
FACILITATING RELIABLE AUTONOMY WITH HUMAN-ROBOT
INTERACTION

A Dissertation
Presented to

The Academic Faculty

By

Siddhartha Banerjee

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

College of Computing

Georgia Institute of Technology

May 2021

© Siddhartha Banerjee 2021

FACILITATING RELIABLE AUTONOMY WITH HUMAN-ROBOT
INTERACTION

Thesis committee:

Dr. Sonia Chernova (advisor)
School of Interactive Computing
Georgia Institute of Technology

Dr. Karen Feigh
Aerospace Engineering
Georgia Institute of Technology

Dr. Sean Andrist
Adaptive Systems and Interaction Group
Microsoft Research

Dr. Matthew Gombolay
School of Interactive Computing
Georgia Institute of Technology

Dr. Laurel Riek
Computer Science and Engineering
UC San Diego

Date approved: April, 2021

Learning from direct experience is more effective when coupled with reflection . . . We

don’t learn from experience, we learn from reflecting on experience.

Jonathan Doerr

ACKNOWLEDGMENTS

The work in this dissertation would not have been possible without any of the vast

amount of support from my advisers, friends, and family. The oft-quoted, “standing on the

shoulders of giants,” metaphor rings true for this thesis: I simply add that all the giants who

supported me provided an exceptionally stable foundation. I feel fortunate to have worked

in such an environment and I cannot thank you all enough.

The first thanks must be given to my advisor, Dr. Sonia Chernova. I am not sure what

she saw in the aspiring Ph.D. student (me) who met with her one afternoon in October

2015, but whatever it was, she invested a lot of time and effort into helping me grow and

mature as a roboticist and an adult. She championed my extra-Ph.D. activities (e.g. letting

me disappear for months during the Mongol Rally), helped improve my writing, supported

my flights of fancy (e.g. funding me to attend a conference causal learning & inference),

provided much needed perspective when I was lost in the weeds or unable to make sense

of experimental results, and (most importantly for this document) encouraged me to not

give up on this dissertation. She took great pains to create a lab environment where I was

comfortable, and I truly appreciated her candor at times in answering questions that others

might not have been as willing to answer. Sonia is a wonderful mentor, a great advisor, and

a role-model for me to emulate as I continue beyond the Ph.D.

I have been lucky to have other brilliant mentors too. My committee members, Dr.

Matthew Gombolay, Dr. Sean Andrist, Dr. Karen Feigh, and Dr. Laurel Riek, have all been

extremely helpful and given me invaluable feedback for the work in this dissertation. I truly

appreciate the time that all of them have devoted to activities ranging from brainstorming

and designing experiments, to analyzing the data and presenting the results. My mentors

at my internships—Sean and Dr. Dan Bohus at Microsoft Research, and Dr. Vivian Chu

and Dr. Andrea Thomaz, with the rest of the Diligent team, at Diligent Robotics—shaped

my perspective on robotics and improved my technical know-how. Finally, my mentors

iv

in the GT IRIM faculty, such as Matthew and Dr. Seth Hutchinson, helped me thrive in

the robotics community at GT and helped me integrate with the larger robotics community

outside of the school. Thank you all.

My good fortune in friends provided an excellent complement to the guidance I received

from my mentors: they created the environment in which I could do the work for this

dissertation. My current and former labmates in the RAIL lab—Harish Ravichandar, Reza

Ahmadzadeh, Vivian Chu, Kalesha Bullard, Tesca Fitzgerald, Lakshmi Nair, Asif Rana,

David Kent, Andrew Silva, Angel Daruna, Jonathan Balloch, Weiyu Liu, Devleena Das,

Glen Neville, among many others—kept me sane, enjoyed RAIL days with me, and took

on challenges such as doling out Halloween candy or crushing FetchIt. Friends in my

cohort and the broader GT graduate student community—Ian Stewart, Kelsey Kurzeja,

Lara Martin, Shray Bansal, Samarth Brahmbhatt, Upol Ehsan, and many more—helped

me settle into Atlanta by creating an environment that was fun and supportive. Even the

encouragement of and conversations with my friends outside of Atlanta was instrumental in

motivating me to complete this dissertation. Finally, I am especially grateful the support of

my partner, Ceara Byrne, who was a bedrock during the COVID-19 pandemic and without

whose help, every bit of the last year of this Ph.D. would have been more difficult.

Last but not least, I must thank my family, without whose unwavering support, I would

not be where I am today. I know that I haven’t been the most forthcoming of individuals

when updating them on my progress through the Ph.D., but they have taken my reticence

in stride and cheered even the smallest bits of news that they have received. Thank you for

letting me follow my dream: I could not have been more lucky, and I definitely could not

have done this without you.

v

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . xi

List of Figures . xii

List of Acronyms . xvii

Summary .xviii

Chapter 1: Introduction . 1

1.1 Dissertation Overview . 2

1.2 Thesis Statement . 4

1.3 Contributions . 4

1.4 Outline of Dissertation Document . 5

Chapter 2: Recovery-Driven Development for Recipe-based Robot Tasks 7

2.1 Related Work . 9

2.1.1 Executive Level Design . 9

2.1.2 Reactivity and Recovery . 11

2.2 System Overview . 12

2.3 Task Execution and Recovery . 14

vi

2.3.1 RDD Specification: The Task Executor 15

2.3.2 RDD Refinement: The Task Monitor 19

2.4 Validation . 22

2.4.1 FetchIt! Challenge Overview . 23

2.4.2 Validation of Recovery-Driven Development 24

2.4.3 Evaluation of Task Robustness . 25

2.5 Discussion . 27

Chapter 3: The Interruptibility of Collocated Humans 30

3.1 Related Work . 33

3.1.1 Estimating Availability and Interruption Context 33

3.1.2 Evaluating Interruption Consequences 35

3.2 Interruptibility Classification . 36

3.3 Perceiving Interruptibility . 37

3.4 Models for Interruptibility Classification 39

3.4.1 Non-Temporal Models . 40

3.4.2 Temporal Models . 41

3.5 Dataset for Interruptibility Classification 47

3.5.1 Feature Subsets . 47

3.5.2 Dataset Creation . 51

3.6 Evaluating Features and Model Robustness 54

3.6.1 Robustness to Noise . 54

3.6.2 Adding Object Context . 58

vii

3.6.3 Conclusions . 59

3.7 Effects of Interruptibility Classification: User Study 60

3.8 Computational Framework . 62

3.8.1 Perception System . 62

3.8.2 Classification Model . 64

3.9 User Study: Design . 67

3.9.1 Study Procedure . 67

3.9.2 Hypotheses . 71

3.9.3 Measurements . 72

3.10 User Study: Results . 73

3.10.1 Analysis of Model-Driven Robot Behavior 73

3.10.2 Analysis of Human Task Performance 75

3.10.3 Analysis of Robot Task Performance 79

3.10.4 Analysis of Robot Impressions . 81

3.10.5 Conclusion . 83

3.11 Insights . 84

Chapter 4: On the Effects of Providing Decision Support to Remote Operators . 85

4.1 Related Works . 86

4.2 Research Questions . 89

4.3 User Study . 90

4.4 Decision Support Models . 100

4.4.1 Problem Definition . 100

viii

4.4.2 Baseline Diagnosis Models . 103

4.4.3 Diagnosis and Action Filter . 103

4.4.4 Training Datasets . 104

4.5 Results . 104

4.6 Discussion & Conclusions . 109

Chapter 5: Action and Diagnosis Recommendations for Responding to Robot
Failure . 112

5.1 Related Work . 114

5.2 Research Questions . 116

5.3 Domain . 117

5.3.1 Task Scenarios . 118

5.3.2 Suggestions . 120

5.4 Experiment Procedure . 121

5.4.1 Protocol . 121

5.4.2 Metrics & Hypotheses . 122

5.4.3 Bayesian Data Analysis . 123

5.5 Results . 126

5.6 Discussion and Conclusions . 130

Chapter 6: On the Accuracy of Decision Support Models During Robot Failure
Interventions . 133

6.1 Related Work . 135

6.2 Definitions . 137

6.2.1 The Intervention Process . 137

ix

6.2.2 Decision Support Models . 139

6.2.3 Research Questions . 140

6.3 Evaluation Setup . 141

6.3.1 Domain . 141

6.3.2 Neural Network Suggestions Models 145

6.3.3 Modeling Operator Mistakes . 146

6.3.4 Training Datasets . 147

6.4 Experiments . 148

6.5 Results . 150

6.5.1 Recurrent vs. Non-recurrent . 151

6.5.2 Size of the training dataset . 152

6.5.3 Informative model inputs . 154

6.5.4 Trusted fraction of data . 156

6.5.5 Using mistake estimates . 157

6.5.6 Checking operator compliance with suggestions 159

6.6 Summary & Conclusions . 161

Chapter 7: Conclusions and Future Work . 164

Appendices . 168

Chapter A: Understanding Accuracy-Inaccuracy Plots 169

References . 171

x

LIST OF TABLES

3.1 Membership of each person state feature to the different feature sets—
Minimal (Min), Standard (Std), and Extended (Ext). 49

3.2 The features emitted from the perception system to classify the interrupt-
ibility of observed people. 63

5.1 Study Conditions. 121

5.2 The assumed Generalized Linear Mixed Models for each of the metrics in
the analyses. In the models, i indexes a participant, and j is the jth ac-
tion taken by participant i. ROPE is set based on recommendations by
Kruschke [170]. 122

5.3 Metrics, hypotheses, and the main effects results from the data analysis
(Section 5.4.3). In the results columns, we report in the table if [pd] >95%.
We show an effect size if the overlap in ROPE is <2.5%. Effect sizes are
indicated by the asterisks: *** for a large effect (Std.Median >.8), ** for
a medium effect (Std.Median >.5). and * for a small effect (Std.Median
>.2) [175]. 125

6.1 Mean (and std. dev.) accuracy of the mistakes model in determining oper-
ator action or diagnosis mistakes depending on the inputs to the model and
the accuracy of the training dataset. Values in bold show the highest mean
accuracy for a given input to the mistakes model. 157

6.2 The accuracy of non-recurrent action suggestions models trained with 100%
accurate data partitioned by the accuracy of the operators’s action in the
previous timestep and their compliance with the model’s action sugges-
tions in the previous timestep. Numbers in parentheses indicate the number
of data points in each cell: compliance is model-dependent, and hence can
be different across columns for each model. 159

A.1 Model performance within the toy example. 170

xi

LIST OF FIGURES

1.1 The frequency and duration of errors in tasks can characterize robot reliabil-
ity. Metrics such as Mean-Time Between Interventions (MTBI) and Mean-
Time Completing Interventions (MTCI) respectively can then be used to
quantify that reliability. 2

2.1 Mobile manipulation system overview. Arrows denote ROS information
flow, through publishers, subscribers, services, and actionlib. 12

2.2 Overview of the two packages in our the executive level. Arrows denote
ROS information flow, through publishers, subscribers, services, and ac-
tionlib. 15

2.3 Metadata passed between the task executor and the task monitor, used to
facilitate error diagnosis and task resumption after fault resolution. 20

2.4 FetchIt! challenge hardware and specifications. 23

2.5 Hierarchical task tree for the FetchIt! challenge. 24

2.6 Percentage of times that recovery uses each utility of the task monitor, for
the 18 main recovery strategies designed for FetchIt! Challenge. In (c),
note that RESUME NONE is also the default strategy for unseen errors. . . . 27

3.1 The level of interruptibility of a person is represented on a four point scale.
In order to arrive at a value on this scale, we use information about person
state and interruption context. In this work, we use object labels as a cue to
the context. 38

3.2 Graphical representation of each of the temporal models in this chapter.
Gray elements represent observed variables, and white elements represent
hidden variables. 41

xii

3.3 Example scenes from the five data collection runs in the dataset in Sec-
tion 3.5.2. The blue bounding box denotes individuals identified in the
scene and the green bounding box denotes a face identified by the face
recognition component. The interruptibility label of the identified individ-
uals is also shown. 52

3.4 Average MCC (MCCavg) performance of each model in 10 fold cross-
validation as a function of the feature sets. In Figure 3.4, Figure 3.5, Fig-
ure 3.6, and Figure 3.7, error bars indicate the 95% confidence interval
and asterisks indicate level of statistical significance after Wilcoxon rank-
sum test on MCC scores in each fold of cross-validation: * p < 0.05, **
p < 0.01, ***p < 0.001. 54

3.5 The classifiers ordered in increasing order ofMCCavg (Figure 3.4) for each
of the feature sets. 55

3.6 Effect of adding object labels as features to the different feature sets. 57

3.7 Comparison of RF, LDCRF, and MLP performance with Ext features to
their performance with Min and Ext features augmented with object labels. . 58

3.8 The robot interrupts a participant engaged in a building task. 60

3.9 . 62

3.10 Example timeline of a trial with the tablet ground truth, the human anno-
tations, and the model predictions. Orange shows uninterruptible (0) while
blue shows interruptible (1); gray indicates that there was insufficient data
for the model to make a classification. Black indicates breakpoints between
different moments of observation by the robot during the course of the trial. 65

3.11 Model Performance . 66

3.12 . 69

3.13 Data and analysis for results in Section 3.10.1. In Figure 3.13, Figure 3.14, Fig-
ure 3.15 & Figure 3.16, asterisks indicate level of statistical significance
after post-hoc tests: * p < .05, ** p < .01, ***p < .001. Error bars in the
bar charts indicate the 95% confidence interval. 74

3.14 Data and analysis for results in Section 3.10.2. 76

3.15 Data and analysis for results in Section 3.10.3. 79

3.16 Data and analysis for results in Section 3.10.4. 82

xiii

4.1 During an intervention, an operator’s behaviour is influenced by the de-
cision support from the robot, and the decision support is affected by the
nuances of operator behaviour. We investigate the interactions in this work. 87

4.2 (a) The most common approach to viewing human actions during an intervention—
the human confirms a diagnosis of problem(s) and then takes actions to
resolve them. (b) The process can be extended such that diagnoses are con-
firmed and actions are taken to resolve the problem(s) until all problems
are resolved. (c) In our work, we find that diagnosing problems and re-
solving them are parallel processes that can influence each other (a detailed
diagram is in Figure 4.6). 89

4.3 The Web UI provided to operators. The suggestions sections were shown
or hidden based on the study condition. 93

4.4 Study Timeline. Each scenario is designed to spawn at least one inter-
vention corresponding to an injected error. Additional interventions could
manifest due to operator behaviour or other external factors. 95

4.5 The pipeline for generating action and diagnosis suggestions after every
action interaction in the DXAX study condition. Steps 3–5 do not occur
in the DX study condition and as a result, participants receive diagnosis
suggestions only. 101

4.6 UML diagram of operator workflows in the study 105

4.7 Model Diagnosis Accuracy vs. Time of Intervention-end from the start of
a scenario. The line is a logistic regression fit to the data; shaded regions
are bootstrapped 95% confidence interval of the fit. 51 min is the 95th
percentile of end times across all conditions. 106

4.8 Time completing interventions vs. Time in the study-phase for interven-
tions contained within 51 min from the start of a scenario. The lines are
linear regression fit to the data; shaded regions are bootstrapped 95% confi-
dence interval of the fit. 1.5 min is the MTCI of the experts used in the RNN
training dataset and therefore it is a soft lower-bound on a participants’ time
completing interventions. 107

4.9 Participant responses to Survey Questions. 108

xiv

5.1 Storyboard for interactive failure recovery. Participants start in one of four
failure scenarios and attempt to resolve the error by selecting one of 17
actions, which the robot then executes in an accompanying video. We eval-
uate the action sequence taken by participants under different interface con-
ditions, and how it compares to the shortest possible error recovery (green
arrows)1. 113

5.2 The robot is in a mock apartment with three locations. It can work with the
Jug, Cup, and Bowl (left-to-right in inset). 117

5.3 (a) The web UI for participants in the BASELINE condition. The red anno-
tations are for illustration purposes only. (b) Examples of starred sugges-
tions for diagnoses (top) and for actions (bottom). 118

5.4 Study data for each of the metrics defined in Table 5.3. 128

5.5 Predicted Median of the posterior of significant effects after Bayesian anal-
ysis. Asterisks indicate effect sizes (see Table 5.3). Points in the figure
represent data from the study; larger points indicate more data instances
with the same value. 128

6.1 Decision support outputs from models in this work to examples of operator
behaviour witnessed in Chapter 5. Text in green indicates accurate diag-
noses/actions while text in red indicates inaccurate diagnoses/actions. The
accuracy of an imperfect decision support models can be improved if the
operator is themselves accurate (top). However, the same model can suffer
degraded accuracy if the operator is inaccurate (bottom). 134

6.2 An intervention process. 137

6.3 An overhead schematic of the evaluation domain. 141

6.4 The neural network suggestions models. 144

6.5 An overview of how suggestions models are augmented with a mistakes
model. 146

6.6 The effect of model inputs, training dataset accuracy, and the presence or
absence of recurrent updates on suggestions model accuracy when AHt−1 is
inaccurate (X-axis) vs. when AHt−1 is accurate (Y-axis). 151

6.7 The effect of model inputs, training dataset accuracy, and the size of the
training dataset on suggestions model accuracy when AHt−1 is inaccurate
(X-axis) vs. when AHt−1 is accurate (Y-axis). 153

xv

6.8 The effect of informative model inputs and training dataset accuracy on
suggestions model accuracy when AHt−1 is inaccurate (X-axis) vs. when
AHt−1 is accurate (Y-axis). 154

6.9 The effect of model inputs, training dataset accuracy, and the fraction of
‘trusted’ (100% accurate) data in the training dataset on suggestions model
accuracy whenAHt−1 is inaccurate (X-axis) vs. whenAHt−1 is accurate (Y-axis).156

6.10 The effect of suggestions model inputs, training dataset accuracy, and the
sources of mistakes data on suggestions model accuracy when AHt−1 is in-
accurate (X-axis) vs. when AHt−1 is accurate (Y-axis). 158

6.11 The effect of model inputs, training dataset accuracy, and the presence or
absence of a operator compliance feature on suggestions model accuracy
when AHt−1 is inaccurate (X-axis) vs. when AHt−1 is accurate (Y-axis). 160

A.1 A toy dataset of actions taken by operators or suggested by models during
two hypothetical interventions; red is an incorrect action (or action sug-
gestion) and green is a correct action (or action suggestion). (a) Assumed
human operator actions. (b) Assumed suggestions from four different deci-
sion support models evaluated on the dataset. 169

A.2 Toy Accuracy-Inaccuracy plots for evaluating model performance. (a) The
Accuracy-Inaccuracy space from the toy example in Figure A.1. (b) The
performance of the four models from that figure within this space. 170

xvi

LIST OF ACRONYMS

MTBI Mean-Time Between Interventions

MTCI Mean-Time Completing Interventions

xvii

SUMMARY

Autonomous robots are increasingly deployed to complex environments in which we

cannot predict all possible failure cases a priori. Robustness to failures can be provided by

humans enacting the roles of:

• developers who can iteratively incorporate robustness into the robot system,

• collocated bystanders who can be approached for aid, and

• remote teleoperators who can be contacted for guidance.

However, assisting the robot in any of these roles can place demands on the time or

effort of the human. This dissertation develops modules to reduce the frequency and dura-

tion of failure interventions in order to increase the reliability of autonomous robots, while

also reducing the demand on humans. In pursuit of that goal, the dissertation makes the

following contributions:

1. A development paradigm for autonomous robots that separates task specification

from error recovery. The paradigm reduces burden on developers while making the

robot robust to failures.

2. A model for gauging the interruptibility of collocated humans. A human-subjects

study shows that using the model can reduce the time expended by the robot during

failure recovery.

3. A human-subjects experiment on the effects of decision support provided to remote

operators during failures. The results show that humans need both diagnosis and

action recommendations as decision support during an intervention.

4. An evaluation of model features and unstructured Machine Learning (ML) tech-

niques in pursuit of learning robust suggestions models from intervention data, in

xviii

order to reduce developer effort. The results indicate that careful crafting of features

can lead to improved performance, but that without such feature selection, current

ML algorithms lack robustness in addressing a domain where the robot’s observa-

tions are heavily influenced by the user’s actions.

xix

CHAPTER 1

INTRODUCTION

Autonomous robots are rapidly becoming prevalent in homes [1, 2, 3], hospitals [4, 5],

hotels [6], shopping malls [7, 8], factories [9], the military [10], and space [11, 12, 13].

In such diverse settings, the robots accomplish a wide array of tasks, including providing

casual social interaction or reminders for medication [2, 3], delivering laboratory speci-

mens [14, 15] and factory inventory [16, 17], providing directions and other services [18,

19, 7], exploring new worlds [12, 13], and assisting in disaster response [20]. In fact,

the use of robots during the COVID-19 pandemic highlights both the widespread adoption

of robots in the present, as well as opportunities for an even more ubiquitous adoption

of robots in the future [21, 22]. In these circumstances, the reliability of the robots is of

paramount importance.

There are two approaches to improving robot reliability, both of which we explore in

this dissertation. The first solution is to develop more robust and intelligent autonomous

systems that can handle a wider range of operating conditions and independently recover

from errors. Such techniques reduce the frequency with which failures occur. However, no

known framework exists that can eliminate all robot failures [23]. Therefore, the second

solution is to reduce the duration of a failure when one does occur. In such cases, human

assistance in the form of an intervention is required for the robot to resume autonomy [24,

25, 26, 27]. Interventions are burdensome on human operators because they may (1) inter-

rupt the human in their ongoing task, (2) require humans to make an effort at diagnosing the

robot’s problems, and (3) demand human guidance to recover autonomy. As such, robot re-

liability should be improved by considering the additional pressures that the improvements

might stipulate on the human stakeholders in the process, with the goal of reducing the

human effort and time required during the resulting intervention. This dissertation seeks to

1

Figure 1.1: The frequency and duration of errors in tasks can characterize robot reliability.
Metrics such as MTBI and MTCI respectively can then be used to quantify that reliability.

improve robot reliability with such considerations.

1.1 Dissertation Overview

In this dissertation, we characterize robot reliability through two properties – frequency of

failures and duration of failures during robot task execution (Figure 1.1)1.

The frequency of failures is measured by metrics such as the Mean-Time Between Inter-

ventions (MTBI), which is the mean time that the robot operates nominally without failures.

Reliability is improved by reducing the frequency of failures, i.e. increasing MTBI, and it

is dependent on the inherent autonomy of the robot agent or on the frequency of failures

of system components [31]. As such, updating the components or the code of a robot can

reduce the frequency of failures but the task requires significant human engineering effort.

In fact, as evidenced by the robot failures in the DARPA Robotics Challenge, even after

expending considerable effort in the development of robot systems [32, 33, 34], teams of

experienced roboticists struggled to reduce the frequency of failures [35, 36, 37]. This find-

ing motivates the need for agile methods of development, or for easy-to-implement system

components, which reduces system engineering effort.

The duration of failures is measured by metrics such as Mean-Time Completing Inter-

ventions (MTCI), which is the mean duration of the failures during which the robot awaits

1We assume the ability to differentiate between moments when the robot is in an error and when it is not
through the use of automated fault detection. Fault detection need not be straightforward and is an active area
of robotics research [28, 29, 30]. However, regardless of how a fault or error is detected, the frequency and
duration of the detected error(s) can characterize the reliability of the robot.

2

human assistance. Reliability is improved by decreasing the duration of failure, i.e. de-

creasing MTCI, which in turn is affected by the communication lag between the human

and robot, the information available to the human or robot about the failure, etc. [31].

Therefore, reducing the amount of time between a failure and the robot’s receiving of help

for it, or improving the awareness of the failure for both the human and the robot, can help

reduce the duration of the failure. Prior work has identified trade-offs in the appropriate-

ness of requesting assistance from collocated human helpers vs. remote human operators,

as well as in the quality of the assistance received from them [38, 39]. The finding thus

motivates a need to investigate methods of garnering assistance from humans in order to

reduce failure duration while also minimizing the costs to operators.

In the following chapters, we focus on reducing the frequency and duration of failures

while also reducing any exigencies placed upon human stakeholders in the process. In

particular, we focus on the demands made of human stakeholders who enact the following

three roles identified above:

Developers are designers and engineers who help define a robot system’s capabilities and

its interface(s) with human operators. They often create new system components,

improve component reliabilities, or orchestrate components together in new ways to

improve autonomy or improve interactions with operators. As such, their efforts have

the ability to reduce both the frequency and duration of failures.

Collocated bystanders are humans who are physically co-present with a robot in its oper-

ating environment and can help reduce the duration of a failure if they are approached

by the robot for aid. We assume that bystanders have high situational awareness and

can provide high-quality assistance, if approached. However, the request for assis-

tance creates an interruption that can place unwanted demands on the bystander.

Remote teleoperators, by contrast, are humans who are physically removed from the robot’s

operating environment, but who can use teleoperation interfaces to decrease the dura-

3

tion of failure if they are contacted by the robot for aid. We assume that teleoperators

are always available, but they have to face the demands of teleoperation, including

low situational awareness, which can lead to low-quality assistance.

1.2 Thesis Statement

This dissertation develops modules to reduce the frequency and duration of failure inter-

ventions in order to increase the reliability of autonomous robots, while also reducing the

demand on humans.

1.3 Contributions

The modules that we contribute are:

1. Recovery-Driven Development (Chapter 2): We formalized a development paradigm

for robots that separates task specification from error recovery. The paradigm reduces

the burden on developers while making a robot robust to failures. The paradigm, and

the system developed to support it, enabled our robot to perform pick and place tasks

autonomously for over 45 minutes without interventions at the FetchIt! Challenge at

ICRA 2019 [40].

2. An evaluation of a model for human interruptibility (Chapter 3): We developed

a model for classifying the interruptibility of collocated humans using the data from

the on-board sensors of a robot [41]. A subsequent human-subjects study deployed

the model online on a robot to show that the model was effective at gauging inter-

ruptibility and that the using the model can reduce the time expended by the robot in

garnering assistance for failure recovery [42].

3. An evaluation of decision support for remote operators (Chapter 5): We con-

ducted a large-scale human-subjects experiment on the effects of suggestion type

4

and suggestion accuracy when decision support is provided to remote operators dur-

ing failure interventions. Our results show that providing operators with both diagno-

sis suggestions and action recommendations as decision support provides maximal

benefit [43].

4. An evaluation of the robustness of decision support models learned from data

(Chapter 6): In a bid to reduce developer effort, we conducted an evaluation of model

features and unstructured Machine Learning (ML) techniques in pursuit of learn-

ing robust suggestions models from intervention data. Our results show that careful

crafting of features can lead to improved performance, but that without such feature

selection, current ML algorithms lack robustness in addressing a domain where the

robot’s observations are heavily influenced by the user’s actions.

1.4 Outline of Dissertation Document

This dissertation is organized as follows. Chapter 2 introduces Recovery-Driven Devel-

opment and focuses on reducing the frequency of failures while reducing the development

effort of creating a reliable robot system. Chapter 3 transitions to focus on decreasing

the duration of failure while remaining cognizant of the interruptibility of collocated by-

standers. Chapter 4–Chapter 6 then shift the focus to ameliorating the effort of remote

teleoperators and of developers while decreasing the duration of failures. Specifically,

Chapter 4 introduces a human-subjects study that we conducted to characterize the com-

plex interactions that occur between teleoperators and the decision support models that

might be provided to them during an intervention. We then further investigate the inter-

actions separately in the subsequent chapters. In Chapter 5, we investigate the effects of

decision support on remote operator performance, and in Chapter 6, we investigate the ef-

fects of teleoperator behaviour on the robustness of decision support models. In all the

chapters, from Chapter 2–Chapter 6, we introduce and discuss the relevant background and

related works in order to contextualize our investigations. Finally, we provide concluding

5

remarks and discuss open questions in Chapter 7.

6

CHAPTER 2

RECOVERY-DRIVEN DEVELOPMENT FOR RECIPE-BASED ROBOT TASKS

Robot execution is fragile and often overfits to the development test bed [35, 37]. As such,

robust robot architectures must rely on recovery behaviors in order to maintain autonomy

when assumptions are violated [44]. Recovery during robot tasks is non-trivial, however,

as resetting to a known state can be difficult [45] and knowing where to resume execution

can be context dependent [46]. In addition, unforeseen faults create ambiguity in recovery

strategies.

In this chapter, we look to improve robot autonomy (i.e., decrease the frequency of

failures), while minimizing the development effort of doing so. Specifically, we address the

development of robust recovery for recipe-based tasks—a class of robot tasks that dictate a

pre-specified sequence of steps to accomplish a goal. Such tasks include common mobile

manipulation tasks in unstructured environments, such as kit packing, machine assembly,

table setting, or food preparation. Even for seemingly straightforward recipe-based tasks,

the many interactions with the environment, and between robot components, lead to faults

that are difficult to identify a priori [23], often resulting in systems that are inflexible or

not robust to failures.

State machines [46], hybrid automata [47], and planning approaches [48] are common

methods of sequencing robot execution that can be made robust to failures. However, ro-

bustness is often achieved at the cost of a complexity explosion in the task sequence spec-

ification or a loss of interpretability of the task recipe. Crucially, the increased complexity

and the lack of interpretability negatively impact the iterative development of the main task

and recovery processes, both of which are necessary in the face of potentially innumerable

failure conditions.

We therefore propose Recovery-Driven Development (RDD), a development process for

7

recipe-based tasks couched in agile methodology. The key tenet of RDD is the separation

of nominal task specification from recovery behavior definition. Another guiding principle

of RDD is the support of hierarchical task specification, which both allows for re-use in the

task recipe and provides higher-level context to recovery behavior selection. As such, the

RDD methodology enables system developers to easily explore aspects of a robot’s system

design, such as those identified by Eppner et al. [47]—assumptions, generality, modularity,

etc.

We define RDD as a 2-pronged iterative approach to developing robust task execution,

in which designers can move back and forth between both prongs without risk of one phase

interfering with the other:

1. Specification (Section 2.3.1): scripting a hierarchical task sequence incrementally

from a task recipe, using strong assumptions

2. Refinement (Section 2.3.2): developing recovery behaviors by executing a situated

task, noting a fault, specifying new recoveries, and repeating

The result is a development methodology that supports rapid task and recovery prototyping,

without a noticeable loss in the robot’s robustness when deployed.

In this work, we present our task execution and monitoring system as an example frame-

work designed to enable RDD for recipe-based robot tasks1. We validate both the task

system and the RDD workflow with our team’s winning approach to the FetchIt! Chal-

lenge at the IEEE 2019 International Conference on Robotics and Automation (ICRA),

in which our success was achieved mainly due to the robustness afforded to our system

from the RDD methodology. Additionally, we provide details and open-source code for

our complete system developed for the FetchIt! Challenge as a concrete example of a com-

plex mobile manipulation system developed using RDD. We conclude with a discussion of

lessons learned for the fast and robust development of recipe-based robot tasks.

1https://github.com/GT-RAIL/derail-fetchit-public/tree/master/task execution

8

https://github.com/GT-RAIL/derail-fetchit-public/tree/master/task_execution

2.1 Related Work

Designing a robot’s software is often application-dependent, requiring tradeoffs between

multiple approaches [49]. In this section we enumerate common design choices that emerge

across applications for robot architectures, situate our task execution framework within the

design practices, and motivate the development of our approach.

Robot architectures are generally three-tiered with the following levels [49]:

• A behavioral level for highly reactive and highly situated robot execution. Modules

at this level, sometimes termed skills, have a tight perception-action loop and are the

focus of much research.

• An executive level that bridges low-level tasks (skills) and high-level tasks (goals).

The executive is responsible for sequencing skills, monitoring execution, and han-

dling exceptions.

• A planning level responsible for tasking the executive level with goals to achieve

based on future objectives, robot constraints, environmental situations, etc.

Our primary contribution is in enabling the executive level to support an RDD workflow,

and as such the remainder of this section examines executive level design and recovery.

We discuss a behavioral implementation of mobile manipulation in Section 2.2 to provide

context for our executive implementation. We also note that planning-level requirements

are minimal for autonomous recipe-based tasks, although we return to this assumption at

the end of Section 2.5.

2.1.1 Executive Level Design

The most informative consideration in executive level design is how dynamic or static the

task should be. A task can be dynamic due to environments with uncontrolled agents

9

such as humans [50] or competing objectives [51]. There are four paradigms to behavior

sequencing at the executive level, with differing levels of support for dynamic tasks:

• Agent-based control partitions control into separate, synchronized agents that main-

tain consistency with the global robot objective. This works well for dynamic envi-

ronments, and was implemented through behavior trees in Playful [50] and resource

agents in ROAR [52]. However, debugging and reasoning about the interactions be-

tween agents can be difficult.

• Planning is a principled manner of sequencing skills in dynamic environments, and

was implemented by CRAM [48]. However, when designers know the exact se-

quence of skills they want, as in recipe-based tasks, the design process for planning

can be non-intuitive or even counter-productive [46].

• Finite State Machines retain some of the autonomy in sequence specification pro-

vided by planning, and also allow system designers to explicitly specify state tran-

sitions a priori based on expected sub-task outcomes. Additionally, state machines

support model verification and composition for incremental construction of complex

behaviors [53, 46]. However, state machines, and the related method of hybrid au-

tomata [47], suffer from an explosion of transitions as the number of skills or the task

complexity grows.

• Scripting allows for the compositionality of state machines with the simple declara-

tion, rather than programming, of robot behavior [44]. Additionally, scripting pro-

vides easier error recovery to handle exceptions at the executive level than state ma-

chines. However, scripting puts the burden of sequence specification on the designer,

raising scalability issues, especially for multi-objective tasks [46].

In this work, we focus on relatively static environments and recipe-based tasks that can

be decomposed into subtasks. In order to facilitate the rapid prototyping and incremental

10

inclusion of error recoveries inherent to RDD, we sequence behaviors through hierarchical

scripting. We address scripting’s scalability issues by separating task specification and

recovery.

2.1.2 Reactivity and Recovery

A robust robot executive level must include failover mechanisms that maintain autonomy

when behavior design assumptions are not satisfied [44]. Therefore, recovery systems must

address many challenges, including determining how to reset to a known state [45], han-

dling context dependent execution resumption [46], and deciding on recovery strategies

for unforeseen faults. A common recovery strategy for resetting to a known state is to

re-attempt the entire task, as in [47], although such approaches are less reactive to failures.

Planning approaches maintain reactivity by recovering from seen and unforeseen fail-

ures by replanning [48]. Further, plans provide theoretical guarantees on robustness to

unforeseen execution failures [54, 47]. Prior works have treated recovery as a planning

problem with the goal of reaching any state where a diagnosed fault does not exist [55].

However, as noted earlier, planning approaches can be difficult to iteratively develop, or

can result in not-easily interpretable task specifications. Our approach avoids planning at

the executive layer in favor of scripting, to facilitate rapid and highly-interpretable behavior

development.

In the absence of planning, reactively resetting to a good known state can be accom-

plished through fault forecasting, such as Failure-Modes Effects and Criticality Analysis

(FMECA), which reasons about expected faults and the explicit recovery steps to address

them [24]. However, such approaches are time consuming and not guaranteed to find all

faults [23]. We instead take an empirical approach to fault discovery through situated task

execution, exploiting the inherent structure of recipe-based tasks, allowing for pre-scripted

recovery to intermediate task steps.

11

Figure 2.1: Mobile manipulation system overview. Arrows denote ROS information flow,
through publishers, subscribers, services, and actionlib.

2.2 System Overview

Before presenting our task execution and recovery system, we first describe the behav-

ioral level of our general mobile manipulation architecture, to serve two purposes: (1) to

share our open-source challenge-winning mobile manipulation system developed to sup-

port RDD, and (2) to establish a task context and a set of robot capabilities that we will

refer to throughout the chapter, grounding our discussion of RDD’s benefits and drawbacks

in a fully-realized robot system. The architecture consists of a set of independent mobile

manipulation modules, implemented using the Robot Operating System (ROS) [56], shown

in Figure 2.1. Object perception modules are implemented as ROS service servers, and ob-

ject manipulation and base navigation modules are implemented as actionlib2 servers.

Each independent module can be called by the task executor, and provides feedback to the

task executor and task monitor3. The modules consist of the following capabilities:

Object Perception. Our perception modules implement a perception pipeline for RGBD

2http://wiki.ros.org/actionlib
3Each module must necessarily provide feedback on its own faults so that the executive level can make

relevant recovery decisions.

12

http://wiki.ros.org/actionlib

sensor data, using the Point Cloud Library (PCL) [57]. The object segmentation mod-

ule uses the rail segmentation4 package to identify point cloud clusters-of-interest

through table surface detection and Euclidean distance clustering. We divide our object

recognition approaches between large and small objects. For large objects, we perform

model matching using the rail mesh icp5 package that uses an Iterative Closest Point

(ICP) PCL pipeline, which also provides object pose detection. For small object recogni-

tion, we train an SVM classifier over Ensemble of Shape Functions (ESF) descriptors [58].

We do not need to perform pose estimation for small objects due to our object grasping

approach, described below.

Object Manipulation. Most of our manipulation modules make use of MoveIt! to per-

form arm planning to either joint goals or end-effector pose goals using OMPL’s RRTConnect

motion planner [59]. This includes both general arm repositioning actions, which the task

executor can call directly (e.g. to move the arm out of the way of the camera), and execution

actions, called by other object manipulation modules. Object grasping calculates antipodal

grasps over an object point cloud using the agile grasp package [60], which are then

ordered and executed using pairwise ranking through fetch grasp suggestion [61].

As objects can shift during the grasping process, we perform post-grasp pose detection us-

ing the in-hand localization module, which identifies the object point cloud by performing

background subtraction on the robot’s gripper, and calculates the object’s pose based on

its principal axes determined by Principal Component Analysis (PCA). Given a known ob-

ject pose and a desired place location, object placing calculates and executes a pose goal

for placing an object that ensures the gripper fingers and palm are out of the way of the

object’s fall trajectory.

We also include some manipulation modules that do not use MoveIt!, due to the limi-

tations of sampling-based motion planning. For large object manipulation, such as lifting

and placing kits of objects, we include a kinesthetic teaching module [62]. This allows

4http://wiki.ros.org/rail segmentation
5http://wiki.ros.org/rail mesh icp

13

http://wiki.ros.org/rail_segmentation
http://wiki.ros.org/rail_mesh_icp

system designers to record and play back arm trajectories, either in full or as a set of way-

points. Additionally, we include task-specific manipulation actions to implement specific

manipulation skills such as raising and lowering objects, using a Cartesian end-effector

controller6, and peg-in-hole insertion, using a controller with end-effector pose and joint

effort as feedback.

Base Navigation. LIDAR-based localization uses AMCL provided by ROS’s nav stack7

to localize the base with respect to a pre-collected 2D occupancy grid of the environment.

Navigation is primarily done using point-to-point navigation between waypoints on the

map, executed using a PID controller8. We also include local repositioning actions, which

implement short movement primitives such as backing up from a table. The repositioning

actions are implemented using a PID controller with gains tuned for shorter, more precise

base goals.

With each module implemented, the navigation, perception, and manipulation actions

can be sequenced in a robust manner to complete mobile manipulation tasks by the task

execution system described in the next section.

