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SUMMARY

This dissertation consists of three distinct logistical topics, unified by a focus on the

intelligent design of last mile logistical systems at a tactical level. The three design prob-

lems all arise within package delivery supply chains, though the mathematical models and

solution techniques developed in these studies can be applied to other logistics systems.

We propose models that do not attempt to capture granular minute by minute operational

decision making, but rather, system behavior on average so that we may approximate the

impact of various design choices.

In Chapter 2, we study tactical models for the design of same-day delivery (SDD) sys-

tems. While previous literature includes operational models to study SDD, they tend to

be detailed, complex, and computationally difficult to solve. Thus, such models may not

provide any insight into tactical SDD design variables and their impact on the average per-

formance of the system. We propose a simplified vehicle dispatching model that captures

the average behavior of an SDD system from a single depot location by utilizing contin-

uous approximation techniques. We analyze the structure of vehicle dispatching policies

given by our model for various families of problem instances and develop techniques to

find optimal dispatching policies that require only simple computations. Our models can

help answer various tactical design questions including how to select a fleet size, determine

an order cutoff time, and combine SDD and overnight order delivery operations.

In Chapter 3, we study the tactical optimization of SDD systems under the assumption

that service regions are allowed to vary over the course of each day. In most existing

studies of last mile logistics problems, service regions are assumed to be static. Service

regions which are designed too small or cutoff SDD availability too soon may potentially

lose SDD market share, while regions which are designed too large or accept orders too

late may result in costly operations or failed deliveries, resulting in a loss of customer

goodwill. We use a continuous approximation approach to capture average system behavior

xiv



and derive optimal dynamic service region areas and tactical vehicle dispatching policies

which maximize the expected number of SDD orders served per day. Furthermore, we

compare such designs to fixed service region designs or capacitated service region designs.

In Chapter 4, we introduce the concept of cycle time considering capacitated vehicle

routing problems, which are motivated by the desire to decrease the average time packages

spent within a delivery network. Traditional vehicle routing models focus on the resource

usage of the system whereas our models instead consider the impact of routing policies on

the units being served. We explicitly consider pre-routing waiting times at a depot, total

demand-weighted accumulated routing times, vehicle capacity constraints, and designing

repeatable delivery routes in our models. We present two set partitioning formulations for

such problems and derive efficient solution techniques so that the impact of various design

parameters can be assessed.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

As a population, we have become increasingly reliant on the e-commerce industry. In 2016,

the Unites States saw year over year annual retail sales grow by an estimated 2.76%, while

electronic shopping by itself grew by 12.40% [1]. More recently, changes in travel behav-

ior due to the COVID-19 pandemic [2, 3] have accelerated this growth even further: total

e-retail volume in the U.S. between April 2020 and March 2021 surpassed $817 billion,

representing an increase of over 30% from the prior year [4, 5]. Not only does the de-

mand for electronic shopping continue to grow at staggering rates, the last mile fulfillment

systems which support this growth also continue to progress.

In the last decade, we have started to see a rapid movement into the next-day and same-

day delivery (SDD) space. As a service offering, SDD allows e-commerce firms to directly

compete with brick-and-mortar retail by providing the customer with near-instant gratifica-

tion. Amazon, one of the current SDD industry leaders, began offering an SDD fulfillment

option in October 2009 across seven major U.S. cities [6]. By November 2018, Ama-

zon had grown to offering the service to over 8,000 cities and towns [7]. Another recent

trend in last mile supply chains is for service providers to consider more service orientated

constraints and objectives such as fairness considerations for service or decreasing aver-

age time to receive services. A recent survey suggests that 82% of companies believe that

customer retention is cheaper than customer acquisition [8] and a study from the Harvard

Business School expresses that increasing customer retention rates by 5% can increases

profits by over 25% [9]. Overall, both retailers and the customers continue to evolve their

mindset regarding last mile supply chains.

1



While industry leaders in e-commerce and consumers have started to pay more atten-

tion to what is offered in the last mile space, academics have began to study so-called

“operational” models which attempt to aid in the day to day decision making of a business

for these systems. For example, managing an SDD system is potentially problematic for

retailers with already thin profit margins. SDD systems inherit and exacerbate many of the

issues faced by more traditional two-day or next-day last mile logistics systems, including

tight deadlines, low order volumes, and a high level of order variability and dynamism.

It is not surprising that the logistics research community over the past few years had pro-

posed and studied operational policies for distribution systems using a variety of models

and assumptions, e.g. [10, 11, 12, 13, 14, 15, 16]. These works seek to optimize day-to-day

operations, including vehicle routing and order acceptance mechanisms. While these stud-

ies are paramount to understanding how to efficiently manage a pre-defined system, they

do not focus on optimally designing aspects of the system topology itself.

In contrast, the logistics research community has not focused its analysis on the tactical

design decisions (i.e., regarding decisions which are made and implemented every few

weeks or months) important for last-mile distribution: How large should the vehicle fleet

be? How late in the day should services be offered to customers? How large should the

service area be? Is there a more customer-centric method for pricing a delivery tour rather

by cost or completion time alone? To our knowledge, no papers in the literature address

these and other important questions.

1.2 Objectives

The primary focus of this dissertation is to aid in the tactical level decision making that

goes into designing and developing of various last mile logistical systems. Our research

objectives are as follows:

(1) To produce models of SDD systems which capture system behavior on an aggregate

level.
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(2) To illustrate that our SDD models retain a high level of fidelity, so that they be used

for their intended purposes.

(3) To study the effects of various tactical design parameters on SDD systems.

(4) To show value in a novel service-orientated last mile system, where the average time

packages spend in the network is minimized.

(5) To model such service-orientated systems so that their design considerations can be

easily compared and contrasted.

In this first chapter we started by motivating the need for intelligently designed last mile

logistics systems. Statistics from general e-commerce growth to specific fulfillment option

expansion were given and discussed. The primary research objectives of the dissertation

were stated, which are now followed by the specific chapter by chapter contributions which

work towards the completion of these objectives.

Chapter 2 introduces the concept of continuous approximations in SDD modeling in

order to simplify various operational decisions. While some design parameters remain

fixed for the specific use-cases presented in the chapter, the use of such approximations

for SDD modeling are to our understanding the first of their kind. The chapter focuses

on a few families problem instances and solves the associated models to optimality via

underlying structured dispatching policies. Such results lead to readily accessible system

design comparisons. A computational section demonstrates the power and accuracy of such

models.

Chapter 3 dives deeper into the modeling of SDD system design by studying the effects

of time-varying service regions and variable order cutoff times. Results of the previous

chapter are leveraged into the tactical modeling of these systems, which is most useful to

simplify the otherwise complicated granular decision making that such systems require.

The pros and cons of being able to dynamically change a service region throughout a day

are studied. Various other consequences from our models are observed and discussed.
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Chapter 4 introduces a novel objective function for evaluating repeatable dispatches for

vehicle routing problems. Unlike existing objectives and constraints which are resource or

cost minimizing, the systems presented in this chapter are concerned with the effects on the

delivery units themselves. The primary motivation for this work is to minimize the total

time units spend in a delivery network. The associated models are formulated with tactical

design in mind, as they can be readily compared and contrasted for a variety of design

considerations.

Chapter 5 finishes the dissertation with a summary of contributions and concluding

remarks, including possible future research opportunities.

1.3 Contributions

1.3.1 Chapter 2: Tactical Design of Same-Day Delivery Systems

We consider the following to be our primary contributions from Chapter 2:

(1) We propose a simple model for SDD dispatching that captures aggregate SDD system

behavior by leveraging the elegant structure of continuous approximations. To our

knowledge, this is the first such use of this methodology in SDD applications.

(2) We use the dispatching model to analyze two important operational cases for SDD

fleets. The first case is when a single vehicle is assigned to a service area and is

dispatched multiple times during the operating day, and the second case is when the

fleet is large enough that each vehicle is dispatched once per day. We characterize

the structure of optimal dispatching policies for these two cases using our model, and

show that the optimal policies can be determined using very simple computational

techniques, such as finding the roots of equations with single unknowns. Although

the case in which multiple vehicles must make multiple dispatches is significantly

more difficult to optimize, we propose a heuristic policy for this case with a worst-

case performance guarantee.
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(3) We use the simple dispatching approximation model and the optimal policies that re-

sult to answer various tactical system design questions, including fleet sizing, length

of service window, and whether SDD orders should be combined with overnight

orders. In all cases, our conclusions rely on simple and transparent analytical proper-

ties. The model predictions are validated in a computational study against a detailed

operational model using realistic data.

1.3.2 Chapter 3: Time-Varying Service Regions in Same-Day Delivery

We consider the following to be our primary contributions from Chapter 3:

(1) Using continuous approximations on order arrivals and vehicle routing times, we

propose a mathematical optimization model for maximizing order quantity served

when the service region is allowed to vary between vehicle dispatches. The decision

space for the model includes choosing the order accumulation time between succes-

sive dispatches as well as determining the size of time-varying service regions from

which orders accrue.

(2) We isolate and perform an in-depth theoretical analysis for a few important SDD

system variations. Specifically, we study a setting in which multiple vehicles each

dispatch once per day to analyze the marginal benefits of increasing fleet size. We

also study a setting in which one vehicle dispatches multiple times per day to analyze

the marginal benefits of re-using a particular vehicle for multiple dispatches. We use

our theoretical results to design efficient solution procedures.

(3) We study the quantifiable effects of allowing time-varying service regions compared

to traditional designs which use a fixed service region.

(4) We conduct various computational experiments using a set of realistic modeling pa-

rameters to better understand the implications of our tactical design model for retail-

ers in a realistic setting.
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1.3.3 Chapter 4: Cycle Time Considerations for Capacitated Vehicle Routing Problems

We consider the following to be our primary contributions from Chapter 4:

(1) We formulate two novel VRPs with cycle time considerations. We focus our efforts

on package delivery logistics stemming from a single depot node leveraging a fleet of

capacitated service vehicles. Using a set-partitioning formulation we construct our

so-called “Phase 1” problem, where we determine the minimal fleet size necessary to

satisfy package demand over time. Then we formulate our “Phase 2” model which

minimizes package cycle time dependent on a given fleet size parameter.

(2) We prove and subsequently discuss a variety of key theoretical insights into our mod-

els. Two of our derived theorems quantify the impact of fleet sizing on any given

routing tour, while a third property analyzes the importance of pre-processing vary-

ing permutations of route stops for a given subset of demand nodes.

(3) We discuss a methodology for column generation for our CTC-CVRPs. Such pro-

cedures can be used to derive LP relaxation bounds, in the optimal solving of IP

solutions via branch-price-and-cut methods, and for heuristical improvements on top

of existing IP solutions.

(4) Lastly, we illustrate some of our findings with a set of computational exercises in an

attempt to demonstrate the utility and flexibility of our novel models.
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CHAPTER 2

TACTICAL DESIGN OF SAME-DAY DELIVERY SYSTEMS

2.1 Introduction

Total annual retail sales in the United States grew by an estimated 2.76% from 2015 to

2016, in part via electronic shopping, which increased by 12.40% [1]. Within the growing

space of e-commerce, same-day delivery (SDD) services are commonly offered by large

retailers and logistics providers. A survey of over 500 North American retailers found that

51% claimed to provide SDD fulfillment options in 2017, up from the 16% reported in 2016

[17]. Amazon, one of the current SDD industry leaders, began offering an SDD fulfillment

option in October 2009 across seven major U.S. cities [6]. By April 2016, Amazon offered

the service to over 1,000 cities and towns, a figure which rose to over 8,000 by November

2018 [18, 7]. These statistics highlight recent demand increases in the e-commerce space,

as well as the adoption of SDD systems by many retailers.

Managing an SDD system is potentially problematic for retailers with already thin profit

margins. SDD systems inherit and exacerbate many of the issues faced by more traditional

two-day or next-day last mile logistics systems, including tight deadlines, low order vol-

umes, and a high level of order variability and dynamism; in general, the uncertainty in-

creases and the time to react decreases [11, 12]. Therefore, dispatching and routing orders

may be costly and inefficient if not planned carefully.

Like more traditional e-retail delivery services, SDD requires two core logistics pro-

cesses: order management at the stocking location, including receiving, picking, and pack-

ing; and order distribution from the stocking location to customer delivery addresses. We

focus here on the second of these processes. Order distribution requires operational deci-

sions, such as when to dispatch a delivery vehicle (timing), and which subset of awaiting
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customers it will serve (composition). There are clear trade-offs between the timing and

composition of SDD dispatches. In some cases, it may be best for a delivery vehicle to

wait as long as possible at the stocking location, allowing the accumulation of orders and

greater routing efficiency upon dispatch. Alternatively, shorter, more time-inefficient trips

could be made in order to reduce the workload within the system, leaving more flexibility

to serve orders later in the service day. Such decisions are made numerous times, across

a fleet of vehicles, during each service day. Even when the orders to be loaded onto each

vehicle for a dispatch are known, deciding the sequence in which to visit delivery locations

is a traveling salesman problem (TSP) with possible side constraints; the problem of or-

der assignment and routing in e-commerce has only recently attracted attention from the

research community, e.g. [19]. Additionally for SDD, retailers often constrain themselves

to serve all SDD demand in a given service day, and thus restrict the latest possible time

SDD orders can be placed [20, 21]. These order cutoff times can be static or determined

dynamically.

Over the past few years, the logistics research community has proposed and studied op-

erational policies for SDD distribution systems using a variety of models and assumptions,

e.g. [10, 11, 12, 15, 16]. The models considered in the literature to date typically assume

a fixed SDD system design, including service area, delivery vehicle fleet size, service time

window, etc., and then perform a detailed analysis, optimization and/or simulation of oper-

ating policies.

In contrast, the logistics research community has not focused its analysis on the tacti-

cal design decisions important for SDD distribution: How large should the SDD delivery

vehicle fleet be? How late in the day should SDD service be offered to customers? How

large should the service area be? To our knowledge, no papers in the literature address

these and other important questions, and our goal is to offer a first attempt. While detailed

operational models can in principle offer some insights about such tactical decisions, their

granularity implies significant complexity, which in turn renders tactical analysis difficult
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and less transparent – the models have “too many moving parts”. One goal of this chapter

is to develop simplified models of operational decisions while maintaining fidelity at the

aggregate level; we propose models that do not attempt to capture each order realization

and operational decision, but rather to capture the system behavior “on average” so that we

may approximate the impact of various design choices on day-to-day operations.

We develop a distribution modeling approach for a single SDD stocking location or

dispatch facility, where orders are packed for last-mile delivery and dispatched on delivery

vehicles. As in most e-retail settings, we assume orders are customer-specific and cannot be

packed or dispatched preemptively, but rather only after they are placed. We also assume

a common delivery deadline, e.g. the end of the business day, rather than order-specific

deadlines more common in food delivery services [22]. Since SDD systems face tight

delivery deadlines and comparatively low order volume, time (not vehicle capacity) tends

to be the limiting resource and one of the primary constraints in our models. We initially

assume uncapacitated vehicles, and later show that our results extend to the capacitated

case with only slight modifications.

To build a simplified SDD dispatch model that still accurately captures system perfor-

mance, we use a continuous approximation approach in which the expected durations of

vehicle routing tours are approximated using a concave, increasing function of the number

of orders served. The use of such approximations is well established in logistics [23], with

some canonical results dating back several decades [24, 25, 26]. When order locations are

randomly distributed in the service region according to a continuous distribution, contin-

uous approximations are known to be quite accurate. Such approximations have recently

been successfully applied in a last-mile operational context [14], and can also be calibrated

with empirical observations (see, e.g., [27]). We provide our own computational validation

of the approximation model and dispatching policies we develop, and we show that they

are remarkably accurate when compared to much more detailed operational models.

Furthermore, although our model is motivated by SDD, our main results rely only on
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the concavity and monotonicity of the expected dispatch time required to serve a number

of orders. Our model could therefore also have applications in other areas where expected

processing time is concave and increasing, including batched queueing and warehousing

systems, see e.g. [28].

The remainder of the chapter is organized as follows. Section 2.1 concludes with a

literature review. In Section 2.2 we formulate a continuous approximation model of vehicle

dispatch operations from a single stocking location and justify our model assumptions. We

then describe optimal dispatch policies for specific instances of the proposed model in

Section 2.3. Section 2.4 provides a managerial analysis of tactical SDD system design

using our model and its solutions. We detail a realistic computational experiment using

the model and policies in Section 2.5, and conclude in Section 2.6. An appendix contains

material omitted from the main body.

2.1.1 Literature Review

SDD models can be classified within the rich family of vehicle routing problems (VRPs).

The defining features of an SDD model include stochastic order arrivals, order cutoff times

and/or a delivery deadline, and perhaps most salient, the overlap in time of dispatching and

order arrivals. Examples of model objectives are maximizing expected orders served in a

service day, minimizing penalties from undelivered orders, and/or minimizing total routing

distance or time given that most or all orders are served. For these reasons, we reference the

VRP with probabilistic customer arrivals as studied in [29, 30, 31]. Additionally, dynamic

vehicle routing problems such as [32, 13] broadly encompass SDD modeling.

We now survey some operational SDD models from the literature. One such prob-

lem is the dynamic dispatch waves problem (DDWP) [11, 12]. The DDWP discretizes

the dispatch decision epochs, or “waves”, for an operator managing an SDD vehicle fleet.

Customer orders arrive according to a known stochastic process and must be served by the

end of the service day, or the operator will receive an order-based penalty. Additionally,
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all delivery vehicles are constrained to return back to the depot before the end of the ser-

vice day. The objective of the DDWP is to minimize the sum of expected routing cost

and penalty cost. In [12] a deterministic variant of the DDWP is solved, where order ar-

rival locations and times are known exactly, over a 1-dimensional service region using the

optimal policy structure found in a dynamic programming formulation. In [11] the same

authors model the DDWP in 2-dimensions using an integer-programming approach to solve

a deterministic variant. Using these deterministic solutions, the authors compute a priori

dispatch policies for stochastic variants. These policies are further expanded to dynamic

policies in their respective papers. In [12], optimal dispatch policies for an SDD variant

(one-dimensional service region, one vehicle) were found to have the property that once

the first dispatch occurred, the vehicle never waited at the depot again. Additionally, the

durations of successive dispatches are decreasing.

Another SDD model found in literature is the same-day delivery problem for online

purchases (SDDP) [16]. The authors provide a general framework for SDD modeling, us-

ing a fleet of delivery vehicles of known size, a fixed cutoff time for SDD orders, a known

arrival rate and distribution of orders, and a service time and a delivery time window on

each order. Like the DDWP, all vehicles operate from a single depot. Unlike the DDWP,

the objective of the SDDP is to maximize the expected number of SDD requests that are

fulfilled in a service day. A model of the SDDP as a Markov decision process (MDP) is

proposed, and dispatch policies are found via a sample-scenario approach with orienteering

subproblems. The authors discuss delaying delivery vehicles at the depot for as long as pos-

sible without violating delivery time-window constraints or altering vehicle return times.

Such properties were shown to exist in optimal dispatching solutions, allowing restriction

of the search space.

The DDWP and the SDDP, as well as other works in the literature [33, 34, 35, 15], tend

to study the daily operations of SDD logistics, while assuming implicit or explicit knowl-

edge of tactical system design features. It is possible to use these more complicated models
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to gain tactical-level insight. In [33] the author performs an analysis of the relationship

between fleet size and delivery capacity of the system. The authors in [16] observe how

the number of fulfilled orders can increase with fleet size by re-solving their operational

SDD model multiple times. Such procedures can be useful for determining managerial

decisions. However, they require repeatedly solving complex models, often with heuris-

tic methods that do not guarantee optimal solutions; in contrast, our approach will be to

exactly optimize a simplified approximation model.

We use continuous approximations to model an SDD system. Specifically, we assume

orders arrive at a constant rate, and allow a non-integer number of orders to be served

in a dispatch. We approximate the expected time of a dispatch’s duration using a non-

decreasing, concave function of the number of orders served; a typical example would be

the square root of the number of orders, scaled by an appropriate constant [24]. For a recent

survey on continuous approximation models in freight logistics, see [23]. The use of such

approximations in the field goes back to the BHH theorem [24], a formula for the expected

length of a TSP tour as a function of the number of stops visited when locations are drawn

from a continuous distribution over the service region. [25, 26] then expanded upon this

approximation in an analysis of vehicle routing problems with specified dispatch depots

for logistics distribution and collection problems, and studied how different zone shapes

affect tour lengths and how to select best zone shapes. The work in [27] considers similar

approximation ideas for the Held-Karp TSP bound, and [36] calculates empirical constants

for TSP length as a function of the number of stops in a tour; see also [37]. Although our

study is the first to apply continuous approximations in SDD, there are other applications of

these techniques in urban logistics. For example, the work in [38] considers the efficiency

of urban commercial vehicles using continuous approximations, and the techniques are

used to study drones in last-mile delivery in [39]. Furthermore, a continuous approxima-

tion approach is used in [40] to partition a service region for vehicle routing. Operational

models for urban last-mile delivery are considered in [14] and continuous approximations
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are deployed within an approximate dynamic programming framework for optimization.

Continuous approximations are frequently applied in facility location; see [41] for a recent

example with applications in SDD and the last mile.

2.2 Model Formulation

We consider an SDD system in which a single depot serves as a stocking location, and

its vehicle fleet serves all orders placed from a defined service region. Orders accumulate

throughout the service region over the course of the day, and the dispatcher must ensure

that all orders are served by the end of the service day at minimum cost. We next formally

define our problem by describing the relevant notation and model elements.

Service Day: The first time any vehicle can leave the depot is time t = 0, and the end of

the service day is t = T . For convenience, we refer to the service day as having T

units of time.

Customer Orders and Geography: Demand for SDD in the service region continuously

accumulates over time at a constant rate of λ orders per time unit. This demand is

served by a fleet of m vehicles, each departing from the single depot. For conve-

nience, we assume without loss of generality that λ = 1 and all other parameters are

appropriately scaled.

Order Cutoff Time: Customer orders become ready for dispatch starting at time t = 0

and continue until time t = N < T in the service day. The service day begins with no

orders requiring delivery, and thus the total number of orders that accumulate over

the day is λN = N. Depending on the context, we may refer to N as the order cutoff

time or the number of orders to serve. We also discuss the problem extension when

an initial set of orders is ready at the start of the service day.

Vehicle Restrictions: All vehicles must return to the depot by time t = T . We do not

initially constrain the capacity of any vehicle, nor do we restrict any vehicle to carry
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an integer number of orders. Vehicles may be dispatched more than once during the

service day. We later discuss the model extension with capacitated vehicles.

Dispatch Time Function: The time it takes for a vehicle to serve n ∈ R≥0 orders and re-

turn to the depot is given by a function f :R≥0→R≥0 that is concave and increasing.

This property indicates that serving more orders should take more time, but that there

will be a gain in marginal time efficiencies when consolidating orders. An example

dispatch time function is of the form f (n) = a+ bn+ c
√

n. This function includes

a constant setup time at the depot, a service time per order, and a BHH routing time

[24] between orders; [27] showed computationally that these approximations work

well in practice even for small order numbers, assuming order locations are indepen-

dently drawn from a continuous distribution over the service region.

The objective of our model is to choose a set of feasible dispatches that serves all of the

orders while minimizing total dispatch time incurred by all vehicles. We define the d-th

dispatch as a tuple (td,qd, id), where td indicates the time when vehicle id leaves the depot

with an order quantity, qd . We assume without loss of generality that dispatches are ordered

by time of dispatch, then if necessary by vehicle index. A set of dispatches {(td,qd, id)}D
d=1

is feasible for our model if the following conditions are satisfied:

D

∑
d=1

qd = N, (2.1a)

qd ≥ 0 ∀d, (2.1b)

td + f (qd)≤ T ∀d, (2.1c)

td + f (qd)≤ tδ ∀d,δ s.t. id = iδ , d < δ , (2.1d)

td ≥ 0 ∀d, (2.1e)

d

∑
δ=1

qδ ≤ td ∀d. (2.1f)

Our problem is to choose dispatches that minimize ∑
D
d=1 f (qd), subject to (2.1a)-(2.1f),
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over all D≥ 1. Constraints (2.1a)-(2.1b) guarantee that all dispatches serve a non-negative

order number, and that these sum to the total number of orders. Constraint (2.1c) requires

all vehicles to return to the depot by the end of the service day. Constraint (2.1d) guarantees

that any vehicle performs one dispatch at a time. Constraint (2.1e) ensures the vehicles

dispatch only after the service day begins. Finally, constraint (2.1f) guarantees that orders

are served only after they realize.

2.3 Optimal Policies

We initially focus on two important families of instances of our SDD model, the many-

vehicle case and the single-vehicle case. In the former, we assume any number of vehicles

can be added to the delivery fleet at negligible cost; this situation applies, for example,

when we can allocate vehicles for SDD from other resources. In the latter, we focus on the

simplest case in which the fleet is constrained, as this case is already of significant interest

operationally [11, 12]. For the general case with a finite fleet greater than one, we leverage

these results to construct a heuristic dispatching policy that combines the policies used at

the two extremes. Table 2.1 summarizes results in this section, including the type of result

we obtain and additional conditions required for the result to hold.

Table 2.1: Summary of Section 2.3 results.

Section Fleet Result Additional Conditions?

§2.3.1 unlimited optimal policy no

§2.3.2 single vehicle optimal policy sufficient processing speed

sufficient gap time

minimum dispatch size

§2.3.3 finite heuristic policy with single-vehicle conditions

approximation guarantee f (n) = bn+ c
√

n
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2.3.1 Many Vehicles

We first assume the fleet consists of as many vehicles as we like. Consider the following

dispatch policy, and the accompanying theorem.

Many-Vehicle Policy (MVP) Starting at time t = 0, dispatch a delivery vehicle at the

moment when it can take all of the realized orders waiting at the depot and return at exactly

time t = T . Repeat this process until only a single vehicle is needed to deliver all remaining

orders and return to the depot before the end of the service day. Dispatch this last vehicle

at time t = N.

Theorem 1. The MVP is an optimal dispatch policy for the many-vehicle case. Further-

more, if the number of vehicles used by MVP is m∗, the total dispatch time used by this

policy provides a lower bound for the model objective with fleet size m < m∗.

Proof. See Appendix A.1.

The optimal times given by the policy are easy to solve for in practice, since all that is

required is to solve equations of the form, t + f (t) = C, for different values of C. If more

than one vehicle is required, then t1+ f (t1) = T , and if more than two vehicles are required

then t2 + f (t2− t1) = T , and so on. For problems with realistic parameters, computational

results show that the MVP will often require a reasonably sized fleet. Figure 2.1 depicts an

example MVP dispatch plan with four vehicles. Each curved arc corresponds to a vehicle

dispatch, while the preceding horizontal straight line represents the time in which that

dispatch’s orders accumulate while the vehicle waits. Line styles are alternated for visual

clarity.
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Figure 2.1: Visual representation of an MVP requiring four vehicles.

Example 1. A retailer provides SDD service for an 8 mile by 8 mile service region, with an

average of 75 orders placed over a 10-hour cutoff time. The retailer operates over a 12-hour

service day and has an unrestricted fleet size. We scale time to 8 minutes per time unit, and

the model parameters are set to N = 75 and T = 90. Additionally, suppose that the dispatch

time function is f (n) = 2.15
√

n+ .13n, roughly equivalent to a routing time approximation

(Manhattan distances [27], with vehicles traveling at 25 miles per hour), plus a service time

of 1 minute per order. The MVP returns the optimal solution,

t1 = 64.38, q1 = 64.38, i1 = 1,

t2 = 75, q2 = 10.62, i2 = 2,

which uses two vehicles and 272.06 total minutes of dispatch time.

2.3.2 One Vehicle

Now assume the fleet consists of a single delivery vehicle. If N + f (N) ≤ T , this vehicle

can (optimally) wait until time t = N to dispatch once with all N orders. More generally,

we use the following lemma in our analysis. Qualitatively, this lemma suggests that given

a fixed amount of orders to be served, it would be better to split the orders between two

dispatches as unevenly as possible to maximize routing efficiencies.
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Lemma 2. For any 0≤ a≤ b≤ Y , the optimal solution of

min
a≤y≤b

{ f (y)+ f (Y − y)}

is y∗ = a if a≤ Y −b, and y∗ = b otherwise.

Proof. This result follows directly from the concavity of f .

Before stating our main results for a single vehicle, we must address a pathology arising

from Lemma 2. Consider an instance with N = 9,T = 11.99, f (n) =
√

n; clearly, a single

dispatch is infeasible, since the vehicle would return to the depot too late by 0.01 time

units. It can be shown that any feasible two-dispatch policy satisfies 0.06 ≤ q1 ≤ 8.25

and q2 = 9− q1. By the lemma, the best solution using two dispatches is given by q∗1 =

0.06. Furthermore, this policy is in fact optimal for a single vehicle over any number of

dispatches. There are two characteristics of this optimal policy worth noting. First, the

first time of dispatch can be adjusted to any time in the range of q∗1 ≤ t∗1 ≤ N− f (q∗1), while

t∗2 =N. Second, the first dispatch size is very small, which is likely to be unreasonable since

the square root approximation of routing time tends to be inaccurate for small numbers.

This example shows that the model requires additional assumptions to produce mean-

ingful answers. We now introduce three additional conditions that address these concerns.

Sufficient processing speed: There exists qmin < ∞ such that f (x)≤ x/λ = x, for all x≥

qmin.

