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Abstract 

Memory is our ability to encode, store, retrain, and subsequently recall information and 

past experiences. Different areas of the brain are responsible for different aspects of memory, 

including the hippocampus which enables us to form, organize, and store new memories. 

Numerous research studies show that the hippocampal subfields are affected by memory related 

diseases such as Alzheimer’s Disease and Schizophrenia in different ways. Understanding what 

the different hippocampal subfields do is important for basic science, but also for understanding 

neurodegenerative disorders which are associated with structural and functional abnormalities of 

hippocampal neurons.  In order to examine the effects of memory success and failure of the 

firing patterns of the hippocampal neurons in the different subfields, I used a unique dataset, 

published by Faraut et al (2018), of a large sample of intracranial neural spiking data from 

humans.) and ran a hierarchical clustering algorithm on the  neural firing patterns. Results 

suggest that the neurons in the different hippocampus subfields (CA1, CA2, CA3, and DG) have 

certain firing profiles which as a result causes them to group together according to these specific 

subfields. These firing patters were different in some degree depending on weather on successful 

and unsuccessful memory – and thus suggest each subfield processes memories in a different 

way.  
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Introduction 

 Memory can be a complex phenomenon, especially in humans. The Multiple Memory 

Systems theory states that different brain systems support memory in a different way (Squire 

2004). Moreover, in this Multiple Memory Systems theory, different kinds of information are 

processed and stored in different areas of the brain. These areas include the amygdala, 

neostriatum, cerebellum, and hippocampus. The hippocampus, located in the medial temporal 

lobe (MTL), is one of the most critical components for declarative memory, which is our ability 

to recollect factual knowledge and everyday events (Eichenbaum 2000).  

The hippocampus is comprised of different subfields, including the Dentate Gyrus (DG) 

and a series of Cornu Ammonis (CA) areas (CA1, CA2, CA3; Lingford-Hughes et al 2012). Each 

of these distinct subfields contributes to memory in different ways. Previous rodent research 

shows different patterns of deficits between rodents with selective CA1 and CA3 lesions. 

Memory was severely affected by damage to dorsal CA3 subfield when temporal processing 

demands were minimal. Temporal processing refers to the processing of acoustic stimuli over 

time (Staff 2014).  However, damage to the dorsal CA1 subfield only produced memory 

impairment when the temporal processing demands (audible or acoustic event) were increased. 

(Favorik et al 2009). This suggests that there is a difference in memory processing in different 

experimental conditions, supporting the idea that different hippocampal subfields support 

memory in different ways. 

Similarly, research in humans suggests that it is the dynamic information transfer 

between the DG and CA3 that helps distinguish between two similar memories (Yassa 2011). 

The back-projections from CA3 to the DG are the prime candidates for this modulation 
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(Scharfman 2007). Importantly, neurocognitive aging and dementia tend to lead to deficits in 

pattern separation, such as confusing two alike memories  (Yassa 2011) and therefore, it is 

beneficial to study how single neurons in these distinct subfields process memories in humans, 

because this understanding may in turn help understand the causes of memory failures in aging 

related disease. 

One issue with cognitive and clinical neuroscience research in humans is that the 

macroscopic correlations between hippocampal regions and disease progression and symptoms, 

such as activity level measured with fMRI, do not tell much about how neuronal firing in these 

subfields contribute to the disease, if they do at all. Much of the evidence we have about 

neuronal firing properties in these subfields comes from the rodent experiments cited above. 

There is, therefore, a big need for studies that are able to get data at the level of single recording 

units from the human brain. In this thesis, I used a unique dataset, published by Faraut et al 

(2018), of a large sample of intracranial neural spiking data from humans. By quantifying the 

different firing patterns in neurons from the different hippocampal subfields and using a 

hierarchical clustering algorithm, I was able to report different neural firing dynamics in different 

subfields of the human hippocampus. In addition to finding different neural dynamics, another 

aim of my thesis was to show how these firing dynamics contribute to memory successes and 

failures (e.g., failing to discriminate a new stimulus from old ones as a form of pattern separation 

failure) and to determine whether these firing dynamics relate more to an abnormal CA3 than 

CA1 firing pattern. Gaining a better understanding of how the neurons in these subfields behave 

when an individual has successful memory versus when they fail to remember can give us a 

better understanding of their contribution to memory and can help provide a better understanding 

of deficits in memory related diseases. 
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Literature review 

Our memory is what makes us who we are. It is memory that helps us function in 

everyday life and form long lasting relationships. Human memory is the result of complex 

system interactions, being composed of many separate parts each of which may contribute 

differently to the whole memory system. This is known as the Multiple Memory System theory, 

which states that the different kinds of information are processed and stored in different area of 

the brain, such as the amygdala, neostriatum cerebellum and the hippocampus (Squire 2004). 

