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SUMMARY

Contact between a rigid sphere and a linear poroelastic or poro-elasto-plastic half-space is ex-

amined in this work. The process of indentation by a rigid tool has been widely studied for

its versatility as an experimental methodology to probe constitutive properties of materials

of various kinds across multiple scales. Recently, spherical indentation has been applied to

characterize poroelasticity of fully saturated porous media such as polymeric gels and hydrated

bones via either displacement- or force-controlled tests. In principle, for a step loading test, if

the solid and fluid constituents are incompressible, elastic constants can be determined from

the undrained and drained responses based on the classical Hertzian contact solution, while the

hydraulic diffusivity can be obtained from the transient response by matching the measured

indentation force or displacement as a function of time against a master curve. Poroelastic

contact problems have their roots in geomechanics and geotechnical engineering owing to our

interests in ground settlement behaviors due to surface loading. After the theoretical frame-

works for soil consolidation were laid out by Terzaghi and Biot, significant contributions have

been made in developing general methods of solution as well as in treating particular cases

such as strip loading or punch indentation in a consolidating half-space. Motivated by these

theoretical and experimental advances, we set our research objectives to investigate the feasi-

bility of poroelastic spherical indentation as a testing technique for determining the hydraulic

diffusivity for geomaterials through an integrated theoretical and numerical approach.

With the aid of a variety of mathematical techniques, fully coupled theoretical solutions for

spherical indentation into a poroelastic half-space with three distinct cases of surface drainage

conditions when the indenter is subjected to step displacement loading are first derived. The

solutions are obtained within the framework of Biot’s theory using the McNamee-Gibson dis-

placement function method. Specifically, we overcome the mathematical difficulties associated

with evaluating integrals with highly oscillatory kernels by using alternative integral represen-

tations with exponentially decaying functions in the kernels. Special functions, such as the

modified Struve and Bessel functions, and the method of contour integration are utilized to
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aid the removal of the oscillation. Moreover, the method of successive substitution, instead of

the method of quadrature previously used in the literature, is employed to solve the Fredholm

integral equation of the second kind to improve solution accuracy. The theoretical analyses

show that the normalized indentation force relaxation has a relatively weak dependence on

a single derived material constant ω only. Master curves of indentation force relaxation can

be constructed by fitting the full solution with an elementary function for convenient use of

poroelasticity characterization in the laboratory.

A hydromechanically coupled finite element method (FEM) algorithm following a mixed

continuous Galerkin formulation for displacement and pore pressure and incorporating a penalty-

based frictionless contact scheme is constructed for modeling of spherical indentation in a

poro-elasto-plastic medium in order to examine how factors such as plastic deformation, depth

of penetration and loading rate affect the indentation responses. The fully saturated porous

medium is assumed to be isotropic and elasto-perfectly plastic, obeying a Drucker-Prager yield

criterion with an associative or non-associated flow rule. The Newton-Raphson method with

the tangent stiffness scheme is adopted to deal with plasticity in the solid skeleton. A stabiliza-

tion scheme, which permits equal-order interpolation for the displacement and pore pressure

fields and suppresses pore pressure oscillation in the incompressible or nearly incompressible

limit, is incorporated in this FEM algorithm.

Numerical simulations of poroelastic spherical indentation under step displacement loading

with or without ramping are conducted to show that the normalized force relaxation responses

from the numerical simulations can be very well captured by the theoretical solutions when the

indentation strain and ramping duration are relatively small. Numerical results confirm that

the normalized force relaxation behaviors are indeed affected by material properties through

the material constant ω only. For indentation in a poro-elasto-plastic medium, it is shown that

even though plasticity could occur immediately at the undrained limit, if the indentation strain

and material strength are such that the maximum plastic strain remains at the location of

the onset of plasticity as predicted by the poroelastic solutions and the plastic strain does not

accumulate during the transient period, the normalized force relaxation behavior could still be
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approximated as poroelastic.

Finally, a combined theoretical and numerical analysis is performed for poroelastic spher-

ical indentation under step force loading. Results show that though the normalized transient

displacement response is also affected by material properties through ω only, compared with

the step displacement loading cases, the dependence on ω is relatively stronger under step force

loading, indicating that the force-controlled poroelastic indentation test may be less reliable

than the displacement-controlled test.
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1 INTRODUCTION

1.1 Motivation and Objectives

The process of indentation by a rigid tool has been widely studied for its versatility as an

experimental methodology to probe constitutive properties of materials of various kinds across

multiple scales (Johnson, 1987; Cook and Pharr, 1990; Lawn, 1993, 1998; Marshall et al., 2015;

Argatov and Mishuris, 2018). Hardness and elastic modulus of a material can be determined

from the indentation force-displacement response, while mode I fracture toughness can be

measured from the size of a well-defined crack system as a function of the indentation force.

The advantages of the indentation tests are that they are non-destructive and relatively quick

and easy to perform.

Recently, spherical indentation has been applied to characterize poroelasticity of fully sat-

urated porous media such as polymeric gels and hydrated bones via either displacement- or

force-controlled tests. In a displacement-controlled load relaxation test (see Fig. 1.1), the

indenter is pressed instantaneously to a fixed depth and held until the indentation force ap-

proaches a horizontal asymptote (Hu et al., 2010, 2011, 2012; Chan et al., 2012; Kalcioglu et al.,

2012), whereas in a step force loading or ramp-hold test, the indentation force is kept constant

after reaching a prescribed level (Galli and Oyen, 2008, 2009; Oyen, 2008). In theory, for a step

loading test, if both the fluid and solid phases are considered incompressible, elastic constants

can be determined from the undrained and drained responses based on the classical Hertzian

contact solution, while the hydraulic diffusivity can be obtained from the transient response by

matching the measured indentation force or displacement as a function of time against a master

curve. Such master curves for various indenter shapes under step displacement loading have

been previously constructed through finite element simulations (Hu et al., 2010) and also semi-

analytically for spherical indentation with step force loading (Agbezuge and Deresiewicz, 1974;

Oyen, 2008). After the indentation force or displacement is normalized by the undrained and

drained asymptotes, these master curves are generally fitted by elementary functions. Possibil-

ity of using spherical indentation to determine the hydraulic diffusivity was first suggested by
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Agbezuge and Deresiewicz (1974). They outlined theoretical treatment for indentation with a

rigid sphere subjected to a constant force for three distinct surface drainage conditions, namely,

case I of a permeable indenter on a permeable half space, case II of an impermeable half space

and case III of an impermeable indenter on a permeable half space. In literature, in addition

to step loading tests, there are other types of indentation experiments with different loading

methods to characterize poroelastic material. A literature review of the detailed experimental

procedures is given in Section 1.2.

Figure 1.1: Schematic of spherical indentation.

Poroelastic contact problems have their roots in geomechanics and geotechnical engineer-

ing owing to our interests in ground settlement behaviors due to surface loading. After the

theoretical frameworks for soil consolidation were laid out by Terzaghi (1943) and Biot (1941),

significant contributions have been made in developing general methods of solution (Biot, 1956;

De Josselin De Jong, 1957; McNamee and Gibson, 1960a,b; Schiffman and Fungaroli, 1965;

Verruijt, 1971; Chiarella and Booker, 1975; Detournay and Cheng, 1993) as well as in treating

particular cases such as strip loading or punch indentation in a consolidating half space (De Jos-

selin De Jong, 1957; McNamee and Gibson, 1960a,b; Gibson and Mcnamee, 1963; Jana, 1965;

Schiffman and Fungaroli, 1965; Gibson et al., 1970; Schiffman and Fungaroli, 1973; Agbezuge

and Deresiewicz, 1974; Chiarella and Booker, 1975; Agbezuge, 1975, 1976; Deresiewicz, 1979;
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Gaszynski and Szefer, 1978; Booker and Small, 1985; Vardoulakis and Harnpattanapanich, 1986;

Harnpattanapanich and Vardoulakis, 1987; Mak et al., 1987; Selvadurai and Yue, 1994; Yue

and Selvadurai, 1994, 1995; Lan and Selvadurai, 1996; Chen et al., 2005a,b; Singh et al., 2009;

Chen and Abousleiman, 2010; Verruijt, 2013; Kim and Selvadurai, 2016; Selvadurai and Samea,

2020; Paria, 1957; Sanyal, 1972; Singh and Rani, 2006; Singh et al., 2007). Results from these

theoretical works are however rather cumbersome since mathematical issues such as evaluating

integrals with kernels that oscillate rapidly and solving the Fredholm integral equations of the

second kind were not treated satisfactorily.

Hydraulic diffusivity, or the coefficient of consolidation in the context of Terzaghi’s consol-

idation theory (Terzaghi, 1943), is one of the most important properties of geomaterials such

as low-permeability rocks and fine-grained soils since it governs the time rate of deformation

and pore pressure dissipation in hydromechanically coupled problems. For fully saturated soils,

where the fluid and solid phases can be considered as incompressible, linear poroelastic response

can be fully determined if the drained elastic constants and the coefficient of consolidation are

known. Consolidation test in an oedometer or a triaxial cell is the current standard labora-

tory testing method for measuring the coefficient of consolidation. The advantage of these

test configurations is that they correspond to a well-defined one-dimensional boundary value

problem as described by Terzaghi’s consolidation theory (Terzaghi, 1943; Olson, 1986). In both

the conventional setups and variations such as the Rowe cell (Rowe and Barden, 1966), the

test duration scales according to t ∼ H2/c, where H is the maximum length of the drainage

path and c is the coefficient of consolidation. The testing time could be rather lengthy for a

fine-grained soil.

For rocks, since bulk modulus of the fluid and solid phases could be comparable to that

of the skeleton, two additional mechanical constants, the Biot coefficient α and the storage

coefficient S, are also needed in order to fully describe the poroelastic response. Hydraulic
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diffusivity is related to the hydraulic and mechanical properties through,

c =
κ

µ

K + 4
3G

α2 +
(
K + 4

3G
)
S

(1.1)

where κ is the permeability; µ is the fluid viscosity; and K and G are the skeleton bulk and

shear modulus, respectively.

In the laboratory, mechanical constants such as K, G, α and S can be determined using a

combination of the drained, undrained and unjacketed tests under triaxial conditions (Hart and

Wang, 1995). Meanwhile, transient pore pressure test (Hart, 2000) and the pressure oscillation

method (Kranz et al., 1990) have been used to measure the hydraulic diffusivity of rocks. If

the fluid viscosity is known, measuring the hydraulic diffusivity provides an indirect way to

determine the permeability.

Rock permeability is generally measured using the classical steady state flow measurement,

transient pressure pulse test (Brace et al., 1968) or pressure oscillation method (Kranz et al.,

1990). Over the last few years, an isolated-cell pressure decay method utilizing crushed samples

has also been developed specifically for tight shales (Suarez-Rivera et al., 2012). Nevertheless,

a recent benchmark study on Grimsel granodiorite with participation from 24 laboratories

around the world shows that there are large scatters in the measured permeability, depending

on the specific methods, procedures and techniques (David et al., 2018a,b). Inconsistency in

the results was also found in benchmark studies for shale (Tinni et al., 2012).

Developing an additional and potentially more efficient means to determine the hydraulic

diffusivity, and indirectly the intrinsic permeability, through poroelastic indentation could

therefore be of great value. As have been shown in Kalcioglu et al. (2012), a poroelastic in-

dentation test could offer a few unique advantages. Firstly, the testing duration can be greatly

shortened with the proper choices of the indenter size and the depth of penetration, since the

testing time now scales according to t ∼ a2/c, where a is the contact radius. Secondly, both

the mechanical and hydraulic properties can be measured from a single test. Finally, since

the methodology is based on continuum mechanics and is not limited to a particular scale, the
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testing method could in principle be applied to probe material properties at multiple scales,

potentially bridging the gaps from micro-scale to macro-scale and in situ.

Application of poroelastic indentation for geomaterial characterization has never been ex-

plored. Motivated by these prior theoretical and experimental advances, we set our research

objectives to investigate the feasibility of poroelastic indentation as a testing technique for

determining the hydraulic diffusivity for geomaterials through an integrated theoretical and

numerical approach. The scope of this research includes:

• Establishing a theoretical framework for poroelastic spherical indentation into a half space

with the compressibility of constituents taken into account. We attempt to construct the-

oretical solutions for both step displacement and step force loading for the three distinct

surface drainage conditions.

• Developing a fully coupled poro-elasto-plastic finite element method (FEM) algorithm

and incorporating a frictionless contact scheme.

• Conducting numerical analysis to identify the parameter space where the material re-

sponse can be appropriately described by the theoretical solutions and is not strongly

affected by factors such as plastic deformation, indenter size, depth of penetration and

loading rate.

1.2 Experimental Development

Depending on how the surface load is applied, the experimental approaches can be classified

into four groups: step displacement loading (Mattice et al., 2006; Galli and Oyen, 2009; Galli

et al., 2009; Hu et al., 2010; Han et al., 2011; Chan et al., 2012; Hu et al., 2012; Kalcioglu

et al., 2012; Moeendarbary et al., 2013; Wahlquist et al., 2017; Islam and Oyen, 2021), step

force loading (Bembey et al., 2006; Delavoipière et al., 2016), oscillatory loading (Han et al.,

2011; Lai and Hu, 2017, 2018) and ramp loading (Esteki et al., 2019).

Different types of instruments have been used to conduct these experiments at various

scales. Conventional load frames have generally been utilized to conduct the tests at the
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macro-scale (mm) (Mattice et al., 2006; Hu et al., 2010, 2012; Kalcioglu et al., 2012; Islam and

Oyen, 2021). At the nano- to micro-scale, commercial instrumented nanoindentation systems

(Bembey et al., 2006; Galli et al., 2009; Wahlquist et al., 2017) and the atomic force microscope

(AFM) (Han et al., 2011; Kalcioglu et al., 2012; Moeendarbary et al., 2013; Delavoipière et al.,

2016; Lai and Hu, 2017, 2018) have both been used. The primary difference between the

instrumented nanoindentation system and AFM is that the former adopts a step motor to

directly actuate an indenter into the sample, while the latter actuates the tip indirectly via

a calibrated cantilever (Oyen, 2014). The AFM system is thus easier to optimize for testing

different classes of materials by adjusting the cantilever stiffness.

1.2.1 Step Displacement Loading Method

Feasibility of using step displacement loading for poroelastic characterization was demonstrated

by Hu et al. (2010). Their experiment was conducted with a conical aluminum indenter with

a half apex angle θ = 70° and a saturated alginate hydrogel. Indentation force relaxation was

then recorded as a function of time. To minimize the effect of the initial loading rate, the

ramping time is set to be much shorter than the relaxation time. Poroelastic constants were

determined by overlapping the experimental data with the master curve for a conical indenter

(see Eqs. 1.2-1.4), derived using finite element simulations and dimensional consideration.

The undrained and drained force asymptotes, F (0) and F (∞), can be expressed as,

F (0) =
8

π
Gd2 tan θ (1.2)

F (∞) =
4Gd2 tan θ

π (1− ν)
(1.3)

where d is the applied step indentation depth and ν the Poisson’s ratio. The relationship

obtained from numerical simulations for the normalized indentation force Fn (t∗) as a function

28



of dimensionless time, t∗ = tc/a2, can be expressed as,

Fn (t∗) =
F (t∗)− F (∞)

F (0)− F (∞)
= 0.493 exp

(
−0.822

√
t∗
)

+ 0.507 exp (−1.348t∗) (1.4)

Here, both the fluid and solid phases are considered incompressible. Shear modulus and Pois-

son’s ratio can be determined from F (0) and F (∞), respectively, while the hydraulic diffusivity

can be determined by matching the experimental data with Fn (t∗). Finite element simulations

show that the normalized transient force response is not sensitive to the change of any material

constants such as the Poisson’s ratio, suggesting that the master curves are universal applicable.

Master curves for other indenter shapes have also been reported in their study.

For fluid-filled porous media, both viscoelasticity and poroelasticity can result in inden-

tation force relaxation. These two relaxation mechanisms are, however, distinct and can be

distinguished from each other by their respective time scaling. Viscoelastic relaxation time is

associated with the viscosity and elastic modulus of the material and is therefore independent

of any length scale. This is in contrast to the quadratic relation between the relaxation time

and the contact radius or indentation depth in poroelastic indentation (t ∼ a2/c).

Benefit of conducting the experiment at a smaller scale for significant time saving was

demonstrated by Kalcioglu et al. (2012) using spherical indentation in PAAm hydrogel. Hy-

draulic diffusivity of the hydrogel is around 1.7 × 10−10 m2/s. The testing duration for the

case with an indenter of radius 1 cm at a depth of 100 µm is about 4.9 × 103 s, while it took

less than 1 s for the case with an indenter of radius 22.5 µm at a depth of 4 µm. Favorable

comparison was achieved between the two scales.

Spherical indentation into a poroelastic thin film was considered in Chan et al. (2012).

Equations for the master curves were modified to account for the effect of finite thickness.

1.2.2 Step Force Loading Method

Step force loading test was conducted in Bembey et al. (2006) by pressing a spherical indenter

into hydrated bones. Displacement of the indenter was then recorded as a function of time.
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Their experimental data were originally used for a viscoelastic analysis. The transient response

was later recognized as a result of poroelasticity and the data were then reanalyzed by Oyen

(2008). The master curve constructed by fitting the semi-analytical solution from Agbezuge

and Deresiewicz (1974) was used in Oyen (2008), i.e.,

dn (t∗) =
d (∞)− d (t∗)

d (∞)− d (0)
= 0.928− 0.928

[
1 +

(
t∗

0.772

)2.0837
]−1

(1.5)

where the dimensionless time is defined according to t∗ = ct/a2 (t), with a (t) =
√
Rd (t); dn (t∗)

is the transient indentation displacement normalized by its undrained and drained asymptotes

d (0) and d (∞),

d (0) =

(
3F

16G
√
R

) 2
3

(1.6)

d (∞) = [2 (1− ν)]
2
3 d (0) (1.7)

where F is the applied step force and R is the sphere radius. Shear modulus and the Poisson’s

ratio can be determined from d (0) and d (∞), and the hydraulic diffusivity from matching

the experimental data with Eq. 1.5. It should be noted that the semi-analytical solution in

Agbezuge and Deresiewicz (1974) was obtained assuming ν = 0. In addition, an assumption

that treats the contact pressure as a slowly varing function of time is made to make the problem

amenable to mathematical treatment. It is however unclear to us whether the assumption is

legitimate or not and whether the result for ν = 0 is also applicable to other cases with

ν > 0. This problem will be revisited in Section 7.3 using a combined theoretical and numerical

approach.

Since it is rather difficult to apply the idealized step loading, a ramp-hold test was suggested

by Galli and Oyen (2009). Instead of a single master curve, a database was constructed based

on numerical simulations assuming various loading rates.

Application of the step loading test to thin hydrogel films was investigated by Delavoipière

et al. (2016), where an asymptotic contact model (Ateshian et al., 1994; Delavoipière et al.,

2016) was employed as the theoretical base.
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1.2.3 Oscillatory Loading Method

An oscillatory loading method for spherical, conical and cylindrical indenters has been devel-

oped by Lai and Hu (2017). In this method, an indenter is first pressed to a fixed depth

d0. After the indentation force reaches a plateau F0, an oscillation phase then follows. The

indentation displacement is prescribed to be a sinusoidal function with a small amplitude

δ, i.e., d = d0 + δ sin (ωt). The corresponding indentation force can then be expressed as

F (t) = F0 + Fa sin (ωt+∆), where ω and ∆ denote the angular frequency and phase lag,

respectively. A frequency sweep is performed to obtain the relationship for the frequency ω

as a function of ∆. The peak frequency ωc and the phase lag ∆c were used to determine the

material constants according to,

ν = 0.5− 0.027∆c − 0.00136∆2
c (1.8)

c = Rd0
ωc
∆c

(1.9)

G =
3 (1− ν)

8d0

√
Rd0

F0 (1.10)

The oscillation loading method can overcome the difficulty in applying the instantaneous load-

ing. Therefore, it has great potential to become a reliable technique for characterizing poroe-

lastic materials at the nano- to micro-scale.

1.2.4 Ramp Loading Method

A recent work by Esteki et al. (2019) proposes to conduct experiments through ramp-hold to

take into account the loading rate effect. For each ramp-hold test, only the peak force or the

peak displacement is used in data analysis. A series of ramp-hold tests is therefore needed to

identify the poroelastic constants via data regression. Their master curve was contructed based

on empirical correlation.
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1.3 Research Outline and Thesis Structure

The thesis is organized as follows,

• Chapter 1 outlines the motivations and objectives of this research.

• Chapters 2, 3 and 4 present derivations of theoretical solutions for poroelastic spherical

indentation via step displacement loading for three different types of surface drainage

conditions, i.e., case I of a permeable indenter on a permeable half space, case II of an

impermeable half space and case III of an impermeable indenter on a permeable half

space. Effective mathematical techniques to overcome the difficulties in evaluating inte-

grals with highly oscillatory kernels and solving the Fredholm integral equations of the

second kind are developed. In addition to the Laplace and Hankel transforms which

have been used in previous literature, Abel transform, the method of successive substi-

tution for solving the Fredholm integral equation of the second kind, and Wynn’s epsilon

algorithm for accelerating convergence of an alternating series are some of the new tech-

niques we adopted. Implications of the poroelastic solutions for incipient failure in form

of tensile crack initiation and onset of plastic deformation are discussed. Behaviors of

the normalized indentation force relaxation are analyzed. Master curves of indentation

force relaxation are constructed by fitting the full solutions with an elementary function.

In addition, for cases I and II, closed-form asymptotic solutions for the force relaxation

response at both early and late times are derived.

• Chapters 5 and 6 implement a fully coupled finite element algorithm for poro-elasto-

plasticity for both plane strain and cylindrically axisymmetric problems using MATLAB

following the mixed continuous Galerkin formulation for displacement and pore pressure.

To take into account interations, a penalty-based frictionless contact scheme is developed

and incorporated into the algorithm. The finite element algorithm is first extensively

benchmarked with poroelastic analytical solutions to the problems of Terzaghi, Mandel,

Cryer, and De Leeuw and an analytic solution for one-dimensional poro-elasto-plastic
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consolidation. Numerical results for poro-elasto-plastic indentation that if the plastic

deformation is within a certain range, the normalized force relaxation behavior could still

be approximated as poroelastic are shown next. Finally, parameters space where the soil

response can be appropriately described by the theoretical solutions is constructed.

• Chapter 7 presents a combined theoretical and numerical analysis for poroelastic spherical

indentation under step force loading. Two approaches are employed to approximate the

contact radius responses. One is to assume that the contact radius remains constant and

the other is to assume that the contact radius is time dependent and follows the Hertzian

relationship. While the problem with the first approach is mathematically amenable and

can be solved theoretically via the McNamee-Gibson displacement function method, the

problem with the second approach involves a moving boundary condition and cannot be

solved theoretically. Finite element simulations are performed to obtain the solution for

the second approach.

• Chapter 8 summarizes the findings in this research and provides suggestions for future

work.
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2 POROELASTIC RESPONSE OF SPHERICAL INDENTA-

TION INTO A HALF SPACE WITH A PERMEABLE SUR-

FACE VIA STEP DISPLACEMENT

2.1 Introduction

General methods of solution for poroelasticity by means of potential functions were first dis-

cussed in Biot (1956) and De Josselin De Jong (1957). By expressing field variables as partial

derivatives of the stress and/or displacement functions, governing equations can be reduced

to canonical forms in terms of these functions. As is the case with linear elasticity, the stress

function methods are relatively inconvenient in dealing with boundary conditions involving

displacements and in ensuring uniqueness in the displacement fields. Their use for poroelastic

contact problems has therefore been limited to the few cases when the half-space is subjected

to tractions only (Paria, 1957; Sanyal, 1972).

Meanwhile, the displacement function method of McNamee and Gibson (McNamee and

Gibson, 1960a,b) has shown to be robust for treating both plane strain and axisymmetric

poroelastic contact problems subjected to normal loading. The original formulation of Mc-

Namee and Gibson assumes the solid and fluid phases are incompressible. The method was

later generalized to account for compressible constituents by Verruijt (1971) and Detournay and

Cheng (1993). The advantage of this method is that the governing equations are decoupled

such that successive Laplace and Fourier/Hankel transforms can be applied to find the general

solutions for the displacement functions in the Laplace domain and their exact solutions can

be uniquely determined by the boundary conditions. Extension of the method for tangential

loading over a half space was introduced in Schiffman and Fungaroli (1965) and Verruijt (1971).

In addition, an alternative direct method for solving axisymmetric problems was introduced

by Chiarella and Booker (1975), where field variables are first expressed using integral represen-

tations in form of Laplace-Hankel transforms of unknown functions. The governing equations

then become a system of ordinary differential equations (ODEs) for these functions. This ap-

34



proach is however less convenient than the McNamee-Gibson displacement function method

since it also has issues with uniqueness.

In this work, we adopt the McNamee-Gibson displacement function method to consider

the problem where a homogeneous, isotropic and linear poroelastic half space is subjected to

step displacement loading under isothermal conditions. In this chapter, the surface drainage

condition of case I as defined in Agbezuge and Deresiewicz (1974) is treated. Here we show that

the mathematical issues in dealing with integrals with highly oscillatory kernels and solving

Fredholm integral equations can in fact be overcome by using alternative integral representa-

tions with exponentially decaying functions in the kernels, and by employing the method of

successive substitution to improve the accuracy in solving the Fredholm integral equations of

the second kind.

Compressibility of both the fluid and solid phases is taken into account in our derivation.

Constituent compressibility is particularly important when dealing with poroelastic response

of geological materials such as rocks, where the bulk modulus of the solid phase could be

comparable with that of the skeleton. Poroelastic characterization of rocks is crucial to the

analyses of many geological processes and subsurface engineering applications in the fields of

geomechanics, hydrogeology, and reservoir engineering (Wang, 2000). In addition, in drilling,

the action of a single button in a drill bit pressing normally against a rock surface causing

the rock underneath the bit to crush and fracture is essentially an indentation process (Fowell,

1993; Cook et al., 1984). Insights into the poroelastic effect on the indentation process could

potentially help predict and improve the drilling efficiency.

Problem formulation and solution procedure are first introduced. Derivation to obtain the

poroelastic fields is then shown. Implications of the poroelastic solution for incipient failure

in form of tensile crack initiation and onset of plastic deformation are also discussed. Though

derivation of this fully coupled poroelastic solution requires the aid of a variety of mathematical

techniques, the result in terms of the normalized indentation force relaxation with time is

remarkably simple and shows only relatively weak dependence on one derived material constant

ω. Master curves of the normalized transient force response can be constructed by fitting the
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theoretical solution using a simple elementary function, which lends itself to convenient use for

material characterization in the laboratory. For the particular case when ω = 0, closed-form

asymptotic solutions for the force relaxation response at both early and late times are derived.

2.2 McNamee-Gibson Displacement Function Method

Governing equations for an axisymmetric fully poroelastic problem in a half space (z ≥ 0) can

be written using the displacement functions D and F (McNamee and Gibson, 1960a; Verruijt,

2013), which satisfy,
∂

∂t
∇2D = c∇2∇2D (2.1)

∇2F = 0 (2.2)

where,

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
(2.3)

c =
κ
(
K + 4

3G
)[

α2 + S
(
K + 4

3G
)]
µ

(2.4)

α = 1− K

Ks
(2.5)

S =
n

Kf
+
α− n
Ks

(2.6)

The linear poroelastic response is described by the following list of independent material con-

stants: κ − permeability, µ − fluid viscosity, K − skeleton bulk modulus, G − skeleton shear

modulus, n− porosity, Kf − fluid bulk modulus, Ks − solid bulk modulus. In addition to the

diffusion coefficient, c, the Biot coefficient, α, and the storage coefficient, S, two other derived

material constants, η and φ, are defined to facilitate the derivation,

η =
K

2G
+

2

3
(2.7)

φ =
α2 + S

(
K + 4

3G
)

α2 + S
(
K + 1

3G
) (2.8)
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Pore pressure, stresses and displacements can be directly expressed using displacement

functions D and F ,

ur = −∂D
∂r

+ z
∂F
∂r

(2.9)

uz = −∂D
∂z

+ z
∂F
∂z

+ (1− 2φ)F (2.10)

αp

2G
= −η∇2D + [φ+ 2η (1− φ)]

∂F
∂z

(2.11)

σz
2G

= −∇2D +
∂2D
∂z2

− z ∂
2F
∂z2

+ φ
∂F
∂z

(2.12)

σr
2G

= −∇2D +
∂2D
∂r2
− z ∂

2F
∂r2

+ (2− φ)
∂F
∂z

(2.13)

σθ
2G

= −∇2D +
1

r

∂D
∂r
− z

r

∂F
∂r

+ (2− φ)
∂F
∂z

(2.14)

σzr
2G

=
∂2D
∂r∂z

− z ∂
2F

∂r∂z
− (1− φ)

∂F
∂r

(2.15)

where ur and uz are the radial and vertical displacements; p is the pore pressure; and σz, σr, σθ,

σzr are stress components. Compression positive is adopted in Chapters 2, 3, 4 and 7 for the

sign convention. Expressions for components of the flux can be readily obtained after applying

Darcy’s law, i.e.,

qz = −κ
µ

∂p

∂z
=

2Gκ

αµ

{
η
∂

∂z
∇2D − [φ+ 2η (1− φ)]

∂2F
∂z2

}
(2.16)

General solutions for Eqs. 2.1 and 2.2 can be obtained from Hankel transform in the Laplace

domain. After neglecting the terms unbounded at infinity, we obtain,

D =

∫ ∞
0

 A1 (s, ξ) exp (−zξ)

+A2 (s, ξ) exp
(
−z
√
ξ2 + λ

)
 J0 (rξ) dξ (2.17)

F =

∫ ∞
0

B1 (s, ξ) exp (−zξ) J0 (rξ) dξ (2.18)

where λ = s/c and s is the Laplace variable; Jv (·) is the Bessel function of the first kind of
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order v; A1, A2 and B1 are functions of s and ξ to be determined from the boundary conditions.

The overbar is used here to denote the functions in the Laplace domain.

2.3 Problem Formulation

To describe spherical indentation into a semi-infinite domain with a permeable surface via

step displacement loading, we can express the mechanical and drainage boundary conditions in

terms of surface displacement uz, stresses σz and σzr, and pore pressure p as listed in Table 2.1,

where d is the depth of indentation; R is the radius of the indenter; a is the contact radius; and

H (t) is the Heaviside step function. We assume the contact is frictionless. Radial displacement

on the surface is therefore not constrained.

At the two limits when the domain is either fully undrained (t = 0) or drained (t → ∞),

the problem defined here is the same as Hertzian contact. The contact radius a can therefore

be expressed as a =
√
Rd (Love, 1929; Johnson, 1987; Liu and Huang, 2016). For the transient

period, in order to make the problem amenable to mathematical treatment, we follow the

argument (Agbezuge and Deresiewicz, 1974; Hu et al., 2010) that since the relation for a, d

and R is purely geometrical at the two limits, it is reasonable to hypothesize that a =
√
Rd

still holds at t > 0. Strictly speaking, poroelastic indentation with a rigid sphere is a moving

boundary problem. Nevertheless, as will be shown in Chapter 6, the assumption of a fixed

contact radius is valid if the ratio of the depth of penetration over the indenter radius is small.

time domain Laplace domain

0 ≤ r ≤ a−
uz =

(
d− r2

2R

)
H (t) uz = s−1

(
d− r2

2R

)
σzr = 0, p = 0 σzr = 0, p = 0

r ≥ a+ σz = σzr = 0, p = 0 σz = σzr = 0, p = 0

Table 2.1: Boundary conditions.

Matching the poroelastic fields with the boundary conditions in the Laplace domain yields
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the following equations,

A1ξ +A2

√
ξ2 + λ+B1 (1− φ) = 0 (2.19)

A2 +
φ+ 2η (1− φ)

ηλ
B1ξ = 0 (2.20)

and a dual integral equation containing only the unknown B1,

∫ ∞
0

B1J0 (rξ) dξ = (sφ)−1

(
r2

2R
− d
)
, 0 ≤ r ≤ a− (2.21)

∫ ∞
0

[1 + ωH (s, ξ)] ξB1J0 (rξ) dξ = 0, r ≥ a+ (2.22)

where,

H (s, ξ) = 1 +
2ξ2

λ

(
1−

√
ξ2 + λ

ξ

)
(2.23)

ω =
φ+ 2η (1− φ)

φ (2η − 1)
(2.24)

The problem now reduces to first finding B1 through Eqs. 2.21-2.22 and then A1 and A2 from

Eqs. 2.19-2.20.

Constant ω can be expressed explicitly using other material constants,

ω = α2 (1− 2ν)

(
α2 + 2SG

1− ν
1− 2ν

)−1

(2.25)

where ν is the drained Poisson’s ratio. Since 0 ≤ α ≤ 1, S ≥ 0, G ≥ 0 and 0 ≤ ν ≤ 0.5, the

theoretical range of ω is [0, 1]. If both the fluid and solid phases are incompressible, ω becomes

a function of ν only, ω = 1− 2ν.
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material ω material ω

1 Ruhr sandstone 0.2544 9 Boise sandstone 0.1792
2 Tennessee marble 0.0213 10 Gulf of Mexico shale 0.4174
3 Charcoal granite 0.0308 11 Danian chalk 0.2019
4 Berea sandstone 0.1637 12 hard sediment 0.4904
5 Westerly granite 0.1206 13 soft sediment 0.4881
6 Weber sandstone 0.1665 14 Abyssal red clay 0.0036
7 Ohio sandstone 0.1372 15 rock salt 0.0322
8 Pecos sandstone 0.2156 16 coarse sand 0.3333

Table 2.2: A list of poroelastic materials from Cheng (2016) and their ω values.

Based on the material constants listed in Cheng (2016), the values of ω for sixteen saturated

poroelastic media appear to fall within the range between 0 and 0.5, see Table 2.2. The

saturating fluid is kerosene for Boise sandstone (No. 9) and salt water for Abyssal red clay

(No. 14). All the others are saturated in water. For the saturated hydrogel in Hu et al. (2010),

ω = 0.44.

2.4 Solution Procedure

2.4.1 Fredholm Integral Equation of the Second Kind

Noble (1963) showed that the pair of dual integral equations in Eqs. 2.21-2.22 can be reduced

to a Fredholm integral equation of the second kind. By applying the following Sonine’s integrals

to Eqs. 2.21-2.22, respectively,

J 1
2

(xξ) =

√
2ξ

πx

∫ x

0
J0 (rξ)

rdr√
x2 − r2

(2.26)

J− 1
2

(xξ) =

√
2ξ

πx

∫ ∞
x

J0 (rξ)
rdr√
r2 − x2

(2.27)

we obtain,

∫ ∞
0

B1ξ
− 1

2J 1
2

(xξ) dξ = (sφR)−1

√
2

πx

(
x3

3
− xRd

)
, 0 ≤ x ≤ a− (2.28)
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and, ∫ ∞
0

[1 + ωH (s, ξ)]B1ξ
1
2J− 1

2
(xξ) dξ = 0, x ≥ a+ (2.29)

In order to make the orders of the Bessel functions and the powers of ξ identical in the

above equations, both sides of Eq. 2.28 are first multiplied by x
1
2 and then differentiated with

respect to x,

∫ ∞
0

B1ξ
1
2J− 1

2
(xξ) dξ = (sφR)−1

√
2

πx

(
x2 −Rd

)
, 0 ≤ x ≤ a− (2.30)

Define θ (s, x) as an unknown function of s and x in the Laplace domain according to,

∫ ∞
0

B1ξ
1
2J− 1

2
(xξ) dξ =

√
2

π
(sφR)−1 θ (s, x) , x ≥ a+ (2.31)

Since the left hand sides of Eqs. 2.30 and 2.31 are identical, the expression on the left is defined

for all x. It follows from inverse Hankel transform,

B1ξ
− 1

2 =

√
2

π
(sφR)−1

∫ a

0
m

1
2
(
m2 −Rd

)
J− 1

2
(mξ) dm

+

√
2

π
(sφR)−1

∫ ∞
a

mθ (s,m) J− 1
2

(mξ) dm

(2.32)

Substituting Eq. 2.32 into Eq. 2.29 gives a Fredholm integral equation of the second kind

for θ (s, x),

θ (s, x) + ω

∫ ∞
a

[
m

∫ ∞
0

ξH (s, ξ) J− 1
2

(xξ) J− 1
2

(mξ) dξ

]
θ (s,m) dm

= ω

∫ a

0
m−

1
2
(
Rd−m2

) [
m

∫ ∞
0

ξH (s, ξ) J− 1
2

(xξ) J− 1
2

(mξ) dξ

]
dm

(2.33)

Eq. 2.33 extends the definition of θ (s, x) from x ≥ a+ to x ≥ 0.
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For convenience, the following dimensionless variables are introduced,

x∗ = x/a m∗ = m/a r∗ = r/a z∗ = z/a

ξ∗ = ξa s∗ = λa2 t∗ = tc/a2
(2.34)

Denote function θ1 (s∗, x∗) as the normalized θ (s, x) according to,

θ1 (s∗, x∗) = θ (s, x) a−
3
2 (2.35)

Eq. 2.33 can be rewritten as,

θ1 (s∗, x∗) + ω

∫ ∞
1

N (s∗, x∗,m∗) θ1 (s∗,m∗) dm∗ = ωM (s∗, x∗) (2.36)

where,

N (s∗, x∗,m∗) = m∗

∫ ∞
0

ξ∗H1 (s∗, ξ∗) J− 1
2

(x∗ξ∗) J− 1
2

(m∗ξ∗) dξ∗ (2.37)

M (s∗, x∗) =

∫ 1

0
m
− 1

2
∗
(
1−m2

∗
)
N (s∗, x∗,m∗) dm∗ (2.38)

H1 (s∗, ξ∗) = 1 +
2ξ2
∗

s∗

(
1−

√
ξ2
∗ + s∗
ξ∗

)
(2.39)

Now θ1 (s∗, x∗) is the unknown to be determined. Once it is known, all the field quantities

can be expressed in the Laplace domain in terms of θ1 (s∗, x∗). It is noted that θ1 (s∗, x∗) is

influenced by the material properties only through ω. Prior to finding the solution to Eq. 2.36,

function N (s∗, x∗,m∗) needs to be evaluated. Methodologies for evaluating N (s∗, x∗,m∗) and

then M (s∗, x∗) and θ1 (s∗, x∗) are outlined next.

2.4.2 Alternative Expression for N (s∗, x∗,m∗)

Though uniformly convergent, N (s∗, x∗,m∗) in Eq. 2.37 has an oscillatory integral kernel over

an unbounded interval. As x∗ and m∗ become large, the rapidly oscillating integrand could

result in unstable numerical integration. Yue and Selvadurai (1994) separated the integrand
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into two parts so that one deals with its asymptote as s−1
∗ ξ2
∗ → ∞, the integral of which

can be expressed in closed-form, and the other is the difference between the integrand and its

asymptote, which reduces to zero relatively faster and thus can be numerically treated more

effectively. Lan and Selvadurai (1996) used a function to fit H1 (s∗, ξ∗). The fitting function is

chosen in such a way that a closed-form solution can be obtained for N (s∗, x∗,m∗).

In this study, we take a different approach by expressing N (s∗, x∗,m∗) using an alternative

integral expression. Indeed, N (s∗, x∗,m∗) can be rewritten using one of the integral represen-

tations of the modified Struve functions (Olver, 2010), in which the oscillatory nature is no

longer present. Since J− 1
2

(y) =
√

2/πy cos y, N (s∗, x∗,m∗) can be rewritten as,

N (s∗, x∗,m∗) =
1

π

√
m∗
x∗

∫ ∞
0

H1 (s∗, ξ∗)

 cos (x∗ξ∗ −m∗ξ∗)

+ cos (x∗ξ∗ +m∗ξ∗)

 dξ∗ (2.40)

Integration by parts three times on the right hand side (RHS) of Eq. 2.40 gives,

RHS =
2

π

(
m∗
x∗

) 1
2
{

(x∗ −m∗)−2

[
s
− 1

2
∗ −

3s∗
x∗ −m∗

∫ ∞
0

(
ξ2
∗ + s∗

)− 5
2 sin [(x∗ −m∗) ξ∗] dξ∗

]
+ (x∗ +m∗)

−2

[
s
− 1

2
∗ −

3s∗
x∗ +m∗

∫ ∞
0

(
ξ2
∗ + s∗

)− 5
2 sin [(x∗ +m∗) ξ∗] dξ∗

]}
(2.41)

Though the integrals in Eq. 2.41 still contain oscillatory terms, the integrals are related to the

modified Struve function through,

∫ ∞
0

(
ξ2
∗ + s∗

)− 5
2 sin (yξ∗) dξ∗ = −π

6
y |y| s−1

∗ M−2

(
|y| s

1
2
∗

)
(2.42)

where Mv (·) is the modified Struve function of the second kind of order v. According to Olver

(2010), Eq. 2.42 holds, provided that |y| s
1
2
∗ ≥ 0. This requirement is fulfilled since |y| ≥ 0 and

s∗ ≥ 0 in the Stehfest algorithm (Stehfest, 1970) for the inverse Laplace transform.
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According to the recurrence relationship for the modified Struve function, we have,

M−2 (y) = M0 (y)− 2

y
M1 (y)− 2

πy
(2.43)

Functions M0 (y) and M1 (y) can be expressed through integral representations that do not

contain oscillatory terms,

M0 (y) = − 2

π

∫ 1

0
exp (−yζ)

(
1− ζ2

)− 1
2 dζ (2.44)

M1 (y) = − 2

π
y

∫ 1

0
exp (−yζ)

(
1− ζ2

) 1
2 dζ (2.45)

The integrals in Eqs. 2.44 and 2.45 have an exponentially decaying function in the kernels and

a finite integral upper limit, and thus can be numerically integrated efficiently and effectively.