Sufficient gap time: The parameters T,N,qmin satisfy T −N ≥ f (2qmin).

Minimum dispatch size: Any feasible solution {(td,qd, id)}D
d=1 satisfies qd ≥ qmin for all

d < D.

The first condition ensures that the system can “keep up” with orders; that is, whenever

the delivery vehicle is dispatched with a large enough quantity, it is guaranteed to arrive
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back at the depot to find a lesser number of unserved orders. The second condition en-

sures that there is enough time between the last order arrival and the end of service day.

Finally, from a modeling perspective, a constraint on the minimum size of a dispatch is

justifiable economically. The last dispatch is not subject to this constraint, since it must

serve all remaining orders, regardless of their number. The sufficient processing speed and

sufficient gap time conditions imply feasibility, including satisfying the minimum dispatch

size condition; the next lemma formalizes this argument.

Lemma 3. An SDD problem instance with a single vehicle and parameters satisfying the

sufficient processing speed and sufficient gap time conditions has a feasible solution satis-

fying the minimum dispatch size constraints.

Proof. See Appendix A.2.

We next state our main results on optimal dispatch policies for a single vehicle.

Theorem 4. A single-vehicle SDD instance satisfying the sufficient processing speed and

sufficient gap time conditions, and with the additional constraints imposed by the minimum

dispatch size condition, has an optimal dispatch policy such that

(C1) each dispatch takes all available unserved orders at the depot at the time of dispatch,

(C2) after the first dispatch, the vehicle never waits at the depot again, and

(C3) if the vehicle is dispatched more than once, the last dispatch arrives back at the depot

exactly at time t = T .

Proof. See Appendix A.3.

Theorem 4 implies that there exists an optimal policy {(t∗d ,q∗d)}D∗
d=1 that can be de-

scribed completely by t∗1 . By (C1), we have q∗1 = λ t∗1 = t∗1 , and then (C2) yields t∗2 =

t∗1 + f (q∗1). Applying this reasoning recursively, q∗2 = λ (t∗2 − t∗1) = t∗2 − t∗1 and so on, con-

tinuing until the last dispatch covers all the remaining orders, leaving at or after time t = N.
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In contrast, the example after Lemma 2 shows that when an instance does not satisfy the

three conditions, the optimal solution need not have the structure outlined in the theorem.

Specifically, the example’s optimal solution does not satisfy at least one of (C1) or (C2).

Algorithmically, we apply Theorem 4 to restrict our search for an optimal policy to

feasible policies that satisfy (C1) and (C2). Among such policies, we search for one that

satisfies (C3) and has a first dispatch time t1 = α as large as possible; (C2) and (C3) guar-

antee that maximizing α is equivalent to minimizing the vehicle’s total dispatch time.

Formally, for positive integers δ , d, let

f 1 := f , f δ (·) := f ( f δ−1(·)), δ ≥ 2, hd(α) := α +
d−1

∑
δ=1

f δ (α).

Intuitively, f δ is the δ -th composition of f , and we use f δ to define hd(α), the number

of orders served by the first d dispatches for a policy satisfying (C1) and (C2) with first

dispatch at time α . If a feasible policy satisfying (C1) and (C2) has a first dispatch at time

α and a total of D≥ 2 dispatches, it serves hD−1(α) orders with its first D−1 dispatches,

while the last dispatch serves the remaining N− hD−1(α) orders, where hD−1(α) ≤ N ≤

hD−1(α)+ f D−1(α) = hD(α). This implies natural bounds on the first dispatch time when

using exactly D dispatches: If we define α1 = N and α2 such that α2 + f (α2) = N, then

all feasible dispatch policies satisfying (C1), (C2) and using exactly two dispatches have a

time of first dispatch in [α2,α1). Generalizing, if we define αD as the unique α satisfying

hD(α) = N, all feasible policies that satisfy (C1), (C2) and use exactly D dispatches have a

time of first dispatch in [αD,αD−1).

Because the αD values are decreasing in D and we want to maximize α , we can itera-

tively search for this time of first dispatch by fixing the policy’s total number of dispatches

D, starting with D = 1. For each D, we attempt to find the largest α ∈ [αD,αD−1) satisfying

hD(α)+ f (N−hD−1(α)) = T . If such an α exists, it must correspond to the first dispatch

time of an optimal policy satisfying (C1), (C2) and (C3); if no such α exists, we increase
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D by one and repeat. Algorithm 1 states this procedure in pseudo-code, and Corollary 5

describes its utility.

Corollary 5. Suppose a single-vehicle SDD instance satisfies the sufficient processing

speed and sufficient gap time conditions, and we impose the additional constraints of the

minimum dispatch size condition. Algorithm 1 determines the time of first dispatch for an

optimal policy satisfying (C1), (C2), and (C3) from Theorem 4.

Proof. See Appendix A.4.

Algorithm 1 Calculating the optimal time of first dispatch in the single-vehicle case.
1: D← 1, α∗← 0

2: if N + f (N)≤ T then

3: α∗← N

4: else

5: while α∗ = 0 do

6: D← D+1

7: A←{α ∈ [αD,αD−1) : hD(α)+ f (N−hD−1(α)) = T}

8: if A 6= /0 then

9: α∗←maxα∈A α

10: end if

11: end while

12: end if

13: return α∗

Example 2. Consider the same instance as in Example 1, that is, N = 75,T = 90, f (n) =

2.15
√

n+ .13n. Now suppose the fleet has a single delivery vehicle, and qmin = 12. This

set of model parameters satisfy the sufficient gap time, and sufficient processing speed
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conditions, so we can use Theorem 4 and our root finding algorithm to compute an optimal

dispatch policy also satisfying the minimal dispatch size condition.

We first set D← 1, and α1← 75. As N + f (N) = 103.37 > 90 = T , a single dispatch

is insufficient and we must consider using two or more dispatches. For two dispatches,

we calculate that α2 = 52.58, and thus consider all policies with two dispatches where

α ∈ [52.58,75). From here we wish to determine if there is an α in this range satisfying

α + f (α)+ f (N−α) = T . Indeed, α = 54.65 solves this expression, and the algorithm

terminates with α∗ = 54.65 and D∗ = 2. The calculated optimal policy is

t1 = 54.65, q1 = 54.65, i1 = 1,

t2 = 77.65, q2 = 20.35, i2 = 1,

with a total dispatch time of 282.74 minutes; see Figure 2.2. By comparing this example

to the previous one, we can see that by decreasing the fleet from two to one vehicles we

would increase the total dispatch time by less than 4% (272.06 minutes to 282.74 minutes).

0 N T
t1 t2

Figure 2.2: Visual representation of optimal dispatch policy for Example 2.

2.3.3 General Fleet Size

We now consider the more complex case in which the fleet is finite but greater than one,

and thus many vehicles may need to be dispatched more than once. Unfortunately, it is

no longer possible to show that optimal policies satisfy simple structural properties in this

case. For example, consider a family of instances where the fleet has two vehicles, but three

dispatches are required to serve the orders feasibly. Depending on the parameters T , N and
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f , it is possible to construct both cases where it is optimal for the vehicle dispatched first to

return before T and to make a second dispatch while the second vehicle is used only once,

but it is also possible to find cases where it is instead optimal for the vehicle dispatched

second to make the additional dispatch.

Although the optimization of this case is significantly more complex, we can leverage

our analysis of the previous cases to construct a heuristic policy, described next.

Hybrid Policy For a fleet with m vehicles, the first m−1 are dispatched according to the

MVP. The final vehicle serves all remaining orders according to the single-vehicle policy

computed with Algorithm 1.

The next result shows that this heuristic policy produces solutions within a worst-case

factor of optimality for an important class of dispatch time functions.

Theorem 6. Assuming the sufficient processing speed and sufficient gap time conditions,

the hybrid policy is feasible, including satisfying the minimum dispatch size condition con-

straints. Furthermore, suppose f (n) = bn+ c
√

n, where b ≥ 0 and c ≥ 0. If the hybrid

policy dispatches the last vehicle Dm times, its total dispatch time is guaranteed to be

within a factor m−1+Dm
√

Dm
m−1+Dm

of the Many-Vehicle Policy’s dispatch time, which is itself a

lower bound for any m-vehicle solution.

Proof. See Appendix A.5.

See Figure 2.3 below for an example of the hybrid policy compared to the MVP.
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0 N T

0 N T
Figure 2.3: In this example, the MVP uses three vehicles. If only two are available, the
hybrid policy stipulates that the first vehicle behaves as in the MVP, while the second
performs an optimal single-vehicle dispatch policy on the remaining orders, which in this
case requires three dispatches.

Example 3. Consider again the problem instance from Examples 1 and 2. The single-

vehicle policy is a special case of the hybrid policy when m = 1 (and thus a single vehicle

must make all dispatches even if the MVP uses multiple vehicles). Because the single-

vehicle policy uses two dispatches in this instance, we conclude from Theorem 6 that its

cost is at most a factor
√

2 ≈ 1.41 larger than the MVP cost. In this case, we know from

direct calculation that this cost difference is much smaller, only around 4%.

The guarantee provided by Theorem 6 improves as m grows, since more of the hybrid

policy’s dispatches exactly mimic what the MVP does; for example, with m= 2 and D2 = 2,

the guarantee improves to (1+2
√

2)/3≈ 1.28.

2.4 Model Applications

The discussion in Examples 1 and 2 demonstrate how our model can be applied for tactical

design, specifically in fleet sizing. We next discuss other potential uses of the model.
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2.4.1 Serving the Entire Region versus Partitioning

Location analysis and customer assignment are important strategic and tactical questions in

logistics, and continuous approximation models have been successfully applied for service

region design, e.g. [40]. We can similarly ask in an SDD context whether partitioning the

service region offers advantages over simply having every vehicle serve the entire region.

Consider a dispatch time function f (n) = a+bn+c
√

n consisting of a setup time at the

depot, a service time per order, and a BHH [24] routing time approximation, which depends

on the size of the service region. Suppose we partition this region into m sub-regions of

equal size, so that the demand arrival rate in each is 1/m; each sub-region would then have

a dispatch time function of the form f̂ (n) = a+ bn+ c
√

n/m, since the area the vehicle

serves is scaled down by a factor of 1/m. At time t = N, if a single vehicle can serve each

sub-region with a single dispatch, the total dispatch time for all vehicles would be

m× f̂ (N/m) = m
(

a+b(N/m)+ c
√

N/m2
)
= am+bN + c

√
N;

the last two terms correspond exactly to the service and routing time a single vehicle would

need to serve all N orders in a single dispatch. Therefore, if the MVP policy uses m∗

vehicles and it is feasible to partition the region into m∗ sub-regions and serve each with

a single dispatch, partitioning is preferable. However, in general, the number of required

vehicles for a partitioning strategy with a single dispatch per vehicle may differ from m∗

and be either larger or smaller.

Example 4. A retailer provides SDD service for an 8 mile by 8 mile service region, with

an average of 75 orders placed over a 10-hour cutoff time. The retailer operates over an 11

hour and 20 minute service day. We scale time to 8 minutes per time unit, and the model

parameters are set to N = 75 and T = 85. Additionally, take the dispatch time function as

f (n) = 1.88+ .25n+ 2.15
√

n, roughly equivalent to a routing time approximation (Man-

hattan distances [27], with vehicles traveling at 25 miles per hour), plus a service time of 2
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minutes per order and a setup time of 15 minutes. The MVP returns the optimal solution

t1 = 53.87, q1 = 53.87, i1 = 1,

t2 = 70.30, q2 = 16.43, i2 = 2,

t3 = 75, q3 = 4.70, i3 = 3,

with 428.37 total minutes of dispatch time. In contrast, the minimum number of vehicles

needed for a partition strategy as described above is five, with each delivering 15 orders in

a total of 374.16 minutes. The manager must then decide whether saving 54.21 minutes per

service day is worth an additional two vehicles in the SDD fleet. We can similarly use our

single-vehicle policy to develop partitioning strategies with a single vehicle serving each

sub-region but performing multiple dispatches.

2.4.2 Orders at the Start of the Service Day

Thus far, our model assumes no orders are ready for dispatch at the start of the service day.

It may be that the SDD system is also required to serve some next-day or overnight orders.

In the model, this translates to a number N′ ≥ 0 of orders that are ready at the start of the

service day.

In the many-vehicle case, the optimal policy is similar to the MVP, with one modifica-

tion. Let Q = f−1(T ), i.e. Q is the unique number satisfying f (Q) = T (the inverse exists

and Q is unique because f is increasing); this number is implicitly a capacity on the number

of orders a vehicle can carry during the service day to remain time-feasible. We can now

define a generalized MVP, which returns an optimal policy when N′ ≥ 0 orders are ready

at the depot at the start of the service day. The proof of this claim is found in the appendix,

A.6.

Generalized MVP At time t = 0, dispatch as many vehicles as possible each carrying

exactly Q orders. The subsequent dispatches are calculated via the MVP.
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If the number of orders available at the start of the day is large, the generalized MVP

may not capture additional opportunities for routing efficiency stemming from directly op-

timizing a vehicle routing problem for these orders; however, such opportunities do not

relate to the SDD system and would rely on more established routing models.

In the single vehicle case, it is possible that a problem instance previously defined by

N,T , and f is still feasible for N′ > 0. Define an augmented problem with N̄ = N′+N,

T̄ = N′+T , and N̄′ = 0. If the solution to this problem has an initial dispatch quantity of

q̄∗1 ≥ N′, then the optimal quantities for the original instance are identical to those of the

augmented one, with dispatch times moved up by N′.

More generally, by relaxing the gap time condition from section 2.3.2, we can solve the

single-vehicle problem for any instance of N′ > 0. Practically, this involves increasing the

gap between the order cutoff time and the end of the service day.

Generalized gap time condition: Parameters T,N,N′,qmin satisfy T−N≥N′+ f (2qmin).

Assume the generalized gap time condition holds for parameters T,N,qmin,N′. As

before, define and solve an augmented problem with N̄ = N′+N, T̄ = N′+T , and N̄′ = 0.

If one dispatch is optimal, it follows that q̄∗1 = N̄ ≥ N′. In the case of a multiple-dispatch

optimal solution, the vehicle will only ever be idle at the depot at the start of the service

day and will be done serving orders exactly at time T̄ . Thus, the total dispatching time is

equal to T̄ − q̄∗1 = T +N′− q̄∗1. Because the original problem over N,N′, and T is feasible,

we know that the total dispatch time for any optimal policy is less than or equal to T units

of time. Additionally, any feasible solution to the original problem can be implemented in

the augmented problem. Therefore the optimal solution to the augmented problem must

use less than or equal to T units of dispatch time. It follows that q̄∗1 ≥ N′. Therefore, in

all cases it is true that q̄∗1 ≥ N′, which implies that the optimal quantities for the original

instance are identical to those of the augmented one, with dispatch times moved up by N′.
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2.4.3 Capacitated Vehicles

Compared to traditional delivery settings, SDD systems operate in an environment with

reduced order volume and much tighter time constraints. Therefore, in many cases the

number of orders that can be delivered while satisfying time constraints is relatively small,

and thus vehicle capacity is not a binding constraint. Nevertheless, there may be situations

in which capacities must also be considered; we next discuss how our results extend to

this case. Extending the notation we use in Section 2.4.2, suppose that each vehicle has

capacity to serve at most Q orders. Consider first the many-vehicle case, and the following

natural extension to the MVP.

Capacitated MVP Compute the MVP; if the first (and largest) dispatch serves Q or fewer

orders, implement the policy. Otherwise, dispatch the first vehicle with Q orders, update T

and N by subtracting Q, and recompute the MVP on the updated instance. Repeat until the

computed MVP is feasible.

Intuitively, the MVP tries to serve as many orders as possible with each successive

dispatch while still having the corresponding vehicle return by the end of the service day.

The capacitated version of the policy does the same, but must also respect the additional

vehicle capacity. As with the Generalized MVP in the previous section, this policy is also

an optimal dispatching policy. The proof of this is identical to that of the Generalized MVP

found in the appendix.

We can implement a similar policy modification in the single-vehicle case, where we

additionally assume Q ≥ qmin. As in the many-vehicle case, Algorithm 1 constructs a

solution in which the first dispatch is the largest; when this dispatch is too large for the

capacity, the following modification replaces it with the maximum possible quantity and

iterates on the remaining, smaller instance.
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Capacitated Single-Vehicle Policy Run Algorithm 1; if α∗≤Q, implement this solution.

Otherwise, update T and N by subtracting Q, and run Algorithm 1 on the smaller instance.

Repeat until α∗≤Q in Algorithm 1. If this process occurs k times before α∗ is feasible, the

solution to the instance has k dispatches of size Q before the dispatches given by Algorithm

1.

As a simple example, suppose N + f (N)≤ T but Q < N ≤ 2Q, i.e. a single dispatch is

time-feasible but capacity-infeasible, and two dispatches suffice (although this is not what

we expect in SDD, the setting serves for illustration purposes). In this case, it is optimal for

the first dispatch to take Q orders, and the second dispatch takes the rest; the two dispatches

can take place consecutively, returning at time T . More generally, we are able to give the

following guarantee.

Corollary 7. Suppose Q≥ 2qmin. The capacitated single-vehicle policy produces an opti-

mal solution to the single-vehicle instance with vehicle capacity Q.

The proof of Theorem 4 can be modified slightly to prove Corollary 7. The only ad-

ditional consideration needed is that each vehicle takes all unserved orders at the depot at

the time of dispatch, up to quantity Q. The requirement Q≥ 2qmin is a technical condition

necessary to use that same proof; however, in practice it is reasonable to expect that the

capacity of a delivery vehicle is at least twice its minimum quantity.

2.4.4 Choosing Order Cutoff Time

Consider again the instance in Example 1. In an optimal solution, the second vehicle has

almost 53 minutes of slack between its earliest possible arrival back to the depot and the

end of the service day T . A system designer could consider either reducing N so the system

requires only one vehicle, or increasing N to serve more orders with this second vehicle and

increase its utilization.

For this discussion, we fix T, f ,qmin and allow N to vary in [0,U ], where U is an upper
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bound chosen by the system manager. We assume that earned revenue from orders served

is proportional to N with constant β , and operating costs are proportional to the dispatch

time of the optimal policy, denoted by g(N). Without loss of generality, we scale β so we

can compare revenue against cost. Suppose the SDD manager wishes to choose a cutoff

time that maximizes system profit as measured by earned revenue minus operating costs.

Equivalently, this cutoff time would also minimize the cost of serving orders that occur

before the cutoff plus the opportunity cost of not serving orders after the cutoff. The profit

maximizing cutoff time is then given by

max
0≤N≤U

π(N) = βN−g(N). (2.2)

First, we analyze the many-vehicle case. Recall that in the MVP, if the solution uses

m vehicles, the first m− 1 return exactly at time T . If the cutoff time is chosen carefully,

the last dispatch also returns precisely at this time. Specifically, let Ni be the cutoff time

at which the MVP uses exactly i vehicles, with all vehicles returning exactly at time T .

Letting, N0 = 0, we have the recursion Ni = Ni−1 + ∆i, where ∆i uniquely solves ∆i +

f (∆i) = T −Ni−1. Define NU as the largest such value such that NU ≤U . The following

theorem leverages these values to search for an optimal cutoff time for (2.2) in the many-

vehicle case.

Theorem 8. In the many-vehicle case, an optimal solution for (2.2) satisfies

N∗ ∈ {N0,N1, . . . ,NU ,U}.

Proof. See Appendix A.7.

Now we analyze the single-vehicle case, where we impose the upper bound U ≤ T −

f (2qmin) on N. Define imax as the number of dispatches in the optimal dispatch policy

when N = U , and suppose imax ≤ 2. Define N̄1 such that for N ∈ (0, N̄1], the optimal

dispatch policy determined via Theorem 4 uses exactly one dispatch.
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Proposition 9. In the single vehicle case, for any U such that 0 ≤U ≤ T − f (2qmin) and

imax ≤ 2, the optimal solution of (2.2) satisfies N∗ ∈ {0, N̄1,U}.

Proof. See Appendix A.8.

The proof for the general case of imax would follow from showing that g(N) is piecewise

concave with breakpoints at each N̄i. We have empirical evidence that this is indeed the case

but have not been able to prove it generally.

We now return to the instance in Examples 1 and 2, and calculate an optimal value for

the cutoff time N.

Example 5. Consider the same instance as in the previous examples with T = 90, f (n) =

2.15
√

n+ .13n, and qmin = 12. Suppose β = 0.80 and profit is given in scaled monetary

units.

For the many-vehicle case, we calculated the first four values of Ni to be N0 = 0,N1 =

64.38,N2 = 79.62, and N3 = 84.57. The associated dispatch times are 0, 25.62, 36.00, and

41.43, which result in profits of π(N0) = 0, π(N1) = 25.88, π(N2) = 27.70, and π(N3) =

26.22. By Theorem 8, the optimal order cutoff time is N∗ = N2, with an optimal dispatch

policy of {(t1 = 64.38,q1 = 64.38, i1 = 1),(t2 = 79.62,q2 = 15.24, i2 = 2)}.

For the single-vehicle case, we let U = T − f (2qmin) = 76.35, and it follows that imax =

2. Note that, N̄1 = 64.38. The associated costs of N∗ ∈ {0, N̄1,U} are 0, 25.62, and 36.04,

which result in profits of π(0) = 0, π(N̄1) = 25.88, and π(U) = 25.38. Thus, the optimal

cutoff time is N∗ = N̄1 with the corresponding policy {(t1 = 64.38,q1 = 64.38, i1 = 1)}.

Figures 2.4 and 2.5 plot π(N) for this instance in the many and single vehicle cases,

respectively.
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Figure 2.4: Profit function with respect to cutoff time, many-vehicle case

Figure 2.5: Profit function with respect to cutoff time, single-vehicle case

2.5 Computational Study

Our SDD planning model uses continuous approximations to preserve simplicity and trans-

parency of analysis, and the previous sections discuss various ways in which the model can

be used to inform managerial decisions about an SDD system, including fleet sizing, the

choice of service cutoff time, and so forth. When making such decisions, we naturally

depend on the accuracy and fidelity of the model when compared to more granular opera-

32



tional models. We now present a computational case study that empirically demonstrates

the accuracy of the model and its potential practical use.

Our study considers a hypothetical SDD system where one service area comprises

roughly 26 square miles in northeastern metro Atlanta. Specifically, this service region

consists of the 22 census tracts north of Interstate 85, south of Interstate 285 and east of

Georgia Highway 400, with a population of 92,198 as measured by the U.S. Census Bu-

reau [42]. For the study, we chose five representative addresses within each tract, for a

total of 110 potential customer locations, plus a depot location on the northeast border, on

Interstate 285. Figure 2.6 depicts the service region and the 110 representative customer

locations.

Figure 2.6: Service region in northeast Atlanta, Georgia, USA. Image generated in RStudio
with the library “leaflet”, containing all 110 possible customer locations taken from 22
census tracts [42].

We assume SDD orders begin at 9 am, and the service day ends at 6 pm; we evaluate two

different order cutoff times below in different experiments. Assuming 5% of the working

population in the region would like to use the SDD service once every other month within

the service day, an order would arrive on average approximately once every six minutes

over this time, and we use this rate in the model. However, we do not assume orders are
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equally likely to appear anywhere in the region: We assign each tract a weight proportional

to the product of its median household income and its population (both available from

[42]); assuming an order originates in a tract, one of its five representative locations is

chosen uniformly at random.

To construct the routing component of our dispatch time function, we sampled customer

locations with replacement according to the weighted distribution described above, with

sample sizes ranging from 10 to 75 locations and a total of 1,980 samples. We used the

Google Maps API [43] to query driving time between every pair of locations, and for each

sample calculated the optimal TSP route time for a vehicle route visiting these locations

from the depot. From this, we obtained via linear regression a routing time approximation

of 24
√

n minutes for n orders, with an an R-squared value of 0.94. Furthermore, we include

1.5 minutes of service time per order and a fixed setup time of 10 minutes per dispatch.

After re-scaling the instance parameters to be measured in increments of six minutes, this

results in an order arrival rate λ = 1, service day length T = 90 and dispatch time function

f (n) = 1.67+0.25n+4
√

n.

For our operational simulation, we replace the constant arrival rate with a Poisson ar-

rival process that uses the same rate; as in our calibration experiment, an order’s tract is

chosen randomly with weights proportional to the product of median household income

and population, and its location within the tract is chosen uniformly at random. We use

actual driving times between pairs of locations given by the Google API and determine the

total routing time for a dispatch by solving a TSP using a standard integer programming

formulation implemented in Gurobi 7.5.2. Our experiments are coded in Python 3.6.3 and

run on a Linux computing cluster, which employs HTCondor 8.8.4.
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2.5.1 Many-Vehicle Policy

First, we assume that this service region is served by two delivery vehicles each performing

a single daily dispatch. Following the reasoning from Section 2.4.4, we choose a cutoff

time to fully utilize both vehicles. With these parameters, the MVP prescribes that the first

dispatch takes 48.40 orders and its route requires a duration of just under 250 minutes, while

the second dispatch takes 18.26 orders with a duration of approximately 140 minutes; the

total dispatch time sums to about 389 minutes. The predicted dispatch time for the second

vehicle translates to an order cutoff time of 3:40 PM (N = 66.66).

We now describe our simulated operational benchmark for the many-vehicle policy.

The dispatch time required to serve a set of orders is the sum of the setup, service and

routing time, where the routing time is given by a TSP from the depot to each of the orders’

locations using actual driving times. The dispatcher allows unserved orders to accumulate

as long as their dispatch time is less than the remaining time in the service day; when the

two times are equal, a vehicle is dispatched with the unserved orders. When a new order

arrives, the dispatcher recalculates the total dispatch time including the new order; if the

new dispatch time exceeds the remaining time in the service day, the vehicle is immediately

dispatched without this order, to ensure the vehicle returns before the end of the service day.

If this is the first dispatch, the new order is assigned to the second vehicle and the process

repeats; otherwise, this order is not accepted for SDD. More generally, the dispatcher stops

accepting orders once the second vehicle is dispatched, which may occur before or after

the nominal cutoff time of 3:40 PM; this represents a dynamic modification of the cutoff

time at the operational level and is in line with how some SDD services operate in practice.

We simulated the operational benchmark 300 times. For each realization, we record

the the number of orders served and the dispatch time for each vehicle, respectively. Table

2.2 reports results; for each quantity we include the prediction of our tactical model, and

the sample mean and 95% confidence intervals of the operational benchmark. As the table

shows, our tactical model predicts the expected number of orders served and the expected
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total dispatch time to within less than 1%.

Table 2.2: Computational study results, many-vehicle policy.

Tactical Operational A Posteriori

First Dispatch Quantity 48.40 units 48.20 units (± 0.51) 43.90 units (± 0.63)

First Dispatch Time 249.58 min. 249.69 min. (± 1.81) 228.07 min. (± 2.62)

Second Dispatch Quantity 18.26 units 18.45 units (± 0.35) 22.75 units (± 0.45)

Second Dispatch Time 139.95 min. 139.16 min. (± 1.47) 144.88 min. (± 1.48)

Total Quantity 66.66 units 66.65 units (± 0.71) 66.65 units (± 0.71)

Total Time 389.53 min. 388.85 min. (± 2.85) 372.95 min. (± 3.29)

Because our main goal is tactical design and describing average behavior rather than

operational management, we do not consider many potential dispatching improvements or

modifications that could be used at the operational stage; the logistics literature has several

works dedicated to this question, e.g. [11, 15, 16]. Nevertheless, it is also important to

assess the quality of our prescribed solution when compared to what an operational decision

support tool could accomplish.

Motivated by this question, we compute an a posteriori or “hindsight-optimal” solu-

tion for each simulated realization, which provides a lower bound on the dispatch time any

operational policy can achieve. For each realization, we assume that the dispatcher knows

in advance the exact time and location of each order served by our operational benchmark

and then optimizes the two vehicles’ routes with this knowledge. For example, in one

of the realizations the operational benchmark could have both vehicles visiting the same

neighborhood to deliver two different orders; the a posteriori solution could use its ad-

vance knowledge to shift the first order to be served by the second vehicle (with virtually

no increase in its dispatch time), while deleting this order from the first vehicle’s dispatch

would reduce its dispatch time. This example also illustrates that despite having advance
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knowledge of order times and locations, the a posteriori solution must still satisfy opera-

tional constraints; in particular, an order can only be served by a dispatch that departs the

depot after the order ready time, and the vehicles must return to the depot by the end of the

service day. In the appendix, we include the formulation we use to compute these solutions.

In our experiments, for each of the 300 simulated realizations we optimize the a poste-

riori solution in Gurobi with a two-hour time limit. As Table 2.2 details, the sample mean

of the total dispatch time in the a posteriori solution is within approximately 4% of the

operational benchmark. For comparison, operational SDD models are notoriously diffi-

cult to benchmark; many works in the SDD literature do not include lower bounds at all,

and those that do often report larger gaps against a posteriori solutions even for complex

heuristic policies, e.g. [11]. We therefore conclude that our model prescribes reasonable

operational behavior, in line with what a dispatcher could accomplish with sophisticated

decision-support tools.