Most of what we know about human memory comes from both amnesic and healthy patients, as 

well as experimental animal models (Squire 2004). The hippocampus, located in the medial 

temporal lobe (MTL), is one of the most critical components for memory, specifically 

declarative memory, which is our ability to recollect factual knowledge and everyday events 

(Eichenbaum 2000). We know this in part thanks to Henry Molaison (H.M.), who suffered from 

severe epileptic seizures for roughly ten years. To try to alleviate the seizures, H.M had a 

bilateral resection of an area including the hippocampal gyrus, and as a result was left with 

anterograde amnesia or a loss of ability to create new memories (Corkin 1997). Studies on H.M 

show that the hippocampus is a core brain structure supporting memory along with permanent 

consolidation of memories (Eichenbaum 2013).  

The significance of the hippocampus in relation to memory is also observed in 

individuals who suffer from MTL amnesia. These individuals suffer loss of episodic memory 

which is known as failure to remember autobiographical events such as times, places, associated 

emotions, and other contextual memories. Episodic memories are ones related to past personal 

experiences that occurred at a specific time and place. We now know, following cases like H.M., 
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that the hippocampus is an area in the MTL that is responsible for forming these types of 

memories (Brown et al 2001). Importantly, the hippocampus includes different subfields, namely 

CA1, CA2, CA3 and the Dentate Gyrus (DG; Lingford-Hughes et al 2012). These distinct 

subfields may contribute to memory in different ways.  

One example is pattern separation, or the process of transforming memories or 

representation that are qualitatively similar into different non overlapping neural representations. 

This may be one of the key functions of the hippocampus, (Bakker et al 2008), and an abundance 

of evidence has shown that the DG is necessary for pattern separation (Yassa et al 2011). Rodent 

lesion and genetic knockout studies have also suggested that CA3 subfield may contribute to this 

process. It is hypothesized that the DG responds to small changes in input that potentially drives 

pattern separation signals in CA3, leading to an ability to discriminate between two alike stimuli 

(Yassa et al 2011). Selective damage to the DG/CA3 network leads to pattern separation deficits, 

which may be the reason for many of the episodic memory problems that are seen in older 

individuals (Yassa et al 2011).  Comparing how single neurons behave in each of these 

subregions when one has successful memory versus when memory fails, as I do in this thesis, 

can help us further understand these processes and how they may affect clinical cases.  

Beyond normal aging, diseases also give rise to hippocampal damage and memory 

deficits. Alzheimer’s Disease (AD) is one example: a neurodegenerative disease which is the 

most common cause of dementia and is characterized by many pathological markers, one of 

which is neuronal decline (Hardy et al 1992). Older adults with AD suffer from selective 

hippocampal subfield atrophy. Hippocampal subfield CA1 was found to be associated with both 

visual and verbal episodic memories and therefore, smaller CA1 volumes are associated with 

poorer episodic memory and may be a marker for normative cognitive decline (Zammit et al 
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2017). Individuals suffering from AD have a significant reduction in neuronal density in 

hippocampal subfields CA1 and CA3 in comparison to healthy individuals, with the highest 

decrease in volume in CA1 (Padurariu et al 2012). Because not all subfields are affected equally, 

studying different neural firing profiles in these areas during successful and unsuccessful 

memory, as I do in this thesis, may therefore help us gain a better understanding of the potential 

causes of memory deficits in AD. 

More broadly, understanding whether firing patterns of these different hippocampus 

subfields give rise to successful and unsuccessful memory is also beneficial for understanding 

myriad other neuropsychiatric disorders which are associated with structural and functional 

abnormalities of hippocampal neurons. Schizophrenia is a neuropsychiatric disorder which can 

affect the mental state of an individual such as effects on one’s thoughts and feelings, as well as 

cognitive challenges including problems with memory and attention. It was found that there is a 

significant reduction in hippocampal neurons in individuals that suffer from schizophrenia. This 

damage is primarily in the CA1 subfield of the hippocampus. (Eggers et al 2013). Because 

diseases like Schizophrenia also do not affect the hippocampus subfields equally, understanding 

how neurons in each of the subfields behave during memory can help us better understand 

altered cognition and memory phenomenon.  