In addition, we can use the asymptotic behaviors of M0 (y) and M1 (y) for approximation,

if the numerical integration cannot return satisfactory results at small or large y, e.g.,

lim
y→0

M0 (y) = −1 +
2

π
y − 1

4
y2 +

2

9π
y3 (2.46)

lim
y→∞

M0 (y) = − 2

πy
− 2

πy3
− 18

πy5
(2.47)

lim
y→0

M1 (y) = −1

2
y +

2

3π
y2 − 1

16
y3 (2.48)

lim
y→∞

M1 (y) = − 2

π
+

2

πy2
+

6

πy4
(2.49)

It follows from Eqs. 2.41-2.45 that an alternative expression for N (s∗, x∗,m∗) can be written

as,

N (s∗, x∗,m∗) =

√
s∗m∗
x∗

[
M0 (y1)

y1
+

M0 (y2)

y2
− 2M1 (y1)

y2
1

− 2M1 (y2)

y2
2

]
(2.50)

where y1 = |x∗ −m∗| s
1
2
∗ and y2 = (x∗ +m∗) s

1
2
∗ .
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Some asymptotic expressions of N (s∗, x∗,m∗) are straightforward to obtain,

lim
s∗→∞

N (s∗, x∗,m∗) = δ (m∗ − x∗) (2.51)

lim
s∗→0

N (s∗, x∗,m∗) = 0 (2.52)

lim
x∗→∞

N (s∗, x∗,m∗) =
4

π

√
m∗
s∗x5
∗

(2.53)

Comparison between direct numerical integration of Eq. 2.40 with the oscillatory kernel

and the alternative expression in Eq. 2.50 at x∗ = 1, s∗ = 5, 000 and s∗ = 500, 000 are shown

in Fig. 2.1. The results in both cases are obtained by directly using the “integral” command in

MATLAB. Direct integration of Eq. 2.40 yields highly oscillatory results at large s∗ (small t∗)

and fails to capture the Dirac function behavior atm∗ = x∗, which is expected for N (s∗, x∗,m∗)

at large s∗ according to Eq. 2.51. In contrast, the alternative expression with the modified

Struve functions is well behaved and approaches δ (m∗ − x∗) at large s∗.
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Figure 2.1: Comparison between direct numerical integration of the oscillatory kernel and the
alternative expression with the modified Struve functions for N (s∗, x∗,m∗) at x∗ = 1.
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Using the alternative expression for N (s∗, x∗,m∗), a closed-form solution for M (s∗, x∗)

consisting of special functions such as the hypergeometric functions can be obtained, see Ap-

pendix A.4. However, the exact expression of M (s∗, x∗) is cumbersome and barely offers any

advantage over direct numerical evaluation of Eq. 2.38 in terms of computational speed and

accuracy. Indeed, as long as sufficient integration points are added in the vicinity of the peak

in N (s∗, x∗,m∗), direct numerical integration to determine M (s∗, x∗) is rather efficient. The

relative error from direct numerical integration is smaller than 10−5 in this study.

2.4.3 Method of Successive Substitution

To solve for θ1 (s∗, x∗) in Eq. 2.36, we adopt the method of successive substitution (Zemyan,

2012) by letting,

θ1 (s∗, x∗) = −
∞∑
n=0

(−ω)n+1 an (s∗, x∗) (2.54)

where,

a0 (s∗, x∗) = M (s∗, x∗) (2.55)

an (s∗, x∗) =

∫ ∞
1

N (s∗, x∗,m∗) an−1 (s∗,m∗) dm∗, n = 1, 2, 3... (2.56)

Numerical integration for the improper integral in Eq. 2.56 is performed by substituting its

infinite upper bound with a sufficiently large value (say, 100), and assigning adequate integration

points in the vicinity of the peak in N (s∗, x∗,m∗). Summation of the infinite series is also

replaced by a partial sum. It is observed that when ω ≤ 0.5 as in the cases for the porous

media in Table 2.2, the series converges rather fast and the partial sum with only 20 terms is

sufficient to give a satisfactory approximation for any values of s∗ and x∗. For example, when

s∗ = 500, 000 and ω = 0.25, at x∗ = 1, an decreases with the increase of n and the largest term

is a0 = 0.01. This means that the largest truncation error of the partial sum with 20 terms is

0.01
∑∞

n=21 ω
n ≈ 3× 10−15, much smaller than θ1 = 0.00232 at x∗ = 1.

By substituting Eq. 2.53 into Eqs. 2.36 and 2.38, the asymptotes of θ1 (s∗, x∗) and
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M (s∗, x∗) at x∗ →∞ can be expressed explicitly,

lim
x∗→∞

log [θ1 (s∗, x∗)] = −5

2
log (x∗) + C1 (2.57)

lim
x∗→∞

log [M (s∗, x∗)] = −5

2
log (x∗) + C2 (2.58)

where C1 and C2 are constants and equal to,

C1 = log

[
8ω

3π
√
s∗

(
1− 3

2

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗) dm∗

)]
(2.59)

C2 = log

(
8

3π
√
s∗

)
(2.60)

The limits of θ1 (s∗, x∗) at s∗ → 0 and s∗ → ∞ can be determined after substituting Eqs.

2.51 and 2.52 into Eq. 2.36,

lim
s∗→∞

θ1 (s∗, x∗) =


ω
(
1− x2

∗
)

√
x∗

, 0 ≤ x∗ ≤ 1

0, x∗ > 1

(2.61)

lim
s∗→0

θ1 (s∗, x∗) = 0, x∗ ≥ 0 (2.62)

A comparison between the method of successive substitution and the method of quadrature

for determining θ1 (s∗, x∗) is shown in Fig. 2.2 for s∗ = 500, 000 and ω = 0.25. The method of

quadrature was previously used in the literature (Agbezuge and Deresiewicz, 1974; Chiarella and

Booker, 1975; Yue and Selvadurai, 1995; Lan and Selvadurai, 1996). The method of successive

substitution is able to recover the analytical asymptote of θ1 (s∗, x∗) at large x∗. As indicated

by Eqs. 2.57 and 2.58, when x∗ → ∞, θ1 (s∗, x∗) and M (s∗, x∗) should be parallel to each

other with a slope of −5/2 in the log-log scale. The deficiency in the quadrature method is

likely due to the fact that the information around the peak of N (s∗, x∗,m∗) when x∗ is large

is not adequately captured.
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Figure 2.2: Comparison between the method of successive substitution (“iter”) and the method
of quadrature (“quad”) for θ1 (s∗, x∗) at s∗ = 500, 000 and ω = 0.25.
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Figure 2.3: Comparison between the partial sum results with 1, 000 and 100, 000 terms and the
accelerated result using the ε−algorithm for θ1 (s∗, x∗) for ω = 1 and s∗ = 500, 000.
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Theoretically, the value of ω could be close or equal to 1. In that case, the alternating series

in Eq. 2.54 converges slowly. Wynn’s epsilon algorithm (Wynn, 1956) is employed here to

accelerate the convergence for the method’s effectiveness in dealing with an alternating series.

Fig. 2.3 presents a comparison between the accelerated result using the ε−algorithm based on

the first 10 terms in the series only and the partial sum results with 1, 000 and 100, 000 terms

for ω = 1 and s∗ = 500, 000. It shows that the accelerated result is well behaved and acts like

an upper bound for the results from the partial sum.

2.5 Poroelastic Fields

Poroelastic fields on the surface and inside the half space can now be expressed in terms of

θ1 (s∗, x∗) in the Laplace domain by directly substituting the displacement functions D and F

into Eqs. 2.9-2.16. However, these expressions from direct substitution all contain integrals

with oscillatory kernels. As will be shown later in Section 2.5.1, direct evaluation of these

integrals could yield nonsmooth results at small depth. As such, a second set of expressions is

derived with the aid of Abel transform (Bracewell, 1986; Poularikas, 2018) and Sonine’s integral

(Noble, 1963). For the second set, the expressions for the surface and inside the half space are

listed separately.

The first pair of forward and inverse Abel transform used in this study is,

F (x) = 2

∫ ∞
x

f (r)
rdr√
r2 − x2

(2.63)

f (r) = − 1

π

∫ ∞
r

F ′ (x)
dx√
x2 − r2

(2.64)

The inverse transform in Eq. 2.64 is applicable only if F (x) is continuous. Generalization to

account for discontinuity in F (x), for example, at x = 1, F (x−) − F (x+) = C where C is a

constant, can be expressed as,

f (r) = − 1

π

∫ ∞
r

d [F (x)− CH (1− x)]

dx

dx√
x2 − r2

+
CH (1− r)
π
√

1− r2
(2.65)
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The second pair of forward and inverse Abel transform, which will be used for the derivations

for cases II and III, is,

F (r) = 2

∫ r

0
f (x)

dx√
r2 − x2

(2.66)

f (x) =
1

π

d

dx

[∫ x

0
F (r)

rdr√
x2 − r2

]
(2.67)

The formula below, derived from Sonine’s finite integral (Noble, 1963), will also be used,

J− 1
2

(xξ) =

√
2

πxξ
−
√

2xξ

π

∫ x

0
J1 (rξ)

dr√
x2 − r2

(2.68)

J 1
2

(xξ) =

√
2xξ

π

∫ ∞
x

J1 (rξ)
dr√

r2 − x2
(2.69)

In addition, two techniques are used to rewrite the integrals in the second set of expressions.

The first one is to express the integrals alternatively using the modified Bessel functions of the

second kind (Bateman, 1954), for example,

∫ ∞
0

exp
(
−z
√
ξ2 + s

) cos (yξ)√
ξ2 + s

dξ = K0

[√
s (y2 + z2)

]
(2.70)

where Kv (·) is the modified Bessel functions of the second kind of order v. One of the integral

representations of Kv (·) does not contain an oscillatory kernel. For example,

Kv (y) =

√
π
(

1
2y
)v

Γ
(
v + 1

2

) ∫ ∞
1

exp (−yζ)
(
ζ2 − 1

)v− 1
2 dζ (2.71)

where Re (v) > −1
2 and Re (y) > 0. Other identities can also be obtained after taking derivatives

of Eq. 2.70 with respect to y or z. The second technique is the method of contour integration,

see details in Appendix A.2.

Poroelastic fields in the time domain can be obtained by using the Stehfest algorithm

(Stehfest, 1970) for inverse Laplace transform with six expansion terms. Derivation of the

pore pressure p, vertical stress σz and displacement uz is shown next. Details of the other

non-trivial stresses and displacements are given in Appendix A.1. Their undrained and drained
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asymptotes, which correspond to the undrained and drained responses of the Hertzian contact,

are given in Appendix A.1.5.

Skeleton shear modulus, G 0.76 GPa
Skeleton compression modulus, K 1.1 GPa
Solid compression modulus, Ks 34 GPa
Fluid compression modulus, Kf 2.25 GPa

Porosity, n 0.3
Permeability, κ 1× 10−19 m2

Table 2.3: Material constants of the Gulf of Mexico shale (Cheng, 2016).

Material properties of the Gulf of Mexico shale as listed in Cheng (2016), see Table 2.3,

are used for the subsequent calculation of the field quantities and the incipient failure analysis.

Viscosity of the saturating fluid is taken to be µ = 1 cp. Values of the drained and undrained

Poisson’s ratios are ν = 0.219 and νu = 0.449, which correspond to ω = 0.4174. Radius of

the spherical indenter is taken as R = 50 mm and the indentation depth d = 0.1 mm and the

corresponding contact radius is a = 2.23 mm for this example case.

2.5.1 Pore Pressure

Expression 1 Substituting Eqs. 2.17-2.20 and 2.32 into Eq. 2.11 gives,

αp =
2G (2η − 1) a3

cRs∗

[
ω

∫ 1

0

(
m2
∗ − 1

)
Np (s∗, r∗,m∗, z∗) dm∗

+ω

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Np (s∗, r∗,m∗, z∗) dm∗

] (2.72)

where,

Np (s∗, r∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(2.73)

Expression 2 An alternative expression for the pore pressure field can be derived by first

applying Sonine’s integral in Eq. 2.27 to Eq. 2.72,
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∫ ∞
x∗

αp
r∗dr∗√
r2
∗ − x2

∗
=

2G (2η − 1) a3

cRs∗

[
ω

∫ 1

0

(
m2
∗ − 1

)
Npx (s∗, x∗,m∗, z∗) dm∗

+ω

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Npx (s∗, x∗,m∗, z∗) dm∗

] (2.74)

where,

Npx (s∗, x∗,m∗, z∗) =
2

π

∫ ∞
0

[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
cos (m∗ξ∗) cos (x∗ξ∗) dξ∗

(2.75)

Since the right hand side of Eq. 2.74 is continuous at x∗ ≥ 0, applying the inverse Abel

transform in Eq. 2.64 gives,

αp = −4 (2η − 1)Ga3

πcRs∗

∫ ∞
r∗

θp (s∗, x∗, z∗) dx∗√
x2
∗ − r2

∗
(2.76)

where,

θp (s∗, x∗, z∗) = ω

∫ 1

0

(
m2
∗ − 1

)
Npx,x (s∗, x∗,m∗, z∗) dm∗

+ω

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Npx,x (s∗, x∗,m∗, z∗) dm∗

(2.77)

and Npx,x = ∂Npx/∂x∗,

Npx,x (s∗, x∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗

[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
cos (m∗ξ∗) sin (x∗ξ∗) dξ∗

(2.78)

Here the first term in Npx,x can be evaluated with the aid of the modified Bessel function while
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the second term gives an elementary antiderivative, i.e.,

Npx,x (s∗, x∗,m∗, z∗) = − 1

π
s

1
2
∗

 (x∗ +m∗)
2 − z2

∗(
(x∗ +m∗)

2 + z2
∗

) 3
2

K1

[√
s∗ (x∗ +m∗)

2 + s∗z2
∗

]

− 1

π
s∗

[
(x∗ +m∗)

2

(x∗ +m∗)
2 + z2

∗

]
K0

[√
s∗ (x∗ +m∗)

2 + s∗z2
∗

]
+

1

π

(x∗ +m∗)
2 − z2

∗[
(x∗ +m∗)

2 + z2
∗

]2

− 1

π
s

1
2
∗

 (x∗ −m∗)2 − z2
∗(

(x∗ −m∗)2 + z2
∗

) 3
2

K1

[√
s∗ (x∗ −m∗)2 + s∗z2

∗

]

− 1

π
s∗

[
(x∗ −m∗)2

(x∗ −m∗)2 + z2
∗

]
K0

[√
s∗ (x∗ −m∗)2 + s∗z2

∗

]
+

1

π

(x∗ −m∗)2 − z2
∗[

(x∗ −m∗)2 + z2
∗

]2

(2.79)

Note that for the sake of brevity, explicit expressions for similar integrals in the sections below

will be omitted.

Pore pressure in the time domain can be determined after taking the inverse Laplace trans-

form. For example, for Eq. 2.76,

αp = −4G (2η − 1) a

πR

∫ ∞
r∗

L−1
[
s−1
∗ θp (s∗, x∗, z∗)

]
dx∗√

x2
∗ − r2

∗
(2.80)

Here L−1 denotes the inverse Laplace transform with respect to s∗.

L−1 [·] =
1

2πi

∫ γ+i∞

γ−i∞
[·] exp (s∗t∗) ds∗ (2.81)

Both Eqs. 2.72 and 2.76 can be used to determine the pore pressure field inside the half

space (z∗ > 0) in the Laplace domain. While it is easier to program with Eq. 2.72 in MATLAB,

the result from direct numerical integration at some depths when z∗ < 0.05 is not as smooth as

that based on Eq. 2.76, see the inset in Fig. 2.4 showing the pore pressure distribution along

the contact axis. The results are obtained with the properties of the Gulf of Mexico shale at

t∗ = 10−4. The discrepancy at small z∗ is because that as z∗ becomes smaller, the oscillatory

integrand in Np approaches to zero slower than the case when z∗ is relatively large. However,

54



the two algorithms yield excellent agreement when z∗ ≥ 0.05.

There are benefits in having both sets of expressions. On the one hand, Eq. 2.72 has

the advantage in calculating the pore pressure at a specific location when z∗ ≥ 0.05 since the

algorithm is less time consuming. On the other hand, Eq. 2.76 is more efficient in determining

the full pore pressure field since once θp is computed for all x∗, the pore pressure at any position

can be conveniently calculated all at once.

Fig. 2.5 shows the pore pressure distributions along the contact axis at various times from

Eq. 2.72 for z∗ > 0.05 and Eq. 2.76 for z∗ ≤ 0.05. Since a permeable surface is assumed, the

pore pressure on the surface drops from the undrained asymptote to zero instantaneously. Along

the contact axis, the pore pressure exhibits the Mandel-Cryer effect (Detournay and Cheng,

1993), where the pore pressure rises above the initial value at t∗ = 0+ before its dissipation,

see the inset in Fig. 2.5.
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Figure 2.4: Pore pressure along the contact axis at t∗ = 10−4; evaluated based on Eq. 2.72
(dashed line) and Eq. 2.76 (solid line).
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Figure 2.5: Distribution of the pore pressure along the contact axis.

2.5.2 Vertical Stress

Expression 1 The vertical stress field can be obtained after substituting Eqs. 2.17-2.20 and

2.32 into Eq. 2.12,

σz =
2Ga3

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nsz (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nsz (s∗, r∗,m∗, z∗) dm∗

] (2.82)

where,

Nsz (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗

{
(1 + z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
−
√
ξ2
∗ + s∗
ξ∗

exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(2.83)
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Expression 2 Similar to the treatment for the pore pressure, an alternative expression for

σz can be obtained by first applying Eq. 2.27 to Eq. 2.82,

∫ ∞
x∗

σz
r∗dr∗√
r2
∗ − x2

∗
=

2Ga3

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nszx (s∗, x∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nszx (s∗, x∗,m∗, z∗) dm∗

] (2.84)

where,

Nszx (s∗, x∗,m∗, z∗) = − 2

π

∫ ∞
0

{
(1 + z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
−
√
ξ2
∗ + s∗
ξ∗

exp (−z∗ξ∗)

]}
cos (m∗ξ∗) cos (x∗ξ∗) dξ∗

(2.85)

Inside the half space (z∗ > 0), the vertical stress σz is continuous at x∗ ≥ 0. Applying the

inverse Abel transform in Eq. 2.64 to Eq. 2.84 gives,

σz = − 4Ga3

πcφRs∗

∫ ∞
r∗

θsz (s∗, x∗, z∗) dx∗√
x2
∗ − r2

∗
(2.86)

where,

θsz (s∗, x∗, z∗) =

∫ 1

0

(
m2
∗ − 1

)
Nszx,x (s∗, x∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nszx,x (s∗, x∗,m∗, z∗) dm∗

(2.87)

and Nszx,x = ∂Nszx/∂x∗,

Nszx,x (s∗, x∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

{
(1 + z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

ξ2
∗
s∗

[
exp

(
−z∗

√
ξ2
∗ + s∗

)
−
√
ξ2
∗ + s∗
ξ∗

exp (−z∗ξ∗)

]}
cos (m∗ξ∗) sin (x∗ξ∗) dξ∗

(2.88)

The first term in Nszx,x has an elementary antiderivative. The second term can be expressed

alternatively using the modified Bessel function. The last term can be evaluated with the aid

of the method of contour integration, see Appendix A.2.
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On the surface (z∗ = 0), the vertical stress σz is non-trivial only when r∗ ≤ 1. Eq. 2.84

becomes,

∫ ∞
x∗

σz
r∗dr∗√
r2
∗ − x2

∗
=
G (2η − 1) a3

cηRs∗

[
1− x2

∗ + x
1
2
∗ θ1 (s∗, x∗)

]
, x∗ ≤ 1− (2.89)

∫ ∞
x∗

σz
r∗dr∗√
r2
∗ − x2

∗
= 0, x∗ ≥ 1+ (2.90)

Since θ1 (s∗, 1) is positive at s∗ > 0 (except s∗ → ∞), the right hand side of Eq. 2.89 is

nonzero at x∗ = 1, suggesting that the integrals above are discontinuous at x∗ = 1. Inverse

Abel transform in Eq. 2.65 is therefore applied to Eqs. 2.89 and 2.90 to obtain the contact

pressure,

σz =
2G (2η − 1) a3

πcηRs∗


2
√

1− r2
∗ +

θ1 (s∗, 1)√
1− r2

∗

−
∫ 1

r∗

θ3 (s∗, x∗)
dx∗√
x2
∗ − r2

∗

 , r∗ ≤ 1 (2.91)

where,

θ3 (s∗, x∗) =
∂

∂x∗

[
x

1
2
∗ θ1 (s∗, x∗)

]
(2.92)

The expression for evaluating θ3 (s∗, x∗) is given in Appendix A.3.

Contact pressure for the example case is shown in Fig. 2.6. The contact pressure from

the full poroelastic solution reduces to the classical Hertzian solution at t∗ = 0+ and t∗ →∞.

At an intermediate time, the contact pressure is bounded by the two limits except near the

contact edge around r∗ = 1, where the contact pressure is in fact singular. Existence of such

a singularity can be attributed to the assumption of a fixed contact radius a. The underlying

reason can be found in the transient response of the surface displacement. As shown in Fig.

2.7, the fixed contact radius assumption allows a kink in the vertical displacement to develop

at r∗ = 1 at intermediate times.
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Figure 2.6: Distribution of the contact pressure at various dimensionless times.

2.5.3 Vertical Displacement

Expression 1 Vertical displacement uz can be obtained after substituting Eqs. 2.17-2.20 and

2.32 into Eq. 2.10,

uz =
a4

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nuz (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nuz (s∗, r∗,m∗, z∗) dm∗

] (2.93)

where,

Nuz (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

{
(φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

ξ∗
√
ξ2
∗ + s∗
s∗

[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(2.94)
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Expression 2 Applying Eq. 2.27 to Eq. 2.93 gives,

∫ ∞
x∗

uz
r∗dr∗√
r2
∗ − x2

∗
=

a4

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nuzx (s∗, x∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nuzx (s∗, x∗,m∗, z∗) dm∗

] (2.95)

where,

Nuzx (s∗, x∗,m∗, z∗) = − 2

π

∫ ∞
0

{
ξ−1
∗ (φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

√
ξ2
∗ + s∗
s∗

[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) cos (x∗ξ∗) dξ∗

(2.96)

Inside the half space, applying Eq. 2.64 to Eq. 2.95 gives,

uz = − 2a4

πcφRs∗

∫ ∞
r∗

θuz (s∗, x∗, z∗) dx∗√
x2
∗ − r2

∗
(2.97)

where,

θuz (s∗, x∗, z∗) =

∫ 1

0

(
m2
∗ − 1

)
Nuzx,x (s∗, x∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nuzx,x (s∗, x∗,m∗, z∗) dm∗

(2.98)

and Nuzx,x = ∂Nuzx/∂x∗,

Nuzx,x (s∗, x∗,m∗, z∗) =
2

π

∫ ∞
0

{
(φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

ξ∗
√
ξ2
∗ + s∗
s∗

[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) sin (x∗ξ∗) dξ∗

(2.99)

On the surface (z∗ = 0), Nuz can be expressed in a closed form,

Nuz (s∗, r∗,m∗, 0) = − 2φ

π
√
r2
∗ −m2

∗
H (r∗ −m∗) (2.100)
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Substituting Eq. 2.100 into Eq. 2.93 gives,

uz =
a4

cRs∗

(
1− r2

∗
2

)
r∗ ≤ 1 (2.101)

and,

uz =
a4

πcRs∗


√
r2
∗ − 1 +

(
2− r2

∗
)

arcsin

(
1

r∗

)
−2

∫ r∗

1
m

1
2
∗ θ1 (s∗,m∗)

dm∗√
r2
∗ −m2

∗

 r∗ ≥ 1 (2.102)

Vertical and radial displacement expressions in Eqs. 2.101-2.102 and Eqs. A.16-A.17 allow

us to examine how the surface displacement evolves with time and differs from that of the case

if the frictionless contact with a rigid sphere were to be modeled. At a given time, the plot

of uz vs. (r + ur) /a at z = 0 could be viewed as the profile of the displaced surface. Denote

δr (t∗) as the radial distance between the displaced surface and the spherical indenter profile

for r∗ ≤ 1 at z = 0. At the undrained and drained limits,

δr (0) =
4d (φ− 1)

3πφr∗

[
1−

(
1− r2

∗
) 3

2

]
=

2d (1− 2νu)

3π (1− νu) r∗

[
1−

(
1− r2

∗
) 3

2

]
(2.103)

δr (∞) =
2d

3πηr∗

[
1−

(
1− r2

∗
) 3

2

]
=

2d (1− 2ν)

3π (1− ν) r∗

[
1−

(
1− r2

∗
) 3

2

]
(2.104)

Depending on the drained and undrained Poisson’s ratios, ν and νu, responses of the surface

displacement can indeed be categorized into three distinct types.

When ν = νu = 0.5, radial displacement ur = 0 on the surface (ω = 0, φ = 1 and 1/η = 0).

This is the peculiar case when the problem is actually not time-dependent and in essence

the same as the Hertzian contact problem. Therefore, the surface displacement profile always

conforms to that of a rigid sphere as long as the Hertzian assumption of parabolic surface

displacement remains valid at small depth. Interestingly, this case of ω = 0 is not all trivial as

far as time dependence is concerned. As shown in Sections 2.7.2, mathematically, it still gives a

meaningful expression for the normalized transient indentation force response, where the early

and late time asymptotes can be found in closed-form.
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When ν < 0.5 and νu = 0.5, namely, when the skeleton is compressible while the con-

stituents are incompressible (φ = 1), ur = 0 and δr (0) = 0 at the undrained limit, but

δr (∞) > 0. Evolution of the displaced surface is shown in Fig. 2.7(a) where position of the

spherical indenter is marked by a solid line. The contact edge for the deformed surface is

marked by an empty circle. Results in Fig. 2.7(a) are calculated with Ks →∞ and Kf →∞

while all other parameters remain the same as those in Table 2.3. At the undrained limit,

the displaced surface profile conforms to that of the spherical indenter and the free surface at

r∗ > 1 is beneath the indenter. During the transient phase (t∗ > 0), the contact surface shifts

to the left and is now above the indenter position and the free surface outside of the contact

region rises and subsides to eventually approach the solution at the drained limit. This means

if the frictionless contact between the indenter and the half space were to be modeled, edge

of the contact will gradually move outwards from r∗ = 1 and then recede back at the drained

limit. We could expect that the contact radius to become time-dependent. Note that δr (0)

and δr (∞) are not affected by the surface drainage condition. In addition, it can be observed

that a kink in the displacement profile develops at the contact edge during the transient phase,

which in turn gives rise to the stress singularity observed in Fig. 2.6.

When ν < 0.5 and νu < 0.5, namely, when the constituents are now compressible, instanta-

neous radial displacement is no longer zero and δr (0) > 0, see Fig. 2.7(b) showing the results

with properties of the Gulf of Mexico shale in Table 2.3. As such, even at t∗ = 0+, the surface

displacement profile no longer coincides with that of the spherical indenter, and a kink appears

in the displacement profile during the transient phase.

The reason that the displaced surface profile deviates from that of the spherical indenter

can be attributed to the fact only normal displacement is prescribed within r∗ ≤ 1 in modeling

the indentation action. To what a degree the theoretical solution derived in this work differs

from the case when the frictionless contact with a rigid sphere will be investigated numerically

in Chapter 6. It will be shown the theoretical solution especially the integrated response such

as the indentation force remains valid as long as the indentation strain d/R is small, with which

the discrepancy in the surface displacement is not significant.

62



0.96 1 1.04 1.08 1.12

0.038

0.042

0.046

0.05

0.054

(a) incompressible constituents, ν = 0.219 and νu = 0.5
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(b) compressible constituents, ν = 0.219 and νu = 0.449

Figure 2.7: Comparison of surface displacement profiles at the undrained and drained limits
(t∗ = 0+, t∗ → ∞) and at t∗ = 0.1 from case I; the material points at the contact edge are
marked by the empty circles.
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2.6 Incipient Failure

Incipient failure in form of tensile fracturing and plastic deformation could take place in spher-

ical indentation. It is therefore of interest to examine how poroelasticity could affect potential

development of the indentation crack system and plastic failure. Biot’s effective stress defini-

tion, σ′ij = σij − αp, is adopted in the analysis below.

2.6.1 Cone Crack Initiation

The classical Hertzian cone crack initiates on the surface as a ring crack slightly outside of

the contact area and propagates stably downwards to form a cone (Lawn, 1998). Since the

pore pressure is zero on the surface in this problem, the effective stresses equal to the total

stresses. As shown in Fig. 2.8, the total/effective radial stress at the contact edge (r∗ = 1+)

is always in tension. At t∗ = 5 × 10−5, σr = −8.16 MPa. Magnitude of the radial stress then

increases with time to reach its maximum, σr = −16.12 MPa at t∗ = 0.03. Eventually, the

radial stress asymptotes to σr = −10.40 MPa at late time. Since tensile strength of a shale

is usually smaller than 10 MPa, a cone crack is very likely to occur in this case. In addition,

the fact that the largest radial stress magnitude occurs at an intermediate time suggests that

even if a cone crack does not initiate immediately when the indenter gets in contact with the

porous medium, it may still appear after a certain time. However, it should be mentioned that

these results should be understood with the fixed contact radius assumption in mind. How

the tensile stress distribution will be affected by a moving contact boundary will need to be

examined in future work.
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Figure 2.8: Variation of the total/effective radial stress with the dimensionless time at r∗ = 1+

on the surface (right outside of the contact area).

2.6.2 Median Crack Initiation

According to the Hertzian solution, variation of the radial or tangential stress along the contact

axis is not monotonic and the maximum tensile stress occurs beneath the surface. Theoretically,

a penny-shaped median crack may therefore nucleate from this location. Distribution of the

total radial stress along the contact axis from the poroelastic solution is shown in Fig. 2.9.

Since a permeable boundary is assumed on the surface, the radial stress on the surface drops

almost instantaneously from the undrained asymptote to a value slightly below the drained

asymptote.
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Figure 2.9: Variation of the radial stress along the contact axis.
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Figure 2.10: Variation of the effective radial stress along the contact axis.
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The total stress reaches its maximum in tension at z∗ = 4.76 with νu = 0.449 at t∗ = 0+

and z∗ = 1.83 with ν = 0.219 at t∗ → ∞, respectively. Meanwhile, the effective radial stress

distribution in Fig. 2.10 shows at t∗ = 0+, a maximum in tension, σ′r = −10.129 MPa, is

reached at z∗ = 0.69. This magnitude is much larger than the tension maxima for the total

radial stress at the drained and undrained limits. Since this maximum tensile stress occurs at

the undrained limit, it is not affected by the surface drainage condition. This indicates that for

all three surface drainage cases, due to the poroelastic effect, the median crack is more likely

to be induced at an early time at a depth much smaller, compared with what is predicted by

the Hertzian solution with either drained or undrained properties.

2.6.3 Onset of Plastic Deformation

At a given location, the maximum shear stress, (σz − σr) /2, can be used to infer the possibility

of incipient plastic yielding. The Hertzian solution predicts plastic yielding to occur first only

beneath the surface, see the dashed curves for t∗ = 0+ and ∞ in Fig. 2.11. However, the early

time isochrones from the poroelastic solution reveal that the shear stress near the surface is in

fact comparable to the maxima around z∗ = 0.5 on the contact axis. This suggests that plastic

deformation could take place almost instantaneously on the contact surface as well as inside the

domain. However, it should be noted that in addition to the shear stress, failure for materials

such as rocks could also depend on the effective mean stress. Since the effective mean stress

is the most compressive right beneath the indenter, plastic deformation may not necessarily

occur near the contact surface if the material behavior is governed by a pressure-sensitive failure

criterion such as Mohr-Coulomb or Drucker-Prager.
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Figure 2.11: Variation of the maximum shear stress along the contact axis.

2.7 Indentation Force Relaxation

2.7.1 Master Curves

The ratio between the undrained and drained asymptotes of the contact pressure (see Section

2.5.2) can be expressed as,

lim
t→0

σz

lim
t→∞

σz

∣∣∣∣∣
z∗=0

=
2η

(2η − 1)φ
= 1 + ω (2.105)

Since the contact radius is assumed to remain fixed in this model, the ratio of the indentation

forces at the undrained and drained states is also,

F (0)

F (∞)
= 1 + ω (2.106)

where F (t) is the indentation force as a function of time. Indeed, integrating the normal stress

over the contact area at t∗ = 0+ and t → ∞, the Hertzian solutions for the indentation force
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are recovered,

F (0) =
16Ga3

3φR
(2.107)

F (∞) =
8G (2η − 1) a3

3ηR
(2.108)

A normalized indentation force Fn (t∗) can be defined in a similar fashion to the degree of

consolidation in Terzaghi’s one-dimensional consolidation theory (Terzaghi, 1943), i.e.,

Fn (t∗) =
F (t∗)− F (∞)

F (0)− F (∞)
(2.109)

where Fn (0) = 1 and Fn (∞) = 0. The explicit expression for Fn (t∗) is,

Fn (t∗) =
3

2ω
L−1

[
s−1
∗

∫ 1

0
x

1
2
∗ θ1 (s∗, x∗) dx∗

]
(2.110)

Eq. 2.110 shows that the normalized transient force response is affected by material properties

only through constant ω. Moreover, as shown in Fig. 2.12, relaxation of the normalized

indentation force does not appear to be very sensitive to ω. Indeed, the dimensionless time

t∗0.5 at which Fn (t∗0.5) = 0.5 varies only within a narrow range, t∗0.5 ∈ [0.0966, 0.1304] for

ω ∈ [0, 1], see Fig. 2.13. In addition, it should be noted that though at ω = 0, the indentation

force remains constant and Fn (t∗) appears to become indefinite, mathematically, the limit of

Fn (t∗) at ω = 0 exists and can still be calculated with our algorithms.

If the solid and fluid phases can be assumed as incompressible, we have ω = 1 − 2ν. The

normalized force relaxation behavior is now affected by the Poisson’s ratio only. Effect of

the Poisson’s ratio on the force relaxation response was previously observed in the numerical

analysis of poroelastic indentation with a flat punch in plane strain (Bouklas et al., 2015).

Nevertheless, the insensitivity to ω shown in Fig. 2.12 signifies that the dependence of Fn (t∗)

on ν is rather weak. That could perhaps explain though the effect of the Poisson’s ratio is

not accounted for in the master curves constructed based on numerical analysis, e.g., Hu et al.

(2010), those master curves still provide consistent interpretation for their experimental results.
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Figure 2.12: Relaxation of the normalized indentation force with the dimensionless time.
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Figure 2.13: Dimensionless time t∗0.5 as a function of ω, fitted by t∗0.5 = 0.1304− 0.05968ω +
0.03869ω2 − 0.01278ω3.
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The force relaxation response from our theoretical solution, see Fig. 2.12, can be fitted by

a four-parameter function fn (t∗),

fn (t∗) =
1

2

(
1

1 + a1t
b1
∗

+
1

1 + a2t
b2
∗

)
(2.111)

The fitting parameters a1, b1, a2, b2 are listed in Table 2.4 for ω ∈ [0, 1]. Indeed, this elementary

function gives an excellent approximation and the coefficient of determination for all ω isR2 = 1.

Therefore, the fitting function in Eq. 2.111 with the parameters from Table 2.4 can be readily

used as the basis for experimental analysis. Insensitivity of the force relaxation response to

ω means that these master curves can be a rather reliable means for determining diffusivity

c, since the end result will not be much affected by the uncertainty in ω. Consequently, for

an arbitrary ω, linear interpolation with the data in Table 2.4 can simply be used to find the

fitting parameters.

ω a1 b1 a2 b2

0 2.945 0.4636 3.906 0.733
0.1 3.013 0.4646 4.127 0.743
0.3 3.149 0.467 4.536 0.761
0.44 3.239 0.4686 4.801 0.773
0.5 3.278 0.4694 4.912 0.778
0.7 3.402 0.4718 5.262 0.793
0.9 3.52 0.474 5.589 0.806
1 3.58 0.4752 5.745 0.813

Table 2.4: Values of the fitting parameters for the force relaxation curves.

A protocol of data interpretation for this type of indentation experiment can be estab-

lished as follows. The two force asymptotes can be used to determine material constants G/φ,

G (2η − 1) /η and the ratio of the two asymptotes gives constant ω. Once ω is known, hydraulic

diffusivity c can be determined by matching the transient force response with the fitting func-

tion fn (t∗). In addition, if the undrained and drained asymptotes can be clearly identified from

the experimental data, the diffusion coefficient c can also be computed from t∗0.5 via the fitting

function, t∗0.5 = 0.13− 0.0597ω + 0.0387ω2 − 0.0128ω3.
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2.7.2 Asymptotic Behaviors

While the Hertzian solution gives the indentation force asymptotes at t∗ = 0+ and ∞, closed-

form asymptotic expressions beyond these two limits can be derived for the particular case of

ω = 0.

Substituting Eq. 2.54 into Eq. 2.110 and setting ω = 0 gives,

Fn (t∗) =
3

2
L−1

[
s−1
∗

∫ 1

0
x

1
2
∗M (s∗, x∗) dx∗

]
(2.112)

The integral in Eq. 2.112 can be expressed explicitly using the modified Struve function and

the generalized hypergeometric functions. Detailed derivation can be found in Appendix A.4.

∫ 1

0
x

1
2
∗M (s∗, x∗) dx∗ =

2

3
− 4

π
√
s∗

+
2

s∗
[1− F (s∗)] (2.113)

where,

F (s∗) = F1,2

 0.5

(1, 1.5)
, s∗

− 2

π
s

1
2
∗ F2,3

 (1, 1)

(1.5, 1.5, 2)
, s∗

 (2.114)

with F1,2 [·] and F2,3 [·] being two generalized hypergeometric functions.

Asymptotic expressions for indentation force relaxation at early and late times can be

obtained by applying inverse Laplace transform to the integrals above when s∗ → ∞ and

s∗ → 0 (Bateman, 1954; Olver, 2010). The first few terms at ω = 0 can be expressed as follows.

• early time (t∗ → 0),

lim
t∗→0

Fn (t∗) = 1− 12

π

(
t∗
π

) 1
2

+ 3t∗

+2

(
t∗
π

) 3
2

ln t∗ − 2

(
γ + 2 ln 2 +

8

3

)(
t∗
π

) 3
2

+
π

5

(
t∗
π

) 5
2

(2.115)

where γ = 0.57721... is the Euler constant.
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• late time (t∗ →∞),

lim
t∗→∞

Fn (t∗) = π−
3
2

(
4

3
t
− 1

2
∗ −

16

225
t
− 3

2
∗ +

8

1225
t
− 5

2
∗ −

64

99225
t
− 7

2
∗

)
(2.116)
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Figure 2.14: Comparison of the asymptotic expressions with the full solutions for the normalized
indentation force Fn (t∗) at ω = 0.

Fig. 2.14 shows that these asymptotes capture the force relaxation behavior at ω = 0 re-

markbly well not just for the very small and large times. A combination of the six-term early

time asymptote with the four-term late time asymptote could provide an excellent approxima-

tion to the full solution for the entire time range. For the general case when ω 6= 0, closed-form

asymptotic expressions cannot be obtained. A comparison of the early time behaviors from

the full solution for ω = 0, 0.5 and 1 is shown in Fig. 2.15(a) in a log-log scale. It seems that

constant ω barely has any influence on the early time responses. Indeed, given a tolerance of

1%, the first two-term in Eq. 2.115 remains valid up to t∗ = 5× 10−3 and 7× 10−3 for ω = 0.5

and 1, respectively. At late times, the force relaxation curves appear to be parallel to each

other, see Fig. 2.15(b), suggesting Fn (t∗) ∼ t
− 1

2
∗ is the dominant behavior when t∗ is large.
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(b) late time behaviors

Figure 2.15: Asymptotic behaviors of the normalized indentation force at ω = 0, 0.5 and 1 for
case I.
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3 POROELASTIC RESPONSE OF SPHERICAL INDENTA-

TION INTO A HALF SPACE WITH AN IMPERMEABLE

SURFACE VIA STEP DISPLACEMENT

3.1 Introduction

The problem of poroelastic spherical indentation into a half space with an impermeable surface

via step displacement is dealt with in this chapter. As far as the method of solution is concerned,

since change in the drainage condition from case I to case II does not cause any structural

change in the dual integral equations for determining the unknowns for the full solution, the

mathematical techniques and solution procedure we previously developed can be readily applied

here.

Formulation of the problem and derivation of the solution for the poroelastic fields are

first presented. Effects of poroelasticity on incipient failures in the context of initiation of

the indentation crack systems and onset of plasticity are then analyzed. Master curves of

indentation force relaxation are constructed. For the particular case of ω = 0, closed-form

asymptotic expressions of the transient indentation force response are derived for both early

and late times.

3.2 Problem Formulation

The boundary condition for case II surface drainage can be written in terms of vertical dis-

placement uz, stresses σz and σzr, and normal flux qz on the surface, see Table 3.1, where H (t)

is the Heaviside step function.

In the McNamee-Gibson displacement function method, poroelastic fields including pore

pressure, stresses and displacements can be directly expressed using displacement functions D

and F , which satisfy two partial differential equations. Solutions for D and F are obtained

from Hankel transform in the Laplace domain, which can be expressed in integral forms in

terms of three unknowns A1, A2 and B1. Detailed equation expressions and explanations of all
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material constants therein can be found in Section 2.2.

time domain Laplace domain

0 ≤ r ≤ a−
uz =

(
d− r2

2R

)
H (t) uz = s−1

(
d− r2

2R

)
σzr = 0, qz = 0 σzr = 0, qz = 0

r ≥ a+ σz = σzr = 0, qz = 0 σz = σzr = 0, qz = 0

Table 3.1: Boundary conditions.

Matching the poroelastic fields with the boundary conditions in the Laplace domain yields

the following equations,

A1ξ +A2

√
ξ2 + λ+B1 (1− φ) = 0 (3.1)

A2

√
ξ2 + λ+

φ+ 2η (1− φ)

ηλ
B1ξ

2 = 0 (3.2)

and a dual integral equation that contains only the unknown B1,

∫ ∞
0

B1J0 (rξ) dξ = (sφ)−1

(
r2

2R
− d
)
, 0 ≤ r ≤ a− (3.3)

∫ ∞
0

[1 + ωH (s, ξ)] ξB1J0 (rξ) dξ = 0, r ≥ a+ (3.4)

where,

H (s, ξ) = 1 +
2ξ2

λ

(
ξ√
ξ2 + λ

− 1

)
(3.5)

The problem now reduces to first finding B1 through Eqs. 3.3-3.4 and then A1 and A2 from

Eqs. 3.1-3.2.

3.3 Solution Procedure

3.3.1 Fredholm Integral Equation of the Second Kind

According to Noble (1963), the pair of dual integral equations in Eqs. 3.3 and 3.4 can be

reduced to a Fredholm integral equation of the second kind. As shown in Section 2.4.1, the
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solution of the dual integral equation can be expressd as,

B1ξ
− 1

2 =

√
2

π
(sφR)−1

∫ a

0
m

1
2
(
m2 −Rd

)
J− 1

2
(mξ) dm

+

√
2

π
(sφR)−1

∫ ∞
a

mθ (s,m) J− 1
2

(mξ) dm

(3.6)

where θ (s,m) satisfies a Fredholm integral equation of the second kind.

