
Planar similarity-motion interpolating three keyframes:
Comparative assessment of prior and novel solutions

Jarek Rossignac* and Àlvar Vinacua

Georgia Tech, Atlanta, USA and UPC Barcelona, Spain

Abstract

We compare 8 solutions for defining the planar motion of an oriented edge that interpolates 3 keyframes. One contribution
is the discovery of several novel solutions, one of which produces what we call a locally-perseverant motion, for which the
acceleration of a moving point remains constant in the local (moving) frame. The other contribution is to demonstrate
that: (a) many interesting solutions exist, (b) the mathematical and perceived differences between the animations they
produce are significant, and (c) these differences may matter for designers and applications. To allow motions that rotate
by more than 2π, we represent the 3 keyframes and the moving edge by arrows, each storing the starting-point p of
the edge, its length m, and its winding (arbitrary angle) w. Hence, an arrow defines an integer winding-count k (with
|w − 2kπ| ≤ π) and a similarity transformation that combines dilation by m, rotation by w − 2kπ, and translation from
the origin to p. Our chosen PITA (Planar Interpolation of Three Arrows) solutions are formulated using compositions
of linear, polar, or log-spiral interpolations, or using ODEs or logarithms of matrices. We compare these solutions in
terms of 11 mathematical properties and also in terms of subjective attributes that may be important for designers. We
illustrate differences between our 8 chosen PITAs in 6 use-cases: Keyframe-animation, Variable-width stroke design, Banner
deformation, Pattern animation, Motion prediction, and Curve design.

Keywords: Planar Animation, Shape-Preserving Motion, Interpolation of 3 Similarities, Interpolation of 3 Edges

1. Introduction

The term similarity refers here to an affine transforma-
tion in the plane (not just its linear part) and the term
motion refers to a time-parameterized similarity.

We discuss motions that interpolate 3 timed-keyframes
(similarities associated each with a different time-value). We
present: In Sec. 2, the concepts of winding, wector, ar-
row, and twirl (which we introduce to remove discontinuities
during animations and popping during editing and to sup-
port looping motions) and a tutorial on steady motions and
morphs; In Sec. 3, the formulations of our 8 chosen solu-
tions; In Sec. 4, an objective comparison of these solutions
using 11 mathematical properties that may be important
for applications; In Sec. 5, the relation of our PITAs to
prior art. In Sec. 6, suggestions for measuring goodness
and assessing ease-of-use; In Sec. 7, demonstrations of differ-
ences between our chosen solutions in 6 use-examples; The
mathematical details of some of these 8 chosen solutions,
their advantages over many other options, and the broader
prior art are discussed in appendices.

We model a similarity using an arrow represented by its
origin, angle, and magnitude. Hence, the problem may be
formulated as follows. Given 3 coplanar keyframe arrows, A,
B, and C, and 3 associated time-values, a, b, and c, define a
smooth similarity-motion (represented by an arrow-valued
function of time), D(t), that satisfies the 3 interpolation
constraints: D(a) = A, D(b) = B, and D(c) = C. We

∗Corresponding author
Email address: jarek@cc.gatech.edu, alvar@cs.upc.edu (Jarek

Rossignac* and Àlvar Vinacua)

compare 8 chosen solutions (Fig. 1) denoted P1 through
P8. We call them PITAs (Planar Interpolation of Three
Arrows). Abbreviations Pxy stands for Px and Py, Pxyz
for Px, Py, and Pz, etc. For aesthetic or functional reasons,
the differences between the animations produced by these
solutions may be important in some applications.

Figure 1: 8 PITAs interpolating the same 3 timed-keyframes (red,
green, blue) with even timing, b = (a+ c)/2. We visualize A, B, and
C as arrows and the n intermediate frames D(a + (c − a) i

n
) as line-

segments. P178 are not aware of the winding, which is shown as a
spiral around the keyframe’s midpoint here (or around its startpoint
in other figures). We draw the trajectories of the two endpoints (for
P1), of the midpoint (for P2), and of the startpoint (for P3), which
are all independent of the direction and magnitudes of the keyframes.

Preprint submitted to Elsevier January 2021

The challenge is not to produce a mathematically valid
solution with sufficient continuity. Indeed, as demonstrated
here, many different solutions exist. We posit that the true
challenge is to choose a small set of solutions so that: (1)
for each configuration of constraints, one or more of them
produce an “acceptable” result; (2) the resulting animation
of an object O is independent of the choice of the origin and
orientation, and of the placement of A with respect to O; (3)
the designer is able to “roughly predict” the effect, on the
animation, of tweaking any one of the parameters (origin, an-
gle, length) of any of the keyframe arrows; and (4) the gain
(ratio of the magnitude of the change in the animation that
results from such a tweak to the magnitude of the tweak) is
not “surprisingly large”, at least for a “sufficiently broad”
set of configurations. This challenge is further complicated
by the fact that we may not have mathematical formulations
for the terms in quotes used above. Most prior art focuses
on the mathematical formulation of a small set of solutions,
shows only few examples, which avoid large rotations be-
tween keyframes, and does not assess formal or subjective
properties of the proposed solutions. Hence, further work is
needed to validate and compare solutions. This is particu-
larly difficult in 3D. Hence, before attempting this complex
assessment-challenge in 3D, we focus here on 2D solutions,
for which realtime visualization and direct manipulation
help with empirical validation and comparison.

2. Winding, Arrow, Twirl, and Steady Similarities

In this section, we define our terminology and notation for
the basic concepts used in the paper and we explain how we
represent and compute them. In particular, we introduce the
novel concepts of winding, wector, arrow, twirl, and steady
morph, average, and transport of arrows, which we combine
to define twirling interpolations, as the one in Fig. 2.

Figure 2: Frames of the motion of an arrow that interpolates three
keyframes (black), with windings shown as spirals around their origin.

Technical terms (whether standard or introduced) are
in bold-italics when first mentioned and when defined.
Stressed words are underlined. We use “iff ” for “if and
only if”.

2.1. Numbers, Points, Vectors, Arrows

Integer counts and indices are shown in lowercase (i).
Reals (time, angle, ratio) are in lowercase italics (w).
p denotes a point. Constructor P(x, y) returns a point

with Cartesian coordinates x and y.
~v denotes a vector. Constructor V(x, y) returns a vec-

tor with Cartesian components x and y. |−→ac| is the dis-
tance between a and c. Constructor Vpol(m,w) returns
V(m cosw,m sinw), with m = |~v| and w = angle(~e, ~v),
where ~e = V(1, 0). ~u · ~v denotes a dot-product.

Wectors generalize the polar form (m,w) of a vector by
differentiating between all trigonometric branches of angle
(argument) w, which we call winding. w needs not lie in
[−π,π]. When w ∈ [−π, π], the wector is said to be zero-
turn. We use the vector notation for wectors. When used in
p+ ~w expressions or in a context where zero-turn is assumed,
a wector is treated as the corresponding zero-turn vector.

Arrows are in uppercase outline (A). Arrow from point
p, with magnitude m and winding w is written Ap,m,w and
constructed using A(p,m,w). Arrow from point p, with the
magnitude and winding of wector ~w is written Ap,~w and
constructed using A(p, ~w). We use the following notation to
access its parameters: origin A.p, magnitude A.m, and
winding A.w. A.~w returns the wector of A. A.q returns
A.p + A.~w, the endpoint of the arrow. We say that A
is a zero-turn arrow iff A.w is in (−π,+π]. We use the
concatenation of two points without the overhead arrow to
denote the zero-turn arrow between them. For example, ab
denotes the zero-turn arrow, A, with A.p = a and A.q = b.
We show A as an arrow from A.p to A.q or, in its extended
form, e(A), from A.p − A.~w to A.q, so that A.p is the
midpoint of e(A). We show A.w as a spiral around A.p.

2.2. Transformations

Planar transformations are written in curly caps (U).
Application of U to point p (resp. vector ~v) is written
U · p (resp. U · ~v). Notation U · V · W · p stands for
U · (V · (W · p)), where composition, ‘ · ’, is not always com-
mutative. U t is the power of U . U0 is the identity I.

Let T be an affine-transformation. When T is a pure
translation by ~v, T · p = p + ~v. Otherwise, there exists a

fixed-point, f , such that T · p = f + LT ·
−→
fp, where LT is

referred to as the linear-part of T .
The terms ‘rotation’, ‘dilation’, and ‘similarity’ (defined

below) refer to special cases of affine-transformations in the
plane, which may be used to transform points and vectors.
The term ‘twirl’ refers to a generalization of a similarity. It
operates on points, wectors, and arrows. When preceded
with “linear-”, these terms refer to their linear-parts.

Rotation by angle α about fixed-point f is written Rf ,α

and may be constructed using R(f , α).

Rf ,α · ~v = Rα · ~v (1)

Rf ,α · p = f +Rα ·
−→
fp (2)

where Rα is the linear-rotation by α around the origin, and,
hence, is the linear-part of Rf ,α. Using shortcut R for Rπ

2
,

Rα · ~v = cosα~v + sinαR · ~v.
Dilation about the fixed point f , by scaling ratio λ is

written Df ,λ and constructed using D(f , λ). Df ,λ · ~v = λ~v.