2.5.2 Single-Vehicle Policy

We now suppose the service region is served with a single delivery vehicle. Since only a

single vehicle is available, we also move the cutoff time back to 2:00 PM (N = 50), which

results in a more reasonable workload. Using Algorithm 1 and the results in Section 2.3.2,

we obtain a two-dispatch solution: The first dispatch serves 35.01 orders with a time of

about 205 minutes, and the second takes the remaining 14.99 orders with a duration of

approximately 125 minutes.

The operational benchmark for the single-vehicle policy here is similar in spirit to the

many-vehicle one. As our discussion in Section 2.3.2 suggests, each dispatch should take

all currently unserved orders. To determine the time of first dispatch α , we operationally

mimic the equation α + f (α)+ f (N−α) = T, which determines the dispatch time in the

tactical model with two dispatches. Before the first dispatch, orders accumulate and the

dispatcher iteratively recalculates their total dispatch time. Define τ to be the elapsed time
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in the service day, Oτ to be the set of orders that have arrived by τ , and dispatch(Oτ)

to be their dispatch time. While τ + dispatch(Oτ)+ f (N− τ) < T , the dispatcher allows

orders to accumulate; the first dispatch occurs when equality holds. As in the previous

case, if a new order causes the left-hand value to exceed T , the vehicle is immediately

dispatched without this order. While the vehicle is en route, we know its return time and

thus the maximum possible duration of the next dispatch such that it returns by T . As new

orders arrive, the dispatcher again calculates their dispatch time, and accept orders only

until the next dispatch’s total duration matches the remaining time in the service day. As in

the many-vehicle case, this corresponds to an operational dynamic adjustment of the order

cutoff time that, in expectation, should match N if our model is accurate. Note also that we

can extend the benchmark in an analogous fashion to single-vehicle problems with more

than two dispatches.

We again simulated 300 realizations of the operational benchmark, and report results

in Table 2.3, in a similar fashion to Table 2.2. As in the previous experiment, our tactical

model predicts the expected number of orders served and the expected total dispatch time

of the operational benchmark to within 1% or less. In the second dispatch, we see a slightly

higher quantity served on average in the operational benchmark compared to the tactical

prediction. This is due to the routing time approximation’s slight conservatism for smaller

values, which allows the operational policy to serve a slightly higher number of orders

than expected on average. Furthermore, we again implemented an a posteriori benchmark,

which allows the dispatcher to optimize the two delivery routes with full advance knowl-

edge of the time and location of each order, using the same experimental setup as in the

many-vehicle case. In this case, the operational policy is within approximately 13% of the

a posteriori benchmark, suggesting again that our system is modeling reasonable behavior

when compared to what a complex operational decision support tool can hope for. Inter-

estingly, in the single-vehicle case, we observe that the a posteriori solution moves more

orders to the second dispatch; with advance knowledge of future order locations, the dis-
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patcher is able to anticipate areas where more orders will take place late in the day, and wait

until the second dispatch to serve these locations more efficiently. Nevertheless, the gaps

we observe between the operational benchmark and a posteriori solution in this experiment

are still in line with other results in the operational SDD literature [11].

Table 2.3: Computational study results, single-vehicle policy.

Tactical Operational A Posteriori

First Dispatch Quantity 35.01 units 34.96 units (± 0.30) 12.99 units (± 1.32)

First Dispatch Time 204.52 min. 203.45 min. (± 0.74) 87.28 min. (± 6.48)

Second Dispatch Quantity 14.99 units 15.57 units (± 0.63) 37.54 units (± 1.45)

Second Dispatch Time 125.41 min. 123.73 min. (± 3.27) 196.91 min. (± 6.61)

Total Quantity 50.00 units 50.53 units (± 0.73) 50.53 units (± 0.73)

Total Time 329.93 min. 327.18 min. (± 3.79) 284.19 min. (± 3.26)

2.5.3 Many Capacitated Vehicles

Having established the model’s prediction accuracy for our two base cases in the previ-

ous experiments, we next examine vehicle capacities and their impact on model accuracy.

Specifically, we consider the same experimental setup from the many-vehicle policy in

Section 2.5.1, with order cutoff at 3:40 PM (N = 66.66), but we additionally suppose that

delivery vehicles have a capacity of Q = 20 orders. For this instance, the capacitated MVP

(Section 2.4.3) has four dispatches; the first three are at capacity, each serving 20 orders

with dispatch duration of about 147 minutes; the fourth dispatch serves the remaining 6.66

orders with a predicted dispatch duration of about 82 minutes.

The operational benchmark here is almost identical to the one used in Section 2.5.1,

with the additional constraint that when 20 orders accumulate, the current vehicle is dis-

patched immediately. We examine the performance of the operational benchmark on 300

simulated service days (the same simulations used in the uncapacitated experiment), with
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results in Table 2.4. As before, the tactical model predicts orders served within 1% of its

operational benchmark. In this case, the total predicted dispatch time is within 3.5% of

the benchmark. We conclude that the tactical model still makes accurate predictions in

the presence of a larger number of vehicles with a maximum capacity. Moreover, as the

table indicates, the slightly larger discrepancy between predicted and observed dispatch

time is mostly due to two factors: First, the third dispatch is not always at capacity, serving

about 19 orders on average; second, and most importantly, the fourth dispatch’s observed

duration is lower than its prediction. Both factors can be explained by the routing approx-

imation’s slight conservatism and decrease in accuracy for a small number of locations,

particularly the very small number of orders served by the last dispatch. (Since continuous

approximations assume a large number of locations, they can be slightly inaccurate when

the number of locations is very small.) In practice, our discussion in Section 2.4.4 suggests

that the manager of this SDD system would probably prefer to either decrease the order

cutoff to 60 and fully utilize only three vehicles, or perhaps to increase the cutoff so the

fourth vehicle can be better utilized.
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Table 2.4: Computational study results, four capacitated vehicles at Q = 20.

Tactical Operational

First Dispatch Quantity 20.00 units 20.00 units (± 0.00)

First Dispatch Time 147.33 min. 145.80 min. (± 0.83)

Second Dispatch Quantity 20.00 units 20.00 units (± 0.00)

Second Dispatch Time 147.33 min. 145.89 min. (± 0.91)

Third Dispatch Quantity 20.00 units 18.87 units (± 0.27)

Third Dispatch Time 147.33 min. 141.18 min. (± 1.52)

Fourth Dispatch Quantity 6.66 units 7.28 units (± 0.64)

Fourth Dispatch Time 81.93 min. 72.54 min. (± 3.62)

Total Quantity 66.66 units 66.15 units (± 0.89)

Total Time 523.92 min. 505.42 min. (± 6.51)

2.6 Conclusions

We have proposed a tactical analysis model for same-day delivery that captures operations

at the level of a single depot and its service region. By approximating the order arrival pro-

cess and the dispatch time, we are able to derive simple and transparent optimal solutions

for the model that describe the average performance of a reasonable SDD system; our em-

pirical validation shows that the model can indeed predict system behavior very accurately

at an operational level.

Using our model, a system manager can easily perform what-if analysis on various

potential system configurations, and compare the cost and operating conditions of these

configurations to decide various tactical questions, such as the size of the delivery fleet, the

order cutoff time, or whether to have vehicles deliver to the entire service region versus par-

titioning the region by vehicle. We similarly hope the community derives other applications
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of the model in SDD tactical design.

Our results motivate several interesting avenues for research. One possibility is to fur-

ther investigate the interplay of service region partitioning with our model. For example,

it would be useful for SDD managers to know precisely when partitioning is preferable

to serving the whole region, or to determine if the system can operate more efficiently by

serving different parts of the service region differently. A manager may wish to offer SDD

with different cutoff times in different areas, based on how efficiently customers in the dif-

ferent areas can be served; perhaps more densely populated urban centers can be profitably

served until later in the day while outlying suburban areas need an earlier cutoff. More

generally, it may be useful to address partitioning and fleet sizing in tandem, where some

sub-regions are served by more vehicles because of higher order density, while others get

a smaller delivery fleet because of relative order paucity.
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CHAPTER 3

TIME-VARYING SERVICE REGIONS IN SAME-DAY DELIVERY

3.1 Introduction

Driven by increased internet access, the e-commerce retail sector has been expanding

steadily in recent years. Changes in travel behavior due to the COVID-19 pandemic [2,

3] have accelerated this trend: total e-retail volume in the U.S. between April 2020 and

March 2021 surpassed $817 billion, representing an increase of over 30% from the prior

year [4, 5]. In an effort to capture a larger share of this market, e-retailers have improved

their delivery time guarantees. Same-day delivery (SDD), which was once leveraged as a

service offering differentiator, has now become expected by consumers at large. Amazon,

which has been offering SDD to select premium subscribers for over a decade [6], con-

tinually bolsters their same-day supply chain network in order to serve customers faster

and provide SDD options in more cities [44]. Large American retailers such as Walmart,

Target, and Costco have recently turned to partnering with third party managers of their

SDD systems [45]. Some smaller niche retailers, including Sephora (beauty products) and

Michaels (arts and crafts), have done the same in order to provide SDD to their customers

[46, 47]. Clearly, there is a need for designing efficient SDD systems in order to satisfy

consumer demand while maintaining their profitability for retailers.

As a service offering, SDD allows e-commerce firms to directly compete with brick-

and-mortar retail by providing the customer with near-instant gratification; however, this

pressure to deliver under a same-day deadline requires careful planning. The last-mile

component of traditional parcel delivery often exceeds 50% of total costs [48, 49], and this

issue is exacerbated in SDD systems, which provide reduced opportunities for consolida-

tion due to a high degree of dynamism. While SDD service offerings are simplified on the
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front-end for customers, they entail difficult optimization problems for system designers

and operators.

One such problem is the question of who to offer SDD fulfillment to and how late in a

service day to offer the SDD promise. A service region that is too small or an early deadline

may lose SDD customers and market share, while a large region or a late SDD order cutoff

time may result in very costly operations or failed deliveries and loss of customer goodwill.

Considerations of equity and access are also of paramount importance: Amazon has faced

criticism in the past for perceived racial bias in their selection of SDD service regions [50],

which they later addressed [51, 52]. If designed well, however, e-commerce systems —

including SDD — have potential to help customers who may be unable to access traditional

brick-and-mortal retail stores. With this motivation in mind, our goal in this study is the

selection of SDD service regions and order cutoff deadlines from the perspective of an

e-retailer operating from a single fulfillment center (i.e., depot) with a fixed delivery fleet.

Our objective is to determine a service region and order deadline that maximizes the

expected order volume the retailer can feasibly serve each day. In particular, we study

the question of whether the system gains by allowing the service region to vary over the

course of the service day; i.e., by offering different deadlines to different parts of the overall

region. Our results indicate that the system may indeed increase order served substantially

by such variations. The intuition behind this result is straightforward. If the e-retailer is

operating a small fleet, customers that are farther away from the depot (e.g., in suburban

areas) may need to place orders earlier in the day to obtain SDD. We can increase our SDD

order volume by allowing nearby customers, who can be served by more efficient vehicle

tours, to place SDD orders until later in the day.

While there has been significant research attention devoted to SDD in recent years,

the focus has been on the operational (i.e., regarding decisions which are made over the

course of a service day) management of SDD systems rather than tactical level system

design (i.e., regarding decisions which are made and implemented every few weeks or
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months). These works seek to optimize day-to-day operations, including vehicle routing

and order acceptance mechanisms, of SDD systems [11, 12, 13, 14, 16]. While these

studies are paramount to understanding how to efficiently manage a pre-defined system,

they do not focus on optimally designing aspects of the system topology itself. For instance,

operationally-focused SDD literature often assumes known vehicle fleet sizes, or a fixed

service region from which SDD demand realizes. It may be possible to solve multiple

operational models over a variety of design considerations; however, such a process is

highly unlikely to be tractable and transparent.

In order to capture average case system behavior for tactical decision-making, we lever-

age continuous approximation methods. Such approximations allow one to remove fine-

grained operational complexities from the tactical design process. It was first proposed in

[53, 54] to use continuous approximations of SDD systems to study the tactical problems

of expected cost minimization and fleet sizing. These works, however, assume a fixed ser-

vice region determined a priori. Our work here is the first to use continuous approximation

techniques to design SDD systems in which a system manager decides not only when to

dispatch delivery vehicles, but to what service region with the possibility of changing this

service region over the course of the day. The methods and results presented in this chapter

are intended to support SDD e-retailers in conducting effective system design and assessing

potential design options.

Section 3.1 concludes with a review of the relevant literature. A formal definition of

our general model is given in Section 3.2. In Section 3.3, we analyze a one vehicle, one

dispatch variant of the model. In Section 3.4, we study the setting in which multiple vehi-

cles each dispatch once per day. In Section 3.5, we study the setting in which one vehicle

dispatches multiple times per day. In Section 3.6 we perform various computational exer-

cises, applying our modeled results in a realistic setting. Section 3.7 contains concluding

remarks. An appendix contains material omitted from the main body.
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3.1.1 Literature Review

The majority of the SDD literature has focused on operational problems, in which sys-

tem features are fixed and a system manager must determine an optimal policy to guide

decision-making over a short horizon (typically a single service day). Such works typically

focus on vehicle dispatching and routing as customer information is dynamically revealed.

Proposed solutions are often compared to offline heuristics or current best practices. Spe-

cific problems considered in the literature include the same-day delivery problem for on-

line purchases [55, 16] and the dynamic dispatch waves problem [11, 12, 56]. Other works

integrate autonomous vehicles [57], drones [58, 35], and additional extensions [15, 59].

Operational SDD problems are closely related to the broad problem classes of stochastic

VRPs [60, 61] and dynamic VRPs [62, 63].

Operational SDD problems are often modeled as mixed-integer linear programs (MILPs),

Markov decision processes (MDPs), or a combination thereof. Because of their underly-

ing stochasticity and extremely large decision spaces, these problems are generally solved

without optimality guarantees; solution techniques include approximate dynamic program-

ming [11, 15], neighborhood search [55], and tailored heuristics [58]. Such models may

be sufficient for day-to-day operational usage. However, it is difficult to perform tactical

SDD system design with these operational models as they often require heavy computa-

tional power for solving even moderately-sized problems to suboptimality over a single set

of design parameters. While simulation is an option for gaining tactical insights [64, 33],

the lack of transparency and interpretability in simulation-based methods reveals a need for

analytical approaches to SDD tactical design problems.

While we are not aware of any literature directly studying optimal service region se-

lection for SDD systems, a few papers examining operational problems have considered

how service regions influence their modeling and results. Notably, [65] formulate an oper-

ational SDD model where the dispatcher of the system can choose whether or not to accept

orders for SDD servicing into the system, but is constrained to accept orders across dif-
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ferent customer partitions at the same rate. The authors note that the benefits of enforcing

such fairness constraints come at the cost of lowering the total quantity of served orders.

Another work which also allows a dispatcher to accept or reject orders for SDD servicing

articulates that as time progresses during the service day, the operator is less likely to accept

orders for customers living further away from the depot if the dispatcher is to maximize the

number of orders served [66].

Seminal works in the area of continuous approximations for vehicle routing show that

the length of vehicle tours can be functionally approximated by the number of stops in the

tour as well as the specific service region area from which demand points originate. The

foundational Beardwood-Halton-Hammersley (BHH) Theorem [24] states that the length

of an optimal traveling salesperson problem (TSP) tour over n points in a region of area A

approaches β
√

An as n grows, where β is a region- and metric-dependent constant.

Ensuing studies analyze BHH-type approximations of vehicle tour lengths in various

settings [67, 25, 26, 68]. Various works have focused on empirical estimation of BHH

routing constants on stylized regions [36, 27] and real-world road networks [69]. Com-

prehensive surveys of the continuous approximation literature, from fundamental works to

recent results and applications, are given by [70, 23].

This chapter is most closely related to the works of [54, 53], which we believe to be

the first SDD studies to leverage continuous approximations for tactical system design.

Similar to these works, we also approximate demand for SDD continuously over time and

approximate the routing time to serve orders as a function in the number of orders on the

delivery tour. In [53], the authors assumed that orders for SDD could only arrive into the

system from a predefined fixed service region until some defined cutoff time. As such,

their objective was to minimize the total routing time to serve all of the SDD orders. In

a similar setting, again with a predefined fixed service region and cutoff time, [54] seek

to minimize the total number of vehicles needed to serve SDD orders assuming the region

is to be partitioned into single-vehicle zones. In contrast, here we maximize the number
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of orders served while incorporating an additional tactical design dimension: we allow the

service region and order cutoff time to be chosen as decision variables.

3.2 Model Formulation

We consider systems in which a single depot serves as a stocking and dispatching loca-

tion, with the objective of serving as many SDD orders as possible within a service day.

Orders are fulfilled via the depot’s vehicle fleet, but only after each order is realized into

the system. Without loss of generality, once an order arrives into the system, it becomes

immediately eligible for delivery. A dispatcher chooses the service region in which orders

accumulate from, knowing that any realized order must be served by the end of the service

day. Additionally, every vehicle in the fleet must arrive back at the depot by the end of the

service day. The modeling of such systems, including their relevant objectives, constraints,

alongside several additional assumptions, is outlined in the proceeding paragraphs.

Service Day: The first time any vehicle can leave the depot is denoted by time t = 0,

and all vehicles must be back at the depot by the end of the service day, time t =

T . For convenience, we assume without loss of generality that T = 1 and all other

parameters are appropriately scaled. Therefore, we often refer to t as a proportion of

the service day.

Service Region: At the start of the service day, and after each dispatch, the dispatcher

must determine a region for which SDD orders will accrue from until the next ve-

hicle dispatch. In general, the service regions act as unconstrained variables for the

dispatcher to leverage, but may be further constrained as desired.

Customer Orders: Demand for SDD accumulates at a rate of λ orders per time unit per

area unit starting at time t = 0. For tactical planning purposes, demand is modeled

continuously over time and homogeneously over area. Furthermore, the demand rate
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is modeled as a constant over the entire service day. Any accumulated demand must

be serviced by the end of the service day.

Vehicle Restrictions: Vehicles are not explicitly constrained by capacity nor are they re-

stricted to carry an integer number of orders. It is assumed that at each time of dis-

patch, a vehicle leaves the depot with all of the accumulated orders since the previous

dispatch for the chosen service region. The fleet is comprised of m homogeneous ve-

hicles.

Routing Time Function: The time it takes for a vehicle to serve n∈R≥0 orders in a region

of area, A, and return to the depot is given by the function f (A,n) = c0
√

An, where

c0 is some known positive constant. Equivalently, we can define the routing time

function as f (A,τ) = cA
√

τ where τ is accumulation time since last dispatch and

c = c0
√

λ .

Here we take a quick aside to discuss some of the continuously approximated features

of our model. Often when modeling customer demand, a fluid rate is used in lieu of more

complicated discrete event modeling in order to study aggregate level behavior. The results

of [53] show that for SDD modeling, serving all of the accumulated demand at a depot at

the time of each dispatch to be structural property of optimal dispatching solutions in order

to gain greatest routing efficiencies. Operationally it may be better to leave some orders

for future dispatches, but for modeling system design, this is a reasonable assumption [53].

Finally, the modeled routing time function resembles the asymptotic BHH result [24] as

referenced in the literature review in Section 3.1. It has been empirically shown that this

functional approximation works well even for a small number of dispatches [36].

The model’s objective is to choose a set of feasible accumulation times and service

regions in order to serve a maximal number of orders. We formally define the d-th or-

dered dispatch as a tuple (τd,Ad, id), where τd defines the order accumulation time for

vehicle id serving all of the accumulated orders in a region of area Ad . A set of dispatches
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{(τd,Ad, id)}D
d=1 is feasible for our model if the following conditions are satisfied:

d

∑
δ=1

τδ + f (Ad,τd)≤ 1 ∀d, (3.1a)

d

∑
δ=1

τδ + f (Ad,τd)≤
d′

∑
δ=1

τδ ∀d, d′ s.t. id = id′, d < d′, (3.1b)

id ∈ {1,2, . . . ,m} ∀d, (3.1c)

Ad ≥ 0 ∀d, (3.1d)

τd ≥ 0 ∀d. (3.1e)

Our problem is to maximize ∑
D
d=1 λAdτd over all D≥ 1, subject to (3.1a)-(3.1e). Con-

straint (3.1a) ensures that all vehicles will return to the depot by the end of the service day,

while constraint (3.1b) requires that if a vehicle is to be used again, it will return before

its next dispatch. Constraint (3.1c) assigns each dispatch to a vehicle in the fleet. Lastly,

(3.1d) and (3.1e) are the nonnegativity constraints for the service area and accumulation

time variables, respectively.

3.3 One vehicle, one dispatch systems

As a first step in analyzing and utilizing our model we study the family of problem instances

where we constrain ourselves to use a single vehicle, and only dispatch it once during the

service day. In terms of our model introduced in Section 3.2, we are constraining ourselves

to problem instances where m = 1 and D = 1. Such systems are of interest for many

retailers within many network topologies. For instance, leveraging a single vehicle may be

of interest for when the broader service region has been pre-partitioned and leveraging a

single dispatch may be of interest for certain pricing models and operational considerations.

Additionally, as we will see in Sections 3.4 and 3.5, the analysis of one vehicle, one dispatch

(1v1d) systems will provide insights on how to tackle larger, more complicated families of

problem instances.
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Next, we present the model as introduced in Section 3.2 for this specific case. We are

interested in solving this problem to optimality by calculating the optimal service area and

accompanying optimal accumulation time. The optimization problem for the 1v1d model

is given by:

max λA1τ1 (3.2a)

s.t. τ1 + cA1
√

τ1 ≤ 1, (3.2b)

A1 ≥ 0, (3.2c)

τ1 ≥ 0. (3.2d)

Although it is near-trivial to solve this model over the two decision variables outright,

we are interested in uncovering structural properties of optimal dispatching policies. One

such property that will prove useful for later analyses is that the dimensionality of the

decision space can be reduced to only the accumulation time variable. Property 10 forms

the basis of this reduction.

Property 10. Given a fixed accumulation time τ1 ∈ (0,1] for the 1v1d model, the service

area which maximizes the number of orders fulfilled is given by: A1 =
1−τ1
c
√

τ1
.

Proof. See Appendix B.1.

We can now reformulate the problem solely over the variable τ1:

max
λ

c
(1− τ1)

√
τ1 (3.3a)

s.t. τ1 ∈ [0,1]. (3.3b)

This problem can be solved analytically. The optimal solution is found at τ∗1 = 1
3 ,

with objective value: z∗ = λ

c
2

3
√

3
. Leveraging Property 10, we can determine that A∗1 =

2
c
√

3
. Figure 3.1 depicts the plot of the scaled objective value, (1− τ1)

√
τ1, versus the

accumulation time of τ1 when λ = c = 1.
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Figure 3.1: Quantity served versus accumulation time for the 1v1d system, λ = c = 1

This seemingly simple model serves to show how one may approach solving more

complicated variants, while also showcasing an interesting design implication for certain

SDD systems. Simply put, for a retailer operating a SDD system in a region wishing to only

dispatch once, to maximize the number of orders served they should dispatch a vehicle after

one-third of the service day is over, servicing an area large enough such that the vehicle

arrives back to the depot exactly at the end of the service day. From the plot in Figure 3.1

we see that such a solution is rather insensitive with respect to accumulation time, which

gives a dispatcher of an actual operational system based off of these design implications

quite a bit of flexibility when dealing with possibly stochastic order arrivals.

Before moving on from our analysis of 1v1d systems, it is important to understand

the implications of working with a bounded service region. Some network topology de-

signs may rely on the addition of such a constraint. For example, 1v1d design may be a

byproduct of a larger pre-partitioned region which could imply area bounds, the modeling

of customer orders and a routing time function may rely on a specific customer density

which is bounded geographically, or the SDD retailer may only have authorization to op-

erate in a particular bounded jurisdiction. Mathematically, we can introduce the constraint
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A1 ≤ B into the model. Property 11 extends the optimization results of the 1v1d model

under this constraint.

Property 11. The optimal dispatching policy for the 1v1d model where the service area is

bounded by A1 ≤ B is to serve an area of A∗1 = min{ 2
c
√

3
,B} after accumulating orders for

τ∗1 time where τ∗1 uniquely solves τ∗1 + cA∗1
√

τ∗1 = 1.

Proof. See Appendix B.2.

3.4 Multiple vehicles, one dispatch each

3.4.1 Model formulation

A natural extension of the 1v1d model is to consider using a fleet of m≥ 1 delivery vehicles,

where each is dispatched at most once throughout the service day (we denote this as the

mv1d setting). Figure 3.2 illustrates an example of a three vehicle, one dispatch each

policy. In this example, each successive vehicle serves a smaller service region than that

of the previous vehicle, while each successive accumulation time increases. Accumulation

times are depicted on the horizontal time access, while the arcs correspond to the routing of

each vehicle. Note that each vehicle arrives back to the depot before the end of the service

day. Line styles are alternated for visual clarity.

0 T
τ1 τ1 + τ2 τ1 + τ2 + τ3

A1 A2 A3

Figure 3.2: An illustration of a 3v1d policy where successive service areas decrease while
successive accumulation times increase.

The optimization problem, as first defined in Section 3.2, for the mv1d model is given
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by:

max
m

∑
d=1

λAdτd (3.4a)

s.t.
d

∑
δ=1

τδ + cAd
√

τd ≤ 1 ∀d, (3.4b)

Ad ≥ 0 ∀d, (3.4c)

τd ≥ 0 ∀d. (3.4d)

From this formulation, we can deduce a structural property analogous to that of the

1v1d model. Specifically, we can reduce the dimensionality of this problem by observing

that, in order to maximize the number of orders served, given a set of accumulation times,

it is a strictly dominant strategy to set each service area such that each vehicle arrives back

to the depot exactly at the end of the service day. Property 12 formalizes this observation.

Property 12. Given a set of fixed, positive, accumulation times, {τ1,τ2, . . . ,τm}, for the

mv1d model, the set of service areas which maximize the total number of orders fulfilled

are given by Ad =
1−∑

d
δ=1 τδ

c
√

τd
for all d.

Proof. See Appendix B.3.

Taking the perspective of an individual vehicle, the claims and subsequent proofs of

Properties 10 and 12 are very similar. Given a set of accumulation times (which imply a set

of departure times), each vehicle, in a sense, is agnostic to the chosen service regions of the

other m−1 vehicles. That vehicle is only constrained by arriving back to the depot by the

end of the service day, which bounds the size of its service area. An equivalent perspective

is that, given a set of accumulation times, each vehicle operates within its own “universe”

with a truncated service day. It is important to understand that this does not imply that

vehicles can be dispatched in a greedy fashion throughout the service day. The dispatcher

must still determine the set of optimal accumulation times, each of which does influence
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the departure times of later dispatches. For obtaining {τ∗1 ,τ∗2 , . . . ,τ∗m} we can solve the

following optimization problem:

max
λ

c

m

∑
d=1

(1−
d

∑
δ=1

τδ )
√

τd (3.5a)

s.t.
m

∑
d=1

τd ≤ 1, (3.5b)

τd ≥ 0 ∀d. (3.5c)

However, this problem is still non-linear and non-convex. As such, we next develop an

efficient solution method by analyzing structural properties of the model.

3.4.2 Model analysis and tactical design properties

To begin our analysis of the mv1d model, we first explain an important structural feature

of optimal solutions which allows a dispatcher to efficiently solve for optimal dispatching

policies. We note that each time a vehicle leaves the depot, the problem becomes “memo-

ryless” with respect to that vehicle. That is, after the first dispatch, the remaining problem

with m− 1 vehicles behaves as if one started the dispatch day with m− 1 vehicles, but

with a reduced (i.e., truncated) service day. Therefore, it is plausible that this family of

problems would have a recursive structure to finding optimal dispatch policies. Theorem

13 formalizes this observation and the implied solution method.

Theorem 13. Given the optimal dispatch policy {(τ∗m,d,A
∗
m,d)}m

d=1 for the mv1d model with

an objective value of zm = λ

c ∑
m
d=1 (1−∑

d
δ=1 τ∗m,δ )

√
τ∗m,d , we can formulate the (m+1)v1d

optimization problem as:

max
0≤τm+1,1≤1

λ

c
(1− τm+1,1)

√
τm+1,1 +(1− τm+1,1)

1.5zm.

Furthermore, we can perform the following update equations to the mv1d optimal policy
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to obtain the (m+1)v1d optimal policy:

τ
∗
m+1,d ← (1− τ

∗
m+1,1)τ

∗
m,d−1 ∀d ≥ 2,

A∗m+1,d ← (1− τ
∗
m+1,1)

0.5A∗m,d−1 ∀d ≥ 2,

A∗m+1,1 =
1
c
(1− τ

∗
m+1,1)(τ

∗
m+1,1)

−0.5.

Proof. See Appendix B.4.

