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SUMMARY 

This work addresses the challenges in the investigation of structural alloy 

microstructures and their mechanical properties at multiple length scales. The 

investigations are performed on small volume ferrite-pearlite steel samples that were 

excised from in-service gas turbine components after prolonged exposure (up to 99,000 

hours) to elevated temperatures, which promotes microstructural changes (spheroidization 

of pearlite and graphitization) as well as their yield strengths. Recent advances in spherical 

indentation protocols are combined for the first time to investigate the mechanical response 

of microscale ferrite-pearlite constituents and estimates of bulk properties on macroscale. 

It is shown that indentation yield strength captured with large indenter tips on an ensemble 

of ferrite-pearlite grains correlate strongly to the bulk yield strength evaluated with tensile 

measurements. Measurements on the individual ferrite and pearlite constituents follow a 

similar trend of decreasing yield strength as the bulk measurements.  

Second, to advance the reliability and accuracy of microstructure characterization, 

an image segmentation framework is developed that consists of five main steps designed 

to achieve systematic image segmentation on broad classes of microstructures utilizing 

widely available image processing tools. The flexibility and modularity of the framework 

was demonstrated on various types of microstructures images. The developed framework 

was used to segment the microstructures of ferrite-pearlite samples. The extracted 

microstructure statistics from the segmented images and multiresolution indentation yield 

strength measurements were used to evaluate established composite theory estimates and 

have demonstrated highly consistent estimates for these material systems. 
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CHAPTER 1. 

INTRODUCTION 

Many materials innovation efforts are focused on the study and development of high 

performance hierarchical materials that are needed in advanced technology applications  

[1-4]. Our understanding and ability to design high performance materials critically 

depends on experimental characterization of heterogeneous microstructures and their 

properties at multiple length scales. However, this task is not easy, and even for a single 

alloy requires high effort and considerable time to perform. New protocols are urgently 

needed that can reliably evaluate heterogeneous material microstructures and their 

mechanical properties at multiple resolutions in a high-throughput manner.  

Most structural alloys exhibit hierarchical microstructures that consist of multiple 

constituents (e.g., thermodynamic phases) at different material structure/length scales [5-

8]. The complex spatial arrangements of these constituents in the material’s representative 

volume control the effective mechanical properties used by designers of engineered 

components made from these alloys [9-11]. An example of hierarchical structure of ferrite-

pearlite steel is shown in Figure 1, where different chemical compositions form individual 

phases of α-ferrite and cementite (Fe3C), and the lamellar arrangement of α-ferrite and 

cementite form pearlite grains and α-ferrite grains, and finally, the spatial arrangement of 

ferrite and pearlite grains form a polycrystalline aggregate of the component material. 

Many steel alloy microstructures often consist of soft ferrite matrix and hard grain-scale 

constituents (e.g., pearlite, martensite), which influence strongly the steel’s overall 

mechanical properties such as strength and ductility [5, 12-15]. Consequently, many 
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materials innovation efforts have been focused on the design of material microstructures 

for improved effective mechanical properties needed in advanced technology applications.  

 

Figure 1 - Hierarchical structure of ferrite-pearlite steel. 

Even for a single alloy, the microstructure space can be vast, and the optimization of 

its mechanical properties is not practical without the theoretical guidance of physics-based 

models. Composite theories addressing heterogeneous materials have presented avenues to 

guide and accelerate the optimization of properties [16-23]. In particular, homogenization 

models relate the material’s overall mechanical response to the details of its microstructure, 

and have been successfully demonstrated on various material systems [2, 24-27]. In order 

to successfully guide the design of hierarchical materials through physics-based models, 

evaluation of microstructure and their properties at multiple length scales is essential. 

Specifically, this requires evaluation of (i) the individual properties of the microscale 

constituents, (ii) the macroscale effective properties, and (iii) relevant microstructure 

statistics.  

A significant hurdle in the advancement of composite theories necessary for 

hierarchical materials design has been the lack of a sufficiently large experimentally 

measured datasets of microstructures and their effective properties. The focus of this 

dissertation is to bridge this gap by developing and demonstrating protocols for reliable 
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and high-throughput experimental evaluation of microstructures and mechanical properties 

at multiple resolutions. This is achieved by developing a framework for design of 

workflows for micrograph image segmentation and by extending multiresolution spherical 

indentation stress-strain protocols recently developed by Kalidindi and Pathak [28]. The 

challenges in current experimental evaluation of mechanical properties and image 

segmentation are introduced next, followed by the scope of this dissertation. 

1.1 Challenges in mechanical property testing at multiple length scales 

One of the major challenges in multi-length scale testing comes from the need to 

measure the mechanical properties of individual microscale constituents at very small 

length scales that must be performed on very small material volumes, often on the order of 

microns [29-31]. Most of the current methods used at the different material structure/length 

scales are very different from each other, require substantial investment of time and effort, 

and produce very limited data (i.e., low throughput). As a result, it has not been easy to 

collect consistent and reliable multiresolution mechanical property information on 

heterogenous materials. Conventionally, evaluation of macroscale mechanical properties 

has been performed using uniaxial tension [32] and compression [33] tests to extract stress-

strain curves, which have been standardized and widely adopted. However, adaptation of 

uniaxial testing to microscale constituents using miniaturized versions of uniaxial tension 

[30, 31] or micropillar compression [29, 34] tests has proven to be challenging. Small scale 

uniaxial testing usually requires significant effort and highly specialized equipment for 

sample preparation, such as focused ion beam (FIB) milling for micropillar sample 

fabrication. 



 4 

As a lower-cost and high-throughput alternative to uniaxial testing, indentation 

testing has been performed for many decades. Traditionally, indentation methods utilize 

sharp tip geometries [35] (e.g., Vickers, Berkovich) to probe the mechanical response of 

the material. However, the main limitation of these protocols is that they measure hardness 

values at a specified load/depth and lack the insight into the intrinsic mechanical properties 

captured by uniaxial tests. In fact, there have been many efforts to scale hardness 

measurements to uniaxial stress-strain properties such as the tensile yield strength and 

ultimate tensile strength for various alloys [36-40]. However, these studies generally report 

high variability in hardness measurements on the same material and across different length 

scales [39, 41-43], making it difficult to rely on these results for guiding the efforts aimed 

at the refinement of the multiscale composite theories mentioned earlier. 

1.2 Indentation stress-strain (ISS) protocols 

Recently Kalidindi and Pathak [28] have demonstrated rigorous protocols capable of 

extracting reliable and useful indentation stress-strain (ISS) curves using spherical 

indenters. The consistency and fidelity of these protocols have been demonstrated at 

multiple material length scales [44-55] using different indenter tip sizes. These 

demonstrations have included measurements within regions inside individual grains [44, 

45, 48, 49, 51, 52] as well as on an ensemble of grains [50, 55-59]. These protocols have 

been validated using a combination of measurements on samples where ground-truth data 

(from standard tension tests) was available [50, 55, 57, 59] as well as with numerical 

simulations of the indentation experiment [60, 61]. 
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1.3 Evaluation of microstructure statistics analysis through micrographs 

The second major challenge in the study of the heterogenous materials comes from 

the need to label the features of interest (i.e., segment) in the raw microstructure images 

(two or three-dimensional) obtained in microscopy protocols used for evaluation of 

microstructure statistics (e.g., thermodynamic phase volume fraction, n-point statistics [62, 

63]). Often, the raw microscopy images are produced in grayscale, where each pixel (or 

voxel) is assigned a grayscale value between 0 and 255, as shown in Figure 2. However, 

the number of distinct features of interest (e.g., thermodynamic phases) present in the 

sample is typically far smaller than the number of grayscales in the raw images (refer to 

middle image in Figure 2). Evaluation of microstructure statistics is commonly performed 

on segmented microstructure features represented in images collected using various 

microscopy techniques (refer to right image in Figure 2). Raw microscopy images typically 

contain noise that is often highly heterogeneous and requires segmentation procedures with 

multiple image processing functions to tackle various types of noise arising from a 

combination of equipment or sample conditions in the imaging protocols. Therefore, 

segmentation protocols need to be designed to produce the correct labelling of the 

microscale features of interest in the microstructure images. This task is generally achieved 

by assembling together a workflow using a variety of image processing functions and filters 

[64-68]. One of the major hurdles encountered in this process is that the successful 

construction and implementation of the workflow leading to accurate segmentation is 

highly dependent on the user’s expertise in the application of the image processing 

functions. Consequently, these efforts often lead to non-standard approaches that can 

strongly influence the accuracy of the microstructure analysis. To resolve the challenges 
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described above, new protocols are critically needed that reduces the dependence on user’s 

expertise in image processing to design workflows leading to consistent and reliable 

segmentation results. 

 

Figure 2  - Example of raw microscopy image of a microstructure with precipitates (darker 

object), its segmented version (precipitates labelled as white pixels), and quantification of the 

segmented precipitates using 2-point spatial correlations. 

 

1.4 Research objectives 

This dissertation focuses on developing and demonstrating protocols for reliable and 

systematic investigation of microstructures and mechanical response of heterogeneous 

materials across multiple length scales. The research objectives are described below, and 

are demonstrated in a case study on ferrite-pearlite steels: 

(i) Extension of spherical indentation stress-strain (ISS) protocols (by Kalidindi 

and Pathak [28]) to multiresolution testing of hierarchical material 

microstructures. 
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(ii) Development and demonstration of a framework for systematic design of 

segmentation workflows for image segmentation required for microstructure 

analysis. 

(iii) Apply the protocols developed in (i) and (ii), investigate microstructures and 

mechanical properties of thermally aged ferrite-pearlite steels. 

(iv) Apply the measurements collected in (iii) to evaluate simple composite 

theories. 

First, the ISS protocols by Kalidindi and Pathak [28] for multiresolution mechanical 

evaluation are covered in Chapter 2, and are extended to testing bulk properties of small 

scoops samples extracted from gas in-service turbine components. In Chapter 3, a novel 

framework for systematic design of workflows for micrograph image segmentation is 

developed and demonstrated.  

Using the developed protocols, Chapter 4 presents a case study investigating the 

microstructures and mechanical properties at multiple resolutions of thermally aged ferrite-

pearlite steels. The prolonged thermal aging exposures (up to 91,000 hours) in these steel 

samples contribute to significant changes in the microstructure and yield strength [69-73]. 

In this investigation, ISS protocols are applied on the individual microscale constituents 

(i.e., ferrite, pearlite, and graphite) as well as at the macroscale. The respective yield 

strengths of the microscale constituents and the bulk yield strength of the sample were 

estimated from these measurements. The microstructures of these samples were 

documented using optical microscopy (OM), where images were segmented and the 

relevant microstructure statistics were extracted. All of this information was used to 
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evaluate simple composite theory estimates. Finally, in Chapter 5, the main conclusions of 

this dissertation are presented and possible future work is discussed. 
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MECHANICAL CHARACTERIZATION OF HIERARCHICAL 

MATERIALS AT MULTIPLE LENGTH SCALES 

 As mentioned earlier, evaluation of mechanical properties at multiple length scales 

presents formidable challenges in study of hierarchical materials. One of the main 

challenges in testing mechanical properties across multiple length scales is that most of the 

current testing methods used at the different length scales are very different from each 

other, require substantial effort, and produce limited data (i.e., low throughput). The novel 

protocols recently developed by Kalidindi and Pathak have demonstrated the capability of 

extracting indentation stress-strain (ISS) curves in a high-throughput manner at multiple 

resolutions using different spherical indenter sizes [51, 53, 55, 58, 74-77].  

2.1 Kalidindi and Pathak spherical indentation (ISS) stress-strain protocols 

 The instrumented spherical indentation stress-strain protocols developed by 

Kalidindi and Pathak [36] have demonstrated a robust, high throughput ability to extract 

mechanical properties from small material volumes [28, 45, 46, 74, 78]. Most of the early 

effort of studies utilizing ISS was focused on very small length scales of the volumes 

probed in the indentation tests (controlled mainly by the indenter tip radii), which typically 

varied between ~50 nms to ~5 microns. This is because these prior studies were aimed at 

studying mechanical response of volumes within individual grains of a polycrystalline 

sample, referred to as nanoindentation protocols. Nanoindentation tests typically require 

low forces (<<10 N) and benefit from continuous stiffness measurement (CSM) [28, 45, 
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47, 48, 78] for reliably estimating the changes in the contact radius during the indentation 

tests.  

 Only recently [49, 50, 56], ISS protocols have been extended to studies where the 

sizes of the indentation zones are of the order of several hundreds of microns, referred to 

as microindentation protocols. The indentation stress-strain curves obtained using 

microindentation aim to capture the overall response of a polycrystalline aggregate with 

relatively large indenter tips (0.5-6.35 mm in radius). Previous microindentation 

measurements have been shown to be well-correlated to the stress-strain curves measured 

in conventional tension/compression tests [50, 61]. Typically, indentations with the larger 

tip radii require larger forces (>>10 N). Suitable instrumented testing machines allowing 

for these larger indents along with the CSM capability are not yet commercially available. 

In order to address this gap, suitable approaches have been developed [46, 49, 50, 56] that 

employ multiple load-unload cycles during the test. It is important to note that 

microindentation protocols produce a more discrete indentation stress-strain curve 

compared to the ones produced using nanoindenters with a built-in CSM capability. Both 

microindentation and nanoindentation protocols are largely based on Hertz’s contact theory 

and are described next. 

2.1.1 Microindentation stress-strain protocols 

The extraction of stress-strain response from microindentation tests follows the 

recently developed protocols [46, 50] to convert the measured load-displacement data to 

indentation stress-strain curves based on Hertz’s theory. As mentioned earlier, due to 

instrumentation limitation, microindentation tests are currently performed without the 
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CSM and therefore multiple load-unload cycles must be performed to produce the 

indentation stress-strain curve.  

Hertz theory [79] for frictionless, elastic contact between two isotropic, 

homogeneous bodies with quadratic surfaces can be expressed using the following 

relations: 

𝑃 =  
4

3
𝐸𝑒𝑓𝑓𝑅

𝑒𝑓𝑓

1
2⁄

ℎ𝑒

3
2⁄
 (1) 

𝑎 =  √𝑅𝑒𝑓𝑓ℎ𝑒 (2) 

1

𝐸𝑒𝑓𝑓
=  

1 − 𝜈𝑠
2

𝐸𝑠
+

1 − 𝜈𝑖
2

𝐸𝑖
 (3) 

1

𝑅𝑒𝑓𝑓
=

1

𝑅𝑠
+

1

𝑅𝑖
 (4) 

where 𝑃 and ℎ𝑒 denote indentation load and elastic displacement, respectively, 𝑅 and 𝐸 

are the radius and Young’s modulus, and 𝑎 denotes the indentation contact radius. 

Subscripts 𝑠 and 𝑖 are associated with sample and indenter, respectively, while 𝑅𝑒𝑓𝑓 and 

𝐸𝑒𝑓𝑓 are the effective radius and elastic modulus of the indenter-sample system.  

The central strategy in the spherical indentation stress-strain protocols employed in 

this work is to utilize Hertz’s theory to estimate 𝐸𝑒𝑓𝑓 from the initial elastic loading 

segment (before the onset of any plastic deformation in the sample), and subsequently use 
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the same value of 𝐸𝑒𝑓𝑓 to estimate the evolving 𝑅𝑒𝑓𝑓 by analyzing the elastic unloading 

segments (again using Hertz’s theory). 

First, the analysis of the initial load cycle is utilized to achieve two goals: (i) estimate 

the initial contact between the indenter and the sample (i.e., zero-point correction) and (ii) 

estimate the elastic modulus of the indenter-sample system, 𝐸𝑒𝑓𝑓. Zero-point correction is 

critical to mitigate common issues related to the sample (e.g., surface roughness, surface 

oxide layer) and the indenter (e.g., shape imperfections) that can affect consistent analysis 

using Hertz’s theory [28]. The estimation of zero-point load and displacement correction 

(𝑃∗ and ℎ∗) for indentation without CSM signal has been outlined in prior work [46] and 

is performed on recast Eq. (1): 

(ℎ̃𝑒 − ℎ∗) = 𝑘(�̃� − 𝑃∗) 
2
3,       𝑘 = [

3

4

1

𝐸𝑒𝑓𝑓

1

√𝑅𝑒𝑓𝑓

]

2/3

 , (5) 

�̃� and ℎ̃ are the raw load and displacement measurements, respectively. During the initial 

elastic loading on a flat sample surface, shown in Figure 3, the effective radius of the 

indenter-sample system is equal to the radius of the indenter, i.e., 𝑅𝑒𝑓𝑓 = 𝑅𝑖. The values 

of ℎ∗ and 𝐸𝑒𝑓𝑓 are estimated by performing regression on ℎ̃𝑒 and �̃� in Eq. (5), whereas the 

value of 𝑃∗ is selected as one that minimizes the log of the average absolute error of the 

regression fit. In microindentation experiments, the sample surface and tip disparities are 

very small compared to the tip radii and in many cases, there is no need for load 

correction. 𝐸𝑠 is then obtained from Eq. (3) by using Poisson ratio (𝜈𝑠) for the sample and 

Poisson ratio (𝜈𝑖) and Young’s modulus  𝐸𝑖 for the indenter material. 
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Figure 3 – Schematic of spherical indentation at different stages of the indentation test. a) 

initial elastic contact between the indenter and the sample, b) load at which plastic 

deformation in sample occurs, c) complete unload after plastic deformation in the sample. 

 

After plastic deformation of the sample shown in Figure 3c, the total displacement, 

ℎ, consists of elastic displacement, ℎ𝑒, and residual displacement, ℎ𝑟, represented using the 

following relations: 

ℎ = 𝑘𝑃2/3 + ℎ𝑟 . (6) 

The coefficients 𝑘 and ℎ𝑟 are determined using regression techniques on the measured load 

and total displacement during the unload data (95-50% of peak force). Subsequently, 𝑅𝑒𝑓𝑓 

is extracted from Eq. (5), where 𝐸𝑒𝑓𝑓 is assumed to remain constant from the initially 

established value. This is a reasonable assumption because the average plastic 

deformations are very small in these indentations. The contact radius, 𝑎, is then determined 

using the following Hertz’s relation: 

𝑎 =  √𝑅𝑒𝑓𝑓(ℎ𝑠,𝑚𝑎𝑥 − ℎ𝑟) , (7) 
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where ℎ𝑠,𝑚𝑎𝑥 is the indentation displacement in the sample at the peak of each loading 

cycle. The indentation stress, 𝜎𝑖𝑛𝑑, and indentation strain, 𝜀𝑖𝑛𝑑, are defined as:  

𝜎𝑖𝑛𝑑 =
𝑃𝑚𝑎𝑥

𝜋𝑎2
 (8) 

𝜀𝑖𝑛𝑑 =
3

4𝜋

ℎ𝑠,𝑚𝑎𝑥

𝑎
≈

ℎ𝑠,𝑚𝑎𝑥

2.4𝑎
 (9) 

ℎ𝑠 = ℎ − ℎ𝑖 (10) 

ℎ𝑖 =
3(1 − 𝑣𝑖

2)𝑃

4𝐸𝑖𝑎
 (11) 

where ℎ𝑠 denotes the sample displacement and ℎ𝑖 is the elastic deformation of the indenter. 

Eq. (10) estimates the indenter elastic displacement by assuming that it is subjected to the 

applied load against a flat rigid surface. The indentation strain defined in the above 

equations can be interpreted as compressing by distance ℎ𝑠 an idealized indentation zone 

of cylindrical region of radius 𝑎 and height 2.4𝑎. This definition of indentation strain can 

be visualized as change of length per unit length and is more physical than commonly used 

indentation strain definitions, and has been validated in several prior studies [28, 46, 50, 

60]. After several load-unload cycles, an ISS curve is constructed with the post-elastic 

indentation stress-strain data and with indentation modulus 
𝐸𝑠

(1−𝜈𝑠
2)

, as shown in Figure 4. 

