

ultrasonic transmission at the interface including the material properties of both solids, the

surface roughness of both materials, the applied pressure, the presence of contaminants

such as dust at the interface, and other surface properties. Most of the experimental studies

in literature focused on solid-solid interfaces for the same material [202–207], while very

little experimental data is available for ultrasonic transmission through dissimilar solid-

solid interfaces (especially solid-elastomer interfaces). Drinkwater et al. [208, 209] stud-

ied the effect of the applied pressure, solid surface roughness, and the presence of dust on

the reflection from a dry rubber-perspex interface. They used a 2 mm low attenuation rubber

sheet wrapped around a solid cylinder and pressed against a flat perspex plate to evaluate

the ultrasonic reflection coefficient. They showed that increased surface roughness and the

presence of dust increased the contact pressure required to minimize ultrasonic reflection.

They also showed that a 0.5 MPa contact pressure was enough to minimize the reflection at

the interface. They did not provide details, however, about the modulus of elasticity or the

hardness of the rubber used which might have a strong influence on the required contact

pressure. The influence of elastomer thickness, and elastomer material properties such as

hardness on the contact pressure required for good ultrasonic transmission is still not clear

in the literature.

In this section, we develop a through-metal UPT system with a bonded receiving trans-

ducer and an external detachable transmitting transducer that does not require a gel cou-

plant. The mechanical contact is achieved through a soft elastic layer with low ultrasonic

attenuation placed between the metallic wall and the detachable transducer. The contact

pressure is applied using the magnetic force between two arrays of neodymium magnets
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(one array attached to the transducer and the other to the metallic enclosure). The prac-

tical efficiency and power delivery of the system are characterized, and the effects of key

parameters are experimentally investigated, including the operating frequency, transducer

geometry, and the elastic layer thickness and material properties.

Transducer

Metallic enclosure

Transducer

Metallic enclosure

Transducer

Metallic enclosure

Transducer

Metallic enclosure

Dry contact Liquid coupling Dry coupling

Soft material

Figure 3.22: Different approaches to achieve ultrasonic coupling at the interface between
two rigid solids. The surface roughness of the transducer and metallic enclosure is exag-
gerated to limelight the contact problem.

3.7.1 Experimental Setup

The detachable power transfer setup shown in Figure 3.23 was designed to test power trans-

fer efficiency using dry contact. The setup relies on attractive magnetic forces to compress

a soft elastomer between a piezoelectric transducer and an aluminum plate. The role of the

soft layer is to minimize the contact pressure required for achieving good ultrasonic transfer

through the dry interface. For the receiving side of the setup, a Steminc SMD30T21F1000S

1 MHz piezoelectric disc transducer (2.1 mm thickness and 30 mm diameter) was bonded

to an anodized 3 mm aluminum plate with gold plated electrodes. The plate was anodized

to prevent having any common electrical reference between the transmitter and the receiver.

Thin gold electrodes were deposited on the plate to provide easy access for the bonded side

of the receiving transducer. A vacuum bonding process was used to ensure a minimum

thickness (10 µm) for the DP460 epoxy glue used.
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A similar Steminc SMD30T21F1000R piezoelectric disc transducer with wraparound

electrodes was used in the transmitter assembly. The wraparound electrode allowed for a

flat contact surface without any solder bumps. The transmitter assembly consisted of a 3D-

printed holder with a circular pattern for mounting 16 1/4”x1/4” cylindrical neodymium-

iron-boron NdFeB Grade N42 rare earth magnets supplied by K&J Magnetics, Inc. An-

other 3D-printed magnet assembly with the same pattern was glued to the aluminum plate.

The magnets’ polarity was switched between each two adjacent magnets to facilitate their

assembly, and provide an easy approach to remove the transmitter by applying a twisting

motion. Multiple detachable 3D-printed holders for the transducer were designed with a

height increment of 0.5 mm to allow for adjusting the magnetic gap shown in Figure 3.23.

The magnetic contact force is sensitive to the gap between the magnets as shown in Fig-

ure 3.24. The transducer holder height was selected such that a gap of at least 0.5 mm exists

between the magnets. This would ensure that the maximum contact force allowed by this

setup is applied at the dry interface. The total force applied by the magnets at 1 mm sepa-

ration is approximately 147 N which results in a minimum of 0.2 MPa of contact pressure

applied at the interface.

Three low-loss soft elastomer materials were initially tested to determine the best per-

forming elastomer for this setup. The material properties of the elastomers supplied by

Innovation Polymers, Inc. are summarized in Table 3.4. Each elastomer was tested at a

thickness of 0.5 mm, and 1 mm to estimate its influence on the performance of the mate-

rial. A single piezoelectric transducer was used for this set of measurements to reduce any

variability related to transducer properties. In order to have a single dry interface (between

the soft material and the aluminum plate), a liquid couplant was used between the trans-

ducer and the elastomer. The couplant was used instead of glue to avoid variations related

to the quality of the bond from one material to the other. Aquasilox for example is based

on silicone which requires a special type of glue to be bonded to the transducer. A liquid
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Figure 3.23: Schematic of the proposed dry-coupled detachable through-metal UPT sys-
tem.
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Figure 3.24: Pulling force between two 1/4”x1/4” NdFeB Grade N42 magnets vs separat-
ing distance.
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couplant was then used to avoid using a different type of glue for each material. The effect

of using glue with the best performing elastomer is discussed in Section 3.7.3.

Table 3.4: Material properties of elastomer layers used in the study

Property ρ c Z α Shore A hardness

Unit kg/m3 m/s MRayl dB/mm/MHz -

ACE100 920 1541 1.4 0.2 42

Aquasilox100 1020 1004 1.02 0.18 23

Aqualink100 970 1476 1.4 0.088 5

3.7.2 Experimental Results

The measurement setup shown in Figure 3.25 was used to estimate the efficiency and volt-

age frequency response function FRF for the different elastomers considered. The setup

is identical to the one used to evaluate the performance of the base model discussed in

Section 3.2.1.

Signal generator Oscilloscope

Power amplifier

Anodized 
aluminum

Input to TX Input current  Current probe

Input voltage

Output voltage

Chirp

Trigger signal

TX

Figure 3.25: Experimental setup for evaluating the electromechanical performance of the
developed detachable through-metal UPT system.
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To establish a baseline for the performance of the detachable system, the magnetic

assembly was tested with a dry interface between the transmitter and the aluminum wall

without an elastomer or couplant. Then the test was repeated using an ultrasonic couplant

(Olympus D12) between the transmitter and the wall. The results for the direct contact

are shown in Figure 3.26. As expected, the detachable system does not operate properly

without the presence of the couplant, and almost no power is transferred in the dry contact

case. When the couplant is used, the system operates with a peak operating efficiency of

60% and a peak FRF close to 0 dB. The operating efficiency with couplant is, however,

lower than the bonded system discussed in Section 3.2 (83% see Figure 3.5).
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Figure 3.26: (a) Experimental voltage FRF and (b) operating efficiency for the detachable
setup with direct contact between the transmitter and the aluminum wall with and without
the use of a liquid ultrasonic couplant.

Figure 3.27 shows the efficiency and voltage FRF for the three considered soft layers

when a thickness of 0.5 mm was tested. The same measurements are shown for a 1 mm

thick layer in Figure 3.28. The soft materials considered had similar peak efficiencies for

the 0.5 mm samples. The exact frequency at which the peak efficiency varied slightly from

one measurement to the other using the same material. This variation was true for all of

the considered thickness and material values. The value of the peak efficiency however

was consistent for the same material and thickness value. The 1 mm samples had better

peak efficiency compared to the 0.5 mm samples for all the considered materials despite

93



the added attenuation associated with the thicker materials. The thicker samples are more

compressible than the thinner ones, allowing for better contact.
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Figure 3.27: (a) Experimental voltage FRF for the detachable setup with a soft layer of
thickness 0.5 mm for the soft materials tested. (b) The operating efficiency of the system.
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Figure 3.28: (a) Experimental voltage FRF for the detachable setup with a soft layer of
thickness 1 mm for the soft materials tested. (b) The operating efficiency of the system.

Aqualink, which is the softest material considered, showed significant improvement

with increased thickness. To confirm this, additional samples of 2 mm and 3 mm thickness

were considered, and the results for the performance of Aqualink for all the considered

thickness values were summarized in Figure 3.29. The 3 mm sample proved too unstable

to get a repeatable measurement. The added thickness caused the system to be too flexible

with an added rotation degree of freedom. The 2 mm sample showed the best performance
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among all the tested samples with a peak efficiency of 66% at 1.04 MHz. It was also the

most sensitive sample to alignment issues during the setup of the experiment. The added

degree of freedom due to the compliance of the thick elastomer lead to a large variation of

the peak efficiency depending on how the transducer was mounted. This form of instability

was reported previously by Drinkwater et al. [208] where a thick rubber layer might be

compressed from one side and lacks proper contact on the other. A compromise in system

efficiency might be necessary by selecting a thin soft layer to ensure reliable and consistent

operation of the dry-contact system.

0.6 0.8 1 1.2 1.4
Frequency [MHz]

0

20

40

60

80

2
U

S [%
]

Aqualink
0.5 mm
1 mm
2 mm

Figure 3.29: The operating efficiency of the system when a soft layer made of Aqualink100
was used. Results for a 0.5, 1, 2 mm thick layer are shown.

3.7.3 Effect of Gluing the Soft Layer to the Transmitter

The soft layer needs to be glued to the transmitting transducer for a practical detachable

UPT system. Figure 3.30 compares the efficiency of the detachable system when the soft

layer is glued to the transmitter versus when they are only coupled acoustically through an

ultrasonic couplant. For all cases, a dry interface existed between the soft layer and the

aluminum wall. A cyanoacrylate adhesive (Loctite 402) was used to bond the Aqualink

and ACE samples to the piezoelectric transducer. A special silicone adhesive (Sil-poxy

by Smooth-On Inc.) was used for successfully gluing Aquasilox. The system with glued
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Aquasilox configuration, however, had a much lower efficiency compared to when a liquid

couplant was used (Figure 3.30a).

The efficiency of the system was sensitive to the quality of the glue layer. Special

care during the gluing process was needed to avoid introducing air bubbles between the

soft layer and the transducer which negatively impacted the performance of the system.

Even with special care, most of the glued samples had lower peak efficiency compared

to when a liquid couplant was used (Figure 3.30b). A few well-glued samples such as

that shown in Figure 3.30c achieved operating efficiencies higher than that achieved with

a couplant suggesting that refining the gluing process will have a positive impact on the

system efficiency.

0.6 0.8 1 1.2 1.4
Frequency [MHz]

0

20

40

60

2
U

S [%
]

(a) Aquasilox 1 mm
Glued
Couplant

0.6 0.8 1 1.2 1.4
Frequency [MHz]

0

20

40

60

2
U

S [%
]

(b) Aqualink 1 mm
Glued
Couplant

0.6 0.8 1 1.2 1.4
Frequency [MHz]

0

20

40

60

2
U

S [%
]

(c) Aqualink 2 mm
Glued
Couplant

Figure 3.30: Comparing the performance of the dry-coupled system when the soft layer
is glued to the transmitter vs when a liquid couplant is used. The results are shown for (a)
Aquasilox 1 mm, (b) Aqualink 1 mm, and (c) Aqualink 2 mm soft layers.
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3.7.4 Overall System Performance

The performance of a portable system consisting of the driving circuit, discussed in Sec-

tion 3.4, and the detachable transmitter, shown in Figure 3.23, was then experimentally

tested to determine the overall operating efficiency of the system when supplying power to

a resistive load. The system was designed to operate with a DC input voltage between 5 and

25 V. Practical battery-operated designs can make use of a single 9 V alkaline battery or a

lithium-ion battery pack capable of generating 7.2 V or higher. Alternative designs might

incorporate a single lithium-ion battery with an adjustable boost converter for controlling

the power sent through the device.

The system was first tested using the experimental setup shown in Figure 3.31. A

controllable DC power supply (Agilent E3646A) was used to sweep the supply voltage

through the allowable voltage range for the device to study its performance when a 50 Ω

power resistor was connected at the output. A transmitter with a glued 2 mm Aqualink

soft layer was set to transmit power at 1 MHz. The input and output voltage and current

waveforms were then recorded to calculate the power flowing through the system. The

power delivered by the power supply was then used to calculate the overall efficiency of the

system. The results of the voltage sweep are summarized in Figure 3.32 and Figure 3.33.

