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The real danger is not that computers will begin to think like men, but that men will begin

to think like computers.
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Abstract

Learning from Demonstration (LfD) has become a ubiquitous and user-friendly tech-

nique to teach a robot how to perform a task (e.g., playing Ping Pong) without the need

to use a traditional programming language (e.g., C++). As these systems are increasingly

being placed in the hands of everyday users, researchers are faced with the reality that end-

users are a heterogeneous population with varying levels of skills and experiences. This

heterogeneity violates almost universal assumptions in LfD algorithms that demonstrations

given by users are near-optimal and uniform in how the task is accomplished. In this thesis,

I present algorithms to tackle two specific types of heterogeneity: heterogeneous strategy

and heterogeneous performance.

First, I present Multi-Strategy Reward Distillation (MSRD), which tackles the problem

of learning from users who have adopted heterogeneous strategies. MSRD extracts separate

task reward and strategy reward, which represents task specification and demonstrator’s

strategic preference, respectively. We are able to extract the task reward that has 0.998 and

0.943 correlation with ground-truth reward on two simulated robotic tasks and successfully

deploy it on a real-robot table-tennis task.

Second, I develop two algorithms to address the problem of learning from suboptimal

demonstration: SSRR and OP-AIRL. SSRR is a novel mechanism to regress over noisy

demonstrations to infer an idealized reward function. OP-AIRL is a mechanism to learn

a policy that more effectively teases out ambiguity from sub-optimal demonstrations. By

combining SSRR with OP-AIRL, we are able to achieve a 688% and a 254% improvement

over state-of-the-art on two simulated robot tasks.

xii



CHAPTER 1

INTRODUCTION

Over the last few years, we have seen robotics technology increasingly applied to more and

more application scenarios, ranging from everyday household uses [1] and autonomous

manufacturing [2] to disaster response [3] and scientific discovery [4]. With robots being

used for such a variety of tasks, traditional design of control policies for every task be-

comes intractable for robot experts. Furthermore, traditional robot programming methods

require expertise in coding, a significant time investment, and users to explicitly specify

the sequence of actions or movements a robot must execute in order to accomplish the task

[5]. Furthermore, each task has numerous variations so that even a manually specified con-

trol policy becomes brittle. Moreover, end-users may have their own preferences towards

specific tasks. As it is impractical to assume programming skills and robotics expertise

for end-users, a natural solution to the aforementioned problems would be Learning from

Demonstration (LfD) techniques. LfD facilitates nonexpert robot programming by implic-

itly learning task constraints and requirements from simply recording demonstrations [5].

It is worth noting that working with novice users is not the only motivation for LfD, some

techniques are designed specifically with expert users in mind, including manufacturing

and the military [6].

1.1 Learning from Demonstration

We draw upon seminal work in Chernova and Thomaz [6] to state our adopted definition

of LfD:

Learning from Demonstration (LfD) explores techniques for learning a task

policy from examples provided by a human teacher.
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Figure 1.1: Pipeline of Learning from Demonstration

As described in [6], the canonical LfD pipeline includes (illustrated in Figure 1.1)

1. Data collection: a human teacher gives demonstration to the robot via methods such

as kinesthetic teaching, teleoperation, or video recording of the human performing

the task. The essential key to the data collection phase is to give the robot enough

variability for it to adjust to variable environments, while also ensuring the demon-

strations clearly achieve the same goal that the human intends to achieve.

2. Model learning: using an expert-designed model and the data collected in the previ-

ous phase, machine learning techniques are applied to tune the model to appropriately

represent the collected data. Most importantly, machine learning techniques should

learn to adapt to the variations in the data and achieve the objective the human wants

to accomplish.

3. Evaluation and Refinement: a robot could perform what it has learned and humans

could criticize or intervene during the process to provide extra data for it to learn

from. Therefore, it could loop back to the data collection step, thus creating a closed-

loop tuning method until the performance is satisfying.

In this thesis, I focus on developing novel techniques for the first two steps: 1) data

collection and 2) model learning. A key limitation inherent in how this pipeline is typically

applied is that it presumes that human demonstrators readily provide demonstrations that

are well-suited to train the specific machine learning algorithms to meet the evaluation cri-

teria defined. However, humans typically lack the technical awareness of these algorithms

and provide data that are quite difficult for most LfD algorithms to leverage. As such,
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the focus of this thesis is on designing algorithms that are better able to utilize data from

end-users; in particular, the heterogeneity of the demonstrations these users provide. This

thesis addresses two key types of heterogeneity: strategy heterogeneity and performance

heterogeneity; though there are many to be addressed in future work, as we enumerate in

Section 1.2.3.

An essential key to successful machine learning is the abundance of data. Recent ma-

chine learning techniques, especially Deep Learning [7], when given moderate assump-

tions, have the property that more data leads to better performance and that more data

beats a cleverer algorithms [8]. However, when facing complex tasks, e.g., complicated

sequential decision making, people will have different heuristics because they cannot cal-

culate for the optimal solution (principle of bounded rationality [9]), and thus causing what

we call heterogeneity in strategies and performance in demonstrations. Continuous con-

trol task for robots is indeed one of such preplexing tasks in that when given a goal, there

are often many ways to achieve the goal and it is not clear which one is significantly bet-

ter than the others. For example, tennis is a task that has a single clear goal: return the

tennis ball back to opponent’s side. Yet, humans have developed tens of different strikes

(e.g., backhand, backspin, drop shot, flat, groundstroke, etc. ). If we want to let a human

teach a robot to play tennis from demonstration, the recorded demonstrations will surely

be varied and non-optimal. Previous researches have also identified heterogeneity in hu-

man demonstrations. Nikolaidis, Nath, Procaccia, and Srinivasa [10] point out that when

giving demonstrations, experts typically adopt heuristics (i.e., “mental shortcuts”[11]) to

solve challenging optimization problems, and these highly refined strategies can present a

heterogeneity in behavior across task demonstrators. Sammut, Hurst, Kedzier, and Michie

[12] found that commercial airline pilots exhibit significant heterogeneity in performing a

well-posed task (e.g., executing a pre-specified flight plan) as to make it more practical to

learn from a single trajectory and disregard the remaining data.

Thus, despite the long awareness of the heterogeneity problem, few have sought to fix
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it in a way other than assuming homogeneity or disregarding some of the data. Handling

heterogeneity in Learning from Demonstration is an essential step for LfD to embrace big

data and deep learning era when it is more and more easy to collect demonstrations from

people all over the world, e.g. using Cloud Robotics techniques [13]. In this thesis, I

propose several novel machine learning algorithms to better account for the heterogeneity

in demonstrations.

1.2 Problem Description - Demonstration Heterogeneity

1.2.1 Formal Problem Description

We formalize demonstration heterogeneity in a probabilistic Markov Decision Process

(MDP) framework.

First, we formalize Markov Decision Process. A Markov Decision Process (MDP)

M is a 6-tuple 〈S,A,R, T, γ, ρ0〉, where S is the state space, and A is the action space.

γ ∈ (0, 1) is the temporal discount factor, representing the relative preference for sooner

rewards. R(s, a) represents the reward after executing action a in state s. In some cases,

R(s, a) could be simplified as R(s). T (s, a, s′) is the transition probability to s′ from state

s after taking action a. ρ0(s) is the initial state distribution. The standard goal is to find the

optimal policy π∗ : S → A that maximizes the discounted future reward

π∗ = argmax
π

J(π) = argmax
π

Eτ∼π

[
T∑
i=0

γtR(st, at)

]
. (1.1)

τ = (s0, a0, · · · , sT , aT ) denotes a sequence of states and actions induced by the policy and

dynamics, and T represents episode length. We instead consider a more general maximum

entropy objective introduced by Ziebart [14], which augments the standard objective with

an entropy bonus to favor stochastic policies and to encourage exploration during optimiza-
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tion

π∗ = argmax
π

J(π) = argmax
π

Eτ∼π

[
T∑
i=0

γtR(st, at) + αH(π(·|st))

]
. (1.2)

In this thesis, we assume we have access to robot state-action pairs, which means

the data collection method could be either kinesthetic teaching or teleoperation, but to

make it compatible with learning from observation, we have to make additional system

assumptions, such as in [15]. Under such setting, we have a dataset of demonstrated tra-

jectories, D = {τ1, τ2, · · · , τN}. Each τi consists of a sequence of states and actions,

τi = (si,0, ai,0, si,1, ai,1, · · · , si,T , ai,T ). In homogeneous demonstration, we could assume

all trajectories τi ∀i ∈ {1..N} come from a single policy πe interacting with environment,

i.e., at ∼ πe(st), st+1 ∼ T (st, at).

In this case, estimating the expert policy πe by maximizing the likelihood of trajectories

results in a maximum likelihood problem on each state:

argmax
π

P (τ) = argmax
π

T∏
i=1

π(ai|si)T (si+1|si, ai)

= argmax
π

T∏
i=1

π(ai|si)

(1.3)

If given enough state-action pair generated by πe, the estimated π could be arbitrarily close

to πe (consistency property of maximum likelihood estimator).