Df ,λ · p = f + λ ~fp (3)

Similarity about the fixed point f , by ratio λ and by
angle α is written Sf ,λ,α and constructed using S(f , λ, α).

Sf ,λ,α = Df ,λ · Rf ,α = Rf ,α · Df ,λ (4)

Twirl about the fixed point f , by positive ratio λ, and
winding α is written Tf ,λ,α and constructed using T(f , λ, α).

Tf ,λ,α · p = Sf ,λ,α · p (5)

Tf ,λ,α · ~v = Sf ,λ,α · ~v (6)

Tf ,λ,α · Ap,m,w = A(Sf ,λ,α · p, λm, α+ w) (7)

Stf ,m,w = Sf ,mt,tw. (8)

2

Although similarity S may be represented by its fixed-point
f and by its linear-part L, it is often represented in homo-
geneous form by a 3× 3 matrix, HS , composed of the 2× 2
matrix-form of L, by the column of the 2 coordinates of

f + L ·
−→
fg, where g is the global origin, and by (0, 0, 1) as

the bottom-row.
One could represent twirl T by the image A = T · I of

the identity arrow, I = A(g,P(1, 0)). Instead, for clarity,
we represent twirl Tf ,λ,α explicitly by f , m, and w. When T
is a zero-turn twirl, its m and w may be easily derived from
the matrix form of its linear-part, LT .

2.3. Lagrange interpolation of three timed constraints

The timed Lagrange interpolation [1], v(t), of 3 reals
(so that v(a) = va, v(b) = vb, and v(c) = vc) is a quadratic
function of time:

v(a, va, b, vb, c, vz, t) = xva + yvb + zvz, (9)

with x+ y + z = 1 and

x =
t− b
a− b

t− c
a− c

, y =
t− a
b− a

t− c
b− c

, z =
t− a
c− a

t− b
c− b

(10)

Applying it to the corresponding Cartesian coordinates of
points, one obtains a Parabolic Point-Motion, p(t), that
interpolates three timed keyframes, p(a) = pa, p(b) =
pb, and p(c) = pc. The moving point is the Weighted
Arithmetic Mean (WAM) of the keyframe points:

p(a,pa, b,pb, c,pc, t) = xpa + ypb + zpc (11)

2.4. Neville reformulation

The above Parabolic Point-Motion may also be defined
using the equivalent Neville construction as a composition
of 3 timed linear morphs between points:

p(t) = L(L(pa,pb, q),L(pb,pc, r), s), (12)

where L is the LERP

L(a,b, t) = a + t
−→
ab (13)

and

q =
t− a
b− a

, r =
t− b
c− b

, s =
t− a
c− a

(14)

2.5. Steady Morph (SMA) and Steady Average of 2 Arrows

Steadiness for animated twirls, defined below, is central
to several of the solutions proposed in this paper. The
general concept of steadiness has been defined previously
for affinity-motions that morph between two affinities [2] or
equivalently between two triangles, for planar maps [3], for
non-planar maps [4], and for lattices [5]. It has also been
suggested, as a suitable goodness-measure, for optimizing
the overall motions of dancers in group choreographies [6].

Consider two arrows, A and B and two knots (time-
values), a and b. Assume that we want to define a smooth
motion, i.e., time-parameterized arrow, D(t) that satisfies 2
keyframe constraints: D(a) = A and D(b) = B.

In cases where A.~w = B.~w, we have a pure translation
and (using q from Eq. 14 and arrow constructor from Sec.
2.1):

D(t) = A((1− q)A.p + qB.p , A.m , A.w) (15)

Otherwise, i.e., in non-singular cases where A.~w 6= B.~w,
we use a steady twirl (with q from Eq. 14):

D(t) = T qA,B · A (16)

where TA,B is the twirl that maps A to B and may be com-
puted [3] as T(f ,m,w) with:

m =
B.m
A.m

, (17)

w = B.w − A.w, (18)

f = a +
V(~w · ~u , (R · ~w) · ~u)

d
, (19)

with ~u = B.p−A.p, ~w = 〈m cosw−1,m sinw〉, and d = ~w2.
We define, below two arrow-valued functions: one that

morphs between two arrows and one that computes the
steady similarity of such a motion and applies it to a third
arrow, so as to “transport” it. We will use these functions
to formulate some of our PITA solutions.

M(A,B, t) = T tA,B · A, (20)

is the Steady Morph between two Arrows (SMA),
shown in Fig. 3, where D(0) = A and D(1) = B.

M(a,A, b,B, t) = M(A,B, q) = T qA,B · A, (21)

using q from Eq. 14, is the timed-SMA, where D(a) = A
and D(b) = B. Note that SMA is symmetric and hence, for
all t,

M(a,A, b,B, t) = M(b,B, a,A, t). (22)

We said above that, to morph between A and B, we use a
translation when A.~w == B.~w and an SMA otherwise. This
is correct. But, in practice, one needs to identify (and treat
using a translation) cases where A.~v and B.~v are almost
identical, because in such almost-singular configurations,
the computation of the fixed-point f may be numerically
unstable.

Figure 3: Intermediate frames (blue) of a Steady Morph between two
Arrows (SMA), M(A,B, t), from the red arrow to the short green one.
Observe that linear evolution of the winding (shown as a coil) and the
steadiness of the pattern: Coordinate systems defined by consecutive
frames are related by a constant similarity. The velocity of any moving
point remains constant in the moving frame. The origin of the arrow
(and in fact any moving point) traces a logSpiral.

We define the Steady Average of A and B as

M(A,B) = M(A,B, 1/2) (23)

2.6. Steady Transport (STA) of an Arrow

The Steady Transport of an Arrow (STA), which
moves arrow C by the similarity M(A,B, t), is defined by:

T(C,A,B, t) = T tA,B · C. (24)

The timed-STA is (using q from Eq: 14):

T(C, a,A, b,B, t) = T(C,A,B, q) = T qA,B · C. (25)

3

2.7. Non-steady variant of SMA

Given a fixed point, f , of the twirl between A and B, the
SMA (Eq. 20) involves two morphs between different pairs of
wectors: the pair (A.~w,B.~w), and the pair (A.p− f ,B.p− f).
In both cases, SMA interpolates their magnitudes using the
weighted geometric mean (WGM), which is equivalent
to using a weighted arithmetic mean of their logarithms.
In Fig. 4, we compare this steady solution two non-steady
variants: The weighted arithmetic mean (WAM) and
the weighted harmonic mean (WHM). Both modify the
bulge of the curve and the spacing of the frames near the
shorter (green) arrow.

Figure 4: We show 9 morphs between red (left) and green (right) arrows
using the Weighted (Pythagorean) Arithmetic (WAM), Geometric
(WGM), or Harmonic (WHM) Means for the path of the center of
the arrow: WAM (left), WGM (center), WHM (right), and for the
magnitude of its wector: WAM (red), WGM (greed), WHM (blue).

2.8. Exponential mapping for geometric averaging

The WGM, axbycz, of values a, b, and c with weights x,
y, and z (defined in Eq. 10) may be computed using the
WAM of logs as ex log(a)+y log(b)+z log(c). Some prior art (see
5) builds on this idea, but instead of reals (a, b, and c) use
square matrices, which, for keyframe arrow A either represent
the linear part, L(A), of the transformations associated with
A or the homogeneous form, H(A) of that transformation.
The computation of the logarithm and exponential of these
matrices is discussed in Appendix A.

3. Our basket of 8 chosen PITAs

We have chosen to compare the following 8 PITAs:
• P1:Pa-Ca p=Parabolic, ~w=Cartesian
• P2:LS-Po p=LogSpiral, ~w=Polar
• P3:Pa-LP p=Parabolic, ~w=LogPolar
• P4:Be-LP p=Bezier, ~w=LogPolar
• P5:He-LP p=Homogeneous exponential, ~w=LogPolar
• P6:La-LP p=Lagrange, ~w=LogPolar
• P7:Ra-Pe p=Radial-perseverant, ~w=Perseverant
• P8:Lo-Pe p=Local-perseverant, ~w=Perseverant

We use 4-letter mnemonics to identify the animation of the
start-point p (first 2 letters: Pa-, LS-, Be-, Ne-, La-, Ra-,
Lo-) and of the wector ~w (last 2 letters: -Ca, -Po, -LP, -Pe).
(These 4 wector solutions are shown in Fig. 5.

We first discuss 3 independent PITAs, P123, in which
these solutions are fully independent. Then, we discuss 3
coordinated PITAs, P456, which have the same wector
animation, but different motions of p. Finally, we discuss 2
perseverant PITAs, P78, in which the acceleration of the
moving wector is constant in the moving frame.