Based on the dimensionless variables defined in Eqs. 2.34 and 2.35, the Fredholm integral

equation for θ1 (s∗, x∗) is given by,

θ1 (s∗, x∗) + ω

∫ ∞
1

N (s∗, x∗,m∗) θ1 (s∗,m∗) dm∗ = ωM (s∗, x∗) (3.7)

where,

N (s∗, x∗,m∗) = m∗

∫ ∞
0

ξ∗H1 (s∗, ξ∗) J− 1
2

(x∗ξ∗) J− 1
2

(m∗ξ∗) dξ∗ (3.8)

M (s∗, x∗) =

∫ 1

0
m
− 1

2
∗
(
1−m2

∗
)
N (s∗, x∗,m∗) dm∗ (3.9)

H1 (s∗, ξ∗) = 1 +
2ξ2
∗

s∗

(
ξ∗√
ξ2
∗ + s∗

− 1

)
(3.10)

Now θ1 (s∗, x∗) is the unknown to be determined. Once it is known, all field quantities can

be expressed in the Laplace domain in terms of θ1 (s∗, x∗). Note that θ1 (s∗, x∗) is influenced

by the material properties only through ω.

3.3.2 Alternative Expression for N (s∗, x∗,m∗)

Prior to finding the solution to Eq. 3.7, functions N (s∗, x∗,m∗) and M (s∗, x∗) need to be

evaluated. The integral kernel in Eq. 3.8 for N (s∗, x∗,m∗) is highly oscillatory. However, we

can rewrite the integral alternatively using two modified Struve functions of the second kind,
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M0 (·) and M1 (·),

N (s∗, x∗,m∗) =

√
s∗m∗
x∗

{[
2

π
− M0 (y1)

y1
+

(
1 +

2

y2
1

)
M1 (y1)

]
+

[
2

π
− M0 (y2)

y2
+

(
1 +

2

y2
2

)
M1 (y2)

]} (3.11)

where y1 = |x∗ −m∗| s
1
2
∗ and y2 = (x∗ +m∗) s

1
2
∗ .

One type of the integral representations of M0 (·) and M1 (·) has an exponential decay-

ing integrand and a bounded upper limit, see Eqs. 2.44-2.49. Consequently, asymptotes for

N (s∗, x∗,m∗) at the undrained and drained limits and in the far-field can be expressed as,

lim
s∗→∞

N (s∗, x∗,m∗) = δ (m∗ − x∗) (3.12)

lim
s∗→0

N (s∗, x∗,m∗) = 0 (3.13)

lim
x∗→∞

N (s∗, x∗,m∗) =
24

π

√
m∗
s3
∗x

9
∗

(3.14)

where δ (·) is the Dirac delta function. In contrast to Eq. 3.8, the alternative expression

for N (s∗, x∗,m∗) in Eq. 3.11 can be numerically integrated efficiently and effectively. The

numerical integration results are very well behaved at large s∗ even when N (s∗, x∗,m∗) is

approaching the Dirac delta function at m∗ = x∗.

Closed form solutions for M (s∗, x∗) can be derived based on its alternative expression

for N (s∗, x∗,m∗). In case I, the closed form expression consists of special functions such as

hypergeometric functions, which barely offers any advantage over direct numerical integration.

In contrast, in case II, the exact expression of M (s∗, x∗) is simpler since it is composed of

special functions only with M0 (·) and M1 (·). The expression is given in Appendix B.3.
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3.3.3 Method of Successive Substitution

To solve for θ1 (s∗, x∗) in Eq. 3.7, we adopt the method of successive substitution (Zemyan,

2012) by letting,

θ1 (s∗, x∗) = −
∞∑
n=0

(−ω)n+1 an (s∗, x∗) (3.15)

where,

a0 (s∗, x∗) = M (s∗, x∗) (3.16)

an (s∗, x∗) =

∫ ∞
1

N (s∗, x∗,m∗) an−1 (s∗,m∗) dm∗, n = 1, 2, 3... (3.17)

As has been shown in Section 2.4.3, an advantage of the method of successive substitution is

that it is able to reflect the asymptotic behavior of θ1 (s∗, x∗) at x∗ →∞. Now the expression of

θ1 (s∗, x∗) is given in terms of a sum of an alternating series. While the series converges rather

fast when ω ≤ 0.5 and a partial sum with the first 20 terms is sufficient to give a satisfactory

approximation for any values of s∗ and x∗, when ω is close or equal to 1, it converges relatively

slowly. In this case, Wynn’s epsilon algorithm (Wynn, 1956) can be employed to accelerate the

convergence.

By substituting Eq. 3.14 into Eqs. 3.7 and 3.9, the asymptotes of θ1 (s∗, x∗) and M (s∗, x∗)

at x∗ →∞ can be expressed explicitly,

lim
x∗→∞

log [θ1 (s∗, x∗)] = −9

2
log (x∗) + C1 (3.18)

lim
x∗→∞

log [M (s∗, x∗)] = −9

2
log (x∗) + C2 (3.19)

where C1 and C2 are constants and equal to,

C1 = log

[
16ω

π
√
s3
∗

(
1− 3

2

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗) dm∗

)]
(3.20)

C2 = log

(
16

π
√
s3
∗

)
(3.21)
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Additionally, combining Eqs. 3.12 and 3.13 with Eq. 3.7 gives,

lim
s∗→∞

θ1 (s∗, x∗) =


ω
(
1− x2

∗
)

√
x∗

, 0 ≤ x∗ ≤ 1

0, x∗ > 1

(3.22)

lim
s∗→0

θ1 (s∗, x∗) = 0, x∗ ≥ 0 (3.23)

3.4 Poroelastic Fields

Poroelastic fields on the surface and inside the half space can now be expressed in terms of

θ1 (s∗, x∗) in the Laplace domain from direct substitution of the displacement functions D

and F into Eqs. 2.9-2.16. However, these expressions from direct substitution all contain

improper integrals with oscillatory kernels involving Bessel functions of the first kind Jv (·).

Direct evaluation of these integrals could yield nonsmooth results at small depth. Oscillation

in these integrals can however be removed with the aid of Abel transform (Bracewell, 1986;

Poularikas, 2018), Sonine’s integrals (Noble, 1963) and the use of integral representations of

special functions with non-oscillatory kernels. These equations can be found from Eqs. 2.26,

2.27 and Section 2.5.

In this section, two sets of expressions, one from direct substitution and the other with

the oscillatory kernels removed, are both presented for the pore pressure p, vertical stress σz

and displacement uz. Details for the other non-trivial field variables are given in Appendix

B.1. The undrained and drained asymptotes, which correspond to the undrained and drained

responses of the Hertzian contact, are the same as those for the case I solution and can be

found in Appendix A.1.5.

Stehfest numerical algorithm (Stehfest, 1970) with 6 expansion terms for inverse Lapalace

transform is then used to compute the poroelastic fields in the time domain. All calculations

are performed based on the material properties according to the Gulf of Mexico shale (Cheng,

2016), see Table 2.3. Viscosity of the saturating fluid is taken to be µ = 1 cp. Values of the

drained and undrained Poisson’s ratios are ν = 0.219 and νu = 0.449, which correspond to
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ω = 0.4174. Given radius of the indenter R = 50 mm and the indentation depth d = 0.1 mm,

the corresponding contact radius is a = 2.23 mm for this example case.

3.4.1 Pore Pressure

Expression 1 Substituting Eqs. 2.17, 2.18, 3.1, 3.2 and 3.6 into Eq. 2.11 gives,

αp =
2G (2η − 1) a3

cRs∗

[
ω

∫ 1

0

(
m2
∗ − 1

)
Np (s∗, r∗,m∗, z∗) dm∗

+ω

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Np (s∗, r∗,m∗, z∗) dm∗

] (3.24)

where,

Np (s∗, r∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(3.25)

Along the contact axis, with r∗ = 0 and J0 (r∗ξ∗) = 1, Np (s∗, 0,m∗, z∗) can be expressed

explicitly since the first term in Eq. 3.25 can be evaluated with the aid of the modified Bessel

functions (see Eqs. 2.70 and 2.71) and the second term has an elementary antiderivative, i.e.,

Np (s∗, 0,m∗, z∗) = − 2

π
s

1
2
∗

[
m2
∗ − z2

∗

(m2
∗ + z2

∗)
3
2

]
K1

[√
s∗ (m2

∗ + z2
∗)
]

− 2

π
s∗

(
m2
∗

m2
∗ + z2

∗

)
K0

[√
s∗ (m2

∗ + z2
∗)
]

+
2

π

[
m2
∗ − z2

∗

(m2
∗ + z2

∗)
2

] (3.26)

It is therefore convenient to use Eqs. 3.24 and 3.26 to calculate the pore pressure along the

contact axis. Note that for the sake of brevity, explicit expressions for similar integrals in the

sections below will be omitted.
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Expression 2 An alternative expression for the pore pressure field can be derived by first

applying Sonine’s finite integral in Eq. 2.26 to Eq. 3.24,

∫ x∗

0
αp

r∗dr∗√
x2
∗ − r2

∗
=

2G (2η − 1) a3

cRs∗

[
ω

∫ 1

0

(
m2
∗ − 1

)
Npx (s∗, x∗,m∗, z∗) dm∗

+ω

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Npx (s∗, x∗,m∗, z∗) dm∗

] (3.27)

where,

Npx (s∗, x∗,m∗, z∗) =
2

π

∫ ∞
0

[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
cos (m∗ξ∗) sin (x∗ξ∗) dξ∗

(3.28)

Differentiating both sides of Eq. 3.27 with respect to x∗ and applying the Abel transform in

Eq. 2.66 gives,

αp =
4G (2η − 1) a3

πcRs∗

∫ r∗

0

θp (s∗, x∗, z∗) dx∗√
r2
∗ − x2

∗
(3.29)

where,

θp (s∗, x∗, z∗) = ω

∫ 1

0

(
m2
∗ − 1

)
Npx,x (s∗, x∗,m∗, z∗) dm∗

+ω

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Npx,x (s∗, x∗,m∗, z∗) dm∗

(3.30)

and Npx,x = ∂Npx/∂x∗,

Npx,x (s∗, x∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
cos (m∗ξ∗) cos (x∗ξ∗) dξ∗

(3.31)

Both the pore pressure on the surface (z∗ = 0) and inside the half space (z∗ > 0) can be

calculated using Eq. 3.29, where the oscillation nature in Eq. 3.31 can be removed with the aid

of the modified Bessel functions. Explicit expression for Npx,x can be rewritten using Kv (·).

Pore pressure in the time domain can be determined after taking the inverse Laplace trans-
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form to Eq. 3.29,

αp =
4G (2η − 1) a

πR

∫ r∗

0

L−1
[
s−1
∗ θp (s∗, x∗, z∗)

]
dx∗√

r2
∗ − x2

∗
(3.32)

Distribution of the pore pressure along the contact axis, calculated using Eqs. 3.24 and

3.26, is shown in Fig. 3.1 for various dimensionless times. The pore pressure is the largest at

the contact origin and decreases monotonically with depth. The Mandel-Cryer effect, where

the pore pressure rises above the initial value at t∗ = 0 before its dissipation, is observed at

early times (see the inset).

The Mandel-Cryer effect is more evident at the contact edge, where the magnitude of pore

pressure increases from 5.39 MPa at t∗ = 5×10−5, to its maximum of 13.9 MPa at t∗ = 3×10−2,

and eventually dissipates to 0 MPa, see Fig. 3.2. The pore pressure in Fig. 3.2 is calculated

using Eq. 3.29. The strong Mandel-Cryer effect is likely a manifestation of the normal stress

singularity developed at the contact edge during the transient phase.
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Figure 3.1: Distribution of the pore pressure along the contact axis.
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Figure 3.2: Variation of the pore pressure at the contact edge.

3.4.2 Vertical Stress

Expression 1 The vertical stress field can be obtained after substituting Eqs. 2.17, 2.18, 3.1,

3.2 and 3.6 into Eq. 2.12,

σz =
2Ga3

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nsz (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nsz (s∗, r∗,m∗, z∗) dm∗

] (3.33)

where,

Nsz (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗

{
(1 + z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(3.34)

At r∗ = 0, the first and last terms in Nsz can be written using elementary antiderivatives while

the second term can be evaluated with the aid of the modified Bessel function.
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Expression 2 On the surface (z∗ = 0), the procedure to derive the second set expression

for the normal stress is to apply first Sonine’s integral in Eq. 2.27 and then the inverse Abel

transform in Eq. 2.65 to Eq. 3.33 successively. We obtain,

σz =
2G (2η − 1) a3

πcηRs∗


2
√

1− r2
∗ +

θ1 (s∗, 1)√
1− r2

∗

−
∫ 1

r∗

θ3 (s∗, x∗)
dx∗√
x2
∗ − r2

∗

 , r∗ ≤ 1 (3.35)

where,

θ3 (s∗, x∗) =
∂

∂x∗

[
x

1
2
∗ θ1 (s∗, x∗)

]
(3.36)

See Appendix B.2 for the expression of θ3 (s∗, x∗).

Inside the half space (z∗ > 0), the vertical stress σz can be obtained by applying Eqs. 2.26

and 2.66 successively to Eq. 3.33,

σz =
4Ga3

πcφRs∗

∫ r∗

0

θsz (s∗, x∗, z∗) dx∗√
r2
∗ − x2

∗
(3.37)

where,

θsz (s∗, x∗, z∗) =

∫ 1

0

(
m2
∗ − 1

)
Nszx,x (s∗, x∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nszx,x (s∗, x∗,m∗, z∗) dm∗

(3.38)

and,

Nszx,x (s∗, x∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗

{
(1 + z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) cos (x∗ξ∗) dξ∗

(3.39)

Fig. 3.3 shows the contact stress distribution at various different times. Overall, the

distribution is similar to that in case I, see Fig. 2.6. At the two time limits, the contact stress

reduces to the classical Hertzian solution; at transient times, the contact stress near the contact
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edge becomes singular. The singularity is due to the assumption of a fixed contact radius a,

which is responsible for the kink in the surface profiles at transient times, see Fig. 3.4.

There is however a slight difference in the normal stress responses between the two cases.

Since the largest excess pore pressure is produced instantaneously right beneath the contact

area, at early time, it is the drainage condition inside the contact area controlling the primary

drainage path and therefore the poroelastic response. Compared with case I where the surface

is fully permeable, imposition of a fully impermeable surface effectively delays pore pressure

dissipation at early time. As a result, the isochrone of the contact stress remains relatively close

to the undrained asymptote even at t∗ = 10−2. As the pore pressure dissipates, the contact

stess then gradually approaches the Hertzian solution at the drained limit.
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Figure 3.3: Distribution of the contact stress at various dimensionless times.
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3.4.3 Vertical Displacement

Expression 1 Vertical displacement uz can be obtained after substituting Eqs. 2.17, 2.18,

3.1, 3.2 and 3.6 into Eq. 2.10,

uz =
a4

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nuz (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nuz (s∗, r∗,m∗, z∗) dm∗

] (3.40)

where,

Nuz (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

{
(φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(3.41)

On the surface (z∗ = 0), Nuz can be expressed in a closed form,

Nuz (s∗, r∗,m∗, 0) = − 2

π

φ√
r2
∗ −m2

∗
H (r∗ −m∗) (3.42)

Substituting Eq. 3.42 into Eq. 3.40 gives,

uz =
a4

cRs∗

(
1− r2

∗
2

)
, r∗ ≤ 1 (3.43)

and,

uz =
a4

πcRs∗


√
r2
∗ − 1 +

(
2− r2

∗
)

arcsin

(
1

r∗

)
−2

∫ r∗

1
m

1
2
∗ θ1 (s∗,m∗)

dm∗√
r2
∗ −m2

∗

 , r∗ ≥ 1 (3.44)

Expression 2 Applying Eqs. 2.26 and 2.66 successively to Eq. 3.40 gives the vertical dis-

placement inside the half space (z∗ > 0),

uz =
2a4

πcφRs∗

∫ r∗

0

θuz (s∗, x∗, z∗) dx∗√
r2
∗ − x2

∗
(3.45)
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where,

θuz (s∗, x∗, z∗) =

∫ 1

0

(
m2
∗ − 1

)
Nuzx,x (s∗, x∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nuzx,x (s∗, x∗,m∗, z∗) dm∗

(3.46)

and,

Nuzx,x (s∗, x∗,m∗, z∗) = − 2

π

∫ ∞
0

{
(φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) cos (x∗ξ∗) dξ∗

(3.47)

Vertical and radial displacement expressions in Eqs. 3.43-3.44 and Eqs. B.14-B.15 allow us

to examine how the surface displacement evolves with time and differs from that of the case

if the frictionless contact with a rigid sphere were to be modeled. Displaced surface profiles

for case II, as shown in Fig. 3.4, are very similar to those from case I except that at a given

transient time, the surface within the contact in case I displaces further to the left and closer

to the drained limit than that in case II.
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(a) incompressible constituents, ν = 0.219 and νu = 0.5
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(b) compressible constituents, ν = 0.219 and νu = 0.449

Figure 3.4: Comparison of surface displacement profiles at the undrained and drained limits
(t∗ = 0+, t∗ →∞) and at t∗ = 0.1 from cases I and II; the material points at the contact edge
are marked by the empty circles.
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3.5 Incipient Failure

How poroelasticity affects the potential development of the indentation crack systems and

plastic failure is investigated here. Biot’s effective stress definition, σ′ij = σij − αp, is adopted

in the analysis below.

3.5.1 Cone Crack Initiation

Tensile stress in the radial direction right outside of the contact area could be the cause for

initiation of a ring crack on the surface, which may results in the formation of a Hertzian cone

crack (Lawn, 1998). Variations of the effective radial stress with time at r∗ = 1 are shown in

Fig. 3.5 for both cases I and II surface drainage conditions. In both cases, the tensile stress

first increases and then decreases to finally approach to the late time asymptote. At very early

time, the effective tensile stress is larger in case I, suggesting that if the tensile strength of a

material is small, case I is more prone to form the cone/ring crack system instantaneously after

indentation. However, the effective tensile stress becomes larger in case II after t∗ ∼ 3× 10−3.

If the tensile strength is relatively large, the ring/cone crack system is more likely to occur in

case II when the surface is fully impermeable.
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Figure 3.5: Variation of the effective radial stress with the dimensionless time at r∗ = 1+ on
the surface (right outside of the contact area).

3.5.2 Median Crack Initiation

Tensile stress generated along the contact axis beneath the surface could result in nucleation of

a penny-shaped median crack, which could potentially grow to become a radial crack. The total

and effective radial stress distributions here are similar to those in case I, except that at early

time and small depth, since an impermeable boundary is imposed on the surface, the total radial

stress decreases monotonically with depth. In contrast, in case I, because a permeable boundary

is assumed, the total radial stress on the surface drops instantaneously after indentation from

the undrained asymptote to a value slightly below the drained asymptote. As a result, variation

of the total radial stress with depth in case I is non-monotonic.
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Figure 3.6: Variation of radial stress along the contact axis.

0 0.5 1 1.5 2
-20

-10

0

10

20

30

40

50

Figure 3.7: Variation of effective radial stress along the contact axis.
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3.5.3 Onset of Plastic Deformation

The maximum shear stress on the contact axis, (σz − σr) /2, can be used to infer the possibility

of incipient plastic yielding. Fig. 3.8 shows that the maximum value occurs at the undrained

limit at a depth beneath the surface. This indicates that if plastic yielding were to occur,

it will start from inside the domain. In addition, it is possible that the material strength is

relatively high, plastic deformation occurs only at the undrained limit and there will be no

further accumulation during the transient phase. Distribution of the shear stress shown here

with case II surface drainage condition does differ slightly from that of case I in that at the

intermediate times, there could be another shear stress maximum on the surface when it is

fully permeable. However, numerical analysis will be needed in order to gain a comprehensive

understanding of the poro-elasto-plastic indentation process.
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Figure 3.8: Variation of the maximum shear stress along the contact axis.
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3.6 Indentation Force Relaxation

3.6.1 Master Curves

Following the normalization method in Section 2.7.1, explicit expression of the normalized

indentation force Fn (t∗) can be derived as,

Fn (t∗) =
3

2ω
L−1

[
s−1
∗

∫ 1

0
x

1
2
∗ θ1 (s∗, x∗) dx∗

]
(3.48)

The general form of Fn (t∗) here is the same as that for case I. The difference bewteen the

two lies in the specific expression of θ1 (s∗, x∗). Eq. 3.48 indicates that the normalized force

relaxation response is a function of material constant ω only. The force relaxation behaviors at

ω = 0, 0.5, 1 are plotted for both cases I and II drainage conditions in Fig. 3.9. As expected,

the normalized force relaxation response is slower in case II, which can be attributed to the fact

that the drainage path and the corresponding relaxation time are longer when the surface is

fully impermeable. It is important to note that dependence of the normalized force relaxation

response on constant ω is relatively weak for both two cases. Consider the values of ω from

data reported in the literature for sands, clays and rocks fall within [0, 0.5], see Section 2.3.

From a practical point of view, dependence of Fn (t∗) on ω could be even weaker.

The force relaxation response from our theoretical solution for case II can be fitted using a

four-parameter function, i.e., Eq. 2.111. The fitting parameters a1, b1, a2, b2 are listed in Table

3.2. Indeed, this elementary function gives an excellent approximation and the coefficient of

determination for all the cases is R2 = 1.

As far as data interpretation for laboratory characterization is concerned, the two force

asymtotes, F (0) and F (∞), can be used to determine material constantsG/φ andG (2η − 1) /η

and the ratio of the two asymptotes gives constant ω. Once ω is known, hydraulic diffusivity

c can be determined by matching the normalized transient force response from the experiment

with the master curve from the theoretical solution. In addition, if the undrained and drained

asymptotes can be clearly identified from the experimental data, the diffusion coefficient c can
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Figure 3.9: Relaxation of the normalized indentation force with the dimensionless time for cases
I and II with ω = 0, 0.5 and 1.

ω a1 b1 a2 b2

0 0.631 0.609 3 1.097
0.1 0.666 0.6102 3.143 1.115
0.3 0.727 0.613 3.422 1.145
0.44 0.768 0.6136 3.613 1.189
0.5 0.785 0.6158 3.672 1.172
0.7 0.838 0.6186 3.899 1.195
0.9 0.888 0.622 4.109 1.215
1 0.913 0.6238 4.203 1.225

Table 3.2: Values of the fitting parameters for the force relaxation curves.
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also be computed from t∗0.5 via the fitting function, t∗0.5 = 0.697− 0.387ω + 0.281ω2 − 0.1ω3,

where t∗0.5 denotes the dimensionless time at which Fn (t∗) = 0.5.

3.6.2 Asymptotic Behaviors

While the Hertzian solution gives the indentation force asymptotes at t∗ = 0+ and ∞, closed-

form asymptotic expressions beyond these two limits can be derived for the particular case of

ω = 0 for both cases I and II. Expressions for case I are already given in Section 2.7.2. Here

we provide the expressions for case II.

Substituting Eq. 3.15 into Eq. 3.48 and setting ω = 0 gives,

Fn (t∗) =
3

2
L−1

[
s−1
∗

∫ 1

0
x

1
2
∗M (s∗, x∗) dx∗

]
(3.49)

The integral in Eq. 3.49 can be expressed explicitly using the modified Struve function and the

generalized hypergeometric functions. Detailed derivation procedures can be found in Appendix

B.3, ∫ 1

0
x

1
2
∗M (s∗, x∗) dx∗ =

2

3
+

2

s∗
[−1 + M0 (2

√
s∗) + 2F (s∗)] (3.50)

where,

F (s∗) = F1,2

 0.5

(1, 1.5)
, s∗

− 2

π
s

1
2
∗ F2,3

 (1, 1)

(1.5, 1.5, 2)
, s∗

 (3.51)

with F1,2 [·] and F2,3 [·] being two generalized hypergeometric functions.

Asymptotic expressions for indentation force relaxation at early and late times can be

obtained by applying inverse Laplace transform to the integrals above when s∗ → ∞ and

s∗ → 0 (Bateman, 1954; Olver, 2010). The first few terms at ω = 0 can be expressed as follows.

• case II, early time (t∗ → 0),

lim
t∗→0

Fn (t∗) = 1− 3t∗ − 4

(
t∗
π

) 3
2

ln (t∗)

+4

(
γ + 2 ln 2 +

5

3

)(
t∗
π

) 3
2

− 4π

5

(
t∗
π

) 5
2

− 27π2

70

(
t∗
π

) 7
2

(3.52)
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where γ = 0.57721... is the Euler constant.

• case II, late time (t∗ →∞),

lim
t∗→∞

Fn (t∗) = π−
3
2

(
8

3
t
− 1

2
∗ −

64

225
t
− 3

2
∗ +

48

1225
t
− 5

2
∗ −

512

99225
t
− 7

2
∗

)
(3.53)

Fig. 3.10 shows that these asymptotes capture the force relaxation behaviors remarkbly well

not just for the very small and large times. The valid ranges of the asymptotic expressions in

Eqs. 2.115-2.116 and Eqs. 3.52-3.53 for a tolerance of 1% are given in Table 3.3. Indeed, for

both cases I and II, a combination of the six-term early time asymptote with the four-term

late time asymptote could provide an excellent approximation to the full solution for the entire

time range.

For the general case when ω 6= 0, closed-form asymptotic expressions cannot be obtained.

A comparison of the early time behaviors from the full solution for ω = 0, 0.5 and 1 is shown

in Fig. 3.11(a) in a log-log scale for both cases I and II. It seems that constant ω barely has

any influence on the early time responses. Indeed, given a tolerance of 1%, for case II, the first

two-term in Eq. 3.52 is valid till t∗ = 0.013 and 0.02 for ω = 0.5 and 1. At late times, the force

relaxation curves appear to be parallel to each other, see Fig. 3.11(b), suggesting Fn (t∗) ∼ t
− 1

2
∗

is the dominant behavior when t∗ is large.
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case I case II

early time 2-term [0, 0.003] [0, 0.013]
6-term [0, 0.7] [0, 0.7]

late time 1-term [5,∞) [10,∞)
4-term [0.5,∞) [0.7,∞)

Table 3.3: Validity ranges of the asymptotic expressions in Eqs. 2.115-2.116 and Eqs. 3.52-3.53
for ω = 0 with a tolerance of 1%.
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Figure 3.10: Comparison of the asymptotic expressions with the full solutions for the normalized
indentation force Fn (t∗) at ω = 0 for cases I and II.
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Figure 3.11: Asymptotic behaviors of the normalized indentation force at ω = 0, 0.5 and 1 for
cases I and II.
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4 POROELASTIC RESPONSE OF SPHERICAL INDENTA-

TION INTO A HALF SPACE WITH A MIXED DRAINAGE

SURFACE VIA STEP DISPLACEMENT

4.1 Introduction

Depending on the material types, the exact nature of drainage between an indenter and a soil

surface could be open to interpretation. The contact between an indenter made of stainless

steel and a saturated fine-grained soil may be more likely impermeable, while the outer free

surface may be more likely permeable. This gives the case III surface drainage condition. In

this chapter, we extend our theoretical analysis based on the McNamee-Gibson displacement

function method to treat the poroelastic spherical indentation by step displacement loading

with case III surface drainage condition. Solution procedures in case III differ from those

in cases I and II in that not only unknown B1, but also A2 needs to be determined from

a Fredholm integral equations of the second kind. While we still employ the same suite of

mathematical techniques, the solution procedure is now different from the previous two cases.

Here we first present solution procedures and the expression of poroelastic fields. Next we

examine the theoretical results for normalized indentation force at different ω. These results

are further fitted with an elementary function in order to be conveniently used in the laboratory.

Though for case III we are unable to derive closed-form asymptotic expressions of the transient

indentation force response at ω = 0, some asymptotic behaviors can still be extracted by

comparing with the full solutions from all three cases.

4.2 Problem Formulation

The boundary condition for case III surface drainage can be written in terms of vertical dis-

placement uz, stresses σz and σzr, pore pressure p and normal flux qz on the surface, see Table

4.1, where H (t) is the Heaviside step function.
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time domain Laplace domain

0 ≤ r ≤ a−
uz =

(
d− r2

2R

)
H (t) uz = s−1

(
d− r2

2R

)
σzr = 0, qz = 0 σzr = 0, qz = 0

r ≥ a+ σz = σzr = 0, p = 0 σz = σzr = 0, p = 0

Table 4.1: Boundary conditions.

Matching the poroelastic fields expressed in Eqs. 2.9-2.16 with the boundary conditions in

the Laplace domain in Table 4.1 yields the following equations,

A1ξ +A2

√
ξ2 + λ+B1 (1− φ) = 0 (4.1)

and two sets of dual integral equations. One is,

∫ ∞
0

B1J0 (rξ) dξ = (sφ)−1

(
r2

2R
− d
)
, 0 ≤ r ≤ a− (4.2)

∫ ∞
0

(
A2ξ

2 −A2ξ
√
ξ2 + λ−B1ξ

)
J0 (rξ) dξ = 0, r ≥ a+ (4.3)

and the other is,

∫ ∞
0

(
1 + ω

2ω
λA2

√
ξ2 + λ+B1ξ

2

)
J0 (rξ) dξ = 0, 0 ≤ r ≤ a− (4.4)

∫ ∞
0

(
1 + ω

2ω
λA2 +B1ξ

)
J0 (rξ) dξ = 0, r ≥ a+ (4.5)

To facilitate derivation, A2 and B1 are replaced with C1 and C2 according to,

C1 = B1

C2 =
1 + ω

2ω
λA2

√
ξ2 + λ+B1ξ

2
(4.6)
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Substituting C1 and C2 for A2 and B1, Eqs. 4.2 and 4.3 become,

∫ ∞
0

C1J0 (rξ) dξ = (sφ)−1

(
r2

2R
− d
)
, 0 ≤ r ≤ a− (4.7)

∫ ∞
0

{
C1ξ [1 + ωHa (s, ξ)] + ωC2ξ

−1 [1−Ha (s, ξ)]
}
J0 (rξ) dξ = 0, r ≥ a+ (4.8)

where,

Ha (s, ξ) = 1 +
2ξ2

λ

(
ξ√
ξ2 + λ

− 1

)
(4.9)

And Eqs. 4.4 and 4.5 become,

∫ ∞
0

C2J0 (rξ) dξ = 0, 0 ≤ r ≤ a− (4.10)

∫ ∞
0

{
C1ξ

2Hb (s, ξ) + C2 [1−Hb (s, ξ)]
}
ξ−1J0 (rξ) dξ = 0, r ≥ a+ (4.11)

where,

Hb (s, ξ) = 1− ξ√
ξ2 + λ

(4.12)

The problem now reduces to first find C1 and C2 from Eqs. 4.7-4.12 and then A1, A2 and

B1 from Eqs. 4.1 and 4.6.

4.3 Solution Procedure

4.3.1 Fredholm Integral Equation of the Second Kind

Noble’s method (Noble, 1963) is used to reduce the two sets of dual integral equations to a set

of coupled Fredholm integral equations of the second kind. By applying the Sonine’s integral,

Eqs. 2.26 and 2.27, to Eqs. 4.7 and 4.8, respectively, we obtain,

∫ ∞
0

C1ξ
− 1

2J 1
2

(xξ) dξ = (sφR)−1

√
2

πx

(
x3

3
− xRd

)
, 0 ≤ x ≤ a− (4.13)
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and,

∫ ∞
0

{
C1ξ [1 + ωHa (s, ξ)] + ωC2ξ

−1 [1−Ha (s, ξ)]
}
ξ−

1
2J− 1

2
(xξ) dξ = 0, x ≥ a+ (4.14)

In order to make the orders of the Bessel functions identical in the two equations above,

both sides of Eq. 4.13 are first multiplied by x
1
2 and then differentiated with respect to x,

∫ ∞
0

C1ξ
1
2J− 1

2
(xξ) dξ = (sφR)−1

√
2

πx

(
x2 −Rd

)
, 0 ≤ x ≤ a− (4.15)

Define θa (s, x) as an unknown function of s and x in the Laplace domain according to,

∫ ∞
0

C1ξ
1
2J− 1

2
(xξ) dξ =

√
2

π
(sφR)−1 θa (s, x) , x ≥ a+ (4.16)

Since the left hand sides of Eqs. 4.15 and 4.16 are identical, the expression on the left is

defined for all x. It follows from inverse Hankel transform,

C1ξ
− 1

2 =

√
2

π
(sφR)−1

∫ a

0
m

1
2
(
m2 −Rd

)
J− 1

2
(mξ) dm

+

√
2

π
(sφR)−1

∫ ∞
a

mθa (s,m) J− 1
2

(mξ) dm

(4.17)

By applying Eqs. 2.26 and 2.27 to Eqs. 4.10 and 4.11 respectively, we obtain,

∫ ∞
0

C2ξ
− 1

2J 1
2

(xξ) dξ = 0, 0 ≤ x ≤ a− (4.18)

and,

∫ ∞
0

{
C1ξ

2Hb (s, ξ) + C2 [1−Hb (s, ξ)]
}
ξ−

3
2J− 1

2
(xξ) dξ = 0, x ≥ a+ (4.19)

Similarly, both sides of Eq. 4.19 are first multiplied by x
1
2 and then differentiated with
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respect to x so that the orders of the Bessel functions become identical to Eq. 4.18,

∫ ∞
0

{
C1ξ

2Hb (s, ξ) + C2 [1−Hb (s, ξ)]
}
ξ−

1
2J 1

2
(xξ) dξ = 0, x ≥ a+ (4.20)

Define θb (s, x) as an unknown function of s and x in the Laplace domain according to,

∫ ∞
0

C2ξ
− 1

2J 1
2

(xξ) dξ =

√
2

π
(sφR)−1 θb (s, x) , x ≥ a+ (4.21)

Applying inverse Hankel transform to Eqs. 4.18 and 4.21 gives,

C2ξ
− 3

2 =

√
2

π
(sφR)−1

∫ ∞
a

mθb (s,m) J 1
2

(mξ) dm (4.22)

Substituting both Eqs. 4.17 and 4.22 into Eqs. 4.14 and 4.20 gives a set of coupled Fredholm

integral equations of the second kind for θ1a (s∗, x∗) and θ1b (s∗, x∗),

θ1a (s∗, x∗) +

 ω
∫ ∞

1
Na (s∗, x∗,m∗) θ1a (s∗,m∗) dm∗

+ω

∫ ∞
1

Nb (s∗, x∗,m∗) θ1b (s∗,m∗) dm∗

 = ωMa (s∗, x∗) (4.23)

θ1b (s∗, x∗) +


∫ ∞

1
Nd (s∗, x∗,m∗) θ1a (s∗,m∗) dm∗

−
∫ ∞

1
Nc (s∗, x∗,m∗) θ1b (s∗,m∗) dm∗

 = Mb (s∗, x∗) (4.24)

Variables in the equations above are made dimensionless according to θ1a (s∗, x∗) = θa (s, x) a−
3
2 ,

θ1b (s∗, x∗) = θb (s, x) a−
1
2 s
− 1

2
∗ and those defined in Eq. 2.34.

Now θ1a (s∗, x∗) and θ1b (s∗, x∗) are the unknowns to be determined. Once they are known,

all field quantities can be expressed in the Laplace domain in terms of θ1a (s∗, x∗) and θ1b (s∗, x∗).

Other functions in Eqs. 4.23 and 4.24 are given by,

Ma (s∗, x∗) =

∫ 1

0
m
− 1

2
∗
(
1−m2

∗
)
Na (s∗, x∗,m∗) dm∗ (4.25)
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Mb (s∗, x∗) =

∫ 1

0
m
− 1

2
∗
(
1−m2

∗
)
Nd (s∗, x∗,m∗) dm∗ (4.26)

Na (s∗, x∗,m∗) = m∗

∫ ∞
0

ξ∗H1a (s∗, ξ∗) J− 1
2

(x∗ξ∗) J− 1
2

(m∗ξ∗) dξ∗ (4.27)

Nb (s∗, x∗,m∗) = 2s
− 1

2
∗ m∗

∫ ∞
0

ξ2
∗H1b (s∗, ξ∗) J− 1

2
(x∗ξ∗) J 1

2
(m∗ξ∗) dξ∗ (4.28)

Nc (s∗, x∗,m∗) = m∗

∫ ∞
0

ξ∗H1b (s∗, ξ∗) J 1
2

(x∗ξ∗) J 1
2

(m∗ξ∗) dξ∗ (4.29)

Nd (s∗, x∗,m∗) = s
− 1

2
∗ m∗

∫ ∞
0

ξ2
∗H1b (s∗, ξ∗) J 1

2
(x∗ξ∗) J− 1

2
(m∗ξ∗) dξ∗ (4.30)

H1a (s∗, ξ∗) = 1 +
2ξ2
∗

s∗

(
ξ∗√
ξ2
∗ + s∗

− 1

)
(4.31)

H1b (s∗, ξ∗) = 1− ξ∗√
ξ2
∗ + s∗

(4.32)

Eqs. 4.23 and 4.24 show that θ1a (s∗, x∗) and θ1b (s∗, x∗) are influenced by the material

properties through ω only.

4.3.2 Alternative Expression for Na−d (s∗, x∗,m∗)

Prior to finding the solutions to the Fredholm integral equations, functions Na−d (s∗, x∗,m∗)

need to be evaluated. The integral kernels in Eqs. 4.27-4.30 are highly oscillatory. However, we

can again rewrite the integrals alternatively using two modified Struve functions of the second

kind, M0 (·) and M1 (·), see Eqs. 2.44-2.49. For function Na (s∗, x∗,m∗),

Na (s∗, x∗,m∗) =

√
s∗m∗
x∗

{[
2

π
− M0 (y1)

y1
+

(
1 +

2

y2
1

)
M1 (y1)

]
+

[
2

π
− M0 (y2)

y2
+

(
1 +

2

y2
2

)
M1 (y2)

]} (4.33)

where y1 = |x∗ −m∗| s
1
2
∗ and y2 = (x∗ +m∗) s

1
2
∗ .

Asymptotes for Na (s∗, x∗,m∗) at the undrained and drained limits and in the far-field can
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be obtained from the alternative expression,

lim
s∗→∞

Na (s∗, x∗,m∗) = δ (m∗ − x∗) (4.34)

lim
s∗→0

Na (s∗, x∗,m∗) = 0 (4.35)

lim
x∗→∞

Na (s∗, x∗,m∗) =
24

π

√
m∗
s3
∗x

9
∗

(4.36)

For function Nb (s∗, x∗,m∗),

Nb (s∗, x∗,m∗) =

√
s∗m∗
x∗

Sign (x∗ −m∗)
[
M0 (y1)− M1 (y1)

y1

]
−
√
s∗m∗
x∗

[
M0 (y2)− M1 (y2)

y2

] (4.37)

lim
s∗→∞

Nb (s∗, x∗,m∗) =

√
4

s∗x∗

∂

∂x∗

[
x

1
2
∗ δ (m∗ − x∗)

]
(4.38)

lim
s∗→0

Nb (s∗, x∗,m∗) = 0 (4.39)

lim
x∗→∞

Nb (s∗, x∗,m∗) = −24

π

√
m3
∗

s2
∗x

9
∗

(4.40)

For function Nc (s∗, x∗,m∗),

Nc (s∗, x∗,m∗) =
1

2

√
s∗m∗
x∗

[M1 (y1)−M1 (y2)] (4.41)

lim
s∗→∞

Nc (s∗, x∗,m∗) = δ (m∗ − x∗) (4.42)

lim
s∗→0

Nc (s∗, x∗,m∗) = 0 (4.43)

lim
x∗→∞

Nc (s∗, x∗,m∗) =
4

π

√
m3
∗

s∗x7
∗

(4.44)
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For function Nd (s∗, x∗,m∗),

Nd (s∗, x∗,m∗) = −1

2

√
s∗m∗
x∗

Sign (x∗ −m∗)
[
M0 (y1)− M1 (y1)

y1

]
−1

2

√
s∗m∗
x∗

[
M0 (y2)− M1 (y2)

y2

] (4.45)

lim
s∗→∞

Nd (s∗, x∗,m∗) = −
√

1

s∗x∗

∂

∂x∗

[
x

1
2
∗ δ (m∗ − x∗)

]
(4.46)

lim
s∗→0

Nd (s∗, x∗,m∗) = 0 (4.47)

lim
x∗→∞

Nd (s∗, x∗,m∗) =
4

π

√
m∗
s2
∗x

7
∗

(4.48)

4.3.3 Method of Successive Substitution

To solve for θ1a (s∗, x∗) and θ1b (s∗, x∗) in Eqs. 4.23 and 4.24, we adopt the method of successive

substitution (Zemyan, 2012) by letting,

θ1a (s∗, x∗) =
∞∑
n=0

an (s∗, x∗) (4.49)

θ1b (s∗, x∗) =
∞∑
n=0

bn (s∗, x∗) (4.50)

where,

a0 (s∗, x∗) = ωMa (s∗, x∗) (4.51)

b0 (s∗, x∗) = Mb (s∗, x∗) (4.52)

and,

an (s∗, x∗) =

−ω
∫ ∞

1
Na (s∗, x∗,m∗) an−1 (s∗,m∗) dm∗

−ω
∫ ∞

1
Nb (s∗, x∗,m∗) bn−1 (s∗,m∗) dm∗

 , n = 1, 2, 3... (4.53)
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bn (s∗, x∗) =

−
∫ ∞

1
Nd (s∗, x∗,m∗) an−1 (s∗,m∗) dm∗

+

∫ ∞
1

Nc (s∗, x∗,m∗) bn−1 (s∗,m∗) dm∗

 , n = 1, 2, 3... (4.54)

Numerical integration for the improper integrals in Eqs. 4.53 and 4.54 is performed by

substituting its infinite upper bound with a sufficiently large value (say, 100), and assigning

adequate integration points in the vicinity of the peak or the discontinuity in Na-Nd. Summa-

tion of the infinite series is replaced by a partial sum with 200 terms. Convergence is analyzed

by truncating the series by different number of terms. For example, at ω = 0.25, difference

between the normalized force relaxation results of using 200 and 1000 terms is smaller than

5×10−5 at all time instances. Note that in cases I and II, when ω ≤ 0.5, the series in θ1 (s∗, x∗)

converges rather fast and the partial sum with only 20 terms is sufficient to give a satisfactory

approximation; when ω is close to 1, the convergence becomes slower but can be accelerated

using Wynn’s epsilon algorithm (Wynn, 1956) due to its effectiveness in dealing with alternat-

ing series. These results and techniques are however not applicable for case III, since ω does

not exist in Eqs. 4.52 and 4.54 and the partial sum for
∑∞

n=0 bn increases monotonically as

the number of terms increases. As a result, a sufficient number of terms is needed to calculate

θ1a (s∗, x∗) and θ1b (s∗, x∗) in order to reach convergence, even when ω is small.

