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SUMMARY

Approaching the end of Moore’s law has conveyed the computer architecture toward

specialized hardware accelerators that have become more attractive because of the recent

growing demand of compute- and memory-intensive algorithms with a high level of paral-

lelism and/or specific patterns of data reuse (e.g., machine learning, scientific computing,

and graph analytics.) The performance gained by the migration from CPUs to GPUs, FP-

GAs, and ASIC has been obtained thanks to two main reasons: (i) tailoring the hardware

for the requirements of the applications. This reason is more observable in the paralleliz-

able applications such as the inference of neural networks, the performance of which can

be significantly improved by heavily concurrent processors that can process hundreds of

thousands of operations at a cycle (e.g. TPU); and (ii) technology scaling and thereby en-

abling higher clock frequency and lower switching delay. The performance gained by the

implementation of a given algorithm on FPGA or ASIC is due to the second fact. Although

designing hardware accelerators based on the two preceding facts has shown significant

interests, that might encounter certain performance scaling limitations if they still depend

on technology scaling. Independency from technology scaling indicates that unlike the

general-purpose processors, specialized hardware has to be designed to utilize the maxi-

mum potential of a given hardware budget rather than to rely on extra hardware to gain

performance. Based on such an approach, the specialized hardware can continue deliver-

ing gain for data- and compute-intensive dense and sparse problems.

To efficiently accelerate a problem, two ingredients are necessary (i) a balance between

the computation rate and memory bandwidth, and (ii) an appropriate execution model.

Since the key idea behind the specialized hardware is to not waste the compute and mem-

ory budgets, a balance between bandwidth and compute rate is necessary. This is possible

by enabling stream accesses to memory from one hand by using software techniques and

accelerating the computation on the other hand by using hardware techniques so that they
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(data transfer and computations) work at the same pace. The second ingredient (i.e., the

execution model) is closely related to the fundamental philosophy behind the specialized

hardware, which supposed to have specific functionality. As the variation in the applica-

bility of a given accelerator would be the variations in data – not the variation in the main

operation, a data-driven execution model is preferred.

We seek to implement the mentioned key components on a wide range of on-demand

sparse problems that we categorize into the recommendation systems, the inference of neu-

ral networks, iterative solvers of partial differential equations, and graph algorithms. The

nature of each domain creates a new form of the problem. As a result, while trying to be

efficient in using memory bandwidth and computation, we propose to solve the following

sub-problems:

• A category of sparse problems with low data reuse rate have can potentially benefit

from state-of-the-art technologies such as near-data processing. However, the lack of

spatial locality because of sparse accesses to memory prevent benefiting from such

efficient technologies.

• In a group of sparse problems, the efficient utilization of memory bandwidth is often

the key challenge mainly because of a bottleneck in computation. Such bottlenecks

that prevent benefiting from high memory bandwidth often stem in dependencies in

computation and slow decompression mechanisms.

• Some of the sparse problems have the potential of significant parallelism. However,

the distribution of non-zero elements in their data structure prevents them to fully

benefit an efficient concurrent compute engine. In this case, even though data can be

streamed efficiently, the peak throughput cannot be achieved.

• In super sparse data structures, using compression formats is highly beneficial in

terms of storage and data transfer. However, when it comes to computation, extra
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overhead of decompression is required to find the original locations of non-zero val-

ues. Decompression is not necessarily fast, and can create a performance bottleneck.

Some observations on the sparse problems help us to address the challenges. For in-

stance, while the third group has the potential of revealing high compute-per-data-movement

ratios, and they allow modifications in the sparse structure, the second group exhibit low

compute-per-data-movement ratio and has stricter non-zero patterns, but they offer the

chance of transforming the mathematical expression. Besides, we see that sparsity is or-

thogonal to compute-per-data-movement ratios. Therefore, the first group of sparse prob-

lems has the potential of utilizing efficient hardware designed for dense computation. A

state-of-the-art example of such hardware is systolic arrays. Our contribution to support

the rhythmic synchronous flow of data from memory to systolic arrays is to modify the dis-

tributions of the non-zero values rather than minimizing overall flops or memory footprint.

To improve the bandwidth utilization of the second group of sparse problems with data-

dependent computations, we propose to extract more parallelism by mathematically trans-

forming the computation to equivalent forms that can be easily rearranged to gain per-

formance. Base on such transformation, we propose a light-weight reconfigurable engine

that rapidly switches between the parallel and sequential parts of the sparse problem. The

compute engine works with our locally-dense storage format, analogous to blocked storage

formats, but with ordered values. The proposed storage format does not benefit from a

specific pattern (e.g., diagonal) in sparse data structures. Instead of the traditional encod-

ing and decoding schemes of sparse formats based on the indices of non-zero values, we

propose using indices for (i) configuring the data flow simultaneously with data streaming,

and (ii) placement of outputs. As a result, we use the whole available memory bandwidth

for transferring payload data. Besides the reconfigurable accelerator, we proposed a fast

decompression mechanism that bridges the streamlines of memory to a dense concurrent

compute engine and works with well-known storage formats, supported in Python libraries.

In summary, We seek to achieve close-to-ideal performance for sparse problems, by
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making the following software/hardware contributions:

• Processing data while we gather them from random locations of memory neither

were they reside nor where dense computations occur.

• Mathematically transforming sparse computation to capture more parallel patterns

and running the outcome using a light-weight reconfigurable engine that enables high

utilization of memory bandwidth for scientific and graph applications.

• Proposing structured pruning algorithms for CNNs that captures dependencies in data

to satisfy the data reuse patterns provided by systolic arrays.

• Sustaining a balance between computing latency and data transfer rate by avoiding

streaming the unnecessary zero elements, and implementing fast decompression.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Since sparse problems with several patterns of indirect memory accesses fail to effectively

run on modern high-performance computers, software optimizations and hardware acceler-

ators have been proposed to improve locality in memory accesses and enable a high degree

of parallelism. However, the following unexplored challenges still exist in sparse problems,

addressing which are the objective of this research. The first challenge is the lack of spatial

locality that limits utilizing state-of-the-art hardware techniques for efficiently executing

large-scale sparse problems. The second challenge is the limited opportunity for paral-

lelism because several data dependencies limit utilizing the high bandwidth of the memory.

The third challenge, which often occurs for the sparse problems with high data-reuse pat-

terns (e.g., the inference of neural networks) is that the distribution of non-zero elements

does not automatically match the pattern of recurrence flow of data into dense computa-

tion hardware. Finally, the compression of sparse data, often implemented for reducing

memory footprint, creates a performance bottleneck. In short, the performance of running

sparse problems that are memory-bounded are limited by the preceding obstacles that pre-

vent a continuous stream of memory access. Our key insight to address the aforementioned

challenges is that based on the type of the problem, we can either modify the distribution

of non-zero elements, transform the computations mathematically, or change their repre-

sentations. By applying such techniques, while maintaining the nature of the problem, the

execution adapts more effectively to given hardware resources. Therefore, this research in-

troduces hardware/software techniques to enable stream access to memory for accelerating

sparse recommendation systems, iterative solvers of partial differential equations (PDEs),

deep neural networks (DNNs), and graph algorithms.
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1.1 Sparse Problems

Sparse data and randomness in the nature of a problem are the two main sources of sparsity

and irregular memory accesses, resulting in the major problem of costly data movement [1,

2, 3, 4, 5, 6, 7, 8]. The challenge of irregular memory accesses, first identified as a major

challenge in the high-performance computing (HPC) community [9], is now an obstacle to

a wider range of applications in which randomness in the nature of a problem contributes

to creating irregular memory accesses, with applications in various domains, from robotics

to recommendation systems, a growing application domain that captures sparse gathering.

This category of sparse problems includes a data set that randomly gets accessed. For

instance, in robotics, while a robot moves and observes objects, it needs to access data

corresponding to those objects which are not necessarily co-located in memory [8]. There-

fore, in this category, data is dense, but the pattern of accesses to memory is sparse. In

the following, we first describe sparsity in recommendation systems, after which we ex-

plain sparsity in the other category of sparse problems (i.e., scientific computing, neural

networks, and graph analytics), in which data is sparse.

To recommend content such as music, video, and products to users, recommendation

systems are broadly used throughout industry [10, 11, 12]. The recommendation systems

consist of (i) embedding tables, the sets of embedding vectors that contain users’ data and

features, followed by (ii) neural networks, including fully connected [13] and/or rectified-

linear-unit [10] layers. To recommend content, first, the related embedding vectors are

gathered from the embedding tables. Then, a simple reduction operation (e.g., element-

wise summation, minimum, average) is applied to the gathered embedding vectors to derive

a single vector, which is then sent to the neural networks for further processing. While

embedding tables are dense, looking them up causes random memory accesses, which

results in the sparse gathering. Therefore, embedding lookup is the sparse and the memory-

bandwidth-hungry part of the recommendation system. Besides, the embedding lookup
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and the reduction operations capture lower computation intensity and more cache misses

compared to neural networks [12]. Such characteristics put recommendation systems in

the memory-bound region of the roofline model of CPUs and far below the ceiling [14]

because of memory bandwidth underutilization.

Recommendation systems that create a big portion of execution cycles at data centers,

for instance, 65% of artificial-intelligence cycles in Facebooks data-center [12], are just

one example of sparse problems. Sparse problems are everywhere. For instance, scientific

computing and graph analytics that create more than 96% of todays supercomputer work-

loads are sparse, too. In scientific computing, solving partial differential equations (PDEs)

is a key component, which is used for modeling physical phenomena in several domains

from biology to chemical science. To model a physical phenomenon using PDEs and solv-

ing them using digital computers, the first step is to discretize it into a grid and represent

them as a linear system of algebraic equations: Ax = b. Discretization, however, does not

occupy all the points in a 3D grid. As a result, the coefficient matrix A, used for repre-

senting the PDEs as a system of linear equations is sparse. When such a system is too

large to be solved by direct methods, they can be solved by iterative algorithms such as pre-

conditioned conjugate gradient (PCG) methods. The execution time of the PCG algorithm

is dominated by two kernels, SpMV, a parallelizable algorithm, and SymGS that includes

several dependencies. By assuming a vector (b1×m) and a matrix (Am×n) as operands,

each elements of output vector x1×n is xj =
∑k

i=1 b[A
T indi] × AT valij for SpMV, and

xtj =
1
AT

jj
− (bj −

∑j−1
i=1 A

T
ij × xti −

∑n
i=j+1A

T
ij × xt−1i ) at each iteration (t) of SymGS.

In some other cases, such as in neural networks, although initially, data is not sparse,

we make them sparse to eliminate storing unnecessary data and unnecessary computation.

Neural networks are becoming more and more popular in many applications from image

processing to financial problems. Once we train a neural network, several weights get

close-to-zero values. As a result, a common practice is to prune those small values because

they do not impact the end result. Therefore, the 2D matrix representation of the neural
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network is sparse. A popular example of neural networks is convolutional neural networks

(CNNs). The sparse inference of CNNs can be done by using well-studied sparse matrix

multiplication approaches that are applicable to inference by converting convolutions to

OK×WH = WK×F 2C × IF 2C×WH , in which K filters of size F × F × C are applied to

W ×H ×C images. Accelerating this general matrix-matrix multiplication (GEMM), the

first operand of which is sparse, is one of the goals of this research.

Graph algorithms are the other sparse problems with several applications from social

science to biology and physics. Since in a graph, not all the nodes are connected, the

adjacency matrix that represents the edges of a graph is sparse. The sparse adjacency

matrix is processed by algorithms such as breadth-first search (BFS), single-source shortest

path (SSSP), and page rank (PR), all of which are similar to SpMV.

1.2 Contributions

The contributions of this thesis revolve around efficiently accelerating the execution of

sparse problems that as mentioned earlier, are the main component in several crucial do-

mains such as robotics, recommendation systems, machine learning, computer vision,

graph analytics, and scientific computing that remarkably impact human life. For instance,

modeling/simulating a vaccine or predicting an earthquake are examples of sparse scientific

computing that can save lives if done accurately and promptly. In 2020, several supercom-

puters from Google Could, Amazon Web Service, Microsoft Azure, and IBM, running on

over 136 thousand nodes containing five million processor cores and more than 50 thousand

GPUs [15] for vaccine development is compelling evidence of the importance of sparse sci-

entific computations. However, modern high-performance computers equipped with CPUs

and/or GPUs are poorly suited to these sparse problems, utilizing a tiny fraction of their

peak performance (e.g., 0.5% - 3% [16]). Such conventional architectures are mainly op-

timized to handle complex computation rather than the complex memory accesses that are

essential for sparse problems. The contradiction between the abilities of the hardware and
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the nature of the problem causes sparse problems to waste extra hardware budget (high

power and dollar cost) for higher performance. The goal of this thesis is to propose effec-

tive solutions that utilize the maximum potential of a given hardware budget to accelerate

sparse problems. To be impactful in achieving the goal, our research suggests that software

and hardware must be co-optimized. To date, several software- and hardware-level opti-

mizations have been proposed to accelerate sparse problems; however, since they optimize

either the software or the hardware in isolation, they have not fully resolved the challenges

of sparse problems. Table 1.1 summarizes the common challenges of sparse problems, ex-

amples of sparse applications that suffer from these challenges, as well as the contributions

of this thesis to resolving these challenges along with the broader impact that this thesis

would have, as explained in the following.

Table 1.1: The challenges and applications of sparse problems, our contributions and pub-
lications to resolve the challenges, and the broader impacts that this research would have.

Application Recommendation systems Scientific computing and graph analytics Computer vision

Challenges

Our
Contributions

Our Publications

Broader Impact

Irregular and inefficient memory 
accesses

Proposed an intelligent tree near 
memory to reduce data while 

gathering them 

Fafnir [HPCA’21]

Facilitating e-commerce,    
e-learning, entertainment, 
tourism, and healthcare

Data dependencies

Converted 
mathematical 

dependencies into 
gate-level dependencies

Alrescha [HPCA’20]

Slow decompression

Co-optimized 
compression format and 
hardware to establish a 

balanced streaming 
from memory

 Ascella [DATE’20]

Computation underutilization

Modified the distribution of 
non-zero data rather than 

minimizing their count 

Lodestar [DAC’19] 
Eridanus [IEEE Micro’19]

Accelerating large-scale, critical, and super slow tasks 
such as vaccine development or timely predicting natural 

disaster such as earthquake and hurricane

Enabling accurate and fast 
manufacturing, financial services, 

healthcare, and agriculture.

Fafnir — Irregular random memory accesses are an obstacle in large-scale applications,

such as recommendation systems, that not only are widely used in industry for e-commerce

and entertainment but also have broader applications in domains such as e-learning and

healthcare. To reduce the amount of data movement and thereby better utilize memory

bandwidth, previous studies have proposed near-data processing (NDP) solutions for rec-

ommendation systems. The issue of prior proposals, however, is that they either minimize

data movement effectively at the cost of limited memory parallelism or improve memory

parallelism (up to a certain degree) but cannot successfully decrease data movement, as

they rely on spatial locality (an optimistic but not realistic assumption) to utilize the NDP.
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Besides, neither approaches propose a solution for gathering data from random memory ad-

dresses; rather they just offload operations to NDP. To deal with the mentioned challenges,

in chapter 3, we propose an efficient near-memory intelligent reduction (Fafnir)[17] tree,

the leaves of which are all the units in a memory system, and the nodes gradually apply

reduction operations while data is gathered from any memory unit. Fafnir does not rely on

spatial locality; therefore, it minimizes data movement by performing entire operations at

NDP and fully benefits from parallel memory accesses. Fafnir also offers other advantages

such as eliminating redundant memory accesses without using costly and less effective

caching mechanisms and being applicable to other sparse problems such as scientific com-

putation and graph analytics. We implement Fafnir on an FPGA and in 7 nm ASAP ASIC.

Our evaluation shows that Fafnir executes recommendation systems 21.3× more quickly

than the state-of-the-art NDP proposal. Besides, the generic architecture of Fafnir allows

the execution of the classic sparse problems using the same proposed 1.2 mm2 chip up to

4.6× more quickly than the state of the art.

Alrescha — The next unsolved challenge in sparse problems (e.g., in scientific comput-

ing) is data dependency, which limits utilizing the available memory bandwidth. To mini-

mize the negative impact of data dependencies on performance, in chapter 4, we propose a

lightweight reconfigurable sparse-computation accelerator (Alrescha) [18], the key insight

of which is to convert the mathematical dependencies to gate-level dependencies to reduce

the critical-path latency. As a result, even dependent instructions can be executed mostly in

parallel. Based on this insight, Alrescha breaks down a sparse problem into a majority of

parallel and a minority of small data-dependent instructions that can be executed quickly

(in fewer cycles) in hardware. Besides the fast execution of small data-dependent parts, Al-

rescha smoothly implements the switching between two groups of operations, which is the

other essential requirement in achieving better performance. To do so, Alrescha modifies

the execution order of operations. To provide a platform with the aforementioned charac-

teristics, Alrescha makes two main contributions. First, it implements a compute engine
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with a fixed compute unit for the parallel parts and a lightweight reconfigurable engine for

the execution of the data-dependent parts. Second, Alrescha benefits from a locally dense

storage format, with the right order of non-zero values to yield the order of execution dic-

tated by the hardware. The combination of the lightweight reconfigurable hardware and the

storage format enables uninterrupted streaming data from memory. Our evaluations show

that Alrescha executes sparse scientific computing, including solving partial differential

equations, 15.6× faster than GPUs. Moreover, compared to GPUs, Alrescha consumes

14× less energy. Thanks to its dynamic and partial reconfigurability, Alrescha can acceler-

ate problems such as graph analytics with wide applications in social sciences, linguistics,

biology, and any problem that can be represented as a graph. Alrescha processes graphs

8× faster than GPUs.

Lodestar & Eridanus — The next studied challenge of sparse problems is the under-

utilization of computation units, which concerns an isolated hardware optimization that is

not effective without considering software. An example of such effort is accelerating the

inference of convolutional neural networks (CNNs) using systolic arrays, the highly par-

allel arrays of multiplication and accumulation (MAC) units for performing matrix multi-

plication. However, the dense structure of systolic arrays contradicts the sparse nature of

CNN inference and leads to underutilization of computation. To address this challenge,

in chapter 5, we proposed creating locally-dense CNNs for efficient inference on systolic

arrays (Lodestar) [5]. Lodestar is a structured pruning approach that produces CNNs, the

non-zero values of which are clustered spatially into locally dense regions that can be com-

pactly stored and efficiently streamed from memory. Lodestar consists of two key insights:

(i) To capture the data reuse pattern in systolic arrays and enable data streaming, modify-

ing the distribution of non-zero values is more influential than minimizing the number of

operations or the memory footprint; and (ii) Examining the correlation among the filters

rather than the individual filters increases the chances of creating a systolic-friendly model.

To utilize Lodestar for streaming data from memory through systolic arrays, we proposed
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efficiently running the inference of CNNs using systolic arrays (Eridanus) [19]. Eridanus

handles the timing and indexing of streaming blocks of data. The evaluations show that

Lodestar and Eridanus run CNN inference 8.4× faster than the state of the art. Although

by utilizing proposed techniques we can achieve the high throughput offered by the MAC-

based systolic arrays, achieving low latency and scalability will still be key challenges.

To resolve these challenges, we proposed multiplying matrices efficiently in a scalable

systolic architecture [20], which compared to state-of-the-art systolic arrays, offers 1.83×

better single-batch inference latency by separating multipliers from the adders rather than

combining them in a unified array of MACs.

Ascella — The other challenge of sparse problems concerns compression, a common

software approach for storing and transferring sparse data. Although compression allows

efficient data transfer, it can potentially create a computation bottleneck. This challenge is

not only unresolved but also becomes more serious with the advent of domain-specific ar-

chitectures (DSAs), as they intend to more aggressively improve performance. The perfor-

mance implications of using compression along with DSAs have not been studied by prior

work. To fill this gap of knowledge, in chapter 6, we introduce Ascella [21] that character-

izes the performance implications of compression formats used in sparse workloads based

on six key metrics, including memory bandwidth utilization, resource utilization, latency,

throughput, power consumption, and balance ratio.

Ascella leads architects to knowingly choose the required sparse format and tailor their

DSA for their target sparse applications, if necessary. For instance, this study helps ac-

celerate sparse computation by enabling parallel stream accesses to memory, based on

two main ingredients: (i) using a compression format that on one hand assures stream-

ing only the non-zero values, and on the other hand, is easy to decompress using sim-

ple logic; and (ii) proposing a computation engine that follows the speed of memory

streaming. To enable the latter, the central building block is optimizing the decompression
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Figure 1.1: Memory and computation latency
for streaming blocks for (a) prior work, and (b)
Ascella. Closer memory and compute is better

mechanism. Therefore, Ascella balances mem-

ory and computation latency while streaming

blocks of data from memory into a DSA. More

specifically, unlike in Figure 1.1a, where the

memory and compute latency are not matched,

in Figure 1.1b (Ascella), they are almost similar

– the black and orange lines are close. Further-

more, Ascella reduces the maximum latency of

streaming a block from 2200ns to 800ns as indi-

cated by comparing the black line in Figure 1.1a

and the lines in Figure 1.1b.

1.3 Thesis Statement

Since sparse problems have specific patterns of memory accesses, they cannot run effi-

ciently on the general-purpose processors. Thus, to keep gaining performance for sparse

problems from a given hardware budget, hardware/software co-optimization is necessary.
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CHAPTER 2

LITERATURE SURVEY AND THE GAP OF KNOWLEDGE

This chapter overviews the prior studies on sparse problem that are mostly related to the

directions of this thesis. We mainly categorize them as specialized hardware and software

techniques. First, this chapter summarizes the hardware solutions for sparse recommen-

dation systems, neural networks, sparse matrix algebra, and scientific computing. Then,

it outlines the software techniques for dealing with sparsity in neural networks as well as

the common compression formats that are used in a wide range of sparse applications with

various sparsity patterns.

2.1 Specialized Hardware for Sparse Acceleration

In this section, we overview the prior domain-specific hardware architectures that target

various applications including recommendation systems, neural networks, sparse matrix

algebra, and scientific computing.

2.1.1 Near-Data Processing for Recommendation Systems

Despite common efforts to reduce the embedding vector dimension [22] or the number

of embedding vectors [14], the embedding tables occupy multiple gigabytes of memory.

Such constraints necessitate the distribution of the embedding tables across multiple mem-

ory devices to satisfy memory capacity requirements [13]. Sparse gathering from random

addresses scattered over a large memory system requires maximizing memory-bandwidth

utilization. However, the processor-centric organization of CPUs and GPUs and the reused-

optimized structure of their memory hierarchy, conspire against the efficient and fast sparse

gathering. As a result, recommendations systems demand data-centric near-data process-

ing (NDP) solutions to process data (i.e., the embedding vectors) where they reside.
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NDP solutions have been explored to reduce costly data movement, a major problem

of sparse problems [23, 24, 25, 6, 26, 27]. For instance, Gao et al. [23] have placed sim-

ple processing cores near hybrid memory cube (HMC) [28] and High Bandwidth Mem-

ory (HBM) [29] to propose an efficient and practical solution for data analytics including

deep neural networks and graph processing. In another work, Gao et al. have proposed

Tetris [26], a neural network accelerator that places an array of processing elements (PEs)

close to HMC. To do this, it optimizes the size of the PE array to fit it near vaults of HMC.