2.3 Task Execution and Recovery

In this section, we describe our executive level, which consists of two packages seen in

Figure 2.2: the task executor and the task monitor9. The task executor (Section 2.3.1)

contains scaffolding to specify and incrementally develop a main task recipe. The task

monitor (Section 2.3.2) contains the utilities necessary recover from general failures during

task execution.
6Available at https://github.com/GT-RAIL/fetch simple linear controller
7http://wiki.ros.org/navigation
8In complex environments, nav stack’s global and local planners can be used instead.
9Stand-alone packages under development at https://github.com/GT-RAIL/assistance arbitration

14

https://github.com/GT-RAIL/fetch_simple_linear_controller
http://wiki.ros.org/navigation
https://github.com/GT-RAIL/assistance_arbitration

Figure 2.2: Overview of the two packages in our the executive level. Arrows denote ROS
information flow, through publishers, subscribers, services, and actionlib.

2.3.1 RDD Specification: The Task Executor

During the Specification phase of RDD, developers translate the nominal behaviour of the

robot executing a task recipe into a script. Crucially, developers should fulfill two objectives

in this phase: (1) declare robot behavior under the strong assumption of perfect robustness

in execution, and (2) provide structure to the specified script so that in the event of an error,

it is easy to garner error context as well as resume execution once the error is resolved. The

task executor package facillitates meeting such objectives.

Specifically, the task executor provides the following utilities to aid in rapid task proto-

typing and testing:

• A Python-based abstraction for specifying semantically meaningful interfaces to the

robot’s behavior layer, to form sequenceable primitive actions.

• A custom domain-specific language using YAML syntax for scripting recipe-based

tasks, with a view towards facilitating hierarchical task declaration for code modu-

larity and reuse.

• A consistent API to tasks and actions to facilitate testing in isolation and to enable

easy invocation from other system components.

15

• A database to provide a common knowledge-base of task relevant information to all

tasks and primitive behaviors.

• An automatically populated belief system encapsulating pertinent robot, environ-

ment, and task states, to provide additional context during recovery.

The following sections provide additional details on the above utilities.

Actions

Primitive actions are specified as Python objects derived from a common abstract class.

They are implemented either as a client to individual robot components, such as to point-

to-point navigation, or as a client to semantic groupings of robot components, such as to

the grasp calculation packages.

Tasks

Tasks manifest as a Python class derived from the same abstract class as actions, but whose

execution is specified using a custom domain-specific language, which uses YAML syntax,

to allow loading and reloading of tasks from the ROS parameter server. The language

allows tasks to:

• reuse other tasks for the creation of complex task hierarchies

• accept parameters for adaptation and compositionality in task specification

• create, maintain, and manipulate local variables for data transfer between actions and

for adaptation to environmental or execution conditions

• utilize rudimentary control flow through conditional statements and loops, aiding in

concise task specification

We present the formal task syntax in Listing 1, with example tasks used for large object

pose estimation and for object picking at the FetchIt! Challenge (Section 2.4.1) shown in

16

Listing 1 Task Syntax
(task name):
[params: [...]]
[var: [...]]
steps:
- (action | task | op | choice | loop) : (name)

[params: {...}]
[var: [...]]

[...]

Listing 2 Example Tasks
detect_schunk_pose_task:
params:
- look_location

var:
- chuck_approach_pose

steps:
- action: look

params:
pose: params.look_location

- action: detect_schunk
var:
- chuck_approach_pose

pick_task:
params: [object_idx, grasps, object_key]
var: [grasped]
steps:
- action: pick

params:
object_idx: params.object_idx
grasps: params.grasps
object_key: params.object_key

- action: verify_grasp
params:

abort_on_false: false
var:
- grasped

Listing 2. A task is defined as a dictionary entry with the required key of steps, which

defines an ordered list of the steps in the task, and the optional keys of params and var,

which define the task inputs and outputs. Each step in the task is named and can be one of

five types: (1) action, invoking a primitive action, (2) task, invoking another task, (3)

op, invoking a simple Python function for rudimentary data manipulation, (4) choice,

to evaluate a boolean expression for control flow, and (5) loop, to loop while a boolean

expression is true. All steps accept a dictionary setting values for their params, and

return a list of var values that become local variables in the parent task10.

Consistent API

Tasks and actions have a consistent API, which mimics that of ROS’s actionlib inter-

face. This consistent API enables (1) the use of JSON to specify inputs and outputs to

tasks and actions easily in order to test them in isolation, and (2) the invocation of individ-

ual tasks from other ROS nodes, such as the recovery system, through the actionlib

interface when required.

10For more details, see the README in our Github repository.

17

Database

Recipe-based tasks can be parameterized by semantically meaningful task variables which

are then grounded to different values for particular environments or tasks. Example task

variables are locations, robot poses, objects, or other real-world entities. The database is

a YAML dictionary loaded into the ROS parameter server that provides a single source

of truth for grounding all relevant task variables. Rapid environment adaptation is readily

facilitated by modifying the values associated with known keys in the database definition.

Beliefs

Beliefs are key-value assertions about the robot or the state of the environment, e.g.,

num bolts in kit=1 or robot at schunk=true. They are included in the task

executive layer for two reasons: (1) to provide context to recovery mechanisms in the event

of a failure, and (2) to provide updates to a higher level planner, should one exist, about rel-

evant states of the task, the robot, or the environment. For instance, the expected and actual

state may become mismatched: transient localization and navigation errors during point-

to-point navigation might compound to leave the robot at a location outside an expected

tolerance for manipulation actions. Background monitors on the robot’s location can indi-

cate a mismatch, and in turn the recovery system can use this information to reposition the

robot.

Discussion

The task executor package is optimized to facilitate rapid specification and testing of recipe-

based tasks: developed task scripts are deterministic, easy to specify, interpretable, and

readily allow the testing of components in isolation. Additionally, the scripting approach

to task specification provides the implicit benefits of straightforward state tracking and

an efficiency in task execution borne from overestimating the robustness of the robot’s

behaviors. Indeed, we do not check for most violations to the operating conditions of our

18

primitive behaviors until they report a failure.

We note that the determinism of our scripting approach and overestimation of the ro-

bustness of our behaviors leaves us susceptible to violations in assumptions of the environ-

mental state (a susceptibility that reactive sequencing approaches do not share). However,

instead of complicating the task scripts and in turn slowing down task specification, our

RDD methodology relies on the incremental recovery development to achieve robustness

and reactivity.

2.3.2 RDD Refinement: The Task Monitor

The primary objective of system development during the Refinement phase of RDD is to

rapidly incorporate diverse recovery strategies for a specified task recipe in order to in-

crementally improve its robustness. As such, it involves addressing four challenges (men-

tioned in Section 2.1):

1. resolving ambiguity in the recovery policy for unforeseen faults

2. taking actions to reset to a known state in the event of a fault

3. deciding how to resume execution once a fault is addressed

4. trying diverse strategies when recovering from a repeated fault

The task monitor package, which provides execution monitoring and error recovery to the

task executor, is designed to address each of the above challenges.

Handling Unseen Errors

In the event of an unseen error during development11, the monitor immediately exits from

the task, displaying the entire context of the error in a consistent manner and logging all

11The system can detect unseen errors in three ways: (1) the behavior level can propagate reported faults
(i.e. action servers aborting, nodes crashing, etc.), (2) recipe steps can explicitly check for expected errors, or,
in the case of unexpected errors, (3) the developer can stop system execution and write a new error detection
module.

19

Figure 2.3: Metadata passed between the task executor and the task monitor, used to facil-
itate error diagnosis and task resumption after fault resolution.

possible causes. Developers can then inspect the logs to create a tailored (set of) recovery

mechanism(s) for such errors, thereby making them “known” errors during future failures.

In practice, we quickly accumulate a list of errors that our developed recovery strategies

know to address.

During deployment, unseen errors can be dealt with under a domain-dependent context-

relevant policy of always exit, always retry, or some combination thereof.

Taking Actions

Rapidly developing and testing actions to take in the event of a particular failure requires the

presence of (1) a means of determining the diagnosis of an error, and (2) an easy mechanism

to invoke actions or subsets of actions. The monitor and task executor are designed to

facilitate both.

The structure and compositional design of our main task recipe aids in fault diagnosis,

given the current task state. Specifically, in the event of an error, tasks in the task executor

provide a consistent context of their state in a recursive dictionary containing all tasks in

a task hierarchy until the primitive action, and primitive actions can also provide error

context through custom data fields, as shown in Figure 2.3. Further, the task executor’s

beliefs (Section 2.3.1) can additionally inform error recovery.

When an error is diagnosed, the consistent API for invoking tasks and actions facilitates

the monitor in resolving the problem. The monitor uses a redundant instance of the task

executor, called the recovery executor (seen in Figure 2.2), to execute simple task recipes

20

for recovery.

Resuming

We have identified five strategies for resuming task execution that have applied to the errors

we have encountered:

1. RESUME NONE: stop executing the task.

2. RESUME CONTINUE: resume task execution from the failed step.

3. RESUME RETRY: restart a subtask, or the whole task; useful if, for example, the

environment changed during recovery and thus perception must be rerun.

4. RESUME NEXT: resume execution at the next step; useful if the recovery process

accomplishes the failed step.

5. RESUME PREVIOUS: resume execution at the previous step; useful if failure as-

sumptions change, but the entire subtask does not need to be restarted.

To enable full flexibility in the recovery mechanism on how tasks12 are resumed, any of the

tasks in a hierarchy can be resumed using any of the above five strategies. An example of

the context for task resumption is shown in Figure 2.3.

Recovery Diversity

Due to the larger context of some errors, the same recovery actions taken during the same

fault diagnosis can fail: for example, recalculating grasps on a small object when sampling-

based arm motion planning fails to pick it up may be insufficient due to an arm workspace

limitation, and instead the error should be resolved by repositioning the robot base or by

moving the arm to a different start configuration. As such, the context dictionaries included

12Resuming execution from arbitrary stopping points in primitive actions is hard [45], but depending on
the implementation of the robot system, might be unnecessary.

21

for diagnosis and resumption support development of diverse recovery strategies for the

same faults, based on factors such as task hierarchy location, primitive action failure count,

or hierarchical task failure counts.

Discussion

The philosophy behind RDD’s Refinement phase, i.e. incremental and independent re-

covery development, necessitated a recovery system that is deterministic, easy to specify,

interpretable, and readily allows testing of individual recoveries in isolation. Although the

current version of our implemented recovery system is not robust to failures during the re-

covery process, such robustness can either be added in a future iteration of our system, or

can be left to the purview of a higher-level planner in the robot system. Finally, we note

that our current rule-based system of recoveries does not easily lend itself to analysis or

verification, but such a feature can be integrated in the near future. In the meanwhile, the

easy testability of individual recoveries mitigates the lack of verification in the system.

2.4 Validation

Our task execution approach formed our executive level for the FetchIt! Challenge at ICRA

2019. The challenge’s goal was to advance autonomy and robustness by using a mobile

manipulator to perform an industrial kit assembly task in an unstructured environment.

As such, the challenge was a good opportunity to validate our system and development

methodology in a real-world, time-sensitive scenario. We provide a brief description of

the FetchIt! Challenge, followed by quantitative and qualitative observations of the RDD

workflow and the recovery mechanisms we developed for our competition-winning robust

task executor.

As further context, and to provide a continuous example of recoveries over a 45-minute

autonomous task, we provide a video of our final competition run13.

13https://youtu.be/G ur71h4CNQ

22

https://youtu.be/G_ur71h4CNQ

(a) Fetch Robot (b) Challenge Arena (c) Assembled Kit (d) Schunk Machine

Figure 2.4: FetchIt! challenge hardware and specifications.

2.4.1 FetchIt! Challenge Overview

The FetchIt! Challenge was a mobile-manipulation challenge focused on autonomously

completing combined manipulation, perception, and navigation tasks on a mobile-manipulator

platform14. Specifically, the goal of the competition was to have a Fetch mobile manipu-

lator [63], equipped with an RGBD camera and a 2D LIDAR (Figure 2.4a), autonomously

assemble kits (Figure 2.4c). In order to assemble each kit, the Fetch had to navigate a chal-

lenge arena (Figure 2.4b), perceiving and picking the various parts from tabletops and bins.

In addition to pick and place, the Fetch had to operate machinery in the arena via physical

manipulation and wireless interfaces as part of the assembly process. For instance, it had to

insert the “Large Gear” in Figure 2.4c into a small opening shown in Figure 2.4d on a sim-

ulated milling machine. Perfectly completed kits (as in Figure 2.4c) scored seven points,

with no points awarded for incomplete kits (i.e. any parts missing).

The robot was required to run autonomously with no intervention for an allotted time

of 45 minutes, completing as many kit assemblies as possible. The strict scoring requir-

ing fully assembled kits made robust task execution one of the largest challenges of the

competition.

23

(a) The top three levels in the hierarchical task tree. Repetitions of pick place object in kit are
omitted and denoted with an ellipsis for brevity.

(b) Full expansion of the fifth pick place object in kit task. The suffix n for each node indicates
the nth invocation of an action or task over the full task tree (n is often higher in practice due to
recovery execution). Details of place in kit task are omitted for brevity. C denotes a choice node
that denotes conditional execution, and L denotes a loop node.

Figure 2.5: Hierarchical task tree for the FetchIt! challenge.

2.4.2 Validation of Recovery-Driven Development

Figure 2.5a shows the high-level structure of the task implemented for the FetchIt! Challenge—

an easy to understand script. Figure 2.5b demonstrates the task complexity, showing an

expansion of one of the abstract tasks from Figure 2.5a. This complexity is manageable

thanks to hierarchy-enabled action and task reuse–our task script reuses the look action at

least 25 times and the perceive task at least 6 times. The modular nature of the task speci-

fication simplified the design process and allowed for independent testing of task recipes.

Further, the RDD requirement of separating specification and refinement allowed us

to safely develop new recovery behaviors in high-pressure moments between competition

runs. For instance, the simulated milling machine required gear insertion into a smaller hole

than we had previously tested with, which caused new faults resulting from false positives

in the robot’s evaluation of the insertion. With only 45 minutes to test between runs, we

14https://opensource.fetchrobotics.com/assets/Rulebook2019.pdf

24

https://opensource.fetchrobotics.com/assets/Rulebook2019.pdf

were able to quickly update existing recovery strategies to identify insertion failure and

retry the task, without risk of disrupting the previously tested nominal task flow.

2.4.3 Evaluation of Task Robustness

The FetchIt! Challenge provided an opportunity to gather quantitative data on our recovery

strategies, allowing us to evaluate the error recovery utilities provided by the task monitor

(Section Section 2.3.2). We also provide a representative example to qualitatively highlight

those utilities.

Quantitative Observations

We provide a breakdown of the recovery strategies we implemented for the FetchIt! Chal-

lenge. In total, we implemented 18 strategies, which often included multiple sub-strategies

to handle dynamic execution under differing fault conditions.

To highlight the value of easy rule specification for recoveries and the ability to act

upon a rule-based diagnosis, we define the following three situations:

1. Shared Recovery: different faults use the same rules for diagnosis and recovery

2. Immediate Action: recovery directly invokes a primitive action

3. Dynamic Recovery: in the same error diagnosis, error context determines different

parameters for recovery actions

Figure 2.6a shows the occurrence of these three situations in our developed recoveries. We

most frequently use Immediate Actions, to create short and responsive recovery actions to

bring the task back to a known state. While less frequent, Shared Recoveries aided in rapid

development and Dynamic Recoveries were crucial in creating a reactive system to deal

with diverse faults.

The task executor and monitor use the following factors in the metadata context to

determine what recovery to perform:

25

1. Action/Task: the location of the error in the task hierarchy

2. Number of Aborts: how many times the error has occurred without resolution

3. Belief : a subset of the robot’s belief of the task, robot, or environment state

4. Error Signal: a specific error signal returned by a primitive action

5. Immediate Action Result: the result of actions taken for recovery execution

Figure 2.6b illustrates that localizing the error within the task hierarchy was especially im-

portant in determining recoveries because the task and action reuse for different situations

often required different recoveries. Overall, the use of a diverse factors shows that robust

recovery requires a wide range of context.

Finally, Figure 2.6c demonstrates that all resumption strategies described in Section 2.3.2

were necessary for designing a robust recovery system. The diversity in resumption strate-

gies showcase the possibility of resuming from a task beyond simply re-attempting it en-

tirely, and the use of resumption strategies other than RESUME CONTINUE show that re-

sumption cannot always directly return to where the error occurred.

Representative Example

We describe here recoveries for the pick action (Figure 2.5b) to provide concrete exam-

ples for the features mentioned above. In our system, pick and arm can fail due to a

common cause—errors in the MoveIt! Motion Planning Framework. Therefore, the de-

fault recoveries for these actions, e.g. reinitializing a 3D obstacle map followed by a

RESUME CONTINUE, are examples of Shared Recoveries. However, depending on the

context, the fault sometimes requires additional recovery steps. For instance, after the third

consecutive failure of both actions in the pick task, a short upward arm move jogs the

system out of its error. When this is not enough, the cause of failures can be a limitation in

the arm’s workspace, and so the robot repositions itself based on beliefs about the task and

26

(a) Properties of the recovery (b) Factors used in diagnosis (c) Resumption strategies

Figure 2.6: Percentage of times that recovery uses each utility of the task monitor, for the 18
main recovery strategies designed for FetchIt! Challenge. In (c), note that RESUME NONE
is also the default strategy for unseen errors.

environment state. All faults that occur within the context of the perceive pick task retry

that task (RESUME RETRY) in order to account for scene changes resulting from recovery

execution. We show a selection of these pick recoveries in action, as well as other example

recovery behaviors selected from our FetchIt! competition runs, in a video supplement to

this chapter15. At the competition, we recovered from all errors in the pick task, thanks to

the task monitor’s utilities.

2.5 Discussion

We conclude with a discussion of lessons learned using our RDD-inspired task execution

and monitoring system at the FetchIt! Challenge.

Testing early and often. The ability to repeatedly test the robot system in its target

environment is a critical requirement for the robustness benefits of RDD—while RDD can

be implemented in simulation, simulation alone will likely not lead to the same level of

robustness. As such, RDD is not suited to hazardous or remote environments, such as
15https://youtu.be/AcOdT10q 94

27

https://youtu.be/AcOdT10q_94

space robotics. However, many target environments for robots are neither inaccessible nor

catastrophically hazardous, and are therefore compatible with RDD.

Stochasticity in behaviors. As mentioned in Section 2.3.2, failure recovery requires

a high degree of variety in recovery mechanisms. We have found that a degree of non-

determinism at the robot’s behavior level facilitates such recoveries. For instance, our

sampling-based ranking approaches to object selection, grasp calculation, and place pose

calculation provided the robot with successful alternatives when retrying actions after pre-

vious action attempts failed.

Planning layer integration. Recipe-based tasks can admit multiple recipes, which need

to be selected or rescheduled at runtime based on factors such as time constraints or ma-

jor execution errors. Predefined scripts, such as those created during RDD specification

phases, cannot easily handle such situations. The shortcoming can, however, be addressed

by the higher level planning layer in the robot architecture. We found that the level of

abstraction used in our hierarchical executive layer recipe scripts made the specification

of our planning layer almost trivial. Additionally, the executor and monitor utilities we

developed (e.g. beliefs) were a great help in the planning layer.

In conclusion, the RDD methodology of separating the nominal task specification from

recovery specification provides numerous benefits, which our team validated at the FetchIt!

Challenge. Our use of RDD (1) allowed rapid development of the task and recoveries,

(2) enabled independent testing and efficient re-use through abstraction for tasks and

recoveries, (3) necessitated the development of system utilities that ultimately proved

valuable in other aspects of system development, and most importantly, (4) afforded our

system a level of robustness that would have been more difficult or time-consuming to

achieve through other means.

The reduced frequency of failures, and hence increased reliability, of a robot system

achieved through RDD involves transferring the experiences of past interventions into a

policy of actions for future failures, albeit through developer-implemented system updates.

28

As such, it implies the possibility of accomplishing such a transfer without developer effort,

and it is therefore a question that we intend the revisit in Chapter 6. Before addressing it, we

examine how modules developed for the benefit of collocated and remote human operators

might also reduce the duration of robot failures.

29

CHAPTER 3

THE INTERRUPTIBILITY OF COLLOCATED HUMANS

We begin this chapter by noting that unless a robot is actively monitored by a human op-

erator, it must find and interrupt a human in order to notify them of an error and to solicit

help. Interruptions are distracting, potentially leading to task performance penalties [64,

65], stress [65, 66], antipathy [27], and even catastrophe [67, 68], depending on context.

As such, an inappropriate or incorrect interruption from a robot can greatly increase the

duration of robot failures if the interrupted humans ignores the interruption, takes more

time to intervene, or intervenes incorrectly.

In the context of technology-driven interruptions, a large body of work in human fac-

tors engineering (HFE) and human-computer interaction (HCI) research has specifically

identified the appropriateness of the timing of an interruption as one of the most important

factors dictating interruption consequences [69, 64, 65, 68]. The appropriateness of timing

is referred to as interruptibility [70] and it is itself the focus of much research [71]. Low

interruptibility signifies a person’s desire to not be disturbed, while high interruptibility

signifies that the person could be amenable to an interruption.

Today’s robots have no interruptibility awareness, despite the fact that interactive robots

are increasingly deployed in human environments. Many robot control architectures being

developed in the research community for interactive applications enable robots to not only

follow human instructions, but also to actively engage with a person to offer a service [19]

or to ask for help [72, 73]. As a result, robots performing deliveries, taking store inventory,

organizing warehouses, and collaboratively working alongside humans on factory produc-

tion lines increasingly have the potential to interrupt people, without any measure of the ap-

propriateness or costs of such interruptions. Extrapolating results from prior research [74,

75] to the domain of embodied robot interactions, suggests that inappropriate interruptions

30

may have significant effects on many factors, including

• negatively impacting human task performance, if people are interrupted at inappropri-

ate times,

• negatively impacting robot task performance, as the robot wastes time attempting to

interact with a person not receptive to the interaction, and

• negatively impacting a person’s social perception of the robot, and ultimately their

willingness to use it.

In order to develop robots that appropriately handle interruptions, it is important to

determine when a robot should interrupt, and how it should behave during an interrup-

tion. Prior work has explored how a robot should behave during interruptions by studying

multiple approaches for engaging people [76, 77]. In this chapter, we address the former

question. Expanding on results previously presented in [41] and [42], we describe a self-

contained interruptibility-aware mobile robot system and present a detailed analysis of the

effects of interruptibility-aware behavior on the factors listed above.

We begin by examining the following research questions:

RQ1 Which computational features are useful in allowing a robot to classify interruptibil-

ity in an unstructured world?

RQ2 What is a robust model for obtaining interruptibility estimates from the proposed

features?

In our examination, we first contribute an ordinal scale of interruptibility that can be used to

rate the interruptibility of a person and to influence decisions on whether or not to interrupt

them (Section 3.2). Second, derived from factors used by humans to gauge interruptibil-

ity [68], we propose using features for person state—motivated by prior work in robotics

on the closely related problem of estimating human engagement [78]—and features for in-

terruption context—inspired by cues to interruptibility context used in prior work [79]—to

31

classify interruptibility (Section 3.3). Last, we introduce the non-temporal and tempo-

ral models that we evaluated (Section 3.4) and the dataset of person observations that the

models were evaluated upon (Section 3.5).

Our results (Section 3.6) show that (1) features for person state and interruption con-

text are indeed useful for classifying interruptibility, (2) in the absence of robust detectors

for person state, more robust detectors for interruption context are a good substitute, and

(3) Random Forest (RF) [80], Multi-Layer Perceptron (MLP) [81], and Latent-Dynamic

Conditional Random Field (LDCRF) [82] classifiers outperform all other classifiers in in-

terruptibility classification, remaining robust to feature noise. The results inform our de-

velopment of an interruptibility-aware robot system (Section 3.8).

We evaluate our robot system in a 42 participant user study, introduced in Section 3.7

and described in Section 3.9, to answer the following research questions:

RQ3 Can we use measures of the robot’s behavior to show that our models accurately

estimate interruptibility online on a robot platform?

RQ4 How does interruptibility-aware robot behavior affect human task performance when

a robot regularly needs assistance?

RQ5 How does interruptibility-aware robot behavior affect robot task performance when

relying on humans for assistance?

RQ6 Does a robot appear more socially adept if it interrupts humans at appropriate mo-

ments?

Our results (Section 3.10) show that (1) our integrated system is effective at predicting

interruptibility at high accuracy, (2) an interruptibility-aware robot interrupts less often but

at more appropriate times thereby increasing its efficiency, (3) better timed interruptions

have no significant effect on human task throughput in skill-based tasks (perhaps as a result

of participants self-regulating their schedule by ignoring badly timed interruptions), and

32

(4) users have a higher opinion of the interruptibility-aware robot. These results highlight

key findings for face-to-face robot interruptions, underscore the social and task benefits of

interruptibility-aware robot behaviours, and present directions for future research.

3.1 Related Work

People are generally very adept at gauging the interruptibility of others from observation:

when deciding the moment to interrupt, they naturally take into account another person’s

projected level of “busyness” (demeanor) and availability, the context and conditions of

the interruption, and their knowledge of the consequences of the interruption [68]. In the

following subsections, we highlight some of the pertinent prior works that detail computa-

tional methods for estimating a person’s availability and the context for an interruption, as

well as prior research into evaluating the consequences of interruptions.

3.1.1 Estimating Availability and Interruption Context

Existing work has explicitly modeled a person’s availability in one of two ways. The first

category of techniques relies on task and experiential knowledge. In HCI, known task mod-

els, for instance detailed as GOMS (Goals, Operators, Methods, Selectors) structures [83],

have been used to estimate interruptibility [84, 85]. Meanwhile in robotics, cognitive ar-

chitectures such as ACT-R/E [86, 87] have been used to predict if humans might need

assistance in resuming a task post-interruption by another human, a technique that easily

extends to determining the moment to interrupt. However, these approaches require do-

main knowledge of a human’s task and constant surveillance of its execution, which is

often unavailable in a general-purpose mobile robot deployment. Others have modeled

human availability based on past experiences of room occupancy, assuming that an open

office door indicates the occupant’s willingness to be interrupted [73], but this assumption

ignores both the social cues and task state to greatly simplify the interruptibility problem.

The second category of techniques for explicitly estimating availability leverages a per-

33

son’s demeanour, focusing on immediate social cues of availability. Social cues, such as

eye contact, are largely task-independent, and as a result, models based on social cues

are more easily generalizable across a wider set of applications: in robotics, the methods

have been used to estimate related measures of a person’s “intent-to-engage” and aware-

ness of the robot in applications ranging from companion robots [78, 77], shopping mall

assistants [88, 89, 90, 19], receptionists [18], and bartenders [91]. Some prior work has

relied on external sensors such as motion capture systems, ground-mounted LIDAR, and

ceiling cameras [88, 89, 90, 19], which can be expensive and difficult to deploy in sup-

port of mobile robots traversing a large space. Other work has used onboard sensors to

detect social cues of engagement [18, 77, 78, 91]. Although engagement estimation is a

separate problem from interruptibility estimation (because interruptibility can be high even

when engagement is low), the problems are closely related, and we take inspiration from

the work of Mollaret et al. [78] and Chiang et al. [77] in both our selection of audio-visual

features for classification and in validating the use of Hidden Markov Models to estimate

interruptibility.

Existing work has also implicitly modeled a person’s availability through methods

termed “contingency detection” [92, 93, 94]. These methods often assume the person

as available, perform a probe action (or sequence of actions), and then reassess the per-

son’s availability based on the person’s response. Assessing a person’s availability through

contingency detection is complementary to estimating availability explicitly: the latter can

inform the execution of probe actions for the former.

Meanwhile, interruption context has been extensively studied in HCI [71], where con-

text is often captured through features that describe the user (e.g., personality traits) [70,

95], the task [84, 85], the environment [96, 95], the interruption [97], and the relationships

between these when the interruption is presented [65]. In robotics, interruption context

has been studied by Nigam & Riek [79], where the authors use only global audio-visual

descriptors—such as GIST [98] features and audio frequency & volume features—as cues

34

to context in classifying interruptibility (termed an appropriateness function) on their col-

lected dataset. In our work, we instead leverage advances in computer vision to garner

localized, explicit, high-level environment context from the labels of objects that a person

might be interacting with. We also deploy our best model for online classification in a user

study for further evaluation.

3.1.2 Evaluating Interruption Consequences

In HCI and HFE, the cost of an interruption on-screen has been evaluated with quantitative

metrics such as time on task [74, 84, 66, 99], the number of tasks completed [74], the num-

ber of incomplete tasks [100], the number of errors [74, 101], switching time [85, 75, 99],

and workload [84, 66]; and qualitative metrics such as respect [84], and preference [74].

In embodied settings, researchers have also used structured interviews [88, 102, 103] and

ethnographies [27, 102, 103, 104] to evaluate long term interruption costs.

However, the evaluation of face-to-face robot interruptions, in which a robot is co-

present with the human, has often been limited to qualitative measures to gauge the ef-

fectiveness of the interruption. For instance, Saulnier et al. [76] base their evaluations

on participant self-assessed “interruptedness”, while Chiang et al. [77] evaluate whether

an interruption successfully captured the attention of a participant, without consideration

for the appropriateness of interruption timing. While the recent work of Short et al. [92],

does quantitatively evaluate the effectiveness of robot interruptions through a measure of

the number of survey responses started by interrupted humans, there is no prior work that

quantitatively studies the task effects of embodied robot interruptions on both the human’s

and robot’s performance.

Prior research shows a strong effect of interruption handling mechanisms on the poten-

tial costs of interruptions [102]. In HCI settings, research has shown that people subject

to on-screen mandatory interruptions experience significant loss in task performance [74,

84, 75]. However, when such interruptions can be deferred by the participant, as in [74], or

35

when they do not consist of an actual task, as in [75], the loss in task performance is not as

significant; a result predicted by the Goal-Activation model of interruption handling [105].

Similarly, in embodied settings, when people defer an incoming interruption, they are more

likely to complete their original task [100]; a result predicted by Prospective Memory [106]

models of interruption handling [102]. Recent results from HFE continue to show that per-

formance loss is not noticeable with tasks that are embodied or skill-based, even when the

interruptions might be computer mediated as in the work of Lee & Duffy [101] and Kol-

beinsson et al. [99]. These authors, in particular, reason that performance loss is absent in

an embodied setting because it is impossible to occlude the main task, which allows people

to optimize common sub tasks and choose when to switch to an interruption. In this work,

we explore whether the results from HFE research generalize to robotic systems.

3.2 Interruptibility Classification

Interruptions are defined as “externally generated, randomly occurring, discrete events that

break the continuity of cognitive focus on a certain task” [64], and the interruptibility of a

person at any given point in time is defined in terms of their receptiveness to interruptions

at that moment [70]. A person focused on their current task and not amenable to an inter-

ruption is said to have low interruptibility; meanwhile, a person amenable to interruptions

is said to have high interruptibility. Hence, the interruptibility classification of any given

person-of-interest can be a binary classification task, with 0 denoting the person as busy

and 1 denoting them as interruptible.

Binary interruptibility classification provides an intuitive mechanism for deciding when

to interrupt a person, but it is important to distinguish interruptibility from the decision to

interrupt. The interruptibility of a person quantifies the disturbance that a person might

experience as a result of an interruption, while the decision to interrupt depends upon a

person’s interruptibility as well as other factors, such as the urgency and characteristics of

the interrupting task [68]. In this work, we focus on the classification of interruptibility and

36

its use on a robot, with the goal of incorporating the classification later within a broader

framework for deciding when to interrupt.

In some applications, it can be useful extend the binary interruptibility classes to a

higher fidelity in order to further help with the robot’s decision-making process. Such sit-

uations may arise when the robot needs assistance from one person when multiple people,

potentially in different states of interruptibility, are present, or if the robot should behave

differently depending on the person’s level of interruptibility. To support these capabilities,

we propose the following interruptibility scale:

INT-4 Highly Interruptible. The person is not busy and they are aware of the robot’s

presence.

INT-3 Interruptible. The person is not busy, but they are unaware of the robot’s presence.

INT-2 Not Interruptible. The person is busy, but the robot may interrupt if necessary.

INT-1 Highly Not Interruptible. The person is very busy, the robot should not interrupt.

INT-0 Interruptibility Unknown. The robot is aware that a person is present, but does not

have sufficient sensory input to analyze interruptibility.

Values 1-4 in the scale capture the full range of interruptibility states that can help guide

the robot’s decision making process. We include the rating of 0 to represent states in which

the robot does not yet have sufficient information about the person, such as when the person

is too far away or out of view. In this case the robot may choose to approach another person,

or take actions to improve sensing quality.

3.3 Perceiving Interruptibility

Interruptibility can be characterized based on two sources of information—person state

and interruption context (Figure 3.1).

37

Figure 3.1: The level of interruptibility of a person is represented on a four point scale. In
order to arrive at a value on this scale, we use information about person state and interrup-
tion context. In this work, we use object labels as a cue to the context.

Person state is widely used to model engagement and human awareness in robotics [78,

77]. Although classifying interruptibility poses its own research problem, because inter-

ruptibility can be high even when a person shows neither intent-to-engage or awareness

of the robot, we propose the cues of person state from the engagement modeling litera-

ture can be informative for interruptibility. Following prior work, person state includes the

following information categories:

• The position and orientation of a person within the environment. This includes

where they are located as well as how their body is oriented with respect to the robot.

• The head orientation and gaze direction of the person.

• The presence and orientation of sound within the environment.

We infer person state from laser, video, and audio sensor data.

The context of an interruption includes known information about the user, the task, the

environment, and the type of interruption [71]. Following the definition in prior work [79],

we consider interruption context to include visually observable cues from the environment

that may inform the robot of a human’s interruptibility. In particular, we use:

• The labels of objects that are being used by the person, or those that lie near them.

We infer the object labels from robot camera video and propose that the object cues to a

person’s activity can provide additional useful information for classifying interruptibility.

38

For example, an individual drinking from a coffee mug in a lounge is judged to be more

interruptible than someone engaged with a laptop in the same setting. Although objects

may not be a valid substitute for person state, or even activity recognition for interruptibility

estimation, object recognition is widely available on robotic systems.

In the following section, we describe how this information can be leveraged in multiple

computational models.

3.4 Models for Interruptibility Classification

Based on our survey of prior literature, we consider both non-temporal and temporal mod-

els for interruptibility classification given data inputs of the form in Section 3.3. Non-

temporal models provide interruptibility estimates based on data from a particular moment.

Informed by the survey of Turner et al. [71], which details the various classification mod-

els commonly used for interruptibility classification in HCI, we explore the use of Ran-

dom Forests (RFs) [80], Support Vector Machines (SVMs) [107], K-Nearest Neighbors

(KNN) [108], and Multi-Layer Perceptrons (MLPs) [81].

In contrast, temporal models, use a sequence of data within a time window to generate

the interruptibility estimates. Recent work by Foster et al. [91] on engagement modeling

has shown that although non-temporal models are more accurate at a classification task,

temporal models tend to work better on a robot due to greater stability in classification

output. Informed by the successful use of Hidden Markov Models (HMMs) for engage-

ment detection on robots in the works of Mollaret et al. [78] and Chiang et al. [77], we

use HMMs as one of our temporal models. We also explore Conditional Random Fields

(CRFs) [109] and derivatives thereof, Hidden Conditional Random Fields (HCRFs) [110]

and Latent-Dynamic Conditional Random Fields (LDCRFs) [82], as alternate temporal

models to classify interruptibility. We expect the CRF variants to outperform HMMs for

interruptibility classification because of their discriminative nature and more expressive

representation.

39

In this section, we introduce and overview the non-temporal and temporal models that

we evaluated to classify interruptibility.

3.4.1 Non-Temporal Models

Here, we provide a brief overview of each non-temporal model, the hyperparameteres we

used, and the reasons to expect success with each model. Each of the models is imple-

mented with the scikit-learn framework [111].

Random Forests

RFs have been shown to be powerful models for activity recognition [112]. An RF [80]

models data by creating several decision trees, and allowing each of them to ”vote” on test

cases. Each decision tree is trained on a subset of the training data, equal to the original

dataset size and drawn randomly with replacement. We varied the number of trees in our

RF and ultimately found that 10 estimators provided the most accurate and generalizable

model.

Support Vector Machines

SVMs have also been successful in many applications of supervised learning and classi-

fication, including activity recognition [113] and gaze estimation [114]. An SVM [107]

employs hyperplanes to attempt to partition training data into separate classes, after casting

it to a higher dimension using a kernel function. We experimented with different kernel

functions and multi-label strategies to determine that the radial basis function kernel and

the one-vs-one classification strategy worked the best for our data.

K-Nearest Neighbors

KNN [108] is a model that makes use of similarity in data points to classify unseen data.

The most important parameter for KNN is the number of neighbors to examine, which we

40

(a) HMM (b) CRF (c) HCRF (d) LDCRF

Figure 3.2: Graphical representation of each of the temporal models in this chapter. Gray
elements represent observed variables, and white elements represent hidden variables.

set to 5 after a short experimental search. Classification of unseen data is performed by

examining the 5 closest data points in our training data, and returning the class label with

the most votes.

Multi-layer Perceptron

An MLP [81] is model that trains iteratively on each example in the dataset, using partial

derivatives from a predefined loss function to update weight parameters that are used for

each prediction. While there are many parameters and architecture choices to make for an

MLP, we used a log-loss function, a ReLU [115] activation function, and the Adam [116]

optimizer. Our architecture is a 2-layer network with 100 units in each layer, and our

learning rate is set to .001. We allow training to continue until the loss stops decreasing by

more than .0001.

3.4.2 Temporal Models

Here, we provide an overview of each temporal model and provide motivations for its use

in our research. We explain temporal models in greater detail than non-temporal models

because of their relative rarity in robot research.

Hidden Markov Models

An HMM [117] models two stochastic processes. The first process is a Markov chain

through a sequence of discrete hidden states, while the second process produces observable

41

continuous or discrete emissions given a hidden state (Figure 3.2a). HMMs have found

widespread use in areas such as natural language processing and speech recognition, and in

the context of human-robot interaction have been used for tasks such as activity recognition

and human engagement detection [77, 78].

The HMM is characterized through five parameters

λ = (N,M,A,B, π)

where each of the parameters has the following significance:

N is the number of hidden states in the model. Although it is common for the hidden states

to have some physical significance, this need not be the case.

M is the number of distinct observation symbols per state if the observation sequence is

discrete valued. In the case of continuous observation sequences, M denotes the number

of mixture components that contribute to producing an observed value.

A is an N × N state transition matrix where each element of the matrix signifies the

probability of transitioning from one hidden state to another.

B is the observation symbol probability distribution for all hidden states. In the case of

discrete emissions, B is an N × M matrix; in the case of continuous emissions, B is a

parameterized specification of M mixtures (usually Gaussian) for each of the N hidden

states.

π is the initial state distribution over the hidden states.

To classify interruptibility, we train separate ensembles of HMMs for each of the five

different interruptibility classes that we have defined. Within each ensemble, we train a

separate HMM for each of the features in the data sequences that we use. We use a uniform

initial distribution over all hidden states, and we model the continuous valued features

42

using Gaussian Mixture Models. The HMMs are implemented with the GHMM library1

and trained using Baum-Welch. We vary the number of hidden states, N , from 2–4 and the

number of mixtures in the models, M , from 1–4.