In this thesis, I aimed to find data that help us better understand the relationship between 

neuronal behavior in the different hippocampal subfields and memory performance. If we can 

understand how the neurons in these subfields behave when an individual remembers versus 

when they fail to remember, we can have a better understanding of their contribution to memory 

and how we can apply this knowledge to memory related diseases, such as AD and other forms 

of dementia, that affect these different hippocampal subregions. 
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Methods 

Data Set 

 Human neural activity data are traditionally collected via the utilization of volunteer 

subjects. However, data that require surgery, as is necessary for single neuron activity measures, 

are not something that can be done voluntarily. Therefore, it is rare to obtain direct recordings 

from neurons in human hippocampal subfields. We have to obtain these data from individuals 

who are undergoing a medical procedure and need the electrodes surgically implanted as a result 

their medical conditions. In order to address the question of subfield differentiation in firing 

patterns, I used a public dataset published by Faraut et al that provide the rare opportunity to 

investigate human single neuron spiking on a large scale, which could be used to investigate the 

variety of firing patterns of neurons in the different hippocampal subfields. 

  The dataset included 42 patients, male and female ages 16-70, with intractable epilepsy 

that underwent intracranial monitoring for localization of their epileptic seizures (see Table 1). 

Electrodes were implanted intracranially (electrodes placed directly on the exposed surface the 

brain) in the hippocampus and the amygdala (see Image 1). During the time they were being 

monitored, the patients participated in a memory task. As a result, we get single neuron 

recordings from 1,576 neurons in the human hippocampus and amygdala from 42 individuals 

whilst completing a recognition memory task 

Memory task 

During the time they were being monitored subjects completed two trials of a recognition 

memory task. 
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The first trial included encoding, where subjects were shown 100 images. The encoding 

trial was followed by a retrieval trial where the subjects were shown another set of 100 images, 

50 of those were from the previous encoding trial and 50 were novel images. Stimuli were 

displayed for either one or two seconds. (see Image 2). 

Subjects were asked to recall whether they had previously seen the image or if it was new 

and rate their confidence in their answer on a scale of one to six. Subjects’ neural activity was 

recorded from the amygdala and hippocampus. The data that was collected included 1576 single 

neurons from the 42 participants.  

Data Retrieval  

These data are stored in a MATLAB file. To retrieve the data, we used information from 

the original paper (Faraut et al 2018) which gave directions and information on which MATLAB 

files included which data. The location coordinates of the intracranial electrodes in a 

standardized brain template space are given in MNI coordinates, which allows for identification 

of the brain region in which an electrode was implanted, and single neuron spiking data were 

retrieved in this way. It should be noted that the location coordinates were in a standardized 

template brain space, therefore, they indicate to which brain area a specific neuron most likely 

belongs, but not the precise localization that would be done from examining a single patient’s 

anatomy. This allowed us the ability to estimate the localization of a specific firing pattern to a 

hippocampal subfield. in addition, some neurons were not included in the analysis because they 

did not have MNI coordinates or neural firing patterns that changed over the course of time. 

Location Coordinates 

Statistical Parametric Mapping (SPM) on MATLAB was used to input the MNI 

coordinates and quantify the probability of the location of each electrode in the area of interest, 
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which included four areas in the hippocampus (CA1, CA2, CA3, and the DG) and 2 areas in the 

amygdala (see Image 1). 

Data Analysis 

Neural firing patterns for all 1576 neurons in the 65 sessions were combined together for 

data analysis. There were four separate condition groups (each including the firing pattern of the 

1576 neurons in that group’s condition), showing the neural firing pattern when the subject 

recognized an image either correctly as old (Old) , correctly as new (New),  incorrectly as new 

when it was old (Oldi), or incorrectly as old when it was new (Newi). The firing pattern for each 

of the neurons was temporal, showing its spiking pattern across seven time bins of 500 ms each. 

The mean firing pattern for each neuron in each of the four conditions was calculated.  

Analysis was done using a hierarchical clustering algorithm. This algorithm clustered the 

neurons according to how similar (or dissimilar) their firing patterns were. Clusters at one level 

join with clusters in the next level up (i.e., an agglomerative algorithm), using an increasing 

degree of dissimilarity until the clusters all join together at the top. I was interested in 

investigating the first two levels to see if the groupings were based on a specific neural firing 

profile characteristic of a certain hippocampal subfield. Two separate analyses were done. The 

first analysis was at the first level of clustering, where the dendrogram first splits into two 

clusters (representing the two most dissimilar patterns of firing) and the second was at the 

breakdown of the aforementioned two clusters (representing dissimilarities within those first two 

primary clusters). The goal of these analyses was to investigate if there is a unique firing pattern 

causing these neurons to get clustered together at these two levels according to their subfield.  

A chi-square test of goodness-of-fit was performed to determine whether neurons in each 

of the five brain areas were equally distributed between the clusters formed (that is, the Null, 
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indicating that neurons of a given brain area do NOT have a dominant firing pattern at the first or 

second level of clustering for a given memory condition), or if the clustering was based at least 

in part on subregion identity. This analysis was done for each of the brain areas (CA1), CA2, 

CA3, DG, and amygdala) in each neuron condition (Old, Oldi, New, and Newi). (See images: 3-6 

and tables 6-7). 