The programmability and scalability of NDP solutions for accelerating neural networks

have been studied by Kim et al. [30] and Ahn et al. [27]. Other NDP studies have fo-

cused on accelerating graph and HPC problems, in which the majority of the operations

(e.g., 80%) are sparse gathering [31]. To take advantage of 3D-DRAM-based NDP for

graph processing, Nai et al. [6] have proposed GraphPIM, to offload instructions close to

memory in a non-intrusive way without requiring programmers effort or ISA changes. Sev-

eral other NDP solutions [2, 3, 4, 7] have proposed offloading computation to memory to

reduce data movement and leverage NDP to accelerate data access and facilitate computa-

tions on sparse data structures [32, 33, 1]. Additionally, DIMMNet [34] has been proposed

to accelerate gathering irregular memory accesses.

The aforementioned NDP solutions, however, are not very effective for embedding

lookup of recommendation systems for several reasons. First, they decrease data move-

ment by rearrangement, but do not perform reduction operations. Second, they are costly,

as they copy a page to another in a scratchpad memory (e.g.,[31]). Finally, they are not

transparent to the software. Therefore, prior work has proposed specific NDP solutions,

namely TensorDIMM [35], RecNMP [36], and Centaur [37] for recommendation systems.

TensorDIMM [35] splits the embedding vectors across DIMMs to utilize rank-level paral-

lelism for reading individual embedding vectors. Accordingly, it splits the reduction oper-

ations across the DIMMs. As a result, TensorDIMM successfully performs all reductions

at DIMMs and minimizes data movement from memory to the cores by sending only out-
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come vectors rather than all embedding vectors. However, the downside of TensorDIMM is

that it does not sufficiently utilize memory parallelism because it uses column-major order,

which fundamentally breaks the row-buffer locality in the DRAM system. As opposed to

TensorDIMM [35], RecNMP [36] utilizes rank-level parallelism for reading distinct em-

bedding vectors. Thus, the performance of RecNMP scales better as more ranks are added

to the memory system.

Despite the advantages of NDP solutions for accelerating the inference of recommenda-

tion systems, they left unsolved a few key challenges of sparse gathering. In the following,

we elaborate on different challenges, solving some of which have been the target of a prior

study that in turn causes the other challenges. Data movement has been the main concern of

sparse gathering. For instance, as Figure 2.1a shows, to apply two non-compute-intensive

reduction operations (i.e., v1 + v2 + v5 + v6 and v1 + v3 + v4 + v5) on six embedding vec-

tors (i.e., v1, v2, v3, v4, v5, and v6), the vectors must be transferred to cores. For example,

vector 5 (v5) is required by two queries; thus, it is transferred twice. In general, to perform

n queries of size q on vectors including v elements, n× q× v elements must be transferred

from the memory system to cores. To solve this challenge, TensorDIMM [35] performs re-

ductions in the DIMMs and transfers only the results to the cores (Figure 2.1b). As a result,

instead of transferring all q vectors in a query, it sends only one vector, hence reducing the

amount of data movement q times to n×v. TensorDIMM splits the embedding vectors and

distributes them over DIMMs and creates 1/q of each output vector at a DIMM. Then, the

cores just concatenate the partitions of the outputs.

Even though TensorDIMM effectively reduces data movement, it is not as effective in

sufficiently utilizing row-buffer hits because it uses column-major order, which fundamen-

tally breaks the row-buffer locality in the DRAM system. More specifically, while Ten-

sorDIMM can utilize rank-level parallelism to read the elements of individual embedding

vectors, split over different DIMMs, it must access random rows to read distinct embedding

vectors in a query (e.g. vectors of query 1 including v1, v2, v5, and v6). Accordingly, only

12



v1

v1

Mapping vectors to 
memory devices (DIMMs)

out1

out2

v2
v3

v4

v5 v5

v6

v1

v2
v3

v4

v5
v6

Memory CoresConnections
(a) Baseline with no NDP

v1v2v3v4v6v5

Mapping vectors to 
memory devices (DIMMs)

out1

out2

Memory CoresNDP Connections
(b) TensorDIMM

Mapping vectors to 
memory devices (DIMMs)

out1

out2

v2

v5
+v

6 v5

v1

v2
v3

v4

v5
v6

Memory NDP Connections
(c) RecNMP

Legend
        

Parameters
m: # memory devices
c: number of cores
v: vector size
q: # vectors in a query
n: # queries
Example
m = 4
c = n = 2
v = 8
q = 4

 

This exampleGeneral This exampleGeneral This example
min: n x v

max: n x q x v

Section

III.A,C Transferred data
(from memory/NDP to cores)

Scalar operations |
0

n x (q-1) x v
0

2 x (4-1) x 8 = 48
n x (q-1) x v

(m-1) x n concat.
2 x (4-1) x 8 = 48

 (4-1) x 2 = 6 concat.
min:0 / max: n x (q-1) x v
min: 0 / max: n x (q-1) x v

1 x 8 = 8
5 x 8 = 40

NDP
coresIII.B,C

n x q x v 2 x 4 x 8 = 64 n x v 2 x 8 = 16 6 x 8 = 48
(counting v1 once)

: 1/4 out1
: 1/4 out2

General

a computation unit for 
reduction or concatenation

2 x 4 = 8c x m2 x 4 = 8c x m2 x 4 = 8c x mIII.D #Connections (excluding 
connections to memory)

III.B v 8 2 x (4-1) x 8 = 48N/A N/A n x (q-1) x v (in theory)Parallel compute at NDP

parallel ranks
sequential columns 

random rows
parallel ranks

parallel ranks
sequential columns III.B Reading different vectors

Reading a vector

v1

v3
v4

Cores

v1+v2
+v5+v6

v1+v3
+v4+v5

v1+v2
+v5+v6

v1+v3
+v4+v5

v1+v2
+v5+v6

v1+v3
+v4+v5

NoNoNoIII.C DIMM-level parallelism

Figure 2.1: Comparing NDP-based solutions for embedding lookup: (a) Baseline with no
NDP, (b) TensorDIMM [35], and (c) RecNMP [36].

v scalar operations can be performed in parallel at NDP. Although TensorDIMM performs

all n× (q − 1)× v operations at NDP, only v of them are processed in parallel, while the

rest can be pipelined. For instance, for query 1, all DIMMs do the following subsequently:

read their own part of v1 from a row (but not necessarily reading the entire row buffer),

then read v2 from another row, do a partial sum of size v/m (v1+v2), simultaneously ac-

cess another row to read v5, add it to the partial sum while reading v6 from another row.

This approach particularly disturbs achieving low latency.

Splitting embedding vectors across more ranks causes poor utilization of row-buffers

(i.e., we must open a row, but read a smaller fraction of it). To improve parallel com-

putation at NDP, RecNMP [36] distributes embedding vectors across the ranks, as shown

in Figure 2.1c. In this approach, reading distinct embedding vectors utilizes rank-level

parallelism, while elements of each vector are read from sequential columns. As a result,

RecNMP can more effectively increase rank-level parallelism by adding more ranks to the

system. However, the downside of this approach is that even though in theory entire oper-

ations for all queries (i.e., n× (q − 1)× v) can be performed in parallel at NDP, RecNMP

might not achieve it because of imperfect spatial locality.

Although RecNMP utilizes rank-level parallelism in reading distinct embedding vec-
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tors, it does not guarantee to process them all at NDP, mainly because it does not provide

DIMM-level parallelism. In many real-world applications, embedding vectors of a query

are scattered over many random DIMMs, where DIMM-level parallelism (i.e., channel-

level reduction) is essential. For instance, based on the birthday paradox, the probability

of having a query with indices on the same channel is only up to 25% in a four-channel

system. Consequently, as in many cases, the raw data needs to be transferred to the cores,

memory bandwidth may not be fully utilized. Thus, even though under perfect circum-

stances, maximum n × (q − 1) × v operations can be done at NDP, in the worst case, all

of them might need to be done at the cores. For instance, in Figure 2.1c, only two embed-

ding vectors (i.e., v5 and v6) are reduced at NDP, and others are forwarded to the cores.

Relying on spatial locality has two other consequences. First, increasing batch size does

not necessarily result in more utilization of parallel computation at NDP, hence achieving

higher throughput. Second, while in the perfect scenario only n output vectors (i.e., n× v

elements) are transferred from the memory to the cores, in the worst case, all n × q × v

elements must be transferred. Therefore, reducing data movement is also not guaranteed.

The other challenge of implementing embedding lookup is the overhead of connec-

tions. As the embedding tables are often large, they necessitate model parallelism (i.e.,

splitting and distributing tables across memory devices), as shown in Figure 2.1a. On the

other hand, the neural network layers of the embedding systems are small enough to utilize

data parallelism (i.e., mapping copies of a neural network on different computing devices).

The combination of model parallelism for embedding tables and data parallelism for neural

networks in recommendation systems requires costly all-to-all connections [13] (e.g., Fig-

ure 2.1a) between the memory devices and computing devices (e.g., CPU or GPU cores)

so that embedding vectors can be gathered from any memory device and be forwarded to

any computing device. The previous studies have not proposed any solutions to reduce the

number of connections. Therefore, similar to the baseline, they all require c ×m connec-

tions to implement all-to-all communication, which is not only costly but also limits the
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scalability. To accelerate sparse gathering and prevent the communication from becom-

ing a bottleneck, Centaur [37] uses high-bandwidth communication links and then applies

the reduction operations in a separate unit. Thus, unlike TensorDIMM, Centaur does not

reduce data movement but instead transfers data more quickly.

The last challenge of implementing NDP solutions for embedding lookup is eliminating

extra memory accesses. Observations suggest that a batch of queries has common embed-

ding vectors. Thus, not all the memory accesses corresponding to every single embedding

vector are necessary. RecNMP [36] proposes using caches at NDP. Caching, however,

is not the most effective solution, as no more than a 50% hit rate can be achieved [36].

Furthermore, even achieving such a hit rate requires a 128 KB cache that adds extra hard-

ware overhead (e.g., 38% area [36]). Besides, the cache accesses can potentially cause a

performance bottleneck.

2.1.2 Hardware Accelerators for Neural Networks

Various types of hardware accelerators have been proposed to efficiently execute neural

networks. In the following, we summarize five categories of them.

Systolic-based accelerators: Since 1979 [38] various architectures have been intro-

duced for systolic architectures [39, 40]. More recently, the advantages of artificial intelli-

gence and the need for massive parallel matrix multiplication have motivated academia and

industry to rethink the systolic arrays [41, 42, 43, 44, 45, 46, 47, 48, 49]. Systolic arrays for

matrix multiplication have also been implemented by industry in large data-center scales

such as Google’s tensor processing unit (TPU) [49]. Regardless of the different implemen-

tations, the systolic-based matrix multipliers used in prior studies can be categorized as

non-stationary and stationary, based on the way the operands of the matrix multiplication

are being handled during execution. In the following, we explore both categories.

The processing elements (PEs) of non-stationary systolic array (NSA) systolic architec-

ture (e.g., [50, 39, 40]) are multiply-and-accumulate (MAC) units. As its name indicates,
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none of the inputs stay in the PEs during the execution, and they pass through the PEs in

two different directions. Upon the arrival of new inputs, each PE multiplies the two inputs

coming from its neighbors and adds them to the prior accumulated results. At the end of the

execution, each PE contains one element of the output matrix. To guarantee the correctness

of computations, the inputs must arrive at each PE at the right time. To do this, the two

inputs are inserted into the array. Since both inputs are non-stationary, the multiplication

starts as soon as the first elements of the inputs arrive at a PE. Therefore, no additional time

needs to be spent on loading. To finish the multiplication, all elements of both inputs must

pass through the PEs completely. Once the multiplication is done, the outputs generated in

the PEs must be sent out.

A more popular type of systolic array for matrix multiplication is the TPU-style station-

ary systolic array (TSSA), which is the architecture of the systolic array in TPU [49]. TSSA

is also called weight stationary [51] or static systolic arrays [52] and has been implemented

for neural networks. Similar to NSAs, the PEs of a TSSA are MAC units. However, unlike

NSAs, the PEs in TSSA keep one of the inputs in their registers and instead pass through

their outputs. As a result, before starting the multiplications, one of the inputs must be

loaded to the registers of each PE. Similar to the NSA, all elements of the output must be

carried out even though they are being created and passed through the PEs.

Accelerators for inference: Several NDP-based hardware solutions have been pro-

posed for the inference of neural networks that include but are not limited to [23][24][25][6][53]

[54][26] for relaxing data movement costs. Among them, Tetris [26], which optimizes the

size of PE array to place it near vaults of HMC, and Neurocube [30], which is a programable

HMC-based neuromorphic architecture are the most related NDP-based neural-network ac-

celerators. Besides the NDP-based hardware, several other studies have also proposed solu-

tions for inference of CNNs [55][56][44][47][48][57], which often use an array of compute

units. Similar to Tetris[26], the architectures used in Eyeriss[55] and DianNao[56], devote

a huge portion of each PE to SRAM memories. Therefore, they limited their PE array size
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to 8 × 8 up to 16 × 16. Even Tetris[26], which optimizes the PE array size, has 512 Byte

register file per PE. As this paper showed, using a systolic array near memory that, for

instance, uses only four bytes of register per compute unit, is more effective in allocating a

limited hardware budget to compute logic rather than SRAM memory.

Accelerators for training: Scaledeep [58] and Neurostream [59] are two recent stud-

ies that accelerate CNN training. Scaledeep uses a heterogenous tile of chips to imple-

ment convolutional and fully-connected layers, and Neurostream uses a general-purpose

clustered many-core platform. More specialized hardware for training neural networks is

TPUv2 [57]. A TPUv2 board provides a peak of 180TFLOPS by employing four TPUv2

chips, each including two cores, connected to an 8GB HBM package at 300 GB/s. A rela-

tively equivalent configuration of Mahasim (in terms of the size of the memory) integrates

each 1GB stack of HMB with two compute units, each with a systolic array of size 8×256

(for the baseline), which delivers 524.288 TFLOPs/S from 2048 GB/s. For dense problems,

this represents an approximately 2.91-factor improvement in peak throughput. This is due

in part to the increased memory bandwidth to compute inside each package and greater

compute density per GigaBytes of memory (45 TFLOPs/S vs. 131 TFLOPs/S per 8GB).

Accelerators for RNN/LSTMs: efficient speech-recognition engine (ESE) [60] im-

proves the utilization of the a PE array by balancing the load across them. To do so,

ESE employs a hardware unit that allows the faster PEs to fetch new elements and work

on them, instead of waiting for slower PEs. A few other studies [61][62] have also pro-

posed hardware accelerators for RNN inference and training based on arrays of MACs, and

implemented them on FPGAs without specific focus on the scalability feature.

2.1.3 Hardware Accelerators for Sparse Matrix Algebra and Scientific Computing

The ineffectiveness of CPUs and GPUs, along with approaching the end of Moore’s law,

has motivated the migration to specialized hardware for a wide range of sparse problems.

For instance, hardware accelerators have targeted sparse matrix-matrix multiplication [5,
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63, 64, 19], matrix-vector multiplication [65, 66, 67, 68], or both [69, 70, 71], which are the

main sparse kernels in many sparse problems. A state-of-the-art SpMV accelerator, Out-

erSPACE [69], employs an outer-product algorithm to minimize the redundant accesses to

non-zero values of the sparse matrix. Despite the speedup of OuterSPACE over the tradi-

tional SpMV by increasing the data reuse rate and reducing memory accesses, it produces

random access to a local cache. To efficiently utilize memory bandwidth, Hegde et al. pro-

posed Extensor [70], a novel fetching mechanism that avoids the memory latency overhead

associated with sparse kernels. Song et al. proposed GraphR [72], a graph accelerator,

and Feinberg et al. proposed a scientific-problem accelerator [73], both of which process

blocks of non-zero values instead of individual ones. Besides, Huang et al. have proposed

analog [74] and hybrid (analog-digital) [75] accelerator for solving PDEs. Moreover, many

processing-in-memory studies [76, 2, 4, 6, 1] proposed offloading computation to memory

to reduce the computation energy of sparse problems. The prior specialized hardware de-

signs often have not focused on resolving the challenge of data-dependent computations in

sparse problems that prevent benefiting from the available memory bandwidth.

Table 2.1 compares the most relevant hardware approaches and techniques for accel-

erating scientific computing and graph analytics. Several factors such as the compression

format, the ability to resolve dependencies in computation (i.e., resolving limited paral-

lelism), the range of applicability of a hardware/software technique, and reconfigurability

impacts stream accesses to memory and are important in ideally accelerate sparse prob-

lems so that they meet their requirement. Transferring meta-data is defined not only by

the storage format but also by the scheme of implementation. The storage format and the

scheme for implementing it, together with impact the bandwidth utilization. The other

insight obtained from comparing the aforementioned hardware accelerators and software-

optimization techniques for sparse problems it that they often focus on a specific domain of

application and take advantage of the specific pattern in computations to improve perfor-

mance. However, flexibility in the range of target applications is an important feature for a
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hardware accelerator. Such a flexibility is important not just for creating more generic ac-

celerators; but, for accelerating all the different kernels in a program to effectively improve

the overall performance.

Table 2.1: State-of-the-art approaches for accelerating graph and scientific problems

GraphR [72] OuterSPACE [69] Memristive-Based Row Reordering
Accelerator [73] Matrix Coloring [77]

Application Domain Graph Graph (Only SpMV) PDE Solver PDE Solver

Hardware

Multi-Kernel Support No No No No

BW Utilization Low Moderate Low Moderate

NOT Transferring Meta-data No No No No

Processing Type ReRAM Crossbar
PEs Connected in Heterogeneous Memristive

GPU Instruction
a High-Speed Crossbar Crossbar

Cache Optimizations
N/A No N/A NoFor Frequently-Used Vectors

Reconfigurability No Only for Cache Hierarchy No N/A

Techniques
Storage Format 4×4 COO CSR

multi-size blocks (64×64,
ELL

128×128, 256×256, 512×512)

Resolving Limited Parallelism N/A N/A No
Instruction-Level
Limited by NNZ patterns

2.2 Software Techniques for Dealing with Sparsity

To date, many software-level optimizations for CPUs [78, 79, 80], GPUs, [81, 82, 83, 84,

77], and CPU-GPU systems [85] have been proposed for accelerating sparse problems. For

instance, to reduce memory-access latency, Graphicionado [86], a graph-processing accel-

erator, substitutes accesses to the memory hierarchy with sequential accesses to scratchpad

memory. Besides, techniques such as matrix coloring [77] and blocking [87] have been

proposed to extract more parallelism for accelerating sparse problems. Additionally, to re-

lax sparse gathering in graph applications, batching the accesses to the output vector and

restricting them to a localized region of memory [88] has been proposed. In the following,

we focus on pruning the neural networks and compression formats that are the techniques

most related to this thesis.

2.2.1 Pruning the Neural Networks

The dense computation structure in systolic arrays is contradictory with the sparse data

structure of CNN, even though their high data-reuse rates match. To make the two more
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compatible, the column-combining approach [51] prunes all weights on conflicting rows

for a selected set of columns except the one with the largest magnitude. The other pruning

techniques, however, have not been proposed for efficiently using the systolic arrays for

CNN inference. For instance, structured sparsity learning (SSL) [89] formulates shape-

wise pruning as well as pruning in the granularity of kernel, filter, channel, and layer,

and reported more than 3× speedups on CPUs and GPUs while sustaining accuracy. Other

efforts [90, 91, 92, 93] have studied filter-wise pruning by applying various implementation

techniques. Examples of filter-wise pruning are pruning the model based on the global

rescaling of a criterion (e.g., the mean, standard deviation) for all layers [93], or selecting

close-to-zero weights based on the smallest sum of absolute values [90]. In another work,

Scalpel [91] implements filter-wise pruning for hardware with high parallelism (e.g., GPU),

weight grouping for single instruction, multiple data (SIMD), and a combination of both

for hardware with moderate parallelism (e.g., CPUs).

Table 2.2 compares using the prior pruning methods when targeting systolic arrays.

While element-wise pruning does not guarantee any spatial locality, vector-, and kernel-

wise pruning do not capture the spatial locality required by systolic arrays, which results in

underutilization of a systolic array are active during inference. The storage overhead and

indexing complexity that are defined by the granularity of pruning is low (low is better)

for kernel-, filer-, and channel-wise pruning. On the other hand, the opportunity of con-

currency and data reuse is defined by the shape of the pruning granularity. For instance,

row-wise proximity offers higher concurrency while column-wise proximity captures more

data-reuse patterns in systolic arrays. Although kernel-, filter-, and channel-wise pruning

methods offer a high level of concurrency, they might not match the concurrency required

by the algorithm. Finally, since none of the pruning methods offer a granularity width that

a systolic array prefers, they all require some sort of buffering/caching mechanisms to en-

able efficient streaming from memory. In addition to that hardware complexity, when the

granularity of pruning is small, ensuring correct timing to supply data from memory to the
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compute units of systolic arrays requires complex indexing hardware. According to how

the compiler orders the elements of weight matrices, the listed granularities in Table 2.2

could be inferred as the same implementations, but they still do not capture the specific

structured-pruning, required by systolic arrays.

Table 2.2: The impact of pruning granularity on inference using systolic arrays.
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Whether or not the level of concurrency in the resulted pruned weight could be matched with that of the underlying systolic array.

2.2.2 Compressing Sparse Matrices

Since the primary issue with sparse matrices is storing the enormous amount of non-

necessary zero elements, several compression formats have been proposed to efficiently

store sparse matrices. While some formats target generality, others are tailored for particu-

lar patterns of sparseness (e.g., diagonal matrices) to be more effective in saving them with

minimum storage overhead. Such optimizations for sparse problems mainly focus only

on the storage overhead in isolation without involving other essential performance metrics

such as latency, throughput, and power efficiency. That said, a slower-than-data-transfer

decompression can even surpass the overhead of processing all zero entries in the original

dense matrix format; thus, sparse formats may not necessarily guarantee fast execution.

This occurs because common sparse formats are often tailored to the distribution of data,

not the underlying mechanism of computation.

The challenges associated with using sparse formats not only are not resolved with the

advent of domain-specific architectures (DSAs) for sparse problems but also gain more
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importance. DSAs seem to soon become the main platform of sparse computations by ap-

proaching the end of Moore’s law, proven by the tremendous number of recent studies [63,

64, 19, 66, 67, 68, 18, 69, 70, 71, 94], to more efficiently accelerate the execution of sparse

problems. Prior studies [68, 95, 96, 97, 98, 60, 99] have also demonstrated the importance

of fast compression/decompression in on-demand applications such as in the inference of

neural networks. Regardless of this ongoing research, no study has shed light on the per-

formance implications of using a variety of sparse formats. Particularly, even though prior

work has studied the performance implications of software implementations of sparse for-

mats [100, 101, 102, 103, 104, 105, 106], the hardware implementation of these formats

on FPGAs has not been extensively characterized.

The compression format proposed by prior work lies on a spectrum from the dense

format, which preserves the locations of non-zero values in the physical address of memory,

to a more aggressive compressed format such as COO and CSR. In the following, we briefly

introduce six frequently-used formats.

Compressed Sparse Row/Column (CSR/CSC): The CSR/CSC sparse format sequentially

stores values in row/column order in a values array while similarly storing their column-

index/row-index in a indices array. Another array, offsets, stores index pointers or

range to create rows/columns. To do so, the adjacent pair of this array [start:stop] represents

a slice from the two first arrays. Figure 2.2b shows an example of CSR. For an n×nmatrix,

the length of offsets is n (often n + 1, but the first element can store absolute value to

reduce the size) and the maximum† length of values and indices is n2.

