
VIDEO QOE ESTIMATION USING NETWORK MEASUREMENT DATA

A Dissertation
Presented to

The Academic Faculty

By

Tarun Mangla

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computer Science

Georgia Institute of Technology

August 2020

Copyright c© Tarun Mangla 2020

VIDEO QOE ESTIMATION USING NETWORK MEASUREMENT DATA

Approved by:

Dr. Mostafa Ammar, Co-advisor
School of Computer Science
Georgia Institute of Technology

Dr. Ellen Zegura, Co-advisor
School of Computer Science
Georgia Institute of Technology

Dr. Constantine Dovrolis
School of Computer Science
Georgia Institute of Technology

Dr. Ada Gavrilovska
School of Computer Science
Georgia Institute of Technology

Dr. Emir Halepovic
AT&T Labs Research

Date Presented: July 10, 2020

Is there a greater strength than that of Knowledge?

Swami Vivekananda

To my grandmother, parents, brother, and sister-in-law

for their unconditional love and support

ACKNOWLEDGEMENTS

As I look back into my six years of PhD journey, I feel thankful to a lot of people who I

got the opportunity to know and learn from. The most important of them are my advisors,

Mostafa Ammar and Ellen Zegura. I consider myself quite fortunate to have not one but

two amazing advisors. I still remember the day when I, a new graduate student with little

research experience, reached out to Mostafa to work with him. He kindly accepted me and

introduced me to the world of Video Streaming. I am truly indebted to him for believing in

me. I started working more closely with Ellen in my second semester when Mostafa was

on a sabbatical. She has always been supportive of my ideas. I am also thankful to her

for introducing me to the world of Computing and Society. Both Ellen and Mostafa have

mentored me with utmost patience, let me explore problems I like, nudged me back when

I lost direction, and shared wonderful nuggets of wisdom (technical and otherwise) that I

will always remember. My heart-felt gratitude for their support, concern for my well being,

and solid guidance. I will always look up to them as my role models.

I am thankful to Emir Halepovic who has been a wonderful mentor and coauthor for

all of my thesis work. Working with him has been a great learning experience both at

a professional and personal level. Emir has always been very calm and has a knack of

finding teaching moments even in the midst of a deadline. Thanks Emir for hosting me

twice at AT&T Labs and introducing me to some very interesting research problems.

I am also grateful to the other two members of my committee, Constantine Dovrolis

and Ada Gavrilovska, whose constructive feedback has helped shaped this dissertation.

The discussions with them have particularly helped me in articulating the technical contri-

butions of the thesis in a better manner. Thanks Constantine for also mentoring me in my

first semester.

I have been also fortunate to work with an amazing set of researchers through interns

and projects beyond my thesis. I am thankful to Elizabeth Belding, Morgan Vigil-Hayes,

v

and Esther Showalter for a very joyful and insightful collaboration on LTE connectivity

research. Thanks Venkat Padmanabhan for hosting me at Microsoft Research India. Venkat

has always inspired me with his big picture thinking and hands-on technical rigor. I would

also like to thank Ahmed Mansy and Partha Kanuparthy for hosting me at Yahoo at the

end of my first year. Working with them was a very enriching experience. Ahmed had just

graduated from our group before I joined and it is from him I inherited a lot of technical

expertise on video streaming during my intern.

My Ph.D. journey has been enriched by my peers and faculty members from the NRG. I

would like to specially mention Ahmed Saeed, who has been a great course partner, a great

critic of ideas, and above all a great friend. I fondly remember our discussions on research

and life over our almost-daily water break and once-in-a-while walk to the Student Center.

Thanks also to his wife, Heba Kamal, for being a great host at multiple times and for

the delightful conversations. Thanks to Karim Habak for the fun squash matches and his

friendship and Yimeng Zhao for being a great sounding board and friend especially in the

last year. I am also thankful to Long Gong, Liang Liu, Kaeser Sabrin, Payam Siyari, Kamal

Shadi, Yifeng Cao, Abhinav Narain, Bilal Anwer, and Samantha Lo for being wonderful

colleagues and labmates. A special thanks to Samantha Lo for also introducing me to Emir

and being an amazing co-host at AT&T Labs.

I am also indebted to friends outside the lab who have added a lot of joy to my Ph.D.

journey and provided great support. Thanks to Ankit and Pooja Singhal for being there

when the going got tough. A special thanks to Sainyam and Ankush for being patient lis-

teners but also tough friends when my rantings went overboard. I am thankful to Chirag

Jain who is not only my brother’s namesake but has also been like a brother, always there

in happy and tough times. I am equally thankful to Abhiraj Sharma, Ishaan Batta, and

Ashwin Lele for being wonderful roommates. A special thanks to Pradyumna Suresha for

making dinners fun with his delightful food and humour, and Apaar Shanker for intellectu-

ally stimulating conversations and not-so-fruitful but fun times in the library. I would like

vi

to thank both of them for also being my go-to ML experts. I owe gratitude to Siva, Ranjan,

and Seshan for great discussions and their wonderful friendship. A huge thanks to all the

members of Hindu YUVA family. They have been a wonderful emotional, intellectual, and

spiritual support and I learnt a lot from each one of them.

I am also indebted to my alma mater – IIT Delhi. I formed great connections who

motivated me to pursue Ph.D. and have continued to inspire me. I am particularly thankful

to my B.Tech. thesis advisors, Amitabha Bagchi and Vinay Ribeiro, who introduced me

to the world of research and networking. I am also thankful to Nomesh Bolia and Parag

Singla who have been wonderful mentors and role models. My humble gratitude to the

AINA family members who have significantly enriched my life.

Last but not the least, this thesis would not have been possible without the support of

my family. I am indebted to my caring grandmother who, although has not gone through

much of schooling herself, has inspired me with her raw genius and intellect. I would

like to believe that whatever intelligence I have is inherited from her. I would also like to

remember my grandfather who passed away during my Ph.D. but would always be thrilled

and proud of smallest of my accomplishments. Thanks to my brother, who always lightens

up the mood with his sense of humour and my sister-in-law who has been a great friend. I

am also thankful to the sheer bundle of joy, my nephew, who was born during the last year

of my Ph.D. My deepest gratitude to my father who has always made sure of my well-being,

provided me with best of resources and care, has taught me some great life-lessons, and has

been a source of my strength. I cannot thank my mother enough for her unconditional love

and support. She has taught me to be sincere in my efforts without worrying much about

the results. She has always been able to sense if things are going rough and has provided

great words of wisdom during those times. This thesis is dedicated to my family.

vii

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xii

List of Figures . xiv

Summary . xvi

Chapter 1: Introduction . 1

1.1 Primary Contributions . 3

1.2 Inference for unencrypted video traffic . 5

1.3 Inference for encrypted video traffic . 6

1.4 Inference using coarse-grained network data 7

Chapter 2: Background and Related Work . 9

2.1 Internet video . 9

2.1.1 Streaming protocols . 9

2.1.2 Video QoE . 10

2.2 Related work on QoE estimation using network data 11

2.2.1 ML-based approaches . 11

2.2.2 SM-based QoE inference approaches 12

viii

2.2.3 Scalability of inference approaches 12

2.3 Video traffic classification . 13

2.4 QoE-based network management . 13

2.5 Video performance characterization . 14

Chapter 3: MIMIC: QoE inference for unencrypted video 15

3.1 Introduction . 15

3.2 Methodology . 16

3.2.1 Passive Measurements . 17

3.2.2 Estimating QoE metrics . 18

3.2.3 Ground Truth . 19

3.3 Evaluation . 20

3.3.1 Evaluation using controlled experiments 21

3.3.2 Evaluation using large-scale real network data 22

3.3.3 Additional metrics estimated from network data 26

3.4 Measurement study . 27

3.4.1 Handling encrypted video . 28

3.4.2 Insights into relative video usage 30

3.4.3 Insights into video service design 32

3.4.4 Impact of mobility and demand . 37

3.5 Summary . 40

Chapter 4: eMIMIC: QoE inference for encrypted video 41

4.1 Introduction . 41

ix

4.2 Background and Design Requirements . 43

4.2.1 QoE inference methods . 43

4.2.2 Design Requirements . 44

4.3 Methodology . 45

4.3.1 Chunked video delivery in HAS 45

4.3.2 Challenges in designing eMIMIC 46

4.3.3 QoE metrics inference . 50

4.4 Evaluation . 52

4.4.1 Experimental Setup . 52

4.4.2 Session reconstruction accuracy 57

4.4.3 Media type classification accuracy 58

4.4.4 QoE inference accuracy . 59

4.4.5 Comparison with ML-based approach 62

4.4.6 QoE inference accuracy for a Live service 63

4.4.7 Real-time QoE inference . 66

4.5 Discussion and Future work . 69

4.5.1 Scalability . 69

4.5.2 QoE inference for new protocols 70

4.5.3 Impact of user interaction . 71

4.6 Conclusion . 72

Chapter 5: Inference using coarse-grained data 73

5.1 Introduction . 73

x

5.2 Target QoE and Network data . 75

5.2.1 Target QoE metric . 76

5.2.2 Network data . 77

5.3 Methodology . 79

5.4 Evaluation . 81

5.4.1 Data collection . 81

5.4.2 Results . 83

5.5 Discussion . 88

5.6 Conclusion and Future Work . 90

Chapter 6: Summary of contributions and Future Work 91

6.1 Bringing it together . 92

6.2 Future Work . 93

References . 96

xi

LIST OF TABLES

3.1 Bandwidth profiles used for controlled experiments. 20

3.2 QoE metrics estimation results from controlled experiments: VoD content,
OS1 . 20

3.3 QoE metrics estimation results from controlled experiments: Live content,
OS1 . 21

3.4 Re-buffering ratio confusion matrix, VoD OS1 25

3.5 Re-buffering ratio confusion matrix, VoD OS2 25

3.6 Network overhead due to chunk replacement 26

3.7 Correlation between ST and ground truth. 29

3.8 Service design aspects across CPs . 32

3.9 Network overhead due to chunk replacement 36

3.10 Impact of mobility and demand on session throughput for a subset of net-
work locations . 38

4.1 Design parameters of VOD1 and VOD2 55

4.2 Media classification confusion matrix for VOD1 58

4.3 Classification accuracy of eMIMIC and ML16 61

4.4 Confusion matrix: VOD1 average bitrate 62

4.5 Confusion matrix: VOD2 re-buffering ratio 62

4.6 Design parameters of LIVE1 . 63

xii

4.7 Impact of window on buffer occupancy classification, Cbuff = 20 seconds . 66

4.8 Impact of threshold on buffer occupancy classification, Tclass = 10 seconds . 66

4.9 Impact of number of last downloaded chunks on bitrate classification,Cbitrate

= 600 kbps . 67

4.10 Impact of threshold on bitrate classification, Nclass = 4 chunks 68

5.1 Summary of features . 81

5.2 Confusion matrix: Svc1, Combined QoE 83

5.3 Accuracy (A), Recall (R), and Precision (P) values for different feature sets 83

5.4 Accuracy metrics using packet traces and ML16. The numbers in paran-
thesis report the gain as compared to the TLS transaction data. 85

5.5 Transaction identification accuracy into Existing or New session 86

xiii

LIST OF FIGURES

3.1 Chunk URI template and the extracted information 17

3.2 CDF of relative error in average bitrate estimation 23

3.3 Median relative error in average bitrate estimation vs. session duration . . . 24

3.4 CDF of error in re-buffering ratio estimation 24

3.5 CDF of number of switches per minute . 26

3.6 Normalized median per-session average bitrate and session throughput from
a sample of CPs and network locations. A value of 1 corresponds to 1.5 Mbps. 30

3.7 Variability of QoE metrics across OS for LIVE3 and VOD2 33

4.1 Overview of QoE inference approaches 43

4.2 Data flow of chunk requests and responses 46

4.3 Chunk and bitrate characterization for VOD2. 48

4.4 Experiment framework and evaluation methodology 53

4.5 Bandwidth traces and session duration . 54

4.6 CDF of ground truth QoE metrics . 56

4.7 HTTP request reconstruction accuracy . 57

4.8 Error in average bitrate estimation . 59

4.9 CDF of error in re-buffering ratio estimation 59

4.10 CDF of of chunks in the buffer at startup 60

xiv

4.11 Error in estimating the bitrate switches and startup time 61

4.12 LIVE1: Session reconstruction and QoE metrics estimation error 64

5.1 QoE inference steps . 74

5.2 TLS transactions with the corresponding HTTP transactions within first 5
seconds of a Svc1 session. For clarity, only start of the HTTP transactions
is shown. 78

5.3 Bandwidth traces statistics . 81

5.4 Distribution of QoE metrics across services 82

5.5 Accuracy for different QoE metrics . 84

5.6 Top 10 important features across three services 85

xv

SUMMARY

More than even before, last-mile Internet Service Providers (ISPs) need to efficiently

provision and manage their networks to meet the growing demand for Internet video (ex-

pected to be 82% of the global IP traffic in 2022). This network optimization requires

ISPs to have an in-depth understanding of end-user video Quality of Experience (QoE).

Understanding video QoE, however, is challenging for ISPs as they generally do not have

access to applications at end user devices to observe key objective metrics impacting QoE.

Instead, they have to rely on measurement of network traffic to estimate objective QoE

metrics and use it for troubleshooting QoE issues. However, this can be challenging for

HTTP-based Adaptive Streaming (HAS) video, the de facto standard for streaming over

the Internet, because of the complex relationship between the network observable metrics

and the video QoE metrics. This largely results from its robustness to short-term variations

in the underlying network conditions due to the use of the video buffer and bitrate adap-

tation. In this thesis, we develop approaches that use network measurement to infer video

QoE. In developing inference approaches, we provide a toolbox of techniques suitable for

a diversity of streaming contexts as well as different types of network measurement data.

We first develop two approaches for QoE estimation that model video sessions based on

the network traffic dynamics of the HAS protocol under two different streaming contexts.

Our first approach, MIMIC, estimates unencrypted video QoE using HTTP logs. We do

a large-scale validation of MIMIC using ground truth QoE metrics from a popular video

streaming service. We also deploy MIMIC in a real-world cellular network and demon-

strate some preliminary use cases of QoE estimation for ISPs. Our second approach is

called eMIMIC that estimates QoE metrics for encrypted video using packet-level traces.

We evaluate eMIMIC using an automated experimental framework under realistic network

conditions and show that it outperforms state-of-the-art QoE estimation approaches.

Finally, we develop an approach to address the scalability challenges of QoE inference.

xvi

We leverage machine learning to infer QoE from coarse-granular but light-weight network

data in the form of Transport Layer Security (TLS) transactions. We analyze the scalability

and accuracy trade-off in using such data for inference. Our evaluation shows that that the

TLS transaction data can be used for detecting video performance issues (low video qual-

ity or high re-buffering) with a reasonable accuracy and significantly lower computation

overhead as compared to packet-level traces.

xvii

CHAPTER 1

INTRODUCTION

End-user application Quality of Experience (QoE) is a major driver for customer growth

and business revenue in the Internet economy [1, 2]. A recent study by Akamai shows

that a re-buffering of 1% in the Internet video can reduce the watch time by 5% [2]. Thus,

providing an “exceptional” QoE is of high importance for all the stakeholders involved in

content delivery over the Internet. While there are several kinds of content over the Internet,

in this thesis, we focus on video and its QoE. This is because video dominates the Internet

traffic (75% of the traffic in 2017 [3]) and continues to grow with the advent of bandwidth-

hungry video streaming formats (e.g., virtual reality, 4K streaming) and an increasing shift

from traditional pay-TV provider to Internet video [4]. The growing demand for Internet

video has made it imperative for all stakeholders in the video delivery ecosystem to adapt

their network infrastructure and provide “exceptional” video QoE.

Due to the flattening of the Internet, most video over the Internet traverses only two

networks, the content provider network and the Internet Service Provider (ISP) network

where the end-user is connected (or end-user ISP for short). Thus, the responsibility for

delivering the best possible video QoE to users is shared between these two networks.

In some instances, the video content can be served from within the end-user ISP; e.g.,

Netflix [5] partners with end-user ISPs and embeds their servers inside the ISP network to

serve video. In this case, it is mostly the end-user ISP’s responsibility to insure the delivery

of video QoE to users.

End-user ISPs, therefore, need an in-depth understanding of end-user video QoE and its

relationship to network performance. This is a first step in the ISP’s own network manage-

ment in support of video QoE – for short term trouble shooting and problem mitigation [6],

and for long term QoE-aware network planning and provisioning [7, 8]. Estimating video

1

QoE, however, is challenging for an ISP, since they typically do not have access to the

video application on user devices, the device itself, or the server. Unlike content providers,

they cannot use in-app plug-ins [9, 10] for measuring the video QoE. Recent work proposes

an alternative networking paradigm in which the ISPs and the content providers collabo-

rate, allowing the latter to share QoE information with the former [11, 12]. However, this

approach requires significant effort and is not immediately realizable. End-user ISPs are,

therefore, currently constrained to use data derived from within their network to estimate

video QoE.

Interpreted literally, video QoE is “a measure of the delight or annoyance” of an end-

user’s video streaming experience [13]. Thus, measuring video QoE is difficult even for

content providers, let alone ISPs, as user experience is subjective and hard to quantify.

Recent literature and standardization efforts propose to characterize video QoE using mul-

tiple objective metrics such as average bitrate and re-buffering ratio [14, 15, 16, 17, 2]. The

challenge before ISPs and hence our focus in this thesis is to use network measurement data

to estimate the objective video QoE metrics.

Most of the video today is streamed using techniques that comprise HTTP client-server

interactions and that adapt the video quality to network conditions [18, 19, 20, 21, 22, 23].

There are a number of variations of such techniques [24, 25, 26] which we will refer to

collectively as HTTP Adaptive Streaming (HAS). Unlike applications such as IP telephony

where objective QoE metrics are directly reflected by observable network Quality of Ser-

vice (QoS) metrics (e.g., packet delay, jitter), the relationship between QoE metrics and

QoS metrics in HAS video is complex. This is mainly because of two factors, namely,

bitrate adaptation and the use of video buffer. Both of these result in robustness to short-

term variations in the underlying network QoS; hence, making it challenging to quantify

the relationship between network QoS metrics and application QoE metrics. In this thesis,

we design techniques that use network data to infer QoE metrics for HAS video.

In designing QoE inference approaches for HAS, we address several research chal-

2

lenges. One of the challenges is that there is a diversity in the streaming context. There

are different video services available that although all are based on HAS, each of them

use their own service design parameters. Similarly, there is diversity in the the end-user

devices wherein a video can be streamed over a smartphone, desktop, or smart TV. The

diverse streaming contexts translate to difference in the corresponding video QoE even

under the same network condition. We design QoE inference techniques that are able to

handle this diversity in streaming contexts. Another major challenge is that an increasing

amount of video service providers are using end-to-end encryption. This severely limits the

amount of information ISPs have access to within the network data. We design techniques

that rely on this limited information to infer video QoE metrics. Finally, QoE estimation at

a network-wide scale also poses scalability challenges. We consider the case wherein scal-

ability issues arise at the point where the network measurements are taken. More specifi-

cally, it can be challenging and inefficient to collect very fine-granular network data such as

packet traces for the entire network. An alternative approach then is to use more aggregate

forms of network data for estimation. A major challenge with this data is that it is quite

coarse-granular. In this thesis, we design an inference technique that uses readily-available,

light-weight, but coarse-granular network data.

1.1 Primary Contributions

The goal of this thesis is to design a toolbox of QoE inference approaches suitable for a

variety of streaming contexts as well as different granularity of network measurement data.

The thesis statement is that it is possible to estimate end-user video QoE metrics using

different kinds of network measurement data, if the inference methods are appropriately

designed based on the knowledge of HAS protocol and the corresponding traffic patterns

on the network. The accuracy of inference varies based on the granularity of the data

collected on the network. For fine-granular network data, we design inference approaches,

even for encrypted video, that generalize across video services with minimal additional

3

information about the service design parameters. The generalizability is achieved by using

an approach called Session Modeling (SM). It utilizes the knowledge of the underlying

streaming protocol which is common across services. For coarse-granular network data,

we develop machine learning-based methods that can learn patterns from the network data

annotated with ground truth QoE to identify low QoE sessions. We analyze the trade-off

between scalability and accuracy of inference. Our analysis shows that aggregate forms of

network data can enable a coarse-granular QoE estimation with reasonable accuracy. This

is particularly useful in detecting video performance issues in a light-weight manner. An

ISP can then collect fine-granular data and use the corresponding inference techniques for

further troubleshooting.

More concretely, we develop three techniques for QoE estimation, each of them suitable

for a different streaming context and network measurement data. We make the following

contributions, also summarized in in § 1.2, § 1.3, and § 1.4:

• Inference for unencrypted traffic: We first develop an algorithm, called MIMIC,

that estimates video QoE metrics such as re-buffering and video quality for unen-

crypted HTTP-based video. The algorithm is based on the insight that an HTTP-

based video session can be modeled as a sequence of chunk downloads appearing

as HTTP transactions on the network. We do a large-scale validation of our algo-

rithm using ground truth QoE metrics from a popular video streaming service. We

deploy MIMIC in a real-world cellular network and demonstrate some preliminary

use cases of QoE estimation for ISPs such as understanding the current video demand

and understanding the impact of network or application-layer changes on video QoE.

• Inference for encrypted traffic: We then develop eMIMIC, a methodology that uses

passive measurements at network-layer to estimate QoE metrics of the encrypted

video sessions. eMIMIC relies on information extracted from the TCP headers of

the packet-level video traffic to reconstruct HTTP transactions and uses it for mod-

eling the video session. We also develop an experimental framework for automated

4

streaming and collection of network traces and ground truth QoE metrics of video

sessions of three popular video streaming service providers. Using this framework

under realistic network conditions, we show that eMIMIC outperforms state-of-the-

art QoE estimation approaches.

• Inference using coarse-grained data: We develop a machine learning-based method

that infers QoE using coarse-grained network data in the form of Transport Later

Security (TLS) transactions. We develop features from this coarse-granular net-

work data based on the knowledge of HAS protocol. We also develop a session-

identification heuristic based on the access patterns to video servers at the beginning

of the session. We extensively evaluate the method over three popular streaming ser-

vices. We compare the estimation accuracy with packet-level data and the associated

computation and memory overhead.

1.2 Inference for unencrypted video traffic

In Chapter 3, we present an SM-based methodology, called MIMIC, for QoE estimation

using unencrypted video traffic.

Idea: MIMIC is designed based on the the HAS protocol. In HAS, the video is divided

into chunks usually of equal playback duration, with each chunk encoded at multiple bitrate

levels chosen from a pre-defined set. When the client opens a HAS video, the player first

sends an HTTP GET request to the server to download a manifest file that has information

about the media chunks. The player then sends an HTTP GET request for the first chunk.

The quality of the requested chunk is usually specified in the chunk URI. Once the video

chunk has been fully downloaded, it is decoded and played on the screen. Meanwhile, the

player sends the request for the next chunk, whose quality is decided based on an adaptation

algorithm [21, 18], and this process continues. MIMIC exploits this strong serial request-

response pattern for modeling a video session using HTTP logs.