 

Results 

First Level Analysis  

Condition: New 

These results include firing patterns of each neuron when the subject correctly recognized 

an image as a novel one during the recognition trial in the memory task. There were no 

significant difference in CA1, CA2, and CA3 neuron distribution when compared to an even 

distribution (see Table 2a). There were, however, a significant difference in DG neuron 

distribution when compared to an even distribution, X 2 (4, N = 92) = 6.2, p = .01. Significant 

distribution was also found with neurons in the amygdala, X 2 (4, N = 846) = 81.01, p < .01 (see 

Image 2). For the purposes of this thesis, this result suggests that DG has a characteristic firing 

pattern for correctly identified/discriminated new stimuli. 

 

Condition: Newi 

These results include firing patterns of each neuron when the subject incorrectly 

recognized an image as old when it was novel, during the recognition trial in the memory task. 

There were no significant differencse in CA1, CA2, and DG neuron distribution when compared 

to an even distribution (see Table 3a). There was a significant difference in CA3 neuron 
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distribution when compared to an even distribution, X 2 (4, N = 116) = 4.14, p =.04. Significant 

results were also found in neurons in the amygdala, X 2 (4, N = 784) = 92.87, p < .01. For the 

purposes of this thesis, this result suggests that CA3 has a characteristic firing profile for 

incorrectly identified new stimuli.   

Condition: Old 

These results include firing patterns of each neuron when the subject correctly recognized 

an image as one they had previously seen during the encoding trial in the memory task. There 

were no significant difference in CA1, CA2, and DG neuron distribution when compared to an 

even distribution (see Table 4a). These results suggest that there is not a unique firing pattern 

grouping these neurons. Results showed a significant difference in CA3 neuron distribution 

when compared to an even distribution, X2 (4, N =116) = 4.12, p = .04. These results suggest that 

these neurons have a similar firing pattern grouping them together. Similar significant results 

were also found in the amygdala, X2 (4, N = 842) = 28.9, p < .01. For the purposes of this thesis, 

this result suggests CA3 has a characteristic firing pattern for correctly identified/discriminated 

new stimuli. 

Condition: Oldi 

These results include firing patterns of each neuron when the subject erroneously called 

an image new (i.e. they failed to recognize it).. There was a significant difference in the 

distribution of CA1 neurons when compared to an even distribution, X2 (4, N =226) = 44.05, p < 

.01. Similar results were found with the remaining brain areas in this condition: CA2, X2 (4, N 

=50) = 15.68,  p < .01, CA3, X2 (4, N =116) = 28.75,  p < .01, DG, X2 (4, N =78) = 16.61,  p < 

.01, and the amygdala, X2 (4, N =822) = 159.41,  p < .01 (see Table 5a).  These results suggest 
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that all hippocampal subfields had a characteristic firing pattern for when subject incorrectly 

recognized stimuli as new when it was old. 

 

Second Level Analysis.  

The purpose of the first Level analysis was to identify whether subregion identity 

contributed to the most prominent organizational principle in the data for each of the four 

memory conditions. The Second Level analysis asked whether, in cases where that was not true, 

if the subregion identity was a “secondary” organizing principle in how neurons fired. (See 

Images: 3-6 and Tables 6-7). 

Condition: New 

There we no significant difference in DG neuron distribution when compared to an even 

distribution (see Table 2b). There was, however, a significant difference in CA1 neuron 

distribution when compared to an even distribution, X 2 (4, N = 227) = 13.9, p = .003. Significant 

distributions were also found in CA2, X 2 (4, N = 74) = 15.14, p = .001, CA3, X 2 (4, N = 118) = 

8.72, p = .033, and the amygdala, X 2 (4, N = 847) = 92.40, p < 01.  This result suggests that 

CA1, CA2, and CA3 region identities were secondary factors that influence spiking patterns for 

New stimuli. 

Condition: Newi 

 There were no significant differences in CA1, CA2, and DG neural distribution when 

compared to an even distribution (see Table 3b). A significant difference was found in CA3 

neuron distribution when compared to an even distribution, X 2 (4, N = 117) = 10.96, p =.011.  

Significant distributions were also found in the amygdala, X 2 (4, N = 785) = 95.38, p < 01. This 

result suggests that CA3, region identities were secondary factors that influence spiking patterns 
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for when the subject incorrectly identifies a stimulus as one they had previously seen, when it 

was a novel stimuli.  