However, in a heterogeneous demonstration setting, trajectories come from different

policies πi ∀i ∈ {1, 2, · · · , N}, in which N is the number of different policies. We could

denote a different dataset corresponding to each demonstration policyD(i) = {τ (i)1 , τ
(i)
2 , · · · , τ (i)M },

τ
(i)
j ∼ πi, where i ∈ {1, 2, · · · , N} is strategy index, and M is the number of demonstra-

tion trajectories for one policy. If we treat all D(i) as coming from a single policy, the

maximum likelihood estimator result could be the mean of all the policies, which could be

far away from any expert policy.
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In other words, if we model the conditional probability distribution P (a|s) or the joint

distribution P (s, a), homogeneous demonstrations will present a single-mode pattern while

heterogeneous demonstration will present multi-mode pattern. Therefore, it will be hard for

a single-mode model -as typical Deep Learning techniques are- to achieve density match-

ing in heterogeneous Learning from Demonstration. The single-mode model will either

achieve mode-seeking (converge to one mode and ignore all other modes) or coverage-

seeking (cover all modes while putting its own mode in the middle where density is actually

low for any expert model). More discussion is provided in Section 2.7.

1.2.2 An Illustrative Example

In this section, we show a simple but illustrative heterogeneous demonstration example.

We consider a navigation (path planning) task for a robot to move from top-left corner to

bottom-right corner, as shown in Figure 1.2. To reach the goal, the robot could follow π1

and go right and then go down. It could also follow π2 and go down first and then go

right. If the task is just to arrive at the star as fast as possible, both trajectories are optimal

and both could present in human demonstration. State-action joint densities of the two

trajectories are clearly different.

1.2.3 Demonstration Heterogeneity Category

Demonstration heterogeneity could come from several different sources:

1. Heterogeneous strategies: different policies have similar performance. E.g., example

given in Section 1.2.2, different strikes in tennis.

2. Heterogeneous performance levels: different policies have variable performance.

Some or even all demonstrations are suboptimal. E.g., a naı̈ve tennis player and

an expert tennis player giving demonstrations in the same time.

3. Heterogeneous environments: policies are semantically similar, but the environment

6



Figure 1.2: An illustrative example to show heterogeneous demonstration. Figure adopted
from Leetcode [16].

state representation is different. E.g., one type of household robot in two different

homes trying to cook coffee.

4. Heterogeneous embodiments: policies are semantically similar, but demonstrations

are on different robots (which could have different Degrees of Freedom). E.g., two

different types of household robot trying to cook coffee.

5. Heterogeneous tasks: the tasks demonstrated are different, but the tasks are related,

or the skills required for the tasks are similar. E.g., two identical household robots

in the same home and one is trying to cook coffee while the other is trying to brew

some tea.

Each type of heterogeneity listed above would, in general, have differing downstream im-

plications for any LfD algorithms.

In this thesis, we look into the first two heterogeneity sources, i.e., heterogeneous strate-

gies and heterogeneous performance levels, and leave the latter three heterogeneity for fu-

ture work. We argue the first two types of heterogeneity are the most common within offline

demonstrations, while the latter three are essential keys to cloud robotics where demon-

7



strations for different environments, different embodiments, and different tasks could be

meshed together for a universal learning.

1.3 Thesis Contributions

In this thesis, I present work to tackle two most common sources of heterogeneity: strategy

heterogeneity and performance heterogeneity.

I start with strategy heterogeneity in Chapter 2, where I propose the Multi-Strategy

Reward Distillation (MSRD) method to better extract the task specification from hetero-

geneous strategies. As a bonus, we could also extract each demonstrator’s preference

function to better understand the user’s preference, which could be further used to de-

liver user-preference-aware service. I test the algorithm on both simulated and real robots

and illustrate the accuracy of the task and strategy reward recovered from heterogeneous

strategy demonstrations.

In Chapter 3, I propose two novel algorithms named Optimality-Parameterized Adver-

sarial Inverse Reinforcement Learning (OP-AIRL) and Self-Supervised Reward Regression

(SSRR) to tackle the heterogeneous performance demonstrations. I test the two algorithms

on two simulated robotic domains and show that both algorithms not only learn from dif-

ferent performance-level demonstrations, but also achieve better performance on the task

than the best suboptimal demonstration.
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CHAPTER 2

MULTI-STRATEGY REWARD DISTILLATION

2.1 Introduction

In this chapter, we make the assumption that heterogeneous strategy policies (π1, · · · , πN)

is a result of different reward functions (R1, · · · , RN) that different policies are optimizing.

We present four contributions related to the main algorithm for this Chapter: Multi-

Strategy Reward Distillation (MSRD) 1. First, we propose MSRD, a novel IRL framework

where we jointly learn task reward and strategic rewards and tease out heterogeneity to

gain a better estimation of the task reward and strategic reward component of each strategy.

Second, we show MSRD’s success on two virtual robot control tasks and one real-world

physical robot table tennis task. Third, the results indicate the MSRD’s learned task re-

ward function achieves high correlation with the ground-truth task reward and the learned

strategy rewards also achieve high correlation with the ground-truth strategic preferences.

Fourth, we also develop a method that helps generate heterogeneous policies of different

strategies in simulated environments, and thus alleviates burden of expensive heteroge-

neous human demonstration collection when testing algorithms. This technique is lever-

aged by our virtual experiments to synthesize heterogeneous task strategies. Moreover, by

this way we are able to access the ground-truth strategic preference and evaluate how well

MSRD recovers the strategy reward while humans typically have difficulty describing their

underlying strategic preferences.

We begin in Section 2.2 with a review of prior work. In Section 2.3 we introduce

preliminaries that help understand MSRD, followed by details of MSRD in Section 2.4.

Section 2.5 shows the experimental setup in two simulated robot control tasks and one

1This work was published by ACM on 15th ACM/IEEE International Conference on Human-Robot Inter-
action [17].
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real-world physical robot table tennis task. In Section 2.6, we show MSRD’s effectiveness

empirically on both the simulated and real domains. Finally, in Section 2.7, we discuss the

results of MSRD and point out some limitations that motivates future work.

2.2 Related Work

Imitation learning (IL) is a straightforward but popular choice of LfD algorithm. IL works

by directly learning a predictive model which takes current state as input and outputs ac-

tion. However, the learned policy is highly intertwined with environment dynamics. Slight

changes in dynamics or highly stochastic environments could cause IL to easily fail due to

a “covariate” shift [18].

In contrast, the demonstrated reward function is a more transferable and robust def-

inition of the task, representing latent objectives a behavior tries to accomplish. Inverse

Reinforcement Learning (IRL) is an LfD approach that aims to infer such demonstrator’s

objective (i.e., reward function) given a set of performed trajectories. Effective reward

learning holds utility even after environment dynamics change [19].

IRL suffers from two major fundamental shortcomings [20]. First, IRL is known to be

an ill-posed problem as there are infinitely many reward functions that could explain expert

demonstration as optimal including degenerated cases (e.g., R = 0 [21]). Two primary

methods exist in the IRL literature that aim to solve this ambiguity: maximum margin ap-

proaches [22, 23] and probabilistic approaches [24, 25, 14]. Maximum margin approaches

try to find a reward function that explains an expert’s trajectory not only as being optimal,

but also as being better than all other trajectories by a margin. Probabilistic approaches (e.g.

Bayesian IRL [24], Maximum-Entropy IRL [25], and Maximum Causal Entropy IRL [14])

assume trajectories with higher rewards have an exponentially higher probability of being

generated and apply a maximum likelihood framework to solve for such a reward func-

tion. Advantages of this framework include its tolerance of non-optimal demonstrations

and ease of applying gradient-based optimization. Maximum-entropy based IRL methods
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are thus suitable for deep neural network models to find the reward function [26], obviat-

ing the need for feature engineering. Despite the advantages of a maximum entropy IRL

(ME-IRL) framework, perfect information about the system dynamics and the ability to

calculate the exact state feature counts are required. Guided Cost Learning (GCL [27])

and its successor, Adversarial Inverse Reinforcement Learning (AIRL [28]) have been pro-

posed to tackle the unknown dynamics problem. AIRL poses the reward learning problem

in an adversarial setting, where the reward function tries to assign a high reward to expert

demonstrations and assign a low reward to generated trajectories. Meanwhile, the policy

is optimized over the learned reward function to maximize its expected reward. AIRL also

made strides to disentangle reward functions from the environment’s dynamics (less reward

shaping).

Despite all the efforts made in prior work to address the problem of reward ambiguity

in IRL, one of the most effective solutions is still simply to collect more data. By collecting

more data, one might hope to more readily tease out the signal (i.e., the desired task) from

the noise (i.e., inter-demonstrator variance not necessary to task completion). However,

as we introduced in Chapter 1, more data may in fact bring about more heterogeneity

(illustrated in Figure 1.2 [16]), particularly when humans focus on demonstrating task in

multiple ways as a form of teaching the domain of feasible task executions. The typical

approach is to assume homogeneity over demonstrators; however, Sammut, Hurst, Kedzier,

and Michie [12] found extreme heterogeneity in flight route across pilots as to make it more

practical to learn from a single trajectory and disregard the remaining data.

Previous work in IRL has tried to address heterogeneity explicitly [10], but only focused

on simplified examples which do not typify the complexity of the real world robot tasks. We

are motivated by such settings to develop a method that might still be capable of generating

a robust task specification while also leveraging all available data to help mitigate the curse

of dimensionality. Another line of work that tries to model heterogeneous expert data lies

in imitation learning. Generative Adversarial Imitation Learning (GAIL) [29] is a popular
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imitation learning algorithm in which a discriminator tries to distinguish between expert

trajectories and generated trajectories, while a generator tries to deceive the discriminator.