We present the optimal dispatching solutions for m = 1 to m = 4 vehicles in Table

3.1. For simplicity, we have chosen to display the results for λ = c = 1. Each row of the

table consists of four columns: accumulation time (τ∗d ), area served (A∗d), orders served

(λA∗dτ∗d ), and time of day (∑d
δ=1 τ∗

δ
), each rounded to four decimal places. It was deter-

mined that the maximum number of orders served is equal to 0.3849,0.6337,0.8281, and

0.9919 respectively for these cases.
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Table 3.1: Optimal dispatching policies for the mv1d model for up to m = 4 vehicles; total
quantity served is tabulated and bolded for each model

Vehicle Accum. Time Area Served Orders Served Time of Day

m = 1 1 0.3333 1.1547 0.3849 0.3333

Total 0.3849

m = 2 1 0.1841 1.9012 0.3501 0.1841

2 0.2720 1.0430 0.2836 0.4561

Total 0.6337

m = 3 1 0.1243 2.4842 0.3087 0.1243

2 0.1613 1.7791 0.2869 0.2855

3 0.2382 0.9760 0.2324 0.5237

Total 0.8281

m = 4 1 0.0928 2.9772 0.2764 0.0928

2 0.1127 2.3661 0.2667 0.2056

3 0.1463 1.6945 0.2479 0.3519

4 0.2160 0.9296 0.2008 0.5679

Total 0.9919

Note that we began with a formulation over 2m decision variables at the beginning of

Section 3.4, reduced that decision space in half via Property 12, and used Theorem 13 to

reduce the problem to a single decision variable. There are additional properties about the

mv1d model worth noting. The following properties are both interesting from mathematical

point of view and of interest for tactically designing SDD systems.

Property 14. As the number of vehicles m in the model increases, the optimal accumula-

tion time of the first vehicle τ∗m,1 strictly decreases, and the maximal number of orders zm

served strictly increases. Furthermore, as m→ ∞, τ∗m,1→ 0 and zm→ ∞. Specifically, zm

increases as Θ(
√

m).
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Proof. See Appendix B.5.

Property 15. There is a strictly decreasing marginal gain in additional orders served in the

mv1d model when adding an additional vehicle. That is, (zm+2− zm+1) < (zm+1− zm) for

all m≥ 1. Furthermore, as m→ ∞,(zm+1− zm)→ 0.

Proof. See Appendix B.6.

Property 16. In the optimal dispatch policy for the mv1d model, accumulation times are

strictly increasing while service areas are strictly decreasing; that is, τ∗m,1 < τ∗m,2 < · · · <

τ∗m,m and A∗m,1 > A∗m,2 > · · ·> A∗m,m.

Proof. See Appendix B.7.

These results confirm intuition about how a SDD system should operate from the per-

spectives of both system managers and consumers. The empirical results in Table 3.1 show

that total number of orders increased by 65% when moving from a one-vehicle to a two-

vehicle system, and by 31% when moving from a two-vehicle to a three-vehicle system.

Property 15 states that this decrease in marginal benefit is to be expected, and if the fleet

size is sufficiently large, adding a single vehicle will not entail any practical benefit. A dis-

patcher operating a mv1d could therefore leverage these models to perform a cost-benefit

fleet sizing analysis by comparing SDD revenue versus the cost of maintaining the vehicle

fleet. Another useful design implication, via Property 16, is that optimal dispatch areas are

strictly decreasing. Therefore, from a customer’s perspective, the offering of SDD will not

fluctuate during the course of a service day. For example, a customer will not experience

a loss of SDD availability during the middle of a service day, only to have that service

become available again at a later time.

3.4.3 Value of varying service regions

Thus far, we have modeled various SDD systems where a dispatcher was allowed to vary

the service region between dispatches without constraint. We saw from the optimal dis-
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patching solutions in Section 3.4.2 that it is advantageous to systematically reduce the

service area throughout the service day. Although such solutions maximize the number of

orders fulfilled via SDD, the system operators may consider time-varying service regions

to be inequitable. In this subsection, we quantify the value (in terms of orders served)

of allowing the dispatcher to vary the service area throughout the service day, rather than

choosing a fixed service region for all dispatches. The following mathematical program

models the mv1d problem modified with the additional constraint A = A1 = A2 = · · ·= Am:

max
m

∑
d=1

λAτd (3.6a)

s.t.
d

∑
δ=1

τδ + cA
√

τd ≤ 1 ∀d, (3.6b)

A≥ 0, (3.6c)

τd ≥ 0 ∀d. (3.6d)

In two of our previous optimization models, (3.2a)-(3.2d) and (3.4a)-(3.4b), we were

able to reduce the problem dimensionality by observing that, for a given set of accumulation

times, the service areas should be chosen such that they were as large as possible in order

to serve a maximal number of orders. For this model variant, we no longer have that

flexibility; however, it is important to observe that it is still a dominant dispatching policy

to have all of the vehicles return to the depot exactly at the end of the service day. That

is, for any given fixed service area, all of the constraints given by (3.6b) should hold at

equality. Property 17 formalizes this observation.

Property 17. Consider a variant of the mv1d model where each service region serves

a fixed area of size A > 0. The set of accumulation times which then maximize the

total number of orders served are such that ∑
d
δ=1 τδ + cA

√
τd = 1 for all dispatches d.

Equivalently, τd = Rd +
cA
2

(
cA−

√
(cA)2 +4Rd

)
for all dispatches d, where R1 = 1 and
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Rd = 1−∑
d−1
δ=1 τδ for all d ≥ 2.

Proof. See Appendix B.8.

We are able to leverage Property 17 to reduce the search space for optimal dispatching

policy solutions to this model variant. What remains is to determine an optimal service

area size, A∗, then use Property 17 to calculate the associated accumulation times. Unfor-

tunately, there is no known, scalable method for solving this optimization problem. We

present the numerically computed solutions for one to four vehicles in Table 3.2. For

purposes of comparison with Table 3.1, we have display results, rounded to four decimal

places, for λ = c = 1. Additionally, Figure 3.3 depicts a plot of the maximum amount of

orders that can be served versus fixed service area for each fleet size. It can be shown that

even for the one-vehicle variant, the maximal number of orders served is not concave (even

though it may appear so) with respect to the fixed service area, which leads to the difficulty

in solving such problems at scale.
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Table 3.2: Optimal dispatching policies for the fixed-area mv1d model for up to m = 4
vehicles

Vehicle Accum. Time Area Served Orders Served Time of Day

m = 1 1 0.3333 1.1547 0.3849 0.3333

Total 0.3849

m = 2 1 0.2454 1.5232 0.3738 0.2454

2 0.1550 1.5232 0.2360 0.4004

Total 0.6099

m = 3 1 0.1953 1.8207 0.3556 0.1953

2 0.1352 1.8207 0.2462 0.3305

3 0.0984 1.8207 0.1791 0.4289

Total 0.7809

m = 4 1 0.1626 2.0766 0.3377 0.1626

2 0.1195 2.0766 0.2482 0.2821

3 0.0911 2.0766 0.1892 0.3732

4 0.0715 2.0766 0.1485 0.4447

Total 0.9235
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Figure 3.3: Graphical depiction of the maximum quantity served versus fixed service area
size for up to m = 4 for the fixed-area mv1d variant

Comparing the results of Table 3.1 and Table 3.2 allow us to quantify the cost of en-

forcing equal areas. As expected due to the additional constraint, the total number of orders

fulfilled decrease in the fixed-area model. For two-vehicle systems, there is a 3.9% increase

in orders served to be had when service regions can change between dispatches. This gap

increases to 6.0% and then to 7.4% for three- and four-vehicle systems, respectively. There

are also observable differences in the areas served and accumulation times used in the

optimal dispatching policies. What may be important for some SDD dispatchers is under-

standing how their service affects customers who demand SDD servicing. It is important

to understand that there are effects experience by customers are not universal. Some cus-

tomers will experience shorter time windows in which they are offered SDD while others

will experience longer time windows. Some customers may even lose SDD servicing all

together. Such considerations and their relative importance will vary depending on the ser-

vice provider, and continuously approximated models such as ours offer a methodology for

which such implications can be better understood.
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3.4.4 Impacts of constrained service regions

By the previously discussed structural properties of the mv1d problem, it is clear that A∗m,1

tends to infinity as the number of vehicles m grows. From a system design perspective,

such behavior limits the usefulness of the mv1d model in practice. For this reason (and for

the previously discussed reasons that motivated Property 11), we now consider the mv1d

model where all service areas are bounded above by a given B > 0.

As before, the resulting optimization problem is non-linear and non-convex; therefore,

we are interested in an efficient solution method. One approach is to solve the uncon-

strained model for a given m, then post-process the optimal service areas such that they

satisfy B ≥ Ad for all dispatches d. Such a heuristic provides a feasible dispatch policy;

however, the resulting policy is not optimal in general. A natural improvement to this

heuristic is to first compare A∗1 in the unconstrained solution to B. By Property 16, as long

as the first service region has an area smaller than than the bound B, the unconstrained dis-

patching solution is also feasible, and therefore optimal, for the constrained problem. If it is

instead the case that A∗1 > B, we only post-process the first dispatch. We then re-optimize,

with respect to the remaining m− 1 vehicles, over the remaining service day and repeat

the process as required. Theorem 18 states that this intuitive procedure, as formalized in

Algorithm 2, indeed produces an optimal dispatching policy.

Theorem 18. For the mv1d problem with an upper bound B > 0 on the service areas,

Algorithm 2 returns an optimal policy. Additionally, the optimal areas satisfy A∗m,1≥A∗m,2≥

·· · ≥ A∗m,m.

Proof. See Appendix B.9.
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Algorithm 2 Iterative solution procedure for the constrained mv1d model

1: given vehicles m, area upper bound B, parameters c,λ

2: initialize remaining service day time Tvar← 1, remaining vehicles w← m

3: while w > 0 do

4: calculate the optimal policy {(τ∗w,d,A∗w,d)}w
d=1 to the unconstrained wv1d model as

given by (3.4a)-(3.4d)

5: Let τ∗w,d ← τ∗w,dTvar ∀d ≥ 1

6: Let A∗w,d ← A∗w,d
√

Tvar ∀d ≥ 1

7: if A∗w,1 ≤ B then

8: A∗m,m−w+d ← A∗w,d ∀d ≥ 1

9: τ∗m,m−w+d ← τ∗w,d ∀d ≥ 1

10: w← 0

11: else

12: A∗m,m−w+1← B

13: τ∗m,m−w+1← Tvar +
cB
2

(
cB−

√
(cB)2 +4Tvar

)
14: w← w−1

15: Tvar← Tvar− τ∗m,m−w+1

16: end if

17: end while

18: return optimal dispatching policy {(τ∗m,d,A
∗
m,d)}m

d=1

3.5 One vehicle, multiple dispatch case

3.5.1 Model formulation

In Section 3.3 we were able to determine a simple, yet insightful tactical system design for

SDD networks where a single vehicle dispatches a single time from the depot. From there,

the maximal number of orders served only stands to increase as the vehicle is allowed to
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make multiple dispatches within the same service day. For an operationalized system, it

can be very difficult to gauge the drawbacks versus benefits of such system designs; our

continuous approximation models offer a methodology for comparison.

In this section we analyze the 1vDd family of problem instances in which a single

vehicle makes D dispatches per day. It is of interest to study such tactical designs so that

a dispatcher may better understand what gains in order volume arise with an increase in

system complexity. Figure 3.4 illustrates an example of a one vehicle, two dispatch policy.

Akin to Figure 3.2, the two circles suggest the relative size of the chosen service area

while the curved arcs corresponds to the time it takes for the vehicle to serve accumulated

orders. In this example, the service area reduces in size during the service day while the

accumulation time increases from the first to the second dispatch. Note that the vehicle

arrives back to the depot before the end of the service day.

0 T
τ1 τ1 + τ2

A1 A2

Figure 3.4: A 1v2d policy where the vehicle serves a larger service region at the beginning
of the day; the second dispatch, however, allows orders to accumulate at the depot for a
longer period of time
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Formally, we wish to find an optimal dispatch policy, {(τ∗d ,A∗d)}D
d=1, for the problem:

max
D

∑
d=1

λAdτd (3.7a)

s.t.
D

∑
δ=1

τδ + cAD
√

τD ≤ 1, (3.7b)

cAd
√

τd ≤ τd+1 ∀d < D, (3.7c)

Ad ≥ 0 ∀d, (3.7d)

τd ≥ 0 ∀d. (3.7e)

For the previous models discussed in Sections 3.3 and 3.4 where vehicles were only

dispatched once, we were able to reduce the dimensionality of the decision space by the

observation that area variables could be set such that each vehicle returned to the depot

exactly at the end of the service day. For the 1vDd problem, however, in order for a dis-

patching policy to be feasible, the vehicle must return back to the depot in time for its next

dispatch. Property 19 claims that is a dominant strategy to never have the vehicle idly wait

at the depot after the first dispatch.

Property 19. Given a set of fixed, positive, accumulation times, {τ1,τ2, . . . ,τD}, for the

1vDd model, the set of service areas which maximize the total number of orders fulfilled

are given by: Ad =
τd+1
c
√

τd
for all d < D, and AD =

1−∑
D
δ=1 τδ

c
√

τD
.

Proof. See Appendix B.10.

The results of Property 19 state that given a set of accumulation times, the operator

should always choose large enough service areas such that the vehicle is always busy de-

livering orders between consecutive dispatches. Having no idle vehicle time during the

course of the day after the first dispatch is a property found in other SDD models [54, 12,

53]. Knowing that the operator can choose service areas to maximize orders served given

a set of accumulation times, we turn our attention to choosing the best set of accumulation
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times for the system. For obtaining {τ∗1 ,τ∗2 , . . . ,τ∗D}we can solve the optimization problem:

max
λ

c

(
D−1

∑
d=1

τd+1
√

τd +(1−
D

∑
d=1

τd)
√

τD

)
(3.8a)

s.t.
D

∑
d=1

τd ≤ 1, (3.8b)

τd ≥ 0 ∀d. (3.8c)

We numerically calculate and present the optimal dispatching solutions to this model

for one to four dispatches in Table 3.3 below. Similar to Tables 3.1 and 3.2, we display

the results for λ = c = 1. The maximum number of orders served based on the number of

potential dispatches is equal to 0.3849,0.4444,0.4513, and 0.4514, respectively.
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Table 3.3: Optimal dispatching policies for the 1vDd model for up to D = 4 dispatches.

Dispatch Accum. Time Area Served Orders Served Time of Day

D = 1 1 0.3333 1.1547 0.3849 0.3333

Total 0.3849

D = 2 1 0.1111 1.3333 0.1481 0.1111

2 0.4444 0.6667 0.2963 0.5556

Total 0.4444

D = 3 1 0.0167 1.3538 0.0226 0.0167

2 0.1750 1.0953 0.1917 0.1917

3 0.4582 0.5171 0.2370 0.6500

Total 0.4513

D = 4 1 0.0002 1.3543 0.0002 0.0002

2 0.0181 1.3270 0.0241 0.0183

3 0.1788 1.0844 0.1939 0.1971

4 0.4585 0.5086 0.2332 0.6556

Total 0.4514

From Table 3.3, we observe an increase of 15.5% orders served when considering 1v2d

system over a 1v1d system. This is in stark contrast compared to the 1.6% gain in orders

served when moving from a 1v2d to a 1v3d system. Additionally, it is important to note,

empirically, that the the accumulation time of the first dispatch shrinks as the number of

dispatches increases. Once we start using three or four dispatches, we see that the first

accumulation time is negligible with respect to the length of the service day. For example,

a retailer operating with a 1v3d system would only accumulate orders for the first dispatch

for less than ten minutes during a nine-hour service day using the optimal dispatching

policy. Additionally, the number of orders served in that first dispatch would only account

for 5% of the total orders served between all three dispatches. The near-insignificance of
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this first dispatch is even further exacerbated in the four-dispatch solution. As a design

implication, it is therefore advisable for an operator to never consider using more than two

dispatches in one-vehicle systems.

3.5.2 Model analysis and tactical design properties

Even though one can reasonably assess the relative utility of a one- or two-dispatch system

over systems with greater number of dispatches, it may still be a worthwhile exercise to

provide a bound as to how well a two dispatch system performs with respect to an infinite

dispatch system. As highlighted in Property 14 for the analogous mv1d model, the total

number of orders served in an optimal dispatching solution grows infinitely as m→∞; one

may ask whether similar behavior occurs in 1vDd systems. Since the dispatcher can always

feasibly set any dispatch to serve an area of size zero for a length of zero accumulation time,

the maximal number of orders served is non-decreasing in D. From Table 3.3 we have

empirically seen that these marginal benefits seem to diminish greatly for even a small

number of dispatches. We next introduce Property 20, which leads to Theorem 21, which

states that a single vehicle, with an arbitrarily large number dispatches, has a bounded

number of orders it can feasibly serve. Furthermore, the one dispatch solution is a 2-factor

approximation for such a bound. At this time, it remains to be proven whether this factor

is tight.

Property 20. In the optimal dispatch policy for a 1vDd model, optimal service areas are

bounded with respect to a function of the D-th optimal accumulation time. Specifically,

A∗d ≤
2
c

√
τ∗D for all d < D.

Proof. See Appendix, B.11.

Theorem 21. The maximum number of orders served by any 1vDd model is upper-bounded

by twice the number of orders served by the optimal 1v1d solution (λ

c
4

3
√

3
orders).

Proof. See Appendix, B.12.
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3.5.3 Value of varying service regions

We now study the benefits of allowing a dispatcher to vary the service area between dis-

patches in a 1vDd system. Adding the fixed area constraint A = A1 = A2 = · · ·= AD to the

original 1vDd model, we arrive at the following optimization problem:

max
D

∑
d=1

λAτd (3.9a)

s.t.
D

∑
δ=1

τδ + cA
√

τD ≤ 1, (3.9b)

cA
√

τd ≤ τd+1 ∀d < D, (3.9c)

A≥ 0, (3.9d)

τd ≥ 0 ∀d. (3.9e)

Qualitatively, let us consider the implications of keeping the vehicle idle at the depot

between successive dispatches. Constraint (3.9c) in our model enforces that the vehicle

arrives back to the depot before the next dispatch. Now, consider a dispatch policy where

the vehicle arrives back to the depot with some positive time left before its next dispatch

(or at the end of the service day after a final dispatch), then during that dispatch it would

have been feasible (and therefore preferable) to accumulate orders for a longer amount of

time. Property 22 formalizes this observation.

Property 22. Consider a variant of the 1vDd model where each service region serves a

fixed area. Given a fixed total accumulation time N ∈ (0,1), the area A and set of accu-

mulation times τ1, . . . ,τD which maximize the total number of orders served are such that,

after the first dispatch, the vehicle will never wait idly at the depot again. Furthermore,

the vehicle will return to the depot exactly at the end of the service day. Mathematically,

cA
√

τd = τd+1 for all d < D, and N + cA
√

τD = ∑
D
δ=1 τδ + cA

√
τD = 1.

Proof. See [54].
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Property 22 allows us to reduce the search space for optimal dispatching policy solu-

tions to those for which (3.9b) and (3.9c) hold at equality. In other words, given some

candidate total accumulation time N, we do not need to observe all possible sets of areas

and accumulation times, only the ones which satisfy the conditions given in Property 22.

With this knowledge and the algorithm given in [54], we are able to calculate the results

for the fixed-area 1vDd model for up to four dispatches in Table 3.4. Again, results will

be displayed for λ = c = 1 for the sake of comparison. The maximum number of orders

served based on the number of potential dispatches is equal to 0.3849,0.4305,0.4356, and

0.4358 respectively.

Table 3.4: Optimal dispatching policies for the fixed-area 1vDd model for up to D = 4
dispatches

Dispatch Accum. Time Area Served Orders Served Time of Day

D = 1 1 0.3333 1.1547 0.3849 0.3333

Total 0.3849

D = 2 1 0.1183 0.9599 0.1136 0.1183

2 0.3302 0.9599 0.3169 0.4485

Total 0.4305

D = 3 1 0.0219 0.9006 0.0197 0.0219

2 0.1332 0.9006 0.1199 0.1551

3 0.3287 0.9006 0.2960 0.4837

Total 0.4356

D = 4 1 0.0006 0.8957 0.0006 0.0006

2 0.0226 0.8957 0.0202 0.0232

3 0.1346 0.8957 0.1206 0.1579

4 0.3287 0.8957 0.2944 0.4865

Total 0.4358
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Comparing the results of Table 3.4 with the results of Table 3.3, we observe that allow-

ing service regions to vary in size yields a 3.2% gain in the maximum number of orders

served for two dispatch systems. Furthermore, the optimal fixed service area is slightly

less than half of the average optimal service area sizes of the unconstrained model. One of

the larger differences is that the maximal cutoff time for SDD ordering over all customers

would increase from 44.9% of the service day to 55.6% of the service day when moving

from a fixed area design to a variable area design. Another implication of these results is

how we observe the marginal benefits of adding additional dispatches. Previously, in the

variable-area model, we observed a 15.5% and a 17.3% marginal increase in orders served

when adding one additional or two additional dispatches on top of a one dispatch solution.

In the fixed area variant, these marginal gains decrease to 11.8% and 13.2%, respectively.

For a provider of SDD fulfillment, it is important to understand these differences in sys-

tem design and their effects on the business, both operationally and on the customer-facing

side. These tactical design models allow these providers to quantify design implications at

an aggregate level with a high level of fidelity.

3.6 Computational Experiments

In this section, we provide numerous examples of our models implemented on more re-

alistic sets of input parameters. Although the results depicted in Tables 3.1-3.4 can be

scaled to varying inputs of λ and c, it is useful to walk through how a SDD provider may

arrive at such values and then leverage our models and results. For selected examples,

we simulate service days where customers arrive via a Poisson point process and true dis-

patch durations are calculated exactly with Traveling Salesman tours. We now describe

a computational experiment that empirically demonstrates the the practical application of

our theoretical results and the relative accuracy of our continuously approximated model.

Consider a hypothetical provider of SDD fulfilment wishing to study the impact of

service region design and fleet sizing choice for their network. Orders are fulfilled out of a
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single depot, serving a circular service region of size to be determined. What is known is

that the service day starts at 9:30 am, and ends at 6:30 pm. Additionally, in order to gain an

understanding of a realistic input for λ , we consider the metropolitan area of Minneapolis,

Minnesota. The metropolitan statistical area surrounding Minneapolis has a population

density of 3,400 people per square mile [71], while 76.9% of the population in the state

of Minnesota are 18 years of age or older. If we assume that on average 1.0% of the adult

population orders from this fictitious SDD provider 6 times a year, then we can derive a

value of λ = 0.0478 orders per area unit per hour for SDD demand.

As discussed in Sections 3.1 and 3.2, there has been various studies on determining an

appropriate routing time function constant c0, for various network topologies [24, 25, 26,

27]. In the spirit of [27], here we design a calibration experiment to determine an appropri-

ately sized c0, and subsequently c, for our fictitious SDD provider. To do this, we randomly

sample locations within a unit circle and then calculate an optimal TSP tour serving these

points stemming from the center of the circle (representing the depot) according to a eu-

clidean distance metric. We complete this calibration for sample sizes ranging from 10 to

50 randomly generated points, which represents a reasonable number of packages to be

dispatched on each vehicle, for 30 repetitions each (1230 samples in total). Using a simple

linear regression model of TSP tour length versus the square-root of the number of stops,

it was determined that c0 = 0.8216 with a 95% confidence range of ±0.0031. Finally, as-

suming a vehicle speed of 15 miles per hour and our modeled choice for λ , it is calculated

that c = .0120 for this experiment. Figure 3.5 illustrates the sampled value for the routing

coefficient, c0, for each of the 1230 simulated tours.
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Figure 3.5: Graphical results of the routing function constant calibration for a unit circle
geometry with euclidean distances. A straight line depicts the fitted routing constant.

To study the efficacy of our continuously approximated modeling, we will define more

realistic simulation assumptions going forward. For order arrivals, we use a Poisson arrival

process in lieu of a fluid arrival rate. The Poisson process will use the rate of λ = 0.0478

orders per square mile per hour. Additionally, once these points are randomly generated

in the circular service region in order to serve them the total routing time is calculating by

solving a TSP using a standard integer programming formulation. All experiments leverage

Gurobi 9.1.1 as an optimization solver, while being coded in Python 3.6.3.

3.6.1 Two vehicles, one dispatch each simulation

This SDD provider first starts their topology design study by considering the usage of two

vehicles, where each vehicle is dispatched once (2v1d). Following the results of Table 3.1,

in order to maximize the number of orders served, this SDD provider should set service

areas of 476 square miles, and 261 square miles respectively. For a circular service region,

these values would correspond to having a 12.3 mile and a 9.1 mile radius design, respec-

tively. The first dispatch would be expected to leave at 11:10 am serving 37.73 orders
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while the second dispatch would be expected to leave at approximately 1:36 pm serving

30.57 orders.

As for our operationally simulated benchmark, we first describe the process of translat-

ing this optimal tactical dispatching policy into an operationalized design. First we fix the

service region sizes as prescribed by the optimal dispatch policy of the tactical model. This

is a reasonable assumption as service regions need to be fixed before the service day begins

so the SDD provider can know beforehand the particular population to offer such services.

For each dispatch, orders begin to accumulate via the Poisson arrival process throughout

the service day. As orders arrive into the system, the dispatcher re-calculates an optimal

TSP tour in order to serve all built-up demand. In spirit of Property 12, the dispatch allows

orders to accrue until a time until the vehicle must be dispatched immediately to serve all

accumulated orders and still make it back to the depot before the end of the day. If an

order arrives into the system that would cause the vehicle to arrive back to the depot after

6:30 pm, that order is not offered same-day servicing, however, if this order is able to be

served within the service region of the second vehicle, it will be added to that vehicles

workload. We simulated this process for 300 independent service days and summarise the

results in Table 3.5. Each operational benchmark statistic reports a sampled mean value

with a 95% confidence interval. These results highlight, at least empirically, that our tacti-

cally designed system has an operational behavior closely resembled to what was modeled.

Even with a more realistic order arrival process and actual TSP tour calculations, these

operational benchmarks serve within 1.0% the approximated number of orders and within

1.5% of the total approximated routing time of the tactical design policy.
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Table 3.5: Computational experiment results for a realistic 2v1d design.

Tactical Operational

First Dispatch Quantity 37.73 units 38.15 units (± 0.41)

First Dispatch Time 440.56 min. 433.51 min. (± 1.53)

Second Dispatch Quantity 30.57 units 30.24 units (± 0.46)

Second Dispatch Time 293.71 min. 290.85 min. (± 2.03)

Total Quantity 68.30 units 68.39 units (± 0.62)

Total Routing Time 734.27 min. 724.36 min. (± 2.94)

For a second experiment with two vehicles, we study the effects of a fixed area design.

Applying the results of Section 3.4.3, we are able to calculate that an optimal service region

design would serve a circular area of 382 square miles, having a radius of 11.0 miles. The

continuously approximated optimal dispatch policy can be found in Table 3.6. Also in Table

3.6 are the results of another 300 simulated service day instance with the same operational

benchmark as before, but with updated service areas.

Table 3.6: Computational experiment results for a realistic fixed-area 2v1d design.

Tactical Operational

First Dispatch Quantity 40.29 units 40.88 units (± 0.42)

First Dispatch Time 407.48 min. 401.18 min. (± 1.64)

Second Dispatch Quantity 25.44 units 24.40 units (± 0.36)

Second Dispatch Time 323.79 min. 322.74 min. (± 1.78)

Total Quantity 65.73 units 65.28 units (± 0.58)

Total Routing Time 731.27 min. 723.92 min. (± 2.95)

As in the previous Table, here we note that the average performance of the operational-

ized system closely resembles that of the tactical design. This supports the usage of such
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continuously approximated models for use of modeling the average behavior in SDD sys-

tems, especially as it pertains to comparing service region design. From these results our

fictitious provider of SDD fulfillment should be able to determine the more desirable sys-

tem for their business, a fixed-area design or a variable-area design. Once this topology

design is chosen, the vehicle dispatcher can leverage operationally focused SDD modeling,

such as in [14, 16, 12, 11, 13], in order to manage the day to day dispatching of the vehicles

in an optimal fashion.

3.6.2 One vehicle, two dispatches simulation

Now suppose our fictitious retailer is interested in studying the outcomes of single vehicle

systems. We can scale the results of Table 3.3 to this, λ = 0.0478, c = 0.0120 setting and

determine an optimal topology design of 289 square miles for a 1v1d design and 334 square

miles followed by 167 square miles for a 1v2d design. The optimal dispatch policy for the

1v1d system should expect to serve 41.48 orders in a day while the 1v2d system should

expect to serve a total of 47.90 orders.

Next we describe the operationally simulated benchmark for these one vehicle systems.

For both a single dispatch and a two dispatch design, we fix the service region to that cal-

culated in the tactical design policy. If the vehicle is to serve only one dispatch, following

the results of Property 10, the vehicle is to wait at the depot, accruing orders subject to the

Poisson order arrival process, until a point in time at which the vehicle must dispatch in

order to make it back to the depot by the end of the service day. This possibly includes

the necessity to reject an incoming order for same-day fulfillment if it would not be fea-

sibly achievable to serve that order along with the existing orders in the system. In that

case, the dispatcher dispatches the vehicle immediately without the last order arrival. In

the two dispatch setting the dispatcher is mindful that after the vehicle dispatches the first

time, it must continue to accrue orders for the smaller (167 square mile) service region. In

spirit of Property 19, the vehicle will dispatch immediately upon returning from the first
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dispatch, serving all accumulated orders for the second service area that built up while the

first service area was being served. As orders accrue for the first dispatch, the dispatcher

continuously solves updated TSP routing times in order to determine the amount of time

before the vehicle is back at the depot and ready to serve the second service region. They

are also able to approximate the number of orders that will have built up for this second

dispatch in that time, and the expected routing time of those number of orders for the sec-

ond service area. Thus when the total routing time of the first set of actual accumulated

orders plus the expected time to route the second set of orders equals the remainder of the

service day, the vehicle will be sent out to serve its first dispatch. As for orders that then

start accruing for the second dispatch, the dispatcher will again continually update a TSP

routing time and will stop accepting orders in order to have the vehicle return to the depot

by the end of the service day.