Block CSR/CSC (BCSR/BCSC): The block(-wise) compressed sparse row/column (BC-

SR/BCSC) [87] sparse format is similar to CSR/CSC, but arrays are stored based on the

same-shaped blocks (sub-matrices) rather than on the original matrix. This allows block-

wise formats to better deal with large matrices. Figure 2.2c illustrates an example of BCSR

for block sizes of 4×4, the block size we choose in all our experiments as well. For an

†Note that these worst-case scenarios are used for on-chip memory allocation. The storage overhead is
still defined by the number of non-zeros.
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(a) Dense (b) CSR

offsets
1 1 1 1 2 2 2 3

indices
3 7 7

values

(c) BCSR

offsets
1 2

indices
0 4

values

(d) COO

tuples
0 3
4 7

(e) DOK

<0,3> =
<4,7> =
<7,7> =

(f) LIL

indices
-1 -1 -1 0 -1 -1 -1 4

-1 7-1 -1 -1 -1 -1 -1

values

(g) ELL

Width = 3
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es3 -1 -1
-1 -1 -1
-1 -1 -1
-1 -1 -1
7 -1 -1
-1 -1 -1
-1 -1 -1
7 -1 -1

(h) DIA

0

3

diagonals

7 7

Figure 2.2: Sparse formats: (a) The original sparse matrix in dense format, (b) CSR in-
cluding offsets to indicate the number of non-zero entries per row, indices, indicating col-
umn indices of non-zero entries, and the values itself. CSC follows the same rule as CSR;
(c) BCSR including offsets to indicate the number of non-zero 4×4 blocks per row, indices,
indicating the index of the first column of non-zero blocks, and the values, indicating the
flatten values of non-zero blocks; (d) COO including a series of (row, column, value) tu-
ples for non-zero values; (e) DOK, which is similar to COO; (f) LIL, which pushes all
the non-zero entries to top and saves the row indices; (g) ELL, which is similar to LIL but
pushes the non-zero entries to left ans also uses a padding; and (h) DIA, which saves the
non-zero diagonals by adding the diagonal numbers as a header to each diagonal.

n× n matrix and b× b blocks, the length of offsets is n/b and the maximum length of

values and indices are n2 and (n/b)2.

Coordinate (COO) & Dictionary of Keys (DOK): The COO sparse format simply stores a

series of tuples, including the row index, column index, and value for each of the non-

zero entries. For an n×nmatrix, the maximum length of tuples is 3n2. The DOK format

is similar to the COO format except that it stores coordinate-data information as key-value

pairs. DOK uses hash tables to store a value with the key of (row index, column index).

Figure 2.2d and e depict an example of COO and DOK, respectively.

List of List or Linked list (LIL): The LIL sparse format stores one list of non-zero elements

per row/column. Each element in the lists stores the column/row indices of that row/col-

umn, indices, and their value, values. Figure 2.2f presents an example LIL, which

compresses the rows and preserves the columns (this is our assumption for LIL). For an

n× n matrix, the maximum length of values and indices is n, with n list in total.

Ellpack (ELL) & Sliced ELL (SELL): In the ELL [107] format, non-zero elements are

extracted similarly to those of the LIL format, with their column indices and their val-

ues. However, they are stored in column-major format with the addition of explicit zero

paddings to hold the data for the longest row. This format is ideal for SIMD units since the

widths of all values and indices are the same. A sliced ELL (SELL) sparse format first
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slices the dense matrix row-wise in chunks, and then applies ELL on each chunk. Hence, it

reduces the overhead of zero paddings for larger matrices. Figure 2.2g shows an example

of ELL with a padding width of three. We set this width to six. For an n × n matrix, the

maximum length of values and indices is n (longest possible row). The width in ELL

is n, and that in SELL varies based on the pattern of data. Variants of ELL formats such as

ELL+COO, Jagged Diagonal Storage (JDS) [108], and SELL-C-σ [109] are also popular.

ELL+COO mixes ELL and COO formats to reduce the width of long rows. The JDS for-

mat sorts the rows in ELL from longest to shortest (for vector machines). SELL-C-σ is a

variant of JDS that only sorts rows within a window of σ.

Diagonal (DIA): The DIA [110] sparse format operates by specifying a diagonal number

(0 for the main diagonal, negative/positive for diagonals which start on a lower/higher

row/column) followed by the values that fall on the diagonal, diagonals. Figure 2.2h

illustrates an example of DIA. For an n × n matrix, the maximum number of non-zero

diagonals is 2n− 1 and the maximum length of a diagonal is n+ 1 (the additional element

contains the diagonal number).

2.3 Unsolved Challenges

Despite the advantages of mentioned prior work for improving the performance of sparse

problems, we believe that the following aspects still need to be studied: (i) The cost of

data movement and ineffectiveness of NDP solutions for sparse gathering (e.g., embedding

lookup in recommendation systems) demands a mechanism to process data neither where

data resides nor where dense computation occurs; (ii) Dependencies in computations on

sparse data are a crucial source of bandwidth underutilization and require more software

and hardware optimizations; (iii) Decompressing sparse data even those represented in less

aggressive storage formats, create a bottleneck in data streaming and requires fast decoding

mechanisms; and (iv) Systolic arrays, the efficient compute engine for accelerating the

inference of CNNs, necessitate pruned models that capture their interacting data flows;
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This section sheds some light on the mentioned requirements and clarifies why the absence

of them are the key challenges in accelerating sparse problems.

2.3.1 The Underutilization of Memory Bandwidth

Lack of spatial locality: As the comparison made in Figure 2.1 showed, on the one hand,

we do not want to process embedding vectors in the processing cores where dense com-

putation occurs because it causes a huge amount of data movement. On the other hand,

we cannot process randomly scattered sparse data where they reside because they are not

co-located in memory. In other words, either way would lead to a large amount of data

movement. The negative impact of not reducing data movement is more pronounced at

larger scales. The diagram in Figure 2.3 illustrates the time to gather random data from

embedding tables when we add more memory units or ranks to the system of the most

recent prior NDP solution for recommendation systems, RecNMP [36]. Numbers are nor-

malized to a system of only one rank. Ideally, we want this time to decrease linearly as

shown in the red line, when the memory system scales up. However, as the diagram shows,

the performance of an NDP solution can get far away from the ideal linear speedup as the

memory system size increase if such an NDP solution does not guarantee to apply reduction

operations on embedding vector at near memory.
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Figure 2.3: The time to perform embedding lookup in recommendation systems when the
size of memory system grows. Numbers are normalized to a one-rank system.

Dependency in computations: Solving PDEs using the SymGS method can be written as
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an extremely simplified expression that still sustains the dependencies:

xi =
columns∑
j=0

ATij × xj. (2.1)

The equivalent code for implementing and processing Equation 2.1 in a computer would

include a nested loop: the outer loop over the rows of AT (i.e., i=0 to rows), and the

inner loop over the columns of AT (i.e., j=0 to columns). While the iterations of

the inner loop can be parallelized, the iterations of the outer loop cannot, because of the

data dependencies between them. Figure 2.4 demonstrates the dependencies between the

iterations of the outer loop. The main cause of such dependencies is that at each iteration of

the outer loop, we read the entire vector x (Figure 2.4, left) and then, we update one element

of x (Figure 2.4, right). Therefore, before reading x, we must wait until it is updated.

Read entire x
for i = 0 to rows

for j = 0 to columns

sum += A[i][j] * x[j]

x[i] = update(sum)

Update one element of x
for i = 0 to rows

for j = 0 to columns

sum += A[i][j] * x[j]

x[i] = update(sum)

𝑖 = 0
read update

read
𝑖 = 1

update

𝑖 = 2
read update

read
𝑖 = 3

update

x

x

x

x

x

x

x

x

Figure 2.4: Dependencies in SymGS: Each iteration of the outer loop reads the entire vector
x (left) and updates one element of x (right). The iterations of the outer loop are dependent.

As a result of such dependencies, executing this nested loop cannot benefit from the

parallelism provided by GPU by employing common techniques such as loop unrolling.

Figure 2.5 shows an example, in which we unroll the outer loop three times, and assume

that a GPU has nine parallel processing units, three of which are used to process the inner

loop. Since the iterations are dependent, three steps are required for processing the three

unrolled iterations, at each of which, only is one-third of the GPU utilized.
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for i = 0 to rows

x[i] = ...

for j = 0 to columns

for j = 0 to columns

for j = 0 to columns

for j = 0 to columns

Unrolling the outer loop

i = 4

i = 5

i = 6

GPU

Step 1

Step 2

Step 3

IDLE

IDLE

IDLE

x[4]=...

x[5]=...

x[6]=...

Figure 2.5: Limited parallelism: Unrolling the iterations of the outer loop (left) and map-
ping the pararellizable iterations of the inner loop to processing units of a GPU (right).

A deeper look at the pattern of dependencies in Figure 2.4 and the ineffectiveness of a

parallel processor to execute the nested loop quickly, suggests that not all the operations at

each iteration of the outer loop read the newly updated elements by the previous iterations

(Figure 2.6a). Based on this observation, we add blocking as another optimization on top

of the unrolling. As Figure 2.6a shows, a block of operations including the iterations of the

inner loop (e.g., j=4,5,6) that depend on the outcome of the previous iterations of the

outer loop (e.g., i=4,5,6), can be excluded from the other operations (i.e., the green part

in Figure 2.6a). The width of the blocks determines the depth of the unrolling as well as

the iterations of inner loop that are excluded.

Even though based on the key observation, more parallel operations can be extracted

from the target nested loop, the effort cannot help improve the performance on GPUs.

Figure 2.6b clarifies this by mapping parallelizable operations into the processing units of

the GPU. As illustrated, even though running the green part in parallel increases the level

of parallelism at step 1, the rest of the operations still need to wait for the previous steps,

which take three additional steps. Therefore, implementing the unrolling and blocking can

even worsen the execution time (i.e., four steps versus three). This paper seeks to address

this challenge and enable benefiting from the key observation and the resulting software

optimizations (i.e., unrolling and blocking) with the aid of hardware.

27



for i = 0 to rows

x[i] = ...

for j = 0 to columns

for j = 0 to 3

Unrolling the outer loop and breaking down the inner loop

i = 4

i = 5

i = 6

j = 4, 5, 6 j = 7 to columns

for j = 0 to 3 j = 4, 5, 6 j = 7 to columns

for j = 0 to 3 j = 4, 5, 6 j = 7 to columns

read

read

update

update

No dependencies. 
These can run in parallel(a) (b)

Step 1

Step 2

Step 3

Step 4

GPU

IDLE

IDLE

IDLE

IDLE

x[4]=...

x[5]=...

x[6]=...

Figure 2.6: (a) Key observation: the iterations of the outer loop are just partially dependent.
In fact, only a few iterations of the inner loop read the newly updated elements. Therefore,
we can break down the iterations of the inner loop across a few unrolled iterations of the
outer loop, into data-dependent part (j = 4, 5, 6), and parallelizable part (green parts); (b)
Key challenge: ineffectiveness of blocking technique on GPUs. More parallelism at step 1,
but dependecies still create the bottleneck through steps 2, 3, and 4.

Overhead of decompression: Figure 2.7 uses an example of SpMV to clarify the overhead

of decompression for two popular storage formats CSR and BCSR formats. As mentioned

earlier, CSR uses row indices to indicate the number of elements of each row. Therefore,

for decompressing a non-zero row, we need to first read one element of row indices, and

based on that, we can read as many column indices/values as required. As a result, the

issues with CSR that makes it compute bounded is that (i) an overhead of one access to

the row indices and one computation is always required for all rows; and, (ii) accesses to

the column indices and values are sequential, because we do not know in advance which

elements of column indices and values are going to be accessed in parallel.

The decompression steps of BCSR follow similar steps, whereas instead of individual

non-zero elements, we decompress the non-zero sub-blocks. In the example of Figure 2.7,

similar to CSR, one access to the buffers is required per each row of sub-blocks to initiate

the next accesses for obtaining column indices and values. The advantage of BCSR over

CSR is that the sub-blocks can be distributed over blocks of BRAM and be accessed in

parallel. However, its downside is the overhead of transferring zero elements. In summary,

the latency to process a L × W matrix partitioned into l × w sub-blocks is defined by
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CSR Format:

BCSR Format:
(2x2 sub-blocks)

row indices 2 2 5 7
col. indices

values

1 0 1
2 2 3
0

2 4 5
1 3 2
3

row indices 1 3
col. indices 0 0 2

values 3 2 00
4 5 00
1 0 23

buffers:

B0

B1

B2

2 2 …

0 1

3 2

…

…

BRAM Access Timeline:

BRAM Access Timeline:

R Read Operation C Compute Operation

R Read Operation C Compute Operation

B2
B3
B4
B5

3 4 1
2 5 0
0 0 3
0 0 2

R B0 2 C 2-0=2 R B1 0
R B2 3

R B1 1
R B2 2

R B0 2 C 2-2=2 R B0 5

C 5-2=3 R B1 0
R B2 4

R B1 1
R B2 5

R B1 2
R B2 1

C 7-5=2 R B1 2
R B2 3

R B1 3
R B2 2

cycle: 0 1 2 3 4 5 6

cycle: 7 8 9 10 11 12 13

R B0 1 C 1-0=1 R B0 3
cycle: 0 1 2 3 4 5 6

R B1 0
R B2 3
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Figure 2.7: The time steps required to read a sparse matrix compressed in CSR and BCSR
formats, for creating the non-zero rows. For simplicity, this example (and the next example
in Figure 6.1) assume only one read per cycle from a buffer.

the overhead of accessing the buffer once per a rows-of-sub-blocks, and the latency of

decompressing the non-zero rows-of-sub-blocks.

2.3.2 The Underutilization of Dense Computation

When using systolic arrays, the storage formats such as the CSR are not the most efficient

way to transfer data. To clarify, Figure 2.8 compares using a 2×3 systolic array for (i)

multiplying a dense input matrix and a sparse weight matrix represented in CSR format

(A); versus (ii) multiplying the same dense input matrix and the locally-dense weight matrix

pruned by an ideal structured pruning algorithm suited for systolic architecture (B). Option

A requires accessing extra metadata and reassembling a row before pushing it to systolic

arrays, which has the following consequences: (i) In the worst case, the number of cycles is

defined by the number of rows of the sparse matrix; (ii) At least one indexed read (i.e., the

column) per non-zero value causes inefficient memory accesses. (iii) The compute units of

the systolic array are poorly utilized. In contrast, in option B, the rows of the locally-dense

weight matrix are streamed to the systolic array, without reading metadata. As a result,

multiplications maximize bandwidth utilization with less hardware complexity.

The observation suggests that systolic arrays require optimization for stream accesses to

memory not for memory footprint or the number of operations. As a result, event a pruning

approach for concurrent hardware (e.g., SIMD) is not applicable for systolic arrays because
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Figure 2.8: Clarifying the challenge of systolic-array underutilization: Comparing the exe-
cution of a matrix-matrix multiplication using a systolic array when one operand is a dense
matrix and the other operand is: (a) a sparse matrix, and (b) a locally-dense sparse matrix.

they do not capture dependencies in data to satisfy the data-reuse patterns. Moreover, the

computation results of the pruned model should be compatible with the memory interface

(i.e., the stream interface) for eliminating extra buffering/caching. The storage adjacency

of data resulting from algorithm-defined granularity data to the systolic array.
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CHAPTER 3

PROCESSING SPARSE DATA WHILE GATHERING THEM

This chapter proposes a solution for the first category of sparse problems that are the prob-

lems in which data itself is dense but since at a moment only a small fraction of data is

accessed randomly and irregularly, the pattern of accesses to memory is sparse. A main ap-

plication of this category of sparse problems is recommendation systems that are the focus

of this chapter.

3.1 Main Contributions of Fafnir

Our goal is to provide a solution to reduce data movement and provide memory and com-

putation parallelism without relying on spatial locality. To achieve this goal, our key insight

is to process data while it is gathered rather than processing data where it resides, mainly

because in sparse gathering, data (i.e., different embedding vectors) do not reside in a single

memory location; rather it is scattered. Based on this insight, we propose an efficient near-

memory intelligent reduction (Fafnir∗) [17], a data-centric solution for embedding lookup,

which, unlike prior data-centric solutions, gradually applies the reduction on data while

gathering them from random memory devices. The overhead for achieving the benefits

explained in the following is m − 1 processing elements compared to prior work (that is,

adding a 0.121mm2 at 7nm chip).

Using an Overall Tree Structure: To apply reduction on embedding vectors from any

memory devices without relying on spatial locality, we use an overall reduction tree, the

leaves of which are connected to the ranks of a memory system and the nodes are reduction

engines. In this way, we guarantee that all embedding vectors in a query are definitely

reduced within the tree at NDP – it could occur in a leaf if the embedding vectors are from

∗Fafnir is a star in the constellation of Draco.
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neighboring memory devices or could occur at least at the root if the vectors are at the

remotest locations. Therefore, while in all three schemes (i.e., TensorDIMM, RecNMP,

and Fafnir) the mapping of vectors to DIMMs equally define the load of each NDP, only

in Fafnir are the entire operations done at NDP, regardless of the mapping of vectors to

DIMMs. Since Fafnir performs all the reduction operations at NDP, it guarantees to de-

crease data movement. In other words, similar to TensorDIMM, only the n × v elements

corresponding to the outputs are transferred from the NDP to the cores. The tree structure

of Fafnir also optimizes the number of connections. More specifically, instead of connect-

ing NDP to the cores through the costly c × m all-to-all connections, Fafnir integrates

computations within 2m − 2 connections and then forwards them to the cores through c

connections (i.e., total (2m − 2) + c). As a result of the fewer connections when adding

more computation devices, Fafnir is also more scalable compared to prior work.

Parallelizing Memory Accesses & Computations: To fully utilize the tree and thus

provide parallel computation while also reading data in parallel, Fafnir simultaneously ac-

tivates distinct routes of the tree from arbitrary leaves to the root to process a batch of

queries. Fafnir flows data corresponding to distinct queries through the tree in such a way

that they do not conflict and hence their latency does not affect one another. As a result of

this mechanism, Fafnir guarantees full utilization of the parallel computation at NDP (i.e.,

n × (q − 1) × v). Therefore, not only by adding more ranks to the system but also by in-

creasing the batch size (i.e., processing more queries), we can better utilize the parallelism

and achieve higher throughput.

No Caching Mechanisms: Fafnir uses a novel approach for processing a batch of

queries with shared indices that do not require caching mechanisms for eliminating re-

dundant accesses to memory. In other words, Fafnir reads only the unique indices from

memory and then uses them as many times as required without storing data in a cache,

hence preventing overhead such as searching, reading from, and writing to a cache. Fafnir

rearranges a batch of queries and treats them as a set of unique indices. Therefore, Fafnir
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accesses each unique index only once, and then, based on the query indices, it reduces the

corresponding indices within the tree. Our observations, shown in Figure 3.1, illustrate the

opportunity to effectively benefit from our novel batch processing mechanism (details in

section 3.3). This mechanism of Fafnir also improves energy efficiency.
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Figure 3.1: The percentage of unique indices in batches of queries.

Executing Various Sparse Problems: Customized hardware has not often been selected

as a viable option. Instead, general-purpose hardware has usually been used for executing

applications such as sparse problems, even though their performance is dramatically low.

A reason for this is the economic aspect. Extensive customization has been expensive

for narrow applications, even if such hardware offers significant performance benefits. To

deal with the cost challenge, custom hardware solutions must be generic and applicable

to a reasonable range of applications. To this end, we envision hardware for Fafnir that

is generic enough to be used for executing other sparse applications, that include graph

algorithms and scientific computations including matrix algebra, the main kernel of which

is sparse matrix-vector multiplication (SpMV).

3.2 The Top-Down Overview of Fafnir

Software Support: Fafnir is a DDR-based NDP connected to a host for software support.

The host is responsible for mapping data to the memory addresses, compiling the NDP

kernels into a set of memory accesses, and calling Fafnir for executing NDP kernels by

transmitting memory access requests to the root of the tree. The type of memory access

differs based on the program. For instance, for embedding lookup, the host sends batches
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of memory read addresses, whereas for SpMV (see section 3.4), it forwards stream ac-

cesses from all occupied ranks by specifying the initial memory address and the size of the

stream. Besides, while for an embedding-lookup kernel the application software at the host

arranges the queries, it performs vectorization for SpMV. The distribution of the memory

accesses across the memory devices (ranks) is a result of the program behavior. The root

receives the requests in the form of regular DDR4-compatible command/address (C/A) sig-

nals, decodes them, and forwards them to the corresponding (all if needed) DIMM/ranks

across all parallel ranks. Ranks read data through DDR4-compatible data (DQ) signals and

then all the special steps of Fafnir to gradually apply reduction operations from leaves to

the root occur. Finally, the root sends the outcome back to the host.

Architecture: Figure 3.2a shows an overview of the Fafnir architecture, consisting of

32 ranks, and hence 31 processing elements (PEs), connected in a tree structure. In the

current implementation of Fafnir, one leaf PE is connected to two ranks (i.e., 1PE:2R) and

concurrently accesses them without creating conflicts by using the same techniques used

in prior work [36, 35]. Similarly, depending on system requirements, other scales (e.g.,

1PE:4R or 1PE:1R) are implementable. The PEs can be grouped as nodes in various ways.

Each node would be a sub-tree of PEs, implemented in FPGA or ASIC. For instance, we can

fabricate one PE chip of size 274µm× 282µm at 7 nm (Figure 3.2a left layout) and embed

it in a DIMM or put seven PEs together in a single 492µm× 575µm chip to connect all the

four DIMMs in a channel. In this paper, we implement two types of nodes: DIMM/rank

and channel nodes. Accordingly, the Fafnir configuration consists of four DIMM/rank and

one channel node. The nodes borrow their names from the source of their inputs. The input

to each DIMM/rank node is from eight ranks (4 DIMMs, 2 ranks per each). A DIMM/rank

node has seven PEs. the channel node has three PEs and its inputs come from four channels.

Figure 3.2b illustrates the mapping of embedding tables to 32 ranks of our target mem-

ory system – we map embedding vectors (e.g., each 512 bytes) to distinct ranks. Data

flowing from leaves to the root of the tree includes a header and a value (the gathered
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Figure 3.2: (a) The architecture of Fafnir tree, consisting of DIMM/rank and channel nodes
and ASIC designs at 7 nm for a PE and a DIMM/rank node. (b) The mapping of embedding
tables to memory addresses.

data). The header consists of two fields: indices and queries. The indices indicate the

locations of memory from which data have been gathered (i.e, the bits [9-13] shown in

Figure 3.2b). The queries indicate a list of indices for different queries that have not been

visited, yet. For instance, assume that we have a query with indices 1, 2, 5, 6, and

data in a PE is the result of reducing data from indices 1, 2 and is yet to be reduced

with data from indices 5, 6. As a result, the output of that PE will have a header of

[indices:1,2|queries:5,6]. By approaching the root and visiting more PEs of

the tree, the indices from the queries field of the header are shifted to the indices field.

Once data arrives at the root of the tree, the queries field will be empty, and the indices

field will indicate a complete set of reduced indices for that query.