Condition: Old 

No significant differences were found in CA3 neural distribution when compared to an 

even distribution (see Table 4b). However, there was a significant distribution found in CA1 

neurons, X 2 (4, N = 227) = 19.83, p < 01. Additionally, a significant distribution was also found 

in CA2 neurons X 2 (4, N = 74) = 15.13,  p = 001, neurons in DG, X 2 (4, N = 92) = 11.91, p = 

007, and in the amygdala, X 2 (4, N = 842) = 196.08, p < 01. This result suggests that CA1, CA2, 

and DG region identities were secondary factors that influence spiking patterns for New stimuli. 

Condition: Oldi 

 There were no significant differences in CA2 and DG neural distribution when compared 

to an even distribution (Table 5b). However, CA1 neural distribution was found to be significant 

when compared to an even distribution X 2 (4, N = 215) = 945.62, p < 01. A significant 

distribution was also found in CA3 neurons, X 2 (4, N = 113) = 22.46, p < 01. And in amygdala 

neurons, X 2 (4, N = 809) = 224.96, p < 01. This result suggests that CA1 and CA3, region 

identities were secondary factors that influence spiking patterns for when the subject incorrectly 

identifies a stimulus as new.  

 

Discussion 

This present study investigated single neurons of subjects as they were performing a 

recognition memory task. Data included neurons from four hippocampal subfields (CA1, CA2, 

CA3, DG) and the amygdala. We know from previous research findings that deficits in these 

different brain regions have different effects on memory. Alzheimer’s Disease and Schizophrenia 
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research shows that individuals suffering memory loss have a significant reduction in neuronal 

density in CA1 and CA3 hippocampal subfields (Padurariu et al 2012; Eggers et al 2013). 

Therefore, our goal was to investigate if such neurons have a unique firing pattern characterizing 

a specific brain area. By doing so we can gain a better understanding of how neurons in these 

subfields behave during memory success and memory failure. Taken together, the present 

findings provide evidence suggesting hippocampal neurons have firing profiles that organize 

according to specific hippocampal subfields. Which subregions had characteristic firing patterns 

differed to some degree according to memory success and failure, indicating that subregions may 

indeed process memories differently from one-another. 

Analysis was first done at the first level (first split) to determine whether subfield was a 

factor that organized firing patterns at the highest level in the data. The next analysis was done at 

the second level (where the Level One clusters split further) to determine whether subfield was 

an organizing principle for neural firing patterns if, perhaps, it was not that primary factor (Level 

One). One interesting observation was that there were some subfields whose neurons clustered 

together at the first level of analysis, but not further at the second. This could have been a 

statistical power issue, due to the smaller sample size in each cluster, in comparison to the first 

level, for the Chi-Square test causing them to be non-significant. Another reason may have been 

that there were truly only two true groupings in the data according to region, which manifest at 

the highest level of the hierarchy, such that when we look at an additional split at the second 

level the relative number of bins in which there is a null difference in how a subregion is 

distributed is higher as a result of there only being two big differences but, four clusters were 

being tested.  
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Condition: New 

 We found that when the subjects correctly recognized the images as a new image there 

was a significant clustering of DG neurons at the first level, and also clustering of the rest of the 

subfields at Level 2. This suggests that these DG neurons had a similar firing profiles causing 

them to get grouped together. These results are consistent with research showing that the DG 

serves an important role in novelty detection (Lee et al 2015).  Research has also shown the role 

of the DG along with CA3 involving pattern, the ability to distinguish between two alike 

memories, and here we see a dominant unique firing pattern in the DG neurons when an 

individual successfully recognized a new image as being novel.  

Condition: Newi 

Additionally, we found that when subjects incorrectly identified a new image as one they 

had previously seen (replied Old), there was a significant clustering of CA3 neurons. Previous 

findings indicate that CA3 may be involved in both memory retrieval and pattern separation 

(Kesner 2007), alongside the DG (Yassa 2011). Failure of the dynamic between the two regions 

may have caused the subject to incorrectly recognize a new image as “old”. In this condition, 

when memory was unsuccessful, it may be that the DG is failing to create this firing profile 

needed for successful memory, which may be the cause of memory failure. We see evidence for 

this in the clear null clustering in DG. It is possible that this failed discrimination, in turn, 

contributes to the clustering in CA3 downstream from DG (note that CA3 neurons do cluster for 

Old stimuli). 

Condition: Old 

 We found that when subjects correctly recognized an image as ones they had previously 

seen, CA3 neurons clustered at the first level. By contrast, the rest of the region were found to 
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cluster at the second level of the hierarchy. Neurons located in CA1 had the highest significance 

in distribution (albeit at the second level of the hierarchy) which may be consistent with previous 

research findings stating that CA1 is essential for object recognition memory (Mello-Carpes & 

Izquierdo 2013).  