As with the two vehicle design experiments, 300 independent service days are simulated

and the results are summarised in Tables 3.7 and 3.8 below. Both operational benchmarks

report orders served to within 1.5% of their continuously approximated counterparts, while

the total routing time is within 2.0% for both experiments. These results highlight the

efficacy of the tactical design modeling and ability to approximate more realistic settings.

Table 3.7: Computational experiment results for a realistic 1v1d design.

Tactical Operational

First Dispatch Quantity 41.48 units 41.95 units (± 0.44)

First Dispatch Time 360.00 min. 353.22 min. (± 1.59)
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Table 3.8: Computational experiment results for a realistic 1v2d design.

Tactical Operational

First Dispatch Quantity 15.97 units 14.97 units (± 0.31)

First Dispatch Time 240.00 min. 251.51 min. (± 1.28)

Second Dispatch Quantity 31.93 units 32.40 units (± 0.53)

Second Dispatch Time 240.00 min. 237.98 min. (± 1.91)

Total Quantity 47.90 units 47.37 units (± 0.60)

Total Routing Time 480.00 min. 489.49 min. (± 2.43)

With the results of Tables 3.7 and 3.8 it is possible to weigh the pros and cons of a

second dispatch with a single vehicle. The 15.5% gain in orders served with a second

dispatch was first calculated in Section 3.5, and is supported by the tactical design policy

for this fictitious example. Furthermore, the operational benchmark policies show a 12.9%

gain in orders served. While these two statistics are not equivalent, they are certainly

correlated and reflect the strength of using a tactical design model such as ours to narrow

down topology designs for SDD providers. The results of Tables 3.7 and 3.8 can also be

compared to those in Tables 3.5 and 3.6 in order to choose a favorable SDD service design.

As stated previously, once a design is to be chosen, more operationally focused models are

able to help a dispatcher with day to day dispatching decision making.

3.7 Conclusions

In this chapter, we studied the tactical design of SDD systems in which the service region is

allowed to vary over the course of the service day. We leverage continuous approximations

on order arrivals and vehicle routing times to capture average-case system behavior. We

perform structural analyses for three different fleet settings: one vehicle dispatching once

daily, multiple vehicles each dispatching once daily, and one vehicle dispatching multiple
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times daily. For each of these settings, we derive theoretical properties and calculate tactical

dispatching policies, characterized by service region areas and order cutoff times, which

maximize the number of orders served per day. In order to quantify the tangible value of

allowing service areas to vary dynamically, we also calculate solutions to the problem of

maximizing orders served with fixed service areas for each setting.

Our structural analysis of optimal dispatching policies for these models exhibit some

profound design implications for SDD systems. First of all, we were able to show that for

many models that there is often a calculable optimal service area based on a set of known

accumulation times. Next, while there is a benefit to using multiple vehicles in the same

region for delivery, we explicitly quantified that this benefit is marginally decreasing. Ad-

ditionally, while re-using a single vehicle for a second dispatch may be desirable (15.5%

increase in orders served), using more than two dispatches seems to needlessly complicate

the dispatching solution. Lastly, we have shown what gains can be expected by allowing

a variable service region between dispatches over a fixed one. For example, when ser-

vice regions are allowed to vary in a two vehicle, one dispatch each system, orders served

increases by 3.9%.

Future works may derive optimal order-maximizing vehicle dispatching policies for

more general fleet settings. Additionally, just as we use service area variation as a tactical

lever to increase profitability and manage demand, future studies may consider using other

methods, such as tactical pricing, in conjunction with varying service areas.
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CHAPTER 4

CYCLE TIME CONSIDERATIONS FOR CAPACITATED VEHICLE ROUTING

PROBLEMS

4.1 Introduction

Logistical systems are typically designed to minimize cost or maximize profitability while

meeting objectives for, or constraints on, customer service. Vehicle routing optimization

problems are used to model the design of distribution (or collection) routes to move ship-

ments to customers (or to collect them) for some operating period, where each customer

and its known demand is served once during the period. Time window constraints may

be included when customers can only be served within specific time intervals during the

period, but objective functions typically focus only on vehicle dispatch and operating costs

and do not prioritize which customers receive service earlier or later within the period. This

may not be reasonable.

Routing models also typically consider the scenario where it has already been decided

which customers will receive service during the operating period; the duration of the oper-

ating period (e.g., a day) is also decided in advance. For example, when used in last-mile

logistics the classical Traveling Salesman Problem (TSP) models the sequencing a pre-

determined set of customers that are to be served together by a single vehicle for some op-

erating dispatch. Similarly, the well-studied Capacitated Vehicle Routing Problem (CVRP)

focuses on how to partition a pre-determined set of customers among multiple vehicles

and to determine a sequence for each; again the decision that each of these customers is

to receive a single visit (or shipment) in some operating period is pre-determined. Build-

ing a design this way is useful in many applications and is often appropriate. However,

it does separate some key customer service decisions from transportation operations deci-
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sions. Modern last-mile logistics systems may need to visit different delivery (or pickup)

locations with varying frequencies or may seek to balance the value of increasing the fre-

quency of visits to locations (and the related customer service impacts) with the costs of

doing so.

Balancing of service-based objectives with cost-based objectives is growing in impor-

tance, and improving customer service can be used to hedge a service provider’s short-term

gains with respect to long-term benefits. A common expression in service-oriented supply

chain systems is that customer retention is less costly than customer acquisition. Specifi-

cally, one recent survey suggests that 82% of companies believe that customer retention is

cheaper than customer acquisition [8]. A study from the Harvard Business School shows

that increasing customer retention rates by 5% can increases profits by over 25% [9]. A re-

lated study shows that loyal customers are 23% more likely to spend more than an average

customer [72]. These references highlight the need for intelligently-designed supply chain

systems, and in particular last-mile logistics systems, that wisely balance customer service

with operating costs.

In this chapter, we will consider modifications to standard models for vehicle routing to

include decisions about service frequency in a new way. This work will build from some

related approaches that exist in the literature. Some routing models do consider objective

functions that help prioritize when certain customers receive service within a given an

operating period. In traditional scheduling problems, objective functions such as makespan

minimization or cycle time minimized are used in models that determine when tasks should

be sequenced and completed. In a makespan minimization problem, the service provider

seeks to minimize the time gap between the start and end of the processing of a number of

tasks. While the minimax makespan objective seeks to balance when tasks are completed,

a cycle time minimization problem focuses on reducing the (weighted) average time a

unit spends in the system before its processing is completed. The traveling deliveryman

and its multiple vehicle extension use objectives or constraints that are similar to these
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from scheduling. Again, decisions about how frequently a customer might receive service

are ignored. On the other hand, inventory routing problems and some specialized period

vehicle routing problems do typically explicit address some decisions about when to serve

customers and how frequently. Most inventory routing problems focus on replenishing

customer stocks over a longer horizon to keep them within safe operating bounds. Period

vehicle routing problems again plan for multiple operating periods and typically have some

customers that require more frequent service than others. While some inventory routing

research has attempted to move away from a priori time discretization, this work is still

emerging and has not explicitly addressed last-mile delivery problems.

In this chapter, we offer a first attempt at studying capacitated vehicle routing prob-

lems (CVRPs) which consider the total cycle time of demand units on the service routes

in their objectives and constraints. The frequencies with which vehicles visit each par-

ticular customer are modeled explicitly, and we do not rely on time-expanded network

representations. We consider topologies with a single dispatching node, leveraging a fleet

of capacitated vehicles, serving a finite set of demand nodes. We denote these problems

as cycle time considering capacitated vehicle routing problems, or CTC-CVRPs. To avoid

time discretization, the CTC-CVRP model assumes that customer demand can be modeled

as a constant rate of consumption (or production) of units over time. A feasible dispatching

solution then must visit each customer node with enough frequency and allocated capacity

to satisfy the demand over time. Routing solutions will then also be specified as rates of

dispatches over time; thus, service routes will be assumed to be repeated continuously.

Many transportation logistics systems may be modeled in this way. For a non-package

movement example, albeit with multiple origin locations, consider the design of repeat-

able bus routes within a city. The demand at each potential bus stop can be expressed as

demand rates over possible destinations, and each route must be designed with capacity

in mind. A traditional CVRP-like objective might be to order the stops to minimize the

total routing time of the bus on each cycle. In contrast, our objective would be to order
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the stops such that the time that an average person spends on the bus would be minimized.

Additionally, it is common to have multiple (often identical) service vehicles cycle through

the same route in order to minimize waiting time at each stop as well as to meet capac-

ity requirements; the dispatch headway, or inverse of the service frequency, refers to the

time between consecutive arrivals of vehicles and waiting at each stop is proportional to

the headway. We also consider such headway-based waiting times in our routing models.

Going forward, we choose to limit the scope of this chapter routing problems for package

deliveries, rather than pickup routes or hybrid pickup-and-delivery routes. As an aside, it

is often the case that with reasonable modeling assumptions such as symmetric edge costs,

calculated pickup or delivery routes can be used interchangeably [73].

After formally defining all of the key inputs to our model, we discuss the mathematical

challenges associated with solving for optimal dispatching and routing policies depending

on how one may choose to formulate a CTC-CVRP. We then describe a set-partitioning

integer programming (IP) formulation, which has been shown to simplify the necessary

constraint modeling and optimal policy finding for similar problems. Common solution

techniques such as intelligently restricting the routing decision space or implementing a

route creation algorithm using column generation techniques are subsequently discussed

[74, 75, 76].

The remainder of the chapter is organized as follows. Section 4.1 provides a review of

the relevant literature. Then in Section 4.2, we formalize the key input variables and mod-

eling of VRPs with cycle time considerations. In Section 4.3 we show some key modeling

properties and discuss their broader design implications. In Section 4.4 we examine a col-

umn generating approach for solving linear programming (LP) relaxations of our models,

and how such procedures can be used to improve their IP counterparts. Section 4.5 contains

various computational exercises which walk through some of the key solution strategies,

topology design implications, and key output sensitivities. Lastly, we conclude our work

in Section 4.6 with a brief discussion, including a summary of findings and future research
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opportunities. An appendix contains material omitted from the main body.

4.1.1 Literature Review

CTC-CVRPs can be broadly classified within the rich family of VRPs. Classical models

such as the TSP or CVRP form the basis of many of the models studied by the literature.

The distinguishing features of our model in contrast to other models include capacitated ve-

hicles, continuous demand rates, repeatable service routes, and service-based objectives or

constraints. For the remainder of the chapter we primarily reference the notion of package

movement as a primary problem motivator, but there may be applications of our cycle time

focused, rate-based model, to other disciplines such as queuing theory or project schedul-

ing.

The classical objective of a TSP is to minimize total tour length. Such an objective pri-

marily focuses on the goals of the service provider. One interesting adaptation of the TSP

in the literature, however, is the Traveling Deliveryman Problem (TDP). As an aside, we

note that this model is sometimes referred to as the Traveling Repairmen Problem or even

the Minimum Latency Problem. As specified in [77], the objective of the TDP is to find a

Hamiltonian circuit which minimizes the sum of all distances along the circuit from a depot

node to all vertices along the tour. The motivation behind this problem objective is that it is

desirable to minimize the total waiting time it takes to service each demand node. In [78]

the authors are among the first to describe the problem and go on to formulate the prob-

lem with a Dynamic Program (DP) in the case where all vertices exist on a 2-dimensional

line. In [77], the authors formulate the problem as a Integer Program (IP) over a complete

directed graph and observe empirically that their formulation could only be solved to op-

timality for graphs having up to 60 vertices. More recently, in [79], the authors express

the TDP as a Mixed Integer Program (MIP) with a strengthened LP relaxation. Although

the solution quality of this model improved compared to [77], it still failed to solve larger

problem instances due to excessive computational run-times. With the literature suggesting

85



how difficult this problem is to solve compared to the TSP, which is already itself NP-Hard,

authors such as [80] have moved towards specifying effective solution metaheuristics. Be-

fore comparing and contrasting the TDP to our CTC-CVRPs, we will examine a natural

extension of the TDP.

Much like how the CVRP extends the TSP to capacitated vehicle fleets, the Multiple

Traveling Deliveryman Problem extends the TDP. Refereed to as the (kTDP) in [81], this

model considers larger vehicle fleets for feasibility like a CVRP would, but it also intro-

duces additional vehicles as a means to reduce the total objective time. There is limited

published research on the kTDP; most of the work being done in this area focuses on intro-

ducing novel formulations which either attempt to improve upon past works with respect to

solution speed (CPU times) or solution quality. In [81], the authors propose a MIP formula-

tion which is able to solve simulated problem instances of up to 49 nodes within a time limit

of two hours. There is a recent survey paper in [82] which compares and contrasts five dif-

ferent formulations via various computational experiments and theoretical properties. One

of the most application-driven pieces of literature came from [83] where the authors for-

mulated the kTDP in the context of minimizing the average waiting time for hospitals to

receive blood products from a depot node. The authors of that work chose to implement

a two-phase solution to solving the kTDP for a scenario with a two vehicle fleet. In the

first phase the authors partitioned the service region into two disjoint sets of hospitals, each

to be serviced by a single vehicle. Then in a second phase implemented a TDP solution

on each partitioned set separately. While the objectives of the TDP and kTDP take a step

in the direction of considering the total cycle time of their routes, there are some notable

differences of these models and our CTC-CVRPs. First of all, while the total time it takes

to arrive at each demand node appears in the objective, it is not demand-weighted. Further-

more, the TDP and kTDP do not consider rate-based demands which need to be serviced

by repeatable cycles. As such, the addition of multiple vehicles to a single route to reduce

waiting time at the nodes is inconsequential to these models, unlike in our CTC-CVRPs.

86



Another closely-related existing problem in research literature to our CTC-CVRPs is

the Energy Minimizing Vehicle Routing Problem (EMVRP). Similar to the TDP or kTDP,

the objective is dependent on the sum of incremental path lengths it takes to serve each

demand node, however in the EMVRP this distance is weighted by the demand at each

node. One motivation for this objective is to minimize total fuel consumption (or equiva-

lently energy expenditure) for the vehicles performing the routes, which is proportional to

vehicle weight while traveling. In [73] the authors formulate the EMVRP as a MIP for a

given fixed fleet size. To illustrate their novel problem, the authors solve the model over

two small, simulated problem instances with 3-4 vehicles and 12-16 demand nodes. The

authors also solve CVRPs with the same inputs and find (empirically) that even though

CVRP solutions return routes which travel 12% less distance, they have to use 4% more

energy doing so. The authors in [75] were able to formulate the EMVRP with an IP, which

they proved had a stronger LP bound than the model in [73]. The authors then introduce

a set partitioning formulation over a restricted set of feasible routes. This set was chosen

to be the set of all capacity-feasible routes which forbid any cycles of length at most s,

for some parameter s ≥ 1. Another work in the literature for the EMVRP, [84], restricts

the problem to the single vehicle variation. The authors focus on bounding the objective

function by leveraging properties of minimum spanning trees and later present an approx-

imation algorithm based on the well-known Christofides’s heuristic for symmetric TSPs

[85]. A notable flexibility of the EMVRP is that its objective also applies to areas outside

of energy consumption. This objective can be re-motivated as a service-oriented objective

that measures costs proportional to the average time packages spend in a system. Depend-

ing on if a delivery model prioritizes the nodes being visited or the volume of demand being

fulfilled at each node, the kTDP or EMVRP may be a better suited model. In comparison

to our CTC-CVRPs, the EMVRP does not consider visit frequency decisions for demand

locations.

Now, we briefly discuss classical column generation techniques for solving the LP re-
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laxation of a set partitioning formulation for the CVRP and the relation to our problem.

For a seminal reference on column generation techniques, we refer a reader to [86]. A

classical set partitioning formulation for any multiple vehicle routing problem may take

the following form:

min ∑
r∈R

crzr (4.1a)

s.t. ∑
r∈R

αi,rzr = 1 ∀i ∈ N, (4.1b)

zr ≥ 0 ∀r ∈R, (4.1c)

zr ∈ Z ∀r ∈R, (4.1d)

where zr denotes a binary decision on whether or not to include a route in the final dispatch-

ing policy. A route generally corresponds to a unique tour which starts and ends at a depot

node, serving a subset of the demand node set, N. The variable, R, denotes the set of all

feasible routes (the components of this set may vary depending on the particular definition

of a “route”). In the objective, (4.1a), the variable cr denotes the cost of route. In constraint

(4.1b), which describes the set partitioning of the demand nodes, the variable αi,r denotes

an indicator variable which equals 1 if node-i is serviced by route r and 0 otherwise. The

set partitioning model is a powerful one for routing since all constraints on the feasibility

of an individual route are captured in the variable definition phase; only feasible routes are

included in R.

The challenge, of course, is that identifying feasible routes requires enumerating (and

possibly sequencing) all subsets of customer locations, which has exponential complexity

and may lead to an IP with an exponential number of variables. Column generation is used

to address this issue for the LP relaxation of (4.1). The dual problem for this LP is given
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by:

max ∑
i∈N

ρi (4.2a)

s.t. ∑
i∈N

αi,rρi ≤ cr ∀r ∈R, (4.2b)

where ρi are decision variables which correspond to dual variables to the set partitioning

constraints indicated by (4.1b). A notable method based on the work of [74] exists for

solving the LP relaxation of (4.1) and its associated dual (4.2). In short, one can solve the

LP relaxation of (4.1) over a subset of routes, say R ⊆R, and observe the corresponding

dual solution {ρR∗
i }n

i=1. Then one must then solve the separation problem:

max
r∈R ∑

i∈N
αi,rρ

R∗
i − cr

typically modeled using a DP formulation. Note, to do this, one may choose to redefine

(and relax) the notion of a “route”, which may include allowing repeat visits to a node.

After solving this DP for an optimal route r∗ with value zr∗ = ∑i∈N αi,r∗ρ
R∗
i −cr∗ , if zr∗ > 0

then one must add the route r∗ to R and resolve the LP relaxation of (4.1) and repeat this

process. If it is the case that zr∗ ≤ 0, then one is guaranteed to have solved the LP relaxation

of (4.1) over all r ∈R and not just r ∈ R.

The authors in [75] formulated the EMVRP using a set partitioning framework and

attempted to find a process for column generation when solving the LP relaxation. They

note specifically that the method highlighted above cannot be as easily applied to generating

columns for the restricted set partitioning formulation of the EMVRP. This is because in

the separation problem the cost of a route depends on knowing exactly how much demand

will ultimately traverse each arc, which is not possible to do in a DP where the route is

being built node by node. That being said, the authors in [75] were able to formulate a DP

with an expanded state space using a multigraph to solve the separation problem.

89



Finally, we reference a few routing models in the literature which consider dispatch-

ing frequency decisions. A first family of models to note are Inventory Routing Prob-

lems (IRPs) which study the relationship between inventory management, vehicle rout-

ing, and delivery scheduling. There are many modeling variants for IRPs and for a recent

survey please refer to [87]. Common formulations optimize over routing and inventory

holding costs subject to service constraints on each demand node’s inventory level. Ser-

vice providers often manage the routing and scheduling as well as the inventory levels of

their customers in order to realize greater overall transportation efficiencies [88]. Recently,

some authors have suggested that IRPs must evolve to meet the needs of the booming

e-commerce era [89]; one example being that objective functions and customer routing fre-

quencies should be studied in tandem, rather than just routing for feasibility. We believe

our CTC-CVRPs help address this stated need. A second routing model which studies dis-

patch frequencies is the Period Vehicle Routing Problem (PVRP). As described in a recent

survey paper [90], in these models vehicle routes are constructed over a planning period of

many days/weeks/time-units. The goal being to find a set of dispatching schedule across

this planning period which visits each demand node with a desired frequency at minimum

cost. One variation most pertinent to our CTC-CVRPs is the Period Vehicle Routing Prob-

lem with Service Choice (PVRP-SC). In this model the objective function reflects an added

benefit of serving customers more frequently than their minimum service level [91]. Al-

though our planning horizon differs and we also consider the total accumulated routing

times of the demand units, our models share this idea that routing frequency should be

considered in the objective function.

4.2 Problem Description and Formulation

In this section we formally define the modeling inputs, constraints, and objectives required

to formulate CTC-CVRPs. Consider a static VRP defined over a complete directed graph,

G = (N ∪{0},A), where 0 denotes the singleton depot node and N = {1,2, . . . ,n} defines
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a set of n demand nodes. Additionally, A = {(i, j) : i, j ∈ N ∪{0}} defines the set of arcs

in the graph.

First we must define a cost metric over the arc set. Let c(i, j) denote the travel time

associated with traversing arc (i, j) ∈ A, measured in hours. It is assumed that these travel

times satisfy triangle inequality and non-negativity constraints. That is:

c(i, j) ≤ c(i,k)+ c(k, j) ∀i, j,k ∈ N∪{0}, ca ∈ R≥0 ∀a ∈ A.

A route, r, is then defined as an ordered subset of N, which signifies the order of demand

nodes to visit on a tour leaving from (and ending at) the depot node. For example, the route

{r1,r2,r3} corresponds to the delivery tour “0→ r1→ r2→ r3→ 0”, where ri is defined

as the i-th demand node visited by the route. For convenience, we define |r| as the total

number of demand nodes visited on the delivery route, and let r0 = r|r|+1 = 0. Thus, the

total time associated with traversing a route can be calculated as:

`r = s0 + |r|s1 +
|r|

∑
i=0

c(ri,ri+1)

where s0 ∈ R≥0 defines a fixed setup time required at the depot, and s1 ∈ R≥0 defines the

constant service times of visiting each demand node.

Each of the demand nodes in the network generates demand for delivery at a constant

rate of qi ∈ R≥0, measured in volume per time; in the application that motivates our work,

this metric is packages per hour. Furthermore, the appropriate packages for delivery are

generated at the depot location at the same rates; note then that the total packages then

arriving to the depot is ∑i∈N qi. Thus, while this model treats geographic locations as

discrete, it considers demand as a continuous fluid over time albeit with a constant rate.

This time demand model is a continuous approximation, and as an aside, a reference on

continuous approximation models in logistics is provided by the recent survey [23].
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Demand is served via a delivery fleet of size m ∈ Z≥1. Each vehicle has a maximum

carrying capacity of Q ∈ R≥0 packages at any one time. A defining feature of our model

is the notion that planned routes will be operated continuously over time, loading arriving

packages at the depot and serving customers. Multiple delivery vehicles can be assigned to

the same route, in order to create enough capacity to serve demand. For a given route, r, a

single vehicle generates a package movement capacity of Q/`r packages per hour. Addi-

tionally, the demand nodes on the route generate a total demand of qr = ∑
|r|
i=1 qri packages

per hour. Letting mr ∈ Z≥1 variably represent the number of vehicles assigned to route r,

for the sake of feasibility it must be the case that mr ≥ mmin
r = dqr`r

Q e.

In order to specify a cycle-time-related objective function, let us construct one piece-

wise from the perspective from an individual package at a demand node. Consider some

demand node, n′ ∈ N, which is served uniquely by some route, r. Thus, for some i ∈

{1,2, · · · , |r|}, we can say that ri = n′. Once the package leaves the depot it spends ∑
i−1
j=0

(
c(r j,r j+1)+ s1

)
hours on the route before reaching its final destination. Irrespective of the number of ve-

hicles assigned to this route, mr, all of the qn′ packages per hour incur this traveling time

from the depot to node n′. What will change with respect to mr, however, is the time each

package spends waiting at the depot before leaving on the route. The expected time spent

waiting at the depot, per package, is given by `r
2mr

hours.

We can now price a route by the total demand weighted time of its associated waiting

and traveling times. The cost of a given route, cr, which uses mr ≥ mmin
r vehicles is given

by:

cr =
|r|

∑
i=1

qri

(
`r

2mr
+

i−1

∑
j=0

(
c(r j,r j+1)+ s1

))
.

We are now ready to formulate our CTC-CVRP models. One of the most natural ap-

proaches is to define a set partitioning formulation over some predefined set of routes, R.

For now, suppose that this set is known and given. Let us first specify a nonlinear IP formu-

lation. Let zr be a binary decision variable for whether or not route r is chosen in the final

dispatching policy, and let mr denote the integral number of vehicles assigned to service
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the route. Consider then the following optimization problem:

min ∑
r∈R

zr

(
|r|

∑
i=1

qri

(
`r

2mr
+

i−1

∑
j=0

(
c(r j,r j+1)+ s1

)))
(4.3a)

s.t. ∑
r∈R

αi,rzr = 1 ∀i ∈ N, (4.3b)

∑
r∈R

mrzr = m, (4.3c)

mr ≥ zrmmin
r ∀r ∈R, (4.3d)

mr ∈ Z ∀r ∈R, (4.3e)

zr ≥ 0 ∀r ∈R, (4.3f)

zr ∈ Z ∀r ∈R. (4.3g)

The constraint (4.3b) describes the set partitioning restriction to visit each demand node

with exactly one route, using the variables αi,r, where αi,r = 1 if i ∈ r and zero otherwise.

The constraint (4.3c) enforces the vehicle fleet restriction, while (4.3d) enforces the con-

straint that each route must generate enough capacity to serve demand. The difficulty in

working with this formulation as is, is that the objective function, (4.3a), includes the non-

linear term zr/mr, and constraint (4.3c) includes the nonlinear term mrzr.

A simple way to linearize this model is to redefine the definition of a route and the

feasible set of available routes. Suppose now that a route as a tuple, (r,mr), where the tour

“0→ r1→ r2→ ··· → r|r|→ 0” is served by exactly mr vehicles. Furthermore, this route

is only feasible for mr ≥ mmin
r . Letting R+ denote some predefined set of feasible routes

of this type, according to this new definition of a route, we can now consider the linearized

optimization problem:
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min ∑
r∈R+

crzr (4.4a)

s.t. ∑
r∈R+

αi,rzr = 1 ∀i ∈ N, (4.4b)

∑
r∈R+

mrzr = m, (4.4c)

zr ≥ 0 ∀r ∈R+, (4.4d)

zr ∈ Z ∀r ∈R+. (4.4e)

Since cr and mr are given for any route, this formulation with a cycle time minimizing

objective has been successfully linearized. We know for any individual tour that by adding

more vehicles we can reduce the overall cycle time by reducing the average package waiting

time at the depot. We also know that by increasing the overall fleet size we stand to reduce

the overall average cycle per package in the system. Therefore, it is of interest to understand

the sensitivities of our model with respect to the variable m. In order to calculate the

minimal fleet size for which a given problem instance is feasible, we can formulate a second

CTC-CVRP formulation, this time with a fleet size minimizing objective as follows:

min ∑
r∈R+

mrzr (4.5a)

s.t. ∑
r∈R+

αi,rzr = 1 ∀i ∈ N, (4.5b)

zr ≥ 0 ∀r ∈R+, (4.5c)

zr ∈ Z ∀r ∈R+. (4.5d)

Going forward, we refer back to the fleet size minimization formulation given in (4.5)

as our “Phase 1” problem, and refer to the cycle time minimization formulation given in
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(4.4) as our “Phase 2” problem.

4.3 Model Properties and Observations

In this section, we observe various analytical properties of our models and their impact on

questions of tactical system design. To start the conversation, let us consider the impact

of fleet size relative to our modeling outcomes. Given a set of input parameters, solving

the Phase 1 problem allows us to solve for the minimal fleet size necessary to be able to

repeatably serve all of the demand nodes in the system; feasibility here means providing

enough vehicle capacity to meet all customer demand. As as aside, note that this minimal

fleet size of course depends on the given set R+. Unlike standard vehicle routing problems,

however, this model has an interesting feature: any ordered subset of customers generating

a route r can feasibly serve the demand of those customers by simply increasing the number

of vehicles mr assigned to the cycle. Thus, we might expect these models to have many

more feasible routes.

Furthermore, in order to determine the set of routes which are cycle time minimizing,

this minimal fleet size must be used in place of the variable m in constraint (4.4c) within

the Phase 2 optimization problem. What would be interesting from a design viewpoint, is

how fleet sizing beyond this minimal value impacts the cycle time objective in (4.4a). As

an extreme case, we first observe a lower bound on the cycle time objective per Theorem

23.

Theorem 23. For any given predefined set of feasible routes R+ and any given fleet size

m the optimal objective value returned by solving the Phase 2 problem, z(R+,m), is lower

bounded by the total package weighted time it would take to serve each demand node via a

direct route without considering any waiting time. That is, z(R+,m)≥ ∑
n
i=1 qi

(
c(0,i)+ s1

)
for all R+,m.

Proof. See appendix, C.1.
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Intuitively, as the available fleet size grows, the average time packages spend waiting in

the system becomes insignificant with respect to the time packages spend en route to their

destination. Informally, Theorem 23 illustrates that at some point, the fleet size becomes

large enough that it is desirable to serve each demand node via a direct route. What is

interesting about this Theorem is that this type of asymptotic behavior is not exhibited in

standard CVRP-like models. Before elaborating on this point, recall from our discussion

in Section 4.1.1 that the CTC-CVRP fleet serves two purposes. Adding more vehicles on a

route not only reduces the waiting time packages spend at the depot, but it also adds more

generated capacity on a route. In a CVRP-like model, increasing the fleet size beyond some

calculable point may not decrease total objective time, however increasing the capacity of

each vehicle will eventually cause the optimal set of delivery tours to converge to a single

tour solution. Thus we see that the two models exhibit differing asymptotic behaviors.