The operation of the system was tested when its output was connected directly to a 50 Ω

load (AC output) and with an AC-to-DC bridge rectifier to characterize the overall DC-to-

DC operation. The voltage waveforms at the drain of the amplifier (input to the ultrasonic

system) are shown in Figure 3.32a. The waveforms show a slightly detuned operation

of the amplifier with ripples caused by the parasitics of the amplifier. A slightly more

efficient operation for the amplifier is expected with careful tuning of the DC feed inductor

value to achieve ZVS. The introduction of the bridge rectifier had a negligible effect on

the input voltage waveform (Figure 3.21a). Clean sinusoidal and DC output waveforms

were measured with minimal ripple or distortion. A peak output DC voltage of 13.5 V was

measured for an input of 11 V.
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Figure 3.31: Experimental setup for evaluating the overall performance (DC-to-DC oper-
ation) of the developed detachable through-metal UPT system.
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Figure 3.32: Experimental (a) amplifier drain voltage and (b) output voltage waveforms
for AC and DC output operation of the dry-coupled system at the DC supply voltage levels
shown in the color bar. The operation of the system with the AC-to-DC bridge rectifier is
shown using dashed lines and without it using solid lines
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The total system efficiency and the ultrasonic system efficiency are shown in Fig-

ure 3.33a. The ultrasonic efficiency decreases at voltages higher than 6 V indicating that

the heat generated during the operation is affecting the UPT system performance. This

leads to an overall system efficiency peak at 50% when the supply voltage is 9 V. The

peak resulted from an improved amplifier and AC-to-DC bridge efficiency with increased

input voltage counteracted by the reduction in ultrasonic system efficiency. The measured

efficiency for voltages below 11 V was stable over time indicating that the system could

operate reliably at this voltage range. For voltages higher than 11 V, the efficiency dropped

quickly with time which prevented a stable measurement. The measurement was repeated

after the system cooled down and the efficiency climbed back to 50% before dropping

with time verifying that the heat generated is the problem. The breakdown temperature

of Aqualink is low (around 60 °C) which justifies the drop in efficiency at higher power

levels. The developed system could thus be used to deliver up to 3 W of power at 50% total

efficiency. For higher power levels, a heat-resistant material with similar Shore hardness

and ultrasonic attenuation properties to Aqualink is needed to maintain efficient operation.
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Figure 3.33: (a) Experimental total system efficiency and ultrasonic efficiency vs DC input
voltage for the dry-coupled system. (b) The total input and output DC power vs the input
DC voltage supplied to the system.
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3.8 Conclusions

Two configurations for through-metal ultrasonic power transfer were developed and ex-

perimentally tested. The first setup included a bonded transmitter and receiver sending

ultrasonic power through an anodized aluminum wall. An efficient class E power amplifier

was designed to be tightly integrated into the ultrasonic system with minimal electronic

components. The developed amplifier relied on the ultrasonic system for filtering its output

signal. A complete power transfer system that includes the amplifier, the ultrasonic setup,

and a full bridge rectifier was simulated and then experimentally verified. The system was

able to deliver 17.5 W of DC power to a 50 Ω resistive load at a total DC-to-DC efficiency

of 66%.

A dry-coupled detachable through-metal power transfer system was also designed to

provide efficient ultrasonic power transfer without the need for a liquid ultrasonic cou-

plant. The system consisted of a battery-operated detachable charger that could be attached

to an aluminum wall through a magnetic setup. Three soft elastomers were tested to select

the material suitable for achieving the best power efficiency. Samples with different thick-

nesses were also tested. The results showed that soft layers with 1-2 mm thickness made of

the softest tested material (Aqualink with 5 Shore 00 hardness) achieved the best ultrasonic

coupling possible. The developed charger could deliver up to 3 W of DC power through a

3 mm aluminum wall with 50% efficiency when operating on a 9 V alkaline battery.
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CHAPTER 4

PERFORMANCE ENHANCEMENT BY LEVERAGING PHONONIC CRYSTALS

AND WAVE FOCUSING

Wireless sensor nodes deployed in the ocean could be meters to even kilometers away from

the power source. This limits the operating frequency of the underwater UPT system to tens

of kHz, and allow for the waves to travel between TX and RX with minimum attenuation.

The efficiency of the system becomes limited by power spreading in the medium unlike

through-metal UPT systems in which the spreading losses were minimal.

In this chapter, we introduce two 3D-printed gradient-index phononic crystal (GRIN-

PC) lens designs intended for focusing and collimating acoustic waves underwater and in

air. The lenses are introduced to improve the efficiency of acoustic power transfer systems

by focusing incident acoustic waves at the receiver. A finite-element model is developed

to design the unit cell dispersion properties and to construct the 3D lenses for wave field

simulations. Numerical simulations are presented to confirm the focusing of incident plane

waves and to study the sensitivity of the refractive index profile to the direction of wave

propagation.

The two lenses are then fabricated, and their theoretical focusing characteristics are

validated experimentally using a scanning hydrophone setup for measuring the underwater

pressure field and a scanning microphone setup under speaker excitation to measure pres-

sure field in air. The underwater lens is used to enhance the performance of an underwater

power transfer system with low directivity transducers. Similarly, the in-air lens is used to

enhance the performance of a piezoelectric unimorph transducer placed at its focal point.

For each of the tested systems, introducing the GRIN-PC lenses dramatically enhances the

power delivered by the system.
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4.1 GRIND-PCs for Underwater Focusing

We introduce a simple structure and design approach for GRIN-PCs that allow for the

manipulation of underwater acoustic waves. The unit cell of the PC consists of trapped

air inclusions in a 3D-printed Polylactic Acid (PLA) elastic matrix as shown in the inset

of Figure 4.1a. The PLA polymer acts as the background medium allowing for a close

impedance matching to water while air acts as an impedance contrasting inclusion. This

allows for the construction of a simple lightweight PC compared to other common PCs

with dense metallic inclusions. The shape of the inclusion is chosen to facilitate its 3D

printing via the commonly employed Fusion Deposition Modeling (FDM) process without

difficulty [210].

4.1.1 Underwater Unit Cell Analysis and Refractive Index Tailoring

Using an elastic material as the lens background material introduces additional complexity

as compared to the fluid background of in-air PC lens realizations [131]. First, as shown

in Figure 4.1a, two modes of propagation exist in the elastic domain (pressure and shear

waves), and thus both modes should be considered when analyzing wave propagation in

the PC domain. To simplify the analysis, shear waves (S-waves) in the PC were neglected

assuming incident acoustic waves in water were mainly coupled to pressure waves (P-

waves) in the PC domain for the configurations explored in this study. Secondly, the lattice

periodicity of the PC, as well as the inclusion size and shape, introduces anisotropy (hence

directional dependence) in the effective properties of the PC. The resulting anisotropy is

more significant in an elastic background compared to a fluid background which is isotropic

by nature and less sensitive to inclusion shape and periodicity. In the following analysis, we

only consider waves propagating in the ΓX direction to characterize the effective properties

of the crystal, in an effort to demonstrate the focusing of plane waves propagating in a

102



known direction (omnidirectional implementation would require a more complex unit cell

geometry and fabrication challenge).
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Figure 4.1: (a) Band structure of the proposed PC for different filling fractions (φ) of air
volume per unit cell volume (propagation modes of different branches are shown as insets).
(b) Frequency dependence of the PC refractive index for different filling fractions.

An elastic Finite Element Model (FEM) of the PC unit cell with periodic boundary con-

ditions was used to obtain the band structure shown in Figure 4.1a. The material properties

of the 3D-printed PLA used in the FEM were obtained experimentally since they usually

differ from standard PLA properties depending on the 3D printing process parameters. In
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order to identify the actual material properties of the printed structure, homogeneous slen-

der bar samples were printed using the same 3D printing process parameters as the PC.

The first few axial vibration modes of those samples were employed to estimate the elastic

modulus and loss by using the approach detailed in Ref. [211]. The identified properties

of the 3D-printed PLA were: Young’s modulus E = 3200 MPa, density ρ = 1250 kg/m3,

Poisson’s ratio ν = 0.36, P-wave speed cp = 2194 m/s, S-wave speed cs = 1026 m/s,

and structural loss factor η = 0.02. Furthermore, due to the large impedance mismatch

between PLA and air, the inclusions were modeled as free boundary conditions to the elas-

tic domain. While acoustic propagation modes exist in the air inclusions, these modes

are weakly coupled to the elastic domain (and to water outside the PC), due to the large

impedance mismatch, and do not contribute to the pressure wave propagation in the PC. As

shown in Figure 4.2, including the air as a fluid in the unit cell simulation introduces local-

ized acoustic modes in air. These modes, however, have a negligible effect on the elastic

modes that dominate the response of the lens underwater.
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Figure 4.2: The effect of including air as an acoustic material on the bandstructure of the
proposed unit cell. The bandstructure of the cell with air modeled as an acoustic domain is
shown as solid lines while the model assuming air as a free boundary condition is shown
as markers.

104



Figure 4.1a is obtained for a unit cell with periodicity a = 3 mm for different filling

fractions φ defined as the volume of air inclusion to the total volume of the cell. The

effective phase velocity of P-waves c̃p and S-waves c̃s are given by the relation c̃p,s =

(2πf)/kp,s, where f is the frequency in Hz and kp,s is the wave number corresponding

to the propagation mode. The refractive index of the PC with respect to water is defined

as n = cw/c̃p, where cw is the speed of sound in water. When the filling fraction of

the air inclusions in the PC is increased, the effective P-wave velocity c̃p decreases, i.e.

the refractive index of the PC increases. The dependence of the PC refractive index on the

frequency is shown in Figure 4.1b for different filling fractions. The refractive index profile

is relatively flat at lower frequencies and increases rapidly as the frequency approaches the

Bragg bandgap of the PC marked by the dashed line. As the filling fraction increases,

the bandgap shifts to lower frequencies. As a result, the refractive index profile becomes

steeper and hence less broadband. A target frequency of f = 100 kHz is selected so that a

range of φ can be used to set the refractive index of the PC from n = 0.7 (for φ = 0) to

n = 1.9 (for φ = 0.9) as shown in Figure 4.3a.
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Figure 4.3: (a) PC refractive index versus the filling fraction at the target design frequency
of 100 kHz. (b) Refractive index profile for a continuous Luneburg lens and the discretized
GRIN-PC implementation. Simulations are for waves propagating in the ΓX direction.
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4.1.2 Underwater Phononic Crystal Lens Design

The proposed PC was used to design and fabricate a 3D GRIN-PC lens based on the Luneb-

urg lens profile (Figure 4.3b): n =
√

2− r2/R2, where r is the distance from the center

of the lens, and R = 24 mm is the radius of the lens which consists of 8 unit cells in the

radial direction (Luneburg profile is normally omnidirectional, although this work explores

the focusing of waves propagating in a single known direction as mentioned previously).

In order to reduce the effects of discretization, the air inclusions were tapered to intro-

duce a gradient in the filling fraction between neighboring cells. The performance of the

lens was simulated using a coupled elastic-acoustic FEM implemented using Comsol Mul-

tiphysics. The lens was placed in water that was modeled as an acoustic domain with

ρw = 1000 kg/m3 and cw = 1500 m/s. Radiation boundary conditions were applied to

the external boundary of the acoustic domain, and both elastic and acoustic domains were

discretized so that there were at least 7 elements per wavelength at the highest excitation

frequency. An acoustic plane wave in the form of a Gaussian pulse with a center frequency

of 100 kHz and bandwidth of 30 kHz was provided as the excitation through one of the

acoustic domain boundaries and the time-domain response of the lens was computed.

An ideal 3D implementation of the Luneburg lens would be of spherical shape; how-

ever, since the lens background is an elastic domain, the shape of the interface between

the lens and water will affect its performance due to mode conversion between pressure

and shear waves. The interface domain will also have a strong effect on how well inci-

dent acoustic waves in water couple to P-waves inside the lens. In addition to the common

spherical shape for the Luneburg lens, a cube-shaped lens was constructed by setting c̃p of

the unit cells outside the spherical profile to match cw. The cube shape provides a flat inter-

face with incident plane waves and thus would provide better coupling to P-waves inside

the lens domain.

The effect of mode conversion on the performance of the lens is analyzed in Figure 4.4

and Figure 4.5 by comparing the focusing power of cube and sphere-shaped lenses made
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Figure 4.4: Normalized pressure field in the focus region of a sphere-shaped lens de-
sign (left column) and a cube-shaped lens design (right column). The pressure is shown
in (a&b) the propagation (z) direction and (c&d) the focal plane (x-direction). Two
different materials for the lens are considered: an elastic material matched to water
(cp = 1500 m/s, cs = 700 m/s) shown in solid blue and PLA shown in dashed red. For the
sphere lens, the pressure field for waves incident in the ΓX 〈100〉 direction are compared
to ΓR 〈111〉 incidence. The internal structures of the lens designs are shown in the insets
of (a) and (b).
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Figure 4.5: Cross-sections of the peak pressure field distributions behind the cube and
sphere lenses (i.e. in the focus region) are shown for the (a&b) matched material and (c&d)
PLA.
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of PLA to lenses made of a material with P-wave speed matched to water (cp = cw) and

much lower S-wave speed (cs = 700 m/s) i.e. softer material. Overall a soft lens with

P-wave speed matched to water outperforms a lens made of PLA; yet, PLA and similar

stiff polymer materials are more practically used as filaments in FDM 3D printers. For the

matched material, the shape of the lens had a limited effect on its performance as shown

by comparing the solid blue curves in Figure 4.4a&b, as well as Figure 4.5a&c. However,

when PLA is considered, the shape of the lens has a strong effect on the focal spot size as

shown by comparing Figure 4.5b&d. The focal spot size (i.e. neck of the focus) is much

larger for the cube-shaped lens even though the pressure amplitude is comparable in both

cases. This indicates that a spatially wider high-pressure region is enabled by the cube PLA

lens compared to its spherical counterpart.

The effect of varying the direction of incident plane waves was also considered in Fig-

ure 4.4a&c. Plane waves propagating in the ΓX 〈100〉 direction of the lattice are compared

to waves propagating in the ΓR 〈111〉 direction. For the matched lens, the direction had

a limited effect on the lens performance, i.e. the lens retains the omnidirectional charac-

teristics of the Luneburg lens. For PLA on the other hand, the performance of the lens

deteriorates in the 〈111〉 direction. Since PLA has cp greater than water, larger filling frac-

tions are required to realize the Luneburg profile, as shown in the insets of Figure 4.4a.