Given a sequence of data, each of the trained HMMs in each ensemble runs the Forward

algorithm to return a log likelihood of the data being generated by the HMM; the log

likelihood result for the ensemble is taken to be the sum of log likelihoods from each

HMM within the ensemble. The interruptibility label derived for the given data sequence

is then determined on the basis of the maximum log likelihood from each of the different

ensembles.

Conditional Random Fields

Represented as an undirected graphical model, a CRF [109] models the probability of a

label sequence conditioned on the entire observation sequence (Figure 3.2b), as opposed to

an HMM which models the joint probability of both the hidden state and the observation at

any timestep. The change allows the CRF a richer specification, using prior domain knowl-

edge, of the relevant factors within the model by incorporating information over multiple

timesteps within the observation sequence and linking state transitions within the model

directly to the observations. Previous work has successfully demonstrated the superiority

of CRFs over HMMs in the realms of Activity Recognition [118] and Natural Language

Processing [109], leading us to hypothesize that CRFs hold promise for gauging interrupt-

ibility.

Concretely, the CRF model provides

P (Y |X) =
1

Z

T∏
t=1

Ψt(Ya, X) Z =
∑
Ya

T∏
t=1

Ψt(Ya, X)

where Y = {y1, y2, ..., yT}, each yi ∈ Y , is the label sequence, Y is the set of possible

1http://ghmm.sourceforge.net/index.html

43

http://ghmm.sourceforge.net/index.html

labels, X is the observation sequence, Z is a normalization function, and T is the length

of the observation sequence. Ya is a subset of the label sequence considered for Ψt, a local

feature function dependent on time that contains the parameters to be trained for the CRF.

In our work, Y = {0, 1, 2, 3, 4}, the set of possible interruptibility labels, and we use two

types of feature functions—windowed observation feature functions and edge observation

feature functions.

Windowed observation feature functions include a window parameter, ω, that defines

the number of past and future observations to use when predicting a label at time t. These

feature functions are of the form:

Ψt(Ya, X) = exp{
K∑
k=1

θkfk(yt, xt−ω, xt−ω+1, ..., xt+ω} (3.1)

where yt is the label at time t, xi is an observation value at time t = i, and K is the number

of feature functions, fk; in our case K is the same as the number of attributes in the data.

The parameter θk is a parameter that is trained using gradient descent.

Unlike windowed observation feature functions, edge observation feature functions

model transitions from one interruptibility class to another. These feature functions have

the form:

Ψt(Ya, X) = exp{
K∑
k=1

θkfk(yt−1, yt)} (3.2)

where all the variables have the same meaning as they did in Equation 3.1 and the value of

K is the number of possible transitions, 25, from one interruptibility class to another.

In our work, the feature functions are specified using the implementation of CRFs in the

HCRF library2, and we train the parameters θk using the BFGS gradient descent method.

Unlike with the HMMs, we do not train separate CRFs for each of the interruptibility

classes; instead we train the CRF to perform multiclass classification. We vary the value of

the hyperparameter ω from 0–4.

2https://sourceforge.net/projects/hcrf/

44

https://sourceforge.net/projects/hcrf/

Hidden Conditional Random Fields

The HCRF [110] extends the CRF by including hidden state variables to more accurately

model intra-class variation within observation data. In addition, the HCRF provides a sin-

gle label for the entire sequence (Figure 3.2c) and thus prevents the need for an a-priori

segmentation of the observed sequence into substructures. Prior work has successfully

used the HCRF for Gesture Recognition [110], and thus we consider it a good candidate

for modeling interruptibility.

Mathematically, the HCRF is formulated in a similar manner to the CRF:

P (y|X) =
∑
H

P (y,H|X) =
1

Z

∑
H

T∏
t=1

Ψt(y,H,X) Z =
∑
y

∑
H

T∏
t=1

Ψt(y,H,X)

where H = {h1, h2, ..., hT} each hi ∈ H, is a sequence of hidden states that capture the

underlying structure of class y, andH is the set of possible hidden states. Correspondingly,

|H| is the number of hidden states that the HCRF can use; this hyperparameter is optimized

during training.

In our work, the feature functions in Equation 3.1 and Equation 3.2 are modified so

that yt and yt−1 are replaced with ht and ht−1, where ht and ht−1 are the hidden states at

time t and t − 1 respectively. We also create an additional feature function to model the

association of a hidden state to the interruptibility class label for a sequence. This feature

function is of the form:

Ψt(y,H,X) = exp{
K∑
k=1

θkfk(y, ht)} (3.3)

where all the variables have the same meaning as they did in Equation 3.1. The value of K

equals |H| × |Y|, which is the number of hidden states per interruptibility class.

The feature functions are implemented using the HCRF library 2 and training is per-

formed using BFGS. As with the CRF, we train the HCRF to perform multiclass classifica-

45

tion and vary the value of the hyperparameters ω from 0–4 and |H| from 2–4.

Latent-Dynamic Conditional Random Fields

The LDCRF [82] offers several advantages over CRFs and HCRFs by modeling both ex-

trinsic dynamics between interruptibility classes as well as the intrinsic substructure within

an interruptibility class. It does so by using hidden states, as the HCRF, and at the same

time by removing the need to label an entire sequence with a single interruptibility class

label (Fig. Figure 3.2d). In prior work, the LDCRF has been shown to outperform both the

CRF and HCRF in Gesture Recognition [82], and therefore we consider it a good candidate

for classifying interruptibility.

Mathematically, the LDCRF assumes that each sequence label y contains a correspond-

ing set Hy of hidden states to capture intra-class substructures. Therefore, the LDCRF

evaluates the following conditional model

P (Y |X) =
∑
H

P (Y |H,X)P (H|X)

where H = {h1, h2, ..., hT} is a sequence of hidden states and each hi belongs to the

hidden state set Hyi of its corresponding label yi. To keep training and inference tractable,

these sets are assumed to be disjoint for each class label. With the disjoint assumption, the

conditional probability evaluated by the LDCRF reduces to

P (Y |X) =
∑

H:{h1,...,hT },hi∈Hyi

P (H|X)

where P (H|X) can be derived using the CRF formulation:

P (H|X) =
1

Z

T∏
t=1

Ψt(Ha, X) Z =
∑
Ha

T∏
t=1

Ψt(Ha, X)

In our work, we use the same feature functions that we have for the CRF (Equation 3.1

46

and Equation 3.2), with suitable updates to the variables. The feature functions are again

implemented using the HCRF library 2 and training is performed with BFGS. As with the

HCRF and CRF, the LDCRF is trained to perform multiclass classification. We vary the

value of the hyperparameters ω from 0–4 and |H| from 2–4.

3.5 Dataset for Interruptibility Classification

In this section we describe describe a dataset that we collected to evaluate the models

introduced in Section 3.4 on their accuracy and robustness in interruptibility classification.

Specifically, we seek to answer:

RQ1 Which computational features are useful in allowing a robot to classify interruptibil-

ity in an unstructured world?

RQ2 What is a robust model for obtaining interruptibility estimates from the proposed

features?

Therefore, our dataset contains different subsets of the information categories presented in

Section 3.3, each of which contains varying levels of information and noise.

3.5.1 Feature Subsets

Each of the sets of features in the dataset is additive in the features it is comprised of.

Ultimately, the sets increase the amount of information presented to our models but at the

cost of a corresponding increase in noise in those features.

Person State Features

We define the primary interruptibility cues about a person include head orientation, body

position, and audible signals (Section 3.3). Since the recognition of some of these cues

by a mobile robot in a public space can be noisy, we consider three subsets of features—

Minimal (Min), Standard (Std), and Extended (Ext)—which are summarized in Table 3.1.

47

Our goal in this part of our work is to explore the robustness of the classification models

to additional data and noise; we do not propose that any of the subsets is the best set of

features for characterizing person state in general.

Minimal Feature Set We speculate that the most informative features for gauging inter-

ruptibility are the position of a person and an indication of whether they are looking at the

robot or not. Therefore, we use Min to test our model performance when rich, but possibly

noisy, data from other sensors (such as microphones), or from additional visual detectors

(such as upper body detectors), is unavailable. This set contains:

Body Position: Tuple, (x, y), denoting the position of the body in the environment relative

to the robot base.

Face Gaze: Boolean, True when a face is detected and the head is oriented towards the

robot, False when a face is detected but the head is not oriented towards the robot or

if the eyes are shut, and NaN when no face is detected.

Standard Feature Set This set of features represents the full breadth of information enu-

merated in Section 3.3 and is most similar to the features used in [78, 77]. In addition to

Min, the set contains:

Body Orientation: Tuple, (z, w), of the quaternion, (x, y, z, w), denoting the rotation of

a person’s upper body relative to the robot’s base frame. The (z, w) values specify

rotation estimates about the upright axis and are thus the only meaningful values in

the quaternion.

Audio Angle: Angle, in radians, to the dominant source of detected sound, calculated by a

Kinect.

Audio Confidence: A [0, 1] confidence measure for the Audio Angle estimate.

48

Feature Min Std Ext

Body Position × × ×
Face Gaze × × ×
Body Orientation∗ × ×
Audio Angle × ×
Audio Confidence × ×
Audio Angle Near Position∗ ×
Within Camera Field-of-View ×
Body Distance Thresholds ×
Linear Velocity ×
Quaternion Rate of Change∗ ×
Face Bounding Box∗ ×
Body Bounding Box∗ ×
Body Bounding Box Area∗ ×
∗Unreliable data either due to sensor noise or unreliability.

Table 3.1: Membership of each person state feature to the different feature sets—Minimal
(Min), Standard (Std), and Extended (Ext).

Extended Features Set In the final feature set we add additional features, some of which

are noisy, to study the effects of extra data on model performance. The features are either

obtained from the outputs of intermediate processing steps, such as the body bounding

box, which is a supplementary output of the upper body detector, or are obtained through

additional post-processing of Std, such as the field-of-view boolean, which maps a point in

(x, y) to a boolean value indicating whether the point is in the field-of-view of the camera.

These features have not been used in prior works but are added with the aim of making

explicit some of the decision variables that we think might be useful for interruptibility. We

surmise that the presence of the explicit decision variables will help the models, regardless

of the effects of the noise. The variables include:

Audio Angle Near Position: Boolean, True when the Audio Angle estimate equals the angle

from the camera to a detected person (within some tolerance), False when this is not

the case.

49

Within Camera Field-of-View: Boolean, True when a detected person is within the field-

of-view of the camera and False otherwise.

Body Distance Thresholds: Three booleans, each True if a detected person is beyond the

boundaries of Hall’s proxemic distances [119], and False if not. The boundaries

considered are those of Personal Distance (0.46 m), Social Distance (1.22 m), and

Public Distance (3.66 m).

Linear Velocity: Tuple, (vx, vy), obtained from the rate of change in Body Position between

data segments.

Quaternion Rate of Change: Tuple, (vz, vw), obtained from the rate of change in Body Ori-

entation between data segments.

Face Bounding Box: Four continuous values—x, y, width, and height—for the bounding

box around a detected face.

Body Bounding Box: Four continuous values—x, y, width, and height—for the bounding

box around a detected body.

Body Bounding Box Area: Area of the Body Bounding Box.

In all models but the HMM, continuous multivariate features, such as the Body Position

tuple, are treated as separate vectors of univariate features. In the HMM, the features are

left as multivariate because doing so provides us with the largest log likelihood values post-

training. Similarly, combining the Within Camera Field-of-View boolean feature with the

Body Distance Thresholds boolean features, and combining the Audio Angle feature with

the Audio Angle Confidence feature, provides us with the highest log likelihood values for

the HMM, and therefore these combinations are used in that model.

50

Interruption Context Feature

In order to evaluate the use of object recognition as a means of conveying the context of

a scene, we additionally define an object label feature which can be added to any of the

above feature sets. The object feature is defined as a set of boolean values, each of which

is True or False if the corresponding object is present or absent within the scene. Objects

are human-annotated (Section 3.5.2) and as such, we have perfect object labels. Therefore

we simulate the noise expected from automated object recognition by randomly corrupting

the boolean values in approximately 10% of the data segments of each interruptibility class

label.

3.5.2 Dataset Creation

Our dataset contains robot sensor data from scenes containing small groups of people acting

out staged scenarios in a public space (Figure 3.3).

Robot Sensors and Software

The robot used to collect the dataset was outfitted with a Hokuyo laser scanner, a Kinect

One RGB-D camera, and an ASUS Xtion Pro Live RGB-D camera. The Kinect direc-

tional microphone array was used to collect audio data. We used the STRANDS perception

pipeline [120] for people tracking at approximately 10 Hz and the Sighthound Cloud API3

for face detection and tagging at 3–4 Hz.

Data Collection and Processing

During the data collection process, five people (not the author) were asked to take part

in everyday activities in a common area of the building. Five data collection runs were

conducted, each with 3–5 participants in the scene engaged in activities such as drinking

coffee, having a conversation, or working on their laptops (Figure 3.3). The common area

3https://www.sighthound.com/products/cloud

51

https://www.sighthound.com/products/cloud

Figure 3.3: Example scenes from the five data collection runs in the dataset in Section 3.5.2.
The blue bounding box denotes individuals identified in the scene and the green bounding
box denotes a face identified by the face recognition component. The interruptibility label
of the identified individuals is also shown.

and activities were chosen because they allowed for a wide range of likely activities and a

variety of visual scenes with different numbers of people and varying levels of occlusion.

During each run, the robot was teleoperated through a preset series of waypoints that en-

abled it to observe the group from different perspectives; each run lasted an average of 108

seconds.

Following recording, the data was processed into segments that could be annotated with

a person’s interruptibility. Due to motion blur during navigation, only data from stationary

robot observations was used. First, data from all sensor streams was segmented into 250 ms

non-overlapping windows. For each sensor stream, the window of data was condensed into

a single value consisting of the last recorded value for that sensor stream (if available). A

Euclidean distance heuristic was then used to merge data for each detected person across all

sensor streams. The result of this process was the creation of 1516 data segments, each of

duration 250 ms, and each of which contained all the information, represented as features,

available about a single person detected within the environment. Each segment was then

annotated with ground truth interruptibility labels (details below).

Post-annotation, consecutive data segments were concatenated into sequences of mini-

mum length 4 (1 second) and maximum length 8 (2 seconds), which resulted in the creation

of 671 sequences. In the event of missing data (e.g., face recognition failure), missing val-

ues were filled in through linear interpolation for continuous valued features, or by propa-

gating the last known value for boolean valued features. If neither approach was available,

such as in the case where the beginning segment of the sequence was missing required

52

data, features were assigned a value of NaN to distinguish them from other valid values in

the domain. During training and evaluation, the non-temporal models used the empirically

determined value of −5 instead of NaN ; the temporal models were modified to ignore

NaN values. Additionally, during evaluation, and for training HCRFs, we defined the in-

terruptibility label of a sequence to be the interruptibility label of the last segment in the

sequence.4 Non-temporal models were trained and evaluated on the data and label of the

last segment in the sequence.

Annotation

We used the extended 5-point interruptibility scale from Section 3.2 to annotate each of the

250 ms data segments. Additionally, two independent coders were each asked to annotate a

random subset consisting of approximately 40% of the data. To verify label consistency we

calculated the Cronbach’s Alpha measure of inter-rater reliability between our annotations

and those of the other annotators, resulting in scores of 0.81 and 0.96. The high level of

agreement highlights not only label reliability, but also the fact that humans are generally

very consistent in judging the interruptibility of others.

We also annotated the data in this dataset with the labels of objects in the scene. The

labels included unknown, none, laptop, bottle, book, headphones, mug, phone talk, and

phone text5. The label unknown was frequently used in conjunction with the interruptibil-

ity label 0, which was used in situations when the person-of-interest was outside the camera

field-of-view but detected by the laser and audio (leftmost example in Figure 3.3). Sepa-

rate labels were assigned to phone use for speaking or texting (phone talk and phone text)

because the activities correspond to different visual features and because the associated

interruptibility of the person would likely also be different.

4No significant difference was observed in using alternate sequence labeling methods, such as mode of
all segment labels.

5The last two features can be the output of activity recognition in addition to object detection. Activity
recognition is another valid source of contextual features for interruptibility.

53

Figure 3.4: Average MCC (MCCavg) performance of each model in 10 fold cross-
validation as a function of the feature sets. In Figure 3.4, Figure 3.5, Figure 3.6, and Fig-
ure 3.7, error bars indicate the 95% confidence interval and asterisks indicate level of sta-
tistical significance after Wilcoxon rank-sum test on MCC scores in each fold of cross-
validation: * p < 0.05, ** p < 0.01, ***p < 0.001.

3.6 Evaluating Features and Model Robustness

In this section, we present a comparison of the classification models in the estimation of

interruptibility based on the different feature sets introduced in Section 3.5.1 and then show

the impact of adding contextual data in the form of object labels. In order to train the pa-

rameters for our models, we performed 10 fold cross-validation with 80% of the data in

a fold used for training and 20% for testing. Results with the best performing hyperpa-

rameters for each model are reported using a Matthew’s Correlation Coefficient (MCC)

score for multiclass classification. The score, with a maximum value of 1.0 and with 0.0

indicating a performance no better than random, reflects a model’s predictive power in a

classification task in the presence of unbalanced class labels. Significance results are pre-

sented using a Wilcoxon rank-sum test using the MCC scores across the different folds of

cross-validation.

3.6.1 Robustness to Noise

Figure 3.4 compares the performance of the classification models across the three feature

sets without the inclusion of object context data. The results for each of the feature sets is

analyzed below.

54

(a) Min (b) Std (c) Ext

Figure 3.5: The classifiers ordered in increasing order of MCCavg (Figure 3.4) for each of
the feature sets.

Minimal Feature Set Figure 3.5a orders the eight classifiers in order of improving per-

formance on the classification of interruptibility using the Min feature set. We note that

the RF classifier is the overall best performing classifier with an MCCavg of 0.94, and

the LDCRF is the best performing temporal classifier with an MCCavg of 0.89. The

KNN classifier performs on par (∆MCC = 0.01, p = .8) with the LDCRF classifier,

achieving a MCCavg of 0.90. The HMM’s performance, with an MCCavg of 0.84, is

also not significantly different than that of the LDCRF (∆MCC = −0.05, p = .38),

but the high variance in its classification accuracy also does not differentiate it from the

MLP (∆MCC = −0.01, p = .68), which achieves an MCCavg of 0.83. Meanwhile,

the MLP is noticeably less accurate than the LDCRF (∆MCC = −0.06, p = .023) and

significantly more accurate than the HCRF (∆MCC = 0.09, p = .0039), which has

an MCCavg of 0.74. Finally, while the HCRF is not significantly better than the SVM

(∆MCC = 0.05, p = .11), which achieves an MCCavg of 0.69, the HCRF is significantly

better than the CRF (∆MCC = 0.08, p = .0029), which achieves an MCCavg of 0.66.

Standard Feature Set Figure 3.5b orders the eight classifiers in order of improving per-

formance when using Std, which includes three additional features beyond the minimal set

(Body Orientation, Audio Angle, and Audio Confidence). We observe that the RF classifier

remains the best performing classifier for interruptibility classification, with an MCCavg

of 0.92. Similarly, despite a noticeable drop (∆MCC = −0.05, p = .023) in the per-

formance of the LDCRF to an MCCavg of 0.84, it continues to be the best performing

55

temporal classifier. The drop in LDCRF performance, coupled with an insignificant change

(∆MCC = 0.02, p = .17) in the performance of the MLP, puts the performance of the LD-

CRF on par with that of the MLP (∆MCC = 0.02, p = .22), which achieves an MCCavg

of 0.86.

Overall, we notice that the use of the Std features either leaves the performance of the

models unchanged, or causes a significant drop in classification accuracy. This drop is

particularly evident in the case of the KNN (∆MCC = −0.16, p < .001) and the HMM

(∆MCC = −0.19, p = .014). Although the Curse of Dimensionality [121] is a likely

contributor to the observed penalty in the case of the KNN, the noise in the features of

Std also plays a non-trivial role in the observed results. The Body Orientation feature, for

example, is extremely noisy, with orientation values in some segments deviating by 90◦

or more from the ground truth. Most of the models show some sensitivity to this noise,

with the HMM and KNN proving to be particularly susceptible. Although there is an

insignificant change (∆MCC = −0.05, p = .74) in the performance of the HCRF, with

an MCCavg of 0.69, the increased variance in model’s performance and the lower average

score indicate that the HCRF might also be particularly susceptible to noise in its features.

Extended Feature Set Figure 3.5c presents the classification models ordered on perfor-

mance with Ext, which includes eight features beyond Std. Several of these features contain

additional information, such as the Body Distance Threshold booleans and the Linear Ve-

locity tuple, but significant noise (see Table 3.1). Overall, the trends we observe in perfor-

mance with Std hold with Ext. RF remains the best performing classifier with an MCCavg

of 0.94, outperforming the LDCRF (∆MCC = 0.03, p = .0021), which remains the best

performing temporal classifier with an MCCavg of 0.91. The MLP continues to perform

on par (∆MCC = −0.02, p = .32) with the LDCRF, with an MCCavg of 0.89, thereby

preserving the ordering of the models observed with Std.

The performance on Ext reveals the HCRF and HMM sensitive to noise, with significant

56

Figure 3.6: Effect of adding object labels as features to the different feature sets.

drops in the performance of both models relative to their performance with Min (∆MCC =

−0.17, p = .029 for the HCRF, and ∆MCC = −0.26, p = .01 for the HMM). Meanwhile,

the remaining models reveal themselves to be tolerant to noise, with the CRF (∆MCC =

0.16, p < .001) and SVM (∆MCC = 0.11, p < .001) in particular showing significant

improvement in their MCCavg scores with the addition of more information with Ext.

Summary In summary, we first note that, as a partial answer to the question of what

features might be relevant to the classification of interruptibility (RQ1), the hypothesized

person state features mentioned in Section 3.3 are relevant because our models achieve

high MCC scores with all subsets of those features—Min, Std, and Ext. Next, to answer

the question of finding a robust model for interruptibility classification (RQ2), we find that

the RF model consistently outperforms all other models across all feature sets, remaining

robust to noise in features but also remaining unaffected by any additional information in

them. In contrast, the MLP and LDCRF perform comparably to RF, especially with Ext

features, and both show an ability to learn from the additional information available in the

features while also remaining robust to noise.

In the following subsection, we complete our investigation into the features relevant for

interruptibility classification by examining the performance of the RF, MLP, and LDCRF

with the addition of object label features, which provide information about the interruption

context (Section 3.3).

57

Figure 3.7: Comparison of RF, LDCRF, and MLP performance with Ext features to their
performance with Min and Ext features augmented with object labels.

3.6.2 Adding Object Context

Figure 3.6 presents the classification performance of the RF, LDCRF, and MLP classi-

fiers after adding object recognition features to each of the three feature sets (Min, Std,

and Ext). Overall, we note that the addition either improves classification performance

or leaves it unchanged, thereby implying that object labels are a good cue to interrupt-

ibility. In the case of RF, we find that the object labels do not affect classification per-

formance, which is similar to the trend observed in the Figure 3.4 where the inclusion of

additional features from Min to Ext does not affect the classification performance of the

RF model. Conversely, the LDCRF experiences consistent gains in classification perfor-

mance from the addition of object label features to Min (∆MCC = 0.06, p < .001), Std

(∆MCC = 0.08, p < .001), and Ext (∆MCC = 0.03, p = .0021). The MLP also expe-

riences a significant improvement in classification performance with the addition of object

labels to Min (∆MCC = 0.10, p < .001), Std (∆MCC = 0.07, p < .001), and Ext

(∆MCC = 0.03, p = .043).

In fact, as shown in Figure 3.7, we find that in lieu of adding a large set of somewhat

noisy features to Min (as we do with Ext), adding the more precise object label features

(Min+Obj) leads to better classification of interruptibility, particularly for the LDCRF

(∆MCC = 0.04, p < .001) and the MLP (∆MCC = 0.04, p = .043). Additionally,

we find that the object labels provide sufficient information for interruptibility estima-

58

tion, with no significant improvement in interruptibility classification performance between

Min+Obj and Ext+Obj for any of the three models, RF (∆MCC = 0.01, p = .44), LDCRF

(∆MCC = −0.01, p = .32), and MLP (∆MCC = −0.01, p = .97).

Therefore, to complete an answer to the question of what features might be relevant to

the classification of interruptibility (RQ1), we can state that features about the interruption

context, such as object labels, are also relevant.

3.6.3 Conclusions

In this section, we answer our first two research questions and find that:

1. As proposed in Section 3.3, we can use both person state features, and cues of the in-

terruption context, such as object labels, to classify interruptibility in an unstructured

world.

2. In the absence of robust detection of social cues (for example, noisy upper body

detection), robust context detection (for example, accurate object detection) can be a

good substitute.

3. The RF, LDCRF, and MLP classifiers are good candidates for robust interruptibility

classification from the proposed features.

The second finding is especially significant in robot application domains where it might

be difficult to obtain reliable person tracking information, but easier to obtain contextual

signals in the form of object detection.

To answer our remaining research questions and to fully evaluate our findings from this

section, we followed the above evaluation with a user study in which we deployed a model

for online interruptibility classification on a robot. The following sections introduce the

user study, elaborate on the system we designed for online interruptibility classification,

and then present results from using the system in the user study.

59

Figure 3.8: The robot interrupts a participant engaged in a building task.

3.7 Effects of Interruptibility Classification: User Study

Our research seeks to develop interruptibility-awareness in robots and to evaluate the effects

of this capability on human task performance, robot task performance, and on the human’s

interpretation of the robot’s social aptitude. Therefore, we also focus on the following

research questions:

RQ3 Can we use measures of the robot’s behavior to show that our models accurately

estimate interruptibility online on a robot platform?

RQ4 How does interruptibility-aware robot behavior affect human task performance when

a robot regularly needs assistance?

RQ5 How does interruptibility-aware robot behavior affect robot task performance when

relying on humans for assistance?

RQ6 Does a robot appear more socially adept if it interrupts humans at appropriate mo-

ments?

In order to evaluate these questions, we conducted a between-subjects user study in

which human participants took part in a mock manufacturing assembly activity. Partici-

pants were given construction tasks while a robot with tasks of its own would occasionally

interrupt them to request assistance (Figure 3.8). The study had three conditions in which

60

we varied the mechanism used by the robot to select an appropriate moment to interrupt

the participant.

Random interruptions (RND) The robot interrupted participants after it waited for a

random amount of time, reflecting the current behavior of interruptibility-unaware robots.

For example, the robots evaluated by Mutlu and Forlizzi [27] operated in the same environ-

ment as hospital staff, interrupting them randomly to gain attention as needs arose. In our

study, the robot’s algorithm tried to emulate this behavior by randomly selected a wait time

from a uniform distribution in the range [0,30] sec; after which, it flipped a fair coin every

0.5 sec to decide whether to interrupt. Wait times in the study ranged from 2 to 37 sec.

Wizard-of-oz interruptions (WOZ) The robot interrupted participants when a human

(wizard) signaled it was an appropriate time. Wizards were provided with a real-time video

feed from the robot’s camera and, during pilot trials, were instructed to make moment-

by-moment decisions to interrupt the participant or not, simulating the decision made by

our interruptibility models6. Once the decision to interrupt was made, the wizards could

perform no more actions until the next robot incursion into the study space. During study

trials, there was no interaction between the experimenters and the wizard. We recruited two

wizards and observed that, despite similar instructions, differing social norms and attitudes

among individuals led one wizard to be more conservative in their interruptions than the

other. We therefore had each wizard participate in 50% of WOZ trials to help account for

this effect.

Model-based interruptions (MDL) The robot interrupted participants based on output

from an LDCRF classifier implemented within a system to perform online interruptibil-

ity classification. We chose the LDCRF over the RF and MLP due to our evaluations in

6The wizards were asked to (1) treat images from the video at each moment as a static image to decide
whether they would interrupt the participant at that moment, (2) specifically ignore the screen on the partic-
ipant’s tablet and the task schedules that they were becoming accustomed to (to the extent possible), and (3)
give the robot and human tasks equal importance.

61

(a) Classification pipeline for interruptibility. (b) Visualization of the detected features.

Figure 3.9

Section 3.8.2.

In the following sections, we first describe our computational framework to enable on-

line interruptibility classification and our process for choosing the appropriate classification

model. We then present the design of and results from the user study to answer the above

research questions.

3.8 Computational Framework

Our computational framework consists of two principal components: the perception system

that identifies people in a scene and extracts feature vectors characterizing their state, and

the classification model that classifies the interruptibility state of each person in the scene.

Figure 3.9a summarizes the computation pipeline, which runs on our mobile robot equipped

with a Microsoft Kinect RGB-D camera.

3.8.1 Perception System

The perception system of the robot (1) detects people in the scene, (2) uses a series of

detectors to analyze the state of each individual, and (3) merges the output of the detectors

into a feature vector for processing by the classification model. The feature vector, its

features enumerated in Table 3.2, is emitted by the perception system at about 2.5 Hz.

62

Features Detector(s)

Face Gaze Estimate: at robot|left right|down Face

Skeletal Angles & Vectors: angle left|right elbow,
angle left|right wrist, angle left|right shoulder,
angle left|right eye, nose vec x|y

Pose

Object Counts: book, bottle, bowl, cup, laptop, cellphone,
tablet

Objects

Table 3.2: The features emitted from the perception system to classify the interruptibility
of observed people.

Person Detector: We use the You Only Look Once (YOLOv2) [122] deep neural net-

work to detect people in the scene. This detector was chosen for ease of use and setup, and

for its accuracy and speed. It never missed a person in our user study, and published person

detections at >10fps.

Feature Detectors: Once a person has been identified in the scene, we employ several

deep networks to extract interruptibility-relevant features about the person. We include

features from the prior work, such as the coarse gaze estimate of a person and the objects

associated with them, and introduce the skeletal data for improved classification.

Face Detector: We use a cascaded deep network [123] for face detection and coarse

gaze estimation. The detector returns facial keypoints, which we translate into an enu-

merated gaze estimation variable. Features: at robot|left right|down (Enum). Framerate:

7-10fps.

Object Detector 1: We use another implementation of YOLOv2 that runs over higher

resolution images which are cropped to include regions around people in the scene—

information that is obtained from our person detector. This detector was trained on MSCOCO [124]

and returns counts of objects and their positions. Features: book, bottle, bowl, cup, laptop,

and cell phone. Framerate: >10 fps.

Object Detector 2: We use Faster-RCNN [125] fine-tuned to identify study-related ob-

jects on the table, in our case the tablet participants used throughout the study. As with our

63

other object detector, this returns counts and positions of detected objects. Features: tablet.

Framerate: >10 fps.

Pose Detector: We use a convolutional pose machine (CPM) [126] to infer a person’s

skeletal keypoints. These keypoints are then refined into joint angles and vectors for our

classifier. Features: nose vec x|y, angle left|right: elbow, wrist, shoulder, eye. Framerate:

5-7 fps.

Feature Fusion: Each of the above detectors runs in parallel and at different rates. The

Feature Fusion module uses the Euclidean distance heuristics mentioned in Section 3.5.2

to aggregate the output of the various detectors into a single feature vector describing the

most up-to-date estimate of the scene. Concretely, the module polls the person detector at

a rate of 2.5 Hz to track every person identified by the detector. It then uses its heuristics

to associate the latest data from the other detectors to its database of tracked people. If a

detector does not contain information about the person of interest, the fusion module inserts

a placeholder value of NaN for the corresponding attribute in the feature vector described

in Table 3.2.

3.8.2 Classification Model

The classification model outputs the interruptibility of a person of interest given a stored

buffer of feature vectors from the Perception System7. Based on our evaluations in Sec-

tion 3.6, we considered the RF, LDCRF, and MLP classifiers when building our compu-

tational framework; further evaluations, which we summarize below, led us to choose the

LDCRF over the other two classifiers. In this subsection, we introduce both the dataset we

used to evaluate the different models and the evaluation we performed to select the final

model for our study.

7During our user study, we stored a buffer containing 4 secs of feature vectors and used the buffer for data
imputation, as described in Section 3.5.2.

64

Figure 3.10: Example timeline of a trial with the tablet ground truth, the human annotations,
and the model predictions. Orange shows uninterruptible (0) while blue shows interruptible
(1); gray indicates that there was insufficient data for the model to make a classification.
Black indicates breakpoints between different moments of observation by the robot during
the course of the trial.

Dataset:

We evaluated the models on data collected over the course of 4 pilot runs and 11 runs of

the RND condition of the study introduced in Section 3.7. Two of the coauthors annotated

the collected data on a binary scale of interruptibility8, with 0 as uninterruptible and 1

as interruptible9. Cronbach’s Alpha score of inter-rater reliability was 0.97 between the

co-authors. The models were trained on one of these two annotations.

In addition to human annotations of interruptibility, we obtained ground truth interrupt-

ibility labels of participants from the tablets provided to them in the study (Section 3.9),

where the ground truth label for a participant was 0 if they were provided a build assign-

ment on their tablet, and 1 otherwise. The Cronbach’s Alpha score was 0.95 for each of the

annotators with the ground truth labels10. We trained and tested our models on the human

annotated labels because the ground truth labels did not always correlate to the social cues

of interruptibility projected by the participant.

8As mentioned in Section 3.2, a binary scale of interruptibility is most intuitive, with the extended inter-
ruptibility classification scale being of use in situations involving multiple, potentially occluded, people. In
our study, such conditions do not arise, allowing us to use the more intuitive binary scale.

9The annotators operated under the instructions provided to the wizards in the WOZ condition: they
observed a video feed from the robot’s camera and provided a moment-by-moment label of whether the
participant was interruptible.

10The ground truth rating sometimes differed from the human annotation if the participant chose to ignore
the tablet build or if they appeared busy in another task despite the tablet marking them as available.

65

(a) (b)

Figure 3.11: Model Performance

Method:

Similar to the process described in Section 3.6, we tested all hyperparameter configurations

of the models with five-fold cross-validation, with special care undertaken to ensure that

none of the data from any of the study trials was shared between the train and test sets.

We evaluated the models on two metrics: the first, an MCC score to gauge classification

accuracy, and the second, a measure of the fluctuation rate in model prediction, FR, similar

to the one used by Foster et al. [91]. Our measure of fluctuation is calculated as follows:

fluctuation rate(FR) =
num prediction changes

total num predictions

Values for FR vary from 0–1, with ideal values as close to the FR of human labels as

possible, which in turn is almost always 0.

Result:

Fig. Figure 3.11 presents the performance of the three models across the data in the 15 trials

on the metrics of the MCC score and fluctuation rate, FR. A Kruskal-Wallis test indicates

that there is no significant difference between the models on the metric of MCC score

(H(2, N = 45) = 0.63, p = .73) or on the metric of FR (H(2, N = 45) = 4.0, p = .13).

Due to the lack of significant signal from the evaluation metrics to aid us in choosing a

66

model, we conducted additional tests on the robot using all three models. Empirically, we

found that despite favourable MCC scores, the MLP and RF classifiers performed poorly

in practice, often oscillating between interruptibility classes with miniscule changes to the

scene. The RF classifier was particularly prone to this problem, often varying its classifica-

tion output within a seemingly static scene. Our experiences corroborate those of Foster et

al. [91], where the authors deemed their temporal CRF classifier more appropriate for use

on their robot due to greater stability in classification output, despite inferior classification

accuracy to other non-temporal models. We note that the discrepancy is ill-studied and

scope for further research.

In conclusion, based on our evaluations, we used the LDCRF as our classifier of choice

for the study trials in the MDL of our user study. The following section introduces the full

design of the study.

3.9 User Study: Design

We conducted a between-subjects user study to evaluate the research questions outlined in

Section 3.7. The study involved 48 trial participants11. Six trials were excluded from the

study analysis: two due to hardware malfunction, and four due to participants deviating

from the study protocol. The resulting 42 participants (20 women, 22 men) were aged

between 21 and 29 (Mdn = 24). The study took approximately 50 min, and participants

were paid $10 USD.

3.9.1 Study Procedure

We devised a skill-based experimental task in which human participants took part in a

mock manufacturing assembly activity. Participants were instructed to construct structures

(builds) out of wooden pieces (Figure 3.12b), and told that their build process would be

11Six additional participants took part in pilot trials used to tune build complexity, robot behavior, train the
classification models, and to familiarize the wizards with their interface.

67

video recorded to be used later as training data for the robot. Additionally, participants

were told that the robot was performing and studying its own builds, and that it would

occasionally enter the space to request assistance.

Pre-Study: Upon arrival, participants were briefed on the study, completed consent forms,

and filled in a pre-study questionnaire. Nearby, to support the narrative of the robot learn-

ing to construct builds, an experimenter could be seen “training”12 the robot by responding

to the robot’s questions (e.g., “Is this a correct build?”).

Study Space: After the study briefing, participants entered the building area (Figure 3.12a),

consisting of an enclosed space with fetch area for retrieving build components, a work area

for construction, and a dropoff area for completed builds. A key element of the study design

is that the study schedule was split into periods of work and leisure to ensure that partic-

ipants had periods of low and high interruptibility. To induce participants to showcase a

diverse range of natural leisure behaviours (to fully evaluate the performance of the clas-

sifier and generalizability of our system), the room included a TV playing muted videos13,

a stack of books, and a couch. Participants were also allowed to keep their cell phones.

Overall, during breaks 64% sat on the couch, 50% used their cell phones, 40% drank a

refreshment, and 14% read a book.

For the remainder of the study period, participants alternated between constructing

builds (build) and break times (idle), while being occasionally interrupted by the robot.

Figure 3.12c presents an example timeline.

Builds: Each participant trial consisted of 3 build sessions. The first build session was

a training session during which participants were allowed to ask questions and acclimate

themselves to the task and the robot. We do not report data from this session. Sessions 2

and 3 each consisted of two builds, with a short break in between. Instructions for each
12No actual training of the robot occurred during the study trials.
13http://bit.ly/2xR65aG

68

http://bit.ly/2xR65aG

(a) Map of the study area (b) Builds

(c) Sample trial timeline, arrows indicate interruptions

Figure 3.12

build were provided on a tablet located on the work table; the tablet remained blank until

the designated build time, and presented a NASA-TLX [127] workload questionnaire each

time the participant selected that they had completed a build. The build sessions were

either 15 min or 9 min in length, and were presented to all participants in a counterbalanced

manner. The different length build sessions were configured to provide differing degrees

of time pressure on the participant. In addition, pilot studies showed that some participants

improved in build performance due to learning; the counterbalanced sessions were used to

amortize the effects of learning on high time pressure and low time pressure sessions. All

builds in a build session had a time limit, and participants were shown a countdown timer

69

30 sec before the end of this time limit; participants were not allowed to work past the end

of the limit.

Breaks: Each trial included two break times approximately 6 min in length (differences

in duration occurring due to robot interruptions), during which the tablet was taken away

and the participants were invited to rest on the couch. The purpose of the break was to

expose the robot to interruptible human behavior. In both cases, the experimenters pre-

sented fictitious excuses to the participant for pausing the study, in one case claiming a

non-existent tracking device required adjustment, and in the other case simulating a tablet

malfunction. For both breaks, experimenters explained the pause in the experiment, invited

participants to wait on the couch, and then returned at the end of the break to “continue”

the study. Participants were told that the robot interruptions would continue since the robot

remained unaffected by the glitch.