Using the ISS curve, the indentation yield strength is determined using a 0.2% indentation 

strain offset intersection with a linear fit of post-elastic data.   
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Figure 4 – An example of microindentation test data. (a) The measured load-displacement 

data in multiple load-unload cycles. Highlighted red data corresponds to the initial elastic 

portion used to determine 𝑬𝒊𝒏𝒅. (b) Indentation stress-strain (ISS) data extracted from the 

load-displacement data. Each post-elastic point on the ISS curve corresponds to an individual 

unload cycle in the load-displacement measurement. The yield point, 𝒀𝒊𝒏𝒅, is determined from 

the intersection of the linear fit of post-elastic data with the 0.2% indentation strain offset.  

 

2.1.2 Nanoindentation stress-strain protocols 

Nanoindentation stress-strain protocols are extensively used to evaluate microscale 

constituents (e.g., measurements within grains) and utilize much smaller indenters than 

microindentation. Thus, unlike microindentation, the accuracy of nanoindentation analysis 

tend to be sensitive to both load and displacement zero-point corrections. In addition, the 

zero-point correction methodology determined by the current nanoindentation protocols 

(Kalidindi and Pathak) can differ from the protocols that are often built-in into indentation 

machines with CSM capability. Values identified by machines (e.g., analysis software) 

may be susceptible to common sample or indenter tip issues mentioned earlier that can 

affect the accuracy of the test analysis [28]. The determination of zero-point load and 

displacement corrections (𝑃∗ and ℎ∗) with CSM-enabled nanoindentation protocols is 

performed using the following Hertz’s theory relation: 
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𝑆 =
3𝑃

2ℎ𝑒
=

3(�̃� − 𝑃∗)

2(ℎ̃ − ℎ∗)
 , (12) 

where 𝑆 is the elastic unloading stiffness measured with CSM. The 𝑃∗ and ℎ∗ zero-point 

correction values can be extracted by recasting Eq. (12) and performing linear regression 

between the raw �̃� and ℎ̃𝑒 measurements [28]: 

�̃� −
2

3
𝑆ℎ̃𝑒 = −

2

3
ℎ∗𝑆 + 𝑃∗. (13) 

After the zero-point corrections have been applied, the effective elastic modulus, 𝐸𝑒𝑓𝑓, is 

extracted from the initial elastic loading segment and performing regression on 𝑃 and ℎ3/2 

in Eq. (1). This is possible because during the initial elastic loading the sample surface 

remains flat and without permanent deformation and 𝑅𝑒𝑓𝑓 = 𝑅𝑖. The 𝐸𝑒𝑓𝑓 value is assumed 

to remain constant throughout the test and is further used in estimation of the constantly 

evolving indentation contact radius, 𝑎 following Hertz’s theory:  

𝑎 =
𝑆

2𝐸𝑒𝑓𝑓
 . (14) 

An example of an extracted nanoindentation stress-strain curve using the nanoindentation 

protocol is shown in Figure 5. 
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Figure 5 – Schematic of a nanoindentation stress-strain protocol analysis, (a) load 

displacement data, (b) extracted indentation stress-strain curve from the test data. 

 

2.1.3 Application of ISS protocols on small volume samples excised from high-

temperature exposed components 

In this case study, we explore for the first time, the feasibility of applying the novel 

microindentation stress-strain protocols described earlier on small scoop samples excised 

from in-service gas turbine components and correlating them to measurements from tensile 

tests. The material of interest for the present study is a 0.35 wt.% carbon steel, used 

extensively in turbine equipment. The study is based on a library of small scoop samples 

excised from similar locations in structural turbine components subjected to prolonged 

periods of service time at elevated temperatures. Prolonged exposure at elevated 

temperatures promotes microstructural changes (graphitization and spheroidization) [69-

71, 73, 80, 81] that is typically accompanied with a change in the mechanical properties, 
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as documented in prior work using tensile tests [71, 72, 80]. Accurate assessment of the 

change in mechanical properties, such as yield strength, with service exposure is critical 

for life cycle management of such components, which can exceed operational lifetime of 

100,000 hours [82]. However, nondestructive mechanical testing of the material in 

operating components is not possible using conventional uniaxial tests, which require a 

substantial volume of material to be extracted. As a consequence, a practical way forward 

has been to excise small shallow scoops from the in-service components at selected time 

intervals in their service lifetime, and to extract useful and reliable information from them 

regarding both the changes in the material microstructure as well as the degradation of the 

mechanical properties. 

One of the main challenges in assessing the mechanical properties of the small 

shallow scoops in this study is that the conventional mechanical tests (e.g., compression or 

tension tests) are not viable due to the small volumes of material and scoop shapes extracted 

from operating turbine components. Each scoop specimen is irregular-shaped and 

measures about 20x20x5 mm (these are the largest dimensions in each of the three 

orthogonal sample directions). A schematic for mounted scoop samples in epoxy and its 

relative size difference with standard tension sample is shown in Figure 6. The small size 

and irregular geometry of the scoop make it difficult to fabricate specimens for 

conventional tests (e.g., compression or tension tests). However, the small scoop samples 

provide enough material volume for multiple indentation measurements and microstructure 

characterization without a significant compromise to the structural integrity of the turbine 

components. 
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Figure 6 – Schematic of mechanical test specimens extracted from turbine components and 

their relative sizes. Left side shows round tension test specimen. Right side shows epoxy-

mounted scoop specimen (after scoop trimming and polishing). 

Each specimen was subjected to service temperatures in the range of 25 - 600 °C 

and operating service times in the range of 22,000 - 99,000 hours, as summarized in Table 

1. In addition, a baseline material sample (no service exposure) is included in this study, 

totaling 8 samples with unique exposure conditions. The sample name indicates the service 

time in thousands of hours and the normalized service temperature code (note that baseline 

material in labelled as Unexposed). 

Table 1 – Specimens received for study with different exposure conditions. Superscript * 

indicates samples where tensile test specimen were made in addition to microstructure and 

indentation measurements. 

Sample name Approximate service hours  

Unexposed* 0 

22-0.98ST 22,000 

49-0.78ST 49,000 

55-0.79ST 55,000 

71-0.80ST 71,000 

91-0.85ST* 91,000 

98-0.83ST 98,000 

99-1.00ST 99,000 
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Before indentation test, each scoop specimen was ground on both sides to provide 

parallel surfaces. Furthermore, specimens were mounted in epoxy such that their top and 

bottom surfaces were both exposed (see Figure 6). This was done to provide maximum 

stability to the sample during the indentation test (i.e., prevent any unintended rotations of 

the sample). After mounting, the sample surfaces for indentation were ground and polished 

up to 0.02 µm colloidal alumina suspension and vibropolished as the final step.  

The two sample conditions, the Unexposed and the 91-0.85ST samples, evaluated 

using tensile tests revealed a significant decrease in yield strength (0.2% plastic strain 

offset), shown in Figure 7. The corresponding SEM-BSE micrographs show a considerable 

increase in graphite fraction in the 91-0.85ST microstructure compared to the Unexposed 

sample.  

 

Figure 7 – (a) Tensile stress-strain curves with 0.2% offset for the Unexposed and the 91-

0.85ST specimens. Considerable reduction in yield strength is observed between Unexposed 

(average yield strength = 311 MPa), and after 91,000 service hours at 0.85ST (average yield 

strength = 221 MPa). (b) An example SEM-BSE micrograph for the Unexposed sample. (c) 

An example SEM-BSE micrograph for the 91-0.85STsample (black particles are graphite). 
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2.1.3.1 Scaling ISS curves to uniaxial stress-strain curves 

Recent work [50, 61] has demonstrated correlations between indentation stress-

strain measurements and those obtained in conventional tests such as simple compression 

or tension. In these comparisons one usually identifies a scaling factor between the stresses 

and strains involved in these curves. For example, the ratio of the flow stress in indentation 

to that in uniaxial compression is often referred as the constraint factor in literature [36, 38, 

50, 60, 61, 83-85]. In recent numerical simulations using finite element (FE) models Patel 

and Kalidindi [50, 61] developed and demonstrated protocols for converting indentation 

stress and strain values to equivalent values in uniaxial compression stress states. This 

study extracted ISS curves consistent with the protocols used in this work and have 

suggested that the value of the constraint factor should be 2.2 for materials exhibiting 

isotropic plasticity based on J2 flow theory. This study also suggested specific scaling 

factors for elastic and plastic strains between the two test methods as 2.0 and 1.3, 

respectively [61]. It has been demonstrated that these scaling factors result in excellent 

agreement between the indentation and uniaxial compression stress-strain curves for a 

broad range of material hardening behaviors. Note that the uniaxial tests in the current 

study were performed in tension and we assume very little asymmetry between tensile and 

compressive behavior in the current steel samples. The use of FE models to systematically 

study such scaling relationships separates many of the difficulties and uncertainties that 

can arise in similar experimental investigations (e.g., non-ideal indenter or sample 

geometry, assumed elastic-plastic material behavior of sample and indenter, friction 

between the sample and indenter surfaces). In this study, we employ the proposed scaling 
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factors from the above FE study [61] to relate the current indentation stress-strain curves 

to the tensile stress-strain measurements.  

Indentation stress-strain (ISS) measurements on samples where tensile tests were 

also performed serve to calibrate the indentation protocols described earlier. The average 

and one standard deviation of extracted modulus and yield strength measurements from  

indentation  and tensile tests are shown in Table 2. Note that on average the sample elastic 

modulus, 𝑬𝒔, is slightly lower than the tensile modulus, 𝑬, for both samples, however, 

considering the spread in measurements (one standard deviation), there is overlap and 

reasonably good agreement between the two testing protocols. The yield strength ratio 

between the indentation and tensile tests (
𝒀𝒊𝒏𝒅

𝒀
) for both Unexposed and 91-0.85ST 

specimens was observed to be about 2. This value is in excellent agreement with 

corresponding values suggested by Patel and Kalidindi [61] and recent microindentation 

ISS measurements on Al-6061 [50].  

Table 2 – Measurements obtained from tensile and microindentation tests for Unexposed and 

91-0.85ST samples. Note the higher variance in the indentation measured yield strengths. 

Sample name 

Average 

 tensile 

modulus,  

𝐸 (GPa) 

Average  

sample 

modulus, 

 𝐸𝑠 (GPa) 

Average  

tensile yield 

strength, 

 𝑌 (MPa) 

Average 

indentation 

yield strength, 

𝑌𝑖𝑛𝑑 (MPa) 

Average yield 

strength ratio, 

 
𝑌𝑖𝑛𝑑

𝑌
  

Unexposed 205 ±14.0 186 ±9.6 311 ±2.0 615 ±18.6 1.98 

91-0.85ST 206 ±37.5 187 ±11.6 221 ±1.0 436 ±32.2 1.97 

 

Using the three scaling factors suggested by Patel and Kalidindi [61], one can 

transform measurements on the indentation stress-strain curves to uniaxial stress-strain 

curves. Figure 8 shows the comparison between the scaled indentation measurements and 
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the tensile test measurements for the Unexposed samples, which display very good 

correlation between the two testing techniques.     

 

Figure 8 – Tensile stress-strain curve and scaled indentation stress-strain data for Unexposed 

specimen. 

All of the scoop samples were evaluated using the indentation stress-strain protocols 

outlined earlier, totaling 77 indentation tests on 8 samples with distinct in-service exposure 

conditions. At least seven indentation measurements were conducted on each scoop 

sample. Figure 9 summarizes the uniaxial yield strengths extracted from these indentation 

measurements using the yield strength scaling above (𝑌𝑖𝑛𝑑/2) along with the tensile test 

results for two of the sample conditions.  
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Figure 9 – Summary of the measured tensile and scaled indentation yield strengths with error 

bars representing one standard deviation. A trend of changing yield strength with increasing 

service time is clearly discernible. 

The indentation measurements shown in Figure 9 reveal a trend of decreasing yield 

strength with increasing service time. It is also seen that the ISS protocols presented here 

are able to provide reliable measurements on small volume samples extracted from in-

service gas turbine components. It is emphasized that there is no other practical alternative 

for extracting this critically needed information for the present study. It should be noted 

that the indentation results show a higher variability in yield strength measurements. Some 

of this variability reflects the inherent variation in the microstructure features (e.g., phase 

fractions, particles, inclusions) in the indentation zone. 
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MICROSTRUCTURE IMAGE SEGMENTATION FRAMEWORK 

A major challenge in the study and microstructure quantification of heterogenous 

materials comes from the need to label the features of interest (i.e., segment) in the raw 

microstructure images (two or three-dimensional) obtained in microscopy protocols used 

for evaluation of microstructure statistics. Often, the raw microscopy images are produced 

in grayscale, where each pixel (or voxel) is assigned a grayscale value between 0 and 255. 

However, the number of distinct features of interest (e.g., thermodynamic phases) present 

in the sample is typically far smaller than the number of grayscales in the raw images, as 

shown in Figure 10. This is because the pixel values of raw images reflect various types of 

noise arising from a combination of equipment or sample conditions in the imaging 

protocols. Therefore, segmentation protocols need to be designed to produce the correct 

labelling of the microscale features of interest in the microstructure images. This task is 

generally achieved by assembling together a workflow using a variety of image processing 

functions and filters [64-68]. One of the major hurdles encountered in this process is that 

the successful construction and implementation of the workflow leading to accurate 

segmentation is highly dependent on the user’s expertise in the application of the image 

processing functions. Consequently, these efforts often lead to non-standard approaches 

that can strongly influence the accuracy of the microstructure analysis.  
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Figure 10 – A schematic of an image segmentation example. Left side shows a raw microscopy 

image in grayscale with pixel values ranging between 0 and 255. Right side shows the 

segmented version of the raw with pixels values of only 0 or 1. 

In this dissertation, a framework is developed and demonstrated that reduces the 

dependence on user’s expertise in image processing to design workflows leading to 

consistent and reliable segmentation results. This approach for design of segmentation 

workflows consists of five sequential steps that systematically address common challenges 

encountered in segmentation of microstructure images. Each step provides users with 

guidance on selection and application of image processing functions best suited to resolve 

specific problems (e.g., pixel-level noise reduction, clean up incorrectly labelled features). 

This segmentation framework utilizes image processing functions that are widely available 

in popular software packages such as Python [86] and MATLAB [87], enabling potentially 

broad adoption by the material science community. This developed approach is described 
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next is demonstrated on a broad range of microstructures obtained from different 

microscopy techniques applied on different material systems. 

3.1 Introduction 

Experimental microstructure characterization has been instrumental to the 

advancing of our understanding of the physics controlling the material response. Materials 

characterization techniques employ various forms of microscopy (e.g., optical microscopy, 

electron microscopy), which typically produce images of the material microstructure [65, 

88-96]. Image segmentation is the process of labelling features of interest in microstructure 

images, and plays a key role in extracting reliable statistical information about the material 

microstructure [64, 66-68, 97-100]. However, raw microscopy images exhibit significant 

noise that can be attributed to multiple sample/equipment conditions. This noise usually 

hinders segmentation. The potential contributors to the image noise include improper 

sample preparation (e.g., surface roughness, surface residue), incorrect equipment use (e.g., 

focusing), and inadequate equipment capabilities (e.g., resolution limits) [64, 66, 68, 99, 

101-105]. De-noising before actual segmentation of the images is an essential step to 

extract reliable statistical information about the material microstructure from the 

microscopy images [64, 66, 68, 99, 101]. Incorrect segmentation can influence strongly the 

quantification of microstructures, and lead to inaccurate understanding of the materials 

physics and formulation of erroneous physics-based composite models, including process-

structure-property linkages (PSP) [56, 57, 106-109].  

More specifically, segmentation in the application to material microstructures can 

be defined as a process of labelling each pixel (2D) or voxel (3D) with the elements of a 
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microstructure feature class that are also referred as local state descriptors. The local 

material state (at the level of a pixel or a voxel) is usually defined through a combination 

of multiple material attributes needed to uniquely identify the local properties of the 

material at the selected length scale (e.g., thermodynamic phase, grain of a specific 

orientation, grain boundary). For the example Ni-based superalloy micrograph shown in 

Figure 11b, the 𝛾 and 𝛾′ phases would serve as the local state descriptors. The central task 

in segmentation is the correct labelling of microstructural local states in microscopy 

images. Segmentation can be addressed using a wide range of image processing tools 

available in popular software packages such as Python [86] and MATLAB [87]. However, 

selecting and applying the appropriate tools in sequences designed to optimize the 

segmentation results can be a challenging task because of the large number of options in 

the available tools, algorithms, and approaches. The segmentation strategy can vary 

significantly depending on the image content (for example, prior reports on Ni-based 

superalloys [64, 67] , steels [65, 66], and Ti alloys [68]). Typically, these strategies are 

tailored to produce best segmentation results for a specific material or for the specific 

imaging protocols employed in a study. Many of the main algorithms needed to design 

segmentation workflows are also accessible through materials-specific packages (e.g., Sosa 

et al. [110], EM/MPM [111], Campbell et al. [68]). However, the design of broadly 

applicable segmentation workflows following a systematic strategy continues to be an open 

challenge for many material science practitioners. 

Current approaches employed in material image segmentation largely depend on the 

user’s expertise and knowledge of available functions in the popular packages mentioned 

earlier. Since many factors can affect the segmentation process (e.g., image noise, features 
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of interest, available tools), the segmentation results are likely to vary significantly between 

different users. This dramatically impacts our ability to aggregate replicable and 

reproducible materials knowledge needed to objectively guide materials innovation efforts. 

Clearly, there is a critical need for a unified framework for addressing segmentation in a 

more consistent manner that could be broadly adopted by the materials researchers. In this 

work, one such framework is presented, and its flexibility and versatility in successfully 

segmenting a variety of microstructures obtained from very different material systems is 

demonstrated. The proposed framework comprises five sequential steps, with multiple 

options for each step. The first step addresses best practices in sample preparation, selection 

and set-up of the image acquisition equipment, and image collection protocols. The second 

step focuses on image preprocessing for the adjustment and enhancement of the acquired 

image in order to get it ready for segmentation. The third step then employs various 

algorithms for labelling each pixel in the image to an expected local state using 

segmentation algorithms. The fourth step is designed to post-process the segmented results 

to improve the segmentation results. The final step focuses on evaluation and validation of 

the segmented images. The five steps described above become the main components in the 

systematic design of the proposed microstructure segmentation workflow. The central 

considerations and the selection criterion for the available options for each of these 

components are discussed in each step of the framework. Case studies illustrating the 

application of various tools and whole workflows designed using the proposed framework 

are presented throughout the next sections. 
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3.2 Challenges in segmentation  

As already mentioned, the goal of segmentation is to label each pixel with the correct 

microstructure local state. The application of a single segmentation algorithm on an image 

of the material structure is, in most cases, unlikely to produce the desired final segmented 

images. This is largely because the image noise is often highly heterogeneous even in a 

single image and can be present as global or local noise. Global noise refers to noise at an 

image-level, for instance, an intensity gradient of the image producing a shadow effect. On 

the other hand, local noise is undesired variation in intensity at a pixel-level and is usually 

scattered randomly throughout the image. Examples of the challenges encountered in 

segmentation are illustrated in Figure 11 through selected micrographs, where the top row 

shows the micrographs and the bottom row shows their segmented versions obtained using 

thresholding-based tools employed broadly in current literature [112-114]. Figure 11a 

shows a SEM (scanning electron microscope) micrograph obtained from a Ni-based 

superalloy sample with 𝛾 and 𝛾′ local states. Clearly, the two local states are visually 

discernable, but the lack of contrast between them leads to poor segmentation results. More 

specifically, the lack of a smooth contrast often results in pixel-level noise in the segmented 

images. This is significantly amplified in the segmentation of the micrograph in Figure 

11b. In spite of the clear intensity difference between the two phases in this micrograph, 

the commonly used thresholding approach is unable to remove the pixel-level noise in the 

image. This is because the local pixel-level fluctuations in the image occur on both sides 

of the selected intensity threshold. Microscopy images may exhibit a global shadow with 

a gradient in its intensity over the image (e.g., caused by non-uniform illumination of the 

sample surface) as shown in Figure 11c, which can also cause a significant challenge in 



 31 

segmentation. Removal of this type of global noise requires a completely different strategy 

compared to the removal of the pixel-level noise.  