The larger filling fraction introduces larger anisotropy in cp, which causes the Lens profile

to change depending on the direction of incidence. This anisotropy, however, could be

reduced by considering a more complex lattice structure [212] ideally, which would bring

fabrication challenges as a compromise.

4.1.3 Experimental Validation

A proof of concept cube-shaped PLA lens was fabricated using a desktop 3D printer (Ul-

timaker 3), with standard printing parameters, and a printing layer height of 0.2 mm. The

lens consists of 16x16x16 (4096) unit cells with a lattice parameter of 3 mm, yielding the
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overall dimensions of 48.8 mm x 48.8 mm x 48.8 mm. It was designed to achieve focusing

around a target frequency of 100 kHz. The external surface of the lens was sealed with a

subwavelength 0.4 mm wall of 3D-printed PLA to avoid any leakage.

The internal structure of the fabricated lens was scanned using a Scanco uCT50 micro-

computed tomography (micro-CT) X-ray imaging system. Figure 4.6c&d show the inter-

nal structure of the lens with the gradient variation of the air inclusions size. The corners

of the cubic structure were rounded to a radius of approximately 0.5 mm, which was ex-

pected since sharp corners are hard to realize using common 3D printing techniques. Some

small voids were also observed in the PLA domain, which is another limitation of the FDM

printing technique used. Nevertheless, since the unit cell is much smaller than the incident

wavelength (a = 0.2λ where λ = 15 mm is the wavelength in water at 100 kHz), minor

defects are expected to have a limited effect on the overall performance of the device.

Unit cell 5mm

(a) (b)

Figure 4.6: (a) X-ray scan of the internal structure at the midsection of the 3D-printed lens.
(b) 3D reconstruction of an X-ray scan of the inner 10 cells of the lens.

The pressure field in the focus region behind the lens was mapped experimentally by

mounting the lens inside a water tank with a scanning hydrophone setup as shown in Fig-

ure 4.7a&b. A hydrophone (B&K 8103) was used as a spherical point source transmitter to

enable plane waves in its far-field. The distance between the transmitter and the center of

the lens was set to 280 mm (18.6λ) to ensure sufficient distance for plane wave formation.

Another receiver hydrophone (RESON TC 4013) was mounted on a precision stage for
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accurate 3D positioning. The acoustic center of the hydrophone is located 10 mm from its

tip, which limits the minimum distance for measuring the pressure field from the surface of

the lens to this distance. The transmitter hydrophone was excited with a 30 kHz bandwidth

Gaussian pulse centered at 100 kHz using an arbitrary signal generator (HP 33120A) and a

piezoelectric amplifier (Khron-Hite 7500). The receiving hydrophone was used to scan the

pressure field behind the lens by connecting it through a pre-amplifier (Stanford Research

Systems SR560) to a digital oscilloscope (HandyScope HS3). The control of the stage, ex-

citation signal, and the data acquisition were integrated into a single LABVIEW program

on a laptop which was connected to both the oscilloscope and the signal generator.

(a) (b)

Figure 4.7: (a) Overview and (b) close-up view of the experimental setup for plane wave
generation and for scanning the pressure field behind the 3D-printed PC lens.

The lens was excited with a plane wave traveling in the positive z-direction, and the

peak of the pressure field behind the lens was plotted in Figure 4.8 for three perpendicular

measurement planes. The pressure field obtained experimentally (shown in Figure 4.8a)

is in excellent agreement with that obtained numerically (shown in Figure 4.8b). A clear

3D wave focusing is observed by comparing the experimental and numerical results to the

baseline experimental pressure field without the presence of the lens (shown in Figure 4.8c).

The pressure fields at the focal plane along the x-direction as well as along the prop-

agation direction (z-direction) are shown in Figure 4.9. The experimental and numerical
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(a)

(b)

(c)

Figure 4.8: Peak pressure field behind the lens (focus region) revealing a substantial en-
hancement of the pressure intensity via focusing: (a) Numerical (FEM) simulation, (b)
experimental data (via scanning using the hydrophone), and (c) baseline case without the
lens (obtained from experiments).
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results are in excellent agreement, especially near the focal point. The inhomogeneities

observed in the microstructure of the printed lens (Figure 4.6a) had little effect on the per-

formance of the lens which was expected since their dimensions are much smaller than the

wavelength at the target frequency. It should be noted that accurate identification of mate-

rial properties of the printed material is important for designing the structure of the lens as

well as getting good agreement between experimental results and numerical predictions.

A peak amplification factor of 2.38 is observed experimentally which corresponds to

a power gain of 5.7 and a 7.5 dB gain compared to the field without the presence of the

lens. Higher amplitude gains were shown numerically (up to a factor of 4.25 as shown

in Figure 4.4a); however, further tuning of the filaments/3D printing processes might be

needed to achieve this performance.
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Figure 4.9: Comparison of the experimental and numerical pressure distributions along the
(a) x-axis of the focal plane normal to the propagation direction, and along (b) the z-axis (in
the propagation direction). The baseline case without the lens is also shown for reference.

4.2 Underwater Power Transfer Enhancement Using GRIN-PCs

The developed lens could be used to enhance the power transferred by a UPT system. In

addition to focusing incident acoustic waves on the receiver, the lens enhances the direc-

tivity of a point source transmitter placed at its focal point. The GRIN-PC, in this case,

collimates the radiated waves from the transmitter and improves its directivity as shown in
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Figure 4.10a. An ideal Luneburg lens with a large aperture compared to the wavelength

converts a point source placed at its focal point to plane waves at the opposing side (con-

versely to focusing incident plane waves with ray tracing arguments). When the aperture

of the lens is comparable to the wavelength, as in the current implementation of the lens

(λ = 15 mm while R = 24 mm), the finite aperture acts as a piston radiator instead of

generating pure plane waves as shown in Figure 4.10.
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Figure 4.10: Normalized pressure field at 100 kHz for two GRIN-PC lenses used for en-
hancing the acoustic power delivered from a point source to a point receiver. The field is
obtained numerically using a 2D acoustic FEM. The distance between the point source and
the lens is varied between (a) ds = 0, (b) ds = 10 mm, and (c) ds = 20 mm.

The directivity of the new aperture depends on its size, the frequency of operation, as

well as the distance between the point source and the lens as shown in Figure 4.10a-c. The

further the point source is from the lens, the closer the natural focus of the aperture gets to

the opposing side of the lens. This could be leveraged to tune the directivity of a hybrid
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transmitter consisting of a point source and a GRIN-PC lens. The receiver lens, on the

other hand, is far enough from the transmitter that the focal point remains at the natural

location regardless of the transmitter’s directivity.

The two-lens acoustic power transfer system was experimentally tested using the setup

shown in Figure 4.11. The power transferred between two RESON TC 4013 hydrophones

was enhanced using two GRIN-PC lenses identical in geometry to the lens discussed in

Section 4.1.2. The new lenses were printed with further optimized 3D-printing process

parameters and a finer layer printing height (0.1 mm). By design, the hydrophones are

omnidirectional around 100 kHz, so they approximate an acoustic point source at this fre-

quency. The source hydrophone was excited with a wideband Gaussian pulse centered at

90 kHz with 70% bandwidth. A frequency of 90 kHz was chosen to excite the hydrophone

in its flat band, since its frequency response has a cut-off frequency near 120 kHz. The

voltage signal from the receiver hydrophone was recorded with a Tektronix TDS5034B os-

cilloscope with an input impedance of 1 MΩ. The distance between the hydrophones and

the lenses was kept to a minimum; however, the acoustic center of the hydrophone (the

piezoelectric element) was 10 mm from its tip which makes it the minimum distance that

could be practically achieved.

RX 
hydrophone

TX hydrophone

RX

TX

GRIN-PC lenses

(a) (b)

Figure 4.11: Experimental setup for measuring the received power enhancement of a two-
lens GRIN-PC power transfer system. (a) Hydrophones are used as a point TX and point
RX. (b) Piezoelectric transducers are used as TX and RX.
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The hydrophones were separated by 250 mm which is the maximum distance achievable

before reflections from the water surface of the tank started interfering with the direct pulse

from the TX. The received electric power was recorded first without the presence of the

lenses, then with one lens at the transmitter, with one lens at the receiver, and finally with

two lenses simultaneously. The normalized power spectrum of the received signal for each

case is shown in Figure 4.12a. An order of magnitude increase in the received power is

observed when each lens was introduced to the system. The introduced lenses significantly

improved the directivity of the source and focused the power at the receiver boosting the

power at the receiver across a wide range of frequencies.

The power gain, shown in Figure 4.12b, shows that the lens at TX introduced a larger

power gain for frequencies between 70 kHz and 90 kHz. The lens at RX had more gain at

higher frequencies between 90 kHz and 120 kHZ. The overall power gain of the system

peaked between 90 kHz and 100 kHz which is the frequency range targeted by the lens de-

sign. A filtered time signal around 90 kHz with 10% bandwidth is shown in Figure 4.12c.

Compared to the baseline case without the lenses, the signal shows a significant improve-

ment in the delivered power when the GRIN-PC lenses are introduced.

The TX and RX hydrophones were then replaced with waterproofed piezoelectric trans-

ducers to increase the amount of power that can be transmitted through the system as shown

in Figure 4.11b. The used piezoelectric transducers (Steminc SMC14H12111) had a diam-

eter of 14 mm and a thickness of 12 mm. The impedance of the transducers was measured

previously as discussed in Section 2.2.4 of Chapter 2, and it exhibits a resonance frequency

around 95 kHz as shown in Figure 2.4. The transducers have a moderate aspect ratio, and

thus the pressure field generated by them has low directivity as shown in Figure 4.13a. The

GRIN-PC lenses could then be used to improve the directivity of TX and focus acoustic

power on RX enhancing the power delivered by a system consisting of the two transducers

as shown in Figure 4.13b.
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Figure 4.12: (a) Power spectrum (power spectral density) of the voltage signal generated
by the RX hydrophone when the TX hydrophone was excited by a 10 V voltage Gaussian
pulse centered around 90 kHz. (b) The power gain due to the introduction of the lenses
with respect to the received power without the lenses. (c) Filtered received voltage pulse
showing the gain in amplitude when the lenses were introduced. The received signal was
filtered from 85 kHz to 95 kHz to obtain this pulse response.
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Figure 4.13: Normalized pressure field at 100 kHz for (a) the selected piezoelectric trans-
ducers without the lens. (b) The effect of introducing the GRIN-PC lenses on the pressure
field of the transducers. The field is obtained numerically using a 2D acoustic FEM.

The TX transducer was excited with a 200 V Gaussian pulse through the piezoelectric

amplifier connected to the signal generator. The pulse was centered around 90 kHz with a

bandwidth of 70%, however, the actual bandwidth measured at RX was much lower due to

the limited bandwidth of the transducers as shown in Figure 4.14a. The RX transducer was

connected to a 2800 Ω resistor selected to match the electrical impedance of the transducer

at resonance as previously shown in Figure 2.4.

Since the piezoelectric transducers’ directivity is better than a point source (the hy-

drophones), the received power of without the lenses is larger. Nevertheless, introducing

the lenses to the system increases the received power by an order of magnitude. The size

of the transducer is also larger than the focal spot of the lens, and hence the power gain is

lower when comparing Figure 4.14b to Figure 4.12b.

The voltage output by the system for a 10% wide Gaussian pulse centered about 90 kHz

is shown in Figure 4.14c. The peak output voltage increases from 1.25 V without the lens to

4.5 V improving the output power of the system nearly 15 fold from 250 µW up to 3.6 mW.

It is worth mentioning that the design of the piezoelectric transducers used was not opti-

mized. The output power could be improved further through proper backing, as well as

electrical and acoustical impedance matching of the transducers.
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Figure 4.14: (a) Experimental power spectrum (power spectral density) of the voltage sig-
nal generated by the RX piezoelectric transducer when TX was excited by a 200 V voltage
Gaussian pulse centered around 90 kHz. (b) The power gain due to the introduction of the
lenses. (c) Received voltage signal when TX was excited with a 10% bandwidth Gaussian
pulse centered around 90 kHz.

119



4.3 GRIN-PCs for Focusing in Air

In this section, we design, analyze, and fabricate a GRIN-PC 3D lens to focus airborne

audio-frequency acoustic waves at a piezoelectric transducer in order to enhance the elec-

trical power delivered to a resistive load. In the following, first, the PC unit cell structure

and characteristics are discussed in detail highlighting the sources of anisotropy that arise

from the geometry of the PC. A 3D GRIN-PC lens is then designed, simulated, 3D-printed,

and experimentally validated. The factors affecting the lens performance are discussed with

the aim of maximizing the amplitude of the acoustic pressure intensity at the focal spot.