Microarchitecture of PEs: Figure 3.3 shows the microarchitecture of a PE, includ-

ing two inputs (A and B) coming from a rank or the upstream PE in the tree architecture,

and one output going to the downstream PE. A PE consists of two input FIFO buffers

connected to compute units, the outputs of which are merged and directed to the output

through a merge unit. The task of each PE is to process the headers and decide whether
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Figure 3.3: The microarchitecture of a PE including FIFO buffers, compute, and merge
units, showing the data path from leaves to the root.

to reduce the inputs and assign a new header to it, or just forward them as they are. To

enable processing a batch of inputs, we instantiate compute units, each of which itera-

tively compares one element of an input (e.g., B[x]) with all elements of the other in-

put (e.g., A). More specifically, the entire queries field of B[x] is compared with the

indices field of A[i] (i.e., B[x].queries[j] and A[i].indices are compared).

If B[x].queries[j] contains all elements of A[i].indices, the compute unit per-

forms a reduction. If none of them match, it forwards B[x]. In each PE, we also compare

the two inputs in the other way to make sure that the queries field of A[i] is also matched

with the indices field of B[x]. Since we process the inputs of a PE in parallel, the com-

pute units may generate the exact same outputs concurrently, or multiple compute units

may generate multiple outputs, the data of which are equal. In the first case, the redundant

outputs must be removed, and in the second case, the outputs with the same data must be

merged and the queries field in their headers must be merged (i.e., concatenated). Such

post-processing is the task of the merge unit.

All PEs across the tree are identical. The size of the PE (i.e., the size of input buffers

A and B and the number of computation units) could be tailored to better handle different
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batch sizes. We define sizing based on the maximum size of inputs. Since we are process-

ing batches of queries, each combination of the two inputs of a PE might be required by

one of the queries in the batch. Therefore, in the worst case, a PE will need to generate all

the possible combinations of its input to the output, which is a maximum of three combina-

tions: Each of the inputs can individually be forwarded to output, or they can be reduced.

Therefore, in theory, the number of outputs of a PE with two inputs of sizes n and m is

nm+ n+m.

The output size of a PE defines the input size of the downstream PE. As we move closer

to the root, the size of the outputs and hence the size of consecutive inputs are supposed

to be increasing, which demands larger buffers and more compute units. However, in fact,

the number of outputs of each PE is limited by the batch size. This is simply because not

all the combinations of the inputs are being used by a limited number of queries. While

hardware is fixed for a batch size, larger batch sizes defined by software in various appli-

cation domains are served as several small batches at hardware. Therefore, the maximum

number of outputs for a PE is calculated as min(nm+ n+m,B), in which B is the batch

size. Table 3.1 lists the total size of buffers for PEs and nodes, which is the same for PEs at

any level of the tree for three batch sizes. As Figure 3.3 shows, the buffers contain n = m

entries, each including a 512 B value and a 10 B header (16 × 5/8) for q = 16 (i.e., each

query includes maximum 16 indices) and 5-bit indices/queries fields for identifying em-

bedding vectors from 32 embedding tables. In our configurations, n = m = B also defines

the number of compute units in a PE. When the size of inputs is smaller than the number of

computation units, some compute units will simply have no value and remain idle.

Table 3.1: FIFO buffer sizes that are sum of all buffers in all PEs (B is batch size).

Node PE buffer (KB) Node buffer (KB)
B = 8 B = 16 B = 32 B = 8 B = 16 B = 32

DIMM/Rank 4.6 9.3 18.5 32.4 64.8 129.5
Channel 13.9 27.8 55.5
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3.3 Key Mechanisms

This section describes how Fafnir performs eliminates redundant memory accesses and

concurrent batch processing. This mechanism, however, does not rely on batch processing.

For instance, the same mechanism can also be used for interactive processing, in which

all nodes would either forward or reduce without performing any comparisons. Fafnir

first reads data corresponding to only the unique indices once, and then uses them within

different queries as many times as required without using any caching techniques. The

example in Figure 3.4 shows the steps of batch processing for a batch of four queries (i.e.,

a, b, c, and d) that access random embedding vectors from eight embedding tables and then

processing them through a three-level tree, shown in Figure 3.4a. Only in this example, we

assume that the indices to embedding vectors are created by concatenating the index within

a table with a table number (e.g., 50 indicates index 5 from table 0).

0|1 2|3 4|5 6|7

0|1
2|3

4|5
6|7

root

L0

L1

L2

(a)

50 11 32 83 94 26 77

query a
query b
query c
query d

a 11, 32, 83, 77 
b 50, 83, 94 
c 50, 11, 94, 26
d 32, 83, 26

ID Indices 50 83, 94 | 11, 94, 26
11 32, 83, 77 | 50, 94, 26

32 11, 83, 77 | 83, 26
83 11, 32, 77 | 50, 94 | 32, 26

Inx. Queries

94 50, 83 | 50, 11, 26
26 50, 11, 94 | 32, 83
77 11, 32, 83 (b)

Queries:

Headers:

PE Indices Queries

0|1

2|3

4|5

6|7

50 83, 94 | 11, 94, 26

11 32, 83, 77 | 50, 94, 26

32 11, 83, 77 | 83, 26

83 11, 32, 77 | 50, 94 | 32, 26

94 50, 83 | 50, 11, 26

26 50, 11, 94 | 32, 83

77 11, 32, 83 

Actions
forward | reduce

forward | reduce

reduce  | reduce

reduce  | forward | reduce

forward  | forward 

forward  | forward 

forward   

Indices Query
50 83, 94 

11 32, 83, 77 

50,11 94, 26 

50,11 94, 26 

Indices Query

32, 83 11, 77 32, 83 26

32, 83 11, 77 83 50, 94 32, 83 26

94 50, 83 94 50, 11, 26

26 50, 11, 94 26 32, 83

77 11, 32, 83

Indices Query

0|1
2|3

PE Indices Queries

4|5
6|7

50 83, 94 

11 32, 83, 77 

50,11 94, 26 

32, 83 11, 77 | 26
83 50, 94

94 50, 83 | 50, 11, 26

26 50, 11, 94 | 32, 83

77 11, 32, 83

Actions

reduce

reduce

forward

reduce
reduce | forward

forward | reduce

reduce  | forward
forward

Indices Query

50, 83 94 

11, 32, 83 77

50, 11 94, 26

50, 83 94

11, 32, 83 77 32, 83 26

Indices Query

94 50, 83 94, 26 50, 11

94, 26 50, 11 26 32, 83

77 11, 32, 83

root

50, 83 94 

11, 32, 83 77

50, 11 94, 26

Indices Queries Actions Indices

32, 83 26

94 50, 83

94, 26 50, 11

26 32, 83

77 11, 32, 83

reduce

reduce

reduce
reduce

reduce

reduce

reduce

reduce

50, 83, 94

11, 32, 83, 77

50, 11, 94, 26

32, 83, 26

50, 83, 94

50, 11, 94, 26

32, 83, 26

11, 32, 83, 77

PE

input A

input B

input A

input B

input A

input B

input A

input A

input B

input A

input B

input A

input B

2

50 83, 94 | 11, 94, 26

11 32, 83, 77 | 50, 94, 26

32 11, 83, 77 | 83, 26

83 11, 32, 77 | 50, 94 | 32, 26

94 50, 83 | 50, 11, 26

26 50, 11, 94 | 32, 83

77 11, 32, 83 

forward | reduce

forward | reduce

reduce  | reduce

reduce  | forward | reduce

forward  | forward 

forward  | forward 

forward   

50 83, 94 

11 32, 83, 77 

50,11 94, 26 

50,11 94, 26 

32, 83 11, 77 32, 83 26

32, 83 11, 77 83 50, 94 32, 83 26

94 50, 83 94 50, 11, 26

26 50, 11, 94 26 32, 83

77 11, 32, 83

Query

50 83, 94 

11 32, 83, 77 

50,11 94, 26 

32, 83 11, 77 | 26
83 50, 94

94 50, 83 | 50, 11, 26

26 50, 11, 94 | 32, 83

77 11, 32, 83

reduce

reduce

forward

reduce
reduce | forward

forward | reduce

reduce  | forward
forward

50, 83 94 

11, 32, 83 77

50, 11 94, 26

50, 83 94

11, 32, 83 77 32, 83 26

94 50, 83 94, 26 50, 11

94, 26 50, 11 26 32, 83

77 11, 32, 83

root

50, 83 94 

11, 32, 83 77

50, 11 94, 26

32, 83 26

94 50, 83

94, 26 50, 11

26 32, 83

77 11, 32, 83

reduce

reduce

reduce
reduce

reduce

reduce

reduce

reduce

50, 83, 94

11, 32, 83, 77

50, 11, 94, 26

32, 83, 26

50, 83, 94

50, 11, 94, 26

32, 83, 26

11, 32, 83, 77

(d) L1

(c) L0

(e) L2

2

3

Embedding 
Tables:

Embedding 
Vectors:

0 1 2 3 4 5 6 7

a c
4

Query 
“a”

1

Figure 3.4: Concurrent batch processing and eliminating redundant memory accesses in
Fafnir: (a) A batch of four queries that access random embedding vectors from eight em-
bedding tables and a three-level Fafnir tree (b) Extracting the unique indices of four queries
and creating the headers of requests to be forwarded to Fafnir. The steps of processing the
four queries through the PEs at three levels of tree: (c) L0, (d) L1, and (e) L2.

To decrease the number of memory accesses, the host extracts the unique indices used

in a batch of queries and creates the headers including indices (i.e., Inx) and queries fields

(Figure 3.4b). To do so, the unique indices are added to the indices field. Then, all the

indices of the queries, including that unique index but excluding the unique one, are added

to the queries field. For instance, for the unique index 11 Ê, we add the following to the
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queries field: 11, 32, 83, 77 from query a and 50, 11, 94, 26 from query c

(11 is excluded from both). In this way, instead of a total of 14 memory accesses, we ac-

cess seven unique ones: 50, 11, 32, 83, 94, 26, 77. The tables in Figure 3.4c,

Figure 3.4d, and Figure 3.4e list the details of the processing steps at levels L0, L1, and L2

of the tree, respectively. These tables list (i) the headers of the input A and input B to each

PE, (ii) the actions taken based on each comparison – each action corresponds to the result

of comparisons of one item in the queries header, (iii) the header of raw outputs of each PE

before merging, and (iv) the inputs to the next PEs, which are basically the merged outputs

of the previous PEs.

PE (0|1) (similar to others) has two inputs, A and B. As the queries fields of A and

B indicate, data from indices 50 and 11 will be used in two queries. In (0|1), a compute

unit compares item [83,94] of A with the index of B (i.e., 11) and since 11 is not

included in [83,94], the compute unit forwards the value coming from input A, with its

initial header of [indices:50|queries:83,94]. Likewise, item [11, 94, 26]

of A is compared with the index of B (i.e., 11) and finds a match, thus reducing the values

of A and B and creating the new header of [indices:50,11|queries:94, 26]

Ë. The indices field of the header is created by concatenating the indices of A and B and

the queries field is created by excluding the indices of A and B from [11, 94, 26].

The compute units in PE (0|1) do the same for items [32, 83, 77] and [50, 94,

26] of input B, resulting in a forward and a reduce.

As Figure 3.4c shows, the initial outputs of PE (0|1) include the header [indices:

50,11|queries:94,26] twice. In such a case, the merge unit is responsible for elim-

inating redundant outputs. The three unique outputs of PE (0|1) create the input A of

PE (0|1|2|3), the input B of which includes two items that have been created simi-

larly in PE (2|3). The number of initial outputs of PE (2|3), however, is five. Be-

sides the redundant outputs with headers [indices:32,83|queries:11 ,77] and

[indices:32,83 |queries:26], PE (2|3) includes two groups of outputs with
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the same indices 32, 83, but different queries field. In such a case, the headers must be

merged, because they are two headers for one unique value. The result of such merging

is a value with the header of [indices:32,83 | queries:11,77|26] (shown in

Figure 3.4d), which goes to input B of PE (0|1|2|3) Ì. As the figure shows, because of

merging, the size of input A and B never exceeds the batch size (i.e., four). The process of

applying different actions on the inputs is similar in PE (0|1|2|3), whereas here, each

item of the queries field must be compared with the indices field of all items in the other

input. Besides, as Figure 3.4c shows, in some cases, such as in PE (4|5), only one of the

inputs exists, which automatically leads to a forward action. By iteratively processing data

and gradually reducing them (when required) through the tree, we reach the root PE, the

outputs of which indicate the initial queries (Figure 3.4e). For instance, the green lines (Í)

show the final steps for creating query a.

3.4 Adapting Fafnir to SpMV

Sparse gathering is the common operation SpMV and embedding lookup, both of which

can be implemented using a reduction tree. While this common feature allows adapting

Fafnir to SpMV, maximizing the benefits for both requires addressing unique challenges

that arise from their differences. The main difference between the reduction in embedding

lookup and that in SpMV is that in embedding lookup, we reduce distinct vectors into one

vector, whereas in SpMV, we need to reduce the elements of a vector into one element.

Therefore, as Figure 3.5a illustrates, for an embedding lookup, each PE of Fafnir applies

an element-wise reduction on two (or more) vectors and generates one output vector. For

an SpMV, it is just the opposite: we need a reduction tree to sum the elements of a vector.

As a result, the challenge is that if we simply use the reduction tree of Fafnir to execute

SpMV, only one compute unit (reduce) of a PE will be utilized, as shown in Figure 3.5b.

Our key insight to resolve this challenge is to use a vectorization technique along with an

appropriate compression format. Figure 3.5c illustrates vectorization, in which each PE
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processes a vector of independent elements of the sparse matrix and separately applies the

reduction operation on them. Vector size could be the same as embedding-vector size.

Embedding tables

PE PE

PE

Sparse matrix

Element-wise 
operation

PE

PE

PE

Element-wise 
operation

Sparse matrix

PE PE

PE

Element-wise 
operation

(b)(a) (c)

vectorize

… … …
vector same size as
embedding vector

Figure 3.5: (a) Embedding lookup in Fafnir, (b) Using Fafnir for an SpMV with no mech-
anisms, and (c) Using vectorization to fully utilize Fafnir for SpMV.

Because of their differences, embedding lookup and SpMV use different mechanisms

on the same hardware. However, if the primary application of Fafnir would be SpMV, the

control logic shown in Figure 3.3 would be simpler because in SpMV, q is one and the

iterations over q in compute units would not be necessary. Table 3.2 compares the mech-

anism of Fafnir for executing SpMV and embedding lookup. Unlike embedding lookup,

for SpMV, the irregularity in memory accesses stems from sparse data. Because of such

a difference, Fafnir handles memory accesses differently. First, as the second column of

Table 3.2 lists, for SpMV, we do not know where the non-zero values of the sparse matrix

are located. Therefore, when we read data from memory, the indices of the elements to be

reduced are unknown. In fact, indices themselves are being read from memory. As a result,

for SpMV, we stream both data and indices through the tree. Then, based on the indices,

the tree reduces related values. In contrast, for embedding lookup, we know which indices

we need to access. Therefore, we only stream data. The other difference between SpMV

and embedding lookup is that the leaf PEs for SpMV first multiply data with the vector

operands. The leaf PEs skip the multiplication for embedding lookup. Similar to embed-

ding lookup, SpMV rather than caching mechanisms, uses a simple buffering, in which a

vector operand is buffered in the multipliers until it is multiplied by matrix operand.
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Table 3.2: SpMV vs. embedding lookup

SpMV Embedding lookup

Indices Unknown Known

Memory-access type Stream data and indices Stream data only

Leaf PE Multiplication Skip multiplicationwith vector

To facilitate streaming sparse matrices, we suggest using the list-of-list (LIL) compres-

sion format, which has become popular in recent sparse studies [68, 111, 112] (sometimes

called other names such as linked list). Further, LIL is supported by the SciPy library,

which makes its application more straightforward. LIL compresses the non-zero values of

the original sparse matrix in one dimension and saves the indices corresponding to the other

dimension of the matrix. As LIL compresses matrices only in one dimension, it facilitates

splitting large matrices into chunks through their non-compressed dimension, hence facili-

tating parallel streaming. The ease of splitting and parallel streaming is important in large

sparse matrices (e.g., graph problems or HPC). To apply SpMV on large matrices that do

not fit into Fafnir, we split them through their non-compressed dimension. Similar splitting

is also used in the state-of-the-art NDP approach for SpMV [76].

…

Iteration 0

…

Matrix 
(Sorted 
Indices):
Multiply to 
Vector:

…

0

Reduce:
Only 
Reduce:

……
Matrix
(Unsorted
Indices):

Iteration 1

…

Iteration m (last)

…

Final 
Result

Round: Round:

…
Matrix
(Unsorted
Indices):

Only 
Reduce:

r/nrr � 1

n n n

0 1

Figure 3.6: The iterations and rounds for SpMV on large sparse matrices using Fafnir when
only n columns of the matrix fits to Fafnir at a time.

As Figure 3.6 shows, we perform an SpMV in iterations, each consisting of several

rounds. In the first iteration (iteration 0, which is functionally equivalent to the first step of

Two-Step algorithm [76]), the matrix is multiplied by the vector operand, whereas all other

iterations only merge the results of the previous iteration. We use the same hardware (DIM-
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M/rank and channel nodes of Fafnir) for both types of iterations. During merge iterations

(i.e., iterations > 0), leaf PEs skip the multiplications as they do in embedding lookup. In

addition, during the merge iterations, the row indices are no longer sorted, but this does not

impact the functionality of Fafnir. Figure 3.7 illustrates the number of required iterations

and rounds per iterations for two vector sizes (i.e., 1024 and 2048) when the number of

columns (and rows) increases up to 20 million. As the figure suggests, even for matrices

with more than 5 million columns, no more than two merge stages are required.
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Figure 3.7: The number of iterations, rounds per iteration, and required merges for matrices
with up to 20 million columns, for vector sizes (a) 1024 and (b) 2048. In our configuration
for SpMV, vector size (i.e., the number of columns that fit in Fafnir tree) is 2048.

3.5 Evaluation

3.5.1 Experimental Setup

Figure 3.8 shows an overview of our design, implementation, and evaluation flow. We

implement the microarchitecture of Fafnir (and the baselines) in C++. We use our hard-

ware description in C++ for (i) RTL generation and subsequently FPGA and ASIC imple-

mentation, and (ii) performance evaluation. To generate RTL (in Verilog), we use related

#pragmas as hints to describe the microarchitectures. We use Vivado HLS to generate

RTL and Vivado to synthesize and implement our design on an XCVU9P FPGA, targeting a

VCU1525 acceleration development kit, which includes four 16 GB DDR4 DIMMs (64 GB

total per DIMM/rank node). Besides reporting resource utilization and power consumption

for FPGA, we implement the ASIC design of Fafnir using the toolchain of Synopsys design
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compiler (DC), Cadence Innovus, and Cadence Tempus. As an input to our ASIC design,

we use our same Verilog code generated by HLS and just substitute the BRAM blocks with

memory cells. Our ASIC design is based on an Arizona State Predictive PDK (ASAP) 7nm

technology node [113], a free PDK for non-commercial academic use. All performance

numbers reported in this paper are based on FPGA-based C/RTL co-simulation results (as

shown in Figure 3.8). For verifying functionality at scale we perform regression testing

using large synthetic data through a C++ testbench for C/RTL co-simulation. To facilitate

performance evaluation for large real-world data, we inject the FPGA post-implementation

timing analysis @200MHz into our C++ emulator, the core description of which is initially

used for RTL generation.

RTL

Microarchitecture 
Component 

Latency 

Netlist

Performance 
Results

Testbench 
(synthetic data) to 

evaluate functionality

Memory 
Traces

FPGA Resource 
Utilization and 

Power

Real-world 
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Terabyte, …)

Sparse matrices 
from SuiteSparse 

Collection
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System model 

(DLRM, DCN, …)

HLS

 
C plus #pragma
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latencies

Hardware 
Description in C

DC

Layout

Innovus

Timing and 
Power 

Analysis

Tempus

Figure 3.8: Experimental setup.

We evaluate two applications: (i) recommendation systems including embedding lookup

and (ii) graph analytics and scientific applications, both including SpMV. For scientific ap-

plications, we execute a matrix inversion algorithm (the most bottleneck-prone algorithm)

using the lower-upper technique, which also iteratively calls SpMV. The inputs to our C++-

based emulator are memory traces based on accesses to embedding tables of recommen-

dation systems and the sparse matrices for SpMV-based applications. For the recommen-

dation systems, we run Deep & Cross Network (DCN) [114] as well as Deep Learning

Recommendation Models (DLRM) [13] based on two real-world open-source data sets:

(i) the Criteo Ad Kaggle data set [115] containing approximately 45 million samples over

seven days and (ii) the Criteo Ad Terabyte data set [116] sampled over 24 days. We logged

the indices of embedding-table accesses and preprocess them using Python scripts to gen-
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erate memory-access traces. To prepare the inputs for SpMV-based applications, we use

Matlab to preprocess our sparse matrices, listed in Table 3.3, obtained from the SuiteSparse

collection [117], six from the scientific-computing domain and six graphs.

Table 3.3: Sparse matrices from SuiteSparse [117].

ID Name Dim.(M)1 Density (%) Application

RE N reactome 0.016 0.025 Biochemical

RI rail582 0.056 1.2 Linear Prog.

HC hcircuit 0.1 0.004 Circuit Sim.

2C 2cubes sphere 0.101 0.016 Electromagnetic

TH thermomech dK 0.2 0.006 Thermal

FR Freescale2 2.9 0.0001 Circuit Sim.

AM amazon0601 0.4 0.002 Dir. Graph

WG web-Google 0.91 0.0006 Dir. Graph

RO roadNet-TX 1.3 0.0001 Unidir. Graph

KR kron g500-logn21 2 0.004 Unidir. Multiraph

WI wikipedia-20070206 3.5 0.0003 Dir. Graph

LJ soc-LiveJournal1 4.8 0.0002 Dir. Graph
1 Dim.: dimension or the number of columns/rows of a square matrix.

Our baseline NDP designs for embedding lookup are TensorDIMM [35] and Rec-

NMP [36], and for SpMV-based applications is the Two-Step algorithm [76]. The Two-

Step [76] algorithm is the state-of-the-art NDP accelerator for SpMV, which converts ran-

dom memory accesses to regular accesses and ensures full memory streaming. The Two-

Step algorithm mostly focuses on optimizing the implementation of the merge step (i.e.,

iterations>0 in Figure 3.6) by using a binary tree-based multi-way merge core. The main

contribution of the Two-Step algorithm is parallelizing the multi-way merge operation to

handle large and highly sparse graphs. To reproduce the performance numbers of preced-

ing NDP accelerators, we implement them on our FPGA platform based on the informa-

tion/configurations provided in their published papers. We validate the reproduced numbers

against their reported numbers.
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3.5.2 Latency

Table 3.4 lists the latency of the compute-unit components that define the latency of pipeline

stages and the critical path for our FPGA implementation @200MHz. The critical-path la-

tency is defined by the latency of the compare and reduce units (since reduce and forward

are parallel and reduce is slower). Before investigating the key metrics that are end-to-

end speedup, scalability, and energy, we quantitatively compare the single-query latency of

Fafnir with baselines. To do so, we measure the latency of a query, including random ac-

cesses to 16 512B vectors distributed over 32 ranks (4× channels, 4× DIMMs, 2× ranks).

Table 3.4: Latency (cycles @200MHz) of the components in compute units of Fafnir for
FPGA implementation.