By substituting Eqs. 4.36, 4.40, 4.44 and 4.48 into Eqs. 4.23-4.26, the asymptotes of

θ1a,b (s∗, x∗) and Ma,b (s∗, x∗) at x∗ →∞ can be expressed explicitly,

lim
x∗→∞

log [θ1a (s∗, x∗)] = −9

2
log (x∗) + log

(
16

π
ωs
− 3

2
∗ −

24

π
ωs
− 3

2
∗ Θ

)
(4.55)

lim
x∗→∞

log [θ1b (s∗, x∗)] = −7

2
log (x∗) + log

(
8

3π
s−1
∗ −

4

π
s−1
∗ Θ

)
(4.56)

lim
x∗→∞

log [Ma (s∗, x∗)] = −9

2
log (x∗) + log

(
16

π
s
− 3

2
∗

)
(4.57)

lim
x∗→∞

log [Mb (s∗, x∗)] = −7

2
log (x∗) + log

(
8

3π
s−1
∗

)
(4.58)
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where,

Θ =

∫ ∞
1

m
1
2
∗

[
θ1a (s∗,m∗)−m∗s

1
2
∗ θ1b (s∗,m∗)

]
dm∗

Limits of θ1a (s∗, x∗) and θ1b (s∗, x∗) at s∗ → 0 and s∗ → ∞ can be determined after

substituting the remaining asymptotic expressions for Na−d (s∗, x∗,m∗) into Eqs. 4.23 and

4.24. For θ1a (s∗, x∗),

lim
s∗→∞

θ1a (s∗, x∗) =


ω
(
1− x2

∗
)

√
x∗

, 0 ≤ x∗ ≤ 1

0, x∗ > 1

(4.59)

lim
s∗→0

θ1a (s∗, x∗) = 0, x∗ ≥ 0 (4.60)

For θ1b (s∗, x∗),

lim
s∗→∞

s
1
2
∗ θ1b (s∗, x∗) =


2
√
x∗, 0 ≤ x∗ ≤ 1

0, x∗ > 1

(4.61)

lim
s∗→0

θ1b (s∗, x∗) = 0, x∗ ≥ 0 (4.62)

4.4 Poroelastic Fields

Poroelastic fields on the surface and inside the half space can now be expressed in terms of

θ1a (s∗, x∗) and θ1b (s∗, x∗) in the Laplace domain from direct substitution of the displacement

functions D and F into Eqs. 2.9-2.16. However, these expressions from direct substitution

all contain improper integrals with oscillatory kernels involving Bessel functions of the first

kind Jv (·). Direct evaluation of these integrals could yield nonsmooth results at small depth.

Oscillation in these integrals can however be removed with the aid of Abel transform (Bracewell,

1986; Poularikas, 2018), Sonine’s integrals (Noble, 1963) and the use of integral representations

of special functions with non-oscillatory kernels. These equations can be found from Eqs. 2.26,

2.27 and Section 2.5.

In the sections below, two sets of expressions, one from direct substitution and the other

with the oscillatory kernels removed, are both presented for the pore pressure p, vertical stress
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σz and displacement uz. Details for the other non-trivial field variables are given in Appendix

C.1. The undrained and drained asymptotes, which correspond to the undrained and drained

responses of the Hertzian contact, are the same as those for case I and can be found in Appendix

A.1.5.

Poroelastic fields in the time domain can then be computed using a numerical algorithm for

inverse Lapalace transform. The Stehfest algorithm (Stehfest, 1970) with 6 expansion terms is

again used here. Calculations are performed based on the material properties of the Gulf of

Mexico shale (Cheng, 2016) as listed in Table 2.3. Viscosity of the saturating fluid is taken to

be µ = 1 cp. As a result, values of the drained and undrained Poisson’s ratios are ν = 0.219

and νu = 0.449, which correspond to ω = 0.4174. Given radius of the indenter R = 50 mm and

the indentation depth d = 0.1 mm, the corresponding contact radius is a = 2.23 mm for this

example case.

4.4.1 Pore Pressure

Expression 1 Substituting 4.1, 4.6, 4.17 and 4.22 into Eqs. 2.17 and 2.18 and then D and

F into Eq. 2.11, we obtain,

αp =
2G (2η − 1) a3

cRs∗

[
ω

∫ 1

0

(
m2
∗ − 1

)
Np (s∗, r∗,m∗, z∗) dm∗

+ω

∫ ∞
1

m
1
2
∗ θ1a (s∗,m∗)Np (s∗, r∗,m∗, z∗) dm∗

+ω

∫ ∞
1

m
1
2
∗ s

1
2
∗ θ1b (s∗,m∗) Ñp (s∗, r∗,m∗, z∗) dm∗

] (4.63)

where,

Np (s∗, r∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(4.64)
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and,

Ñp (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
sin (m∗ξ∗) J0 (r∗ξ∗) dξ∗ (4.65)

Along the contact axis, with r∗ = 0 and J0 (r∗ξ∗) = 1, Np (s∗, 0,m∗, z∗) and Ñp (s∗, 0,m∗, z∗)

can be expressed explicitly since the first term in Eqs. 4.64 and 4.65 can be evaluated with

the aid of the modified Bessel functions and the second term in Eq. 4.64 has an elementary

antiderivative, i.e.,

Np (s∗, 0,m∗, z∗) = − 2

π
s

1
2
∗

[
m2
∗ − z2

∗

(m2
∗ + z2

∗)
3
2

]
K1

[√
s∗ (m2

∗ + z2
∗)
]

− 2

π
s∗

(
m2
∗

m2
∗ + z2

∗

)
K0

[√
s∗ (m2

∗ + z2
∗)
]

+
2

π

[
m2
∗ − z2

∗

(m2
∗ + z2

∗)
2

] (4.66)

Ñp (s∗, 0,m∗, z∗) = − 2

π
s

1
2
∗

m∗√
m2
∗ + z2

∗
K1

[√
s∗ (m2

∗ + z2
∗)
]

(4.67)

It is therefore convenient to use Eqs. 4.63, 4.66 and 4.67 to calculate the pore pressure along

the contact axis. Note that for the sake of brevity, explicit expressions for similar integrals in

the sections below will be omitted.

Expression 2 On the surface (z∗ = 0), an alternative expression for the pore pressure field

can be obtained by first applying Sonine’s infinite integral in Eq. 2.27 to Eq. 4.63, and then

the inverse Abel transform in Eq. 2.64 to the resulting equation, which gives,

αp =
4G (2η − 1) a3

πcRs∗
ω

∫ 1

r∗

x
1
2
∗ s

1
2
∗ θ1b (s∗, x∗) dx∗√

x2
∗ − r2

∗
(4.68)

Note that the pore pressure on the surface is continuous across r∗ = 1 and is zero at r∗ ≥ 1.

Inside the half space (z∗ > 0), the alternative expression for pore pressure can be derived

by firstly applying Sonine’s finite integral in Eq. 2.26 to Eq. 4.63, then multiplying both sides

with x
1
2
∗ , taking derivative of the resulting equation with respect to x∗, and finally performing
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the Abel transformation in Eq. 2.66. This gives,

αp =
4G (2η − 1) a3

πcRs∗

∫ r∗

0

θp (s∗, x∗, z∗) dx∗√
r2
∗ − x2

∗
(4.69)

where θp (s∗, x∗, z∗) is,

θp (s∗, x∗, z∗) = ω

∫ 1

0

(
m2
∗ − 1

)
Npx,x (s∗, x∗,m∗, z∗) dm∗

+ω

∫ ∞
1

m
1
2
∗ θ1a (s∗,m∗)Npx,x (s∗, x∗,m∗, z∗) dm∗

+ω

∫ ∞
1

m
1
2
∗ s

1
2
∗ θ1b (s∗,m∗) Ñpx,x (s∗, x∗,m∗, z∗) dm∗

(4.70)

and,

Npx,x (s∗, x∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
cos (m∗ξ∗) cos (x∗ξ∗) dξ∗

(4.71)

Ñpx,x (s∗, x∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
sin (m∗ξ∗) cos (x∗ξ∗) dξ∗ (4.72)

The oscillatory nature in Npx,x and Ñpx,x can be removed with the aid of the modified Bessel

functions.

Pore pressure in the time domain can be determined after taking the inverse Laplace trans-

form to Eq. 4.69,

αp =
4G (2η − 1) a

πR

∫ r∗

0

L−1
[
s−1
∗ θp (s∗, x∗, z∗)

]
dx∗√

r2
∗ − x2

∗
(4.73)

Here L−1 denotes the inverse Laplace transform with respect to s∗, see Eq. 2.81.

Distribution of the pore pressure along the contact axis, calculated using Eqs. 4.63, 4.66

and 4.67, is shown in Fig. 4.1 for various dimensionless times. The pore pressure is the largest

at the contact origin and decreases monotonically with depth. The Mandel-Cryer effect, where

the pore pressure rises above the initial value at t∗ = 0 before its dissipation, is observed at
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early times (see the inset).
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Figure 4.1: Distribution of the pore pressure along the contact axis.

4.4.2 Vertical Stress

Expression 1 The vertical stress field can be obtained after substituting D and F into into

Eq. 2.12,

σz =
2Ga3

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nsz (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1a (s∗,m∗)Nsz (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ s

1
2
∗ θ1b (s∗,m∗) Ñsz (s∗, r∗,m∗, z∗) dm∗

] (4.74)

where,

Nsz (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗

{
(1 + z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(4.75)
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and,

Ñsz (s∗, r∗,m∗, z∗) =
4ω

π (1 + ω)

∫ ∞
0

(
ξ2
∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
sin (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(4.76)

Expression 2 On the surface (z∗ = 0), expression of the normal stress in the second set can

be obtained by applying Eqs. 2.27 and 2.65 successively to Eq. 4.74,

σz =
2G (2η − 1) a3

πcηRs∗


2
√

1− r2
∗ +

θ1a (s∗, 1)√
1− r2

∗

−
∫ 1

r∗

θ3 (s∗, x∗)
dx∗√
x2
∗ − r2

∗

 , r∗ ≤ 1 (4.77)

where,

θ3 (s∗, x∗) =
∂

∂x∗

[
x

1
2
∗ θ1a (s∗, x∗)

]
(4.78)

See Appendix C.2 for the expression of θ3 (s∗, x∗).

Inside the half space (z∗ > 0), the vertical stress σz can be obtained by applying Eqs. 2.26

and 2.66 successively to Eq. 4.74,

σz =
4Ga3

πcφRs∗

∫ r∗

0

θsz (s∗, x∗, z∗) dx∗√
r2
∗ − x2

∗
(4.79)

where,

θsz (s∗, x∗, z∗) =

∫ 1

0

(
m2
∗ − 1

)
Nszx,x (s∗, x∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1a (s∗,m∗)Nszx,x (s∗, x∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ s

1
2
∗ θ1b (s∗,m∗) Ñszx,x (s∗, x∗,m∗, z∗) dm∗

(4.80)
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and,

Nszx,x (s∗, x∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗

{
(1 + z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) cos (x∗ξ∗) dξ∗

(4.81)

Ñszx,x (s∗, x∗,m∗, z∗) =
4ω

π (1 + ω)

∫ ∞
0

(
ξ2
∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
sin (m∗ξ∗) cos (x∗ξ∗) dξ∗

(4.82)

Contact stress distributions at various times is shown in Fig. 4.2. Similar to the distributions

in cases I and II, the contact stress from the full poroelastic solution reduces to the classical

Hertzian solution at t∗ = 0 and t∗ → ∞, while at intermediate times, the contact stress is

bounded by the two limits within the contact region except near the contact edge around

r∗ = 1, where the contact stress is in fact singular. Such stress singularity can again be

attributed to the assumption of a fixed contact radius a, which effectively allows a kink at

r∗ = 1 on the deformed surface to develop at intermediate times, see Fig. 4.3.
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Figure 4.2: Distribution of the contact stress at various dimensionless times.

Instantaneously after indentation, the largest excess pore pressure is produced right beneath

the contact surface. At early time, it is the drainage condition inside the contact area that

controls the primary drainage path and therefore the poroelastic response. As a result, the

isochrones of the contact stress at small times from case III is closer to that of case II. Difference

of the stress distributions near the contact axis between cases II and III is insignificant at early

times. However, the discrepancy at the contact edge is identifiable, compare Figs. 3.3 and

4.2. After all, the drainage condition right outside of the contact area are distinctly different

between cases II and III.

At late time, the surface drainage conditions outside of the contact area becomes more

critical in affecting the dissipation of excess pore pressure. At a given time (e.g., t∗ = 1), the

isochrone of contact stress from case III is closer to the drained asymptote than that of case

II, but farther than that of case I.
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4.4.3 Vertical Displacement

Expression 1 Vertical displacement uz can be obtained after substituting D and F into Eq.

2.10,

uz =
a4

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nuz (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1a (s∗,m∗)Nuz (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ s

1
2
∗ θ1b (s∗,m∗) Ñuz (s∗, r∗,m∗, z∗) dm∗

] (4.83)

where,

Nuz (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

{
(φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(4.84)

and,

Ñuz (s∗, r∗,m∗, z∗) =
4ω

π (1 + ω)

∫ ∞
0

(
ξ∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
sin (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(4.85)

Expression 2 Inside the half space (z∗ > 0), the vertical displacement uz can be obtained in

a similar way to the derivation for pore pressure and normal stress,

uz =
2a4

πcφRs∗

∫ r∗

0

θuz (s∗, x∗, z∗) dx∗√
r2
∗ − x2

∗
(4.86)

where,

θuz (s∗, x∗, z∗) =

∫ 1

0

(
m2
∗ − 1

)
Nuzx,x (s∗, x∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1a (s∗,m∗)Nuzx,x (s∗, x∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ s

1
2
∗ θ1b (s∗,m∗) Ñuzx,x (s∗, x∗,m∗, z∗) dm∗

(4.87)
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and,

Nuzx,x (s∗, x∗,m∗, z∗) = − 2

π

∫ ∞
0

{
(φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) cos (x∗ξ∗) dξ∗

(4.88)

Ñuzx,x (s∗, x∗,m∗, z∗) =
4ω

π (1 + ω)

∫ ∞
0

(
ξ∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
sin (m∗ξ∗) cos (x∗ξ∗) dξ∗

(4.89)

On the surface (z∗ = 0), Ñuz is zero and Nuz can be expressed in closed-form,

Nuz (s∗, x∗,m∗, 0) = − 2φ

π
√
r2
∗ −m2

∗
H (r∗ −m∗) (4.90)

Substituting Eq. 4.90 into Eq. 4.83 gives,

uz =
a4

cRs∗

(
1− 1

2
r2
∗

)
, r∗ ≤ 1 (4.91)

and,

uz =
a4

πcRs∗


√
r2
∗ − 1 +

(
2− r2

∗
)

arcsin

(
1

r∗

)
−2

∫ r∗

1
m

1
2
∗ θ1a (s∗,m∗)

dm∗√
r2
∗ −m2

∗

 , r∗ ≥ 1 (4.92)

Vertical and radial displacement expressions in Eqs. 4.91-4.92 and Eqs. C.19-C.20 allow us

to examine how the surface displacement evolves with time and differs from that of the case

if the frictionless contact with a rigid sphere were to be modeled. Surface profile distributions

for case III are shown in Fig. 4.3, which are very similar to the distributions in cases I and II.

At a given transient time, the surface profile from case III is bounded by the curves from cases

I and II.
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(a) incompressible constituents, ν = 0.219 and νu = 0.5
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(b) compressible constituents, ν = 0.219 and νu = 0.449

Figure 4.3: Comparison of surface displacement profiles at the undrained and drained limits
(t∗ = 0+, t∗ → ∞) and at t∗ = 0.1 from cases I-III; the material point at the contact edge is
marked by the empty circle.
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4.5 Incipient Failure

Incipient failure in form of tensile fracturing and plastic deformation could take place in spher-

ical indentation. It is therefore of interest to examine how poroelasticity could affect potential

development of the indentation crack system and plastic failure.
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Figure 4.4: Variation of the effective radial stress with the dimensionless time at r∗ = 1+ on
the surface (right outside of the contact area).

The classical Hertzian cone crack initiates on the surface as a ring crack slightly outside

of the contact area and propagates stably downwards to form a cone (Lawn, 1998). Fig. 4.4

shows a comparison of the effective radial stress at the contact edge (r∗ = 1+) between three

cases. In all of them, magnitude of the effective radial stress in tension first increases from

the early time asymptote to a peak value, and then decreases and finally approaches to the

drained asymptote. The peak values for cases I, II and III are −16.12, −21.22 and −12.58

MPa, respectively. This indicates that if the tensile strength is relatively large (? 10 MPa),

then the ring/cone crack system is more likely to occur in case II, less likely in case I and least

likely in case III.

At a given depth along the contact axis, the effective radial stress, σr−αp, and the maximum
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shear stress, (σz − σr) /2, can be used to infer the possibility of median crack nucleation and

incipient plastic yielding, respectively. Variation of these two variables along the contact axis

with the dimensionless time is very similar to those in case II except that at late time, the

isochrones in case III are closer to the drained asymptote. These results are not shown here for

the sake of brevity.

4.6 Indentation Force Relaxation

4.6.1 Master Curves

Following the normalization method in Section 2.7.1, explicit expression of the normalized

indentation force Fn (t∗) can be derived from Eq. 4.77,

Fn (t∗) =
3

2ω
L−1

[
s−1
∗

∫ 1

0
x

1
2
∗ θ1a (s∗, x∗) dx∗

]
(4.93)

The force relaxation behaviors at ω = 0, 0.5, 1 are plotted for the three cases in Fig. 4.5.

As expected, the normalized force relaxation response is the fastest in case I and slowest in

case II, with case III being in the middle and bounded by cases II and I at early and late times,

respectively. This can be explained by the fact that the drainage path and the corresponding

relaxation time are the shortest when the surface is fully permeable, and the longest when

the surface is fully impermeable. Fig. 4.5 also shows that dependence of the normalized force

relaxation response on constant ω is rather weak for all three cases. In other words, uncertainty

in ω is not likely to have a significant effect on the normalized force relaxation response.

The force relaxation response from our theoretical solution for case II can be fitted using

a four-parameter function, see Eq. 2.111. The fitting parameters a1, b1, a2, b2 are listed in

Table 4.2. Indeed, this elementary function gives an excellent approximation and the coefficient

of determination for all ω is R2 = 1. In addition, the expression of t∗0.5 with respect to ω is

t∗0.5 = 0.333−0.0942ω+0.0649ω2−0.0176ω3, where t∗0.5 denotes the dimensionless time where

Fn (t∗) = 0.5.
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Figure 4.5: Relaxation of the normalized indentation force with the dimensionless time - com-
parison of cases I-III surface drainage conditions.

ω a1 b1 a2 b2

0 1.4 0.634 6.56 1.3
0.1 1.45 0.639 6.72 1.313
0.3 1.55 0.647 7 1.336
0.44 1.62 0.651 7.16 1.348
0.5 1.65 0.655 7.23 1.355
0.7 1.73 0.662 7.42 1.37
0.9 1.82 0.669 7.57 1.383
1 1.86 0.671 7.68 1.391

Table 4.2: Values of the fitting parameters for the force relaxation curves.

A comparison is also made between this study (case III) and the fitting function from (Hu

et al., 2010) based on their numerical simulations, where,

fn (t∗) = 0.491 exp
(
−0.908

√
t∗
)

+ 0.509 exp (−1.679t∗) (4.94)

The numerical analysis in Hu et al. (2010) assumes a case III surface drainage condition and

step displacement loading. A domain size 20 times larger than the contact size is used. The
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value of ω for the fully saturated hydrogel they studied is ω = 0.44.

It can be seen from Fig. 4.6 that the theoretical and numerical result agree quite well overall.

But there is some slight difference. Details of the numerical simulations, e.g., realization of

the step displacement loading, finite size of the numerical domain with fully drained lateral

boundaries, etc. are perhaps the reasons for the discrepancy, especially the faster relaxation

response at late time from the numerical result.
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Figure 4.6: Comparison of the force relaxation curves between this study (case III) and Hu
et al. (2010); ω = 0.44.

4.6.2 Asymptotic Behaviors

At ω = 0, the normalized indentation force Fn (t∗) becomes indefinite, since the indentation

force remains constant. However, mathematically, the limit of Fn (t∗) at ω = 0 exists and can

be derived based on our solution scheme by taking Eq. 4.49 into Eq. 4.93 and setting ω = 0.

After some manipulations, the normalized indentation force can be expressed as,

Fn (t∗) =
3

2
L−1

[
s−1
∗

∫ 1

0
x

1
2
∗Ma (s∗, x∗) dx∗ + 2s

− 3
2
∗ [Mb (s∗, 1)− θ1c (s∗, 1)]

]
(4.95)
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where θ1c (s∗, 1) can be determined from,

θ1c (s∗, x∗)−
∫ ∞

1
Nc (s∗, x∗,m∗) θ1c (s∗,m∗) dm∗ = Mb (s∗, x∗) (4.96)

Solution for the Fredholm integral equation above is given by,

θ1c (s∗, x∗) =
∞∑
n=0

cn (s∗, x∗) (4.97)

where,

c0 (s∗, x∗) = Mb (s∗, x∗) (4.98)

cn (s∗, x∗) =

∫ ∞
1

Nc (s∗, x∗,m∗) cn−1 (s∗,m∗) dm∗, n = 1, 2, 3... (4.99)

Unlike cases I and II, in case III, we are unable to derive a closed-form expression for the

force relaxation behavior at ω = 0. However, a few interesting observations can be made based

on the comparison of the full solutions plotted in a log-log scale for all three cases, see Fig. 4.7.

At early time, the curves of 1− Fn (t∗) from different values of ω for case III appear to be

indistinguishable from each other. A single curve parallel to those from case II seems to be

adequate in describing the early time behavior. By fitting the full solution of case III at ω = 0

for t∗ ≤ 10−4, we obtain,

lim
t∗→0

Fn (t∗) = 1− 5.5t∗ (4.100)

At late time, the force relaxation responses from case III become identical to those from

case I at t∗ > 10. Therefore, for case III, at ω = 0,

lim
t∗→∞

Fn (t∗) =
4

3π2

(
t∗
π

)− 1
2

(4.101)

At ω > 0, the relaxation behaviors follow t
− 1

2
∗ .
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(a) early time behaviors
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Figure 4.7: Asymptotic behaviors of the normalized indentation force at ω = 0, 0.5 and 1 for
cases I-III.
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5 FINITE ELEMENT MODELING OF SPHERICAL INDEN-

TATION IN A PORO-ELASTO-PLASTIC MEDIUM VIA

STEP DISPLACEMENT LOADING

5.1 Introduction

Poroelastic spherical indentation via step displacement or step force loading has been developed

as an experimental technique to characterize poroelasticity for fully saturated soft and biological

materials such as polymeric gels and hydrated bones at both micro- and macro-scale (Galli and

Oyen, 2008; Oyen, 2008; Hu et al., 2010; Kalcioglu et al., 2012). In theory, for a fully saturated

porous medium consisting of incompressible constituents, if the indenter is subjected to either

step displacement or step force loading, elastic constants can be determined from the undrained

and drained responses according to the Hertzian contact solution (Hertz, 1881), while hydraulic

diffusivity or the coefficient of consolidation can be obtained from the transient response by

matching the measured indentation force or displacement as a function of time against a master

curve. Such master curves for various indenter shapes under step displacement loading have

been previously constructed through finite element simulations (Hu et al., 2010) and also semi-

analytically for spherical indentation with step force loading (Agbezuge and Deresiewicz, 1974;

Oyen, 2008). A unique feature of such a testing method is that the test duration scales with

the contact area. As such, significant time saving can be achieved if the size of the spherical

indenter and the depth of penetration are chosen appropriately (Kalcioglu et al., 2012).

Theoretical basis for generalizing the testing methodology to include geomaterials, where

compressibility of the constituents is no longer negligible, has been established in our recent

works (Liu and Huang, 2018, 2019a,b, 2021). Fully coupled theoretical solutions, derived within

the framework of Biot’s theory (Biot, 1941), have been obtained for poroelastic spherical in-

dentation via step displacement loading for three distinct types of surface drainage conditions:

case I − a fully permeable surface, case II − a fully impermeable surface and case III − a

mixed drainage condition where the surface is impermeable in the contact region, but perme-
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able everywhere else. However, for geomaterials, yielding and tensile fracturing may occur if

the indentation depth exceeds a threshold. Understanding how plastic deformation and ten-

sile failure affect the spherical indentation process is therefore crucial to establishing spherical

indentation as an experimental technique for poroelasticity characterization of geomaterials.

In this work, we focus on numerically modeling the poroelastic and poro-elasto-plastic spher-

ical indentation processes with step displacement loading in order to compare the numerical

results with our theoretical solutions and to investigate the effect of plastic deformation on the

indentation process with the ultimate goal of understanding the parameter space where our

poroelastic solutions are applicable even when the medium is poro-elasto-plastic.

We implement a fully coupled finite element method (FEM) algorithm for poro-elasto-

plasticity for both plane strain and cylindrically axisymmetric problems using MATLAB fol-

lowing the mixed continuous Galerkin formulation for displacement and pore pressure (Borja,

1986; Lewis and Schrefler, 1998; White and Borja, 2008; Verruijt, 2013). The FEM algorithm

assumes that the porous medium is isotropic and elasto-perfectly plastic, following a Drucker-

Prager yield criterion with an associative or non-associative flow rule. The Newton-Raphson

method with the tangent stiffness scheme is adopted to deal with plasticity in the solid skeleton.

A stabilization scheme (White and Borja, 2008), which permits equal-order spatial interpola-

tion for the displacement and pore pressure fields and suppresses pore pressure oscillation in

the incompressible or nearly incompressible limit, is incorporated in this FEM algorithm. We

extensively benchmark the algorithm with not only analytical solutions to classical poroelastic

problems (Terzaghi, 1943; Mandel, 1953; Cryer, 1963; De Leeuw, 1965; Verruijt, 2013) but also

an analytical solution for one dimensional consolidation with plasticity incorporated, which we

rederive based on an early work by Pariseau (Pariseau, 1999) for clarity in physical parameters

and unifying the cases for the Drucker-Prager and Mohr-Coulomb failure criteria.

The paper is organized as follows. FEM formulation for linear poroelasticity and poro-

elasto-plasticity is first introduced. The analytical solution for poro-elasto-plastic consolida-

tion is derived next. After the numerical algorithm is validated for the effectiveness of the

stabilization scheme and the accuracy against benchmark solutions, this fully coupled FEM
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algorithm is applied to model the spherical indentation process in a poroelastic as well as a

poro-elasto-plastic medium.

5.2 Numerical Formulation

5.2.1 Governing Equations

The equilibrium and storage equations for a fully coupled linear poroelasticity problem in a

saturated isotropic porous medium can be written as (Biot, 1941; Detournay and Cheng, 1993;

Wang, 2000; Verruijt, 2013; Cheng, 2016),

∇ ·
(
σ′ − αpI

)
+ ρg = 0 (5.1)

Sṗ+ α∇ · u̇− κ

µ

(
∇2p

)
= 0 (5.2)

where σ′ is the effective stress tensor; p is the pore pressure; u is the displacement vector; I is

the identity matrix; ρ and g are the bulk density and gravitational acceleration; µ and κ are

the dynamic fluid viscosity and the intrinsic permeability; and α and S are Biot’s coefficient

and the storage coefficient, which can be related to the skeleton bulk modulus and porosity, K

and n, and the fluid and solid phase bulk modulus, Kf and Ks, through,

α = 1− K

Ks
(5.3)

S =
α− n
Ks

+
n

Kf
(5.4)

Tension positive is adopted here and in Chapter 6 as the sign convention. Darcy’s law for fluid

flow in porous media is reflected in Eq. 5.2.

Constitutive relationship can be expressed in an incremental form,

∆σ′ = D∆ε (5.5)
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where ε is the strain tensor, ε = 1
2

(
∇+∇T

)
u, and D is the fourth-order tensor of tangent

moduli, which allows for either an elastic or elasto-plastic material model. We assume that the

porous medium obeys a Drucker-Prager yield criterion with an associative or non-associative

flow rule. The failure criterion can be written as,

f
(
σ′
)

=
√
J2 + bI1 − s (5.6)

where b and s are material constants; I1 is the first stress invariant, I1 = tr (σ′); and J2

is the second deviatoric stress invariant. Denote s′ as the deviatoric effective stress tensor,

s′ = σ′ − (I1/3) I; J2 can be determined from J2 = 1
2 tr (s′s′).

The Drucker-Prager failure criterion can also be expressed using the material parameters

for a Mohr-Coulomb criterion (Chen, 2013). If we set,

b =
2 sinϕ√

3 (3− sinϕ)
, s =

6c0 cosϕ√
3 (3− sinϕ)

(5.7)

with c0 and ϕ being the cohesion and internal friction angle for a Mohr-Coulomb criterion, the

Drucker-Prager failure envelope then intersects the outer edges of the Mohr-Coulomb failure

criterion on the π− plane, i.e., the triaxial compression state. The Drucker-Prager criterion

inscribes the Mohr-Coulomb yield surface if,

b =
2 sinϕ√

3 (3 + sinϕ)
, s =

6c0 cosϕ√
3 (3 + sinϕ)

(5.8)

In this study, we choose to set c0 and ϕ as the input parameters with the Drucker-Prager

material constants determined from Eq. 5.7.

The corresponding plastic potential can be written as,

g
(
σ′
)

=
√
J2 + bI1 (5.9)

where material parameter b is obtained by replacing ϕ with the dilatancy angle ψ in the

129



definition of b in Eq. 5.7. The flow rule is associative if ϕ = ψ and non-associative if ϕ > ψ > 0.

Note here we extend the linear poroelasticity formulation to the realm of poro-elasto-

plasticity by assuming the incremental form of the constitutive relationship in Eq. 5.5 with

the yield criterion and flow rule expressed using Biot’s effective stress definition. Implicitly, we

assume that stress partitioning between the solid and fluid phases is still based on the initial

poroelastic estimate of Biot’s coefficient (Pariseau, 1999; Khalili and Loret, 2001; Selvadurai

and Suvorov, 2012, 2014). While it is a fundamental concept in soil plasticity to express a

yield criterion using Terzaghi’s effective stress (α = 1) due to the assumption of solid incom-

pressibility, constitutive formulation for poro-elasto-plasticity with a compressible solid phase

is an open question (Coussy, 1995; De Buhan and Dormieux, 1996; Xie and Shao, 2012). As

defined in Eq. 5.3, Biot’s coefficient α is pertinent to the ratio between the bulk moduli of the

skeleton and the solid constituent. As plastic deformation accumulates, since the tangent bulk

modulus of the skeleton decreases, α associated with the tangent modulus increases from the

initial poroelastic value to approaching α = 1 (Suvorov and Selvadurai, 2019). Evidences from

laboratory experiments on chalk (Xie and Shao, 2012) and Berea sandstone (Makhnenko and

Labuz, 2016) support an earlier suggestion (Rice, 1977) that it would be more appropriate to

use Terzaghi’s effective stress to calculate the incremental plastic strain. A recent work (Zhao

and Borja, 2020) based on continuum thermodynamics shows that it is necessary to introduce

two effective stresses, σ′ = σ + αp and σ′′ = σ + pI, where α is the anisotropic Biot tensor

and σ′ and σ′′ are energy-conjugate to elastic and plastic strains, respectively.

In these contexts, we may therefore argue that a yield criterion expressed with Biot’s effec-

tive stress definition is only admissible when plastic deformation is small and Biot’s coefficient α

is only slightly smaller than 1 prior to the onset of plastic flow. As shown in Section 5.7.1, plastic

deformation is more severe if constituents of the porous medium are assumed to be incompress-

ible. Since our interest here is in identifying the parameter space where our poroelastic spherical

indentation solutions are still applicable, other than the simulations for numerical validation

in Section 5.4.2 and those in Section 5.7.1, our numerical analyses are conducted assuming the

worst case scenario of plastic deformation with α = 1.
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5.2.2 Poroelasticity Formulation

Following earlier work in the literature (Lewis and Schrefler, 1998; White and Borja, 2008;

Verruijt, 2013), we establish the finite element equations for poroelasticity based on the mixed

continuous Galerkin method with displacement u and pore pressure p as the basic variables.

For an incremental loading/time step,

 K −Q

−QT − (Stab + S + θ∆tH)


 un+1 − un

pn+1 − pn

 =

 ∆fu

fp + ∆tHpn

 (5.10)

where un+1, pn+1 and un, pn are displacement and pore pressure at times tn+1 and tn and ∆t

is the time step, ∆t = tn+1 − tn. Here θ is an integration parameter, 0 ≤ θ ≤ 1. We choose

θ = 0.5 in this study to give a second-order convergence in time. Note that Voigt notation is

adopted for the FEM formulation and its implementation.

Submatrices on the left hand side of Eq. 5.10 can be expressed as,

K =

∫
Ω

BT
u De Bu dΩ (5.11)

Q = α

∫
Ω

BT
u I Np dΩ (5.12)

S = S

∫
Ω

NT
p Np dΩ (5.13)

H =
κ

µ

∫
Ω

(∇Np)
T ∇Np dΩ (5.14)

where Ω denotes the spatial domain; Bu is the strain operator, ε = Buu and Nu and Np

are shape functions for displacement and pore pressure, respectively. It should be noted that

Stab is a submatrix that adds an additional term in the mass balance equation so that the

incompressibility constraint can be modified to avoid spurious pressure oscillation at early time

for low-order finite elements which use equal-order displacement and pore pressure interpolation

and do not meet the Ladyzhenskaya–Babuška–Brezzi (LBB) stability condition (Babuška, 1971;
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Brezzi, 1974; Murad and Loula, 1994; White and Borja, 2008). Details of the stabilization

scheme are explained further in Section 5.2.4.

Vector f on the right hand side of Eq. 5.10 represents the applied external load and flux

within a single time step,

∆fu =

∫
Γ

NT
u (Tn+1 −Tn) dΓ (5.15)

fp = ∆t

[
(1− θ)

∫
Γ

NT
p qndΓ + θ

∫
Γ

NT
p qn+1dΓ

]
(5.16)

where Γ denotes the boundary of domain Ω; T is the applied traction and q is the imposed

fluid flux normal to boundary Γ.

5.2.3 Poro-elasto-plasticity Formulation

Implementation of the elasto-plastic constitutive relations in a finite element context requires

consideration at two different levels, namely, the global level for equilibrium and the local level

for material behaviors. A global iterative procedure is required so that the out-of-balance force,

or residual, vanishes. Meanwhile, at the local level, the failure criterion needs to be satisfied.

Equations at these two levels for computation of a load step constitute a nonlinear system. An

iterative procedure based on the full Newton-Raphson method with the stress return scheme

is adopted here to solve the system of equations (Čermák et al., 2019; De Souza Neto et al.,

2011).

To advance from load step n to n + 1, the iteration scheme starts by calculating the dis-

placement and pressure increments, ∆u and ∆p, resulted from an external load f using the

poroelastic formulation in Eq. 5.10. Displacement and pore pressure fields at step n + 1 are

initialized according to,

 un+1

pn+1

 =

 u(0)

p(0)

 =

 un

pn

+

 ∆u

∆p

 (5.17)

In the `−th iteration cycle (` = 1, 2, 3...), with displacement u(`−1) known, a local material level
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correction is first executed to find the stress state σ′(`), which is then followed by a global level

correction to determine the displacement and pore pressure field, u(`) and p(`). The iteration

terminates if
∣∣u(`) − u(`−1)

∣∣ < ε, where ε is the tolerance. Field variables at load step n+ 1 are

updated according to: un+1 = u(`), pn+1 = p(`), σ′n+1 = σ′(`), and εn+1 = ε(`).

Total strain associated with the displacement at all integration points in iteration cycle ` is

determined from,

ε(`) = Buu
(`−1) (5.18)

We first assume that the strain increment ε(`)− εn is purely elastic. Here εn is the total strain

at step n, εn = εen + εpn. It follows from Hooke’s law that the “elastic predictor stress” can be

calculated from,

σe = De
(
ε(`) − εpn

)
(5.19)

If f (σe) ≤ 0, such an elastic trial stress state is admissible,

σ′(`) = σe, D(`)ep = De, ε(`)p = εpn (5.20)

However, if f (σe) > 0, this trial stress state is not admissible and needs to be corrected

to ensure that the yield condition is met at each integration point. Two stress return mapping

strategies are employed for the Drucker-Prager model. If bIe1 − 9Kbb
√
Je2/G− s < 0, where Ie1

and Je2 are the corresponding stress invariants for σe and se, the stress state is returned to the

smooth portion of the yield surface according to,

σ′(`) = σe − f (σe)

G+ 9Kbb

(√
2Gn + 3KbI

)
(5.21)

where n = se/
√

2Je2 . The corresponding matrix of tangent moduli and total strain can be
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expressed as,

D(`)ep = De − 1

G+ 9Kbb


2G2f (σe)√

Je2
(Id − n � n)

+
(√

2Gn + 3KbI
)

�
(√

2Gn + 3KbI
)
 (5.22)

ε(`)p = εpn +
f (σe)

G+ 9Kbb

(√
2

2
n + bI

)
(5.23)

where Id is the deviatoric projection tensor (Čermák et al., 2019; De Souza Neto et al., 2011).

On the other hand, if bIe1 − 9Kbb
√
Je2/G − s > 0, the stress state is returned to the apex

of the yield surface,

σ′(`) =
s

3b
I, D(`)ep = O, ε(`)p = ε(`) − s

9Kb
I (5.24)

where O is a zero fourth-order tensor.

After the stress state correction, the residual between the internal force/flux and the external

load/flux at the `-th iteration is,

r(`) =


∫

Ω BT
u

(
σ′(`) − σ′n

)
dΩ−Q

(
p(`−1) − pn

)
−QT

(
u(`−1) − un

)
− (Stab + S + θ∆tH)

(
p(`−1) − pn

)
−


∆fu

fp + ∆tHpn


(5.25)

In general, r(`) may be nonzero since the corrected stress tensor σ′(`) could be away from the

equilibrium state. Displacement and pore pressure at nodal points need to be updated in order

to eliminate the residual,

 K
(`)
t −Q

−QT − (Stab + S + ∆tθH)


 u(`) − u(`−1)

p(`) − p(`−1)

 = −r(`) (5.26)
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where the matrix of tangent moduli K
(`)
t is constructed using D(`)ep,

K
(`)
t =

∫
Ω

BT
u D(`)ep Bu dΩ (5.27)

Note that since the matrix on the left hand side of Eq. 5.26 equals to the gradient of the

residual r(`) with respect to u(`−1) and p(`−1), convergence of this procedure is expected to be

quadratic.

5.2.4 Stabilization Scheme

Numerical issues resulted from the incompressibility constraint for hydromechanically coupled

problems at the undrained limit have long been noted (Vermeer and Verruijt, 1981; Zienkiewicz

et al., 1990; Murad and Loula, 1992, 1994). Finite elements that employ equal-order spatial

interpolation for displacement and pore pressure fields for a mixed formulation are numerically

unstable as the shape functions do not satisfy the LBB condition (Zienkiewicz et al., 1990;

Murad and Loula, 1992, 1994). In addition to sub-optimal convergence issue, the resulting

pore pressure field could exhibit spurious oscillations. Nevertheless, low-order elements such

as bilinear-displacement/bilinear-pressure quadrilateral elements (Q4P4) have computational

advantages with fewer degrees of freedom, fewer Gauss points, and simpler data structures.

Computational efficiency is especially important when we deal with an elasto-plastic material

since significant computational effort is devoted to the iteration at the material level at each

Gauss point; for example, Q9P4 elements, though stable in the LBB sense, would typically

require 3× 3 Gauss-quadrature, whereas only 2× 2 is needed for Q4P4 elements.

It has been shown that for finite elements such as Q4P4, incorporating a stabilization scheme

could produce numerically stable results (White and Borja, 2008; Bouklas et al., 2015). Here

we adopt the stabilization formulation of White and Borja (2008) by adding an additional term

in the mass balance equation, which is reflected by the sub-matrix Stab in Eqs. 5.10 and 5.26.

With the addition of the Stab sub-matrix, the (2,2) sub-block of the coefficient matrix is no

longer trivial at the undrained limit. For plane strain or cylindrical axisymmetric problems
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with Q4P4 elements,

Stab =
χ

2G

∫
Ω

(
NT
p −

1

4

)(
Np −

1

4

)
dΩ (5.28)

where χ is a multiplier, typically O (1), for adjusting the level of stabilization.

5.3 Analytical Solution for Poro-elasto-plastic Consolidation

One-dimensional consolidation in a semi-infinite poro-elasto-plastic medium with either a Drucker-

Prager or a Mohr-Coulomb yield criterion can be solved analytically. For a consolidation prob-

lem, a uniform mechanical load is applied instantaneously on the surface and held constant

afterwards. Since the total stress field is independent of time, diffusion equations for the pore

pressure become decoupled from solid deformation. In other words, the hydromechanical cou-

pling is loosely one-way as the pore pressure is only affected by mechanical deformation through

the change of the coefficient of consolidation when the material yields. For a semi-infinite do-

main or a laterally constrained one-dimensional column, the effective stresses resulted from

the surface load are in triaxial compression states. Yielding according to a Drucker-Prager

or a Mohr-Coulomb criterion can therefore be made equivalent if the material constants are

expressed according to Eq. 5.7. As recognized by Pariseau (Pariseau, 1999), poro-elasto-plastic

consolidation is analogous to a Stefan problem (Carslaw and Jaeger, 1992) and is a rare case

where the analytical solution can be obtained to serve as a benchmark for poro-elasto-plastic

numerical development. Below we present the derivation revised from the work by Pariseau

(Pariseau, 1999) for clarity in physical parameters and with the Drucker-Prager and Mohr-

Coulomb criteria unified.