Approach: We log HTTP transactions corresponding to video traffic by deploying a

5

web proxy in the network. The web proxy provides information about the HTTP headers

including the request URI, response completion timestamp, and content size. Note that

information about HTTP logs can also be obtained by recording packet traces using a packet

monitor, but at a higher processing cost. We collect information about the chunks such as

chunk identifier and bitrate or quality from its URI. We use the session identifier field in the

request URI to group the request logs into video sessions. Thus, we get request completion

time (Ti), chunk quality (Qi) and chunk size (Si) for every chunk request i in the video

session V . We use this information to estimate different video quality metrics namely,

average bitrate, re-buffering ratio, and number of bitrate switches.

1.3 Inference for encrypted video traffic

In Chapter 4, we design eMIMIC, an SM-based approach that uses packet traces for QoE

inference in encrypted video. It works by reconstructing video chunk transactions in a

session from the packet traces and then using an approach similar to MIMIC to estimate

QoE metrics. In designing eMIMIC, we solve three key challenges:

• HTTP request reconstruction: The first challenge is to identify the HTTP transac-

tions in a video session. We use TCP headers for HTTP-level session reconstruction.

We use the insight that data flow in an HTTP transaction has an important traffic

directionality property, i.e., request flows from client to server, followed by response

flowing in the opposite direction.

• Media type classification: The second challenge is to identify video chunks in the

reconstructed HTTP transactions as it may also include transactions corresponding

to metadata and audio (if delivered separately). We use the estimated response sizes

obtained from the HTTP reconstruction step to identify the media type. The size of

metadata is usually smaller than audio or video as it consists of text files. Audio

chunks are encoded at Constant Bit Rate with one or two bitrates levels. Thus, they

6

can be identified based on the size and size consistency and the remaining HTTP

transactions must correspond to video.

• Estimating bitrate of video chunks: The third challenge is to estimate bitrate of the

video chunks as it is required to calculate average bitrate and bitrate switches. We

use both chunk size and observed throughput of previously downloaded chunks to

estimate the bitrate of a chunk.

Using the above approach for a session V , we get a sequence of video chunks along

with estimates of the download start time (STi), download end time (ETi), and bitrate (Q̂i)

for every chunk i. We use the QoE inference methodology similar to MIMIC to infer

different QoE metrics.

1.4 Inference using coarse-grained network data

In Chapter 5, we present a methodology to infer video QoE using readily-available and

light-weight network data in the form of TLS transactions. A major challenge with this data

is that it is coarse-grained. It is no longer possible to obtain video segment information that

was earlier available from packet-level traces. We address this challenge by using machine

learning and formulate it as a supervised learning problem. The rationale here is that there

may be patterns in how TLS transactions differ based on the QoE that can be inferred using

machine learning models.

Given the coarse-granular nature of the data, we consider categorical estimation of the

QoE metrics into low, medium, and high. In addition to the individual QoE metrics, we also

estimate combined QoE. We find that the TLS transaction data may not always be useful in

accurately estimating each individual QoE metric. However, it can estimate the combined

QoE metric with reasonable accuracy for all the three considered video services.

We construct features for machine learning model using the sequence of TLS transac-

tions in a video session. For every transaction in the session, we have its downlink data

7

size, uplink data size, start time, and end time. We use this data to construct the follow-

ing three kinds of features: i) session-level features consisting of overall session metrics,

ii) transaction statistics which capture different transaction-level metrics, and iii) temporal

statistics to capture any temporal variations in the network conditions. We also develop fea-

tures based on our experience from developing session-modeling based approaches. More

specifically, we calculate transaction data rate (TDR) and downlink-to-uplink (D2U) ratio.

TDR is the transaction downlink data divided by transaction duration, and intuitively is an

indicator of the network quality. D2U ratio is the ratio of the downlink data to the uplink

data. In HAS, the uplink data is typically an indicator of the number of segments requested.

Hence, D2U ratio represents the amount of data downloaded per segment. This can be a

useful indicator of the video quality. We use data collected from controlled experiments

under diverse emulated network conditions to train our models.

8

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we first explain HTTP-based Adaptive Streaming (HAS) and its Quality

of Experience (QoE). This is followed by an overview of the related work on video QoE

estimation using network measurement data and other relevant areas.

2.1 Internet video

Video has become the killer app for the Internet with no signs of slowing down (expected

to be 82% of the global IP traffic in 2022 [3]). Most of the Internet video is primarily from

video-on-demand (VoD) services but also includes a small but growing proportion of live

video [27]. The ability to watch desired content whenever and wherever, rise of content

providers like YouTube and Netflix, and continued improvement in encoding mechanisms

and Internet bandwidth have been some of the factors that have led to this growth [4].

2.1.1 Streaming protocols

The growth of Internet video has been accompanied (and also impacted) by an evolution

in the streaming protocols. Video in the early Internet was streamed using protocols such

as RTMP (by Macromedia) [28] and RTSP (by IETF) [29]. These protocols were mainly

UDP-based and offered several advantages such as dynamic seeking of content, support for

live content delivery, and dynamic video bitrate based on the client’s network conditions

and device capabilities. However, they required deployment of special stateful servers that

would push video content to the end-users. This implied a greater cost and complexity

to deliver video content. As a result, these protocols were later replaced by HTTP-based

adaptive bitrate streaming (HAS) protocol [30]. The use of HTTP allowed the content

providers to use existing CDN infrastructure and it is also more firewall friendly. HAS still

9

allowed for bitrate adaptation by moving the adaptation logic to the client as the servers are

stateless [30].

In HAS, a video is split into chunks or segments which are typically of same duration.

Each of these chunks are encoded at predefined quality levels determined by encoding bi-

trate and resolution and hosted on a standard HTTP server. The bitrate adaptation algorithm

at the client adapts the streaming video quality based on past TCP-throughput [18], current

buffer occupancy [21, 20], or a combination of both [19, 22, 23]. The video metadata such

as chunk encoding levels and request URI is obtained by downloading a manifest file at

the beginning of video session. There are different implementations of HAS protocol with

HLS [25] and MPEG-DASH [26] being the most popular. While parts of the framework

for these technologies are standardized, they still allow content providers to choose some

key video design parameters such as bitrate adaptation algorithms, encoding video and au-

dio bitrates, and chunk duration [31]. Different choices of these parameters often lead to

different end-user experience under similar network conditions [32, 33].

2.1.2 Video QoE

Streaming quality is estimated through a video Quality of Experience (QoE) measure. QoE

is highly subjective as it depends on a lot of factors such as video content, user context,

delivery quality etc [34]. This makes it hard to measure and quantify QoE even for content

providers, let alone ISPs. Recent standardization efforts and literature propose to character-

ize QoE in HAS by multiple objective metrics namely average bitrate, re-buffering ratio,

quality switches, and startup delay [14, 15, 16, 17, 2]. Average bitrate reflects the streamed

video quality, based on the requirement for more bits to encode a higher quality image.

In general, the bitrate of a particular quality level depends on the complexity of the video

content being encoded and the encoding efficiency. The selection of quality levels made

available to the video player is determined by each content provider. Re-buffering ratio is

the proportion of the viewing time the video stalled because of playout buffer under-run.

10

Bitrate switches represent the video quality variations in the session. Startup delay is the

time taken to start playing the video from the time the user opens the video.

An operator may further model the impact of these metrics taken together on the user

experience, either through user studies [16] or data analysis [17, 2]. ITU-T has proposed

a P.1203 model that takes into input per-second values of the key video QoE metrics and

outputs a single mean opinion score metric (MOS) [35]. Our focus in this thesis is on

estimation of the QoE metrics; modeling their impact on user QoE is a complimentary

step.

2.2 Related work on QoE estimation using network data

Existing inference approaches can be broadly classified into two categories: ML-based and

SM-based approach. An SM-based approach infers QoE by modeling a video session using

the properties of the underlying streaming protocol. An ML-based approach infers QoE by

correlating the network observable metrics such as packet delay, loss, and throughput with

the video QoE metrics using machine learning algorithms. Here we give an overview of

related work for both kinds of approaches:

2.2.1 ML-based approaches

Related work has proposed different ML-based approaches to infer video QoE using pas-

sive network measurement data. Most of these approaches assume access to packet-level

traces. They differ in one or more of these dimensions, namely, the target QoE metric,

machine learning model and features, and training methodology including collection of

ground truth QoE metrics.

For progressive streaming, OneClick [36] and HostView [37] propose obtaining the sub-

jective ground truth QoE through user feedback in the training phase and using regression-

based models for their estimation. Prometheus [38] suggests using LASSO regression

trained using instrumented clients to estimate objective video QoE metrics.

11

For encrypted HAS, ML16 [39] and BUFFEST [40] capture the QoE metrics sent by

the player to the content provider on the network and build decision tree-based classifiers

to estimate individual QoE metrics and buffer occupancy, respectively. Orsolic et al. [41]

develop an Android application to obtain ground truth QoE for YouTube and evaluate dif-

ferent machine learning approaches for inferring different QoE classes. Using data from

a similar YouTube client application and statistics derived from IP headers as the feature

vector, Tsilimantos et al. [42] train different machine learning models to estimate the buffer

state from the IP packet headers. Mazhar et al. [43] classify different QoE metrics in real-

time using decision trees and IP headers for QUIC and TCP headers for HTTPS video.

In contrast, we rely on the properties of HAS instead of using machine learning and thus

minimize the training overhead.

2.2.2 SM-based QoE inference approaches

SM-based approaches have been proposed for mainly HTTP-based progressive streaming

protocols. Schatz et al. [44] estimate video re-buffering by modeling a session using TCP

headers, while Dimopoulos et al. [45] extract key pieces of information from the HTTP

headers to infer re-buffering. However, these methods were designed for HTTP progres-

sive streaming and would not work for HAS video. In this thesis, we develop SM-based

approaches for HAS video. More specifically, we develop MIMIC [46] and eMIMIC [47],

that use session modeling to infer QoE metrics in the case of unencrypted and encrypted

video, respectively.

2.2.3 Scalability of inference approaches

Most of the existing methods focus on improving QoE inference accuracy. More recent

work has started to consider the scalability aspects of using packet-level data by explor-

ing the computation overhead of the collected features [48], using a minimal set of fea-

tures [49], or proposing in-network processing [50]. In this thesis, we also consider an

12

alternative approach that uses coarse-granular network data instead of packet traces for

inference.

2.3 Video traffic classification

In order to use the network measurements for inferring video QoE, video traffic first needs

to be separated from other network traffic. Several traffic classification approaches exist

that focus on classifying the application protocol (like HTTP vs FTP) based on the network

traffic properties [51]. More recently, traffic classification efforts have focused on classi-

fying applications within HTTP. Shbair et al. [52] use ML to classify application classes

within HTTPS traffic. ML-based techniques have been proposed to specifically identify

HAS video flows in the network [53, 42]. eMIMIC currently uses Server Name Indication

(SNI) field in TLS handshake [54] for video traffic identification. However, it can also use

aforementioned approaches for filtering video traffic in case TLS headers are not available

to an operator.

2.4 QoE-based network management

Several in-network optimizations have been suggested that take into account video QoE.

Chen et al. [55] and Mansy et al. [56] present QoE-aware schedulers in the network to im-

prove fairness among different adaptive video streams. Similarly, network-assisted bitrate

adaptation frameworks have been suggested for adaptive video flows [57, 58]. Kassler et

al. [59] propose QoE-based routing using software defined networking (SDN). Mustafa et

al. [60] propose using SDN for in-network video QoE-aware resource management. We

believe that QoE estimation can help network operators in finding network locations that

need attention and assess the impact of in-network modifications after deployment.

13

2.5 Video performance characterization

Several active measurement studies exist that characterize performance of the commercial

video players [33, 32, 61] and CDNs [62, 63, 64]. Similarly, large-scale measurement

efforts have been undertaken to characterize video QoE using passive data collected from

different vantage points in the video delivery path, namely, commercial video players [65],

CDNs [66] or both [67]. Erman et al. [68] characterize mobile video performance from the

unique perspective of MNOs. We deploy MIMIC in a part of the network of a major US

MNO. Using data collected from these deployment over a period of 12 days, we provide

a fresh take on the findings by Erman et al. focusing on the mobile video evolution in the

past few years as well as a few additional insights analyzing the impact of mobility and

network demand on video performance.

14

CHAPTER 3

MIMIC: QOE INFERENCE FOR UNENCRYPTED VIDEO

3.1 Introduction

In this chapter, we propose a methodology called MIMIC1, that uses semantics of HAS

to estimate video QoE metrics from passive network measurements for unencrypted HAS

videos. We design MIMIC as a session modeling (SM)-based approach. This makes it

minimally dependent on ground truth QoE metrics. Furthermore, it can generalize well

across different services as it relies on the semantics of the HAS protocol to estimate video

QoE which are generally consistent across services. Finally, MIMIC gives a fine-granular

view of video QoE metrics per session by estimating their exact values as opposed to

the categorical estimates. This makes it useful in the case of active QoE-based resource

allocation.

MIMIC is based on the observation that the HTTP logs of HAS videos can give sig-

nificant information to model a video session on the client. We use HTTP logs to estimate

three video quality metrics: average bitrate, re-buffering ratio, and bitrate switches. An

MNO can either use each of these metrics individually or feed the estimated values into an

appropriate QoE prediction model, such as [16], to get a single score reflecting the QoE

for the video session. In addition, we also monitor network overhead due to chunk re-

placement which is an important metric for network operators. MIMIC is similar in spirit

to [44] and [45] that use TCP-layer metrics and HTTP logs respectively to model a video

session at client. However, these methods were designed for HTTP progressive streaming

and would not work for HAS video.
1MIMIC stands for Measuring Multimedia QoE in Cellular network. The acronym is suggestive of our

approach, i.e. we try to mimic the client video session playback using network traces

15

MIMIC is developed in a controlled environment and then validated on a large-scale

using network data from a major cellular provider and ground truth QoE metrics from a

major content provider. MIMIC can accurately predict the average bitrate within a relative

error of 10% for 70%-90% of video sessions. MIMIC is able to predict re-buffering ratio

within an absolute error of 1% for 65%-90% of video sessions. We quantify the network

overhead due to video chunk replacement and observe that a significant number of sessions

can incur a high overhead of 20% or more.

We also deploy MIMIC in the real network of a large U.S. based Mobile Network

Operator (MNO). This is done as a part of a QoE inference system we designed, called

VideoNOC [69]. Using data collected from the deployment, we demonstrate that MIMIC

can provide an MNO with a spatio-temporal view of video demand and QoE across the net-

work. We analyze the impact of network factors such as user mobility and demand on the

video QoE. Furthermore, our analysis provides unique insights from the network data oth-

erwise not available from QoE monitoring performed at end devices by Content Providers

(CPs) or on servers and CDNs. These insights motivate both best practices as well as op-

portunities for cooperation between MNOs and CPs for the benefit of all stakeholders in

the mobile video ecosystems.

The rest of the chapter is organized a follows: Section 3.2 describes methodology to

estimate video QoE metrics in detail. In Section 3.3, we discuss the results from controlled

experiments as well as cellular network data. We present the measurement analysis from

MIMIC deployment in Section 3.4. We conclude the chapter in Section 3.5.

3.2 Methodology

MIMIC is based on the insight that there exists a strong serial request-response pattern

in the HTTP transactions in a HAS session that can be used for modeling a video session

Conceptually, we utilize HTTP logs collected from the network to model a video session on

the client. We illustrate MIMIC with a mobile app, referred to as VideoApp (anonymized

16

for confidentiality), from a large mobile video service. We first describe measurements col-

lected passively and then discuss how these measurements can be used to estimate different

video QoE metrics. We then briefly describe the benchmark data that we use to evaluate

the accuracy of our approach.

3.2.1 Passive Measurements

Our passive measurements include HTTP logs for VideoApp recorded by deploying a web

proxy in the network. We identify the logs as belonging to the VideoApp by inspecting

the request URIs. In addition to the request URI, the web proxy also provides the HTTP

response completion timestamp and content size. Note that deep packet inspection tech-

niques could also be used for this purpose, but at higher processing cost. The log data used

for this study is anonymized and does not contain any user-identifiable information. We

only consider logs that correspond to video chunk requests.

Figure 3.1 shows a sample chunk requst URI from the VideoApp session. We use the

session identifier field in the request URI to group the request logs into video sessions.

From the URIs of these chunk requests, we then extract the chunk identifier and bitrate or

quality. We also collect some meta-data about each session such as device OS, OS version,

content type and content identifier from the request URI and headers. Note that chunk bi-

trate (quality) and content identifiers in the URI are typically represented by arbitrary or

randomized service-specific unique identifiers rather than human-readable values.

Chunk replacement: It is common to observe multiple chunk requests with the same

chunk identifier, but different bitrate in the logs. This essentially means that the video

client replaced an already requested chunk. This behavior has been alluded to in a previ-

ous study [33] but has not been quantified at large scale. Chunk replacement can happen

http://videoapp.cdn.net/V0987654321/track03/segment101.ts?&token=325435636

Content provider CDN Content ID Chunk quality Chunk ID Session ID

Figure 3.1: Chunk URI template and the extracted information

17

due to several reasons, including (i) player trying to improve user experience when net-

work conditions allow, and (ii) recovering from various errors or overly aggressive but

aborted attempts for high-quality chunks. We handle chunk replacement by using only the

most recently downloaded bitrates of each chunk to estimate QoE metrics, while carefully

accounting for all replaced chunks. The replaced chunks are important from the perspec-

tive of both MNO (represent wasted network resources) and end user (represent wastage

of limited data plan). We call the total amount of data due to replaced chunks as chunk

replacement (CR) overhead.

3.2.2 Estimating QoE metrics

From the passive measurements, we get request completion time (Ti), chunk quality (Qi)

and chunk size (Si) for every chunk request i in the video session V . The chunk duration

(L) in seconds is obtained by investigating the manifest file for few videos in out-of-band

experiments. We observed that VideoApp uses different chunk duration for Live and Video

on Demand (VoD) content. The total number of chunks downloaded in a session after

accounting for chunk replacement are denoted by N . We use this information to estimate

different video quality metrics in the following manner:

• Average bitrate: We estimate the average bitrate by taking the time average of the

collected chunk size of the session.

b̂r =

∑N
i=1 Si

N × L
(3.1)

• Re-buffering ratio: Intuitively, re-buffering time is estimated by keeping an account

of video chunks that have been downloaded and the part of that video content that

should have been played so far. Let Bi denote the total re-buffering since the be-

ginning of the play until the time chunk i has been downloaded i.e. Ti. Clearly, B1

is zero by definition as the initial re-buffering is termed as the video startup time.

18

The re-buffering time between two consecutive chunk download times Ti and Ti−1 is

denoted by bi. Then, Bi can be simply written as
∑i

k=1 bk and each of the bi can be

calculated as follows:

bi = max(Ti − T1 −Bi−1 − (i− 1)× L, 0) ∀i ≥ 2 (3.2)

Here, Ti − T1 −Bi−1 represents the total video that should have been played since

the beginning of the session and (i− 1)× L represents the video content that has

been downloaded. The re-buffering ratio can then simply be written as

r̂r =
BN

N × L+BN

(3.3)

• Number of bitrate switches: Number of bitrate switches can be calculated simply

by calculating the number of times the chunk quality changed between consecutive

chunks. Here I is the indicator function and has a value of 1, if the consecutive

chunks do not have same quality, zero otherwise.

ˆbr switch =
N∑
i=2

I(Qi 6= Qi−1) (3.4)

3.2.3 Ground Truth

To validate the accuracy of our approach we require the actual video QoE metrics. For

this purpose, we use session-level QoE metrics collected by a mainstream 3rd party video

analytics SDK built into the VideoApp. This is the typical approach used by commercial

video services for QoE monitoring. It is our understanding that SDKs use API calls to

the native player to register events such as playing, stopped, buffering at the application

layer. The detailed logic is proprietary to each vendor. The QoE metrics provided by in-

app SDK consist of average bitrate, re-buffering ratio, and video startup time. We assume

19

Table 3.1: Bandwidth profiles used for controlled experiments.

BW1 constant bandwidth of 10000 kbps
BW2 2000 kbps with 20 kbps from t=180 s to t=240 s
BW3 bandwidth alternating between 2000 and 20 kbps every 30 s
BW4 bandwidth changes every 10 seconds,

range=[20,10000] kbps, mean=2951 kbps, stddev=3932 kbps

Table 3.2: QoE metrics estimation results from controlled experiments: VoD content, OS1

Bandwidth profile
Average bitrate (kbps) Re-buffering ratio (%)
M.V. P.V. G.T. M.V. G.T.

BW1 3213 3680 3690 0.61% 0.09%
BW2 1220 1442 1440 3.48% 3.41%
BW3 855 1003 1030 32.08% 32.7%
BW4 1983 2276 2330 11.41% 12.0%

that metrics from the SDK accurately capture user-perceived QoE. The in-app SDK does

not report bitrate switches and chunk replacement. The ground truth logs are anonymized

for privacy by the SDK, so that users or end devices could not be identified.

3.3 Evaluation

The evaluation involves measuring the QoE metrics of VideoApp sessions using the net-

work data and comparing them to the QoE metrics reported by the in-app SDK, referred

to as ground truth. We first conduct experiments in a controlled environment, followed

by validation using the real network data. In our analysis, we split the VideoApp sessions

by content type, i.e., Live or VoD, and Operating System (OS). This is because the video

system parameters and the exact HAS implementation may depend on the content type and

OS. We consider the two popular mobile OS-s and refer to them as OS1 and OS2.

20

Table 3.3: QoE metrics estimation results from controlled experiments: Live content, OS1

Bandwidth profile
Average bitrate (kbps) Re-buffering ratio (%)
M.V P.V G.T. M.V. G.T.

BW1 3012 3242 3270 0.00% 0.14%
BW2 1146 1344 1260 8.87% 10.3%
BW3 769 917 951 12.69% 14.3%
BW4 994 1092 1190 11.70% 13.31%

3.3.1 Evaluation using controlled experiments

Experimental Setup: The experimental setup consists of a smartphone with the VideoApp

installed and a Linux box acting as a WiFi hotspot. Squid proxy is deployed on the Linux

box to log all HTTP traffic from the smartphone. We use Linux tc to control the downlink

bandwidth to the smartphone. A single test run constitutes of streaming a specific video

in VideoApp for a duration of 5 minutes and under a specific bandwidth profile. The

collected proxy logs from these test runs correspond to the logs we can get from the real

network and we use them to calculate the video QoE metrics and then compare them to the

ground truth. Creating a special test user allows us to positively match each test run with

the VideoApp ground truth logs.

We run experiments with one representative video from Live and VoD content served

by VideoApp. Each video was continuously streamed under four different bandwidth pro-

files described in Table 3.1. The goal of these experiments is to do an initial rather than

exhaustive validation of our methodology.