Some extensions to GAIL utilize a latent variable to model multi-modal (multi-strategy)

demonstration data [30, 31]. Despite the good performance of imitation learning algorithms

in some contexts, such methods are still severely sensitive to a change of environments

(e.g., a small disturbance could result in total failure of intended task). By contrast, the

reward function is more robust to a change of dynamics in the environment, as the function

represents the intention of the behavior.

MSRD is also related to preference learning, as we explicitly extract a strategic prefer-

ence component from the reward function. Preference learning is a well-explored research

area that aims to learn individuals’ proclivities. In robotics, preference learning typically

involves learning a human’s preference and adapting a robot’s behavior to better collaborate

with human-beings [10, 32]. There are several methods that could infer preference infor-

mation without asking the human to explicitly provide preference information [33, 34].

For example, Schafer, Frankowski, Herlocker, and Sen [35] utilizes collaborative filtering

for a recommender system and Xu, Ratner, Dragan, Levine, and Finn [36] formulates a

meta-IRL problem that could learn a prior over preferences. A more recent direction of

preference learning lies in the multi-task setting. Dimitrakakis and Rothkopf [37] models

reward-policy pairs (Ri, πi) drawn from an unknown prior. Choi and Kim [38] integrates

Dirichlet process mixture model into Bayesian IRL as a task prior. Repeated inverse rein-

forcement learning (RIRL) [39] formalizes the setting in which a user is observed perform-

ing different tasks. The goal of RIRL is to infer a task-independent preference. However,

one of the biggest limitations of RIRL is the method assumes full knowledge of each task’s

reward function and the relative weights between task rewards and preference rewards,

which is unrealistic in most real-world applications. Observational Repeated IRL (ORIRL)

relaxes the assumption by introducing a learnable relative weight yet still assumes perfect

knowledge of the task reward Woodworth, Ferrari, Zosa, and Riek [40] . Furthermore,
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both RIRL and ORIRL work is carried out in discrete finite state-action space, which is a

significant simplification of real-world, continuous, state-action space. While preference

learning in a multi-task setting tries to learn shared preferences across tasks, we propose to

learn a shared task reward from observing different strategies for the same task.

Few previous work have addressed multiple-reward-function learning. One such ap-

proach by Nikolaidis, Gu, Ramakrishnan, and Shah [41] clusters different kinds of behav-

iors and applies inverse reinforcement learning on each cluster. Another approach, Option

GAN [42], learns a division in demonstration state space and a separate reward function and

policy for each subspace. However, neither considers the relationship between the learned

reward functions. In contrast, our work poses a common task reward function in each of

the reward functions, together with a separate strategy reward function for each strategy,

which enables us to tease out task reward and strategy rewards.

2.3 Background

2.3.1 Inverse Reinforcement Learning

IRL considers an MDP sans reward function (M\R) with the goal being to infer reward

function R(s, a) given a set of demonstrated trajectories D = {τ1, τ2, · · · , τN}. A typical

assumption for IRL is that demonstrated trajectories are optimal, or at least near-optimal. In

the maximum entropy IRL (Max-Ent IRL) framework, inference of the reward function is

turned to a maximum likelihood optimization problem by assigning occurrence probability

of a trajectory proportional to the exponential of discounted cumulative reward, pθ(τ) ∝

e
∑T
t=0 γ

trθ(st,at). Therefore, Max-Ent IRL aims to find the reward function under which the

demonstrated trajectories have the highest likelihood, as shown in Equation 2.1.

max
θ

Eτ∼D[log pθ(τ)] (2.1)
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AIRL [28] casts the optimization in a generative adversarial framework, learning a discrim-

inator, D, to distinguish between experts and a deceiving generator, π, that learns to imitate

the expert. This framework follows Max-Ent IRL’s assumption that trajectory likelihood is

proportional to the exponential of rewards. D is defined in Equation 2.2, where fθ(τ) is the

learnable reward function and π is the current policy. D is updated by minimizing its cross

entropy loss to distinguish expert trajectories from generator policy rollouts (Equation 2.3).

π is trained to maximize the cumulative pseudo-reward function given by f(s, a).

Dθ(s, a) =
exp(fθ(s, a))

exp(fθ(s, a)) + π(a|s)
(2.2)

LD = −Eτ∼D,(s,a)∼τ [logD(s, a)]− Eτ∼π,(s,a)∼τ [1− logD(s, a)] (2.3)

2.3.2 Neural Network Distillation

Neural network distillation applies supervised regression to train a student network to pro-

duce the same output distribution as a trained teacher network. The method was first pro-

posed by Hinton, Vinyals, and Dean [43] and has been applied in RL mainly for perform-

ing policy distillation [44, 45, 46]. Particularly, Teh, Bapst, Czarnecki, Quan, Kirkpatrick,

Hadsell, Heess, and Pascanu [45] proposes that instead of distilling each policy πi to a

general policy π0, we could gain a faster convergence with a two-column architecture by

defining πi = π0 + π̃i. Accordingly, πi only needs to learn a near-zero difference between

a common policy and the task-specific policy.

2.4 Algorithm

As mentioned in Section 2.2, reward function is a more transferable and robust definition

of the task. Therefore in MSRD we transform the heterogeneity on different policies to het-

erogeneity on the different rewards that the policies are trying to optimize. In the space of

reward functions, the common parts across heterogeneous demonstrations are more clear:

achieving the intended goals has high rewards.
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We consider a setup in which there is only one task (one MDPM = (S,A,R(0), T, γ, ρ0)),

but the demonstrations are generated by employing varying strategies. Different strategies

may come from different experts who have personalized strategical preferences or one ex-

pert that has mastered several. Therefore, despite heterogeneity within demonstrations,

all trajectories in the dataset should still be near-optimal in terms of task reward R(0).

We denote each strategy’s demonstration dataset as D(i) = {τ (i)1 , τ
(i)
2 , · · · , τ (i)M }, where

i ∈ {1, 2, · · · , N} is strategy index, M is the number of demonstration trajectories for one

strategy, and N is the number of strategies. Our first objective is to infer a shared task

reward function R(0) despite there being different strategies in the demonstration dataset.

The second objective is to infer the strategy-only reward R̃(i). Combining strategy-only

reward with the task reward function will result in a strategy-combined reward R(i), which

should induce the observed expert strategical behaviors.

2.4.1 Task and Strategy Reward

We first propose to model the strategy-combined reward function that is optimized by a

demonstrator to be a linear combination of the task and the strategy-only reward as given

by Equation 2.4.

R(i)(·) = R(0)(·) + αiR̃(i)(·) (2.4)

Despite the simplicity, we argue Equation 2.4 makes a reasonable assumption. Several

previous IRL works also apply linear, if not more constraining, assumptions to combine

reward functions: Amin, Jiang, and Singh [39] create a combined reward by adding a task

reward with a cross-task shared preference, while we add shared task reward with each

strategy reward; Woodworth, Ferrari, Zosa, and Riek [40] propose a similar formulation,

except their task reward is known and they try to learn task-independent preference in a

multi-task setting. In the RL literature, there is also substantial work combining rewards
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linearly (e.g., adding intrinsic reward, such as curiosity or entropy to the original task re-

ward for the sake of exploration). In fact, many engineered reward functions are also a

linear combination of several reward components (e.g., for OpenAI Gym [47] MuJoCo

[48] hopper environment, its reward function is defined as a linear combination of forward

speed, living bonus, and action penalty). Additionally, assuming a linear combination could

also provide interpretability (see Figure 2.3). Our approach is unique in that it shares the

task reward while having the flexibility on each strategy reward, which we argue is more

realistic while allowing us to apply joint inference of the task reward and strategy reward.

2.4.2 Reward Network Distillation

To infer the shared task reward function between different strategies, we propose utilizing

network distillation to distill common knowledge from each separately learned strategy-

combined reward R(i) to the task reward function R(0). We also want to regularize R(i)

to be close to R(0), since we have the prior knowledge that despite heterogeneous strate-

gic preferences, all experts should still be prioritizing optimizing the task reward R(0) to

achieve at least near-optimal performance. Previous distillation methods mainly focus on

distilling classification results, and therefore KL-divergence between teacher and student

outputs could be a good choice for regularization. However, reward functions are real-

valued functions and therefore probabilistic distance metrics do not fit. Thus, we propose to

regularize the expected L2-norm of the difference between the reward functions, as shown

in Equation 2.5, in which π(i) is the optimal policy under reward function R(i)
θi

.

Lreg = E(s,a)∼π(i)

(∣∣∣∣∣∣R(i)
θi
(s, a)−R(0)

θ0
(s, a)

∣∣∣∣∣∣
2

)
(2.5)

Note that we are using an index both on θ and R to denote that each strategy-combined

reward R(i) has its own reward parameters, and that these are approximated by separate

neural networks with parameters θi for each strategy and θ0 for the task reward. There is
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no parameter sharing between strategy and task reward.

Due to the computational cost of optimizing π(i) using RL, we seek to avoid fully opti-

mizing it inside the IRL loop. Therefore, we apply an iterative reward function and policy

training schedule, similar to AIRL. Through such way, we could learn reward function and

policy simultaneously. Combining AIRL’s objective (Equation 2.3) with the distillation

objective, we want to maximize LD in Equation 2.6.

LD =
N∑
i=1

[
E

(s,a)∼τ (i)j ∼D(i) logDθi(s, a)

+ E(s,a)∼π(i) log(1−Dθi(s, a))

− E(s,a)

(∣∣∣∣∣∣R(i)
θi
(s, a)−R(0)

θ0
(s, a)

∣∣∣∣∣∣
2

)] (2.6)

D is dependent on θi via Equation 2.2 (R(i)
θi

corresponds to fθ). Each π(i) optimizes2 R
(i)
θi

.