For each PITA, Px, we propose a formulation of the motion
(time-varying arrow), D(t) = Px(a,A, b,B, c,C, t), such that
D(a) = A, D(b) = B, and D(c) = C (Fig. 1 compares the 8
motions for the same keyframes with uniform timing).

Figure 5: Top: D(1/4).~w for -Ca, -Po, -LP, and -Pe: -Po and -LP are
parallel. Bottom: D(1/4).~w and D(3/4).~w for -LP, and -Pe.

3.1. Independent PITAs: P123

We discuss here two options (Pa- and LS-) for animating
D(t).p and three options (-Ca, -Po, and -LP) for animating
D(t).w. From the 6 possible combinations of these, we chose
three: P1:Pa-Ca, P2:LS-Po, and P3:Pa-LP.

Three-Point Interpolations:
For readability, let pa = A.p, pb = B.p, and pc = C.p.

We want = D(t).p to be a point-motion, p(t), satisfying
p(a) = pa, p(b) = pb, and p(c) = pc.

Pa- uses a Parabolic Point-Motion (Eq. 11) for p(t),
which thus traces a parabola and has constant acceleration
in the global frame (We call it global-perseverance).

LS- uses a LogSpiral Motion (LSM) for p(t) (Fig. 6).
We compute it using

p(t) = T
t−a
b−c (

t−c
b−a−2

t−b
c−a)

ab,bc · a. (26)

where Tab,bc is an SMA (Eq. 21) that morphs steadily be-
tween zero-turn (Sec. 2.1) arrows ab and bc. One can verify
that this motion satisfies the 3 interpolation constraints.

Changing b amounts here to a linear time-warp and thus
keeps the intermediate frames (red samples) on the unique
LogSpiral curve through the 3 points. Hence, solutions based
on LS- are not truly knot-controlled (Sec. 4.8).

Figure 6: LogSpiral Motion through 3 timed-keyframes (black control-
points) for b = (a+ c)/2 (left) and b = a+ 0.7(c− a) (right).

Three-Wector Interpolations:
Let ~wa = A.~w, ~wb = B.~w, and ~wc = C.~w.

We want = D(t).~w to be a wector-motion, ~w(t), satisfying
~w(a) = ~wa, ~w(b) = ~wb, and ~w(c) = ~wc.

-Ca replaces wectors by corresponding zero-turn vectors.
It uses a Lagrange interpolation (Eq. 9) for the Cartesian
components of these. Hence, solutions based on -Ca are not
winding-aware (Sec. 4.6).

-Po uses Lagrange interpolations (Eq. 9) to blend the
polar coordinates (m, w) of ~wa, ~wb, and ~wc.

-LP uses Lagrange interpolations to blend the logPolar
coordinates (logm, w) of ~wa, ~wb, and ~wc.

4

Chosen independent PITAs:
P1:Pa-Ca uses Pa- for D(t).p and -Ca for D(t).~w. Hence,

D(t).q follows its own Three-Point Interpolation.
P2:LS-Po uses LS- for D(t).p and -Po for D(t).~w. Note

that, because some users may prefer this visualization, in
Fig. 1, we use a simple variant of P2, which uses LS- for the
midpoint, D(t).p + 1

2D(t).~w, of the arrow and we show the
extended version of the keyframes and of the moving arrow,
but draw the curve traced by D.p.

P3:Pa-LP uses Pa- for D(t).p and -LP for D(t).~w.
These 3 PITAs are compared to other combinations of the

point and wector interpolations presented above (Fig. 7).

Figure 7: Independent combinations of animations for D(t).p: Pa- (left
column) and LS- (right column) with animations for D(t).~w: -Ca (top),
-Po (middle), and -LP (bottom).

3.2. Coordinated PITAs: P456

The coordinated PITAs discussed here use the -LP Three-
Wector Interpolation. Hence, they have the same D(t).~w
as P3. The sometimes significant disparity of their D(t).p
motion is due to the lack of commutativity of the similarity
transformations used to compute them.

P4:Be-LP is our adaptation (to similarities) of the
BiSAM solution [2] P4 returns:

Bezier(A,L,B, 2u) if(u ≤ 1/2) (27)

Bezier(B,R,C, 2u− 1) otherwise (28)

with u = (t− a)/(c− a),

Bezier(A,B,C, t) = M(M(A,B, t),M(B,C, t), t), (29)

L = H(A,B,C), (30)

R = H(C,B,A), and (31)

H(A,B,C) = T(C,B,M(A,B, 3/4), 1/4), (32)

with M() defined in Eq. 20 and T() in Eq. 24.
P5:He-LP uses a WAM of the logs of the homoge-

neous matrices (Sec. 2.8), H(A), H(B), and H(C), of the
keyframes:

H(t) = ex logH(A)+y logH(B)+z logH(C), (33)

but with respect to a local origin, to make it similarity-
invariant. The details are in Appendix C.

P6:La-LP is M(L,R), Steady Average defined in Eq. 23,
of L = T1(a,A, b,B, c,C, t) and R = T1(c,C, b,B, a,A, t),
where

T1(a,A, b,B, c,C, t) = T(M(A,B, y + z),B,C, z) (34)

using T(C,A,B, t), the STA defined in Eq. 24, and ratios y
and z defined in Eq. 10. We invented this formulation by

arranging the Lagrange interpolant (Eq. 11) into point-plus-

2-vector form (xa + yb + zc = b+ x
−→
ba + z

−→
bc) and mapping

points to arrows and vectors to twirls. We compare it, in Ap-
pendix D, to variants corresponding to the 11 permutations

of this form, such as b+ z
−→
bc + x

−→
ba or b+ (x+ z)

−→
ba + z−→ac,

and to solutions derived from the Neville formulation. In
(Fig. 8, we compare P3456, which are all -LP).

Figure 8: Comparing the four -LP PITAs: P3456.

3.3. Perseverant PITAs: P78

We say that a motion (time-parameterized similarity)
is globally-perseverant (resp. radially-perseverant,
locally-perseverant) iff the acceleration of a moving point,
p(t), remains constant when expressed in the global- (resp.
radial-, local)- frame. By local-frame, we mean the moving
coordinate system defined by D(t). By radial-frame, we
mean the moving coordinate system defined by arrow fp(t),
for some fixed-point f . P1 is globally-perseverant. P7 is
radially-perseverant. P8 is locally-perseverant. P78 have the
same vector motion, D(t).~w, which is locally-perseverant (-
Pe): The second derivative of D(t).~w is constant in the local
frame defined by A(g,D(t).~w), where g is the global origin.
Since they ignore the winding, we use “vector”, rather than
“wector”, when discussing them.

P7:Ra-Pe is defined by ODE

d2

dt2
p(t) = S ·

−→
fp(t). (35)

where S is a constant linear-similarity and f a fixed-point at
which the acceleration remains zero. S and f define a map-

ping from each point p onto a vector S ·
−→
fp, so that, when

a point moving under P7 passes through p, it experiences
an acceleration given by that vector.

The general form of the solution of Eq. 35 is:

p(t) = f + S1(t) ·
−→
fp(0) + S2(t) · p′(0), (36)

where p′(0) represents the initial velocity vector of point p.
The 2× 2 matrices S1(t) and S2(t) vary with time t.

In Appendix E, we provide the derivation of the closed-
form expressions for computing S1(t), and S2(t), f , and
p′(0), so as to satisfy the three interpolation constraints. In
Fig. 9, we compare P78.

P8:Lo-Pe uses the Persistent Affine Motion (PAM)
described and called “UAM” in Muthumanickam’s Master’s
Thesis [7]. PAM interpolates 3 affinities, A, B, and C, at
uniformly-spaced knots, satisfying U(0) = A, U(1

2) = B,
and U(1) = C. When affinities A, B, and C are represented
each by a triangle, PAM defines the motion of a triangle.

5

Figure 9: Comparing P7 (left), which is radially-perseverant, and P8
(right), which is locally-perseverant, We show their acceleration vectors
at D(t).p (black) and at D(t).q (brown). We shown (left) orange line-
segments from D(t).p to the global fixed point of P7. Observe the
constant relation (radial perseverance) between each black arrow and
the corresponding orange segment. We shown (right) red line-segments
from D(t).p to the instantaneous (local) fixed point of P8. Observe
the constant relation (local perseverance) between each black arrow
and the corresponding red segment.

The PAM motion p(t) of an arbitrary starting point p0 in
homogeneous coordinates is defined by

p(t) = U(t) · p0, (37)

where U(t) is a time-varying affinity. Its instantaneous
acceleration is

d2

dt2
p(t) = U ′′(t) · p0. (38)

Imposing that the acceleration be constant in the moving
frame can then be written as:

U ′′(t) = U(t) · E (39)

where E is a constant affinity (which we represent by a
homogeneous matrix) that is independent of p0. This is a
linear ODE of second order, that we solve in the Appendix F,
where we give closed-form expressions of the entries in U(t)
and E that ensure that the interpolation conditions U(0) = A,
U(1

2) = B and U(1) = C are met. A PAM solution may not
exist for some extreme configurations where the triangles
have widely different orientations and shapes.