Robot Interruptions: The robot continually entered the building area looking for assis-

tance from the start to the end of a trial. The schedule of these entrances was not predefined

and the robot was sent back in as soon as it returned from an interruption. The first three

robot entrances coincided with the training build session and part of the first break; we

allowed participants to ask questions during these interruptions and do not report data from

them. The robot was equipped with a small box containing the blocks for its builds and a

tablet, which provided instructions to the robot builds.

During an entrance, the robot followed the path shown in Figure 3.12a. It waited at

the observation point upon entering and after waiting—a random duration in RND, until

2.5 sec of consecutive14 interruptible classifications in MDL, or until the wizard sent an

interruptible signal in WOZ—chose to move toward the participant. Upon arrival, the robot

verbally requested assistance and waited for 2 min. Participants were aware of the wait

duration and could accept the interruption within the time limit by grabbing the tablet, at

14Empirically, 2.5 sec of consecutive classifications at 2 Hz worked well.

70

which point the robot waited indefinitely until the build was completed. If the participants

did not respond in 2 min, the robot left the participant build area. Upon returning to the

training area, the robot audibly requested verification of the build (e.g., “Is this a correct

build?”) from an experimenter. The experimenter provided a Yes/No response on whether

the interruption was built, prepared the next robot build in the box, and sent the robot back

in.

Post-Study: After the last build session, participants were asked to complete a post-study

questionnaire, were debriefed on the true purpose of the study, and the deceptions that we

employed.

3.9.2 Hypotheses

Our central premise is that the robot in MDL & WOZ will interrupt at appropriate mo-

ments, and that such interruptions will improve robot task performance and the social

perceptions of the robot compared to those metrics in RND. Based on results from HFE

research (Section 3.1.2), we also predict that human task performance will not be greatly

affected. Specifically, we formulate:

H1 (RQ3) With an interruptibility classifier (MDL), the robot will interrupt fewer builds

than it would without the classifier (RND), waiting longer to interrupt when participants

are building and interrupting more quickly when they are idle. In addition, the robot

with the classifier will interrupt as many builds as a robot directed by a human (WOZ).

H2 (RQ4) When the robot has interruptibility-aware behavior (MDL & WOZ), participant

task performance will not significantly differ from participant task performance when a

robot interrupts at random (RND).

H3 (RQ5) When the robot has interruptibility-aware behavior (MDL & WOZ), fewer of

its tasks will be ignored and it will not need to spend as much time awaiting human

assistance as it will when it interrupts at random (RND).

71

H4 (RQ6) Participants will perceive an interruptibility-aware robot (MDL & WOZ) as more

socially aware and considerate than one that interrupts at random (RND).

3.9.3 Measurements

Prior work in HCI and HFE quantifies task performance using metrics such as time on

task [74, 84, 66, 99], the number of tasks completed [74], and task switching time [75, 85,

99]. We use similar quantitative measures of human and robot performance, and 5-point

Likert scale responses to questions of participant opinions and participant background:

M1 (RQ3) Percentage of builds interrupted by robot; robot wait (to interrupt) time when

participant is on build; robot wait (to interrupt) time when participant is idle.

M2 (RQ4) Participant’s time idle; total number of tasks done.

M3 (RQ4/RQ5) Number of interruptions of the participant; number of interruptions ignored;

interruption lag, measured as the time between when the robot requests assistance and

the participant begins constructing the robot build; interruption duration, measured as

the total time the robot waits after it has requested assistance.

M4 (RQ6) Perceived appropriateness of timing15; perception of robot’s considerateness (workload-

awareness)16.

M5 (Control) Experience with building blocks; proficiency at multitasking; familiarity with

robots; motivation and anxiety during trial; difficulty of trial; predictability of robot

interruptions. These measures instrumented factors that had the possibility to confound

results based on results in prior literature and our experience from the pilot studies.

Most quantitative measures were automatically logged from timestamps on the tablet

and the robot, but some discrepancies caused by unexpected participant behavior17 were

corrected using video from the external camera. For all trials, timestamps from the tablets
15Q1: When the robot interrupted you, was it a good time to interrupt?
16Q2: Did the robot take your workload into consideration when asking for help?
17For example, ignoring a build on the main tablet, or picking up the robot tablet and then replacing it

without completing the robot build

72

are treated as ground truth of participant interruptibility. In addition to the above metrics,

we also allowed participants to verbally elaborate on their choices and reasoning during

post-study debriefing.

3.10 User Study: Results

In this section we examine the results from our user study to draw conclusions on the effects

of interruptibility classification.

3.10.1 Analysis of Model-Driven Robot Behavior

We first evaluate the performance of the robot’s interruptibility model in the study setting

and explore metrics pertaining to the question, “Can we use measures of the robot’s behav-

ior to show that our models accurately estimate interruptibility online on a robot platform?”

(RQ3). Our analyses in this section are conducted using a one-way analysis of variance

(ANOVA) with the study condition as an independent variable. The ANOVA is followed

by post-hoc comparisons using Tukey’s HSD. Results for this section can be seen in Fig-

ure 3.13.

Results:

We first examine the amount of time the robot waited at the observation point when par-

ticipants were busy or idle as an indication of moment-to-moment interruptibility classi-

fier accuracy. Concretely, we expect an accurate classifier to make the robot wait longer

when a participant is busy, and not as long when the participant is idle. Over the course

of each of the 42 trials, the robot entered the manufacturing environment between 2–6

times when the participant was busy, and between 2–9 times when the participant was

free. Of the robot entrances when the participant was busy, the data shows a signifi-

cant difference between the conditions (F (2, 39) = 113, p = 6.0e−17), with the robot

waiting longer, on average, (Tukey HSD, p = .014) in MDL (M = 49.4, SD = 31.0)

73

Figure 3.13: Data and analysis for results in Section 3.10.1. In Figure 3.13, Fig-
ure 3.14, Figure 3.15 & Figure 3.16, asterisks indicate level of statistical significance after
post-hoc tests: * p < .05, ** p < .01, ***p < .001. Error bars in the bar charts indicate the
95% confidence interval.

than in RND (M = 16.5, SD = 4.27), and longer (Tukey HSD, p < .001) in WOZ

(M = 175, SD = 40.2) than in MDL (Figure 3.13a). Of the robot entrances when

the participant was idle, there was again a significant difference between the conditions

(F (2, 39) = 39.7, p = 4.0e−10), with the robot waiting less time, on average, (Tukey HSD,

p < .001) in MDL (M = 10.2, SD = 6.5) than in RND (M = 19.3, SD = 4.62), and

less time (Tukey HSD, p = .0011) in WOZ (M = 3.06, SD = 2.60) than in MDL (Fig-

ure 3.13b).

We next examine the percentage of interruptions per trial that occurred during a build.

We expect that a more accurate interruptibility classifier will have a lower percentage of

interruptions in the middle of a build. As shown in Figure 3.13c, the data from the 14 trials

indicates a significant difference between the conditions (F (2, 39) = 74.8, p = 4.5e−14),

where the percentage is lower (Tukey HSD, p < .001) in WOZ (M = .043, SD = .061)

than in MDL (M = .32, SD = .13), and lower (Tukey HSD, p = .013) in MDL than in

RND (M = .41, SD = .065).

We observe significant differences between our two wizards in the above metrics. The

conservative wizard (wizard C) never interrupted a participant in the middle of a build

(M = 0, SD = 0), while the aggressive wizard (wizard A) preferred to interrupt as a

74

participant completed their task, sometimes catching them at the end of a build (M =

.087, SD = .061). As a result, the robot’s wait time at the observation point differs between

the wizards. However, both wizards’ metrics are closer to each other than to MDL or RND.

Summary:

Our results support our hypothesis that an interruptibility model showcases behavior indi-

cating a tendency to interrupt participants at appropriate moments (H1). In this study, we

defined an appropriate interruption as one that occurs when the participant is idle, and not

engaged on a tablet build. The above analyses show that the classification model results in

appropriately timed interruptions, with a model-equipped robot approaching participants

quickly when they are free while waiting to approach when they are busy. Examining these

metrics, it is clear that a robot equipped with an interruptibility model is socially aware

through its ability to use the model to autonomously select appropriate times to engage

with people. However, the robot controlled by a wizard is the most interruptibility-aware,

indicating that we still have room to improve the model in order to achieve human-level

accuracy.

3.10.2 Analysis of Human Task Performance

The results above validate that an interruptibility-aware robot has an increased likelihood

of making appropriately timed interruptions. In this section, we explore the effects that

this change in robot behavior has on human task performance. Specifically, we examine

the metrics relevant to, “How does interruptibility-aware robot behavior affect human task

performance when a robot regularly needs assistance?” (RQ4).

Results:

We find that the self-reported rating of experience with building blocks (build experience)

was a significant confounding factor in participant build proficiency. Correlating self-

75

Figure 3.14: Data and analysis for results in Section 3.10.2.

reported experience to observed task performance, we observe most difference between

those who self-reported experience as 1 or 2 (low experience), and those who reported ex-

perience of 3 or higher (high experience). Participants with high and low experience were

similarly distributed between conditions, with 10 high, 4 low experience participants in

RND and MDL, and 9 high, 5 low experience participants in WOZ. The following analyses

control for build experience.

Idle Time: We assume that moments when the participant is idle are moments of lost

productivity; even while the main builds are unavailable, the robot has tasks that can be

completed. We therefore wish to minimize participant idle time. For the 14 trials in each

condition, a two-way ANOVA with the study condition and build experience as independent

variables shows a significant effect of study condition (F (2, 36) = 3.36, p = .046) and no

significant effect of build experience (F (1, 36) = 1.95, p = .17). A post-hoc Tukey’s

HSD reveals lower (p = .031) idle time in WOZ (M = 957, SD = 143) than in RND

(M = 1087, SD = 76.7), but no significant difference (p = .64) between MDL (M =

1043, SD = 151) and RND, or between MDL and WOZ (p = .20) (Figure 3.14a).

Interruptions Encountered: In our study, the robot continually re-entered the building

area to interrupt, which resulted in participants that attended to interruptions quickly receiv-

76

ing more interruptions. Therefore, the number of interruptions presented to a participant is

an indication of the number of tasks that they encountered18: another indicator of task per-

formance. For the 14 trials in each condition, a two-way ANOVA with study condition and

build experience shows a significant effect of study condition (F (2, 36) = 7.63, p = .0017)

and no significant effect of build experience (F (1, 36) = 2.04, p = .16). A post-hoc

Tukey’s HSD reveals a lower (p = .0031) number of interruptions encountered in WOZ

(M = 8, SD = 1.47) than in RND (M = 9.93, SD = 1.38) and a lower (p = .0044)

number in WOZ than in MDL (M = 9.86, SD = 1.46), with no significant difference

(p = .99) between MDL and RND (Figure 3.14b).

Interruptions Ignored: Participants were given the freedom to ignore robot interruptions

during the study. We expected such ignores to occur when participants were overwhelmed,

and therefore consider the number of interruptions ignored as a negative indicator of human

task performance. For the 14 trials in each condition, a Kruskal-Wallis test shows a signif-

icance of study condition (H(2, N = 42) = 7.15, p = .028) and marginal effect of build

experience (H(1, N = 42) = 2.95, p = .086). A post-hoc pairwise Wilcoxon rank sum

test with Benjamini & Hochberg [128] correction reveals a lower number of interruptions

ignored in WOZ (Mdn = 0) than in RND (Mdn = 1.5, Post-hoc Wilcoxon, p = .033) or

MDL (Mdn = 1, Post-hoc Wilcoxon, p = .033), with no significant difference between

MDL and RND (p = .94) (Figure 3.15a).

Tasks Completed: The final measure is the total number of tasks (builds + robot in-

terruptions) that were completed by participants during a trial. For the 14 trials in each

condition, a two-way ANOVA with study condition and build experience as independent

variables finds a significant effect of build experience (F (1, 36) = 14.9, p = .0004) and no

significance with study condition (F (2, 36) = 0.22, p = .8) (Figure 3.14c).

We again comment on the differences between our wizards. Although there is no differ-

18All participants received 4 tasks from the main tablet.

77

ence between the wizards in the amount of idle time, interruptions encountered, and tasks

completed, the wizard C’s interruptions were ignored less often (Mdn = 0) than wizard

A’s (Mdn = 1).

Summary:

The results above lead us to mixed conclusions regarding the effects of interruptibility-

aware robot behavior on human task performance (H2). Firstly, we find that idle time

is minimized by the awareness of interruptibility, with participants exposed to the perfect

interruptibility-aware robot in WOZ enjoying significantly less idle time than participants

in RND. An obvious cause of the reduced idle time is the robot’s behaviour in waiting to in-

terrupt participants until they are free (Section 3.10.1), which in turn causes participants in

WOZ to encounter fewer tasks than participants in either MDL or RND. However, we find

that waiting until participants are free leads to fewer interruption builds that are ignored,

thereby offsetting the potential cost to throughput incurred by presenting fewer tasks to

people. Ultimately, we find the factors relating to task throughput balance each other such

that the total number of tasks completed by humans is not significantly different due to

interruptibility-aware behaviour.

The tradeoff in the factors affecting task completion explain the similar throughput

between RND and WOZ, but they fail to explain the similarity in the task metrics between

RND and MDL, despite the results in Section 3.10.1 showing that the robot tended to wait

longer and interrupted fewer builds in MDL. This discrepancy is explained in part by the

results from HFE research (Section 3.1.2), which suggest the embodiment of the robot

interruptions and the skill-based main task contributed to unaffected task performance: it is

likely that participants were able to optimize their build process such that their performance

remained unaffected on the metrics of task throughput that we instrumented. With better

instrumentation, future research has the potential to examine additional metrics of task

performance, such as interruption resumption lag [75, 85, 99], which should differ between

78

Figure 3.15: Data and analysis for results in Section 3.10.3.

RND and MDL according to the predictions of the Goal-Activation model [105].

In conclusion, we find that all three of our conditions achieved similar task through-

put, suggesting our participants maximized their potential throughput in our manufactur-

ing environment. However, the maximization came at the cost of robot tasks being ig-

nored in the interruptibility-unaware condition of RND. In fact, we find that the addition

of interruptibility-aware behaviour (WOZ in particular) greatly improved the efficiency of

the robot, particularly with a reduction in the number of its tasks that were ignored. This is

explored further in the next section.

3.10.3 Analysis of Robot Task Performance

In this section, we examine metrics relevant to answering the question, “How does interruptibility-

aware robot behavior affect robot task performance when relying on humans for assis-

tance?” (RQ5). In answering the question, we make a distinction between the time spent

by the robot waiting at the observe point, and the time spent by the robot waiting in front

of the participant’s work table. We do not consider the observe time to be wasted time, as

we assume that the robot might find an alternative interruption candidate during this time

in a different environment.

79

Results:

Our conclusions are drawn from the number of interruptions that the robot presented (Fig-

ure 3.14b), the number of those that were ignored (Figure 3.15a), and the delays incurred

by the robot by waiting on the human after it requested assistance. For the last metrics,

we only present analyses on interruptions initiated during a build19. Our analyses use a

Kruskal-Wallis test on study condition followed by post-hoc pairwise Wilcoxon rank-sum

tests with Benjamini & Hochberg correction.

The interruption duration is unproductive robot time spent waiting on the human’s as-

sistance, and is therefore a measure of low productivity. We hypothesize that poorly timed

interruptions result in a longer interruption duration, and therefore more time wasted by a

robot that needs assistance. For the 14 trials in each condition, the data reveals a signif-

icant difference between the study conditions (H(2, N = 42) = 10.8, p = .0046), with

a shorter total interruption duration in WOZ (Mdn = 277) than in MDL (Mdn = 414,

Post-hoc Wilcoxon, p = .032) or in RND (Mdn = 426, Post-hoc Wilcoxon, p = .0024)

(Figure 3.15b).

The interruption lag is another metric of how long the robot had to wait on participants,

and is a better indicator of the effect of appropriate timing to the robot’s task delay because

it is not affected by a participant’s capability to build, or by whether the interruption was

ignored. As with interruption duration, higher interruption lag means more time wasted

by a robot and lower efficiency. For the 42 trials, the data reveals a significant effect of

study conditions (H(2, N = 42) = 11.4, p = .0034), with lower average lag in WOZ

(Mdn = 17.0) than in MDL (Mdn = 43.0, Post-hoc Wilcoxon, p = .033) or in RND

(Mdn = 45.8, Post-hoc Wilcoxon, p = .0016) (Figure 3.15c).

We observe a significant difference between our wizards in interruption lag, with partic-

ipants showing lower lag with wizard C (Mdn = 10.1) than with wizard A (Mdn = 22.7).

19The difference between the study conditions is most apparent in such interruptions. Kruskal-Wallis tests
on robot delay data from the interruptions when participants were observed idle show no significant effect of
the study condition and show instead a significant effect of participant build experience.

80

Meanwhile, there is no significant difference between the wizards on the metric of inter-

ruption duration.

Summary:

Our results support our hypothesis that interruptibility awareness has a positive impact on

robot task performance (H3). Not only is the robot able to accomplish the same amount

of work with fewer requests for assistance, but well-timed interruptions also reduce the

amount of time the robot has to wait on the participant to respond to its request, even when

the interruptibility-awareness might not be perfect (as in MDL). In summary, well-timed

interruptions allow a robot to operate more efficiently, completing tasks with fewer requests

and in less time. In the next section, we evaluate participants’ perception of such well-timed

interruptions.

3.10.4 Analysis of Robot Impressions

Our results thus far show that the robot in the MDL and WOZ conditions succeeded in

interrupting participants more appropriately, that this behavior did not have significant im-

pact on participant task performance, but that it did improve robot task performance. Here,

we evaluate our hypothesis that participants have a higher opinion of interruptibility-aware

robots (H4) using participants’ Likert scale responses to questions of interruption appropri-

ateness and of robot timing (measures M4, Cronbach’s α = 0.7). For our analyses, we use

a Kruskal-Wallis test on study condition followed by post-hoc pairwise Wilcoxon rank-sum

tests with Benjamini & Hochberg correction. We also drop one of the 14 responses in the

MDL condition because the participant spent less than 10 sec on the post-study question-

naire.

81

Figure 3.16: Data and analysis for results in Section 3.10.4.

Results:

For the 14 trials in each condition, the data reveals a significant difference (H(2, N =

42) = 21.1, p = 2.6e−5) in the scores of social perception between all three conditions,

with participants rating WOZ (Mdn = 9) the highest (p = .018), followed by MDL

(Mdn = 7, p = .0062), followed by RND (Mdn = 4). We did not observe any difference

between our two wizards on the score (Figure 3.16).

Summary:

Our results support our hypothesis; participants had a higher opinion of the robot in WOZ

than in MDL, and a higher opinion of the robot in MDL than in RND. Post-study con-

versations with participants revealed interesting directions for future research on the social

perceptions of interruptibility-aware robots.

We found that participants were not always objective regarding the appropriateness of

the interruption timing (Q1); perhaps as as result of the relatively short time participants

had with the robot and the overall novelty of the robot interaction. A large portion of par-

ticipants factored in considerations of whether they thought they could finish a main build

when the robot interrupted, whether they needed a break from the main build, or whether

interacting with the robot was just more fun than working. Participants were also prone

82

to misremembering their experience, with notable examples where one participant did not

remember experiencing any interruptions in the middle of a build and another participant

recalled a mistimed interruption in WOZ with wizard C, despite contrary evidence in the

video.

Additionally, we found that perception of the robot’s workload awareness and consid-

erateness (Q2) resulted in part from a different overall assessment of the robot’s nonverbal

behavior. Several participants in the INT condition noted (1) the robot’s proclivity to wait

when they were building, (2) its ability to approach immediately when they were free, (3)

the robot’s willingness to wait silently in front of the table if they were busy, and (4) the

robot’s head motion, all as evidence of the robot’s intelligence. Note that only (1) and (2)

differ across our study conditions, while the wait behavior (3) and the head motion (4) are

identical in all study conditions. However, none of the RND or WOZ participants attributed

any importance to (3) or (4). Instead, participants in WOZ and RND reflected on the diffi-

culty of the builds that were interrupted, and the appropriate or inappropriate (respectively)

time of the robot’s approach. These responses echo prior robotics research [76] and high-

light the potential of the interruption behaviors in ameliorating mistakes in interruptibility

classification; thereby presenting avenues for further interaction research for interruption

management with embodied robots that interrupt humans.

3.10.5 Conclusion

In conclusion, our results supporting H1 show that the interruptibility-aware system we de-

veloped is effective at predicting interruptibility at high accuracy, and that using it our robot

interrupts at more appropriate times than a robot without interruptibility awareness. The re-

sults further validate that developing interruptibility-aware robotic systems is important to

future deployments of interactive autonomous systems. We find that human performance

of skill-based tasks is not affected by interruptions (H2), primarily because participants

effectively regulate their workload by ignoring the robot when too many tasks are given.

83

Critically, however, interruptibility-aware behavior improves metrics associated with robot

task performance (H3) by reducing the robot’s time wasted on inappropriate interruptions.

Finally, interruptibility-aware behavior improves humans’ perceptions of the robot’s social

aptitude (H4).

3.11 Insights

In this chapter, we have described the first fielded mobile robotic system that classified

human interruptibility online based on social and contextual cues and without reliance on

external sensors. In developing the system, we found that the social signals of a person’s

interruptibility can be usefully augmented with the contextual cues to their interruptibility

such as the objects they’re using. We also found that temporal models, such as our LDCRF,

proved to be more appropriate than non-temporal models, such as our MLP and RF, for

online classification on a robot. We then evaluated our system in a user study and we found

that developing interruptibility-aware systems to modulate when to interrupt collocated

bystanders might not affect human performance, but they can reduce the duration of a

robot failure by reducing the lag between the failure and the human’s resolution of it.

However, the total duration of an intervention is dependent on more than just the inter-

ruption lag from the interruption: it is dependent on additional factors such as the human’s

understanding of what went wrong and their knowledge of how to fix it [25]. In the subse-

quent chapters of this dissertation, we examine methods of improving a human operator’s

understanding of a robot failure with the goal of reducing the total duration of the interven-

tion after an interruption might have occurred. We focus our investigation on remote robot

operators, who are assumed to be always interruptible.

84

CHAPTER 4

ON THE EFFECTS OF PROVIDING DECISION SUPPORT TO REMOTE

OPERATORS

As autonomy improves, robots are increasingly operating without close expert supervision.

Robots making hospital deliveries, taking inventory at grocery stores, or organizing a ware-

house operate largely independently but occasionally encounter an error. In such cases, it

is unlikely that a local robotics expert will be available, and the robot will instead rely on

remote call center of operators for assistance [27, 38]. Such a request, even if expected,

challenges operators with too much information, the complexity of the situation, or the

urgency of the intervention: as such it constitutes a difficult information processing prob-

lem [129]. Therefore, operators can benefit from decision support to help them in their

decision making during an intervention. In this chapter, we provide remote teleoperators

with action and diagnosis suggestions from pretrained decision support models and inves-

tigate the effects of the interaction on the operators and on the models.

From the prior work, it is unclear (1) what effect providing suggestions to operators

during an intervention might have on their performance, and (2) what effect operator be-

haviour might have on a model that provides them with suggestions. Concretely, while

prior work has found increased operator accuracy and compliance when provided decision

support [130, 131, 132], other work has found an equivocal effect of feedback on human

performance, since the performance is often mediated by expertise, personality, motivation,

etc. [133]. Therefore, although troubleshooting aids have been developed in the past [134,

135, 136], it is unclear from the prior work whether these actually help robot operators dur-

ing an intervention. Similarly, human operators are often asked to help recover robot auton-

omy because they are assumed to have additional information unavailable to the robot [26],

which can also aid a decision support model in its suggestions. However, humans are liable

85

to get confused and act incorrectly [137], even if they’re experts [36], and even if they have

access to decision support [138]. As a result, there exists a possible tradeoff between the

additional information available to a decision support model from the human, and a threat

to the model’s accuracy as a result of human errors.

We therefore present the results of a user study that we conducted to investigate the

above effects. In particular, we focus on an operators’ MTCI, which measures robot re-

liability [31], and on the accuracy of the suggestions of the decision support models. We

recruited experienced roboticists as operators in the study and the participants were re-

quired to assist a robot during errors in pick-and-place tasks. We also trained diagnosis

and action suggestions models on a dataset of interventions handled by two experts, one

of them, the experimenter. The suggestions from the models were shown to the partici-

pants based on the study condition they were in. During the experiment, participants were

asked to think-aloud their decision-making and the data from the think-aloud, combined

with automatic annotations from the operator User Interfaces (UIs), were used to report on

operator workflows during an intervention.

We gain the following insights from the results of our user study: (1) operator perfor-

mance is likely improved by decision support, but the benefits might be mediated by the

type of decision support and its inaccuracies, (2) decision support models can suffer from

greatly degraded accuracy as a result of operator actions, and (3) operators do not distin-

guish between diagnosis and recovery, indicating that both types of decision support in our

study must be provided at all times. The insights greatly inform our investigations in the

subsequent chapters of this dissertation.

4.1 Related Works

A robot intervention is an information processing task in which operators might be provided

with too much information that overwhelms them, or they might lack enough information

to gather sufficient situational awareness [129]. Prior work has found that when faced with

86

Figure 4.1: During an intervention, an operator’s behaviour is influenced by the decision
support from the robot, and the decision support is affected by the nuances of operator
behaviour. We investigate the interactions in this work.

a robot failure, operators often ask, “What is wrong?” and “How do I fix it?” [25]. Decision

support systems have proven useful in such troubleshooting settings where operators have

to sift through a lot of information, the task is complex, or the decision needs to be made

quickly [135, 139, 136]. In this work, we evaluate the effect of providing operators with

the decision support to better answer the two questions they frequently raise.

Answering “what is wrong” requires a problem diagnosis, which has been the focus of

much prior work in robotics [28]. Diagnoses can be provided using pre-defined models

and expert-knowledge of the system [55, 24], or using the correlations between symptoms

and diagnoses observed in a dataset [140, 141, 142]. While model-based diagnosis systems

are capable of providing detailed diagnoses, they can be particularly brittle if the model

is misspecified, which is a concern in a complex system such as a robot [28]. We there-

fore eschew model specification in favour of data-driven approaches to diagnosis in this

work. Additionally, prior works in robot fault diagnosis often assume that failure recovery

is a single-step update, or at most a trivial sequence of steps, once the diagnosis is deter-

mined [55, 24, 141, 142]. However, recovering from failure requires troubleshooting, in

which diagnosis hypotheses can be updated with new evidence over time, and the recovery

options can change as a result of the updates [143, 135, 144, 145, 136]. We therefore in-

vestigate methods to provide diagnoses throughout an intervention, and create a model to

update diagnoses based on the actions taken by the operator.

87

Action recommendations can answer the second question of “how do I fix it”. Prior

work in mixed-initiative planning [11], learning from demonstration [146, 147, 148], and

scheduling [149, 150] are designed to provide such answers. In fact, research in trou-

bleshooting has produced systems that are capable of providing both diagnosis and action

recommendations [143, 135, 144, 145, 136]. However, some of the action recommendation

systems and all of the troubleshooting systems require the specification of domain, envi-

ronment, or failure models, which increases developer burden and can lead to inaccurate

suggestions if the model is misspecified. Therefore, we use a simple data-driven approach,

Behaviour Cloning [146], to learn action recommendations from a dataset of interventions.

Unfortunately, the process followed by operators during an intervention is not formal-

ized, and as such, determining the moments at which to provide decision support—every

time an operator acts, only when certain actions occur, etc.—or what to provide at each

moment—diagnosis and action suggestions at all times, diagnosis suggestions first fol-

lowed by actions, etc.—is unclear. Some works avoid the problem by providing decision

support only when requested by an operator [150], which can be appropriate in some set-

tings, but which shifts the burden of requesting support to the operator and can therefore

be undesirable for its reactive nature [137]. Other works, particularly in the realm of fault

diagnosis [141, 142], consider a simple two-step approach to an intervention: diagnosis

followed by repair (Figure 4.2a). The approach has been extended by other works depict-

ing flowcharts to show cyclic processes of diagnosis and repair until completion [151, 152]

(Figure 4.2b). While the simpler process does not capture the troubleshooting observed in

automated systems [144, 145], the cyclic processes have never been validated on any sys-

tem (robot or otherwise) [151], or incorporate assumptions, such as perfect observability,

which are not acceptable in robotics [152]. In this work, we show that a human conducts

diagnosis and repair concurrently, with one influencing the other (Figure 4.2c). The finding

affects when and what decision support should be provided to the operator.

Finally, few works study the challenges related to human-robot interaction during an

88

Figure 4.2: (a) The most common approach to viewing human actions during an
intervention—the human confirms a diagnosis of problem(s) and then takes actions to re-
solve them. (b) The process can be extended such that diagnoses are confirmed and actions
are taken to resolve the problem(s) until all problems are resolved. (c) In our work, we find
that diagnosing problems and resolving them are parallel processes that can influence each
other (a detailed diagram is in Figure 4.6).

intervention [129]. In particular, humans are prone to making mistakes [137], and as such

decision support models must remain robust to their errors. However, a human operator is

used to help recover robot autonomy because humans are assumed to possess additional

information that is useful to the recovery process [26]: a decision support can therefore

leverage the information for increased accuracy. In this work, we begin to examine the

effects of operator behaviour on the performance of decision support models.

4.2 Research Questions

In this section, we introduce our investigation into the results of providing decision support

to human operators in an effort to reduce the time they spend on the intervention, their

Mean Time Completing Interventions (MTCI). In addition, we also investigate the effect of

operator behaviour on the accuracy of decision support models. Concretely, we investigate

the following research questions:

RQ1 What is the effect of decision support on operator performance during interven-

tions? We are particularly interested in the effect of the type of decision support

provided—diagnosis vs. diagnosis and action suggestions—and its effect on an op-

erator’s MTCI.

89

RQ2 What is the effect of operator behaviour on the quality of the decision support?

We are particularly interested in investigating if an operator’s behaviour, particularly

their actions, can improve or reduce the accuracy of a decision support model.

We also examine the workflow of operators when they are required to intervene on

behalf of the robot. Prior works often assume the existence of two primary processes

followed by operators during an intervention (see Section 4.1). We redefine the processes

as:

1. Diagnosis Process: the process of finding the root cause error that caused the robot

intervention to occur. The root cause error is that error, which when removed, would

allow the robot to resume its autonomy [153, 154]. The diagnosis process ends when

the existence of the root cause is confirmed; the error need not be rectified.

2. Recovery Process: the process of rectifying the root cause error that caused the

intervention. The rectification of the error can occur even if the error itself remains

unknown or unconfirmed.

In this work, we investigate how an operator conducts the diagnosis and recovery processes,

and how they transition from one process to the other or vice-versa.

4.3 User Study

We conducted an IRB-approved three condition between-subjects study to investigate our

research questions above. The study conditions were:

NONE Participants were provided with no suggestions during a robot failure. They had

to determine the cause of the failure and rectify it using their knowledge of robots

and information available to them through a provided user interface (UI). This was a

baseline condition.

90

DX An ensemble of Hierarchical Dirichlet Process-Hidden Markov Models (HDP-HMMs)

from prior work [142] was used to provide diagnosis suggestions to participants after

every action they commanded.

DXAX An RNN-based filter was added to the output of the diagnosis model to explicitly

capture dependence between an operator’s actions and the decision support’s outputs.

The filter provided both diagnosis and action suggestions based on the HDP-HMM’s

diagnoses and the operator’s chosen action.

From NONE to DX to DXAX, the amount of decision support provided to operators in-

creased, and the reliance of the decision support output on the human’s actions increased.

In the following paragraphs, we provide details on the study procedure. In Section 4.4, we

provide details on the decision support models.

Environment

A Fetch robot was placed in the FetchIt! challenge arena1, which was a 10ft x 10ft area

with five tables containing upto five different objects. Participants were shown the arena

upon arrival but they were required to be present at a nearby workstation, which was not

in the arena, during the study. Participants could not view the robot or the arena from their

workstation and industrial background noise2 was played in the environment to drown out

the actuator noise from robot movements. An experimenter was also present near both the

workstation and the robot arena to (1) inject failures according to the experiment scenario,

(2) annotate details about interventions or the participant behaviour, (3) assist the partic-

ipant with choosing how to end an intervention, (4) assist the participant with technical

problems or logistical questions, and (5) to E-stop the robot in case of safety concerns.

1Described in Chapter 2
2https://youtu.be/ylD4EmcxB6o

91

https://youtu.be/ylD4EmcxB6o

Robot System and Tasks

The experiment used a Fetch mobile manipulator [63], which has a differential drive base

with a 2D laser scanner for navigation, and an RGB-D camera alongside a 7-DOF arm

with a parallel-jaw gripper for manipulation. The robot’s sensors and actuators were or-

chestrated through the system described in Chapter 2. In the system, faults were detected

when a primitive action failed, either through unmet preconditions or by the detection of

unintended effects. While the system in Chapter 2 was designed to diagnose and automat-

ically recover from detected faults, in this work, we disabled all automatic diagnosis and

recovery routines. Instead, when a fault was encountered, the system presented a UI that

participants could use to help the robot recover autonomy.

All of the robot’s tasks in the FetchIt! arena required it to navigate to one of the five

locations, pick up an object, and in most cases, put it in a kit on its base. In the case of

an object called the ‘large gear’, the robot had to insert the gear into a faux machine in the

arena, wait 2 minutes, and then extract it before putting the gear in its kit3. Participants

were made aware of the special requirement for the large gear.

Participant Workstation

The participant’s workstation had two monitors, a microphone, a keyboard, and a mouse.

By default, the workstation displayed a study home webpage4 with links to:

1. a Web UI that participants could use during a robot failure,

2. a Tutorial presentation introducing the participant to the robot, the environment, the

robot’s tasks, and the Web UI,

3. a Manual webpage that the participant could reference during the study for more

detailed information related to the robot, the environment, the robot’s tasks, and the
3Examples of the robot performing tasks are at https://youtu.be/j2w1FffgD3s and https://youtu.be/

osNtFxqC1UM
4http://bit.ly/3pINzsx

92

https://youtu.be/j2w1FffgD3s
https://youtu.be/osNtFxqC1UM
https://youtu.be/osNtFxqC1UM
http://bit.ly/3pINzsx

Figure 4.3: The Web UI provided to operators. The suggestions sections were shown or
hidden based on the study condition.

Web UI,

4. three questionnaires to be completed over the course of the study,

5. three web-based idle games [155] that the participant was required to engage in when

not occupied by a failure intervention.

Participants were not allowed to navigate to web pages not linked to the home webpage.

During a robot failure intervention, the workstation revealed an RViz interface [56],

otherwise inaccessible, with displays from the robots sensors, which the participant could

use in conjunction with the Web UI to assist the robot. Participants were encouraged to

think-aloud [156] their decision-making while using the either RViz or the Web UI and the

think-aloud was recorded using the workstation’s microphone.

Web User Interface

The Web UI (Figure 4.3) complemented the RViz UI in helping operators assist the robot.

In particular, during an intervention, the Web UI provided:

93

1. the semantic beliefs of the robot, such as ‘the robot is near table 3’, ‘the E-stop is

pressed’, etc.

2. the goals of the task and the state of the task at the moment of the intervention

3. a history of the actions attempted by the robot during the task

4. buttons for the operator to command one of 15 high-level actions for the robot to

perform5

5. dropdown menus for the operator to annotate one or more of 14 plausible problem

diagnoses (including the diagnosis of ‘unknown’) that they were attempting to address

6. buttons for the operator to select a method of resuming the task, or abort it, once

they deemed the intervention complete

7. three diagnosis and three action suggestions for the operator, which were shown or

hidden depending on the study condition

Information in the UI was only populated upon an intervention start and the UI was disabled

when a participant selected a button to end the intervention.

The dropdown menus to annotate problem diagnoses were added to the UI in order to

obtain a better understanding of operator workflow. The annotations captured participants’

goal(s) when taking actions during the intervention and as such provided a rudimentary

cognitive walkthrough [157] of their reasoning process when paired with the think-aloud

audio. In order to facilitate the annotation process, participants had to ‘suspect’ at least one

problem hypothesis for the intervention before they could take any actions, and they had to

‘confirm’ at least one problem hypothesis before they could end the intervention. Partici-

pants could provide or rescind the hypotheses and confirmations at any moment during the

intervention.

During an intervention, a participant interaction was defined as an event where the

participant updated problem hypotheses or commanded the robot to take an action. As

such, the stream of interactions defined an intervention workflow and any given interaction

5We chose to provide high-level actions based on recommendations of prior work [36].

94

Figure 4.4: Study Timeline. Each scenario is designed to spawn at least one intervention
corresponding to an injected error. Additional interventions could manifest due to operator
behaviour or other external factors.

was a candidate for updating the decision support provided to the operator. Since updates to

the problem hypotheses were simply annotations that did not alter the robot or environment

state, diagnosis and action suggestions were both updated after every action interaction.

The decision to update both types of decision support after actions was validated by an

analysis of operator workflow, as discussed in Section 4.5.

Timeline

The study was segmented into a training phase of about 30–35 minutes, which familiarized

participants with the study, and a study phase, the data from which was used to investigate

our research questions (Figure 4.4). Each phase consisted of multiple scenarios: during

each scenario, the robot was given a single task requiring the pick-and-place of one or

more objects in the environment, while the experimenter injected one or more predeter-

mined faults in order to induce at least one intervention. Other faults could arise due to the

uncontrolled environmental factors or participant behaviour, thereby leading to additional

interventions. A scenario was deemed complete if the robot completed the task after all

95

interventions or if the participant chose to abort the task through the Web UI. The training

phase consisted of two scenarios, each designed to induce at least one intervention, and the

study phase consisted of four scenarios, with the first three designed to induce at least one

intervention each, and the last scenario designed to induce at least three interventions.

Participants were asked to sign a consent form and complete a demographic question-

naire upon entering the study environment. They were then shown the robot’s environment

and seated at their workstation. The experimenter introduced participants to the study us-

ing a 15 minute tutorial presentation linked to from the study home page. Participants were

then given 10 minutes to further familiarize themselves with elements of the study. Once

ready, the training phase began with the first training scenario, in which the experimenter

provided a walk-through of the tools available to the participant during the intervention.

The experimenter walk-through was absent in the second scenario of the training phase.

During both training phase scenarios, no suggestions were provided in the Web UI. The

training phase concluded with the participant answering a pre-study questionnaire on their

experience.

During each scenario in the study phase, participants were shown diagnosis and action

suggestions in the Web UI depending on the study condition they were in. Although partic-

ipants could see the particulars of the pick and place task that the robot was performing in

the study phase, they were not told when one scenario was completed and another started.

Due to the length of the study, the experiment was paused, i.e. robot execution halted, be-

tween interventions if the participant required a break. When all scenarios were complete,

participants were asked to answer a post-study questionnaire on their experience.

Robot Errors

The scenarios in the study simulated a broad range of robot failures arising from internal

and external failures to different components in the robot’s task system. The two training

phase and four study phase scenarios were scheduled such that the difficulty or complexity

96

of the predetermined errors increased from one to the next:

1. Cluttered costmap (training): the robot’s manipulation costmap was injected with

clutter in order to induce a motion-planning failure from the arm. The scenario was

used to familiarize participants with RViz.

2. E-stop engaged (training): a software E-stop was engaged, thereby preventing the

robot from moving its actuators. The status of the E-stop is not checked as a pre-

condition in the robot’s task but it is monitored by background system monitors and

therefore displayed on the Web UI. The scenario was designed to familiarize partici-

pants with the Web UI.