Yet, while Equation 2.6 should be able to distill the shared reward into R
(0)
θ0

, the distil-

lation is inefficient as R
(0)
θ0

will work as a strong regularization for R
(i)
θi

before successful

distillation.

Instead, our proposed reward structure in Equation 2.4 allows for a two-column re-

parameterization, speeding up knowledge transfer and making the learning process easier

[45]. Combining Equation 2.4 and Equation 2.6, we arrive at Equation 2.7.

LD =
N∑
i=1

[
E

(s,a)∼τ (i)j ∼D(i) logDθi,θ0(s, a)

+ E(s,a)∼π(i) log (1−Dθi,θ0(s, a))

− αiE(s,a)

(∣∣∣∣∣∣∣∣R̃(i)
θi
(s, a)

∣∣∣∣∣∣∣∣
2

)]
(2.7)

The key difference between Equation 2.7 and Equation 2.6 is that D depends on both

R
(0)
θ0

and R̃
(i)
θi

instead of separate R(i)
θi

. Thus, R(0)
θ0

directly updates from the discriminator’s

2We choose Trust Region Policy Optimization (TRPO) [28]
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loss rather than waiting for knowledge to be learned by a strategy-combined reward and

subsequently distilled into a task reward. Further, the last term of Equation 2.7 reduces to a

simple L2-regularization on strategy-only reward’s output, weighted by αi. This formula-

tion provides us with a new view to interpret the relative weights of the strategy-only reward

αi: the larger αi is, the more the strategy-only reward will influence the strategy-combined

reward. Therefore, we will have higher regularization to account for possible overwhelm-

ing of the task reward function. Comparing Equation 2.7 and 2.3, we could interpret MSRD

in another view: optimizing θi only via IRL objective results in a combination of task and

strategy reward, and adding regularization on strategy reward will encourage to encode

only necessary information in θi and share more knowledge in θ0.

2.4.3 Multi-Strategy Reward Distillation

We summarize our algorithm in Algorithm 1. In the algorithm we first collect the heterogeneous-

strategy expert dataset and initialize network parameters as well as relative weights. For

each training epoch, we will iterate over all strategies (line 5). For each strategy, we first

collect K trajectories generated by its corresponding policy π(i) (line 6). We also sample

expert trajectories for strategy i from the dataset (line 7). We then train the Discriminator

(reward function) with loss given by Equation 2.7 and data τ gen
j and τ exp

j (line 8). After

training the reward function, we could assign pseudo-reward to trajectories we generate

with reward function R(i)
θi

(line 9). Finally, we update the policy according to the trajectory

generated and pseudo-reward signal (line 10). In practice, we could also postpone the gra-

dient update for R(0) at the end of one sweep of strategies to stabilize the learning of the

task reward.

2.5 Experiment Setup

We tested MSRD on both virtual and real-world environments. Here, we describe our

experiments, showing results in Section 2.6.
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Algorithm 1 Multi-Strategy Reward Distillation

1: Obtain heterogeneous-strategy expert datasetD(i) = {τ (i)1 , · · · , τ (i)M } ∀i ∈ {1, · · · , N}

2: Initialize R(0), R(i), π(i) ∀i ∈ {1, 2, · · · , N}
3: Determine relative weights αi ∀i ∈ {1, 2, · · · , N}
4: while not converged do
5: for i = 1 to N do
6: Collect K (K ≤M ) trajectories τ gen

j by executing π(i)

7: Sample K trajectories τ exp
j from D(i)

8: Train θi and θ0 with Equation 2.7, τ gen
j and τ exp

j

9: Assign reward for all transitions in τ gen
j : r(s, a) = R

(i)
θi
(s, a)

10: Update policy πi using trajectories τ gen
j via TRPO with entropy bonus to encour-

age exploration
11: end for
12: end while
13: return R(0), R(i), π(i)

2.5.1 Virtual Experiments

We first tested MSRD on two simulated environments: a simpler inverted pendulum control

task and a more difficult hopper locomotion task (see Figure 2.5). The goal of the inverted

pendulum task is to balance a pendulum on a cart by moving the cart left/right, making

it a single degree of freedom (DoF) problem, based on a 2D observation. The reward for

inverted pendulum is defined as the negative absolute value of the pendulum angle from

upright position. The objective of hopper is to control 3-DoF joints to move forward based

on its 11-dimensional observation. The reward for hopper is defined as the speed at which

it moves forward. We used the OpenAI Gym [47] MuJoCo [48] implementation for both

environments but made the following changes to fit our application: 1) remove termination

judgements to gain flexibility in behaviors; 2) add timeout constraint of 1,000 steps.

Heterogeneous Demonstration Collection

Our algorithm can utilize heterogeneous-strategy demonstrations. Therefore, we first need

to generate a variety of demonstrations to emulate heterogeneous strategies that humans
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will apply in solving problems for our virtual experiments. Typical RL algorithms can only

generate single-modal policy for each task in attempt to maximize the task reward. Some

previous work has tried to generate diverse behaviors [49, 50]. Among them, Diversity is

All You Need (DIAYN) trains a discriminator to distinguish different behaviors and trains

policies utilizing the discriminator’s output as a pseudo-reward. The pseudo-reward is

shown in Equation 2.8, where z is the strategy index, q is the posterior decoding z from

s, and p(z) is the prior distribution. However, DIAYN only discovers different behaviors

without task specification, so we augment DIAYN to incorporate task reward by the linear

form of Equation 2.4.

rz(s, a) = log qφ(z|s)− log p(z), (2.8)

We also propose a method to encourage different strategies taking different actions in

the same state via a diversity reward in which k is the strategy index and πk is the policy for

strategy k (Equation 2.9). Equation 2.9 encourages the KL-divergence between different

strategy’s policies to be large. Linearly combining KL-encouraged diversity reward with

the task reward, we can train strategies that optimize both the task goal and the diversity

goal.

rkKL(s) =
N∑
i=1

KL(πk(·|s)||πi(·|s)), (2.9)

We trained both “DIAYN + Extrinsic Reward” and ”KL-Encouraged + Extrinsic Reward”

policies to collect heterogeneous trajectories that applied different strategies to solve the

task. From all the strategies generated, we chose 20 strategies for inverted pendulum and

the two most significant strategies for hopper. Generally, different strategies in inverted

pendulum encourage the cart to stay at different angles, but some strategies maintain dy-

namic balance by periodically moving the cart left and right. Two different strategies in

hopper are ”Hop” and ”Crawl” as illustrated in Figure 2.5.
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2.5.2 Real-World Experiments

For our second environment, we tested MSRD on its capability to learn various table tennis

strokes from expert human demonstration. Participants were asked to kinetically teach a

robot arm to hit an incoming ping pong ball using three different stroke strategies: push,

slice, and top spin, from both a forehand and backhand position.

The setup of our table tennis environment consists of a 7-degree of freedom Sawyer

robot arm from Rethink Robotics, two Go-Pro Hero7 cameras, and a Newgy Robo-Pong

2055 ball feeder. The angle and speed the ball feeder is set to was calculated empirically

previous to collecting human demonstrations and kept constant throughout our experiment.

To communicate with Sawyer, we used Rethink Robotic’s Intera SDK that integrates

seamlessly with the Robot Operating System (ROS) middleware. We record the partici-

pant’s demonstrations by subscribing to the robot joint state topic. This provides us with

joint position and velocity at a rate of of 100 Hz.

For our vision system, we used the GoPro Hero7 Black to track the ping pong ball’s

trajectory throughout the demonstrations. We chose these cameras for their high frame rate.

ElGato Camlinks were used as a connection bus to convert readily stream image data into

the computer. This permits us a streaming rate of 60 Hz. To estimate the ping pong ball

3D position in real-world, we chose the triangulation method with a parallel axis camera

set up of stereo vision. We utilized OpenCV [51] Library to detect the ball using carefully

designed HSV values and contour size. We utilize ping pong ball transition dynamics

alongside the calculated location of the ping pong ball in a Extended Kalman Filter to

produce an accurate estimate of the ping pong ball’s location throughout a trajectory.

Experiment Design and Subjects

We adopt a within-subjects design for demonstration collection, requiring subjects finish all

six combinations of positions and strategies. We pseudo-randomized the order of forehand

and backhand, as well as the order of three strategies. We recruited 10 subjects from a
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population of college graduate students. Subjects were compensated.

Experiment Procedure

When the participants arrived, they read and signed a consent form detailing the purpose,

duration, and study procedure. For each trial, we began by showing a video tutorial on how

to move the robot arm to hit the incoming ball with a specific strategy. After the tutorial,

we allowed participant to practice with the automatic ping pong feeder. Once the subject

felt ready, we began the recording process. Saved trajectories were those in which the

participant was able to successfully return the ball to the opponent’s side and the movement

of striking closely resembled the strategy assigned. We collected three recordings for each

condition. We record at each timestep of the trajectory the robot joint angles, angle rates

and the ball position.

2.6 Results

In this section, we report and analyze MSRD’s results on three environments and bench-

mark against AIRL to elucidate MSRD’s advantage on recovering both the latent task re-

ward (the essential goal of the demonstrators) and the means by which the task is accom-

plished (i.e. the strategy). We explore two hypotheses:

H1: The task reward learned by MSRD has a higher correlation with the true task reward

than AIRL.