4.3.1 In-Air Unit Cell Analysis and Refractive Index Tailoring

A simple cubic unit cell consisting of a 3D-printed cross-shaped polymer structure in air

is considered (inset of Figure 4.15a) with a lattice size of a = 3 mm. The unit cell is

based on the structure proposed by Xie et al. [131], but with tapered links to avoid sud-

den changes in the link cross-section between two neighboring cells. Comsol Multiphysics

[168] was used to construct an acoustic finite element model (FEM) for a single PC unit

cell in order to obtain the dispersion curves as shown in Figure 4.15a. Air was modeled

as a periodic acoustic domain with a speed of sound cair = 343 m/s and mass density

ρair = 1.14 kg/m3. Since the level of impedance mismatch between the polymer and air is

several orders of magnitude, the polymer domain was assumed to be rigid and was modeled

as internal hard acoustic boundaries. The volume filling fraction of the unit cell is defined

as φ = (3ah2 − 2h3)/a3, representing the volume of the polymer to the total volume of

the cubic cell. The effective speed of sound ceff = 2πf/k can be controlled by changing

the value of φ which changes the slope of the dispersion relation as shown in Figure 4.15a,

where f is the frequency in Hertz and k is the wavenumber. The effective refractive index of

the unit cell in air, defined as n = cair/ceff , is shown in Figure 4.15b. For a constant filling

fraction, the effective refractive index of the material becomes more frequency-dependent,
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Figure 4.15: (a) Dispersion plots of a unit cell in the main direction of wave propagation
for different volume filling fraction values (φ), i.e. different polymer to cubic unit cell
volume ratios. (b) The effective refractive index of the PC versus frequency for different φ
values. (c) Effective refractive index at the design frequency (18 kHz) versus φ for different
directions. (d) Analytical refractive index profile of an ideal Luneburg lens versus the
discretized profile used in the implementation of the GRIN-PC lens for different directions.
The effective refractive index in the diagonal 〈110〉 and 〈111〉 directions are also shown.
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i.e. less broadband, as the frequency increases (approaches the Bragg bandgap). The re-

fractive index also becomes more frequency-dependent as the filling fraction increases. A

frequency of 18 kHz was selected as a design frequency for the GRIN-PC lens, and the

effective refractive index was plotted against the filling fraction in Figure 4.15c. Note

that, Figure 4.15c is only valid at 18 kHz, but since the refractive index curve below this

frequency is relatively flat for filling fractions of interest (below 0.7), it could be used to de-

sign broadband devices up to the design frequency. Figure 4.15c could be used to construct

a desired GRIN-PC refractive index profile by choosing the filling fraction corresponding

to the desired refractive index value. To study the directional dependence of the PC, its

effective refractive index was calculated in directions 〈100〉, 〈110〉, and 〈111〉 as shown

in Figure 4.15c. The specified directions were chosen since they represent extreme values

with respect to the cubic symmetry of the lattice. As shown in Figure 4.15c, the refractive

index of the PC is anisotropic (at the design frequency), and the degree of anisotropy is

proportional to the filling fraction. The anisotropy arises from the simple cubic periodicity

of the unit cell, as well as its geometry. As the polymer volume in the unit cell increases,

the geometry becomes comparable to the effective wavelength of the propagating acoustic

waves, giving rise to increased anisotropy as shown in Figure 4.15c.

The refractive index profile in direction 〈100〉 was used to construct a GRIN-PC lens

with the Luneburg profile given by n(r) =
√

2− (r/R)2. The continuous analytical

Luneburg profile, as well as the discretized refractive index in the main lattice directions,

are shown in Figure 4.15d. The refractive index slightly deviates from the analytical profile

for the 〈110〉 and 〈111〉 directions which reduces the performance of the lens in these di-

rections. The GRIN-PC lens is thus expected to be omnidirectional, however with a slight

variation in its performance depending on the direction. Moreover, this anisotropy could

be further reduced by operating at lower frequencies or by using smaller unit cells.
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(a) (b)

Figure 4.16: Experimental setup (a) for measuring the acoustic pressure field of the 3D-
printed GRIN-PC lens (microphone mounted on an XYZ stage scans the pressure field)
and (b) for measuring the electrical power enhancement of a piezoelectric receiver placed
at the focal spot of the GRIN-PC lens.

4.3.2 In-Air Phononic Crystal Lens Design

The analytical profile was discretized for a unit cell of size a = 3 mm to construct a lens

of radius R = 30 mm with 10 unit cells along the radius as shown in Figure 4.16. The lens

was constructed by using Figure 4.15c to select the required filling fraction at each unit

cell, and the cross-sections of the links between every two neighboring cells were tapered

to reduce the effect of discretization between the neighboring unit cells.

On the wave propagation simulation side, a time-domain acoustic FEM was constructed

to simulate incident plane waves on the lens. The lens was modeled as a hard boundary

to an acoustic domain discretized with 7 elements per wavelength. The lens was ensoni-

fied with a plane Gaussian pulse centered at 18 kHz with 6 kHz bandwidth (BW), and the

acoustic domain was surrounded with radiation boundaries to minimize wave reflections.

A Courant-Friedrichs-Lewy (CFL) condition of 0.2 was used to select the proper time step

for the simulation.

The designed lens was 3D printed using a Formlabs Form 2 stereolithography (SLA) 3D

printer with a layer height of 100 µm and clear Formlabs resin. The scanning microphone
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(a) Numerical (b) Experimental

Figure 4.17: Normalized peak pressure field behind the lens obtained (a) numerically and
(b) experimentally.

setup, shown in Figure 4.16a, was used to measure the pressure field behind the lens due to

an incident plane wave. A speaker with a frequency range of 1 - 22 kHz was excited with

the same Gaussian pulse as in the numerical simulations. A 1/4” free field Larson Davis

2520 microphone was mounted on an automated XYZ stage to scan the pressure field at

three perpendicular planes behind the lens. The grid cover of the microphone was removed

to ensure that the pressure field could be measured as close as possible to the back surface

of the lens. The microphone signal was digitized with a Handyscope HS3 oscilloscope,

and a LABVIEW program was used to synchronize the excitation of the speaker with data

acquisition. The received signal was time-gated to avoid including any wall or other hard

surfaces reflections in the measurement. The pressure field was measured once with the

lens present, then with the lens removed to obtain the normalized pressure gain due to the

presence of the lens. Subsequently, the lens was rotated to simulate plane waves incident

from a different angle and the measurement was repeated.
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Figure 4.18: (a) Normalized pressure at the focal plane obtained numerically and experi-
mentally. The experimental pressure fields are shown for waves propagating in the direc-
tions 〈110〉 and 〈100〉 with respect to the PC lattice. (b) Normalized peak pressure obtained
experimentally for different Gaussian pulse center frequencies. The bandwidth was kept
constant at 6 kHz. (c) Time series for the pressure at the focal position of the lens compared
to its absence. The case shown is for a pulse with 18 kHz center frequency.
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4.3.3 Experimental Results

The peak pressure field of the lens is shown in Figure 4.17 at the focal spot of the lens

with incident acoustic waves traveling in the positive z-direction (shown in Figure 4.16a).

A clear focal spot is observed behind the lens, and the experimentally measured focal spot

size and shape are in good agreement with the numerical predictions. The pressure field

at the center of the focal plane is shown in Figure 4.18a. The experimental results show

a narrower and lower amplitude at the focal spot than that predicted by the finite element

simulations. The achieved gain is 6% lower than the predicted gain of 4.5 which is at-

tributed to manufacturing tolerances of the 3D printing process as well as the directional

pattern of the speaker. The results for 〈110〉 wave incidence show a reduction of 15% in

the peak pressure amplitude compared to 〈100〉. This reduction is attributed to the inher-

ent anisotropy in the PC which caused a deviation from the exact Luneburg profile in this

direction as shown in Figure 4.15d.

The effect of changing the center frequency of the excitation was studied experimentally

as shown in Figure 4.18b. The figure shows that the lens can be used to focus incident waves

from frequencies lower than 10 kHz to frequencies higher than 20 kHz. However, more

focusing is observed at higher frequencies, since the lens is diffraction limited. Figure 4.18c

shows the experimental pressure time series at the focal position of the lens compared to

the baseline case (in the absence of the lens). At the target design frequency (18 kHz), a

pressure gain of 4.2 was observed in both the peak and RMS pressures at the focal positions.

This corresponds to an increase in acoustic intensity (power) at the focal spot by a factor

of 17.6. The pressure gain of the lens could be further improved by increasing the lens

aperture (size) allowing for more energy to be directed toward the focal spot. However,

this is typically bounded by the size limitations of the 3D printing process as well as the

space available for the lens (to keep it compact in a given application).
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4.4 Sound Power Enhancement using GRIN-PCs

To demonstrate the ability of the 3D GRIN-PC lens for sound power enhancement, a piezo-

electric transducer was placed at the focal spot of the lens as shown in Figure 4.16b. The

transducer was selected to operate near the center of the lens design frequency bandwidth

around 15 kHz. It is a circular unimorph with an outer diameter of 13.5 mm with a sub-

strate layer of thickness 0.2 mm made of stainless steel and a piezoelectric layer of thick-

ness 0.15 mm and diameter 10 mm made of PZT-4. The mechanical quality factor of the

receiver is Qm = 50.

A frequency-domain piezoelectric FEM was constructed to predict the performance of

the piezoelectric transducer. An axisymmetric FEM of the receiver was subjected to a

uniform harmonic pressure of 30 Pa (≈ 120 dB, reference pressure: 20 µPa) and the output

electrical power across different load resistance values was obtained in Figure 4.19. Two

power peaks at 14.5 kHz and 15.5 kHz are observed representing the short and open-circuit

resonance frequencies of the transducer. The output power is larger for resistance values

closer to the open-circuit resonance (around 30 kΩ); however, the frequency bandwidth is

narrower compared to the bandwidth of resistor values between 1 kΩ and 10 kΩ.

The experimental setup shown in Figure 4.16b was used to measure the output power

enhancement by the lens. The lens-receiver system was excited with a modulated Gaussian

pulse generated through a loudspeaker. Three different pulses were used: the first pulse

was centered around 15 kHz and had a bandwidth of 4 kHz which is much larger than

the bandwidth of the transducer (around 500 Hz as shown in Figure 4.19). Additionally,

two narrowband pulses (500 Hz bandwidth) centered around 14.5 kHz and 15 kHz were

chosen to target the bandwidth of the receiver. The amplitude of the incident acoustic

wave was kept constant for all pulses and was set to 30 Pa (≈120 dB) measured at the

receiver location in the absence of the lens. A variable load resistor was connected to the

receiver via two thin wires which were also used to suspend the transducer to emulate free
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boundary conditions. The voltage generated across the load resistor was measured and

used to calculate the output power from the receiver at different resistance values. The lens

was then removed and the output power was measured again as a baseline to determine the

power enhancement due to the presence of the lens.

Figure 4.19: Simulated output power of the receiver when subjected to a uniform har-
monic pressure of 30 Pa (≈120 dB). The power is plotted vs excitation frequency and load
resistance.

The peak power generated for different resistor values and pulses of different center

frequencies and bandwidth is summarized in Figure 4.20a. Clearly, the presence of the lens

increases the electrical power delivered to the load by an order of magnitude as compared

to the respective baseline case without the lens. The electrical power gain is slightly lower

than the acoustic power gain [cf. Figure 4.18b squared] since the dimensions of the receiver

are larger than the focal spot of the lens at these frequencies (i.e. the transducer was not

optimized). For all resistance values, the electrical power output for the wideband pulse was

lower than the narrowband pulses, which is expected, since the bandwidth of the transducer

is limited to a narrow band of approximately 500 Hz as shown in Figure 4.19. A narrow-

band pulse centered at 14.5 kHz (close to the short-circuit resonance frequency) generated

more electrical power at lower resistor values (closer to optimal short-circuit resonance

load as expected [9]) compared to the 15 kHz pulse. A maximum power output of 1.2 µW
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was observed for the 15 kHz pulse at a load resistance of 6 kΩ which is close to the optimal

resistance value for the transducer employed. The voltage time series for this case is shown

in Figure 4.20b.

It should be noted that the bandwidth of the lens-receiver system is mainly limited by

that of the receiving transducer in this case, which can be further improved by using a

transducer with larger bandwidth, such as those exploiting designed nonlinearities [213].

Moreover, the lens was designed for a peak performance near 18 kHz, while the receiver

was chosen to operate around 15 kHz. It is possible to achieve a slightly better performance

if the lens was designed at the same center frequency as the transducer (i.e. 15 kHz), how-

ever at the expense of reduced performance at higher frequencies.

4.5 Conclusions

Gradient index phononic crystals (GRIN-PCs) constructed from an air/3D printed polymer

matrix were shown to focus energy efficiently in acoustic power transfer systems. This

would allow for transmitting energy at lower frequencies thus experiencing lower attenu-

ation. Two GRIN-PC lens designs were introduced for focusing and collimating acoustic

waves in air and under water. The lenses improved the power output from piezoelectric

receivers by at least an order of magnitude compared to the baseline cases.

The proposed underwater GRIN-PC lens does not require bulky or heavy inclusions to

enable the required refractive index profile compared to the state-of-the-art designs that in-

corporate metals. Two GRIN-PC lenses designed for operation around 100 kHz were used

to improve the power transmitted between two hydrophones by two orders of magnitude.

A lens was used at the transmitting hydrophone significantly to significantly enhance its

directivity and a second one at the receiver to focus energy at its location. The introduction

of the lenses to a second underwater power transfer system consisting of two piezoelec-

tric transducers enhanced the power output from the system 15 times from 250 µW up

to 3.6 mW. The overall concept, beyond the specific lens design, may pave the way for
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Figure 4.20: (a) Experimental peak received electrical power versus load resistance for an
incident acoustic plane wave with a peak pressure of 30 Pa (≈120 dB) on the lens-receiver
system. The output power from a pulse with center frequency fc = 15 kHz and bandwidth
BW=4 kHz (wideband) is compared to pulses with narrower bandwidth (BW=500 Hz) and
centered around fc = 14.5 kHz and fc = 15 kHz. The baseline case without the lens
is also shown for all the pulse shapes considered. (b) The voltage time series obtained
experimentally for the maximum power output obtained with a pulse centered at fc =
15 kHz with BW=500 Hz and a load resistance of Rl = 6 kΩ connected to the transducer.
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leveraging 3D-printed GRIN-PC structures to achieve power or signal enhancement in ap-

plications spanning from underwater acoustic sensing to biomedical imaging.