Multiple algorithms and strategies have already been discussed in literature for addressing 

the challenges identified above. For example, Gaussian filtering [68, 101, 115] is often 

employed to remove the pixel-level noise in the microstructure images. However, there is 

often no guidance for optimal filtering that achieves noise removal while not losing the 

important details in the microstructure image. Similarly, various image enhancement 

techniques [116, 117] can be utilized to increase the contrast between features to improve 

segmentation. The selection of the best segmentation algorithm for a given micrograph 

depends on the specific microstructure features being labelled. Microstructure features 

encountered in materials studies can be broadly classified as either regions or interfaces. 

Regions refer to contiguous areas (volumes in 3-D) of selected microstructure local states 

usually represented as foreground objects in the image (e.g., precipitates, embedded 

thermodynamic phases). Interfaces refer to boundaries separating the microstructure local 

states, and can include a variety of grain/phase boundaries. The features represented as 

regions cover a vast space of multiphase microstructures, as shown in Figure 11a-d, and 

will be the main focus of the work and examples described here. 

It is likely that most segmentation algorithms will produce results that still contain some 

noise or inaccuracy. Some form of post-processing is generally required to clean up the 

incorrect results. Examples of these challenges, referred as undersegmentation and 

oversegmentation, are shown in  



 32 

Figure 11a and Figure 11d, respectively. In other cases, post-processing using 

various morphological operations is desired for cleaning up incorrect results. The diverse 

challenges encountered in segmentation outlined above further reinforce the need for a 

systematic framework for the design of segmentation workflows.  

 

Figure 11 – Examples of challenges encountered in the segmentation of feature regions in 

micrographs: a) Ni-based superalloy microstructure image showing clear features but of low 

contrast resulting in poor segmentation (see regions near the arrows in the top and bottom 

images), b) segmentation of an image with pixel-level noise, c) segmentation of image with 

global shadow gradient in its intensity, d) image with oversegmentation that requires post-

processing (see regions near the arrows in the top and bottom images).  

 

3.3 Segmentation framework 

We develop a systematic and versatile segmentation framework consisting of five 

sequential steps that are designed to address the challenges identified in the previous 

section, while being broadly applicable to a variety of microscopy images. These five steps 

will be referred as acquisition, preprocessing, segmentation, post-processing, and 
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validation, and are summarized in Table 3. These steps are specifically designed to produce 

consistent, reproducible, and reliable quantification of microstructure images. We describe 

next each of these steps in detail, and identify the relevant functions in MATLAB [87] and 

Python [86] environments that could help address the tasks involved in each step. The 

hierarchy of actions in each step in the suggested framework is the following: step → task 

→ subtask → option. The task and subtasks identify the main objectives addressed in each 

step, and the options provide available methods to accomplish these objectives. 
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Table 3 – Summary of the five steps of the segmentation framework developed in this work. 

Within each step, tasks and subtasks are specified. Examples of available methods to be 

considered for addressing each subtask are also specified. 
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3.3.1 Image acquisition 

The first step in designing the segmentation framework should pay attention to the 

details of the image acquisition, and wherever possible adjust the image acquisition 

parameters. Although this might come across as a trivial step, it often has the largest impact 

on the accuracy and utility of the segmentation results. This task consists of two main 

subtasks that can usually be adjusted across different types of microscopy techniques: (i) 

selecting a feature spatial resolution (i.e., setting the pixel or voxel size in the acquired 

image), and (ii) selecting a representative microstructure view field size (i.e., the image 

size). Although there are a number of other image acquisition parameters that can influence 

the subsequent processing of acquired images for segmentation, the vast number of 

possible tuning parameters depends on the microscopy technique and user’s expertise. 

Selecting optimal acquisition parameters is also dependent on study-specific factors (e.g., 

sample preparation, equipment type, user’s expertise).  

Several microscopy techniques are commonly employed to capture the details of the 

material structure [65, 118-121], which spans a hierarchy of length scales ranging from   

10-3 to 10-10 m. The widely used microscopy techniques include optical microscopy, 

electron microscopy, scanning probe microscopy (e.g., atomic force microscope), x-ray 

(e.g., micro computed tomography), among others. The images obtained by these different 

techniques often reveal different types of information about the material internal structure 

as they are produced as a consequence of different types of interactions with the sample. 

Optical microscopes detect sample topology through reflected light from the sample 

surface. Commercial optical microscopes require simple operation but are often limited in 

spatial resolution to about 1 𝜇m. However, recent advances in super-resolution optical 
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microscopy have pushed the capabilities to sub-micron resolution [122]. Higher resolution 

can be obtained using the scanning electron microscope (SEM), which utilizes an electron 

beam to probe and image the sample. Most common image modes are secondary electron 

(SE) and back scatter electron (BSE). SE is typically employed for topographic survey, 

whereas BSE is employed for both compositional and topographic survey [102]. Scanning 

probe microscopy (SPM) is another popular technique for topological surveying with 

reported sub-nanometer resolution [123]. The SPM imaging is performed by scanning the 

sample surface with a physical probe to record the sample topology. SPM is capable of 

high-resolution imaging without requiring a vacuum environment, but is limited by the 

smaller scan size and a slower scan speed (compared to SEM) [124]. Other types of 

microscopy include x-ray methods such as micro computed tomography (micro-CT). The 

rendered pixel intensity in micro-CT images corresponds to the radiodensity (relative 

inability of electromagnetic radiation to pass through a material) in the sample. Micro-CT 

allows non-destructive 3-dimensional scanning of the material structure. On the other hand, 

micro-CT data are limited in spatial resolution compared to SEM and may exhibit low 

contrast between local material states of similar densities.  

Given the variety of available techniques, it is important to select the technique that 

provides the most contrast for the features of interest. As an example, Figure 12a shows 

two SEM images of the same sample location showing graphite particles (darker colored 

regions) in steel matrix (light background) using BSE and SE detectors. It is evident that 

SEM-BSE detector captured a foreign inclusion (shown with arrow) which appears dark 

and difficult to distinguish from graphite, whereas SE detector is able to clearly distinguish 

the inclusion based on topology difference with the ferrite matrix. Furthermore, it should 
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be noted that sample preparation steps (e.g., polishing, etching) can control the quality of 

the acquired images. As an example, Figure 12b demonstrates imaging results from the 

same Ni-based superalloy sample with different etching and SEM detectors. Notice that 

multiple precipitate edge segments of the SEM-SE image in Figure 12b exhibit low contrast 

due to shadowing effect (not directly in sight of SE detector), which will make 

segmentation more challenging. Previous studies improved areas of weak contrast due to 

shadowing by combining several images from orthogonal acquisition angles to expose 

edges previously in the shadow of SE detector [64]. In many cases, there may be a strong 

reciprocity between the experimental data acquisition approach and the subsequent effort 

in processing for segmentation. In general, users should attempt to collect microstructure 

data in a manner such that the required processing of the images for segmentation is 

minimized.  

 

Figure 12 – a) SEM images of the same location in steel microstructure using BSE detector 

(left) and SE detector (right). Foreign inclusion shows as a dark feature similar to graphite 

(darker colored regions) in SEM-BSE image, whereas it is clearly distinguishable in SEM-SE 

image on right. b) SEM images of the same Ni-based superalloy sample using BSE detector 

(left) and SE detector (right). The combination of etched 𝜸′ precipitates and SEM-BSE 

imaging (left) yields better contrast between 𝜸 and 𝜸′, compared to etched 𝜸 matrix and SEM-

SE imaging (right) . 
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3.3.1.1 Sample imaging parameter selection 

The first subtask of image acquisition is to select an adequate feature spatial 

resolution by adjusting the image pixel size. Pixel size is the physical length represented 

by a pixel in the image [103]. Here, we refer to feature spatial resolution as the number of 

pixels that represent the smallest feature of interest in the image. Higher resolution 

represents a feature with greater number of pixels compared to lower resolution. Users 

should select a spatial resolution such that the smallest microstructure features of interest 

are adequately detailed in the final segmented image. Since digital images represent 

pixelated versions of the actual features, the level of detail lost due to pixelization increases 

with decreasing resolution. We illustrate the effect of feature spatial resolutions using two 

micrographs of Ti-811 alloy from the same location in a sample, but one with a high 

resolution (Figure 13a), and the other with a low resolution (Figure 13b). It is clear that 

some of the smaller scale features are essentially lost in the low resolution image. Note that 

the ability to distinguish and accurately capture the feature shape is better in the higher 

resolution image, which will also result in a more accurate segmentation and quantification. 

The resolution is inherently limited by the equipment hardware, and will not likely provide 

a better detail if resolution is increased artificially (e.g., using interpolation to magnify 

features). The magnification and image acquisition controls may often be fixed or are only 

adjustable in large discrete steps, both of which limit our ability to get a high quality image 

from the equipment.  
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Figure 13 – Images of a 𝟓𝟎 𝛍𝐦 × 𝟓𝟎 𝛍𝐦 area taken with different spatial resolutions: a) 

higher spatial resolution image (0.05 𝝁m/px), and b) lower spatial resolution image (0.2 

𝝁m/px). Note the lower fidelity of the feature detail in (i) and nearly indistinguishable small 

feature in (ii) in the lower resolution image. 

 

The second subtask of imaging parameter selection is to set a view field that 

captures representative information about the microstructure features of interest. The view 

field is the area of the sample microstructure captured by an image. For example, the image 

in Figure 13a captures a 50 μm × 50 μm area. Ideally, one would determine the view field 

size using a formal framework for the statistical quantification of the microstructure 

features. As an example, one might  define a view field using the coherence length 

computed from 2-point spatial correlations [125]. Coherence length is defined as the length 

beyond which the 2-point statistics of microstructure features are mostly uncorrelated 

[126]. Since the coherence length can only be ascertained after getting reliable segmented 

images, this approach would likely require some iterations before finalizing the view field 

size. Another approach would be to increase the window size until one gets robust measures 

of the desired microstructure statistics. For example, if one wishes to capture the precipitate 

volume fractions, one would systematically increase the scan size until the estimated value 

of volume fraction demonstrates insensitivity to scan size (i.e., the extracted values of the 

microstructure statistics lie within acceptable tolerance limits). Finally, it is also important 
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to obtain images from multiple locations in the sample so that one can document location 

to location variance in the microstructure statistics within a given sample. Moreover, 

acquiring multiple representative images from random sample locations will most likely 

result in better statistical representation of the microstructure, compared to one large view 

field image in a single location [125, 126]. 

It is important to note that a tradeoff between optimal spatial resolution (to resolve 

small features) and optimal view field size (to capture statistically representative features) 

may be required. This is because increasing spatial resolution requires microscopes to scan 

a smaller area/volume, which in many cases reduces the speed of imaging the desired view 

field size. To achieve desired spatial resolution over a large view field, image montage is 

often utilized, where high spatial resolution images can be efficiently stitched together 

[127, 128]. 

3.3.2 Image preprocessing for segmentation 

Image preprocessing should be performed to prepare the acquired image for subsequent 

segmentation. The main goals of preprocessing are image noise reduction and feature 

contrast enhancement. The first task focuses on removing as much of the undesired 

intensity variation (i.e., noise) in the image as possible, and can be further divided into two 

subtasks: (i) reduction of global noise, and (ii) reduction of local noise. As mentioned 

earlier, global noise refers to the image noise at an image-level, for instance, an intensity 

gradient of the image producing a shadow effect (Figure 11c). On the other hand, local 

noise is on a pixel-level and is usually scattered randomly throughout the image (see the 

segmented example with local noise in Figure 11b). After noise reduction, the second 
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preprocessing task is to perform contrast enhancement of microstructure features to prepare 

the image for segmentation.  

3.3.2.1 Image noise reduction 

We first focus on reducing the global noise, which is usually an artifact of image 

acquisition equipment setup or protocols (e.g., shadow across image). Global noise that is 

smoothly varying over the image can be efficiently reduced by subtracting the 

approximated global noise from the noisy image. Here, we demonstrate a readily accessible 

approach for fitting a polynomial function to approximate the global noise from the image 

[129]. Let 𝐼(𝑖, 𝑗) with 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛 denote the intensities in a 2D grayscale 

image. Further, 𝐼(𝑖, 𝑗) is only allowed to take integer values in the range [0,255]. The global 

noise is assumed to be adequately presented by a polynomial function 𝑓(𝑖, 𝑗; 𝑩), 

where 𝑩 = {𝑏0, . . . , 𝑏𝑘} denote the fitting parameters in the function. As an example, for a 

second-order polynomial, this implies 𝑓(𝑖, 𝑗; 𝑩)  =  𝑏0 + 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑖2 + 𝑏4𝑗2 + 𝑏5𝑖𝑗. 

Standard least-squares regression is utilized to find the fitting parameters 𝑩. If one has a 

large image, it might be computationally efficient to perform the regression on a uniformly 

selected subset of pixels in the image. The corrected image is obtained by simply 

subtracting the fitted noised function from the image as 𝐼𝑅  =  𝐼 –  𝑓. One consequence of 

this correction is that the intensity values of the corrected image are no longer in the original 

range [0,255] and need to be rescaled. Figure 14 demonstrates the application of the above 

algorithm on an example image using a second-order global noise function. Another 

popular method is based on optimizing the parameters in estimating the global noise that 

minimizes the entropy of the corrected image [130]. In instances where a montage of 
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images is constructed, the above noise-reduction methods may be applied to individual 

images or the image montage.   

The global noise reduction approach described above is limited to images with 

smooth global intensity variations over the image, which are frequently attributed to image 

acquisition conditions. These approaches may not be effective if multiple global noise 

sources are present, for example, noise due to sample topology, markings, defects, etc. 

Often, unwanted noise that exhibits a distinct spatial pattern can be reduced using Fast 

Fourier Transform (FFT) filtering techniques [110, 114]. Since FFT filtering operates in 

the frequency domain of the image, periodic noise can be reduced by suppressing 

frequencies that contain the noise patterns. This technique is frequently implemented in 

image processing, and can be adapted to reducing unwanted rings or other artifacts on the 

sample surface (e.g., induced in ion milling) [110]. 

 

Figure 14 – Example of intensity gradient noise reduction from an SEM image: a) input image 

𝑰 with intensity gradient, b) approximated intensity gradient 𝒇, and c) corrected image 𝑰𝑹. 

 

The second subtask in noise reduction is the mitigation of the local noise that is 

randomly scattered throughout the image. Reduction of this noise using filters is a topic of 
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high interest in image processing field with many proposed algorithms [131-134]. 

However, determining the optimal strength of these filters can be a significant challenge, 

since excessive filtering may remove valuable image detail while under-filtering may leave 

noise in the image. Our goal is therefore to eliminate the random noise while minimizing 

the loss of feature details. Let the input image be denoted by 𝐼, the filtered final image by 

𝐼𝐹, and the difference between the input and filtered images by 𝑅 = 𝐼 − 𝐼𝐹. In other words, 

𝑅 denotes the local noise removed. Analysis of 𝑅 can provide important guidance for the 

selection of the filters used in this subtask. In this work, we propose a novel approach for 

optimal selection of the strength of local noise reduction filter. 

Let us consider the use of a Gaussian filter kernel, 𝐺𝜎, which when applied to the 

noisy image, results in the filtered image 𝐼𝐹. Mathematically, this transformation can be 

expressed as  

𝐼𝐹 = 𝐼 ∗ 𝐺𝜎 

𝐺𝜎(𝑖, 𝑗) =
1

2𝜋𝜎2 exp (−
𝑖2+𝑗2

2𝜎2 )  

(15) 

where 𝜎 is the standard deviation (in pixels), and determines the strength of the Gaussian 

filtering applied to the image. Larger values of 𝜎 correspond to stronger filtering. One can 

then evaluate the similarity between the residual 𝑅 and the filtered image 𝐼𝐹 as  

𝑝 =  
|𝑅 ∙ 𝐼𝐹|

|𝐼𝐹|
 (16) 
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where the dot in the numerator implies a full inner product. The value of 𝑝 obtained from 

Eq. (16)  should be expected to vary with the value of 𝜎. We propose that one should 

identify the value of 𝜎 corresponding to the lowest value of 𝑝 (i.e., lowest similarity 

between 𝑅 and 𝐼𝐹) and use it in the Gaussian filtering of the image for effective removal of 

the local noise in the image. The proposed approach is demonstrated in Figure 15 with an 

example image. In this figure, the images in columns (c) and (d) correspond to the lowest 

correlation of the residual 𝑅 (top row images) and the filtered image 𝐼𝐹 (middle row 

images). For convenience, the segmented images obtained by thresholding the filtered 

images are shown in the bottom row of Figure 15. Note the amount of image detail in the 

residual increases with increasing 𝜎. However, with the optimal level of noise reduction, 

we can strike a balance between removed noise and retained detail for further 

segmentation.  
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Figure 15 – Random noise reduction using Gaussian filtering on input image in the middle 

row of a). Top row shows the removed noise, 𝑹,  corresponding to different filter strengths. 

The middle row shows the associated filtered images 𝑰𝑭, and the bottom row shows segmented 

versions of the filtered images obtained by using simple thresholding.  Higher values of 𝝈 

results in loss of image detail, while lower values leave some of the local noise in the image. 

Optimal filtering is close to image c), between 𝝈 = 𝟏 and 𝝈 = 𝟏. 𝟓. 

Other popular options for noise reduction methods include the bilateral filter [135] 

and median filter [136], listed in Table 4, along with other options in MATLAB [87] and 

Python [86]. Bilateral filter improves on the Gaussian filter described above by accounting 

for the sharp intensity transitions by incorporating a kernel that weighs effect of 

surrounding pixel intensities. In other words, bilateral filter tends to reduce the blurring of 

feature edges. The median filter computes the median intensity values in a small window 

(e.g., 5 × 5 kernel) in the image and assigns the median value to the center pixel of the 
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window. This method works well for adjusting pixels with unreasonably high levels of 

noise (e.g., salt-and-pepper noise) while also reducing the loss of feature edge details [114, 

137]. 

Approaches mentioned so far (Gaussian, bilateral, median filters) modify the pixels 

based on their immediate surrounding neighborhood information and are usually called 

pixel-based filtering. Another popular approach to noise reduction is patch-based filtering 

[138]. Patch-based filters modify pixels within a patch (neighborhood of pixels) based on 

information in other patches of the same size within the noisy image. A popular patch-

based method is non-local means (NLM) approach [139], listed in Table 4. Non-local 

means utilizes similarity (in intensity and distance) between a pixel’s reference patch to 

other non-local patches in the image to determine the amount of noise reduction in the 

reference patch. This enables pixels that are far apart but with similar patches to be 

averaged together for noise reduction. Patch-based filters preserve feature edges while 

smoothing homogeneous regions. Advances in image processing field offer various other 

approaches of noise reduction using patch-based filtering [140-143], including an 

extension of non-local means filtering which treats the patch similarity measures in a 

statistical framework [144]. 
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Table 4 – Functions available for image noise reduction in MATLAB [87] and Python scikit-

image [145]. 

Method MATLAB scikit-image 

Gaussian filter imgaussfilt filters.gaussian 

Bilateral filter imbilatfilt restoration.denoise_bilateral 

Median filter medfilt2 filters.median 

Non-local means filter imnlmfilt restoration.denoise_nl_means 

 

3.3.2.2 Contrast enhancement  

The second task in the preprocessing step is contrast enhancement of the 

microstructural features of interest, and is aimed at preparing the image for the subsequent 

segmentation. Unlike conventional image processing used to enhance the perceived visual 

quality of the image [146], the goal here is to increase the contrast of features of interest to 

improve the segmentation results in the next step. The options for contrast enhancement 

discussed here fall into two categories: global methods and local methods. Global methods 

modify the whole image at once and do not consider the spatial relationship of the pixels 

(i.e., adjacent pixels do not affect each other more than pixels separated by some distance). 