H2: Strategy-only reward learned by MSRD has a higher correlation with true strategic

preferences than AIRL.

We assessed both hypotheses quantitatively and qualitatively for the simulation envi-

ronments only as the ground-truth reward functions are available. In the physical robot

experiment, users are instructed to execute the task instead of optimizing an objective func-

tion, meaning that we do not have access to the underlying task reward or strategy-only

rewards. Therefore, H1 and H2 were assessed qualitatively in the physical robot experi-
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Figure 2.1: Correlation between ground-truth and estimated task reward, normalized for
each strategy to [0, 1], for inverted pendulum (left) and hopper (right) environments. Re-
ward is invariant to shift/scale. r is correlation coefficient.

ment. We leverage end-to-end neural network architectures to avoid manual feature extrac-

tion. Furthermore, we wanted to provide a fair comparison between methods; given MSRD

leverages AIRL, the most appropriate choice is thus AIRL.

2.6.1 Simulated Environments

To test H1, we constructed a dataset of trajectories that have various task performances

utilizing noise injection [52]. We note that this dataset was also generated with various-

strategy policies to be representative of the entire trajectory space. We then evaluated

the reward function learned by AIRL and MSRD on the trajectories, comparing estimated

vs. ground-truth rewards. We show a correlation of estimated rewards and ground-truth

task rewards in Figure 2.1. The task reward function learned through MSRD has a higher

correlation with the ground-truth reward function (0.998 and 0.943) versus AIRL (0.51 and

0.89) for each domain, respectively). AIRL’s reward function overfits to some strategies

and mixes the task reward with that strategy-only reward, making its estimation unreliable

for other strategies’ trajectories.

To test H2, we calculated the correlations of MSRD’s strategy-only rewards with the

true strategic preferences and compared that with the correlation of AIRL’s rewards when
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Figure 2.2: Correlation between ground-truth vs. estimated strategy reward by MSRD and
AIRL on Inverted Pendulum.
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Figure 2.3: Task/Strategy Reward Functions of Inverted Pendulum vs Pendulum Angle and
Corresponding Behaviors.

AIRL is trained on each individual strategy. In simulated domains, true strategic prefer-

ences are available as the pseudo-reward in Equation 2.8 and 2.9. Correlations of both

methods for all strategy rewards in inverted pendulum are shown in Figure 2.2. A paired

t-test shows that MSRD achieves a statistically significantly higher correlation (M = 0.779,

SD = 0.239) for the strategy rewards versus AIRL (M = 0.635, SD = 0.324) trained sep-

arately for each strategy, t(19) = 1.813, p = 0.0428 (one-tailed). A Shapiro-Wilk test

showed the residuals were normally distributed (p = 0.877). For the hopper domain,

MSRD achieved 0.85 and 0.93 correlation coefficient for the hop and crawl strategy, com-

pared with AIRL’s 0.80 and 0.82 respectively. We omit a t-test here due to the limited

number of strategies. We could test the discrimination of strategy rewards by evaluating

each strategy’s reward function on each strategy’s trajectory; we expect to observe that the

strategy-only reward function of each strategy gives its corresponding trajectory the high-

est reward. We show in Figure 2.4 that this expectation holds. Out of 20 strategy-only

rewards, 16 receive highest rewards in corresponding trajectories. A Binomial test shows

we are significantly better than chance (p < .001).
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We are unable to examine the reward landscape in the inverted pendulum environment

as it is four dimensional. Thus, we choose to fix three dimensions (cart position, cart ve-

locity and pendulum angular velocity) to zero and investigate the reward change within the

one remaining dimension (pendulum angle). The relationship between rewards and pendu-

lum angles in task and strategy reward functions are illustrated in Figure 2.3, in which the

task reward function reaches its peak when the angle of the pendulum is near zero. This

precisely recovers the task reward. For strategy-only reward functions, strategy 13 encour-

ages the pendulum to lean left (demonstration behavior shown in bottom-left of Figure 2.3),

while strategy 4 encourages the policy to tilt the pendulum right (demonstration behavior

shown in bottom-right). Therefore, strategy-only rewards learned by MSRD captures spe-

cific preferences within demonstrations. Figure 2.3 also shows the magnitude of the task

reward is larger than the strategy reward, which affirms our expectation that an emphasis is

being put towards accomplishing the task.

In the hopper environment, it is harder to visualize the reward landscape due to a high-

dimensional observation space and a lack of interpretability of states. Therefore, instead of

visualizing a reward curve, we evaluate the estimated strategy-only reward on trajectories

from both strategies to provide evidence for H2. Figure 2.5 shows that when given a hop-

ping trajectory, the hop strategy-only reward function gives higher reward for that behavior

than crawl strategy-only reward function. Similarly, in the crawl trajectory case (Figure

2.5), the crawling strategy-only reward gives a higher value than the hop strategy-only re-

ward. Therefore, the strategy-only reward function recovered by MSRD gives a higher

reward to the corresponding behavior than the other strategy-only reward function, thus

providing encouragement to the policy towards the intended behavior (H2).

These results across our simulated environments show our algorithms’ success in both

task reward recovery and strategy reward decomposition. This capability is a novel contri-

bution to the field of LfD in that we are able to tease out strategies from the underlying task

and effectively learn policies that can reproduce both the strategy and a well-performed
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Figure 2.4: Evaluation of strategy rewards on strategy trajectories (Inverted Pendulum);
rows normalized to [0, 1].

policy for the underlying task.

2.6.2 Physical Environment

Each strategy was trained for approximately 30 minutes, totaling to 1.5 hours for the three

strategies (push, topspin, slice). However, lingering balls that remain on the table due to

collision with the net need to manually removed. Also, balls need to be picked up and

reloaded into the feeder after every 2-4 iterations (each training iteration consists of six

strikes, two of each type). This process resulted in a total training time of 2.5 hours.

We utilize four deep neural networks (DNNs) consisting of three fully connected layers

(32 nodes on each hidden-layer) to represent task, push, slice and topspin rewards. The
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Figure 2.5: Hop and crawl strategy reward on Hop (top) and Crawl (bottom) trajectories.
Blue and orange numbers are learned Hop and Crawl strategy rewards, respectively.

ball states alongside robot arm joints serve as our inputs. The label of different types of

demonstration (forehand-push, backhand-slice, etc.) is available to our algorithm. Figure

2.6 shows four frames of the learned trajectories for our defined strategies. The change in

angle and the upward/downward motion of the paddle throughout the policy trajectory are

key factors in the display of different strategies (as these induce spin). Push is associated

with a small change in angle as it is not attempting to add any spin onto the ball. Slice

places a backspin on the ball, and thus the angle of the paddle will quickly tilt up as shown

in Figure 2.6. Conversely, topspin places a topspin on the ball; to do so, the associated

trajectory has a quick upward motion. Figure 2.7 provides quantitative evidence that the

strategy-only reward should be maximal given a demonstration utilizing the corresponding

strategy. After just 30 minutes of training on each strategy, the robot was able to learn to

strike 83% of the fed balls. The robot learned to perform all strategies, and the robot’s best

strategy, topspin, resulted in 90% of balls returned successfully.

To further verify that our task reward was learning the correct behavior, the task reward

function was used to evaluate each of the demonstrated trajectories (three trajectories for

each of the three strategies). In the case of the original demonstrations (i.e., where the ball

was struck and landed in bounds), the average and standard deviation of the task reward

across demonstrations and strategies was 1.476± 0.051. We then virtually manipulated the
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Figure 2.6: Different strategies learned in robot table tennis task. Top to bottom: Push,
Slice, and Topspin.

trajectories to indicate that the ball was unsuccessfully returned, which achieved an average

and standard deviation for the task reward of only 1.284 ± 0.042. A Friedman Test shows

this result is statistically significant (χ2(1, 9) = 9, p < 0.05), providing support that our

task reward is learning to identify successful returns, as unsuccessful trajectories should

be associated with lower reward when compared to successful. In this real-world robot

control task, we see that MSRD can successfully recover all three strategies’ behaviors

using human data.
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Figure 2.7: Evaluations of Strategy Rewards on Strategy Trajectories for Table Tennis.
Each row is normalized to [0, 1].

2.7 Discussion and Future Work

2.7.1 Discussion

As I have discussed in Section 1.2.1, state-action pairs of heterogeneous demonstration il-

lustrate multiple-mode pattern. Like most GAN-based IRL methods, AIRL’s reward and

policy try to do mode seeking and ignore all other modes, which is illustrated in Figure

2.1. AIRL’s mode seeking behavior is exactly the reason why it could mimic a movement

very well, compared with coverage-seeking methods such as direct imitation learning [53].

However, a mode-seeking reward is biased and the policy could be a mixture of the un-

derlying task and demonstrator’s personal preference. MSRD, on the other hand, cover all
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the modes with all strategy rewards and the task reward, while also providing the mode-

seeking possibility with each individual strategy reward for each strategy. Therefore, it has

near-perfect recovery of the task reward as well as good policies that could achieve the task

with different strategies.