Parallel paths (reduce or forward)

Compare Reduce Reduce (header) Forward
(value) indices queries

per item (iteration) 12 3 4 3 16

batch size = 8/16/32 N/A 32/64/128 29/53/101 N/A

Figure 3.9 shows the contribution of memory access and computation (reduction op-

eration) in total latency. Several parameters such as vector size and number in a query,

row buffer size, distribution of vector, the number of pipeline stages, and DRAM timing

define the effectiveness of (i) benefiting from row-buffer locality and (ii) not relying on

spatial locality, on computation and memory latency. For instance, as Figure 3.9 illustrates,

the computation latency of TensorDIMM, which pipelines the processing of 16 embedding

vectors in a query, is 2.5× slower than Fafnir, which processes all 16 vectors in parallel.

Although the parallelism level of RecNMP is also similar to that of Fafnir, its computation

latency is not as low as in Fafnir because RecNMP forwards a few (here ∼ 25%) com-

putations to the CPUs as a result of lack of spatial locality. In terms of memory latency,

however, Fafnir and RecNMP are identical since they similarly utilize rank-level paral-

lelism and row-buffer hit. In this example, the memory latency of TensorDIMM is 4.45×

slower than RecNMP and Fafnir, which could have been up to 16× slower in the case of

no row buffer hit.

46



0
200
400
600
800

TensorDIMM RecNMP Fafnir

La
te

nc
y 

(n
s) Compute (Critical Path)

Memory

Figure 3.9: Single-query latency breakdown.

3.5.3 Speedup and Scalability

To evaluate the impact of accelerating the embedding lookup on the overall inference la-

tency, Figure 3.10 shows the end-to-end speedup of RecNMP and Fafnir over the baseline

(1-rank) when increasing ranks from two to 32. The figure shows the breakdown of total

inference latency into three components: (i) embedding lookup; (ii) fully-connected (FC)

layers executed at CPU, the performance of which is assumed to be fixed in various ranks.

In Figure 3.10, FC layers take 0.5 ms, however, their latency varies significantly based on

the host system (CPU vs. GPU) and batch size [12] – optimizing the performance of FC

layers is not the focus of this paper; and (iii) other operations. While both RecNMP and

Fafnir work close to the ideal linear speedup (red line) for fewer ranks, Fafnir keeps fol-

lowing the red line more closely as the number of ranks increases to 32. This stems from

the key difference between RecNMP and Fafnir: the DIMM-level parallelism by putting a

small chip (channel node) between memory and the core to perform all reductions at NDP

rather than in the cores, the impact of which is more pronounced in larger memory systems

with more ranks.

We also evaluate the speedup of Fafnir over the state of the art for two SpMV-based

applications. While Fafnir performs the first step (iteration 0) of SpMV more quickly, the

Two-Step algorithm more quickly merges the result (iterations >0). This is because, unlike

the Two-Step algorithm, Fafnir does not rely on decompression mechanisms and is able to

apply SpMV on data as it is streamed from memory. Further, instead of a chain of adders

connected to multipliers, Fafnir uses the tree for the reduction. Conversely, since the Two-

Step algorithm particularly optimizes the merge operation, it performs the merge steps more
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Figure 3.10: End-to-end inference speedup for DLRM on Kaggle (batch size = 8): (a)
RecNMP, (b) Fafnir.

quickly. Because of the mentioned reasons, as Figure 3.11 illustrates, with no modifications

in hardware, Fafnir can process SpMV-based sparse problems more quickly (e.g., up to

4.6×) or in the worst case as quickly as (e.g. 1.1×) the Two-Step. For smaller matrices,

as fewer merge iterations are required, Fafnir performs more quickly than larger ones. In

some workloads among the larger matrices (e.g., RO) sparseness is a reason that makes

them more suitable for Fafnir. Based on our observation, a promising future direction is the

combination of both Fafnir (for the first step) and Two-Step (for merging).
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Figure 3.11: Speedup of Fafnir over Two-Step algorithm [76] for two SpMV-based appli-
cations: scientific computations (matrix inversion algorithm) and graph.

In a scalable design, increasing the batch size must help increase throughput. To eval-

uate the impact of concurrent batch processing on scalability, Figure 3.12 illustrates the

speedup over RecNMP when batch size varies. Although all three designs utilize batch pro-

cessing, their difference is in the hardware mechanism to most effectively take advantage

of a batch to improve throughput. As Figure 3.12 illustrates, RecNMP looks up embed-

ding approximately 15× faster than TensorDIMM. This speedup stems from the approach

of RecNMP to utilize rank-level parallelism. As Figure 3.12 shows, the speedup of Fafnir
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over RecNMP, however, more significantly grows with the batch size (i.e., 3.1×, 6.7×,

and 12.3×, for batch size 8, 16, and 32, respectively) when neither Fafnir nor RecNMP

eliminates redundant memory accesses. The reason is that Fafnir better utilizes memory

bandwidth, therefore, filling the gap under the roofline model of RecNMP by performing

full-reduction near memory. The tiny (i.e., 0.121 mm2) channel-node chip between the

memory channels and core is the key to achieve this. In addition, as the striped part of

Figure 3.12 shows, Fafnir achieves up to an extra 3.4× speedup by more effectively elim-

inating redundant accesses to memory without using caches. For RecNMP, we assume

128KB rank caches that offer the optimal hit rate of 50%.
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Figure 3.12: Speedup of Fafnir and TensorDIMM [35] (TDM) over RecNMP [36] (RNMP)
for batch sizes (a) 8, (b) 16, and (c) 32. Opt. stands for the optimization of elimination of
the redundant memory accesses.

3.5.4 Power Consumption and Area Overhead

This section evaluates the hardware of Fafnir (assuming n = m = 32 in Figure 3.3 and 32

compute units at PEs). Table 3.5 lists the resource utilization of Fafnir implementation on

FPGA. To embed Fafnir in a standard DIMM-based memory system including four chan-

nels, each with four DIMMs, including two ranks, we need four DIMM/rank nodes and

one channel node. The implementation of such a system utilizes up to 5%, 0.15%, 1%,

and 13% of LUTs, LUTRAMs, FFs, and BRAM blocks of the target FPGA. Figure 3.13a

shows the breakdown of dynamic power consumption of FPGA @200MHz, in total 0.23W
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and 0.18W for DIMM/rank and channel nodes. For our ASIC design, Figure 3.13b shows

the power distribution of a PE. As shown, power consumption has a uniform distribution,

which prevents the creation of a hot spot. As well, the breakdown of the power consumption

of our ASIC design is listed in Table 3.6. Our proposed chips add only 23.82mW per four

DIMMs (i.e., 5.9mW per DIMM) and in total, 111.64mW to a four-channel memory sys-

tem, which is negligible compared to the 13W power consumed by each DDR4 DIMMs,

calculated based on a Micron power calculator [35, 118]. As another comparison point, a

processing unit RecNMP [36] adds 184.2mW to one DIMM (at 40nm @250MHz).

Table 3.5: FPGA resource utilization for Fafnir.

Resources DIMM/Rank Node Channel Node
units utilization(%) units utilization.(%)

LUT 11800 1.00 7214 0.61
LUTRAM 192 0.03 96 0.02

FF 4646 0.2 3295 0.14
BRAM 68 3.15 26 1.2
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Figure 3.13: (a) Dynamic power consumption breakdown of Fafnir on FPGA. (b) Power
distribution of a PE in our ASIC design at 7 nm.

Table 3.6 lists the area of PE and two types of nodes in Fafnir. A PE is 0.077mm2 (in-

cluding the multiplication units for leaf PE to support SpMV) and the area of DIMM/rank

and channel nodes is 0.282mm2 (which is smaller than the 0.077×7), and 0.121mm2,

respectively. Therefore, a benefit of embedding PEs into one chip (as we do) rather than

distributing them across DIMMs is a more efficient area. Based on these numbers, we add
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a total area overhead of 1.2mm2 to a memory system of 32 ranks. As a comparison point,

the area of prior work, a RecNMP [36] processing unit, is estimated as 0.54mm2 at 40nm

per one DIMM (8.64mm2 to entire 16 DIMMs).

Table 3.6: Area and power consumption breakdown @500MHz to switching (Sw.), inter-
connections (Int.), and leakage (Lkg.) for ASIC design of Fafnir @7 nm.

PE DIMM/Rank Channel

Power(mW)
Sw. 2.1 3.6 2.7
Int. 8.7 20.1 13.61
Lkg. 0.02 0.12 0.06

Area(mm2) 0.077 0.282 0.121

Given that the energy consumption of DRAM dominates that of computation, the energy-

savings of memory is essential. Fafnir promises memory energy savings by eliminating ex-

tra memory accesses without using any caching mechanism. More specifically, Fafnir saves

34%, 43%, and 58% memory accesses for batch sizes 8, 16, and 32, respectively. Fig-

ure 3.14 illustrates the number of memory accesses after eliminating redundant accesses

and shows that the number of memory accesses per each input to the leaf PEs is always

lower than the batch size (8, 16, and 32 in Figure 3.14a, Figure 3.14b, and Figure 3.14c).
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3.6 Summary

In this chapter, we saw that memory-bound sparse gathering, caused by irregular random

memory accesses, has become a challenge in several on-demand applications such as em-

bedding lookup in recommendation systems. To address the challenge of data movement,

prior work has proposed NDP solutions. However, we saw that prior work, either minimize

data movement effectively at the cost of limited memory parallelism or improve memory

parallelism but cannot successfully reduce data movement. A reason for that is relying on

spatial locality, which is an unrealistic assuption to utilize NDP. More importantly, neither

approach proposes a solution for sparse gathering; rather they just offload operations to

NDP. This chapter introduced Fafnir, an effective solution for sparse gathering, an efficient

near-memory intelligent reduction tree, the leaves of which are all the ranks in a memory

system, and the nodes gradually apply reduction operations while data is gathered from any

rank. Since Fafnir uses an overall tree, it performs the entire operations at NDP and fully

benefits from parallel memory accesses in parallel processing at NDP. Further, this chap-

ter showed that Fafnir offers other advantages such as using fewer connections because

of the tree topology, eliminating redundant memory accesses without using any caching

mechanisms, and being applicable to other domains of sparse problems such as scientific

computing and graph analytics. Our evaluation results based on an XCVU9P Xilinx FPGA

and in 7nm ASAP ASIC showed that Fafnir looks up the embedding tables up to 21.3×

more quickly than the state-of-the-art NDP proposal. Furthermore, the generic architecture

of Fafnir allows running classic sparse problems using the same 1.2mm2 hardware up to

4.6× more quickly than the state of the art.
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CHAPTER 4

MATHEMATICAL TRANSFORMATION TO REDUCE DEPENDENCIES

Even if by using Fafnir we are able to transfer sparse data quickly and efficiently, we still

need to answer another question: what if computation creates a bottleneck? This chapter

answers this question by focusing on scientific computing and solving PDEs, another cat-

egory of sparse problems, in which computations creates a bottleneck. Our key insight to

efficiently accelerate the iterative solvers of PDEs is to reduce the negative impact of data

dependencies on performance by hardware-software co-design, even though we cannot re-

move the patterns of data dependencies that naturally exist in a program. In our example

case, for instance, to allow the unrolling and blocking to be effective, steps 2, 3, and 4

must be executed quickly, preferably in one step as shown in Figure 4.1. We propose Al-

rescha∗ [18], a hardware-software co-design that divides a SymGS into a large portion of

general matrix-vector multiplications (GEMVs) that can be executed in parallel or con-

currently and a small data-dependent SymGS. Since the SymGS part is now small, Al-

rescha [18] can execute it quickly in hardware. To be effective in fast execution of SymGS,

Alrescha accelerates (i) the mechanism of immediately using the outcome of operation by

the next operations in the SymGS (xi i, ¶); and (ii) the mechanism of using the outcomes

of the GEMV in different operations of SymGS (x′i, ·).

4.1 Key Mechanisms of Alrescha

After dividing a large SymGS into GEMVs and a small SymGS, the proposed hardware

mechanisms of Alrescha help to execute them quickly. To explain the mechanisms, we use

a simple example of a SymGS with matrix A operands shown in Figure 4.2a. We focus on

processing three rows of A (i = 4,5,6) to calculate corresponding final elements of x

∗A binary star, the two stars of which orbit one another.
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Figure 4.1: Key insight of Alrescha: We divide a large SymGS into a majority of paral-
lelizable GEMV operations (green) and a minority of small data-dependent SymGS (pink).
We first run the GEMV and then switch to SymGS. Dependencies still exist in SymGS part
but as long as it is small, we can run them in one step in hardware rather than three steps
(¶). Forwarding the outcomes of GEMV to the SyMGS must be fast as well (·).

(i.e., x4, x5, and x6). The green parts of matrix A are the operands to GEMVs, while the

pink part is the operand of the small SymGS.

Parallel & concurrent GEMVs: First, Alrescha executes all GEMV operations that

result in the partial outputs (i.e., x′4, x
′
5 and x′6). Figure 4.2b, Figure 4.2c, and Figure 4.2d

show last three steps of the GEMVs that contribute in creating x′6, x
′
5 and x′4, respectively.

Such an order of operations that first performs all the GEMVs corresponding to rows 4

to 6 before performing the SymGS corresponding to the same rows, does not impact the

functionality and the correctness of the operations as long as the partial results are correctly

aggregated with corresponding values in the next steps, as explained in the following.

Fast switch from GEMVs to SymGS: Alrescha facilitates the mechanism of aggregat-

ing the partial results generated by GEMVs with the partial results of SymGS by using a

last-in-first-out (LIFO) – alternatively, a first-in-first-out (FIFO) buffer can also be used if

compatible orders also reflected in reading the rows of the matrix. As Figure 4.2b, Fig-

ure 4.2c, and Figure 4.2d show, during GEMV phase, we push the partial results into the

LIFO, and POP them out during SymGS, as illustrated in Figure 4.2e, Figure 4.2f, and

Figure 4.2g. This mechanism, which prevents extra accesses to an on-chip cache (with

sophisticated addressing requirements) or the main memory, provides a smooth switching
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Figure 4.2: Key mechanisms of Alrescha: (a) Matrix A the operand of the original large
SymGS, (b, c, d) Executing GEMV and the mechanism for quickly forwarding the outcome
of GEMV to SymGS using a LIFO or FIFO; and (e, f, g) Executing the small SymGS
and implementing the scheme of data dependencies through the interconnections between
inputs of the tree and the LIFO to quickly execute the small SymGS.

between GEMVs and SymGS operations.

Fast execution of data-dependent SymGS: Once all the GEMVs corresponding to rows

4 to 6 are done, Alrescha switches to SymGS (the new step 2 in Figure 4.1). The nature

of SymGS in step 2 is the same as the GEMVs in step 1, whereas the individual inputs

are not available altogether. In fact, step 2 is generating its own inputs. Because of the

similarity between the GEMV and SymGS, SymGS can use the same core mechanism of

multiplication followed by the summation-based reduction tree as shown in Figure 4.2e,
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Figure 4.2f, and Figure 4.2g. Besides the core mechanism, Alrescha implemented the

dependencies using some interconnections between the inputs of the tree and its output.

Such interconnection immediately forwards xi to the inputs and shifts the old inputs to the

right. this mechanism simply accelerates the three dependent operations in old steps 2, 3,

and 4. Note that the smallness of SymGS block is important here since otherwise, the depth

of the tree prevents the fast execution.

4.2 Compression Format for Sparse PDEs

As explained earlier, the matrix A in a linear system is often sparse. Therefore, a com-

pression format must be used to efficiently save the matrix A. On the other hand, we saw

that the hardware mechanisms demand a unique order of data in matrix A. This section

discusses the compression formats suitable for the target applications and explains how we

slightly modify an appropriate compression format to sustain the desired order of data, dic-

tated by our proposed mechanism. According to the distribution of non-zeros in a sparse

matrix, various compression formats may suit them. For instance, the compressed sparse

row (CSR), which stores a vector of column indices and a vector of row offsets, locates

all the non-zeros independently is the right choice when the non-zeros do not exhibit any

spatial localities. On the other hand, when all the non-zeros are located in diagonals, the di-

agonal format (DIA) [110], which stores the non-zeros in the diagonals sequentially, could

be the best option. An extension to the DIA format, Ellpack-Itpack (ELL) [107] is more

flexible when the matrix has a combination of non-diagonal and diagonal elements. For

instance, ELL is used for implementing SymGS in GPUs. However, such a format does

not provide flexibility for parallelizing rows as it does not sustain locality across rows.

Since the choice of compression format should be compatible with the range of sparse

applications, blocked CSR (BCSR) [87], an extension of CSR, which assigns the column

indices and row offsets to blocks of non-zero values, has been proposed as a more generic

format. Although BCSR is an appropriate format for scientific applications and graph
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analytics in terms of storage overhead, the strategy of BCSR for assigning indices and

pointers, and the order of values, is not the most appropriate match for smoothly streaming

data in Alrescha. In other words, the main requirement for fast computation is the order

of operations, which in turn, dictates the data structures to be streamed in the same order.

Thus, we adapt BCSR and propose a new compression format with the same meta-data

overhead but compatible with Alrescha.

Figure 4.3 illustrates our proposed compression format for mapping an example sparse

matrix to the physical memory addresses of the accelerator. In this compression mecha-

nism, all the non-diagonal non-zero blocks in a row of blocks are stored sub sequentially,

followed by a diagonal block. The non-zero values belonging to the upper triangle of the

non-diagonal blocks are stored in the opposite order of their original locations in the ma-

trix (see the order of A, B, and C in Figure 4.3). Accordingly, the difference between the

column indices of BSCR and input indices (i.e., Inxin) of our proposed format is shown

in Figure 4.3. For SymGS, the diagonal of A is excluded and stored separately in a local

cache. Therefore, we consider non-square blocks on the diagonal (e.g., 3 × 4 instead of

3×3) so that the mapping of the non-diagonal element of that block to the physical memory

is adjusted. The indices of the input and output (i.e., Inxin and Inxout) are not streamed

from memory during run time. Instead, they are stored in a configuration table during a

one-time programming phase and are used for reconfiguration purposes. As a result, dur-

ing the iterative execution of the algorithms, the whole available memory bandwidth is

utilized only for streaming payload.

4.3 Broad Applications

To deal with the high design and fabrication costs cost of customized hardware, we argue

that custom hardware solutions must be generic and applicable to a reasonable range of

applications. This section elaborates on the applicability of Alrescha for SpMV and graph

analytics. In graph analytics, a common approach to represent graphs is to use an adjacency
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 BCSR:
col_index: {               }
row_pointer: {1,3,4,6}

 ALRESCHA:
input_index: {               }
output_index: {1,4,7}
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Figure 4.3: Compression format of Alrescha: the col index of BCSR and input index (i.e.,
Inxin) of Alrescha are color-coded to show their corresponding blocks in the matrix. Al-
rescha uses the index of the last column for the input index of diagonal blocks.

matrix, each element of which represents an edge in the graph. Graph algorithms traverse

vertices and edges to compute a set of properties based on the connectivity relationships.

Traversing is implemented as a form of a dense-vector sparse-matrix operation. Such im-

plementations are suited to the vertex-centric programming model [119], which is preferred

to the edge-centric model. The vertex-centric model divides a graph algorithm into three

phases. In the first phase, all the edges from a vertex (i.e., a row of the adjacency matrix)

are processed. This process is a vector-vector operation between the row of the matrix and

a property vector, varied based on the algorithm. In the second phase, the output vector

from the first phase is reduced by a reduction operation (e.g., sum). In the final phase, the

result is assigned to its destination. Since in many applications not all the nodes in a graph

are connected, the equivalent adjacency matrix is sparse, too.

The widely used graph algorithms are SpMV, BFS, PR, and SSSP. In SSSP, for instance,

the vector containing is updated iteratively by multiplying a row of the matrix by the path-

length vector and then choosing the minimum of the result vector. After traversing all the

nodes, the final values of the vector indicate the shortest paths from a source node to all

the other nodes. PR iteratively updates the rank vector, initialized by equal values. At
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each iteration, the elements of the rank vector are divided by the elements of the out-degree

vector (i.e., the number of out-going edges for each vertex), chosen by a row of the matrix,

and the result vector is reduced to a single rank by adding the elements of the vector.

Common features: While the sparse kernels used in both scientific and graph appli-

cations are similar in having sparse matrix operands, some kernels (e.g., SpMV) exhibit

more concurrency, whereas others (e.g., SymGS) have several data dependencies in their

computations. Regardless of this difference, a common property of kernels is that the reuse

distance of accesses to the sparse matrix is high, while the input and output vectors of these

kernels are being reused frequently. Moreover, the accesses to at least one of the vectors are

often irregular. The other and more important, common feature of these kernels is that they

follow the three phases of operations iteratively as listed in Table 4.1. The sparse kernels

calculate an element of their result by accessing a row/column of the sparse large matrix

only once and then reuse one or two vector/s for the calculation of all output vector ele-

ments. We benefit from the common features to generalize our proposed hardware without

significant overhead. Alrescha converts the sparse kernels into the dense data paths, listed

in the third column of Table 4.1 (details in the following).

Table 4.1: The properties of sparse kernels and corresponding dense data paths, imple-
mented in Alrescha. Depending on the type of kernel, the operation in phase 1 can use the
three vector operands at the same time or use just two of them.

Sparse Kernel Sparse Dense Data Paths Phase 1 (vector operation) Phase 2 Phase 3
Application vector operand1 vector operand2 vector operand3 operation (reduce) (assign)

SymGS PDE solving D-SymGS/GEMV
a row of the vector from the vector at

multiplication sum
apply operation with AT

coefficient matrix iteration (i-1) iteration (i) and bj and update vector

SpMV PDE solving
GEMV

a row of the vector from
N/A multiplication sum

sum and
and graph coefficient matrix iteration (i-1) update the vector

Page Rank Graph D-PR
a column of the out-degree the rank vector

AND/division sum rank vector update
adjacency matrix vector of vertices at iteration (i-1)

BFS Graph D-BFS
a column of

the frontier vector N/A sum min
compare and update

adjacency matrix distance vector

SSSP Graph D-SSSP
a column of

the frontier vector N/A sum min
compare and update

adjacency matrix distance vector
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4.4 Putting Them Together for Sparse PDEs

Alrescha is a memory-mapped accelerator, the memory of which is accessible by a host for

programming. Figure 4.4 shows an overview of Alrescha, the host, and the connections

for programming and transferring data. The programming model of Alrescha is similar

to offloading computations from a CPU to a GPU. To program the accelerator, the host

launches the sparse kernels of sparse algorithms (e.g., PCG) to the accelerator. To do so,

the host first converts the sparse kernels into a sequence of dense data paths and generates

a binary file. Then, the host writes the binary file to a configuration table of the accelerator

through the program interface.

Program including 
SymGS( ), SpMV( ), 
BFS( ), SSSP( ), and 
PR( ) sparse kernels

Binary file including a 
sequence of  dense data paths 
(i.e., GEMV, D-SymGS, D-BFS, 

D-SSSP, and D-PR) 

Matrix operand in Alrescha 
storage format

Memory of 
ALRESCHA

Cofiguration table of 
ALRESCHA

program
interface

data
interface

AlreschaHost

Figure 4.4: The overview of Alrescha and host.

During the execution of an algorithm, repetitive switching between the dense data paths

is required. The key feature of Alrescha to enable fast switching among those dense data

paths is the real-time partial reconfigurability. The details of the reconfigurable microar-

chitecture of Alrescha and the mechanism of real-time reconfiguration are explained in

Figure 4.5. Besides switching among the data paths during runtime, Alrescha also reorders

the dense data paths to reduce the number of switches. Such a reordering necessitates the

new compression format, introduced in section 4.2. Therefore, the other task of the host is

to reformat the sparse matrix operands into the compression format consisting of blocks,

each of which corresponds to a dense data path. The formatted data is written into the

physical memory space of the accelerator through the data interface (Figure 4.4).