From a practical design standpoint, it is of interest to understand the relationship be-

tween our cycle time objective and the fleet size constraint (4.4c) in our Phase 2 problem.

Specifically, are we able to succinctly model the behavior of the objective function as the

fleet size marginally increases? Naturally, the cycle time in the system is non-increasing

as fleet size increases, but it would be of greater interest if we could definitively state that

cycle time reductions are marginally decreasing as fleet size increases. For a general set

of modeling inputs, this is not true as will be shown in section 4.5. Nevertheless, it may

be the case that certain families of modeling instances exhibit solution structures that al-

low for more predictable cycle time outcomes in optimal solutions given changes in overall

fleet size. What is certain, however, is that the cycle time cost of any individual route does

exhibit this marginally decreasing behavior as more vehicles are added onto the route. This

observation is formalized in Theorem 24.

Theorem 24. Consider an ordered subset of N, namely r, and the minimal number of

vehicles required to construct a feasible route tuple mmin
r . For any given k ≥ mmin

r define

r(k) as the routing tuple (r,k) which has a cost of cr(k). Then for any k ≥ mmin
r we have
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that: cr(k)− cr(k+1) > cr(k+1)− cr(k+2).

Proof. See appendix, C.2.

Although we will not explore these ideas further in this chapter, we should also make

a note about unnecessary space capacity. It is clear that the Phase 1 optimization model

determines the minimum fleet size necessary to serve all node demand over time given

the available route set R+. Given this route set, then, these solution exhibits high vehicle

utilization. One way to measure utilization is some time-weighted measure of vehicle load,

but we cannot claim that any optimal solution to the Phase 1 optimization maximizes this

utilization metric. For example, it is easy to see that with symmetric travel times two routes

serving the same customers but in reversed order will have different utilizations. More

relevant in our model is the average load carried when dispatched from the depot. To use

the fewest vehicles, vehicles should leave the depot frequently nearly full. The dual idea is

that we should dispatch empty vehicle space frequently from the depot. Once more vehicles

are provided to a system (to reduce average demand cycle time), the empty vehicle space

dispatched per time will increase thus measuring a decrease in vehicle utilization. If this

empty space is significant, then reducing vehicle size Q might be an appropriate strategy.

Thus far, the set partitioning models described by our Phase 1 and 2 optimizations rely

on the use of some predefined set of routes R+. A classical approach to defining this set

may be to enumerate all possible routes satisfying certain conditions. We see from our

definition of route cost cr in Section 4.2 we as well as from our feasibility conditions on

mr, our problem will naturally avoid lengthy routes, especially ones with a large number of

demand nodes visited. Define Ωm
p to be the set of all feasible routing tuples which visit less

than or equal to p demand nodes and use less than or equal to m vehicles to do so. Thus

our CTC-CVRPs, it is natural to choose a p≥ 1 and let R+ = Ωm
p .

Note that if we choose R+ = Ωm
p , as p increases the decision space of routing options

increases along with model complexity. It is of interest to determine if we are able to pre-

process and remove any of these routes from the model before calling upon an optimization
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solver. For example, due to the complexity of the cost function and feasibility criteria of our

route variables, it is not inherently obvious if there is a single best permutation of demand

nodes to visit given a subset of N, as there may be in a more traditional CVRP-like model.

The following definition formally introduces the concept of route domination, which is

subsequently explored in Property 25 and the subsequent example.

Dominated routes: Consider two ordered subsets of N which contain the same demand

nodes to be visited but in two distinct orderings. Call these subsets Na ⊆ N and

Nb ⊆ N. Additionally consider two vehicle fleet sizes, namely ma and mb, which are

used to define the feasible routes ra = (Na,ma) and rb = (Nb,mb). If it is the case

that cra < crb while ma ≤ mb, then route ra is said to dominate route rb.

Property 25. Given a predefined set of feasible routes R+ consider two possible routing

options, ra ∈ R+ and rb ∈ R+. In the case that rb is dominated by ra, then we can re-

move rb from R+ without loss of generality before solving either the Phase 1 or Phase 2

optimization problem.

Dominance relations are often found in operations research modeling to simplify anal-

ysis and solution algorithms. What is interesting about our CTC-CVRP modeling is that

while the conditions to establish dominance are readily understood, complicated relation-

ships between routing permutations may arise for even the simplest of topologies. Con-

sider the situation where three demand nodes {A,B,C} and a depot node 0 are described

on a Cartesian plane and distances are euclidean, as illustrated in Figure 1. Under a set

of modeling inputs, fully described in appendix C.3, it can be shown that permutation

A→ B→C dominates all other permutations for 1 and 2 vehicle routes, while the permu-

tation B→C→ A dominates all other permutations for all routes using 3 or more vehicles.

Furthermore, the permutation A→C→ B is dominated for any fleet size.
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Figure 4.1: Illustration of three different routing permutations to serve the demand nodes
A, B, and C from the depot node 0 on the same route. The remaining three permutations are
each identical to one of the above permutations by symmetry and are removed for visual
clarity.

4.4 Column Generation Techniques

As discussed in Section 4.2, nonlinearity difficulties in our cycle time objectives as well

as in our fleet allocation constraints guided the modeling of our CTC-CVRPs towards set

partitioning formulations. In the literature review we discussed how the related EMVRP

model was also shown to have better modeling capabilities in a set partitioning framework

[73, 75, 84]. Specifically in [75] an arc-variable MIP formulation and a route-variable set

partitioning formulation are compared and it was found that the LP relaxation of the set

partitioning formulation was at least as strong as that of the arc-variable MIP formulation.

Due to its strengthened relaxation and also its simpler application within a branch-cut-and-

price framework, the set partitioning model of the EMVRP was highlighted as the preferred

modeling choice [75]. Although in this chapter it is out of scope to describe a full branch-

cut-and-price algorithm, we review some findings relevant to solving the LP relaxation of

our formulations and subsequent use within IP improvement heuristics. In Section 4.5 we

will describe various computational exercises which illustrate such techniques.

Recall from out earlier discussions concerning R+ that for our models with cycle time

considerations, shorter tours are qualitatively more desirable than lengthier tours. Thus,

we defined a set of routing tuples which limited the number of delivery nodes visited and
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proposed using this set as our R+. Another advantage of working through a column gener-

ation methodology here, besides for future use in branch-cut-and-price algorithms, is that

we may be able to dynamically generate more desirable lengthier tours without having to

enumerate all of them.

For the remainder of the section, we choose to focus on Phase 2 problem as the complex

cost structure in the objective makes for a more interesting analysis. Now, consider the LP

relaxation of (4.4) and its associated dual problem:

min ∑
r∈R+

crzr (4.6a)

s.t. ∑
r∈R+

αi,rzr = 1 ∀i ∈ N, (4.6b)

∑
r∈R+

mrzr = m, (4.6c)

zr ≥ 0 ∀r ∈R+, (4.6d)

zr ∈ R ∀r ∈R+. (4.6e)

max ∑
i∈N

ρi +mµ (4.7a)

s.t. ∑
i∈N

αi,rρi +mrµ ≤ cr ∀r ∈R+, (4.7b)

ρi ∈ R ∀i ∈ N, (4.7c)

µ ∈ R. (4.7d)

When initially choosing the set of feasible routes for this problem, we have discussed

the merits of setting R+ to equal Ωm
p for some p≥ 1. Note that when p = n, Ωm

p will equal

the set of all possible routing tuples for the given problem instance. Generally speaking,
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however, any R+ ⊆ Ωm
n can be chosen to optimize over. Depending on the problem size,

enumerating all routes of a predetermined length may be costly in terms of solver time

or computational memory. It may be better to start with a smaller subset of routes, then

systematically grow the routing set via a column generation procedure. For example if we

are interested in optimizing over R+ = Ω3
5, we could start by optimizing over R+ = Ω3

3

then solve a sequence of pricing problems to efficiently determine if any routes of length

four or five should be added to the decision space. Such a procedure can achieve the same

performance as if one had started with the larger set of routes Ω3
5 to begin with.

Consider the problem of solving problem (4.6) over the set R+ where it may be in-

tractable or undesirable to completely enumerate all of R+. We can instead initially choose

a smaller decision space R+ ⊆R+ to optimize over. After solving (4.6) over R+, consider

the associated optimal dual variables {ρR+∗
i }i∈N and µR+∗. From constraint (4.7b), if it

were possible to show that ∑i∈N αi,rρ
R+∗
i +mrµR+∗ ≤ cr for all r ∈R+ then it would be

correct to say that {ρR+∗
i }i∈N and µR+∗ optimally solve (4.7) over all r ∈R+ and not just

for r ∈ R+. With that in mind, we now formally introduce the CTC-CVRP pricing problem

for column generation.

CTC-CVRP Pricing Problem Consider the optimal dual variables {ρR+∗
i }i∈N and µR+∗

obtained via solving (4.7), or equivalently (4.6), over a given route set R+. The CTC-

CVRP pricing problem is then defined as: maxr∈R+ ∑i∈N αi,rρ
R+∗
i +mrµR+∗− cr.

The optimal objective of this pricing problem allows us to determine whether the cur-

rent solution is optimal; if the maximum price (reduced cost) is not greater than zero, then

the solution is optimal and if not we have identified a dual row (primal column) that should

be added to R+ to improve the primal objective. Column generation relies on being able to

solve this underlying pricing problem efficiently. As described in the literature review in

Section 4.1.1, a traditional CVRP modeled within a set partitioning formulation can solve

its pricing problem via a DP which constructs an optimal reduced-cost route stop by stop

in a prize-collecting fashion. The difficulty in directly applying that approach here is that
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the route cost cannot be explicitly determined without knowing the entire route length and

stop-by-stop demand to be served upfront. Equivalently stated, there is simply not enough

information to properly construct the route cost when the state space consists solely of a

current location and remaining vehicle capacity. The authors in [75] were able to define a a

EMVRP column generation procedure by adding cumulative supply variables to be picked

up before each arc is traversed. For our problem, not only do we need to keep track of

cumulative packages, but also cumulative path lengths. This is necessary since the waiting

time component of route cost depends on the overall tour length.

We will describe a DP methodology with a state space that is sufficient to solve our

pricing problem. In addition to the more complicated state space, in our problem we also

consider adding multiple vehicles to the same routing tour. Thus, for both implementing

feasibility conditions as well procedurally building the cost of a route, it is advantageous

to perform the pricing iteratively over a fixed fleet size variable. Now we will modify the

pricing problem before formalizing the final DP.

Modified CTC-CVRP Pricing Problem Consider the optimal dual variables {ρR+∗
i }i∈N

and µR+∗ obtained via solving (4.7), or equivalently (4.6), over a given route set R+.

The modified CTC-CVRP pricing problem is then defined as:

maxm′≤m maxr∈R+|mr=m′∑i∈N αi,rρ
R+∗
i +mrµR+∗− cr.

In order to be able to define an efficient DP which solves the modified CTC-CVRP

pricing problem, we will relax the definition of what constitutes a routing tour. Being able

to solve the DP more efficiently with a simpler state space, comes at the cost of having a

weaker LP bound. To do this, we allow a route to repeat visits to the same demand node,

just not consecutively. Thus the variable αi,r now indicates the number of times that the

route visits node i ∈ N. Keeping in mind our tendency to limit the number of stops on

each considered delivery tour, we also introduce a state space variable which keeps track of

the number of demand nodes visited. Now to model and subsequently solve the modified

CTC-CVRP pricing problem, consider the following DP defined for a given value of m′:
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State Space: Intermediate states are of the form: (i,∑q,∑`, p), where the current location

on the path is given by i ∈ N, the total volume of packages delivered up to this point

is given by ∑q≥ 0, the current path length is given by ∑`≥ 0, and the total number

of demand nodes visited is given by p≥ 0.

Initial State: The initial state is given by S(0) := (i = 0,∑q = 0,∑`= 0, p = 0).

Terminal State: There is a single terminal state, simply named S(T ).

Actions and Rewards to Non-Terminal States: Any non-terminal state (i,∑q,∑`, p) can

transition to another non-terminal state ( j,∑q+ q j,∑`+ c(i, j)+ s1, p+ 1) only if:

(∑q+ q j)(∑`+ c(i, j)+ c( j,0)+ s1 + s0) ≤ Qm′ and i 6= j. This transition obtains a

reward of: ρR+∗
j −q j(∑`+c(i, j)+ s1)− 1

2m′ (∑q+q j)(∑`+c(i, j)+ s1+c( j,0)+ s0)+

1
2m′ (∑q)(∑`+ c(i,0)+ s0).

Actions and Rewards to the Terminal State: Any non-terminal state (i,∑q,∑`, p) can

transition to the terminal state of S(T ). This transition obtains no reward.

The objective of the DP is to move from the initial state to the terminal state maximizing

the total accumulated reward. The network of states and possible transitions is guaranteed

to be acyclic since transitions only exist between a state and one with reduced capacity, or

to a terminal state. Given the structure of this particular DP, we note that a forward-reaching

methodology may be the preferred solution approach. Thus, we define z∗(S(0)) = m′µR+∗

to equal the DP valuation of the initial state with the goal of using the above DP definition

to calculate the value of the terminal state z∗(S(T )). Once we have obtained this value for

all m′ ≤ m we are able to solve the modified CTC-CVRP pricing problem.

Suppose that the pricing problem were solved and returned the route r∗ ∈R+ with an

objective value strictly greater than 0; then we can add r∗ to the set R+. We can then repeat

the process and determine if any more routes should be added to the decision space. In

contrast, if the pricing problem returned an objective value less than or equal to 0, then we
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can terminate the column generation procedure. Note that column generation and solving

the associated pricing problem can be sometimes more of an art rather than a science.

For example, in Section 4.5 we choose to continually cycle through the possible values

of m′, each time adding the most cost-reduced route to the set R+, if appropriate. This

is in contrast to finding the most cost-reduced route over all values of m′ before adding

anything to R+. Then, once no more desirable routes can be generated for any value of m′,

the procedure terminates. This procedure is further detailed in Section 4.5.3. On the other

hand, one could consider adding multiple routes to the set R+ at each column generation

step, not just the most cost-reduced.

As an final, yet highly important, note we discuss the concept of dynamic state gen-

eration and state domination when solving the DP model for the pricing problem. Sim-

ilar to the idea of route domination discussed in Section 4.3, not all feasible DP states

need be considered when attempting to find the most cost-reduced route. Formally a state

S(a) := (i(a),∑q(a),∑`(a), p(a)) dominates the state S(b) := (i(b),∑q(b),∑`(b), p(b)) if the

following criteria are met: i(a) = i(b), ∑q(a) ≤ ∑q(b), ∑`(a) ≤ ∑`(b), p(a) ≤ p(b), and

z∗(S(a)) > z∗(S(b)). Qualitatively, if two states in the DP are at the same demand node,

but one of states has achieved strictly greater state valuation while consuming less than or

equal to the capacity of the other state, then the dominated state can be removed from the

DP without loss of generality. Such state space reductions can improve not only computa-

tional memory but also solution speed.

4.5 Computational Examples

In this section, our goal is to walk our models through a variety of computational exper-

iments. Due to the novelty of our problem, our intent here is to simplify the network

topologies we simulate and instead focus illustrating the modeling, solving, and utility of

our CTC-CVRPs. After describing a set of simulation parameters, we will solve the Phase

1 optimization problem to determine the minimally-necessary fleet size for a generated
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sample instance. We follow this with an extended analysis of the Phase 2 problem, specif-

ically focusing on design implications varying the fleet size parameter. Finally, we study

the impacts of a column generation implementation heuristic which dynamically creates

desirable routes not in the initial decision space for varying generated instances. All ex-

periments leverage Gurobi 9.1.1 as an optimization solver and all software for this work is

coded in Python 3.6.3.

4.5.1 Phase 1 Optimization

We start our experimentation by considering an artificial 20 mile by 20 mile service re-

gion with a depot node at its center. Within this region are n = 10 demand nodes, each

generated at a random lattice point with uniform probability. The cost metric between any

two nodes on the graph is measured via their Manhattan distance normalized by a vehicle

speed of 20 miles per hour, that is, c(i, j) =
1
20

(
|xi− x j|+ |yi− y j|

)
. The fixed setup time

at the depot and the service time at each demand node are ignored in this analysis and set

equal to zero.. Each demand node generates demand via an independent and identically

distributed discrete uniform distribution over the integer values from 1 to 5 packages per

hour, inclusively. As a final note, each service vehicle has a maximum carrying capacity of

Q = 20 packages. From here we generated a random instance of our demand locations and

demand rates, which are described fully in the appendix, C.4.

Much like a realistic service provider designing delivery routes to serve these demand

nodes, at this point it is unknown how many vehicles to assign to this region. We use

our Phase 1 optimization problem first to determine a minimally necessary fleet size. The

final modeling component yet to be defined, however, is how to approach the feasible set

of routing options. To start our analysis, we choose to let R+ = Ω3
4, as first discussed in

Section 4.3. Recall that Ωm
p is the set of all feasible routing tuples which visit less than or

equal to p demand nodes and use less than or equal to m vehicles to do so.

There are 5,860 different permutations of demand nodes which convert to tours which
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visit four or fewer demand nodes for our given problem instance. From these permutations,

12,532 feasible route tuples were created which use three or less vehicles per tour. By

solving the Phase 1 optimization problem, it was determined that at least three vehicles

are necessary to service this region. In order to arrive at this minimal fleet size, the model

returned the following routes: (5→ 2→ 6), (7→ 3→ 10), and (4→ 9→ 8→ 1) each

using a single vehicle. Although these routes were not explicitly selected to minimize total

cycle time costs, that value was determined to be 96.1 minutes per package (on average).

Figure 4.2 illustrates the graph of the simulated region and the solution routes from the

Phase 1 optimization.

Figure 4.2: Our simulated instance requires at least three vehicles in order to serve demand,
as determined by solving the Phase 1 problem. The depicted solution uses three delivery
routes, each using one vehicle.

4.5.2 Phase 2 Optimization

Now that we know the minimal fleet size necessary to serve the demand in this region,

subject to the selected parameters, it is of interest to determine which of these 12,532 route

tuples to leverage in order to minimize package cycle time. Having initialized our Phase 2

problem with three vehicles, our Gurobi solver returns the following routes: (3→ 7→ 10),

(6→ 2→ 8), and (5→ 1→ 4→ 9) each using a single vehicle. The average cycle time
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per package was determined to be 76.2 minutes. These results are illustrated in Figure 4.3.

Figure 4.3: Give the minimal fleet size to serve demand, our Phase 2 optimization problem
is able to determine which delivery routes to leverage in order to minimize package cycle
time.

As previously discussed, it is of interest to quantify the achievable marginal reductions

in package cycle time as additional vehicles are added to the service fleet. As we chose

R+ = Ω3
4 we have that each feasible route can use no more than three vehicles. Thus,

we know to serve these n = 10 demand nodes our models cannot use more than thirty

vehicles in total. As our Phase 1 model chose to utilize three vehicles, at minimum, this

upper bound on fleet size is seemingly more than sufficient and supports the initial choice

of R+. Therefore, we repeatably solved the Phase 2 optimization problem for this problem

instance for m = 3 to m = 30 and have plotted the resulting optimal objective value in

Figure 4.4. Notably, we observe a 12.6 minute reduction in average cycle time (16.6%

reduction) when implementing a four vehicle solution instead of the minimal three vehicle

solution. An additional 8.8 minutes of average cycle time per package (13.9% reduction)

can be reduced by adding a fifth vehicle on top of the four vehicle solution. All other

marginal reductions in cycle time are less than 5 minutes per package which, depending on

a service provider’s use-case, may or may not be desirable to pursue.
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Figure 4.4: Depiction of how the Phase 2 objective value changes as the fleet size parameter
increases from m = 3 to m = 30 for our simulated problem instance.

Another interesting observation illustrated in Figure 4.4 is that while the cycle time

objective is strictly decreasing for all values from m = 3 to m = 30, we empirically ob-

serve that this plot is non-convex between integer points. Specifically, there are multiple

instances where the adding an additional vehicle yields less than half the cycle time reduc-

tion than if two vehicles were to be added to the fleet size. This result implies, at least for

some topologies and modeling parameters, that a service provider may have to explicitly

valuate a range of fleet sizes in order to determine what they consider to be an optimal

fleet size compared to marginal cycle time benefits. This is in contrast to a simpler valu-

ation that could greedily determine vehicle by vehicle if incrementing the fleet size would

be advantageous. This result shows that while Theorem 24 proves incremental cycle time

benefits for any individual route are marginally decreasing with respect to increasing fleet

sizes, this result does not generally extend to the overall optimization problem.

Theorem 23 asserts that for any vehicle fleet size, the Phase 2 optimization problem

can do no better than direct routes with no assumed waiting time. We plotted the optimal
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Phase 2 delivery routes for the fleet sizes of 5, 10, 20, and 30 vehicles in Figure 4.5. A last

notable observation from this computational experiment is that as fleet size progressively

increases, the number of direct routes from the depot to an individual demand node and

back increases. Specifically, for the m= 5 case no direct routes were realized in the optimal

delivery solution, while in the m = 10 case we observe one direct route (0→ 8→ 0). The

m = 20 and m = 30 cases observe four and ten direct routes, respectively.

Figure 4.5: As fleet size increased, for the Phase 2 optimization problem, more and more
direct routes are found in the optimal delivery solution.

4.5.3 Column Generation Applications

In Section 4.4 we discussed a column generation methodology for solving an LP relaxation

of our Phase 2 optimization problem. There are a number of purposes for such a proce-

dure. LP relaxations in general are important to both bounding the objective value of the

corresponding IP, as well as in solving the IP itself. Column generation can be used within

a full branch-cut-and-price framework, but for this chapter and this experiment specifically

we solely focus on the use within an IP improvement heuristic. For some motivation, note
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that although Ωm
p may be an initially good choice for R+ given the structure of our CTC-

CVRPs, it may be advantageous to consider routes with more than p stops.

For this experiment we create 18 new simulated problem instances with varying input

parameters. For each instance we may vary the number of demand nodes in the region

n or the size of the vehicle fleet m. Specifically we consider (n,m) ∈ {(12,4), (12,6),

(24,8), (24,12), (36,12), (36,18)}. Repeating each of these combinations three times, we

arrive at our 18 simulated instances, or scenarios. Note that all scenarios are independently

generated. Each demand node still generates demand via an independent and identically

distributed integer value from 1 to 5 packages per hour and each service vehicle has a

maximum carrying capacity of Q = 20 packages. Vehicle speeds, arc cost metrics, as well

as fixed setup times and service times all remain the same as the earlier instance. However,

we sample demand node locations from a larger 30 mile by 30 mile region.

After randomly generating the node location and hourly package demand at each of

the n demand nodes for each scenario, we chose to let R+ = Ω3
3 for an initial decision

space. We subsequently solved the Phase 2 optimization problem to determine the resulting

average cycle time per package in each optimal delivery policy. Since our values for n

ranged from 12 to 36 stops and our values for m ranged from 4 to 18 vehicles, any optimal

dispatching policy limited to routes of three stops or less seems quite restrictive. Thus, we

are interested in knowing how much the average cycle time per package could decrease if

we allowed routes with more stops, say up to six. That is, we wanted to determine what

would happen to our Phase 2 objective values if we would have let R+ = Ω3
6.

Setting R+ = Ω3
3 and R+ = Ω3

6 we use the results of Section 4.4 in order to accomplish

this feat. Recall that now the definition of a route will allow for multiple, non-consecutive,

visits to the same demand node. For each scenario we start by solving the Phase 2 LP

relaxation for R+ = Ω3
3. Then by restricting ourselves to a single value for m′ ∈ {1,2,3}

we solved the modified CTC-CVRP pricing problem in order to determine if any routes

of six or less stops should be added to the set R+. We cycled through this process three
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times, for m′ = 1, m′ = 2, and finally for m′ = 3 respectively. Once no more routes could

be generated with negative reduced cost for any value of m′ this process terminated.

One purpose of solving this LP relaxation is to lower bound the objective function value

that could be achieved if the Phase 2 IP were solved for R+ = Ω3
6 to begin with. This value

will be a lower bound since not only are the decision variables allowed to be continuous

rather than binary, but also the definition of a route itself was relaxed. In Table 4.1 we can

compare the results of the initial Phase 2 IP with a three stop limit and the corresponding

LP relaxation with a six stop limit as determined via our column generation procedure. In

Table 4.1 we record the objective values for each model expressed as average cycle time

minutes per package, the number of routes generated to solve the 6-stop LP relaxation, and

the associated objective gap between the two models.

From Table 4.1 we observe anywhere from a 1.7% to a 27.7% gap in the average cycle

time per package between the 3-stop IP and the 6-stop LP relaxation. For a fixed number

of demand nodes, this gap appears to be larger in the case of a smaller fleet size. This

result suggests the importance of allowing lengthier routes into the decision space when

the fleet is more restrictive. This result agrees with the asymptotic behavior discovered for

our CTC-CVRP models. Furthermore, the gap was also larger when considering a greater

number of demand nodes n. This result suggests that there may be more opportunities for

desirable lengthier routes when there is a greater density of demand nodes, as the service

region did not vary in size. Overall, we know that these gaps determine the maximum

amount of cycle time reduction that could be seen from an optimally solved IP solution

with three stops and an optimally solved IP solution with six stops.

As discussed, another motivation for building a column generation procedure is that

we can take the routes that were generated for the 6-stop LP relaxation and add them to

our 3-stop IP decision space. The hope is that after solving this new IP the average cycle

time per package can be reduced, ultimately result in an improved dispatching policy. We

call this a heuristical policy for the 6-stop IP solution. As some of the generated routes
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may visit some nodes more than once, in order to arrive at a sensible heuristic, it may be

necessary to shortcut some of the generated routes before adding them to the R+ = Ω3
3 set.

Such short-cutting here relies on the usage of the triangle inequality assumed in Section

4.2.

In Table 4.1 we can also observe the performance of our 6-stop IP heuristic. We record

how many of the generated columns were transformed into routes with four, five, or six

unique stops. From these scenarios, the largest nominal reduction in average package cy-

cle time occurred in scenario M. After adding 65 routes discovered during the 6-stop LP

relaxation to the 3-stop IP decision space, we were able to reduce the average cycle time

per package by 15.0 minutes (14.0% reduction). This closes the gap to the LP relaxation to

9.8%, from an initial value of 27.7%. Future works may focus on improving these heuris-

tics, developing more sophisticated column generation procedures for topology-specific

data, or applying such results within a branch-cut-and-price framework.

4.6 Conclusions

In this chapter we introduced the concept of cycle time considering capacitated vehicle

routing problems, or CTC-CVRPs. The motivation for these problems stems from the

desire to decrease the average time packages spent within a delivery network. We note

that other applications outside of package movement may exist for these models, espe-

cially in the realms of queuing theory and resource scheduling. Traditional VRP models

tend to focus on the resource usage of the system or how routing policies affect the service

provider. In contrast, our CTC-CVRP models consider the impact of routing policies on the

units being served in the system. Factors such as average waiting times, demand weighted

accumulated routing times, vehicle capacity constraints, and repeat servicing were all con-

sidered in our modeling. It is important to study models such as these in order to gain a

more complete picture on how both service providers and service receivers are impacted in

supply chain system design.
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We utilize set partitioning formulations to model our CTC-CVRPs as such formulations

lend themselves nicely to closely related problems in the literature and also form a basis

for column generation procedures that can be used for dynamic route creation. Two set

partitioning models were highlighted in this chapter. The first one, our Phase 1 model,

focuses on determining the minimally sufficient fleet size necessary to continually service

demand in the system. Our second model, unimaginatively named the Phase 2 model, has

a cycle time objective and uses fleet sizing as a constraint. For the scope of our analysis,

set partitioning models rather than set covering models, were chosen in order to simplify

the modeling and subsequent analysis. Future works may relax the restriction that each

demand node can only be serviced by one route in hope to even further reduce cycle time

objectives.

We discussed column generation procedures and its uses in both the solving of LP

relaxations as well as in solving IPs in the case that the decision space is exceptionally

large. Even though our modeling objectives tend to support the concept of limiting overall

route length, it can be advantageous to dynamically generate desirable delivery routes with

a larger number of stops. In one computational experiment, we saw a 14.0% reduction

in average package cycle time after a column generation improvement heuristic was added

onto an initial IP solution. Future work here may focus on improving the underlying pricing

problems and DP formulations.
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CHAPTER 5

CONCLUSION

5.1 Summary

The primary focus of this dissertation is to aid in the tactical level decision making that

goes into designing and developing of various last mile logistical systems. We have em-

phasized simplified modeling and transparent policy making for such systems, as long as

operational decisions maintain fidelity at the aggregate level. With such models we are

able to approximate the impact of various design choices on day-to-day operations. While

we motivate our work around same-day and service-orientated systems, especially as they

pertain to package delivery supply chains, our methods may be able to be applied to other

disciplines within Operations Research.

In Chapter 2, we demonstrated that our proposed tactical model for same-day delivery

successfully simplifies operations at the level of a single depot and its service region. By

approximating the order arrival process and the vehicle routing times, we were able to

derive simple and transparent optimal solutions for various system topologies. Using our

model, a system manager can easily perform what-if analysis on various potential system

configurations, and compare the cost and operating conditions of these configurations to

decide various tactical questions, such as the size of the delivery fleet, the order cutoff

time, or whether to have vehicles deliver to the entire service region versus partitioning the

region by vehicle.