5.3.1 Governing Equations

Initial and boundary conditions for the problem we deal with can be described as follows: at

z = 0, σz = σ0 for t > 0 and p = 0 for t > 0. Extent of the domain is z > 0. Since the problem
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is one dimensional, εx = εy = 0, the storage equation takes the form (Verruijt, 2013),

α
∂εz
∂t

+ S
∂p

∂t
=
κ

µ

∂2p

∂z2
(5.29)

Assuming an incremental linear material response,

∆σ′z = M∆εz (5.30)

where M is the confined modulus, we obtain,

α

M

∂σ′z
∂t

+ S
∂p

∂t
=
κ

µ

∂2p

∂z2
(5.31)

Substituting Biot’s effective stress definition, σ′z = σ0 + αp, into the above equation yields a

diffusion equation for pore pressure,
∂p

∂t
= cv

∂2p

∂z2
(5.32)

where cv is the coefficient of consolidation or hydraulic diffusivity,

cv =
κM

µ (α2 + SM)
(5.33)

The form of the diffusion equation in Eq. 5.32 remains the same regardless of plastic yielding.

Constitutive behaviors are reflected through the confined modulus M . Denote Me as the

confined modulus for linear poroelasticity,

Me = K +
4

3
G =

3K (1− ν)

1 + ν
(5.34)

The corresponding diffusivity cve can be determined with M = Me from Eq. 5.33. At the

undrained limit (t = 0), since there has not yet been any fluid loss from the domain, ∂2p/∂2z =

0. The initial pore pressure induced by the sudden loading on the surface is thus uniform along
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the depth. For linear poroelasticity, the initial pore pressure is,

p0e = − α

α2 + SMe
σ0 (5.35)

Denote Mp as the confined modulus of the plastic zone. Diffusivity of the plastic zone cvp

can be determined with M = Mp from Eq. 5.33. Next we show that modulus Mp is constant

for poro-elasto-plasticity with a Drucker-Prager or Mohr-Coulomb failure criterion. Since the

load is applied in the z−direction, σ′z is more compressive than the lateral effective stress

σ′x = σ′y = σ′h. The Drucker-Prager failure criterion can be written as,

σ′z −
1 + 2

√
3b

1−
√

3b
σ′h +

√
3s

1−
√

3b
= 0 (5.36)

A Mohr-Coulomb criterion can be made equivalent to the Drucker-Prager criterion in this

particular case if the cohesion and internal friction angle are chosen according to Eq. 5.7.

Indeed, substituting Eq. 5.7 into Eq. 5.36, we recover the Mohr-Coulomb criterion with,

Kp =
1 + 2

√
3b

1−
√

3b
=

1 + sinϕ

1− sinϕ
σc =

√
3s

1−
√

3b
=

2c0 cosϕ

1− sinϕ
(5.37)

where Kp and σc are the passive failure coefficient and uniaxial compressive strength, respec-

tively. Given the plastic potential in Eq. 5.9, the flow rule can be expressed as,

∆εph = λ
∂g

∂σ′h
= λ

(√
3

6
+ b

)
(5.38)

∆εpz = λ
∂g

∂σ′z
= λ

(
−
√

3

3
+ b

)
(5.39)

where λ is a plastic multiplier. Eqs. 5.36-5.39 in conjunction with Hooke’s law and the strain
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decomposition rule, e.g., ∆εz = ∆εez + ∆εpz, yield,

Mp =
3K (1− 2ν)

1 +
2 (1− ν)

KpKd
− 2ν

(
1

Kd
+

1

Kp

) (5.40)

where Kd is the dilatancy coefficient characterizing the plastic strain ratio between the lateral

and the axial directions,

Kd = −
2∆εph
∆εpz

=
1 + sinψ

1− sinψ
(5.41)

5.3.2 Pore Pressure Field

Depending on the magnitude of the applied load, the consolidation response could be purely

poroelastic, poro-elasto-plastic or fully plastic. If the material response is poroelastic, we

have σ′h = ν/ (1− ν) (σ0 + αp). At the undrained limit (t = 0), the pore pressure drops

instantaneously from p = p0e to p = 0 on the surface. Onset of plastic yielding occurs if the

stress state with p = 0 meets the failure criterion, whereas full plasticity takes place if the stress

state with p = p0e does. Denote σep and σfp as the threshold applied loads. Poro-elasto-plastic

consolidation occurs only when σfp < σ0 < σep,

σep =

√
3s (1− ν)√

3b (1 + ν)− 1 + 2ν
(5.42)

σfp = σep

(
1 +

α2

SMe

)
(5.43)

Note that a necessary condition for any plastic yielding to occur is
√

3b (1 + ν) − 1 + 2ν < 0,

i.e., Kp < (1− ν) /ν so that σep < 0. Therefore, certain parameter combinations never result

in plastic yielding, e.g., ϕ = 30◦ and ν = 0.25. In addition, if both the solid and fluid phases

are incompressible, S = 0, full plasticity never occurs.

For the case of poroelasticity (σ0 > σep) or full plasticity (σ0 6 σfp), the pore pressure field
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is given by the classical solution to one dimensional diffusion (Carslaw and Jaeger, 1992),

p = p0

[
1− erfc

(
z/2
√
cvt
)]

(5.44)

where cv = cve and p0 = p0e for poroelasticity and cv = cvp and p0 = p0p for full plasticity,

p0p = − α

α2 + SMe
σfp −

α

α2 + SMp
(σ0 − σfp) (5.45)

The threshold pore pressure when σ0 = σfp is,

pfp = −
ασfp

α2 + SMe
= −ασep

SMe
(5.46)

The coupled problem for poro-elasto-plastic consolidation when σfp < σ0 < σep can be

formulated as follows,
∂p

∂t
= cvp

∂2p

∂z2
, 0 < z < z, t > 0 (5.47)

∂p

∂t
= cve

∂2p

∂z2
, z 6 z <∞, t > 0 (5.48)

p = p0e, t = 0; p = 0, z = 0, t > 0 (5.49)

where depth of the elasto-plastic interface z is a function of time. At z = z, the effective normal

stress and pore pressure are constant,

σ′z = σep p = − 1

α
(σ0 − σep) (5.50)

The continuity condition at the elasto-plastic interface requires,

(
∂p

∂z

)
z=z+

=

(
∂p

∂z

)
z=z−

(5.51)

The problem so defined is analogous to a Stefan problem (Pariseau, 1999) and the solution for
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the pore pressure field is (Carslaw and Jaeger, 1992),

p =
p

erf
(√

β/cvp
)erf

(
z

z

√
β

cvp

)
, z ≤ z (5.52)

p = p0e +
p− p0e

erfc
(√

β/cve

)erfc

(
z

z

√
β

cve

)
, z > z (5.53)

where z extends from the surface into the interior of the domain according to,

z (t) = 2
√
βt (5.54)

and constant β satisfies the transcendental equation,

exp

(
β

cve
− β

cvp

) erfc
(√

β/cve

)
erf
(√

β/cvp
) =

(
p0e

p
− 1

)√
cvp
cve

(5.55)

In this regard, poro-elasto-plastic consolidation in a semi-infinite domain is self-similar with

respect to z/2
√
βt. After the pore pressure field is known, strain and displacement fields can

be readily derived, see Appendix D.2.

To what a degree the pore pressure field is affected by plastic deformation is dictated by

cvp/cve, or Mp/Me when α = 1 and S = 0. Depending on the parameter combinations of ν,

ϕ and ψ, the influence could be negligible, e.g. ν = 0.22, ϕ = ψ = 30◦, Mp/Me = 0.995, or

appreciable, e.g. ν = 0, ϕ = 20◦, ψ = 0◦, Mp/Me = 0.505. Given ϕ and ψ, Mp/Me decreases

monotonically with ν.

5.4 Numerical Validation

5.4.1 Indentation Model Setup and Numerical Stability

We implement the finite element algorithm outlined in Section 5.2 in MATLAB. Effectiveness

of the stabilization scheme is first tested by modeling poroelastic spherical indentation at the

undrained limit. Here the indentation problem is chosen over classical poroelasticity benchmark
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problems for its more complex stress field.

The numerical model consists of a cylindrical sample of radius rs = 40 mm and height

rh = 50 mm. A roller boundary condition is applied at the bottom while the lateral boundary

is traction free. A step displacement load is applied on the top surface within 0 ≤ r ≤ 1 mm

with uz =
(
d− r2/2R

)
H (t), where H (t) is a Heaviside function; d denotes the depth of

penetration; and R is the radius of the spherical indenter, d = 0.1 mm and R = 10 mm. Radial

displacement ur is not constrained on the surface. At r > 1 mm, the surface is traction free.

Boundary conditions so defined on the surface are consistent with the Hertzian assumption

for the contact radius, a =
√
Rd. Case III drainage condition is prescribed on the surface

while zero pore pressure is imposed on the lateral boundary. Gravity is ignored in this model.

Axisymmetric quadrilateral (Q4P4) mesh is used and refined near the contact region.

Unless otherwise noted, material properties and simulation parameters listed in Table 5.1

are used as the default for parameters in this study. The properties are chosen based on those

of the Gulf of Mexico shale in Cheng (2016). This set of parameters corresponds to α = 0.968,

S = 0.153 1/GPa and ω = 0.416. It should be noted that if Ks and Kf are finite, the porous

medium as a whole is compressible even near the undrained limit. As such, the stabilization

scheme is not necessarily needed. Therefore, for the purpose of validation simulations, both

the solid and fluid phases are assumed to be incompressible, i.e., Ks →∞ and Kf →∞. The

undrained limit is achieved by setting ∆t = 0 in the numerical calculation.

It should be mentioned that shale is known to exhibit viscous behaviors (Chang and Zoback,

2009; Bennett et al., 2015; Borja et al., 2020). For a fluid-filled porous medium, both vis-

coelasticity and poroelasticity can result in indentation force relaxation. These two relaxation

mechanisms are, however, distinct and can be distinguished from each other by their respective

time scaling. Viscoelastic relaxation time is associated with the viscosity and elastic modulus

of the material and is therefore independent of any length scale. This is in contrast to the

quadratic relation between the relaxation time and the contact radius or indentation depth in

poroelastic indentation (Hu et al., 2010; Kalcioglu et al., 2012), where the dimensionless time

can be defined according to t∗ = tcv/a
2. Viscous effect is assumed to be negligible here.
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Contours of the normalized pore pressure field from simulations with or without the sta-

bilization scheme are shown in Fig. 5.1. Here the stabilization multiplier is set to be χ = 1.

The pore pressure is normalized according to pn = (p− pmin) / (pmax − pmin). Evidence of nu-

merical oscillation is rather obvious when the numerical algorithm is unstabilized. However,

the spurious oscillations are effectively suppressed and the pore pressure field becomes well be-

haved when the stabilization scheme is incorporated. Fig. 5.1(a) shows that right underneath

the indenter, positive pore pressure is generated and along the contact axis, the pore pres-

sure decreases gradually with depth. Pore pressure at the origin and the indentation force are

p = 193.079 MPa and F (0) = 406.6 N from the simulation with the stabilized scheme, which

are in excellent agreement with the analytical predictions of p = 193.386 MPa and F (0) = 405

N.

Additional simulations with χ = 0.1, 10 and 100 are conducted to analyze the effect of the

stabilization multiplier χ. The corresponding pore pressure at the origin and the indentation

force for these three cases are p = 208.260, 178.661, 143.219 MPa, and F (0) = 407.972, 406.150,

392.109 N, respectively. With χ = 0.1, the stabilization scheme is not effective and there are

still moderate oscillations beneath the contact area. On the other hand, with χ = 10 and

100, the pore pressure field is overly diffused. Therefore, the case with χ = 1 is our baseline

simulation for poroelastic indentation.

Skeleton Young’s modulus, E 1.853 GPa
Skeleton Poisson’s ratio, ν 0.22
Solid bulk modulus, Ks 34 GPa
Fluid bulk modulus, Kf 2.25 GPa

Porosity, n 0.3
Permeability, κ 1× 10−19 m2

Viscosity, µ 1× 10−3 Pa · s
Stabilization multiplier, χ 1

Table 5.1: Baseline parameters for numerical simulations.
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0 0.5 1

Figure 5.1: Contours of the normalized pore pressure field at the undrained limit, pn =
(p− pmin) / (pmax − pmin); (a) with the stabilization scheme, pmin = −0.0309 MPa, pmax = 193
MPa; (b) without the stabilization scheme, pmin = −1.11 MPa, pmax = 329 MPa; contour
interval: 0.02, plot window size: 5× 5 mm.

5.4.2 Numerical Accuracy

Accuracy of the FEM algorithm is scrutinized by extensively benchmarking it against analytical

solutions. Comparison is first made between the numerical results and poroelastic solutions

to the problems of Terzaghi, Mandel, Cryer and De Leeuw (Terzaghi, 1943; Mandel, 1953;

Cryer, 1963; De Leeuw, 1965; Verruijt, 2013). We observe that the stabilized Q4P4 scheme

performs well and can model poroelasticity problems to a high degree of accuracy, see Appendix

D.1. Though sharp pressure gradient near the drainage boundary still leads to some minor

oscillations at early time, see Figs. D.1, D.2 and D.4, as discussed in White and Borja (2008),

such oscillations cannot be completely avoided even with stable elements such as Q9P4 and

these oscillations do not propagate to the rest of the domain.

Poro-elasto-plastic consolidation is then modeled as the second series of benchmark. The

numerical model is setup with ν = 0, c0 = 5 MPa and ϕ = ψ = 20◦ in a domain of width 1 m

and depth 300 m, which correspond to α = 0.982 and S = 0.153 1/GPa. The corresponding

threshold loads for plastic yielding are σep = −14.28 MPa and σfp = −62.72 MPa. A case

with an applied load σ0 = −30 MPa is first considered. Plastic yielding is expected to initiate
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from the surface and extend into the domain with time. Comparisons between the numerical

and analytical results show excellent agreements on the evolution of the elasto-plastic interface

with time and distributions of the vertical strain along the depth at various times, see Fig.

5.2. It should be noted that at the end of this simulation (t = 109 s), change in pore pressure

at z > 100 m is less than 0.1% of the initial value, which verifies that the numerical model is

sufficiently large for simulating the consolidation problem in a semi-infinite domain.

Instantaneous pore pressure response at the undrained limit is further examined with

−150 < σ0 < 0 MPa. According to Eqs. 5.35 and 5.45, initial excess pore pressure p0 as

a function of σ0 is a bilinear relationship. The rate of change is ∂p0/∂ |σ0| = 0.787 when

−62.72 6 σ0 < 0 MPa. When σ0 6 −62.72 MPa, ∂p0/∂ |σ0| = 0.887 and 0.849 for ψ = 0◦ and

20◦, respectively. Results from the numerical simulations confirm such a bilinear relationship,

see Fig. 5.3. When there is plastic yielding, the rate of increase is higher than that of the

purely poroelastic case since when Kp < (1− ν) /ν, Mp < Me (or cvp < cve). Furthermore, Mp

increases with Kd at a given Kp. Therefore, p0 is smaller at ψ = 20◦ than ψ = 0◦ due to shear

induced dilatancy.

5.5 Spherical Indentation

Theoretical solutions for poroelastic spherical indentation via step displacement loading with

three distinct surface drainage conditions, namely, a fully permeable surface (case I), a fully

impermeable surface (case II), or a mixed surface drainage condition, impermeable within the

contact region but fully permeable everywhere else (case III), have been obtained in Chapters

2, 3 and 4. Denote t∗ as the dimensionless time, t∗ = tcv/a
2. It follows from the Hertzian

solution that at the undrained and drained limits, the indentation force can be determined

from,

F (0) =
16Ga3

3φR
, F (∞) =

8G (2η − 1) a3

3ηR
(5.56)
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Figure 5.2: (a) Depth of the elasto-plastic interface z as a function of time; (b) Distributions
of the vertical strain along the depth at t∗ = 1× 108, 4× 108, 1× 109 s; theoretical predictions
in lines.
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Figure 5.3: Instanenous excess pore pressure p0 as a function of the applied load |σ0|; theoretical
solutions in lines.

where η and φ are two derived material constants,

η =
K

2G
+

2

3
, φ =

α2 + S
(
K + 4

3G
)

α2 + S
(
K + 1

3G
) (5.57)

The ratio between the two force asymptotes gives,

ηf =
F (0)

F (∞)
= 1 + ω (5.58)

where,

ω =
φ+ 2η (1− φ)

φ (2η − 1)
(5.59)

The theoretical range of ω is 0 ≤ ω ≤ 1. If both the solid and fluid phases are incompressible

(α = 1, S = 0), we have φ = 1 and ω = 1− 2ν.

A normalized indentation force Fn (t∗) can be defined according to,

Fn (t∗) =
F (t∗)− F (∞)

F (0)− F (∞)
(5.60)
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An important finding from the theoretical analysis is that mastercurves can be constructed

for the normalized indentation force Fn(t∗) as a function of dimensionless time t∗ and they

have weak dependence on ω only. For each case of surface drainage condition, Fn (t∗) can be

expressed explicitly in the Laplace domain. For example, for case I,

Fn (t∗) =
3

2ω

∫ 1

0
x

1
2
∗ L−1

[
s−1
∗ θ1 (s∗, x∗)

]
dx∗ (5.61)

where s∗ is a Laplace variable for t∗; θ1 (s∗, x∗) is the solution to a Fredholm integral equation

of the second kind, dependent on material properties through ω only and Laplace inversion

L−1 [·] is defined as,

L−1 [f (s∗)] =
1

2πi

∫ γ+i∞

γ−i∞
f (s∗) exp (s∗t∗) ds∗ (5.62)

Function Fn (t∗) for case I can be actually fitted by an elementary function with four parameters

a1, b1, a2, b2 with the coefficient of determination R2 = 1 for all ω,

fn (t∗) =
1

2

(
1

1 + a1t
b1
∗

+
1

1 + a2t
b2
∗

)
(5.63)

If the bulk and shear modulus, K and G, Biot’s coefficient α and storage coefficient S are

known, ω is fully determined. An important implication of Eqs. 5.61-5.63 is that given ω,

the corresponding master curve can be used to determine the hydraulic diffusivity cv if the

transient indentation force is measured in a poroelastic spherical indentation experiment.

If the porous medium obeys a Drucker-Prager or Mohr-Coulomb yield criterion, we now have

three additional material constants, e.g., cohesion c0, friction angle ϕ and dilatancy angle ψ. If

we consider {t, a, R, α, S, cv, K, G} as the governing parameters for poroelastic indentation,

with the addition of the plasticity parameters, it follows from the Buckingham Π−theorem, the

transient indentation force can be expressed as,

F (t) =

(
Ga3

R

)
f

(
cvt

a2
,
a

R
, α, SK,

K

G
,
c0

G
,ϕ, ψ

)
(5.64)
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If both the solid and fluid phases are incompressible, Eq. 5.64 can be rewritten as,

F (t) =

(
Ga3

R

)
f

(
cvt

a2
,
a

R
, ω,

c0

G
,ϕ, ψ

)
(5.65)

Without additional insights from theoretical analysis, the list of dimensionless groups in Eqs.

5.64-5.65 cannot be further reduced in general for the normalized force Fn(t∗) in poro-elasto-

plastic indentation.

In this work, numerical analysis for poroelastic indentation therefore aims at investigating

the role of ω as the sole parameter that influences the normalized indentation force relaxation

curves. For poro-elasto-plastic indentation, the questions we intend to address are how c0/G,

ϕ and ψ affect the indentation process and whether the constituent compressibility of the Gulf

of Mexico Shale has a strong effect when plasticity is considered. It should be noted that ratio

a/R or d/R does affect development of plastic deformation.

5.6 Poroelastic Indentation

5.6.1 The Role of ω

Dependence of Fn(t∗) on ω is first examined with four simulations cases, each having a distinct

set of material and simulation parameters. Setup of the numerical model is the same as that in

Section 5.4.1. The mixed surface drainage condition (case III) is applied. Parameters different

from Table 5.1 for each set are:

• set i (baseline): ν = 0.22, Ks →∞, Kf →∞

• set ii: E = 18.53 GPa, ν = 0.22, Ks →∞, Kf →∞

• set iii: ν = 0.22, Ks →∞, Kf →∞, d = 0.233 mm (a = 1.526 mm)

• set iv: ν = 0, Ks = 3 GPa, Kf = 3 GPa

In these four sets, d/R (a/R), α, SK and K/G have all varied, but ω remains constant,

ω = 0.56. The simulation results show that the transient force responses from the four cases
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differ significantly. Nevertheless, their force asymptotes at the undrained and drained limits

are in good agreement with those predicted by the Hertzian solutions, see Table 5.2. Here the

indentation force at the end of the simulation is taken as the drained asymptote. Now after

the indentation force is normalized and plotted versus the dimensionless time t∗, the four force

relaxation curves collapse into one mastercurve with only slight discrepancy at late time, see

Fig. 5.4. Furthermore, the normalized curves from the simulations are in excellent agreement

with the theoretical solution except for again some minor discrepancy at t∗ > 1. Among them,

transient force relaxation is the fastest in set iii with a larger contact radius.
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Figure 5.4: Comparison of the force relaxation curves between the poroelastic theoretical solu-
tion and numerical simulations conducted with sets i - iv parameters; ω = 0.56.
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0 0.5 1

Figure 5.5: Contours of the normalized pore pressure pn at t∗ = 0.1, 1 and 10 from the baseline
simulation; contour interval: 0.02; plot window size as marked.

Figure 5.6: Flux field at t∗ = 0 and 10 from the baseline simulation; plot window size: 2×2 mm;
the maximum vector as marked by the red dot is qmax = 6.5214× 10−5 m/s and 6.4226× 10−8

m/s at t∗ = 0 and 10.

Discrepancies in the force relaxation curves at late time can be attributed to the boundary

effect. Pore pressure field at various times for this baseline simulation is shown in Fig. 5.1(a) and

5.5. While the area of positive pore pressure grows with time, the maximum pore pressure pmax
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decreases and its location gradually moves downwards along the contact axis. The minimum

and maximum pore pressures at t∗ = 0.1, 1 and 10 are pmin = −0.0176, −0.0099, −0.0039

MPa and pmax = 95, 9.35, 0.672 MPa. At t∗ = 10, the contour for pn = 0.02 becomes nearly

parallel to the lateral boundary, indicating the diffusion process is now affected by the drainage

condition on the side.

Fluid flux field near the contact area at t∗ = 0 and 10 is shown in Fig. 5.6. At t∗ = 0, the

sudden loading drives the fluid to flow downwards and around the contact edge. At t∗ = 10,

since the location of the maximum pore pressure is already inside the domain, fluid flows

upwards towards the contact edge and the free surface. At both t∗ = 0 and 10, the maximum

flux vector is located at r = 1 owing to the discontinuity in the drainage boundary condition,

and qmax = 6.52× 10−2, 6.42× 10−5 mm/s, respectively.

Effect of parameter ω on the normalized indentation force Fn (t∗) is examined further with

Ks → ∞, Kf → ∞ and ν = 0, 0.45. These parameters correspond to ω = 1, 0.1. All three

cases of surface drainage conditions are analyzed. For cases I and II, the simulations are carried

out by setting the entire top surface as fully drained (p = 0) or undrained (qz = 0), respectively.

In all three surface drainage cases, the numerical results are in excellent agreement with the

theoretical solutions. A comparison of the force asymptotes at the undrained and drained limits

is given in Table 5.3. The discrepancy is the largest at 1.35% for F (∞) at ω = 1 and is smaller

than 1% for the rest. A comparison of the force relaxation at transient times in terms of ∆Fn is

shown in Fig. 5.8. Here ∆Fn denotes the difference in the normalized indentation force Fn (t∗)

between the numerical and theoretical solutions. Overall, the transient results agree very well

with the theoretical solutions. The relatively large discrepancy at large time is again attributed

to the finite sample size and far field drainage boundary conditions.

Both the finite element simulations and theoretical solutions show that relaxation of the

normalized indentation force is the slowest when the top surface is impermeable and the fastest

when it is fully permeable, see Fig. 5.7. The mixed surface drainage cases behave asymptotically

as the impermeable cases at early time, but as the permeable cases at late time. This can

be explained by the fact that excess pore pressure is mostly being generated in the region
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underneath the contact. Among the three surface drainage conditions, characteristic drainage

paths for this excess pore pressure region are the shortest in case I and the longest in case II.

Simulations in this section illustrate the unique role of ω for poroelastic spherical indenta-

tion. Furthermore, the narrow bandwidth between the force relaxation curves at ω = 0.1 and 1

suggests that dependence of Fn (t∗) on ω is relatively weak. Among the three types of surface

drainage conditions, case III seems to be the least affected by ω. It should be noted that though

the theoretical range of ω is [0, 1], the values for sixteen saturated poroelastic geomaterials,

based on the material constants listed in Cheng (2016), fall within the range between 0 and

0.5 (Liu and Huang, 2019b). This means dependence of the force relaxation curve on ω could

be even weaker from a practical standpoint. In other words, these normalized force relaxation

curves as mastercurves for poroelasticity characterization could be quite reliable as they are

not strongly affected by the uncertainties in material properties.

Theoretical Numerical

set i ii iii iv i ii iii iv

F (0) (N) 405 4050 1447.5 386.1 406.6 4066 1462.6 387.1
F (∞) (N) 259.6 2596 927.9 247.1 261.9 2619 937.5 249.2

Table 5.2: Force asymptotes at early and late times for cases with parameters from sets i - iv.

Theoretical Numerical

ω 0.1 1 0.1 1

F (0) (N) 340.8 494.1 343.3 497.5
F (∞) (N) 309.8 247.1 312.7 250.3

Table 5.3: Force asymptotes at early and late times for ω = 0.1 and 1 with case III surface
drainage condition.
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(a) case I and II surface drainage conditions
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(b) case III surface drainage condition

Figure 5.7: Comparison of the poroelastic force relaxation responses between the numerical and
theoretical solutions for (a) cases I & II and (b) case III surface drainage conditions; ω = 0.1
and 1.
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(a) case I and II surface drainage conditions
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(b) case III surface drainage condition

Figure 5.8: Differences between the numerical and theoretical solutions in the normalized in-
dentation force as a function of time at ω = 0.1 and 1.
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5.6.2 Onset of Plasticity

Poroelastic stress fields can be analyzed to understand onset of plasticity. Consider the baseline

simulation case with Ks → ∞, Kf → ∞, ν = 0.22 and case III drainage condition. Denote

% =
√
J2 + bI1 as the Drucker-Prager stress. At the undrained limit, the maximum Drucker-

Prager stress is %1 max = 57.5 MPa at r = 0, z/a = 0.55. Meanwhile, at the drained limit,

there are two local maxima, %2max = 28.7 MPa at r = 0, z/a = 0.65 and %3 max = 23.1 MPa at

r/a = 1, z = 0. This means the corresponding cohesion to initiate plasticity is c0 = 46.9 MPa

(c0/G = 0.0618) at the undrained state and c0 = 23.4 and 18.8 MPa (c0 = 0.0308, 0.0248)

at the drained state, respectively. Therefore, if c0 > 46.9 MPa, the indentation process will

always be poroelastic.

5.7 Poro-elasto-plastic Indentation

5.7.1 Effect of Constituent Compressibility

Now we consider the material to be poro-elasto-plastic. Effect of constituent compressibility

is first examined. Two series of numerical simulations with case III surface drainage condition

are conducted. In the first series, properties of the Gulf of Mexico shale as listed in Table

5.1, Ks = 34 GPa and Kf = 2.25 GPa, are used. Poroelastic constants for this series are:

α = 0.968, S = 0.153 1/GPa and ω = 0.416. In the second series, we assume incompressibility

for the solid and fluid phases, i.e., Ks →∞ and Kf →∞, which corresponds to α = 1, S = 0

and ω = 0.56.

In both series, we set ϕ = ψ = 20◦, c0 = 15.18 and 32.45 MPa (c0/G = 0.02 and 0.043).

The cohesion values are chosen based on the empirical correlation in Horsrud (2001). For highly

porous and unconsolidated shales from North Sea, which are similar to Gulf of Mexico shales,

the uniaxial compressive strength (UCS, in MPa) can be correlated to the Young’s modulus E

(in GPa) derived from geophysical logs of velocity and density according to UCS = 7.97E0.91.

As an order of magnitude estimate, assuming a friction angle ϕ = 20◦, ν = 0.22 and a ratio of

4−8 between laboratory measured and log-derived Young’s moduli, we have c0/G = 0.02−0.043
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Figure 5.9: Effect of constituent compressibility on the normalized force relaxation behaviors;
c0/G = 0.02 and 0.043.

for this type of shales.

Denote ∆Fn as the difference in the normalized indentation force Fn between the numerical

and the theoretical poroelasticity solutions. Variation of ∆Fn with the dimensionless time t∗

is shown in Fig. 5.9. At c0/G = 0.02 and 0.043, effect of compressibility on |∆Fn| is relatively

small and the differences between the two series are less than 0.73% and 0.52%, respectively.

Denote an equivalent plastic strain according to,

εp =

√
(εpr)

2
+ (εpz)

2
+
(
εpθ
)2

+ 2 (εprz)
2 (5.66)

In all these cases, plastic deformation occurs immediately at the undrained state. The maximum

plastic strain εpmax at a given time remains constant during the transient phase since there is

no additional plastic strain accumulation as the excess pore pressure dissipates. For c0/G =

0.02 and 0.043, εpmax = 0.0347 and 0.0127 in the compressible cases and εpmax = 0.0394 and

0.0195 in the incompressible cases, suggesting that plastic deformation is more severe when

the constituents are incompressible. As a result, the two incompressible cases actually deviate
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further from the poroelasticity solutions as shown in Figure 5.9. Therefore, in the subsequent

sections, we set Ks →∞ and Kf →∞ to stay on the less conservative side as we systematically

explore the effect of plastic deformation.

5.7.2 Effect of Cohesion - Associative Cases

In order to investigate the effect of plastic deformation on the coupled indentation process via

cohesion, friction and dilatancy angles, we conduct four series of numerical simulations with case

III surface drainage condition, assuming incompressibility in the constituents. According to the

poroelasticity analysis in Section 5.6.2, since plastic deformation occurs only if c0 6 46.9 MPa,

cohesion is chosen from c0 = 0.05− 46 MPa, which covers the range of c0/G = 0.0001− 0.06.

Friction and dilatancy angles for each series are taken as follows,

• series -: ϕ = ψ = 20◦

• series ∦: ϕ = ψ = 30◦

• series .: ϕ = 20◦, ψ = 0◦

• series /: ϕ = 30◦, ψ = 0◦

In addition, for each poro-elasto-plastic case, an elasto-plastic simulation is conducted as a

reference for results at the drained limit.

The hydromechanically coupled responses are analyzed based on the plastic deformation

mechanisms in terms of the plastic zone development and equivalent plastic strain, the force

asymptotes at the undrained and drained limits, pore pressure and flux fields, and the transient

force relaxation behaviors. Denote ηε = εpmax (0) /εpmax (∞) as the ratio of the maximum equiv-

alent plastic strains at the undrained and drained limits, ηf = F (0)/F (∞) as the ratio between

the undrained and drained force asymptotes, and η∗ = F (0) /F∗ as the ratio of the undrained

force asymptote over the indentation force F∗ from the elasto-plastic simulation. These ratios

are to be used as quantitative measures for the effect of plastic deformation.
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After synthesizing the simulation results from all four series, we find that given ϕ and ψ, as

the cohesion varies, four distinct types of responses emerge as a result of juxtaposition of plastic

deformation mechanisms and hydromechanical coupling. There are qualitatively differences

between the associative (ϕ = ψ) and non-associative (ψ = 0◦) cases. However, between Series

- and ∦, and Series . and /, they differ only quantitatively in the critical cohesion values for

transitions from one type of behaviors to another. Therefore, in the discussion below, we focus

primarily on the results from Series - and . with ϕ = 20◦.

For Series -, the range of cohesion for each type of behaviors is,

• Type I: 29 6 c0 6 46.9 MPa (0.038 6 c0/G 6 0.062)

• Type II: 15 6 c0 < 29 MPa (0.020 6 c0/G < 0.038)

• Type III: 3 6 c0 < 15 MPa (0.004 6 c0/G < 0.020)

• Type IV: c0 < 3 MPa (c0/G < 0.004)

Characteristics of each type of behaviors can be described as follows. When c0 > 46.9 MPa,

there is no plastic deformation at all in the domain. The response is purely poroelastic. The

drained force asymptote F (∞) is therefore identical to the indentation force F∗ from the elasto-

plastic simulation, ηf = η∗.

When 29 6 c0 6 46.9 MPa, ηε = 1 and ηf w η∗ = 1.55. In this regime, indentation

induced plastic deformation is fully contained in a region at a distance beneath the contact

surface. Plastic deformation occurs immediately at the undrained state. However, during the

transient period, the plastic zone does not grow in size and there is no additional plastic strain

accumulation. The maximum plastic strain εpmax remains constant at z/a = 0.55 and r = 0

and thus ηε = 1 as the excess pore pressure dissipates, see Figs. 5.10 and 5.11. Furthermore,

since plastic deformation induced by poro-plastic coupling is still relatively small, the drained

force asymptote F (∞) remains almost the same as F∗, ηf w η∗. If there is no presence of pore

fluid, the indentation process is elastic.

159



0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

Figure 5.10: Series -: ϕ = ψ = 20◦, series .: ϕ = 20◦, ψ = 0◦; Effect of cohesion on the ratios
of the equivalent plastic strain ηε and force asymptotes ηf and η∗.
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Figure 5.11: Series -: Effect of cohesion on the location and magnitude of the maximum
equivalent plastic strain εpmax; U - undrained limit, D - drained limit.
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When 15 6 c0 < 29 MPa, ηε = 1 and ηf > η∗. The main difference between behaviors

in this cohesion range and Type I is that poro-plastic coupling has resulted in more extensive

plastic deformation. As a result, the indentation force at the drained limit becomes smaller

than that without the presence of pore fluid, i.e., F (∞) < F∗. Magnitude of εpmax still remains

the same throughout the indentation process, ηε = 1, but the location is now at z/a = 0.60

and r = 0.

Results from a representative case with c0 = 25 MPa at four dimensionless times, t∗ = 0,

0.1, 1 and 10, are illustrated in Fig. 5.12. From top to bottom, they are contour plots of the

normalized equivalent plastic strain, i.e., εpn = εp/εpmax, pore pressure and the vector plot of

the normalized flux field. Unless otherwise noted, the plot window size is 5× 5 mm for εpn and

pn and 2× 2 mm for the flux field. The contour interval is 0.05. Contours for εp = 0 and p = 0

as marked by the black lines are added. Location of the maximum flux vector is marked by a

red dot.

At these four times, the maximum plastic strain remains constant at εpmax = 0.0278. As

can be seen from the contour plots of εpn, plastic deformation is fully contained and the plastic

zone does not grow in size over the transient period. The pore pressure and flux fields are

very similar to the poroelastic case. The excess pore pressure being induced is mostly positive,

indicating that shear induced dilatancy is not yet sufficient to counter volume compression due

to elasticity. At the undrained state, there is a very small area right beneath the surface outside

of the plastic zone, where the pore pressure is negative. The tensile stress field outside of the

contact edge is responsible for this negative pore pressure development. At t∗ = 0, the excess

pore pressure at the origin is the largest and fluid flows mostly downwards. However, over

time as fluid is being drained via the free surface, location of the largest pore pressure moves

downwards and is already inside the domain at t∗ = 1.
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Figure 5.12: Series -, c0 = 25 MPa; from top to bottom - normalized equivalent plastic strain
εpn, pore pressure pn and fluid flux at t∗ = 0, 0.1, 1 and 10; at these four times, εpmax = 0.0278,
pmin = −0.0788, −0.0163, −0.0093, −0.0038 MPa, pmax = 154.61, 75.5, 8.105, 0.621 MPa and
qmax = 7.0 × 10−2, 2.48 × 10−2, 2.86 × 10−3, 5.90 × 10−5 mm/s; top and middle - contour
interval: 0.05, plot window size: 5 × 5 mm if not otherwise marked; contours of εp = 0 and
p = 0 marked by black lines are added; bottom: plot window size: 2× 2 mm.
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Figure 5.13: Series -, c0 = 10 MPa; from top to bottom - normalized equivalent plastic strain
εpn, pore pressure pn and fluid flux at t∗ = 0, 0.1, 1 and 10; at these times, εpmax = 0.0461,
0.0682, 0.0711, 0.0711, pmin = −27.23, −0.0121, −0.0074, −0.0031 MPa, pmax = 101.103,
41.241, 4.372, 0.441 MPa, and qmax = 8.82×10−2, 1.15×10−2, 1.49×10−3, 4.09×10−5 mm/s.
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Figure 5.14: Series -, c0 = 1 MPa; from top to bottom - normalized equivalent plastic strain
εpn, pore pressure pn and fluid flux at t∗ = 0, 0.1, 1 and 10; for these times, εpmax = 0.0519,
0.0729, 0.110, 0.205, pmin = −26.195, −10.051, −5.041, −1.149 MPa, pmax = 56.032, 8.034,
0.186, 0.0356 MPa, and qmax = 6.211× 10−2, 4.321× 10−3, 2.734× 10−3, 6.167× 10−4 mm/s.
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When 3 < c0 6 15 MPa, ηε < 1, ηf > η∗. Though plastic flow is still contained beneath

the surface, now there is moderate plastic strain accumulation in the transient phase. The

maximum plastic strain increases with time. Though at the undrained state, location of the

maximum plastic strain moves in the area between z/a = 0.6, r = 0 and z = 0, r/a = 1, see

Fig. 5.11, with time, plastic deformation becomes fairly concentrated at the contact edge. For

all cases with c0 > 3, displacement on the surface exhibits the sink-in type behavior, indicating

the process is not yet plasticity dominated (Taljat and Pharr, 2004).

Results from the case of c0 = 10 MPa are shown in Fig. 5.13. The maximum plastic strain

in this case increases from εpmax = 0.0461 at t∗ = 0 and stabilizes at εpmax = 0.0711 at t∗ = 1

and 10. The negative pore pressure at t∗ = 0 is of appreciable magnitude, but is still limited

to a very small area near the contact edge. Overall, the pore pressure and flux fields are very

similar to those with c0 = 25 MPa. As a result of the contained plastic deformation, the top

surface sinks in immediately at t∗ = 0 and the displacement profile barely changes over time,

see Fig. 5.15.
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Figure 5.15: Series -: Surface displacement profiles at the undrained and drained states with
c0 = 1 and 10 MPa.
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When c0 6 3 MPa, ηε < 1 and ηf w η∗. A distinct characteristic of this regime is that

the plastic flow becomes uncontained. On the surface, the plastic zone has extended beyond

the confinement of the contact area. The responses become plasticity dominated as surface

displacement exhibits the pile-up type of behaviors at the drained state. Full associativity

results in significant shear induced dilation, which in turn gives rise to a negative pore pressure

zone inside the domain immediately at the undrained state.

As shown in Fig. 5.14 for the case of c0 = 1 MPa, substantial negative pore pressure develops

inside the domain. The areas enclosed by the black lines in the pore pressure contour plots are

the negative pore pressure zones, which serve to shield the material from plastic deformation

and also as sinks to attract fluid flow. As a result, plastic strain induced by hydromechanical

coupling at the undrained state is a less significant portion of the total accumulated. The

maximum plastic strain increases from εpmax = 0.0519 at t∗ = 0 to 0.266 at t∗ → ∞. The

substantial increase in εpmax over time suggests that yielding occurs primarily over the transient

phase as the excess pore pressure dissipates. As plastic flow becomes uncontained over time,

the surface displacement profile also evolves from the sink-in type to the pile-up type, see Fig.

5.15. A manifestation of such hydromechanical coupling is that responses at the drained limit,

e.g. the force asymptote F (∞), magnitude and location of the plastic strain εpmax and the

plastic zone size, are nearly identical to their elasto-plastic counterparts.

These four distinct types of behaviors are reflected in the indentation force relaxation curves.

When c0 > 29 MPa, they are nearly identical to the poroelastic solution. For 15 6 c0 < 29

MPa, the poro-elasto-plastic cases deviate only slightly, see Figs. 5.16 and 5.18. Compared

with the poroelastic case, the poro-elasto-plastic cases relaxes slightly faster at early time, but

slower at late time. At c0 = 15 MPa, ∆Fn 6 2.13%, see Fig. 5.18. This means even though

plasticity occurs immediately at the undrained limit in these cohesion ranges, the normalized

transient force relaxation behavior can be treated as approximately poroelastic.

As cohesion decreases to c0 = 3 MPa, the curves gradually shift to the left at early time, but

shift to the right at late time. This is reflected by the change in the maximum flux magnitude

at the contact edge. For c0 = 25 MPa, qmax = 0.07 and 0.059 mm/s at t∗ = 0 and 10; and for
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Figure 5.16: Series -: Comparison of the force relaxation curves between the poroelastic case
(ω = 0.56) and the cases of c0 = 0.05, 1.5, 3, 5 and 15 MPa.

c0 = 10 MPa, qmax = 0.088 and 0.041 mm/s at the same time instances. At c0 = 3 MPa, the

force relaxation curve exhibits a plateau-like transition region at 0.5 > t∗ > 3, suggesting that

there are two distinct drainage mechanisms at play. Note that c0 = 3 MPa is the threshold

below which plastic deformation becomes uncontained. As cohesion decreases further from

c0 = 3 MPa, the force relaxation curves now shift to the right of c0 = 3 MPa at early time, but

to the left at late time. In the extreme case of c0 = 0.05 MPa, the indentation force relaxes

even slower than the poroelastic case most of the time.

Dependence of such transient responses on cohesion can be attributed to weakening of

the material due to plastic deformation as well as the competition between promotion of

drainage through the contact edge and impedance due to plastic deformation inside the do-

main. Drainage near the contact edge is facilitated by the tensile stress field right outside of the

contact edge as well as shear induced dilation when yielding occurs in this region. Inside the

domain, drainage is however hindered by the development of a plastic zone as shear induced

dilation reduces the pore pressure to the extent that the negative pore pressure zone acts like
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a sink that attracts fluid flow. As cohesion becomes small, such a mechanism clearly becomes

dominant, see the flux field at c0 = 1 MPa in Fig. 5.14.
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Figure 5.17: Series ∦: Comparison of the force relaxation curves between the poroelastic case
(ω = 0.56) and the cases of c0 = 0.05, 1.5, 3, 5 and 15 MPa.