A GRIN-PC lens was also designed for audio frequency acoustic waves and employed

to enhance the electrical power of a piezoelectric transducer placed at its focal position.

Pressure field measurements of the designed lens revealed its ability to focus acoustic power

over a broad frequency range between 10-20 kHz, with acoustic power gain levels as high

as 17.6 fold. As a result, the use of the lens enhanced the power delivered to a piezoelectric

transducer by more than an order of magnitude as compared to the baseline case (without

the lens). The system was able to generate 1.2 µW of electric power from 120 dB airborne

sound, which is well above most sound energy harvester designs with similar scale that

produce nano-Watt level power.

It should be noted that all the receivers discussed in this chapter were not acoustically,

or electrically matched to water which limited their bandwidth, and the useful power that

could be harvested from them. In the next chapter, the acoustical and electrical impedance

matching for piezoelectric transducers are analyzed with the aim of minimizing the power

reflection and increasing the bandwidth of the transducer.
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CHAPTER 5

ACOUSTIC AND ELECTRICAL IMPEDANCE MATCHING FOR

SIMULTANEOUS POWER AND DATA TRANSFER

Simultaneous communication and power transfer can be realized by varying the electri-

cal impedance connected to a piezoelectric RX to switch between absorbing and reflecting

incident ultrasonic waves. In a simultaneous power and data UPT system, the receiver

is usually connected to an energy harvesting circuit used to power the digital electronics

responsible for communication, sensing, and actuation, or to store the energy (either in a

battery or a capacitor). The communication electronics then switches a transistor which is

connected in parallel or series to the transducer. As shown in Figure 5.1, when the transis-

tor is off no power flows to the electrical domain and most of the incident acoustic power

is reflected. When the transistor is on, power flows to the energy harvesting circuit (rectifi-

cation and voltage regulation), and thus a smaller portion of the incident power is reflected.

The amount of power absorbed by the energy harvesting circuit, as well as the contrast

between the reflecting and absorbing states (receiver sensitivity), depend on how well the

electrical and acoustic domains are coupled (electrical and acoustic matching). However,

little analytical work has been done to highlight the factors affecting this sensitivity.

RX
Energy harvesting

circuit

Energy storage
(battery)

Communication
electronics

Transistor
(switch) Power

Data

Figure 5.1: Basic implementation of a simultaneous power and data transfer UPT system.
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Simultaneous power and data transfer impose new requirements on ultrasonic trans-

ducer design which are seldom discussed in the literature. In this chapter, these require-

ments and the design trade-offs associated with them are discussed. The factors affecting

the transducer bandwidth (data transfer rate) and sensitivity such as electrical and acous-

tic impedance matching are analyzed analytically. Designs for optimizing power transfer

and data transfer are developed analytically then tested experimentally. A new transducer

design to achieve uninterrupted power harvesting with backscatter communication is intro-

duced and experimentally verified. The design is based on dedicating frequency channels

for power and data where the switching of the data channels has no effect on the power

flow.

5.1 Modeling Reflection from a Piezoelectric Layer

Consider a transducer consisting of a thin piezoelectric disc poled in the thickness direction

with thin electrodes plated on each face. The transducer is connected to an electric load

with equivalent complex impedance Ze as shown in Figure 5.2. The front face of the trans-

ducer is submerged under water and the back is in contact with a material with mechanical

impedance Zb. As discussed in Chapter 3, the impedance matrix (Z) of the transducer

relates the input forces (F1, F2) and voltage (V3) to the velocities (v1, v2) and current (I3),

and is given by [176]:


F1

F2

V3

 = −j


Zp cot(kphp) Zp csc(kphp)

h̄33
ω

Zp csc(kphp) Zp cot(kphp)
h̄33
ω

h̄33
ω

h̄33
ω

1

ωCp


︸ ︷︷ ︸

Z


v1

v2

I3

 , (5.1)

For brevity, the piezoelectric impedance matrix could be written as:
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Piezoelectric
transducer

Water

BackFront

Figure 5.2: A schematic of a piezoelectric disc transducer represented as a 3-port ele-
ment connected to arbitrary electrical impedance Ze and an arbitrary backing layer with
mechanical impedance Zb.

Z =


Z11 Z12 Z13

Z12 Z11 Z13

Z13 Z13 Z33

 (5.2)

The electrical and backing impedance yield the equations:

F2 = −v2Zb (5.3)

V3 = −I3Ze (5.4)

which could be substituted in Equation (5.2) to find the relation between the force and

acoustic velocity at the front face of the transducer:

F1 =

Z11 −
Z2

12 −
Z12Z2

13

Ze+Z33

Zb + Z11 − Z2
13

Ze+Z33

−
Z2

13 −
Z12Z2

13

Zb+Z11

Ze + Z33 − Z2
13

Zb+Z11


︸ ︷︷ ︸

Zin

v1 (5.5)

where Zin is the input mechanical impedance of the transducer, and its value determines

the amount of reflection from the transducer. Equation (5.5) shows that Zin is a function
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of the transducer geometry and material, the backing layer impedance, as well as the elec-

trical impedance. By changing the electrical impedance connected to the transducer, its

mechanical impedance changes which enables backscatter communication.

The amount of reflection could be determined by calculating the complex reflection

coefficient of the piezoelectric transducer (S11) by assuming incident and reflected me-

chanical waves F+, F− on the front face of the transducer as shown in Figure 5.2. The

incident and reflected waves are related to the total force and velocity at the face by:

F1 = F+ + F−

v1 =
F+ − F−

Zw
(5.6)

where Zw = Z̄wAp and Z̄w is the characteristic acoustic impedance of water in Rayleighs.

The complex reflection coefficient is:

S11 =
F−

F+
(5.7)

By solving Equation (5.5) and Equation (5.6) together, the complex reflection coefficient

of the transducer with respect to water is given by:

S11 =
Zw − Zin
Zw + Zin

(5.8)

5.2 Acoustic Reflection from a Piezoelectric Transducer

A basic piezoelectric transducer is first considered in order to visualize its reflection coef-

ficient and analyze how it is affected by varying the electrical impedance. A piezoelectric

disc transducer of thickness 2.1 mm and diameter 30 mm is chosen to target the 1 MHz

frequency neighborhood. A hard PZT material is chosen for the transducer (PZT-4), since

it is characterized by a high piezoelectric coefficient, and low damping to minimize the
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Table 5.1: Material properties of PZT-4 used in the transducer 1D model

Property ρp cp h̄33 CD
33 Cp Qm tan δ

Unit kg/m3 m/s kV/mm GPa nF - %

Value 7500 4706 2727 166 1.98 500 0.4

power dissipated in the transducer. The material properties of the piezoelectric layer are

summarized in Table 5.1.

Air is chosen as the backing layer since it has a large impedance mismatch with water

and PZT-4 so virtually no acoustic power is lost to the backside of the transducer1. This

helps improve the efficiency and the sensitivity of the transducer at the expense of limiting

its bandwidth. However, the transducer bandwidth could be enhanced through simultane-

ous electrical and acoustic impedance matching which will be discussed in the following

sections.

The amplitude of the acoustic reflection coefficient of the transducer in water for differ-

ent resistive loads is shown in Figure 5.3a. The response of the transducer is narrowband,

and it is sensitive to the resistive load connected to it which is a common characteristic

of unmatched piezoelectric transducers. The resistive sweep shows that the transducer ab-

sorbs most of the incident acoustic waves at a narrowband near 1 MHz when a resistance

of 10 Ω is connected across its terminals. A similar response is observed at 1.2 MHz with

a 500 Ω load. These two frequencies are commonly referred to as the short circuit (SC)

and open circuit (OC) resonance frequencies of the transducers which can be deduced if

we consider the electrical input impedance of the transducer shown in Figure 5.3b. The

resonance frequencies occur when the electrical input impedance of the transducer is real

1The backing layer of commercial transducers designed for imaging applications is usually made from a
lossy material with impedance close to PZT. The material is chosen to increase the bandwidth of the trans-
ducer at the expense of lower sensitivity. Nearly half the input power to the transducer is lost to the backing
layer in this configuration.
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(i.e. phase is zero). The resistance at these frequencies corresponds to the resistive load

which is needed to match the acoustic domain to the electrical domain.
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Figure 5.3: (a) Analytical acoustic reflection coefficient of an air-backed 1 MHz piezoelec-
tric transducer submerged in water and connected to a resistive load ranging from 0-10 kΩ.
(b) Electrical input impedance of the transducer with the front face submerged in water.

It worth noting that the reflection coefficient is not one for all frequencies when the

transducer is shorted as shown in Figure 5.3a. Even though a shorted transducer does not

convert power to the electrical domain, it still absorbs some of the power near its resonance

due to the presence of mechanical and dielectric losses.

Figure 5.4a shows the reflected signal from the transducer when a broadband acous-

tic pulse (bandwidth BW = 50%) centered around the SC resonance (fc = 988 kHz) is

incident on it. The reflected signal is shown for a 9 Ω resistor (SC resonance resistance
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) and a very large resistance (1 MΩ) which are connected to the transducer to switch be-

tween absorbing incident power and reflecting it. Since the response of the transducer is

narrowband as shown in Figure 5.4b, most of the power is reflected and only a small por-

tion corresponding to the transducer bandwidth is absorbed. This causes the reflected time

signals to have elongated oscillations, and the difference in the reflected pulse between the

two states to be minimal.
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Figure 5.4: (a) Time history of a normalized broadband ultrasonic Gaussian pulse (fc =
998 kHz, BW = 50%) incident on the front face of an air-backed transducer. The reflected
pulse when the transducer is connected to the SC resonance resistance (9 Ω) is compared
to that when a 1 MΩ is connected. (b) The acoustic reflection coefficient of the transducer
with respect to water when the different electric loads are used. The normalized frequency
spectrum of the incident pulse is also shown.

When a narrowband pulse (bandwidth 5%) is incident on the transducer as shown in

Figure 5.5, the difference between the 9 Ω (matched resistance) and the 1 MΩ reflections is

more pronounced. The contrast improves using a narrower bandwidth signal; however, this

comes at the expense of longer time between pulses, and hence a lower data rate.

The considerations for power transfer are different than data, since power is commonly

sent as a continuous wave (CW) excitation (i.e.at a single frequency). Assuming the load

circuit has an impedance close to the SC resonance resistance of the transducer, almost

none of the incident acoustic power is reflected and most of the power is delivered to the

electric load. This is confirmed by plotting the acoustic to electrical transmission efficiency
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ηTr as shown in Figure 5.6. The transducer power conversion efficiency is given by:

ηTr = |S21|2
Z1

Z2

(5.9)

where Z1 is the mechanical impedance of water, Z2 is the connected electrical impedance,

and S21 is the complex transmission coefficient discussed in Section 3.1. From Figure 5.6,

the air-backed transducer has a power conversion efficiency ηTr = 94% at 988 MHz when

delivering power to the optimized load of 9 Ω.
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Figure 5.5: (a) Time history of a normalized narrowband ultrasonic Gaussian pulse
(fc = 998 kHz, BW == 5%) incident on the front face of an air-backed transducer. The
reflected pulse when the transducer is connected to the SC resistance (9 Ω) is compared to
that when a 1 MΩ is connected. (b) The acoustic reflection coefficient of the transducer
with respect to water when the different electric loads are used. The normalized frequency
spectrum of the incident pulse is also shown.

5.3 The Smith Chart

The Smith chart is a useful tool for visualizing how well a port of a system is matched to

a particular reference impedance. It helps visualize and facilitate the impedance matching

process whether a broadband match is needed or the matching is intended for a single

frequency. Although the Smith chart is common in elementary RF textbooks [162, 179],

the chart is rarely seen in the acoustics literature perhaps due to the limited options available
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Figure 5.6: Acoustic to electric transmission efficiency for an air-backed transducer placed
in water and connected to a 9 Ω resistive load.

for acoustic impedance matching (mostly limited to quarter-wavelength matching layers).

However, in electromechanical systems such as those involving piezoelectric transducers,

it has been used to match transducers to electrical and acoustic domains since elements

from both domains could be used simultaneously to impedance match a transducer [214].

The Smith chart (Figure 5.7) is an XY-plot of the real and imaginary components of

the complex reflection coefficient of a port (Snn). Since the magnitude of the reflection

coefficient cannot be greater than one, all the possible values that it could take are inside

the unit circle, and thus the shape of the chart is circular. A reflection coefficient value

close to the origin of the chart represents low reflection, and thus a better match to the

reference impedance. This reference impedance is commonly chosen to be 50 Ω in RF

circuits; however, it could be set to the resistance of any electric load that needs to be

powered. For acoustic ports, the reference impedance could be chosen as the mechanical

impedance of the medium in which the transducer will operate such as water, tissue, or

metal for example.

The goal of any impedance matching effort is to minimize the value of the reflection

coefficient by adding electrical or mechanical elements that would shift the impedance of

the system towards the center of the plot. The horizontal line in the middle of the chart
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Figure 5.7: Fundamentals of the Smith chart.

represents a purely resistive impedance, while the top and bottom halves represent induc-

tive and capacitive impedance values respectively. Lines of constant resistance, reactance,

conductance, and susceptance can be shown on the chart to guide the impedance matching

efforts. All the values displayed on the chart are normalized with respect to the chosen

reference impedance. For more information on the Smith chart, please refer to Ref. [215]

for a comprehensive discussion.