2.7.2 Future Work

One clear drawback of MSRD is that it requires an explicit labelling for which strategy a

demonstration lies in. In some tasks it is very easy for a human to help identify the correct

labelling (hop or crawl). However, sometimes demonstrations could be a mixture of several

strategies, and a numerical weighting of each strategy is a non-trivial task for a human

being. In the future work, one could to utilize different strategy inference methods (i.e., to

infer the strategy label) to allow for unlabeled demonstrations and then apply MSRD with

the labels. One could also design methods that dynamically adapt the relative weighting of

each strategy reward for each demonstration while also learning for the reward functions,

making it possible to let two processes adjust to each other.
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CHAPTER 3

HETEROGENEOUS-PERFORMANCE REWARD LEARNING

3.1 Introduction

In this chapter, we turn our attention to the second type of heterogeneity in demonstration,

heterogeneous-performance levels (see explanation in Section 1.2.3), to “automatically”

determine which demonstration is the best and try to learn to be close to it or, even better,

achieve higher performance than it. To accomplish this aim, we again argue that learning a

reward function that can discriminate between higher or lower performance is a promising

approach. As long as we are able to recover an accurate reward function from the subop-

timal demonstrations, we would then be able to apply Reinforcement Learning methods to

optimize such reward function and obtain an optimal policy, as shown initially in [54, 52].

Despite the large number of IRL methods introduced in Section 2.2, almost all of them

assume the optimality of demonstrations to some extent. Maximum margin approaches

require absolute optimality of the demonstration, while probabilistic approaches such as

maximum-entropy IRL and Bayesian IRL relaxes it to near-optimal. They infer the reward

function based on the principle that the given demonstrations have high or the highest re-

turn (or high probability if trajectories probability are proportional to the return) among all

the possible trajectories. This principle does not hold for the case of completely suboptimal

demonstrations. However, the real learning signal that optimal demonstrations give to IRL

is that demonstration is better than all other trajectories (better meaning higher cumula-

tive ground-truth rewards), which is technically a binary classification signal that we could

possibly replicate in the case of suboptimal demonstration. Although we do not know a

trajectory that has the highest reward among all the trajectories, we could have access to

some relative relationship between trajectories, e.g., one demonstration is better than an-
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other or how much is one demonstration better than another. Such relationship information

could be accessed by querying humans [54] or automatically generated [52]. Although

demonstrations are suboptimal, such relationships are mostly true and thus could lead us to

an accurate reward function.

Following such thoughts, we propose Self-Supervised Reward Regression (SSRR), and

further combine it with another novel approach, Optimality-Parameterized Adversarial In-

verse Reinforcement Learning (OP-AIRL). We demonstrate the success of both methods in

two simulated robotic domains, and achieve an even better performance when combining

both.

We begin in Section 3.2 with a introduction of a closely related previous work, Disturbance-

based Reward Extrapolation (D-REX). In Section 3.3, we introduce our Self-Supervised

Reward Regression (SSRR) algorithm to accomplish reward learning from suboptimal

demonstrations, followed by Section 3.4 showing its success on two simulated robot con-

trol tasks. In Section 3.5, we further introduce a novel data generation method for SSRR

called Optimality-Parameterized Adversarial Inverse Reinforcement Learning (OP-AIRL)

substituting AIRL in original SSRR. We show that with OP-AIRL, SSRR works even better

and achieve a much better performance than the best demonstration in Section 3.6. Finally,

in Section 3.7 we conclude the contributions and point out some limitations that motivates

future work.

3.2 Preliminaries

Our method draws inspiration from Disturbance-based Reward Extrapolation, D-REX [52],

which is a method to automatically generate ranked demonstrations and then learn from

them. D-REX works by taking suboptimal demonstrations {(st, at)} and applying behavior

cloning on them first:

πBC = argmax
π

∏
π(at|st). (3.1)
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Figure 3.1: Diagram for D-REX

Then we could add noise (uniform sampling of an action) to the learned πBC to get noisy

trajectories (noise percentage η):

τη ∼ πη(a|s) = ηU(a) + (1− η)πBC(a|s). (3.2)

U(a) represents uniform distribution over the entire action space.

Via such noisy trajectory generation method, we could obtain trajectories associated

with different noise levels η ∈ [0, 1]. D-REX makes the assumption that the higher the

noise level is, the lower the trajectory should be ranked, i.e.,

∀ηi > ηj, R(τηi) < R(τηj). (3.3)

R represents cumulative reward calculation from trajectory R(τ) =
∑T

i=0 γ
trt.

D-REX learns the reward directly through supervised learning on the ranking, using a

pairwise ranking loss:

L(θ) = − 1

|P|
∑

(i,j)∈P

log
exp

∑
s∈τi Rθ(s)

exp
∑

s∈τi Rθ(s) + exp
∑

s∈τj Rθ(s)
, (3.4)
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where P = {(i, j) : τi � τj} = {(i, j) : ηi < ηj}.

In the implementation of D-REX, authors also introduced “snippets”, which are sub-

sampled variant-length consecutive segments from full trajectories, and the ranking pair

dataset is based on such snippets instead of full trajectories to increase the data amount.

Moreover, D-REX only generates ranked pairs if their noise level is different by at least a

margin, i.e., ηi + ε < ηj and D-REX implementation uses ε = 0.3. The process of D-REX

is illustrated in Figure 3.1.

3.3 Self-Supervised Reward Regression

3.3.1 D-REX Assumption

We argue D-REX’s loss function does not accurately reflect the noise-performance relation-

ship. It is generally correct to assume higher noise leads to lower rewards, but D-REX’s

loss function implicitly adds an assumption for the structure of performances between noise

levels. It could be illustrated in a simple 3-noise-level situation.

Theorem 1. Suppose there are 3 trajectories associated with 3 noise levels, namely (η1, τ1),

(η2, τ2), and (η3, τ3), with η1 < η2 < η3. Denote the cumulative reward for τi as ri. Then

we have r2 = r1+r3
2

.

Proof. We could view the problem as fixing r1 and r3, then to optimize r2 to minimize

Equation 3.4.
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Denote Ri = exp(ri). Thus, we could write the loss

L(R1, R2, R3) = − log
R1

R1 +R2

− log
R1

R1 +R3

− log
R2

R2 +R3

R̂2 = argmin
R2

L(R1, R2, R3)

= argmax
R2

log
R1

R1 +R2

+ log
R1

R1 +R3

+ log
R2

R2 +R3

= argmax
R2

log
R1

R1 +R2

+ log
R2

R2 +R3

= argmax
R2

log
R1

R1 +R2

R2

R2 +R3

= argmax
R2

log
R1

R2 +
R1R3

R2
+R1 +R3

(3.5)

Note that R2+
R1R3

R2
≥
√
R1R3 and the equation holds and only holds when R2 =

√
R1R3.

Thus,

log
R1

R2 +
R1R3

R2
+R1 +R3

≤ log
R1

R1 +R3 + 2
√
R1R3

(3.6)

and the equality holds and only holds whenR2 =
√
R1R3. Therefore, the loss is minimized

when R2 =
√
R1R3, which is equivalent to r2 = r1+r3

2
.

Thus, D-REX’s loss function assumes an invariant structure between noise levels across

environments or noise options. We show in the next section that this is generally incorrect.

3.3.2 Real Performance-Noise Relationship

We now look into the performance-noise relationship when we have access to the ground-

truth reward. Here, we plot such relationship for seven Atari games and five MuJoCo

control tasks in Figure 3.2a and Figure 3.2b, respectively. In the figures, row represents

different MDP environment, and column represents different policy optimization methods

whose optimized policies are injected with noise. In each graph, x-axis represents the

noise level, and y-axis represents the ground-truth return. Solid lines are performance
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(a) Atari Performance-Noise Relationship

(b) MuJoCo Performance-Noise Relationship

Figure 3.2: Performance Degeneration with Noise Levels Increase on Atari and MuJoCo
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averaged over 20 repeats on each noise level, and shadows are standard deviations over

the 20 repeats. It is clear that under different environments and different policies, the

performance-noise relationships are different and non-linear. D-REX’s reward learning

approach assumes homogeneous performance-noise relationship across all environments,

which is inappropriate as shown.

But how can we do better? An important observation from Figure 3.2a and 3.2b is that

the relationship could be fit very well with a 4-parameter sigmoid function:

σ(η) =
c

1 + exp(−k(η − x0))
+ y0. (3.7)

The fitting results are shown in Figure 3.3a and 3.3b.

Therefore, if we could have a way to extract such curve on our heterogeneous-performance

demonstrations instead of blindly following the same relationship assumption as D-REX

does, the learned reward should be more accurate and also lead to better policy training.

3.3.3 Self-Supervised Reward Regression

As illustrated in Figure 3.4, the idea of Self-Supervised Reward Regression (SSRR) starts

with utilizing AIRL on the demonstrations to obtain a initial reward R̃ and a initial policy π̃.

Similar to D-REX, we inject noises into the learned policy but in addition, we also utilize

the initial reward R̃ to criticize the generated noisy trajectories. Thus, the trajectories now

consist of four parts: the noise parameter η, state st, action at, and the corresponding initial

reward r̃t = R̃(st, at).