Condition: Oldi 

 Of note, we found that when subjects failed to identify an image as ones they had 

previously seen and thought the image was novel, there was a significant clustering in all 

subfields in comparison to an equal distribution at the first level. These results seem to suggest 

that the hippocampus at large has a certain firing profile that’s really characteristic for when you 

fail to recognize something. 

Limitations 

 A potential limitation for the present study was that the MNI coordinates, which provide 

the location of the electrodes in the hippocampus in standardized space, are not an exact 

measurement. This standardization system does not precisely account for individual differences 

in the position and overall shape of the subfields. As such, it allowed me to estimate the 

probabilities of electrode (neuron) location in each subfield, but these labels are not exact. 

Additionally, due to the nature of the data with one electrode per hemisphere per person, we had 

to combine all subjects’ neural data together rather than investigating in each of them 

individually. Every subject’s brain is slightly different and may have different firing profiles, but 

my analysis therefore had to test for commonalities across people. Using the mean neural firing 

patterns and generalizing across all subjects was a limitation of this investigation since this was 

not sensitive to the individual differences between subjects’ brains. Another potential limitation 

is the sample size of the neural data. Although this was a uniquely large intracranial recording 
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dataset, some individuals did not have MNI coordinates for their electrodes, so I was not able to 

estimate the location of the neurons in the brain for analysis. Additionally, some neurons did not 

have a measurable firing pattern that changed overtime, and therefor had to be taken out of the 

analysis. Finally, a large parentage (over 50%) of the neurons recorded were located in the 

amygdala, and while research does show that the amygdala contributes to memory, these data 

could not be used to test my questions about hippocampal subfield differences. Lastly, the 

subjects who participated in the study all suffer from epilepsy, while we cannot know if this 

affected their memory in any way, we do not have data from healthy individuals to act as a 

control group for these data.  

Future Directions  

In the future, we hope to investigate the what the unique firing pattern of these regions 

are. We found results that suggest that there are firing profiles that are characteristic of specific 

brain areas and that vary for different memory states. It would therefore be interesting to 

investigate what the firing profiles are. For example, when we fail to remember does a CA1 

neuron have high early firing activity followed by low activity? What would the mechanism 

significance of such a firing profile be? Investigating the specific spiking behavior can help us 

better understand or predict memory deficits in individuals with memory loss such as 

Alzheimer’s. 

Another interesting aspect to investigate in the future would be relating neural firing 

patterns to one’s confidence in their task performance. We know from examining some of the 

1576 individual neurons in the data that some appear to track a person’s decision regardless of 

whether they are correct or not. Here I report characteristic firing patterns for memory successes 

and failures. Similarly, when one is confident that they are correct, whether they are right or 
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wrong, it is unknown whether there subfields with a similar pattern reflecting their confidence. 

These types of firing data could speak to memory errors, for example, if some subregions 

contribute to false memory when they fire a certain way. 

Finally, future studies could also investigate what is going on in the other dimensions of 

the data to determine how the deeper layers of the clustering are organized. This organization 

may include different firing patterns for recognition of different types of stimuli, such as people 

vs objects, or different activity for encoding and recognition.  

In conclusion, my thesis offers evidence that neurons in the different hippocampal 

subfields (CA1, CA2, CA3, and DG) have certain firing profiles casing them to group together 

according to specific subfields. These firing patters were different in some degree depending on 

whether memory was successful or unsuccessful. This suggests that each subfield processes 

memories in a different way.  
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Figures and Tables 

		 Age	 Sex	 Epilepsy	Diagnosis	
		 55	 M	 Right	Mesial	Temporal	
		 37	 M	 Left	Frontal	
		 16	 M	 Right	Lateral	Frontal	
		 31	 M	 Bilateral	Indep.	Temporal	
		 45	 M	 Right	Mesial	Temporal	
		 34	 F	 Right	Frontal	
		 19	 M	 Left	Inferior	Frontal	
		 40	 M	 Right	Mesial	Temporal	
		 34	 M	 Left	Frontal	
		 20	 M	 Not	Localized	
		 40	 M	 Left	Mesial	Temporal	
		 40	 M	 Bilateral	Indep.	Temporal	
		 22	 M	 Right	Mesial	Temporal	
		 17	 F	 Left	Deep	Insula	
		 30	 M	 Right	Mesial	Temporal	
		 29	 M	 Left	Mesial	Temporal	
		 29	 M	 Not	Localized	
		 27	 F	 Left	Mesial	Temporal	
		 57	 F	 Right	Mesial	Temporal	
		 20	 M	 Right	Mesial	Temporal	
		 54	 M	 Left	Mesial	Temporal	
		 24	 M	 Bilateral	Frontal	and	Temporal	
		 47	 F	 Not	localized	
		 36	 F	 Bilateral	Indep.	Mesial	Temporal	
		 56	 F	 Left	Mesial	Temporal	
		 44	 M	 Left	Mesial	Temporal	
		 19	 M	 Left	Neocortical	Temporal	
		 32	 M	 Left	Neocortical	Temporal	
		 19	 M	 Not	Localized	(Generalized)	
		 44	 F	 Right	Mesial	Temporal	
		 70	 M	 Bilateral	Mesial	Temporal	
		 33	 F	 Right	Mesial	Temporal	
		 63	 F	 Right	Mesial	Temporal	
		 26	 M	 Right	Insula	
		 25	 M	 Right	Motor	Cortex	
		 25	 F	 Not	Localized	
		 42	 F	 Left	Mesial	Temporal	
		 53	 F	 Right	Mesial	Temporal	
		 32	 M	 Right	Mesial	Temporal	
		 32	 F	 Left	Mesial	Temporal	
		 24	 F	 Left	Mesial	Temporal	
		 17	 M	 Not	Localized	(No	Seizures)	