Results: Table 3.2 shows the comparison between the measured value (M.V.) and

ground truth (G.T.) value of QoE metrics under different bandwidth profiles for VoD on

OS1. Our methodology appears to consistently underestimate the average bitrate. Upon

a closer examination, we find that the difference in our measurements can be attributed to

the difference between the way we compute average bitrate and the way the in-app SDK

calculates it. The in-app SDK uses the declared bitrate in the manifest whereas we con-

sider the actual size of the chunks on the network while estimating the bitrate value. The

21

declared bitrate represents the peak chunk bitrate over the entire video, as required by HLS

design, thus leading to higher estimate of average bitrate by the in-app SDK. To verify this,

we also calculate the predicted value (P.V.) using the declared bitrates in the manifest file.

As shown in Table 3.2 the average bitrate predicted using this method is very close to the

ground truth.

Our methodology can predict re-buffering ratio quite accurately with an absolute error

less than 1% for VoD. The results are similar for experiments with Live video as shown in

Table 3.3. In addition, we also calculate the number of bitrate switches and CR overhead,

not shown here as we do not have the ground truth for these. The controlled experiments

show that we can very accurately predict the video QoE metrics using the network data.

3.3.2 Evaluation using large-scale real network data

Dataset: We deployed a web proxy in the cellular network of a major operator in the U.S.

to obtain HTTP logs for VideoApp sessions. The logs were collected for a period of 12

days in the year 2017, in a part of the network covering a fraction of packet gateways.

We estimate the QoE metrics for the logged sessions using MIMIC. Note that we are not

able to store the raw HTTP logs due to large space overhead but only process the logs in a

streaming fashion and retain the session-level QoE metrics and associated meta-data.

Ground Truth: We again use the QoE metrics collected by the in-app SDK. However,

unlike the active experiments, it is not trivial to match the sessions collected on the network

with their corresponding in-app SDK logs. Due to the anonymization of both data sets,

we have to resort to the following matching logic. We use the session content identifier,

session start time and duration, OS kind and version, and CDN to match sessions. We

further filter out sessions less than 1 minute since it is challenging to match the network

session duration with the ground truth playtime for such short sessions. In the case of a

single match between data sets, we use it for comparison, while in the case that a single

VideoApp session matched with more than one proxy sessions, we discard all of them.

22

For the time period under study, we were able to match 70,214 sessions, which is a

small fraction of all VideoApp sessions. Both Live and VoD are well-represented in this

set. Although the efficiency of our highly simplistic matching logic is low, we still get a

large number of sessions to validate our methodology.

-20% -15% -10% -5% 0%
0

0.2

0.4

0.6

0.8

1

C
D

F

Live, OS1

Live, OS2

VoD, OS1

VoD, OS2

(a) Using chunk size

 0% 5% 10% 15% 20%
0

0.2

0.4

0.6

0.8

1

C
D

F

Live, OS1

Live, OS2

VoD, OS1

VoD, OS2

(b) Using declared bitrates

Figure 3.2: CDF of relative error in average bitrate estimation

Average bitrate: For average bitrate, we calculate the signed relative error (δbr) in the

estimated average bitrate (b̂r) and the ground truth average bitrate (br), defined as b̂r−br
br

.

Figure 4.8a shows the CDF of the relative error for sessions split by OS kind and content

type. As expected, we underestimate the the average bitrate when compared to the in-app

SDK reported bitrate since we are using the chunk size to estimate the bitrate as opposed to

the bitrate values from the manifest by the in-app SDK. Note that from the point of view of

MNO, the bitrate calculated using chunk size gives a more accurate indication of network

load. We also estimate average bitrate using the declared values from the manifest in the

controlled experiments. Figure 3.2b shows the CDF of the relative error (δcbr). We can

predict the average bitrate within a relative error of 10% for at least 70% (90% for OS1) of

sessions.

We also note some challenges in bitrate estimation. We consistently overestimate av-

erage bitrate, although by a small value, when using declared values from the manifest.

23

1-2 2-5
5-1

0
> 1

0

0%

1%

2%

3%

4%

5%

Figure 3.3: Median relative error in average bitrate estimation vs. session duration

One reason for this overestimation is that we use all of the downloaded chunks during the

session for average bitrate calculation unlike the in-app SDK which only considers chunks

that have been played. From experiments, we observed that VideoApp sessions typically

start with a low chunk quality and the quality increases later on as the playback progresses.

Hence, if chunks in the playback buffer are also considered, it leads to overestimation of

average bitrate. To validate this hypothesis, we classify the sessions into bins according to

their duration and compute the median of the relative error in bitrate estimation for each

bin. As shown in figure 3.3, the median relative error decreases as the session duration

increase. This is because the relative contribution of the fixed-size buffer in the average bi-

trate decreases as the session playtime increases. Tracking the buffer occupancy in bitrate

calculation can help make our estimation more accurate.

-2% -1% 0% 1% 2%
0

0.2

0.4

0.6

0.8

1

C
D

F

Live, OS1

Live, OS2

VoD, OS1

VoD, OS2

Figure 3.4: CDF of error in re-buffering ratio estimation

We also observed that the errors in bitrate estimation are higher in general for sessions

24

Table 3.4: Re-buffering ratio confusion matrix, VoD OS1

Ground Truth
Predicted re-buffering ratio

low rr medium rr high rr
low rr 90.6% 7.7% 1.6%

medium rr 49.9% 47.0% 3.1%
high rr 1.7% 15.5% 82.8%

Table 3.5: Re-buffering ratio confusion matrix, VoD OS2

Ground Truth
Predicted re-buffering ratio

low rr medium rr high rr
low rr 94.4% 4.6% 1.0%

medium rr 56.5% 32.2% 11.3%
high rr 10.7% 9.7% 79.6%

on OS2 as compared to OS1. We speculate that it could either be because of a different

chunk replacement policy in OS2 or a different methodology used by in-app for calculating

bitrate. We plan to investigate this in detail in our future work.

Re-buffering ratio: We calculate the signed difference (∆rr) between the estimated re-

buffering ratio (r̂r) and the ground-truth re-buffering ratio (rr), defined as r̂r − rr. Fig-

ure 3.4 shows the CDF of ∆rr split by OS and content type. We can accurately predict the

re-buffering ratio within an absolute error of 1% for 90% of session on OS2 and for 65%

of sessions on OS1. Our methodology appears to underestimate the re-buffering ratio.

To understand this further, we categorize the re-buffering ratio into low (rr < 1%),

medium (1% < rr < 10%) and high (rr > 10%) and compare the categorical predic-

tions with ground truth. Table 3.4 and 3.5 show the confusion matrices of these cate-

gorical predictions for VoD sessions on OS1 and OS2 respectively. For both OS types,

our methodology can predict low and high re-buffering sessions with reasonably high ac-

curacy. However, many sessions with medium re-buffering are classified low re-buffering.

From a network operator’s perspective, it is more important to identify sessions with higher

re-buffering as compared to medium re-buffering.

One possible reason for re-buffering underestimation could be because of “trick play”.

Fast-forwarding or rewinding content in the video usually leads to resetting of buffer oc-

25

Table 3.6: Network overhead due to chunk replacement

Con- OS % sessions mean CR % sessions CR over-
tent type w/ non- overhead w/ CR over- head (%
type zero CR (% bytes) head ≥ 20% total data)
Live OS1 52.8% 7.5% 5.2% 2.8%
Live OS2 89.2% 18.3% 35.8% 6.2%
VoD OS1 91.9% 7.0% 10.9% 5.2%
VoD OS2 92.6% 6.5% 9.4% 2.8%

cupancy. Our estimation methodology does not detect and take into account trick play and

would end up underestimating the re-buffering ratio in these cases. We also observed higher

number of sessions with medium re-buffering on OS1 as compared to OS2. We speculate

that this could be because of difference in HAS implementation or in-app SDK’s reporting

methodology. Identifying the root cause of this behavior is a part of our future work.

0 1 2 3 4

switches per minute

0

0.2

0.4

0.6

0.8

1

C
D

F

Live, OS1

Live, OS2

VoD, OS1

VoD, OS2

Figure 3.5: CDF of number of switches per minute

3.3.3 Additional metrics estimated from network data

Here we show the distribution of two additional metrics for which we do not have the

ground truth. However, they demonstrate that we can obtain additional insights not other-

wise available from in-app measurements.

Chunk replacement (CR) overhead: CR overhead is defined as the % of data in a video

session transmitted due to replaced chunks. Table 3.9 shows the CR overhead for VideoApp ses-

sions split by OS and content type. A large number of sessions, as high as 90%, have non-

26

zero chunk replacement. This can be attributed to the fact that most of the VideoApp ses-

sions always start by downloading multiple lower quality chunks to quickly fill the play-

back buffer. The player replaces these chunks with higher quality chunks if it infers there

is enough network bandwidth. This behavior is due to application or underlying OS native

player design. CR accounts for 2.8% - 6.2% of the total network data for the VideoApp ser-

vice. Furthermore, up to 35% of (Live, OS2) sessions have a CR overhead greater than

20%, which is a non-trivial overhead. This points to the need of looking into optimiz-

ing the trade-off between improved user experience and network overhead. However, the

adaptation logic and CR behavior can be hidden within the native player design and not

accessible to video content providers.

Bitrate switching: We compute bitrate switches per minute for each session and plot the

CDF of its distribution in Figure 3.5. A large number of sessions have non-zero bitrate

switches. This can be attributed to the player behavior during the startup phase of the video

and later adaptation. The VideoApp player typically starts with a low bitrate level and

switches up the bitrate as the playback progresses. We also observe high number of bitrate

switches for Live sessions on OS2 and VoD sessions on OS1. We speculate this could be

because of the differences in the player adaptation logic on these platforms.

3.4 Measurement study

We deploy MIMIC in a part of the network of a major U.S. MNO as a part of a video QoE

inference system, called VideoNOC [69]. Using the data collected from the deployment, we

characterize video services and their QoE from an MNO’s perspective. Our measurement

study is divided into three parts:

• We describe the relative video service usage and analyze its impact on the network.

• We provide insights into the design of a variety of streaming services and its impli-

cations on QoE and network usage.

27

• We then analyze the impact of network factors on video QoE, namely mobility and

higher video demand per cell.

We also compare our findings to a 2011 study [68], to point out the evolution of video

streaming in cellular networks over the years.

Data set: The data set from which we draw sample network locations used for this

analysis comprises of logs spanning two weeks in 2017. The data consists of 272 million

anonymized sessions from a sample of 15 different Content Providers (CPs) amounting

to 5,070 TB of data. We filter out sessions shorter than 2 minutes in duration to remove

potential skew due to auto-play feature, users that browse or sample videos, and overall

startup effects (e.g., initial buffering, which we discuss separately in detail).

We group CPs by the estimated broad type of content served – user-generated con-

tent (UGC), premium video-on-demand (VoD) and live TV (Live) content. If a CP uses

HTTPS, we refer to it by appending an ‘s’ to the end of the name. UGC services are

streaming predominantly user-generated videos with a varying proportion of commercial

videos and advertisements in up to 4K resolutions. Most of them are considered online

social networks. VoD CPs are large paid streaming services with movies and shows offered

in various quality levels up to 4K resolution, either under independent subscription or as a

part of the home TV services. Live CPs offer live TV streams from large TV and sports

broadcasters.

3.4.1 Handling encrypted video

Three out of the 15 CPs we consider used end-to-end encryption. We use a coarse-granular

metric, called Session Throughput (ST), as a proxy for a QoE metric in the analyses in-

volving these services. Here we describe the manner in which ST is computed and its

correlation with different QoE metrics.

For encrypted traffic, the web proxy provides TLS transaction statistics with a single

TLS connection potentially corresponding to multiple HTTP requests. The QoE estimation

28

Table 3.7: Correlation between ST and ground truth.

Content ρ(br,ST) ρ(rr,ST)

type OS1 OS2 OS1 OS2
Live 0.89 0.88 -0.18 -0.10
VoD 0.76 0.80 -0.27 -0.37

methodology for unencrypted traffic can not be applied to encrypted traffic as per-HTTP

transaction statistics are not available. Hence, for encrypted traffic, we calculate the session

throughput (ST), which is defined as follows:

ST =

∑N
i=1 Si

T
, (3.5)

where Si is the content length of the ith TLS transaction in a session ofN transactions and T

is the total session time as observed on the network. We rely on degradation in ST in order

to detect degradation in streaming quality. For a session, we record the overall session

throughput as well as per-minute session throughput which is calculated by considering

transactions only in the current minute. The latter is done to detect temporary variations in

the session QoE. Note that ST is also calculated for unencrypted video services with the

TLS connection content length replaced by HTTP transaction content length.

We correlate the in-app SDK average bitrate and re-buffering ratio with the calculated

ST for the matched sessions in VideoApp. Table 3.7 shows the Pearson’s correlation coeffi-

cient (ρ) values between ST and average bitrate (ρ(br,ST)) and between ST and re-buffering

ratio (ρ(rr,ST)) for each analyzed OS.

We find that average bitrate and ST are strongly positively correlated, while there is

a weak negative correlation between re-buffering ratio and ST . This shows that session

throughput can be used as an indicator of video QoE. Specifically, degradation in ses-

sion throughput would indicate degradation in average bitrate in most cases and high re-

buffering in some cases. Recent work also shows that average downlink throughput maps

reasonably well to video QoE [70].

29

VoD3 VoD6 VoD7 VoD2 Live3 Live2 Live1 VoD5 VoD4

Content provider

0

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 v

a
lu

e

Bitrate

Session throughput

Figure 3.6: Normalized median per-session average bitrate and session throughput from a
sample of CPs and network locations. A value of 1 corresponds to 1.5 Mbps.

3.4.2 Insights into relative video usage

As video services and their delivery evolved over the past several years, one example use

case is to consider the relative demand, efficiency and popularity across CP categories and

network locations.

Relative contribution to overall video demand: Considering the contribution to the

overall number of video sessions streamed, we observe that the top 5 CPs from our sample

set generate 95% of video sessions. They consist of UGC and VoD CPs, with majority

being UGC. Other VoD CPs generate 4.5% of video sessions, and Live CPs remaining

0.5%. While Live video is currently a minor contributor to video sessions in cellular, this

is an emerging category that may grow in the future. The relative contribution in terms of

data demand is similar as the same top 5 CPs contribute 93.5% of the overall data demand.

This is qualitatively similar to the 2011 study [68]. Given the significant impact of these top

5 CPs, optimizing these services for cellular networks would have a large overall impact

on the efficiency of network resource utilization.

Understanding efficiency of video content delivery: We consider the delivered video

bitrates and their relationship to the overall video session throughput (ST) to understand the

efficiency of delivery vs. QoE. We focus on a subset of CPs for which we can estimate the

available bitrates using request URIs. Figure 3.6 shows the medians of average per-session

bitrate and ST from a sample of CPs and network locations. The bitrate ranges indicates

significant increase compared to the 2011 study, which found that most video sessions were

encoded at 255 Kbps. This improvement comes with transition from 3G to LTE and from

30

progressive download (PD) to adaptive bitrate (ABR) streaming technologies. Another

aspect of video evolution compared to 2011 study is that nearly all detected video sessions

use some form of ABR, with PD diminished.

However, the question arises whether the high bitrates are reasonable. Video sessions in

cellular networks are typically streamed to small-screen devices, such as phones. Existing

studies show that on small screens, bitrate levels of 1 to 1.5 Mbps with state-of-the-art

encoding techniques can provide a high visual quality with a diminishing utility beyond

that point [71]. Delivering excessive video bitrates wastes data allotments and network

bandwidth, something of utmost importance under limited radio spectrum. The data reveals

that most of the sample CPs actually exceed the median per-session bitrates of 1.5 Mbps,

shown as the normalized value of 1 in Figure 3.6, making the excess bandwidth use more

of a rule rather than an exception.

Further compounding the problem, ST often exceeds the bitrate by a significant margin,

indicating that many services deliver much more data than the useful encoding bitrate, with

overhead reaching up to 50% (Figure 3.6). This comes as a consequence of several possible

issues: i) use of less efficient encoding, such as Constant Bit Rate (CBR), as opposed

to Variable Bit Rate (VBR), ii) less efficient transport and packaging schemes, which in

cases of separate audio and video streams could lead to more overhead, iii) various chunk

duplication and replacement behaviors (discussed later in detail), etc. We find one or more

of these issues present in many CPs.

On the other hand, we can see that some services have minimal overhead and tend

to stream appropriate bitrates for small screens. It is encouraging to see that the service

designs conscientious of cellular environment and device context are starting to appear

among CPs. These observations raise a question of whether the surging demand for video

bandwidth could be significantly curbed by simply considering screen size of mobile de-

vices, and carefully selecting more efficient methods, thereby reducing the obvious resource

waste. The findings present a strong argument in favor of utility-based adaptation for more

31

Table 3.8: Service design aspects across CPs
Bitrate Number Chunk Chunk Estimated buffer

CP range of bitrate duration IAT in OS1 in OS2
(Kbps) levels (s) (s) (s) (s)

UGC1S - - - 4.7 35 35
UGC2 - - - 3.2 23 25
UGC3S - - - 3.5 25 25
UGC4S - - - - 22 22
UGC3 254-1291 4 3.3 0.7 - -
VOD1 - - - - 60 27
VOD2 130-2664 11 10,5 7.8 20 52
VOD3 266-4681 8 4 3.6 10 16
VOD4 268-2408 6 4 3.9 14 25
VOD5 232-3219 7 4 3.5 45 29
VOD6 194-5901 11 3,10 8 20 35
VOD7 264-3875 8 9 8.7 12 25
LIVE1 175-3404 7 8 7.4 10 12
LIVE2 171-3402 7 8 7.7 13 13
LIVE3 153-2744 15 6 5.6 16 7

efficient use of network resources.

Cell coverage: We observe the proportion of cells with traffic from each CP, out of

the total number of cells in our sample dataset. This offers an insight into the network

coverage across CPs. We observe that a small number of CPs can be observed in a majority

of radio cells, with the top top 5 CPs cumulatively covering 99% of cells. This suggests

that thoroughly understanding QoE for those CPs could provide a representative view of

video QoE across different parts of the entire network. Combined with the highly skewed

demand, it may be possible to use sampling to improve speed and reduce the processing cost

of video QoE data. However, it is still valuable to study other CPs, from the perspective of

interaction with most popular ones and general traffic, and because their relative importance

to users might be higher, as these are generally premium services.

3.4.3 Insights into video service design

We now consider the video service design parameters used by various CPs, focusing on

those that have high impact on QoE and efficient use of resources in cellular network (Ta-

32

243
518

864
1355

2487

Bitrate (Kbps)

0

20

40

60

80

100

%
 o

f
ti
m

e

Live3 OS1

Live3 OS2

(a) Bitrate distribution

0 1 2 3 4

switches per minute

0

0.2

0.4

0.6

0.8

1

C
D

F

Live3 OS1

Live3 OS2

Live1 OS1

Live1 OS2

(b) Number of bitrate switches

400
650

1000
1500

2000
2500

3200

Bitrate (Kbps)

0

20

40

60

80

100

%
 o

f
ti
m

e

VoD2 OS1

VoD2 OS2

(c) Bitrate distribution

0 1 2 3 4

switches per minute

0

0.2

0.4

0.6

0.8

1

C
D

F

VoD2 OS1

VoD2 OS2

VoD3 OS1

VoD3 OS2

(d) Number of bitrate switches

Figure 3.7: Variability of QoE metrics across OS for LIVE3 and VOD2

ble 3.8).

Bitrate range: We report detected Bitrate range across a Number of bitrate levels for

CPs in the dataset. While most CPs provide a similar lowest bitrate (near 200 Kbps), the

range drastically varies, with some CPs exceeding 4 Mbps at the high end. While some CPs

deliver all available bitrates over cellular networks, others do not deliver the highest bitrates

in cellular networks in any appreciable amount (e.g. LIVE1, LIVE2, VOD4, VOD5). We

confirm that this is the CP design having nothing to do with network performance by find-

ing that the highest requested bitrates across cells with low, medium, and high load, are

generally the same. This points to a form of internal control or cap on bitrates in cellular,

which we further confirm by manual inspection of mobile apps. Such controls are imple-

mented either using CP-tailored manifest files for cellular or application settings (e.g. by

settings in user preferences).

33

We further find it peculiar that there is no apparent rule followed by CPs on the number

and granularity of bitrates offered. For approximately similar range, there could be a large

difference in number of bitrates. One reason could be differences in streaming technologies

across devices for the same CP leading to different encoding requirements and CDN storage

management. Another reason could be differences in bitrate adaptation strategies where

more bitrates may achieve some design objective for the CPs, such as smoother visual

quality transitions during adaptation.

Chunk duration: Chunk duration in Table 3.8 shows the duration of a video chunk

obtained by manually inspecting the manifest file for some of the services. It appears that

there is a tendency where Live services use longer chunks than VoD services. These choices

might be the remnants of the legacy recommendations in HLS, however, it is not possible

to determine the true reason from network traffic. Longer chunks might, however, reduce

the flexibility and agility of the player to adapt to rapidly changing network conditions,

often found in cellular networks. We also compare these values to the median Chunk inter-

arrival time (IAT) observed on the network for each video service. The values are very

close to the actual chunk duration for the services. This indicates a viable possibility for

automatically detecting chunk durations from their inter-arrival times, thereby removing

the need to manually inspect these services.

Buffer levels: Another source of network overhead in video streaming can be inade-

quately sized video buffer. In HAS, players usually fill the video buffer and then enter into

the steady state phase where they maintain the buffer level by fetching another chunk once

there is space in the buffer. Downloading a large amount of video, especially during the

startup buffering phase, can lead to waste of network bandwidth in case of abandonment.

Past work has indicated that a large number of users tend to sample video content [72], or

do not watch the entire content [68].

To assess the buffering behavior at large, we use the following methodology, which is

intended to estimate average buffering across sessions, as opposed to precisely determine

34

the maximum buffer size in each player. For each CP, we estimate and compare the aver-

age amount of content (in seconds) buffered in the first minute of the video session. The

buffered content (B̂startup) is estimated by dividing the amount of data downloaded in the

first minute (Dstartup) of the video session by the average bitrate (b̄r) of the entire session.

B̂startup =
Dstartup

b̄r
(3.6)

In case of CPs for which we do not have the bitrate, we use ST as an estimate of the

bitrate. The median of B̂startup across all sessions of a CP is calculated and shown as

Estimated buffer (Table 3.8) for OS1 and OS2. For encrypted services, we are not able to

detect the OS type and hence the same values are shown for both OS. We exclude UGC3

from this analysis as we found that this CP pre-loads multiple videos in background before

users specifically select to play a title.

For the same CP, we find differences in the video buffer content across OS’s. This

indicates different design choices across OS’s. The video buffer for Live content is smaller

than for VoD and UGC, which is to some degree expected, as Live services are streaming

content generated in real time and it is not desirable to have a long lag to real time. For

most CPs, the buffer is less than 30s. However, we also find larger buffers for some CPs

(e.g., 60s for VOD1 on OS1), indicating non-trivial network overhead due to abandonment

in these CPs. This points to the need for exploring smarter strategies to determine the

buffer size, especially in the beginning of the video playback, in order to minimize network

overhead due to users sampling videos.