Since we now have access to the initial reward, we will be able to generate the ap-

proximate performance-noise relationship just as what we did for ground-truth reward in

Section 3.3.2 and fit a sigmoid function to represent the relationship. We argue that de-

spite the roughness and possible non-smoothness of the AIRL reward (represented by neu-

ral network), a sigmoid function only has 4 parameters and is a well-behaving function.
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(a) Atari Performance-Noise Relationship Fitted by Sigmoid Function

(b) MuJoCo Performance-Noise Relationship Fitted by Sigmoid Function

Figure 3.3: Performance Degeneration with Noise Levels Increase Sigmoid Fit on Atari
and MuJoCo
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Figure 3.4: Self-Supervised Reward Regression Diagram

Therefore, even if the initial reward is not absolutely accurate, the fitted sigmoid function

could filter out high-frequency noises and be precise. Instead of doing the pairwise ranking

classification as in D-REX, we now have a good estimation of the corresponding reward

value for each noise level, and we could regress the trajectory cumulative rewards to the

sigmoid results, i.e. minimizing a mean squared error (MSE) loss:

LSSRR = Eτ i

(( T∑
t=0

R(sit, a
i
t)

)
− σ(ηi)

)2
 . (3.8)

3.4 Results of SSRR

In this section, we show the learning results of SSRR in two simulated robotic task domains:

HalfCheetah and Hopper. The environment setup is the same as in Chapter 2 (MuJoCo

implementation). In our results below, we show a comparison of how well our approach is

able to infer the ground-truth reward function versus D-REX. By learning a more accurate

reward function, we are laying groundwork to then learn a policy that can more readily

transcend the quality of the initial human demonstration.
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Table 3.1: Learned Reward Correlation Coefficients with Ground-Truth Reward Compari-
son between SSRR and D-REX on HalfCheetah (Noisy Training data generated by Behav-
ior Cloning)

Repeat BC + D-REX BC + SSRR
1 0.902 0.917
2 0.859 0.936
3 0.917 0.889
4 0.933 0.933
5 0.866 0.912

Mean (Std. Dev. ) 0.900 (0.025) 0.929 (0.017)

Table 3.2: Learned Reward Correlation Coefficients with Ground-Truth Reward Compari-
son between SSRR and D-REX on HalfCheetah (Noisy Training data generated by AIRL)

Repeat AIRL + D-REX AIRL + SSRR
1 0.830 0.911
2 0.804 0.962
3 0.810 0.943
4 0.832 0.935
5 0.814 0.912

Mean (Std. Dev. ) 0.818 (0.011) 0.933 (0.019)

3.4.1 HalfCheetah

Similar to Chapter 2, we compare the learned reward function’s correlation with ground-

truth reward between SSRR and D-REX. Across all the experiments on HalfCheetah in

this Chapter, the original demonstration is just a single demonstration that has 187.7 undis-

counted cumulative rewards, which is highly suboptimal as an optimal trajectory typically

reaches more than 2, 000 rewards.

We identified that both algorithms’ performances are highly related to the generated

noisy trajectories, i.e., different random seeds generate different noisy trajectories and it

could dramatically influence the following reward learning process. Also, D-REX uses its
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Behavior Cloning policy in trajectory generation while SSRR utilizes AIRL’s policy. In or-

der to make an apple-to-apple comparison, we have to fix the same noisy trajectory dataset

for the two algorithms to learn and to compare. Therefore, we generated five noisy datasets

from Behavior Cloning and five noisy datasets from AIRL and criticizes all datasets through

AIRL’s reward function for SSRR.

The result of running SSRR and D-REX on Behavior Cloning dataset is shown in Table

3.1. Since SSRR and D-REX learn from the same dataset for each row, we could apply

paired t-test to examine the difference. According to Shapiro-Wilk test for normality, we

cannot reject the Gaussian null hypothesis for the paired differences between SSRR and

D-REX (p = 0.965). Further, single-tail paired t-test shows SSRR’s correlation is not

significantly higher than D-REX (t = 1.208, p = 0.147).

For AIRL dataset, the result of correlation coefficient between SSRR and D-REX is

shown in Table 3.2. Similarly, we cannot reject the Gaussian null hypothesis for the paired

differences (p = 0.703). Single-tail paired t-test shows SSRR’s correlation is significantly

higher than D-REX (t = 8.358, p = 0.0005). As such, we argue the reason why SSRR

with AIRL data works much better than SSRR with BC data is that AIRL’s initial reward

R̃ has better knowledge to criticize its paired policy, π̃. In contrast, BC trajectory could

deviate from what the initial reward R̃ learns during training. This highlights the need

to get a reasonably reliable initial reward R̃ that could criticize the corresponding noisy

trajectories, which we will have further discussion in Section 3.5.

We also show reward correlations between learned reward and ground-truth reward of

SSRR and D-REX from one example run in Figure 3.5a and 3.5b. Red dots represent the

demonstration given to BC/AIRL to learn from. Blue dots are the noise injected trajec-

tories, which are also D-REX and SSRR’s direct learning source. Green dots are unseen

trajectories that are used to “test” the learned reward function. We note that the same set

of “green dots” (test set) is used across this Chapter. Both SSRR returns and D-REX re-

turns are normalized to be in the same magnitude as ground-truth returns, which will not
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(a) Correlation with Ground-truth reward from our method, SSRR, on HalfCheetah.

(b) Correlation with Ground-truth reward from D-REX on HalfCheetah.

Figure 3.5: Learned Reward Function’s Correlation with Ground-Truth Reward, Compared
between Our Method, SSRR and D-REX, on HalfCheetah.
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affect the meaning of the reward function, as reward functions are invariant under affine

transformation.

3.4.2 Hopper

Demonstrations we use for Hopper experiment are 400 demonstrations with their averaged

undiscounted cumulative rewards of 1029.1, while optimal policy typically has more than

2000 rewards.

The Hopper environment is more tricky because, unlike HalfCheetah, the default Hop-

per environment will terminate the episode when the agent falls down. Further, the agent

cannot rely on its three joints to stably “stand” in the environment. Combining these two

facts, a trivial reward function of always give +1 reward for each timestep alive in the en-

vironment could easily help the RL algorithm to learn the optimal behavior, since once the

agent stops hopping forward, it dies and stops receiving the positive reward. We show the

correlation between the lengths of episodes (equivalent to +1 reward for each timestep)

and ground-truth returns in Figure 3.6, which has a correlation coefficients of 0.997. Thus,

in order to avoid the trivial solution, we keep the agent alive even when it falls, and it could

still crawl forward, as shown in Figure 2.5. Unfortunately, after such change to the envi-

ronment, both SSRR and D-REX fail to learn a reasonable reward function. One drawback

of SSRR with the AIRL noisy dataset is that AIRL did not learn a good-enough initial re-

ward so that SSRR could not find an accurate sigmoid function. This weakness motivates

our next section, which aims to model suboptimal demonstrations directly in the reward

function even in the noisy data generation process.

3.5 Optimality-Parameterized Adversarial Inverse Reinforcement Learning

The main problem in the previous SSRR approach is that the its success depends on re-

liable initial reward learning, especially the accuracy on the noisy trajectories that SSRR

will learn from. For the case of suboptimal demonstration, AIRL might fail to learn an
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Figure 3.6: Episode Length Correlation with Ground-Truth Reward in Hopper

accurate model of the idealized reward because it assumes that the demonstrations - in this

case, suboptimal demonstrations - are the idealized demonstrations. Besides, all the gen-

erated state-action pairs during AIRL training are noise-free, and thus R̃ might not have

the greatest ability to criticize noisy trajectories, which is exactly what we use for SSRR

learning.

In light of that limitation, we propose to modify AIRL’s discriminator definition to

let it learn from demonstrations with different noise levels, which could help carve the

reward function better. We call the method Optimality-Parameterized Adversarial Inverse

Reinforcement Learning (OP-AIRL). It is worth noting that OP-AIRL itself should have the

ability to model a better reward than original AIRL, making it possible to have its policy

better than the best demonstration. We could also combine OP-AIRL with SSRR to achieve

even better performance than stand-alone OP-AIRL or SSRR.

OP-AIRL has three major differences from AIRL, illustrated in Figure 3.7. First, the

discriminator takes an extra input, which is the known noise level of the demonstration, and
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Figure 3.7: Optimality-Parameterized Adversarial Inverse Reinforcement Learning Dia-
gram.

the discriminator is changed to

D =
(1− η)ef(s,a)

(1− η)ef(s,a) + π(a|s)
. (3.9)

The intuition behind the change is that when η = 0, the objective is as usual. When η = 1,

since the result of ef(s,a) is multiplied with 0, the gradient will stop and essentially the

reward function will not be updated, which should be the case since η = 1 means totally-

random policy. Thus, 1 − η works similar to a confidence weight for the incoming state-

action pairs (the higher state-action’s 1−η is, the more the reward will learn from the state-

action pair), whether demonstrated or generated. The second change is the demonstration

now needs to be noisy trajectories. To accomplish such goal, we simply apply a Behavior

Cloning + Noise Injection to obtain noisy trajectories just as D-REX. The third change is

the generated trajectory also needs to be noisy. Thus, we inject noise η when generating

policy’s trajectories as well.

After the three changes, OP-AIRL now takes and generates noisy trajectories and learns

the reward function with known noise level information.
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3.6 Results of OP-AIRL

In this section, we first present the stand-alone OP-AIRL results in terms of its ability to

learn a policy of higher quality than the original demonstrations. Then we show the results

to utilize OP-AIRL as a method to generate better training data for SSRR. With better data

for SSRR, we can then more efficiently train a policy to transcend the quality of the initial

demonstration.

3.6.1 OP-AIRL

We apply OP-AIRL to both HalfCheetah and Hopper, and both achieved a policy better

than best demonstration.

On HalfCheetah, we again use the single 187.7 undiscounted cumulative reward demon-

stration, and OP-AIRL’s policy is able to achieve 591 (316%)1 undiscounted cumulative

reward in its best trajectory. The average return of the final 100 episodes of OP-AIRL is

270 (144%), which is higher than average return of the final 100 episodes of AIRL, 150.