3. Robot Mislocalized: the robot’s localization module was poorly initialized, which

led the robot to navigate to incorrect locations in the environment. An intervention

was triggered when the robot failed to find its object-to-pick, because it was at an

incorrect table, and participants had to debug the original cause of error from this

symptom.

4. Objects are clustered: the object-to-pick was clustered together at the center of the

table, leading to a failure in perception if the cluster of objects was not recognized

(common) or a failure in manipulation if an individual object from the cluster could

not be picked up (uncommon). Participants had to debug the cause of the perception

or manipulation failure.

5. Object is missing: the object-to-pick was removed from the environment entirely.

The scenario was designed to simulate realistic situations where the tools available to

an operator during an intervention prove to be insufficient. Hence participants were

required to abort the robot’s task.

6. Multiple failures: three failures were injected at pre-determined moments in the

robot’s task: (1) the large gear was placed on the table so that when picked, its pose in

the robot’s gripper would not allow it to be inserted into the faux machine, (2) another

object, the ‘small gear’, was placed out of the field-of-view of the robot’s camera,

97

and (3) the large gear was induced to ‘fall’ out of the machine after the first time it

was inserted by the robot. Participants had to address each problem when the related

interventions surfaced.

In addition to the predetermined errors, additional uncontrolled errors were also encoun-

tered: (1) participant mistakes could produce a snowball-effect of errors, and (2) idiosyn-

cracies of the environment and robot could also surface errors. Examples of idiosyncratic

errors included a ‘stalled robot base’ caused by the wheels of the robot sticking to the car-

peted floor of the experiment area, ‘intermittent phantom obstacles’ cluttering the robot’s

manipulation costmap, etc.

Intervention Protocol

During the study, participants were required to engage with at least one of the three idle

games provided to them when they were not in an intervention. The participant was notified

of an intervention when the RViz UI appeared on their workstations; at that moment, they

were required to devote their full attention to the RViz and Web UI.

As participants interacted with the UI to recover the robot’s autonomy, they were al-

lowed to ask the experimenter for clarifications under the constraints that (1) the experi-

menter could only respond to Yes/No questions unless the question pertained to technical

problems with the study apparatus, and (2) no questions that revealed the problem diagno-

sis or indicated a manner of recovery would be answered. When participants were done

assisting the robot, they were asked to describe to the experimenter how they wanted the

robot to resume its task, e.g. “Redo the entire task”, “Try to find the gear again”, etc. The

experimenter would then suggest buttons for them to click in order to end the intervention.

The final suggestion from the experimenter was necessary because dictating the manner of

resuming robot autonomy required detailed knowledge of the task’s implementation within

the robot system: participants were not expected to learn such intricacies for the study.

The experimenter was also required to annotate details of the intervention or partic-

98

ipant behaviour. Given the uncontrolled causes for some of the robot interventions, the

experimenter was provided with an administrative UI, not visible to the participant, which

provided more details about the robot and system, and which could be used in order to an-

notate (1) the cause(s) of an intervention, (2) whether the participant identified the cause(s)

based on their think-aloud, (3) notes on the reasons behind actions selected by participants

based on their think-aloud, and (4) any other pertinent information that could be used to

better understand participant behaviour, the system, or decision support outputs after the

study. All data from the robot and participant interactions on the Web UI were saved to the

robot’s hard disk for such analysis.

Metrics & Hypotheses

We use the timeline of participant interactions in the Web UI to investigate how participants

transition from the diagnosis process to the recovery process (defined in Section 4.2) and

vice-versa. According to the definitions, the diagnosis process is deemed complete when

participants confirm diagnoses on the Web UI and the recovery process is deemed complete

after the last action interaction by participants in the Web UI. We hypothesized that there

is no universal order to when participants transition from one process to the other.

In addition to operator workflows, we analyze the time participants spent completing

interventions, since it is an indicator of system reliability [31] and a strong indicator of the

benefits of decision support. We hypothesized that providing decision support to operators

would reduce their Mean Time Completing Interventions (MTCI).

We also evaluate the accuracy of the model’s diagnoses6, using it as a quantitative metric

for evaluating the effect of operator behaviour on decision support models. We hypothe-

sized that incorporating a participant’s actions for providing suggestions, as with the RNN

filter in the DXAX condition, would improve the accuracy of the diagnosis suggestions as

6The uncontrolled causes for some robot interventions made it impossible to annotate the accuracy of
participant actions or model action suggestions. Instead, we only had access to the experimenter’s in-the-
moment notes on the accuracy of a select few participant actions or model action suggestions.

99

more information is provided to the model.

Finally, our post-training phase and post-study phase questionnaires consisted of a 10

question survey that evaluated the following four factors using 5-point Likert scales7:

• Ease of making diagnoses: 4 questions, α = 0.76

• Ease of recovering autonomy: 4 questions, α = 0.76

• Helpfulness of the system: 3 questions, α = 0.71

• Perception of time in interventions: 2 questions, α = 0.75

We hypothesized that providing decision support would improve participant’s scores on all

of the above factors.

4.4 Decision Support Models

In this section, we formalize the problem of providing diagnosis and action decision support

and then provide details on the models we implemented to provide the suggestions. The

resulting pipeline is shown in Figure 4.5.

4.4.1 Problem Definition

We define two time-scales, denoted by t and τ , in our domain. t indexes participant action

interactions (defined in Section 4.3) and as such denotes successive timesteps when action

or diagnosis suggestions must be generated. τ indexes the robot’s execution, and is there-

fore updated more frequently, since the robot may execute multiple actions as a result of a

single participant action. We then define the following variables that are time-indexed in

one the two time scales:

Dt: A random variable such that P (Dt = di) captures the likelihood of a diagnosis di ∈ D

at time t. D = {d1, . . . , dN} is the set ofN possible problem diagnoses. In our study,

N = 14, including the diagnosis ‘unknown’.
7The item reliability metric for each factor, Cronbach’s α, was calculated using participant responses from

the study. A value ≥ 0.7 is an acceptable level of reliability.

100

Figure 4.5: The pipeline for generating action and diagnosis suggestions after every action
interaction in the DXAX study condition. Steps 3–5 do not occur in the DX study condition
and as a result, participants receive diagnosis suggestions only.

At: A random variable such that P (At = ai) captures the likelihood that action ai ∈ A

is the most appropriate action, to either diagnose or resolve the failure, at time t.

A = {a1, . . . , aM} is the set of M possible actions operators can take, including that

of ending the intervention. In our study, M = 16.

Xτ : Data from the robot at time τ . In our system, Xτ is a 86-dimensional vector with

61 dimensions indicating the state of the robot’s task or attempted actions, and 25

dimensions capturing the semantic beliefs of the robot or the output from background

fault monitors (see [158] for details). As mentioned above and with some abuse of

notation, at time t in the intervention, we use a sequence of Xτ of length ω, i.e.

Xt−ω:t, to provide diagnosis or action suggestions.

Using the definitions, we formalize the problem of providing diagnosis suggestions as that

of calculating P (Dt|Xt−ω:t, At−1, Dt−1, . . .) and the problem of providing action sugges-

tions as that of calculating P (At|Xt−ω:t, Dt, At−1, . . .).

Unfortunately, the desired conditional distributions are hard to model, especially with-

out a large dataset of operator interventions. Additionally, we are unable to label ground-

101

truth actions at any moment in an intervention because of the uncontrolled sources of error

in our domain. We therefore make the following assumptions in order to make learning and

inference tractable:

1. We assume a static fault diagnosis [159], common in the prior work, for the duration

of an intervention8. Therefore, under a perfect model providing diagnosis suggestions,

P (Dt|·) = P (Dt−1|·) = . . ., i.e. the diagnosis suggestions for successive operator

interactions are independent. With the assumption, we simplify the goal of providing

diagnosis suggestions to that of calculating P (Dt|Xt−ω:t, At−1).

2. We assume that given a diagnosis, operators need only follow a recipe of actions9;

a practice assumed in some prior works [144, 141, 142]. Concretely, operator ac-

tions are conditionally independent from robot data given the diagnosis, i.e. At ⊥⊥

Xt−ω:t|Dt and therefore the goal of providing action suggestions is that of calculating

P (At|Dt, At−1, At−2, . . .). Note that the history of actions helps identify the presumed

action recipe.

Finally, we compare against prior work in robot fault diagnosis, which often does not

use operator actions to update diagnoses during an intervention [142, 28]. In effect, the

works assume that data from the robot is sufficient to determine a diagnosis, i.e., diagnosis

suggestions are given by P (Dt|Xt−ω:t). We therefore introduce the random variable DP
t to

model the diagnosis suggestions provided by a model from the literature and factor the task

of providing diagnosis suggestions to the following:

P (Dt|Xt−ω:t, At−1) =
∑
DP

t

P (Dt|DP
t , At−1)P (DP

t |Xt−ω:t)

Note that we also assume Dt⊥⊥Xt−ω:t|DP
t for simplicity, but the assumption can be further

investigated in future work.

8An alternate phrasing: the underlying causes of an intervention do not change during the intervention.
9In some cases, the recipe can be a single action.

102

In the following sections, we provide details on the models used to learn each of the

above probability distributions from prior intervention data, and then infer the same prob-

ability distributions online during interventions in the user study.

4.4.2 Baseline Diagnosis Models

We use an ensemble of Hierarchical Dirichlet Process-Hidden Markov Models (HDP-

HMMs) from prior work [142] as our baseline to model P (DP
t |Xt−ω:t) because the models

achieved very high accuracy in robot fault diagnosis from time series data. Specifically,

for each diagnosis di ∈ D, we train the parameters, θ(di), of an HDP-HMM model from

hierarchical Dirichlet priors using memoized variational inference in order to maximize

the likelihood of P (X
(di)
· ; θ(di)), where X(di)

· is a time series of robot data with the label

di in a training dataset (see [142, 160] for details). At test time, the output diagnosis from

the ensemble is then the diagnosis associated with the HDP-HMM model with the highest

likelihood of observed robot data, i.e. DP
t = arg maxd P (Xt−ω:t; θ

(d)), and the probability

distribution of DP
t is simply the distribution of likelihood values from the ensemble.

4.4.3 Diagnosis and Action Filter

We use a Recurrent Neural Network (RNN) with two outputs to filter the output of the base-

line diagnosis models and calculate the two remaining probability distributions, P (Dt|DP
t , At−1)

and P (At|Dt, At−1, . . .). The recurrent operation, carried out by a Gated Recurrent Unit

(GRU) [161] with a hidden dimension of 11, conditions each of the diagnosis and action

suggestion outputs on the history of inputs, primarily action interactions, to the filter. There

are two outputs generated from the RNN, one for diagnosis and another for action proba-

bility distributions. The network was trained to optimize Cross-Entropy classification loss

using Adam [116] with a learning rate of 0.001.

103

4.4.4 Training Datasets

The experimenter and one of the primary developers of the system in [40], who was also

part of pilot studies for this work, provided a dataset of 118 interventions that were used

to train the RNN filter described above. The actions of these experts were assumed to

constitute the action recipes that were the target action suggestion outputs of the filter. The

hyperparameters of the filter—hidden dimension, number of layers, structure, etc.—were

determined using a Hit@3 accuracy metric for diagnosis and action suggestion10 under

grouped three-fold cross-validation using action-labels as the grouping variable.

The experimenter annotated diagnoses from 81 additional interventions in the NONE

condition of the user study were added to the previous dataset to train the baseline HDP-

HMM diagnosis models. The latter data could not be used to train the filter because the

sequences of actions taken by participants in the NONE condition were not desirable action

recipes. The hyperparameters of the baseline models—Dirichlet priors, initial covariance,

etc.—were determined using a Hit@3 accuracy metric for diagnosis suggestion 10 under

grouped five-fold cross-validation using diagnosis-labels as the grouping variable.

4.5 Results

In this section, we present the results of our user study.

Participants

Due to the technical nature of the domain, the operator tools, and the robot errors, the study

was limited to students in a university Robotics program with at least one year of ROS

experience. There were 17 participants across all conditions, 12 male and 5 female, aged

20–30, Mdn 24. The study session for one participant in the NONE had to be discarded due

to an irrecoverable failure in the study’s logging tools.

10We use the Hit@3 metric because three suggestions were provided to operators.

104

In order to illuminate potential effects of expertise with a system, participants were

divided into two cohorts—(1) Experts were familiar with the system developed in [40] and

helped develop significant portions of it, (2) Novices did not have such expertise. There

were four male experts, two in the NONE condition and two in the DXAX condition. The

12 remaining novice participants were equally divided between the NONE, DX, and DXAX

conditions.

Study sessions for all participants ranged from 2 hours (120 min) to 3.5 hours (210

min), Mdn 2.5 hours (150 min); participants were paid $5/half-hour. Over the course of

the sessions, the robot had to be recovered from 261 interventions in the study phase. The

following paragraphs present an analysis of the data from such interventions. Note that due

to the small sample size of 16 participants, we do not conduct any statistical significance

tests.

Figure 4.6: UML diagram of operator workflows in the study

Participant workflow

An analysis of the sequence of participant interactions in the Web UI across all conditions

finds that in 230 (88%) of the 261 interventions, participants confirmed a problem diagnosis

as their last interaction before ending the intervention; action interactions are the last inter-

action in only 31 (12%) of interventions. We converted the the sequences of interactions

into transition diagrams, which were then combined into the Unified Modeling Language

105

(UML) flowchart shown in Figure 4.6. The result indicates that during an intervention, op-

erators do not naturally separate the diagnosis process from the recovery process; instead

both processes heavily inform and influence each other.

Figure 4.7: Model Diagnosis Accuracy vs. Time of Intervention-end from the start of a
scenario. The line is a logistic regression fit to the data; shaded regions are bootstrapped
95% confidence interval of the fit. 51 min is the 95th percentile of end times across all
conditions.

Model diagnosis accuracy degrades over time

As shown in Figure 4.7, the diagnosis accuracies of the baseline diagnosis models in the

DX condition and the RNN filter in the DXAX condition are similar, and the accuracy of

both degrade the later in a study scenario that an intervention occurs, i.e. the longer a study

scenario, the less accurate the diagnosis from the decision support models 6. There were

two primary causes for scenarios taking a long time: (1) an unexpected number of idiosyn-

cratic errors, such as the appearance of phantom obstacles in the manipulation costmap,

occurred, and (2) a snowball-effect of incorrect participant actions as a result of confusion,

misunderstanding, or other factors, led to additional errors. Regardless of the cause, the

likely drift in the domain of the data provided to the models over the course of the scenario

106

resulted in a significant loss of accuracy, and hence usefulness of the decision support.

In the following paragraphs, we do not analyze 5% (14) of the interventions that man-

ifested after 51 min from the start of a scenario because most of them were a result of

uncontrolled errors11.

Figure 4.8: Time completing interventions vs. Time in the study-phase for interventions
contained within 51 min from the start of a scenario. The lines are linear regression fit to
the data; shaded regions are bootstrapped 95% confidence interval of the fit. 1.5 min is the
MTCI of the experts used in the RNN training dataset and therefore it is a soft lower-bound
on a participants’ time completing interventions.

Learning effect

As shown in Figure 4.8, the mean time taken by participants to complete interventions

(MTCI) decreases across all conditions the longer the participant is in the study. The result

indicates a strong learning effect to operators’ ability to help the robot recover as they get

more familiar with the system. Additionally, there is a lower bound: once an operator is

fully trained, as was the case for the operators used to generate action recipes in the RNN

training dataset (Section 4.4.4), there is no further improvement to MTCI over time.

119 of the 14 discarded interventions are from a particularly idiosyncratic-error prone study session in the
DXAX condition.

107

The effect of decision support

The lower Y-axis intercepts for novices in DX (6.45 min) and DXAX (6.11 min) compared

to NONE (7.60 min) of the linear regression fit for MTCI in Figure 4.8 show that there is

a noticeable reduction in MTCI with decision support when operators are not fully trained.

The effect is apparent experts too with a lower Y-axis intercept for operators in DXAX (3.55

min) compared to those in NONE (4.82 min).

However, the slope of the regression lines indicate that the decision support might ad-

versely affect learnability12. In particular, the lower magnitude of the slope for novices in

DX (−0.032) compared to those in NONE (−0.064) or DXAX (−0.054) indicates a possible

harm to learnability of diagnosis suggestions, which might be ameliorated by the additional

inclusion of action suggestions in the DXAX condition. Since the slope of the regression

line can also be a regression artefact of the lower bound to MTCI (discussed above), the

phenomenon requires further investigation.

Figure 4.9: Participant responses to Survey Questions.

12The greater the magnitude of the slope, the greater the learnability.

108

Survey Results

There are no discernable trends in the effect of adding decision support to participants’

survey results as shown in Figure 4.9. The (lack of an) effect can be partly explained

by the frustrations of the uncontrolled interventions, which had a non-uniform effect on

participant experiences across the study conditions. It can also be explained by issues of

usability in the Web and RViz UI: most participants mentioned the ‘lack of fine-grained

control of the robot’, the ‘complexity and volume of information in the UI’, and the ‘lack

of actual situation awareness’ as hindrances in a free-form text response in the post-study

questionnaire13. The same usability factors, more than the presence or absence of decision

support, also determined what participants found helpful: some of the ‘high-level operator

actions’, the ‘variety of visualization options’, and the ‘awareness available from a camera

feed or point cloud’ were frequently cited as helpful in another free-form text response14.

4.6 Discussion & Conclusions

From the results in the previous section, we find that:

Operator workflows do not distinguish between diagnosis and recovery Unlike the

operator workflows that are assumed by some prior works [151, 152], operator workflows

in our study did not distinguish between diagnosis and recovery processes. In fact, more

often than not, operators seemed to confirm their diagnoses, i.e. complete the diagnosis

process, upon completing the recovery process and finding no further fault. The finding

implies that (1) the decision support provided to operators during an intervention must

facilitate both processes, and (2) investigating the separate effects of decision support on

the diagnosis and recovery processes requires harder constraints on operator workflow.

13Q: List three (or more) things that made it difficult for you to diagnose errors and recover from them.
14Q: List three (or more) things that made it easy for you to diagnose errors and recover from them.

109

Operator actions can harm decision support accuracy Contrary to our initial hypothe-

ses, our results show that the snowball-effect of errors from incorrect actions taken by op-

erators or the idiosyncratic errors that might have arisen from the vagaries of the study

domain, led to less accurate diagnosis decision support. The result suggests that decision

support models need to be made more robust to the whims of human inputs rather than min-

ing them for additional help in classification. However, the finding needs to be replicated

in a more controlled domain before a conclusive recommendation can be made.

Operator MTCI is most likely reduced with decision support, but the effects of each

type of support are unclear Our results show that adding decision support at the be-

ginning of the study phase, before operators are fully trained to the domain, reduces their

MTCI. However, the effect of the decision support on the learnability of operators remains

unclear: the noticeable difference in learnability for operators in the DX condition vs. those

in NONE or DXAX is of particular interest. While the difference could indicate a learnabil-

ity benefit of adding action suggestions to diagnosis suggestions, we do not have the data

to make such a conclusion. Additionally, given the reduction in accuracy for diagnosis

suggestions as discussed above, it is unclear if the supposed benefit to learnability is (1)

a result of the type of the suggestions, (2) a result of possible higher accuracy in action

suggestions15, or (3) simply a coincidence. Further investigation is necessary.

Conclusions In this work, we discovered the existence of non-trivial interactions between

the effects of decision support on human operators and the effects of human operator be-

haviour on decision support accuracy. Unfortunately, due to the uncontrolled nature of our

domain, our inability to annotate the accuracy of action suggestions, the lack of participants

to test an action suggestions-only condition, and issues of usability with the operator UI, we

are unable to make definite statements regarding the nature of the interaction. Additional

confounds not discussed above, further complicate the task. For instance, our assumption

15We could not unfortunately calculate the accuracy of action suggestions.

110

of a static diagnosis proved incorrect because incorrect operator actions during an inter-

vention sometimes led to the introduction of additional problems that had to be diagnosed

and recovered from in the same intervention. Participant’s personalities also led to differ-

ing outcomes: some participants were skeptical of the suggestions and preferred to always

double-check them, thereby increasing their MTCI when given suggestions, while other

participants were overtrusting of the incorrect suggestions, resulting in lower MTCI but a

greater overall number of interventions and a longer time taken in the scenarios.

Therefore, in the following chapters, we introduce a controlled domain in which ground-

truth diagnoses and actions exist at all moments, and in which participants are presented

with a simpler UI. Within this domain, we investigate the effect of the type and accuracy of

decision support on the accuracy of remote operators in a large-scale user study in Chap-

ter 5. We shift our focus from MTCI (time) to accuracy to account for situations when a

lower time completing an intervention does not actually resolve the intervention (discussed

in the previous paragraph). Then, in Chapter 6, we use data from the study to investigate the

effect of varied operator accuracy on the accuracy of pre-trained decision support models.

111

CHAPTER 5

ACTION AND DIAGNOSIS RECOMMENDATIONS FOR RESPONDING TO

ROBOT FAILURE

This work focuses on one of the interactions uncovered in the previous chapter: the effects

of decision support provided to remote robot operators in their failure resolution interface.

Prevalent guidelines for designing the user experience (UX) of a failure resolution interface

suggest that operators should be provided with feedback information—to be made better

aware of the failure state—and with feedforward information—to better enable decision-

making [137]. However, it is unclear from the prior literature on UX [162, 163] which of

feedback or feedforward information could be more useful to robot failure resolution.

The importance of knowing the relative benefits of feedforward and feedback is high-

lighted in Chapter 4 and by recent work, which has recommended that interfaces designed

for error recovery not overwhelm the information processing capabilities of operators, lest

operators themselves make mistakes [129]. Despite their usefulness, both feedback, such as

through automated diagnoses, and feedforward, such as through action recommendations,

can potentially add too much information to an interface. It is unclear from prior work if

such is the case.

In addition to receiving too much information, an operator’s information processing ca-

pabilities can be taxed in dealing with inaccuracies with decision aids: for instance, feed-

back provided through automated fault diagnosis systems or feedforward provided through

action recommendation models can be imperfect, resulting in robots deployed with in-

accurate decision aids (Chapter 4). Prior work has shown that in the face of incorrect

suggestions, humans are prone to both follow the recommendations [164] and to ignore

them [130]. It is therefore important to determine how inaccurate decision aids might af-

fect the resolution of robot failures.

112

Figure 5.1: Storyboard for interactive failure recovery. Participants start in one of four
failure scenarios and attempt to resolve the error by selecting one of 17 actions, which
the robot then executes in an accompanying video. We evaluate the action sequence taken
by participants under different interface conditions, and how it compares to the shortest
possible error recovery (green arrows)1.

In this work, we contribute a 10-condition study evaluating the effects of providing

noisy and noise-free diagnosis suggestions (feedback) and/or action recommendations (feed-

forward) as decision aids to humans. We perform our analysis within an interactive user

experience, in which users select robot recovery actions in response to observed error states.

The interactive experience occurs in the context of a dynamically generated story graph in

which nodes are faulty or fault-free robot states. The story nodes are connected by edges

corresponding to one of 17 actions, captured as 285 videos of a physical Fetch robot, and

which are selected by the participants (Figure 5.1). The resulting highly realistic evalua-

tion framework enables us to examine how elements of UX design impact a user’s ability

to effectively recover from robot errors. Our findings show that although action recommen-

dations (feedforward) have a greater effect on successful error resolution than diagnosis in-

1A video showing the study design is at https://youtu.be/drCHgwkpaqA

113

https://youtu.be/drCHgwkpaqA

formation (feedback), the feedback likely helps ameliorate the deleterious effects of noise.

Therefore, we find that error recovery interfaces should display both diagnosis and action

recommendations for maximum effectiveness.

5.1 Related Work

Robust robot execution is difficult to achieve. To address this challenge, prior research has

proposed techniques for adjustable autonomy in order to enable humans to assist during

difficult tasks [24]. A previous ethnographic study of a robot in various work environments

found that even when collocated, humans tasked with intervening on behalf of the robot

wanted assistance addressing two fundamental questions, “What’s wrong?” and “How do

I fix it?” [25]. The finding is consistent with prevalent design guidelines that in the face

of failure, operators should be provided with feedback information—to be made better

aware of the failure state—and with feedforward information—to better enable decision-

making [137].

Prior work has introduced decision aids to help operators capture high level problem

diagnosis [24, 134], assist with action selection or planning [11, 147, 149], or both [165,

135]. Furthermore, failure recovery (i.e., troubleshooting) is often an iterative process dur-

ing which failure hypotheses and/or recovery actions are pruned through execution of diag-

nostic test actions [145, 144]. Automated troubleshooting aids are usually equipped with

the capability to suggest potential problems and to recommend actions to fix them [166,

165, 135, 143]. However, automated diagnosis or action recommender systems are not

perfect [23, 36]. As a result, robots must often be deployed with imperfect decision aids.

Prior work has shown that in the face of errors in robot decision support systems,

humans are prone to both overtrust its recommendations—following them to their detri-

ment [164]—as well as mistrust its recommendations—ignoring them to their detriment [130].

It is therefore unclear what the effects of imperfect decision support systems might be in

the case of robot failure recovery, a scenario not evaluated in the aforementioned studies.

114

We bridge that gap in this work.

Additionally, a recent survey calls into question a naı̈ve recommendation to include both

the feedback and feedforward decision aids because the authors find that failure recovery

can be a cognitively demanding task for an operator and argue that the interfaces used must

not overwhelm the information processing capabilities of a human [129]. They cite the

prevailing design knowledge that humans are liable to themselves make errors if they are

overwhelmed with too-much-information [163, 137]. Additional research in UX design

has found that feedforward suggestions in widgets are especially suitable in applications

that users might be unfamiliar with [162], but it is unclear whether the finding generalizes

to robot error recovery, as well as when noise is present in feedforward output. We aim

to identify the tradeoffs, if any, that might exist from providing either types of decision

support to remote operators during robot failures.

Finally, while prior work has evaluated the interaction consequences of failure presen-

tation, none evaluate the consequences on the robot’s performance. Lee et al. [167] used

online surveys to gauge participant evaluations of a robot’s service based on the manner of

robot communication during a failure; participants were not required to aid the robot based

on the information presented to them. Similarly, Brooks et al. [168] introduced two types

of decision support—human-support and task-support, which correspond to feedback and

feedforward respectively—and found that people’s reactions towards the robot were im-

proved as a result of both types. However, their evaluations were conducted using survey

responses to hypothetical scenarios and participants were not actually required to supervise

a robot based on the information they received. In contrast, we allow people to supervise

the execution of a robot during a failure, and we evaluate the robot’s recovery outcome as

a result of varying types of decision support.

115

5.2 Research Questions

In this work, we evaluate the relative benefits of both feedback and feedforward information

by evaluating the following decision support for robot failures:

• Diagnosis-based Suggestion—the diagnosis of one or more faults (feedback). For

example, “The [object] is not visible”, (if a perception action fails) or “The robot has

collided” (if the base of the robot is unable to move).

• Action-based Recommendation—the recommendation of actions to take to resolve

the problem (feedforward). For example, “Navigate to [location]” (to perhaps check for

a missing object), or “Move the robot back” (assuming the collision is at the front).

Despite several independent systems for diagnosis and recommendation having been

developed (Section 5.1), their relative benefit when used either independently or together

remains unexplored. Furthermore, automated diagnosis or recommendation systems have

their own limitations, leading to imperfect performance [23, 36]. As a result, it is impor-

tant that we understand how the relative benefits of both techniques are affected by their

accuracy.

In this work, we study how various types of decision support aids, under varying levels

of performance noise, affect the user’s ability to effectively recover from errors. Specifi-

cally, we formulate the following research questions:

RQ1 How is a human operator’s assistance of a robot affected by Action Recommen-

dations (AX), Diagnosis Suggestions (DX), or both (DXAX)? We formulate this first

question to investigate the types of decision support that might be necessary in a fail-

ure resolution UX.

RQ2 What is the effect of inaccuracies in the decision support provided to human op-

erators? The aim of this second question is to investigate trends in human operator

performance as the reliability of decision support varies.

116

Figure 5.2: The robot is in a mock apartment with three locations. It can work with the Jug,
Cup, and Bowl (left-to-right in inset).

To answer RQ1-RQ2, we designed a large scale user study using Amazon Mechanical

Turk, in which we varied two factors determining the manner of generating decision aids.

The first factor determined the type of suggestions that participants received—no sugges-

tions (BASELINE), Action Recommendations (AX), Diagnosis Suggestions (DX), or both

(DXAX). The second factor determined the accuracy of the suggestions at three levels of-

ten achieved by fault diagnosis models in prior work [142]—100% accurate, 90% accurate,

and 80% accurate. The resulting ten study conditions are enumerated in Table 5.1.

5.3 Domain

We situated our investigation in a mock apartment environment, with a Fetch mobile ma-

nipulator performing an object retrieval task (Figure 5.2). We chose the apartment environ-

ment as one that would be familiar to study participants, and the retrieval task due to its

intuitive nature and the diversity of potential errors [40], many of which are also common

in other applications (e.g. occlusion of objects) [169].

We conducted our experiment online by simulating the experience of a participant re-

motely controlling the robot. Participants were told that they would be using a web inter-

face (Figure 5.3) to guide the robot through error recovery. In reality, in response to their

actions, the interface would display videos that showed the robot executing the target be-

havior. All videos were pre-recorded for consistency and scalability of the experiment. As

117

(a) (b)

Figure 5.3: (a) The web UI for participants in the BASELINE condition. The red annota-
tions are for illustration purposes only. (b) Examples of starred suggestions for diagnoses
(top) and for actions (bottom).

shown in Figure 5.1, we recorded 285 videos representing a rich storyboard of potential

recovery behaviors.

In addition to the video of the robot’s action execution, the interface displayed a sum-

mary of the task objective and showed a history of participant actions alongside the results

of those actions (i.e., success/failure). Using this information, at each step of the experi-

ment participants could (1) indicate their diagnoses of problems with the robot from a set

of 11 possible problems, D, and (2) select the next action to take to resolve the problem

from a list of 17 possible actions, A.

5.3.1 Task Scenarios

The robot’s environment consisted of three possible locations the robot could navigate to:

couch, dining table, and kitchen counter. Three manipulable objects were present in the

environment: bowl, jug, and cup. The robot was able to navigate to locations depending on

localization, as well as recognize the three objects or pick up and place them, resulting

in 13 possible object-action combinations. To construct an experiment storyboard, we

modeled the state as the state of the robot, the objects, and the presence of any of the failures

118

described below, and then applied deterministic action transitions based on predetermined

action preconditions (e.g., executing pickup(obj) would cause the robot to pick up the obj

if it was unoccluded in front of the robot).

In each experiment, the robot started in one of four errors, F1–4, described below. The

common task objective (i.e., terminal condition of the experiment) was for the robot to be

located near the couch while holding the cup. In the absence of errors, this objective could

be achieved by the robot navigating to the kitchen counter, picking up the cup (Figure 5.2),

and taking it to the couch.

To facilitate our goal of evaluating decision support suggestions for robot failures, we

injected an error into each participant trial in order to study the participant’s recovery be-

havior. Each failure scenario, and corresponding start state, represents a type of error com-

monly encountered in robot task execution [169]:

F1: Mismatch between design and the environment where the objects are actually at a

location different from the one specified in the nominal task objective. Participants

started with a view of an empty kitchen counter and needed to find the objects, which

were on the dining table. Min. recovery steps: 3.

F2: Non-fatal cause of a failure where the robot was mislocalized so that navigation

commands were remapped, which then triggers a failure while trying to find the

objects. E.g. the command “Navigate to [locationA]” sent the robot to [locationB]

instead. As a symptom of the remapping, participants started with a view of an empty

dining table. Min. recovery steps: 4.

F3: Environment occlusion, with the jug occluding the cup on the kitchen counter. The

scenario also showcases aliased faults, because visually this failure is similar to F1.

Min. recovery steps: 4.

F4: Multiple concurrent faults. The task was misspecified (F1), the jug occluded the cup

(F3), and the bowl was placed on top of the cup requiring it to also be moved out of

119

the way (an additional fault). Min. recovery steps: 7.

5.3.2 Suggestions

Depending on the study condition, participants were shown three diagnosis suggestions

and/or three action recommendations. Stars were used to recommend diagnosis/actions to

participants in the user interface (UI) shown in Figure 5.3b. Instructional text in the UI

notified participants that the number of stars was a proxy for model certainty. We provided

a ranked list of suggestions without numerical values as a result of recommendations from

prior work [130].

Diagnoses: There were 11 total diagnoses, such thatD = Dnone

⋃
Dfault

⋃
Ddistractors,

where Dnone indicated no fault in the current robot execution, |Dfault| = 4 corresponded

to four failures from the scenarios above (unknown to participants ahead of time), and

|Ddistractors| = 6 represented distractor diagnoses that never occurred in the experiments

(e.g., There is a problem with the camera). Based on the pilot studies, all diagnoses were

assigned easy-to-understand labels, e.g., the term “gripper” was substituted with “hand”

because the latter is more accessible to the general public. Each robot state was associated

with one or more diagnoses in the setDnone

⋃
Dfault and we used a lookup table to suggest

diagnoses to participants (suggestions were padded to three by random sampling of D).

Actions: There were 17 total actions, such that A = Adomain
⋃
Adistractor, where

|Adomain| = 13 corresponded to the 13 object-action combinations defined with the domain

(above), and |Adistractor| = 4 represented distractor actions that did not cause any visible

changes in the participant videos (e.g., Restart the camera). Participants could select any of

the 17 actions at all times. When presenting action recommendations, we included the op-

timal action (i.e., the action on the trajectory with the least number of actions to the goal) as

the highest priority, and then randomly chose from the remaining executable actions at the

state (i.e., actions that would succeed) in order to present a total of three recommendations.

Modulating Accuracy: We provided the participant with three incorrect suggestions if

120

Suggestion Type Acc: 80% Acc: 90% Acc: 100%
No suggestions - - BASELINE∗

AX AX80 AX90 AX100

DX DX80 DX90 DX100

DX & AX DXAX80 DXAX90 DXAX100
∗Baseline does not provide feedback, so has no associated accuracy

Table 5.1: Study Conditions.

the study condition required it. For diagnosis suggestions, we used three random choices

among all the diagnoses that were not applicable in the robot state. For action recommen-

dations, we made three random choices among all actions that could successfully execute

in the state, taking care to not select the optimal action. In the DXAX conditions, action

recommendations were corrupted when diagnosis suggestions were corrupted.

5.4 Experiment Procedure

We conducted a 4x3 between-subjects fractional factorial experiment, with a total of 10

conditions (Table 5.1).

5.4.1 Protocol

We recruited 200 participants through Amazon Mechanical Turk, with 20 participants per

condition. The study was designed to take 20 minutes and participants were compensated

$4 for their time. After providing basic demographic information, participants were intro-

duced to the robot system through an instructional web page containing an accompanying

video (available at https://youtu.be/0jYuxLTKlyM) to familiarize them with the domain. They

were then asked five yes/no knowledge review questions to test their understanding of the

task. Participant data was discarded if participants failed the review questions more than

five times or refreshed the browser during the experiment.

Participants who passed the knowledge review were presented with the UI introduced

in Section 5.3 and allowed up to 20 actions to assist the robot. Within the 20 actions,

121

https://youtu.be/0jYuxLTKlyM

Metrics
(data type)

Assumed Model Parameter
Priors

ROPE

FRR
(binary)

metrici ∼ Bernoulli(pi)
logit(pi) = β0 +Xcontrol,iβcontrol+

Xcondition,iβcondition

β· ∼ N (0, 10) [-0.055, 0.055]

RAX, RDX,
CAX, CDX

(binary)

metricij ∼ Bernoulli(pij)
logit(pij) = β0 + β0,i+

Xcontrol,iβcontrol+

Xcondition,iβcondition+

Xstateijβstate

β· ∼ N (0, 10)

β0,i ∼ N (0, σi)

σi ∼ HS(3, 0, 10)
[-0.055, 0.055]

SUS
([0, 100])

metrici ∼ SkewNormal(µi, σ, α)

µi = β0 +Xcontrol,iβcontrol+

Xcondition,iβcondition

β· ∼ N (0, 10)

σ ∼ HS(3, 0, 22)
α ∼ N (0, 4)

[-2.3, 2.3]
(0.1 ∗ SD[metric])

HS: Half-Student distribution

Table 5.2: The assumed Generalized Linear Mixed Models for each of the metrics in the
analyses. In the models, i indexes a participant, and j is the jth action taken by participant
i. ROPE is set based on recommendations by Kruschke [170].

participants in the 90% accuracy conditions received inaccurate AX and/or DX suggestions

on the 2nd and 12th actions (if they took at least 12 actions), and participants in the 80%

accuracy conditions received inaccurate suggestions on the 2nd, 5th, 12th, and 15th actions.

Once a participant resolved the error or exhausted their budget of 20 actions, they were

directed to a post-study usability questionnaire.

5.4.2 Metrics & Hypotheses

We evaluate the following performance metrics:

1. Failure resolution rate (FRR): The failure scenario is considered resolved if the par-

ticipant accomplishes the robot’s goal within the budget of 20 actions. FRR captures

the likelihood of a participant resolving a failure scenario.

2. Rate of optimal action selection (RAX): Each state has an optimal action that leads to

the goal in the shortest number of actions (Section 5.3). RAX examines the propen-

sity of participants to select the optimal action and is a measure of operator reliance

on decision support [132].

122

3. Rate of correct diagnosis selection (RDX): Each state corresponds to a set of correct

fault diagnoses (Section 5.3.2). RDX examines the propensity of participants to se-

lect at least one of those diagnoses and is a measure of operator reliance on decision

support [132].

4. Compliance with AX suggestions (CAX): When provided with action recommenda-

tions (in the AX or DXAX conditions), CAX captures participants’ likelihood of

following those suggestions and is a measure of operator compliance with decision

support [132].

5. Compliance with DX suggestions (CDX): When provided with diagnosis sugges-

tions (in the DX or DXAX conditions), CDX captures participants’ likelihood of

following those suggestions and is a measure of operator compliance with decision

support [132].

6. System Usability Scale (SUS): The SUS is a 10-item Likert scale used the measure

the usability of the UX [171] and was administered to participants in the post-study

questionnaire. In our study, the reliability rating, Cronbach’s α, for items in this

instrument was 0.94.

The hypotheses associated with each of the above metrics are enumerated in Table 5.3.

Each metric is associated with two hypotheses pertaining to each of the two research ques-

tions that motivate this work.

5.4.3 Bayesian Data Analysis

We draw our conclusions from a Bayesian analysis performed on Generalized Linear Mixed

Models over the data. The Bayesian analysis allows us to quantify both the likelihood for

the existence of an effect as well as a practical estimate of the significance of that effect. To

perform the analysis, we assume that all our metrics are generated under a structural model

with the following explanatory variables:

123

• Xcondition,i =XType,i+XAcc,i: A suggestion type factor (Type∈{BASELINE, AX, DX,

DXAX}) and an accuracy factor (Acc∈{80%, 90%, 100%}). We encode the Type factor

as Helmert contrasts and report the effects of AX, DX, and DXAX levels vs. the BASE-

LINE level. We encode the Acc factor as orthogonal polynomials in order to investigate

linear or quadratic trends in the effects of the factor. Our model does not include inter-

action effects between Type and Acc in order to preserve model identifiability.