Table 1: Shows the patients’ demographics and pathology. 
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Image 1: Structural MRI showing the electrode placement for areas of patients in 
which the units were recorded. The yellow shows the hippocampus ad the amygdala is in purple.   
 

 

 

 

 

 

 

 

 

 

 

 

 

Image 2: Shows the memory task. The task was composed of a learning phase during which 100 
new images are shown to subjects; and a recognition test phase showing both new and old 
images to subjects who indicate whether they had seen it or not in the learning phase by 
reporting their confidence level. 
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Image 3: Shows results of the hierarchical clustering algorithm for the “New” condition. Level 
one clusters are indicated by red dots, and level two clusters are indicated by green dots.  
 

Condition:  

Brain Area Chi2 Number P-value  

CA1 1.128 0.29 

CA2 1.195 0.16 

CA3 1.67 0.2 

DG 6.20 0.01* 

Amygdala 81.01 <.01* 

Table 2a: Shows statistical values for the “New” condition in the Level One analysis  
“*” indicate significant values at the p = .05 level  
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Brain Area Chi2 Number P-value  

CA1 13.9 .003* 

CA2 15.14 <.00 * 

CA3 8.71 <.03* 

DG 5.41 <.15 

Amygdala 92.40 <.01* 

Table 2b: Shows statistical values for the “New” condition in the Level Two analysis  
“*” indicate significant values at the p = .05 level  
 

 

 

 

 

 

 

 

 

Image 4: Shows results of the hierarchical clustering algorithm for the “Newi” condition. Level 
one clusters are indicated by red dots, and level two clusters are indicated by green dots. 
  

Newi 
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Brain Area Chi2 Number P-value  

CA1 0.07 0.79 

CA2 2.29 0.88 

CA3 4.137 0.04* 

DG 0.18 0.67 

Amygdala 92.87 <.01* 

Table 3b: Shows statistical values for the “Newi” condition in the Level One analysis  
“*” indicate significant values at the p = .05 level  
 

Brain Area Chi2 number P-value  

CA1 4.9 .18 

CA2 4.35 .34 

CA3 10.96 .01* 

DG 1.13 .76 

Amygdala 95.38 <.01* 

Table 3c: Shows statistical values for the “Newi” condition in the Level Two analysis  
“*” indicate significant values at the p = .05 level  
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Image 5: Shows results of the hierarchical clustering algorithm for the “Old” condition. Level 
one clusters are indicated by red dots, and level two clusters are indicated by green dots. 
 

 

Brain Area Chi2 Number P-value  

CA1 0.07 0.79 

CA2 0.49 0.48 

CA3 4.12 0.04* 

DG 0.39 0.53 

Amygdala 28.9 <.01* 

Table 4a: Shows statistical values for the “Old” condition in the Level One analysis  
“*” indicate significant values at the p = .05 level  
  

Old 
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Condition: Old; Level 2 

Brain Area Chi2 Number P-value  

CA1 19.83 <.01* 

CA2 15.13 .001* 

CA3 7.22 .065 

DG 11.91 .007* 

Amygdala 196.08 <.01* 

Table 4b: Shows statistical values for the “Old” condition in the Level Two analysis  
“*” indicate significant values at the p = .05 level  
 

 

 

 

 

 

 

 

 

Image 6: Shows results of the hierarchical clustering algorithm for the “Oldi” condition. Level 
one clusters are indicated by red dots, and level two clusters are indicated by green dots. 
  