Since the target algorithms are iterative, the preprocessing (i.e., conversion and refor-

matting) is a one-time overhead. Besides, the complexity and effort of preprocessing de-
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pend on the previous format, data source, and host platform. For instance, the conversion

complexity from frequently-used storage formats (e.g., CSR and BCSR) is linear in time

and requires constant space. Since the preprocessing complexity is linear, it can be done

while data streams from the memory. Moreover, if data is generated in the system (e.g.,

sensors), it is initially be formatted in the Alrescha format and reformatting is not required.

Algorithm 1 Convert Algorithm
1: function CONVERT(An×n, ω, KernelType)

An×n: sparse matrix, ω : block width
DP : Data path type
l2r: left to right, r2l: right to left

2: Inxin := 0, Inxout := 0
3: Blocks[] = Split(A,ω) // partitions A to ω × ω blocks
4: m = n/ω
5: for (i = 1, i < m, i++) do
6: for (j = 1, i < m, j ++) do
7: if (nnz(Blocks[i, j])> 0) then
8: if KernelType ! = SymGS then
9: DP = KernelType.DataPath
10: Inxin = i.ω, Inxout = j.ω
11: Order = l2r
12: Op = port1 // the operand vector
13: else
14: if (i! = j) then
15: DP = GEMV
16: Inxin = j.ω, Inxout = −1
17: Order = l2r
18: if (i > j) then
19: Op = port2 //which is xt−1

20: else
21: Op = port1 //which is xt

22: end if
23: else
24: DP = D-SymGS
25: Inxin = j.ω, Inxout = (i+ 1).ω
26: Order = r2l
27: Op = port2 //which is xt−1

28: end if
29: end if
30: Add2Table(DP,Op, Inxin, Order, Inxout)
31: end if
32: end for
33: end for
34: end function

Algorithm 1 shows the procedure for converting a sparse matrix to dense data paths.

The general procedure of the conversion algorithm is as follows: (i) As lines 8 to 12 show,

the sparse kernels with no (or straightforward) data dependencies including SpMV, BFS,

SSSP, and PR are broken down into a sequence of general matrix-vector multiplication

(GEMV), dense BFS (D-BFS), dense SSSP (D-SSSPs), and dense PR (D-PR), respec-

tively. These dense data paths have the same functionality as their corresponding sparse

kernels do; however, they work on non-overlapping locally-dense blocks of the sparse ma-
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trix operand and overlapping sub-vectors of the dense vector operand of the original sparse

kernel. (ii) As lines 13 to 26 show, the sparse kernels with data dependencies (e.g., SymGS

kernel) are broken down into a majority of parallelizable GEMV (lines 14 to 21) and a

minority of sequential dense SymGS (D-SymGS) data paths (lines 23 to 26).

PCG:

SymGSSpMV

dot
product

GEMV
D-SymGS
D-SymGS

GEMV
D-SymGS

7
4
7
3
9

-
1
4
-
7

left to right
right to left
right to left
left to right
right to left

Dense Data 
Path Operand In

inx Access order Out
inx

xt
xt�1

1
2
3
4
5
6
7
8
9

96 7 82 3 4 51

xt�1

xt�1

xt�1

Figure 4.5: The order of operations: An example of the configuration table for a SymGS
kernel, in which n = 9, ω = 3.

The conversion for SymGS is to assign GEMVs to non-diagonal non-zero blocks (line

15) and D-SymGS to diagonal non-zero blocks of the sparse matrix (line 23). For acceler-

ating SymGS, the key insight of Alrescha is to separate GEMV from D-SymGS data paths

to prevent the performance from being limited by the sequential nature of the SymGS ker-

nel. To this end, Alrescha reduces switching between GEMV and D-SymGS by reordering

them so that Alrescha first executes all the GEMVs in a row successively and then switches

to a D-SymGS. The distributive property of inner products in

xtj =
1

ATjj
− (bj −

j−1∑
i=1

ATij × xti −
n∑

i=j+1

ATij × xt−1i ). (4.1)

guarantees the correctness of such reordering. As an example of the outcome of Algo-

rithm 1, Figure 4.5 shows the state machine of PCG, which comprises three sparse kernels,

two of which are the focus of this paper and are launched to the accelerator by the host.

The configuration table for a SymGS example is shown in Figure Figure 4.5. Based on

Equation Equation 4.1 and as lines 19 and 21 of Algorithm 1 indicate, all the non-zero
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blocks in the upper triangle of A have to be multiplied by xt, and all of those in the lower

triangle have to be multiplied by xt−1.

4.5 Reconfigurable Microarchitecture
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Figure 4.6: The microarchitecture of Alrescha: (a) the FCU for implementing common
computations, and the RCU for providing specific configuration for distinct dense data
paths. Example configurations for supporting: (b) D-SymGS, (c) GEMV, and (d) D-PR.

Here, we introduce the microarchitecture of Alrescha. The key feature of the proposed

microarchitecture is partial reconfigurability. The benefit of this feature is two-fold. First,

for SymGS, we have seen that the building blocks of GEMV and SymGS require a com-

mon core hardware mechanism. Besides, the GEMVs create a big portion of operations.

Therefore, as long as Alrescha is performing subsequential GEMVs, it does not have to se-

lect what to do neither by decoding an instruction nor by selecting a path in the hardware.

The second benefit of partial reconfiguration goes to the other applications (e.g., graph

kernels) that also share a core hardware mechanism. As a result, Alrescha can simply per-

form other applications (or one application including distinct kernels) without needing to

change the entire hardware. Reconfiguring only a fraction of the entire data path reduces
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the configuration time. To achieve the goal of partial reconfiguration, Alrescha consists of

a separate fixed computation unit (FCU) and a reconfigurable computation unit (RCU) and

configuring only the former for switching between data paths (Figure 4.6).

4.6 Evaluation

4.6.1 Experimental Setup

This section explores the performance of Alrescha by comparing it with the CPU, GPU, and

state-of-the-art sparse accelerators. We evaluate Alrescha for both scientific applications

and graph analytics. We pick real-world matrices with applications in scientific and graph

problems from the SuiteSparse Matrix Collection [117]. We run PCG, which includes the

SymGS and SpMV kernels, on the matrices with a scientific application, and run graph

algorithms (i.e., BFS, SSSP, and PR) on the graph matrices. We also run SpMV on both

categories of datasets.

We compare Alrescha with the CPU and GPU platforms. The configurations of the

baseline platforms are listed in Table 4.2. For the CPU and GPU, we exclude disk access

time. For fair comparisons, we include optimizations, such as row reordering and suitable

storage formats (e.g. ELL) proposed for the CPU and GPU implementations. The PCG

algorithm and the graph algorithms running on GPU are respectively based on the cuS-

PARSE and Gunrock [120] libraries. The graph algorithms running on the CPU are based

on the GridGraph [121] and/or CuSha [122] platforms (whichever achieves better perfor-

mance). Besides the comparison with the CPU and GPU, this section compares Alrescha

with the state-of-the-art hardware accelerators, including OuterSPACE [69], an accelerator

for SpMV, GraphR [72], a ReRAM-based graph accelerator, and a Memristive accelerator

for scientific problems [73]. To reproduce their latency and power consumption numbers,

we modeled the behavior of the preceding accelerators based on the information provided in

the published papers (e.g., the latency of read and write operations for GraphR and Mem-

ristive accelerator). We validate our numbers based on their reported numbers for their

64



configurations to make sure our reproduced numbers are never worse than their reported

numbers. Seeking a fair comparison, we assign all the accelerators the same computation

and memory-bandwidth – this assumption does not harm the performance of our peers.

Table 4.2: Baseline configurations.

GPU baseline

Graphics card NVIDIA Tesla K40c, 2880 CUDA cores

Architecture Kepler

Clock frequency 745MHz

Memory 12 GB GDDR5, 288 GB/s

Libraries Gunrock [120] and CUSPARSE

Optimizations row reordering (coloring) [77], ELL format

CPU baseline

Processor Intel Xeon E5-2630 v3 8-core

Clock frequency 2.4 GHz

Cache 64 KB L1, 256 KB L2, 20 MB L3

Memory 128 GB DDR4, 59 GB/s

Platforms CuSha [122], GridGraph [121]

We convert the raw matrices using Algorithm 1 implemented in Matlab. To do that, we

examine block sizes of 8, 16, and 32 for the range of data sets and choose the block size

of eight because, unlike the other two, 8 provides a balance between the opportunity for

parallelism and the number of non-zero values. We model the hardware of Alrescha using

a cycle-level simulator with the configurations listed in Table 4.3. The clock frequency is

chosen to enable the compute logic to follow the speed of streaming from memory (i.e.,

each 64-bit operands of ALU are delivered from memory in 0.4 ns, through the 32-bit

5 Gbps links.) To measure energy consumption, we model all the components of the mi-

croarchitecture using a TSMC 28 nm standard cell and the SRAM library at 200 MHz. The

reported numbers include programming the accelerator.

While FPGAs have had the partial reconfiguration feature for over a decade, fewer ap-
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Table 4.3: Alrescha Configuration.

Floating point double precision (64 bits)

Clock frequency 2.5 GHz

Cache 1KB, 64-Byte lines, 4-cycle access latency

RE latency 3 Cycles (sum: 3, min: 1)

ALU latency 3 Cycles

Memory 12 GB GDDR5, 288 GB/s

plications have been proposed to use it. Alrescha proposes a new application for partial

reconfiguration. Our goal is to leverage partial reconfigurability to evaluate the switching

between the different algorithms, without fully reprogramming the FPGA hence we utilize

static partial reconfiguration rather than a dynamic one – note that dynamic reconfiguration

can also be implemented for SymGS. We implement SymGS and graph algorithms, the

common function of which is a matrix-vector multiplication. We implement Alrescha using

Xilinx Vivado HLS. We use relevant #pragrma as hints to describe our desired microarchi-

tectures in C++. We target Xilinx AC701 evaluation kit, including a partially reconfigurable

Artix-7 FPGA, XC7A200T. We present the post-implementation resource utilization and

power consumption, reported by Vivado. Inputs and outputs of Alrescha are transferred

through the AXI stream interface. The clock frequency is set to 200 MHz.

4.6.2 Execution Time

Scientific Problems: The primary axis of Figure 4.7 (i.e., the bars) illustrates the speedup of

running PCG on Alrescha over the GPU implementation optimized by row reordering [77]

for extracting a high level of parallelism; the secondary axis of Figure 4.7 shows the band-

width utilization. The figure also captures the speedup of the Memoristive-based hardware

accelerator [73]. On average, Alrescha provides a 15.6× speedup compared to the opti-

mized implementation on the GPU. The speedup of Alrescha is approximately twice that
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of the most recent accelerator for solving PDEs. To investigate the reasons behind this

observation, we plot memory bandwidth utilization in Figure 4.7. As the figure shows,

the performance of Alrescha and the other hardware accelerator for all scientific datasets

is directly related to memory bandwidth utilization – mainly because of the sparsity na-

ture. Moreover, none of them fully utilize the available memory bandwidth because both

approaches use blocked storage formats, in which the percentage of non-zero values in

a block rarely reaches a hundred percent. Nevertheless, we see that Alrescha better uti-

lizes the bandwidth because it resolves the dependencies in computations, which otherwise

limits bandwidth utilization.
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Figure 4.7: Speedup: PCG algorithm on scientific datasets, normalized to GPU (bar charts),
and bandwidth utilization (the lines) compared to the state-of-the-art accelerator for scien-
tific problems [73].

To clarify the impact of resolving dependencies on overall performance, Figure 4.8

presents the percentage of data-dependent computations in the GPU implementation, ver-

sus that in Alrescha, which has an average of 23.1% data-dependent operations. As the

figure suggests, even in the GPU implementation that extracts the independent parallel

operations using row reordering and graph coloring, on average 60.9% of operations are

still data-dependent. This is more than 60% for highly-diagonal matrices and less than

60% for matrices with a greater opportunity for in-row parallelism. Such a trend identifies
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the distribution of locally-dense blocks as another rationale for determining the speedups.

More specifically, when the distribution of non-zero values in rows of a matrix offers the

opportunity for parallelism, the speedup over the GPU is smaller than when the matrix is

diagonal. Therefore, to conclude, for multi-kernel sparse algorithms with data-dependent

computations, Alrescha improves performance by (i) extracting parallelizable data paths,

(ii) reordering them and the elements in the blocks to maximize the reuse of data, and (iii)

implementing them in lightweight reconfigurable hardware, which results in fast switching

not only between the distinct data paths of a single kernel but also among them.
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Graph Analytics & SpMV: This section explores the performance of the algorithms

consisting of a single type of kernel with fewer data dependency patterns in their compu-

tations. Such a study claims that Alrescha is not just optimized for a specific domain and

is applicable to accelerating a wide range of sparse applications. First, we analyze the per-

formance of graph applications. Figure 4.9 illustrates the speedup of running BFS, SSSP,

and PR on Alrescha, a recent hardware accelerator for graph applications (i.e., based on

GraphR [72]), and GPU, all normalized to the CPU. As the figure shows, Alrescha offers

average speedups of 15.7×, 7.7×, and 27.6×, for BFS, SSSP, and PR algorithms, respec-

tively. We achieve this speedup by avoiding the transfer of meta-data, reordering the blocks
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for increasing data reuse and improving the locality. Further, to run graph applications, Al-

rescha performs only subsequential same-type dense data paths that eliminates the need to

neither decode instructions nor select a data path in the hardware.
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Figure 4.9: Speedup: graph algorithms on graph datasets over the CPU. GraphR [72] is the
state-of-the-art graph accelerator.

The primary axis of Figure 4.10 (i.e., the bars) illustrates the speedup of SpMV, a com-

mon algorithm of various sparse applications on Alrescha and OuterSPACE [69] (i.e., the

recent hardware accelerator for the SpMV), normalized to the GPU baseline. As the fig-

ure shows, Alrescha offers average speedups of 6.9× and 13.6× for scientific and graph

datasets. When running SpMV, all the data paths are GEMV; therefore, no transmission

between data paths is required. However, optimizations of Alrescha help achieve greater

performance. The key optimization here is accesses to the cache to obtain frequent ac-

cesses to the vector operand of SpMV. To show this, the secondary axis of Figure 4.10

(i.e., the lines) plots the percentage of the whole execution time for accesses to the local

cache. Alrescha utilizes locality in cache accesses (i.e., consuming the values in a cache

line in succeeding cycles), and increases the data reuse rate of not only the input sparse-

matrix operands but also the dense-vector operands and output vector. Although in the

outer-product approach, data read from the cache is broadcast to all the ALUs, to be reused
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as many times as required, before being written back to the cache, an element of the output

vector must be fetched several times. During such accesses to the cache, the spatial locality

of non-zeros is not captured. On contrary, the approach of Alrescha that applies GEMV to

locally dense blocks of the sparse matrix instead of working on individual non-zeros takes

advantage of spatial locality in the non-zero values of the sparse matrix. Besides, Alrescha

sums up the results of multiplications locally, without redundant accesses to the cache. To

do so, Alrescha splits the vector operand into chunks and at each time step, instead of fetch-

ing an individual element, it fetches a chunk of vector operand from the cache, and instead

of broadcasting, it sends them to individual ALUs. The elements of a chunk are multiplied

by all the non-zero blocks of the sparse matrix in a row. As a result, each element of the

output vector is fetched from cache only once per #cols/n (n: chunk size).
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Figure 4.10: Speedup: executing SpMV on scientific and graph datasets normalized to
GPU (bar charts), and the percentage of execution time devoted to cache accesses (the
lines). OuterSPACE [69] is the state-of-the-art SpMV accelerator.

4.6.3 Energy Consumption

To improve energy consumption, the techniques integrated into the hardware accelerators

have to be efficient. A source of energy consumption is accessing local SRAM-based

buffers or caches. That is, reducing the number of reads and writes from and to local

memories, by substituting them with computation is beneficial. Figure 4.11 illustrates the

energy consumption of Alrescha for running SpMV, normalized to that of the CPU and

GPU baselines. As Figure 4.11 shows, on average, the total energy consumption improves

by 74× compared to the CPU and 14× compared to the GPU platform. Note that the
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activity of computing units, defined by the density of the locally-dense block, impacts

energy but not performance. In summary, the main reasons for the low energy consumption

are the small reconfigurable hardware of Alrescha in combination with utilizing a storage

format with the right order of blocks and values matched with the order of computation to

avoiding the decoding the meta-data and reducing the number of accesses to the memory.
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Figure 4.11: Energy consumption of Alrescha normalized to CPU and GPU.

4.6.4 FPGA Resource Utilization and Power Consumption

Here, we evaluate the implementation of Alrescha on our target partially reconfigurable

FPGA (i.e., Artix-7 FPGA, XC7A200T) consisting of total 433K LUTs and 174K FFs),

the features of which align with one another. Table 4.4 compares the resource utilization

and dynamic power consumption of a static design with a partially-reconfigurable design

including FCU and RCU. As the table suggests, in the static design, each of the dense data

paths utilizes the resource as much as required. Therefore, D-PR, which includes division

operations, utilizes the most number of LUTs and FFs and the highest power consumption,

whereas D-BFS, which requires the simplest design, utilizes the minimum resources. On

the other hand, since in the partially reconfigurable design, the FCU must envision the ver-

ity of operations, the overall architecture utilizes more than enough resources for GEMV,

D-BFS, and D-SymGS. The RCU, however, is tailored to each design. Thus, D-SymGS,

with the most complex RCU utilized more resources than other data paths do. Although

in some case, the partially reconfigurable design utilized more resources, the overheads

are outweighed by its benefits, especially for multi-kernel applications such as the PCG

algorithm that requires switching between distinct kernels during the run time. As the table
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suggests, the partial reconfigurable implementation of the simple single-kernel workloads

(i.e., SpMV and BFS) has an overhead of 2.9× more LUT and 1.9× more FF as well

as 1.2× more dynamic power consumption compared to the static implementation. On

the contrary, for more complex single-kernel workloads such as PR and the multi-kernel

workloads such as PCG (including SymGS and GEMV), the partially reconfigurable imple-

mentation is more beneficial as it utilizes 1.2× fewer LUTs and FFs, and consumes 1.15×

less dynamic power consumption. Note that here we show only the core computation unit.

However, the fixed modules involve many other components of a complete architecture.

Table 4.4: Resource utilization and the total dynamic power consumption.

Static Design

GEMV D-PR D-BFS D-SymGS

LUT 2386 8632 2246 3467
FF 6489 10233 4439 7845

Power(W) 0.098 0.115 0.065 0.102

Partially Reconfigurable Design

FCU RCU
GEMV D-PR D-BFS D-SymGS

LUT 6594 271 271 123 645
FF 9771 380 380 320 1594

Power(W) 0.086 0.03 0.03 0.01 0.06

4.7 Summary

This chapter showed that sparse scientific computing that dominate a wide range of ap-

plications fail to effectively benefit from high memory bandwidth and concurrent compu-

tations in modern high-performance computer systems. Therefore, hardware accelerators

have been proposed to capture a high degree of parallelism in sparse problems. How-

ever, the unexplored challenge for scientific computing is the limited opportunity for paral-

lelism because of data dependencies. The key insight proposed in this chapter is to extract

parallelism by mathematically transforming the computations into equivalent forms. The
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transformation breaks down the sparse kernels into a majority of independent parts and a

minority of data-dependent ones and reorders these parts to gain performance. To imple-

ment the key insight, this chapter proposed Alrescha, a lightweight reconfigurable sparse-

computation accelerator. To efficiently run the data-dependent and parallel parts and to

enable fast switching between them, Alrescha made two contributions. First, it implements

a compute engine with a fixed compute unit for the parallel parts and a lightweight reconfig-

urable engine for the execution of the data-dependent parts. Second, Alrescha benefits from

a locally-dense storage format, with the right order of non-zero values to yield the order of

computations dictated by the transformation. The combination of the lightweight reconfig-

urable hardware and the storage format enables uninterrupted streaming from memory. Our

simulation results showed that compared to GPU, Alrescha achieves an average speedup of

15.6× for scientific sparse problems, and 8× for graph algorithms. Moreover, compared to

GPU, Alrescha consumes 14× less energy.
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CHAPTER 5

STRUCTURED PRUNING FOR SYSTOLIC ARRAYS

This chapter focuses on the inference of neural networks, the third category of sparse prob-

lems that are studied in this dissertation. Unlike the last two chapters that made changes

in hardware to make software optimizations to be effective and impactful, this chapter

proposed some modifications in software and the way we represent it to better utilize an ef-

ficient hardware. To resolve the challenge of computing underutilization of systolic arrays

for the inference of CNNs, we propose creating locally-dense DNNs for efficient infer-

ence on systolic arrays (Lodestar∗) [5]. Lodestar produces weight matrices such that the

non-zero values are clustered spatially into locally-dense regions, which are compactly

stored and efficiently streamed from memory. To efficiently run inference of DNNs us-

ing systolic arrays, we propose Eridanus† [19], a systolic-based compute engine with a

streaming interface. Eridanus efficiently handles indexing and uses the execution model of

Mahasim‡ [123] (machine-learning hardware acceleration using a software-defined intelli-

gent memory system).

5.1 Lodestar Pruning Algorithm

Lodestar is a pruning algorithm consisting of the following key insights: (i) To capture

the data reuse patterns in systolic arrays and enable data streaming, modifying the distri-

bution of non-zero values is more influential than minimizing the number of operations or

the memory footprint; and (ii) To achieve an appropriate distribution of non-zero values,

examining the correlation among the filters rather than the individual filters increases the

chances of creating a systolic-friendly model. Therefore, in contrast to other pruning algo-

∗a star that is used to guide the course of a ship, especially the Pole Star.
†a constellation in the southern hemisphere.
‡a binary star in the constellation of Auriga
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rithms, instead of the individual filters, Lodestar examines and prunes the flattened weight

matrix by extracting the potential non-zero blocks, the widths of which are matched the

width of the target systolic array. The blocks are created by hypothetically splitting the

weight matrix into F 2C/ω chunks (F 2C: the common axis of input and weight matrix, ω:

the width of the systolic array), and then, extracting the non-zero blocks in each chunk.

While the widths of the blocks must match the widths of the systolic arrays to guarantee

the correctness of multiplications, their length could be arbitrary. To reduce the complexity

of the algorithm, we choose a fixed length. Once the blocks are extracted, the adjacent ones

are concatenated and stored as a single block by assigning it a single index (i.e., the column

index of the first block) and a single length.

Algorithm 2 illustrates the Lodestar pruning algorithm, the input parameters of which

are the weight matrix W , threshold θ, the length of the window (l, a hyperparameter), and

the width of the systolic array (ω). The width of the window is fixed and is equal to ω.

The weight matrix is either the flattened version of the weight matrix in a convolution layer

or the 2D weight matrix itself in a fully-connected layer. During pruning, a window of

size ω × l slides over W . If the average value of the window is smaller than θ, the block

corresponding to that window is set to zero . During retraining, the threshold (θ) of the

average values for choosing/pruning the zero blocks is gradually increased with training

epochs. The windows are non-overlapping in x- and y-axes. The non-overlapping window

in x-axes is necessary to match with systolic-array width, and in y-axes for reducing the

complexity of the problem from a global to local optimization.