Then in Chapter 3, we studied the tactical design of SDD systems in which the service

region is allowed to vary over the course of the service day. We again leveraged continuous

approximations on order arrivals and vehicle routing times, knowing our focus on service

region and order cutoff times as decision variables. We performed various structural anal-
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yses and derived theoretical properties in order to maximize the number of orders served

per day. In order to quantify the tangible value of allowing service areas to vary dynam-

ically, we also calculate solutions to the problem of maximizing orders served with fixed

service areas for each setting. Our structural analysis of optimal dispatching policies for

these models exhibit some profound design implications for SDD systems. First of all, we

were able to show that for many models that there is often a calculable optimal service

area based on a set of known accumulation times. Next, while there is a benefit to using

multiple vehicles in the same region for delivery, we explicitly quantified that this benefit

is marginally decreasing. Additionally, while re-using a single vehicle for a second dis-

patch may be desirable (15.5% increase in orders served), using more than two dispatches

seems to needlessly complicate the dispatching solution. Lastly, we have shown what gains

can be expected by allowing a variable service region between dispatches over a fixed one.

For example, when service regions are allowed to vary in a two vehicle, one dispatch each

system, orders served stand to increase by 3.9%.

Lastly, in Chapter 4 we introduced the our cycle time considering capacitated vehi-

cle routing problems, or CTC-CVRPs. The motivation for these problems stems from the

desire to decrease the average time packages spent within a delivery network. These CTC-

CVRP models consider the impact of routing policies on the units being served in the sys-

tem. Factors such as average waiting times, demand weighted accumulated routing times,

vehicle capacity constraints, and repeat servicing were all considered in our modeling. We

utilize set partitioning formulations to model our CTC-CVRPs as such formulations lend

themselves nicely to closely related problems in the literature and also form a basis for

column generation procedures that can be used for dynamic route creation. Two set parti-

tioning models were highlighted in this chapter. The first one focuses on determining the

minimally sufficient fleet size necessary to continually service demand in the system, while

the second has a cycle time objective and uses fleet sizing as a constraint. We discussed

column generation procedures and its uses in both the solving of LP relaxations as well as
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in solving IPs in the case that the decision space is exceptionally large. In one computa-

tional experiment, we saw a 14.0% reduction in average package cycle time after a column

generation improvement heuristic was added onto an initial IP solution.

5.2 Conclusion

As mentioned in the epigraph: all models are wrong, but some are useful. The quality of

output of any model is restricted by its input data, assumptions, and design considerations.

This work has shown the viability of models which can be used to design last mile logistical

systems intelligently. We hope that future academic works and practicing service providers

are able to leverage our models, ideas, and results in guiding them the next time they are

tasked with designing a system. We believe we were successful in adding to the existing

Operations Research and broader supply chain literature by researching such topics.

5.3 Future Works

As motivated in Chapter 1, companies and consumers will continue to evolve in how they

utilize last mile logistical systems. Whether new fulfillment strategies are introduced, or

existing ones are pushed to their extremes, there will continue to be a need to design such

systems intelligently. Everybody wants to innovate and have the next big supply chain idea.

Whether its for growth, reinvention, or to change an existing value proposition, companies

know they need to innovate or be left behind. They can get lucky once in awhile, but to have

systematic and sustainable success, strategic design must be considered when innovating.
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APPENDIX A

TECHNICAL SUPPLEMENTATION FOR CHAPTER 2

A.1 Proof of Theorem 1

We start our proof by stating the optimization problem presented in Section 2.2 for the

many-vehicle case. Without loss of generality, we can assume that no vehicle is used more

than once. Here, a given dispatch policy will have the form {(td,qd)}D
d=1, where the d-th

vehicle serves order quantity qd at time td . For any such dispatch policy to be feasible, the

following constraints must be satisfied:

D

∑
d=1

qd = N, (A.1a)

qd ≥ 0 ∀d, (A.1b)

td + f (qd)≤ T ∀d, (A.1c)

td ≥ 0 ∀d, (A.1d)

d

∑
δ=1

qδ ≤ td ∀d. (A.1e)

An optimal dispatch policy minimizes ∑
D
d=1 f (qd), subject to (A.1a)-(A.1e), over all D≥ 1.

The Many-Vehicle Policy is feasible, satisfies (A.1c) at equality for d = 1,2, . . . ,D−1, and

(A.1e) at equality for all d. By construction, the policy is unique for a given problem

instance. Theorem 1 claims that this policy is optimal.

First, we prove that there exists some optimal dispatch policy, {(t∗d ,q∗d)}D∗
d=1, which uses

a finite number of vehicles, D∗. For any problem instance to be feasible, there must be a

quantity q′ with 0 < q′ ≤ N and f (q′)≤ T −N. Now consider any feasible dispatch policy

that uses more than 2dN/q′e dispatches. There are at least two dispatches with q′/2 or fewer

orders. By Lemma 2, we can consolidate these two dispatches into a single dispatch that
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leaves at time t = N while preserving feasibility, and without increasing the total dispatch

time of the policy. Therefore, there exists some optimal dispatch policy {(t∗d ,q∗d)}D∗
d=1 with

D∗ ≤ 2dN/q′e. Fix such a policy.

We now show that this policy can be transformed into one where all constraints (A.1e)

hold at equality. We first reduce t∗1 until (A.1e) is satisfied at equality for d = 1. This

process can be repeated for d = 2,3, . . . until we set tD∗ =N. As we only possibly decreased

each time of dispatch, constraints (A.1a)-(A.1d) remain satisfied, and the objective value

remains the same. This adjusted policy that satisfies all constraints (A.1e) at equality is

also an optimal dispatch policy.

We next show that it is possible to re-order, if necessary, the dispatch quantities of the

optimal policy so that they are non-increasing. Suppose two consecutive dispatches (t∗d ,q
∗
d)

and (t∗d+1,q
∗
d+1) have q∗d < q∗d+1; we can replace these two dispatches with (t∗d +(q∗d+1−

q∗d),q
∗
d+1) and (t∗d+1,q

∗
d). The d-th dispatch now leaves with q∗d+1 units at an earlier time

than t∗d+1 and thus is feasible. The new (d+1)-th dispatch leaves at the same time as before,

but now with fewer units, so it is also feasible. As the total dispatch time remains the same,

this feasible dispatch remains optimal. Furthermore, all of the constraints in (A.1e) are

still satisfied at equality by construction. By repeating this operation as necessary, we may

assume our optimal dispatch policy has non-increasing dispatch quantities.

If constraint (A.1c) holds at equality for d = 1,2, . . . ,D∗− 1, we are done. Assume

this is not the case. Take the first dispatch d′ such that t∗d′ + f (q∗d′) < T . This dispatch

and its successor are given by (t∗d′,q
∗
d′) and (t∗d′+1,q

∗
d′+1). Replace these dispatches with

(t∗d′+σ ,q∗d′+σ) and (t∗d′+1,q
∗
d′+1−σ), where σ = min{ε,q∗d′+1}, and ε > 0 is the unique

value with t∗d′+ ε + f (q∗d′+ ε) = T . By the definition of σ , this adjusted dispatch policy is

feasible. Furthermore, since q∗d′ ≥ q∗d′+1, Lemma 2 implies that moving σ units from dis-

patch d′+1 to d′ cannot increase the total dispatch time; thus this adjusted policy remains

optimal. See Figure A.1 for an illustration.
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0 N T

0 N T
Figure A.1: If some dispatch, not the last one, returns to the depot before T , it would be
better for this dispatch to stay at the depot longer before dispatching, “eating away” at the
next dispatch. Note that the time of the next dispatch does not change.

If σ = ε , the resulting policy now has (A.1c) holding at equality for d′. If σ = q∗d′+1,

the resulting policy has one fewer dispatch. After either adjustment we can again again re-

order the remaining dispatches to be non-increasing if necessary. Thus, after this operation,

we have either reduced the number of dispatches or the optimal policy satisfies the first d′

constraints (A.1c) at equality. Furthermore, constraints (A.1e) still hold at equality by

construction. Therefore, after a finite number of adjustments the resulting optimal policy

satisfies (A.1c) at equality for all non-terminal dispatches.

We have constructed an optimal dispatch policy satisfying (A.1c) at equality for all non-

terminal dispatches and (A.1e) at equality for all dispatches. This optimal dispatch policy is

identical to the one prescribed by the Many-Vehicle Policy, so the first part of Theorem 1 is

proved. The final claim of the theorem states that if the optimization problem presented in

Section 2.2 is constrained to use m < m∗ vehicles, its objective value is bounded below by

the Many-Vehicle Policy’s objective value. This follows because the Many-Vehicle Policy

attains the minimum total dispatch time for any number of vehicles.
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A.2 Proof of Lemma 3

Assume we are given an SDD problem instance with a single vehicle satisfying the suf-

ficient processing speed and sufficient gap time conditions. We show that the instance

has a feasible policy also satisfying the minimum dispatch size condition. First, let D′ =

bN/qminc.

Suppose D′ ≤ 1; then N < 2qmin. Consider the dispatch policy (t1 = N,q1 = N,1).

Because f is increasing we have f (N) < f (2qmin). By the sufficient gap time condition,

N + f (N)< N + f (2qmin)≤ T , we see that the dispatch returns to the depot by the end of

the service day and is therefore feasible. Additionally, note that the minimum dispatch size

condition holds trivially.

Now assume D′ ≥ 2. Consider the dispatch policy

(t1 = qmin,q1 = qmin,1),(t2 = 2qmin,q2 = qmin,1), . . . ,

(tD′−1 = (D′−1)qmin,qD′−1 = qmin,1),(tD′ = N,qD′ = N− (D′−1)qmin,1).

By the sufficient processing speed condition, f (qmin) ≤ qmin, which implies that the first

D′− 1 dispatches return to the depot before qmin more orders accumulate. Additionally,

qD′ ≥ qmin, so the first D′−1 dispatches return to the depot before the next dispatch must

leave. The last dispatch takes all of the remaining orders. By the choice of D′ we have that

qD′ < 2qmin, implying f (qD′)< f (2qmin) and subsequently N+ f (qD′)<N+ f (2qmin)≤ T

by the sufficient gap time condition. As the minimum dispatch size condition holds and the

final dispatch returns to the depot by the end of the service day, the proposed policy is

feasible and we are done.
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A.3 Proof of Theorem 4

We start our proof by formulating the optimization problem presented in Section 2.2 for

the single-vehicle case. A given dispatch policy in this case has the form {(td,qd)}D
d=1. For

any such dispatch policy to be feasible, the following constraints must be satisfied:

D

∑
d=1

qd = N, (A.2a)

qd ≥ 0 ∀d, (A.2b)

tD + f (qD)≤ T, (A.2c)

td + f (qd)≤ td+1 ∀d ≤ D−1, (A.2d)

td ≥ 0 ∀d, (A.2e)

d

∑
δ=1

qδ ≤ td ∀d. (A.2f)

An optimal policy minimizes ∑
D
d=1 f (qd), subject to (A.2a)-(A.2f), over all D ≥ 1. Addi-

tionally, Theorem 4 assumes the following conditions are met:

f (x)≤ x/λ = x ∀x≥ qmin, (A.3a)

qd ≥ qmin ∀d < D, (A.3b)

T −N ≥ f (2qmin). (A.3c)

Note that (A.3a), (A.3b) and (A.3c) correspond to the sufficient processing speed, min-

imum dispatch size and sufficient gap time conditions, respectively. We prove that there

exists an optimal dispatch policy {(t∗d ,q∗d)}D∗
d=1 satisfying the following conditions:

(C1) each dispatch takes all available unserved orders at the depot at the time of dispatch,

(C2) after the first dispatch, the vehicle never waits at the depot again, and

(C3) if the vehicle is dispatched more than once, the last dispatch arrives back at the depot
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at exactly time t = T .

Mathematically, these conditions can be expressed as

(C1) q∗1 = t∗1 and ∑
d
δ=1 q∗

δ
= t∗d ∀d ≤ D∗−1,

(C2) t∗d + f (q∗d) = t∗d+1 ∀d ≤ D∗−1, and

(C3) if D∗ ≥ 2, then t∗D∗+ f (q∗D∗) = T .

We also prove that q∗1 ≥ q∗2 ≥ ·· · ≥ q∗D∗ (C4), i.e. the policy’s order quantities are non-

increasing. We now assume that (A.3a) and (A.3c) hold for a given problem instance and

that any feasible policy must satisfy (A.2a)-(A.2f) as well as (A.3b). By Lemma 3, such a

feasible policy must exist.

If N + f (N) ≤ T , a single dispatch is optimal and trivially satisfies (C1) through (C4).

Now assume N + f (N)> T . Because of (A.2a) and (A.3b), a feasible dispatch policy can-

not use more than dN/qmine dispatches. From this we conclude that an optimal policy with

finitely many dispatches exists and we can subsequently fix such a policy as {(t∗d ,q∗d)}D∗
d=1,

where D∗ ≥ 2.

Suppose (A.2c) holds strictly; then we can increase t∗D∗ until the constraint is binding

without loss of optimality. Assuming (A.2c) is binding, if any of (A.2d) hold strictly, we

can similarly increase dispatch times, beginning with t∗D∗−1 and working backwards to t∗1 ,

until all constraints (A.2d) are also binding, without loss of optimality. This transformed

policy satisfies (C2) and (C3).

Next, suppose the policy does not satisfy (C4). Fix the smallest index d such that q∗d <

q∗d+1. Similarly to the proof of Theorem 1, we can replace dispatches (t∗d ,q
∗
d), (t

∗
d+1,q

∗
d+1)

with (t∗d ,q
∗
d+1), (t

∗
d + f (q∗d+1),q

∗
d). This swap does not alter the total dispatch time, and

(C2) and (C3) still hold after the change. The feasibility of the new solution follows by

showing that the d-th dispatch can take q∗d+1 units:

t∗d = t∗d+1− f (q∗d)≥
d+1

∑
δ=1

q∗
δ
− f (q∗d)≥

d−1

∑
δ=1

q∗
δ
+q∗d+1.
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Note that t∗d = t∗d+1− f (q∗d) follows from (C2), t∗d+1 ≥ ∑
d+1
δ=1 q∗

δ
follows from (A.2f), and

q∗d− f (q∗d) ≥ 0 follows from (A.3a) as (A.3b) is satisfied. We can iteratively perform this

operation as necessary, preserving feasibility and the total dispatch time, until the solution

satisfies (C4).

We may now assume the policy satisfies (C2) through (C4), and suppose by contradic-

tion that it does not satisfy (C1). Let d < D∗ be the first dispatch that violates (C1), so we

have ε = t∗d − t∗d−1−q∗d > 0 (with t∗0 = 0 if d = 1). As in the proof of Theorem 1, we con-

sider shifting units from the (d + 1)-th dispatch to the d-th. Let σ = min{ε,q∗d+1− qmin}

if d ≤ D∗− 2, or σ = ε if d = D∗− 1. If σ > 0, we can redefine the two dispatches as

(t∗d ,q
∗
d +σ), (t∗d + f (q∗d +σ),q∗d+1−σ). Alternatively, suppose σ = 0 and d ≤ D∗− 2.

Then (C4) implies q∗d+1 = · · · = q∗D∗−1 = qmin ≥ q∗D∗ . In this case, we can combine the

quantities in the last two dispatches into a single dispatch: q∗D∗−1 + q∗D∗ ≤ 2qmin, while

(A.3c), (C2) and (C3) imply t∗D∗−1 > N. So we can replace (t∗D∗−1,q
∗
D∗−1), (t

∗
D∗,q

∗
D∗) with a

single dispatch (t∗D∗−1,q
∗
D∗−1+q∗D∗). In either case, the new policy will remain feasible and

optimal while still satisfying (C2) and (C3); if it no longer satisfies (C4), we can proceed

as before so it again satisfies this conditions. After this operation, the policy satisfies (C2)

through (C4) and either also satisfies (C1), or we have increased the index of the first dis-

patch that does not satisfy (C1), or we have decreased the total number of dispatches used

in the optimal policy. As with (C4), we can iteratively perform these policy transformations

as necessary until the solution satisfies (C1), which completes the proof.

A.4 Proof of Corollary 5

Theorem 4 implies that the search for an optimal dispatch policy for a single-vehicle SDD

problem instance satisfying the stated conditions can be restricted to policies satisfying

(C1), (C2), and (C3). By (C2) and (C3), such an optimal policy has an objective value T −

α∗, where α∗ is its time of first dispatch. Thus, over all feasible dispatch policies satisfying

(C1), (C2), and (C3), the one maximizing its time of first dispatch must be optimal.
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Feasible dispatch policies with D dispatches satisfying (C1) and (C2) have a time of first

dispatch in [αD,αD−1), and the αD values are decreasing in D, so we can further restrict our

search by minimizing the number of dispatches. Finally, if two feasible dispatch policies

satisfying (C1), (C2), and (C3) use the same number of dispatches, the one with the later

time of first dispatch has a lower objective value. Thus, Algorithm 1 returns the optimal

time of first dispatch.

A.5 Proof of Theorem 6

Assume the instance satisfies the sufficient gap time and sufficient processing speed con-

ditions. Then Lemma 3 implies the instance is feasible for a single vehicle. In the hybrid

policy, if the (m− 1)-th vehicle departs at time tm−1, then the first m− 1 vehicles serve

λ tm−1 = tm−1 orders, leaving the remaining N
′
:= N− tm−1 orders to be served by the m-th

vehicle; since all previous conditions still hold in this reduced problem, the last vehicle can

feasible serve these remaining orders.

The only potential concern is whether any of the first m−1 dispatches serve a quantity

smaller than qmin, which would violate the minimum dispatch size constraint. However,

this is impossible, as all of these dispatches depart before time N and return at time T ; this

implies a dispatch time for each of these dispatches greater than T −N ≥ f (2qmin), by the

sufficient gap time condition, which means each dispatch serves at least 2qmin orders.

For the second part of the Theorem, assume f (n) = bn+ c
√

n. Given that the heuristic

uses m− 1+Dm dispatches in total, the Many-Vehicle Policy must also use no more than

m− 1+Dm vehicles. Let zmany represent the objective value of the Many-Vehicle Policy,

zm−1+Dm represent the objective value of the policy using m− 1 + Dm vehicles and zm

represent the objective value of the optimal policy where m vehicles are used. Finally, let

zHmDm represent the objective value of the heuristic policy, using m vehicles where the last

vehicle is dispatched Dm times. Thus, we know that zmany = zm−1+Dm ≤ zm ≤ zHmDm and

our objective is to show that zHmDm ≤ m−1+Dm
√

Dm
m−1+Dm

zmany ≤ m−1+Dm
√

Dm
m−1+Dm

zm.
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Let zmany
1 represent the total dispatch time in the Many-Vehicle Policy of using the first

m−1 vehicles, while zmany
2 represents the remaining dispatch time from the m-th dispatch

onward. Similarly, let zHmDm
1 represent the total dispatch time in the heuristic of using the

first m−1 vehicles, while zHmDm
2 represents the remaining dispatch time from the last vehi-

cle, which dispatches Dm times from the depot. We have that zmany
1 = zHmDm

1 by construc-

tion of the heuristic. If we assume that some N
′

orders remain to be dispatched after each

policy identically dispatches the first m− 1 vehicles, then by concavity we maximize the

total dispatch time of the (hybrid policy) last vehicle’s Dm dispatches if they are all equal,

each serving N
′

Dm
orders; this has a total dispatch time of Dm f ( N

′

Dm
). The most effective

(though possibly infeasible) policy for the remaining N
′

orders would be to serve them to-

gether, incurring a dispatch time of f (N
′
). Therefore, f (N

′
)≤ zmany

2 ≤ zHmDm
2 ≤Dm f ( N

′

Dm
).

As we have f (n) = bn+ c
√

n, it follows that Dm f ( N
′

Dm
) ≤
√

Dm f (N
′
). This implies that

zHmDm
2 ≤

√
Dmzmany

2 .

0 N−N
′ N T

Figure A.2: Visual representation of the heuristic with m = 3 and Dm = 3. The first two
dispatches account for the cost in zHmDm

1 while the last three dispatches account for the cost
in zHmDm

2
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0 N−N
′ N T

Figure A.3: Visual representation of many-vehicle policy over the same problem instance
as in Figure A.2. Note that only 4 vehicles are used. The first two dispatches account for
the cost in zmany

1 while the last two dispatches account for the cost in zmany
2

Because the dispatch sizes are non-increasing in the MVP, the time of every one of the

first m− 1 dispatches, which sum to zmany
1 , is greater than or equal to that of any of the

remaining dispatches, which sum to zmany
2 . Thus, zmany

1 ≥ m−1
m−1+Dm

zmany, which implies that

zmany
2 ≤ Dm

m−1+Dm
zmany. Combining the two, zHmDm = zHmDm

1 +zHmDm
2 ≤ zmany

1 +
√

Dmzmany
2 =

zmany+(
√

Dm−1)zmany
2 ≤ zmany(1+ Dm(

√
Dm−1)

m−1+Dm
)= zmany(m−1+Dm

√
Dm

m−1+Dm
)≤ zm(m−1+Dm

√
Dm

m−1+Dm
),

as desired.

A.6 Proof of optimality for the Generalized MVP

In the case that N′≤Q, we can transform the problem instance of N′,N, f ,T to N̄′= 0, N̄ =

N +N′, f , T̄ = T +N′. This transformed instance serves the same amount of total orders

and is subject to the same gap time between the end of service day and the order cutoff

time as in the original problem instance. We know that we can use the MVP to solve for

the optimal policy in such an instance. Fix this optimal policy as {(t̄∗d , q̄∗d)}D∗
d=1. It must be

the case that t̄∗1 = q̄∗1 ≥ N′ as N′+ f (N′) ≤ N′+ f (Q) = N′+ T = T̄ . It follows that we

can subtract N′ time units from each t̄∗d and to obtain the policy {(t̄∗d −N′, q̄∗d)}D∗
d=1 which is

feasible in the original problem instance. This policy must also be optimal in the original

instance as it is optimal in the transformed instance, which is a relaxation of the original

instance. Thus in the case that N′ ≤ Q the generalized MVP is an optimal policy as it

exactly prescribes the same dispatch sizes of the transformed policy.
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In the case that N′ > Q, it follows from Lemma 2 that any feasible dispatching policy

that does not leave with as many as possible orders of size Q at time t = 0, as prescribed in

the generalized MVP, can be transformed into one which does without increasing the total

dispatch time of the policy. After these dispatches occur at time t = 0 some 0 ≤ N̄′ < Q

orders will remain at the depot at the start of the service day. We have already shown that

the generalized MVP is optimal in the case of N′ ≤ Q so the remaining orders are also

served optimally, and thus we are done.

A.7 Proof of Theorem 8

For cutoff times in the interval of (Ni,Ni+1] we know that exactly i+ 1 vehicles will be

used in the MVP, and that g(N) = f (N1)+ f (N2−N1)+ · · ·+ f (Ni−Ni−1)+ f (N−Ni)

is concave in N (within the interval). It follows that π(N) on (Ni,Ni+1] is convex and is

therefore maximized at one of its endpoints. Thus to maximize π(N) over N ∈ [0,U ] we

only need to consider the breakpoints of N1,N2, . . . ,NU as well as the endpoints of 0 and

U . This completes the proof.

A.8 Proof of Proposition 9

We split this proof into cases. Assume we are given a U such that 0 ≤U ≤ T − f (2qmin)

and imax ≤ 2. Suppose U = 0, then trivially we have N∗ = 0. So, assume that U > 0, and

therefore imax ∈ {1,2}.

Assume that imax = 1. Then the range 0≤N ≤U can be partitioned as N ∈ {0}∪(0,U ].

We know from Theorem 4 that given N ∈ (0,U ], the optimal dispatch policy is given by

a single dispatch of size N at cost f (N). Therefore, π(N), is a convex function over the

interval (0,U ]. Thus, either N = 0, or N =U will maximize the profit function.

Now assume that imax = 2. Then the range 0 ≤ N ≤ U can be partitioned as N ∈

{0} ∪ (0, N̄1]∪ (N̄1,U ]. We know from Theorem 4 that given N ∈ (N̄1,U ], the optimal

dispatch policy can be fully described by the time of first departure αN . Additionally we
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know g(N) = T −αN , and αN + f (αN) + f (N −αN) = T . Which means we can write

N = αN + f−1(T − αN − f (αN)). Thus N can be written as a convex function of αN ,

and thus g(N) is a concave function with respect to N. Thus π(N) is a convex function

over the interval (N̄1,U ]. From before we also have that π(N) is a convex function over

the interval (0, N̄1]. Thus the solution to the profit maximization function can be found at

N = 0, N = N̄1, or N =U . Thus, the claim is proven.

A.9 A Posteriori Formulations

We use the following integer programming formulations to compute a posteriori solutions

in our computational study.

Parameters

• Node set: order locations L = {1, . . . ,n}, depot 0

• Arc set: ordered pairs of nodes, a = (i, j).

• Travel time: τi j, i, j ∈ L∪ 0, includes depot setup time and order service time as

necessary

• Release time: ri ≥ 0, i ∈ L, the time when order i is ready

• Deadline: T

• Fleet size or number of routes: K (K = 2 in our experiments)

Decision Variables

• xk
i j: indicates if vehicle/route k goes from i to j

• dk: departure time of vehicle/route k
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The many-vehicle formulation is then given by

min
d,x

K

∑
k=1

∑
i, j

τi jxk
i j (A.4a)

s.t. ∑
a∈δ+(i)

xk
a = ∑

a∈δ−(i)
xk

a, i ∈ L∪0, k = 1, . . . ,K (A.4b)

K

∑
k=1

∑
a∈δ+(i)

xk
a = 1, i ∈ L (A.4c)

∑
a⊆S

xk
a ≤ |S|−1, S⊆ L, k = 1, . . . ,K (A.4d)

dk +∑
i, j

τi jxk
i j ≤ T, k = 1, . . . ,K (A.4e)

dk− ri ∑
a∈δ+(i)

xk
a ≥ 0, i ∈ L, k = 1, . . . ,K (A.4f)

dk ≥ 0, xk
i j ∈ {0,1}. (A.4g)

In the formulation, (A.4b) ensures flow balance; (A.4c) requires each order to be served

by a vehicle; (A.4d) eliminates subtours; (A.4e) establishes a route duration limit, so each

vehicle returns by T ; (A.4f) prevents a vehicle serving i from departing the depot before

the order is ready.

In the single-vehicle case, assume routes are indexed in order of departure. For all

routes except K, we replace (A.4e) with

dk−dk+1 +∑
i, j

τi jxk
i j ≤ 0, k = 1, . . . ,K−1. (A.5)

This ensures route k finishes before k+1 begins, so one vehicle can perform all routes.
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APPENDIX B

TECHNICAL SUPPLEMENTATION FOR CHAPTER 3

B.1 Proof of Property 10

For a fixed accumulation time of τ1 ∈ (0,1], inequality (3.2b) constrains the service area

by, A1 ≤ 1−τ1
c
√

τ1
. As the objective value (3.2a) scales linearly with A1, we have that A1 =

1−τ1
c
√

τ1

must maximize the number of orders fulfilled for a fixed τ1.

B.2 Proof of Property 11

First consider the case where B ≥ 2
c
√

3
. In this case, the optimal dispatch policy for the

unconstrained-area problem of τ∗1 = 1
3 , A∗1 =

2
c
√

3
is feasible and therefore optimal for the

constrained-area problem. Furthermore, it is also the dispatch policy prescribed by Property

11, which proves this case.

Now consider the case where B < 2
c
√

3
. Let us define time τB as the time which solves

τB + cB
√

τB = 1 over τB ∈ (0,1]. As τB + cB
√

τB is strictly increasing with respect to τB

over this domain, it must be a unique solution to the equation. Furthermore, as B < 2
c
√

3
,

τB ∈ (1
3 ,1]. For any given τ1 ∈ [0,τB] the optimal service area choice is to set A1 = B, and

for any given τ1 ∈ [τB,1] the optimal service area choice is to set A1 = 1−τ1
c
√

τ1
. It follows

that the maximal number of orders served is equal to λBτ1 when τ1 ∈ [0,τB], which is

maximized when τ1 = τB. Additionally, the maximal number of orders served is equal to

λ

c (1− τ1)
√

τ1 when τ1 ∈ [τB,1], which is also maximized when τ1 = τB. Thus in the case

that B < 2
c
√

3
, we have that τ∗1 = τB and A∗1 = B. As this is the dispatch policy prescribed

by Property 11, this case is proven as well.
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B.3 Proof of Property 12

Given a set of fixed, positive, accumulation times, {τ1,τ2, . . . ,τm}, consider the d-th vehi-

cle to dispatch. Inequality (3.4b) constrains the service area by: Ad ≤
1−∑

d
δ=1 τδ

c
√

τd
. As the

objective value (3.4a) increases linearly with each Ad , we have that Ad =
1−∑

d
δ=1 τδ

c
√

τd
maxi-

mizes the number of orders fulfilled for the d-th vehicle. As this is true for all vehicles d,

we are done.