5.4 Simultaneous Acoustic and Electrical Impedance Matching

The air-backed transducer discussed in Section 5.2 is revisited in this section from a Smith

chart perspective. The goal is to identify the issues limiting broadband operation then

modify the design to achieve better performance.

The Smith chart for the reflection from the acoustic port of the transducer is shown

in Figure 5.8 for a range of resistive loads connected to the electrical port. The charts in
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Figure 5.8 are normalized with respect to the impedance of water which means that the

center of the plot represents an impedance matched to water (i.e. zero reflection). The

resistive load connected to the electrical port was swept between 0 and 10 kΩ to show its

effect on the acoustic reflection. The chart was split into two subfigures (Figure 5.8a&b)

for easier visualization as the trends for the reflection coefficient for near SC resistance

values (0-75 Ω) shown in Figure 5.8a are reversed compared to near OC resistance values

(100-10 kΩ) shown in Figure 5.8b. The resistive sweep shows that there is an optimum

resistance between 75 Ω and 100 Ω at which the variation (spread) of the input acoustic

impedance of the transducer is minimum. However, this optimum resistance value would

match the transducer to a piezoelectric medium which is why a circle surrounding the nor-

malized impedance of 20 (close to 35 MRayl) is formed. The curves close to the SC and OC

resistance (close to 10 Ω and 500 Ω) cross the resistance axis near the origin of the plot, and

therefore, the transducer is matched to water at these particular resistance/frequency com-

binations. The matching is, however, very narrowband and a slight variation in operating

conditions might shift it to other frequency/resistance combinations.

A similar observation can be reached if we examine the reflection from the electrical

port of the transducer on the Smith chart as shown in Figure 5.9 when the acoustic port is

connected to water. The electrical port shows a large circle in the Smith chart indicating

a resonant behavior in the system. The curve intersects the resistance axis at two points

corresponding to the SC and OC resonances.

The large size of the S22 circle complicates any electrical matching efforts in this con-

figuration since inductive as well as capacitive impedance values need to be matched at

different frequency values. In order to reduce the variation of the electrical impedance, the

acoustic port needs to be better matched to water. This can be realized using one or more

quarter wavelength matching layers as commonly done in literature [214].

142



Figure 5.8: Smith chart of the air-backed transducer acoustic reflection coefficient S11 with
respect to water when the electric resistance connected to the the transducer varies (a) from
0-75 Ω and (b) from 100-10 000 Ω
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Figure 5.9: Smith chart of the air-backed transducer electric reflection coefficient (S22)
with respect to 50 Ω when the acoustic port is in water.

5.4.1 Single Matching Layer

A single quarter wavelength matching layer is commonly used to match piezoelectric trans-

ducers to water in ultrasonic transducers literature. The material for a quarter wavelength

matching layer needs to have an acoustic impedance at the geometric mean of the two

mediums that need to be matched, i.e. for matching a piezoelectric transducer to water:

Zm =
√
ZpZw (5.10)

whereZm is the acoustic impedance of the single matching layer. Equation (5.10) is derived

by maximizing the acoustic transmission between two passive layers while the piezoelectric

layer involves electrical coupling. Thus, Equation (5.10) should be only used as a guideline

for matching piezoelectric transducers, and several publications offer modified formulas for

matching a piezoelectric transducer [214].
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A quarter wavelength matching layer is designed based on perfect transmission at a

specific frequency where the thickness of the layer (hm) is a quarter wavelength, i.e.:

hm =
λ

4

=
cm
4fo

(5.11)

where cm is the speed of sound in the matching layer, and fo is the target frequency of

operation. For frequencies in the neighborhood of fo, the matching layer will still improve

the acoustic match; however, its effectiveness will decrease as the frequency deviates fur-

ther from fo. On the other hand, for piezoelectric layers, the matching layer response will

interact with the frequency response of the transducer resulting in a modified response.

The influence of a matching layer targeting 1 MHz on the electrical and acoustic reflec-

tion coefficients of the piezoelectric transducer is shown in Figure 5.10. As the acoustic

matching layer thickness increases, each point of S11 (Figure 5.10a) is rotated counter-

clockwise in the Smith chart about a fixed point on the resistance axis determined by the

impedance of the matching layer. The angle of rotation of each point on the curve depends

on the thickness of the matching layer, i.e. the phase change introduced by the layer. A

quarter wavelength layer corresponds to a 180◦ rotation at the target frequency.

Since the matching layer shifts S11 closer to the origin of the Smith chart, the matching

between the electrical and acoustic domain improves as indicated by the reduction in the

radius of the electrical impedance circle S22 shown in Figure 5.10b. The result of this inter-

action is a double-humped reflection coefficient (Figure 5.10c) which is commonly reported

in the literature for air-backed transducers with geometric mean matching layer [181].

The effect of changing the acoustic impedance of the matching layer while keeping

its thickness constant to λ/4 at 1 MHz is shown in Figure 5.11. Decreasing the acoustic

impedance of the layer shifts S11 (Figure 5.11a) to lower resistance (acoustic impedance)

value. Matching layers with acoustic impedance between 5-7 MRayl generates the smallest
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Figure 5.10: Smith chart of the (a) acoustic and (b) electric reflection coefficients of
an air-backed piezoelectric transducer with a single matching layer of impedance Zm =
(ZpZw)1/2 with different thickness. The amplitude of the acoustic reflection coefficient is
shown in (c).
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variation in S22 (the electric impedance) on the Smith chart shown in Figure 5.11b, and thus

a value of 6 MRayl was investigated further for electrical matching. There are, however, a

few low loss natural materials with an acoustic impedance between 5 and 7 MRayl which

is one of the reasons a single matching layer might not be suitable for high sensitivity/low

loss applications such as simultaneous power and data transfer.

Figure 5.11: Smith chart of the (a) acoustic and (b) electric reflection coefficients of an
air-backed piezoelectric transducer acoustically matched with a single quarter wavelength
matching layer with varying acoustic impedance. The amplitude of the acoustic reflection
coefficient is shown in (c).

Figure 5.12 shows the effect of adding a series inductor for electrical impedance match-

ing. As shown in Figure 5.12, the inductor shifts S22 upwards on the Smith chart closer

to the origin, and thus improves the overall impedance match as indicated by the reduction
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of S11 circle shown in Figure 5.12a. Adding a series inductor causes all the points on the

chart to follow constant resistance lines towards the origin of the plot. The match could be

further improved by using a parallel inductor to shift more points towards the center thus

improving the system bandwidth. However, an inductor of 7-9 µH was sufficient to achieve

a high sensitivity bandwidth of 50% (Figure 5.12c) which is a significant improvement

compared to the unmatched transducer shown in Figure 5.3. The bandwidth of the system

will be further enhanced by considering a two-layer acoustic matching in the following

subsection.

Figure 5.12: Effect of using a series inductor on the Smith chart of the (a) acoustic and
(b) electric reflection coefficients of an air-backed piezoelectric transducer with a single
quarter wavelength matching layer of acoustic impedance 6 MRayl. The amplitude of the
acoustic reflection coefficient is shown in (c).
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5.4.2 Two-layer Acoustic Impedance Matching

Two quarter wavelength layers can be used for enhancing the bandwidth of the piezoelec-

tric transducer [216]. For passive layers, the impedance of each matching layer could be

deduced from [217]:

Zm1 = Z2/3
p Z1/3

w

Zm2 = Z1/3
p Z2/3

w (5.12)

where Zm1 is the matching layer adjacent to the transducer, and Zm2 is the one adjacent to

water. The acoustic impedance of quartz glass is around 12.1 MRayl which is very close

to the value calculated for Zm1 from Equation (5.12). The value calculated for Zm2 is

4.3 which lies in the neighborhood of metal-filled epoxies such as silver epoxy or tungsten-

filled epoxy for example. These materials, however, have very high acoustic attenuation,

and are not suitable for our target application. Pure epoxy (3 MRayl) has lower attenuation

and is easy to cast and polish to exact thickness for fine-tuning the matching process, so it

was used instead. Epotek-301 is a clear epoxy commonly used in the ultrasound literature

because of its low viscosity which allows it to be easily cast without trapping air bubbles

in the process.

The acoustic and electrical reflection coefficients for a two-layer matched transducer

with air backing are shown in Figure 5.13. The size of S22 circle (Figure 5.13b) with-

out electrical matching is smaller than that obtained for a single acoustic matching layer

(Figure 5.12b) indicating a more broadband response for the transducer. The electrical

impedance is shifted to the center of the Smith chart for electrical matching using a 6 µH

series inductor then a 15 µH inductor parallel to the 50 Ω load as shown in (Figure 5.13b).

Figure 5.13c shows that the matched transducer achieves a large flat bandwidth close to

80% with a large sensitivity. The sensitivity is evident in the large difference between
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the reflection from the transducer when connected to a large resistance (OC) versus when

electrically matched as shown in Figure 5.13d.

1 M (OC)
50
Matched to 50

Series L

Parallel L

Incident pulse Reflected pulse

Figure 5.13: Electrical impedance matching of a transducer with two quarter-wavelength
matching layers (quartz glass and epoxy). The effect of using a parallel then series inductor
is shown on the Smith chart of the (a) acoustic reflection coefficient and (b) electric reflec-
tion coefficient. The electric load connected to the transducer in each case is shown in the
legend. (c) The amplitude of the acoustic reflection for the different electric loads. (d) A
reflected acoustic pulse from the transducer when using the matching circuit compared to
the case when a 1 MΩ load (OC) is used.
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Table 5.2: Dimensions of the fabricated transducers

Layer Unit U1 U2 M1 M2 M3

PZT mm 2.1 2.1 2.1 2.1 2.1

Epoxy µm - - 10 10 10

Quartz glass mm - - 1.6 1.6 1.56

Epotek 301 mm - - 0.4 0.5 0.6

5.5 Experimental Verification

Two sets of transducers were fabricated for testing ultrasonic power and data transfer. The

first set was not acoustically matched, and was used as a baseline to verify the developed

analytical models (U1&U2). The second set had the two-layer acoustic matching design

discussed in Section 5.4.2. The thickness of the epoxy layer was varied between 0.65-

0.75 mm to obtain a transducer with the best possible match between the electrical and

the acoustic domains. The dimensions of the fabricated transducers are summarized in

Table 5.2.

5.5.1 Transducer fabrication

The transducer casings were 3D printed using an Ultimaker 3 printer. The casings shown

in Figure 5.14 were designed so that they could provide air backing to the transducers

by only supporting the piezoelectric layers from the edge. To fabricate the unmatched

transducers, a coaxial cable was first soldered to the back of a piezoelectric disc (Steminc

SMD30T21F1000R). The transducer was mounted in the casing so that it sits flush with the

front edge as shown in Figure 5.14a, and the edges, as well as the wire opening, were sealed

using 3M DP100 epoxy. The epoxy was used to coat the casing except for the transducer

area to provide water tightness and seal the air backing since 3D printed PLA is water

permeable.
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Figure 5.14: (a) Schematic of an air-backed transducer without acoustic matching layers.
(b) Construction of the two-layer acoustically matched transducer. (c) Fabricated transduc-
ers U1 and M1 before polishing.

The matched transducers (Figure 5.14b) were fabricated by first bonding a 1 1/4” x

1/16” fused quartz glass disc supplied by TGP Inc. (ρ1 = 2200 kg/m3, c1 = 5500 m/s, Z1 =

12.1 MRayl, α1 = 5 dB/m/MHz) [218] to the front face of the piezoelectric layer through

a vacuum bonding process. The minimum thickness commercially available for the quartz

glass was 1/16” (1.56 mm) which is slightly larger than the quarter wavelength thick-

ness at 1.43 mm. A coaxial cable was then soldered to the piezoelectric disc and the

piezo/glass assembly was then mounted inside the casing. The casing for the matching

transducer was designed so that the remaining height would match that intended for the

epoxy matching layer. The transducer was sealed and coated using Epotek 301 epoxy

(ρ2 = 1090 kg/m3, c2 = 2640 m/s, Z2 = 2.85 MRayl, α2 = 250 dB/m/MHz) [218],

and a heat gun was used to ensure that no air bubbles remained trapped in the epoxy layer

before leaving it to cure for 24 hours. The cured layer was then sanded down till it was
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Table 5.3: Experimentally identified modified PZT-4 material properties from electrical
impedance data in air

Property ρp cp h̄33 CD
33 Cp Qm tan δ

Unit kg/m3 m/s kV/mm GPa nF - %

Value 7900 4714 2313 175 2.4 500 0.4

flush with the front of the casing using 200 grit sandpaper followed by 400 grit then 600

grit. The fabricated transducers are shown in Figure 5.14c.

5.5.2 Measuring the Electrical Impedance of the Transducers

An Agilent 33250A signal generator and a Tektronix TDS5034B oscilloscope were used to

experimentally measure the electrical impedance of the fabricated transducers. The signal

generator was connected to the tested transducer and then programmed to apply a voltage

chirp signal that swept from 100 kHz up to 2 MHz. The applied voltage and the current

flowing to the transducer were simultaneously measured using a 10x 150 MHz voltage

probe and a current probe (Tektronix P6022). The voltage and current signals were then

converted to the frequency domain and used to calculate the input electrical impedance of

the transducer.