Bitrate usage and switching variability across OS: Different buffering strategies by

OS prompt a closer examination whether other design aspects differ across OS-s, result-

ing in different QoE. We look deeper into variability in bitrates and switching using two

example services, LIVE3 and VOD2.

Figure 3.7a shows the distribution of bitrates played by LIVE3 on OS1 and OS2. Nearly

70% of LIVE3 content on OS2 is streamed at an average bitrate of 2,487 Kbps, whereas

35

Table 3.9: Network overhead due to chunk replacement
% sessions mean CR % sessions CR overhead

CP w/ non-zero overhead w/ ≥ 20% CR (% data)
CR overhead (% bytes) overhead

UGC3 79.99% 13.68% 26.48% 9.14%
LIVE1 73.29% 8.68% 13.42% 5.42%
LIVE2 63.89% 7.75% 12.79% 4.95%
VOD5 60.52% 6.38% 12.66% 7.80%
LIVE3 60.07% 6.55% 9.30% 3.58%
VOD6 41.14% 8.37% 17.30% 4.62%
VOD7 38.13% 5.46% 10.06% 5.11%
VOD2 25.93% 4.03% 7.65% 4.54%
VOD3 20.07% 2.75% 4.79% 4.75%
VOD4 3.02% 0.31% 0.55% 1.30%

84% of the content on OS1 is streamed at an average bitrate of 864 Kbps. This suggests

that sessions on OS2 may experience higher video quality than OS12. However, LIVE3

sessions on OS2 have a higher number of bitrate switches per minute as compared to OS1.

This seems to suggest that higher bitrate switching on OS2 could be because trying to

stream video at higher bitrate leads to instability as available bandwidth varies. We also

plot the bitrate switches per minute for LIVE1 in Figure 3.7b to show a video service in

which the switches per minute are similar on both OS platforms.

Interestingly, we observe a contrasting example in the case of VOD2, where there is

similar variation in streamed bitrates across the two OS, but streaming at higher bitrate

does not lead to higher bitrate switches. As shown in Figure 3.7c, VOD2 sessions on

OS2 are streamed at higher bitrate than sessions on OS1. However, unlike LIVE3, the

bitrate switches per minute for VOD2 sessions are lower on OS2 as compared to OS1 (see

Figure 3.7d), despite streaming at a higher bitrate on OS2.

These examples suggest that it is not necessarily the network conditions alone, but

also player-specific design choices such as default bitrate levels and bitrate adaptation

algorithm that significantly impact the QoE of a video session in practice.

Chunk replacement (CR) overhead: We now characterize Chunk replacement over-
2Video quality is also impacted by the encoding technology used. Some encoding technologies are more

efficient than others and can provide higher quality at the same bitrate level

36

head in different services. Note that chunk replacement can happen due to several reasons,

including (i) player trying to improve user experience when network conditions allow, (ii)

recovering from various errors or overly aggressive but aborted attempts for high-quality

chunks, (iii) ensuring consistent transition between bitrates (frame alignment), and possibly

others. This behavior has been observed in previous studies [33], but has not been quan-

tified at large scale. Note that replaced, or otherwise duplicated or repeated chunks, are

important from the perspective of both the MNO (represent wasted network resources) and

end user (represent waste of a limited data plan). We define CR overhead as the percentage

of data in a video session transmitted due to replaced chunks.

Table 3.9 shows the CR overhead for video services in which we could read the chunk

identifier and hence detect chunk replacement. A large number of sessions, as high as 80%

for UGC3 have non-zero chunk replacement overhead. A non-zero chunk replacement

overhead can still be explained by the fact that video players typically start by downloading

lower quality chunks to quickly fill up the video buffer and replace them later with high

quality chunks, given sufficient network bandwidth. However, a significant number of

sessions (26% for UGC3) have chunk replacement overhead greater than 20% which is

non-trivial. The overall network overhead due to chunk replacement is quite high (up to

9% for UGC3). This points to the need of looking into optimizing the trade-off between

improved user experience and network overhead.

3.4.4 Impact of mobility and demand

The final example use case shows the impact of two important factors on video QoE,

namely mobility and per-cell demand, as both are highly relevant to cellular networks.

Impact of user mobility: In a cellular network, user mobility often leads to hand-offs

between cells and eNodeBs. While the duration of the hand-off itself is short, the reduced

radio signal strength at the edges of a cell can cause degradation in the video QoE. We

study the impact of user mobility on video session throughput (ST), which is most directly

37

Table 3.10: Impact of mobility and demand on session throughput for a subset of network
locations

Impact of mobility Impact of demand
CP ∆mobility % mobile sessions ∆higher

OS1 OS2 OS1 OS2 OS1 OS2
UGC1S -6.5% -6.5% 13.7% 13.7% -27.8% -27.8%
UGC2 2.6% -0.6% 7.4% 5.7% -16.2% -23.2%
UGC3S -1.9% -1.9% 7.8% 7.8% -24.1% -24.1%
UGC4S 13.8% 13.8% 4.4% 4.4% -43.6% -43.6%
UGC3 -1.4% -1.4% 6.6% 6.6% -19.7% -19.7%
VOD1 -7.6% -2.2% 11.3% 14.4% -7.2% -2.9%
VOD2 -1.2% 5% 10.8% 15.5% -32.6% -24.6%
VOD3 -5.6% -5.2% 13.6% 17.1% -41.2% -35.3%
VOD4 -1.9% -0.2% 12.3% 17% -6.2% -3.5%
VOD5 0.4% -1.6% 13.7% 17.6% -1.4% -3.1%
VOD6 -5.9% -6.1% 11.7% 18.6% -19.6% -17.8%
VOD7 -1% -2% 9% 15.3% -2.5% -22.3%
LIVE1 0.2% 0% 10.9% 20.5% -2.4% -3.2%
LIVE2 -0.3% -0.6% 14.4% 20.3% -9.2% -10.4%
LIVE3 0.2% -13.8% 10.9% 16.2% -12.4% -25.8%

affected by varying radio signal.

We infer mobility in a video session by observing the number of eNodeBs in the session.

We label a session mobile if there were at least three different eNodeBs encountered during

that session. We use three eNodeBs as an indicator of mobility instead of two since a

stationary UE could be handed-off to a cell in an adjecent eNodeB due to variation in

received signal strength. We label the sessions with a single eNodeB as stationary, and

ignore sessions with two eNodeBs in our analysis. We then calculate the relative change in

median session throughput of stationary and mobile video sessions, referred to as ∆mobility,

for every CP:

∆mobility =
ŜTmobile − ŜT stationary

ŜT stationary

× 100% (3.7)

Impact of mobility is shown in Table 3.10 as ∆mobility with percentage of mobile sessions

for the CPs on the two OS platforms. The key high level observation is that the average

values of ∆mobility are low, indicating that user mobility does not significantly impact video

QoE. The reduction in ST predominantly in the range of up to 7% should not impact QoE

38

as the distance between adjacent bitrates is typically by the factor of 1.5 to 2. However, the

non-negligible percentage of mobile sessions (up to 20%) might warrant closer inspection

to determine precise impact. The relatively low impact (and in some cases improvement)

in ST could be attributed to a combination of potential reasons: (i) the video buffer can

compensate for the temporary degradation in throughput during hand-off, and (ii) mobile

devices are outdoors or in vehicles where radio signal typically has better quality than

indoors.

Impact of higher video demand: The last-mile cellular radio link is one of the most

challenging network environments, with frequent fluctuation in signal strength, quality and

available bandwidth. Therefore, contention for resources is expected, and we examine

its impact on video QoE, again considering change in ST ia subset of cells. We use the

following heuristic to infer higher video demand in a cell. For every cell, we use 15-

minute time bins and label the video demand in the cell as either higher or lower. A cell is

considered under higher demand in the current time bin, if:

• there are at least 10 video sessions during that time bin, and

• at least 50% of the video sessions have ST less than the median ST for the corre-

sponding CP

We compute the relative change in median session throughput of sessions under higher

demand cells (ŜT higher) and sessions under lower demand cells (ŜT lower).

∆higher =
ŜT higher − ŜT lower

ŜT lower

× 100% (3.8)

This heuristic allows us to consider relative impact of video sessions on each other,

and alleviates the need to consider busy hours, radio characteristics, or resource utilization.

However, the total load of those cells is not driven by detected video streams, but overall

traffic, Table 3.10 shows the Impact of demand as ∆higher values for different CPs. Most

of the CPs are significantly impacted by higher load with ST dropping by as high as 40%

39

for UGC4S, but generally in the 20%-30% range. We also observe that the impact is

different across CPs. This can be attributed to the difference in encoding bitrates, adaptation

algorithms, presence of bitrate control, and known instability issues when adaptive players

compete [73]. There is a strong indication that CPs that normally limit the bitrates in

cellular such as VOD5 and LIVE1 are not highly impacted by increased demand.

3.5 Summary

In this chapter, we presented MIMIC, a methodology to estimate unencrpyted video QoE

metrics from passive network measurements. The results from large-scale validation show

that MIMIC can provide a very accurate view of key QoE metrics, namely average bitrate

and re-buffering ratio, to a network operator. We also present a measurement study using

data collected from deployment of MIMIC in a major U.S. MNO. The measurement study

analyzed a variety of content providers on multiple aspects including, relative usage and

demand, video service design and its impact on QoE and network usage, and impact of

network factors on QoE.

One major limitation of MIMIC is that it is useful mainly for unencrypted video. In

the following chapters, we address this limitation by developing inference approaches that

work on encrypted traffic. In doing so, we present two complimentary inference approaches

with one approach focusing on providing fine-granular and accurate QoE estimation and

the other approach focusing on scalability by considering coarse-granular and light-weight

network data.

40

CHAPTER 4

EMIMIC: QOE INFERENCE FOR ENCRYPTED VIDEO

4.1 Introduction

In the last chapter, we presented a highly accurate and practical QoE inference approach for

HAS video, called MIMIC. MIMIC relied on extracting information from the application

layer, i.e., Uniform Resource Identifiers (URIs) and other HTTP headers. With increasing

number of video service providers using end-to-end encryption, MIMIC loses visibility

into the key pieces of information needed for QoE inference. We address this challenge

in this chapter and present a QoE inference approach, called eMIMIC, for encrypted HAS

video. eMIMIC works by reconstructing the chunk-based delivery sequence of a video

session from packet traces of encrypted traffic. This reconstructed sequence is then used to

model a video session based on high-level HAS properties, which are generally consistent

across services. From the accurately built model, eMIMIC can estimate average bitrate,

re-buffering ratio, bitrate switches and startup time, the key objective metrics that influence

HAS QoE [74]. The key objective of this chapter is to demonstrate feasibility and accuracy

of the cross-layer approach to infer service-level QoE metrics from network-level passive

measurements.

To facilitate the QoE inference from encrypted video sessions, we develop an experi-

mental framework with automated streaming and collection of network traces and ground

truth of video sessions, as well as QoE metric estimation. We use this framework to do

an extensive evaluation of eMIMIC with three popular commercial video streaming ser-

vices out of which two are video on demand (VoD) and one is a Live streaming service.

Furthermore, we replicate a recently proposed machine learning-based QoE estimation ap-

proach, hereon referred to as ML16 [39], by fully implementing and applying it to the same

41

two video services. This helps in understanding the differences in performance and accu-

racy between the two QoE estimation approaches, so that they can be further evolved and

improved. Finally, we evaluate eMIMIC in estimating real-time QoE metrics.

Our contributions are summarized as follows:

• We present eMIMIC, a methodology that uses passive measurements at network-

layer to estimate service-level video QoE metrics of the encrypted video sessions.

• We develop an experimental framework for automated streaming and collection of

network traces and ground truth QoE metrics of video sessions of three popular

video streaming service providers. Using this framework under realistic network

conditions, we show that eMIMIC estimates re-buffering ratio within one percentage

point of ground truth for up to 75% of video sessions in VoD (80% in Live), and

average bitrate with error under 100 kbps for up to 80% (70% in Live) of sessions.

• We compare eMIMIC with ML16 [39] and show that for categorical prediction (low,

medium and high) of QoE metrics, eMIMIC has 2.8%-3.2% higher accuracy in clas-

sifying average bitrate and 9.8%-24.8% higher accuracy in classifying re-buffering

ratio, without requiring training on any ground truth QoE metrics. We also find that

ML16 does not generalize across video services.

• We show that eMIMIC can estimate real-time QoE metrics with at least 89.6% accu-

racy in identifying buffer occupancy state and at least 85.7% accuracy in identifying

average bitrate class of recently downloaded chunks.

The remainder of the chapter is organized as follows. We begin by describing different

categories of QoE inference approaches and design requirements of an ideal approach in

Section 4.2. Section 4.3 presents our QoE inference methodology, followed by its evalu-

ation in Section 4.4. Section 4.5 discusses some of the outstanding issues in video QoE

inference from passive network measurements, while Section 4.6 concludes the chapter.

42

Video session
identification

Session reconstruction
using knowledge of
streaming protocol

QoE inference
using session

modeling

Network
traffic

(a) Overview of SM-based approach

Feature selection

Ground Truth
QoE

Training

Video session
identification

Feature
extraction

Offline
training

QoE
estimation

QoE
prediction

model

Network
traffic

Network
traffic

(b) Overview of ML-based approach

Figure 4.1: Overview of QoE inference approaches

4.2 Background and Design Requirements

4.2.1 QoE inference methods

Existing video QoE inference approaches using passive network measurements can be

broadly classified into two categories; Session Modeling-based (SM-based) and Machine

Learning-based (ML-based).

SM-based approach: This approach infers QoE by modeling a video session using the

properties of the underlying streaming protocol (Figure 4.1a). For unencrypted HAS video,

MIMIC estimates the key video QoE metrics by modeling a video session as a sequence

of chunks whose information is directly extracted from HTTP requests logged by a web

proxy [46].

ML-based approach: This approach infers QoE by correlating the network observ-

able metrics such as packet delay, loss and throughput with the video QoE metrics using

machine learning algorithms. Figure 4.1b shows a high-level overview of this approach.

Implemented as a supervised ML-based method, it has an offline phase to build a QoE

prediction model. This phase consists of selecting useful features to be extracted from net-

work traffic and labeling them with corresponding ground truth, using which the algorithm

43

learns the relationship between features and ground truth. Variants of this approach have

been proposed that differ either in the feature selection or the training methodology (details

in Chapter 2)

4.2.2 Design Requirements

We motivate eMIMIC by describing the design requirements of an ideal QoE inference

approach for a network operator.

• Works on encrypted traffic: Given an increased use of end-to-end encryption in

HAS, this is a critical requirement for operators. Clearly, ML-based approaches

will work if the required features can be collected from encrypted traffic. However,

existing SM-based approaches that rely on visibility of HTTP transactions will not.

• Minimally dependent on QoE ground truth: An ideal QoE estimation method

should not introduce extensive overhead in incorporating ground truth. The disad-

vantages of ML-based approach include a requirement to collect the extensive ground

truth measurement under a wide variety of network conditions, followed by training

and validation of the learned model. Recent works propose methods to obtain ground

truth through player instrumentation [38, 41], logging unencrypted versions of the

traffic [39] or using a trusted proxy [40]. Unfortunately, there is no guarantee that

any video service will support these approaches. On the other hand, an SM-based

approach needs no training and minimal ground truth for validation. It may only

need a few design parameters that can be easily obtained with a handful of test runs,

as we demonstrate with eMIMIC.

• Generalizes across different services: To understand the QoE of many video ser-

vices in its network, operators would prefer an approach that generalizes well. Given

that content providers differ in system design and player implementations, ML-based

models learned for one service do not necessarily generalize across different services,

44

as we show in Section 4.4.5. An SM-based approach, however, does not significantly

suffer from this limitation since the underlying HAS properties do not change much

across services.

• Provides quantitative measures: For active QoE-based traffic management, such as

QoE-based resource allocation [75, 56], operators may need quantitative measures of

QoE metrics. ML-based approaches typically provide categorical estimates of QoE

with two (good or bad) or three (low, medium and high) categories whereas an SM-

based approach estimates quantitative values of QoE metrics.

Takeaway: It is clear that an SM-based QoE inference approach that also works for

encrypted traffic would be preferable for operators, as it would satisfy all design require-

ments. Therefore, we design eMIMIC, an SM-based approach that works on encrypted

traffic.

4.3 Methodology

This section describes the HAS chunked delivery principles used for reconstructing video

sessions using eMIMIC, the challenges and solutions in extracting chunk-level details of

the session, and how QoE metrics are inferred.

4.3.1 Chunked video delivery in HAS

The network traffic corresponding to the media chunks in a HAS video session consists of

a sequence of HTTP GET requests and responses. When the client requests the video, the

player first downloads the manifest file by sending an HTTP GET request to the server. The

player then sends an HTTP GET request for the first chunk. Once the video chunk has been

fully downloaded, the player sends the request for the next chunk, whose bitrate is decided

based on the past chunk throughput and/or current buffer occupancy [19], and this process

repeats (Figure 4.2). The video session at the client can be modeled using this strong serial

45

Client

Server

HTTP GET

Network

Content
transmission time

HTTP Response

HTTP GET

HTTP Response

Figure 4.2: Data flow of chunk requests and responses

request-response pattern corresponding to chunk downloads observed on the network.

4.3.2 Challenges in designing eMIMIC

HTTP request reconstruction

An SM-based approach abstracts an HAS video session as a sequence of video chunks

appearing as HTTP GET requests on the network. For unencrypted network traffic, these

requests can be logged by a passive monitor or a transparent web proxy. However, this

does not work when Transport Layer Security (TLS) is used, as is common today, where

HTTP headers are encrypted. We note that parsing limited clear-text TLS headers is not a

feasible approach to distinguish individual chunks, since multiple, or even all, chunks, can

be requested within one TLS transaction.

Idea: We explore if TCP headers can be used for HTTP-level session reconstruction.

Figure 4.2 shows the flow of video data for a sequence of HTTP requests and responses on

a single TCP connection. The data flow in an HTTP transaction has an important traffic di-

rectionality property, i.e., request flows from client to server, followed by response flowing

in the opposite direction. This directionality and sequence in the data flow of HTTP traffic

can be used to identify the boundaries of HTTP request-response pairs. This methodology

has been used to identify the size of web objects in HTTPS traffic [76].

It is important to note that this approach would not work correctly if the HTTP re-

quests were pipelined. However, in practice, video players typically do not pipeline HTTP

requests. This is because pipelining may cause self-contention for bandwidth among the

46

chunks, potentially causing head-of-line blocking, as well as diminishing the ability of the

player to quickly adapt to changing network conditions.

Solution: For a TCP-flow f corresponding to video session V, we log the source IP

address of every packet in the flow. A packet with non-zero payload size is tagged as

an HTTP request if the source IP address matches the client IP address. The subsequent

non-zero payload size packets in f with the server IP address as the source are tagged

as the HTTP response. The end of the response is determined by one of the following

conditions: i) a new packet from the client on the same flow indicating a new HTTP request

or ii) an inactivity period of greater than some pre-defined threshold (5 seconds in our

experiments) or iii) the closing of the TCP connection indicated by TCP RST or FIN flag.

In addition, TCP retransmissions are logged. The size of the response is estimated by

adding the payload sizes of all the packets tagged as response and adjusted to account for

re-transmissions. The start time and the end time of an HTTP transaction are obtained

from the timestamp of the first packet tagged as a request and the last packet tagged in the

corresponding response, respectively. TCP ACKs with no payload are ignored.

Applying this approach to all TCP flows in a video session, we can reconstruct HTTP

transactions, along with the size (Si) and download start time (STi) and end time (ETi) for

every chunk i. This approach can also be applied to UDP-based transport such as QUIC,

assuming the same request-response sequence, but without accounting for retransmissions

or using TCP flags for response termination.

Media type classification

The reconstructed HTTP transactions in the above methodology will include multiple me-

dia types, namely video, audio, and metadata, such as the manifest file. Some services

separate audio and video content which means that they appear as separate transactions

in the network traffic. To model a session, it is important to identify video (and audio, if

separate) chunks and filter out the metadata.

47

Metadata Audio Video

Content type

0

200

400

600

S
iz

e
 (

K
B

)

(a) Distribution of HTTP transaction size for
different media types

400
650

1000
1500

2000
3200

6000

Average bitrate (Kbps)

0

1000

2000

3000

4000

C
h

u
n

k
 s

iz
e

 (
K

B
)

(b) Chunk size vs. average bitrate

Figure 4.3: Chunk and bitrate characterization for VOD2.

Idea: We use the estimated response sizes obtained from the HTTP reconstruction step

to identify the media type. The size of metadata is usually smaller than audio or video as

it consists of text files. Audio chunks are encoded at Constant Bit Rate (CBR) with one or

two bitrates levels. Thus, they can be identified based on the size and its consistency.

Figure 4.3a illustrates this by showing the distribution of response sizes of video, audio

and metadata obtained from the HTTP logs of 1005 VOD2 sessions collected by a trusted

proxy (see Section 4.4 for details). The media type is identified from the request URI of

the HTTP logs. Metadata HTTP logs are smaller than 30 KB and most of the audio HTTP

logs are around 42 KB. However, we observe a small proportion of video chunks that are

similar in size to audio chunks. To reduce the probability of misclassifying these as audio,

we use the insight that audio and video playback is synchronized, and hence the amount of

audio and video downloaded and stored in the buffer should be similar in terms of duration.

Solution: We first determine a minimum size threshold (Smin) for identifying HTTP

transactions corresponding to the metadata. This is based on the minimum bitrate levels

of video and audio obtained by inspecting manifest files of several videos. For services

that separate audio and video, the expected response size of audio chunks is calculated

based on the audio bitrates used. A range [Amin, Amax] is determined to identify an HTTP

transaction corresponding to the audio chunks. We use a range instead of a single value

48

for two reasons: i) there exist small variations in size of the audio chunks despite being

CBR encoded; ii) the estimated size of reconstructed HTTP transaction may have errors.

Furthermore, to avoid misclassifying a video chunk with actual size in the expected audio

size range, we track the audio and video content downloaded in seconds. We fix a threshold

Tahead such that the audio content downloaded so far is no more than Tahead seconds of the

downloaded video content.

Thus, a reconstructed transaction is tagged as metadata if its size is less than Smin; as

audio if its size is in the range [Amin, Amax] and the audio content downloaded is at most

Tahead seconds more than video; and as video otherwise.

Estimating bitrate of video chunks

After identifying the video chunks in a session, we need to estimate their bitrate. This is

used to calculate average bitrate and bitrate switches.

Idea: One way to estimate chunk bitrate is to use its estimated size. More specifically,

we can divide the chunk size by its duration and assign it to the nearest bitrate in the bitrate

set of the video service. However, video services typically use Variable Bit Rate (VBR)

encoding, which means that the chunk size can deviate, sometimes significantly, from the

average bitrates based on the underlying video scene complexity. Figure 4.3b illustrates

this by showing the distribution of chunk sizes (from HTTP logs) with their average bitrate

levels (from request URI) for the 1005 VOD2 video sessions. The majority of chunk sizes

are a close match to the average bitrates. However, there are cases where the chunk sizes

overlap between two consecutive bitrate levels. Thus, using size alone can lead to errors in

bitrate estimation.