Global transformations can be conveniently performed by adjusting the image histogram 

to achieve contrast enhancement. On the other hand, local methods account for both 

intensity and spatial context in the image while trying to improve the contrast in the image.  

Popular global contrast enhancement methods are contrast stretching and histogram 

equalization [147]. Contrast stretching is performed in two steps: stretching the input image 

histogram range [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥] to a wider range [𝑟′𝑚𝑖𝑛, 𝑟′𝑚𝑎𝑥], and saturating (i.e., absorbing 

a range of intensities into a narrower range) a specified percentage of bottom and top 

intensities of the new histogram range. The wider histogram range achieves higher contrast 



 48 

by increasing the intensity differences between pixels. As an example, Figure 16a shows a 

SEM micrograph from a steel sample with a fairly narrow range of intensities, [𝑟𝑚𝑖𝑛 =

14, 𝑟𝑚𝑎𝑥 = 94]. Figure 16b shows contrast stretching of the original image Figure 16a to 

the full range of the histogram [𝑟′𝑚𝑖𝑛 = 0, 𝑟′𝑚𝑎𝑥 = 255], and saturation of the top and 

bottom 1% intensities. In other words, the bottom 1% of original histogram intensities 

become 0 and the top 1% become 255. The amount of stretching controls the intensity 

range and amount of saturation adjusts the spread of intensities at the extremes of the new 

histogram range. Figure 16c shows less histogram stretching to [𝑟′𝑚𝑖𝑛 = 27, 𝑟′𝑚𝑎𝑥 =

129], and the top 15% of histogram intensities have been saturated to the maximum value 

𝑟′𝑚𝑎𝑥 = 129. Saturation of the top 15% intensity pixels artificially removes the higher 

intensity values, as shown in Figure 16c. The second contrast enhancement option is 

histogram equalization, which transforms the input image histogram to approximately 

match a target histogram (e.g., flat histogram). In the case of a flat target histogram, this 

method redistributes the input histogram peaks over a wider intensity range thus creating 

higher contrast, as shown in Figure 16d. Note that the global contrast enhancement does 

not account for differences in the image content in different areas of the image. For 

instance, it is evident that homogenous parts of the image in Figure 16b-d do not benefit 

from contrast enhancement due to visible amplification of noise. 
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Figure 16 – Examples of global and local contrast enhancement: a) input image with low 

contrast, b) contrast stretching with bottom and top 1% intensity saturation, c) bottom 0% 

and top 15% saturation, d) global histogram equalization, e) contrast-limited adaptive 

histogram equalization (CLAHE). 

To improve on the global histogram equalization, one can employ a local contrast 

enhancement approach such as the contrast-limited adaptive histogram equalization 

(CLAHE) [117]. CLAHE performs histogram equalization on subregions of the image, 

while limiting the amount of contrast enhancement in homogenous regions. As a result, 

one of the benefits of CLAHE is that undesired noise amplification of homogeneous areas 

of the image is reduced as compared to global methods, shown in Figure 16e. Another local 

contrast enhancement is the unsharp masking [147], which is an image filtering method. 

Image filtering, unlike histogram adjustments (modifying the whole image or a portion of 

the image at once), modifies one pixel at a time based on the neighborhood information 

and can be effectively used to enhance specific image features. For instance, contrast of 

weak edges may be improved with local contrast enhancement. Unsharp masking utilizes 

a sequence of filtering steps to increase the contrast of the input image. The unsharp 

algorithm is controlled by several filtering settings, such as the size of filter neighborhood, 

the threshold of filtering application, and the extent of image adjustment. Users should 

attempt to modify the input image to improve the segmentation results in the next step. As 
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an example, for the image in Figure 17a, the unsharp masking was utilized to produce 

increase in edge contrast, as shown in Figure 17b. Although the visual quality of the image 

may not improve, this subtask is only concerned with improving the contrast of the features 

of interest. Some of the popular contrast enhancement functions in MATLAB [87] and 

Python scikit-learn library [145] are listed in Table 5.  

 

Figure 17 – a) Input image and b) modified image using unsharp filtering. Note that the 

contrast is increased around feature edges, but the visual appearance is not necessarily 

enhanced. 

 

Table 5 – Functions available for image contrast enhancement in MATLAB [87] and Python 

scikit-image [145]. 

Method MATLAB scikit-image 

Contrast stretching imadjust exposure.rescale_intensity 

Histogram equalization histeq exposure.equalize_hist 

CLAHE adapthisteq exposure.equalize_adapthist 

Unsharp masking imsharpen filters.unsharp_mask 
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3.3.3 Segmentation  

The main goal of the segmentation step is to label pixels based on the 

microstructure features that can be identified confidently in the given image. The tasks in 

segmentation are conveniently divided into two tasks focused on the segmentation of 

microstructure feature regions and interfaces, respectively. Although many different 

segmentation approaches are being explored in current literature [66, 97, 148-152], the 

focus in this work will be on methods that exhibit potential for broad application to a large 

variety of microstructure images. Several examples of the functions of interest to this step 

are listed in Table 6. It is important to note that multiple segmentation cycles may be 

required to achieve the desired results. For example, images where both local state regions 

and interfaces are present may require several methods be applied separately, and the 

results combined suitably.  

Table 6 – Functions available for image segmentation in MATLAB [87] and Python scikit-

image [145]. 

Method MATLAB scikit-image 

Global threshold imbinarize filters.threshold_otsu 

Local threshold imbinarize filters.threshold_local 

Edge detection edge 
filters.sobel* 

feature.canny* 

*these represent examples of edge-detection algorithms in scikit-image among many alternatives 

 

3.3.3.1 Segmentation of regions  

Regions are typically represented as spatial patterns of connected pixels with 

similar intensity values. The approaches for the segmentation of these regions mainly 
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utilize thresholding based on intensity values. This is illustrated in Figure 18a and Figure 

18c using an example dual-phase microstructure in a TiMn sample. More generally, global 

threshold algorithms segment the entire image at once by defining 𝑘 intensity thresholds, 

which classify the input image into 𝑘 + 1 classes. Thresholding algorithms commonly 

utilize various histogram properties to define the thresholds. Popular histogram 

thresholding algorithms currently used include the Otsu method [112], entropy 

thresholding [153], Gaussian mixture model [154], and k-means clustering  [155]. The 

attractive aspect of thresholding is that these methods are automated and generally require 

simple inputs (e.g., number of feature classes). Furthermore, local adaptive thresholding 

algorithms improve on global methods by thresholding based on the pixel’s neighborhood 

information (image details around each pixel) or thresholding smaller sub-images within 

the entire input image [113, 114]. Adaptive algorithms dynamically vary the threshold, and 

can perform better than global thresholding in cases where undesired local intensity 

variation (e.g., noise) is present in the image [114].  
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Figure 18 – Segmentation examples: a) TiMn alloy, where the dark regions are the 𝜶-Ti and 

light regions are 𝜷-Ti, and c) segmented result of a) using intensity thresholding. b) Ni-based 

superalloy microstructure with 𝜸′ precipitates and 𝜸 matrix, and d) segmented result of b) 

using edge detection. 

As an alternative, one can also use edge detection algorithms to identify the feature 

boundaries and fill in the features. Edge detection is based on labelling a pixel as an edge 

if the intensity difference between adjacent pixels is above a certain threshold [156] (see 

the example shown in Figure 18b and Figure 18d). Features that exhibit partially low 

contrast edges may not be identified easily using simple edge detection algorithms based 

on a single threshold. In such cases, more advanced algorithms such as the Canny method 

[157] may be required that can segment continuous edges with fluctuating contrast levels. 

Since edge detection only identifies boundaries of regions (see Figure 18d), a post-

processing step is needed to fill in the interiors of the regions.  
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3.3.4 Post-processing 

Post-processing is often needed to improve the segmentation results, as the 

segmentation step might leave a number of undesired features in the image that need to be 

adjusted (e.g., remnants of noise). Post-processing can be performed in two subtasks: (i) 

morphological operations, and (ii) segmentation result cleanup. Several examples post-

processing functions to this step are listed in Table 7. The extent of post-processing may 

vary based on the quality of the results obtained in the segmentation step. For instance, 

some images may require few post-processing operations, while others may require 

extensive clean-up.  

Table 7 – Functions available for post-processing in MATLAB [87] and Python scikit-image 

[145]. 

Method MATLAB scikit-image 

Dilation imdilate morphology.binary_dilation 

Erosion imerode morphology.binary_erosion 

Fill image regions and holes imfill morphology.flood_fill 

Binary shape properties regionprops measure.regionprops 

 

The first subtask performs morphological operations in order to adjust the 

morphology of the features in the segmented image. Mainly the operations include dilation 

and erosion, which expand and contract the segmented object boundaries, respectively 

[158]. Dilation and erosion may be sequenced in different order to achieve desired feature 

modifications [115]. For example, image closing is a sequential process of erosion after 

dilation, and can be used to close small gaps between objects in the images (see Figure 

19a). On the other hand, image opening is accomplished through dilation after erosion, and 
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can be used to disconnect objects connected with thin boundaries and remove unwanted 

small objects (see Figure 19b). The extent of dilation and erosion is controlled by a user-

defined kernel. The common choices for kernels are based on basic shapes (e.g., circle, 

rectangle). 

 

Figure 19 – Examples of post-processing on segmented images: a) image closing to connect 

objects that are close to each other, b) image opening to disconnect objects with thin bridges, 

c) removal of small objects, d) removal of objects cut by the image boundaries. 

The second subtask is aimed at cleaning up the segmentation results. This can be 

performed using binary shape analysis to exclude or retain objects from the segmented 

image based on their geometric features (e.g., object area, aspect ratio, geometric moment) 

or location. For instance, a user may want to remove segmented objects below a certain 

size (e.g., quantified as the number of connected pixels in each object), as shown in Figure 

19c, or retain objects meeting specific geometric attributes (e.g., aspect ratio of an ellipse 

fitted to the object). In some cases, objects may be removed from the boundaries of the 
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image to retain only whole objects, as shown in Figure 19d. This step is needed if one aims 

to extract statistics based on geometric analyses of each full object in the image.  

3.3.5 Segmentation validation 

Validation is needed to gain confidence in the segmentation results and provide 

guidance for further improvement of the segmented workflows. Validation can be a 

challenging process since we often lack the ground truth for most of the microstructures 

being studied. Segmentation validation can be approached in two ways: qualitative and 

quantitative segmentation validations. Qualitative validation is typically performed using 

inspection and/or expert opinion to visually assess the results. Visual inspection may be a 

practical first approach in segmentation validation because it may be easily used to detect 

segmentation errors. On the other hand, quantitative validation is performed using 

microstructure statistical information. This statistical information varies from basic 

statistical measures (e.g., volume fraction) to comprehensive microstructure statistics. 

Although quantitative validation is preferred, it is more challenging to implement in 

practice. 

3.3.5.1 Qualitative validation 

Qualitative validation is commonly performed using visual inspection to ensure 

accuracy of segmentation results. This task may often be performed by a domain expert, as 

is the case in many studies involving materials images [67, 97, 99]. Figure 20c-Figure 20e 

show common visualization methods, where the segmented result is shown with the 

original image using three different techniques: outline, overlay, and labelling [68, 159, 

160]. As mentioned earlier, visual inspection may be used to detect obvious errors in 
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segmentation. For instance, object labelling may be useful to visually identify separated 

contiguous features, as shown in Figure 20e. In some cases, visual inspection can serve as 

a main validation method due to ease of validation or unavailability of other means. 

However, in large datasets these methods may incur significant time and cost investment, 

and rely on subjective decision from the inspector. Ideally, visual inspection should be 

limited for purposes of detecting obvious segmentation errors.  

 

Figure 20 – Qualitative segmentation validation examples. a) original image, b) segmented 

image, c) outline of segmented features, d) overlay of segmented features, e) labelled 

contiguous features. 

 

3.3.5.2 Quantitative validation 

Quantitative validation of segmentation results may be accomplished using various 

microstructure statistics such as volume fractions, grain size distributions, and other higher-

order statistics. Volume fraction of local state of interest (e.g., phase precipitates) is a 

common validation statistic utilized in microstructure segmentation. Volume fraction 

measurements are generally reported through image analysis-based methods following 

ASTM E562 [161] or using non-image based characterization techniques such as XRD (x-

ray diffraction) [162, 163]. Alternatively, numerical simulations may also be utilized; for 

example, the equilibrium volume fraction of Ni-based superalloy 𝛾′ phase is computed 

using thermodynamic equilibrium calculation software [164]. In some cases, volume 
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fraction information may be obtained using analytical calculations, for instance, the 

expected range of fiber volume fraction in woven carbon fiber composite microstructures 

[165]. 

Another option is to validate segmentation using previously established standards 

in literature. For example, standard methods are widely adopted for reporting the average 

grain size in metals [166], and nodularity and nodule count in ductile iron [167]. However, 

it must be noted that standardized methods may be subjective in nature because they often 

rely on manual techniques (i.e., human evaluation). 

Higher-order microstructure statistics may also be utilized for validation. These 

methods may involve various measures of spatial statistics, such as 2-point spatial 

correlations [168-170], chord length distributions (CLD) [170-172], and pair correlation 

functions [173, 174]; these provide higher-order measures of microstructure morphology. 

However, validation through higher-order microstructure statistics relies on prior 

knowledge of these statistics for the microstructures being studied. 

3.4 Segmentation workflows  

A segmentation workflow is defined here as a selection of sequential tasks covering 

all steps of the segmentation framework described above. The selection of the suitable 

algorithms in building a robust segmentation workflow that can address a wide variety of 

microstructures can be quite challenging. In this work, we have focused on two broad 

classes of segmentation workflows. The first approach utilized all five steps of the 

segmentation framework to customize a workflow. In such workflows, users control all 

steps and may design the most favorable segmentation workflow for specific material 
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microstructures. The second approach is to utilize templated (pre-built) workflows that 

were designed to be broadly usable for selected classes of microstructure images. We 

demonstrate these two approaches with different case studies: (i) a custom-built workflow 

for Ni-based superalloy microstructures, and (ii) templated workflows for a large collection 

of previously acquired microstructure images from a variety of different material systems. 

3.4.1 Custom-built workflow for Ni-based superalloy microstructures 

As an example case study, we undertake the segmentation of 𝛾′ precipitates in Ni-

based superalloy microstructure images of the type shown in Figure 21a. The shape and 

size distributions of the 𝛾′ precipitates in the 𝛾 matrix are known to control the excellent 

mechanical properties exhibited by superalloys in high-temperature applications [175-

177]. The image segmentation workflow for the thermally aged Ni-based superalloy 

sample is shown in Table 8. Prior to the image acquisition step, the samples were polished 

and the 𝛾′ precipitate phase was chemically etched using Kalling’s reagent such that the 

precipitates are clearly visible using microscopy (see Figure 21a). Due to the size of 

precipitates (about 1-3 𝜇m in length), the samples were imaged using SEM, which provided 

sufficient feature spatial resolution and representative microstructure information using a 

22 𝜇m × 22 𝜇m view field. The SEM-BSE mode was chosen for imaging due to good 

contrast between the 𝛾 matrix and 𝛾′ precipitates (see Figure 21a). The acquired images 

exhibited pixel-level noise which was visible after threshold segmentation was applied 

without noise reduction. Figure 21b shows the image after the preprocessing step, where 

first, the intensity gradient (global) noise reduction was applied, and second, random (local) 

pixel-level noise reduction was performed using a Gaussian filter with 𝜎 = 2 (see Figure 
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15 for an illustration of how this value was determined). After noise reduction, histogram 

stretching was performed to increase feature contrast in the image. The image histogram 

reflected a bimodal distribution, and was then segmented into two local states based on 

intensity values using global thresholding, as shown in Figure 21c. The segmented images 

exhibited some residual noise. To finalize the segmentation, the image was post-processed 

to fill in small holes and remove the remaining small size noise artifacts (see Figure 21d). 

The segmentation results were validated using two methods: qualitative visual inspection 

of segmented 𝛾′ precipitates and quantitative validation of 𝛾′ precipitate volume fraction. 

The pronounced contrast of the 𝛾′ precipitates allowed a visual validation by overlaying 

the outline of the segmented 𝛾′ phase on the original microstructure (see Figure 21e). The 

average volume fraction of the 𝛾′ phase in the segmented images was found to be 0.47, 

which is within the values estimated using phase-equilibrium thermodynamic simulations. 

Note that the custom-built segmentation workflow utilized in this example used widely 

available functions/methods. An advantage to creating such customized workflows is that 

each step can be carefully tweaked for maximizing the performance of the overall 

workflow.  

Table 8 – Custom-built segmentation workflow for segmentation of Ni-based superalloy 

microstructures. 
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Figure 21 – Ni-based microstructure images at each of the five steps (images a)-e)) of the 

custom-built segmentation workflow. 

 

3.4.2 Templated segmentation workflows 

As an alternative approach, one can consider building template segmentation 

workflows that can be broadly deployed on large collections of microstructure images, 

potentially acquired by different users and in different material systems. In designing such 

workflows, one needs to target robustness of the selected options for the different steps in 

the workflow. It is important to recognize that a single segmentation workflow is unlikely 

to provide good results for all microstructures. Therefore, one might consider building a 

limited number of templated (pre-built) workflows that address many of the commonly 

encountered challenges in segmentation, where each workflow addresses a class of 

microstructure images. In the present work, we have designed three such templated 

workflows. These are summarized in Table 9; note that the acquisition and validation steps 

have been omitted because these steps vary with each image. Workflow 1 was aimed at 

images that already exhibit a significant contrast in the intensity values for the features of 

interest. This workflow utilizes global histogram-based thresholding and may require 

histogram-based preprocessing adjustment to achieve good segmentation results. 

Workflow 2 was aimed at images exhibiting undesired intensity variations in the image, 
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which essentially require segmentation using a local threshold method. This workflow 

typically requires tuning of the segmentation function (e.g., neighborhood size for local 

thresholding) to achieve the best results. Workflow 3 was aimed at images that exhibit a 

strong edge contrast for the features of interest. Therefore, for this workflow, segmentation 

will be pursued by identifying the edges first and then filling the edges to identify the 

features of interest. In this workflow, contrast enhancement and adjustment of edge 

detection algorithm need to be tuned properly to achieve good segmentation results. In all 

workflows, the post-processing methods are chosen that are most likely to improve the 

final segmentation results. For instance, in Workflows 1 and 2, cleanup is performed based 

on object size or shape to remove remaining noise and unwanted incorrectly segmented 

regions. Alternatively, in Workflow 3, the feature outlines (edges) are filled in and image 

opening is performed to remove remaining noise or unwanted segmented edges.  

The images for this case study were selected from six different material systems to 

represent a variety of features; example micrographs from each material system are shown 

in the left column in Figure 22. The Ni-based superalloy microstructure in Figure 22a 

shows etched 𝛾′ precipitates. The acquired image exhibits significant overlap in the 

intensity values for the 𝛾 and 𝛾′ regions, and therefore poses challenges in segmentation. 

Images shown in Figure 22b and Figure 22c are acquired from additively manufactured 

samples from Ti-Ni and TiMn alloys, respectively. In these images large 𝛼-Ti needle 

features are clearly visible. Even though these features appear similarly in both images, the 

features in Figure 22c exhibit rougher edges, which adds challenges to segmentation. 

Figure 22d shows a Ti64 microstructure with sufficient contrast between the 𝛼-Ti and 𝛽-

Ti phases. However, the lamellar morphology in some of the grains adds challenges to the 
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segmentation. Figure 22e shows a steel microstructure with small embedded graphite 

particles (dark features) in the matrix. This image is mostly homogenous due to a low 

fraction of graphite and exhibits unwanted streak artifacts due to sample preparation that 

are frequently encountered in such images. Lastly, Figure 22f shows a polymer composite 

microstructure where there is adequate contrast between the features of interest. However, 

this image exhibits low feature spatial resolution and high pixel-level noise, adding 

challenges to the segmentation.  