For each transducer, the electrical impedance was measured twice. Once in air then a

second time while it was mounted inside a 30”x20”x15” water tank to compare its results to

the analytical models.The electrical impedance of an unmatched transducer in air was first

used to estimate the exact piezoelectric material properties using the procedure described

in Ref. [181]. The experimentally measured piezoelectric properties are summarized in

Table 5.3.

The experimental electric impedance of the different transducers is compared to the an-

alytical predictions in Figure 5.15. The experimental results agree well with the numerical

predictions with limited deviation caused by the uncertainties in the material properties and
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geometry of the different layers. The matching of the transducer was very sensitive to the

exact thickness of the glass and epoxy layers as shown by the difference in circle size on

the Smith chart between transducers M1 to M3. A better acoustic match could be achieved

by fine-tuning the glass and epoxy layers geometry as shown in Figure 5.12. Transducer

M3 showed the best electrical matching (smallest variation on the Smith chart), so it will

be investigated further for electrical impedance matching.

Figure 5.15: Analytical (lines) and experimental (markers) electric impedance underwater
for three matched transducers (M1-M3) with different epoxy layer thickness as summarized
in Table 5.2. The impedance of a transducer without acoustic matching (U1) is also shown
for comparison.

5.5.3 Setup for Measuring the Acoustic Reflection Coefficient

The acoustic reflection coefficient of the fabricated transducers was measured using the

setup shown in Figure 5.16. A Panametrics 5800 pulser/receiver was used to excite a broad-

band Olympus V394 transducer. The filtered and amplified reflected signal was connected
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to an oscilloscope for display and recording. The pulser was set to excite the transducer

with a 12.5 µJ pulse with a repetition rate of 500 Hz. The echo signal was filtered with a

100 kHz-10 MHz bandpass filter to reduce the noise then amplified with a 20 dB gain.

Matching 
circuit

Pulser/Receiver

Oscilloscope

Transmitter

Transducer (sample)

Figure 5.16: Experimental setup for measuring the acoustic reflection coefficient of the
fabricated transducers.

The acoustic reflection coefficient of the samples was calibrated using the echo from

normal incidence on a stainless-steel 304 cylinder of 26.4 mm thickness and 101 mm diam-

eter. Normal incidence was verified by rotating the calibration cylinder until the maximum

echo amplitude was achieved. The first echo from the sample and the calibration cylin-

der were windowed and then converted to the frequency domain. The acoustic reflection

coefficient from the sample was then calculated using the relation:

S11 = Rst
Asample
Acalib

(5.13)

where Asample is the reflected signal from the sample, Acalib is the reflected signal from

the stainless-steel cylinder, and Rst is the reflection coefficient of a water-steel interface

calculated from:

Rst =
Zst − Zw
Zst + Zw

(5.14)

where Zst = 46.57 MRayl is the acoustic impedance of stainless steel.
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The experimental acoustic reflection coefficients for the unmatched and matched trans-

ducers (U1 and M3) are compared to the analytical models as shown in Figure 5.17. The

reflection coefficient is measured and simulated with respect to a 50 Ω output for both sam-

ples, i.e. no electrical matching was done for this measurement. For both samples, the

amplitude of the experimental reflection coefficient is lower than that in the simulations

for all frequencies. This discrepancy is caused by slight misalignment between the source

transducer and the sample, as well as the directivity of the source transducer. Nevertheless,

the frequency response predicted from the analytical models of both transducers agrees

well with the experimental measurements within a scaling factor caused by losses due to

diffraction and misalignment between the transducers.
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Figure 5.17: Experimental versus analytical acoustic reflection coefficient for (a) the trans-
ducer without acoustic matching (U1), and (b) the two-layer acoustically matched trans-
ducer (M3).

5.6 Impedance Matching for Data Transfer

The two-layer acoustically matched transducer M3 was electrically matched to achieve

maximum bandwidth while connected to a 50 Ω electric load. The four-element electrical

matching network shown in Figure 5.18 was designed and optimized using the impedance

matching tool in Keysight ADS software. The random optimization algorithm built into

the software was used to minimize S22 for the frequency bandwidth between 0.5 MHz and
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1.5 MHz. Even though a single inductor is sufficient to achieve broadband operation for the

acoustically matched transducer as discussed in Section 5.4.2, the electrical network was

developed, optimized, and implemented on a breadboard to further increase the bandwidth.

C=3 nFL=47 uH L=11 uH

L=10 uH

R=50 Ohm

Transducer

Figure 5.18: Electrical circuit used to achieve a broadband electrical match with the two-
layer acoustically matched transducer (M3).

The experimental acoustic reflection from the transducer with the matching circuit is

compared to open circuit termination in Figure 5.19. The matched transducer achieved up

to 70% bandwidth centered around 900 kHz with a factor of 3 change in amplitude between

the open circuit and matched states as shown in Figure 5.19a. Considering the modula-

tion of the echo signal shown in Figure 5.19b, a data rate of at least 200 kbps could be

transmitted using this setup with simple amplitude shift keying (ASK) modulation. Much

higher data rates could be achieved with advanced modulation techniques such as OFDM.

It should be noted that the echo signal in Figure 5.19b is different than that estimated an-

alytically in Figure 5.13 for two reasons. First, the signal plotted in Figure 5.19b is that

for the echo signal as generated by the transmitter not the actual reflected pressure signal,

i.e., the signal is multiplied by the two way transfer function of the transducer. Second,

the impedance matching achieved shown in Figure 5.13 is different from that obtain ex-

perimentally due to the use of a thicker glass matching layer, and a different electrical

matching circuit.
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Figure 5.19: (a) Experimental acoustic reflection coefficient for an electrically and acous-
tically matched transducer. Broadband electrical matching is shown using the circuit in
Figure 5.18 versus when the transducer was open circuit. (b) Time waveform showing the
modulation of the reflected pulse by varying electrical circuit connected to the transducer.

5.7 Impedance Matching for Power Transfer

Power is commonly transmitted at a constant frequency, hence the bandwidth of the trans-

ducer is only important to account for tolerances in the transducer material properties

and geometry. Otherwise, it is only necessary to match the transducer at a single fre-

quency of operation to achieve the maximum sensitivity possible and minimize power re-

flections. A power transfer system with low loss transducers without acoustic matching

layers could thus be used to transfer power with an efficiency higher than that using acous-

tically matched transducers with lossy matching layers. The relative performance between

these two systems will only depend on the amount of attenuation present in the matching

layers and in the transducer material.

An experimental setup similar to that described in Section 3.2.1 was used to measure

the ultrasonic efficiency of a system consisting of two unmatched transducers (U1 and U2).

The transmitter was connected to a signal generator and the receiver was connected to a

50 Ω load. No electrical matching was used for either transducer. The receiver transducer
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was mounted to the motorized stage shown in Figure 4.7, and the efficiency was measured

while varying the frequency and the separation distance between the two transducers.

The frequency response of the power transfer efficiency of the system is shown in Fig-

ure 5.20 for different separating distances (D) between the transmitter and the receiver.

The efficiency frequency response shows similar characteristics to that discussed for metal

power transfer systems in Chapter 3. A global peak for the efficiency is observed around

the resonance frequency of the transducers (1 MHz), as well as multiple local peaks due

to the resonance of the water layer between the transducers. As the distance between the

transducers increases, the frequency separation between these peaks decreases. The am-

plitude of these local peaks also decreases with distance as the diffraction losses become

more dominant.

The peak efficiency of the system versus distance is shown in Figure 5.21. Two distinct

regions are observed: 1) The nearfield response below 80 mm (53λ) and 2) the farfield

response above 80 mm. The peak efficiency in the near field had an average value close

to 52% for the entire region accompanied by large fluctuations below 25 mm (16λ). The

amplitude of the fluctuations significantly dropped for distances above 25 mm. The farfield

response was characterized by a uniform drop in efficiency with distance dominated by

the spreading losses. It is worth mentioning that the distance observed for the transition

between the nearfield and the farfield decay for the efficiency of the system (80 mm) is

lower than the shortest estimate for the Rayleigh distance reported in literature (DRayl =

a2/λ = 150 mm). This can be partially due to slight misalignment between the TX and RX.

Also, estimates of the Rayleigh distance are mostly defined for the on-axis region where

the response matches the farfield response. It is common that the transition region starts

before the Rayleigh distance [219]
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Figure 5.20: Ultrasonic efficiency versus frequency for two air-backed transducers without
acoustic impedance matching. The efficiency is shown for a separating distance between
the transducers of (a) 10 mm, (b) 50 mm, (c) 100 mm, and (d) 200 mm.
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Figure 5.21: Peak efficiency of the ultrasonic power transfer system without acoustic
matching versus the separating distance between the transducers.
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5.8 Simultaneous Power and Data Transfer

Uninterrupted power transfer could be achieved while transmitting data simultaneously

by multiplexing the matched transducer frequency response between a narrowband power

channel and a broadband data channel. This multiplexing can be realized using the circuit

shown in Figure 5.22. It consists of a power splitter designed to direct incident frequen-

cies between 600 kHz and 900 kHz to a dummy communication load while directing the

power signal (sent continuously at 1.3 MHz) to the power harvesting circuit. The splitter

is realized using a series LC circuit to act as a narrow bandpass filter for the power signal.

A second parallel LC circuit is used as a bandstop filter to pass all frequencies to a com-

munication load except for the power frequency (1.3 MHz). By switching the data branch

on and off, incident frequencies other than the power signal are modulated while the power

signal is continuously fed to an energy harvesting circuit for powering the wireless device.

The circuit in Figure 5.22b was implemented on a breadboard, and the experimental

acoustic reflection coefficient was measured as shown in Figure 5.23a. The communi-

cation branch is switched to transmit backscatter communication signal in the frequency

range between 600 kHz and 900 kHZ. The power branch at 1.3 MHz is not affected by the

communication signal and almost all the power incident on the transducer at this frequency

is absorbed.

The normalized spectrum of the voltage signals received at the different branches of the

system are shown in Figure 5.23b. As intended, the communication branch load absorbs

the incident power in its target data channel frequency range (600 kHz-900 kHZ) while

rejecting the power signal above 1 MHz. The power branch, on the other hand, absorbs

power most efficiently around the target frequency of 1.3 MHz. The sensitivity of the power

branch is higher than the data branch due to its target narrowband operation. The peak of

the received signal of the power branch appears slightly below 1.3 MHz which is only

caused by the roll-off of the incident ultrasonic pulse since the transmitting transducer used
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Figure 5.22: (a) Schematic and (b) implementation of an electrical circuit for simultaneous
ultrasonic power and data transfer. The circuit routes in incident power and data signals
to two separate electrical branches allowing for uninterrupted power flow to an energy
harvesting circuit while transmitting backscatter data.

162



has a bandwidth of 60% centered at 1 MHz. The time signal for the echo received by the

transmitter filtered in the data channel bandwidth between 600 kHz and 800 kHz is shown

in Figure 5.23c. The difference between the two communication states is more than the

double demonstrating high sensitivity.

It should be noted that the data and power frequency channels could be swapped to

allow for power transfer at lower frequencies (around 700 kHz) by modifying the filters

center frequencies. The power transmission frequency can be chosen to maximize the

efficiency depending on the distance between the transmitter, and the receiver, and whether

the system is divergence limited or attenuation limited. The power received at the data

channel while it is modulated to absorb incident power (transmitting a 0 by not reflecting

the incident acoustic power) could also be routed to the energy harvesting circuit to further

increase the power available to the system.

5.9 Conclusions

An ultrasonic system for simultaneous underwater power and data transfer using the same

transducer was developed and experimentally validated. The system relies on frequency

multiplexing power and data signals to ensure an uninterrupted power transmission to an

underwater wireless sensor, and thus increasing the continuous power that can be delivered

to the device while maintaining backscatter communication with large data bandwidth. A

high sensitivity data bandwidth of 300 kHz was obtained while achieving uninterrupted

power transfer with minimum reflection.

Simultaneous acoustic and electric impedance matching was shown to be important

for achieving the maximum operating bandwidth from the transducer while maintaining a

high sensitivity. Using only electric or acoustic matching was sufficient to achieve large

sensitivity at a limited bandwidth which might be sufficient for power transfer, but limits

the maximum data rate that could be attained by the system.
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branch for an incident ultrasonic pulse. (c) Filtered echo signal showing the data bandwidth
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Electrical and acoustic impedance matching strategies for achieving maximum power

transfer, maximum data bandwidth with maximum sensitivity, and simultaneous power

and data transfer were discussed. Using a two-layer acoustically matched PZT transducer,

the electrical matching circuit was optimized for power transfer yielding a peak ultrasonic

efficiency of 52% at a distance of 10 cm and 27% at a distance of 22.5 cm underwater.

Optimizing the circuit for data transfer yielded a 600 kHz (70%) bandwidth with a 10 dB

difference between connecting the matching circuit and keeping the transducer open allow-

ing for reliable backscatter communication with high data rates.

The developed power and data transfer system could be modified to suit a wide range

of applications that require ultrasonic power and data transfer such as biomedical implants,

underwater for ocean monitoring and navigation, and through-metal power and data trans-

fer for shielded devices and enclosures.
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CHAPTER 6

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

6.1 Summary and Conclusions

This work covered the modeling, analysis, experimental validation, as well as performance

improvement in acoustic power transfer for multiple applications. This approach high-

lighted the unique challenges faced in each application, as well as the common challenges

between the different fields.

6.1.1 Aspect Ratio-Dependent Piezoelectric Transmitter and Receiver Dynamics

In Chapter 2, the analytical models for thickness-mode piezoelectric transducers with dif-

ferent aspect ratios were investigated. Thickness-mode transducers were studied since they

are the most common type of transducers used in the literature.