• Xcontrol,i: The demographics of a participant and the failure scenario (F1–4) they were

assigned.

• Xstate,ij, β0,i (for RAX, RDX, CAX, & CDX): The state of the robot and a random

intercept effect of the participant.

Depending on the nature of a metric’s data (i.e. binary, count, etc.), we fit recommended

probability distributions [172] using Maximum Likelihood Estimation (MLE). The chosen

distribution is the one that had the lowest AIC of fit. The probability distribution and the

model we used in the analysis of each metric are listed in Table 5.2.

In order to perform Bayesian analysis, we formulate a null hypothesis of minimal effect

based on the nature of the data: this is called the Region of Practical Equivalence (ROPE).

For instance, we can set the ROPE to be [-0.055, 0.055] for binary data, which then implies

that effects resulting in a likely change of less than 0.055 (within the ROPE interval) are

considered insignificant (we cannot reject the null hypothesis). The ROPE for each analysis

are in Table 5.2.

We begin the analysis by initializing model parameters with weak priors (e.g. N (0, 10)).

We then sample parameters for models that might explain the observed data using Hamilto-

nian Monte-Carlo sampling [172, 173]. We use 4 chains with a burn-in of 1000 iterations,

before sampling for 1000 iterations to get the the posterior distribution of the parameters.

We verify the diagnostics of the convergence of the samples using established methods

involving Leave-One Out Cross-Validation [174]. Note that the posterior distributions of

the parameters imply a posterior distribution on the metrics’ values. Our inferences on the

124

Metric Hypotheses
Metric better

with AX
Metric better

with DX
Metric better
with DXAX

Metric trend
with Acc. is

Linear

Metric trend
with Acc. is
Quadratic

FRR
H1FRR: FRR increases with suggestions than without.
H2FRR: FRR increases with suggestion accuracy.

97.2% [pd]

96.2% [pd]

U-shape
97.0% [pd]

*

RAX
H1RAX: RAX increases with suggestions than without.
H2RAX: RAX increases with suggestion accuracy.

97.0% [pd]
**

99.0% [pd]
**

RDX
H1RDX: RDX increases with suggestions than without.
H2RDX: RDX increases with suggestion accuracy.

97.8% [pd]
*

98.7% [pd]
**

Positive slope
99.3% [pd]

*

CAX
H1CAX: CAX improves with DX suggestions.
H2CAX: CAX increases with suggestion accuracy. N/A‡

CDX
H1CDX: CDX improves with AX suggestions.
H2CDX: CDX increases with suggestion accuracy. N/A‡

Positive slope
100% [pd]

*

SUS
H1SUS: SUS increases with suggestions than without.
H2SUS: SUS increases with suggestion accuracy.

98.9% [pd]
n.s.

95.2% [pd]
n.s.

‡ CAX (CDX) does not apply when AX (DX) is not present.

Table 5.3: Metrics, hypotheses, and the main effects results from the data analysis (Section 5.4.3). In the results columns, we report in
the table if [pd] >95%. We show an effect size if the overlap in ROPE is <2.5%. Effect sizes are indicated by the asterisks: *** for a
large effect (Std.Median >.8), ** for a medium effect (Std.Median >.5). and * for a small effect (Std.Median >.2) [175].

125

effects of interest are performed using the posterior distributions.

Using the guidelines presented in [176], we report:

1. A Probability of Direction [pd], which quantifies the likelihood of the existence of

an effect.

2. The Median and the 89% High Density Credible Intervals (CI) of effect sizes. Effect

sizes are classified from Median estimates using the thresholds in prior work [175].

3. The degree of overlap of the full posterior distribution of the metric with the ROPE.

The value is used to reject (or not) the null hypothesis on the significance of the effect.

We report only a subset of the data analyzed in this chapter. Interested readers can find

the complete analysis, including model diagnostics and the effects of non-condition factors

at https://bit.ly/2UjPPtE.

5.5 Results

Table 5.3 summarizes our research hypotheses and key results of the study, which we dis-

cuss in detail in this section.

Demographics: Our experiment consisted of 200 participants (age group mode 26–30

years, 36.5% / 63% / 0.5% female/male/unspecified gender). The majority of participants

(166/200) interacted with a robot at most three times a year.

Failure Resolution Rate (FRR): Figure 5.4a shows the proportion of participants that

resolved the fault for a given condition. Across conditions, the FRR ranged from 0.6 (DX90)

to 1.0 (AX100).

On evaluating H1FRR, we find that the resolution rate with action suggestions (AX)

compared to BASELINE has a 97.2% [pd] of being positive (Median = 1.89, 89% CI

[0.29, 3.37]) and can be considered large (Std.Median = 1.04) and significant (0.73% in

ROPE) [ROPE (full)]. We also find that the resolution rate with both suggestions (DXAX)

compared to BASELINE has a 96.2% [pd] of being positive (Median = 1.57, 89% CI [0.16,

126

https://bit.ly/2UjPPtE

2.97]) and can be considered large (Std.Median = 0.87) and significant (1.15% in ROPE)

[ROPE (full)]. As seen in Figure 5.5a, the results indicate that adding action suggestions

(AX and DXAX) greatly increases the probability of the participants resolving the robot’s

faults.

On evaluating H2FRR, we find that the noise level has a quadratic relationship to the

probability of fault resolution with a 97.0% [pd] positive effect size (convex-shape) (Me-

dian = 0.77, 89% CI [0.12, 1.40]), which can be considered small (Std.Median = 0.42) and

significant (1.75% in ROPE) [ROPE (full)]. Therefore, as seen in Figure 5.5b, the data

suggests that as the accuracy of suggestions increases, there is a U-shaped relationship to

participant performance.

Rate of optimal action selection (RAX): Figure 5.4b shows the proportion of optimal

actions taken by participants in each study condition. Across conditions, the Median RAX

ranged from 0.50 (DX100, DX80) to 0.76 (AX100).

On evaluating H1RAX, we find that the optimal action rate with action suggestions (AX)

compared to BASELINE has a 97.0% [pd] of being positive (Median = 1.03, 89% CI

[0.16, 1.95]) and can be considered medium (Std.Median = 0.57) and significant (1.98%

in ROPE) [ROPE (full)]. We also find that the optimal action rate with both suggestions

(DXAX) compared to BASELINE has a 99.0% [pd] of being positive (Median = 1.20,

89% CI [0.39, 2.09]) and can be considered medium (Std.Median = 0.66) and significant

(0.50% in ROPE) [ROPE (full)]. As seen in Figure 5.5c, the results indicate that adding

action suggestions (AX and DXAX) greatly increases the likelihood that participants take

the desired actions to resolve a failure.

On evaluating H2RAX, we find no significant effect of the optimal action rate with the

accuracy of the suggestions.

Rate of correct diagnosis selection (RDX): Figure 5.4c shows the proportion of of cor-

rect diagnoses made by participants in each study condition. Across conditions, the Median

RDX ranged from 0.59 (DX80) to 0.86 (DX100).

127

(a) FRR (b) RAX (c) RDX (d) CAX (e) CDX (f) SUS

Figure 5.4: Study data for each of the metrics defined in Table 5.3.

(a) FRR v. Type (b) FRR v. Acc. (c) RAX v. Type (d) RDX v. Type (e) RDX v. Acc. (f) CDX v. Acc.

Figure 5.5: Predicted Median of the posterior of significant effects after Bayesian analysis. Asterisks indicate effect sizes (see Table 5.3).
Points in the figure represent data from the study; larger points indicate more data instances with the same value.

128

On evaluating H1RDX, we find that the correct diagnosis rate with diagnosis suggestions

(DX) compared to BASELINE has a 97.8% [pd] of being positive (Median = 0.82, 89%

CI [0.15, 1.51]) and can be considered small (Std.Median = 0.45) and significant (1.60%

in ROPE) [ROPE (full)]. We also find that the correct diagnosis rate with both suggestions

(DXAX) compared to BASELINE has a 98.7% [pd] of being positive (Median = 0.92, 89%

CI [0.22, 1.60]) and can be considered medium (Std.Median = 0.51) and significant (0.98%

in ROPE) [ROPE (full)]. As seen in Figure 5.5d, the results indicate that adding diagnosis

suggestions (DX and DXAX) results in more correct diagnoses.

On evaluating H2RDX, we find a 99.3% [pd] positive effect (positive slope) of accuracy

in suggestions to correct diagnosis rate (Median = 0.48, 89% CI [0.16, 0.79]), which can be

considered small (Std.Median = 0.26) and significant (1.25% in ROPE) [ROPE (full)]. As

shown in Figure 5.5e, there is a linear improvement in the rate of correct diagnoses from

participants as the accuracy of suggestions improves.

Compliance with AX suggestions (CAX): Figure 5.4d shows the proportion of partici-

pants that complied with action suggestions in the conditions that received AX suggestions

(AX & DXAX). Across conditions, the Median CAX ranged from 0.55 (AX90) to 0.76

(AX100). On evaluating H1CAX and H2CAX, we find no significant effects of either diagno-

sis suggestions (DXAX vs. AX) or the accuracy of the suggestions.

Compliance with DX suggestions (CDX): Figure 5.4e shows the proportion of partic-

ipants that complied with diagnosis suggestions in the conditions that received DX sug-

gestions (DX & DXAX). Across conditions, the Median CDX ranged from 0.66 (DX80) to

0.88 (DX100).

On evaluating H1CDX, we find no significant effects of action suggestions (DXAX vs.

AX) on the compliance rate. On evaluating H2CDX, we find that there is a 100% [pd] posi-

tive effect (positive slope) of accuracy in suggestions to the rate of compliance with sugges-

tions (Median = 0.77, 89% CI [0.39, 1.11]), which can be considered small (Std.Median

= 0.42) and significant (0.08% in ROPE) [ROPE (full)]. As shown in Figure 5.5f, the

129

compliance of participants with diagnosis suggestions improves as the accuracy improves.

System Usability Scale (SUS): Figure 5.4f shows the responses of participants to the

SUS questionnaire across the different conditions. Across conditions, the median SUS

scores range from 66 (DX90) to 76 (DXAX90).

On evaluating H1SUS, we find that the score with action suggestions (AX) compared

to BASELINE has a 98.9% [pd] of being positive (Median = 11.68, 89% CI [3.82, 19.0]),

which can be considered medium (Std.Median = 0.56) but not significant (3.02% in ROPE)

[ROPE (full)]. We also find that the SUS score with diagnosis suggestions (DX) com-

pared to BASELINE has a 95.2% [pd] of being positive (Median = 8.16, 89% CI [1.17,

16.04]), which can be considered small (Std.Median = 0.38) but not significant (9.48% in

ROPE) [ROPE (full)]. The results indicate that adding suggestions, AX or DX, but not both

(DXAX), might result in greater usability.

On evaluating H2SUS, we find that the accuracy of suggestions does not affect the us-

ability score.

5.6 Discussion and Conclusions

In this section, we discuss the implications of the statistical results presented above. We

frame the discussion in relation to our research questions, with potential guidelines for

future UX development highlighted in bold.

RQ1—Type of Decision Support: Error recovery systems should display both feedback

and feedforward information for maximum effectiveness. From the results of evaluating

H1RAX and H1RDX, we find that participants are more likely to select the correct failure

resolution actions if feedforward action recommendations (AX) are provided, and more

likely to select the correct problem diagnoses if feedback as diagnosis suggestions (DX)

are provided. Operators perform both functions in most common error recovery scenarios,

with diagnosis typically informing identification of subsequent actions [165, 143, 135]. As

a result, most systems should display both feedforward and feedback information.

130

Feedforward information has a greater effect on successful error resolution than

feedback information. Analysis of the failure resolution rate metric in the context of

H1FRR highlights that participant ability to successfully recover from errors was greatest

in the presence of feedforward action recommendations (AX & DXAX conditions) than

when presented with feedback diagnosis information alone (DX). The result, consistent

with UX research [162], demonstrates that although diagnosis suggestions aid in greater

understanding of the overall state of the system (as shown by RDX results), feedforward

information, suggesting “what-to-do” is more effective in leading to the correct solution.

RQ2—Decision Support Accuracy: If the feedforward information is noisy (as in most

systems), supplementing feedforward with feedback information (even if also noisy)

leads to effective recovery strategies. Analysis of the failure resolution rate metric in

the context of H2FRR highlights that participant performance was significantly affected by

accuracy levels. Specifically, we observe a U-shaped response in which participant per-

formance is likely to drop significantly in the 90% accuracy conditions. The drop is likely

evidence of overtrust in the system [164]. However, Figure 5.4a and Figure 5.4b provide an

indication that the performance drop might not be present in the DXAX conditions, indi-

cating that diagnosis information, and the situational awareness that users might gain from

it, can help ameliorate overtrust in the faulty system.

Additional Findings: Evaluating H2CDX, we find that the compliance of participants with

the suggestions linearly improves with the accuracy of the suggestions. The finding is

consistent with prior work, which has found that operator compliance is dependent on

the reliability of the decision support [132, 130]. Additionally, we find that there is a

linear improvement in participants choosing the correct diagnoses (RDX) as the accuracy

of suggestions improves, showing that reliance on decision support can also be dependent

on the reliability of the decision support [132].

Evaluating H1SUS, we find that both feedforward (AX) suggestions and feedback (DX)

suggestions might independently improve the usability of an error recovery UX over a

131

baseline without decision support, but the same might not hold true when both are present

(DXAX). While the result might indicate a potential problem of too-much-information,

further investigation is needed because the independent effects of DX and AX were not

considered to be of practical significance (based on overlap within the ROPE).

Final Conclusions: In summary, we find that users are most effective in guiding error

recovery when both feedback-focused diagnosis information and feedforward-focused ac-

tion suggestions are presented. Note that further studies are required to better understand

the above effects. For instance, we evaluated non-experts for whom diagnosis suggestions

might not have been as useful as for experts. Additionally, when inaccurate, our sugges-

tions for diagnoses and actions were inaccurate at the same time, but an accurate diagnosis

might have ameliorated inaccurate action recommendations, or vice-versa. Finally, we as-

sumed that (a) the space of diagnosis and action suggestions corresponded to the space of

diagnoses and actions picked by operators and (b) suggestions were provided frequently

and at each time step: changing the granularity or frequency of suggestions could lead to

different effects. Future work can study the additional factors.

In the next chapter, we turn our attention to the effects of operator accuracy on the

accuracy of decision support models: the second interaction that we uncovered in Chap-

ter 4. We use the data from our experiments in this chapter to evaluate the robustness of the

decision support models in the next.

132

CHAPTER 6

ON THE ACCURACY OF DECISION SUPPORT MODELS DURING ROBOT

FAILURE INTERVENTIONS

Our work so far has confirmed the results of prior research, finding that providing oper-

ators with decision support improves their accuracy in a task [130, 131, 177, 132] (see

Chapter 5). In fact, the effects can be part of a virtuous positive feedback cycle: more

accurate decision support leads to increased compliance [130, 132], which can then further

improve operator accuracy. Therefore, creating accurate decision support models to assist

operators in their decision-making during an intervention is of paramount importance.

However, developing accurate decision support models presents many challenges. While

prior work has generated troubleshooting aids to help humans resolve failures [165, 136,

139], the methods require accurate domain models, which can be cumbersome to spec-

ify and are often brittle in the face of increasing system complexity [28]. Other work has

used data-driven approaches to generating diagnoses [142, 141] and actions [150, 149] on

a robot, which can be used as decision support. Unfortunately, we have found that even

with highly accurate decision support, operator compliance can be low and operator inac-

curacy high [130, 177], possibly as a result of unfamiliarity, lack of information, lack of

expertise, overtrust, or other factors [164, 133, 129, 178] (again, see Chapter 5). Therefore,

as seen from the examples in Figure 6.1, data-driven decision support models need to be

made robust to operator errors in an intervention.

In this work, we highlight the issues that can arise from the tightly coupled interactions

of a machine learning model and a human during robot failure interventions and consider

methods for making the model more accurate and robust. We begin by formalizing the

intervention process as a Partially Observable Markov Decision Process (POMDP) and

specify the aim of developing decision support models in terms of that formalization. We

133

Figure 6.1: Decision support outputs from models in this work to examples of operator
behaviour witnessed in Chapter 5. Text in green indicates accurate diagnoses/actions while
text in red indicates inaccurate diagnoses/actions. The accuracy of an imperfect decision
support models can be improved if the operator is themselves accurate (top). However, the
same model can suffer degraded accuracy if the operator is inaccurate (bottom).

then conduct six experiments (Section 6.4) in which we vary the inputs to the decision sup-

port models and the techniques used to learn the parameters for them using noisy datasets

of interventions.

We gain the following insights from the results of our experiments: (1) the robustness

and accuracy of decision support models is greatly improved if the features that are used

as inputs are informative of the failures, (2) diversity in the training data is particularly

helpful for decision support robustness, and (3) current techniques in unstructured machine

learning are unable to meet the challenge of adequately learning to assist operators in an

134

intervention domain. The insights can inform future work that might wish to develop deci-

sion support for robot operators.

6.1 Related Work

Prior research has long studied the proclivity of human operators to make mistakes [129,

36], even when provided with decision support [130, 131] (see also Chapter 5 and [43]).

However, the research is frequently conducted in the context of simple one-off tasks [130,

131], and any inaccuracies in the decision support are pre-specified to maintain control of

experimental conditions [43, 130, 131]. In contrast to the prior research, we do not control

the predictions from our decision support models and instead evaluate the accuracy of the

models as a result of interactions with mistake-prone human operators.

There is a large body of work in robotics focused on fault diagnosis [28, 142, 141,

179] or in assisting with action selection and planning [150, 149, 147, 11], which can

be leveraged to develop decision support models. The techniques used are broadly cat-

egorized [28] as either model and knowledge-based, leveraging models of the system or

environment to produce diagnosis and action recommendations [55, 145], or statistical and

data-driven, leveraging the correlations between observed features and diagnoses or actions

in a dataset [142, 141]. The former set of approaches, while expressive and capable of pro-

viding detailed outputs, are often cumbersome to specify and can be brittle in the face of

increased system complexity [28]. Therefore, we eschew the effort of modeling the domain

to see if diagnosis suggestions and action recommendations can be learned directly from

the data.

Automated troubleshooting aids to provide humans with diagnoses as well as diagnostic

and repair action suggestions have been developed in the past, especially in fields beyond

robotics [165, 180, 136, 181, 139, 135, 143]. Some of the works account for the cost of

actions in order to facilitate recoveries while minimizing the total cost incurred [180, 136,

181, 139, 143]. Yet others attempt to remain robust to noisy observations and actions by

135

formulating the problem as Markov Decision Processes (MDPs) [182, 136, 181]. However,

all of the works require well-specified domain models of the consequences of actions and

the relationships between observations and diagnoses—in the parlance of Section 6.2.1, T ,

PD, PO, or some combination of the three, must be specified. The requirement introduces

unwanted modeling effort and can hinder troubleshooting if the models are misspecified.

Additionally, many of the works have not been evaluated for online troubleshooting during

a robot intervention [182, 180, 136, 181, 143]. In this work, we utilize the MDP formal-

ization of troubleshooting, which is similar to the formalisms used in human-robot shared

autonomy [183, 184], and apply it to modeling human-robot interaction during interven-

tions. We also adopt a data-driven approach to our decision support models and make no

assumptions on the availability of domain information that can be used improve model

inference or can be incorporated as structured priors to facilitate model learning.

Learning unstructured models from inaccurate data is a large field of study [185], with

much interest arising from the fields of adversarial learning [186, 187], semi-supervised

learning [188], robust statistics [189], among others. The techniques either focus on noise

in the features or noise in the labels; seldom both. Introducing noise in the features, some-

times called domain randomization, can in fact make a model robust by preventing overfit-

ting [190, 191]. Noise in the labels is a harder problem [192, 193] but some machine learn-

ing models, such as neural networks, are able to learn accurate models in spite of it [194,

195]. Nevertheless, works have proposed using heuristics such as early stopping [196],

learning noise models using trusted subsets of data [197, 198], clustering [199], reweight-

ing data points [200, 201], and even using secondary learning objectives [188], to improve

accuracy when there is label noise. The techniques have had great success in different

domains, but they are often evaluated in one-off classification tasks, which are not charac-

teristic of robot interventions. In particular, during an intervention, label noise in the form

of operator selected diagnoses or actions in one timestep, can become feature noise in the

next, by changing the distribution of input data provided to the suggestions model. There-

136

Figure 6.2: An intervention process.

fore, it is unclear from the prior work if the techniques used to learn from noisy data in the

literature are capable of creating robust models that can be used in robot interventions.

6.2 Definitions

In this section we formalize an intervention process, introduce the challenges unique to

creating decision support systems within the domain, and then introduce our research ques-

tions in the context of those challenges.

6.2.1 The Intervention Process

Recall that a situation where a human is tasked with assisting a robot recover its autonomy

after a failure is termed an intervention [31]. The goal during an intervention for both

the human and robot is to reach a resolution of the intervention: a state from which the

robot can resume autonomous operation. We assume that the human enacts a supervisory

role during the intervention by directing the robot’s actions, while the robot executes the

humans directives and can, in addition, provide additional information to the human in

order to better guide the human towards a resolution (Figure 6.2).

Concretely, we assume that the state of the world during an intervention can be perfectly

137

modeled by an underlying state at time t, Xt ∈ X , which is unobservable to the actors, the

robot and the human. The goal of both the robot and the human, the resolution of the

intervention, is then defined by a subset of states, G ⊂ X , from which the robot can resume

autonomous operation. Therefore, upon starting at a non-resolution state, X0 /∈ G, the

robot and human must collaborate to reach G in the fewest number of steps.

We assume that each actor in the intervention has access to a partial observation of the

situation, which is dependent on the state Xt. Specifically, we assume that the robot has

access to an observation, OR
t ∈ OR whereOR need not overlap with X , and the human has

access to OH
t ∈ OH where OH need not overlap with OR or X . We can therefore define

the existence of observation models, POR : X → OR and POH : X → OH , which dictate

the relationship of the observations of the robot and operator to the underlying state. There

is considerable research, especially in the realms of Human Factors and User Interface

Design, that characterizes the desirable properties of OH in order to provide the “best”

information to the human [202, 137]; we do not address OH or POH in this work.

Given incomplete observations, we assume that a diagnosis, Dt ∈ D, provides supple-

mentary information by helping both agents localize their beliefs on the underlying state,

Xt; e.g., a diagnosis of robot mislocalized can help distinguish between states where object

recognition fails due to a navigation error from states where object recognition fails due to

failures in perception. As such, a diagnosis is dependent on the state, i.e. we can assume

the existence of a diagnosis model PD : X → D, and is a means of sharing state informa-

tion between the human and robot. The robot’s goal is to suggest diagnoses, DR
t ∈ D, to

help the human better understand the problem or situation. The human’s goal is to provide

the robot with diagnoses, DH
t ∈ D, to enable the robot to provide better decision support

in the future.

Actions, At ∈ A, evolve the state according to an unknown (to the human and robot)

transition model, T : X × A → X , and are therefore the means by which the problem(s)

in an intervention may be rectified. We assume that the robot executes actions selected

138

by the human1 and has the ability to influence the human’s action selection by providing

recommendations. The robots goal is to suggest actions, ARt ∈ A, such that the human

resolves the intervention in the fewest steps; the human’s goal is to select actions, AHt ∈ A

to also resolve the intervention as quickly as possible.

Finally, we assume that an intervention continues for T timesteps until a resolution is

reached, i.e., XT ∈ G; or until a timeout is encountered, i.e. XT /∈ G, in which case the in-

tervention remains unresolved. We assign an outcome variable, RT = 1 if the intervention

is resolved and RT = −1 if the intervention remains unresolved.

We have thus defined a Partially-Observable Markov Decision Process (POMDP), which

has also been used in prior work in troubleshooting [181, 136] and in shared human-robot

autonomy [183, 184]. Our POMDP is described by the 7-tuple, (X ,A, T , R, {OR,D},

{POR , PD}, γ), where most of the terms are defined above and γ ∈ [0, 1] is a discount fac-

tor that can be used to forecast the likely value for RT before the end of an intervention is

actually encountered.

6.2.2 Decision Support Models

In order to provide suggestions to the human, the robot must have access to a model that it

can use to generate diagnosis and action suggestions in a given situation. As mentioned in

Section 6.1, we adopt a data-driven approach to the problem. Concretely, we assume access

to an intervention dataset with N recorded interactions of the human during failure inter-

ventions, Ξ = {ξT1 , . . . , ξTN}, where each ξTi = ([(OR
0 , D

H
0 , A

H
0), . . . , (OR

Ti−1, D
H
Ti−1, A

H
Ti−1)],

RTi) is tuple containing a sequence of the intervention data of length Ti, and RTi , the inter-

vention’s outcome. Each term in the sequence consists of OR
t , the robot’s observation, DH

t ,

the diagnosis selected by the human, and AHt , the action selected by the human. Given Ξ,

we train two decision support models—fD, to suggest diagnoses, and fA, to suggest actions

at every timestep.

1In non-safety critical domains where the robot has sufficient confidence in its action selection, it may
execute the action autonomously while supervised by the human.

139

6.2.3 Research Questions

Prior work in Human Factors [130] and Human-Robot Interaction [43] has found that even

with accurate decision support, humans can showcase high levels of error through non-

compliance and inaccuracy. The observation presents challenges in learning and inference

for fD and fA.

The primary challenges in learning the models are two-fold: (1) human inaccuracy can

result in multiple labels for the same input, resulting in noisy and sometimes adversarial

training data; and (2) even when the training data is perfect, the imperfect nature of the

robot’s observations mean that multiple labels can still be aliased given an observation.

There is a large body of work in machine learning dedicated to robust learning from noisy

features and labels (Section 6.1), and we draw inspiration from such works to investigate

model performance under realistic learning challenges.

Our work also focuses on investigating and addressing challenges that arise during in-

ference, where the human’s errors can have adverse effects on model accuracy at test time.

In particular, human error can (1) introduce noise into the features of the model by provid-

ing unexpected diagnoses or actions as inputs, and (2) through inaccurate actions, induce

unexpected domain-shifts in model features at test time. To the best of our knowledge,

scant research in robotics has characterized these problems; we address that.

Concretely, our research questions are as follows:

RQ1 What inputs provided to a decision support model can make it more accurate and

also more robust given human inaccuracies? We investigate this question to charac-

terize the features that might be available to a model during an intervention to help it

improve accuracy while remaining robust to operator errors.

RQ2 How can techniques in learning from noisy data for unstructured machine learning

help maintain the robustness of models while also increasing decision support accu-

racy? With the second question we aim to identify techniques used in prior work that

140

Figure 6.3: An overhead schematic of the evaluation domain.

learn from noisy data so that we can learn accurate models from a noisy dataset of

interventions while remaining robust to noise at inference time.

In our effort to answer both questions, we survey a variety of features and techniques.

Additionally, we focus particularly on including the human operator’s inputs, DH
· & AH· ,

directly as features to answer RQ1 because the operator’s inputs can be particularly helpful

to the model if correct (see Figure 6.1). Similarly, we focus on the accuracy of labels in the

training dataset to answer RQ2 because one of the most prevalent findings in prior works

has found that some noise (or variety or randomness) in the training dataset is necessary

for the increased robustness of unstructured models [190, 195, 191, 197, 188].

6.3 Evaluation Setup

In this section we introduce the domain, the decision support models, and the datasets that

we used to investigate our research questions.

6.3.1 Domain

We extend a pick-and-place domain in a living-room environment, introduced in Chapter 5

to evaluate our research questions2 (Figure 6.3). The domain simulates a closed-world

environment with deterministic transitions as a result of robot actions. In particular, the

2Available at https://github.com/GT-RAIL/isolation cyoa

141

https://github.com/GT-RAIL/isolation_cyoa

domain is implemented as a story graph, with data from real robot executions on a Fetch

robot accompanying all possible transitions in the graph. Such a setup provides us with the

ground-truth knowledge necessary to evaluate the answers to our research questions while

at the same time preserving the realism and the partial observability of real intervention

scenarios.

The domain has three locations—a Kitchen Counter, a Dining Table, and a Couch—as

well as three objects—a Cup, a Jug, and a Bowl. All the objects are expected to be at the

Kitchen Counter, but based on the domain initialization, they may be placed on the Dining

Table instead. The objects are expected to be visible and unobstructed, but based on the

domain initialization, they might be occluded or in collision. The nominal task plan of the

robot is to pick up the Cup from the Kitchen Counter and bring it to the Couch. The domain

is designed to simulate errors that might occur in the nominal task.

The underlying state of the domain, Xt ∈ X , is represented by a 7-tuple characterizing

the robot’s location in the environment, the location of the objects in the room and their

placement relative to each other, the localization state of the robot (localized or not), and

the object, if any, in the robot’s gripper. There are |X | = 270 states in total, with |G| = 8

states that satisfy the task objective. An intervention simulated in the domain starts at one

of 262 non-goal states and is resolved when one of the eight goal states is reached.

As part of the domain definition, there are a total of |D| = 11 plausible problem diag-

noses that are defined, including a catch-all diagnosis of none, for when no problems exist.

However, six of the diagnoses are distractors with the available states actually simulating

only five diagnoses: each state is associated with one of the five diagnoses. Examples of

diagnoses include cup is not visible (used), robot is mislocalized (used), and robot has low

battery (distractor).

The domain also defines |A| = 17 actions that can be attempted at any of the states

in order to transition to a new state. However, actions only succeed if their preconditions,

specified in the domain of X , are satisfied; as such, the preconditions of the actions are

142

unknown to the robot or human operator. As with the diagnoses, each state is annotated

with one out of 10 actions that lie on the shortest path from the state to one of the goal

states, and seven of the 17 actions are distractor actions that are plausible in the domain,

but that never lie on the shortest path. Examples of actions include go to the couch (used),

pick up the jug (used), dock with the charger (distractor), and look at the kitchen counter

(distractor)3.

The Fetch robot within the domain uses a pick-and-place architecture introduced in

prior work [40] (see Chapter 2). The architecture provides signals for easy fault detec-

tion and diagnosis in a pick-and-place task, and as such, these signals, enumerated below,

constitute the domain of robot observations, OR:

num objects Number of object point clouds. Available after an attempt at a pick action.

duration The duration of the last action.

grasped Indicator for an object in the robot’s gripper.

[loc] distance Distance of the robot to each of the three locations, according to its localiza-

tion.

[loc] heading Heading of the robot to each of the three locations, according to its localiza-

tion.

arm moved Indicator for arm movement in the last action.

action success Indicator for success of the last action.

Note that OR does not contain features directly identifying the robot’s localization state,

the location of the objects in the environment, or to the relative poses of the objects with

respect to each other, i.e. it does not contain aspects of the underlying state. Therefore, as

defined in Section 6.2.1, OR has only a ‘partial’ view of the true state of the domain.

The work in the previous chapter, which introduced the domain, used 285 robot exe-

cutions to generate robot data for all possible state-action transitions in the domain. We

3Some distractor actions can help a human gain situational awareness but they don’t advance the state of
the system.

143

Figure 6.4: The neural network suggestions models.

processed data from the executions to create |OR| = 1152 robot observations that could

be assigned to all state-action transitions. As a result of the processing, all 262 non-goal

states emit at least two different observations, and approximately 7% of the observations

are shared between 2–18 states, further highlighting the complexity of the domain. Con-

cretely, even if a decision support model memorizes all robot observations, it will be unable

to provide accurate diagnosis or action suggestions without additional information, such as

from the diagnosis and action inputs of a human or from a history of interactions with the

domain.

144

6.3.2 Neural Network Suggestions Models

We model our two decision support models as neural networks4 due to their expressivity

and high capacity. Prior works have used neural networks to great effect in learning di-

agnoses [141, 140] or in learning to select actions [203, 204]; we build upon their results.

We create two identical neural networks, one to provide diagnosis suggestions, DR
t , and

another for action recommendations, ARt (Figure 6.4).

Each of the networks is a recurrent network (RNN), in particular a Gated Recurrent

Unit (GRU) [161], which conditions its output in the current timestep to the inputs in the

current timestep as well as a hidden state that encodes the history of the inputs provided

to the network at previous timesteps. A recurrent model is appropriate given the temporal

nature of the decision support problem and the possibility of a history of inputs helping the

models in providing suggestions. However, we investigate this claim in our experiments

detailed in Section 6.4. Our GRU units have a hidden state dimension of 32.

At each timestep t, both the models are given the robot’s observations, OR
t , and the

human’s inputs—the human’s previous diagnosis, DH
t−1, and previous action, AHt−1, if sug-

gesting diagnoses; the human’s current diagnosis, DH
t , and previous action, AHt−1, if sug-

gesting actions. In all of our experiments, we evaluate the usefulness of the diagnosis and

action input from the human (Section 6.4). The human inputs are encoded using shared

embedding layers, and all inputs are normalized using Layer Normalization [205] before

they are provided to the models.

The models provide suggestions by treating it as a classification problem: they provide

a softmax probability over diagnoses or actions the human should take at each timestep.

They are therefore trained using Cross-Entropy loss, and we add Dropout of 0.5 [206]

and an L2 parameter weight penalty for regularization. The parameters of the models are

updated with Adam [116] using a learning rate of 0.001 and with a batch size of 64. The

models are trained for a maximum of 600 epochs, with early stopping based on loss on

4Code is available at [url].

145

Figure 6.5: An overview of how suggestions models are augmented with a mistakes model.

a validation set—prior work has shown that early-stopping leads to more robust models

when given noisy data [196] and we verified the claim in our experiments but do not show

the results in this work.

6.3.3 Modeling Operator Mistakes

A central assumption of our work is that human operators make mistakes in their diag-

noses, DH
· , and actions, AH· . Therefore, in addition to learning the suggestions models, fD

and fA, we also learn a ‘mistakes’ model, g, which can predict if the human’s last input,

action or diagnosis, was a mistake, with the assumption that such an input would improve

the robustness of the suggestions models (Figure 6.5). In our experiments detailed in Sec-

tion 6.4, we evaluate the accuracy of the mistakes model and its usefulness in improving

the robustness of the suggestions models.

Since generating labels for the mistakes model can be a time consuming burden in gen-

eral, we leverage the POMDP structure defined in Section 6.2.1 to train the model. Specif-

ically, given the features to the suggestions models, the mistakes model learns parameters

to forecast the expected value of RT at the presumed end of the intervention5. It then uses

5For the reader familiar with learning in the context of MDPs, we performed value-iteration; as explained
in the next paragraph

146

the forecast of the expected value over two successive timesteps to determine if the human

might have made a mistake—if the expected value does not increase, the model assumes

the operator made a mistake.

Concretely, given the dataset of interventions Ξ = {ξT1 . . . ξTN}, we use the POMDP

discount factor, γ, to assign a ‘value’ to each timestep in ξi s.t. Vt−1 = γVt ∀t ∈ 2...Ti ∀i ∈

1...N , and VTi = RTi . In our domain, γ = 0.9 and V· ∈ [0, 1], so we train the mistakes

model such that g : OR×D×A → [0, 1]. Given the inputs to the suggestions models at time

t, the mistakes model predicts V̂t and then outputs that a mistake was made if V̂t−V̂t−1 ≤ 0.

We used a Multi-Layer Perceptron (MLP) as our mistakes model6 with two hidden

layers, each of dimension 16, and with Gaussian Error Linear Unit (GELU) [207] non-

linearities. The mistakes network was trained concurrently with the suggestions networks

using methods mentioned in the previous section. In our experiments in Section 6.4, we ex-

amine the accuracy of the mistakes model (Table 6.1), and then we investigate the efficacy

of the mistakes model in improving the robustness of the suggestions models (Figure 6.10).

6.3.4 Training Datasets

We created oracles to act as simulated human supervisors during an intervention in order

to train our decision support models to specific levels of accuracy of the human in an

intervention dataset. The oracles had access to Xt but at each timestep, an oracle could

be randomly inaccurate in its diagnoses or actions, if configured to do so. Four oracles

were created, with accuracies ranging from 70% to 100% accurate, in increments of 10%.

Each of the oracles simulated 262 interventions, with maximum intervention length of 15

timesteps, with each simulation starting at each of the 262 non-goal states in the domain.

The inaccurate oracles, 70%–90%, also repeated simulations nine additional times7 from

each non-goal state, for a total of 2620 simulated interventions from each inaccurate oracle.

6Recurrent models, such as the GRU, had lower mistake prediction accuracy and are therefore not dis-
cussed in this work.

7Repeated simulations of the 100% accurate oracle would not have generated different data.

147

The extra simulations were only used as training data in Experiment 2 and in test splits of

cross-validation for choosing model hyperparameters. The 8122 simulated interventions

were split into train, val, and test splits based on the start state of the simulation. We

generated five such random splits, so that model hyperparameters and structure could be

chosen using five-fold cross-validation on the test splits.

6.4 Experiments

We conduct six experiments, described in the following paragraphs, to answer our research

questions (Section 6.2.3) regarding what inputs provided to models, or which techniques

in unstructured machine learning, can help suggestions models improve the accuracy of

suggestions while remaining robust to human error. In each experiment, we evaluate the

effect of a particular input or a particular technique on model accuracy and robustness.

We also evaluate the effect of using the operator’s inputs directly and the effect of training

dataset accuracy across all the experiments since we hypothesize that these factors are

particularly important to model accuracy and robustness.

1. Recurrent vs. Non-recurrent

In this experiment, we investigate if a history of observations or operator inputs, available

in recurrent models, helps improve accuracy and robustness of models over not having

access to such a history. Prior work has found that recurrent models can have a smoothing

effect on estimates [208, 209] and could therefore prove to be useful when learning from

noisy training data. Our models, which use GRUs, are inherently recurrent. To evaluate a

comparable non-recurrent model, such as an MLP, we mask the recurrent state information

in the GRU8.
8In additional experiments not shown here, we also trained MLP models and found the results to be

identical to masking within the GRU.

148

2. Size of the training dataset

In this experiment, we examine the effect of the size of the training dataset. We use the

additional simulated interventions from the 70%–90% oracles as training data to expand

the size of the training dataset. We assume that the greater the size of the training dataset,

the better the model performance.

3. Informative model inputs

In this experiment, we evaluate the necessity of choosing the correct features inOR, partic-

ularly features that can be more informative of failures, by introducing two conditions with

new input features. Prior work often recommends the use of fault forecasting methods such

as Fault Tree Analysis (FTA) [210, 141], Failure Modes and Effects Analysis (FMEA) [24,

211], etc. to determine such features. In the first condition, we add two features from

X that simulate improved perception capabilities to OR: we include the state of the Jug

(X(J))—visible with the Cup, visible without the Cup, or not visible—and the state of the

Bowl (X(B))—visible, placed above the Cup, or not visible. In the second condition, we

use X instead of OR as features in order to investigate an upper bound to performance

when perfect features are used.

4. Trusted fraction of data

In this experiment we investigate the effect of using a small subset of trusted (100% ac-

curate) data in the training dataset in order to better guide learning and improve model

robustness. Prior works often use the trusted subset of data to learn a noise model on

the untrusted data, which can then be used to update suggestions [197, 198]. We use one

such state-of-the-art method, Gold Loss Correction (GLC) [197], and evaluate if the better

quality data or the augmented method of training improves model accuracy or robustness.