To overcome this problem, we use an additional insight that players usually switch bi-

trate when the network bandwidth changes. Thus, a bitrate switch would be most likely

accompanied by a change in past chunk throughput that is in the same direction as the

bitrate switch. Thus, using both chunk size and observed throughput of previously down-

49

loaded chunks can improve the accuracy of bitrate estimation of a chunk.

Solution: We first estimate the bitrate of a chunk i using its size blue(Si). If the esti-

mated bitrate (Q̂i) is the same as the previous chunk’s estimated bitrate (Q̂i−1), we keep this

estimate and move to next chunk. However, if there is a switch in the estimate, we compare

the download throughput observed for chunk i − 1 and i − 2, say Ti−1 and Ti−2. We ap-

prove a change in bitrate if |Ti−1−Ti−2| ≥ |Q̂i− Q̂i−1| (a change in network throughput is

detected) and (Ti−1 − Ti−2)× (Q̂i − Q̂i−1) > 0 (throughput changed in the same direction

as bitrate switch). In case of a bitrate up-switch according to chunk size, we also check if

Ti−1 is greater than Q̂i. For the first two chunks, we just use the chunk size to estimate its

bitrate as we do not have enough information about chunk throughput.

4.3.3 QoE metrics inference

Using the above approach for a session V , we get a sequence of video chunks along with

estimates of the download start time (STi), download end time (ETi), and bitrate (Q̂i) for

every chunk i. Let N denote the number of chunks observed in the session and L be the

chunk duration in seconds. QoE metrics are estimated from this information as follows:

Average bitrate: Average bitrate is estimated by taking an average of the estimated

bitrates of chunks in the session.

B̂R =

∑N
i=1 Q̂i

N
(4.1)

Re-buffering ratio: Intuitively, re-buffering time is estimated by keeping an account

of video chunks that have been downloaded and the part of the video that should have

been played so far. Let Bi denote the bluevideo buffer occupancy in seconds just before

chunk i was downloaded. The re-buffering time between two consecutive chunk download

times, ETi and ETi−1, is represented by bi. Let j denote the index of chunk after which

the playback resumed since last re-buffering event, and CTS denote the minimum number

50

of chunks required in the buffer to start playback. In the beginning, j = CTS and bk = 0

for k ≤ CTS as the waiting time before video startup is considered as startup time by

definition. For each subsequent chunk i, Bi is calculated as follows:

Bi = max((i− 1− j + CTS)× L− (ETi − ETj), 0) (4.2)

Here, (i− 1− j + CTS)× L represents the video content that has been downloaded, and

ETi − ETj represents the total video that should have been played since the playback be-

gan last time. If Bi > 0, then bi = 0 and we move to next chunk. Otherwise, re-buffering

occured and is calculated as follows:

bi = (ETi − ETj)− (i− 1− j + CTS)× L (4.3)

In this case, video playback would begin after downloading CTS chunks. Thus, value

of j is set to i + CTS − 1 and parameter bk for chunk k ∈ {i + 1, i + CTS − 1} is set

as ETk − ETk−1. The remaining bi values can be obtained in a similar way. Re-buffering

ratio can be calculated as follows:

R̂R =

∑N
k=1 bk

N × L+
∑N

k=1 bk
(4.4)

Bitrate switches: The number of bitrate switches are calculated by counting the total

number of times the estimated chunk bitrate changed between consecutive chunks. We

normalize this number by bluethe total video streamed in minutes and estimate bitrate

Switches Per Minute (SPM).

ˆSPM =

∑N
i=2 I(Q̂i 6= Q̂i−1)× 60

N × L
(4.5)

Here I is the indicator function which equals one if the consecutive chunks do not have

same bitrate, zero otherwise.

51

Startup time: We use the time taken to download minimum number of chunks to begin

playback, denoted by TTNC as a proxy for startup time. Note that normally startup time

is defined as the time taken to play the video from the time user opened the video and

constitues of following delays:

ST = Tloading + TTNC + Tdecode (4.6)

Here, Tloading is the time to prepare the video, including delays like rights management.

Tdecode is time to decode and render the downloaded chunks on screen. Tloading and Tdecode

are mostly application induced, while TTNC depends on the network. An operator would

like to monitor only the network contribution (TTNC) to startup time since improving

the network does not directly impact the other two delays. Therefore, we use TTNC as a

proxy for startup time.

4.4 Evaluation

We first evaluate eMIMIC over two popular VoD services. More specifically, we consider

the following in our evaluation: i) accuracy of HTTP request reconstruction, ii) accuracy

of media type classification, and iii) accuracy of QoE metrics estimation. This is followed

by a comparison of eMIMIC with a recently proposed ML-based approach (ML16). We

then validate eMIMIC over a Live streaming service, and finally evaluate the accuracy of

eMIMIC in estimating the QoE metrics in real-time. We begin by describing our experi-

mental setup.

4.4.1 Experimental Setup

We build an automated browser-based framework that streams video sessions of a video

service in a web browser under emulated network conditions and collects packet traces,

HTTP traces and ground truth video QoE metrics (see Figure 4.4). We use Java implemen-

52

Selenium: Automated
video streaming

Proxy: Har trace
collection

Tshark: Packet trace
collection

TC: Bandwidth
throttling

video url

throughput
trace

eMIMIC
Session

reconstruction
accuracy

QoE estimation
accuracy

ground truth
QoE metrics

ground truth
HTTP transactions

Figure 4.4: Experiment framework and evaluation methodology

tation of a popular browser automation framework, known as Selenium1. The HTTP logs

of encrypted sessions are collected using a trusted proxy, BrowserMob proxy2, that is easy

to integrate with Selenium. We use TShark3 for capturing packet-level network traffic and

Linux Traffic Control (tc) to emulate different network conditions.

Video sessions: We use two popular premium video services that stream Video on De-

mand (VoD). VOD1 streams primarily full-length movies, with some TV show selection,

offering content in many countries world-wide. VOD2 is a U.S. VoD service offering pri-

marily popular TV shows, including also full-length movies. Both services are available on

most mobile and desktop devices, with up to 1080p video resolutions. Evaluating with two

different video services helps in understanding the impact of differences in service design

parameters on the accuracy of eMIMIC.

We collected URIs of 100 videos each from both services, covering different genres

such as animated videos, talk shows and action movies. The intent was to capture a diver-

sity of content complexities and encoding bitrates. The duration of each session is based

on a distribution obtained from the video network dataset collected in [46] and is shown in

Figure 4.5a. The distribution ranges from 2 to 20 minutes with a mean of 5 minutes.

Bandwidth traces: We use the following throughput traces to evaluate eMIMIC under

1www.seleniumhq.org
2bmp.lightbody.net
3www.wireshark.org/docs/man-pages/tshark.html

53

2-5 5-10 >= 10

Session duration (minutes)

 0%

20%

40%

60%

80%

%
 o

f
s
e

s
s
io

n
s

(a) Session duration distribution

0 5 10 15 20 25

Average bandwidth (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F

3G

FCC

LTE

(b) CDF of average bandwidth of three
dataset

Figure 4.5: Bandwidth traces and session duration

realistic network conditions:

• Norway 3G dataset [77] consists of per-second throughput measurements from mo-

bile devices streaming videos while connected to a 3G/HSDPA network.

• Belgium LTE dataset [78] is similar to Norway 3G but the network is LTE, resulting

in higher throughput.

• FCC dataset [79] consists of per-5 seconds throughput measurements of broadband

networks. We sample traces from this dataset with the same end-points and an aver-

age throughput under 3 Mbps to induce bitrate switching and make it more challeng-

ing to estimate QoE metrics.

Figure 4.5b shows the CDF of average bandwidth of these traces.

Ground truth QoE metrics: These metrics in video streaming are available within

the video player itself. We monitor the player buffer using the JavaScript API exposed by

the Video element of the HTML5 MSE-based video players of these services. We found

two functions, buffered and played, that return the range of video content that has

been buffered and played, respectively. Calling them together enables us to infer the size

of buffer. However, it still does not give any information about other QoE metrics such as

video bitrate.

54

Table 4.1: Design parameters of VOD1 and VOD2

Design parameter Audio Video
VOD1 VOD2 VOD1 VOD2

Bitrate levels 2 1 10 7
Bitrate range (kbps) 64 - 96 64 100 - 4000 400 - 6000
Chunk duration (s) 16 5 4 5

Chunks to start 1 1 2 1

We then explore the APIs available in the minified JavaScript source of the video play-

ers of the two video services. We found a function for VOD1, which when called returns

the size of the buffered content in seconds and bytes, bitrate of the currently playing video

and a boolean variable indicating if the playback is currently stalled. In our testing frame-

work, we insert per-second calls to this function. Similarly, for VOD2 we found a function

which closes the video playback and returns a session-summary of all the video QoE met-

rics, including average bitrate, re-buffering duration, number of bitrate switches and time

taken to download the first chunk (TT1C). We insert a call to this function in our experi-

ments at the end of the video session. Thus, by hooking into the functions of these players,

we can obtain per-second ground truth QoE metrics for VOD1 and per-session ground truth

QoE metrics for VOD2.

Obtaining video service design parameters: eMIMIC needs to know a few design

parameters of a video service. The chunk duration is estimated by playing several video

sessions completely and determining the number of chunks downloaded from HTTP logs.

Video play time divided by the number of chunks gives average chunk duration. The bitrate

levels for VOD2 are obtained by inspecting the manifest of few videos. VOD1 uses dif-

ferent bitrate levels across videos. As getting per-video bitrate levels is infeasible, we use

approximate levels obtained by averaging bitrate levels observed for multiple videos. The

number of chunks required to start (CTS) playing is obtained by inspecting the manifest

for VOD2. For VOD1, we streamed several video sessions and collected the ground truth

QoE metrics using the methodology described above. Using these metrics, we found that

CTS varied but was always greater than 2, which we assume as CTS for VOD1. Table 4.1

55

 0% 20% 40% 60% 80% 100%

Re-buffering ratio

0

0.2

0.4

0.6

0.8

1

C
D

F

VoD1

VoD2

(a) Ground truth re-buffering ratio

0 2000 4000 6000

Average bitrate (Kbps)

0

0.2

0.4

0.6

0.8

1

C
D

F

VoD1

VoD2

(b) Ground truth average bitrate

0 5 10 15 20

SPM

0

0.2

0.4

0.6

0.8

1

C
D

F

VoD1

VoD2

(c) Ground truth number of bitrate switches
per minute

0 5 10 15 20

Time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

VoD1 TT1C

VoD2 TT2C

(d) Ground truth TTNC

Figure 4.6: CDF of ground truth QoE metrics

summarizes the values of these design parameters. We note that these design parameters

are prone to change for a service which can impact eMIMIC performance. In future, we

plan to devise methods to automatically detect these changes.

Based on the obtained (or inferred, if needed) design parameters, we set Smin to 35 KB

and Tahead to 40s for both services. We use two ranges i.e., [126 KB, 136 KB] and [190 KB,

200 KB], and a single range i.e., [40 KB, 50 KB] for identifying audio chunks in VOD1

and VOD2, respectively. We currently infer the video service design parameters and the

corresponding eMIMIC parameters manually. Our future work will explore methods to

automate this process so that any changes in the video design parameters can be detected

and accommodated automatically.

Experiment: We use our testbed to stream video sessions from both VOD1 and VOD2

in Firefox. The bandwidth conditions in a session are emulated based on a trace selected

56

-10% -5% 0% 5% 10%

% of extra HTTP transactions

0

0.2

0.4

0.6

0.8

1

C
D

F

VoD1

VoD2

(a) CDF of % of extra requests in the recon-
struction

0% 1% 2% 3% 4% 5%

Median % error

0

0.2

0.4

0.6

0.8

1

C
D

F

VoD1

VoD2

(b) CDF of median % error in estimated size
of requests

Figure 4.7: HTTP request reconstruction accuracy

randomly from the set of bandwidth traces. The packet traces, HTTP logs, and ground truth

QoE metrics collected using the testbed are stored after the end of the session. In total, we

ran 985 sessions for VOD1 and 1005 sessions for VOD2. Figure 4.6 shows the CDF of

different ground truth QoE metrics for these sessions.

4.4.2 Session reconstruction accuracy

We first evaluate the accuracy of eMIMIC in reconstructing HTTP transactions corre-

sponding to audio and video in a session. We filter out transactions less than Smin from

the reconstructed HTTP transactions. We then match the remaining transactions with the

ground truth HTTP logs corresponding to audio and video collected using trusted proxy.

The matching process works as follows: for every reconstructed HTTP transaction of size

greater than Smin, we search for an HTTP log in the corresponding proxy logs which has

a start time within 500 milliseconds of the start time of the reconstructed transaction. If a

matching log is found, we consider it as true transaction and remove the ground truth HTTP

log. If there are multiple matches found, we use the one closest in size to the reconstructed

log’s size. After this matching process is finished, the unmatched reconstructed HTTP

transactions are tagged as extra, and the unmatched ground truth HTTP logs are tagged as

missing transactions.

57

Table 4.2: Media classification confusion matrix for VOD1

(a) With A/V buffer tracking

actual predicted
audio video

audio 99.2% 0.8%
video 1.1% 98.9%

(b) Without A/V buffer tracking

actual predicted
audio video

audio 99.3% 0.7%
video 2.4% 97.6%

Figure 4.7a shows a CDF of percentage of extra transactions (negative value denotes

missing transactions) in a session. We find that the accuracy of reconstruction is high with

80% of sessions from VOD2 reconstructed with 100% accuracy. The lower accuracy of

reconstruction for VOD1 is because few metadata transactions in VOD1 are comparable

in size to video and get misclassified as video.

Figure 4.7b shows the CDF of median percentage error in the estimated size of recon-

structed transactions. Note that it is important to accurately estimate the size of transaction

as it is used to identify video chunks and their bitrates. The median error is within 1% of the

actual size of HTTP transaction for both VOD1 and VOD2 which suggests that eMIMIC

can estimate the size of HTTP transactions accurately.

4.4.3 Media type classification accuracy

Table 4.2a shows the confusion matrix of audio/video (A/V) classification of the recon-

structed HTTP transactions for VOD1. The ground truth was obtained by inspecting the

request URI of HTTP logs collected by the proxy. The overall accuracy of classification is

high (99.15%). The classification error is mainly due to two reasons: i) small video chunks

in the range of expected audio chunk size get misclassified as audio ii) errors in estimated

size of reconstructed audio chunk leads to audio chunk misclassified as video. The results

are similar for VOD2 (omitted due to lack of space).

We also show the confusion matrix (Table 4.2b) when the A/V classification is done

only using the size of the HTTP transaction. Tracking A/V buffer (Table 4.2a) helps in

reducing the error of misclassifying video chunks as audio by 1.26% without significantly

58

-200 -100 0 100 200

BR
 (Kbps)

0

0.2

0.4

0.6

0.8

1

C
D

F

VoD1

VoD2

(a) CDF of error in average bitrate estimation

0 1000 2000 3000 4000 5000 6000

Actual BR (kbps)

0

1000

2000

3000

4000

5000

6000

P
re

d
ic

te
d
 B

R
 (

k
b
p
s
)

(b) VOD2: scatter plots of ground truth and
estimated average bitrate

Figure 4.8: Error in average bitrate estimation

-4% -2% 0% 2% 4%

RR

0

0.2

0.4

0.6

0.8

1

C
D

F

VoD1

VoD2

Figure 4.9: CDF of error in re-buffering ratio estimation

impacting the error in misclassifying audio chunks as video.

4.4.4 QoE inference accuracy

Here, we present the comparison of QoE metrics estimated by eMIMIC with ground truth

QoE metrics.

Average bitrate: Figure 4.8a shows the CDF of difference in estimated and ground

truth average bitrate, denoted by δBR, for VOD1 and VOD2. We see that eMIMIC accu-

rately predicts average bitrate within an error of 100 kbps for 75% sessions in VOD1 and

80% sessions in VOD2. The error is in fact zero for nearly 20% sessions in VOD2. We

do not observe zero error in VOD1 partially because we do not know the exact values of

bitrate levels and use approximate values instead.

59

0 5 10 15 20

Number of chunks

0

0.2

0.4

0.6

0.8

1

C
D

F
Figure 4.10: CDF of of chunks in the buffer at startup

Figure 4.8b shows a scatter plot of ground truth average bitrate and estimated average

bitrate for VOD2 sessions. The points are close to the identity line in most cases except

at higher bitrates (around 4 Mbps). We found this is because of eMIMIC underestimating

chunks with bitrate 3.2 Mbps and 6 Mbps due to higher variation in the chunk sizes in

this range. Nevertheless, these are still estimated as more than 2 Mbps, which would be

considered high bitrate for most purposes, if used for categorical classification.

Re-buffering ratio: We calculate the difference (δRR) between the estimated re-buffering

ratio and ground truth re-buffering ratio. Figure 4.9 shows a CDF of δRR for VOD1 and

VOD2. We see that eMIMIC can predict re-buffering ratio with a high overall accuracy,

i.e., within an error of 1% for around 70% sessions in VOD1 and 65% sessions in VOD2.

We observe heavy-tails in δRR distribution for VOD1. On closer inspection, we found

this has to do with an unusual buffering behavior in VOD1 player. The player would not

begin a session even if it had video (and audio) chunks in its buffer. Figure 4.10 shows

the CDF of number of video chunks in player buffer when the playback first started. The

player sometimes waits until it has 12 chunks (48s video) in its buffer before starting video

playback. Similar behavior was also seen when re-buffering event happened. This leads

to errors in estimating re-buffering ratio since we assume that playback begins as soon as

player receives a fixed number of chunks (two in this case) in its buffer.

Bitrate switches: Figure 4.11a shows a scatter plot of ground truth and estimated SPM

for VOD1. We find that eMIMIC does not estimate SPM with high accuracy. This is

60

0 1 2 3 4 5

Actual SPM

0

1

2

3

4

5

P
re

d
ic

te
d

 S
P

M

(a) VOD1: Scatter plot of SPM

0 4 8 12 16 20

Actual TT1C (s)

0

4

8

12

16

20

P
re

d
ic

te
d
 T

T
1
C

 (
s
)

(b) VOD2: Scatter plot of TT1C

Figure 4.11: Error in estimating the bitrate switches and startup time

Table 4.3: Classification accuracy of eMIMIC and ML16

QoE metric Classification accuracy
VOD1 VOD2

eMIMIC ML16 eMIMIC ML16
Average bitrate 87.8% 84.5% 93.6% 90.8%

Re-buffering ratio 80.5% 71.7% 85.1% 61.3%

because accurate bitrate switch estimation requires accurate estimate of bitrate of every

video chunk in a session. Even a single wrong bitrate estimation of chunk can lead to

significant errors in SPM estimation. We plan to explore alternate methods of bitrate switch

estimation in our future work.

Startup time: Figure 4.11b shows a scatter plot of ground truth and estimated TT1C

for VOD2. For most sessions, the network estimated TT1C is somewhat smaller than

ground truth TT1C obtained from the player. This underestimation has been discussed

in a previous study [40] and is mainly because the players experience additional network

and operating system delays before they receive a chunk. Overall, eMIMIC shows high

accuracy. It can predict startup delay within 2 seconds of ground truth for 65% sessions in

VOD1 and 70% sessions in VOD2.

61

Table 4.4: Confusion matrix: VOD1 average bitrate

(a) eMIMIC

actual
BR

predicted BR
low med high

low 91.9% 8.1% 0.0%
med 12.2% 82.7% 5.1%
high 0.0% 15.2% 84.8%

(b) ML16

actual
BR

predicted BR
low med high

low 89.4% 8.8% 1.8%
med 17.4% 75.5% 7.1%
high 0.0% 13.0% 87.0%

Table 4.5: Confusion matrix: VOD2 re-buffering ratio

(a) eMIMIC

actual
RR

predicted RR
zero mild high

zero 87.6% 12% 0.4%
mild 51.5% 44.9% 3.6%
high 3.1% 8.4% 88.4%

(b) ML16

actual
RR

predicted RR
zero mild high

zero 61.1% 37.0% 1.9%
mild 39.4% 48.5% 12.1%
high 26.9% 30.8% 42.3%

4.4.5 Comparison with ML-based approach

Here, we compare eMIMIC with ML16, an ML-based approach described by Dimopoulos

et al. [39]. We use this approach for comparison because it gives categorical estimates

of individual video metrics namely re-buffering ratio and average bitrate as opposed to

other ML-based approaches that estimate overall QoE class assuming a specific model.

The approach trains a Random Forest model using network QoS metrics such as round trip

time and packet loss and chunk statistics such as size and download time. We implement

ML16 using the scikit-learn library [80] in Python. We use 67% of our collected data for

training the machine learning model and use remaining 33% for testing both ML16 and

eMIMIC. We balance the QoE metric classes while training using a popular oversampling

algorithm [81].

Average bitrate: We use three categories for average bitrate estimation. For VOD2,

average bitrate is classified as low if BR < 800 kbps, med if BR ∈ [800 kbps, 2000

kbps], and high otherwise. The low bitrate category corresponds to the two lowest bitrates,

med to the next two bitrates and high to the top two bitrates. Similarly, thresholds of 600

62

Table 4.6: Design parameters of LIVE1

Design parameter Audio Video
Bitrate levels 3 6

Bitrate range (kbps) 48 - 96 160 - 2232
Chunk duration (s) 6 6

Chunks to start 1 1

kbps and 1400 kbps are chosen to classify sessions of VOD1 into low, med and high. The

overall classification accuracy of eMIMIC is slightly higher (around 3%) than ML16 (row

1 of Table 4.3). Table 4.4 shows the confusion matrix of bitrate classification for VOD1.

eMIMIC identifies low and med sessions with a higher accuracy, 2% and 7% respectively,

than ML16.

Re-buffering ratio: For estimating re-buffering using ML16, a video is categorized

into one of the following three categories (same as in [39]): zero stall when there is no

re-buffering, mild stalls when 0 < RR ≤ 10%, and high stalls when RR > 10%. ML16

was trained separately for both VOD1 and VOD2. Row 2 in Table 4.3 shows the re-

buffering ratio classification accuracy of eMIMIC and ML16 over the test data. eMIMIC

can estimate re-buffering ratio with significantly higher accuracy (10%-25%) than ML16.

Table 4.5 shows the confusion matrix for re-buffering classification of VOD2. eMIMIC

can predict low and high stalls with much higher accuracy than ML16. The accuracy of

ML16 may improve with more training data.

Finally, we test if ML16 generalizes across services by using the ML16 model learned

for VOD2 to estimate re-buffering ratio for VOD1. The classification accuracy of the model

dropped to 31% on VOD1 from 61% on VOD2. This shows that ML16 does not generalize

and needs separate training for each service whereas eMIMIC faces no such issues.