When the friction and dilatancy angles are changed to ϕ = ψ = 30◦ in Series ∦, based on

the criteria established above for ηε, ηf and η∗, we can again identify the same four types of

poro-elasto-plastic responses. Compared with Series -, the threshold cohesion values in this

series are smaller, c0 = 46.9, 21, 8, and 1.5 MPa (c0/G = 0.062, 0.027, 0.011, 0.002). For

c0 > 8 MPa, plastic deformation only occurs at the undrained state and does not accumulate

in the transient phase. Difference in Fn between the case of c0 = 8 MPa and the poroelastic

case is |∆Fn| 6 0.0549, see Fig. 5.18. Overall, the behaviors differ from those in Series - only

quantitatively.
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Figure 5.18: Variations of ∆Fn with time for four threshold cohesions in Series -, ∦, ., /; cohesion
unit in MPa.

It should be noted that numerical analysis in this work is conducted within the framework of

small strain. Therefore, large strain behaviors in the cases with very small cohesion values may

not be accurately modeled. Furthermore, in reality, large negative pore pressure may result in

fluid cavitation. This aspect is however not considered in this numerical analysis either.

5.7.3 Effect of Cohesion - Non-associative Cases

Four distinct types of behaviors can also be identified when the material is non-associative. For

Series . with ϕ = 20◦ and ψ = 0◦, the threshold cohesion values are c0 = 46.9, 40, 22, and

4 MPa (c0/G = 0.062, 0.053, 0.029, 0.005). For Series / with ϕ = 30◦ and ψ = 0◦, we have

c0 = 46.9, 40, 22, and 6 MPa (c0/G = 0.062, 0.053, 0.029, 0.008).

Between the associative and non-associative cases, characteristics of Types I and II behaviors

are the same as the effect of plastic deformation is relatively small and there is no plastic strain

accumulation over time. In Type I, ηε = 1 and ηf = η∗, and in Type II, ηε = 1 and ηf > η∗.

The primary differences are in Types III and IV behaviors when ηε < 1. Given ψ = 0◦,
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Figure 5.19: Series .: Effect of cohesion on the location and magnitude of the maximum equiv-
alent plastic strain εpmax; U - undrained limit, D - drained limit.

though there is plastic strain accumulation over time in Types III and IV, plastic strain occurs

mostly at early time and the increment over time is rather small. The equivalent strain ratio

ηε remains very close to 1, see Figs. 5.10 and 5.19. Variation of the maximum plastic strain

εpmax with cohesion reaches a peak at c0 = 4 MPa in series . and c0 = 6 MPa in series / at both

the undrained and drained states. For Type IV, the maximum plastic strain εpmax decreases as

the cohesion decreases and Fn (∞) < Fn (0) < F∗ or η∗ < 1 < ηf as the plastic deformation

becomes uncontained.

Such differences between the associative and non-associative cases can be attributed to the

lack of shear induced dilatancy when ψ = 0◦. Note that shear induced dilatancy occurs only

if the stress state is at the apex of the yield surface and is zero everywhere else in this FEM

model when ψ = 0◦. Without the shielding effect from the negative pore pressure due to

shear induced dilatancy, plastic deformation causes the medium to be much weaker than the

purely elasto-plastic case even at the undrained state in Type IV. The force asymptote at the

undrained state is now smaller than the elasto-plastic case, F (0) < F∗ (η∗ < 1).
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Figure 5.20: Series .: Comparison of the force relaxation curves between the poroelastic case
(ω = 0.56) and the cases of c0 = 0.05, 1.5, 3, 5 and 15 MPa.
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Figure 5.21: Series .: Surface displacement profiles at the undrained and drained states with
c0 = 1 and 10 MPa.
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The fact that plastic deformation occurs mostly in early time when ψ = 0◦ is reflected in the

force relaxation curves. Fig. 5.20 shows that deviation from the poroelasticity solution is more

pronounced in early time. At t∗ > 0.1, even the cases with rather small cohesion, e.g., c0 = 1.5

MPa, are not very far from the poroelastic solution. Note that all cases except c0 = 0.05

MPa in Fig. 5.20 relax faster than the poroelastic case at all time. This is in accordance with

the argument that for the associative cases, dissipation of pore pressure is retarded in late

time due to shear induced dilatancy. At c0 = 22 MPa, which is the lower bound of Type II

response in Series . and /, |∆Fn| < 0.020 with ϕ = 20◦ and ϕ = 30◦, see Fig. 5.18. We may

therefore conclude that from a practical standpoint, the normalized force relaxation behavior is

approximately poroelastic if the cohesion value is such that it gives rise to Type I or II response.

Variation of ∆Fn over time for the non-associative cases in Fig. 5.18 also suggests that

increase in the friction angle from ϕ = 20◦ to ϕ = 30◦ has little influence on the normalized

indentation force response. The force asymptotes decrease slightly, F (0) = 347.029 N and

F (∞) = 218.872 N for ϕ = 20◦ and F (0) = 341.923 N and F (∞) = 213.345 N for ϕ = 30◦.

The decrease in the force asymptotes is because the tensile strength actually decreases in the

Drucker-Prager criterion when c0 is fixed, but ϕ increases.
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0 0.5 1

Figure 5.22: Series ., c0 = 10 MPa; from top to bottom - normalized equivalent plastic strain
εpn, pore pressure pn and fluid flux at t∗ = 0, 0.1, 1 and 10; at these times, εpmax = 0.202, 0.205,
0.205, 0.205, pmin = −22.749, −0.0092, −0.0042, −0.0017 MPa, pmax = 70.915, 51.831, 5.588,
0.262 MPa, and qmax = 6.985× 10−2, 1.658× 10−2, 2.009× 10−3, 2.621× 10−5 mm/s.
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0 0.5 1

Figure 5.23: Series ., c0 = 1 MPa; from top to bottom - normalized equivalent plastic strain
εpn, pore pressure pn and fluid flux at t∗ = 0, 0.1, 1 and 10; at these times, εpmax = 0.176, 0.189,
0.189, 0.189, pmin = −33.791, −1.0496, −6.563 × 10−4, −2.663 × 10−4 MPa, pmax = 28.850,
5.889, 1.043, 0.0316 MPa, and qmax = 7.223× 10−2, 1.585× 10−3, 3.535× 10−4, 3.618× 10−6

mm/s.
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Contour plots of εpn and pn and the flux field from c0 = 10 and 1 MPa in Series . are

shown in Figs. 5.22 and 5.23. Plastic deformation is contained at c0 = 10 MPa, but becomes

uncontained at c0 = 1 MPa. Magnitude of εpmax and the plastic zone size and shape change

very little over time. As a result, the surface displacement profiles at t∗ = 0 and t∗ → ∞ are

nearly identical in these two cases, even though the displacement responses have changed from

the sink-in type at c0 = 10 MPa to the pile-up type at c0 = 1 MPa, see Fig. 5.21. In both

cases, plastic strain is most concentrated at the contact edge, r/a = 1. However, gradient of

the plastic strain at this location is lowered at c0 = 1 MPa. This means though εpmax at r/a = 1

decreases as c0 decreases in Type IV, see Fig. 5.19, plastic deformation is more severe in larger

area when c0 = 1 MPa.

Due to strong non-associativity, multiple bands of strain localization can be observed at the

contact edge at c0 = 1 MPa, which then result in large oscillatory distribution of pore pressure

at the undrained limit around r/a = 1. Inside the domain, pore pressure variation is however

quite small. Though a negative pore pressure zone grows right outside of the plastic zone,

magnitude of the negative pore pressure in this zone is very small and the location suggests

that it is associated with the tensile stress generated by the development of the plastic zone.

At t∗ > 0.1, the flux fields in both c0 = 1 and 10 MPa are very similar to the poroelastic field in

Fig. 5.6. It should be noted that strong non-associativity does present challenges in numerical

computation. Convergence at the undrained limit has to be carefully dealt with by applying

the Hertzian displacement boundary condition in small increments.
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6 FINITE ELEMENT MODELING OF SPHERICAL INDEN-

TATION IN A PORO-ELASTO-PLASTIC MEDIUM VIA A

PENALTY-BASED CONTACT SCHEME

6.1 Introduction

In Chapter 5, a hydromechanically coupled finite element (FEM) algorithm following a mixed

continuous Galerkin formulation for displacement and pore pressure is employed to model

spherical indentation by prescribing the normal displacement over the contact area according

to the Hertzian solution. For indentation in a poroelastic medium, numerical results confirm our

previous theoretical findings that the normalized indentation force as a function of dimensionless

time has a relatively weak dependence on the derived material parameter ω. For indentation

in a poro-elasto-plastic medium, it is shown that hydromechanical coupling gives rise to four

distinct types of poro-elasto-plastic responses. The normalized force relaxation behavior could

be approximated as poroelastic if the cohesion value is such that yielding occurs only at the

undrain limit and there is no accumulation of plastic strain during the transient phase.

Theoretical analyses in Chapters 2-4 have shown that the displaced surface profile resulted

from such a type of step displacement loading does not conform to the spherical shape if ν 6= 0.5

and νu 6= 0.5. A kink develops at the contact edge, and stresses there become unbounded during

the transient phase. In addition, the theoretical solution suggests that if frictionless contact

with a rigid sphere were to be modeled, the contact radius would vary with time. In other

words, poroelastic spherical indentation with a rigid sphere should be treated as a moving

boundary problem.

It is therefore necessary to understand to what a degree our theoretical solutions and numer-

ical results from step displacement loading differ from the cases where the frictionless contact

between a rigid sphere and a fully saturated half space is fully modeled. Here we make a dis-

tinction between the two types of boundary conditions by referring step displacement loading to

the case where only normal displacement is prescribed according to the Hertzian solution, and
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rigid sphere loading to the case where a frictionless contact scheme is employed to model the

indentation action. Objective of this chapter is to conduct finite element analysis to investigate

how the indentation response is affected by the two different ways of modeling the spherical

indentation action.

Numerical formulations for the contact scheme and its coupling with our previous finite

element algorithm are first described. Results from numerical simulations via rigid sphere

loading are then analyzed and compared with those from the theoretical and numerical results

with step displacement loading.

6.2 Contact Scheme

6.2.1 General Formulation

Finite element formulations for contact problems in the literature are based on either the clas-

sical Lagrange multiplier method or the penalty-function method (Wriggers, 2006). Within

the framework of the Lagrange multiplier method, the contact condition is exactly satisfied

by transforming the constrained problem into an unconstrained one with the introduction of

Lagrange multipliers. These extra variables add computational cost to the solution process

which often requires special procedures to handle the presence of zero diagonal terms. Penalty

method, on the other hand, enables one to transform the constrained problem into an un-

constrained one without introducing additional variables. Though this method does not lead

to an exact fulfillment of the contact conditions, it is computationally advantageous since no

additional variables are introduced.

In this study, we adopt the penalty method (Wriggers, 2006) to solve for the cylindrically

axisymmetric problems and consider a particular case where the contact is between a rigid

sphere and a poro-elasto-plastic half space. Different from those studies that establish the

contact conditions on nodal basis, the penalty-based scheme in this work is constructed on

the basis of Gauss quadrature points as first proposed in Wriggers and Imhof (1993). With

the global tangent stiffness constructed through variation and subsequent linearization on the
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penalty energy term, this approach can be conveniently incorporated into the poro-elasto-plastic

finite element algorithm outlined in Chapter 5.

Figure 6.1: Schematic of the contact scheme with a rigid sphere.

Fig. 6.1 shows the schematic of the frictionless contact between a rigid sphere and a dis-

cretized half space. Only the first element in contact with the indenter is shown for the sake of

simplicity and clarity. The subsequent derivation is given at the element level.

We introduce the nodal displacement vector u between the deformed state c and undeformed

state C,

c = C + u (6.1)

where,

u =

[
u1r u1z u2r u2z u3r u3z u4r u4z

]T
(6.2)

c =

[
c1r c1z c2r c2z c3r c3z c4r c4z

]T
(6.3)
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The problem can be formulated by minimizing the sum of the strain and penalty energy,

Πp (u) = Π (u) +
ζ

2

∫
Γ
g2 (u) dΓ→ min (6.4)

where Γ is the contact surface; Π (u) is the strain energy stored in Ω; g is the penetration

distance; ζ is the penalty parameter; and

ζ

2

∫
Γ
g2 (u) dΓ (6.5)

represents the penalty energy from the contact. The penalty parameter ζ needs to be large in

order to minimize penetration distances. If there is contact at the Gauss quadrature points, ζ

can be interpreted as the stiffness of linear springs which support the body in the contact area,

and ζg can be viewed as the contact stress. The penalty term then describes the total energy

of all springs.

Before moving forward to construct the equilibrium equation by minimizing Πp (u), we first

discuss the special geometrical relations needed to set up the contact constraints at the contact

interface. Consider an surface element, whose surface Γ is in contact with a rigid sphere. gk

is the distance between the Gauss points on the element surface and the rigid surface. Gauss

points of Γ are represented by the isoparametric shape functions,

bk = N (ξk) c, ξk ∈ [−1, 1] (6.6)

where ξk is the Gaussian abscissas. N is,

N =

 N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 (6.7)

and N1-N4 are shape functions, for example, N1 = (1− ξ) (1− η) /4, with −1 ≤ ξ, η ≤ 1 being

the local coordinate system.
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Eq. 6.5 can be numerically integrated using the Gaussian quadrature rule,

∫
Γ
g2 (u) dΓ =

10∑
k=1

ωkg
2
k |N∗ (ξk) c| |N,ξ (ξk) c| (6.8)

where ωk is the weight; N,ξ is the derivative of N with respect to ξ and,

N∗ =

 N1 0 N2 0 N3 0 N4 0

0 0 0 0 0 0 0 0

 (6.9)

In this study, the number of the integration points is taken to be 10.

At a Gauss point, a penetration can be identified if the following condition holds,

nk · (bk − dk) ≤ 0 (6.10)

where dk is the projection points on the rigid surface from bk. If we denote dk as the r-

coordinate of dk, then dk can be characterized by,

dk =

 dk

f (dk)

 =

 dk

zS −
√
R2 − d2

k

 (6.11)

with zS being the z′-coordinate of the center of the rigid sphere. nk and tk are the outward

normal and tangential of the rigid sphere from the point dk (tk will appear in subsequent

derivations). According to Fig. 6.1, they are given by,

nk =
1

R

 dk

−
√
R2 − d2

k

 , tk =
1

R


√
R2 − d2

k

dk

 (6.12)

The distance function gk is positive only in the case of penetration, and is zero otherwise,

gk =

 |bk − dk| , if contact

0, otherwise
(6.13)
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The discretized version of the original problem therefore becomes,

Πh (u) +
ζ

2

10∑
k=1

[
ωk |N (ξk) c− dk|2 |N∗ (ξk) c| |N,ξ (ξk) c|

]
→ min (6.14)

where Πh (u) is discretized in Ω by standard finite element procedures.

The problem will be solved via Newton’s method by applying variation and linearization to

the discretized contact penalty term in Eq. 6.14.

6.2.2 Variation and Linearization

We can compute the minimum of Eq. 6.14 by variation,

δΠh (u) + δ

[
ζ

2

10∑
k=1

ωk |N (ξk) c− dk|2 |N,ξ (ξk) c| |N∗ (ξk) c|

]
= 0 (6.15)

where δ is the variational operator.

The equation above also represents the weak form of the equilibrium which the displacement

field has to fulfill. The variation of the first term follows the standard procedure. For linear

elastic material,

δΠh (u) = δuT K u (6.16)

where,

K =

∫
Ω

BT
u De Bu dΩ (6.17)

Note that in this problem since there is no traction applied, the traction term is not seen in

Eq. 6.16. The body force is also neglected in the formulation.

After applying the product rule to the second term in Eq. 6.15, we obtain,

10∑
k=1

ζωk
2


δ |N (ξk) c− dk|2 |N,ξ (ξk) c| |N∗ (ξk) c|

+ |N (ξk) c− dk|2 δ |N,ξ (ξk) c| |N∗ (ξk) c|

+ |N (ξk) c− dk|2 |N,ξ (ξk) c| δ |N∗ (ξk) c|

 (6.18)
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The three variations in the equation above could be further manipulated as follows,

δ |N (ξk) c− dk|2 = 2 [N (ξk) c− dk] · [N (ξk) δc− δdk]

= −2gknk · [N (ξk) δu− δdk]

= −2gknk · [N (ξk) δu]

(6.19)

δ |N,ξ (ξk) c| =
N,ξ (ξk) c

|N,ξ (ξk) c|
· [N,ξ (ξk) δc]

= te · [N,ξ (ξk) δu]

(6.20)

δ |N∗ (ξk) c| = N∗ (ξk) c

|N∗ (ξk) c|
· [N∗ (ξk) δc]

= t∗ · [N∗ (ξk) δu]

(6.21)

In the derivation for Eqs. 6.19-6.21, we set δc = δu and nk ·δdk = 0, which can be obtained

from Eqs. 6.1 and 6.23, respectively. Since dk also depends on the displacement field, we have

to compute its variation as well,

δdk = ∇dk · [N (ξk) δu] (6.22)

δdk = ck (tk � tk) · [N (ξk) δu] (6.23)

where,

∇dk =
hk√

1 + f ′2 (dk)
tk =

hk
1 + f ′2 (dk)

 1

f ′ (dk)

 (6.24)

hk =
1 + f ′2 (dk)

1− f ′′ (dk) [zk − f (dk)] + f ′2 (dk)
(6.25)

Now the problem in Eq. 6.15 becomes,

Ku− fo = 0 (6.26)
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where,

fo =
10∑
k=1

ζωkgk


|N∗ (ξk) c|

 −gk
2

NT
,ξ (ξk) te

|N,ξ (ξk) c|NT (ξk) nk


−gk

2
|N,ξ (ξk) c|NT

∗ (ξk) t∗


(6.27)

Ku could be viewed as the internal force vector and fo the external load from the indenter.

Though the first term in Eq. 6.26 is linearly dependent on u, the second term is not. Subsequent

linearization is needed to determine the tangent matrix for the application of Newton’s method.

Here we start directly from Eq. 6.14 and derive the results for the penalty term,

∆δ

[
ζ

2

10∑
k=1

ωk |N (ξk) c− dk|2 |N,ξ (ξk) c| |N∗ (ξk) c|

]
=

ζ

2

10∑
k=1

ωk |N∗ (ξk) c|
[
∆δ |N (ξk) c− dk|2 |N,ξ (ξk) c|

+ |N (ξk) c− dk|2 ∆δ |N,ξ (ξk) c|

+δ |N (ξk) c− dk|2 ∆ |N,ξ (ξk) c|+ ∆ |N (ξk) c− dk|2 δ |N,ξ (ξk) c|
]

(6.28)

where ∆ is also a variational operator.

In the equation above, explicit expressions for the terms with only one operator (either ∆

or δ) can be obtained following an analogous way to Eqs. 6.19 and 6.20. Explicit expressions

of the terms with both operators are given as,

∆δ |N (ξk) c− dk|2 = 2 [N (ξk) δu]T (I− cktk � tk) [N (ξk)∆u] (6.29)

∆δ |N,ξ (ξk) c| = |N,ξ (ξk) c|−1 [N,ξ (ξk) δu]T (I− te � te) [N,ξ (ξk)∆u] (6.30)

where I is the indentity matrix.

We then have,

∆δ

[
ζ

2

10∑
k=1

ωk |N (ξk) c− dk|2 |N,ξ (ξk) c| |N∗ (ξk) c|

]
= δuTKc∆u (6.31)
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where the tangent matrix Kc is,

10∑
k=1

ζωk |N∗ (ξk) c|
{
|N,ξ (ξk) c|NT (ξk) (I− cktk � tk) N (ξk)

− gkNT (ξk) (nk � te) N,ξ (ξk)− gkNT
,ξ (ξk) (te � nk) N (ξk)

+
g2
k

2
|N,ξ (ξk) cI |−1 NT

,ξ (ξk) (I− te � te) N,ξ (ξk)

} (6.32)

Now an iteration procedure can be established to solve Eq. 6.26. To advance from load

step n to n+ 1, where an incremental displacement ∆d is applied, the iteration scheme starts

by calculating an initial value for Ku(0) and f
(0)
o based on the displacement field at load step

n and the current indentation depth, respectively. In the `−th iteration cycle (` = 1, 2, 3 . . .),

with displacement u(`−1) known, a residual between the external and internal force vectors can

be determined,

r(`) = Ku(`−1) − f (`−1)
o (6.33)

which must vanish in order to meet the equilibrium condition. Displacement at nodal points

needs to be updated in order to eliminate the residual,

[
K + K(`)

c

]{
u(`) − u(`−1)

}
= −r(`) (6.34)

Calculation is terminated when
∣∣u(`) − u(`−1)

∣∣ < ε, where ε is the tolerance.

It should be mentioned that though the term |N∗ (ξk) c| in Eq. 6.28, which actually repre-

sents the radial coordinate of the material point k, is not involved in the linearization process,

the tangent stiffness Kc still works relatively well and the convergence speed is relatively fast.

This could be explained by the fact that radial displacement is relatively small during the

spherical indentation process, so the linearization on |N∗ (ξk) c| could be neglected.
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6.2.3 Coupling with Poro-elasto-plasticity

Since the structure of Eq. 6.34 is analogous to the FEM formulation for poro-elasto-plasticity

in Chapter 5, coupling between the two can be realized as follows,

 K
(`)
t + K

(`)
c −Q

−QT − (Stab + S + θ∆tH)


 u(`) − u(`−1)

p(`) − p(`−1)

 = −r(`) (6.35)

where the residual is given by,

r(`) = f
(`)
in − f −

 f
(`−1)
o − fo,n

0

 (6.36)

Residual in this case consists of three terms, i.e., an external incremental force vector due to

the indentation action, f
(`−1)
o −fo,n, an external incremental force/flux vector f due to Neumann

boundaries and ∆tHpn, and an internal incremental force/flux vector f
(`)
in . Detailed expressions

for f
(`)
in and f and the submatrices in Eq. 6.35 can be found in Eqs. 5.10 and 5.25.

6.3 Validation of the Contact Scheme

Validity of the contact scheme is examined with an example case of poroelastic indentation.

The indentation action at the undrained limit is realized by setting the time increment to zero

in the finite element equations while ramping the indentation depth up to the prescribed value

in small increments. In order to maximize the discrepancy caused by the radial displacement

on the surface between the two modeling approaches, we set ν = 0 and νu = 0.5 (Ks →∞ and

Kf → ∞) while keeping the other material properties the same as those in Table 5.1 and the

geometry of the numerical model the same as in Section 5.4.1.

The penalty stiffness ζ is first set to be 200 times of the Young’s modulus of the domain,

i.e., ζ = 370.6 GPa. Denote δd as the ratio between the penetration distance of the material

point originally at the contact origin and the prescribed indentation depth at the end of the

ramping up stage. At this ζ value, δd = 0.31% and the indentation force is F (0) = 492.8 N,
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very close to the analytical prediction, F (0) = 494.1 N.

Additional simulations with ζ = 37, 555.9 and 741.2 GPa are conducted to analyze the effect

of the penalty stiffness. Significant convergence issues occur when ζ = 741.2 GPa. We may

attribute this to the fact that increase in ζ has led to an ill-conditioned equation system. When

ζ = 37 and 555.9 GPa, we have δd = 5.1%, 0.23% and F (0) = 461, 493.3 N, respectively. As δd

with ζ = 370.6 or 555.9 GPa is an order smaller than that with ζ = 37 GPa, both ζ = 370.6 and

555.9 GPa can be viewed as suitable choices for our particular problem. Subsequent numerical

calculations are conducted with ζ = 370.6 GPa.

Displacements of the nodal points on the surface during both the ramping up stage and the

transient consolidating phase are tracked. For the surface drainage conditions, while there is no

ambiguity in modeling the fully permeable or impermeable surface, the mixed case III surface

drainage condition can be treated in different ways. Here we choose to set the nodes on the

initially free surface as impermeable once a contact is detected; otherwise, they are permeable.

An example with case III surface drainage condition is shown in Fig. 6.2. The displaced

surface profiles are constructed by updating coordinates of the nodal points with their dis-

placements, namely, z∗ + uz/a→ z∗ and r∗ + ur/a→ r∗, where a =
√
Rd denotes the nominal

contact radius. We can observe that material points over the contact area now conform to the

shape of the spherical indenter during not only the ramping up stage (d = 0.02, 0.04, 0.06,

0.08, 0.1 mm) but also the transient consolidation phase when the indenter is held at d = 0.1

mm. Within the contact region, there is negligible overlap and no vertical separation between

the surface of the half-space and the rigid sphere. During the ramping up stage, since νu = 0.5,

radial displacement is zero everywhere on the surface. However, during the transient phase, all

the material points do move radially inwards. Difference in their trajectories according to the

Hertzian solution and from the numerical simulation with the contact scheme incorporated can

be clearly identified, see inset in Fig. 6.2 showing the comparison for a material point initially

at r∗ = 0.95 and z∗ = 0. Outside of the contact area, trajectories of the material points marked

by the green dots indicate that the free surface rises and subsides during the transient phase.

Consequently, the contact radius actually varies over time.
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Figure 6.2: Displaced surface profiles and movement of the material points on the surface during
the ramping up stage from d = 0 mm to d = 0.02, 0.04, 0.06, 0.08, 0.1 mm and the transient
consolidation phase at d = 0.1 mm from numerical simulations with ν = 0. The indenter profile
is marked by the dash-dot black lines; profile of the surface is marked by the blue dotted lines.
During the transient phase, trajectories of the material points are marked as green. The inset
shows a comparison of the trajectories of a material point, initially at r∗ = 0.95 and z∗ = 0,
according to the Hertzian solution and from the numerical simulation with the contact scheme
during the transient phase.

187



6.4 Poroelastic Indentation

6.4.1 Undrained and Drained Limits

To examine how the indentation force is affected by the incorporation of the contact scheme,

we first look at the indentation force at the undrained and drained limits. Denote δf0 and δf∞

as the relative error between the theoretical and numerical solutions at the two limits,

δf0 =
Fnum − F (0)

F (0)
(6.37)

δf∞ =
Fnum − F (∞)

F (∞)
(6.38)

where Fnum is the indentation force at the undrained or drained limit from the numerical

simulation with the contact scheme. F (0) and F (∞) are the undrained and drained force

asymptotes from the theoretical solution, see Eq. 5.56.

It can be shown that δf0 and δf∞ are affected by the indentation strain d/R and the

Poisson’s ratios, νu for δf0 and ν for δf∞, respectively, see Fig. 6.3. Change in the undrained

Poisson’s ratio in Fig. 6.3(a) is realized by varying Ks and Kf . With those listed in Table 5.1,

Ks = 34 GPa and Kf = 2.25 GPa, give νu = 0.449 and ω = 0.417; Ks = Kf = 2.28 GPa gives

νu = 0.35 and ω = 0.2; and Ks = Kf = 1.26 GPa gives νu = 0.25 and ω = 0.039.

At the undrained limit, Fig. 6.3(a) shows when νu is relatively small (e.g., νu = 0.25), the

discrepancy between the numerical and theoretical solution increases with d/R; now Fnum >

F (0). At νu = 0.5, magnitude of δf0 still increases with the depth, but Fnum < F (0) at

all depth. Meanwhile, at νu = 0.35 and 0.449, variation of δf0 with depth is non-monotonic.

Similar trends can also be observed at the drained limit in Fig. 6.3(b).

Dependence of δf0 and δf∞ on d/R and the Poisson’s ratios highlights the two underlying

reasons for the discrepancy between the numerical and theoretical solutions. One is the Hertzian

assumption of using a parabola to approximate the spherical shape. Fig. 6.4 shows the surface

displacement profiles at the undrained/drained limits with three different Poisson’s ratios at

d/R = 0.01 and 0.2, plotted according to our theoretical solution and compared with the
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spherical shape. When νu = 0.5 or ν = 0.5, the radial displacement on the surface is zero, and

there is a gap between the deformed surface and the sphere in the outer part of the contact

region. While the gap may be negligible at d/R = 0.01, it becomes appreciable at d/R =

0.2. As a result, Fnum is consistently smaller than the theoretical value and the discrepancy

increases with the indentation strain. The other reason is that when the Poisson’s ratio becomes

small, the deformed surface actually penetrates the hypothetical sphere. Additional force would

therefore be needed in rigid sphere loading in order to enforce the contact area to conform to

the spherical shape, which explains Fnum > F (0). This effect is maximized when νu or ν = 0.

Combination of these two reasons gives rise to the non-monotonic trends at the intermediate

Poisson’s ratios. At a given indentation strain, the fact that the absolute magnitudes of δf0

and δf∞ at νu = 0 or ν = 0 are larger than those at νu = 0.5 or ν = 0.5 suggests that the

discrepancy caused by the inward radial displacement is relatively more pronounced.
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(a) undrained limit
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Figure 6.3: Variation of δf0 and δf∞ as a function of d/R and νu or ν. The dots mark the
indentation depth below which strain components are smaller than 0.1.
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Figure 6.4: Surface displacement profiles at the undrained/drained limits with three different
Poisson’s ratios. Profile of the rigid sphere is marked by the solid line and the material point
at the contact edge by the empty circles.
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6.4.2 Transient Response

Incorporating the frictionless contact scheme to replace the boundary condition of step dis-

placement loading has not introduced any additional physical parameter into the problem. It

therefore follows from dimensional analysis that ω remains the sole material parameter affecting

the normalized transient force response. For step displacement loading, the governing role of ω

has been verified by the numerical simulations with material properties in sets i - iv (ω = 0.56)

in Section 5.6.1, d/R = 0.01 and case III surface drainage condition. Note that in set iv, both

the solid and fluid phases are compressible. For rigid sphere loading, the critical role of ω is

once again shown with these four sets at d/R = 0.01 and case III drainage condition, see Fig.

6.5 showing a comparison of the normalized transient force responses from the simulations with

the theoretical results at ω = 0 and 0.56. Though the undrained and drained force asymptotes

differ among these four simulations, the normalized force relaxation curves collapse into one

with only some discrepancies at large time, likely due to the drainage boundary effect as shown

in Section 5.6.1.

Denote δt∗0.5 as a measure for the degree of discrepancy between a numerical solution and

the theoretical solution at a particular ω ,

δt∗0.5 =
t∗0.5num − t∗0.5theo

t∗0.5theo

where t∗0.5 is the dimensionless time at which Fn = 0.5. For these four simulations, if compared

with t∗0.5theo = 0.333 at ω = 0, we have δt∗0.5 = −2.16%, −2.16%, −1.51% and −1.29%,

respectively. However, if compared with t∗0.5theo = 0.298 at ω = 0.56, δt∗0.5 = 9.3%, 9.3%,

10.1% and 10.3%. This means that the numerical results are in fact closer to the theoretical

solution at ω = 0 than that at ω = 0.56.

To investigate the effect of ω on the transient force relaxation response in general, we conduct

the numerical simulations with incompressible constituents (νu = 0.5) and a small indentation

strain (d/R = 0.01) at ω = 0.02, 0.5, 1 (ν = 0.49, 0.25, 0). Note that transient behavior at

ω = 0 is only meaningful mathematically as a limit. That is why the lower bound of ω is
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chosen to be ω = 0.02 in the numerical simulation. With the choice of νu = 0.5, discrepancy

between the numerical and theoretical solutions can therefore be attributed primarily to the

drained Poisson’s ratio ν. Fig. 6.7 shows a comparison of numerical results with cases I, II and

III surface drainage condition and the theoretical solutions at ω = 0 and 1. Overall, the three

series of numerical simulations are in rather good agreement with the theoretical solutions. This

indicates that the assumption of a fixed contact radius when deriving our theoretical solution

is valid, provided that the indentation strain is small. We can also draw a few interesting

observations. First of all, the numerical results appear to show an even weaker dependence

on ω than the theoretical solutions. Secondly, the numerical results are rather close to the

theoretical curve of ω = 0. At t∗ > 1, the numerical results relax slightly faster than the

theoretical case of ω = 0.

Variation of δt∗0.5 with d/R with the theoretical solution from ω = 0, 0.5 and 1 chosen as

the reference is shown in Fig. 6.6. The results clearly indicate that at d/R ≤ 0.01, where the

Hertzian assumption is applicable, δt∗0.5 determined according to t∗0.5theo at ω = 0, 0.5 and 1

remains nearly constant at about −2.5%, 10% and 17%, respectively. Fig. 6.6 gives further

evidences that the force relaxation curves from rigid sphere loading are relatively insensitive to

ω and among the three theoretical references (ω = 0, 0.5 and 1), the solution with ω = 0 gives

the best approximation when d/R is relatively small.

Meanwhile, at small indentation strain, δt∗0.5 being positive with t∗0.5theo at ω = 0.5 and 1

as the reference suggests that the force relaxation response as measured at t∗0.5 is slightly slower

in the numerical model with ω = 0.5 and 1 as a result of rigid sphere loading. This could be

explained by the fact that at these ω values, the surface material points from rigid sphere loading

undergo a downward movement during the transient stage (see Fig. 6.2), additional excess pore

pressure is generated as a result, which could slow down the relaxation process. At ω w 0, since

the radial displacement is close to zero during both the ramping up and consolidation stages,

the poroelastic responses resulting from the rigid sphere and step displacement loadings are

almost identical. Consequently, the force relaxation curves at ω w 0 between the two loading

methods agree well.
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Figure 6.5: Comparison of the force relaxation curves between the poroelastic theoretical so-
lution (ω = 0, 0.56, marked with “theo”) and numerical simulations conducted with sets i - iv
parameters (ω = 0.56); d/R = 0.01 and case III drainage condition.
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Figure 6.6: Variation of δt∗0.5 with the indentation strain d/R.
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(a) case I and II surface drainage conditions

10-4 10-3 10-2 10-1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

(b) case III surface drainage conditions

Figure 6.7: Relaxation of the normalized indentation force with case I, II and III surface
drainage conditions: comparison between the numerical results with rigid sphere loading
(“num”) and the theoretical solution.
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Further increase of d/R leads to significant increase in δt∗0.5, suggesting that the theoretical

solutions are no longer applicable. This could be attributed to the fact that the Hertzian

assumption in approximating the spherical shape by a parabola is no longer valid at large

indentation strain.

From a practical stand point, we may conclude that the theoretical force relaxation curve

at ω = 0 could be a suitable master curve for the entire range of ω in rigid sphere loading as

long as the indentation strain is relatively small, e.g., d/R ≤ 0.05. Similar conclusions can also

be drawn for cases I and II surface drainage conditions.

6.5 Poro-elasto-plastic Indentation

Effect of plasticity on the spherical indentation process is now reanalyzed by modeling the

indentation action using the frictionless contact scheme outlined in Section 6.2. We aim to

examine: 1) how the elasto-plastic response changes when the load is applied via a rigid sphere

since the removal of the stress singularity at the contact edge is likely to have an impact on

the plastic deformation; 2) whether the criteria to define the four types of behaviors are still

applicable. Numerical simulations will be carried out with case III surface drainage condition

and two different Poisson’s ratios; one is ν = 0.22, as previously used in Section 5.7 for the

simulations with step displacement loading, and the other is ν = 0.45. The other properties are

chosen based on those of the Gulf of Mexico shale in Table 5.1. We assume incompressibility in

the constituents, which allows us to stay on the less conservative side as far as yielding is con-

cerned. Geometry of the numerical model and boundary conditions, except for the indentation

action, remain the same as described in Section 5.4.1.

6.5.1 Numerical Results with ν = 0.22

Two series of numerical simulations are performed with d = 0.1 mm and R = 10 mm. Cohesion

of the porous medium is chosen from c0 = 0.05 − 46 MPa, which covers the range of c0/G =

0.0001− 0.06. Friction and dilatancy angles for each series are taken as follows,
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• series -: ϕ = ψ = 20◦

• series .: ϕ = 20◦, ψ = 0◦

In addition, for each poro-elasto-plastic case, an elasto-plastic simulation is conducted as a ref-

erence for results at the drained limit. To facilitate analysis, we denote ηε = εpmax (0) /εpmax (∞)

as the ratio of the maximum equivalent plastic strains at the undrained and drained lim-

its, ηf = F (0)/F (∞) as the ratio between the undrained and drained force asymptotes, and

η∗ = F (0) /F∗ as the ratio of the undrained force asymptote over the indentation force F∗ from

the elasto-plastic simulation.

Figs. 6.8-6.11 show the simulation results for Series - with the surface being loaded by a

rigid sphere via the contact scheme. There are several notable differences if we compare these

results with those from step displacement loading in Section 5.7.2. Firstly, with the removal of

the kink in the surface displacement profile, the ratio of the maximum plastic strain remains

ηε = 1 at c0 ≥ 3 MPa, instead of c0 ≥ 15 MPa. Secondly, at 3 ≤ c0 < 11 MPa, though ηε = 1,

the location of εpmax at the undrained state at the prescribed indentation depth is no longer

at r = 0 and z/a w 0.55 as predicted by the poroelastic solution. Note that here a =
√
Rd

denotes the nominal contact radius. Denote P0 as the point where onset of plasticity occurs

according to the poroelastic solution and P as the location of εpmax at the undrained state from

the numerical simulation. At 3 ≤ c0 < 11 MPa, point P has moved away from point P0, but

remains inside of the half-space and no longer reaches to the contact edge, see Figs. 6.12 and

6.13. Finally, removal of the kink in the surface displacement profile has also affected the plastic

accumulation and pore pressure dissipation characteristics as the force relaxation curves are

now mostly to the right of the theoretical curve at ω = 0 except at the early time.
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Figure 6.8: Series -: ϕ = ψ = 20◦, series .: ϕ = 20◦, ψ = 0◦; Effect of cohesion on the ratios of
the equivalent plastic strain ηε and force asymptotes ηf and η∗.
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Figure 6.9: Series -: Effect of cohesion on the location and magnitude of the maximum equiv-
alent plastic strain εpmax; U - undrained limit, D - drained limit.
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Figure 6.10: Series -: Comparison of the force relaxation curves between the theoretical solution
at ω = 0 and the numerical results with c0 = 0.05, 1.5, 3, 5 and 11 MPa.
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Figure 6.11: Series -: Surface displacement profiles at the undrained and drained states with
c0 = 1 and 10 MPa.

199



Observations above allow us to still apply the same principles we used in Section 5.7.2 to

classify the four types of indentation responses. However, we can no longer use ηε = 1 alone

to indicate that the normalized transient force response can be approximated as poroelastic.

Instead, we need to include P = P0 as part of the criterion. Consequently, for Series -, the

ranges of cohesion for the four types of indentation responses are,

• Type I: 29 6 c0 6 46.9 MPa (0.038 6 c0/G 6 0.062)

• Type II: 11 6 c0 < 29 MPa (0.014 6 c0/G < 0.038)

• Type III: 3 6 c0 < 11 MPa (0.004 6 c0/G < 0.014)

• Type IV: c0 < 3 MPa (c0/G < 0.004)

When 29 6 c0 6 46.9 MPa, ηf ' η∗, ηε = 1 and P = P0. In this regime, plastic yielding has

little influence on the overall indentation response. Both the force asymptotes at the undrained

and drained limits and the transient response are not much affected.

When 11 6 c0 < 29 MPa, ηf > η∗, ηε = 1 and P = P0. Plastic deformation has caused the

force asymptotes to be smaller than those from the poroelastic solutions. Nevertheless, as can

be see from Fig. 6.10, at c0 = 11 MPa, which is the lower bound of Type II, the force relaxation

curve is still rather close to the theoretical solution with ω = 0. In both Types I and II, the

plastic zone develops immediately at the undrained limit, but remains contained inside the

half-space, and there is no additional plastic strain accumulation during the transient phase.

Therefore, from a practical stand point, the normalized force relaxation response in both Types

I and II can be approximated as poroelastic.

When 3 6 c0 < 11 MPa, ηf > η∗, ηε = 1 and P 6= P0. Results from a representative case

with c0 = 10 MPa at four dimensionless times, t∗ = 0, 0.1, 1 and 10, are shown in Fig. 6.12.

From top to bottom, they are contour plots of the normalized equivalent plastic strain and pore

pressure and the vector plot of the normalized flux field, e.g., pn = (p− pmin) / (pmax − pmin)

and εpn = εp/εpmax. Unless otherwise noted, the plot window size is 5× 5 mm for εpn and pn and

2×2 mm for the flux field. The contour interval is 0.05. Contours for εp = 0 and p = 0 as marked
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by the black lines are added. Location of the maximum flux vector is marked by a red dot.

Compared with the results from step displacement loading, see Fig. 5.13, the maximum plastic

strain εpmax remains constant instead of increasing with time. With the plastic deformation

being contained, the surface displacement exhibits a sink-in type of behaviors, see Fig. 6.11.

The surface subsides slightly as pore pressure dissipates with time. At t∗ = 0, because εpmax

is smaller with rigid sphere loading, magnitude of negative pore pressure is also smaller. The

maximum flux still occurs at the contact edge. However, the edge of the contact has increased

from r∗ = 1 to around r∗ = 1.15. In addition, qmax at t∗ = 0 and 0.1 is slightly smaller than

those with step displacement loading. The reasons for the slower dissipation process after the

early time as shown in Fig. 6.10 can be attributed to the combination of a few factors, namely,

no additional material weakening from plastic strain accumulation, increase in the impermeable

contact area with time, and the decrease in the flux magnitude near the contact edge.

When c0 < 3 MPa, ηf > η∗, ηε < 1 and P 6= P0. In this regime, plastic deformation

becomes uncontained, see the equivalent plastic strain contour plot in Fig. 6.13 with c0 = 1

MPa. Dominance of plastic deformation is reflected by the “pile-up” behavior in the surface

displacement profile shown in Fig. 6.11. As plastic strain accumulates with time, the free

surface rises up substaintially, resulting in rather significant increase in the contact radius.

However, since the surface profile is now smooth with the frictionless contact scheme, εpmax in

this case is much smaller than their counterpart with step displacement loading.
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Figure 6.12: Series -, c0 = 10 MPa; from top to bottom - normalized equivalent plastic strain
εpn, pore pressure pn and fluid flux at t∗ = 0, 0.1, 1 and 10; at these times, εpmax = 0.0382,
0.0382, 0.0382, 0.0382, pmin = −0.491, −0.0126, −0.0092, −0.0034 MPa, pmax = 74.7706,
28.243, 5.251, 0.513 MPa, and qmax = 6.11×10−2, 9.31×10−3, 1.83×10−3, 5.53×10−5 mm/s;
top and middle - contour interval: 0.05, plot window size: 5 × 5 mm unless otherwise noted;
contours of εp = 0 and p = 0 marked by black lines; bottom: plot window size: 2 × 2 mm.
Location of the maximum flux vector is marked by a red dot.
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Figure 6.13: Series -, c0 = 1 MPa; from top to bottom - normalized equivalent plastic strain
εpn, pore pressure pn and fluid flux at t∗ = 0, 0.1, 1 and 10; for these times, εpmax = 0.0427,
0.0427, 0.0451, 0.0617, pmin = −12.639, −10.551, −6.656, −1.127 MPa, pmax = 31.35, 0.557,
0.261, 0.048 MPa, and qmax = 4.694 × 10−2, 4.522 × 10−3, 2.856 × 10−3, 4.695 × 10−4 mm/s;
contours of εp = 0 and p = 0 marked by black lines.
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Figure 6.14: Series .: Effect of cohesion on the location and magnitude of the maximum equiv-
alent plastic strain εpmax; U - undrained limit, D - drained limit.