149

5. Using mistake estimates

In this experiment, we evaluate the accuracy of the suggestions models when the output

from the mistakes model is included. First, we report the accuracy of the mistakes model,

including when the input features to the model are perfect, i.e. X , to establish an upper-

bound on mistakes accuracy. Then, we report the performance of the suggestions models

when the mistake estimates are included. To examine upper bounds, we also evaluate

suggestions models when the mistakes models are provided with perfect features, X , and

when the mistakes models are substituted for ground-truth labels of operator mistakes.

6. Checking operator compliance with suggestions

In this experiment, we examine the effect of including features to the model that indicate if

the operator followed the model’s suggestions or not, i.e. operator compliance features. As

discussed in the results below, we find in Table 6.2 that model accuracy is greatly influenced

by the accuracy of the operator (“did they make a mistake or not?”) and by their compliance

with suggestions (“did they follow the suggestions or not?”). Therefore, we include two

compliance features, “AHt−1 == ARt−1” and “DH
t−1 == DR

t−1”, to investigate if adding them

improves the performance of the suggestions models9.

6.5 Results

We use the data gathered in Chapter 5 from 200 Amazon Mechanical Turk workers in four

of the non-goal states within the domain to report our results in this section. The accuracies

of the models are reported as micro-averages when tested across the five folds of cross-

validation.

Additionally, our plots in Figure 6.6–Figure 6.11 highlight a model’s robustness to the

9Models provided with the compliance features are not trained with the 100% accurate dataset because
the features are meaningless in that data.

150

incorrect actions of operators10. In particular, the plots compare a model’s average sug-

gestion accuracy when an operator’s action is inaccurate (X-axis) to the model’s average

accuracy when the operator’s action is accurate (Y-axis). Models are generally more accu-

rate when an operator is accurate (Y-axis value > X-axis value), but the more robust the

model, the closer its accuracy on the X-axis is to its accuracy on the Y-axis: a perfectly

robust model would be plotted on the Y = X line. Our plots also show dotted isoclines

indicating overall accuracy, such that models on the same isocline have the same overall

accuracy11. Additional details on the plots are available in Appendix A.

Figure 6.6: The effect of model inputs, training dataset accuracy, and the presence or ab-
sence of recurrent updates on suggestions model accuracy whenAHt−1 is inaccurate (X-axis)
vs. when AHt−1 is accurate (Y-axis).

6.5.1 Recurrent vs. Non-recurrent

Our results in Figure 6.6 show that the action suggestions model achieves the best overall

accuracy of 0.47 when it is provided the human’s inputs AHt−1 and DH
t , it is non-recurrent,

and it is trained with high, 100% or 90%, accurate training data. However, regardless of
10We do not show plots of model robustness to incorrect diagnoses because errors in diagnosis had a

smaller effect on model robustness than errors in actions.
11The overall accuracy is calculated as accoverall = NY ∗ accY +NX ∗ accX , where acc(·) is the model’s

accuracy overall or on the X or Y axes, NY is the number of times human operators were accurate in the test
dataset, and NX is the number of times they were inaccurate. As a result, the slope of the isoclines is −NX

NY

instead of −1. In our evaluation data, NX = 5470 and NY = 3030.

151

the training accuracy, including operator inputs leads to higher overall accuracy, 0.35–0.47

(Mdn 0.42), than not including them, 0.30–0.41 (Mdn 0.35). By contrast, the diagnosis

suggestions model achieves marginally higher overall accuracy when operator inputs AHt−1

and DH
t−1 are excluded, 0.39–0.51 (Mdn 0.46), than when they are included, 0.41–0.49

(Mdn 0.44). As shown in Figure 6.6, the improvement in overall accuracy is mostly a re-

sult of improved robustness to inaccurate human actions (X-axis). In fact, the diagnosis

suggestions model achieves a best overall accuracy of 0.51 when it is not provided with

the human’s inputs, it is non-recurrent, and it is trained on 70% accurate training data. Ad-

ditionally, regardless of the training accuracy, non-recurrent diagnosis suggestions models

that do not use operator inputs achieve similar accuracy values to the best model, 0.48–0.51

(Mdn 0.49).

The previous results highlight the fact that recurrent models are less robust and less

accurate overall than their non-recurrent counterparts for both diagnosis and action sug-

gestions. In particular, the overall accuracies of recurrent action suggestions models and

recurrent diagnosis suggestions models are in the ranges 0.30–0.43 (Mdn 0.36) and 0.39–

0.46 (Mdn 0.43) respectively. By contrast, the overall accuracies of non-recurrent action

suggestions models range from 0.34–0.47 (Mdn 0.41) and that of diagnosis suggestions

models range from 0.42–0.51 (Mdn 0.48). The result indicates that the mistakes made by

humans in a history of actions overshadows any possible benefit that the history can

have in improving suggestion accuracy.

In the following experiments, we do not compare the accuracies of recurrent models as

they are consistently lesser than the accuracies of their non-recurrent counterparts.

6.5.2 Size of the training dataset

Our results in Figure 6.7 show that with 10x more data, the overall accuracy of action sug-

gestions is 0.47–0.52 (Mdn 0.50) and of diagnosis suggestions is 0.54–0.58 (Mdn 0.57),

both of which are higher than their corresponding values in the previous experiment, 0.34–

152

Figure 6.7: The effect of model inputs, training dataset accuracy, and the size of the training
dataset on suggestions model accuracy when AHt−1 is inaccurate (X-axis) vs. when AHt−1 is
accurate (Y-axis).

0.47 (Mdn 0.41) and 0.42–0.51 (Mdn 0.48) respectively. Interestingly, we find that the

improvement to overall accuracy is achieved as a result of improved robustness. The diag-

nosis suggestions models in particular12, achieve accuracies of 0.26–0.40 (Mdn 0.38) when

trained on the smaller dataset and when the operator is inaccurate (X-axis), but manage

achieve accuracies of 0.42–0.52 (Mdn 0.49) when trained on the larger dataset. By con-

trast, the accuracies of the models when the operator is accurate (Y-axis) are similar when

trained on either dataset, with a range of 0.65–0.71 (Mdn 0.70) for models trained on the

smaller dataset and a range of 0.68–0.74 (Mdn 0.72) for those trained on the larger dataset.

The results show that overall accuracy improves with a larger training dataset, most

likely as a result of greater data diversity and greater coverage of states and transitions

within a domain.

Finally, we continue to find trends observed in the previous experiment. We find that

for the models trained with 10x data, including operator inputs improves the overall accu-

racy of action suggestions models from 0.47–0.50 (Mdn 0.48) to 0.51–0.52 (Mdn 0.51). By

contrast, excluding operator inputs improves the overall accuracy of diagnosis suggestions

12The improvement in overall action suggestions model accuracy is a result of improved robustness and
improved accuracy when the operator is accurate (Y-axis).

153

models from 0.54–0.56 (Mdn 0.56) to 0.57–0.58 (Mdn 0.57). We also find that highly ac-

curate training data improves accuracy of action suggestions models—the best model with

10x training data had a 90% accurate training dataset resulting in an overall accuracy of

0.52—while noisy training data improves the robustness and overall accuracy of diagnosis

suggestions models—the best model with 10x training data had a 70% accurate training

dataset resulting in an overall accuracy of 0.58.

In the following experiments, we use the smaller dataset to train our models in order to

maintain a consistent set of reference models to compare across all the experiments.

Figure 6.8: The effect of informative model inputs and training dataset accuracy on sugges-
tions model accuracy when AHt−1 is inaccurate (X-axis) vs. when AHt−1 is accurate (Y-axis).

6.5.3 Informative model inputs

As shown in Figure 6.8, we find that action suggestion accuracies improve from 0.34–0.47

(Mdn 0.41) to 0.44–0.55 (Mdn 0.52) with the addition of X(J,B)
t to OR

t , and diagnosis sug-

gestions accuracies improve from 0.42–0.51 (Mdn 0.48) to 0.55–0.66 (Mdn 0.61). In fact,

with perfect information, i.e. the state information Xt, the accuracies of both action and

diagnosis suggestions models reach 1.0. Interestingly, we find that the overall accuracy is

mostly a result of models being able to leverage human inputs better when the operator

154

is more accurate. The diagnosis suggestions models, in particular 12, achieve overall ac-

curacies of 0.89–0.95 (Mdn 0.91) with X(J,B)
t and when the operator is accurate (Y-axis)

compared to 0.65–0.71 (Mdn 0.70) without X(J,B)
t . By contrast, the diagnosis suggestions

models achieve accuracies in 0.36–0.53 (Mdn 0.45) with X(J,B)
t and when the operator is

inaccurate (X-axis), which is similar to the range 0.26–0.40 (Mdn 0.38) achieved without

X
(J,B)
t . In conclusion, we find that informative features that can help identify a failure

are crucial to improving suggestion accuracy, likely due to the increased information

provided to the models from such features. The result increases the importance of con-

ducting systematic fault forecasting, through FMEA, FTA, etc., when developing decision

support models.

We also continue to observe trends highlighted in the previous experiments. Includ-

ing operator inputs for the models provided with X(J,B)
t still improves action suggestions

accuracy from 0.44–0.54 (Mdn 0.50) to 0.51–0.55 (Mdn 0.53). Additionally, excluding

operator inputs still leads to improved accuracy for diagnosis suggestions, from 0.55–0.62

(Mdn 0.58) to 0.61–0.66 (Mdn 0.63). Finally, we find that higher accuracy of training

data leads to higher accuracy of action suggestions—the best model with access to X(J,B)
t

achieved an overall accuracy of 0.55 and was trained on a 90% accurate dataset—but noisy

training data improves the robustness and overall accuracy of diagnosis suggestions—the

best model with access to X(J,B)
t achieved an overall accuracy of 0.66 and was trained on

a 70% accurate dataset.

In the following experiments, we do not provide the models with the informative fea-

tures of X(J,B)
t in order to maintain a consistent set of reference models to compare across

all the experiments.

155

Figure 6.9: The effect of model inputs, training dataset accuracy, and the fraction of
‘trusted’ (100% accurate) data in the training dataset on suggestions model accuracy when
AHt−1 is inaccurate (X-axis) vs. when AHt−1 is accurate (Y-axis).

6.5.4 Trusted fraction of data

In Figure 6.9, we find that the overall action suggestions accuracy of including 0% of a

trusted subset of training data13, 0.34–0.47 (Mdn 0.41), remains mostly unchanged with a

5% trusted subset, 0.33–0.47 (Mdn 0.41), or a 10% trusted subset, 0.34–0.47 (Mdn 0.40).

Similarly, the overall diagnosis suggestions accuracy with a 0% trusted subset of data,

0.42–0.51 (Mdn 0.48), remains steady with a 5% trusted subset of data, 0.43–0.51 (Mdn

0.49), and a 10% trusted subset of data, 0.42–0.50 (Mdn 0.49). We also observe that chang-

ing the method of training to GLC [197] in order learn noise models using the trusted data

does not improve suggestion accuracies. Overall action suggestion accuracy is 0.33–0.47

(Mdn 0.40) when trained with GLC on a 5% trusted subset of data, and 0.34–0.47 (Mdn

0.40) when trained with GLC on a 10% trusted subset of data. Similarly, diagnosis sug-

gestions models trained using GLC achieving accuracies of 0.44–0.50 (Mdn 0.48) with a

5% trusted subset of data and 0.44–0.50 (Mdn 0.49) with a 10% trusted subset. The results

indicate an inability of common techniques in unstructured learning to learn from the
13Models trained with 100% accurate data are coded as having a 0% trusted subset of data for consistency

with previous experiments.

156

highly structured noise that characterizes datasets of interventions. In particular, the

noise is not independent or identically distributed in such datasets, with the mistakes made

by operators at one timestep, label noise, manifesting as feature noise or causing an unex-

pected domain shift in the features at the next timestep. Standard techniques in learning

from noisy data are unable to deal with such challenges.

Since the accuracies of the suggestions models were largely unaffected by the trusted

subsets of data or the manner of training, the trends observed in previous experiments on

the effects of operator inputs and the effects of the accuracy of the training dataset continue

to hold. In subsequent experiments, we do not include a trusted subset of data to train our

models and report results.

AH
t−1 mistakes accuracy DH

t mistakes accuracy

Train
Acc.

OR
t OR

t +
AH

t−1+D
H
t−1

Xt OR
t OR

t +
AH

t−1 +DH
t

Xt

0.7 0.68 (0.001) 0.57 (0.025) 0.90 (0.023) 0.57 (0.009) 0.54 (0.013) 0.61 (0.015)

0.8 0.67 (0.006) 0.55 (0.015) 0.90 (0.037) 0.58 (0.013) 0.56 (0.022) 0.61 (0.014)

0.9 0.68 (0.004) 0.54 (0.027) 0.88 (0.044) 0.59 (0.010) 0.56 (0.009) 0.60 (0.009)

1.0 0.71 (0.014) 0.57 (0.029) 0.92 (0.012) 0.56 (0.009) 0.55 (0.010) 0.60 (0.005)

Table 6.1: Mean (and std. dev.) accuracy of the mistakes model in determining operator
action or diagnosis mistakes depending on the inputs to the model and the accuracy of the
training dataset. Values in bold show the highest mean accuracy for a given input to the
mistakes model.

6.5.5 Using mistake estimates

In Table 6.1, we find that the mistakes model can be highly accurate in estimating a human

operator’s action mistakes when it is provided Xt as input: it achieves an accuracy of

0.92 in detecting the mistakes when trained with 100% accurate data. By contrast, the

model struggles to detect an operator’s diagnosis mistakes, achieving at most an accuracy

of 0.61 in the task, even when provided with Xt. The discrepancy is likely a result of the

fact that the value labels, Vt (see Section 6.3.3), that the model is trained to predict, are

157

Figure 6.10: The effect of suggestions model inputs, training dataset accuracy, and the
sources of mistakes data on suggestions model accuracy when AHt−1 is inaccurate (X-axis)
vs. when AHt−1 is accurate (Y-axis).

by construction influenced more by operator actions than by diagnoses. We also observe

that the inputs provided to the mistakes model greatly influences model accuracy, with the

model achieving an accuracy of at most 0.57 when provided with the operator’s inputs, AH·

andDH
· , compared to 0.71 when the inputs are ommitted. Finally, we find that the accuracy

of the mistakes model is improved with increased training dataset accuracy—the highest

accuracy in detecting action mistakes often occurs with 100% accurate training data.

The results above inform our analysis of Figure 6.10, where we examine the accuracy

of the suggestions models when provided with the mistake inputs. We find that the overall

accuracy of action suggestions, 0.34–0.47 (Mdn 0.41), remains largely unchanged by the

addition of mistakes data, 0.28–0.47 (Mdn 0.40), even when the mistakes model is provided

with Xt as input, 0.31–0.47 (Mdn 0.40), or when the mistakes model is replaced with

a binary 100% accurate label of mistakes, 0.33–0.49 (Mdn 0.43). Similarly, the overall

diagnosis suggestions accuracy, 0.42–0.51 (Mdn 0.48), remains largely unaffected with the

addition of mistakes data, 0.44–0.49 (Mdn 0.46), even when the mistakes model is provided

withXt as input, 0.44–0.50 (Mdn 0.47), or when the model is replaced with binary labels of

the mistakes, 0.44–0.54 (Mdn 0.52). The results show that providing suggestions models

158

with data on operator mistakes does not improve accuracy, likely because the models

are not provided with labels on what else to suggest in the event of a mistake.

Since the accuracies of the suggestions models were largely unaffected by the addition

of the mistakes inputs, the trends observed in the previous experiments continue to hold

with regards to the effects on accuracy of using operator inputs as features and of varying

the training dataset accuracy. In our last experiment, when we use the mistakes model, we

provide it with as input features consisting of OR
t , AH· , and DH

· where appropriate, in order

to eschew the use of contrived inputs to the mistakes model.

Overall Accuracy:
0.41

Acc. when AH
t−1

compliant
Acc. when AH

t−1
non-compliant

Acc. when AH
t−1

accurate
0.87

(1328)
0.56

(1702)

Acc. when AH
t−1

inaccurate
0.04
(379)

0.27
(5091)

(a) Inputs: ORt

Overall Accuracy:
0.47

Acc. when AH
t−1

compliant
Acc. when AH

t−1
non-compliant

Acc. when AH
t−1

accurate
0.92

(1852)
0.77

(1178)

Acc. when AH
t−1

inaccurate
0.09
(379)

0.27
(5091)

(b) Inputs: ORt +AHt−1 +DH
t

Table 6.2: The accuracy of non-recurrent action suggestions models trained with 100%
accurate data partitioned by the accuracy of the operators’s action in the previous timestep
and their compliance with the model’s action suggestions in the previous timestep. Num-
bers in parentheses indicate the number of data points in each cell: compliance is model-
dependent, and hence can be different across columns for each model.

6.5.6 Checking operator compliance with suggestions

In Table 6.2, we examine the accuracy of two non-recurrent action suggestions models in

greater detail. We find that the human operator’s compliance with the suggestions greatly

affects suggestion accuracy. In particular, a model’s suggestions are most accurate when the

159

Figure 6.11: The effect of model inputs, training dataset accuracy, and the presence or
absence of a operator compliance feature on suggestions model accuracy when AHt−1 is
inaccurate (X-axis) vs. when AHt−1 is accurate (Y-axis).

operator is accurate and compliant with the model’s suggestions, and the suggestions are

least accurate when the operator is inaccurate and compliant with the model’s suggestions.

The trend holds for the other models not shown in Table 6.2 and the situation therefore

indicates a positive feedback effect of operator compliance on model accuracy. As a result,

we analyze the effects of adding ‘compliance-check’ features,AHt−1 == ARt−1 andDH
t−1 ==

DR
t−1, below.

In Figure 6.11, we find that the overall accuracy of action suggestions, 0.34–0.47 (Mdn

0.41), remains largely unchanged despite an improved lower bound upon adding compli-

ance features, 0.41–0.48 (Mdn 0.43). The trend holds when mistake inputs are added too,

with the overall accuracy of models incorporating mistakes data, 0.28–0.47 (Mdn 0.40),

remaining steady despite an improved lower bound to model performance when compli-

ance features are added, 0.39–0.48 (Mdn 0.43). Similarly, the overall accuracy of diagnosis

suggestions, 0.42–0.51 (Mdn 0.48), remains unaffected with the addition of compliance

features, 0.44–0.49 (Mdn 0.48). The trend again holds when mistakes data is also added

to the models, with the accuracy remaining steady at 0.44–0.49 (Mdn 0.46) without the

compliance features and at 0.46–0.48 (Mdn 0.47) with them. The results above show that

160

checking operator compliance does not improve accuracy, likely because the models

are still not provided with labels on what to suggest given an operator’s compliant or non-

compliant behaviour. More importantly, we find that the compliance features carry redun-

dant information.

The evidence for the latter claim is in the improvement to the lower bounds for overall

action suggestions accuracy. The improvement is a result of an improved ability of models

without operator inputs to leverage the compliance features when the operator is accurate

(Y-axis). Specifically, the Y-axis accuracy of all models that do not use operator inputs

increases from 0.59–0.70 (Mdn 0.65) to 0.74–0.78 (Mdn 0.76) with the addition of the

compliance features. In fact, the accuracy achieves that of models that use operator inputs

as features: 0.69–0.86 (Mdn 0.78) without compliance features and 0.74–0.83 (Mdn 0.77)

with them.

Finally, we continue to observe the trends in the previous experiments with regards

to the effects on accuracy of using operator inputs as features and of varying the training

dataset accuracy.

6.6 Summary & Conclusions

Our goal has been to answer the two research questions introduced in Section 6.2.3, which

are aimed at finding the inputs that can be provided to decision support models to improve

their performance in the face of inaccurate operators (RQ1), and investigating the ability

of unstructured machine learning techniques to remain accurate and robust in such set-

tings (RQ2). In this section, we summarize our results above with respect to the research

questions.

On the subject of model inputs, RQ1, we find that the choice of features, partic-

ularly their ability to provide information about a failure, has a huge influence on

decision support accuracy. Firstly, our results in Experiment 3 show that choosing infor-

mative features improves model accuracy inspite of operator errors. The result is a strong

161

endorsement for conducting fault forecasting methods, such as FMEA, FTA, etc. prior

to developing intervention decision support. Secondly, our results across all experiments

show that the human operator’s inputs, if informative of the failure, can also be of help.

In particular, we find that operator input is more helpful for action suggestions than for

diagnosis suggestions because an operator’s current diagnosis and previous action provide

direct information about the next action to take, while an operator’s previous action and

diagnosis might only provide indirect information about the next diagnosis. Lastly, our

results in Experiment 1 show that the undue influence of operator mistakes in a history of

inputs, through recurrent information, can be less informative of failures than not using

such a history.

Addressing both RQ1 and RQ2, we also find that data diversity can greatly improve

decision support model accuracy, especially by improving model robustness. The claim

is best justified by the results of Experiment 2, where the diversity of data available in the

larger datasets greatly improved model robustness for both diagnosis and action sugges-

tions. However, we also find support for the claim across all of the experiments, where

diagnosis suggestions achieve the highest robustness when trained with noisy, and there-

fore diverse, data. We suspect that more accurate, and hence less diverse, datasets are better

for action suggestions because of the importance of operator inputs to action suggestions

(mentioned above). Additional experiments can verify the hypothesis.

Finally, addressing RQ2, we find that decision support models likely need to encode

domain models in order to improve accuracy, particularly when there is a lack of access

to informative features or a large training dataset. Experiments 5 & 6 provide the strongest

evidence for the claim, where our decision support models were unable to leverage infor-

mation about operator mistakes or compliance, even when such information was perfectly

accurate. However, we also find evidence in the results of Experiment 4, where a state-of-

the-art method in robust learning was unable to leverage the particularly structured nature

of the noise in our domain to improve the accuracy of decision support models. As men-

162

tioned in Section 6.1, prior work in troubleshooting assumes access to models of T , POR ,

or PD in the POMDP specification, and future work in developing decision support can

also leverage such models.

In conclusion, in this chapter, we contribute an initial survey of considerations and

techniques for training decision support models that can use human operator inputs while

remaining robust to them. We find that interleaved diagnosis and recovery is a complex

problem requiring collaboration between decision support models and a human in the face

of significant uncertainties. With our best models achieving an accuracy of at most 0.51,

we conclude that current techniques in unstructured machine learning are unable to meet

the challenge of learning to assist users in such a domain. Nevertheless, we provide some

initial guidelines to develop models using current methods in order to reduce the developer

burden of creating decision support for remote operators handling interventions. In the

next and concluding chapter of this dissertation, we use our insights to highlight additional

avenues for research that can also be used to improve robot reliability while reducing the

demand on humans.

163

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Throughout this dissertation, we have made contributions to improve robot reliability while

reducing the demand on the humans who bear the responsibility of ensuring the improve-

ment.

In Chapter 2, we formalized a development paradigm to help reduce the frequency

of failures. Driven by our insight that recovering from failures sometimes necessitates

complex responses from the robot, we designed a system that could facilitate flexibility

in recovery behaviour design. In particular, our Recovery-Driven Development (RDD)

approach eased developer burden for specifying such complex recoveries in order to allow

rapid and iterative improvements to robot robustness.

In Chapter 3–Chapter 5, we introduced systems for gauging human interruptibility and

studied the interactions between operators and decision support models during an interven-

tion in an effort to reduce the duration of failures and to reduce the burden on operators and

robot developers. We found that estimating a human’s availability to assist a robot, through

measures of interruptibility, and providing them with assistance during the intervention,

through action and diagnosis suggestions, can reduce the duration. Then, in an effort to

reduce developer burden of creating decision support models in Chapter 6, we found that

interventions engender an interleaved diagnosis and recovery process with significant un-

certainties arising from collaboration with imperfect humans and from incomplete informa-

tion available to the robot. Our experiments revealed that in the absence of accurate domain

models, using features that are directly informative of the failure can greatly improve the

development of accurate and robust decision support models.

As such, our work (1) highlights a wide range of considerations for improving robot

reliability while remaining cognizant of the human stakeholders in the process, and (2)

164

provides a breadth of methods and approaches that can be used to such an end. However,

the insights from this work also produce open questions for future work. We discuss some

of these questions below.

Extending RDD: In Chapter 2, we realized the RDD process in an executive level that

sequences robot behaviours through scripting. While a scripting implementation is suit-

able to the recipe-based tasks that are commonly considered in robotics, there are many

categories of tasks that do not conform to a simple recipe. Examples of such tasks include

continuous monitoring tasks, which may have multiple objectives, human-robot collabora-

tive tasks, which involve multiple agents, and social tasks, which have multiple objectives

and multiple agents. In such domains, another formalism for executive design, such as state

machines [46, 212] or behaviour trees [50, 213] might be more appropriate. Such executive

designs are also iteratively developed and need to allow for incremental adjustments [212,

213]. Future work can therefore investigate if focusing the incremental improvements to

those executive level designs through the two-prongs of RDD, specification and refinement,

assists developers in improving robot reliability. Research also needs to be conducted into

automatically learning task structures from data in order to reduce the effort of task speci-

fication in any of the executive level designs [214, 215].

The complexities of human interruptibility: Our research in Chapter 3 highlights

the fact that many factors beyond just the social and contextual cues play a role in inter-

ruption timing: as mentioned in the chapter, even the two wizards in the WOZ condition

of our study, who underwent identical training and instruction, did not entirely agree on

the appropriate timing of interruptions. Some of the additional factors include differences

in personality, the urgency of the task needing attention, etc. [68], and these should be ex-

plored in future research. Continuing work is also needed to explore the causal mechanisms

by which robot interruptions might affect human performance [102, 87], and to model the

optimal way for a robot to behave during an interruption [76].

Improvements to the quality of information in UI: In this work, we do not examine

165

the user experience (UX) of operators when they are notified of a failure; in the parlance of

Section 6.2.1, we do not evaluate OH and POH . However, prior work has found significant

improvements to operator compliance and accuracy by changing the information available

to the operator [130, 131] and by providing operators with explanations of failure [202].

Therefore, continued research is necessary to ensure that operators are provided with high-

quality information in order to accurately resolve errors.

Learning better models from intervention data: Our research in Chapter 6 highlights

the deficiencies of current machine learning methods in learning robust models from a

dataset of human interventions. Future work can therefore explore methods to overcoming

those deficiencies. For instance, future research can attempt to learn probabilistic models

of an intervention domain from the data, in order to then apply the techniques developed

in prior work for troubleshooting using such a domain model [136]. Alternatively, prior

work has found a correspondence between scheduling and failure troubleshooting [180],

thereby suggesting that structured learning approaches to scheduling [216] can perhaps

prove successful in providing decision support during intervention troubleshooting. Finally,

future work can also explore methods of data augmentation through counterfactual data

generation and of personalizing decision support models to operator expertise [204], in

order to learn robust decision support models from intervention data.

Choosing the appropriate human: In this dissertation, we have assumed that the roles

and capabilities of human operators are finite, distinct, and static. However, such is rarely

the case and depending on the operating environment of the robot, the roles and capabilities

of operators may be infinite, overlapping, and dynamic [217]. Therefore, the problem of

choosing the appropriate human operator given the environment, the robot error, and the

assumed capabilites of human operators, remains an area of active research [39].

Considering a broader class of failures: In this dissertation, we limit ourselves to

studying interventions that are generated as a result of failures in a task. However, robots

deployed in the wild face threats to reliability as a result of interaction failures too [218].

166

Therefore, future research should evaluate methods for humans to assist robots with inter-

action failures, while also ensuring that such assistance does not burden the human.

Fault Detection: We assume the ability to differentiate between moments when the

robot is in an error and when it is not through the use of automated fault detection; however

this need not be the case. In fact, automatic and accurate fault detection is an active area

of robotics research [28, 29, 30] and improved fault detection can greatly improve robot

reliability by surfacing errors that might otherwise have remained undetected. Similarly,

in this dissertation, we do not consider situations where an operator actively monitors the

robot and is able to provide fault detection [219], which can then be used for automated

failure recoveries. Future work can further explore the link between improving reliability

and the manner of detecting failures.

Ethics & Trust: This dissertation does not address the large body of work on trust

and ethics that might be relevant to the goal of improving robot reliability under human

supervision. As one example, issues of trust and of framing the robot failure could greatly

impact both the duration of a current failure and the frequency with which operators might

be willing to help in the future [220]. As another example, inappropriate use of metrics for

reliability, such as Mean-Time Completing Interventions (MTCI), could also place unethi-

cal stress on human operators [221]. And finally, the machine learning methods used in this

work are susceptible to learning inappropriate biases through their datasets [222, 223]. As

such, continuing work from this dissertation should also look to address these additional

concerns.

The objective of this dissertation, as with all research in robotics, is to transition robots

from the laboratory and into the real-world so that they are able to operate in that envi-

ronment reliably. However, this dissertation also considers the effects of such a transition

on the human stakeholders in the process. By building upon the contributions of this dis-

sertation, we can move towards a world where robots are operating reliably in real-world

environments without making unreasonable demands on humans.

167

Appendices

168

APPENDIX A

UNDERSTANDING ACCURACY-INACCURACY PLOTS

We provide here an intuition to understanding the results presented in the Accuracy-Inaccuracy

plots in Section 6.5. The plots are used to compare the performance of different models on

a dataset of human interventions: we use a toy example that is pictorially depicted in Fig-

ure A.1 to show how this is done. Note that we ignore time index matching, i.e. evaluating

model accuracy at time t based on operator accuracy at t− 1, for ease of illustration.

Figure A.1: A toy dataset of actions taken by operators or suggested by models during two
hypothetical interventions; red is an incorrect action (or action suggestion) and green is a
correct action (or action suggestion). (a) Assumed human operator actions. (b) Assumed
suggestions from four different decision support models evaluated on the dataset.

The toy dataset consists of 10 (assumed) actions taken by two human operators over

the course of two interventions. Figure A.1 shows whether each of the actions was correct

or not with a green or red colour. As such, the humans display an accuracy of 0.67 in their

action selection. We also assume four toy models, A–D, that showcase varying suggestion

accuracies when evaluated on data from the same interventions. The performance of the

models is summarized in Table A.1.

The Accuracy-Inaccuracy plots are meant to pictorially depict the information in the

above table in order to facilitate an easier comparison of the models. Figure A.2(a) high-

169

Model Overall
Accuracy

Acc. when operator
accurate (Y-axis)

Acc. when operator
inaccurate (X-axis)

A 0.5 0.5 0.5
B 0.3 0.5 0.0
C 0.6 1.0 0.0
D 0.8 1.0 0.5

Table A.1: Model performance within the toy example.

lights some of the key properties of the plot:

1. Model robustness increases as X-axis accuracy increases and model peak accuracy

increases as Y-axis accuracy increases.

2. Models on the X=Y line are unaffected by the accuracy of the operator.

3. Models on ths same dotted isoclines, which have a slope of -1.33 in our toy exam-

ple, have the same overall accuracy but might be differently affected by operator

performance.

The properties are exemplified in Figure A.2(b), which situates the models from Table A.1

within the Accuracy-Inaccuracy space.

Figure A.2: Toy Accuracy-Inaccuracy plots for evaluating model performance. (a) The
Accuracy-Inaccuracy space from the toy example in Figure A.1. (b) The performance of
the four models from that figure within this space.

170

REFERENCES

[1] J. Forlizzi and C. DiSalvo, “Service robots in the domestic environment: A study of
the roomba vacuum in the home,” in Proceedings of the 1st ACM SIGCHI/SIGART
conference on Human-robot interaction, 2006, pp. 258–265.

[2] J. R. Orejana, B. A. MacDonald, H. S. Ahn, K. Peri, and E. Broadbent, “Health-
care robots in homes of rural older adults,” in International Conference on Social
Robotics, Springer, 2015, pp. 512–521.

[3] E. J. Carter, S. Reig, X. Z. Tan, G. Laput, S. Rosenthal, and A. Steinfeld, “Death of
a robot: Social media reactions and language usage when a robot stops operating,”
in Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot
Interaction, 2020, pp. 589–597.

[4] A. G. Ozkil, Z. Fan, S. Dawids, H. Aanes, J. K. Kristensen, and K. H. Christensen,
“Service robots for hospitals: A case study of transportation tasks in a hospital,”
in 2009 IEEE international conference on automation and logistics, IEEE, 2009,
pp. 289–294.

[5] T. Mettler, M. Sprenger, and R. Winter, “Service robots in hospitals: New perspec-
tives on niche evolution and technology affordances,” European Journal of Infor-
mation Systems, vol. 26, no. 5, pp. 451–468, 2017.

[6] Y. Choi, M. Choi, M. Oh, and S. Kim, “Service robots in hotels: Understanding
the service quality perceptions of human-robot interaction,” Journal of Hospitality
Marketing & Management, vol. 29, no. 6, pp. 613–635, 2020.

[7] S. Satake, K. Hayashi, K. Nakatani, and T. Kanda, “Field trial of an information-
providing robot in a shopping mall,” in 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, Sep. 2015, pp. 1832–1839.

[8] M. Niemelä, P. Heikkilä, H. Lammi, and V. Oksman, “Shopping mall robots–
opportunities and constraints from the retailer and manager perspective,” in Inter-
national Conference on Social Robotics, Springer, 2017, pp. 485–494.

[9] M. Schneier and R. Bostelman, Literature review of mobile robots for manufactur-
ing. US Department of Commerce, National Institute of Standards and Technol-
ogy . . ., 2015.

[10] P. Sapaty, “Military robotics: Latest trends and spatial grasp solutions,” Interna-
tional Journal of Advanced Research in Artificial Intelligence, vol. 4, no. 4, pp. 9–
18, 2015.

171

[11] M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J.-J. Hsu, A. Jonsson, B. Kanef-
sky, P. Morris, K. Rajan, J. Yglesias, et al., “Mapgen: Mixed-initiative planning
and scheduling for the mars exploration rover mission,” IEEE Intelligent Systems,
vol. 19, no. 1, pp. 8–12, 2004.

[12] R. Welch, D. Limonadi, and R. Manning, “Systems engineering the curiosity rover:
A retrospective,” in 2013 8th international conference on system of systems engi-
neering, IEEE, 2013, pp. 70–75.

[13] J. Maki, D. Gruel, C. McKinney, M. Ravine, M. Morales, D. Lee, R. Willson, D.
Copley-Woods, M. Valvo, T. Goodsall, et al., “The mars 2020 engineering cameras
and microphone on the perseverance rover: A next-generation imaging system for
mars exploration,” Space Science Reviews, vol. 216, no. 8, pp. 1–48, 2020.

[14] R. Bloss, “Mobile hospital robots cure numerous logistic needs,” Industrial Robot:
An International Journal, 2011.

[15] J. Hu, A. Edsinger, Y.-J. Lim, N. Donaldson, M. Solano, A. Solochek, and R.
Marchessault, “An advanced medical robotic system augmenting healthcare capabilities-
robotic nursing assistant,” in 2011 IEEE international conference on robotics and
automation, IEEE, 2011, pp. 6264–6269.

[16] M. Hägele, K. Nilsson, J. N. Pires, and R. Bischoff, “Industrial robotics,” in Springer
handbook of robotics, Springer, 2016, pp. 1385–1422.

[17] J. Lawton, “Collaborative robots,” International Society of Automation, pp. 12–14,
2016.

[18] D. Bohus and E. Horvitz, “Dialog in the open world,” in Proceedings of the 2009
international conference on Multimodal interfaces - ICMI-MLMI ’09, New York,
New York, USA: ACM Press, 2009, p. 31.

[19] D. Brščić, T. Ikeda, and T. Kanda, “Do you need help? a robot providing infor-
mation to people who behave atypically,” IEEE Transactions on Robotics, vol. 33,
no. 2, pp. 500–506, 2017.

[20] R. R. Murphy, Disaster robotics. MIT press, 2014.

[21] Z. H. Khan, A. Siddique, and C. W. Lee, “Robotics utilization for healthcare dig-
itization in global covid-19 management,” International journal of environmental
research and public health, vol. 17, no. 11, p. 3819, 2020.

[22] R. R. Murphy, V. B. M. Gandudi, and J. Adams, “Applications of robots for covid-
19 response,” arXiv preprint arXiv:2008.06976, 2020.

172

[23] J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced robots: A
survey,” Robotics and Autonomous Systems, vol. 94, pp. 43–52, Aug. 2017.

[24] D. Crestani, K. Godary-Dejean, and L. Lapierre, “Enhancing fault tolerance of au-
tonomous mobile robots,” Robotics and Autonomous Systems, vol. 68, pp. 140–155,
Jun. 2015.

[25] A. Sauppé and B. Mutlu, “The Social Impact of a Robot Co-Worker in Industrial
Settings,” in CHI, ACM Press, 2015, pp. 3613–3622.

[26] J. M. Beer, A. D. Fisk, and W. A. Rogers, “Toward a framework for levels of robot
autonomy in human-robot interaction,” Journal of human-robot interaction, vol. 3,
no. 2, pp. 74–99, 2014.

[27] B. Mutlu and J. Forlizzi, “Robots in organizations,” in Proceedings of the 3rd inter-
national conference on Human robot interaction - HRI ’08, New York, New York,
USA: ACM Press, 2008, p. 287.

[28] E. Khalastchi and M. Kalech, “On Fault Detection and Diagnosis in Robotic Sys-
tems,” ACM Computing Surveys, vol. 51, no. 1, pp. 1–24, Jan. 2018.

[29] D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector for Robot-
Assisted Feeding Using an LSTM-Based Variational Autoencoder,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1544–1551, Jul. 2018.

[30] R. Hornung, H. Urbanek, J. Klodmann, C. Osendorfer, and P. van der Smagt,
“Model-free robot anomaly detection,” in 2014 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IEEE, Sep. 2014, pp. 3676–3683.

[31] J. A. Shah, J. H. Saleh, and J. A. Hoffman, “Analytical basis for evaluating the
effect of unplanned interventions on the effectiveness of a human–robot system,”
Reliability Engineering & System Safety, vol. 93, no. 8, pp. 1280–1286, Aug. 2008.

[32] M. Johnson, J. M. Bradshaw, P. J. Feltovich, C. M. Jonker, M. B. Van Riemsdijk,
and M. Sierhuis, “Coactive Design: Designing Support for Interdependence in Joint
Activity,” Journal of Human-Robot Interaction, vol. 3, no. 1, p. 43, Mar. 2014.

[33] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd, P. Abeles,
D. Stephen, N. Mertins, A. Lesman, J. Carff, W. Rifenburgh, P. Kaveti, W. Straat-
man, J. Smith, M. Griffioen, B. Layton, T. de Boer, T. Koolen, P. Neuhaus, and
J. Pratt, “Team IHMC’s Lessons Learned from the DARPA Robotics Challenge
Trials,” Journal of Field Robotics, vol. 32, no. 2, pp. 192–208, Mar. 2015.

[34] M. DeDonato, V. Dimitrov, R. Du, R. Giovacchini, K. Knoedler, X. Long, F. Polido,
M. A. Gennert, T. Padır, S. Feng, H. Moriguchi, E. Whitman, X. Xinjilefu, and

173

C. G. Atkeson, “Human-in-the-loop Control of a Humanoid Robot for Disaster
Response: A Report from the DARPA Robotics Challenge Trials,” Journal of Field
Robotics, vol. 32, no. 2, pp. 275–292, Mar. 2015.