4.4.6 QoE inference accuracy for a Live service

Live streaming has been growing over the last few years [27]. Live video differs from VoD

in terms of few key design parameters, i) the buffer in Live streaming is small to reduce the

63

-10% -5% 0% 5% 10%

% of extra HTTP transactions

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) CDF of % extra requests in the recon-
struction

0% 1% 2% 3% 4% 5%

Median % error

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) CDF of median % error in the estimated
size of requests

-200 -100 0 100 200

BR
 (kbps)

0

0.2

0.4

0.6

0.8

1

C
D

F

(c) CDF of error in average bitrate estimation

-4% -2% 0% 2% 4%

RR

0

0.2

0.4

0.6

0.8

1

C
D

F

(d) CDF of error in re-buffering ratio estima-
tion

Figure 4.12: LIVE1: Session reconstruction and QoE metrics estimation error

latency to the live broadcast. As a result video players in Live may react more aggressively

to changing network conditions leading to more bitrate switches. ii) At the same time,

Live streams are not as efficiently encoded. This may lead to better bitrate estimation

due to less variability in segment sizes. These design differences make it important to

understand the accuracy of eMIMIC in estimating QoE metrics for Live streaming. We

use a popular subscription-based Live streaming service, referred to as LIVE1 here. LIVE1

delivers content from popular cable channels over the Internet. Table 4.6 shows the design

parameters for LIVE1, obtained by the methodology described in Section 4.4.1. Based

on these design parameters, we set Smin to 30 KB and use three ranges to identify audio

chunks, i.e., [34 KB, 42 KB], [46 KB, 54 KB], and [70 KB, 76 KB] . We set Tahead to 12

seconds as we found that the typical buffer size for the service is close to 12 seconds.

64

For obtaining ground truth QoE metrics in LIVE1, we found a combination of keystrokes

that displays a box with different session metrics such as the current playback bitrate, avail-

able bitrates, and video stall time. We program our testing framework to collect this infor-

mation every second. We then use the testing framework to stream 629 sessions of LIVE1

under variety of network conditions and collect the corresponding packet traces, HTTP

logs, and ground truth QoE metrics.

Session reconstruction accuracy: Figure 4.12a shows the CDF of percentage of ex-

tra transactions (calculation methodology described in Section 4.4.2) in a session. The

accuracy of reconstruction is high in general with nearly 80% of sessions reconstructed

with 100% accuracy. We do find few extra transactions in some sessions which are mainly

because of two reasons: 1) metadata transactions that are comparable in size to video trans-

actions get misclassified as video, and 2) HTTP aborts that happen more frequently in Live

are not detected accurately. The estimated size of matched transactions is quite accurate

with the median error within 1% of the actual size of HTTP transaction for nearly 90% of

sessions (see Figure 4.12b).

QoE estimation accuracy: Figure 4.12c shows the CDF of difference in estimated

and ground truth average bitrate (δBR). eMIMIC can accurately predict average bitrate

within an error of 100 kbps for 75% sessions with zero error for nearly 20% sessions.

The difference between the estimated re-buffering ratio and ground truth re-buffering ratio,

denoted by δRR, is shown in Figure 4.12d. We see that eMIMIC can estimate re-buffering

ratio within 1% of the ground truth for 80% of the sessions. We observe that eMIMIC tends

to underestimate the re-buffering ratio for LIVE1 sessions. This can be attributed to errors

in the session reconstruction step, where some non-video chunks are identified as video,

leading to overestimation of video buffer, and hence underestimation of re-buffering.

65

Table 4.7: Impact of window on buffer occupancy classification, Cbuff = 20 seconds

Tclass
(seconds) Accuracy Precision Recall

5 90.0% 56.5% 97.9%
10 90.2% 61.2% 97.8%
20 90.7% 68.6% 97.6%
30 90.9% 73.7% 97.3%
40 91.3% 77.7% 98.0%
50 91.5% 80.4% 97.9%
60 91.8% 82.9% 97.8%

Table 4.8: Impact of threshold on buffer occupancy classification, Tclass = 10 seconds

Low
threshold (s) Accuracy Precision Recall

5 91.3% 54.7% 95.1%
10 91.4% 59.2% 97.8%
15 90.9% 60.7% 97.7%
20 90.2% 61.2% 97.8%
25 90.2% 64.3% 97.8%
30 89.6% 65.4% 97.9%

4.4.7 Real-time QoE inference

Our evaluation, so far, has focused on understanding accuracy of eMIMIC in estimating

QoE metrics over the entire session. An operator may want to infer video QoE metrics in

real-time for QoE-aware active network resource management. For instance, the operator

may temporarily boost the available bandwidth for sessions with low buffer occupancy in

order to reduce the probability of re-buffering [82]. In this section, we evaluate the accuracy

of eMIMIC in making such real-time prediction of QoE metrics. We limit out analysis to

sessions from VOD1. Our methodology, however, works for other services as well.

Buffer occupancy: We evaluate the accuracy of eMIMIC in identifying low buffer

occupancy conditions in a session. More specifically, for a window of Tclass seconds within

a session, the buffer occupancy is classified as low, if the buffer occupancy is lower than

a threshold (Cbuff) at any point of time in the window, and high otherwise. An operator

could set different values for Tclass and Cbuff based on some policy.

66

Table 4.9: Impact of number of last downloaded chunks on bitrate classification, Cbitrate =
600 kbps

Nclass

(number of chunks) Accuracy Precision Recall

2 85.7% 87.6% 88.9%
4 87.3% 89.3% 89.9%
6 88.0% 89.2% 90.9%
8 88.8% 89.9% 91.5%

10 88.6% 89.8% 91.5%
12 89.5% 90.1% 92.6%
14 89.4% 90.0% 92.4%
16 89.7% 89.6% 93.2%

We first evaluate the impact of varying Tclass using 20 seconds as the buffer occupancy

threshold. Table 4.7 shows the accuracy, precision, and recall values for different classi-

fication windows ranging from 5 seconds (short-term variations) to 1 minute (long-term

degradation). We consider an instance to be a true positive if it is correctly identified as

a low buffer occupancy instance. The overall accuracy of correctly classifying buffer oc-

cupancy state is at least 90.0%, and it increases as the duration of classification window

increases. The precision of classification is low (56.5% - 82.9%), while the recall is high

(97.3% - 98.0%). This means that eMIMIC can correctly classify most of the low buffer

occupancy instances, while a few high buffer occupancy instances are misclassified as low.

Note that from a network operator’s perspective, it is more important to correctly identify

all instances of low buffer occupancy (high recall), so that appropriate actions can be taken

to reduce the probability of video re-buffering.

Similarly, we vary the buffer occupancy threshold (Cbuff) for a fixed classification win-

dow of 10 seconds. The accuracy of classification decreases while precision and recall in-

crease with increase in Cbuff (see Table 4.8). This is because both the number of low buffer

occupancy instances correctly classified as low and the number of high buffer occupancy

instances misclassified as low increase as the buffer occupancy threshold is increased.

Thus, eMIMIC estimates the buffer occupancy states with a high overall accuracy

67

Table 4.10: Impact of threshold on bitrate classification, Nclass = 4 chunks

Bitrate
threshold (kbps) Accuracy Precision Recall

400 85.9% 85.5% 85.9%
600 87.3% 89.3% 89.9%

1200 90.9% 95.3% 93.6%

(89.6% - 91.8%). Moreover, it tends to underestimate buffer occupancy for VOD1 in gen-

eral. This leads to a higher chance of misclassifying a high buffer occupancy state as low.

However, it also leads to a high recall (95.1% - 98.0%), i.e., a higher probability of correctly

detecting a low buffer occupancy state, which is desirable for an operator.

Average bitrate: Similar to buffer occupancy, an operator could allocate more re-

sources to sessions streaming low quality video chunks. We evaluate the accuracy of

eMIMIC in classifying the average bitrate category of a fixed number of most recently

downloaded chunks (Nclass). More specifically, we classify the bitrate as low if the aver-

age bitrate of the last Nclass downloaded chunks is lower than a threshold bitrate (Cbitrate)

and high, otherwise. We study the effect of varying Nclass and Cbitrate on classification

accuracy.

Table 4.9 shows the accuracy, precision, and recall as Nclass varies from 2 chunks

(considered instantaneous quality) to 16 chunks (consider long-term quality) with a bi-

trate threshold of 600 kbps. Note that a classification instance is considered to be a true

positive, if it has been correctly classified as a low average bitrate. The overall accuracy

of classification is at least 85.7%. Furthermore, the accuracy of classification increases as

the number of most recently downloaded chunks considered are increased. This is because

using fewer chunks for classification is more sensitive to any errors in bitrate estimation of

individual chunks as opposed to using more chunks. We also observe high precision and

recall values, 87.6%-90.1% and 88.9%-93.2%, respectively. The recall values increases as

Nclass increases, thus leading to higher probability of identifying sessions with low bitrate

chunks.

68

Similarly, we study the impact of varying the bitrate threshold on accuracy, while using

the last 4 chunks for bitrate classification (see Table 4.10). The classification accuracy is

at least 85.9%. We also observe that all three metrics, i.e., accuracy, precision, and recall

improve as bitrate threshold is increased. This is because, the difference in bitrates of

chunks corresponding to lower video quality levels is smaller, and it increases with higher

quality levels. Given that video chunks in VOD1 are VBR-encoded, there is a higher

overlap in chunk sizes of lower bitrate levels than higher bitrate levels. Thus, the error

in individual chunk bitrate estimation reduces as the chunk quality increases, ultimately

leading to an increase in classification accuracy when a higher bitrate threshold is used.

This shows that eMIMIC can estimate average bitrate class of most recently downloaded

chunks with high accuracy, precision, and recall.

4.5 Discussion and Future work

We discuss three outstanding issues pertaining to video QoE inference from passive net-

work measurements.

4.5.1 Scalability

QoE inference approaches fundamentally require processing of network data. This net-

work data can be enormous given the scale of today’s networks, thus raising the need to

design scalable inference systems. One way to handle scalability is to leverage the trend of

virtualization of network functions by operators [83]. Specifically, virtualization enables

the design of flexible software-based network monitors that can be customized to meet the

monitoring requirements of underlying inference approach. For instance, in the case of

eMIMIC, network monitors can be designed that reconstruct the HTTP transactions in a

flow instead of simply collecting and storing the entire packet traces for offline processing.

This significantly reduces the storage and transport overhead of the collected data.

Sampling is another way to mitigate the issue of scaling by reducing the collected net-

69

work data. The sampling of network data can be done in two ways. The first way is to

sample video flows and monitor only a subset of video sessions instead of all sessions on

the network. This can be useful if the goal is to understand and optimize the video perfor-

mance in the network at a macro-level instead of optimizing per-user video performance.

The challenge here is to determine the optimal sampling level such that the network data

collected is minimized but it still provides enough information about the video performance

at different network locations.

Another way to use sampling is to sample packets within a flow. However, packet sam-

pling could potentially lead to the loss of critical information required for QoE inference.

Therefore, appropriate packet sampling mechanisms need to be used based on the under-

lying QoE inference technique. For instance, eMIMIC could still work if packet sampling

is used for downlink traffic while completely monitoring the uplink traffic. This is because

eMIMIC uses the uplink traffic to identify the HTTP transaction boundaries and the down-

link traffic to identify the size of the HTTP transactions. Sampling in uplink direction can

lead to errors in identifying the HTTP transactions. However, the transaction size can still

be determined from the sampled downlink traffic with reasonable accuracy.

Our future work will consider evaluating the usefulness of these techniques to imple-

ment a scalable QoE inference monitoring system.

4.5.2 QoE inference for new protocols

QoE inference approaches are typically designed for specific application and transport-

layer protocols. However, these protocols constantly evolve, thus requiring continuous

re-calibration of the inference approach. For instance, eMIMIC has been designed for tra-

ditional HAS that uses HTTP over TCP. It uses TCP headers in the packets to reconstruct

the HTTP transactions. However, TCP headers are no longer available in QUIC [84], a

UDP-based protocol, requiring re-calibration of eMIMIC. In our future work, we will ex-

plore using IP headers to reconstruct a session for video services using QUIC.

70

Another issue with new protocols such as QUIC and HTTP/2 [85] is that they allow

request multiplexing. For eMIMIC, it can lead to error in session reconstruction as a new

uplink packet is assumed as an indicator of end of the last HTTP transaction and beginning

of a new transaction. However, it is not clear if the streaming services would use request

multiplexing in practice as it leads to resource contention and reduced flexibility of bitrate

adaptation (see Section 4.3.2). One possible use case of multiplexing in streaming could

be requesting the audio and video chunks for the same video segment in parallel. In our

future work, we plan to characterize the multiplexing behavior of video streaming services

that use these new protocols and adapt eMIMIC based on the observed behavior.

4.5.3 Impact of user interaction

Existing QoE inference approaches, including eMIMIC, typically consider a linear video

playback i.e. there is no content skip or pause during the session. In practice, user inter-

actions could be possible in a session and that can lead to errors in QoE inference. For

instance, in the case of eMIMIC, video skip would lead to overestimation of the video

buffer as it would not know that part of the video buffer would have been discarded due

to the skip. Similarly, in the case of a video pause, eMIMIC would continue depleting the

video buffer assuming linear playback leading to overestimation of re-buffering. Although

an operator may not be as much concerned about video pause as about video skip, because

it can miss a potential QoE impairment in the latter case.

One way to detect video skip in eMIMIC is by carefully monitoring the player buffer

evolution. Video players typically have a fixed size (either number of bytes or duration)

buffer. If eMIMIC’s video buffer estimate at any point in the session is significantly higher

than the maximum buffer size, there is a possibility that the user skipped part of the video

and the operator can discard the session from QoE inference. Note that it still does not

enable us to detect a skip in case the buffer level is lower than the maximum buffer in a

session. Designing methods to detect and handle user interactions is a part of our future

71

work.

4.6 Conclusion

In this chapter, we presented eMIMIC, a methodology to estimate QoE metrics of encrypted

video using passive network measurements. To facilitate extensive evaluation, we develop

an experimental framework that enables automated streaming and collection of network

traces and ground truth QoE metrics of three popular video service providers, including

both VoD and live content. Using the framework, we demonstrate that eMIMIC shows

high accuracy of QoE metrics estimation for a variety of realistic network conditions. We

compare eMIMIC with ML16, a machine learning-based approach and find that eMIMIC

outperforms ML16 without requiring any training on ground truth QoE metrics. We also

show that eMIMIC can also be used for estimating QoE metrics in real-time with a high

accuracy, thus enabling operators to detect any QoE degradation in the network. Finally,

we highlight some of the outstanding issues and challenges in QoE estimation. In the next

chapter, we focus on one of these challenges, i.e., scalability, and present an approach that

uses light-weight network data for QoE inference.

72

CHAPTER 5

INFERENCE USING COARSE-GRAINED DATA

5.1 Introduction

Video QoE estimation using network data primarily consists of three steps: i) collecting

network data using a monitoring tool, ii) identifying video traffic and sessions from col-

lected data, and iii) estimating session QoE metrics using methods designed for this purpose

(see Figure 5.1). In the previous chapter, we mainly focused on designing QoE estimation

mechanism (step 3 in Figure 5.1) for encrypted traffic with a goal to improve inference

accuracy. In doing so, we assume access to packet traces, the most granular network data.

However, collecting and processing packet-level data from the entire network can be chal-

lenging because of the scale of ISP networks. At the same time, it is important for ISPs to

understand network-wide video performance for efficient management and provisioning,

especially in the case of capacity-constrained and highly heterogeneous cellular networks.

This makes it challenging to use existing QoE estimation mechanisms in practice.

One possible approach is to develop flexible telemetry systems that provide the most

useful metrics (e.g., HTTP transactions) required for inference by in-network processing of

the packet data [49, 86, 48]. While this is a viable approach, it involves significant modifi-

cations to the existing measurement systems and has the following practical challenges, i)

limited measurement resources and budget with the constraint that the same network data

is often used for multiple purposes (e.g., security, performance), and ii) limited flexibility

as the monitoring tools are provided by vendors [87].

Given these challenges, we ask: “Is it feasible to detect video performance issues with

lightweight, readily-available but coarse-grained network data?” Our question is motivated

by the fact that ISPs already collect coarse-grained data using standard telemetry systems

73

Network data
collection

Video traffic
and session

identification
QoE inference

1 2 3

Figure 5.1: QoE inference steps

for different network management functions [88, 89, 87]. We consider whether such data

can be used by ISPs to estimate coarse-grained QoE metrics (e.g., low, high) and thus to

identify parts of the network that underperform in a lightweight manner. Ultimately, this

approach can enable adaptive video performance monitoring wherein an ISP collects fine-

grained data only from the problematic locations for further diagnosis.

We specifically consider coarse-grained network data in the form of Transport Layer

Security (TLS) transactions. The data is clearly lightweight as number of TLS transactions

in a video session are significantly smaller (by a factor of 1400 in our dataset) as compared

to packets. The data is also readily available as TLS transactions can be collected using a

transparent proxy (e.g., Squid [90]). Moreover, video traffic can be easily identified (step

2 in Figure 5.1) using the headers from TLS transaction data. Prior work has used similar

data to infer QoE for web traffic [91] and unencrypted video1 [69]. A major challenge,

however, is that the TLS transaction data is coarse-grained. Thus, existing inference tech-

niques will not work on this form of data. Another challenge in using this data is to delimit

sessions2 when a user watches back-to-back videos from the same service. Accurate ses-

sion identification is important for accurate QoE estimation due to changes in streaming

patterns and the corresponding traffic within a session as it progresses (see Section 5.2).

Therefore, we analyze the feasibility of using TLS transaction data to detect video

performance issues. Specifically, we consider categorical estimation of key video QoE

metrics [16, 2], namely, video quality, re-buffering ratio and a combined QoE metric that

jointly considers the two individual metrics (Section 5.2). We first develop a machine learn-

1For unencrypted video, a proxy provides HTTP transactions
2Our definition of a session consists of streaming a single video

74

ing (ML)-based approach that builds on previous work by adapting ML-based techniques

to TLS transaction data. We evaluate our methodology using data collected under diverse

emulated network conditions from three streaming services, namely, YouTube, Netflix, and

Hulu (anonymized in the paper). We also compare the QoE estimation accuracy using TLS

transaction data against packet traces. Finally, we present a simple heuristic to distinguish

consecutive sessions from the same video service leveraging TLS transaction arrival and

server access patterns.

Our key findings are summarized below:

• The TLS transaction data can be used to estimate combined QoE metric (Section 5.2)

with an accuracy of up to 72% and detect low QoE (low video quality or high re-

buffering) instances with a recall of 73%-85%.

• Compared to packet traces with an existing ML-based approach [39], estimation us-

ing TLS transaction data has up to 7% (9%) lower accuracy (recall), but it has 1400x

lower memory overhead and 60x lower computation overhead.

• The session identification heuristic can accurately identify 89% of the consecutive

sessions.

The rest of the chapter is organized as follows: Section 5.2 describes the QoE metrics

that we infer and the network data used for their inference. Section 5.3 presents the QoE

estimation methodology with Section 5.4 presenting the results. Section 5.5 discusses some

outstanding issues and Section 5.6 concludes the chapter.

5.2 Target QoE and Network data

Here we describe the HAS QoE metrics we estimate and the network data used for their

inference.

75

5.2.1 Target QoE metric

Existing approaches estimate the objective video QoE metrics using network data in two

different ways : fine-granular and per-session. The former estimates QoE metrics within

a session at periodic intervals while the latter provides estimates only once for the entire

session. The estimation granularity of an approach is clearly impacted by the granularity

of the input network data. Our goal in this work is to enable ISPs to identify video perfor-

mance issues in a light-weight manner. Given the coarse-granular nature of the data that

we use for this purpose, we estimate categorical values (e.g., low, medium, and high) of

per-session video QoE metrics. We envision an adaptive video performance monitoring,

wherein an ISP can collect fine-granular network data for further diagnosis from the loca-

tions identified using coarse-granular but light-weight estimation. Thus, we estimate the

two most important video QoE metrics, namely rebuffering ratio and video quality [16],

defined as follows:

Re-buffering ratio: We use re-buffering ratio (rr) to measure the severity of video stalls.

It is defined as the stall time in proportion to the total playback time. We categorize rr into

the following three categories: i) zero, if there are no stalls, ii) mild, if 0 < rr < 2%, and

iii) high, otherwise.

Video quality: In HAS, videos are typically encoded into discrete quality levels which tend

to be the same for a video service (e.g., Netflix, YouTube) and streaming protocol (e.g.,

HLS, DASH) combination with some minor exceptions3. We set thresholds and categorize

the quality levels to low, medium, and high (see Section 5.4). The video quality of a session

is simply the majority category of the video played in a session [61]. In case of a tie, we

select the lower category.

Combined QoE: We also estimate the combined QoE of a session by jointly considering

the impact of individual QoE metrics. There are a number of ways to combine the individ-

3Some videos may not be available at all (especially higher) quality levels. A service may use different
quality levels depending on the content type (e.g, live vs on-demand video).

76

ual metrics [72, 19]. Our methodology can work for multiple such combinations. In this

work, we use a simple approach of using the minimum category of the two QoE metrics.

For instance, if a session had zero re-buffering but low video quality, its overall QoE is

assigned to low.

Thus, for each session we estimate the categorical values of video quality, re-buffering

ratio, and combined QoE.

5.2.2 Network data

ISPs typically collect different kinds of data from within their network using standard mon-

itoring tools which is then used for various network management functions [87]. We now

consider the suitability of different network data for video QoE inference. The collected

data includes network device-level data (e.g., SNMP logs [92] or radio-level data in cellu-

lar networks [93]) and passive traffic monitoring data (e.g., packet-level traces or aggregate

traffic statistics). Clearly, device-level data cannot be used to even identify video traffic, let

alone assess end-user video QoE. We now consider data obtained from passive monitoring.

With passive monitoring, packet-level data is the most detailed data available to ISPs.

However, ISPs typically do not collect packet traces on a network-wide scale due to high

processing and storage overhead. It is important for ISPs to understand network-wide

video QoE for network management functions like capacity planning. This is especially

required in the case of cellular networks which tend to be capacity constrained and highly

heterogeneous. Therefore, we consider using light-weight network traffic data that can be

collected with standard monitoring tools for QoE inference.

Specifically, we consider network traffic data in the form of TLS transactions. For en-

crypted traffic, a standard web proxy similar to Squid [90] can be used for logging the

TLS transactions by inspecting the unencrypted TLS headers. The TLS transaction data

is clearly light-weight as the number of TLS transactions are significantly lower compared

to packet traces. A major challenge, however, is that the TLS transaction data is coarse-

77

0 1 2 3 4
Time (s)

1
2
3
4

Tr
an

sa
ct
io
n
#

TLS transaction HTTP transaction

Figure 5.2: TLS transactions with the corresponding HTTP transactions within first 5 sec-
onds of a Svc1 session. For clarity, only start of the HTTP transactions is shown.

granular. Figure 5.2 shows the TLS transactions within the first 5 seconds of a sample

session from Svc1 with the corresponding HTTP transactions4. Note that the HTTP trans-

actions are derived from packet traces [40]. Clearly, a single TLS transaction contains mul-

tiple and variable number of HTTP transactions. We observed an average of 12.1 HTTP

transactions corresponding to every TLS transaction for the Svc1 sessions in our dataset

(see Section 5.4). Our goal is to analyze the feasibility of using this coarse-granular but

readily-available and light-weight data to estimate video QoE. We consider two kinds of

information available in a TLS transaction: i) timings and size information, and ii) Server

Name Indicator (SNI) field indicating the server’s hostname. We use the former for QoE

estimation and the latter for identifying the video traffic.