For a non-associative material (Series .), the poro-elasto-plastic response to spherical in-

dentation can still be distinguished based on the criteria outlined above. The corresponding

threshold cohesion values are now c0 = 46.9, 40, 18 and 4 MPa (c0/G = 0.062, 0.053, 0.024

and 0.005), see Figs. 6.14-6.15. Most characteristics of the poro-elasto-plastic behaviors in this

series are similar to the non-associative cases with step displacement loading except those in

Type IV. When c0 ≤ 4 MPa, with rigid sphere loading, εpmax increases instead of decreases

with the decrease in cohesion. In addition, when the plastic deformation becomes uncontained,

the maximum equivalent shear strain εpmax occurs right beneath the contact area instead of

near the contact edge. Overall, even at very low cohesion values, yielding occurs mostly at the

undrained state and there is little plastic strain accumulation during the transient phase. As

such, in this series, the surface displacement profiles barely change over time and the normal-

ized force relaxation curves compare relatively well with the poroelastic solution at ω = 0 even

when the cohesion is small.
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Figure 6.15: Series .: Comparison of the force relaxation curves between the theoretical solution
at ω = 0 and the numerical results with c0 = 1.5 and 18 MPa.
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Figure 6.16: Series .: Surface displacement profiles at the undrained and drained states with
c0 = 1 and 10 MPa.
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Figure 6.17: Series ., c0 = 1 MPa; from top to bottom - normalized equivalent plastic strain εpn,
pore pressure pn and fluid flux at t∗ = 0, 0.1, 1 and 10; for these times, εpmax = 0.2506, 0.2513,
0.2513, 0.2513, pmin = −0.385, −1.8 × 10−3, −1.2 × 10−3, 4.365 × 10−4 MPa, pmax = 6.26,
4.12, 1.65, 0.066 MPa, and qmax = 1.206×10−2, 1.822×10−3, 5.22×10−4, 9.416×10−6 mm/s;
contours of εp = 0 and p = 0 marked by black lines.
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6.5.2 Numerical Results with ν = 0.45

In the poro-elasto-plastic analysis so far, the drained Poisson’s ratio is set to ν = 0.22. Effect

of the negative pore pressure is prominent only in the Type IV response of Series - when the

material is associative and the cohesion is small. However, if the Poisson’s ratio increases,

at the undrained limit, negative pore pressure can be easily induced by plastic deformation

since shear induced dilatancy could become dominant over the elastic volumetric compressive

strain. Subsequent plastic accumulation may then be strongly affected by the presence of

negative pore pressure throughout the transient phase even when the cohesion is relatively

large. Consequently, Types I and II behaviors may no longer exist even at large c0.

Such an effect of the Poisson’s ratio can be observed from a comparison of four simulation

cases with c0 = 13 MPa and φ = 20◦. The dilatancy angle and the Poisson’s ratio of each case

are: 1) ψ = φ, ν = 0.22; 2) ψ = 0◦, ν = 0.22; 3) ψ = φ, ν = 0.45 and 4) ψ = 0◦, ν = 0.45.

In these four simulations, the shear modulus and the undrained Poisson’s ratio are kept the

same, G = 759.4 MPa and νu = 0.5. Therefore, at the undrained limit, if there is no plastic

deformation, the pore pressure distribution is the same across the four cases, which can be

seen from the pore pressure expression in Table A.1. However, if there is plastic deformation,

the differences in the pore pressure development can be attributed to ν and ψ only. Fig. 6.18

shows the contour plots of the normalized equivalent plastic strain and the pore pressure at

the undrained limit for the four simulation cases. Among them, substantial development of

negative pore pressure occurs when φ = ψ and ν = 0.45. In this case, the corresponding εpmax is

the smallest of the four as a result of shielding effect from the negative pore pressure. However,

as the pore pressure dissipates, plastic strain accumulates over time (ηε < 1).

Two series of simulations are now conducted with ν = 0.45, Series ∦: ψ = φ = 20◦ and

Series /: φ = 20◦, ψ = 0◦. Figs. 6.19 and 6.20 show that ηε < 1 even at large c0 when the

plastic strain is rather small. For Series ∦, what we identify as Types I & II responses no longer

exists. Therefore, we make no further attempt to determine a lower bound for cohesion above

which the force relaxation curves may be approximated as poroelastic. When the material
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is non-associative (Series /), ηε = 1 and ηf remain constant for nearly the whole range of

cohesion values in this series. Similar to the observation from Series . (see Fig. 6.15), the force

relaxation curves are relatively close to the theoretical solution even at small c0. Here the

threshold between Types II and III is at c0 = 18 MPa, see Fig. 6.19 and 6.21.

0 0.5 1

Figure 6.18: From top to bottom - normalized equivalent plastic strain εpn and pore pressure
pn at the undrained limit; from left to right: 1) ψ = φ, ν = 0.22; 2) ψ = 0, ν = 0.22; 3)
ψ = φ, ν = 0.45; 4) ψ = 0, ν = 0.45; from left to right, εpmax = 0.0361, 0.049, 0.0151, 0.049,
pmin = −0.0191, −0.0158, −9.481, −0.0126 MPa, pmax = 87.615, 70.88, 158.269, 65.05 MPa;
contours of εp = 0 and p = 0 marked by black lines.
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Figure 6.19: Series ∦, ν = 0.45; series /, ν = 0.45; Effect of cohesion on the ratios of the
equivalent plastic strain ηε and force asymptotes ηf and η∗.
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Figure 6.20: Series ∦, ν = 0.45: Effect of cohesion on the location and magnitude of the
maximum equivalent plastic strain εpmax; U - undrained limit, D - drained limit.
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Figure 6.21: Series /, ν = 0.45: Effect of cohesion on the location and magnitude of the
maximum equivalent plastic strain εpmax; U - undrained limit, D - drained limit.

6.6 Parameter Space

6.6.1 Incipient Failure Consideration

Some useful information can be extracted from the undrained and drained asymptotes of the

theoretical solution for poroelastic spherical indentation (see Appendix A.1.5), which will be

used to construct the parameter space. It follows from the Hertzian solution that at the

undrained limit, the non-zero poroelastic fields along the contact axis can be expressed as,

αp =
16ηωG

πφ (1 + ω)

√
d

R

[
1− z∗ arctan

(
z−1
∗
)]

(6.39)

σz = −8G

πφ

√
d

R

(
1 + z2

∗
)−1 (6.40)

σr = σθ = −8G

πφ

√
d

R

[(
2− 1

2
φ

)[
1− z∗ arctan

(
z−1
∗
)]
− 1

2

(
1 + z2

∗
)−1
]

(6.41)
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where r∗ = r/a, z∗ = z/a and a =
√
Rd. The corresponding Drucker-Prager stress along depth

is therefore,

% =
8G

πφ

√
d

R


√

3

2

(
1 + z2

∗
)−1 −

√
3

2

[
1− z∗ arctan

(
z−1
∗
)]

+

(
3bK

G
−
√

3

6

)
(1− φ)

[
1− z∗ arctan

(
z−1
∗
)]
 (6.42)

It can be seen from Eq. 6.42 that at a given depth, % in the incompressible case (φ = 1) is

always larger than the compressible case (φ > 1), which suggests that the plastic deformation

is likely to be more severe when the constituents are incompressible. This purely poroelastic

analysis is consistent with the poro-elasto-plastic analysis in Section 5.7.1. As a result, when

constructing the parameter space, we will only focus on the responses with φ = 1 to stay on

the less conservative side.

Setting φ = 1, Eq. 6.42 becomes,

% =
4
√

3G

π

√
d

R

[
1

1 + z2
∗

+ z∗ arctan

(
1

z∗

)
− 1

]
(6.43)

In this case, % reaches its maximum at z∗ w 0.55, with a magnitude being %max w 0.783G
√
d/R.

As a result, from the Drucker-Prager failure criterion, we could derive an equation that marks

the onset of plastic yielding at the undrained limit,

√
d

R
=
c0

G

cosϕ

0.226 (3− sinϕ)
(6.44)

At the drained limit, the non-zero fields along the contact axis can be expressed as,

σz = − 2E

π (1− ν2)

√
d

R

(
1 + z2

∗
)−1 (6.45)

σr = σθ = − 2E

π (1− ν2)

√
d

R

[
(1 + ν)

[
1− z∗ arctan

(
z−1
∗
)]
− 1

2

(
1 + z2

∗
)−1
]

(6.46)
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The corresponding Drucker-Prager stress along depth is therefore,

% =
2E

π (1− ν2)

√
d

R

[√
3

2

(
1 + z2

∗
)−1 −

(√
3

3
+ 2b

)
(1 + ν)

[
1− z∗ arctan

(
z−1
∗
)]]

(6.47)

It can be shown from Eqs. 6.43 and 6.47 that %max at the undrained and drained limits

equals to each other only when ν = 0.5 and b = 0. For all other scenarios, %max is larger at the

undrained limit. This gives support to the observation from the numerical simulations that if

the cohesion is above a threshold, plastic strain occurs only at the undrained limit.

6.6.2 Parameter Space Construction

For spherical indentation, plastic deformation is affected by the indentation strain d/R. The

threshold cohesion values for the four different types of poro-elasto-plastic reponses are therefore

also dependent on d/R. As our interest is on the parameter space where the force relaxation

response can be approximated as poroelastic, we limit our focus on identifying the lower bound

cohesion value for the Type II response at a given d/R. Fig. 6.22 shows such a parameter

space for ν = 0.22, νu = 0.5 and both the associative and non-associative cases with φ = 20◦.

The condition for onset of plasticity at the undrained state can be determined from Eq. 6.44.

The lowerbound of Type II response is determined based on the criteria of ηε = 1 and P = P0.

The results show that when indentation strain is small (d/R < 0.01), the two lower bounds for

Type II response are nearly linear in the log-log plot. As d/R increases, the boundary curves

up and intersects Eq. 6.44 at d/R = 0.08 and c0/G = 0.18. For extreme cases at d/R > 0.08,

Types I and II responses no longer occur since now the Hertzian assumption is no longer valid.

The location for the onset of plasticity at the undrained limit is no longer at P0. Essentially,

Fig. 6.22 gives us a practical guidance to determine a suitable range of indentation strain for

poroelasticity characterization in the laboratory if material properties such as cohesion and

shear modulus are known.
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Figure 6.22: Parameter space for spherical indentation into a poro-elasto-plastic material, show-
ing different regimes of response; associative case: ϕ = ψ = 20◦, ν = 0.22; non-associative case:
ϕ = 20◦, ψ = 0◦, ν = 0.22.

6.6.3 Effect of Loading Rate and Testing Duration

In a physical experiment, step displacement loading can only be realized by ramping up the

displacement over a fixed time period tr. Therefore, effect of the loading rate on the transient

indentation relaxation behavior is examined here. In the numerical simulation, instead of

ramping up to the prescribed depth incrementally all at t∗ = 0, the depth of penetration is

reached by a linear ramping of the indentation displacement in time. In Fig. 6.23, the force

relaxation response is plotted for three different dimensionless ramping times (tr = 10−3, 10−2

and 10−1), in comparison with the result for instantaneous loading (tr = 0). These poroelastic

simulations are conducted with case III drainage condition, d = 0.1 mm and R = 10 mm. The

setup is the same as those described in Section 6.3. The material properties are based on those

of the Gulf of Mexico shale except that the consituents are set as incompressible and ν = 0.

The simulation is terminated at t∗ = 106 as the indentation force now barely changes with

time.
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Figure 6.23: Effect of the loading rate on the force relaxation behavior. The inset shows
that during the ramping stage the indentation displacement increases linearly with time until
reaching the prescribed depth at d = 0.1 mm; the dimensionless ramping times are tr = 10−3,
10−2, and 10−1.

The earliest and latest forces from tr = 0 are used to normalize the force-time data at

different ramping times. For the case of high loading rate (tr = 10−3), the peak force is

close to the undrained force asymptote and the subsequent relaxation closely follows the curve

for instantaneous loading. For a relatively low loading rate (tr = 10−1), however, the peak

force is lower than the instantaneous limit but higher than the force corresponding to the

same time from the curve at tr = 0. In other words, the indentation force overshoots from the

reference curve for zero ramping time. Fig. 6.23 shows that the transient indentation relaxation

response depends on the loading rate. In order to have a force relaxation curve that can be

well represented by the curve with tr = 0, a sufficiently high loading rate should be imposed,

e.g., tr < 10−2. In addition, in order to ensure that the late time force relaxation response can

be well captured, the dimensionless testing duration td should be larger than 1000, at which

Fn ≈ 0.001.
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7 POROELATIC SPHERICAL INDENTATION UNDER STEP

FORCE

7.1 Introduction

Poroelastic spherical indentation via step force loading is analyzed in this chapter. Step force

loading was first examined theoretically by Agbezuge and Deresiewicz (1974) for the three

distinct cases of surface drainage conditions. Master curves used in the experimental work of

Oyen (2008) was constructed by fitting the solution of Agbezuge and Deresiewicz (1974), see

details in Section 1.2.2.

When a spherical indenter is pressed into a poroelastic half space with compressible con-

stituents by a constant step force FH (t), the instantaneous contact radius and indentation

displacement can be determined from the Hertzian solution,

a (0) =

(
3φFR

16G

) 1
3

, d (0) =

(
3φF

16G
√
R

) 2
3

(7.1)

As the pore pressure dissipates, the depth of indentation increases with time. To formulate

this problem theoretically, two approaches can be employed to approximate the contact radius

response. One is to assume that the contact radius remains constant a (t) = a (0), and the

other is to assume a (t) =
√
Rd (t). The first corresponds to a particular case where the

indenter has a fixed radius spherical tip, which is in complete contact with the surface of the

half space at any time, but does not get in contact with the initially free surface at r > a (0).

Such a problem is mathematically amenable and can be solved theoretically via the McNamee-

Gibson displacement function method. The second approach, which is more appropriate for a

spherical indenter, involves a moving boundary condition and cannot be solved theoretically.

However, we can still formulate the problem to gain insights about how the transient response

is affected by the material properties. These insights combined with limited number of finite

element simulations with the frictionless contact scheme incorporated then allow us to obtain

the solution for the transient displacement without having to make the assumption about
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contact radius a priori.

7.2 Constant Contact Radius

7.2.1 Theoretical Formulation

Boundary conditions for the problem assuming a constant contact radius are given in Table 7.1

for case I surface drainage. Here G (t) is a function that describes the increase of indentation

displacement with time, d (t) = d (0)G (t), and g (s) is the Laplace tranform of G (t) with respect

to t. These two functions are unknowns and need to be determined as part of the solution.

The other two surface drainage conditions can be written as z = 0, qz = 0 in case II and qz = 0

within 0 ≤ r ≤ a (0) and p = 0 at r ≥ a (0) in case III.

time domain Laplace domain

0 ≤ r ≤ a (0)
uz = d (0)G (t)− r2

2R
H (t) uz = d (0) g (s)− r2

2R
s−1

σzr = p = 0 σzr = p = 0

r ≥ a (0) σz = σzr = p = 0 σz = σzr = p = 0

Table 7.1: Boundary conditions for step force loading with case I surface drainage condition,
assuming a (t) = a (0).

For case I, matching the poroelastic fields (see Section 2.2) with the boundary conditions in

the Laplace domain yields a set of dual integral equations. Using the method from Noble (1963),

the pair of dual integral equations can be further reduced to a Fredholm integral equation of

the second kind,

θ1 (s∗, x∗) + ω

∫ ∞
1

N (s∗, x∗,m∗) θ1 (s∗,m∗) dm∗ = ωM (s∗, x∗) (7.2)
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where,

N (s∗, x∗,m∗) = m∗

∫ ∞
0

ξ∗H1 (s∗, ξ∗) J− 1
2

(x∗ξ∗) J− 1
2

(m∗ξ∗) dξ∗ (7.3)

M (s∗, x∗) =

∫ 1

0
m
− 1

2
∗
[
g (s) s−m2

∗
]
N (s∗, x∗,m∗) dm∗ (7.4)

H1 (s∗, ξ∗) = 1 +
2ξ2
∗

s∗

(
1−

√
ξ2
∗ + s∗
ξ∗

)
(7.5)

In the equations above, the dimensionless variables are defined as follows,

x∗ = x/a (0) m∗ = m/a (0) r∗ = r/a (0) z∗ = z/a (0) (7.6)

ξ∗ = ξa (0) s∗ = λa2 (0) t∗ = tc/a2 (0) u∗ = uc/a2 (0)

There are two unknowns in the Fredholm integral equation, i.e., g (s) s and θ1 (s∗, x∗). An

additional equation for them is therefore needed. This equation can be obtained by equating

the resultant of the normal stress over the contact area to the applied force,

g (s) s = 1 +
2

3
ω −

∫ 1

0
x

1
2
∗ θ1 (s∗, x∗) dx∗ (7.7)

To solve for g (s) s and θ1 (s∗, x∗) in Eqs. 7.2 and 7.7, an iteration procedure is adopted.

Note that since Eq. 7.2 has a similar structure to the Fredholm equation for case I with

step displacement loading, techniques we previously develop to overcome the mathematical

difficulties associated with evaluating integrals with oscillatory kernels and solving the Fredholm

integral equation can be directly used here. Once functions g (s) s and θ1 (s∗, x∗) are obtained,

G (t) can be determined by applying the inverse Laplace transformation to Eq. 7.7,

G (t) = L−1
s [g (s)] = 1 +

2

3
ω −

∫ 1

0
x

1
2
∗ L−1

[
s−1
∗ θ1 (s∗, x∗)

]
dx∗ (7.8)

where L−1
s and L−1 denote the inverse Laplace transformation with respect to s and s∗, re-

spectively.

For case II, equations to determine G (t) are the same as those in case I except thatH1 (s∗, ξ∗)
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is replaced with,

H1 (s∗, ξ∗) = 1 +
2ξ2
∗

s∗

(
ξ∗√
ξ2
∗ + s∗

− 1

)
(7.9)

For case III, equations to determine G (t) involve a nonlinear relationship for g (s) and

θ1a (s∗, x∗) and two coupled Fredholm integral equations of the second kind,

g (s) s = 1 +
2

3
ω −

∫ 1

0
x

1
2
∗ θ1a (s∗, x∗) dx∗ (7.10)

and,

θ1a (s∗, x∗) + ω

∫ ∞
1

Na (s∗, x∗,m∗) θ1a (s∗,m∗) dm∗

+ω

∫ ∞
1

Nb (s∗, x∗,m∗) θ1b (s∗,m∗) dm∗ = ωMa (s∗, x∗)

(7.11)

θ1b (s∗, x∗) +

∫ ∞
1

Nd (s∗, x∗,m∗) θ1a (s∗,m∗) dm∗

−
∫ ∞

1
Nc (s∗, x∗,m∗) θ1b (s∗,m∗) dm∗ = Mb (s∗, x∗)

(7.12)

where,

Ma (s∗, x∗) =

∫ 1

0
m
− 1

2
∗
[
g (s) s−m2

∗
]
Na (s∗, x∗,m∗) dm∗ (7.13)

Mb (s∗, x∗) =

∫ 1

0
m
− 1

2
∗
[
g (s) s−m2

∗
]
Nd (s∗, x∗,m∗) dm∗ (7.14)

Expressions for Na (s∗, x∗,m∗)-Nd (s∗, x∗,m∗) and their alternative formulations can be found

in Section 4.3.1. G (t) in case III can be determined by applying the inverse Laplace transfor-

mation to Eq. 7.10.

In these three cases, ω is the only material constant affecting θ1 (s∗, x∗) or θ1a (s∗, x∗), and

therefore both g (s) s and G (t).

7.2.2 Results

Once G (t) is known, the time-dependent behavior of the indentation displacement d (t∗) can

be readily obtained since d (t∗) = d (0)G (t). With θ1,1a (s∗ →∞, x∗ ≤ 1) = ωx
− 1

2
∗
(
1− x2

∗
)
and

θ1,1a (s∗ → 0, x∗) = 0, we have G (0) = 1 and G (∞) = 1 + 2ω/3. The indentation displacement
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at t∗ →∞ can therefore be related to the indentation force through,

d (∞) =

(
1 +

2ω

3

)(
3φF

16G
√
R

) 2
3

(7.15)

A normalized indentation displacement dn (t∗) can be defined as follows,

dn (t∗) =
d (∞)− d (t∗)

d (∞)− d (0)
(7.16)

and therefore,

dn (t∗) =
G (∞)− G (t)

G (∞)− G (0)
(7.17)

where dn (0) = 1 and dn (∞) = 0, and dn (t∗) depends on material properties through ω only.

Transient behaviors of the normalized indentation displacement at ω = 0, 0.5, 1 are plotted

for cases I, II and III drainage conditions in Fig. 7.1. When ω = 0, the problem is no

longer time-depedent and dn (t∗) becomes indefinite according to Eq. 7.17. Nevertheless,

mathematical limit of dn (t∗) still exists and simply equals to the normalized force relaxation

Fn (t∗) at ω = 0.

Similar to the concept of step displacement loading test, in principle, the step force loading

test can also be used for poroelasticity characterization. The two displacement asymptotes can

be used to determine material constants G/φ and ω. Once ω is known, hydraulic diffusivity c

can be determined by matching the transient displacement response from experiments with the

master curves. However, compared with step displacement loading, the step force loading test

may be less reliable as dn (t∗) appears to be more sensitive to ω. For example, the differences

of t∗0.5 in dn (t∗) between ω = 0 and 1 for cases I, II and III are 0.202, 1.26 and 0.183,

respectively, while these numbers for Fn (t∗) are 0.033, 0.204 and 0.047. Consequently, accuracy

in determining the hydraulic diffusivity c from dn (t∗) has a stronger dependence on the accuracy

of ω.
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(b) case III

Figure 7.1: Theoretical solutions for the time-dependent behaviors of the normalized indenta-
tion displacement, assuming a constant contact radius.
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7.3 Varying Contact Radius

If we assume that the contact radius obeys the Hertzian relationship, a (t) =
√
Rd (t), the

problem now involves a moving boundary. This problem was firstly attempted by Agbezuge and

Deresiewicz (1974). Their derivation was facilitated by treating the contact pressure as a slowly

varying function of time, which could then be taken out of the convolutional type of integral. It

is unclear to us whether such an assumption is legitimate. However, without this assumption,

theoretical solution cannot be obtained due to the high nonlinearity in the equation system.

Meanwhile, with the frictionless contact scheme incorporated in our finite element algorithm,

the assumption on the contact radius is no longer required a priori. Therefore, we revisit this

problem via an integrated theoretical and numerical approach.

Boundary conditions for this problem can only be given in the time domain, since a varying

contact radius is used. As an example, Table 7.2 gives the boundary conditions for case I

drainage condition.

0 ≤ r ≤ a (t)
uz = d (t)− r2

2R

σzr = p = 0

r ≥ a (t) σz = σzr = p = 0

Table 7.2: Boundary conditions for step force loading with case I surface drainage condition,
assuming a (t) =

√
Rd (t).

If we assume a (t) =
√
Rd (t), both the initial and final indentation depth can be determined

according to the Hertzian solution,

d (0) =
a2 (0)

R
=

(
3φF

16G
√
R

) 2
3

(7.18)

d (∞) =
a2 (∞)

R
=

[
3ηF

8G (2η − 1)
√
R

] 2
3

(7.19)
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Their ratio gives,
d (0)

d (∞)
=

a2 (0)

a2 (∞)
= (1 + ω)−

2
3 (7.20)

Two approaches can be used for the scaling of the dimensionless time, namely, t∗ = tc/a2 (0)

or t∗ = tc/a2 (t). We first prove through theoretical analysis that for both forms of dimensionless

time, if the Hertzian relationship a (t) =
√
Rd (t) is valid, then dn (t∗), as defined in Eq. 7.16,

is affected by material constants through ω only. We then perform finite element simulations

by first checking the validity of the Hertzian relationship and then investigating the behaviors

of dn (t∗) at different ω.

7.3.1 Theoretical Analysis

According to the McNamee-Gibson displacement function method, see Section 2.2, field vari-

ables on the surface in the time domain can be expressed as,

uz =

∫ ∞
0
L−1
s

[
A1ξ +A2

√
ξ2 + λ+ (1− 2φ)B1

]
J0 (rξ) dξ (7.21)

σz
2G

=

∫ ∞
0
L−1
s

(
A1ξ

2 +A2ξ
2 − φB1ξ

)
J0 (rξ) dξ (7.22)

αp

2G
=

∫ ∞
0
L−1
s {−ηA2λ− [φ+ 2η (1− φ)]B1ξ} J0 (rξ) dξ (7.23)

σzr
2G

=

∫ ∞
0
L−1
s

[
A1ξ

2 +A2ξ
√
ξ2 + λ+ (1− φ)B1ξ

]
J1 (rξ) dξ (7.24)

αµqz
2Gκ

=

∫ ∞
0
L−1
s

{
−ηA2λ

√
ξ2 + λ− [φ+ 2η (1− φ)]B1ξ

2
}
J0 (rξ) dξ (7.25)

Cases I and II Matching the poroelastic fields in the time domain with the boundary con-

dition yields the following dual integral equations,

a3 (0)

∫ ∞
0

χa (t, ξ) J0 (rξ) dξ =
3

16

[
r2

2
− a2 (t)

]
, r ≤ a (t) (7.26)

∫ ∞
0

ξ

[
cξ2

∫ t

0
Ka (u, ξ)χa (t− u, ξ) du− χa (t, ξ)

]
J0 (rξ) dξ = 0, r ≥ a (t) (7.27)
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where,

χa (t, ξ) = L−1
s

(
GB1

F

)
(7.28)

Expression of Ka (t, ξ) for case I is,

Ka (t, ξ) =
2ω

1 + ω

[(
πctξ2

)− 1
2 exp

(
−ctξ2

)
+ erf

(√
ctξ
)
− 1
]

(7.29)

and for case II,

Ka (t, ξ) =
2ω

1 + ω

[
1− erf

(√
ctξ
)]

(7.30)

Integrating the normal stress over the contact area and setting the resultant to be equal to

the indentation force F yields an additional equation,

∫ a(t)

0
r

{∫ ∞
0

ξ

[
cξ2

∫ t

0
Ka (u, ξ)χa (t− u, ξ) du− χa (t, ξ)

]
J0 (rξ) dξ

}
dr =

1

4π
(7.31)

The term
∫ t

0 Ka (u, ξ)χa (t− u, ξ) du is obtained based on the convolution theorem.

Here we adopt two methods to define the dimensionless variables. One is according to Eq.

7.6, where variables are scaled with respect to the initial contact radius a (0), and the other is

according to,

x∗ = x/a (t) m∗ = m/a (t) r∗ = r/a (t)

z∗ = z/a (t) ξ∗ = ξa (t) t∗ = ct/a2 (t) u∗ = cu/a2 (t)

(7.32)

Of course, regardless of the scaling approach, the end results we obtain should be identical.

From the first method, Eqs. 7.26, 7.27 and 7.31 become,

∫ ∞
0

χ1 (t∗, ξ∗) J0 (r∗ξ∗) dξ∗ =
3

16

[
r2
∗
2
− a2 (t∗)

a2 (0)

]
, r∗ ≤

a (t∗)

a (0)
(7.33)

∫ ∞
0

ξ∗ψ (t∗, ξ∗) J0 (r∗ξ∗) dξ∗ = 0, r∗ ≥
a (t∗)

a (0)
(7.34)
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∫ a(t∗)
a(0)

0
r∗

[∫ ∞
0

ξ∗ψ (t∗, ξ∗) J0 (r∗ξ∗) dξ∗

]
dr∗ =

1

4π
(7.35)

From the second method, Eqs. 7.26, 7.27 and 7.31 become,

a3 (0)

a3 (t∗)

∫ ∞
0

χ1 (t∗, ξ∗) J0 (r∗ξ∗) dξ∗ =
3

16

(
r2
∗
2
− 1

)
, r∗ ≤ 1 (7.36)

∫ ∞
0

ξ∗ψ (t∗, ξ∗) J0 (r∗ξ∗) dξ∗ = 0, r∗ ≥ 1 (7.37)

∫ 1

0
r∗

[∫ ∞
0

ξ∗ψ (t∗, ξ∗) J0 (r∗ξ∗) dξ∗

]
dr∗ =

1

4π
(7.38)

where χ1 (t∗, ξ∗) = χ (t, ξ). Expression of ψ (t∗, ξ∗) is given as follow,

ψ (t∗, ξ∗) = ξ2
∗

∫ t∗

0
K1 (u∗, ξ∗)χ1 (t∗ − u∗, ξ∗) du∗ − χ1 (t∗, ξ∗)

K1 (t∗, ξ∗) for case I is,

K1 (t∗, ξ∗) =
2ω

1 + ω

[(
πt∗ξ

2
∗
)− 1

2 exp
(
−t∗ξ2

∗
)

+ erf
(√
t∗ξ∗

)
− 1
]

(7.39)

and for case II,

K1 (t∗, ξ∗) =
2ω

1 + ω

[
1− erf

(√
t∗ξ∗

)]
(7.40)

It can be seen that for both scaling methods, a (t∗) /a (0) are influenced by material con-

stants through ω only.

Case III Matching the displacement and normal stress with the mechanical boundary con-

dition yields the first set of dual integral equations,

a3 (0)

∫ ∞
0

χa (t, ξ) J0 (rξ) dξ =
3

16

[
r2

2
− a2 (t)

]
, r ≤ a (t) (7.41)

∫ ∞
0

ξ

[
cξ2

∫ t

0
Kb (u, ξ)χb (t− u, ξ) du− χa (t, ξ)

]
J0 (rξ) dξ = 0, r ≥ a (t) (7.42)
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Matching the pore pressure and normal flux with the drainage boundary conditions yields

the other set of dual integral equations,

∫ ∞
0

ξ2

[∫ t

0
Kc (u, ξ)χb (t− u, ξ) du+

2ω

1 + ω
χa (t, ξ)

]
J0 (rξ) dξ = 0, r ≤ a (t) (7.43)

∫ ∞
0

ξ

[
χb (t, ξ) +

2ω

1 + ω
χa (t, ξ)

]
J0 (rξ) dξ = 0, r ≥ a (t) (7.44)

Again an additional equation can be obtained from the force equilibrium condition for the

indenter,

∫ a(t)

0
r

{∫ ∞
0

ξ

[
cξ2

∫ t

0
Kb (u, ξ)χb (t− u, ξ) du− χa (t, ξ)

]
J0 (rξ) dξ

}
dr =

1

4π
(7.45)

where,

χb (t, ξ) = L−1
s

(
λGA2

Fξ

)
(7.46)

Kb (t, ξ) = 1−
(
πctξ2

)− 1
2 exp

(
−ctξ2

)
− erf

(√
ctξ
)

(7.47)

Kc (t, ξ) = −1

2

(
πctξ2

)− 1
2 t−1 exp

(
−ctξ2

)
(7.48)

After normalizing the variables into dimensionless form following either Eq. 7.6 or Eq. 7.32,

we can show that a (t∗) /a (0) in case III is also affected by material properties through ω only.

Detailed equations are omitted here for the sake of brevity. Therefore, considering the fact that

a (∞) /a (0) = (1 + ω)
1
3 , for both scaling methods, dn (t∗) can be proven to be solely dependent

on ω once the assumption a (t) =
√
Rd (t) is validated.

7.3.2 Numerical Results

Here finite element simulations are used to first examine the validity of the assumption on

the contact radius, i.e., a (t) =
√
Rd (t). The transient displacement behaviors of dn (t∗) at

different ω are then explored. While the contact scheme in Section 6.2 provides a means to

simulate spherical indentation with a given indentation depth, it does not illustrate how the
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step force loading problem, where the indentation depth is not known a priori, can be solved.

Here a simple yet effective iteration procedure is added to model step force loading. To

advance from loading step n to n + 1 , the scheme starts by calculating an initial indentation

depth d(0). In the ramping up stage, this initial indentation depth is determined according to

Eq. 7.18; in the transient stage, the initial depth is set to be equal to the indentation depth

at step n. In the `−th iteration cycle (` = 1, 2, 3, ...), given d(`−1), an indentation force F (`−1)

can be determined from the finite element simulation. The residual between the applied force

F and the force corresponding to d(`−1) is therefore ∆F = F − F (`−1). Such a residual is

used to calculate an incremental displacement ∆d according to ∆d = φ∆F/8G
√
Rd(0), based

on Eq. 7.18. The indentation depth for next iteration is therefore d(`) = d(`−1) + ∆d. The

iteration terminates if |∆d| < ε, where ε is the tolerance. Field variables and indentation depth

at loading step n+ 1 are then updated according to un+1 = u(`), pn+1 = p(`) and dn+1 = d(`).

For each surface drainage condition, dependence of dn (t∗) on ω is examined with four

distinct sets of material properties. For each set, the parameter values different from those of

the Gulf of Mexico shale are as follows,

• set i: ν = 0, Ks →∞, Kf →∞ (ω = 1)

• set ii: ν = 0.25, Ks →∞, Kf →∞ (ω = 0.5)

• set iii: ν = 0.49, Ks →∞, Kf →∞ (ω = 0.02)

• set iv: ν = 0, Ks = 2.75 GPa, Kf = 2 GPa (ω = 0.5)

In the numerical simulations, the applied force for each set is determined according to Eq.

7.18 with d (0) = 0.1 mm. Simulation results suggest that the displacement asymptotes at the

undrained and drained limits are consistent with the theoretical solution, see Table 7.3.
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Theoretical Numerical

set i ii iii iv i ii iii iv

d (0) (mm) 0.1 0.1 0.1 0.1 0.0996 0.0993 0.0995 0.0993
d (∞) (mm) 0.101 0.131 0.159 0.131 0.101 0.128 0.153 0.128

Table 7.3: Indentation displacement asymptotes at the undrained and drained limits for sets
i-iv.

10-4 10-2 100 102 104
-0.04

-0.02

0

0.02

0.04

Figure 7.2: Evolution of a (t∗) /
√
Rd (t∗)− 1 with dimensionless time t∗ = tc/a2 (0).
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It is interesting to observe that in all these simulations,

∣∣∣∣∣ a (t∗)√
Rd (t∗)

− 1

∣∣∣∣∣ < 0.035

see Fig. 7.2. The values are even smaller for case III surface drainage condition. From a

practical stand point, we may therefore consider that a (t) =
√
Rd (t) is a valid assumption

for step force loading. Note that in Fig. 7.2, the dimensionless time is scaled according to

t∗ = tc/a2 (0), but the same conclusion still holds if t∗ = tc/a2 (t).

In the aforementioned theoretical analysis, it is shown that if a (t) =
√
Rd (t) is valid,

dn (t∗) is expected to be influenced by material constants through ω only. The governing role

of ω is indeed confirmed by numerical simulations. As shown in Fig. 7.3, dn (t∗) from sets ii

and iv are almost identical. In these two sets, the material properties are rather different, but

ω is the same (ω = 0.5). In this figure, behaviors of the normalized indentation displacement

are plotted for the four sets of material properties with t∗ = tc/a2 (0). The differences of t∗0.5

in dn (t∗) between ω = 0.02 and 1 are 0.206, 1.095 and 0.533 for cases I, II and III, respectively.

A comparison of the indentation displacment at transient times between the numerical

simulation and the theoretical solution at ω = 0 is shown in Fig. 7.4. Denote ∆dn as the

difference in the normalized indentation displacement dn (t∗) between the numerical results at

ω = 0.02 and the theoretical solutions at ω = 0. The latter simply equals to Fn (t∗) at ω = 0.

As expected, the transient results agree very well with the theoretical solutions. The relatively

large discrepancy at large time is attributed to the finite sample size and far field drainage

boundary conditions imposed at the lateral surface.
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(a) cases I and II
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(b) case III

Figure 7.3: Time-dependent behaviors of the normalized indentation displacement, assuming a
varying contact radius; t∗ = ct/a2 (0).
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Figure 7.4: Difference between the numerical results at ω = 0.02 and the theoretical solutions
at ω = 0 in the normalized indentation displacement as a function of time; t∗ = ct/a2 (0).
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Figure 7.5: Time-dependent behaviors of the normalized indentation displacement for case III,
assuming a varying contact radius; t∗ = ct/a2 (t). The master curve from Oyen (2008) is plotted
for comparison.
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In order to see whether the transient displacement response becomes less sensitive to ω

if time is scaled according to t∗ = tc/a2 (t), we replot the simulation results from cases III

with ω = 0.02, 0.5 and 1 in Fig. 7.5 with time scaled against a (t). Difference of t∗0.5 between

ω = 0.02 and 1 is now 0.27, still much larger than 0.047 for Fn (t∗). This suggests that compared

with step displacement loading, the step force loading test may be less reliable from the point

of view of data interpretation.

A comparison is made between our numerical results for case III and the fitting function from

Oyen (2008), contructed based on the semi-analytical results from Agbezuge and Deresiewicz

(1974) assuming ν = 0 and t∗ = ct/a2 (t), see Eq. 1.5. Agreement is however not satisfactory.

The assumption in Agbezuge and Deresiewicz (1974) to treat the contact pressure as a slowly

varing function of time is perhaps the reason for the discrepancy.
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8 CONCLUSION AND FUTURE WORK

8.1 Conclusion

A set of fully coupled poroelastic solutions to the problems of spherical indentation in a semi-

infinite domain with case I-III surface drainage conditions via step displacement loading or

step force loading is derived based on the McNamee-Gibson displacement function method

within the framework of Biot’s theory. With the aid of a variety of mathematical techniques,

effective solution schemes are constructed to overcome the difficulties generally associated with

evaluating integrals with oscillatory kernels and solving the Fredholm integral equation of the

second kind. Field variables on the surface as well as inside the domain are both derived.

For all these cases, the theoretical solutions show that the normalized transient force or

displacement responses are affected by material properties through a single derived material

constant ω only. Furthermore, such dependence on ω is relatively weak if the indentation process

is displacement-controlled. Master curves for the force relaxation or transient displacement

response can be constructed by fitting the full solutions using a four-parameter elementary

function with a coefficient of determination R2 w 1.

For the particular case of ω = 0, closed-form asymptotic expressions for the early and late

time force relaxation responses from step displacement loading are derived for both cases I and

II surface drainage conditions. Given a tolerance of 1%, a combination of these early and late

time asymptotic expressions can approximate the full solution for the entire time range.

In principle, both the step displacement or step force loading test can be used for poroelas-

ticity characterization in the laboratory. However, from the point of view of data interpretation,

the relatively weak dependence on ω is an indication that the stepdisplacement test is likely

more reliable than the stepforce test. For the step displacement test, the asymptotes of the

indentation force at the undrained and drained limits can be used to determine G/ϕ and

G (2η − 1) /η. The ratio between the two yields constant ω. Hydraulic diffusivity c can then

be determined by matching the measured transient force response against the corresponding

master curve.
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A hydromechanically coupled finite element method (FEM) algorithm following a mixed

continuous Galerkin formulation for displacement and pore pressure and incorporating a penalty-

based frictionless contact scheme is constructed for modeling of spherical indentation in a

poro-elasto-plastic medium in order to examine how factors such as plastic deformation, depth

of penetration and loading rate affect the indentation response. The fully saturated porous

medium is assumed to be isotropic and elasto-perfectly plastic, obeying a Drucker-Prager yield

criterion with an associative or non-associated flow rule. The Newton-Raphson method with

the tangent stiffness scheme is adopted to deal with plasticity in the solid skeleton. A stabiliza-

tion scheme, which permits equal-order interpolation for the displacement and pore pressure

fields and suppresses pore pressure oscillation in the incompressible or nearly incompressible

limit is incorporated in this FEM algorithm.

Numerical simulations are first carried out for poroelastic spherical indentation via both step

displacement and rigid sphere loadings and are compared with the theoretical solution. For step

displacement loading, excellent agreement is achieved between the numerical and theoretical

solutions. For rigid sphere loading, at the undrained and drained limits, depending on the

magnitude of indentation strain and Poisson’s ratio, the force asymptote from the numerical

simulations could be either larger or smaller than their theoretical counterparts; at transient

time, when the indentation strain is small, e.g., d/R ≤ 0.05, the numerical results show an even

weaker dependence on ω than that of the theoretical solutions. The numerical results with

ω = 0.02 and 1 agree very well with the theoretical curve at ω = 0. This means that from a

practical stand point, the theoretical force relaxation curve at ω = 0 is a suitable master curve

for the entire range of ω as long as the indentation strain is relatively small.

Numerical simulations are then performed for indentation in a poro-elasto-plastic medium.

It is shown that hydromechanical coupling gives rise to four distinct types of poro-elasto-plastic

responses, which can be distinguished based on the equivalent plastic strain ratio ηε, the two

force ratios ηf and η∗ as well as the location of the maximum plastic strain εpmax. Even

though plasticity could occur immediately at the undrained limit, if the indentation strain and

material strength are such that the maximum plastic strain at the undrained limit remains at
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the location of onset of plasticity as predicted by the poroelastic solutions and plastic strain

does not accumulate during the transient period, the normalized force relaxation behavior could

still be approximated as poroelastic. A parameters space could be constructed to determine a

suitable range of indentation strain for poroelasticity characterization of geomaterials if material

properties such as cohesion and shear modulus are known. Effects of the loading rate and

testing duration on the quality of relaxation curves are also investigated. In order to have a

force relaxation curve that can be well characterized by the theoretical solution, a sufficiently

high loading rate should be imposed, and a sufficiently long testing duration should be ensured.

8.2 Future Work

Future work can be built upon the theoretical and numerical approaches outlined in the present

work. The mathematical techniques we developed in the theoretical analyses can be applied to

solve other types of contact problems. Meanwhile, numerical development can be further ex-

tended to investigate other types of constitutive behaviors. Laboratory testing with poroelastic

spherical indentation could also be improved with our findings.
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A Additional Results for Chapter 2

A.1 Additional Stress and Displacement Fields

In addition to the pore pressure, vertical stress and displacement fields in Section 2.5, here

we provide the expressions for the remaining non-trivial stress and displacement fields in the

Laplace domain and their asymptotes at the undrained and drained limits in the time domain.