For P8, we require that all three key-triangles be similar
and define P8 as the motion of a zero-turn arrow. Note
that the position of the tip of each keyframe triangle is not
important, as long as all 3 keyframe triangles are similar.
This P8 restriction of PAM to similarities always exists.

4. Mathematical properties of the chosen PITAs

In this section, we discuss 11 mathematical properties
that may be relevant to some applications. Seven of these
are not satisfied by one or more PITAs (Fig. 10).

H W K 4
6
1
8
7
3
2
5

P
L

PW
P

K W H 6
3
5
1
4
8
7
2

H

L
H

1 HPKOAL

2 W

3 WPKO

4 HP

5 KO

6 HWPK

7 H

8 HAL

H handle-invariant 12678

W winding-aware 236

P pop-free 1346

K knot-controlled 1356

O order-independent 135

A affine-invariant 18

L locally-perseverant 18

YES

NO

NO

YES

Figure 10: PITAs per property, the inverse, and two decision-trees.

4.1. Always exists

All chosen PITAs exist (i.e., are uniquely defined and
may be computed using closed-form expressions) for all time-
values and for all configurations of keyframes (except possibly
for some isolated singular cases). As discussed in Sec. 2.5, in
the implementation of PITAs that rely on the Steady Morph

between Arrows, to avoid numerical instability, we detect
near-singular configurations and perform the morph using a
linear morph.

4.2. Time-continuous and infinitely differentiable

A PITA is time-continuous iff for any choice of
keyframes, the resulting motion is a continuous function
of t. Time-continuity is important because it means that
the animation is continuous (no jump). All our PITAs are
time-continuous. In fact, they are infinitely differentiable.

4.3. Similarity-invariant

Px is similarity-invariant if, for any similarity S,

Px(a,S · A, b,S · B, c,S · C, t)
= S · Px(a,A, b,B, c,C, t) (40)

All chosen PITAs are similarity-invariant because all their
construction steps are. Similarity invarience is important
because the designer should not have to worry about the
global coordinate system and should be able to translate,
rotate, or dilate the set of keyframes at will and to expect
that the resulting animation or pattern (of arrows or shapes)
will be transformed accordingly.

4.4. Symmetric

A PITA, P, is symmetric iff it is not altered by swapping
A and C and replacing t (resp. a b, c), by u(t) (resp. u(a)
u(b), u(c)), with u(t) = a+ c− t, i.e., iff

P(a,A, b,B, c,C, t) = P(a,C, c+a−b,B, c,A, c+a−t). (41)

Lack of symmetry produces surprising, possibly frustrating,
results for symmetric configurations of keyframes. All chosen
PITAs are symmetric. (P6 was obtained by averaging two
carefully matched asymmetric solutions.) Many candidates
discussed in Appendix C and Appendix D are not symmetric.

4.5. Handle-invariant

Assume that we have 3 similar key-shapes, Sa, Sb, and
Sc. We want to use a PITA to define an animated shape
S(t) such that S(a) = Sa, S(b) = Sb, and S(c) = Sc. To
do so, we place a handle (keyframe A) between two arbi-
trarily chosen points of Sa. We place B between the two
corresponding points of Sb and place C between the two
corresponding points of Sc. For any time t, we evaluate
D(t) = Px(a,A, b,B, c,C, t), and transform Sa by the twirl
TA,D(t) between A and D(t). A PITA is handle-invariant
iff S(t) is independent of the placing of the handle (the two
points chosen to define A) with respect to Sa. All chosen
PITAs are handle-invariant, except for P235 (Fig. 11).

4.6. Winding-aware

A PITA is winding-aware if it takes into account the
windings (i.e., the turn-counts) of the keyframes and hence
allows the designer to create motions during which D(t).w
makes turns of more than 2π. P236 are winding-aware.

6

Figure 11: Swapping the red (left column) and the orange (right)
handle-arrows shows that P2 (top row), P3 (middle), and P5 (bottom)
are not handle-invariant.

4.7. Pop-free

A PITA is pop-free (control-continuous) if, for all t, D(t)
is a continuous functions of all parameters of all keyframes.
Control-continuity is essential for interactive editing and
also for ensuring the time-continuity of animations of PITA-
patterns that are controlled by 3 keyframes, which each
are animated (for example by different PITAs). All chosen
PITAs are pop-free, except for P278, for which changes
in trigonometric branching produce abrupt changes in the
pattern of PITA frames for some minute changes in the
position, orientation, or magnitude of a keyframe (Fig. 12).

Figure 12: Tweaking the configuration (top) slightly (bottom) produces
a pop for P2 (left), P5 (center-left), P7 (center-right) and P8 (right).

4.8. Knot-controlled

A PITA is knot-controlled if changing ratio b−a
c−a changes

the set of frames, D(t), that it produces. P1356 are knot-
controlled. For P2, changes to that ratio affect D(t).p, but
do not affect the logSpiral curve upon which D(t).p travels
(Fig. 13).

4.9. Order-independent

A PITA is order-independent if it is symmetric and if
the animation it produces is also not affected by swapping
(a,A) and (b,B), i.e., iff

P(b,B, a,A, c,C, t) = P(a,A, b,B, c,C, t). (42)

Order-independence may be useful in applications in which
we do not know in advance the order of the knots a, b and
c. Only P135 are order-independent.

Figure 13: We show (top-down) P1236 for b−a
c−a

= 0.66 (left) and b−a
c−a

=

0.40 (right). The (top) curve traced by D(t).p of P2 is not affected by
this knot-change. Hence, only P1356 are fully knot-controlled.

4.10. Affine-invariant

A PITA, Px, is affine-invariant iff, for any affinity U ,

Px(a,U · A, b,U · B, c,U · C, t)
= U · Px(a,A, b,B, c,C, t) (43)

Affine-invariance may be useful in applications where the de-
signer may wish to stretch a PITA pattern in some direction.
Only P18 are affine-invariant, since only these are defined in
terms of affine-invariant operators. Observe that, to achieve
affine0invariance for P8, one must apply U , not only to the
keyframes, but also to the tip points of their triangles.

4.11. Local perseverance

Figure 14: We show acceleration vectors at D(t).p (black) and at D(t).q
(brown) for P1678.

In Sec. 3.3, we defined global-, radial-, and local-
preseverance. P1 is globally-perseverant (constant accelera-
tion). P7 is radially-perseverant. P8 is locally-perseverant.
In Fig. 14, we compare the local perseverance of P8 to the
radial perseverance of P7, to the global perseverance of P1,
and to P6, which has none of these properties. Fig. 15 shows
more clearly the difference between P7 and P8. P7 converges
to a globally-perseverant motion when f goes to infinity and
to a locally-perseverant motion when A.p = B.p = C.p.

7

Figure 15: We compare P7 (left) and P8 (right) showing the velocities
of D(t).p and D(t).q as dark-green vectors from them and their acceler-
ations (pushing forces) as dark-red vectors arriving on them. Observe
that, for P8, the shapes formed by D(t) and by the two accelerations
are all similar to each other.

5. Relation to prior art

There is abundant literature on the interpolation of ro-
tations and of rigid motions. Haarbach et. al [8] provide a
clear and concise survey of these.

More infrequent is the analysis of the interpolation of
similarities. An approach based on a WGM of the linear
parts of similarity matrices of the keyframes was proposed
in [9]. In Sec. Appendix B, we show that P10, which is based
on a 2D version of the approach proposed in [9], produces
results that are identical to P3 if the correct trigonometric
branch is chosen. Our implementation of the logarithm and
exponentiation operators used in P10 is based on a simpler
derivation than that in [8]. We include the details of their
computation in Appendix A.

However we are not aiming here to improve on these com-
putations of interpolants, but rather to study and evaluate
their results when applied to the design of curves or motions
on the plane.

Below, for each chosen PITA, we give more specific refer-
ences to relevant prior art.

P1:Pa-Ca is a 2D version of “component-wise linear blend-
ing rigid transformation matrices”. The authors of [10]
mention that this “most straightforward solution” has two
drawbacks: it is non-rigid and may produce singular frames.
P1 only interpolates the corresponding Cartesian compo-
nents of the first and third vectors of the homogeneous matrix
representation of each keyframe. The second vector is ob-
tained trivially using a rotation by π

2 . P1 is affine-invariant
and handle-invariant.

P2:LS-Po is new as a combination. The LS- part was
mentioned in [3]. The -Po part extends the scheme used
in [11] for blending edge-lengths and vertex-angles from 2
to 3 keyframes and to a winding-aware interpolation.

P3:Pa-LP is related to prior solutions based on linear com-
binations of logs of the linear parts of matrices [2, 12]. The
novelty here is that, since we operate in 2D and are restricted
to similarities, we compute P3 using a simple formula that
does not require computing logs and exponentials of matrices
and that eliminates the branching problem, hence trivially
making P3 winding-aware. It separates the interpolation of
the linear part from the translation, as was done in [13].