We note that flow-level monitoring (e.g., NetFlow [94]) is another popular measurement

technique. In our dataset, we observed a single TLS transaction for every TCP connection.

Thus, collecting flow records with size counters in NetFlow can effectively provide TLS

transaction data. In addition, flow-level monitoring also provides the option of obtaining

periodic summaries from long flows. A major challenge, however, with flow-level moni-

4Features derived from HTTP transactions are typically the most important features in the related work
for QoE inference.

78

toring is identification of video traffic as it lacks application-layer data. Existing work has

suggested solutions such as augmenting flows with DNS information [95]. We consider

using such light-weight flow data as a part of future work and focus here on understanding

feasibility of TLS transaction data for inference.

5.3 Methodology

We formulate the QoE estimation problem as a supervised machine learning problem. We

assume that the TLS transactions corresponding to video traffic have already been identi-

fied (e.g., using SNI field) and grouped into sessions. Later, we also present a heuristic

to delimit TLS transactions corresponding to consecutive sessions from the same service.

Here, we describe the features that we extract from the sequence of TLS transactions cor-

responding to a session.

For every transaction in the session, we have its downlink data size, uplink data size,

start time, and end time. We use this data to construct the following three kinds of features:

Session-level: These features consist of metrics calculated for the entire session. We

calculate the session data rate, which is the total data divided by the session duration,

in both downlink (SDR DL) and uplink (SDR UL) directions. In addition, we also

log the session duration (SES DUR) and the number of TLS transactions per second

(TRANS PER SEC).

Transaction statistics: For a transaction, we already have its downlink size (DL SIZE),

uplink size (UL SIZE), and duration (DUR). We collect some additional features for

each transaction. First, we calculate Transaction Data Rate (TDR), which is obtained by

dividing the downlink data size by the transaction duration. Note that TDR is not the same

as network throughput as there can be intervals (e.g., steady state in HAS [73]) in a TLS

transaction with no network activity. However, it is still an indicator of the network quality

as, intuitively, TDR, is high if the available bandwidth was high. Second, we calculate

Downlink-To-Uplink (D2U) Ratio, which is the ratio of the downlink data to the uplink

79

data. In HAS, the uplink data is typically an indicator of the number of video segments

requested [42]. Hence, D2U ratio represents the amount of data downloaded per segment.

This can be a useful indicator of the video quality. Finally, we calculate the Inter-arrival

time (IAT) of the transactions to capture patterns in arrival of transactions. Thus, we have 6

features for each transaction. From these features, we generate summary statistics, namely,

minimum, median, and maximum value leading to 18 features in total 5.

Temporal Features: These features capture the temporal progress of data transfer during

a session. We divide the session into pre-determined intervals each starting from the begin-

ning of the session and calculate the cumulative downlink (CUM DL XXs) and uplink

data (CUM UL XXs) during each of these intervals. For transactions that only partially

overlap with an interval, we get its the share of downlink and uplink data based on the

extent of the overlap with the interval6. This set of features can be useful in uncovering any

temporal variations which may have been masked out in the aggregate transaction statistics.

We consider the following end-points for the intervals (in seconds): {30, 60, 120, 240,

480, 720, 960, 1200}. We use a maximum value of 1200 seconds as this is the maximum

session duration in our dataset (see Section 5.4). The rationale behind using fine-granular

intervals in the beginning is that a session is more likely to be impacted by poor network

quality in the beginning because of empty video buffer. We explored other intervals (omit-

ted due to lack of space) but found the above to yield the highest accuracy. Regardless,

we consider these intervals as one of the hyperparameters of our model and an ISP can

determine the intervals based on the data observed on their network for a service.

Thus, we have a total of 38 features for each session (summarized in Table 5.3). We

use these features to estimate the QoE metrics of the session.
5We considered other statistics such as standard deviation and mean, but found them to be highly corre-

lated to one of the existing statistics.
6This is an approximation as it is not possible to figure out the data transmission pattern within a transac-

tion

80

Table 5.1: Summary of features

Type Statstic Features

Session level single value
SDR DL, SDR UL,

SES DUR, TRANS PER SEC
Transaction

Statistics
min, median,

max
DL SIZE, UL SIZE, DUR,

TDR, D2U, IAT
Temporal
Statistics interval based

CUM DL XXs,
CUM UL XXs

102 103 104 105
Average bandwidth (kbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Average bandwidth

0-1 1-2 2-5 5-20
Session duration (min)

0%

20%

40%

60%

80%

100%

%
 o
f s

es
sio

ns

(b) Duration

Figure 5.3: Bandwidth traces statistics

5.4 Evaluation

In this section, we describe the results evaluating the estimation accuracy using TLS trans-

action data and comparing it with packet traces. We first describe the methodology to

collect the dataset used for evaluation.

5.4.1 Data collection

We use a browser-based automation framework to collect data for training and testing. The

framework streams video sessions under emulated network conditions and collects network

data in the form of packet traces and TLS transactions. We emulate network conditions

using publicly available bandwidth traces representing a diversity of network environments

including 3G, fixed broadband, and LTE [77, 78, 79]. Each session is streamed for a pre-

determined duration which ranges from 10 seconds to 20 minutes. Figure 5.3a and 5.3b

show the distribution of average bandwidth and duration of the traces, respectively.

81

Svc1 Svc2 Svc3
Video service

0%
20%
40%
60%
80%

100%
%
 o
f s

es
sio

ns
high mild zero

(a) Re-buffering ratio

Svc1 Svc2 Svc3
Video service

0%
20%
40%
60%
80%

100%

%
 o
f s
es
sio

ns

low medium high

(b) Video quality

Svc1 Svc2 Svc3
Video service

0%
20%
40%
60%
80%

100%

%
 o
f s
es
sio

ns
low medium high

(c) Combined QoE

Figure 5.4: Distribution of QoE metrics across services

Using the above methodology, we collect data for three popular streaming services, de-

noted as Svc1, Svc2, and Svc3 (anonymized for confidentiality). We curate a list of 50-75

videos for each service that includes content from a variety of genres such as animation,

sports, and news, if available. The ground truth video QoE metrics are collected by inject-

ing Javascript functions that utilize the HTML5 VIDEO API for monitoring buffer level

and service-specific functions (determined manually) for monitoring video quality [48].

We then classify the video quality levels into one of the three categories. We use resolution-

based thresholds in Svc1 and Svc2 as these services had a unique resolution for each quality

level. For Svc2, we classify video resolution of 360p or lower as low, 480p as medium, and

720p or higher as high. The thresholds for Svc1 were 288p for low, 480p for medium,

and the remaining levels were classified as high. For Svc3, we observed only three qual-

ity levels in our dataset and classify them into low, medium, and high. In practice, these

thresholds can be set by the ISP based on its target quality. We use the per-second QoE

82

Table 5.2: Confusion matrix: Svc1, Combined QoE

Actual #
sessions

Predicted
low med high

low 632 72% 21% 8%
med 599 25% 43% 32%
high 880 5% 12% 84%

Table 5.3: Accuracy (A), Recall (R), and Precision (P) values for different feature sets

Feature set Svc1 Svc2 Svc3
A R P A R P A R P

Only Session-level (SL) 58% 61% 60% 66% 68% 63% 66% 77% 66%
SL + Transaction Stats (TS) 65% 72% 67% 69% 77% 68% 71% 84% 74%
SL + TS + Temporal Stats 69% 73% 71% 71% 78% 71% 73% 85% 75%

information to obtain categorical values of per-session video quality, re-buffering ratio, and

combined QoE.

Overall we had 2, 111 sessions for Svc1, 2, 216 sessions for Svc2, and 1, 440 sessions

for Svc3. Figure 5.4 shows the distribution of ground truth QoE metrics for the three

services. We observe difference in QoE metrics across services streamed under similar

network conditions. This can be attributed to differences in service design. We found that

Svc1 uses a larger video buffer (240s) as compared to the other two services. Furthermore,

Svc1 player attempts to avoid re-buffering by quickly filling the buffer at the expense of

streaming at low video quality. However, the other two services, especially Svc2, switch

video quality only when the video buffer runs low. Therefore, poor network conditions led

to low video quality in Svc1, whereas in Svc2 and Svc3 (although to a lesser extent), it led

to re-buffering.

5.4.2 Results

We use the Python Scikit library to train and test different machine learning models. We use

5-fold cross validation for evaluating the accuracy of the models. We explore different ML-

based models, namely SVM, k-NN, XGBoost, Random Forest, and Multi-layer Perceptron.

83

Re-buffering Video qual Combined
QoE metric

0%
20%
40%
60%
80%

100%
%
 v
al
ue

Accuracy Recall Precision

(a) Svc1

Re-buffering Video qual Combined
QoE metric

0%
20%
40%
60%
80%

100%

%
 v
al
ue

Accuracy Recall Precision

(b) Svc2

Figure 5.5: Accuracy for different QoE metrics

Here, we present results using Random Forest which yielded the highest accuracy.

Accuracy for different QoE metrics: Figure 5.5 shows the classification accuracy of

different QoE metrics in Svc1 and Svc2. We particularly focus on the recall value of low

QoE metric class as one of our main goals is to detect video performance issues. For Svc1,

our model has 70% recall value in identifying low video quality sessions, while the recall

is only 21% in identifying high re-buffering sessions (see Figure 5.5a). For Svc2, the trend

is reversed and our model can detect high re-bufferring with a 71% recall and low video

quality with only 40% recall (see Figure 5.5b). The results are similar for Svc3 with a recall

of 63% in detecting high re-buffering and only 58% in detecting low video quality. We find

that the classification accuracy is high for QoE metrics that are more likely to degrade with

poor network conditions in a video service.

We now focus on the classification accuracy for combined QoE. Our model can detect

sessions with a low combined QoE with high recall (73%-85%) across all three services.

Table 5.2 shows the confusion matrix for classifying the combined QoE in Svc1. Most

of the mis-classifications happen between neighboring QoE classes (e.g., low classified as

med). This is most likely due to the model’s inability in classifying instances that are closer

to the class thresholds. Naturally, the error is higher for sessions with medium QoE, while

the sessions with low or high combined QoE can be classified with a high accuracy across

all three services.

84

Table 5.4: Accuracy metrics using packet traces and ML16. The numbers in paranthesis
report the gain as compared to the TLS transaction data.

Service Accuracy Recall Precision
Svc1 74% (+5%) 82% (+9%) 73% (+2%)
Svc2 78% (+7%) 85% (+7%) 76% (+5%)
Svc3 78% (+5%) 89% (+4%) 78% (+3%)

0.00 0.05 0.10 0.15
Importance

TRANS_PER_SEC
TDR_med
SES_DUR
D2U_med
UL_max
SDR_DL

CUM_DL_120s
DL_SIZE_max
CUM_DL_60s
CUM_DL_30s

Fe
at
ur
e

(a) Svc1

0.00 0.05 0.10 0.15
Importance

TRANS_PER_SEC
CUM_DL_60s
CUM_UL_60s
DL_SIZE_med
DL_SIZE_max

DUR_max
CUM_UL_30s

TDR_med
SDR_DL

D2U_med

Fe
at
ur
e

(b) Svc2

0.00 0.05 0.10 0.15
Importance

SES_DUR
TDR_max
D2U_max
TDR_min
D2U_med

CUM_DL_60s
DUR_max

CUM_DL_30s
TDR_med
SDR_DL

Fe
at
ur
e

(c) Svc3

Figure 5.6: Top 10 important features across three services

Takeaway: The coarse-granular but light-weight TLS transaction data can enable ISPs

to detect video performance issues aka low combined QoE sessions with a high accuracy.

ISPs can then collect fine-granular data for parts of the network with issues for a fine-

granular QoE estimation and troubleshooting. In the remaining chapter, we focus on results

pertaining to combined QoE.

Feature importance: We next evaluate the impact of different kinds of feature on model

accuracy. Table 5.3 shows the model accuracy for different sets of features. The accuracy

(recall) is lowest when only session-level features are used and it improves by 6%-11%

85

Table 5.5: Transaction identification accuracy into Existing or New session

Actual # Trans-
actions

Predicted
Existing New

Existing 13269 98% 2%
New 1545 11% 89%

(6%-12%) as features capturing the transaction statistics and temporal distribution of data

are added to the model. This shows that despite being coarse-granular, TLS transactions

within a session can provide useful information about the QoE of a session.

Figure 5.6 shows the 10 most important features as reported by the Random Forest

model across the three services. There are 4 features that appear in the top 10 list of all

three services. These features are downlink session data rate (SDR DL), median transac-

tion data rate (TDR MED), Median D2U ratio (D2U MED), and the cumulative down-

link data in the first minute (CUM DL 60s). TDR MED and SDR DL represent the

downlink data rate which is likely to correlate with the available bandwidth. D2U MED

represents the downlink to uplink data ratio and is likely to be higher when the video qual-

ity is high and vice-versa. Finally, CUM DL 60s represents the data downloaded in the

beginning of the session when the video buffer is usually low and when a session is more

likely to suffer if the network conditions are poor. We also observe differences across ser-

vices with 10 features that appear in only one out of the three services. This is likely due

to the differences in TLS transaction mechanisms across services.

Takeaway: The analysis shows that in addition to session-level metrics such as duration

and data rate, there are also patterns in the TLS transactions within a session that differ

based on the session QoE. An ML-based approach can learn these patterns to identify low

QoE sessions.

Comparison with packet traces: We now compare the QoE estimation accuracy from

TLS data against packet traces. There are many ML-based algorithms that estimate QoE

using packet traces. However, most of them estimate fine-granular QoE metrics within a

session. While it is possible to get per-session QoE metrics from fine-granular estimation,

86

we decided to use a heuristic that was designed specifically to estimate per-session QoE

metrics. Specifically, we implement the algorithm proposed by Dimopoulos et al. [39],

called ML16. The algorithm uses features corresponding to video segments as well as tra-

ditional network metrics such as re-transmissions and RTT. ML16 uses different sets of

features for estimating re-buffering ratio and video quality. We use the feature set corre-

sponding to video quality in ML16 for estimating the combined QoE as it is a super-set of

the features used to estimate re-buffering.

Table 5.4 shows the accuracy metrics and the respective gains in comparison to TLS

transaction data. Using features derived from packet traces with ML16 results in overall

accuracy improving by 5%-7%, recall by 4%-9%, and precision by 2%-5%. This is intuitive

as packet traces are highly fine-granular. Moreover, they can be used to derive information

about video segments downloaded in a session which are fundamental to HAS and its QoE.

However, using packet traces has an associated memory and computation overhead 7. E.g.,

the average number of packets across sessions in Svc1 are 27, 689 as compared to only

19.5 TLS transactions. The total computation time of extracting relevant features from all

sessions for the packet data is around 503 seconds as compared to 8.3 seconds using TLS

transaction data, a difference of factor of 60.

Takeaway: Packet traces provide higher accuracy than the TLS transaction data but

with a significant computation and memory overhead. Therefore, ISPs can implement

adaptive network monitoring, wherein fine-granular network data is collected only once

any performance issues are detected.

Session identification heuristic: Recall that identifying video traffic and sessions is an

important step prior to QoE estimation. However, it can be challenging to correctly delimit

session boundaries using TLS transaction data if multiple videos from the same service

are watched back-to-back by a user. Even a timeout-based approach, wherein a session

boundary is detected if there is no more video traffic for a certain time, may not always

7A significant portion of this overhead can be mitigated by deriving relevant features via in-network
processing. However, this requires ISPs to deploy new network monitoring tools.

87

work because the active TLS transactions do not always immediately end once the player

or the web page is closed. Instead, they time out after some period leading to overlapping

transactions for back-to-back sessions. Existing work suggest heuristic based on the packet

or segment-arrival pattern which will not work with TLS transaction data. We develop a

simple heuristic for session detection which is based on the following two insights: i) The

beginning of a session is characterized by more than one TLS transaction, and ii) More

often that not, the set of servers serving content change when a new session begins. Thus,

for each transaction we consider the set of succeeding transactions with a start time within

W seconds. Using these set of transactions, we calculate N , the number of transactions in

the set, and δ, the percentage of transactions with a different server than the set of servers

seen for the current session. A transaction is considered to start a new session, if N and δ

are greater than Nmin and δmin, respectively. We use the following parameter values, W =

3 seconds, Nmin = 2, and δmin = 0.5.

Table 5.5 shows the confusion matrix for Svc1 sessions. The session identification ac-

curacy is high with 89% sessions are identified correctly. For about 3% of the incorrectly

classified new-session transactions, the heuristic missed by only one transaction. In com-

parison, a timeout-based heuristic would have considered all of them as a single session

as all of these sessions are streamed back-to-back. We note that this is an extreme case in

comparison to real-world scenario.

Takeaway: Session identification is an important step for QoE estimation and needs to

be designed for the specific network data. The difference in transaction arrival and server

request pattern can enable session identification with high accuracy for TLS transaction

data.

5.5 Discussion

Machine learning techniques: We use supervised machine learning along with input fea-

tures engineered based on the knowledge of HAS protocol. There can also be other ways

88

of using machine learning techniques. One potential approach within supervised machine

learning can be to use deep learning. One of the advantages of using deep learning is that it

does not require feature engineering. Deep learning-based models can be easier to adapt to

changes in streaming service protocols as the adaptation would involve only re-training the

models using new ground truth QoE data. However, there are also challenges in using deep

learning. First, it generally requires more data with ground truth QoE for training com-

pared to classical supervised ML techniques which can be challenging for ISPs. Second,

deep learning-based models generally lack interpretability which may be useful for ISPs.

Comparison using packet traces: We use packet traces along with an ML-based

approach that provides per-session categorical estimates of QoE metrics for comparison

against TLS transaction data. There are other approaches that use packet traces for QoE es-

timation including eMIMIC that can provide more fine-grained QoE estimation. One of the

reason we did not use eMIMIC is because one of the streaming services used for evaluation

requests variable number of video segments in a single HTTP transaction, thus making it

challenging to model the session. Using the ML16 approach allows us to compare accuracy

for all three services.

Flexible monitoring systems: Using flexible monitoring systems can potentially allow

ISPs to use more accurate inference techniques such as eMIMIC. Existing work proposed

flexible monitoring frameworks that provides ISPs with option of collecting different forms

of aggregate traffic data [96, 97]. However, it is challenging to scale such systems to the

entire network traffic because of the high processing overhead [98]. Furthermore, the traffic

in the ISP network is growing, especially in cellular ISPs with the advent of 5G networks,

making it more challenging for such systems to catch up with the scale of ISP networks in

the near future. Until then, an adaptive monitoring approach using lightweight inference

for detecting video performance issues can enable ISPs to monitor network-wide video

performance.

Video service diversity and machine learning: Ideally, ISPs would like to monitor

89

video performance for all services streamed over their networks with the following goals:

i) understand the ability of different parts of the network to support video, and ii) uncover

service-specific design issues arising due to network and application-layer interactions in

HAS. Monitoring all services, however, require obtaining ground truth QoE data for all of

these services to train the ML models. One potential solution could be to develop gen-

eralizable ML models that can infer QoE for a service with high accuracy even if it was

not used in training the model. Related work shows that this can be challenging even with

packet traces, let alone with coarse-grained TLS transaction data. At the same time, we

note that most of the contribution to the network demand is by a handful of services [69].

More specifically, the top 5 video services have been shown to contribute 95% of the video

demand and have high network coverage (e.g., 99% of the cells in cellular network [69]).

Thus, it may suffice for ISPs if they develop ML models that infer QoE for these top ser-

vices to get a representative view of video performance across the entire network. ISPs can

then also infer QoE for the remaining services using fine-grained network data from only a

part of the network to uncover any service-specific design issues.

5.6 Conclusion and Future Work

In this chapter, we demonstrated that coarse-grained measurement data can be used for

detecting performance issues related to video streaming with reasonable accuracy. This

coarse-grained data is light-weight and does not require additional efforts by ISP in terms

of network monitoring. The predictive nature comes from mainly two factors: i) data-

related features being able to capture the network quality ii) difference in patterns of TLS

transactions for low and high QoE sessions. Furthermore, the estimation using TLS trans-

action data has a comparable accuracy with respect to packet traces and has a significantly

lower overhead. Our approach can enable an ISP to develop adaptive monitoring wherein

it can collect more information for low QoE sessions such as packet traces for diagnosis.

90

CHAPTER 6

SUMMARY OF CONTRIBUTIONS AND FUTURE WORK

ISPs need an understanding of end-user video QoE for an efficient network management

and provisioning. This thesis is a step in enabling ISPs to use passive network measurement

data for QoE inference. We develop three inference approaches each for a different stream-

ing context and network measurement data. The first two inference methods, MIMIC and

eMIMIC, are designed with a primary focus on inference accuracy for two different stream-

ing contexts. The third inference method addresses scalability challenges of inference by

considering coarse-granular but light-weight network measurement data. The contributions

of the thesis are summarized below:

The MIMIC methodology: This work presents an inference methodology for unen-

crypted video leveraging the semantics of HAS protocol and the corresponding network

traffic pattern. We evaluate MIMIC at a large-scale using ground truth data from a popu-

lar streaming service. We conduct a measurement study by deploying MIMIC inside the

network of a major U.S. mobile network operator. The measurement study characterizes a

variety of video services and their QoE from the unique perspective of an MNO. We present

insights on the relative video demand, video service design and its impact on network usage

and QoE, and impact of network factors on video QoE.

The eMIMIC methodology: This work provides a methodology to infer QoE for en-

crypted video. eMIMIC reconstructs the chunk-based delivery sequence of a video session

by using packet traces for QoE inference. We develop an experimental framework with

automated streaming and collection of network traces and ground truth of video sessions

and use it to evaluate eMIMIC with three popular commercial video streaming services.

Our evaluation shows that eMIMIC can accurately estimate both per-session as well as

fine-granular QoE metrics without requiring any training on ground truth QoE metrics.

91

Inference using coarse-grained network data: This work develops a QoE inference

method that uses light-weight and readily available network measurement data in the form

of TLS transactions. We use machine learning for inference in this work given the coarse-

granular nature of the data. The features used in machine learning model are developed

based on our prior experience in designing session modeling-based methods. We also

develop a simple heuristic to distinguish consecutive video sessions from the same service.

The heuristic leverages the server access patterns at the beginning of the session to identify

transactions corresponding to a new session. We extensively evaluate the machine learning

model for three popular streaming services. We show that coarse-granular data can be

used to detect video performance issues with a reasonably high accuracy. We compare the

estimation accuracy with that obtained using packet-level traces as well as the associated

computation and memory overhead to demonstrate the accuracy and scalability trade-off.