Similar to Section 2.5, two sets of expressions are provided for the field quantities.

A.1.1 Radial Stress

Expression 1

σr =
2Ga3

cφRs∗


∫ 1

0

(
m2
∗ − 1

) Nsr1 (s∗, r∗,m∗, z∗)

+Nsr2 (s∗, r∗,m∗, z∗)

 dm∗
+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)

 Nsr1 (s∗, r∗,m∗, z∗)

+Nsr2 (s∗, r∗,m∗, z∗)

 dm∗


(A.1)

where,

Nsr1 (s∗, r∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

{
(z∗ξ∗ − 1) exp (−z∗ξ∗) +

2ω

1 + ω
exp

(
−z∗

√
ξ2
∗ + s∗

)
+

2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
−
√
ξ2
∗ + s∗
ξ∗

exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(A.2)

Nsr2 (s∗, r∗,m∗, z∗) = − 2

π

1

r∗

∫ ∞
0

{
(1− φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
−
√
ξ2
∗ + s∗
ξ∗

exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(A.3)

Expression 2 The second expression for σr can be derived by decomposing σr into σr =

σr1 +σr2, where σr1 and σr2 correspond to the parts of the equation containing Nsr1 and Nsr2
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in Eq. A.1, respectively. On the surface (z∗ = 0), applying Eq. 2.27 to σr1, we obtain,

∫ ∞
x∗

σr1
r∗dr∗√
r2
∗ − x2

∗
=

∫ ∞
x∗

σz
r∗dr∗√
r2
∗ − x2

∗
+

2G (1− 2η) a3

cηRs∗
θ1 (s∗, x∗)x

1
2
∗ (A.4)

Applying the inverse Abel transform gives,

σr1 = σz +
2G (2η − 1) a3

πcηRs∗

∫ ∞
r∗

2θ3 (s∗, x∗) dx∗√
x2
∗ − r2

∗
(A.5)

Similarly, σr2 can be expressed as follows, at r∗ ≤ 1,

σr2 = −2G (2η − 1) a3

πcηRs∗


∫ 1

r∗

θ1 (s∗, x∗)x
− 1

2
∗ + θ2 (s∗, x∗)x

−2
∗

+
1

2η − 1

(
x∗ − x−1

∗
)

 dx∗√
x2
∗ − r2

∗

+

∫ ∞
1

[
2η

2η − 1
θ1 (s∗, x∗)x

− 1
2
∗ + θ2 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗

} (A.6)

and at r∗ ≥ 1,

σr2 = −2G (2η − 1) a3

πcηRs∗

∫ ∞
r∗

[
2η

2η − 1
θ1 (s∗, x∗)x

− 1
2
∗ + θ2 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗
(A.7)

Expressions for θ2 (s∗, x∗) and θ3 (s∗, x∗) are given in Appendix A.3.

Inside the half space (z∗ > 0), the alternative expressions for σr and other poroelastic fields

from the sections below can be determined using the similar procedures outlined in Section 2.5.

They are therefore omitted here.
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A.1.2 Tangential Stress

Expression 1

σθ =
2Ga3

cφRs∗


∫ 1

0

(
m2
∗ − 1

) Nsθ1 (s∗, r∗,m∗, z∗)

−Nsr2 (s∗, r∗,m∗, z∗)

 dm∗
+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)

 Nsθ1 (s∗, r∗,m∗, z∗)

−Nsr2 (s∗, r∗,m∗, z∗)

 dm∗


(A.8)

where,

Nsθ1 (s∗, r∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

[
2ω

1 + ω
exp

(
−z∗

√
ξ2
∗ + s∗

)
− (2− φ) exp (−z∗ξ∗)

]
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(A.9)

Expression 2 Let σθ = σθ1+σθ2, where σθ1 and σθ2 are the parts of the equations containing

Nsθ1 and Nsr2 in Eq. A.8, respectively. We have σθ2 = −σr2. On the surface (z∗ = 0), applying

Eq. 2.27 to σθ1 gives,

∫ ∞
x∗

σθ1
r∗dr∗√
r2
∗ − x2

∗
=

2− 2η

1− 2η

∫ ∞
x∗

σz
r∗dr∗√
r2
∗ − x2

∗
+

2G (1− η) a3

cηRs∗
θ1 (s∗, x∗)x

1
2
∗ (A.10)

Applying the inverse Abel transform gives,

σθ1 =
2− 2η

1− 2η
σz +

2G (η − 1) a3

πcηRs∗

∫ ∞
r∗

2θ3 (s∗, x∗) dx∗√
x2
∗ − r2

∗
(A.11)

A.1.3 Shear Stress

Expression 1

σzr =
2Ga3

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nszr (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nszr (s∗, r∗,m∗, z∗) dm∗

] (A.12)
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where,

Nszr (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗

{
z∗ξ∗ exp (−z∗ξ∗)

+
2ω

1 + ω

ξ∗
√
ξ2
∗ + s∗
s∗

[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(A.13)

On the surface (z∗ = 0), σzr = 0. The second set expression for shear stress for z∗ > 0 is

omitted here.

A.1.4 Radial Displacement

Expression 1

ur =
a4

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nur (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nur (s∗, r∗,m∗, z∗) dm∗

] (A.14)

where,

Nur (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

{
(1− φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
−
√
ξ2
∗ + s∗
ξ∗

exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(A.15)

Expression 2 Only the expression on the surface (z∗ = 0) is given here. At r∗ ≤ 1,

ur = −(2η − 1) a4r∗
πcηRs∗


∫ 1

r∗

θ1 (s∗, x∗)x
− 1

2
∗ + θ2 (s∗, x∗)x

−2
∗

+
1

2η − 1

(
x∗ − x−1

∗
)

 dx∗√
x2
∗ − r2

∗

+

∫ ∞
1

[
2η

2η − 1
θ1 (s∗, x∗)x

− 1
2
∗ + θ2 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗

} (A.16)
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and at r∗ ≥ 1,

ur = −(2η − 1) a4r∗
πcηRs∗

∫ ∞
r∗

[
2η

2η − 1
θ1 (s∗, x∗)x

− 1
2
∗ + θ2 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗
(A.17)
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A.1.5 Undrained and Drained Asymptotes

undrained asymptotes (t→ 0)

αp
4ηωGa

φ (1 + ω)R

∫ 1
0

(
1−m2

∗
)
I2dm∗

σz
2Ga

φR

∫ 1
0

(
1−m2

∗
)

(I2 + z∗I3) dm∗

σr
2Ga

φR

∫ 1
0

(
1−m2

∗
)

[I2 − z∗I3 + (1− φ) I4 + z∗I5] dm∗

σθ −2Ga

φR

∫ 1
0

(
1−m2

∗
)

[(φ− 2) I2 + (1− φ) I4 + z∗I5] dm∗

σzr
2Ga

φR
r∗z∗

∫ 1
0

(
1−m2

∗
)
I6dm∗

uz
a2

φR

∫ 1
0

(
1−m2

∗
)

(φI1 + z∗I2) dm∗

ur
a2

φR
r∗
∫ 1

0

(
1−m2

∗
)

[(1− φ) I4 + z∗I5] dm∗

Table A.1: Undrained asymptotes of the poroelastic fields.
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drained asymptotes (t→∞)

αp 0

σz
G (2η − 1) a

ηR

∫ 1
0

(
1−m2

∗
)

(I2 + z∗I3) dm∗

σr
G (2η − 1) a

ηR

∫ 1
0

(
1−m2

∗
)(

I2 − z∗I3 +
1

1− 2η
I4 + z∗I5

)
dm∗

σθ −Ga
ηR

∫ 1
0

(
1−m2

∗
)

[(2− 2η) I2 − I4 + (2η − 1) z∗I5] dm∗

σzr
G (2η − 1) a

ηR
r∗z∗

∫ 1
0

(
1−m2

∗
)
I6dm∗

uz
a2

R

∫ 1
0

(
1−m2

∗
) [
I1 −

(
1− 2η

2η

)
z∗I2

]
dm∗

ur − a
2

2R
r∗
∫ 1

0

(
1−m2

∗
) [1

η
I4 +

(
1− 2η

η

)
z∗I5

]
dm∗

Table A.2: Drained asymptotes of the poroelastic fields.
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I1

2

π

∫∞
0 exp (−z∗ξ∗) cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

=
2

π
Re

{[
(z∗ + im∗)

2 + r2
∗

]− 1
2

}

I2

2

π

∫∞
0 ξ∗ exp (−z∗ξ∗) cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

=
2

π
Re

{
(z∗ + im∗)

[
(z∗ + im∗)

2 + r2
∗

]− 3
2

}

I3

2

π

∫∞
0 ξ2

∗ exp (−z∗ξ∗) cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

=
2

π
Re

 3 (z∗ + im∗)
2
[
(z∗ + im∗)

2 + r2
∗

]− 5
2

−
[
(z∗ + im∗)

2 + r2
∗

]− 3
2



I4

2

πr∗

∫∞
0 exp (−z∗ξ∗) cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

=
2

πr2
∗

Re

{
1− (z∗ + im∗)

[
(z∗ + im∗)

2 + r2
∗

]− 1
2

}

I5

2

πr∗

∫∞
0 ξ∗ exp (−z∗ξ∗) cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

=
2

π
Re

{[
(z∗ + im∗)

2 + r2
∗

]− 3
2

}

I6

2

πr∗

∫∞
0 ξ2

∗ exp (−z∗ξ∗) cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

=
2

π
Re

{
3 (z∗ + im∗)

[
(z∗ + im∗)

2 + r2
∗

]− 5
2

}

Table A.3: Expressions of I1 (z∗,m∗, r∗)− I6 (z∗,m∗, r∗).
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A.2 Contour Integration

The application of the method of contour integration for rewriting an integral with an oscillatory

kernel is illustrated here. For example, the last term in Eq. 2.88 can be written in form of,

∫ ∞
0

ξ2
∗
√
ξ2
∗ + s∗ exp (−z∗ξ∗) sin (yξ∗) dξ∗ (A.18)

This is the imaginary part of,

∫ 0

∞
ξ2
∗
√
ξ2
∗ + s∗ exp [− (z∗ + iy) ξ∗] dξ∗ (A.19)

Figure A.1: Integration contour (red dashed lines) and branch cuts (blue dashed lines) in the
complex plane. In the contour, θ = arctan (y/z∗); C1 is the path from ∞ to 0 in the negative
direction of the real axis; C3 is a ray with an angle of θ with respect to the horizontal axis; and
C2 is a circular arc connecting the end point of path C3 to the stating point of path C1.

Since the integrand in Eq. A.19 is analytical inside the domain enclosed by the contour C1+
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C2+C3, see Fig. A.1, integration along the closed contour should be zero. In addition, according

to Jordan’s lemma, the integral over the circular arc C2 does not contribute. Therefore, the

integral along C1 (Eq. A.19) equals to the negative value of the integral along path C3,

−
∫
C3

ζ2
∗
√
ζ2
∗ + s∗ exp [− (z∗ + iy) ζ∗] dζ∗ (A.20)

Path C3 can be parameterized as ζ∗ = (z∗ − iy) ξ∗. Eq. A.20 then becomes,

(iy − z∗)3
∫ ∞

0
ξ2
∗

√
(z∗ − iy)2 ξ2

∗ + s∗ exp
[
−
(
z2
∗ + y2

)
ξ∗
]
dξ∗ (A.21)

Thus, Eq. A.18 equals to the imaginary part of Eq. A.21, where the oscillatory nature is no

longer present.

A.3 Expressions for θ2−3 (s, x)

Functions θi (s, x), i = 2, 3, can be evaluated from direct integration of the following integrals,

θi (s, x) = ω

[∫ 1

0

(
m2 − 1

)
Ni (s, x,m) dm

+

∫ ∞
1

m
1
2 θ1 (s,m)Ni (s, x,m) dm

] (A.22)

where Ni (s, x,m) can be calculated as follows,

N2 (s, x,m) = Sign (x−m)
M1 (y1)

y1
+

M1 (y2)

y2
+

(
1 + ω

ω

)
(1− φ)H (x−m) (A.23)

with y1 = |x−m| s
1
2 and y2 = (x+m) s

1
2 .

N3 (s, x,m) = Sign (x−m) s

{
− 2

πy1
+ M0 (y1)

3

y2
1

−M1 (y1)

(
6

y3
1

+
1

y1

)}
+s

{
− 2

πy2
+ M0 (y2)

3

y2
2

−M1 (y2)

(
6

y3
2

+
1

y2

)} (A.24)
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A.4 Closed Form Expressions

The following equations are used to derive the closed form expressions for M (s∗, x∗) and∫ 1
0 x

1
2
∗M (s∗, x∗) dx∗. Two recurrence relationships of the modified Struve functions of the sec-

ond kind will be used,

M1 (y) = M′0 (y)− 2

π
(A.25)

M0 (y) =
M1 (y)

y
+ M′1 (y) (A.26)

An indefinite integral for M0 (y) will also be used,

∫
M0 (y) dy =

1

π
y2F2,3

 (1, 1)

(1.5, 1.5, 2)
,
y2

4

− yF1,2

 0.5

(1, 1.5)
,
y2

4

 (A.27)

where F1,2 [·] and F2,3 [·] are two generalized hypergeometric functions. Eq. A.27 is derived

based on the fact that,

M0 (y) = L0 (y)− I0 (y) (A.28)

∫
L0 (y) dy =

1

π
y2F2,3

 (1, 1)

(1.5, 1.5, 2)
,
y2

4

 (A.29)

∫
I0 (y) dy = yF1,2

 0.5

(1, 1.5)
,
y2

4

 (A.30)

where L0 (·) is the modified Struve function of the first kind of order 0, and I0 (·) the modified

Bessel function of the first kind of order 0. All relations above can be found in Bateman (1953)

and Olver (2010).

Case I Closed form expression of the integral in M (s∗, x∗) in case I can be obtained based

on its alternative expression for N (s∗, x∗,m∗), see Eqs. 2.38 and 2.50. By rearranging its
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integrand using Eqs. A.25 and A.26 and then applying Eq. A.27, we have, at x∗ ≤ 1,

x
1
2
∗M (s∗, x∗) = 1− x2

∗ +
2

s∗
[2 + M0 (y10) + M0 (y20)]

+
2
√
s∗

{
x∗

[
M1 (y20) + y20F

(
y2

20

4

)]
− x∗

[
M1 (y10) + y10F

(
y2

10

4

)]
− 4

π

} (A.31)

and at x∗ ≥ 1,

x
1
2
∗M (s∗, x∗) = − 2

s∗
[M0 (y10)−M0 (y20)]

2
√
s∗

{
x∗

[
M1 (y20) + y20F

(
y2

20

4

)]
− x∗

[
M1 (y10) + y10F

(
y2

10

4

)]
− 4

π

} (A.32)

where y10 = |1− x∗| s
1
2
∗ and y20 = (1 + x∗) s

1
2
∗ and,

F (y) = F1,2

 0.5

(1, 1.5)
, y

− 2

π
y

1
2 F2,3

 (1, 1)

(1.5, 1.5, 2)
, y

 (A.33)

By again rearranging the integrand, explicit expression of the integral
∫ 1

0 x
1
2
∗M (s∗, x∗) dx∗ can

also be obtained, ∫ 1

0
x

1
2
∗M (s∗, x∗) dx∗ =

2

3
− 4

π
√
s∗

+
2

s∗
[1− F (s∗)] (A.34)

259



B Additional Results for Chapter 3

B.1 Additional Stress and Displacement Fields

In addition to the pore pressure and vertical stress and displacement fields in Section 3.4, here

we provide the expressions for the remaining non-trivial stress and displacement fields in the

Laplace domain. Asymptotes of the field variables at the undrained and drained states are the

same with those in case I, so they will not be shown here. Similar to Section 3.4, two sets of

expressions are provided for the field quantities.

B.1.1 Radial Stress

Expression 1

σr =
2Ga3

cφRs∗


∫ 1

0

(
m2
∗ − 1

) Nsr1 (s∗, r∗,m∗, z∗)

+Nsr2 (s∗, r∗,m∗, z∗)

 dm∗
+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)

 Nsr1 (s∗, r∗,m∗, z∗)

+Nsr2 (s∗, r∗,m∗, z∗)

 dm∗


(B.1)

where,

Nsr1 (s∗, r∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

{
(z∗ξ∗ − 1) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[√
ξ2
∗ + s∗
ξ∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(B.2)

Nsr2 (s∗, r∗,m∗, z∗) = − 2

π

1

r∗

∫ ∞
0

{
(1− φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(B.3)
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Expression 2 The second expression for σr can be derived by decomposing σr into σr =

σr1 + σr2, where σr1 and σr2 correspond to the parts containing Nsr1 and Nsr2 in Eq. B.1,

respectively. On the surface (z∗ = 0), applying Eq. 2.27 to σr1 and then the inverse Abel

transform gives,

σr1 = σz +
2G (2η − 1) a3

πcηRs∗

∫ ∞
r∗

[2θ3 (s∗, x∗)− s∗θ2 (s∗, x∗)]
dx∗√
x2
∗ − r2

∗
(B.4)

Applying Eq. 2.69 to σr2 and then the inverse Abel transform gives, at r∗ ≤ 1,

σr2 = −2G (2η − 1) a3

πcηRs∗


∫ 1

r∗

θ1 (s∗, x∗)x
− 1

2
∗ + θ4 (s∗, x∗)x

−2
∗

+
1

2η − 1

(
x∗ − x−1

∗
)

 dx∗√
x2
∗ − r2

∗

+

∫ ∞
1

[
2η

2η − 1
θ1 (s∗, x∗)x

− 1
2
∗ + θ4 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗

} (B.5)

and at r∗ ≥ 1,

σr2 = −2G (2η − 1) a3

πcηRs∗

∫ ∞
r∗

[
2η

2η − 1
θ1 (s∗, x∗)x

− 1
2
∗ + θ4 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗
(B.6)

Expressions for θ2 (s∗, x∗), θ3 (s∗, x∗) and θ4 (s∗, x∗) are given in Appendix B.2.

Inside the half space (z∗ > 0), the alternative expressions for σr and other poroelastic fields

from the sections below can be determined using the similar procedures outlined in Section 3.4.

They are therefore omitted here.
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B.1.2 Tangential Stress

Expression 1

σθ =
2Ga3

cφRs∗


∫ 1

0

(
m2
∗ − 1

) Nsθ1 (s∗, r∗,m∗, z∗)

−Nsr2 (s∗, r∗,m∗, z∗)

 dm∗
+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)

 Nsθ1 (s∗, r∗,m∗, z∗)

−Nsr2 (s∗, r∗,m∗, z∗)

 dm∗


(B.7)

where,

Nsθ1 (s∗, r∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

[
2ω

1 + ω

ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− (2− φ) exp (−z∗ξ∗)

]
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(B.8)

Expression 2 Let σθ = σθ1+σθ2, where σθ1 and σθ2 are the parts of the equations containing

Nsθ1 and Nsr2 in Eq. B.7, respectively. We have σθ2 = −σr2. On the surface (z∗ = 0), applying

Eq. 2.27 to σθ1 and then the inverse Abel transform yield,

σθ1 =

(
2− 2η

1− 2η

)
σz +

2G (2η − 1) a3

πcηRs∗

[(
2− 2η

1− 2η

)∫ ∞
r∗

θ3 (s∗, x∗)
dx∗√
x2
∗ − r2

∗

−
∫ ∞
r∗

s∗θ2 (s∗, x∗)
dx∗√
x2
∗ − r2

∗

] (B.9)

B.1.3 Shear Stress

σzr =
2Ga3

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nszr (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nszr (s∗, r∗,m∗, z∗) dm∗

] (B.10)

where,

Nszr (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗

{
z∗ξ∗ exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(B.11)
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On the surface (z∗ = 0), σzr = 0. The second set expression for shear stress for z∗ > 0 is

omitted here.

B.1.4 Radial Displacement

Expression 1

ur =
a4

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nur (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1 (s∗,m∗)Nur (s∗, r∗,m∗, z∗) dm∗

] (B.12)

where,

Nur (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

{
(1− φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(B.13)

Expression 2 On the surface (z∗ = 0), at r∗ ≤ 1,

ur = −(2η − 1) a4r∗
πcηRs∗


∫ 1

r∗

θ1 (s∗, x∗)x
− 1

2
∗ + θ4 (s∗, x∗)x

−2
∗

+
1

2η − 1

(
x∗ − x−1

∗
)

 dx∗√
x2
∗ − r2

∗

+

∫ ∞
1

[
2η

2η − 1
θ1 (s∗, x∗)x

− 1
2
∗ + θ4 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗

} (B.14)

and at r∗ ≥ 1,

ur = −(2η − 1) a4r∗
πcηRs∗

∫ ∞
r∗

[
2η

2η − 1
θ1 (s∗, x∗)x

− 1
2
∗ + θ4 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗
(B.15)
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B.2 Expressions for θ2−4 (s, x)

Functions θi (s, x), i = 2, 3, 4, can be evaluated from direct integration of the following integrals,

θi (s, x) = ω

[∫ 1

0

(
m2 − 1

)
Ni (s, x,m) dm

+

∫ ∞
1

m
1
2 θ1 (s,m)Ni (s, x,m) dm

] (B.16)

where Ni (s, x,m) can be calculated as follows,

N2 (s, x,m) = Sign (x−m)

[
M1 (y1)

y1
−M0 (y1)

]
+

[
M1 (y2)

y2
−M0 (y2)

]
(B.17)

with y1 = |x−m| s
1
2 and y2 = (x+m) s

1
2 .

N3 (s, x,m) = Sign (x−m) s

[
2

πy1
−M0 (y1)

(
1 +

3

y2
1

)
+ M1 (y1)

(
6

y3
1

+
2

y1

)]
+s

[
2

πy2
−M0 (y2)

(
1 +

3

y2
2

)
+ M1 (y2)

(
6

y3
2

+
2

y2

)] (B.18)

N4 (s, x,m) =
1 + ω

ω
(1− φ)H (x−m)−N2 (s, x,m) (B.19)

B.3 Closed Form Expressions

Closed form expression of the integral in M (s∗, x∗) in case II can be obtained in a similar

approach to the derivation for case I, see Appendix A.4. At x∗ ≤ 1,

x
1
2
∗M (s∗, x∗) =

2
√
s∗

[
M1 (y10) + M1 (y20) + y10 +

4

π

]
− 2

s∗

[
M0 (y10) + M0 (y20) +

y2
10

2
+ 2

]
(B.20)

and at x∗ ≥ 1,

x
1
2
∗M (s∗, x∗) =

2
√
s∗

[
M1 (y10) + M1 (y20) +

4

π

]
+

2

s∗
[M0 (y10)−M0 (y20)] (B.21)
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with y10 = |1− x∗| s
1
2
∗ and y20 = (1 + x∗) s

1
2
∗ .

The integral is given by,

∫ 1

0
x

1
2
∗M (s∗, x∗) dx∗ =

2

3
+

2

s∗
[−1 + M0 (2

√
s∗) + 2F (s∗)] (B.22)
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C Additional Results for Chapter 4

C.1 Additional Stress and Displacement Fields

In addition to the pore pressure and vertical stress and displacement fields in Section 4.4, here

we provide the expressions for the remaining non-trivial stress and displacement fields in the

Laplace domain. Asymptotes of the field variables at the undrained and drained limits are the

same with those in case I, so they will not be repeated here. Similar to Section 4.4, two sets of

expressions are provided for the field quantities.

C.1.1 Radial Stress

Expression 1

σr =
2Ga3

cφRs∗


∫ 1

0

(
m2
∗ − 1

) Nsr1 (s∗, r∗,m∗, z∗)

+Nsr2 (s∗, r∗,m∗, z∗)

 dm∗
+

∫ ∞
1

m
1
2
∗ θ1a (s∗,m∗)

 Nsr1 (s∗, r∗,m∗, z∗)

+Nsr2 (s∗, r∗,m∗, z∗)

 dm∗
+

∫ ∞
1

m
1
2
∗ s

1
2
∗ θ1b (s∗,m∗)

 Ñsr1 (s∗, r∗,m∗, z∗)

+Ñsr2 (s∗, r∗,m∗, z∗)

 dm∗


(C.1)

where,

Nsr1 (s∗, r∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

{
(z∗ξ∗ − 1) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[√
ξ2
∗ + s∗
ξ∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(C.2)

Nsr2 (s∗, r∗,m∗, z∗) = − 2

π

1

r∗

∫ ∞
0

{
(1− φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(C.3)
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and,

Ñsr1 (s∗, r∗,m∗, z∗) = − 4ω

π (1 + ω)

∫ ∞
0

(
ξ2
∗
s∗

)[√
ξ2
∗ + s∗
ξ∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
sin (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(C.4)

Ñsr2 (s∗, r∗,m∗, z∗) =
4ω

π (1 + ω)

1

r∗

∫ ∞
0

(
ξ∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
sin (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(C.5)

Expression 2 The second expression for σr can be derived by decomposing σr into σr =

σr1 + σr2, where σr1 and σr2 correspond to the parts containing Nsr1, Ñsr1 and Nsr2, Ñsr2 in

Eq. C.1, respectively. On the surface (z∗ = 0), applying Eq. 2.27 to σr1 and then the inverse

Abel transform gives,

σr1 = σz +
2G (2η − 1) a3

πcηRs∗

∫ ∞
r∗

[2θ3 (s∗, x∗)− s∗θ2 (s∗, x∗)]
dx∗√
x2
∗ − r2

∗
(C.6)

Applying Eq. 2.69 to σr2 and then the inverse Abel transform yields, at r∗ ≤ 1,

σr2 = −2G (2η − 1) a3

πcηRs∗


∫ 1

r∗

θ1a (s∗, x∗)x
− 1

2
∗ + θ4 (s∗, x∗)x

−2
∗

+
1

2η − 1

(
x∗ − x−1

∗
)

 dx∗√
x2
∗ − r2

∗

+

∫ ∞
1

[
2η

2η − 1
θ1a (s∗, x∗)x

− 1
2
∗ + θ4 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗

} (C.7)

and at r∗ ≥ 1,

σr2 = −2G (2η − 1) a3

πcηRs∗

∫ ∞
r∗

[
2η

2η − 1
θ1a (s∗, x∗)x

− 1
2
∗ + θ4 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗
(C.8)

See Appendix C.2 for the expressions of θ2 (s∗, x∗), θ3 (s∗, x∗) and θ4 (s∗, x∗).

Inside the half space (z∗ > 0), the alternative expressions for σr and other poroelastic fields
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from the sections below can be determined using the similar procedures outlined in Section 4.4.

They are therefore omitted here.

C.1.2 Tangential Stress

σθ =
2Ga3

cφRs∗


∫ 1

0

(
m2
∗ − 1

) Nsθ1 (s∗, r∗,m∗, z∗)

−Nsr2 (s∗, r∗,m∗, z∗)

 dm∗
+

∫ ∞
1

m
1
2
∗ θ1a (s∗,m∗)

 Nsθ1 (s∗, r∗,m∗, z∗)

−Nsr2 (s∗, r∗,m∗, z∗)

 dm∗
+

∫ ∞
1

m
1
2
∗ s

1
2
∗ θ1b (s∗,m∗)

 Ñsθ1 (s∗, r∗,m∗, z∗)

−Ñsr2 (s∗, r∗,m∗, z∗)

 dm∗


(C.9)

where,

Nsθ1 (s∗, r∗,m∗, z∗) =
2

π

∫ ∞
0

ξ∗

[
2ω

1 + ω

ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− (2− φ) exp (−z∗ξ∗)

]
cos (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(C.10)

and,

Ñsθ1 (s∗, r∗,m∗, z∗) = − 4ω

π (1 + ω)

∫ ∞
0

ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
sin (m∗ξ∗) J0 (r∗ξ∗) dξ∗

(C.11)

Expression 2 Let σθ = σθ1+σθ2, where σθ1 and σθ2 are the parts of the equations containing

Nsθ1, Ñsθ1 and Nsr2, Ñsr2 in Eq. C.9, respectively. We have σθ2 = −σr2. On the surface

(z∗ = 0), applying Eq. 2.27 to σθ1 and then the inverse Abel transform yields,

σθ1 =
2− 2η

1− 2η
σz +

2G (2η − 1) a3

πcηRs∗

[
2− 2η

1− 2η

∫ ∞
r∗

θ3 (s∗, x∗)
dx∗√
x2
∗ − r2

∗

−
∫ ∞
r∗

s∗θ2 (s∗, x∗)
dx∗√
x2
∗ − r2

∗

] (C.12)
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C.1.3 Shear Stress

Expression 1

σzr =
2Ga3

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nszr (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1a (s∗,m∗)Nszr (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ s

1
2
∗ θ1b (s∗,m∗) Ñszr (s∗, r∗,m∗, z∗) dm∗

] (C.13)

where,

Nszr (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

ξ∗

{
z∗ξ∗ exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(C.14)

and,

Ñszr (s∗, r∗,m∗, z∗) =
4ω

π (1 + ω)

∫ ∞
0

(
ξ2
∗
s∗

)[
exp

(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
sin (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(C.15)

On the surface (z∗ = 0), σzr = 0.

C.1.4 Radial Displacement

Expression 1

ur =
a4

cφRs∗

[∫ 1

0

(
m2
∗ − 1

)
Nur (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ θ1a (s∗,m∗)Nur (s∗, r∗,m∗, z∗) dm∗

+

∫ ∞
1

m
1
2
∗ s

1
2
∗ θ1b (s∗,m∗) Ñur (s∗, r∗,m∗, z∗) dm∗

] (C.16)
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where,

Nur (s∗, r∗,m∗, z∗) = − 2

π

∫ ∞
0

{
(1− φ+ z∗ξ∗) exp (−z∗ξ∗)

+
2ω

1 + ω

(
ξ2
∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]}
cos (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(C.17)

and,

Ñur (s∗, r∗,m∗, z∗) =
4ω

π (1 + ω)

∫ ∞
0

(
ξ∗
s∗

)[
ξ∗√
ξ2
∗ + s∗

exp
(
−z∗

√
ξ2
∗ + s∗

)
− exp (−z∗ξ∗)

]
sin (m∗ξ∗) J1 (r∗ξ∗) dξ∗

(C.18)

Expression 2 On the surface (z∗ = 0), at r∗ ≤ 1,

ur = −(2η − 1) a4r∗
πcηRs∗


∫ 1

r∗

θ1a (s∗, x∗)x
− 1

2
∗ + θ4 (s∗, x∗)x

−2
∗

+
1

2η − 1

(
x∗ − x−1

∗
)

 dx∗√
x2
∗ − r2

∗

+

∫ ∞
1

[
2η

2η − 1
θ1a (s∗, x∗)x

− 1
2
∗ + θ4 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗

} (C.19)

and at r∗ ≥ 1,

ur = −(2η − 1) a4r∗
πcηRs∗

∫ ∞
r∗

[
2η

2η − 1
θ1a (s∗, x∗)x

− 1
2
∗ + θ4 (s∗, x∗)x

−2
∗

]
dx∗√
x2
∗ − r2

∗
(C.20)

C.2 Expressions of θ2−4 (s, x)

Functions θi (s, x), i = 2, 3, 4, can be evaluated from direct integration of the following integrals.

θi (s, x) = ω

[∫ 1

0

(
m2 − 1

)
Ni (s, x,m) dm

+

∫ ∞
1

m
1
2 θ1a (s,m)Ni (s, x,m) dm

+

∫ ∞
1

m
1
2 θ1b (s,m) Ñi (s, x,m) dm

] (C.21)
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where Ni (s, x,m) and Ñi (s, x,m) can be calculated as follows,

N2 (s, x,m) = Sign (x−m)

[
M1 (y1)

y1
−M0 (y1)

]
+

[
M1 (y2)

y2
−M0 (y2)

]
(C.22)

Ñ2 (s, x,m) = − [M1 (y1)−M1 (y2)] + 2

√
x∗
m∗s∗

δ (m∗ − x∗) (C.23)

with y1 = |x−m| s
1
2 and y2 = (x+m) s

1
2 .

N3 (s, x,m) = Sign (x−m) s

[
2

πy1
−M0 (y1)

(
1 +

3

y2
1

)
+ M1 (y1)

(
6

y3
1

+
2

y1

)]
+s

[
2

πy2
−M0 (y2)

(
1 +

3

y2
2

)
+ M1 (y2)

(
6

y3
2

+
2

y2

)] (C.24)

Ñ3 (s, x,m) = −s
[

2

π
− 1

y1
M0 (y1) +

(
1 +

2

y2
1

)
M1 (y1)

]
+s

[
2

π
− 1

y2
M0 (y2) +

(
1 +

2

y2
2

)
M1 (y2)

] (C.25)

N4 (s, x,m) =
1 + ω

ω
(1− φ)H (x−m)−N2 (s, x,m) (C.26)

Ñ4 (s, x,m) = M1 (y1)−M1 (y2) (C.27)
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D Additional Results for Chapter 5

D.1 Poroelasticity Benchmarks

The FEM algorithm is benchmarked with analytical solutions to the classical poroelasticity

problems of Terzaghi, Mandel, Cryer and De Leeuw (Terzaghi, 1943; Mandel, 1953; Cryer, 1963;

De Leeuw, 1965; Verruijt, 2013). Given a mechanical load σ and a characteristic dimension `,

the pore pressure and temporal and spatial coordinates are normalized according to: p∗ = p/σ,

t∗ = tcv/`
2, and x∗ = x/`, z∗ = z/` for a rectilinear coordinate system or r∗ = r/` for a

cylindrical or spherical coordinate system. Material properties in the numerical models are

chosen to be the same as those in Table 5.1 except the Poisson’s ratio; v = 0 in the problems

of Mandel and De Leeuw and ν = 0, 0.25, 0.45 in Cryer’s problem. Poisson’s ratio could be

arbitrary in modeling Terzaghi’s problem. Compressibility of the constituents is not considered

in these benchmark comparisons.

D.1.1 Terzaghi’s Problem

Terzaghi’s 1D consolidation problem corresponds to a sample of thickness h (` = h), loaded

by a constant vertical stress σ at z = h (Terzaghi, 1943). The lower boundary (z = 0) is

impermeable, while the upper boundary is fully permeable.

Analytical solution for the normalized pore pressure can be expressed as,

p∗ =
4

π

∞∑
k=1

(−1)k−1

2k − 1
cos
[π

2
(2k − 1) z∗

]
exp

[
−π

2

4
(2k − 1)2 t∗

]
(D.1)

Fig. D.1 presents the excess pore pressure profile along the depth at various dimensionless

times, showing gradual dissipation of pressure as the drainage process proceeds. Numerical

results are in excellent agreement with the analytical predictions except for the region near the

surface (z∗ ≈ 1), where there is large pressure gradient at very early time (t∗ ≈ 0).
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Figure D.1: Pore pressure distribution along the depth at various dimensionless times; com-
parison of the analytical (lines) and finite element solutions (circles) of Terzaghi’s problem.

D.1.2 Mandel’s Problem

In this plane strain problem, a rectangular sample is subjected to a constant vertical stress σ at

its top, through a rigid and frictionless plate of width 2a (` = a). Drainage is only allowed in the

lateral direction. Since both the top and bottom plates are impermeable and frictionless, pore

pressure distribution from the center line (x∗ = 0) to the side (x∗ = 1) becomes independent

of depth (Mandel, 1953; Verruijt, 2013),

p∗ = L−1

[
2m

s∗

cosh
(√
s∗x∗

)
− cosh

(√
s∗
)

sinh
(√
s∗
)
/
√
s∗ − 2mcosh

(√
s∗
)] (D.2)

where m = (1− ν) / (1− 2ν) and s∗ is the Laplace variable for t∗.

Distributions of the pore pressure at various times with ν = 0 are shown in Fig. D.2. At

the center of the sample, the pore pressure exhibits the so-called Mandel-Cryer effect, where
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the pore pressure rises above the initial value before its dissipation. Such an effect can also be

observed in Cryer’s and De Leeuw’s problem shown next.
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Figure D.2: Pore pressure distribution in the horizontal direction at various dimensionless
times; comparison of the analytical (lines) and finite element solutions (circles) of Mandel’s
problem.

D.1.3 Cryer’s Problem

Cryer’s problem corresponds to a spherical sample of radius a (` = a) subjected to a uniform

load σ at its fully permeable outer boundary. Immediately when the load is applied, a uniform

pore pressure is generated inside the spherical body. After that, since the pore pressure at

the outer boundary remains zero, fluid will be drained from the center radially outward to the

outer surface. Transient pore pressure at the center can be written as (Cryer, 1963; Verruijt,

2013),

p∗ = L−1

[
m

2

sinh
(√
s∗
)
−√s∗

(1 +ms∗/2) sinh
(√
s∗
)
−√s∗cosh

(√
s∗
)] (D.3)

Fig. D.3 shows the comparison of the transient excess pressure at the center of the sphere
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between the numerical and analytical solution. The initial pore pressure increase can be ex-

plained by noting that at early time, drainage at the outer boundary results in a sharp decrease

in the pore pressure at the outer surface, shrinkage of which then leads to pore pressure increase

in the core of the sample.
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Figure D.3: Evolution of the pore pressure with time at the center of the spherical sample
for different Poisson’s ratios; comparison of the analytical (lines) and finite element solutions
(circles) of Cryer’s problem.

D.1.4 De Leeuw’s Problem

De Leeuw’s problem examines a cylindrical sample of radius a (` = a) bounded by two rigid,

frictionless and impermeable plates. A uniform radial load σ is applied at its outer surface,

which is fully drained. Analytical solution for the scaled pore pressure can be expressed as (De

Leeuw, 1965; Verruijt, 2013),

p∗ = L−1

[
m
√
s∗

I0

(√
s∗
)
− I0

(√
s∗r∗

)
m
√
s∗I0

(√
s∗
)
− I1

(√
s∗
)] (D.4)
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where In (·) is the modified Bessel function of the first kind of order n. Distributions of the

pore pressure at various dimensionless times with ν = 0 are shown in Fig. D.4.
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Figure D.4: Distributions of the pore pressure at various dimensionless times; comparison of
analytical (lines) and finite element solutions (circles) of De Leeuw’s problem.

D.2 Poro-elasto-plastic Consolidation - Strain and Displacement

For the one dimensional poro-elasto-plastic consolidation problem outlined in Section 5.3, after

the pore pressure field is known, strain and displacement fields can be derived based on the

constitutive and kinematic relations. It should be noted that since instantaneous loading results

in a constant initial strain, under general circumstance, the displacement field in a semi-infinite

domain is unbounded and not physically meaningful. However, the strain and displacement

solutions can still be used for benchmark purposes since the relative displacement is definite

for a numerical model of a finite size.

At t = 0, since there is not yet any fluid loss from the domain, it follows from Eq. 5.29
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that,

εz0 = −Sp0

α
(D.5)

For poroelastic consolidation (σ0 > σep),

εz0e = −Sp0e

α
=

Sσ0

α2 + SMe
(D.6)

The total strain is,

εz = εz0e −
αp0e

Me
erfc

(
z

2
√
cvet

)
(D.7)

At t→∞, εz = σ0/Me. Displacement uz can be expressed as,

uz = εz0ez −
αp0eu∗e
Me

+ C1 (D.8)

u∗e = zerfc

(
z

2
√
cvet

)
− 2

√
cvet

π
exp

(
− z2

4cvet

)
(D.9)

where C1 is an integration constant and u∗e is the normalized displacement when the con-

stituents are incompressible (α = 1, S = 0) and is finite.

For the fully plastic scenario (σ0 6 σfp), we may consider the instantaneous mechanical load

and pore pressure follow the path of elastic loading from 0 to σfp(pfp) and then plastic loading

to reach σ0(p0p), or alternatively elastic loading from 0 to σep(0) and then plastic loading to

reach σ0(p0p). These two paths yield identical results. Therefore,

εz0p =
S

α2 + SMe
σfp +

S

α2 + SMp
(σ0 − σfp) (D.10)

εz = εz0p −
αp0p

Mp
erfc

(
z

2
√
cvpt

)
(D.11)
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Displacement uz can be expressed as,

uz = εz0pz −
αp0pu∗p
Mp

+ C2 (D.12)

u∗p = zerfc

(
z

2
√
cvpt

)
− 2

√
cvpt

π
exp

(
− z2

4cvpt

)
(D.13)

where C2 is an integration constant.

For poro-elasto-plastic consolidation (σep > σ0 > σfp), in the plastic zone, instantaneously

the pore pressure increases from 0 to p0e. The total strain field can be expressed as,

εz = −Sp0e

α
+
α (p− p0e)

Me
− αp

Mp
+

(
αp

Mp

) erf

(
z

2
√
cvpt

)
erf
(√

β/cvp
) , z 6 z (D.14)

εz = −Sp0e

α
+ α

(
p− p0e

Me

) erfc

(
z

2
√
cvet

)
erfc

(√
β/cve

) , z > z (D.15)

The corresponding displacement field for z 6 z is,

uz =

[
−Sp0e

α
+
α (p− p0e)

Me
− αp

Mp

]
z +

(
αp

Mp

)
z − u∗p

erf
(√

β/cvp
) +D1 (D.16)

For z > z,

uz = −
(
Sp0e

α

)
z + α

(
p− p0e

Me

)
u∗e

erfc
[√

β/cve

] +D2 (D.17)

Integration constants D1 and D2 are related through,

[
α (p− p0e)

Me
− αp

Mp

]
z +

(
αp

Mp

)
z − u∗p

erf
(√

β/cvp
) +D1 = α

(
p− p0e

Me

)
u∗e

erfc
(√

β/cve

) +D2

(D.18)
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D.2.1 Particular Case

In the particular case when the constituents are incompressible, i.e., α = 1, S = 0, uz|z→∞ = 0,

the displacement fields for the poroelastic and poro-elasto-plastic cases become bounded. The

corresponding surface displacement is,

For σ0 > σep,

uz|z=0 =
2p0e

Me

√
cvet

π
(D.19)

When σep > σ0 > σfp,

uz|z=0 = 2
√
t


(
p

Mp

) √
cvp/π

erf
(√

β/cvp
) [1− exp

(
− β

cvp

)]
−
(
p− p0e

Me

)√cve
π

exp (−β/cve)

erfc
(√

β/cve

)


(D.20)
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