Algorithm 2 does not change the size of the common axis of the operands of GEMM

(i.e., F 2C), which leads to following benefits: (i) no need to change the dimensions of the

image, and (ii) both the pruned matrix (i.e., weights) and the dense matrix (i.e., inputs)

can be either streamed through the systolic array or be the stationary operand during the

multiplication (details in section 5.2). Thus, based on the size of the matrices at each layer,

we can dynamically swap the role of the two matrices to be streamed or stationary.
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Algorithm 2 Pruning
1: function PRUNE(Wh×w, θ, l, ω)

Wh×w: Weight matrix, θ: Threshold,
ω: Systolic array width l: Window length

2: ih := 0, iw := 0, avg := 0
3: while iw < w do
4: avg = BlockAvg([iw, ih], [iw + ω − 1, ih + l − 1])
5: if avg < θ then
6: W [iw : iw + ω − 1, ih : ih + l − 1] = 0
7: ih = ih + l
8: else
9: ih = ih + 1
10: end if
11: if ih > h− l then
12: ih = 0
13: iw = iw + ω
14: end if
15: end while
16: end function

5.2 Eridanus Systolic Microarchitecture

Eridanus uses a weight-stationary systolic array with one streaming and one stationary

input (i.e., R1s and R2s in Figure 5.1). The streaming input registers are connected in a

column and their contents shift one row down ¶, at each cycle. The stationary registers are

also connected to simplify the interconnection between the array and memory. The input

from memory is connected to the first row. The stationary data swing through registers until

they reaching the destination. The streaming registers and the stationary registers share

memory bandwidth to obtain their contents. The outputs of a row are summed through an

adder tree to contribute to creating an element of the output. The number of adder trees

defines the number of output elements generated at each cycle.
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Figure 5.1: An overview of the systolic-based microarchitecture of Eridanus.

Since the width of the systolic array defines the degrees of concurrency, we want it to
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match the width of the 2D-weight matrix to maximize the fine-grained parallelism. How-

ever, to be flexible and scalable, we prefer to employ several narrow systolic arrays, instead

of one large array, so that based on the size of a weight matrix, we assign as many narrow

systolic arrays as required. On the other hand, the depth of the systolic array directly im-

pacts the data-reuse rate. Thus, a deeper systolic array is often preferred. However, pruning

causes variations in the length of the locally-dense blocks, which are going to stay in the

systolic array. Therefore, while choosing a large depth for the systolic array leads to under-

utilization of the systolic array, a very small depth prevents achieving peak throughput. To

optimize for the common case, we choose a depth of 64.

To maximize bandwidth utilization and avoid random memory accesses, we map locally-

dense weights and the inputs corresponding to sequential multiplications in the sequential

addresses. Therefore, for each layer, the stationary operand is streamed, followed by the

streaming operand. The type identifier, which indicates stationary and streaming data, is

used to direct data to the registers. The headers of blocks include the index, the length,

type of data, and an offset ·. When the width of the stationary operand matrix is larger

than the depth of the systolic array, we split a multiplication into sub-multiplications. The

offset is the index of the sub-multiplications and is used to generate the column-index of the

output elements. The memory interface reads from memory and directs data and type to

the systolic array, and sends the index, length, and offset of blocks to the index generator ¸.

In multiplyingWK×F 2C×IF 2C×WH , the column and row indices of the output elements

are defined by the column index of I and the row index of W , respectively. Therefore, the

position of an adder tree simply indicates the column index of the output elements – the

offset is added to it if the matrix does not fit in the systolic array. This is implemented by

the increment units between the column indices ¹. The block index and length indicate the

row within the selected column of the output. As the row indices of the output elements

corresponding to a single block are sequential, they are reused by shifting them down º.

When F 2C > ω, more than one systolic array will contribute to calculating an ele-
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ment of the output. As a result, the partial results will have to be aggregated in the final

destination (i.e., based on the mapping of the next layer across the systolic arrays). The

mapping of the sub-multiplications to the systolic arrays is programmed in a look-up table

(LUT) ». Once the column and row indices are assigned to the outputs of the adder trees,

based on the LUT, they will be directed to other systolic arrays or the aggregation engine

of the current one. The aggregation engine ¼ sums the partial results, and if the current

partial result is the last portion of the output element, it applies the activation function to

the final result and sends it to the memory interface to be written in memory. If an element

of output, it is directed to the network interface. We use a multi-drop express channels

(MECS) topology, a bandwidth-efficient interconnection network. The elements with the

same destination, which also have a common row index, are packetized together. When a

packet is received, it is de-packetized and sent to the aggregation engine.

5.3 Evaluation

5.3.1 Experimental Setup

We use Tensorflow to apply Lodestar on VGG16, CifarNet, and LeNet, Cifar10. Our base-

lines are pruning the same models using state-of-the-art pruning algorithms [92, 124, 91,

89, 93, 90] and running them on a systolic-based engine (when required, additional buffer-

ing/caching mechanisms are implemented). We prune all the models to achieve equal accu-

racy and hence various sparsity. Seeking fair comparison, each baseline pruning method is

compiled based on its best format. The pruned models are used as the input to our in-house

cycle-level simulator that models the microarchitecture. We use High Bandwidth Memory

(HBM) as the memory connected to 8 × 64 systolic arrays. We estimate the power con-

sumption of the compute units by using Kitfox1.1 library at 16nm technology and McPAT

model. We assume the access energy per bit of 6 pJ/bit for HBM. We connect eight mod-

ules shown in a MECS topology, in which a packet consumes 0.52 nJ energy at routers and

links. The latency of each multiplier is three cycles @2GHz. We process batches of size
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16. By choosing a relatively small batch size, we neither increase the number of reloads at

mid-size layers nor destroy the compute utilization at fully-connected layers.

5.3.2 Accuracy

Figure 5.2a illustrates the top-1 accuracy of the CifarNet and VGG16 pruned by Eridanus,

normalized to the accuracy of the unpruned model, along with the average percentage of

zero blocks. For CifarNet (Figure 4a), pruning is applied between steps 20k and 100k. For

VGG16, since we use a pre-trained model, we start pruning from the beginning (i.e., step

1 to 10k). As Figure 5.2a shows, during pruning, the percentage of zero blocks increases.

However, since the distribution of zero blocks and/or their densities keep changing, the

accuracy oscillates. After pruning stops, training continues to maximize the accuracy by

adjusting the values of non-zero blocks. For LeNet, CifarNet, and VGG16, we prune 75%,

79.8%, and 42% of models and respectively achieve 99%, 93.6%, and 70% top-1 accu-

racy on the validation set. The top-1 accuracy of unpruned models is 99% for LeNet, 94%

for CifarNet, and 71.5% for VGG-16. Note that parameters such as threshold (θ in Algo-

rithm 2), the start and the end steps, the length of the sliding window, and the maximum

desirable sparsity impact the trade-off between accuracy and zero distribution.
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Figure 5.2: The results of implementing Lodestar on Eridanus: (a) The accuracy and
the percentage of zero blocks for CifarNet (pruned between step 20k, 100k) and VGG16
(pruned between steps 1, 10k). (b) Throughput and bandwidth utilization. (c) the power
efficiency of three DNN models pruned by various structured techniques.

5.3.3 Performance

Throughput & bandwidth utilization: The level of concurrency, the number of times we

need to load the stationary operands, the additional caching/buffering/decoding for direct-

ing data from memory into the systolic array, and memory bandwidth utilization impact

79



throughput. Bandwidth utilization depends on the number of indirect memory accesses

and the density of the models. As a result, the unpruned model is expected to have the

highest throughput and bandwidth utilization compared to structured models. Figure 5.2b

shows the throughput and bandwidth utilization of DNN inference on systolic arrays for the

models pruned with various granularities. The trend of the overall performance is similar

to that of throughput since the amount of computation remains similar.

As Figure 5.2b illustrates, the bandwidth utilization and throughput of Eridanus is very

similar to those of the unpruned models. The other approaches, however, are not as ef-

fective, because they are not jointly optimized for capturing the data-reuse patterns and

concurrency. For instance, kernel-wise captures less data-reuse patterns, while it enables a

high level of parallelism. On the other hand, compared to other baseline structured models,

shape-wise and channel-wise yield better performance on systolic arrays, because they can

capture more data-reuse patterns. However, they limit the level of concurrency. Although

the number of operations for Lodestar could be more than those in irregular sparse models,

their locality in Lodestar leads to lower latency. Thus, the combination of fast computation

and high bandwidth utilization makes Eridanus closer to the peak throughput.

Power efficiency: The power consumption of inference on the systolic array is defined

by the number of memory accesses as well as the number of operations. Comparing to other

pruning approaches, Eridanus creates a model that requires the lowest number of memory

accesses. However, the effect of pruning algorithms on the number of computations is the

opposite. Comparing to element-wise pruning, the structured pruning approaches may have

required a high number of operations. On the other hand, the systolic array executes spatial

operations more quickly than sparse operations. As a result, the ratio of memory-access

reduction to compute-density reduction is the key factor in defining the power efficiency.

Figure 4c illustrates the combined effect of the number of memory accesses and compu-

tation density, on power efficiency. As the figure shows, for Eridanus, the reduction in

memory accesses carries more weight and helps achieve higher power efficiency.
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5.4 Summary

In this chapter, we saw that systolic arrays [40] have seen a resurgence for implementing

the inference of CNNs, a practical example of which is in Google’s TPU [125]. We saw that

since systolic arrays eliminate the need for irregular intermediate accesses to the memory

hierarchy, they work particularly well for computing linear recurrences and dense linear

algebra computations. However, the challenge presented in this chapter was that inference

using CNNs is a sparse problem, which presents significant efficiency challenges such

as underutilization of memory bandwidth due to storing data in sparse formats, indirect

memory accesses and transferring of extra meta data.

CNN inference is sparse because, during training, several of weights are assigned close-

to-zero values. Thus, to reduce computation and the memory footprint, the close-to-zero

values are usually pruned. This chapter also showed that since pruning the individual val-

ues of a model results irregular models with consequences of resource underutilization and

high storage overhead, structured pruning techniques have been proposed, which prune the

weights at the granularity of a vector, kernel, filter, channel, or entire layer, all of which

are optimizations for CPUs and GPUs and help in reducing the number of operations,

memory footprint, and computation complexity. The main challenge is that the preceding

optimizations are insufficient to exploit the data reuse in systolic arrays, and the highly

concurrent, synchronous, and rhythmic flow of data from memory. In fact, the storage

adjacency of data resulting from algorithm-defined pruning (e.g., kernel, filter) is not nec-

essarily matched with data organizations necessary to directly stream to the interacting data

flows in the systolic array.

This chapter introduced Lodestar and Eridanus to create locally-dense CNNs for ef-

ficient inference on systolic arrays, to enable streaming of sparse data from memory to

exploit the distinctive data reuse patterns and fine-grained concurrency of systolic arrays.

By using these techniques, we produce a weight matrix such that the non-zero values are
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clustered spatially into locally-dense regions, which are compactly stored and efficiently

streamed. We examine the correlation among all the filters, which differs from pruning the

individual filters of a CNN. To sustain accuracy, we may keep more number of non-zeros

compared to common pruning algorithms. As we showed in this chapter, in achieving

higher performance and efficiency, the distribution of non-zeros is more influential than

their quantity, when optimized for streaming data.
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CHAPTER 6

FAST DECOMPRESSION

To see the challenges and opportunities for super sparse data such as those in scientific

computing and graph analytics, this chapter explores the challenges associated with com-

pression mechanisms that have been a common approach for sparse data. In other words,

when data is too sparse, we compress it to better utilize storage. But when it is time to

process, we need to do extra work to find out the original location of each nonzero to per-

form correct operation. Decompression is not necessarily fast and can potentially become

a performance bottleneck when streaming data from memory into the computation units.

To achieve an ideal streaming accelerator for sparse problems, we propose Ascella ∗,

the key insight of which is sustaining a balance between computing latency and data trans-

fer rate. To do so, on one hand, Ascella avoids streaming the unnecessary zero elements to

efficiently use the memory bandwidth; and, on the other hand, it provides fast decompres-

sion to keep following the speed of streaming. To enable the latter, Ascella avoids extra

accesses to the buffers, and maintain deterministic parallel accesses to them, which are the

two obstacles of using other well-known compressed storage formats (e.g., BCSR).

To avoid the overhead of extra accesses and enable deterministic parallel accesses to

the buffers, we suggest using list-of-lists (LIL), a popular storage format supported by the

SciPy library in Python. Figure 6.1 clarifies how using LIL reduces the number of cycles

to read compressed data to decompress the non-zero rows. As Figure 6.1 shows, for each

column of the original sparse matrix, LIL saves a list of row indices (i.e., indices) corre-

sponding to each non-zero value; as well as a list of all non-zero elements in that column

(i.e., values). The columns of values and indices (i.e., to blocks B0 to B7 in Figure 6.1) can

always be accessed in parallel. As a result, no extra read access is required for determining

∗a triple star system and the third brightest star in the constellation of Sagittarius.
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the number of next read accesses. Creating a non-zero row takes the latency of one read ac-

cess since they are parallel, plus the latency for creating the input of the dot product, which

is smaller than those for decompressing CSR or BCSR because of simpler logic. Memory

streaming time for Ascella is defined by the number of non-zero rows, the size of rows, and

transferring one additional row for indicating the end of non-zero rows.
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Figure 6.1: (a) Compressing a sparse matrix using LIL storage. (b) Time steps of reading
indices and values to decompress the non-zero rows.

6.1 Ascella Decompression Mechanism

The components of our architecture to stream the compressed partitions and process them

in an FPGA include (i) the global memory, (ii) an AXI streaming (AXIS) interface through

which the partitions and the vector operand of SpMV are transferred from the memory

to FPGA, and (iii) the high-level three-stage pipeline (Figure 6.2, ¶) implemented in the

FPGA that receives the partitions in the memory-read stage, processes them in the com-

pute stage (i.e., SpMV block in Figure 6.2), and streams the partial output vector back to

the memory in the memory-write stage. The input buffer contains a partition compressed

in a particular format (e.g., it contains values, offsets, and column indices for CSR). The

compute stage itself comprises a two-stage pipeline, including decompress and dot-product

stages. The block of SpMV iteratively creates dense non-zero rows in the first stage (Fig-

ure 6.2, ·). Then, the second stage (Figure 6.2, ¸) performs a dot-product between the

result of the first stage and the vector operand of SpMV. We implement the dot-product as

84



an array of multipliers connected to a balanced adder tree. Since the output of the SpMV

is a vector (not necessarily sparse), we do not include a recompression stage in hardware.

FPGA

Input
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Output
Buffer

ComputeMemory
Read

Memory
Write

FIFO

Decom
press

Dot-Product
Engine

Inner Pipeline

Compressed
Partitions

Partial
Output
Vector

High-Level Pipeline

SpM
V

1

2 3

AXISAXIS

BRAM

Figure 6.2: The architecture of our evaluation platform: Streaming the compressed par-
titions of a sparse matrix from the memory to FPGA through AXI stream interfaces and
processing them (i.e., SpMV) in a pipeline. The decompression component varies based on
sparse format.

To take advantage of stream accesses to memory and a parallel compute engine, the

key component of Ascella is a lightweight microarchitecture for creating dense rows (Fig-

ure 6.2, · details of which are shown in Figure 6.3). This microarchitecture implements

deterministic parallel accesses to the values and indices and significantly reduces the de-

compression latency by just applying a lightweight logical operation (i.e., AND) to gener-

ate addresses. The mechanism of Figure 6.3 is shown in Figure 6.4 by illustrating the steps

to decompress all non-zero rows of the example in Figure 6.1. At each step, we use read

indices to read the column indices ¶. The minimum of column indices defines column in-

dex · of the next non-zero row. Column index is used to create a binary mask. The values

corresponding to ones in the mask are selected to participate in creating a dense row ¸,

which is the input of dot-product. The mask is also used for updating the read indices ¹.

6.2 Evaluation

6.2.1 Experimental setup

We implement the microarchitecture of Ascella and the baselines using Xilinx R© Vivado R©

HLS. We use relevant #pragrma as hints to describe our desired microarchitectures in C++.
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Figure 6.3: The microarchitecture of Ascella
for decompression.
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Figure 6.4: The steps of decompression using
Ascella.

We synthesize the designs on ZYNQ XC7Z020 FPGA and report post-synthesis perfor-

mance numbers and resource utilization. In the following, we explain our tailored HLS

implementation of the decompression mechanisms for the seven target sparse formats.

CSR: As Listing 6.1 shows, since CSR uses three vectors (i.e., offsets, column indices,

and values) to represent a sparse matrix, for decompressing a non-zero row, we need to first

access the offsets (Listing 6.1, line 7), and then, based on numVal, we can read as many

column indices and values as required (Listing 6.1, line 10). As a result, decompression

from the CSR format is likely to be compute-bound because of the overhead of one extra

access to BRAM. Additionally, to retrieve the column indices and values, since accesses

to the BRAM blocks are sequential, we do not know in advance which elements of column

indices and values are going to be accessed. Thus, we cannot partition and allocate those

two vectors across the blocks of BRAM to guarantee parallel accesses. Because of the

sequential accesses in a non-zero row, the latency of decompressing a row depends on the

number of non-zero elements in that row. By assuming that we stream the offsets and

column indices using two streamlines in parallel, the one with more non-zero elements

(longer one) defines the latency of memory access. To reduce the negative impact of the

accesses to offsets on performance, we pipeline this progress to concurrently create non-

zero rows (if more than one).

1 function decompressCSR(A, readInx, oldInx)

2 // A in CSR: offsets[OFFSET_LENGTH]
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3 // colInx[COL_INX_LENGTH]

4 // values[VAL_LENGTH]

5 // readInx: current row index

6 // oldInx: last row index

7 numVal = offsets[readInx] - offsets[readInx-1]

8 for i=0 to numVal:

9 #pragma HLS pipeline

10 drow[colInx[oldInx+i]] = values[oldInx+i]

11 return drow

Listing 6.1: CSR-decompression HLS pseudo code

BCSR: As Listing 6.2 shows, the decompression of BCSR is similar to that of CSR,

whereas instead of individual non-zero elements, the non-zero blocks are processed. To

initiate the accesses to column indices and values, one extra access to the offsets is required

per each row of blocks (Listing 6.2, line 9). The advantage of BCSR over CSR is that we

can distribute the values and column indices over BRAM blocks and access their elements

in parallel, for which, as lines 1 and 2 in Listing 6.2 show, we completely partition the

values and colInx across their second dimension before calling the decompression

function. This allows us to unroll the for loop (line 12), the iterations of which access

different BRAM blocks in parallel. The downsides of BCSR, however, are (i) the overhead

of transferring zero elements in the non-zero blocks and (ii) processing all the rows in the

non-zero blocks whether they (the rows) are all zero or not. The latency of decompressing

the blocks in a row depends on the number of non-zero blocks in that row. On the other

hand, since the values has the longest length (compared to offsets and colInx),

transferring values defines the memory latency.

1 #pragma HLS array_partition variable=values dim=2

2 #pragma HLS array_partition variable=colInx dim=2

3 function decompressBCSR(A, readInx, oldInx)

4 // A in BCSR: offsets[OFFSET_LENGTH]

5 // colInx[COL_INX_LENGTH]
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6 // values[VAL_LENGTH][VAL_WIDTH]

7 // readInx: current row index

8 // oldInx: last row index

9 numBlocks = offsets[readInx] - offsets[readInx-1]

10 for i=0 to numBlocks:

11 for j=0 to VAL_WIDTH:

12 #pragma HLS unroll

13 drows[j / BLOCK_LENGTH][colInx[oldInx + i]

14 + j mod BLOCK_LENGTH] = values[oldInx + i][j]

15 return drows

Listing 6.2: BCSR-decompression HLS pseudo code

CSC: Listing 6.3 shows the pseudo-code of CSC decompression, in which the columns

are compressed. On the contrary, the hardware requires rows of the matrix for performing

SpMV. Because of this mismatch, the decompression mechanism must iteratively traverse

all the columns of the matrix to find the values corresponding to the current row (List-

ing 6.3, line 12). Although this mismatch makes the decompression inefficient, we still

include this extreme case in our evaluation to explore how much performance is hurt if the

format and the hardware are not aligned.

1 function decompressCSC(A, readInx)

2 // A in CSC: offsets[OFFSET_LENGTH]

3 // rowInx[ROW_INX_LENGTH]

4 // values[VAL_LENGTH]

5 // readInx: current row index

6 numVal = offsets[colInx] - offsets[Inx-1]

7 for i=0 to CSC_ROW_INX_LENGTH

8 && colInx < CSC_OFFSETS_LENGTH:

9 startInx = i

10 #pragma HLS pipeline

11 while i < startInx + numVal:

12 if rowInx[i] == read_inx:
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13 drow[colInx-1] = values[i]

14 break

15 i++

16 i = offsets[colInx++]

17 return drow

Listing 6.3: CSC-decompression HLS pseudo code

LIL: The LIL decompression (Listing 6.4) avoids extra accesses to BRAM and enables

deterministic parallel accesses to the BRAM blocks for decompressing the non-zero rows

of a sparse matrix. Since the columns of values and indices can always be accessed in

parallel, we partition both of them (Listing 6.4, lines 1 and 2) before calling decompression.

As a result, no extra read access is required to determine the number of next read accesses.

Thus, the latency of processing a matrix depends on the number of non-zero rows. In

other words, creating a non-zero row consists of the latency of one BRAM access (since

the accesses are parallel) plus the latency for creating the input of the dot product, which

is done by a simpler logic compared to those of CSR or BCSR. To recognize the end of

the non-zero rows, one additional BRAM access is required. Memory latency for LIL is

defined by the number of non-zero rows, the size of rows, and transferring one additional

row for indicating the end of non-zero rows.

1 #pragma HLS array_partition variable=values dim=2

2 #pragma HLS array_partition variable=Inx dim=2

3 function decompressLIL(A, readInx[], oldInx)

4 // A in LIL: values[HEIGTH][WIDTH]

5 // Inx[HEIGHT][WIDTH]

6 // readInx: current row index

7 // oldInx: last row index

8 minInx = inf

9 for i=0 to WIDTH:

10 #pragma HLS pipeline

11 if readInx[i]<HEIGTH && Inx[readInx[i]][i]<minInx:
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12 minInx = Inx[readInx[i]][i]

13 for i=0 to WIDTH:

14 #pragma HLS unroll

15 if Inx[readInx[i]][i] == minInx:

16 drow[i] = values[readInx[i]][i]

17 readInx[i]++

18 return drow

Listing 6.4: LIL-decompression HLS pseudo code

ELL: Similar to LIL, the representation of matrix A in ELL (Listing 6.5) includes

values and indices that can be accessed in parallel and thus are partitioned and dis-

tributed over BRAM blocks (Listing 6.5, lines 1 and 2), which subsequently allows un-

rolling the for loop for parallel processing (line 7). The difference between LIL and ELL,

however, is the direction of compression. Although the direction of compression in ELL

enables a simple assignment shown in line 8, it prevents skipping the all-zero rows that in

turn can cause a performance drop. Since we completely unroll the for loop (line 7), reduc-

ing ELL MAX COMP ROW LENGTH in the ELL implementation and using optimizations

such as ELL-COO only impact the resource utilization of FPGA, not the performance.