P4:Be-LP is an adaptation to similarities of (what we call)
the BiSAM approach proposed in [2]. The merit and novelty
of this adaptation is that P4 extends BiSAM by making it
winding-aware and hence also pop-free.

P5:He-LP is related to prior solutions that compute linear
combinations of logarithms of homogeneous matrices [12,
9]. We provide the implementation details in Appendix A
and explain our heuristics to make it similarity-invariant in
Appendix C.

P6:La-LP is new.

P7:Ra-Pe is new.

P8:Lo-Pe is new. It is the only locally-perseverant solution.

6. Goodness and ease-of-use

In this section, we share suggestions for measuring the
ease of using different PITAs for designing patterns and
animations and the goodness of the results they produce.

6.1. Suitability for in-betweening automation

To assess whether the PITAs may be useful for the au-
tomation of in-betweening animation [14, 15], we consider
the simplified scenario (Fig. 16), in which the lead-artist pro-
vides 3 timed-keyframes (represented by arrows A = D(1),
B = D(3), and C = D(5)) of the position, orientation, and
size of a shape. An in-betweening expert draws the two
missing frames (L for t = 2 and R for t = 4). Then, for each
PITA, we report an error measure formulated in terms of
the discrepancies between L and D(2) and between R and
D(4) and decide whether at least one of them provides an
acceptable result. We conjecture that this näıve test may
not be very useful, because, in non-trivial configurations, it
is difficult, even for an expert, to know exactly where L and
R should be and, more importantly, because the discrepancy
metric may not correctly predict the quality of a finer inter-
polation. Hence, we may need to ask the expert to draw a
whole pattern of intermediate frames and compare them to
those produced by each one of our PITAs.

Figure 16: Given (top-left) the (red, green, blue) keyframes, the user
guesses (top-right) the (brown, magenta) arrows L and R. We show
(bottom-left), for all PITAs, the actual arrows for D(2) and D(4) and,
for context the other frames (bottom-right).

We have explored a variety of goodness measures for
PITAs. We converged on measuring the discrepancy between
each frame of a uniformly sampled PITA pattern and its
prediction (when it exists), which may be: (1) the previous
frame, (2) the steady similarity average between the previous
and next frame, or (3) the prediction (Sec. 7.5) computed
from the previous three frames. Measures based on options
(1) and (2) are suitable for assessing the quality of non-steady
motions. (Using them would be like using the length of an
interpolating curve as a measure of its quality.) Measure (3)
is excellent, but unfortunately unfair. Indeed, if we use the
predictor for PITA Px, then Px will win since it will have
zero discrepancy at each frame. Rating each PITA in terms
of how well it does against predictors of all the other PITAs
may seem democratic, but is unreliable, as it may be easily
manipulated by dropping PITAs from the basket or adding
to new PITAs or averages of existing ones.

8

6.2. Measure of goodness: Discrepancy

In the above discussions, we mentioned the need for mea-
suring the discrepancy between two arrows. This is not
a trivial task, especially because we want the measure to
be similarity-invariant. Several formulae for computing the
error between two coplanar edges are compared in [16]. We
propose here a new (as far as we know) formulation of the
discrepancy E(A,B) between two arrows (oriented line-
segments):

x(a,b,p) =

−→
ab · −→ap
−→
ab · −→ab

(44)

y(a,b,p) =
(R ·

−→
ab) · −→ap
−→
ab · −→ab

(45)

z(a,b,p) = x2(a,b,p) + y2(a,b,p) (46)

E(A,B) = z(a,b, c) + z(b,a,d) + z(c,d,a) + z(d, c,a)
(47)

with a = A.p, b = A.q, c = B.p, d = B.q, and R is a
rotation by π/2. Note that E(A,B) is similarity-invariant.
In Fig. 17, we plot it for all 9 PITAs. We observed that,
for P456, maximal discrepancy typically occurs near the
beginning and/or end of the pattern/animation and that,
for P178, maximal discrepancy may be more pronounced
and may occur not at an end.

Figure 17: Discrepancy r = E(D(t− 0.01),D(t− 0.01)) shown for each
D(t) as circle of radius 30r around D(t).p.

6.3. Ease of editing

To compare the ease-of-use of the PITAs, we propose
the following test. The artist is shown (Fig. 18) a PITA
pattern, its keyframes A, B, C, the arrow for D(1/4), and
a target arrow E and is asked to suggest a new version of
B that would bring D(1/4) close to E. We measured the
number of click&drag moves needed to align D(1/4) and
E, so that a slight expansion of one covers the other. In our
user-interface, if, during the click, the mouse is closer to
B.p that to B.q, a move with that drags by ~v translates B
by ~v. Otherwise, the move only translates B.q by ~v.

Here are results on an informal test. For P123, 2 moves
sufficed: the first one aligns D(1/4).p and the second one
aligns D(1/4).q. For the other non-independent PITAs,
the task is more challenging, because a prior alignment is
invalidated by subsequent drags, and because it may not
be obvious how to anticipate and compensate for these side
effects. For P8, typically 3 or 4 moves sufficed. For P7,

we needed between 4 and 13 moves. For P456, we needed
between 5 and 8 moves. P5 was often more costly than the
other two.

Figure 18: Left: The initial image with frames for P8 and the orange
target arrow E. Right: The result after 4 click&drag moves tweaking
green B to try and align D(1/4) with E.

6.4. Overreaction

P278 are not pop-free (Sec, 4.7), which means that minute
tweaks of one of the parameters of the keyframes may cause
a jump (discontinuity) in the animation or pattern defined
by that PITA. This problem happens near singular config-
urations. It makes it difficult to edit the animation near
these.

Figure 19: Left: Unstable configuration for P1 for which D(1/4).m
and D(3/4).m (short arrows) are relatively small. Right: The result of
tweaking the tip of B. Note the overreaction of D(1/4).w and D(3/4).w.

Here, we discuss a softer version of such a pop. A PITA
is overreacting when, in what we call unstable configu-
rations, a minute change of one keyframe parameter may
produce a surprisingly large response (change to the path
or orientation of some arrows in the pattern/animation).
In practice, due to the pixel quantization of the drag, the
overreaction of the pattern may appear as a milder pop. P1
may overreact in the orientation of very short frames (Fig.
19). P45 may overreact more dramatically in the path of
the animation (Fig. 20).

Figure 20: We compare the frame patterns for P3456 before (left) and
after (right) a tweak of B.q. The effect of this tweak is most pronounced
for P45. Note that the windings of all keyframes are in [−π, π].

6.5. Range

Comparing the range of motions or patterns that PITAs
may produce is challenging. Here are some notable limita-
tions of some of the chosen PITAs. The curve traced by

9

Figure 21: Examples of frame patterns created with different PITAs.

D(t).p for P12 is a parabola or a log spiral, and hence has no
inflection. P4 does not have this restriction, but, in practice,
the curves traced by D(t).p and D(t).q for P2 rarely exhibit
an inflection. P34 are not winding aware, so it is impossible
to use them to produce winding motions in which the moving
object rotates by more than 2π. The winding motions pro-
duced by P1 are rarely satisfying. Nevertheless, our basket
of chosen PITAs makes it possible to create a wide variety
of motions or patterns (Fig. 21), including perfect circular
and log-spiral path and motions with inflection.

Knot-control offered by P1356 extends the range consid-
erably (Fig. 22).

Figure 22: The initial recoil (upward motion) near A for P68 (left) may
be compensated (right), but only for P6, by adjusting the knot-ratio.

6.6. Our recommendations

P1 has many properties that may simplify computation or
design, but suffers from severe drawbacks: it is not winding-
aware, the path of its D(t).p has no inflections, and the
behavior of its D(t).~w is inconsistent and difficult to control.
Hence, we do not recommend it for most applications.

P23 offer a better control over D(t).~w and P2 offers a
nicer path for D(t).p, but they also have severe drawbacks:
the path of their D(t).p has no inflections and they are
handle-invariant. Furthermore, P2 is not pop-free, not order-
independent, and not truly knot-controlled. Hence, we do
not recommend them for most applications.

P456 are similar and often produce pleasing animations.
However, we noticed that, in wild configurations with large
winding differences and large magnitude ratios, P45 may
exhibit excessive bulges and large gains near the start or end
of the animation. This makes them difficult to use. Hence,
from these three, we recommend P6.

P8 is locally-perseverant, Hence, we expect that it may
produce the most pleasing animations. But the patterns
that it produces often seem too tight. It is not winding
aware and not pop-free. Hence, we recommend it as the best
tool for creating pleasing, artifact-free animations in tame
configurations, where the keyframes have modest winding
differences and magnitude ratios.

P7 does not create optimal (locally-perseverant) paths
for D(t).p and does suffer from some of the drawbacks of
P8 mentioned above. But its tends to produce less tight
motions than P8. We see it as a useful compromise between
P6 and P8, at least for tame configurations.