The segmented versions of the input image obtained using each of the three 

template workflows (see Table 9) are shown in Figure 22. All of the segmentation results 

were evaluated using visual inspection since the features could be visually distinguished, 

and quantitative validation options were not readily available for these microstructure 

images. Workflow 1 is the simplest segmentation approach among the three workflows as 

it utilizes a global thresholding strategy. As such, one should expect this workflow to work 

well only on images with a significant contrast in the features of interest. In the present 

case study, it is seen that Workflow 1 performed well on Figure 22b and Figure 22f, where 

the features are indeed well-separated by intensity values. The images in Figure 22d and 

Figure 22e were also well segmented by Workflow 1, but only after tuning of the contrast 

enhancement steps described earlier in this work. Similarly, the image in Figure 22c also 

showed good segmentation results with Workflow 1 after the implementation of additional 

post-processing steps to isolate the needle shapes. Workflow 1 is therefore well suited for 

microstructures where the features throughout the whole image can be reliably segmented 

largely based on intensity values. For instance, the image in Figure 22a is not well 
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segmented by Workflow 1 because of the overlap in the intensity values in the matrix and 

precipitate features.  

Table 9 – Templated workflows that can be used in the segmentation of most microstructure 

images. 

 
 

Workflow 2 utilized a local thresholding as a segmentation step and performed well 

on most images with less tuning required in the preprocessing step compared to Workflow 

1. In addition, this workflow performed well for the image in Figure 22a in segmenting 

features exhibiting similar intensity values. However, Workflow 2 tended to oversegment 

the image in Figure 22d. Workflow 2 is well suited for applications with contiguous 

features (e.g., precipitates), and typically requires careful tuning of the segmentation 

function for best results. An important factor in achieving good segmentation of 

microstructure features is selection of optimal neighborhood size in the segmentation 

function (as described in the segmentation step). The neighborhood should be sized to 

contain different local states yet small enough to avoid large intensity overlap with 

unwanted objects. For instance, the neighborhood size was 21 pixels for the image (400 px 

× 400 px) in Figure 22a and 51 pixels for the image (1024 px × 1024 px) in Figure 22e, 

which allowed good segmentation with few errors due to intensity overlap between two 

different feature classes. 
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Workflow 3 is based on detecting feature outlines in images and performs well on 

images in Figure 22a and Figure 22e. However, this approach undersegments features on 

the image boundaries in Figure 22a. In particular, it appears to perform well when the 

features in the image are not cut off by the image border. This workflow performs poorly 

on the rest on the images due to the insufficient contrast that prevents reliable continuous 

edge detection. This approach, coupled with suitable preprocessing and post-processing 

operations, may perform well in cases where different classes of features are separated by 

feature outlines rather than intensity values.  
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Figure 22 – Previously acquired microstructure raw images (left column) and their 

segmented results utilizing the three templated workflows (right three columns) identified in 

Table 9. 

 



 67 

This case study demonstrated that various types of microstructure images may be 

segmented sufficiently well using a limited number of templated workflows created using 

the segmentation framework presented in this work. It is hoped that the approach outlined 

here may open new avenues for automated or semi-automated segmentation of the very 

large number of microstructures images contained in legacy collections of micrographs in 

many research laboratories.  

3.5 Conclusions 

In this work, we develop a systematic framework designed to segment a wide variety of 

microstructure images. The framework consists of five important sequential steps that 

include image acquisition, preprocessing, segmentation, post-processing, and validation. 

Each step is further designed to include necessary tasks, subtasks, and options that must be 

taken to reliably segment images. Furthermore, the tools and algorithms in the framework 

employ functions that are widely available in popular software tools such as MATLAB and 

Python. The developed framework leads naturally to design and implementation of 

segmentation workflows. The application of the developed framework was illustrated 

through the design and implementation of two types of segmentation workflows. The first 

workflow produced was a custom-built workflow utilizing all five framework steps to 

segment Ni-based superalloy images. In the second case, templated workflows were 

constructed and applied to previously acquired images of six different material systems. 

Although the examples in this work illustrate segmentation of microstructure images into 

two local states (i.e., black and white), it is important to point out that the developed 

framework can be directly applied to segmentation of an arbitrary number of local states.  

This mostly entails considerations in the segmentation and post-processing steps. In the 
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segmentation step, the number of microstructure local states should be specified in suitable 

segmentation functions/algorithms. In post-processing, the different segmented local states 

can be processed individually (i.e., by specifying the local state on which to perform 

specific post-processing functions). 

   



 69 

  

APPLICATION OF PROTOCOLS TO MULTIRESOLUTION 

STUDY OF THERMALLY AGED FERRITE-PEARLITE STEELS 

4.1 Introduction 

The protocols for multiresolution spherical indentation and image segmentation 

described in previous chapters have now set the stage for systematic investigations of the 

microstructure and mechanical responses of heterogeneous material systems and the 

critical evaluation of available composite theories. In this study, we conduct such an 

investigation into the mechanical response of thermally aged ferrite-pearlite steel samples. 

The prolonged thermal exposures (up to 500 °C and 91,000 hours) in these steel samples 

contribute to significant changes in the microstructures that typically translate to reduction 

in yield strength [69-73].  

In this study, the spherical ISS protocols were employed on the individual microscale 

constituents (i.e., ferrite, pearlite) using nanoindentation as well as at the macroscale using 

microindentation. The respective yield strengths of the microscale constituents and the bulk 

yield strength of the sample were estimated from these measurements. The microstructures 

of these samples were documented using optical microscopy (OM), where images were 

segmented and the relevant microstructure statistics were extracted. All of this information 

was used to evaluate the composite theory estimates based on simple composite theories 

for mechanical property homogenization. It is shown that the multiresolution spherical 

indentation and image segmentation protocols employed in this study produce results that 
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are highly consistent with the bounds estimated for these material systems from the 

simplest of the composite theories. This work validates the developed protocols, which can 

dramatically reduce the cost and effort needed for the multiresolution mechanical 

evaluation of heterogeneous material systems. 

4.2 Thermally aged ferrite-pearlite steels 

In this work, multiresolution mechanical evaluation is performed on 0.3% C steel 

samples with three different levels of thermal exposure histories, shown in Table 10. The 

samples in this study were selected from a library of samples from the study in Section 

2.1.3, which were excised from in-service gas turbine components. The sample names in 

Table 10 indicate the level of thermal exposure based on the service time and temperature 

(note that baseline material is labelled as Unexposed). The service temperature code in 

Table 10 represents a normalized value of temperatures recorded during service, where 

1.00ST corresponds to the maximum temperature between all samples. 

The ferrite-pearlite steels exhibit a hierarchical microstructure that initially consists 

(i.e., in Unexposed sample) of two main grain-scale constituents, ferrite and pearlite, as 

shown in Figure 23a. The ferrite constituent is made up of α-ferrite, and the pearlite 

constituent is comprised of lamellar arrangement of α-ferrite and cementite (Fe3C) phases. 

The α-ferrite phase consists mainly of iron with small amounts of interstitial carbon, and 

is the softer microscale constituent in the samples. On the other hand, the pearlite grains 

represent the harder microstructure constituent that exhibits a lamellar arrangement of soft 

ferrite and hard cementite phases in the baseline (no thermal exposure) material. Thermal 

exposure of these steels generally leads to significant changes in the microstructure and 
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substantial reduction of the effective mechanical properties, such as yield strength [12, 71, 

72, 80]. At moderate levels of thermal exposure, the lamellar pearlite structure undergoes 

spheroidization in the temperature ranges of 454-760 °C [70, 72, 178].  An example of this 

microstructural change can be seen in the optical micrograph in Figure 23b. At higher 

levels of exposure, one observes spheroidization and graphitization, as seen in the optical 

micrograph in Figure 23c. Graphitization results from the diffusion of carbon from α-ferrite 

and cementite phases to form secondary graphite particles  in temperature ranges of 427-

593 °C [69-73]. It should be noted that there is significant overlap in temperature for which 

the graphitization and spheroidization processes occur, therefore one can expect to observe 

both graphitization and spheroidization phenomena in the steel samples.  

 

Figure 23 – Example optical microscopy (OM) microstructure images at different 

magnifications for different levels of thermal exposure. a) unexposed sample with ferrite (𝒇) 

and lamellar pearlite (𝒑), b) moderate exposure sample with pearlite spheroidization (at 

higher magnification than a) and c)), c) high exposure sample with pearlite spheroidization 

and graphitization (𝒈). The details of exposure times and temperature are provided in Table 

10. 
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4.3 Sample Preparation 

Samples studied in this work were mounted in standard epoxy resin such that the 

sample surface is exposed on both opposing sides. The samples were ground on both sides 

to ensure parallel surfaces needed for the indentation tests. For microindentation and 

microstructure image acquisition, the sample surfaces were polished up to 0.02 µm 

colloidal alumina suspension and vibropolished in a 4:1 ratio of water to colloidal silica 

mixture as the final step, which resulted in the slightly etched surfaces shown in Figure 23. 

The slight etching of the sample surface enabled clear identification of lamellar and 

spheroidized pearlite grains, as well as the graphite particles. For nanoindentation, the 

samples were further electropolished, in an electrolyte consisting of 6% perchloric acid 

(60%), 14% distilled water, and 80% ethanol [179], to minimize any remaining scratches 

from mechanical polishing and to ensure a flat surface within each grain. The 

electropolishing process tends to remove material at different rates based on the orientation 

of the grains which leaves an uneven surface between grains with different orientations and 

therefore may not be well suited for indentation tests multiple grains at once (e.g., 

microindentation). It is important to note that the electropolishing process clearly revealed 

grain boundaries, which enabled confident identification of ferrite and pearlite constituents 

for indentation. 
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Table 10 – Specimens received for study with different exposure conditions. Superscript * 

indicates samples where tensile test specimen were made in addition to microstructure and 

indentation measurements. 

Sample name Approximate service hours Service temperature code 

Unexposed* -- -- 

Moderate exposure 22,000 0.98 ST 

High exposure* 91,000 0.85 ST 

 

4.4 Image Segmentation 

As mentioned in Chapter 3, in the context of microstructure images, segmentation 

can be defined as the process of labelling each pixel (or voxel in 3D) with the correct local 

microstructural feature (e.g., thermodynamic phase, microconstituent structures, grain 

boundary). For the microstructure of the steels samples shown in Figure 23, the three local 

microstructural states of interest are ferrite, pearlite, and graphite. Segmentation of the 

microscopy images obtained in this work was conducted following the framework 

developed in Chapter 3 for designing segmentation workflows. The sequence of the five 

framework steps to accomplish segmentation for the microstructures in this study are 

described in detail next.  

Step 1 – Image acquisition 

In the present study, images were captured using a Zeiss Observer A1.m light 

optical microscope. To strike a balance between capturing sufficient details of pearlite 

spheroidization and a representative distribution of ferrite-pearlite grains in each image,  a 

magnification corresponding to a view field of 312 × 312 µm was chosen, which 

corresponds to a spatial resolution of 0.3 µm/pixel in 1040 × 1040 pixel images. A 
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magnified portion of a typical acquired image for high exposure sample is shown in Figure 

24a (magnified for improved feature visualization; non-magnified images are shown in 

Figure 25). Optimal microscope image acquisition parameters were adjusted to provide as 

much contrast as possible for spheroidized pearlite grains without affecting details of other 

features.  

Step 2 – Image preprocessing 

The next step in the segmentation workflow addressed image noise reduction and 

contrast enhancement of the features of interest. Image noise reduction was tackled both 

on the image-scale (e.g., reducing unwanted intensity gradient over the image) and pixel-

scale (i.e., reducing random variation of individual pixel intensities). A shadow gradient 

(i.e., intensity gradient) over the raw images was reduced by subtracting an approximated 

shadow profile from the noisy image . Random pixel-scale noise throughput the image was 

removed using Gaussian filtering [115]. It is important to note that optimal filtering of 

random noise requires a balance between noise reduction and retention of feature details 

(e.g., details of feature edges). In this study, an optimal Gaussian filtering strength was 

chosen based on the lowest similarity between the removed random noise and the filtered 

image using the methodology described in Section 3.3.2.1. Following noise reduction, 

contrast enhancement was performed on the whole image using contrast stretching [147], 

which increases the difference in intensity values throughout the image. The consequence 

of this step can  be seen by comparing the raw image in Figure 24a and the preprocessed 

image Figure 24b. 
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Step 3 – Segmentation  

Next, the segmentation step is performed to label each image pixel with a 

microstructure local state of interest. In this step, the goal is to label each pixel in the image 

as the ferrite or pearlite (lamellar or spheroidized) or graphite. An intensity thresholding 

approach was utilized, which separates the image intensities into 𝑘 + 1 classes using 𝑘 

thresholds based on grayscale intensities. In the present work, the pixels in each image are 

separated into three classes using the multi-Otsu threshold approach [112]. This 

thresholding segmentation resulted in labelling the image pixels into three classes 

corresponding to graphite, pearlite, and ferrite. An example outcome from this procedure 

is shown in Figure 24c, where the three different microstructural states are colored 

differently. Note that the segmented image in Figure 24c is for the High exposure sample 

with spheroidization and graphitization. In this image, the pearlite components appear as 

clusters. These clusters will be coalesced, and other clean-up tasks are performed in the 

post-processing step.  

Step 4 – Post-processing 

The main goal of the post-processing step is to reassign incorrectly labeled pixel 

values to their correct microstructural feature labels or filter out unwanted objects from 

further analysis. For current segmented images, image closing [115] was first performed 

to connect the clustered pearlite particles seen in Figure 24c. Image closing is a sequence 

of dilation (expansion of object boundaries) and erosion (shrinking of object boundaries). 

The resulting connected clusters represent the regions of the pearlite constituents (lamellar 

or spheroidized) in the micrographs. Next, several types of incorrectly labelled features 

were cleaned up in the ferrite matrix. First, small round features with lower intensities (i.e., 
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darker in grayscale) that were labelled as graphite were relabeled as part of ferrite matrix 

because they likely correspond to material inclusions and/or pitting during the polishing 

process. Then, pixels directly surrounding graphite particles were reassigned to ferrite if 

they were incorrectly labelled as pearlite. This incorrect labelling was observed in ferrite 

matrix that surrounded graphite particles, where the ferrite was noticeably darker (lower 

intensity) and therefore was incorrectly labelled as pearlite. Finally, pixel-scale particles 

that belonged to other microstructure states throughout the ferrite matrix were relabeled to 

ferrite. This likely resulted from the few highly noisy pixels that remained after the 

preprocessing step. As mentioned earlier, noise reduction requires a balance between 

elimination of noise and retention of detail, which typically leaves few noisy pixels that 

are then labelled incorrectly during the segmentation step. An example of the final post-

processed image for an exposed sample is shown in Figure 24d.  

Step 5 – Segmentation validation 

The final step of the segmentation workflow focuses on the validation of the post-

processed segmentation results to assess the confidence in the segmentation results. In 

practice, segmentation validation can be a challenging process because the ground truth for 

most studied microstructures is not available. As mentioned earlier, studies involving 

materials images often rely on qualitative visual inspection [67, 97, 99] due to ease of 

validation or unavailability of other means. In this work, the validation was performed 

visually by overlaying the outlines of segmented features over the grayscale images to 

check the accuracy with which the different constituent boundaries are captured. This is 

illustrated in Figure 24e. In this work, visual inspection provided reasonable validation 

since the constituents were clearly distinguished from each other. Furthermore, a relative 



 77 

quantitative validation was performed by comparing the faction of pixels labelled as 

pearlite in each image. Although the expected pearlite fraction for these samples is not 

precisely known, the level of consistency of identified pearlite fraction between images can 

serve as a guide to identify potential issues in the segmentation process. 
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Figure 24 – Illustration of the individual steps in the segmentation workflow developed and 

implemented on the images studied in this work. Note that these images show a magnified 

region of the original image to display the microstructure details. a) Acquired raw image 

from optical microscopy, b) preprocessed image with removed noise and increased contrast, 

c) segmented image showing three microstructural states, d) post-processed image, and e) 

visualization of segmented pearlite (outlined in magenta) on the preprocessed image. 
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All of the images were segmented following the developed segmentation workflow. 

An example of a representative segmented image for each sample in shown in Figure 25. 

Each sample contained 10 images. The volume fraction of pearlite, 𝑣𝑝, was determined for 

each image as the fraction of the total pixels labelled as pearlite and is reported in Table 

11. Note that the ferrite volume fraction was calculated as 𝑣𝑓 = 1 − 𝑣𝑝. This means that 

the graphite particles were counted as part of the ferrite matrix. This is a reasonable 

assumption, as the graphite fraction tends to be low (less than 2% on average in most 

samples). Furthermore, the graphite particles are highly scattered throughout the samples 

(no graphite clusters were observed) and likely do not affect the bulk material yield strength 

significantly. 

 

Figure 25 - Example of visualization of segmented images for the thermally aged samples.,(a) 

Unexposed sample, (b) moderate exposure, (c) high exposure. 

 

4.5 Mechanical characterization results 

 The main objective in this section is to demonstrate multiresolution mechanical 

evaluation of the thermally aged steels using the ISS protocols developed in Chapter 2. 

This is achieved by using different radius indenter tips to probe different indentation zone 
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volumes within the sample material. The microindentation protocol with a large indenter 

tip (𝑅𝑖=6.35 mm) was utilized to probe an indentation zone with a sufficiently large number 

of all microscale constituents (i.e., ferrite and pearlite grains) for an estimation of the bulk 

material response. On the other hand, the ferrite and pearlite constituents were evaluated 

using nanoindentation protocols with a smaller indenter tip (𝑅𝑖=100 µm) to contain the 

indentation zone within each constituent.  

4.5.1 Evaluation of bulk properties with microindentation 

  Microindentation tests were performed using a 6.35 mm radius indenter tip to 

estimate the bulk mechanical response of the samples. Figure 26a shows an example of an 

estimated contact radius, 𝑎, at yield for the Unexposed sample, which corresponds to 

primary indentation zone of a cylinder of radius 𝑎 and height 2.4𝑎. In Figure 26a, it can be 

seen that for a contact radius of about 100 µm, a large number of grains are activated within 

the indentation zone and it is reasonable to assume that these tests estimate the bulk 

material response. Using this reasoning, each sample was evaluated in random locations 

throughout each sample with at least seven indentation tests. The microindentation tests 

for all three samples are summarized in Table 11, where a trend of decreasing yield strength 

with thermal aging is observed. 
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Figure 26 – a) Top view of residual indentation impression after a microindentation test, 

where the yellow outline corresponds to the contact area at indentation yield stress displayed 

on an etched sample, b) top view of residual indentation impression (arrow) after a 

nanoindentation test within a ferrite grain. 

 Tensile measurements were also performed on the Unexposed and High exposure 

samples (Section 2.1.3), which showed that 0.2% strain offset yield strength ratio between 

the microindentation and tension tests is about 2. This ratio is in close agreement with 

experimental studies [50, 58] and FE simulations [61] using the current ISS protocols, 

which provides confidence in estimation of bulk properties corresponding to uniaxial tests 

using current microindentation tests. Figure 27 summarizes the average microindentation 

yield strength and one standard deviation for all three samples. 

 

Figure 27 – Microindentation yield strength measured for the thermally exposed samples in 

this study. 
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4.5.2 Evaluation of ferrite and pearlite constituents with nanoindentation 

The evaluation of ferrite and pearlite constituents was performed with 100 µm radius 

indenter tip, where each indentation was performed close to the center of a single 

constituent grain. An example of a post-indentation impression in a ferrite grain is shown 

in Figure 26b. The tip size was chosen to ensure that the indentation zone was contained 

well within a single constituent grain in each test. In addition, the 100 µm tip ensured a 

large enough contact radius and indentation zone to activate multiple cementite laths in 

lamellar pearlite and also multiple spheroidized cementite particles in thermally aged 

samples. Representative nanoindentation load-displacement curves and corresponding 

indentation stress-strain curves for ferrite and pearlite constituents for all three samples are 

shown in Figure 28a and Figure 28b, respectively. For each sample, at least eight 

measurements within each ferrite and pearlite constituents were made. The elastic modulus 

and the 0.2% plastic strain offset yield strength for ferrite and pearlite constituents in each 

sample are summarized in Table 11. Nanoindentation measurements of both ferrite and 

pearlite constituents reveal a trend the of decreasing yield strength with increasing thermal 

exposure. This trend is consistent with the bulk material yield strength measurements 

estimated with microindentation tests.  
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Figure 28 – Examples of nanoindentation load-displacement (left column) and corresponding 

indentation stress-strain curves (right column) for (a) ferrite and (b) pearlite constituents for 

all samples. 
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Table 11 – Summary of microstructure statistics and indentation measurements on the 

thermally aged steels samples. 