1 #pragma HLS array_partition variable=values dim=2

2 #pragma HLS array_partition variable=indices dim=2

3 function decompressELL(A)

4 // A in ELL: values[ELL_MAX_COMP_ROW_LENGTH]

5 // indices[ELL_MAX_COMP_ROW_LENGTH]

6 for i=0 to ELL_MAX_COMP_ROW_LENGTH:

7 #pragma HLS unroll

8 drow[indices[i]] = values[i]

9 return drow

Listing 6.5: ELL-decompression HLS pseudo code

COO: As Listing 6.6 shows, since COO saves tuples for representing a matrix, its de-

compression mechanism is pretty straightforward, including a simple assignment, shown
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in Listing 6.6, line 7. The downside of COO, however, is that we do not know in advance

how many elements exist in each row. Thus, we cannot partition and allocate the vector

of tuples across the blocks of BRAM to guarantee parallel accesses. For the same rea-

son, we pipeline the for loop (line 5) rather than unrolling it. The same procedure is also

applicable to DOK.

1 function decompressCOO(A, row)

2 // A in COO: tuples[COO_NUM_TUPLES][3]

3 // row: the current row

4 for i=0 to COO_NUM_TUPLES:

5 #pragma HLS pipeline

6 if (tuples[i][0]!=inf && tuples[i][0]==row):

7 drow[tuples[i][1]] = tuples[i][2];

8 return drow

Listing 6.6: COO-decompression HLS pseudo code

DIA: Line 7 of Listing 6.7 shows the pseudo-code for the decompression mechanism of

DIA, the most domain-specific format. DIA saves matrix A as diags, a two-dimensional

matrix including all non-zero diagonals of matrix A. The first element of each row of

diags indicates the diagonal number. To decompress the rows of matrix A, the decom-

pression function traverses all rows of diags to find the elements corresponding to the

current row. To this end, we use two helper functions, DiaInxForRow (line 1) and

IsRowOnDiagonal (line 4). As the decompression mechanism suggests, although in

terms of memory footprint DIA should be beneficial for diagonal matrices, its decompres-

sion mechanism is not quite compatible with even a simple computation such as a fine-

grained parallel SpMV, which subsequently requires rows of the matrix. Such an overhead

worsens when non-zero elements are scattered over multiple diagonals but do not com-

pletely fill them.

1 function DiaInxForRow(row, d)

2 return (row + d < row) ? row + d : row
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3

4 function IsRowOnDiagonal(row, d)

5 return d <= WIDTH - 1 - row && d >= -row

6

7 function decompressDIA(A, row)

8 // A in DIA:

9 // diags[NUM_DIAGONALS][MAX_DIAGONAL_LEN]

10 // row: the current row

11 for i=0 to NUM_DIAGONALS:

12 #pragma HLS pipeline

13 d = diags[i][0]

14 if (!IsRowOnDiagonal(row, d)) continue

15 // column index is the row + d

16 // + 1 since 0 element is the diagonal number

17 drow[row+d] = diags[i][DiaInxForRow(row,d)+1]

18 return drow

Listing 6.7: DIA-decompression HLS pseudo code

Configurations and Workloads: The baselines and Ascella use similar memory stream

interfaces to communicate with external DDR3 memory, and utilize the same dot-product

engine, and, only their decompression logic differ. Inputs and output of the accelerators are

transferred through the AXI stream interface. The clock frequency is set to 100 MHz. All

computations are on 32-bit integers. For BCSR, the sub-block size is four. We run SpMV

on various-size matrices, with applications in scientific and graph problems.

Besides real-world matrices, our workloads consist of two groups of synthetic sparse

matrices. The first group includes randomly generated sparse matrices, the density of

which varies from 0.0001 to 0.5. We generate the denser random matrices (i.e., the den-

sity of 0.1 to 0.5) as a representation for those in machine learning applications. On the

other hand, the more sparse random matrices (i.e., density between 0.0001 to 0.01) rep-

resent scientific and graph applications with no particular structure. The second group of
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our synthetic sparse matrices denotes the common structure in sparse matrices: diagonal

and band matrices. A band matrix is a sparse matrix, the non-zero entries of which are

confined to a diagonal band, including the main diagonal and more than one diagonal on

each side. The width of a band matrix is the number k such that ai,j = 0 if |i − j| > k/2.

We generate and evaluate band matrices of size 8000 with widths of 2, 4, 16, 32, and 64.

Numerical problems in higher dimensions often lead to band matrices (e.g., a PDE on a

square domain). A type of band matrices consisting of only the main diagonal (i.e., k = 1)

is called a diagonal matrix. Diagonal matrices also occur in many fields of linear algebra.

Metrics & Hyperparameters: We evaluate the performance implications of sparse for-

mats using the metrics introduced in the following. First, we define σ as a metric to measure

the latency overhead of decompression:

σ =
Tdecomp + nnz rows× Tdot

p× Tdot
(6.1)

in which Tdecomp indicates decompression latency, which consists of latency for BRAM

accesses and logic, nnz rows are non-zero rows for which we must perform a dot-product,

each taking Tdot, and p is the partition size. As a result, for the dense format, σ = 1. Be-

sides σ, we measure the breakdowns of latency: (i) memory latency, the time to transfer

a compressed partition (data and metadata) to FPGA and buffer it in the BRAM; and (ii)

computation latency consisting of decompression, dot-product, and necessary BRAM ac-

cesses. Furthermore, seeking an appropriate sparse format for achieving balanced stream-

ing, we proposed evaluating a balance ratio, which we define as the average ratio of mem-

ory latency to compute latency for all non-zero partitions. The balanced ratio of perfectly

balanced streaming would be one. An imbalance streaming leads to idle computation or

pauses in data transfer.

We also evaluate throughput, defined as bytes processed per second, which reflects

the bubbles in the streaming pipeline caused by imbalance streaming (balance ratio 6= 1).

Besides throughput, we compare the memory-bandwidth utilization, the ratio of use-

ful data over all transmitted data (i.e., useful data plus metadata). Our other metrics for
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the full design-space exploration are resource utilization and dynamic/static power con-

sumption. By resource utilization, we mean the percentage of FPGA resources used by

all components (entire Figure Figure 4.6). We evaluate the aforementioned metrics while

varying the hyperparameters including practical partition sizes of 8, 16, and 32, and the

width of 2, 4, 8, 16, 32, and 64 for band matrices to represent realistic matrices, and the

density of random matrices from 0.0001 to 0.5.

6.2.2 The Overhead of Decompression

This section explores σ, the latency overhead of decompression for SuiteSparse, random,

and structured band matrices in Figure 6.5, Figure 6.6, and Figure 6.7, respectively. In

Figure 6.5, the bars lower than one illustrate faster computation than the dense format.

The overhead of the dense baseline, for which σ = 1, is computing and transferring zero

eateries, and the overhead of all sparse formats (only for computations) goes to the decom-

pression. As Figure 6.5 shows, the overhead of sparse formats can, in some cases, exceed

that of the dense format. The worst-case scenario of decompression occurs with the CSC

format because the orientation of data is opposite to that of the mechanism in hardware.
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Figure 6.5: Decompression overhead for SuiteSparse: comparing the latency overhead, σ
(lower is betters), of seven sparse formats for partition size of 16 × 16. A darker color
indicates less sparsity (i.e., higher density).

From Figure 6.5, we do not observes any relationship between the density (darkness of

the bars in Figure 6.5) and σ in highly sparse matrices. Thus, Figure 6.6 clarifies such a

relationship for a wider range of density based on our randomly generated synthetic work-

loads. Likewise, Figure 6.7 shows the latency of band matrices when the width increases.
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As the two figures illustrate, although the σ of all formats increase with density and width

of band matrices, it more dramatically increases for COO, CSR, and CSC. Besides, the

time to reconstruct the rows of a matrix from a column-oriented compression format (i.e.,

CSC) leads to up to 21× and 30× slower computation than if we were to process all zero

entries of the dense format, respectively, for random and band matrices. In such cases,

preprocessing the sparse data to a format compatible with a hardware accelerator is highly

suggested.
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Figure 6.6: Decompression overhead for random matrices: comparing the σ (lower is bet-
ters) of seven formats for 16× 16 partitions when density varies from 0.0001 to 0.5.
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Figure 6.8 illustrates the impact of partition size on σ. In all workloads (i.e., SuiteS-

parse, random, and structured), the computation latency of ELL is proportional to that of
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the dense format and does not change with the pattern of sparsity. This is because, in ELL,

we are still processing a whole non-zero matrix regardless of its individual entries. How-

ever, since the length of these new squares (in our case, six) is smaller than that of the

original dense partitions (8, 16, or 32), the computation latency of ELL decreases as the

partition size increases. Seeking a relatively generic sparse format that can provide moder-

ate computation latency for random and structured matrices, BCSR could be a fair option.

However, it is not as good for random matrices when the partition size increases. This is

because of the additional dot products that must be done per each non-zero block regardless

of the individual values of the entries.

La
te

nc
y 

ov
er

he
ad

 o
f 

de
co

m
pr

es
sio

n 
(𝜎

)

0

1

2

3

4

5

8x
8

16
x1
6

32
x3
2

8x
8

16
x1
6

32
x3
2

8x
8

16
x1
6

32
x3
2

8x
8

16
x1
6

32
x3
2

8x
8

16
x1
6

32
x3
2

8x
8

16
x1
6

32
x3
2

8x
8

16
x1
6

32
x3
2

CSR BCSR COO LIL ELL DIA CSC

SuiteSparse Random Band

10
15
20
25
30
35

partition
size:

Figure 6.8: Decompression overhead for various partition sizes: comparing the average σ
(lower is better) of seven sparse formats for three types of workloads (SuiteSparse, random,
band) and partition sizes of 8, 16, and 32.

6.2.3 Latency and Balance Ratio

Since memory accesses and computation are pipelined, the sum of their maximum for

each partition defines the total latency. Thus, the latency overhead (discussed in subsec-

tion 6.2.2), which stems from only the computation, does not provide any information

about which one (i.e., computation or memory) defines the total latency. Details in that

regard are discussed in this section. Figure 6.9 shows both memory and compute latency

and thus implicitly shows the balance ratio: points below the balance line have a balance

ratio smaller than one.

Since only non-zero entries of non-zero partitions are transmitted, the latency to trans-
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Figure 6.9: Balance ratio: the relationship between the memory and compute latency for
various partition sizes indicated by the size of markers for (a) SuiteSparse, (b) random
workloads, and (c) band matrices. The blue line indicates balance ratio = 1.

mit data and metadata (i.e., memory latency) for all sparse formats is much lower than that

for the dense format, as expected. The computation latency of sparse formats, however,

is not always lower than for the dense format. While some of the frequently used formats

such as CSR, CSC, and DIA have been successful in lowering the memory latency, their

computation latency is higher than the baseline, which negates their benefits. Other formats

such as LIL and ELL also do well in reducing memory latency (i.e., data-transfer time) but

have similar computations as the baseline. For instance, the computation latency of LIL is

defined by the longest column; hence, in some cases, it is the same as or more than that of

dense format. For ELL, on the other hand, when the width of the ELL matrix is slightly

smaller than the width of the original partition (e.g., the 8×8 case), the computation latency

of ELL is just slightly higher than dense format because of the overhead of decompression,

even though it is small. Similar to random and structured matrices, the CSC format is

the slowest for SuitSparse workloads with up to 27× higher latency compared to the dense

baseline. All in all, Figure 6.9 suggests that in terms of latency, COO or BCSR could be ap-

propriate candidates to be used for diverse matrices from scientific and graph applications,

even though in some cases they perform as good as the dense format.

As Figure 6.9 shows, for all types of matrices (i.e., SuiteSparse, random, and band), the

balance ratio of dense format is higher than most of the sparse formats. This is because

the zero entries impact both memory and computation latency. In fact, the balance ratio

of dense format is closer to one (i.e., the perfect case) – but it moves toward a memory-
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bound as partition size, indicated by marker size, increases. In some formats, such as LIL,

increasing the partition size helps to achieve a better balance, while in some others, such

as ELL, it is the opposite. In random and structured band sparse matrices (Figure 6.9b and

Figure 6.9c), higher density and/or larger bandwidth of band matrices leads to a memory

bottleneck for BCSR, LIL, and DIA. In such cases, if adding more memory bandwidth to

the system is possible, using BCSR or LIL for less sparse application (e.g., for the inference

of neural networks) or using DIA for applications with diagonal/band matrices is suggested.

Otherwise, COO seems to offer a reasonable balance for various densities as well as the

varieties of band matrices. The same hypotheses for balance ratio are also applicable for

the more diverse SuiteSparse workloads, as shown in Figure 6.9a.

6.2.4 Throughput and Bandwidth Utilization

This section studies throughput and memory bandwidth utilization. First, Figure 6.10 ex-

plores the relationship between throughput and the total time to process an 8000 × 8000

matrix. The following parameters contribute to throughput: (i) the total processed data

consisting of data and metadata and (ii) the total time to process, which is the maximum

of memory latency (data-transfer time) and computation latency for each partition. As a

result, in a sparse format such as ELL in which both total latency and data grow with the

same pace, throughput does not change with latency (this is also the case for the dense

baseline). For all formats but ELL, throughput increases with latency and then reaches a

maximum. As Figure 6.10 suggests, BCSR, LIL, and DIA reach a higher throughput com-

pared to the other four formats. Besides, for all formats but CSC, increasing partition size,

shown by the thickness of lines in Figure 6.10, results in higher throughput because both

latency and data decrease as the partition size increases. Since throughput does not reflect

the impact of transmitting and computing useful data, we study throughput along with the

utilization of memory bandwidth.

Memory bandwidth utilization and its relationship with density, width of band matri-
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ces, and partition size are shown in Figure 6.11,Figure 6.12, and Figure 6.13, respectively.

As they all indicate, the memory bandwidth utilization of COO is always 0.3 since it al-

ways transmits two indices per one non-zero entry. Besides, as Figure 6.12 indicates, the

memory bandwidth utilization of DIA for diagonal matrices is close to one – the slight dif-

ference occurs because of saving the diagonal number for the main diagonal. As partition

size grows, this memory bandwidth utilization approaches full utilization. However, for

other band matrices, we see that the DIA format does not offer better memory bandwidth

compared to more generic formats such as COO, ELL, or LIL, among which LIL is a better

candidate to cover more extreme sparseness as well as a wider variety of random matrices

(Figure 6.11) while offering a better balance ratio at larger partitions compared to COO

and ELL. Finally, Figure 6.13 demonstrates that, as expected, for all formats but COO, the

memory bandwidth utilization of denser matrices (density > 0.1) and structured ones is

higher than that of extremely sparse matrices (e.g., SuiteSparse).
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Figure 6.11: Memory bandwidth utilization for random matrices: comparing seven sparse
formats for partition size of 16× 16 when density varies from 0.0001 to 0.5.
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Figure 6.13: Memory bandwidth utilization for various partition sizes: comparing the av-
erage memory bandwidth utilization (higher is better) on SuiteSparse, random, band work-
loads for partition sizes of 8, 16, and 32.

6.2.5 Resource Utilization and Power Consumption

Table 6.1 compares FPGA resource utilization and dynamic power consumption. We must

dedicate enough BRAM blocks to envision the worst-case scenarios even though they occur

rarely. The other factor impacting the BRAM utilization is the degree of parallelism. To

enable parallelism, we partition the matrices and distribute them to BRAM blocks. Because

of these two factors, we see that CSR and CSC utilized the lowest number of BRAM blocks,

whereas BCSR utilizes the same blocks as the dense implementation does. In some cases,

such as ELL, smaller partitions (i.e., 8 and 16) use more flip flops (FFs) compared to larger

partitions (i.e., 32). This is because, in a small partition size, the buffering is automatically

implemented using FFs rather than BRAM blocks. It is also demonstrated by the fewer

BRAM blocks utilized by the 8×8 ELL.
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Table 6.1: Resource utilization and the total dynamic power consumption for three partition
sizes (8, 16, and 32).

BRAM 18K FF (×1000) LUT (×1000) DY Power(W)
part. size: 8 16 32 8 16 32 8 16 32 8 16 32

DENSE 8 16 32 1.5 1.9 4.3 0.7 0.7 1.2 0.02 0.08 0.03
CSR 2 2 8 0.7 0.8 3.8 0.9 0.9 1.1 0.04 0.04 0.07

BCSR 8 16 32 1.6 2.4 4.4 1.2 1.4 2.2 0.05 0.06 0.06
CSC 1 1 9 0.9 1 2.7 1 1.2 1.1 0.01 0.05 0.03
LIL 4 4 6 2.9 5.8 9.1 1.6 2.7 4.8 0.05 0.08 0.07
ELL 1 7 9 2 3.2 0.9 0.9 1 0.8 0.06 0.10 0.06
COO 3 3 8 1.8 1.3 3.2 1.2 2.5 5.4 0.02 0.04 0.04
DIA 3 3 11 2.2 5 9.2 1.5 2.8 4.6 0.07 0.12 0.05

Total 140 106.4 53.2 N/A

The dynamic power consumption listed in Table 6.1 suggests that while larger partition

sizes cause higher power consumption in some formats (i.e., CSR, BCSR, COO, and LIL),

for the others (i.e., dense, CSC, ELL, and DIA), the maximum power is consumed at the

16×16 partition size and the minimum case may occur at 8×8 (e.g., dense and CSC) or

at 32×32 (e.g., ELL and DIA). To clarify, Figure 6.14a, Figure 6.14b, and Figure 6.14c

illustrate the dynamic power consumed by logic, BRAM, and signals, respectively. As

Figure 6.14 shows, the power consumption of logic always increases or stays steady as

partition size increases, while that of BRAM may decrease (e.g., dense and BCSR). There-

fore, comparing Figure 6.14 against the dynamic power listed in Table 6.1 indicates that

the trend of overall dynamic power consumption partially depends on BRAM, but more

generally follows the same trend as the power consumption of signals (Figure 6.14c). By

evaluating total latency and power consumption together, we see that for SuitSparse matri-

ces, not only does COO consume the least dynamic power, but also it is the fastest in terms

of total latency. However, if achieving high throughput at lower power is the goal, BCSR

is a better fit. On the other hand, for structured matrices, LIL and ELL are the fastest in

terms of latency and throughput, among which ELL performs better for band matrices with

wider bandwidths and consumes less power. The static power consumption of dense, CSR,

BCSR, LIL, and ELL is 0.121W and that of CSC, COO, and DIA is 0.103W. The static

energy, which depends on time, can be an issue for those slower sparse formats that require
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less amount of dynamic energy.
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Figure 6.14: Dynamic power consumption: (a) logic, (b) BRAM, and (c) signals.

6.3 Summary

This chapter showed that the primary challenge with sparse matrices has been efficiently

storing and transferring data, for which many sparse formats have been proposed to signifi-

cantly eliminate zero entries. Such formats, essentially designed to optimize memory foot-

print, may not be as successful in performing faster processing. In other words, although

they allow faster data transfer and improve memory bandwidth utilization the classic chal-

lenge of sparse problems – their decompression mechanism can potentially create a compu-

tation bottleneck. Not only is this challenge not resolved, but also it becomes more serious

with the advent of domain-specific architectures, as they intend to more aggressively im-

prove performance. The performance implications of using various formats along with

DSAs, however, has not been extensively studied by prior work. To fill this gap of knowl-

edge, this chapter characterized the impact of using seven frequently used sparse formats

on performance, based on a DSA for sparse matrix-vector multiplication, implemented on

an FPGA using HLS tools, a growing and popular method for developing DSAs. Seeking

a fair comparison, we tailor and optimize the HLS implementation of decompression for

each format. We thoroughly explored diverse metrics, including decompression overhead,

latency, balance ratio, throughput, memory bandwidth utilization, resource utilization, and

power consumption, on a variety of real-world and synthetic sparse workloads.
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CHAPTER 7

CONCLUSIONS

This thesis proposed solutions to deal with the challenges in efficiently executing sparse

problems. First, we proposed Fafnir, a DDR-based NDP solution for accelerating embed-

ding lookup, the bottleneck-prone task in recommendation systems. The key component

of Fafnir is a near-memory intelligent reduction tree, which provides a generic solution

for any sparse gathering. Besides embedding lookup and SpMV, sparse gathering is also

a required function in numeric algebra such as matrix inversion and differential-equation

solvers. The particular patterns of computation in such applications necessitate some addi-

tional connections in the structure of a tree, which will be envisioned in our future work.

The same idea of Fafnir can also be integrated with High Bandwidth Memory (HBM) by

connecting the leaf PEs to the 32 pseudo channels rather than the ranks.

As another preliminary solution, this thesis proposed Alrescha, a generic accelerator for

scientific and graph problems. We showed that Alrescha not only can accelerate graph al-

gorithms efficiently by using a data-driven execution model, which eliminates transferring

metadata during the run time but also is reconfigurable to handle dependency patterns in

most of the scientific algorithms. Alrescha mathematically transforms the algebraic opera-

tions in iterative PDE solvers to increase the chance of parallelism in scientific problems.

We have also studied compression formats and learned that to be effective in streaming

sparse data, the order of non-zero values and the decompression mechanism are important.

We proposed the storage format of Alrescha, which helps to accelerate sparse problems by

enabling stream accesses to memory.

This thesis also introduced Lodestar, a novel approach for pruning DNNs based on the

requirements of systolic arrays. We focused on the importance of the distribution of non-

zero values in sparse DNN models rather than their quantity when we use systolic arrays
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for DNN inference. Unlike prior work, Lodestar examines the correlation among the filters

rather than the individual filters to increase the chances of modifying the distribution of

non-zeros. To handle the locally-dense data, created by Lodestar, we introduced Eridanus,

a streaming accelerator with the core of a stationary systolic array. Eridanus employs a

very simple indexing logic.
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Figure 7.1: Comparing sparse formats for:
(a) SuiteSparse, (b) random, and (c) band
matrices. 1 and 0 show best and worst, re-
spectively.

Last but not least, this thesis would lead

architects to knowingly choose the required

sparse format and tailor their FPGA designs for

sparse applications. Figure 7.1 summarizes all

the six studied metrics for three group of sparse

workloads by normalizing each metric to its

maximum achieved number so that ”1” repre-

sents the best case and ”0” represents the worst

case. Here, we overview some insights:

• Unlike a common belief, the memory band-

width is not always the bottleneck; hence the

performance sparse problems cannot always

be improved by simply adding more memory

bandwidth to the system. Thus, when using a

format such as CSR to efficiently use storage, a

lower-bandwidth low-cost memory is sufficient.

Otherwise, the implementation of the computa-

tions must be further improved (if possible).

• Although in scientific computing and graph

analytics (Figure 7.1a), the common patterns

of sparse matrices are diagonal and band, our

study shows that a non-specialized format such
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as COO performs faster and better utilizes the memory bandwidth compared to a special-

ized format such as DIA. This is because of the compatibility of more generic formats with

a generic hardware for common computations. Besides, a generic format better tolerates

the variations in the distribution of non-zero entries. If power consumption and FPGA

resource utilization must also be considered, LIL or BCSR are other candidates.

• For structured band matrices (Figure 7.1c), a pattern-specific format such as DIA, near-

perfectly utilizes the memory bandwidth and does it better as the partition size increases.

However, to allow such utilization to effectively impact the other performance metrics, the

computation engine must also be tailored to the format if DIA must be used in a particular

application. Otherwise, the mismatch would create a computation bottleneck.

• For less sparse (density > 0.1) applications such as the inference of neural network, op-

timizations beyond simple partitioning of size 8×8 or at most 16×16 hurt the performance

even though it might help reduce the memory footprint (possibly, not too much). Extract-

ing the non-zero partitions from the neural network can be done with the aid of structure

pruning schemes [89, 92, 93, 51, 19].
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