7. Use-case examples

7.1. Designing the motion of an image

Consider an image X. The designer may (1) draw
(click&drag) an arbitrary handle-arrow, E, over X and (2)
draw keyframe-arrows A, B, and C, which define keyframe-
images, Xa, Xb, and Xc. The moving image, Xt, is defined
by D(t) (Fig. 23). Image/arrow combinations (X, E), (Xa,
A), (Xb, B), (XC, C), and (Xt, D(t)) are similar.

(a) (b)

(c) (d)

Figure 23: (a) The animation of picture X (small insert, top-right)
may be designed by placing a handle (red arrow) over it, and then
by specifying its 3 keyframes locations (black), A, B, and C. (b)
The same animation may be produced by using a different set of red
(handle) and black keyframes. (c) The animation may be tweaked by
changing the knot value b. (d) The animation may be softened by a
an ease-in/ease-out (time-warp) effect.

The video P1268Animation.mov, submitted with the
paper, compares such animations for P1268. Some artifacts
are shown in Fig. 24.

Figure 24: Animation-frames (cyan squares) for P1268. P1 (top-
left) shrinks the square excessively. P2 (top-right) exhibits a fast
orientation change towards the end (right) of the animation. P6
exhibits a surprising bounce near the B keyframe (orange square).
Using P8 does not alleviate these issues, but does soften them

10

7.2. Drawing a variable-width stroke

By filling the quads defined by the series of consecutive
frames in a PITA pattern (Fig. 25), one obtains a tool for
designing variable width strokes. We found P456 to be the
easiest to use and most effective for this purpose, because,
for these, for a useful range of configurations (especially
when the keyframes are nearly orthogonal to the centerline),
a small change to the length of a keyframe changes the
stroke thickness locally in a predictable manner and a small
change of the direction of a keyframe changes the centerline
of the stroke. These two controls are not as well separated
for the other PITAs. We expect that PITAs may be even
more useful for representing and animating textured strokes
[17, 18].

Figure 25: Variable-with strokes defined by the 8 chosen PITAs for
two different configurations of keyframes (left and right).

7.3. Warping a banner

The start- and end-points, D(t).p and D(t).q, of a pat-
tern of frames (arrow-instances for uniformly spaced time-
samples) of a PITA define the vertices of a quad-strip (Fig.
13), which may be used to bend shapes [19] or texture-
mapped and used to display, warp, or animate a banner (Fig.
26). This tool is reasonably straightforward to use and may
produce a modest, although useful, set of warps.

Figure 26: Texture-mapping a text over a quad-strip defined by a PITA
may be used to warp a banner. We compare results for all chosen
PITAS using two different configurations (left and right) of keyframes.

7.4. Animating a pattern

In Fig. 27, we show frames of an animation of a PITA
that is controlled by 3 keyframes that move, each being
animated by an SMA between two control-arrows (Sec. 2.5).
To show it off on a static pictures, we tried to minimize the
overlap between consecutive animation frames (instances
of the moving pattern of frames). We conjecture that this
simple tool might be useful for creating gentle deformations,
such as breathing or bulging, or for producing consistent
animations of (textured) strokes [20].

Figure 27: Frames of an animated PITA pattern controlled by 3 arrows
(red, blue green), each animated by a Steady Morph of Arrows.

7.5. Predicting a similarity-motion

We can use our PITAs to extrapolate the behavior X(t)
of a moving arrow (or object, image, similarity-frame) from
three past observations. Specifically, we want to predict
D = X(d) from A = X(a), B = X(b), and C = X(c). We
show all 8 predictors in Fig. 28 for evenly-timed obser-
vations. We conjecture that these predictors improve on
2-frame predictors and that they may be useful for predicting
motions of components from sensors or videos in a variety
of applications [21].

Figure 28: Left: PITA predictors X(1.5) from 3 observed keyframes,
X(0) (red), X(0.5) (green), and X(1) (blue). Right: We snapped B to
M(A,C), the Steady Similarity Average of A and C. In that case, the
predictors of P45678 match M(B,C, 2).

7.6. Interpolating 4 points

We want a point-motion, p(t), that interpolates 4 control
points: p(0) = a, p(1

3) = b, p(2
3) = c, p(1) = d.

We propose the following PITA-based solution:

X = Px(0,ab, 1/3,bc, 2/3, cd, t) (48)

Y = Px(1/3,ab, 2/3,bc, 1, cd, t) (49)

p(t) = (1− t)X + tY. (50)

For “simple” configurations, all 8 of our PITA-based solu-
tions are acceptable. But for more general configurations,
only P178 produce consistently acceptable results, partly
because they are not winding-aware. We find the results of
P78 more pleasing that those of the centripetal and uniform
(P1) Neville interpolations (Fig. 29).

8. Conclusion

We propose, evaluate, and compare 8 PITA solutions
to the problem of defining a planar similarity motion that
interpolates three given similarity keyframes at specified
time-values. We chose these particular solutions because
they sometimes yield blatantly different results and because
they demonstrate either an adaptation/improvement of a
prior solution or a new approach proposed here. We list a set
of 11 desirable properties for such interpolating motions and
compare which solutions satisfy which of these properties.

11

Figure 29: Left: PITA interpolations of 4 points. Right: Comparing
them to the centripetal Neville (cyan) and to the log-spiral blend
(yellow).

To provide an easy-to-use graphic interface that avoids bur-
dening the user with trigonometric branching problems and
that supports the design of a variety of twirling behaviors,
we use an extension (which we call twirl) of the concept of
a planar similarity. This work shows that the problem of
generating a planar motion that interpolates keyframes has
many potentially useful solutions. It underscores the central
role of steadiness and of perseverance (its extension pro-
posed here). Finally, it demonstrates the challenges posed
by trigonometric branching, by the lack of commutativity of
some constructions, and by lack of handle-invariance. We
show a few examples that illustrate the diversity of potential
uses of these PITAs and the disparity of the results they
produce. We hope that the observations and techniques
presented here will motivate the use of these PITAs and
their extensions to affine motions, to more than 3 keyframes,
and to three dimensions.

9. Acknowledgements

This research was developed, in part, with funding from
the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of
the author and should not be interpreted as representing the
official views or policies of the Department of Defense or the
U.S. Government. This work has been partially funded by
the Spanish Ministry of Economy and Competitiveness and
FEDER Grant TIN2017-88515-C2-1-R. The formulations
and implementations for PITA7 (resp. 8) were developed
by P. K. Muthumanickam [7], when he was a student at
the UPC, in collaboration with Prof. Vinacua (resp. by
Zizhen Wang, when he was a student at Georgia Tech, in
collaboration with Prof. Rossignac).

References

[1] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd
Edition, Vol. 12 of Texts in Applied Mathematics, Springer-Verlag
New York, 2002.

[2] J. Rossignac, À. Vinacua, Steady Affine Motions and Morphs,
ACM Transactions on Graphics (TOG) 30 (5) (2011) 116.

[3] J. Rossignac, Corner-Operated Tran-Similar (COTS) maps, pat-
terns, and lattices, ACM Trans. Graph. 39 (1) (Feb. 2020).

[4] K. Kurzeja, J. Rossignac, BeCOTS: Bent Corner-Operated Tran-
Similar maps and lattices, Computer-Aided Design (2020) 102912.

[5] A. Gupta, K. Kurzeja, J. Rossignac, G. Allen, P. S. Kumar,
S. Musuvathy, Programmed-lattice editor and accelerated pro-
cessing of parametric program-representations of steady lattices,
Computer-Aided Design 113 (2019) 35 – 47.

[6] J. Rossignac, M. Luffel, À. Vinacua, SAMBA: Steadied choreogra-
phies, in: Symposium on Computational Aesthetics in Graphics,
Visualization, and Imaging, Eurographics, 2012, pp. 1–9.

[7] P. K. Muthumanickam, Uniform accelerated motions, Master’s
thesis, U.P.C. · Barcelona Tech (September 2012).

[8] A. Haarbach, T. Birdal, S. Ilic, Survey of higher order rigid
body motion interpolation methods for keyframe animation and
continuous-time trajectory estimation, in: 2018 International
Conference on 3D Vision (3DV), 2018, pp. 381–389.

[9] S. Leonardos, C. Allen-Blanchette, J. Gallier, The exponential
map for the group of similarity transformations and applications
to motion interpolation, in: 2015 IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 377–382.

[10] L. Kavan, S. Collins, C. O’Sullivan, J. Žára, Dual quaternions
for rigid transformation blending, Tech. Rep. TCD-CS-2006-46,
Trinity College, Dublin (2006).

[11] T. W. Sederberg, P. Gao, G. Wang, H. Mu, 2-D shape blending:
An intrinsic solution to the vertex path problem, in: SIGGRAPH,
ACM, 1993, p. 15–18.

[12] M. Alexa, Linear combination of transformations, in: J. Hughes
(Ed.), SIGGRAPH, ACM, 2002, pp. 380–387.

[13] F. C. Park, B. Ravani, Smooth invariant interpolation of rotations,
ACM Trans. Graph. 16 (3) (1997) 277–295.