6.1 Bringing it together

In this thesis, we provide approaches for QoE inference for different kinds of streaming

context and network data. These approaches differ in terms of scalability, ease of deploy-

ment, and granularity of QoE inference. An operator may be able to combine one or more

of these techniques for a more effective inference system. Here we provide two examples

of such a combination.

Adaptive video performance monitoring: We envision an adaptive video perfor-

mance monitoring wherein ISPs collect more fine-grained network data as and when they

detect video performance issues in the network. Thus, ISPs could use TLS transaction data

for a network-wide coarse-grained video QoE estimation. Once an issue has been detected

in a particular network location, an ISP can collect packet traces only from this location and

use eMIMIC for a fine-grained QoE estimation. Such selective fine-grained QoE inference

can also be used whenever an ISP changes the network configuration to gauge the impact

of the change on video performance.

92

Training ML-based approach: In order to use the ML-based technique proposed in

Chapter 5, ISPs first need to build QoE inference models using training data. We use

a browser-based automated framework that collects ground truth QoE metrics using the

Javascript APIs provided by the browser platform and some service-specific APIs. It could

be difficult to obtain ground truth QoE metrics using this methodology for some services

or under some platforms like iOS or smart TVs. In such a case, ISPs can use QoE estimates

from MIMIC for training the ML-based models as it is easier to collect HTTP transaction

data by using a trusted proxy in a controlled setting.

6.2 Future Work

We now present some potential future directions for this work:

• Scalability of inference approaches: This thesis takes a step in addressing scalabil-

ity challenges by considering light-weight network data for inference and exploring

the scalability-accuracy trade-offs. A potential future direction can be to explore this

trade-off in greater detail. There are alternative forms of network data that ISPs can

typically collect, such as flow-level summaries using NetFlow [94] and network Key

Performance Indicators (KPIs) reflecting the health and performance metrics of the

network elements. Each of these data sources would occupy a different position in

the scalability vs accuracy spectrum. Understanding these trade-offs can inform ISPs

with best practices in network data collection.

• Handling streaming protocols and design evolution: QoE inference using network

data is a moving target. This is because networks as well as the video service imple-

mentations evolve over time. For instance, there is an increasing interest in deploying

new application or transport protocols in support of video streaming such as QUIC

and HTTP/2. Both QUIC and HTTP/2 allow request multiplexing over the same

connection which makes it challenging to use session modeling-based technique de-

93

veloped in Chapter 4. A possible solution is to consider estimating the number of

segments by monitoring the data in upstream direction. One can then design tech-

niques that consider the multiplexed requests together as a single chunk but with a

duration determined based on the number of upstream requests observed on the net-

work. Similarly, there are differences in the aggregate forms of data available from

UDP-based QUIC protocol as it uses different mechanisms from TLS for encrypt-

ing network data. Therefore, ML-based approach designed in Chapter 5 need to be

adapted for the aggregate forms of data available from QUIC.

There are also interesting research challenges in designing systems for handling

streaming service evolution. One potential approach can be to design a continual val-

idation framework. The framework could automatically detect changes in services

over time using statistical techniques such as concept drift [99]. It also needs to have

mechanisms that re-calibrate existing inference techniques with minimal effort once

a change has been detected. One possible approach to minimize the training effort

could be to use techniques from machine learning such as transfer learning [100].

• QoE diagnosis: Once ISPs obtain video QoE estimate, they would also be interested

in diagnosing poor video QoE. There are several factors that can lead to degradation

of video QoE, such as congestion in the ISP network or interdomain connection, or

an issue at the end-user’s device or the server. An accurate diagnosis of these is-

sues can inform ISPs’ own network management in terms of resource allocation (e.g.

re-configuration of network scheduling to maximize QoE [55]) and long-term net-

work provisioning (e.g. installing new capacity in persistently congested areas). In

some cases, the diagnosis step may also help uncover issues caused by application

and network-layer interactions that require collaboration between ISPs and content

providers. Clearly, the video QoE estimation step by itself is not sufficient for iden-

tifying the root cause of QoE degradation. Thus, we need additional methods to

localize and diagnose issues leading to poor QoE. A promising direction could be

94

to use techniques from network tomography. More specifically, ISPs could correlate

QoE metrics obtained from inference methods and augment them with network path

across users to localize issues.

95

REFERENCES

[1] Impact of web QoE on revenues, https://www.portent.com/blog/
analytics/research-site-speed-hurting-everyones-revenue.
htm, 2020.

[2] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts viewer behav-
ior: Inferring causality using quasi-experimental designs,” in Proc. of ACM IMC,
2012.

[3] C. S. INC, Cisco VNI: Forecast and methodology, 2017-2022, 2017.

[4] MUVI. (2019). New trends in internet video.

[5] Open Connect: Netflix partnering with ISPs to deliver content, https://openconnect.
netflix.com/Open-Connect-Overview.pdf.

[6] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race, “Towards network-
wide QoE fairness using openflow-assisted adaptive video streaming,” in Proc. of
the 2013 ACM SIGCOMM workshop on Future human-centric multimedia net-
working.

[7] D. Soldani, M. Li, and R. Cuny, QoS and QoE management in UMTS cellular
systems. John Wiley & Sons, 2007.

[8] J. Zhang and N. Ansari, “On assuring end-to-end QoE in next generation networks:
Challenges and a possible solution,” IEEE Communications Magazine,

[9] Conviva: in-app QoE monitoring, https://www.conviva.com/.

[10] New Relic, Mobile APM features, https://newrelic.com/mobile-
monitoring/features, 2018.

[11] J. Jiang, X. Liu, V. Sekar, I. Stoica, and H. Zhang, “EONA: Experience-oriented
network architecture,” in Proc. ACM HotNets, 2014.

[12] M. Wichtlhuber, R. Reinecke, and D. Hausheer, “An SDN-based CDN/ISP collab-
oration architecture for managing high-volume flows,” IEEE TNSM, 2015.

[13] K. Brunnström, S. A. Beker, K. De Moor, A. Dooms, S. Egger, M.-N. Garcia,
T. Hossfeld, S. Jumisko-Pyykkö, C. Keimel, M.-C. Larabi, et al., “Qualinet white
paper on definitions of Quality of Experience,” 2013.

96

https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm
https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm
https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm
https://openconnect.netflix.com/Open-Connect-Overview.pdf
https://openconnect.netflix.com/Open-Connect-Overview.pdf
https://www.conviva.com/
https://newrelic.com/mobile-monitoring/features
https://newrelic.com/mobile-monitoring/features

[14] ITU-T P.1203: Objective video QoE standard, https://www.itu.int/rec/
T-REC-P.1203, 2018.

[15] VQEG: Objective video quality assessment, https://www.its.bldrdoc.
gov/vqeg/projects/audiovisual-hd.aspx, 2018.

[16] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao, “Deriving and validating user ex-
perience model for DASH video streaming,” IEEE Transactions on Broadcasting,
2015.

[17] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang, “A quest
for an Internet Video Quality-of-Experience metric,” in Proc. ACM HotNets, 2012.

[18] J. Jiang, V. Sekar, and H. Zhang, “Improving Fairness, Efficiency, and Stability in
HTTP-based Adaptive Video Streaming with FESTIVE,” in Proc. ACM CoNEXT,
2012.

[19] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach for
dynamic adaptive video streaming over HTTP,” ACM SIGCOMM CCR, 2015.

[20] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal bitrate adap-
tation for online videos,” in Proc. of IEEE INFCOM, 2016.

[21] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A Buffer-
Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Ser-
vice,” in Proc. ACM SIGCOMM, 2014.

[22] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with
pensieve,” in Proc. ACM SIGCOMM, 2017.

[23] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett, B. Ribeiro,
J. Zhan, and H. Zhang, “Oboe: Auto-tuning video ABR algorithms to network con-
ditions,” in Proc. ACM SIGCOMM, 2018.

[24] A. Zambelli, “IIS smooth streaming technical overview,” Microsoft Corporation,
2009.

[25] Apple, HLS, https://developer.apple.com/streaming.

[26] DASH, http://dashif.org/mpeg-dash/.

[27] Live Stream growing as big as VOD, https://www.muvi.com/blogs/
live-stream-growing-big-vod.html.

97

https://www.itu.int/rec/T-REC-P.1203
https://www.itu.int/rec/T-REC-P.1203
https://www.its.bldrdoc.gov/vqeg/projects/audiovisual-hd.aspx
https://www.its.bldrdoc.gov/vqeg/projects/audiovisual-hd.aspx
https://developer.apple.com/streaming
http://dashif.org/mpeg-dash/
https://www.muvi.com/blogs/live-stream-growing-big-vod.html
https://www.muvi.com/blogs/live-stream-growing-big-vod.html

[28] Macromedia, RTMP, https://en.wikipedia.org/wiki/Real-Time_
Messaging_Protocol, 2019.

[29] A. Jain, A. Terzis, H. Flinck, N. Sprecher, S. Arunachalam, and K. Smith. (2019).
RTSP.

[30] HTTP Adaptive Streaming, https://en.wikipedia.org/wiki/Adaptive_
bitrate_streaming, 2019.

[31] Y.-T. Lin, T. Bonald, and S. E. Elayoubi, “Impact of chunk duration on adaptive
streaming performance in mobile networks,” in Wireless Communications and Net-
working Conference (WCNC), 2016 IEEE, 2016.

[32] S. Akhshabi, A. C. Begen, and C. Dovrolis., “An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP,” in Proc. ACM MMSys,
2011.

[33] A. Mansy, M. Ammar, J. Chandrashekar, and A. Sheth, “Characterizing client be-
havior of commercial mobile video streaming services,” in Proc. ACM MoVID,
2013.

[34] Y. Chen, K. Wu, and Q. Zhang, “From QoS to QoE: A tutorial on video quality
assessment,” IEEE Communications Surveys & Tutorials, 2014.

[35] A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Göring, and B. Feiten, “A bitstream-
based, scalable video-quality model for http adaptive streaming: Itu-t p. 1203.1,” in
Proc. of IEEE Quality of Multimedia Experience (QoMEX), 2017.

[36] K. T. Chen, C. C. Tu, and W. C. Xiao, “OneClick: A Framework for Measuring
Network Quality of Experience,” in Proc. IEEE INFOCOM, 2009.

[37] D. Joumblatt, J. Chandrashekar, B. Kveton, N. Taft, and R. Teixeira, “Predicting
user dissatisfaction with Internet application performance at end-hosts,” in Proc.
IEEE INFOCOM, 2013.

[38] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan, “Prometheus:
Toward Quality-of-experience Estimation for Mobile Apps from Passive Network
Measurements,” in Proc. ACM HotMobile, 2014.

[39] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki, “Measuring
video QoE from encrypted traffic,” in Proc. ACM IMC, 2016.

[40] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan, “BUFFEST: Predict-
ing buffer conditions and real-time requirements of HTTP(S) adaptive streaming
clients,” in Proc. ACM MMSys, 2017.

98

https://en.wikipedia.org/wiki/Real-Time_Messaging_Protocol
https://en.wikipedia.org/wiki/Real-Time_Messaging_Protocol
https://en.wikipedia.org/wiki/Adaptive_bitrate_streaming
https://en.wikipedia.org/wiki/Adaptive_bitrate_streaming

[41] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “A machine learning
approach to classifying YouTube QoE based on encrypted network traffic,” Multi-
media tools and applications, 2017.

[42] D. Tsilimantos, T. Karagkioules, and S. Valentin, “Classifying flows and buffer
state for Youtube’s HTTP adaptive streaming service in mobile networks,” in Proc. of
ACM MMSys, 2018.

[43] M. H. Mazhar and Z. Shafiq, “Real-time Video Quality of Experience Monitoring
for HTTPS and QUIC,” in IEEE INFOCOM, 2018.

[44] R. Schatz, T. Hossfeld, and P. Casas, “Passive YouTube QoE monitoring for ISPs,”
in Proc. IMIS, 2012.

[45] G. Dimopoulos, P. Barlet-Ros, and J. Sanjuàs-Cuxart, “Analysis of YouTube user
experience from passive measurements,” in Proc. CNSM, 2013.

[46] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “MIMIC: Using passive net-
work measurements to estimate HTTP-based adaptive video QoE metrics,” in Proc.
IEEE TMA/MNM, 2017.

[47] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “eMIMIC: Estimating HTTP-
Based Video QoE Metrics from Encrypted Network Traffic,” in Proc. of IEEE/IFIP
TMA, 2018.

[48] F. Bronzino, P. Schmitt, S. Ayoubi, G. Martins, R. Teixeira, and N. Feamster, “Infer-
ring streaming video quality from encrypted traffic: Practical models and deploy-
ment experience,” Proc. of the ACM on Measurement and Analysis of Computing
Systems, 2019.

[49] F. Loh, F. Wamser, C. Moldovan, B. Zeidler, D. Tsilimantos, S. Valentin, and T.
Hoßfeld, “Is the uplink enough? estimating video stalls from encrypted network
traffic,” in IEEE/IFIP NOMS, 2020.

[50] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Features that matter: Feature
selection for on-line stalling prediction in encrypted video streaming,” in Proc. of
IEEE INFOCOM Computer Communications Workshops, 2019.

[51] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic clas-
sification using machine learning,” IEEE Communications Surveys Tutorials, 2008.

[52] W. M. Shbair, T. Cholez, J. Francois, and I. Chrisment, “A multi-level framework
to identify HTTPS services,” in Proc. of IEEE/IFIP NOMS, 2016.

99

[53] J. Garcia, T. Korhonen, R. Andersson, and F. Västlund, “Towards Video Flow Clas-
sification at a Million Encrypted Flows Per Second,” in 2018 IEEE 32nd Interna-
tional Conference on Advanced Information Networking and Applications (AINA),
2018.

[54] The Transport Layer Security (TLS) Protocol Version 1.2, IETF RFC 3954, 2008.

[55] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and M. Chiang, “A
Scheduling Framework for Adaptive Video Delivery over Cellular Networks,” in
Proc. of ACM MobiCom, 2013.

[56] A. Mansy, M. Fayed, and M. Ammar, “Network-layer fairness for adaptive video
streams,” in Proc. of IFIP Networking, 2015.

[57] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shahmehri, “Help-
ing hand or hidden hurdle: Proxy-assisted HTTP-based adaptive streaming perfor-
mance,” in Proc. of IEEE MASCOTS, 2013.

[58] S. Benno, J. O. Esteban, and I. Rimac, “Adaptive streaming: The network has to
help,” Bell Labs Technical Journal, 2011.

[59] A. Kassler, L. Skorin-Kapov, O. Dobrijevic, M. Matijasevic, and P. Dely, “Towards
QoE-driven multimedia service negotiation and path optimization with software
defined networking,” in Proc. of Software, Telecommunications and Computer Net-
works (SoftCOM), IEEE, 2012.

[60] I. Ben Mustafa, T. Nadeem, and E. Halepovic, “FlexStream: Towards flexible adap-
tive video streaming on end devices using extreme SDN,” in Proc. of ACM MM,
2018.

[61] S. Xu, S. Sen, Z. M. Mao, and Y. Jia, “Dissecting VOD services for cellular: Per-
formance, root causes and best practices,” in Proc. of ACM IMC, 2017.

[62] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, Z. L. Zhang, M. Varvello, and M. Steiner,
“Measurement Study of Netflix, Hulu, and a Tale of Three CDNs,” Proc. of IEEE/ACM
Transactions on Networking, 2015.

[63] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z. L. Zhang,
“Unreeling Netflix: Understanding and improving multi-CDN movie delivery,” in
Proc. of IEEE INFOCOM, 2012.

[64] V. K. Adhikari, S. Jain, Y. Chen, and Z. L. Zhang, “Vivisecting youtube: An active
measurement study,” in Proc. of IEEE INFOCOM, 2012.

100

[65] J. Jiang, V. Sekar, I. Stoica, and H. Zhang, “Shedding Light on the Structure of
Internet Video Quality Problems in the Wild,” in Proc. of ACM CoNEXT, 2013.

[66] H. Yin, X. Liu, F. Qiu, N. Xia, C. Lin, H. Zhang, V. Sekar, and G. Min, “Inside
the bird’s nest: Measurements of large-scale live vod from the 2008 olympics,” in
Proc. of ACM IMC, 2009.

[67] M. Ghasemi, P. Kanuparthy, A. Mansy, T. Benson, and J. Rexford, “Performance
characterization of a commercial video streaming service,” in Proc. of ACM IMC,
2016.

[68] J. Erman, A. Gerber, K. K. Ramakrishnan, S. Sen, and O. Spatscheck, “Over the
top video: The gorilla in cellular networks,” in Proc. of ACM IMC, 2011.

[69] T. Mangla, E. Halepovic, R. Jana, K.-W. Hwang, M. Platania, M. Ammar, and E.
Zegura, “VideoNOC: Assessing Video QoE for Network Operators using Passive
Measurements,” in Proc. of ACM MMSys, 2018.

[70] P. Casas, B. Gardlo, R. Schatz, and M. Mellia, “An educated guess on qoe in opera-
tional networks through large-scale measurements,” in Proc. of ACM Internet-QoE,
2016.

[71] D. D. Vleeschauwer, H. Viswanathan, A. Beck, S. Benno, G. Li, and R. Miller,
“Optimization of HTTP adaptive streaming over mobile cellular networks,” in Proc. of
IEEE INFOCOM, 2013.

[72] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang, “Devel-
oping a predictive model of quality of experience for internet video,” in Proc. of
ACM SIGCOMM, 2013.

[73] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, “What happens
when HTTP adaptive streaming players compete for bandwidth?” In Proc. of ACM
NOSSDAV, 2012.

[74] Video QoE metrics, https://mux.com/blog/the-four-elements-
of-video-performance/, 2018.

[75] A. E. Essaili, D. Schroeder, E. Steinbach, D. Staehle, and M. Shehada, “QoE-based
traffic and resource management for adaptive HTTP video delivery in LTE,” IEEE
TCSVT, 2015.

[76] A. Hintz, “Fingerprinting websites using traffic analysis,” in PET, 2003.

101

https://mux.com/blog/the-four-elements-of-video-performance/
https://mux.com/blog/the-four-elements-of-video-performance/

[77] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Video stream-
ing using a location-based bandwidth-lookup service for bitrate planning,” ACM
TOMCCAP, 2011.

[78] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen,
and F. De Turck, “HTTP/2-Based Adaptive Streaming of HEVC Video Over 4G/LTE
Networks,” IEEE Comm. Letters, 2016.

[79] FCC dataset, https://www.fcc.gov/measuring-broadband-america,
2017.

[80] Scikit: Python library, scikit-learn.org/stable, 2018.

[81] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Syn-
thetic Minority Over-sampling Technique,” Journal of artificial intelligence re-
search, 2002.

[82] V. Krishnamoorthi, N. Carlsson, and E. Halepovic, “Slow but steady: Cap-based
client-network interaction for improved streaming experience,” in Proceedings of
the IEEE/ACM International Symposium on Quality of Service (IEEE/ACM IWQoS),
2018.

[83] ECOMP, https://about.att.com/content/dam/snrdocs/ecomp.
pdf, 2018.

[84] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure Trans-
port,” Tech. Rep. IETF draft-ietf-quic-transport-16.

[85] M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer protocol version 2 (HTTP/2),”
Tech. Rep., 2015.

[86] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Stream-based machine learn-
ing for real-time QoE analysis of encrypted video streaming traffic,” in Proc. of
IEEE ICIN, 2019.

[87] M. Yu, “Network telemetry: Towards a top-down approach,” Proc. of ACM SIG-
COMM CCR, 2019.

[88] X. Xu, J. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govindan, “Investi-
gating transparent web proxies in cellular networks,” in Proc. PAM, 2015.

[89] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story of middleboxes
in cellular networks,” in Proc. of ACM SIGCOMM, 2011.

[90] Squid: Optimising web delivery, http://www.squid-cache.org/, 2017.

102

https://www.fcc.gov/measuring-broadband-america
scikit-learn.org/stable
https://about.att.com/content/dam/snrdocs/ecomp.pdf
https://about.att.com/content/dam/snrdocs/ecomp.pdf
http://www.squid-cache.org/

[91] M. Trevisan, I. Drago, and M. Mellia, “PAIN: A Passive Web Speed Indicator for
ISPs,” in Proc. of ACM Internet QoE, 2017.

[92] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-Wesley
Longman Publishing Co., Inc., 1998.

[93] 3GPP. (2017). Key Performance Indicators (KPI) for Evolved Universal Terrestrial
Radio Access Network (E-UTRAN).

[94] B. Claise, Cisco Systems NetFlow Services Export Version 9, IETF RFC 5246,
2004.

[95] I. N. Bermudez, M. Mellia, M. M. Munafo, R. Keralapura, and A. Nucci, “DNS
to the rescue: Discerning content and services in a tangled web,” in Proc. of ACM
IMC, 2012.

[96] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk, “Gigascope: A stream
database for network applications,” in Proc. of ACM SIGMOD, 2003.

[97] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with opens-
ketch,” in NSDI, 2013.

[98] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and W. Willinger,
“Sonata: Query-driven streaming network telemetry,” in SIGCOMM, 2018.

[99] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on
concept drift adaptation,” ACM computing surveys (CSUR), 2014.

[100] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, 2009.

103

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Introduction
	Primary Contributions
	Inference for unencrypted video traffic
	Inference for encrypted video traffic
	Inference using coarse-grained network data

	Background and Related Work
	Internet video
	Streaming protocols
	Video QoE

	Related work on QoE estimation using network data
	ML-based approaches
	SM-based QoE inference approaches
	Scalability of inference approaches

	Video traffic classification
	QoE-based network management
	Video performance characterization

	MIMIC: QoE inference for unencrypted video
	Introduction
	Methodology
	Passive Measurements
	Estimating QoE metrics
	Ground Truth

	Evaluation
	Evaluation using controlled experiments
	Evaluation using large-scale real network data
	Additional metrics estimated from network data

	Measurement study
	Handling encrypted video
	Insights into relative video usage
	Insights into video service design
	Impact of mobility and demand

	Summary

	eMIMIC: QoE inference for encrypted video
	Introduction
	Background and Design Requirements
	QoE inference methods
	Design Requirements

	Methodology
	Chunked video delivery in HAS
	Challenges in designing eMIMIC
	QoE metrics inference

	Evaluation
	Experimental Setup
	Session reconstruction accuracy
	Media type classification accuracy
	QoE inference accuracy
	Comparison with ML-based approach
	QoE inference accuracy for a Live service
	Real-time QoE inference

	Discussion and Future work
	Scalability
	QoE inference for new protocols
	Impact of user interaction

	Conclusion

	Inference using coarse-grained data
	Introduction
	Target QoE and Network data
	Target QoE metric
	Network data

	Methodology
	Evaluation
	Data collection
	Results

	Discussion
	Conclusion and Future Work

	Summary of contributions and Future Work
	Bringing it together
	Future Work

	References