Experimental and numerical results showed that thin-plate and thin-rod analytical ap-

proximations commonly used in the literature were only valid for accurately predicting the

surface velocity at the face of a transmitter with a very large aspect ratio for either very

long slender rods with β > 10 (defined as height/radius), or very thin wide plates β < 0.1.

New analytical models based on Rayleigh and Bishop rod models were developed to model

transducers with thick-rod aspect ratios between 10 < β < 3 and no fluid loading on their

sides. None of the analytical models were able to predict the response of transducers with

moderate aspect ratios (β ≈ 2) because of the coupling of longitudinal and lateral motion

not captured by the models. Also, the analytical models did not account for fluid loading

on the lateral sides of transducers with moderate aspect ratios.

The acoustic power received by a submerged piezoelectric receiver was also difficult

to quantify analytically, except for thin-plate transducers. The results showed that thin-
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rod transducers can capture acoustic power through their lateral sides since they resemble

an acoustic point receiver. The effective receiving area of a thin rod was shown to be

larger than its actual physical area normal to the incident excitation. The results suggest

that a resonant thin-rod piezoelectric receiver might be more efficient at capturing incident

acoustic waves compared to a transducer with a moderate aspect ratio of the same volume

placed in the same acoustic field.

6.1.2 System-Level Analysis with Focus on Ultrasonic Power Transfer through Metallic

Barriers

Chapter 3 focused on quantifying the operating efficiency and voltage characteristics of a

through-metal power transfer system. The ultrasonic systems were studied in the context

of a full system-level analysis that captures the coupled performance of the mechanical

system with the electrical power source, and energy harvesting circuitry.

A bonded as well as a detachable setup for complete DC-to-DC ultrasonic power trans-

fer through-metals were studied. The first tested setup consisted of a transmitter and a

receiver bonded to a 3 mm aluminum wall. The ultrasonic efficiency of the system was

tested experimentally, and the results were compared to analytical and numerical predic-

tions. The results showed an ultrasonic efficiency of 83% which matches the numerical

predictions, but was found to be lower than the analytical ones. The discrepancy was at-

tributed to the lateral modes of the transducer since its aspect ratio was not small enough

to neglect their effect.

A class E amplifier was designed to be integrated with the ultrasonic system relying on

its dynamic response to maximize the overall power conversion efficiency of the system.

The overall system which included the power amplifier, the mechanical system, and a full-

bridge rectifier was designed and simulated using a coupled nonlinear harmonic balance

analysis. The system was then experimentally tested, and the results showed excellent
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agreement with the simulations. The system was able to deliver 17.5 W of DC power to a

50 Ω resistive load with a total DC-to-DC efficiency of 66%.

A second mechanical system was designed for portable/detachable operation in which

the transmitter is only attached to the metallic enclosure when charging the internal circuit

and removed when not used. The charger was designed to allow for efficient operation

without the need for an ultrasonic couplant. Several low attenuation soft elastomers were

experimentally tested to determine the most suitable material for achieving efficient dry-

coupled operation. The results showed that the elastomer with the lowest elasticity (lowest

hardness) provided the most efficient operation for the system. A 2 mm layer was sufficient

to achieve a peak ultrasonic efficiency of 63% at 1.04 MHz without the need for a liquid

couplant. The charger could deliver up to 3 W of DC power with 50% DC-to-DC efficiency

when operating on a 9 V alkaline battery. The power supplied by the charger was limited

by the temperature stability of the elastomeric layer used, and thus, a larger power could

be supplied by considering a heat resistant material with the same hardness and attenuation

characteristics of the material used.

6.1.3 Performance Enhancement by Leveraging Phononic Crystals and Wave Focusing

Chapter 4 investigated enhancing the output power of an underwater ultrasonic power trans-

fer (UPT) system by limiting its divergence losses through wave focusing and collimation.

Gradient index phononic crystals (GRIN-PCs) lenses constructed from an air/3D printed

polymer matrix were investigated to focus and collimate incident acoustic excitation with

minimal reflections.

Two GRIN-PC lenses were designed, simulated, fabricated, and experimentally tested

for focusing acoustic waves in air and underwater. The GRIN-PC relied on trapping air

inside a polymer matrix that acted as a background medium. Since the acoustic impedance

of polymers was close to water, it allowed for an efficient coupling for the incident acoustic
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waves. The 3D-printed lens is much lighter than the state-of-the-art GRIN-PC lens imple-

mentations which required dense metallic inclusions to operate underwater.

The performance of a UPT system consisting of a point source and point source receiver

was dramatically enhanced by introducing two lenses (one in front of the transmitter, and

the other in front of the receiver). The output power of the system was improved by two

orders of magnitude when the lenses were introduced compared to the baseline case. The

lenses were additionally tested in a system consisting of weakly directional piezoelectric

transducers which enhanced the power output by 15 fold from 250 µW up to 3.6 mW.

A second GRIN-PC lens was also designed, fabricated, and experimentally tested for

focusing audio and low-frequency ultrasonic waves just above the audio spectrum to en-

hance the output power from a receiver placed at its focal point. The lens was excited with

a speaker and a scanning microphone setup was used to map the acoustic field around its

focal point. The lens showed broadband characteristics with the ability to focus incident

acoustic waves between 10-20 kHz. A circular piezoelectric unimorph harvester was then

placed at the focal position of the lens, and its performance was characterized with a re-

sistor sweep in the absence and presence of the lens. More than an order of magnitude

enhancement in the harvested power was achieved using the lens. The 3D-printed lens sub-

stantially enhanced the intensity of sound energy via focusing, yielding 1.2 µW of usable

electric power from a 120 dB sound source.

6.1.4 Acoustic and Electrical Impedance Matching for Simultaneous Power and Data

Transfer

Chapter 5 investigated acoustic and electrical impedance matching of a thin-plate air-

backed piezoelectric transducer for power and data (backscatter) transfer. An analytical

model was developed for quantifying the change in the acoustic reflection coefficient of the

transducer due to the change in the electrical circuit connected to the transducer. The elec-

trical and acoustic impedance of the transducer were analyzed using the Smith chart to pin-
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point areas for improving the impedance matching. Single and double quarter-wavelength

acoustic matching layers were studied, and their influence on the transducer bandwidth,

sensitivity, and acoustic signature was analyzed. Simultaneous electrical and acoustic

matching was incorporated to maximize the bandwidth and sensitivity of the transducer

for data transfer applications.

Several acoustically matched and unmatched air-backed transducers were fabricated,

and their experimental acoustic reflection coefficient and electrical impedance were charac-

terized. The results show excellent agreement for the electrical impedance of the developed

transducers. The experimental acoustic reflection coefficient was lower than the analytical

predictions for all frequencies owing to beam divergence losses.

An electrical matching circuit was developed and experimentally tested for maximiz-

ing the bandwidth of a two-layer acoustically matched transducer. The matched transducer

achieved a 600 kHz (70%) bandwidth around 1 MHz with a 10 dB difference between con-

necting the matching circuit and keeping the transducer open allowing for reliable commu-

nication with high data rates. Optimizing the transducer for power transfer yielded a peak

experimental ultrasonic efficiency of 52% at a distance of 10 cm and 27% at a distance of

22.5 cm underwater.

A new approach for achieving backscatter communication while maintaining an unin-

terrupted power flow to the wireless node was developed. The system relies on multiplexing

the power and data signals in the frequency domain, therefore, maximizing the power de-

livered to the transducer and its range of operation. The signals received by the transducer

are split into two paths, one for power and the other for data using bandpass and band-

stop filters. A data bandwidth of 300 kHz was obtained experimentally while achieving

uninterrupted power transfer with minimum reflection.
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6.2 Contributions

The following summarizes the major contributions of this dissertation to the state-of-the-

art:

• Derivation of two analytical models that could be integrated into circuit simulation

software for a thick rod piezoelectric transducer based on the Rayleigh and Bishop

thick rod models (Chapter 2).

• Experimental verification of the analytical models using electrical impedance mea-

surements in air and submerged in oil (Chapter 2).

• Numerical investigation of the effect of a piezoelectric transducer aspect ratio on its

performance as a transmitter and a receiver (Chapter 2).

• Analytical, numerical, and experimental validation of the performance of a power

transfer system for transferring power through metallic barriers using ultrasonic waves

(Chapter 3).

• Development, fabrication, and experimental validation of a new design for an effi-

cient class E electrical power amplifier which relies on the properties of the mechan-

ical system to operate (Chapter 3).

• Experimental investigation of using low loss elastomers for maximizing the power

transfer efficiency of a detachable dry-coupled through-metal power transfer system

(Chapter 3).

• Development and experimental validation of a portable, detachable charger for trans-

mitting ultrasonic power through metallic barriers (Chapter 3).

• Development, numerical analysis, fabrication, and experimental validation of the first

3D gradient-index phononic-crystal lens for focusing underwater ultrasonic waves

(Chapter 4).
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• Design, simulation, and experimental testing of an underwater acoustic power trans-

fer system that uses two gradient index phononic crystal lens for improving the di-

rectivity of the transmitter and focusing ultrasonic waves on the receiver (Chapter 4).

• Development, numerical analysis, fabrication, and experimental validation of a 3D

gradient-index phononic-crystal lens for focusing audio-frequency acoustic waves in

air (Chapter 4).

• Experimental and numerical investigation of the enhancement of the output power

from placing a piezoelectric energy receiver at the focal point of the lens for harvest-

ing sound power (Chapter 4).

• Analytical investigation, fabrication, and experimental validation of large-bandwidth

high-sensitivity piezoelectric transducer for high-speed backscatter communication

under water (Chapter 5).

• Development, and experimental validation of a new circuit for achieving uninter-

rupted ultrasonic power and data transfer using a single piezoelectric transducer

(Chapter 5).

• Experimental evaluation of the underwater power transfer efficiency of the devel-

oped transducers versus the separation distance between them and the frequency of

operation (Chapter 5).

6.3 Future Work

The surveyed analytical models for modeling piezoelectric transducers in Chapter 2 showed

the lack of models that could accurately predict the average surface velocity of thick plates.

Such models will be particularly useful given the popularity of thick plates in ultrasonic

literature. The available options for modeling thick plates are limited to numerical ap-

proaches such as FEM models which are not computationally efficient, especially given
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the high frequency commonly targeted by these transducers. Reduced-order models for

plates and moderate aspect ratio transducers could also simplify UPT system design, and

facilitate the integration of the transducer models in circuit simulations software.

Since a large power can be transferred ultrasonically through metals, the amplitude of

the excitation could trigger electrical, piezoelectric, as well as ultrasonic nonlinearities not

captured by the linear models investigated in this work. Additionally, the heat generated

by the different mechanical and electrical components can change their material properties

triggering various thermal/material nonlinearties. These types of nonlinearites can be in-

corporated in the developed models to better capture the behavior of the ultrasonic systems

at higher power levels. The nonlinear models can help predict the power limits of the sys-

tems as well as bottlenecks limiting the power flow through the system. This is especially

important for detachable systems where the nonlinearity is more pronounced due to the

presence of dry contact interfaces.

In Chapter 4, a cube-shaped lens was developed to focus incident plane waves. While

the cube shape might be easy to fabricate, it restricts the focusing capabilities of the gra-

dient index lens to only three perpendicular directions. We have shown that a material

with a sound speed close to water would require lower air inclusions, and achieve a near

omnidirectional response. Hydrogels might be a suitable candidate material for achieving

this lens design since they mainly consist of water. However, their 3D printing techniques

have not matured enough to allow for printing a reliable complex structure similar to what

could be achieved with PLA. Other materials with impedance close to water such as nitrile

rubber might be good candidates as well, and thus future work can look into the feasibility

of 3D-printing them to construct omnidirectional GRIN-PC lenses.

Chapter 4 was also limited to GRIN-PC lens designs based on the Luneburg lens pro-

file. Testing other lens profiles [102] might be useful to achieve focusing and other extreme

wave manipulations such as those based on the black hole concepts [220]. Another pos-

sible design for GRIN-PC materials is to mimic the gradient index lens in the dolphin
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biosonar [221, 222]. By using soft materials to construct the GRIN-PC, its focal length

could be actively adjusted by applying pressure to the lens similar to dolphin behavior.

Chapter 5 showed the importance of acoustic matching for having full control on the

bandwidth and sensitivity of the designed transducer. It also showed that finding a low-loss

natural material that satisfies the required impedance can be challenging, and trade-offs

had to be made between using a low-loss material and one that has the correct impedance

value. Passive phononic crystals can be used to match the impedance of the medium using

two approaches. First, a quarter wavelength matching layer could be engineered by care-

fully selecting the structure of a uniform phononic crystal. Since the material properties of

phononic crystals can be adjusted by considering the geometry of the unit cell, the match-

ing layer could be designed using common low-loss materials. Another approach would

be to use a tapered phononic crystal whose internal structure gradually changes from the

impedance of the transducer to that of the medium minimizing the impedance mismatch.

We have also shown that GRIN-PCs could be used to focus ultrasonic waves with min-

imum power reflection due to the gradual change of refractive index inside the developed

lens. Since the acoustic impedance also gradually changes with the refractive index, a new

class of lenses could be designed while considering both the impedance and the refractive

index. This class of lenses would allow for simultaneous focusing of the energy while

gradually matching the impedance to that of the receiver. It would also allow for chan-

neling power to the transducer, minimizing any reflection due to impedance mismatch and

considerably improving the efficiency of the UPT system.
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