Note that AIRL’s final results are below the demonstration while OP-AIRL’s is higher than

the demonstration. The learning curve of OP-AIRL and AIRL is shown in Figure 3.8. Not

only OP-AIRL could achieve better-than-best-demonstration performance, it is also sample

efficient compared with original AIRL.

On Hopper, we use 400 demonstrations with a mean performance of 1029.1. The re-

sulting OP-AIRL policy achieves 2521 (245%) average return of the final 100 episodes and

a maximum of 3200 (311%) return, shown in Figure 3.9. In contrast, AIRL only achieves

1083 average return of the final 100 episodes and a maximum of 1680 return.

1The number in parenthesis represents the percent improvement over the ground truth reward of the orig-
inal demonstration.
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Figure 3.8: OP-AIRL and AIRL Learning Curve on HalfCheetah. Solid lines are mean of 3
repeats. Shadow represents standard deviation across 3 repeats. Each data point is average
of 10 trajectories generated in one episode.

3.6.2 OP-AIRL+SSRR

The idea of combining OP-AIRL and SSRR is straightforward: substitute the data gen-

eration block of SSRR (for reference, see Figure 3.4) with OP-AIRL (see Figure 3.7).

In this manner, we could get a relatively reliable initial reward R̃ to fit an accurate sig-

moid performance-noise relationship, and then learn reward and policy based on the more-

accurate reward signal.

HalfCheetah

OP-AIRL+SSRR’s reward correlation with ground-truth reward on HalfCheetah is shown

in Table 3.3. For the conveinence of comparison, Table 3.3 also includes results in Ta-

ble 3.1 and Table 3.2. Note that for each row, the correlation coefficients are not paired

comparison since their noisy dataset is different (coming from different noisy dataset gen-

eration methods). Nonetheless, the same OP-AIRL generated noisy dataset is fixed for
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Figure 3.9: OP-AIRL and AIRL Learning Curve on Hopper. Solid lines are mean of 3
repeats. Shadow represents standard deviation across 3 repeats. Each data point is average
of 10 trajectories generated in one episode.

Table 3.3: Learned Reward Correlation Coefficients with Ground-Truth Reward Compar-
ison between SSRR and D-REX with different noisy trajectory generation methods on
HalfCheetah

Repeat
BC AIRL OP-AIRL

D-REX SSRR D-REX SSRR D-REX SSRR
1 0.902 0.917 0.830 0.911 0.668 0.958
2 0.859 0.936 0.804 0.962 0.780 0.942
3 0.917 0.889 0.810 0.943 0.614 0.892
4 0.933 0.933 0.832 0.935 0.762 0.988
5 0.866 0.912 0.814 0.912 0.719 0.964

Mean 0.900 0.929 0.818 0.933 0.709 0.948
(Std. Dev. ) (0.025) (0.017) (0.011) (0.019) (0.061) (0.032)

OP-AIRL+D-REX and OP-AIRL+SSRR to provide apple-to-apple comparison between

SSRR and D-REX. An example of the correlation of the recovered reward functions of

SSRR and D-REX are shown in Figure 3.10a and 3.10b, respectively. Similarly, red dots
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Table 3.4: Learned Reward Correlation Coefficients with Ground-Truth Reward Compari-
son between OP-AIRL+SSRR and OP-AIRL+D-REX on Hopper

Repeat OP-AIRL + D-REX OP-AIRL + SSRR
1 0.048 0.919
2 0.159 0.902
3 -0.076 0.832
4 -0.020 0.950
5 0.011 0.929

Mean (Std. Dev. ) 0.024 (0.079) 0.906 (0.040)

represent the demonstration given to BC or AIRL to learn from; blue dots are the noise in-

jected trajectories output by OP-AIRL; and green dots are unseen trajectories that are used

to “test” the learned reward function.

We further train reinforcement learning on the reward from SSRR; the results are shown

in Figure 3.11. We are able to achieve mean performance of 1286 (688%) on three repeats

with a standard deviation of 217, which means we surpass the original demonstration (187

performance). In comparison, D-REX only achieves 816 performance as the best one out

of three repeats2.

Hopper

With OP-AIRL, SSRR could successfully recover highly correlated reward functions while

D-REX still completely fails, as shown in Table 3.4.

We also train reinforcement learning on the reward from SSRR on Hopper, which re-

sults in a mean performance of 2611 (254%) on three repeats with 517 standard deviation,

surpassing the original demonstration (1029 performance). Note that on a default Hopper

environment, any positive reward each timestep could just lead to an optimal policy (see

Section 3.4 for detail), but here we consider the “un-dying” Hopper environment. Thus,

2We were not able to reproduce the original performance that D-REX paper reported (972 with std 96.1).
We believe this lack of replication is due to large variance of final results on different noisy datasets, as we
mentioned in Section 3.4. Nonetheless, our new results are significantly higher than the reported results, too.
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(a) Learned Reward Correlation with Ground-Truth Reward of OP-AIRL + SSRR on HalfCheetah

(b) Learned Reward Correlation with Ground-Truth Reward of OP-AIRL + D-REX on HalfCheetah

Figure 3.10: Learned Reward Function’s Correlation with Ground-Truth Reward, Com-
pared between Our Method, OP-AIRL + SSRR and OP-AIRL + D-REX, on HalfCheetah.
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Figure 3.11: Learning Curve of Reinforcement Learning on Reward Learned by D-REX
and OP-AIRL + SSRR

comparing it with D-REX paper’s reported 2072 performance is not a true test of the algo-

rithm’s performance. As such, we focus on our modified Hopper environment where one

cannot learn a reward function by simply correlating the length of the trajectory with the

reward itself.

3.7 Discussion and Future Work

3.7.1 Discussion

In this chapter, we aim to learn from heterogeneous-performance demonstrations, espe-

cially the case when all demonstrations are suboptimal. Despite not having access to

ranked demonstrations from humans to then regress a reward function directly, our ap-

proach nonetheless is able to intelligently bootstrap off of a single, suboptimal demon-

stration to learn a reward function of a latent, more-optimal demonstration. Further, our

approach is able to adapt its bootstrapping approach to each domain, which is an important
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improvement over prior literature (D-REX [52]) that assumes a specific relationship be-

tween task performance and a noise-injection model that is task agnostic. In order to have

a better mechanism for generating helpful training data, we further introduce OP-AIRL.

Combining OP-AIRL and SSRR, we obtain much higher performance policy than the best

demonstration available.

3.7.2 Future Work

In future work, we aim to apply OP-AIRL with SSRR on a physical robotics platform as

we have done for MSRD (Chapter 2). One of the considerations we must have when ap-

plying on physical robots is the safety concern, especially when learning from suboptimal

demonstrations, as the robot might try to explore wildly.

It would also be valuable to provide more theoretical support for OP-AIRL and SSRR.

For example, is sigmoid function powerful enough to capture the performance-noise re-

lationship? Can we bound the error that initial reward has to make sure the success of

sigmoid fitting?

Another interesting related topic is heterogeneous-performance where there is mix of

near-optimal demonstrations and suboptimal demonstrations. Is it possible to identify both

classes? Will the suboptimal demonstrations still be useful even when near-optimal demon-

stration is available, like semi-supervised learning?
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this thesis, I present contributions for my research that advance the capability of Learn-

ing from Demonstration techniques to heterogeneous strategy scenarios and heterogeneous

performance cases.

I began in Chpater 1 with an introduction to the problem of interest for this thesis.

In Chapter 2, I present an algorithm, Multi-Strategy Reward Distillation (MSRD), to

tackle the learning from heterogeneous strategy demonstration problem. This method sep-

arates the task reward component from strategy reward components to achieve both better

task reward recovery and better strategy reward estimation. It is proved to be effective on

two simulated robotic tasks and one real-world robot task.

Next, in Chpater 3, I developed two novel algorithms, Self-Supervised Reward Re-

gression (SSRR) and Optimality-Parameterized Adversarial Inverse Reinforcement Learn-

ing (OP-AIRL), to deal with the learning from heterogeneous performance (suboptimal)

demonstrations. Combining the both algorithms provides us with the ability to not only

learn from heterogeneous performance demonstrations but also a much better final policy

than the best demonstrations available. I showed the effectiveness of OP-AIRL with SSRR

on two simulated robotic tasks.

4.2 Future Work

For learning from heterogeneous strategy demonstration, a direct extension would be to

combine it with strategy-inference methods or joint inference techniques to remove MSRD’s

dependence on strategy labelling. Moreover, I also expect to introduce an empirical covari-
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ance minimization loss between different learned reward functions, which could further

de-entangle different reward components.

For learning from heterogeneous performance demonstration, reducing the system’s

complexity might be an interesting topic, which could help reduce the variance of the ap-

proach and decrease the difficulty to tune the algorithm to new environments. Human-in-

the-loop approaches could also be considered to reduce the tuning effort in the heteroge-

neous performance LfD problem, as it is not too expensive to query human about ranking

of trajectories. Combining near-optimal demonstration with suboptimal demonstration is

also a promising direction.

For other types of heterogeneity, such as heterogeneous environments, heterogeneous

embodiments and heterogeneous tasks, it is possible to utilize meta-learning and Cycle-

GAN to fulfill the transfer between environments and embodiments, and employ sub-task

(skill) learning to accomplish shared learning between tasks.
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