[14] J.-D. Fekete, É. Bizouarn, É. Cournarie, T. Galas, F. Taillefer,
Tictactoon: A paperless system for professional 2d animation, in:
Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques, 1995, pp. 79–90.

[15] B. Whited, G. Noris, M. Simmons, R. W. Sumner, M. Gross,
J. Rossignac, Betweenit: An interactive tool for tight inbetweening,
Computer Graphics Forum 29 (2) (2010) 605–614.

[16] S. Wirtz, D. Paulus, Evaluation of established line segment dis-
tance functions, Pattern Recognit. Image Anal. 26 (2) (2016)
354–359.

[17] M. P. Salisbury, M. T. Wong, J. F. Hughes, D. H. Salesin, Ori-
entable textures for image-based pen-and-ink illustration, in: SIG-
GRAPH, ACM, 1997, p. 401–406.

[18] M. Bessmeltsev, J. Solomon, Vectorization of line drawings via
polyvector fields, ACM Trans. Graph. 38 (1) (Jan. 2019).

[19] Y. Lipman, V. G. Kim, T. A. Funkhouser, Simple formulas for
quasiconformal plane deformations, ACM Trans. Graph. 31 (5)
(Sep. 2012).

[20] G. Noris, D. Sýkora, S. Coros, B. Whited, M. Simmons, A. Hor-
nung, M. Gross, R. W. Sumner, Temporal noise control for sketchy
animation, in: ACM SIGGRAPH/Eurographics Symposium on
Non-Photorealistic Animation and Rendering, NPAR ’11, ACM,
2011, p. 93–98.

[21] E. Barsoum, J. Kender, Z. Liu, Hp-gan: Probabilistic 3d human
motion prediction via gan, in: Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, 2018, pp.
1418–1427.

[22] F. Park, B. Ravani, Bézier curves on riemannian manifolds and
lie groups with kinematics applications, Journal of Mechanical
Design 117 (1995) 36–40.

[23] V. I. V. I. Arnold́, Ordinary Differential Equations, MIT Press,
Cambridge, MA, 1973, translated and edited by Richard A. Sil-
verman.

Appendix A. Log and Exp of linear and homoge-
neous forms

The homogeneous matrix, H(A), associated with arrow
A = A(p,m,w) is:

H(A) =

m cos(w) −m sin(w) px
m sin(w) m cos(w) py

0 0 1

 (A.1)

Its linear part, L(A), is:

L(A) =

[
m cos(w) −m sin(w)
m sin(w) m cos(w)

]
(A.2)

12

The log of L(A) may be computed [9] using

log(L(A)) =

[
log(m) −w
w log(m)

]
(A.3)

Let L = x log(L(A)) + y log(L(B)) + z log(L(C)).
The exponential of L is defined as the infinite sum

eL = exp

([
a −α
α a

])
=

∞∑
i=0

Li

i!
(A.4)

and may be computed [9] using

eL =

[
ea cos(α) −ea sin(α)
ea sin(α) ea cos(α)

]
= eaRα (A.5)

To compute the log and exponential of homogenous ma-
trices corresponding to similarities, notice that if

M =

 L ~v

0 0 0


where L is a 2 matrix and ~v is a 2D vector, then

Mn =

 Ln Ln−1~v

0 0 0


So if L is as in (A.4) and we set ~v = L~t, we obtain from
(A.4) and (A.5) that

eM =

 eaRα (eaRα − I)~t

0 0 1

 (A.6)

so using (A.1), (A.3) and (A.6) we see that the

log(H(A)) =

log(m) −α qx
α log(m) qy
0 0 0

 , (A.7)

where

q =

[
log(m) −α
α log(m)

]
(mRw − I)

−1
p (A.8)

which is more straightforward than the computation in [9].

Notice that the matrix (mRw − I)
−1

may be singular only
if w = kπ for some integer k, and if moreover m = 1, so
H(A) = I and there is no motion at all.

Given three arrows, we can now form H = x log(H(A)) +
y log(H(B)) + z log(H(C)). This new matrix H will have
the same shape as the logs of a similarity (i.e. the first two
columns and rows form a matrix of the form λI+S for some
skew-symmetric matrix S, and the last row is filled with
zeros), so we can use (A.6) to compute its exponential.

Observe also that the linear part of H is identical to eL

defined above.

Appendix B. P3:Pa-LP versus P10:Pa-EL

In this appendix, we compare P3:Pa-LP to P10:Pa-EL, a
non-chosen PITA, which uses the parabolic interpolant of P3
for D(t).p, but, instead of using the approach proposed here
for the -LP solutions, computes D(t).~w using the exponent
of the Weighted Arithmetic Mean of the logarithms of the
linear parts of the similarity transformations associated with
the keyframes (see Appendix A). P10 is not winding-aware,

as shown in Fig. B.30. It may be made winding-aware by
using a logic to correctly select the proper branch of the
exponential. With that improvement, the result produced
by P10 would be identical to the one produced by P3. Hence,
P3 improves on P10 in two ways: (1) It uses a much simpler
expression that avoids the complication and possible nu-
meric rounding errors of computing matrix logarithms and
exponentials, and (2) it does not require a post-processing
logic to select the proper trigonometric branch.

Figure B.30: P3:Pa-LP and P10:Pa-EL, for which D(t).~w is computed
using a weighted arithmetic average of the logs of the linear parts of
the three similarities). Left: Identical results. Right: A tweak of A.w
produces a pop of P10:Pa-EL.

Appendix C. P5: Similarity-invariance

Prior art [22] proposes to define the moving arrow H(t) in
terms of the corresponding homogeneous matrix computed
as H(t) = exp(x log(H(A)) + y log(H(A)) + z log(H(C))).

This solution is not affected by rotations or dilations about
the global origin, g. By this, we mean that rotating (resp.
dilating) the keyframes about the origin and then computing
H(t) yields the same result as computing H(t) first and then
performing that rotation (resp. dilation).

Unfortunately, this solution is affected by translation.
Hence, it is not similarity invariant. For example, rotating
the keyframe configuration about the centroid o of the origins
of the keyframes distorts the pattern.

Furthermore, the above solution is not handle-invariant,
which is a considerable drawback for animation design.

We use the following heuristic to address this problem:
(1) translate the keyframes by −→og, (2) compute H(t), as
explained above, (3) extract the corresponding arrow, D(t),
and (4) translate it by −→go. We use this solution for PITA
P5:He-LP. It is similarity invariant.

Figure C.31: Initial patterns (left) of P5 (top) and of H(t) (bottom)
for the same keyframes. Result (right) after translating the keyframes
to the right.

13

Still, two issues remain: (1) Another heuristic (such as
defining o as the centroid of the end points of the keyframe
arrows, or as A.p yields a different D(t)) and (2) P5 is not
handle-invariant (Fig. C.31).

Appendix D. P6 versus other -LP candidates

In this appendix, we compare P6:La-LP to 20 other options
that we explored and explain why we decided not to include
these in our basket of chosen PITAs. We split them into
variants of the Lagrange and of the Neville formulations.

Appendix D.1. Lagrange Variants

We considered a variant of Eq. 34:

T2(a,A, b,B, c,C, t) = T(M(A,B, y),A,C, z) (D.1)

where y and z are the ratios defined in Eq. 10.
For each variant, T1 and T2, we consider 6 permutations

of the timed-keyframes.

Figure D.32: Top: The 6 T1 permutations. Bottom: Same but for a
symmetric configuration of keyframes.

Let T1ABC stand for T1(a,A, b,B, c,C, t). It transforms
A by the SMA from A to B and then by the STA from
B to C. Similarly, let T2ABC stand for T2(a,A, b,B, c,C, t).

Each T1 is identical to a different T2 variant: T1ABC =
T2BAC, T1BCA = T2CBA, T1CAB = T2ACB, T1CBA = T2BCA,
T1ACB = T2CAB, and T1BAC = T2ABC. For example, T2BAC =
T zB,C · T xB,A · B = T zB,C · T

1−y−z
B,A · B = T zB,C · T

y+z
A,B · T 1

B,A · B
= T zB,C · T

y+z
A,B · A = T1ABC. Hence, we only consider the

6 T1 variants (Fig. D.32-left). Furthermore, T1ABC is the
time-reverse of T1CBA, T1BCA of T1BAC, and T1CAB of T1ACB
(Fig. D.32-right). So, we consider only the averages (which
are symmetric) of these 3 pairs.

Figure D.33: Top-left: T1ABC, T1CBA, and their average. Top-right:
T1BCA, T1BAC, and their average. Middle-left:T1CAB, T1ACB, and their
average. Remaining: comparing the 3 averages (P6 is in magenta).

We chose, as P6, the average of T1ABC and T1CBA, because
it offers a compromise between the other two (Fig. D.33).

Appendix D.2. P9:Ne-LP and other Neville Variants
Before inventing P6, we considered P9:Ne-LP, which is

an SMA of two SMAs (Neville form):

M(a,A, b,B, c,C, t) = M(M(A,B, q),M(B,C, r), s) (D.2)

using the SMA (Eq. 20) and ratios in Eq. 14.
We compare it here to options obtained by changing the

order of the arrows in this construction, and discuss two vari-
ants obtained by replacing the SMA building block, which
P5 uses, by a non-steady morph.