Oldi 
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Brain Area Chi2 Number P-value  

CA1 44.05 <.01* 

CA2 15.68 <.01* 

CA3 28.75 <.01* 

DG 16.61 <.01* 

Amygdala 159.41 <.01* 

Table 5a: Shows statistical values for the “Oldi” condition in the Level One analysis  
“*” indicate significant values at the p = .05 level  
 

Brain Area Chi2 Number P-value  

CA1 45.62 <.01* 

CA2 1.44 .07 

CA3 22.46 <.01* 

DG 4.61 .20 

Amygdala 224.96 <.01* 

Table 5b: Shows statistical values for the “Oldi” condition in the Level Two analysis  
“*” indicate significant values at the p = .05 level  
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Table 6: Shows number of neurons that were observed in each cluster and the number of 
neurons that were expected (evenly distributed between each cluster) in level one analysis.  
 
 
 
 
 
 
 
 
 

 New   Newi  
Brain Area # of Neurons # of Neurons Brain Area # of Neurons # of Neurons 

 Cluster 1   Cluster 1  
 Observed Expected  Observed Expected 

CA1 121 113 CA1 110 108 
CA2 43 37 CA2 40 33 
CA3 66 59 CA3 69 58 
DG 58 46 DG 47 45 

AMY 554 423 AMY 527 392 
 Cluster 2   Cluster 2  
 Observed Expected  Observed Expected 

CA1 106 113 CA1 106 108 
CA2 31 37 CA2 27 33 
CA3 52 59 CA3 48 58 
DG 35 46 DG 44 45 

AMY 293 423 AMY 258 392 
 Old   Oldi  

Brain Area # of Neurons # of Neurons Brain Area # of Neurons # of Neurons 

 Cluster 1   Cluster 1  
 Observed Expected  Observed Expected 

CA1 115 113 CA1 63 113 
CA2 34 37 CA2 11 25 
CA3 47 58 CA3 29 58 
DG 43 46 DG 21 39 

AMY 499 421 AMY 230 411 
 Cluster 2   Cluster 2  
 Observed Expected  Observed Expected 

CA1 112 113 CA1 164 113 
CA2 40 37 CA2 39 23 
CA3 70 58 CA3 88 58 
DG 49 46 DG 57 39 

AMY 343 421 AMY 592 411 
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 Old   Oldi  
Brain Area # of Neurons # of Neurons Brain Area # of Neurons # of Neurons 

 Cluster 1   Cluster 1  
 Observed Expected  Observed Expected 

CA1 34 56 CA1 25 53 
CA2 5 18 CA2 15 18 
CA3 17 28 CA3 21 28 
DG 15 23 DG 21 23 

AMY 120 210 AMY 63 202 
 Cluster 2   Cluster 2  
 Observed Expected  Observed Expected 

 New   Newi  
Brain Area # of Neurons # of Neurons Brain Area # of Neurons # of Neurons 

 Cluster 1   Cluster 1  
 Observed Expected  Observed Expected 

CA1 41 56 CA1 63 54 
CA2 11 18 CA2 16 16 
CA3 24 29 CA3 41 29 
DG 28 23 DG 27 22 

AMY 311 211 AMY 260 196 
 Cluster 2   Cluster 2  
 Observed Expected  Observed Expected 

CA1 80 56 CA1 48 4 
CA2 32 18 CA2 24 16 
CA3 42 29 CA3 28 29 
DG 30 23 DG 20 22 

AMY 243 211 AMY 267 196 
 Cluster 3   Cluster 3  
 Observed Expected  Observed Expected 

CA1 52 56 CA1 45 54 
CA2 17 18 CA2 14 16 
CA3 30 29 CA3 16 29 
DG 19 23 DG 21 22 

AMY 146 211 AMY 114 196 
 Cluster 4   Cluster 4  
 Observed Expected  Observed Expected 

CA1 54 56 CA1 61 54 
CA2 14 18 CA2 13 16 
CA3 22 29 CA3 32 29 
DG 16 23 DG 23 22 

AMY 147 211 AMY 144 196 
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CA1 81 56 CA1 43 53 
CA2 29 18 CA2 17 18 
CA3 30 28 CA3 12 28 
DG 28 23 DG 16 23 

AMY 379 210 AMY 135 202 
 Cluster 3   Cluster 3  
 Observed Expected  Observed Expected 

CA1 59 56 CA1 54 53 
CA2 22 18 CA2 22 18 
CA3 34 28 CA3 35 28 
DG 15 23 DG 25 23 

AMY 146 210 AMY 302 202 
 Cluster 4   Cluster 4  
 Observed Expected  Observed Expected 

CA1 53 56 CA1 93 53 
CA2 18 18 CA2 18 18 
CA3 36 28 CA3 45 28 
DG 24 23 DG 30 23 

AMY 197 210 AMY 309 202 
Table 7: Shows number of neurons that were observed in each cluster and the number of 
neurons that were expected (evenly distributed between each cluster) in level two analysis. 
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