 

 

4.6 Correlation of yield strength at multiple scales 

For many engineering applications, the effective mechanical properties controlling 

the performance characteristics can be modeled as a function of the material microstructure 

and the properties of the microscale constituents using established composite theories. 

Such theories are based on various approaches, including mean-field theories [180-183], 

statistical continuum theories  [18, 184-192], and computational homogenization [193-

200]. One of the main distinguishing factors between the different approaches lies in the 

level of the microstructure details taken into account in estimating the homogenized 

properties of interest. The simplest of these theories for estimating the effective yield 

strength of the composite material may be formulated as well-known “rules of mixtures” 

[201-203]. These estimates generally provide upper and lower bounds for the effective 

yield strength of the material based on the volume fractions of the microscale constituents 

and their respective yield strengths. Other approaches incorporate higher-order 

microstructure statistics (e.g., statistical continuum theories [185, 186]) and computational 
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strategies (e.g., finite element models [23, 193, 194, 196, 198]). Although the more 

sophisticated approaches can provide higher fidelity estimates, they often also require 

significantly higher computational effort. A significant hurdle in the advancement of 

composite theories has been the lack of a sufficiently large experimentally measured 

datasets of microstructures and their effective properties, which can be used to critically 

validate and/or refine the different composite theories. The protocols developed in this 

work aim to bridge this gap. To demonstrate this, the collected microstructure and 

multiresolution indentation measurements in previous sections were used to evaluate 

composite theory estimates based on the simple rules of mixtures and self-consistent 

models. 

4.6.1 Rule of mixtures 

 A frequently used rule of mixtures (ROM) model is based on Voigt model [204] for 

estimation of elastic properties of a multi-constituent composite based on the contribution 

of each constituent by volume fraction. This approach attractive for its simplicity and is 

broadly adapted as a linear ROM model to estimate yield strength in multiphase composites 

[202]. The following is an adaptation of the linear ROM for the current study: 

𝜎𝑦𝑐 = 𝑣𝑓𝜎𝑦𝑓 + 𝑣𝑝𝜎𝑦𝑝 (17) 

where 𝜎𝑦𝑐 is the yield stress of the composite material, 𝜎𝑦 is the yield stress, and 𝑣 is the 

volume fraction of a constituent. The subscripts 𝑓 and 𝑝 correspond to ferrite and pearlite 

constituents, respectively.  



 86 

  The Voigt ROM corresponds to the case when an applied load on the composite 

causes equal strains in all constituents (isostrain). Therefore, the overall composite stress 

on the composite is the sum of stresses carried by each constituent, which is weighted by 

the volume fraction of each constituent. On the other hand, a ROM by Reuss [205] 

corresponds to the case when all constituents carry equal stress (isostress). Therefore, the 

corresponding strain of the composite is the sum of strains experienced by all constituents. 

The Voigt and Reuss mixture models correspond to the upper and lower bounds of effective 

properties, respectively. However, the composite behavior in most cases typically falls 

between the two bounds. Consequently, a modified rule of mixtures model has been 

proposed by Tamura et al. [206] for yield strength estimation of composites. which is based 

on modeling the harder phase as elastic and the softer matrix phase as elastic-plastic. This 

is a reasonable assumption for many multiphase metals as shown on a study on dual-phase 

steels [207]. In this study, the modified ROM is adapted to model the ferrite-pearlite 

composite yield strength, 𝜎𝑦𝑐, by treating the pearlite constituents as the hard phase: 

𝜎𝑦𝑐 = 𝜎𝑦𝑓 (𝑣𝑓 +
𝐸𝑝𝑣𝑐

𝐸𝑓𝑅
) 

 
(18) 

𝑅 =
𝑞 + 1

𝑞 + 𝐸𝑓/𝐸𝑝
 𝑞 =

𝜎𝑝−𝜎𝑓

𝐸𝑝𝜀𝑝 − 𝜀𝑓
 (19) 

where 𝐸𝑓 and 𝐸𝑝 correspond to the Young’s modulus of ferrite and pearlite constituents, 

respectively. A dimensionless parameter, 𝑞, corresponds to the normalized ratio of the 

stress to strain transfer (0 ≤ 𝑞 ≤ ∞). In general, the value 𝑞 is an empirical parameter and 

depends on many factors such as composition, microstructural arrangement, flow stress 
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ratio, and strain hardening of constituent phases. However, the exact nature of this 

dependence is not yet well known. The choice of 𝑞 → 0 refers to Reuss model and 𝑞 → ∞ 

refers to Voigt model. In a study on dual-phase steels, the value of 𝑞 of about 4.5 has shown 

reasonable comparison to experimental results [207] and is used in this case. 

4.6.2 Self-consistent model 

Self-consistent models account for the deformation heterogeneity of different 

constituents without the assumption of either equal stress or equal strain throughout the 

composite material, and have been extensively used to model plasticity of two-phase metals 

[180, 208-210]. In this study, we use the self-consistent model developed by Stringfellow 

and Parks [209].  

In the current approach, the composite material is modeled by considering 𝑁 

distinct local phases of spherical incompressible inclusions embedded in a homogeneous 

equivalent medium. The behavior and the distribution of the inclusions is assumed to be 

isotropic, leading to an overall isotropic behavior of the composite material. These 

idealizations allow the model to be formulated in terms of equivalent shear strain rate, and 

equivalent shear stress. Given these assumptions, relations between the macroscopic and 

the local volume averaged strain and stress fields can be derived from Eshelby solutions 

[17] for isotropic incompressible spherical inclusions in an incompressible matrix [209, 

211]. The ratio of the average equivalent strain rate in each phase to the equivalent strain 

rate of the composite is expressed as 
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𝜒𝑖 =
𝛾�̇�

𝛾∗
, (20) 

where 𝛾�̇� and 𝛾∗ are the equivalent shear strain rate in the 𝑖-th phase and the composite, 

respectively. A requirement that macroscopic fields are equal to the volume averages of 

the local fields leads to the self-consistency condition 

∑ 𝑓𝑖𝜒𝑖

𝑁

𝑖=1

= 1, (21) 

where 𝑓𝑖 = 𝑉𝑖/𝑉 is the volume fraction of 𝑖-th phase. The viscoplastic constitutive 

equations for each phase described by Stringfellow and Parks [209] lead to the set of 

equations 

𝜒𝑖 =
5

3
+

2𝑠𝑖

3𝑠∗
𝜒𝑖

1/𝑚
 , (22) 

where 𝑠 and 𝑠∗ correspond to the reference shear strength of each phase and the composite.  

The expressions in Eq. (22) together with the self-consistency condition in Eq. (21) 

yield a closed system of equations that needs to be solved for the unknowns 𝜒𝑖and 𝑠∗. In 

the current case, N=2, and the values for 𝑠𝑖 correspond to the indentation yield strength of 

ferrite and pearlite constituents, 𝜎𝑓 and 𝜎𝑝. A value of 0.01 was used for strain rate 

sensitivity, m. The values of 𝑓𝑝 and 𝑓𝑓 for Eq. (21) corresponded to values extracted in 

segmented images, 𝑣𝑝 and 𝑣𝑓. Using the above information, we are interested in the 

unknown value of 𝑠∗, which, following the established notation, corresponds to the 
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composite yield strength, 𝜎𝑦𝑐. This value was recovered for each sample by solving the 

system of equations using a custom code in MATLAB [87]. 

4.6.3 Results of composite model evaluation 

All of the models described above were used to estimate the composite indentation 

yield strength based on the indentation yield strengths and volume fractions of the ferrite 

and pearlite constituents (these values are summarized in Table 11). To estimate the 

uncertainty in the composite yield strength predictions, the inputs (e.g., ferrite yield 

strength) to each model were randomly sampled from an assumed normal distribution of 

the experimental measurements. The resulting distribution of composite model predictions 

from 10,000 random samples was obtained and also assumed to follow a normal 

distribution. The results of the average and one standard deviation of estimated composite 

yield strength along with the actual yield strength from microindentation for each sample 

are summarized in Table 12.  

Table 12 – Indentation yield strength of pearlite-ferrite steel samples from microindentation 

measurements and the predicted indentation from composite models (average and one 

standard deviation). An average MAPE (mean absolute percentage error) between the 

indentation yield strength estimated by each composite model is displayed at the bottom. 

Sample 
Microindentation 

𝜎𝑖𝑛𝑑 (MPa) 

ROM 

 𝜎𝑦𝑐 (MPa) 

Modified 

ROM 

 𝜎𝑦𝑐 (MPa) 

Stringfellow-Parks 

 𝜎𝑦𝑐 (MPa) 

Unexposed 614.5  ±18.6 673.3 ±45.5 536.6 ±30.9 640.4 ±36.7 

Moderate exposure 543.9  ±14.9 620.0 ±36.2 501.5 ±26.2 593.4 ±33.9 

High exposure 436.1  ±32.2 488.8 ±27.7 420.3 ±25.3 476.1 ±23.3 

Average MAPE for each model  11.9% 8.0% 7.5% 
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 The results of the composite models are evaluated against the experimentally 

measured microindentation yield strength. To evaluate the accuracy of the composite 

model, we define an error between average model estimates and the average experimental        

measurements, as  

𝐸(𝜎𝑦𝑐 , 𝜎𝑖𝑛𝑑) =
100%

𝜎𝑖𝑛𝑑
|𝜎𝑦𝑐 − 𝜎𝑖𝑛𝑑|, (23) 

where 𝐸(𝜎𝑦𝑐 , 𝜎𝑖𝑛𝑑) denotes the mean absolute percentage error (MAPE) between the 

average indentation yield strength estimated by composite models, 𝜎𝑦𝑐, and the average 

yield strength measure with microindentation, 𝜎𝑖𝑛𝑑. The goal is to compare the relative 

percentage difference between the microindentation measurements and the model 

predictions. 

 The linear ROM model shows consistent overestimation of the composite yield 

strength compared with microindentation measurements, with an average MAPE of 11.9% 

for all samples estimates. This overestimation is somewhat expected because the linear 

ROM model theoretically provides an upper bound of composite properties. On the other 

hand, the modified ROM consistently underestimates the microindentation yield strength, 

with an average MAPE of 8.0%. On the average, the modified ROM provide estimates 

closer to the microindentation measurements than the linear ROM model. Finally, the 

estimates based on Stringfellow-Parks self-consistent model consistently overestimate the 

indentation yield strength. However, the average MAPE of 7.5% for this approach is lower 

than both rule of mixtures models.  
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Figure 29 – Comparison of indentation yield strength from evaluated composite models to 

the microindentation measurements. 

 Overall, the estimates from the different approaches in this study envelop the actual 

composite yield strength measured with microindentation, as shown in a chart in Figure 

29. The linear ROM model represents the simplest of the approaches and experiences the 

highest deviation from the experimental measurements. As more considerations are taken 

into account, the modified ROM and self-consistent models reduce the average error to 

experimental measurements. It is important to reiterate that these approaches utilize only 

the constituent volume fractions as a microstructure statistics input, yet it is remarkable 

that these models produce yield strength estimates close to the experimental measurements. 

4.7 Conclusions 

 This case study demonstrates an application of the developed protocols to evaluate 

microstructure and mechanical properties at multiple resolutions on thermally aged ferrite-
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pearlite steels. The indentation yield strength of the ferrite and pearlite constituents, as well 

as the bulk yield strength of the samples was evaluated using indentation stress-strain 

protocols. On the other hand, image segmentation protocols were used to segment the 

ferrite and pearlite constituents in the sample microstructures images. All of the collected 

information was used to critically evaluate rule of mixture and self-consistent composite 

models to estimate the bulk indentation yield strength. These estimates produced good 

estimates, provided only volume fraction of constituents was used as the microstructure 

information input. Furthermore, the good estimates from the composite models validated 

that the developed protocols in this work can potentially be applied to collect large 

experimental datasets of microstructures and their properties to critically validate and/or 

refine the different composite theories. Although this study utilized composite models 

based on simple microstructure measures, the developed experimental protocols can be 

readily expanded to more elaborate composite models with higher fidelity predictions. For 

instance, the segmented images (of 2D and 3D image data) can be quantified using higher-

order statistics (e.g., n-point statistics [187]) that are necessary in more detailed composite 

modeling approaches [191].  
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 CONCLUSIONS 

This dissertation develops and validates new protocols for systematic investigations 

of heterogeneous material microstructures and their mechanical responses at multiple 

resolutions. These protocols were demonstrated on a case study of ferrite-pearlite steels 

and have shown the potential to dramatically reduce the cost and effort needed for the 

multiresolution mechanical evaluation of heterogeneous material systems. The main 

conclusions of this work are summarized as follows: 

i. For the first time, microindentation was employed to mechanically evaluate scoop 

samples excised from operating industrial turbines components with various 

degrees of service exposure at elevated temperatures (up to 99,000 h of thermal 

aging). The indentations were performed on large number of grains to estimate the 

bulk material response. Indentation measurements revealed a trend of decreasing 

yield strength with increasing service time. It is also seen that the developed 

indentation protocols are able to provide reliable measurements in a high 

throughput manner. It is emphasized that there is no other practical alternative for 

extracting this critically needed information from scoop samples using 

conventional testing methods. 

ii. The elastic modulus and yield strength extracted using microindentation were in 

good agreement with available tensile tests on the same sample material. The yield 

strength ratio between the microindentation and tensile tests was observed to be 

about 2. This value is in excellent agreement with corresponding values reported in 

recent measurements on Al-6061 [50] as well as FE simulations [61]. 
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iii. Nanoindentation was used to locally evaluate yield strength within microscale 

ferrite and pearlite constituents in thermally aged ferrite-pearlite steels with 

significant amount of microstructural evolution (spheroidization and 

graphitization). These measurements revealed a trend of decreasing yield strength 

with increasing service time for both ferrite and pearlite, consistent to 

microindentation measurements on the same samples. 

iv. The developed segmentation framework addresses the challenges encountered in 

segmentation of raw microscopy images that are used for evaluation of 

microstructure statistics. In this work, a systematic framework was developed 

designed to segment a wide variety of microstructure images. The framework 

consists of five important sequential steps employing functions and tools that are 

widely available in popular software tools such as MATLAB and Python. The 

developed framework leads naturally to design and implementation of 

segmentation workflows (sequence of image processing functions/processes). 

v. The application of the developed framework was illustrated through the design and 

implementation of two types of segmentation workflows. The first workflow 

produced was a custom-built workflow utilizing all five framework steps to 

segment Ni-based superalloy images. In the second case, templated workflows 

were constructed and applied to previously acquired images of different material 

systems. Although the examples in this work illustrate segmentation of 

microstructure images with two local states (i.e., black and white), it is important 

to point out that the developed framework can be directly applied to segmentation 

of an arbitrary number of local states. 
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vi. Following the framework, segmentation workflows were designed for the case 

study of ferrite-pearlite steel samples. Microstructure images were acquired using 

optical microscopy (OM) and from which ferrite, pearlite, and graphite constituents 

were segmented.  

vii. The bulk yield strengths of the samples from (i), the yield strengths of the 

microscale constituents from (iii), and the microstructure statistics of segmented 

images from (vi) were used to evaluate the composite theory estimates based on the 

simple rules of mixtures. It was shown that the multiresolution spherical indentation 

and image segmentation protocols employed in this work produce results that are 

highly consistent with the bounds estimated from the simplest of the composite 

theories. 

 

5.1 Future Work 

The challenges in experimental multiresolution evaluation of microstructures and 

their properties present significant obstacles in the investigation of heterogeneous 

materials. This work provides a crucial step to overcome these challenges by developing 

protocols for evaluation of mechanical properties at multiple resolutions and a framework 

for microstructure image segmentation. One of the critical areas for future development is 

the automation of image segmentation. Modern characterization capabilities enable 

researchers to collect large amounts of raw microstructure images, which will demand 

segmentation automation. This can be approached by optimization of image processing 

functions and/or the set of functions within segmentation workflows. However, such 

optimization efforts remain a challenge due to the limited availability/access of calibration 
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data (e.g., segmentation ground truth, training data) in the materials science domain. 

Therefore, segmentation automation efforts largely rely on adoption/advancement of 

structured image segmentation frameworks, such as the one developed in this work, and 

broad collaboration in the material science community. 

 

  



 97 

 

 

REFERENCES 

 

[1] D. Gerbig, A. Srivastava, S. Osovski, L.G. Hector, A. Bower, Analysis and design of 

dual-phase steel microstructure for enhanced ductile fracture resistance, International 

Journal of Fracture 209(1-2) (2018) 3-26. 

[2] J. Allison, M. Li, C. Wolverton, X. Su, Virtual aluminum castings: an industrial 

application of ICME, Jom 58(11) (2006) 28-35. 

[3] X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Heterogeneous lamella 

structure unites ultrafine-grain strength with coarse-grain ductility, Proceedings of the 

National Academy of Sciences 112(47) (2015) 14501-14505. 

[4] W. Zhu, J. Lei, C. Tan, Q. Sun, W. Chen, L. Xiao, J. Sun, A novel high-strength β-Ti 

alloy with hierarchical distribution of α-phase: the superior combination of strength and 

ductility, Materials & Design 168 (2019) 107640. 

[5] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. 

Peranio, D. Ponge, M. Koyama, An overview of dual-phase steels: advances in 

microstructure-oriented processing and micromechanically guided design, Annual Review 

of Materials Research 45 (2015) 391-431. 

[6] G. Lütjering, Influence of processing on microstructure and mechanical properties of 

(α+ β) titanium alloys, Materials Science and Engineering: A 243(1-2) (1998) 32-45. 

[7] Y. Murayama, S. Hanada, High temperature strength, fracture toughness and oxidation 

resistance of Nb–Si–Al–Ti multiphase alloys, Science and Technology of Advanced 

Materials 3(2) (2002) 145-156. 

[8] M.I. Latypov, S. Shin, B.C. De Cooman, H.S. Kim, Micromechanical finite element 

analysis of strain partitioning in multiphase medium manganese TWIP+ TRIP steel, Acta 

Materialia 108 (2016) 219-228. 

[9] J. Bian, H. Mohrbacher, J.-S. Zhang, Y.-T. Zhao, H.-Z. Lu, H. Dong, Application 

potential of high performance steels for weight reduction and efficiency increase in 

commercial vehicles, Advances in Manufacturing 3(1) (2015) 27-36. 



 98 

[10] W.J. Joost, Reducing vehicle weight and improving US energy efficiency using 

integrated computational materials engineering, Jom 64(9) (2012) 1032-1038. 

[11] M. Javidani, D. Larouche, Application of cast Al–Si alloys in internal combustion 

engine components, International Materials Reviews 59(3) (2014) 132-158. 

[12] C. Syn, D. Lesuer, O. Sherby, Influence of microstructure on tensile properties of 

spheroidized ultrahigh-carbon (1.8 Pct C steel, Metallurgical and materials transactions A 

25(7) (1994) 1481-1493. 

[13] L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, D. Mattissen, Alloying effects on 

microstructure formation of dual phase steels, Acta Materialia 95 (2015) 386-398. 

[14] A. Hüseyin, K.Z. Havva, K. Ceylan, Effect of intercritical annealing parameters on 

dual phase behavior of commercial low-alloyed steels, Journal of Iron and Steel Research 

International 17(4) (2010) 73-78. 