Construction: The three SMA steps in the construction
of P9 are illustrated in Fig. D.34.

Other options: We define other options for P9 through
permutations of the three timed keyframes: (a,A), (b,B),
and (c,C). For conciseness, we use the following notation:

MABC = M(a,A, b,B, c,C, t). (D.3)

14

Figure D.34: Given A (red), B (green), C (blue), we show (left) the
patterns for timed SMAs, M(a,A, b,B, t) (dark-red) and M(b,B, c,C, t)
(dark-blue). Both are extended to show the frames for time-range
[a, c]. We highlight the corresponding arrows, L (red) and R (blue),
for t = a+ (a− c)/4. We use these as keyframes (right), to define a
timed SMA M(a,L, c,R, t) (green frames), and highlight (black arrow)
its frame for t = a+ (a− c)/4, which is what P9 returns.

These 6 permutations have the following properties:
• MABC = MCBA, MACB = MBCA, MBAC = MCAB
• MABC is symmetric
• MACB, and MBAC are the time-reverse of each other:

swapping (a,A) and (c,C) swaps MACB and MBAC
In Fig. D.35 , we show that MABC, MACB, and MBAC can be
very different and that MABC is a good compromise between
MACB and MBAC, and is close to their average. Hence, we
use it as P9.

Figure D.35: MABC, MACB, MBAC, and the average of MACB and MBAC
superimposed for two configurations. Notice the similarity between
that average and MABC.

In Fig. D.36, we compare P9 to variants (Sec. 2.7) ob-
tained by replacing WGM by WAM or WHM for both the
computation of the path and of the magnitude of the moving
arrow.

Figure D.36: We show 3 variants using WAM (left), WGM (center),
and WHM (right) for the path of the center of the arrow and for its
length. P9 (WGM) is a compromise of the other two.

P9 and P6 produce very similar results for configurations
where the orientations of the keyframes are similar (Fig.
D.37-left). We chose to include P6, and not P9, in the
chosen basked of PITAs because, in some configurations (see
for example Fig. D.37-right), P9 may significantly deviate
from P6 near one or both ends of the pattern in ways that
we find unnatural.

Figure D.37: Comparing P6 (aquamarine) and P9 (berries) for a tame
(left) and more challenging (right) configurations.

Appendix E. P7:Ra-Pe (Details)

In P7, the acceleration of a point, p, is a constant similarity

transform of its displacement,
−→
fp, from a fixed point f . Hence,

the trajectory of the two end-points of D(t) and, in fact of
any point transported by P4, satisfies

p′′(t) = S ·
−→
fp(t) (E.1)

where S is a 2× 2 matrix, representing the combination of
a dilation and a rotation. We rewrite this equation to form
a first order differential equation

z′(t) =M · z(t), (E.2)

where

z(t) =

[−→
fp(t)
p′(t)

]
, S =

[
c1 c2
c3 c4

]
(E.3)

M =


0 0 1 0
0 0 0 1
c1 c2 0 0
c3 c4 0 0

 (E.4)

which has solution

z(t) = etM · z(0). (E.5)

Because S is the linear part of a similarity transform, the
four eigenvalues of M have the following structure

λ1 = α+ βi, λ2 = −α− βi
λ3 = α− βi, λ4 = −α+ βi

for some real numbers α and β, and the matrix composed
by the corresponding eigenvectors is

V =


~v1

~v2

~v3

~v4


T

=


(−αi− β)/k (α− βi)/k −ki k
(αi+ β)/k (−α+ βi)/k −ki k
(αi− β)/k (α+ βi)/k ki k

(−αi+ β)/k (−α− βi)/k ki k


T

where k =
√
α2 + β2. The inverse of this matrix is

V−1 =
1

4


(αi− β)/k (α+ βi)/k i/k k

(−αi+ β)/k (−α− βi)/k i/k k
(−αi− β)/k (α− βi)/k −i/k k
(αi+ β)/k (−α+ βi)/k −i/k k


15

We can compute etM using

etM = V


eλ1t 0 0 0

0 eλ2t 0 0
0 0 eλ3t 0
0 0 0 eλ4t

V−1, (E.6)

and combining equations E.1, E.3, E.5 and E.6, the final
closed-form solution for the trajectory of the point is

p(t) = f + S1(t) ·
−→
fp(0) + S2(t) · p′(0), (E.7)

where S1(t) is

[
scc(t) −sss(t)
sss(t) scc(t)

]
, S2(t) is

1

α2 + β2

[
αssc(t) + βscs(t) −αscs(t) + βssc(t)
αscs(t)− βssc(t) αssc(t) + βscs(t)

]
,

p′(0) is the initial velocity of p, and

scc(t) = cosh(αt) cos(βt), sss(t) = sinh(αt) sin(βt)
scs(t) = cosh(αt) sin(βt), ssc(t) = sinh(αt) cos(βt)

.

Notice that both S1(t) and S2(t) are antisymmetric, so
they represent some time-varying similarity transform. The
unknowns to be solved for are α, β, the fixed point f , a point
p(0) and its initial velocity ~v0. These define 8 degrees of
freedom, which matches the number of constraints.

We denote the three zero-turn arrows to interpolate by
paqa, pbqb, and pcqc. For symmetry, we set their knots
to −1, 0 and 1. Using the properties that S1(1) = S1(−1)
and S2(1) = −S2(−1), the values of sss(1) and scc(1) can
be obtained by solving the following system of equations

−−−→paqa +−−−→pcqc = 2

[
scc(1) −sss(1)
sss(1) scc(1)

]
−−−→pbqb.

Then the values of sinh(α) can be computed using

sinh(α) = sgn(sss(1))

√
w +

√
w2 + 4s2ss
2

,

where w = sss(1) + scc(1)− 1.

Then the values of α and β are computed using:

α = sinh−1

sgn(sss(1))

√
w +

√
w2 + 4s2ss
2

 , (E.8)

β = cos−1

(
scc(1)√

sinh(β)2 + 1

)
. (E.9)

We use these values to compute the initial velocities for
p and q (i.e., the velocities of the start-point, D(t).p, and
the end-point, D(t).q, of the moving arrow D(t) at time
t = b = 0, when D(t) interpolates keyframe B):

p′(0) =
1

2
S2(1)−1 · −−−→papc (E.10)

q′(0) =
1

2
S2(1)−1 · −−−→qaqc (E.11)

and the fixed point, f , of P7:

f = pb + (S1(1)− I)−1 ·
(

pb −
pa + bc

2

)
(E.12)

where I is the identity matrix. Observe that f = pb when
pb = pa+bc

2 .

Appendix F. P8:Lo-Pe (Details)

This PITA is based on the Uniformly Accelerated Mo-
tion (UAM). We give here a succinct derivation, and further
details may be found in [7].

Consider a point trajectory p(t) = U(t) · p0, where U(t)
is an affinity. At time t, the point moves with an accelera-

tion d2

dt2 p(t) which can be obtained by applying the second
derivative of U(t) to point p0. Then the condition that the
acceleration be constant along each trajectory in the local
reference frame amounts to all six non-zero entries of the ho-
mogeneous matrix of the affinity U ′′(t) to be constant in that
reference frame (see Eq. (39)). Expanding the matrix, one
obtains six second order ODEs in the six unknown entries
of U . These can be combined to obtain separate systems of
equations for pairs of entries in this matrix, all of the same
form. One such system is

d2

dt2 a(t) = C1a(t) + C2b(t)
d2

dt2 b(t) = C3a(t) + C4b(t)
(F.1)

where a(t) and b(t) are the entries of the solution matrix
in the first two columns of the first row, and the Ci are
arbitrary constants (that represent the choice of constant
acceleration).

This second order ODE is transformed in the usual
way [23] into a first order system

Z ′(t) =M · Z(t),

where

M =


0 0 1 0
0 0 0 1
C1 C2 0 0
C3 C4 0 0

 and Z(t) =


a(t)
b(t)
a′(t)
b′(t)


which can then be solved straightforwardly as

Z(t) = e(tM) · Z(0). (F.2)

A similar system is satisfied by d(t) and e(t), the first two
entries in the second row of the matrix U , completing the
first two columns of the affinity matrix. The remaining
entries corresponding to the translation part can be found
by plugging into the original equation the solutions for the
first four coefficients, obtaining a second order differential
equation on these last two entries of the matrix. In [7] the
reader may find a detailed derivation of the closed-form
expressions for the exponential of the matrix M, and of
the translation part of the affinity in terms of the boundary
conditions U(0) = A, U(1

2) = B and U(1) = C.
From the standard ODE theory, one sees that P8 is

unique. It is also affine invariant, and in the form used
here (interpolating affinities at t = {0, 12 , 1}), it is symmetric.
If all three affinities A, B and C are similarities, then U(t)
is also a similarity for all t.

16