[35] C. G. Atkeson, B. P. W. Babu, N. Banerjee, D. Berenson, C. P. Bove, X. Cui, M.
DeDonato, R. Du, S. Feng, P. Franklin, M. Gennert, J. P. Graff, P. He, A. Jaeger, J.
Kim, K. Knoedler, L. Li, C. Liu, X. Long, T. Padir, F. Polido, G. G. Tighe, and X.
Xinjilefu, “No falls, no resets: Reliable humanoid behavior in the DARPA robotics
challenge,” in Humanoids, IEEE, Nov. 2015, pp. 623–630.

[36] H. A. Yanco, A. Norton, W. Ober, D. Shane, A. Skinner, and J. Vice, “Analysis
of Human-robot Interaction at the DARPA Robotics Challenge Trials,” Journal of
Field Robotics, vol. 32, no. 3, pp. 420–444, May 2015.

[37] DRC-Teams, What Happened at the DARPA Robotics Challenge? 2015.

[38] S. McGuire, P. M. Furlong, C. Heckman, S. Julier, D. Szafir, and N. Ahmed, “Fail-
ure is Not an Option: Policy Learning for Adaptive Recovery in Space Operations,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1639–1646, Jul. 2018.

[39] S. McGuire, P. M. Furlong, T. Fong, C. Heckman, D. Szafir, S. J. Julier, and N.
Ahmed, “Everybody needs somebody sometimes: Validation of adaptive recovery
in robotic space operations,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 1216–1223, 2019.

[40] S. Banerjee, A. Daruna, D. Kent, W. Liu, J. Balloch, A. Jain, A. Krishnan, M. A.
Rana, H. Ravichandar, B. Shah, N. Shrivatsav, and S. Chernova, “Taking recoveries
to task: Recovery-driven development for recipe-based robot tasks,” ISRR, 2019.

[41] S. Banerjee and S. Chernova, “Temporal Models for Robot Classification of Hu-
man Interruptibility,” in Int. Conf. on Autonomous Agents & Multiagent Systems,
IFAAMAS, 2017, pp. 1350–1359.

[42] S. Banerjee, A. Silva, K. Feigh, and S. Chernova, “Effects of interruptibility-aware
robot behavior,” arXiv preprint arXiv:1804.06383, 2018.

[43] S. Banerjee, M. Gombolay, and S. Chernova, “A tale of two suggestions: Action
and diagnosis recommendations for responding to robot failure,” in 2020 29th IEEE
International Conference on Robot and Human Interactive Communication (RO-
MAN), IEEE, pp. 398–405.

[44] S. S. Srinivasa, D. Berenson, M. Cakmak, A. Collet, M. R. Dogar, A. D. Dragan,
R. A. Knepper, T. Niemueller, K. Strabala, M. Vande Weghe, and J. Ziegler, “Herb
2.0: Lessons Learned From Developing a Mobile Manipulator for the Home,” Pro-
ceedings of the IEEE, vol. 100, no. 8, pp. 2410–2428, Aug. 2012.

174

[45] S. Lemaignan, A. Hosseini, and P. Dillenbourg, “PYROBOTS, a toolset for robot
executive control,” in IROS, IEEE, Sep. 2015, pp. 2848–2853.

[46] J. Bohren and S. Cousins, “The SMACH High-Level Executive [ROS News],”
Robotics & Automation Magazine, vol. 17, no. 4, pp. 18–20, Dec. 2010.

[47] C. Eppner, S. Höfer, R. Jonschkowski, R. Martı́n-Martı́n, A. Sieverling, V. Wall,
and O. Brock, “Lessons from the amazon picking challenge: Four aspects of build-
ing robotic systems.,” in Robotics: Science and Systems, 2016.

[48] M. Beetz, L. Mösenlechner, and M. Tenorth, “CRAM x2014; A Cognitive Robot
Abstract Machine for everyday manipulation in human environments,” in Int. Conf.
on Intelligent Robots and Systems, IEEE, Oct. 2010, pp. 1012–1017.

[49] D. Kortenkamp, R. Simmons, and D. Brugali, “Robotic Systems Architectures and
Programming,” in Springer Handbook of Robotics, 2016, pp. 283–306.

[50] V. Berenz and S. Schaal, “The Playful Software Platform: Reactive Programming
for Orchestrating Robotic Behavior,” Robotics & Automation Magazine, vol. 25,
no. 3, pp. 49–60, Sep. 2018.

[51] D. Szafir, B. Mutlu, and T. Fong, “Designing planning and control interfaces to
support user collaboration with flying robots,” Int. Journal of Robotics Research,
vol. 36, no. 5-7, pp. 514–542, Jun. 2017.

[52] A. Degroote and S. Lacroix, “ROAR: Resource oriented agent architecture for the
autonomy of robots,” in ICRA, IEEE, May 2011, pp. 6090–6095.

[53] M. Klotzbücher, P. Soetens, and H. Bruyninckx, “Orocos rtt-lua: an execution envi-
ronment for building real-time robotic domain specific languages,” in Int. Workshop
on Dynamic languages for Robotics and Sensors, vol. 8, 2010.

[54] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-Logic-Based Reactive Mis-
sion and Motion Planning,” Transactions on Robotics, vol. 25, no. 6, pp. 1370–
1381, Dec. 2009.

[55] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran, “An integrated model-
based diagnosis and repair architecture for ROS-based robot systems,” in ICRA,
IEEE, May 2013, pp. 482–489.

[56] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: An open-source robot operating system,” in ICRA workshop on
open source software, Kobe, Japan, vol. 3, 2009, p. 5.

[57] R. B. Rusu and S. Cousins, “Point cloud library (pcl),” in ICRA, 2011, pp. 1–4.

175

[58] W. Wohlkinger and M. Vincze, “Ensemble of shape functions for 3d object classi-
fication,” in Int. Conf. on Robotics and Biomimetics, IEEE, 2011, pp. 2987–2992.

[59] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” Robotics & Automation
Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[60] A. ten Pas and R. Platt, “Using geometry to detect grasp poses in 3d point clouds,”
in Robotics Research, Springer, 2018, pp. 307–324.

[61] D. Kent and R. Toris, “Adaptive autonomous grasp selection via pairwise ranking,”
in IROS, IEEE, 2018, pp. 2971–2976.

[62] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz, “Trajectories and keyframes
for kinesthetic teaching: A human-robot interaction perspective,” in HRI, ACM,
2012, pp. 391–398.

[63] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch and freight:
Standard platforms for service robot applications,” in Workshop on Autonomous
Mobile Service Robots, 2016.

[64] C. Speier, J. S. Valacich, and I. Vessey, “The effects of task interruption and in-
formation presentation on individual decision making,” in Proceedings of the eigh-
teenth international conference on Information systems, Association for Informa-
tion Systems, 1997, pp. 21–36.

[65] D. McFarlane and K. Latorella, “The Scope and Importance of Human Interruption
in Human-Computer Interaction Design,” Human-Computer Interaction, vol. 17,
no. 1, pp. 1–61, Mar. 2002.

[66] G. Mark, D. Gudith, and U. Klocke, “The cost of interrupted work,” in Proceeding
of the twenty-sixth annual CHI conference on Human factors in computing systems
- CHI ’08, New York, New York, USA: ACM Press, 2008, p. 107.

[67] N. B. Sarter, “Multimodal Support for Interruption Management: Models, Empir-
ical Findings, and Design Recommendations,” Proceedings of the IEEE, vol. 101,
no. 9, pp. 2105–2112, Sep. 2013.

[68] A. J. Rivera, “A socio-technical systems approach to studying interruptions: Under-
standing the interrupter’s perspective,” Applied Ergonomics, vol. 45, no. 3, pp. 747–
756, May 2014.

[69] Y. Miyata and D. A. Norman, “Psychological issues in support of multiple activi-
ties,” User centered system design: New perspectives on human-computer interac-
tion, pp. 265–284, 1986.

176

[70] H. Stern, V. Pammer, and S. N. Lindstaedt, “A preliminary study on interruptibility
detection based on location and calendar information,” Proc. CoSDEO, vol. 11,
2011.

[71] L. D. Turner, S. M. Allen, and R. M. Whitaker, “Interruptibility prediction for ubiq-
uitous systems,” in Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing - UbiComp ’15, New York, New York,
USA: ACM Press, 2015, pp. 801–812.

[72] K. Fischer, B. Soto, C. Pantofaru, and L. Takayama, “Initiating interactions in order
to get help: Effects of social framing on people’s responses to robots’ requests for
assistance,” in Robot and Human Interactive Communication, 2014 RO-MAN: The
23rd IEEE International Symposium on, IEEE, 2014, pp. 999–1005.

[73] S. Rosenthal, M. M. Veloso, and A. K. Dey, “Is Someone in this Office Available to
Help Me?” Journal of Intelligent & Robotic Systems, vol. 66, no. 1-2, pp. 205–221,
Apr. 2012.

[74] D. C. McFarlane, “Comparison of Four Primary Methods for Coordinating the In-
terruption of People in Human-Computer Interaction,” Human-Computer Interac-
tion, vol. 17, no. 1, pp. 63–139, Mar. 2002.

[75] C. A. Monk, D. A. Boehm-Davis, G. Mason, and J. G. Trafton, “Recovering From
Interruptions: Implications for Driver Distraction Research,” Human Factors: The
Journal of the Human Factors and Ergonomics Society, vol. 46, no. 4, pp. 650–663,
Dec. 2004.

[76] P. Saulnier, E. Sharlin, and S. Greenberg, “Exploring minimal nonverbal interrup-
tion in HRI,” in 2011 RO-MAN, IEEE, Jul. 2011, pp. 79–86.

[77] Y.-S. Chiang, T.-S. Chu, C. D. Lim, T.-Y. Wu, S.-H. Tseng, and L.-C. Fu, “Person-
alizing robot behavior for interruption in social human-robot interaction,” in 2014
IEEE International Workshop on Advanced Robotics and its Social Impacts, IEEE,
Sep. 2014, pp. 44–49.

[78] C. Mollaret, A. Mekonnen, F. Lerasle, I. Ferrané, J. Pinquier, B. Boudet, and P.
Rumeau, “A multi-modal perception based assistive robotic system for the elderly,”
Computer Vision and Image Understanding, Mar. 2016.

[79] A. Nigam and L. D. Riek, “Social context perception for mobile robots,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE,
Sep. 2015, pp. 3621–3627.

[80] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

177

[81] G. E. Hinton, “Connectionist learning procedures,” in Machine Learning, Volume
III, Elsevier, 1990, pp. 555–610.

[82] L.-P. Morency, A. Quattoni, and T. Darrell, “Latent-Dynamic Discriminative Mod-
els for Continuous Gesture Recognition,” in 2007 IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, Jun. 2007, pp. 1–8.

[83] S. K. Card, T. P. Moran, and A. Newell, “Computer text-editing: An information-
processing analysis of a routine cognitive skill,” Cognitive Psychology, vol. 12,
no. 1, pp. 32–74, Jan. 1980.

[84] P. D. Adamczyk and B. P. Bailey, “If not now, when?” In Proceedings of the 2004
conference on Human factors in computing systems - CHI ’04, New York, New
York, USA: ACM Press, 2004, pp. 271–278.

[85] S. T. Iqbal and B. P. Bailey, “Leveraging characteristics of task structure to pre-
dict the cost of interruption,” in Proceedings of the SIGCHI conference on Human
Factors in computing systems - CHI ’06, New York, New York, USA: ACM Press,
2006, p. 741.

[86] J. G. Trafton, A. Jacobs, and A. M. Harrison, “Building and Verifying a Predic-
tive Model of Interruption Resumption,” Proceedings of the IEEE, vol. 100, no. 3,
pp. 648–659, Mar. 2012.

[87] G. Trafton, L. Hiatt, A. Harrison, F. Tanborello, S. Khemlani, and A. Schultz,
“ACT-R/E: An Embodied Cognitive Architecture for Human-Robot Interaction,”
Journal of Human-Robot Interaction, vol. 2, no. 1, pp. 30–55, Mar. 2013.

[88] S. Satake, T. Kanda, D. F. Glas, M. Imai, H. Ishiguro, and N. Hagita, “How to
approach humans?” In Proceedings of the 4th ACM/IEEE international conference
on Human robot interaction - HRI ’09, New York, New York, USA: ACM Press,
2009, p. 109.

[89] Y. Kato, T. Kanda, and H. Ishiguro, “May I help you?” In Proceedings of the Tenth
Annual ACM/IEEE International Conference on Human-Robot Interaction - HRI
’15, New York, New York, USA: ACM Press, 2015, pp. 35–42.

[90] C. Shi, M. Shiomi, T. Kanda, H. Ishiguro, and N. Hagita, “Measuring Communica-
tion Participation to Initiate Conversation in Human–Robot Interaction,” Interna-
tional Journal of Social Robotics, vol. 7, no. 5, pp. 889–910, Nov. 2015.

[91] M. E. Foster, A. Gaschler, and M. Giuliani, “Automatically Classifying User En-
gagement for Dynamic Multi-party Human-Robot Interaction,” International Jour-
nal of Social Robotics, Jul. 2017.

178

[92] E. S. Short, M. L. Chang, and A. Thomaz, “Detecting Contingency for HRI in
Open-World Environments,” in Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction - HRI ’18, New York, New York, USA:
ACM Press, 2018, pp. 425–433.

[93] A. Garrell, M. Villamizar, F. Moreno-Noguer, and A. Sanfeliu, “Teaching Robot’s
Proactive Behavior Using Human Assistance,” International Journal of Social Robotics,
vol. 9, no. 2, pp. 231–249, Apr. 2017.

[94] V. Chu, K. Bullard, and A. L. Thomaz, “Multimodal real-time contingency detec-
tion for HRI,” in 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IEEE, Sep. 2014, pp. 3327–3332.

[95] E. R. Sykes, “A Cloud-based Interaction Management System Architecture for Mo-
bile Devices,” Procedia Computer Science, vol. 34, pp. 625–632, 2014.

[96] J. Fogarty, S. E. Hudson, C. G. Atkeson, D. Avrahami, J. Forlizzi, S. Kiesler, J. C.
Lee, and J. Yang, “Predicting human interruptibility with sensors,” ACM Transac-
tions on Computer-Human Interaction, vol. 12, no. 1, pp. 119–146, Mar. 2005.

[97] E. Horvitz and J. Apacible, “Learning and reasoning about interruption,” in Pro-
ceedings of the 5th international conference on Multimodal interfaces - ICMI ’03,
New York, New York, USA: ACM Press, 2003, p. 20.

[98] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic represen-
tation of the spatial envelope,” International journal of computer vision, vol. 42,
no. 3, pp. 145–175, 2001.

[99] A. Kolbeinsson, P. Thorvald, and J. Lindblom, “Coordinating the interruption of
assembly workers in manufacturing,” Applied Ergonomics, vol. 58, pp. 361–371,
Jan. 2017.

[100] T. Grundgeiger, D. Liu, P. Sanderson, S. Jenkins, and T. Leane, “Effects of In-
terruptions on Prospective Memory Performance in Anesthesiology,” Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, vol. 52, no. 12,
pp. 808–812, Sep. 2008.

[101] B. C. Lee and V. G. Duffy, “The Effects of Task Interruption on Human Perfor-
mance: A Study of the Systematic Classification of Human Behavior and Inter-
ruption Frequency,” Human Factors and Ergonomics in Manufacturing & Service
Industries, vol. 25, no. 2, pp. 137–152, Mar. 2015.

[102] T. Grundgeiger and P. Sanderson, “Interruptions in healthcare: Theoretical views,”
International Journal of Medical Informatics, vol. 78, no. 5, pp. 293–307, May
2009.

179

[103] P. M. Sanderson and T. Grundgeiger, “How do interruptions affect clinician per-
formance in healthcare? Negotiating fidelity, control, and potential generalizabil-
ity in the search for answers,” International Journal of Human-Computer Studies,
vol. 79, pp. 85–96, Jul. 2015.

[104] D. A. Epstein, D. Avrahami, and J. T. Biehl, “Taking 5: Work-Breaks, Productivity,
and Opportunities for Personal Informatics for Knowledge Workers,” in CHI ’16,
San Jose, CA: ACM Press, 2016.

[105] E. M. Altmann and J. G. Trafton, “Memory for goals: an activation-based model,”
Cognitive Science, vol. 26, no. 1, pp. 39–83, Jan. 2002.

[106] M. A. McDaniel and G. O. Einstein, “Strategic and automatic processes in prospec-
tive memory retrieval: a multiprocess framework,” Applied Cognitive Psychology,
vol. 14, no. 7, S127–S144, 2000.

[107] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, Sep. 1995.

[108] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to multi-label
learning,” Pattern recognition, vol. 40, no. 7, pp. 2038–2048, 2007.

[109] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic
models for segmenting and labeling sequence data,” in Proceedings of the eigh-
teenth international conference on machine learning, ICML, vol. 1, 2001, pp. 282–
289.

[110] Sy Bor Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell, “Hid-
den Conditional Random Fields for Gesture Recognition,” in 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition - Volume
2 (CVPR’06), vol. 2, IEEE, 2006, pp. 1521–1527.

[111] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning
in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[112] P. Casale, O. Pujol, and P. Radeva, “Human activity recognition from accelerometer
data using a wearable device,” in Iberian Conference on Pattern Recognition and
Image Analysis, Springer, 2011, pp. 289–296.

[113] Z. He and L. Jin, “Activity recognition from acceleration data based on discrete
consine transform and svm,” in Systems, Man and Cybernetics, 2009. SMC 2009.
IEEE International Conference on, IEEE, 2009, pp. 5041–5044.

180

[114] M.-C. Chuang, R. Bala, E. A. Bernal, P. Paul, A. Burry, et al., “Estimating gaze di-
rection of vehicle drivers using a smartphone camera.,” in CVPR Workshops, 2014,
pp. 165–170.

[115] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th international conference on machine learning
(ICML-10), 2010, pp. 807–814.

[116] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[117] L. Rabiner, “A tutorial on hidden Markov models and selected applications in
speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[118] D. L. Vail, M. M. Veloso, and J. D. Lafferty, “Conditional random fields for activ-
ity recognition,” in Proceedings of the 6th international joint conference on Au-
tonomous agents and multiagent systems - AAMAS ’07, New York, New York,
USA: ACM Press, 2007, p. 1.

[119] E. T. Hall, The Hidden Dimension. Anchor Books, 1969.

[120] C. Dondrup, N. Bellotto, F. Jovan, and M. Hanheide, “Real-time multisensor peo-
ple tracking for human-robot spatial interaction,” in Workshop on Machine Learn-
ing for Social Robotics at International Conference on Robotics and Automation
(ICRA), ICRA/IEEE, 2015.

[121] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag New
York, 2006.

[122] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv preprint
arXiv:1612.08242, 2016.

[123] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment us-
ing multitask cascaded convolutional networks,” IEEE Signal Processing Letters,
vol. 23, no. 10, pp. 1499–1503, 2016.

[124] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European confer-
ence on computer vision, Springer, 2014, pp. 740–755.

[125] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information pro-
cessing systems, 2015, pp. 91–99.

181

[126] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose esti-
mation using part affinity fields,” arXiv preprint arXiv:1611.08050, 2016.

[127] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research,” in, 1988, pp. 139–183.

[128] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A practical
and powerful approach to multiple testing,” Journal of the royal statistical society.
Series B (Methodological), pp. 289–300, 1995.

[129] S. Honig and T. Oron-Gilad, “Understanding and resolving failures in human-robot
interaction: Literature review and model development,” Frontiers in psychology,
vol. 9, p. 861, 2018.

[130] N. Du, K. Y. Huang, and X. J. Yang, “Not all information is equal: Effects of dis-
closing different types of likelihood information on trust, compliance and reliance,
and task performance in human-automation teaming,” Human Factors, 2019.

[131] X. J. Yang, V. V. Unhelkar, K. Li, and J. A. Shah, “Evaluating effects of user ex-
perience and system transparency on trust in automation,” in HRI, IEEE, 2017,
pp. 408–416.

[132] S. R. Dixon, C. D. Wickens, and J. S. McCarley, “On the independence of compli-
ance and reliance: Are automation false alarms worse than misses?” Human factors,
vol. 49, no. 4, pp. 564–572, 2007.

[133] M. Arvan, B. Fahimnia, M. Reisi, and E. Siemsen, “Integrating human judgement
into quantitative forecasting methods: A review,” Omega, vol. 86, pp. 237–252,
2019.

[134] E. Rogers and R. R. Murphy, “Tele-assistance for semi-autonomous robots,” 1994.

[135] S. A. Patel and A. K. Kamrani, “Intelligent decision support system for diagno-
sis and maintenance of automated systems,” Computers & industrial engineering,
vol. 30, no. 2, pp. 297–319, 1996.

[136] H. Warnquist, J. Kvarnström, and P. Doherty, “Exploiting fully observable and de-
terministic structures in goal POMDPs,” in Twenty-Third International Conference
on Automated Planning and Scheduling, 2013.

[137] D. Norman, The design of everyday things: Revised and expanded edition. Basic
books, 2013.

182

[138] A. Degani, I. Barshi, and M. G. Shafto, “Information organization in the airline
cockpit: Lessons from flight 236,” Journal of cognitive engineering and decision
making, vol. 7, no. 4, pp. 330–352, 2013.

[139] M. Lenz, E. Auriol, and M. Manago, “Diagnosis and decision support,” in Case-
Based Reasoning Technology: From Foundations to Applications, M. Lenz, H.-D.
Burkhard, B. Bartsch-Spörl, and S. Wess, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 51–90.

[140] O. Pettersson, L. Karlsson, and A. Saffiotti, “Model-Free Execution Monitoring in
Behavior-Based Robotics,” IEEE Transactions on Systems, Man and Cybernetics,
Part B (Cybernetics), vol. 37, no. 4, pp. 890–901, Aug. 2007.

[141] D. Park, H. Kim, Y. Hoshi, Z. Erickson, A. Kapusta, and C. C. Kemp, “A multi-
modal execution monitor with anomaly classification for robot-assisted feeding,”
in IROS, IEEE, Sep. 2017, pp. 5406–5413.

[142] H. Wu, S. Luo, L. Chen, S. Duan, S. Chumkamon, D. Liu, Y. Guan, and J. Ro-
jas, “Endowing Robots with Longer-term Autonomy by Recovering from External
Disturbances in Manipulation through Grounded Anomaly Classification and Re-
covery Policies,” arXiv: 1809.03979, Sep. 2018. arXiv: 1809.03979.

[143] J. S. Breese and D. Heckerman, “Decision-Theoretic Troubleshooting: A Frame-
work for Repair and Experiment,” in UAI, Morgan Kaufmann Publishers Inc., 1996,
pp. 124–132.

[144] R. R. Murphy and D. Hershberger, “Handling sensing failures in autonomous mo-
bile robots,” IJRR, vol. 18, no. 4, pp. 382–400, 1999.

[145] L. Parker and B. Kannan, “Adaptive Causal Models for Fault Diagnosis and Re-
covery in Multi-Robot Teams,” in IROS, IEEE, Oct. 2006, pp. 2703–2710.

[146] C. Sammut, “Behavioral Cloning,” in Encyclopedia of Machine Learning, Boston,
MA: Springer US, 2011, pp. 93–97.

[147] A. Mohseni-Kabir, C. Rich, S. Chernova, C. L. Sidner, and D. Miller, “Interactive
hierarchical task learning from a single demonstration,” in HRI, 2015, pp. 205–212.

[148] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent advances
in robot learning from demonstration,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 3, pp. 297–330, 2020.

[149] M. Gombolay, A. Bair, C. Huang, and J. Shah, “Computational design of mixed-
initiative human–robot teaming that considers human factors: Situational aware-

183

https://arxiv.org/abs/1809.03979

ness, workload, and workflow preferences,” IJRR, vol. 36, no. 5-7, pp. 597–617,
2017.

[150] M. Gombolay, X. J. Yang, B. Hayes, N. Seo, Z. Liu, S. Wadhwania, T. Yu, N. Shah,
T. Golen, and J. Shah, “Robotic assistance in the coordination of patient care,” The
International Journal of Robotics Research, vol. 37, no. 10, pp. 1300–1316, 2018.

[151] A. Nakamura, K. Nagata, K. Harada, N. Yamanobe, T. Tsuji, T. Foissotte, and Y.
Kawai, “Error recovery using task stratification and error classification for manip-
ulation robots in various fields,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, Nov. 2013, pp. 3535–3542.

[152] P. Struss, “Model-based decision support systems-conceptualization and general
architecture,” in International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, Springer, 2020, pp. 588–600.

[153] R. Reiter, “A theory of diagnosis from first principles,” Artificial Intelligence, vol. 32,
no. 1, pp. 57–95, Apr. 1987.

[154] B. Andersen and T. Fagerhaug, Root cause analysis: simplified tools and tech-
niques. Quality Press, 2006.

[155] S. A. Alharthi, O. Alsaedi, Z. O. Toups, J. Tanenbaum, and J. Hammer, “Playing to
wait: A taxonomy of idle games,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’18, New York, NY, USA: Asso-
ciation for Computing Machinery, 2018, pp. 1–15.

[156] M. E. Fonteyn, B. Kuipers, and S. J. Grobe, “A description of think aloud method
and protocol analysis,” Qualitative Health Research, vol. 3, no. 4, pp. 430–441,
1993.

[157] P. G. Polson, C. Lewis, J. Rieman, and C. Wharton, “Cognitive walkthroughs: A
method for theory-based evaluation of user interfaces,” International Journal of
Man-Machine Studies, vol. 36, no. 5, pp. 741–773, May 1992.

[158] S. Banerjee and S. Chernova, “Fault diagnosis in robot task execution,” in AAAI
Spring Symposium Series, 2019.

[159] A. Abdollahi, K. R. Pattipati, A. Kodali, S. Singh, S. Zhang, and P. B. Luh, “Prob-
abilistic Graphical Models for Fault Diagnosis in Complex Systems,” in, 2016,
pp. 109–139.

[160] M. C. Hughes, W. T. Stephenson, and E. Sudderth, “Scalable adaptation of state
complexity for nonparametric hidden markov models,” in Advances in Neural In-

184

formation Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, Eds., vol. 28, Curran Associates, Inc., 2015, pp. 1198–1206.

[161] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[162] S. Coppers, K. Luyten, D. Vanacken, D. Navarre, P. Palanque, and C. Gris, “For-
tunettes: Feedforward about the future state of gui widgets,” Proc. HCI, vol. 3,
no. EICS, pp. 1–20, 2019.

[163] B. Lafreniere, P. K. Chilana, A. Fourney, and M. A. Terry, “These aren’t the com-
mands you’re looking for: Addressing false feedforward in feature-rich software,”
in UIST, 2015, pp. 619–628.

[164] M. Natarajan and M. Gombolay, “Effects of anthropomorphism and accountability
on trust in human robot interaction,” in HRI, 2020, pp. 33–42.

[165] A. B. Beck, A. D. Schwartz, A. R. Fugl, M. Naumann, and B. Kahl, “Skill-based
Exception Handling and Error Recovery for Collaborative Industrial Robots.,” in
FinE-R IROS, 2015, pp. 5–10.

[166] B. Nushi, E. Kamar, E. Horvitz, and D. Kossmann, “On human intellect and ma-
chine failures: Troubleshooting integrative machine learning systems,” in AAAI,
2017.

[167] M. K. Lee, S. Kiesler, J. Forlizzi, S. Srinivasa, and P. Rybski, “Gracefully mitigat-
ing breakdowns in robotic services,” in HRI, IEEE, Mar. 2010, pp. 203–210.

[168] D. J. Brooks, M. Begum, and H. A. Yanco, “Analysis of reactions towards failures
and recovery strategies for autonomous robots,” in RO-MAN, IEEE, 2016, pp. 487–
492.

[169] M. Vasic and A. Billard, “Safety issues in human-robot interactions,” in ICRA,
IEEE, 2013, pp. 197–204.

[170] J. K. Kruschke, “Rejecting or accepting parameter values in bayesian estimation,”
Advances in Methods and Practices in Psychological Science, vol. 1, no. 2, pp. 270–
280, 2018.

[171] J. Brooke, “Sus-a quick and dirty usability scale,” Usability evaluation in industry,
vol. 189, no. 194, pp. 4–7, 1996.

[172] P.-C. Bürkner, “Advanced Bayesian multilevel modeling with the R package brms,”
The R Journal, vol. 10, no. 1, pp. 395–411, 2018.

185

[173] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li, and A. Riddell, “Stan: A probabilistic programming
language,” Journal of statistical software, vol. 76, no. 1, 2017.

[174] A. Vehtari, A. Gelman, and J. Gabry, “Practical bayesian model evaluation using
leave-one-out cross-validation and waic,” Statistics and computing, vol. 27, no. 5,
pp. 1413–1432, 2017.

[175] J. Cohen, “Statistical power analysis for the social sciences,” 1988.

[176] D. Makowski, M. S. Ben-Shachar, S. Chen, and D. Lüdecke, “Indices of effect
existence and significance in the bayesian framework,” Frontiers in Psychology,
vol. 10, p. 2767, 2019.

[177] R. Wiczorek and D. Manzey, “Supporting attention allocation in multitask environ-
ments: Effects of likelihood alarm systems on trust, behavior, and performance,”
Human factors, vol. 56, no. 7, pp. 1209–1221, 2014.

[178] D. Arnott and G. Pervan, “Eight key issues for the decision support systems disci-
pline,” Decision Support Systems, vol. 44, no. 3, pp. 657–672, 2008.

[179] D. Kirchner, “Self-healing in autonomous robot teams,” Ph.D. dissertation, Univer-
sitätsbibliothek Kassel, 2017.

[180] V. Lı́n, “Scheduling results applicable to decision-theoretic troubleshooting,” Inter-
national Journal of Approximate Reasoning, vol. 56, pp. 87–107, 2015.

[181] V. Raghavan, M. Shakeri, and K. Pattipati, “Optimal and near-optimal test sequenc-
ing algorithms with realistic test models,” IEEE Transactions on systems, man, and
cybernetics, vol. 29, no. 1, pp. 11–26, 1999.

[182] P. Perrault, V. Perchet, and M. Valko, “Finding the bandit in a graph: Sequential
search-and-stop,” in Proceedings of Machine Learning Research, K. Chaudhuri
and M. Sugiyama, Eds., ser. Proceedings of Machine Learning Research, vol. 89,
PMLR, Apr. 2019, pp. 1668–1677.

[183] S. Nikolaidis, D. Hsu, and S. Srinivasa, “Human-robot mutual adaptation in col-
laborative tasks: Models and experiments,” The International Journal of Robotics
Research, vol. 36, no. 5-7, pp. 618–634, 2017.

[184] M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa, “Trust-aware decision
making for human-robot collaboration: Model learning and planning,” ACM Trans-
actions on Human-Robot Interaction (THRI), vol. 9, no. 2, pp. 1–23, 2020.

186

[185] D. Karimi, H. Dou, S. K. Warfield, and A. Gholipour, “Deep learning with noisy
labels: Exploring techniques and remedies in medical image analysis,” Medical
Image Analysis, vol. 65, p. 101 759, 2020.

[186] J. Uesato, A. Kumar, C. Szepesvari, T. Erez, A. Ruderman, K. Anderson, K. (Dvi-
jotham, N. Heess, and P. Kohli, “Rigorous Agent Evaluation: An Adversarial Ap-
proach to Uncover Catastrophic Failures,” in International Conference on Learning
Representations, 2019.

[187] A. Malinin and M. Gales, “Reverse KL-Divergence training of prior networks: Im-
proved uncertainty and adversarial robustness,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 14 547–14 558.

[188] D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, “Using self-supervised
learning can improve model robustness and uncertainty,” in Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F.
dAlché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 15 663–
15 674.

[189] J. M. Wooldridge, “On the application of robust, regression-based diagnostics to
models of conditional means and conditional variances,” Journal of econometrics,
vol. 47, no. 1, pp. 5–46, 1991.

[190] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain
randomization for transferring deep neural networks from simulation to the real
world,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), IEEE, 2017, pp. 23–30.

[191] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E.
Cameracci, S. Boochoon, and S. Birchfield, “Training deep networks with synthetic
data: Bridging the reality gap by domain randomization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018,
pp. 969–977.

[192] X. Zhu and X. Wu, “Class noise vs. attribute noise: A quantitative study,” Artificial
intelligence review, vol. 22, no. 3, pp. 177–210, 2004.

[193] B. Frénay and M. Verleysen, “Classification in the presence of label noise: A sur-
vey,” IEEE transactions on neural networks and learning systems, vol. 25, no. 5,
pp. 845–869, 2013.

[194] D. Arpit, S. Jastrzkebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Ma-
haraj, A. Fischer, A. Courville, Y. Bengio, and S. Lacoste-Julien, “A closer look at
memorization in deep networks,” D. Precup and Y. W. Teh, Eds., ser. Proceedings

187

of Machine Learning Research, vol. 70, International Convention Centre, Sydney,
Australia: PMLR, Aug. 2017, pp. 233–242.

[195] A. Drory, S. Avidan, and R. Giryes, “On the resistance of neural nets to label noise,”
arXiv preprint arXiv:1803.11410, vol. 2, 2018. arXiv: 1803.11410.

[196] M. Li, M. Soltanolkotabi, and S. Oymak, “Gradient descent with early stopping is
provably robust to label noise for overparameterized neural networks,” S. Chiappa
and R. Calandra, Eds., ser. Proceedings of Machine Learning Research, vol. 108,
Online: PMLR, Aug. 2020, pp. 4313–4324.

[197] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, “Using trusted data to train
deep networks on labels corrupted by severe noise,” in Advances in Neural Infor-
mation Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., Curran Associates, Inc., 2018, pp. 10 456–
10 465.

[198] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus, “Training convo-
lutional networks with noisy labels,” Workshop at ICLR 2015, 2015. arXiv: 1406.
2080 [cs.CV].

[199] M. Charikar, J. Steinhardt, and G. Valiant, “Learning from untrusted data,” in Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
2017, pp. 47–60.

[200] N. Konstantinov and C. Lampert, “Robust Learning from Untrusted Sources,” in
Proceedings of the 36th International Conference on Machine Learning, May 2019.
arXiv: 1901.10310.

[201] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight examples for
robust deep learning,” J. Dy and A. Krause, Eds., ser. Proceedings of Machine
Learning Research, vol. 80, Stockholmsmässan, Stockholm Sweden: PMLR, Jul.
2018, pp. 4334–4343.

[202] D. Das, S. Banerjee, and S. Chernova, “Explainable ai for robot failures: Gener-
ating explanations that improve user assistance in fault recovery,” in Int. Conf. on
Human-Robot Interaction, 2021.

[203] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A brief sur-
vey of deep reinforcement learning,” arXiv preprint arXiv:1708.05866, 2017.

[204] R. Paleja, A. Silva, L. Chen, and M. Gombolay, “Interpretable apprenticeship learn-
ing from heterogeneous decision-making via personalized embeddings,” arXiv preprint
arXiv:1906.06397, 2019.

188

https://arxiv.org/abs/1803.11410
https://arxiv.org/abs/1406.2080
https://arxiv.org/abs/1406.2080
https://arxiv.org/abs/1901.10310

[205] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[206] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” The journal of machine
learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[207] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint
arXiv:1606.08415, 2016.

[208] G. Camporese, P. Coscia, A. Furnari, G. M. Farinella, and L. Ballan, “Knowledge
distillation for action anticipation via label smoothing,” arXiv preprint arXiv:2004.07711,
2020.

[209] R. Azzam, Y. Alkendi, T. Taha, S. Huang, and Y. Zweiri, “A stacked lstm based
approach for reducing semantic pose estimation error,” IEEE Transactions on In-
strumentation & Measurement, 2020.

[210] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, “Fault tree handbook,”
Nuclear Regulatory Commission Washington dc, Tech. Rep., 1981.

[211] J. Peeters, R. Basten, and T. Tinga, “Improving failure analysis efficiency by com-
bining FTA and FMEA in a recursive manner,” Reliability Engineering & System
Safety, vol. 172, pp. 36–44, Apr. 2018.

[212] P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-Robot Collaborative
High-Level Control with an Application to Rescue Robotics,” in IEEE Interna-
tional Conference on Robotics and Automation, Stockholm, Sweden, May 2016.

[213] M. Colledanchise and P. Ögren, Behavior trees in robotics and AI: An introduction.
CRC Press, 2018.

[214] R. A. Gutierrez, V. Chu, A. L. Thomaz, and S. Niekum, “Incremental task modi-
fication via corrective demonstrations,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2018, pp. 1126–1133.

[215] K. Chen, D. Kent, N. Shrivatsav, H. Ravichandar, and S. Chernova, “Learning prob-
abilistic hierarchical task networks from unannotated demonstrations,” in Confer-
ence on Robot Learning, 2020.

[216] Z. Wang and M. Gombolay, “Learning scheduling policies for multi-robot coor-
dination with graph attention networks,” IEEE Robotics and Automation Letters,
vol. 5, no. 3, pp. 4509–4516, 2020.

189

[217] H. Ravichandar, K. Shaw, and S. Chernova, “Strata: Unified framework for task as-
signments in large teams of heterogeneous agents,” Autonomous Agents and Multi-
Agent Systems, vol. 34, pp. 1–25, 2020.

[218] S. Andrist, D. Bohus, E. Kamar, and E. Horvitz, “What went wrong and why?
diagnosing situated interaction failures in the wild,” in International Conference
on Social Robotics, Springer, 2017, pp. 293–303.

[219] R. M. Aronson and H. Admoni, “Gaze for error detection during human-robot
shared manipulation,” in Fundamentals of Joint Action workshop, Robotics: Sci-
ence and Systems, 2018.

[220] A. Washburn, A. Adeleye, T. An, and L. D. Riek, “Robot errors in proximate hri:
How functionality framing affects perceived reliability and trust,” ACM Transac-
tions on Human-Robot Interaction (THRI), vol. 9, no. 3, pp. 1–21, 2020.

[221] J. Dzieza, Robots aren’t taking our jobs — they’re becoming our bosses.

[222] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on
bias and fairness in machine learning,” arXiv preprint arXiv:1908.09635, 2019.

[223] Y. Li and N. Vasconcelos, “Repair: Removing representation bias by dataset re-
sampling,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 9572–9581.

190

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction
	Dissertation Overview
	Thesis Statement
	Contributions
	Outline of Dissertation Document

	2 | Recovery-Driven Development for Recipe-based Robot Tasks
	Related Work
	System Overview
	Task Execution and Recovery
	Validation
	Discussion

	3 | The Interruptibility of Collocated Humans
	Related Work
	Interruptibility Classification
	Perceiving Interruptibility
	Models for Interruptibility Classification
	Dataset for Interruptibility Classification
	Evaluating Features and Model Robustness
	Effects of Interruptibility Classification: User Study
	Computational Framework
	User Study: Design
	User Study: Results
	Insights

	4 | On the Effects of Providing Decision Support to Remote Operators
	Related Works
	Research Questions
	User Study
	Decision Support Models
	Results
	Discussion & Conclusions

	5 | Action and Diagnosis Recommendations for Responding to Robot Failure
	Related Work
	Research Questions
	Domain
	Experiment Procedure
	Results
	Discussion and Conclusions

	6 | On the Accuracy of Decision Support Models During Robot Failure Interventions
	Related Work
	Definitions
	Evaluation Setup
	Experiments
	Results
	Summary & Conclusions

	7 | Conclusions and Future Work
	Appendices
	A | Understanding Accuracy-Inaccuracy Plots
	References