[15] Z. Pan, B. Gao, Q. Lai, X. Chen, Y. Cao, M. Liu, H. Zhou, Microstructure and 

mechanical properties of a cold-rolled ultrafine-grained dual-phase steel, Materials 11(8) 

(2018) 1399. 

[16] R. Hill, The elastic behaviour of a crystalline aggregate, Proceedings of the Physical 

Society. Section A 65(5) (1952) 349. 

[17] J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and 

related problems, Proceedings of the royal society of London. Series A. Mathematical and 

physical sciences 241(1226) (1957) 376-396. 

[18] E. Kröner, Bounds for effective elastic moduli of disordered materials, Journal of the 

Mechanics and Physics of Solids 25(2) (1977) 137-155. 

[19] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials 

with misfitting inclusions, Acta metallurgica 21(5) (1973) 571-574. 

[20] S. Torquato, Random heterogeneous materials: microstructure and macroscopic 

properties, Springer2002. 

[21] J. LLorca, C. González, J.M. Molina‐Aldareguía, J. Segurado, R. Seltzer, F. Sket, M. 

Rodríguez, S. Sádaba, R. Muñoz, L.P. Canal, Multiscale modeling of composite materials: 

a roadmap towards virtual testing, Advanced materials 23(44) (2011) 5130-5147. 

[22] C. González, J. Vilatela, J. Molina-Aldareguía, C. Lopes, J. LLorca, Structural 

composites for multifunctional applications: Current challenges and future trends, Progress 

in Materials Science 89 (2017) 194-251. 

[23] J. Segurado, C. Gonzalez, J. Llorca, A numerical investigation of the effect of particle 

clustering on the mechanical properties of composites, Acta materialia 51(8) (2003) 2355-

2369. 



 99 

[24] P.M. Suquet, Elements of homogenization for inelastic solid mechanics, 

Homogenization Techniques for Composite Media, Lecture notes in physics 272 (1985) 

193. 

[25] S. Nemat-Nasser, M. Hori, Micromechanics: overall properties of heterogeneous 

materials, Elsevier2013. 

[26] J. Segurado, J. Llorca, Simulation of the deformation of polycrystalline nanostructured 

Ti by computational homogenization, Computational Materials Science 76 (2013) 3-11. 

[27] K. Matouš, M.G. Geers, V.G. Kouznetsova, A. Gillman, A review of predictive 

nonlinear theories for multiscale modeling of heterogeneous materials, Journal of 

Computational Physics 330 (2017) 192-220. 

[28] S.R. Kalidindi, S. Pathak, Determination of the effective zero-point and the extraction 

of spherical nanoindentation stress–strain curves, Acta Materialia 56(14) (2008) 3523-

3532. 

[29] H. Ghassemi-Armaki, R. Maaß, S. Bhat, S. Sriram, J. Greer, K. Kumar, Deformation 

response of ferrite and martensite in a dual-phase steel, Acta materialia 62 (2014) 197-211. 

[30] K. Kumar, K. Madhusoodanan, B. Rupani, Miniature specimen technique as an NDT 

tool for estimation of service life of operating pressure equipment, International 

Conference & Exhibition on Pressure Vessel and Piping, Citeseer, 2006. 

[31] K. Kumar, A. Pooleery, K. Madhusoodanan, R. Singh, J. Chakravartty, B. Dutta, R. 

Sinha, Use of miniature tensile specimen for measurement of mechanical properties, 

Procedia Engineering 86 (2014) 899-909. 

[32] E. ASTM, 8M. Standard test methods of tension testing of metallic materials [metric], 

Annual book of ASTM standards, 2003. 

[33] E. ASTM, E9–89a, standard test methods of compression testing of metallic materials 

at room temperature, Annual Book of ASTM Standards 3 (2000) 1-9. 

[34] H. Bei, S. Shim, G.M. Pharr, E.P. George, Effects of pre-strain on the compressive 

stress–strain response of Mo-alloy single-crystal micropillars, Acta Materialia 56(17) 

(2008) 4762-4770. 

[35] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic 

modulus using load and displacement sensing indentation experiments, Journal of 

materials research 7(06) (1992) 1564-1583. 

[36] D. Tabor, A simple theory of static and dynamic hardness, Proceedings of the Royal 

Society of London A: Mathematical, Physical and Engineering Sciences, The Royal 

Society, 1948, pp. 247-274. 

[37] H. O'Neill, Hardness measurement of metals and alloys, Chapman & Hall1967. 



 100 

[38] Y. Tirupataiah, G. Sundararajan, On the constraint factor associated with the 

indentation of work-hardening materials with a spherical ball, Metallurgical Transactions 

A 22(10) (1991) 2375-2384. 

[39] R. Rodrıguez, I. Gutierrez, Correlation between nanoindentation and tensile 

properties: influence of the indentation size effect, Materials Science and Engineering: A 

361(1-2) (2003) 377-384. 

[40] P. Zhang, S. Li, Z. Zhang, General relationship between strength and hardness, 

Materials Science and Engineering: A 529 (2011) 62-73. 

[41] G.M. Pharr, E.G. Herbert, Y. Gao, The indentation size effect: a critical examination 

of experimental observations and mechanistic interpretations, Annual Review of Materials 

Research 40 (2010) 271-292. 

[42] W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain 

gradient plasticity, Journal of the Mechanics and Physics of Solids 46(3) (1998) 411-425. 

[43] J. Swadener, E. George, G. Pharr, The correlation of the indentation size effect 

measured with indenters of various shapes, Journal of the Mechanics and Physics of Solids 

50(4) (2002) 681-694. 

[44] S. Pathak, S.R. Kalidindi, C. Klemenz, N. Orlovskaya, Analyzing indentation stress–

strain response of LaGaO 3 single crystals using spherical indenters, Journal of the 

European Ceramic Society 28(11) (2008) 2213-2220. 

[45] S. Pathak, D. Stojakovic, S.R. Kalidindi, Measurement of the local mechanical 

properties in polycrystalline samples using spherical nanoindentation and orientation 

imaging microscopy, Acta Materialia 57(10) (2009) 3020-3028. 

[46] S. Pathak, J. Shaffer, S.R. Kalidindi, Determination of an effective zero-point and 

extraction of indentation stress–strain curves without the continuous stiffness measurement 

signal, Scripta Materialia 60(6) (2009) 439-442. 

[47] S. Pathak, J. Michler, K. Wasmer, S.R. Kalidindi, Studying grain boundary regions in 

polycrystalline materials using spherical nano-indentation and orientation imaging 

microscopy, Journal of Materials Science 47(2) (2012) 815-823. 

[48] S.J. Vachhani, S.R. Kalidindi, Grain-scale measurement of slip resistances in 

aluminum polycrystals using spherical nanoindentation, Acta Materialia 90 (2015) 27-36. 

[49] J.S. Weaver, S.R. Kalidindi, Mechanical characterization of Ti-6Al-4V titanium alloy 

at multiple length scales using spherical indentation stress-strain measurements, Materials 

& Design 111 (2016) 463-472. 

[50] J.S. Weaver, A. Khosravani, A. Castillo, S.R. Kalidindi, High throughput exploration 

of process-property linkages in Al-6061 using instrumented spherical microindentation and 



 101 

microstructurally graded samples, Integrating Materials and Manufacturing Innovation 

5(1) (2016) 1-20. 

[51] J.S. Weaver, M.W. Priddy, D.L. McDowell, S.R. Kalidindi, On capturing the grain-

scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron 

back-scattered diffraction, Acta Materialia 117 (2016) 23-34. 

[52] S. Pathak, S.R. Kalidindi, N.A. Mara, Investigations of orientation and length scale 

effects on micromechanical responses in polycrystalline zirconium using spherical 

nanoindentation, Scripta Materialia 113 (2016) 241-245. 

[53] S.J. Vachhani, R.D. Doherty, S.R. Kalidindi, Studies of grain boundary regions in 

deformed polycrystalline aluminum using spherical nanoindentation, International Journal 

of Plasticity 81 (2016) 87-101. 

[54] J. Weaver, E. Aydogan, N.A. Mara, S.A. Maloy, Nanoindentation of Electropolished 

FeCrAl Alloy Welds, Los Alamos National Laboratory (LANL), 2017. 

[55] A. Khosravani, C.M. Caliendo, S.R. Kalidindi, New Insights into the Microstructural 

Changes During the Processing of Dual-Phase Steels from Multiresolution Spherical 

Indentation Stress–Strain Protocols, Metals 10(1) (2020) 18. 

[56] A. Khosravani, A. Cecen, S.R. Kalidindi, Development of high throughput assays for 

establishing process-structure-property linkages in multiphase polycrystalline metals: 

Application to dual-phase steels, Acta Mater. 123 (2017) 55-69. 

[57] A. Iskakov, Y.C. Yabansu, S. Rajagopalan, A. Kapustina, S.R. Kalidindi, Application 

of spherical indentation and the materials knowledge system framework to establishing 

microstructure-yield strength linkages from carbon steel scoops excised from high-

temperature exposed components, Acta Materialia 144 (2018) 758-767. 

[58] A. Khosravani, L. Morsdorf, C.C. Tasan, S.R. Kalidindi, Multiresolution mechanical 

characterization of hierarchical materials: Spherical nanoindentation on martensitic Fe-Ni-

C steels, Acta Materialia 153 (2018) 257-269. 

[59] A. Bhat, R. Neu, On the Constraint Factor Relating Uniaxial and Indentation Yield 

Strength of Polycrystalline Materials Using Spherical Microindentation, Materials 

Performance and Characterization 9(1) (2020) 324-345. 

[60] B.R. Donohue, A. Ambrus, S.R. Kalidindi, Critical evaluation of the indentation data 

analyses methods for the extraction of isotropic uniaxial mechanical properties using finite 

element models, Acta Materialia 60(9) (2012) 3943-3952. 

[61] D.K. Patel, S.R. Kalidindi, Correlation of spherical nanoindentation stress-strain 

curves to simple compression stress-strain curves for elastic-plastic isotropic materials 

using finite element models, Acta Materialia 112 (2016) 295-302. 



 102 

[62] J. Fry, Galaxy N-point correlation functions-Theoretical amplitudes for arbitrary N, 

The Astrophysical Journal 277 (1984) L5-L8. 

[63] A. Moore, A. Connolly, C. Genovese, A. Gray, L. Grone, N. Kanidoris II, R. Nichol, 

J. Schneider, A. Szalay, I. Szapudi, Fast algorithms and efficient statistics: N-point 

correlation functions, Mining the Sky  (2001) 71-82. 

[64] T. Smith, P. Bonacuse, J. Sosa, M. Kulis, L. Evans, A quantifiable and automated 

volume fraction characterization technique for secondary and tertiary γ′ precipitates in Ni-

based superalloys, Materials Characterization 140 (2018) 86-94. 

[65] M. Santofimia, L. Zhao, R. Petrov, J. Sietsma, Characterization of the microstructure 

obtained by the quenching and partitioning process in a low-carbon steel, Materials 

Characterization 59(12) (2008) 1758-1764. 

[66] C.A. Paredes-Orta, J.D. Mendiola-Santibañez, F. Manriquez-Guerrero, I.R. Terol-

Villalobos, Method for grain size determination in carbon steels based on the ultimate 

opening, Measurement 133 (2019) 193-207. 

[67] E. Payton, P. Phillips, M. Mills, Semi-automated characterization of the γ′ phase in 

Ni-based superalloys via high-resolution backscatter imaging, Materials Science and 

Engineering: A 527(10-11) (2010) 2684-2692. 

[68] A. Campbell, P. Murray, E. Yakushina, S. Marshall, W. Ion, New methods for 

automatic quantification of microstructural features using digital image processing, 

Materials & Design 141 (2018) 395-406. 

[69] J.R. Foulds, J.P. Shingledecker, An Updated Assessment of Graphitization of Steels 

in Elevated Temperature Service, Journal of Materials Engineering and Performance 24(2) 

(2015) 586-597. 

[70] J.R. Foulds, R. Viswanathan, Graphitization of steels in elevated-temperature service, 

Journal of Materials Engineering and Performance 10(4) (2001) 484-492. 

[71] K. Kruger, P. Pistorius, C. Orsmond, Repair welding of carbon steel that has been 

partially graphitized during service, Welding in the World 61(4) (2017) 703-710. 

[72] G. Pantazopoulos, A. Toulfatzis, A. Vazdirvanidis, A. Rikos, Analysis of the 

Degradation Process of Structural Steel Component Subjected to Prolonged Thermal 

Exposure, Metallography, Microstructure, and Analysis 5(2) (2016) 149-156. 

[73] I.U. Pérez, T.L. da Silveira, T.F. da Silveira, H.C. Furtado, Graphitization in Low 

Alloy Steel Pressure Vessels and Piping, Journal of Failure Analysis and Prevention 11(1) 

(2011) 3-9. 

[74] S. Pathak, S.R. Kalidindi, Spherical nanoindentation stress–strain curves, Mater. Sci. 

Eng. R 91 (2015) 1-36. 



 103 

[75] X. Gong, S. Mohan, M. Mendoza, A. Gray, P. Collins, S. Kalidindi, High throughput 

assays for additively manufactured Ti-Ni alloys based on compositional gradients and 

spherical indentation, Integrating Materials and Manufacturing Innovation 6(3) (2017) 

218-228. 

[76] S. Parvinian, Y.C. Yabansu, A. Khosravani, H. Garmestani, S.R. Kalidindi, High-

Throughput Exploration of the Process Space in 18% Ni (350) Maraging Steels via 

Spherical Indentation Stress–Strain Protocols and Gaussian Process Models, Integrating 

Materials and Manufacturing Innovation 9(3) (2020) 199-212. 

[77] N. Millan Espitia, S. Mohan, A.L. Pilchak, S.R. Kalidindi, Spherical nanoindentation 

stress-strain curves of primary-α grains in Ti5-2.5, Ti811, Ti64, Ti6242 and Ti6246 alloys,  

(2020). 

[78] S.R. Kalidindi, S.J. Vachhani, Mechanical characterization of grain boundaries using 

nanoindentation, Current Opinion in Solid State and Materials Science 18(4) (2014) 196-

204. 

[79] H. Hertz, D. Jones, G. Schott, Miscellaneous Papers, Macmillan, New York1896. 

[80] A. Okamoto, Graphite formation in high-purity cold-rolled carbon steels, 

Metallurgical and Materials Transactions A 20(10) (1989) 1917-1925. 

[81] J. Hau, A. Seijas, T. Munsterman, A. Mayorga, Evaluation of Aging Equipment for 

Continued Service, Corrosion 2005, Paper 05558, NACE International, Houston, USA, 

2005. 

[82] T. Bierdel, P. Bullinger, T. Hagedorn, Life Cycle Value for combined cycle power 

plants, Siemens AG, 2013. 

[83] K.L. Johnson, Contact Mechanics, Cambridge University Press1987. 

[84] W. Yu, J.P. Blanchard, An elastic-plastic indentation model and its solutions, Journal 

of Materials Research 11(09) (1996) 2358-2367. 

[85] J. Alcalá, D. Esqué-de los Ojos, Reassessing spherical indentation: Contact regimes 

and mechanical property extractions, International journal of solids and structures 47(20) 

(2010) 2714-2732. 

[86] F. Perez, B.E. Granger, J.D. Hunter, Python: an ecosystem for scientific computing, 

Computing in Science & Engineering 13(2) (2011) 13-21. 

[87] D.J. Higham, N.J. Higham, MATLAB guide, Siam, Philadelphia, 2016. 

[88] M.D. Uchic, M.A. Groeber, D.M. Dimiduk, J. Simmons, 3D microstructural 

characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM, 

Scripta Materialia 55(1) (2006) 23-28. 



 104 

[89] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in 

equiatomic multicomponent alloys, Materials Science and Engineering: A 375 (2004) 213-

218. 

[90] F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, 

Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged 

anneals at intermediate temperatures, Acta Materialia 112 (2016) 40-52. 

[91] C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu, T. Kuang, Microstructural evolution, 

nanoprecipitation behavior and mechanical properties of selective laser melted high-

performance grade 300 maraging steel, Materials & Design 134 (2017) 23-34. 

[92] S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, The morphology and 

crystallography of lath martensite in alloy steels, Acta Materialia 54(19) (2006) 5323-5331. 

[93] I.B. Timokhina, P.D. Hodgson, E. Pereloma, Transmission electron microscopy 

characterization of the bake-hardening behavior of transformation-induced plasticity and 

dual-phase steels, Metallurgical and Materials Transactions A 38(10) (2007) 2442-2454. 

[94] M. Sarvghad-Moghaddam, R. Parvizi, A. Davoodi, M. Haddad-Sabzevar, A. Imani, 

Establishing a correlation between interfacial microstructures and corrosion initiation sites 

in Al/Cu joints by SEM–EDS and AFM–SKPFM, Corrosion science 79 (2014) 148-158. 

[95] T. Hu, H. Shi, D. Hou, T. Wei, S. Fan, F. Liu, E.-H. Han, A localized approach to 

study corrosion inhibition of intermetallic phases of AA 2024-T3 by cerium malate, 

Applied Surface Science 467 (2019) 1011-1032. 

[96] D. Li, Q. Guo, S. Guo, H. Peng, Z. Wu, The microstructure evolution and nucleation 

mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy, 

Materials & Design 32(2) (2011) 696-705. 

[97] P.C. Collins, B. Welk, T. Searles, J. Tiley, J. Russ, H. Fraser, Development of methods 

for the quantification of microstructural features in α+ β-processed α/β titanium alloys, 

Materials Science and Engineering: A 508(1-2) (2009) 174-182. 

[98] J. Tiley, S. Kim, T. Parthasarathy, G. Loughnane, R. Kublik, A. Salem, Quantifying 

the effect of microstructure variability on the yield strength predictions of Ni-base 

superalloys, Materials Science and Engineering: A 685 (2017) 178-186. 

[99] H. Peregrina-Barreto, I. Terol-Villalobos, J. Rangel-Magdaleno, A. Herrera-Navarro, 

L. Morales-Hernández, F. Manríquez-Guerrero, Automatic grain size determination in 

microstructures using image processing, Measurement 46(1) (2013) 249-258. 

[100] A. Cecen, E. Wargo, A. Hanna, D. Turner, S. Kalidindi, E. Kumbur, 3-D 

microstructure analysis of fuel cell materials: spatial distributions of tortuosity, void size 

and diffusivity, Journal of The Electrochemical Society 159(3) (2012) B299-B307. 



 105 

[101] D. Yang, Z. Liu, Quantification of microstructural features and prediction of 

mechanical properties of a dual-phase Ti-6Al-4V alloy, Materials 9(8) (2016) 628. 

[102] W. Zhou, R. Apkarian, Z.L. Wang, D. Joy, Fundamentals of scanning electron 

microscopy (SEM), Scanning microscopy for nanotechnology, Springer, New York, 2006, 

pp. 1-40. 

[103] A. Behrooz, J.-C. Tseng, J. Meganck, M. Hopkinton, Image Resolution in Micro-

CT: Principles and Characterization of the Quantum FX and Quantum GX System, 2016. 

[104] T. Ishitani, C. Kamiya, M. Sato, Influence of random noise on the contrast-to-

gradient image resolution in scanning electron microscopy, Journal of electron microscopy 

54(2) (2005) 85-97. 

[105] J.F. Barrett, N. Keat, Artifacts in CT: recognition and avoidance, Radiographics 

24(6) (2004) 1679-1691. 

[106] Y.C. Yabansu, P. Steinmetz, J. Hötzer, S.R. Kalidindi, B. Nestler, Extraction of 

reduced-order process-structure linkages from phase-field simulations, Acta Materialia 

124 (2017) 182-194. 

[107] D.M. de Oca Zapiain, E. Popova, F. Abdeljawad, J.W. Foulk, S.R. Kalidindi, H. Lim, 

Reduced-Order Microstructure-Sensitive Models for Damage Initiation in Two-Phase 

Composites, Integrating Materials and Manufacturing Innovation 7(3) (2018) 97-115. 

[108] M.I. Latypov, S.R. Kalidindi, Data-driven reduced order models for effective yield 

strength and partitioning of strain in multiphase materials, Journal of Computational 

Physics 346 (2017) 242-261. 

[109] N.H. Paulson, M.W. Priddy, D.L. McDowell, S.R. Kalidindi, Reduced-order 

structure-property linkages for polycrystalline microstructures based on 2-point statistics, 

Acta Materialia 129 (2017) 428-438. 

[110] J.M. Sosa, D.E. Huber, B. Welk, H.L. Fraser, Development and application of 

MIPAR™: a novel software package for two-and three-dimensional microstructural 

characterization, Integrating Materials and Manufacturing Innovation 3(1) (2014) 123–

140. 

[111] M. Jackson, EM/MPM, Dayton, OH: BlueQuartz Software 

(http://www.bluequartz.net/projects/EIM_Segmentation/)  (2014). 

[112] N. Otsu, A threshold selection method from gray-level histograms, IEEE transactions 

on systems, man, and cybernetics 9(1) (1979) 62-66. 

[113] D. Bradley, G. Roth, Adaptive thresholding using the integral image, Journal of 

graphics tools 12(2) (2007) 13-21. 



 106 

[114] E.R. Davies, Computer and machine vision: theory, algorithms, practicalities, 

Academic Press2012. 

[115] P. Soille, Morphological image analysis: principles and applications, Springer 

Science & Business Media2013. 

[116] L. Shapiro, Computer vision and image processing, Academic Press1992. 

[117] K. Zuiderveld, Contrast limited adaptive histogram equalization, Graphics gems IV, 

Academic Press Professional, Inc., San Diego, CA, USA, 1994, pp. 474-485. 

[118] S. Deshpande, A. Kulkarni, S. Sampath, H. Herman, Application of image analysis 

for characterization of porosity in thermal spray coatings and correlation with small angle 

neutron scattering, Surface and coatings technology 187(1) (2004) 6-16. 

[119] K. Surekha, B. Murty, K.P. Rao, Microstructural characterization and corrosion 

behavior of multipass friction stir processed AA2219 aluminium alloy, Surface and 

Coatings Technology 202(17) (2008) 4057-4068. 

[120] J. Liu, C. Li, J. Liu, G. Cui, Z. Yang, Study On 3D Spatial Distribution Of Steel 

Fibers In Fiber Reinforced Cementitious Composites Through Micro-CT Technique, 

Construction and Building Materials 48 (2013) 656-661. 

[121] M. Saadatfar, F. Garcia-Moreno, S. Hutzler, A. Sheppard, M. Knackstedt, J. Banhart, 

D. Weaire, Imaging of metallic foams using X-ray micro-CT, Colloids and Surfaces A: 

Physicochemical and Engineering Aspects 344(1-3) (2009) 107-112. 

[122] S. Gigan, Optical microscopy aims deep, Nature Photonics 11(1) (2017) 14-16. 

[123] H.-J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force 

microscope: Technique, interpretation and applications, Surface Science Reports 59(1-6) 

(2005) 1-152. 

[124] T. Wortmann, Fusion of AFM and SEM Scans, 2009 International Symposium on 

Optomechatronic Technologies, IEEE, Istanbul, Turkey, 2009, pp. 40-45. 

[125] S.R. Kalidindi, Hierarchical materials informatics: novel analytics for materials data, 

Elsevier2015. 

[126] S.R. Niezgoda, D.M. Turner, D.T. Fullwood, S.R. Kalidindi, Optimized structure 

based representative volume element sets reflecting the ensemble-averaged 2-point 

statistics, Acta Materialia 58(13) (2010) 4432-4445. 

[127] C.-Y. Chen, R. Klette, Image stitching—Comparisons and new techniques, 

International Conference on Computer Analysis of Images and Patterns, Springer, 1999, 

pp. 615-622. 



 107 

[128] B. Ma, T. Zimmermann, M. Rohde, S. Winkelbach, F. He, W. Lindenmaier, K.E. 

Dittmar, Use of autostitch for automatic stitching of microscope images, Micron 38(5) 

(2007) 492-499. 

[129] J. Juntu, J. Sijbers, D. Van Dyck, J. Gielen, Bias field correction for MRI images, 

Computer Recognition Systems, Springer2005, pp. 543-551. 

[130] B. Likar, J.a. Maintz, M.A. Viergever, F. Pernus, Retrospective shading correction 

based on entropy minimization, Journal of Microscopy 197(Pt 3) (2000) 285-295. 

[131] R.A. Peters, A new algorithm for image noise reduction using mathematical 

morphology, IEEE transactions on Image Processing 4(5) (1995) 554-568. 

[132] M.V. Sarode, P.R. Deshmukh, Reduction of speckle noise and image enhancement 

of images using filtering technique, International Journal of Advancements in Technology 

2(1) (2011) 30-38. 

[133] D. Van De Ville, M. Nachtegael, D. Van der Weken, E.E. Kerre, W. Philips, I. 

Lemahieu, Noise reduction by fuzzy image filtering, IEEE transactions on fuzzy systems 

11(4) (2003) 429-436. 

[134] R. Verma, J. Ali, A comparative study of various types of image noise and efficient 

noise removal techniques, International Journal of advanced research in computer science 

and software engineering 3(10) (2013) 617-622. 

[135] C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, Proceedings 

of the 1998 IEEE International Conference on Computer Vision, Bombay, India, 1998, p. 

2. 

[136] J.S. Lim, Two-dimensional signal and image processing, Prentice Hall, Englewood 

Cliffs, NJ, 1990, pp. 469-476. 

[137] A.C. Bovik, T.S. Huang, D.C. Munson, The effect of median filtering on edge 

estimation and detection, IEEE Transactions on Pattern Analysis and Machine Intelligence 

(2) (1987) 181-194. 

[138] M.H. Alkinani, M.R. El-Sakka, Patch-based models and algorithms for image 

denoising: a comparative review between patch-based images denoising methods for 

additive noise reduction, EURASIP Journal on Image and Video Processing (1) (2017) 1-

27. 

[139] A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denoising, 2005 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition 

(CVPR'05), IEEE, 2005, pp. 60-65. 

[140] P. Chatterjee, P. Milanfar, Patch-based near-optimal image denoising, IEEE 

Transactions on Image Processing 21(4) (2011) 1635-1649. 



 108 

[141] C. Kervrann, J. Boulanger, Optimal spatial adaptation for patch-based image 

denoising, IEEE Transactions on Image Processing 15(10) (2006) 2866-2878. 

[142] L. Zhang, W. Dong, D. Zhang, G. Shi, Two-stage image denoising by principal 

component analysis with local pixel grouping, Pattern recognition 43(4) (2010) 1531-1549. 

[143] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D 

transform-domain collaborative filtering, IEEE Transactions on image processing 16(8) 

(2007) 2080-2095. 

[144] C.-A. Deledalle, L. Denis, F. Tupin, Iterative weighted maximum likelihood 

denoising with probabilistic patch-based weights, IEEE Transactions on Image Processing 

18(12) (2009) 2661-2672. 

[145] S. Van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner, N. 

Yager, E. Gouillart, T. Yu, scikit-image: image processing in Python, PeerJ 2 (2014) e453. 

[146] A.K. Jain, Fundamentals of digital image processing, Prentice Hall, Englewood 

Cliffs, NJ, 1989. 

[147] R.C. Gonzalez, R.E. Woods, Digital image processing, 2 ed., Prentice-Hall, 

Englewood Cliffs, NJ, 2002. 

[148] S. Dutta, K. Barat, A. Das, S.K. Das, A. Shukla, H. Roy, Characterization of 

micrographs and fractographs of Cu-strengthened HSLA steel using image texture 

analysis, Measurement 47 (2014) 130-144. 

[149] S. Gupta, A. Panda, R. Naskar, D.K. Mishra, S. Pal, Processing and refinement of 

steel microstructure images for assisting in computerized heat treatment of plain carbon 

steel, Journal of Electronic Imaging 26(6) (2017) 063010. 

[150] J.P. Papa, V.H.C. De Albuquerque, A.X. Falcão, J.M.R. Tavares, Fast automatic 

microstructural segmentation of ferrous alloy samples using optimum-path forest, 

International Symposium Computational Modeling of Objects Represented in Images, 

Springer, Berlin, Heidelberg, 2010, pp. 210-220. 

[151] K.H. Moon, A.C. Falchetto, J.H. Jeong, Microstructural analysis of asphalt mixtures 

using digital image processing techniques, Canadian Journal of Civil Engineering 41(1) 

(2013) 74-86. 

[152] B. Shafei, G. Steidl, Segmentation of images with separating layers by fuzzy c-means 

and convex optimization, Journal of visual communication and image representation 23(4) 

(2012) 611-621. 

[153] J.N. Kapur, P.K. Sahoo, A.K. Wong, A new method for gray-level picture 

thresholding using the entropy of the histogram, Computer vision, graphics, and image 

processing 29(3) (1985) 273-285. 



 109 

[154] T. Kurita, N. Otsu, N. Abdelmalek, Maximum likelihood thresholding based on 

population mixture models, Pattern recognition 25(10) (1992) 1231-1240. 

[155] D.-M. Tsai, Y.-H. Chen, A fast histogram-clustering approach for multi-level 

thresholding, Pattern Recognition Letters 13(4) (1992) 245-252. 

[156] J.R. Parker, Algorithms for image processing and computer vision, John Wiley & 

Sons2010. 

[157] J. Canny, A computational approach to edge detection, Readings in computer vision, 

Elsevier1987, pp. 184-203. 

[158] J. Serra, Image Analysis and Math. Morphology, Academic Press, 1982. 

[159] Y. Han, C. Lai, B. Wang, H. Gu, Segmenting images with complex textures by using 

hybrid algorithm, Journal of Electronic Imaging 28(1) (2019) 013030. 

[160] M. Paulic, D. Mocnik, M. Ficko, J. Balic, T. Irgolic, S. Klancnik, Intelligent system 

for prediction of mechanical properties of material based on metallographic images, 

Tehnički vjesnik 22(6) (2015) 1419-1424. 

[161] A.S.f. Testing, Materials, ASTM E562-11: standard test method for determining 

volume fraction by systematic manual point count, ASTM, 2011. 

[162] T. Klein, M. Schachermayer, F. Mendez-Martin, T. Schöberl, B. Rashkova, H. 

Clemens, S. Mayer, Carbon distribution in multi-phase γ-TiAl based alloys and its 

influence on mechanical properties and phase formation, Acta Materialia 94 (2015) 205-

213. 

[163] J. Potgieter, M. Cortie, Determination of the microstructure and alloy element 

distribution in experimental duplex stainless steels, Materials characterization 26(3) (1991) 

155-165. 

[164] C. Joseph, C. Persson, M.H. Colliander, Influence of heat treatment on the 

microstructure and tensile properties of Ni-base superalloy Haynes 282, Materials Science 

and Engineering: A 679 (2017) 520-530. 

[165] G. Melenka, A. Hunt, J. van Ravenhorst, R. Akkerman, C. Pastore, F. Ko, M. Munro, 

J. Carey, Manufacturing processes for braided composite materials, Handbook of 

Advances in Braided Composite Materials, Elsevier2017, pp. 47-153. 

[166] A. Standard, E112,“Standard Test Method for Determining Average Grain Size,” 

ASTM International, West Conshohocken, PA, 2010, DOI: 10.1520/E0112-10, 2013. 

[167] A. Standard, E2567-13a, 2013," Standard Test Method for Determining Nodularity 

And Nodule Count In Ductile Iron". ASTM Internationals, West Conshohocken, PA, 2013, 

DOI: 10.1520/E2567–13A. 



 110 

[168] D. Fullwood, S. Kalidindi, S. Niezgoda, A. Fast, N. Hampson, Gradient-based 

microstructure reconstructions from distributions using fast Fourier transforms, Materials 

Science and Engineering: A 494(1-2) (2008) 68-72. 

[169] S. Niezgoda, D. Fullwood, S. Kalidindi, Delineation of the space of 2-point 

correlations in a composite material system, Acta Materialia 56(18) (2008) 5285-5292. 

[170] D.M. Turner, S.R. Kalidindi, Statistical construction of 3-D microstructures from 2-

D exemplars collected on oblique sections, Acta Materialia 102 (2016) 136-148. 

[171] Y. Jiao, F. Stillinger, S. Torquato, A superior descriptor of random textures and its 

predictive capacity, Proceedings of the National Academy of Sciences 106(42) (2009) 

17634-17639. 

[172] S. Torquato, B. Lu, Chord-length distribution function for two-phase random media, 

Physical Review E 47(4) (1993) 2950. 

[173] Y. Jiao, F. Stillinger, S. Torquato, Modeling heterogeneous materials via two-point 

correlation functions: Basic principles, Physical review E 76(3) (2007) 031110. 

[174] J.G. Berryman, S.C. Blair, Use of digital image analysis to estimate fluid 

permeability of porous materials: Application of two‐point correlation functions, Journal 

of applied Physics 60(6) (1986) 1930-1938. 

[175] R. Kozar, A. Suzuki, W. Milligan, J. Schirra, M. Savage, T. Pollock, Strengthening 

mechanisms in polycrystalline multimodal nickel-base superalloys, Metallurgical and 

Materials Transactions A 40(7) (2009) 1588-1603. 

[176] E. Francis, B. Grant, J.Q. da Fonseca, P. Phillips, M. Mills, M. Daymond, M. Preuss, 

High-temperature deformation mechanisms in a polycrystalline nickel-base superalloy 

studied by neutron diffraction and electron microscopy, Acta Materialia 74 (2014) 18-29. 

[177] R. Unocic, L. Kovarik, C. Shen, P. Sarosi, Y. Wang, J. Li, S. Ghosh, M. Mills, 

Deformation mechanisms in Ni-base disk superalloys at higher temperatures, Superalloys 

8 (2008) 377. 

[178] A. Marder, B. Bramfitt, The effect of morphology on the strength of pearlite, 

Metallurgical Transactions A 7(3) (1976) 365-372. 

[179] E. ASTM, Standard guide for electrolytic polishing of metallographic specimens,  

(2009). 

[180] A. Molinari, G. Canova, S. Ahzi, A self consistent approach of the large deformation 

polycrystal viscoplasticity, Acta Metallurgica 35(12) (1987) 2983-2994. 

[181] R.A. Lebensohn, C. Tomé, A self-consistent anisotropic approach for the simulation 

of plastic deformation and texture development of polycrystals: application to zirconium 

alloys, Acta metallurgica et materialia 41(9) (1993) 2611-2624. 



 111 

[182] C.N. Tomé, Self-consistent polycrystal models: a directional compliance criterion to 

describe grain interactions, Modelling and Simulation in Materials Science and 

Engineering 7(5) (1999) 723. 

[183] M.V. Nebozhyn, P. Gilormini, P.P. Castañeda, Variational self-consistent estimates 

for cubic viscoplastic polycrystals: the effects of grain anisotropy and shape, Journal of the 

Mechanics and Physics of Solids 49(2) (2001) 313-340. 

[184] W.F. Brown Jr, Solid mixture permittivities, The Journal of Chemical Physics 23(8) 

(1955) 1514-1517. 

[185] E. Kröner, Statistical continuum mechanics, Springer1972. 

[186] S. Torquato, Random heterogeneous media: microstructure and improved bounds on 

effective properties,  (1991). 

[187] S. Torquato, G. Stell, Microstructure of two‐phase random media. I. The n‐point 

probability functions, The Journal of Chemical Physics 77(4) (1982) 2071-2077. 

[188] B.L. Adams, T. Olson, The mesostructure—properties linkage in polycrystals, 

Progress in Materials Science 43(1) (1998) 1-87. 

[189] H. Garmestani, S. Lin, B. Adams, Statistical continuum theory for inelastic behavior 

of a two-phase medium, International Journal of Plasticity 14(8) (1998) 719-731. 

[190] B.L. Adams, X. Gao, S.R. Kalidindi, Finite approximations to the second-order 

properties closure in single phase polycrystals, Acta Materialia 53(13) (2005) 3563-3577. 

[191] S. Torquato, Random heterogeneous materials: microstructure and macroscopic 

properties, Springer Science & Business Media2013. 

[192] B.L. Adams, S.R. Kalidindi, D.T. Fullwood, Microstructure Sensitive Design for 

Performance Optimization, Elsevier Science2012. 

[193] S. Ghosh, K. Lee, S. Moorthy, Multiple scale analysis of heterogeneous elastic 

structures using homogenization theory and Voronoi cell finite element method, 

International Journal of Solids and Structures 32(1) (1995) 27-62. 

[194] P. Gilormini, Y. Germain, A finite element analysis of the inclusion problem for 

power law viscous materials, International journal of solids and structures 23(3) (1987) 

413-437. 

[195] J. Segurado, J. Llorca, A numerical approximation to the elastic properties of sphere-

reinforced composites, Journal of the Mechanics and Physics of Solids 50(10) (2002) 2107-

2121. 



 112 

[196] M.G. Geers, V.G. Kouznetsova, W. Brekelmans, Multi-scale computational 

homogenization: Trends and challenges, Journal of computational and applied 

mathematics 234(7) (2010) 2175-2182. 

[197] H. Moulinec, P. Suquet, A numerical method for computing the overall response of 

nonlinear composites with complex microstructure, Computer methods in applied 

mechanics and engineering 157(1-2) (1998) 69-94. 

[198] J.-C. Michel, H. Moulinec, P. Suquet, Effective properties of composite materials 

with periodic microstructure: a computational approach, Computer methods in applied 

mechanics and engineering 172(1-4) (1999) 109-143. 

[199] R.A. Lebensohn, N-site modeling of a 3D viscoplastic polycrystal using fast Fourier 

transform, Acta materialia 49(14) (2001) 2723-2737. 

[200] P. Eisenlohr, M. Diehl, R.A. Lebensohn, F. Roters, A spectral method solution to 

crystal elasto-viscoplasticity at finite strains, International Journal of Plasticity 46 (2013) 

37-53. 

[201] T. Nakamura, T. Wang, S. Sampath, Determination of properties of graded materials 

by inverse analysis and instrumented indentation, Acta Materialia 48(17) (2000) 4293-

4306. 

[202] K. Cho, J. Gurland, The law of mixtures applied to the plastic deformation of two-

phase alloys of coarse microstructures, Metallurgical Transactions A 19(8) (1988) 2027-

2040. 

[203] R. Williamson, B. Rabin, J. Drake, Finite element analysis of thermal residual 

stresses at graded ceramic‐metal interfaces. Part I. Model description and geometrical 

effects, Journal of Applied Physics 74(2) (1993) 1310-1320. 

[204] W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper 

Körper, Annalen der physik 274(12) (1889) 573-587. 

[205] A. Reuß, Berechnung der fließgrenze von mischkristallen auf grund der 

plastizitätsbedingung für einkristalle, ZAMM‐Journal of Applied Mathematics and 

Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1) (1929) 49-58. 

[206] T. Tamura, Y., and Ozawa, H, Proceedings of the Third International Conference on 

Strength of Metals and Alloys (Institute of Metal and Iron and Steel Institute, London, 

1973) p. 

[207] H. Fischmeister, B. Karlsson, Plasticity of two-phase materials with a coarse 

microstructure, Z METALLKD  (1977). 

[208] M. Berveiller, A. Zaoui, A simplified self-consistent scheme for the plasticity of two-

phase metals, Res. Mech. Lett 1(3) (1981) 119-124. 



 113 

[209] R.G. Stringfellow, D.M. Parks, A self-consistent model of isotropic viscoplastic 

behavior in multiphase materials, International journal of plasticity 7(6) (1991) 529-547. 

[210] P. Suquet, Overall potentials and extremal surfaces of power law or ideally plastic 

composites, Journal of the Mechanics and Physics of Solids 41(6) (1993) 981-1002. 

[211] I. Chen, A. Argon, Steady state power-law creep in heterogeneous alloys with coarse 

microstructures, Acta Metallurgica 27(5) (1979) 785-791. 

 