B.4 Proof of Theorem 13

Consider the optimization problem for the (m+1)v1d model:

λ

c
max

m+1

∑
d=1

(
1−

d

∑
δ=1

τδ

)√
τd (B.1a)

s.t.
m+1

∑
d=1

τd ≤ 1, (B.1b)

τd ≥ 0 ∀d. (B.1c)

We can re-formulate the problem as follows:

λ

c
max

(
(1− τ1)

√
τ1 +

m+1

∑
d=2

(
(1− τ1)−

d

∑
δ=2

τδ

)√
τd

)
(B.2a)

s.t.
m+1

∑
d=2

τd ≤ (1− τ1), (B.2b)

τd ≥ 0 ∀d. (B.2c)

Note that, given a value of τ1 ∈ [0,1), choosing the optimal values for τ2, . . . ,τm+1

equates to solving the mv1d model over a reduced service day. With this in mind, define τ ′d

such that τ ′d = τd
(1−τ1)

for all d ≥ 2 in order to equate the remaining accumulation times as

proportions of the remaining service day. Thus, we can again re-formulate the problem as:
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λ

c
max

(
(1− τ1)

√
τ1 +(1− τ1)

1.5
m+1

∑
d=2

(
1−

d

∑
δ=2

τ
′
δ

)√
τ ′d

)
(B.3a)

s.t.
m+1

∑
d=2

τ
′
d ≤ 1, (B.3b)

τ1 ≤ 1, (B.3c)

τd ≥ 0 ∀d. (B.3d)

There are no constraints in this optimization problem linking the τ
′
d decision variables to

the τ1 decision variable. Thus we can independently optimize for the τ
′
d decision variables;

this equates to solving the mv1d model to optimality. By the presumptions of the Theorem,

we have that τ ′∗d = τ∗m,d−1 for all d ≥ 2. Additionally, by Property 12, we have that A′∗d =

A∗m,d−1 for all d ≥ 2. What remains in the (m+1)v1d model is to optimize:

max
0≤τ1≤1

λ

c
(1− τ1)

√
τ1 +(1− τ1)

1.5zm,

which proves the first claim given in Theorem 13. Once this function is optimized for

τ∗1 , we can use Property 12 to determine that A∗1 = 1
c (1− τ∗1 )(τ

∗
1 )
−0.5. Furthermore, we

can translate the optimal (τ ′d,A
′
d) decision variables back to the (τd,Ad) decision space by

performing the updates:

τ
∗
d ← (1− τ

∗
1 )τ
′∗
d = (1− τ

∗
1 )τ
∗
m,d−1 ∀d ≥ 2

and

A∗d←
1−∑

d
δ=1 τ∗

δ√
τ∗d

=(1−τ
∗
1 )

0.5 1−∑
d
δ=2 τ ′∗

δ√
τ ′∗d

=(1−τ
∗
1 )

0.5A′∗d =(1−τ
∗
1 )

0.5A∗m,d−1 ∀d≥ 2,

which completes the proof.
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B.5 Proof of Property 14

Fix a number of vehicles m. Consider the objective function of the one variable optimiza-

tion problem for m+1 vehicles as given in Theorem 13:

λ

c
(1− τm+1,1)

√
τm+1,1 +(1− τm+1,1)

1.5zm.

When solving for the optimal value of τm+1,1 ∈ [0,1], first order conditions imply that

τ∗m+1,1 is the unique value of τm+1,1 ∈ (0, 1
3 ] which satisfies the equation

1
3
= τm+1,1 +

c
λ

zm

√
(τm+1,1)(1− τm+1,1).

By the uniqueness of τ∗m+1,1 and the fact that τ∗m+1,1 6= 0, we are able to claim that zm+1 >

zm. From this, it directly follows that τ∗m+2,1 < τ∗m+1,1 as τ∗m+2,1 is the unique value of

τm+2,1 ∈ (0, 1
3 ] which satisfies the equation

1
3
= τm+2,1 +

c
λ

zm+1

√
(τm+2,1)(1− τm+2,1).

Thus, the first part of Property 14 is proven.

Now consider an m vehicle, one dispatch each policy where each vehicle (feasibly)

accumulates orders for 1
m+1 units of time, that is, τd = 1

m+1 for all d. By Property 12, we

would like these vehicles to each serve a maximal area of Ad =
1−∑

d
δ=1 τδ

c
√

τd
. It follows that

the total number of orders served by this policy is equal to

λ

c

m

∑
d=1

(
1−

d

∑
δ=1

τδ

)√
τd =

λ

c

m

∑
d=1

(
1− d

m+1

)√ 1
m+1

=
λm

2c
√

m+1
>

λ

4c
√

m,

which tends to infinity as m→ ∞. As the optimal m vehicle policy serves at least as many

orders as this policy, it follows that zm→ ∞; specifically, zm = Ω(
√

m).

We next show that zm =O(
√

m) by constructing an upper bound. We relax the problem
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by removing the vehicle return deadline, instead limiting the duration of each dispatch to

not exceed 1. The relaxed problem is as follows:

max λ

m

∑
d=1

Adτd (B.4a)

s.t. cAd
√

τd ≤ 1 ∀d ∈ [m], (B.4b)
m

∑
d=1

τd ≤ 1, (B.4c)

Ad,τd ≥ 0 ∀d ∈ [m]. (B.4d)

Without loss of optimality, we may assume the constraints (B.4b) hold at equality. This

implies that, for all d ∈ [m], Ad = 1
c
√

τd
. As such, we may rewrite the problem without the

Ad variables:

max
λ

c

m

∑
d=1

√
τd (B.5a)

s.t.
m

∑
d=1

τd ≤ 1, (B.5b)

τd ≥ 0 ∀d ∈ [m]. (B.5c)

The optimal solution to this problem is τ1 = τ2 = · · · = τm = 1
m . The corresponding ob-

jective value is λ

c m
√

1
m = λ

c
√

m. Thus, for all m, zm ≤ λ

c
√

m, implying zm = O(m). We

conclude that zm = Θ(m).

What remains to be seen is that as m→ ∞, τ∗m,1→ 0. By the construction of τ∗m+1,1 via
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the first order conditions described above, we have that

zm+1 =
λ

c
(1− τ

∗
m+1,1)

√
τ∗m+1,1 +(1− τ

∗
m+1,1)

1.5zm

=
λ

c

1− τ∗m+1,1√
τ∗m+1,1

(
τ
∗
m+1,1 +

c
λ

zm

√
(τ∗m+1,1)(1− τ∗m+1,1)

)

=
λ

c

1− τ∗m+1,1

3
√

τ∗m+1,1

.

As we know that zm→∞ as m→∞, we can equivalently state that as m→∞,
1−τ∗m,1

3
√

τ∗m,1
→∞.

This implies that τ∗m,1→ 0, which completes the proof.

B.6 Proof of Property 15

Fix a number of vehicles m. Consider the objective function of the one variable opti-

mization problem given in Theorem 13. It can be shown via first order conditions that

τ∗m+1,1 is the unique value of τm+1,1 ∈ (0, 1
3 ] which satisfies the equation 1 = 3τm+1,1 +

3c
λ

zm
√

(τm+1,1)(1− τm+1,1) and that zm+1 =
λ

c
1−τ∗m+1,1

3
√

τ∗m+1,1
(see the proof of Property 14). This

leads to the relation

zm+1− zm =
λ

c

1− τ∗m+1,1

3
√

τ∗m+1,1

−
1−3τ∗m+1,1

3
√

(τ∗m+1,1)(1− τ∗m+1,1)

 ,

which decreases as τ∗m+1,1 decreases and tends to 0 as τ∗m+1,1 tends to 0. Since τ∗m+1,1

is decreasing as m increases by Property 14, we have that zm+1− zm also decreases as m

increases. Therefore, we can conclude that (zm+2− zm+1) < (zm+1− zm). Additionally,

since τ∗m+1,1→ 0 as m→ ∞ by Property 14, we have that (zm+1− zm)→ 0 as m→ ∞.
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B.7 Proof of Property 16

For the sake of induction, assume for a given m that τ∗m,1 < τ∗m,2 < · · ·< τ∗m,m. We we now

show that it must be true that τ∗m+1,1 < τ∗m+1,2 < · · ·< τ∗m+1,m+1. By Theorem 13, we have

that τ∗m+1,d = (1− τ∗m+1,1)τ
∗
m,d−1 for all d ≥ 2. Thus, we can infer that τ∗m+1,2 < τ∗m+1,3 <

· · ·< τ∗m+1,m+1 by induction. What remains to be seen is if τ∗m+1,1 < τ∗m+1,2.

Consider the objective value given in (3.5a), λ

c ∑
m
d=1 (1−∑

d
δ=1 τδ )

√
τd . The only term

of this summation that depends on either τm+1,1 or τm+1,2, but not their sum, is given by

λ

c
(1− τm+1,1)

√
τm+1,1 +

λ

c
(1− τm+1,1− τm+1,2)

√
τm+1,2. (B.6)

We claim that (B.6) can never be maximized when τm+1,1 ≥ τm+1,2. Consider a fixed θ =

τm+1,1 + τm+1,2, and note that 0 < θ ≤ 1. We can rewrite (B.6), without the multiplicative

constant, as a function hθ : [0,θ ]→ R of τm+1,1 that we wish to maximize in the interval

τm+1,1 ∈ [0,θ ]:

hθ (τm+1,1) = (1− τm+1,1)
√

τm+1,1 +(1−θ)
√

θ − τm+1,1.

Differentiating once and twice gives

h′θ (τm+1,1) =
1−3τm+1,1

2√τm+1,1
− 1−θ

2
√

θ − τm+1,1
,

h′′θ (τm+1,1) =−
1

4τ
3/2
m+1,1

− 3
4√τm+1,1

− 1−θ

4(θ − τm+1,1)3/2 .

Observe that h′
θ
(θ/4) > 0, h′

θ
(θ/2) < 0, and h′′

θ
(τm+1,1) < 0 for all τm+1,1 ∈ (0,θ). It

follows that hθ ’s unique maximizer is located in the interval (θ/4,θ/2), implying that

(B.6) can never be maximized when τm+1,1 ≥ τm+1,2 (i.e., when τm+1,1 ≥ θ/2). Thus, we

have that τ∗m+1,1 < τ∗m+1,2.

To finish our proof by induction, what remains to be seen is if a base case value of m
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yields τ∗m,1 < τ∗m,2 < · · · < τ∗m,m. From Table 3.1 we see that this is indeed true for m = 2.

Thus, we have shown that accumulation times are strictly increasing throughout the service

day. From this fact, and Property 12, it directly follows that the optimal service areas are

strictly decreasing throughout the service day.

B.8 Proof of Property 17

Given a fixed value for A > 0, let us assume for the sake of contradiction that there

exists such optimal dispatch policy {(τ∗d ,A)}m
d=1 such that at least one of the inequali-

ties defined by constraint (3.6b) hold strictly. Fix such a policy and consider the first

dispatch, d′, such that, ∑
d′
δ=1 τδ + cA

√
τd′ < 1. There must exist some ε ∈ (0,1) such

that ∑
d′
δ=1 τδ + ε + cA

√
τd′+ ε = 1. We can then feasibly replace the d′-th dispatch with

(τ∗d′+ ε,A) by removing the next ε orders from the subsequent dispatch(es). Any remain-

ing dispatches will remain feasible since they are either: completely removed from the

dispatch policy (i.e., their quantity is set to zero), set to depart at the same time of day with

strictly less orders to serve, or set to depart at the same time of day with the exact same

order amount to serve as before. This process of shifting orders to earlier dispatches can be

repeated until (3.6b) holds at equality for each of the first m−1 dispatches. Eventually, it

will be the case that (3.6b) holds strictly for d = m. Then, this last dispatch could feasibly

serve some δ > 0 additional orders, which contradicts the assumed optimality of the given

initial dispatch policy. Thus, constraints (3.6b) must hold at equality for all d in an optimal

solution.

Lastly, knowing that ∑
d
δ=1 τδ + cA

√
τd = 1 for all d, solving for τd we have

τd = Rd +
cA
2

(
cA−

√
(cA)2 +4Rd

)
∀d ≥ 1,

where R1 = 1 and Rd = 1−∑
d−1
δ=1 τδ for all d ≥ 2 via the quadratic formula.
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B.9 Proof of Theorem 18

We prove a series of results which together imply the correctness of Algorithm 2.

Lemma 26. Let zm denote the optimal objective value of the unconstrained mv1d problem,

and let λ

c ẑm = zm. For notational convenience, let θm = τ∗m,1 denote the corresponding

optimal first dispatch time. Then,

ẑm

√
1−θm

1−2θm
−
√

1−θm

θm
≤ 0 (B.7)

for all m.

Proof. By the proof of Property 14, we have that

ẑm =
1−θm

3
√

θm
. (B.8)

By the results of the 1v1d model and Property 14, we know that θm ≤ 1
3 . Additionally,

observe that for all θm ∈ (0, 1
3 ],

1−θm

3
√

θm
≤
√

1−2θm

θm
. (B.9)

Hence,

ẑm ≤
√

1−2θm

θm
, (B.10)

which implies

ẑm

√
1

1−2θm
≤
√

1
θm

, (B.11)

which in turn implies

ẑm

√
1−θm

1−2θm
≤
√

1−θm

θm
, (B.12)

as desired.
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Henceforth, let A∗1 denote the optimal first dispatch area in the unconstrained problem,

and define τ∗1 such that τ∗1 + cA∗1
√

τ∗1 = 1. The next lemma proves the correctness of the

algorithm when m= 2 and also serves as the base case for the inductive proof of the general

result.

Lemma 27. Let m = 2 and B < A∗1. In an optimal solution to the B-constrained problem,

it must hold that B = A1 ≥ A2.

Proof. Suppose we are given an optimal solution
(
(τ1,A1),(τ2,A2)

)
such that B > A1. We

know that

τ1 + cA1
√

τ1 = 1 (B.13)

and

τ2 + cA2
√

τ2 = 1− τ1. (B.14)

As a preliminary note, if we are to solve the unconstrained 1v1d problem on a truncated

service day of length 1− τ1 by rescaling the service day to have unit length, then we must

use the following parameters instead of λ ,c0, and c:

λ̂ = λ (1− τ1),

ĉ0 =
c0

1− τ1
,

ĉ = ĉ0

√
λ̂

=
c√

1− τ1
.

First, suppose that τ1 >
1
3 . Recall from the analysis of the unconstrained 1v1d problem

that the total quantity is maximized when the accumulation time is τ = 1
3 . Additionally,

the derivative of the total quantity as a function of the accumulation time is negative for all

τ ∈ (1
3 ,1) in that problem. Therefore, we can decrease τ1 by a sufficiently small amount

(and increase A1 by a corresponding amount such that (B.13) still holds) to increase the
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quantity served by the first dispatch without decreasing the quantity served by the second

dispatch. By contradiction, the solution
(
(τ1,A1),(τ2,A2)

)
cannot be optimal, so it must

hold that τ1 ≤ 1
3 in the optimal solution to the constrained problem.

Now, let us consider the case when A1 ≤ A2. This implies

1− τ1

c
√

τ1
≤ 2

ĉ
√

3
(B.15)

or, equivalently,
1− τ1

c
√

τ1
≤ 2
√

1− τ1

c
√

3
. (B.16)

Rearranging gives τ1 ≥ 3
7 > 1

3 , a contradiction to our previous result. Thus, it must hold

that A1 > A2.

Since B > A1 > A2, we can express the quantity served by each of the first and second

dispatches in terms of τ1:

q1(τ1) =
λ

c
(1− τ1)

√
τ1, (B.17)

q2(τ1) =
λ̂

ĉ
· 2

3
√

3
=

2λ

3c
√

3
(1− τ1)

3/2. (B.18)

We then take the derivative of the total quantity with respect to τ1:

q′(τ1) =
λ

c

(
1
2

τ
−1/2
1 − 3

2
τ

1/2
1 − 1√

3
(1− τ1)

1/2
)
. (B.19)

It can be verified that this expression is negative for all τ1 for which the corresponding

A1 < A∗1 (i.e., for all τ1 ∈ (τ∗1 ,
1
3 ]). Thus, we can decrease τ1 by a sufficiently small quantity,

increase A1 accordingly, and re-optimize q2 accordingly such that the total quantity served

increases. This contradicts the optimality of the given solution. Therefore, any solution

with A1 < B cannot be optimal.

The following two results prove the correctness of the algorithm when m≥ 3.
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Lemma 28. Let m ≥ 3 and B < A∗1. Then, any solution with A1 < B and A1 ≤ A2 cannot

be optimal for the B-constrained problem.

Proof. We will prove this claim by contradiction. Suppose we are given a candidate opti-

mal solution to the constrained mv1d problem
(
(τ1,A1),(τ2,A2), . . . ,(τm,Am)

)
with m≥ 3,

B > A1, and A2 ≥ A1. By our previous discussion, we know that τ1 ∈ (τ∗1 ,
1
3 ].

Let t2 = τ1 + τ2. We will show that we can slightly simultaneously perturb τ1 and

τ2 (while leaving their sum t2 unchanged) such that the total quantity served increases.

Specifically, we wish to perform the following operations: decrease τ1 by some small ε > 0,

increase τ2 by the same ε , increase A1 by some δ1 such that (B.13) is maintained, and

decrease A2 by some δ2 such that (B.14) is maintained.

It remains to be seen whether the rate of increase of q2 outpaces the rate of decrease of

q1 when we perform the above operations. With a slight abuse of notation, let us represent

q1 and q2 as functions of τ1 under the assumption that t2 is fixed:

q1(τ1) = λA1τ1 = λ

(
1− τ1

c
√

τ1

)
τ1 =

λ

c
(1− τ1)

√
τ1, (B.20)

q2(τ1) = λA2τ2 = λA2(t2− τ1) = λ

(
1− t2

c
√

t2− τ1

)
(t2− τ1) =

λ

c
(1− t2)

√
t2− τ1. (B.21)

Omitting the constant factors λ

c , the derivatives of both quantities with respect to τ1 are

q′1(τ1) =
1
2

τ
−1/2
1 − 3

2
τ

1/2
1 , (B.22)

q′2(τ1) =
t2−1

2
√

t2− τ1
. (B.23)

To show that the perturbation procedure increases the total quantity served by the first

and second dispatches, we must prove that the sum of these derivatives evaluated at τ1 is

negative, i.e., that

h(τ1) =
3
2

τ
1/2
1 − 1

2
τ
−1/2
1 +

1− t2
2
√

t2− τ1
> 0. (B.24)

143



Since A2 ≥ A1, by (B.13) and (B.14), it must hold that τ2 ≤ τ1. This implies t2 ≤ 2τ1,

which further implies
1− t2

2
√

t2− τ1
≥ 1−2τ1

2
√

2τ1− τ1
. (B.25)

Therefore,

h(τ1) =
3
2

τ
1/2
1 − 1

2
τ
−1/2
1 +

1− t2
2
√

t2− τ1

≥ 3
2

τ
1/2
1 − 1

2
τ
−1/2
1 +

1−2τ1

2
√

2τ1− τ1

=
3
2

τ
1/2
1 − 1

2
τ
−1/2
1 +

1
2

τ
−1/2
1 − τ

1/2
1

=
1
2

τ
1/2
1

> 0.

Thus, if A2 ≥ A1, we can find sufficiently small ε,δ1,δ2 > 0 such that
(
(τ1 − ε,A1 +

δ1),(τ2 + ε,A2− δ2), . . . ,(τm,Am)
)

is an improved feasible solution. Hence, by contra-

diction, if B < A∗1, then the optimal solution to the constrained problem must have either

A1 = B or A1 > A2.

Applying induction implies that the B-constrained optimal solution must have B ≥ A1 ≥

A2 ≥ ·· · ≥ Am.

Lemma 29. Let m ≥ 3 and B < A∗1. Then, in an optimal solution to the constrained mv1d

problem, A1 = B.

Proof. We proceed by induction with the result in Lemma 27 as the base case. Assume that

the claim is true for m−1 vehicles. For the purposes of contradiction, suppose we are given

a candidate optimal solution to the constrained m-vehicle problem
(
(τ1,A1),(τ2,A2), . . . ,

(τm,Am)
)

with m ≥ 3 and B > A1. Observe first that τ1 > τ∗1 . By Lemma 28, we may

assume that A1 > A2.
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Because the full solution is assumed optimal, the final m− 1 are also optimized over

the truncated service day induced by τ1. By the induction hypothesis, if the final m− 1

vehicles were optimized with respect to the constrained problem but not the unconstrained

problem, it would hold that A2 = B. However, because A2 < B, we know that the the

final m− 1 vehicles must be optimized with respect to the unconstrained (m− 1)-vehicle

problem as well. Therefore, by Theorem 13, τ2 = θm−1(1−τ1), where θm−1 is the optimal

first dispatch time in the unconstrained (m− 1)-vehicle problem. Consequently, A1 > A2

implies
1− τ1

c
√

τ1
>

1− τ1−θm−1(1− τ1)

c
√

θm−1(1− τ1)
(B.26)

which in turn implies

τ1 <
1

1
θm−1
−1+θm−1

<
θm−1

1−θm−1
. (B.27)

Let zm−1 represent the optimal total quantity served in the unconstrained (m−1)-vehicle

problem, and let λ

c ẑm = zm. Theorem 13 implies that the total quantity as a function of τ1

is

q(τ1) =
λ

c
(1− τ1)

√
τ1 +

λ

c
ẑm−1(1− τ1)

3/2 (B.28)

when A1 > A2. Our goal is to show that q′(τ1)< 0 for all τ1 ∈
(
τ∗1 ,

θm−1
1−θm−1

)
so that we can

slightly reduce τ1 (equivalently, slightly increase A1) and improve the total quantity served.

As such, we henceforth ignore the scaling factor λ

c .

Differentiating gives

q′(τ1) =−
3
2

τ
1/2
1 +

1
2

τ
−1/2
1 − 3

2
ẑm−1(1− τ1)

1/2. (B.29)

Note that, by definition, q′(τ∗1 ) = 0. Therefore, it suffices to show that q′′(τ1) < 0 for all

τ1 ∈
(
0, θm−1

1−θm−1

]
.
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Differentiating twice gives

q′′(τ1) =−
3
4

τ
−1/2
1 − 1

4
τ
−3/2
1 +

3
4

ẑm−1(1− τ1)
−1/2, (B.30)

and differentiating thrice gives

q′′′(τ1) =
3
8

τ
−3/2
1 +

3
8

τ
−5/2
1 +

3
8

ẑm−1(1− τ1)
−3/2 > 0. (B.31)

Observe that limτ1↓0 q′′(τ1) =−∞. Additionally,

q′′
(

θm−1

1−θm−1

)
=−3

4

(
θm−1

1−θm−1

)−1/2

− 1
4

(
θm−1

1−θm−1

)−3/2

+
3
4

ẑm−1

(
1− θm−1

1−θm−1

)−1/2

=−3
4

(
θm−1

1−θm−1

)−1/2

− 1
4

(
θm−1

1−θm−1

)−3/2

+
3
4

ẑm−1

(
1−2θm−1

1−θm−1

)−1/2

=
3
4

(
ẑm−1

√
1−θm−1

1−2θm−1
−

√
1−θm−1

θm−1

)
− 1

4

(
θm−1

1−θm−1

)−3/2

≤−1
4

(
θm−1

1−θm−1

)−3/2

< 0,

where the penultimate step is implied by Lemma 26. It follows that q′′(τ1) < 0 for all

τ1 ∈
(
0, θm−1

1−θm−1

]
. Because q′(τ∗1 ) = 0, it follows that q′(τ1) < 0 for all τ1 ∈

(
τ∗1 ,

θm−1
1−θm−1

]
.

Thus, we can decrease τ1 by a sufficiently small quantity, increase A1 accordingly, and re-

optimize the remaining dispatches accordingly such that the total quantity served increases.

This contradicts the optimality of the given solution. Therefore, any solution with A1 < B

cannot be optimal.
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B.10 Proof of Property 19

Given a set of positive accumulation times, {τ1,τ2, . . . ,τD}, consider the d-th dispatch,

where d < D. Inequality (3.7c) constrains the service area by Ad ≤ τd+1
c
√

τd
. As the objective

value (3.7a) increases linearly with Ad , choosing the service area such that this inequality

holds at equality will maximize the quantity served on the d-th dispatch for all d <D. Now,

consider the last dispatch. Inequality (3.7b) constrains the service area by: AD ≤
1−∑

D
δ=1 τδ

c
√

τD
.

As the objective value (3.7a) scales linearly with AD, we choose this service area such that

this inequality holds at equality in order to serve the maximal number of orders served by

the D-th dispatch, which completes the proof.

B.11 Proof of Property 20

For a set of accumulation times to be a part of an optimal dispatching solution to the 1vDd

model formulated by (3.8a)-(3.8c), by first order conditions it must be true that both

τ
∗
1 =

(τ∗2 )
2

4τ∗D

and

τ
∗
d =

(τ∗d+1)
2

4(
√

τ∗D−
√

τ∗d−1)
2

for all d ∈ {2, . . . ,D−1}. By Property 19, these equations imply that A∗1 =
2
c

√
τ∗D, and

A∗d =
2
c

(√
τ∗D−

√
τ∗d−1

)
≤ 2

c

√
τ∗D

for all d ∈ {2, . . . ,D−1}.
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B.12 Proof of Theorem 21

By Property 20, we have that A∗d ≤
2
c

√
τ∗D for all d < D. Thus, we can consider a relaxation

of the original problem defined by (3.7a)-(3.7e) where each of the first D− 1 dispatches

serves an area of Ad = 2
c
√

τD without any regard for returning to the depot in time for the

next dispatch. That is, consider the relaxation:

max λADτD +
D−1

∑
d=1

λ
2
√

τD

c
τd (B.32a)

s.t.
D

∑
δ=1

τδ + cAD
√

τD ≤ 1, (B.32b)

AD ≥ 0, (B.32c)

τd ≥ 0. ∀d (B.32d)

In this relaxed system, it is a strictly dominant strategy for the final dispatch to serve

an area large enough such that the vehicle will arrive back to the depot exactly at the end

of the service day, implying that AD =
1−∑

D
δ=1 τδ

c
√

τD
. Without loss of optimality, as each of

the first D− 1 dispatches serve the same area, and themselves have no explicit concerns

of arriving back before a future dispatch, everything can be served on the first dispatch

while the remaining D− 2 dispatches serve nothing. Thus, this relaxed problem can be

re-formulated as:

max λ

(
1− τ1− τD

c
√

τD

)
τD +λ

(
2
√

τD

c

)
τ1 (B.33a)

s.t. τ1 + τD ≤ 1, (B.33b)

τ1 ≥ 0, (B.33c)

τD ≥ 0. (B.33d)

Since this objective function is equivalent to λ

c (1+ τ1− τD)
√

τD, we see that τ1 +
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τD ≤ 1 will hold at equality for an optimal dispatching policy, so after a substitution of

τ1 = 1− τD we arrive at the problem:

max
τD

2λ

c
(1− τD)

√
τD (B.34a)

s.t. τD ∈ [0,1]. (B.34b)

This problem is identical to the optimization problem presented in Section 3.3 for the

1v1d model with the caveat that the objective value is exactly twice is large. Therefore, this

relaxation of the 1vDd model has an optimal objective value of λ

c
4

3
√

3
, as desired.
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APPENDIX C

TECHNICAL SUPPLEMENTATION FOR CHAPTER 4

C.1 Proof of Theorem 23

Observe the following set of inequalities regarding the cost of some arbitrary route:

cr =
|r|

∑
i=1

qri

(
`r

2mr
+

i−1

∑
j=0

(
c(r j,r j+1)+ s1

))

≥
|r|

∑
i=1

qri

(
i−1

∑
j=0

(
c(r j,r j+1)+ s1

))

≥
|r|

∑
i=1

(
qri

(
c(0,ri)+ s1

))
.

From here is it clear that any subset of routes R ⊆R+ which partitions the set of demand

nodes has cost given by ∑r∈R cr ≥ ∑r∈R ∑
|r|
i=1
(
qri

(
c(0,ri)+ s1

))
= ∑

n
i=1
(
qi
(
c(0,i)+ s1

))
.

Thus any set of routes which feasibly satisfies (4.4a)-(4.4e) will return an objective value

bounded below by ∑
n
i=1
(
qi
(
c(0,i)+ s1

))
.

C.2 Proof of Theorem 24

Consider the marginal reduction in cycle time when adding one additional vehicle to a

route:
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cr(k)− cr(k+1) =
|r|

∑
i=1

qri

(
`r

2k
+

i−1

∑
j=0

(
c(r j,r j+1)+ s1

))

−
|r|

∑
i=1

qri

(
`r

2(k+1)
+

i−1

∑
j=0

(
c(r j,r j+1)+ s1

))

=
|r|

∑
i=1

qri

`r

2k
−
|r|

∑
i=1

qri

`r

2(k+1)

=

(
qr`r

2

)(
1
k
− 1

k+1

)
=

(
qr`r

2

)(
1

k2 + k

)

As the factor 1
k2+k strictly decreases as k increases for all k ≥ 1, we are done.

C.3 Details regarding the example illustrated in Figure 4.1

The three demand nodes of A, B, and C are located at the coordinates (−8,6), (0,21), and

(8,6) respectively. The depot node is located at the origin, (0,0). The cost-metric between

any two nodes on the graph are given as euclidean distances and no fixed setup or service

times are considered. By symmetry, the permutations of C→ B→ A, C→ A→ B, and

B→ A→ C are equivalent to those given by A→ B→ C, A→ C→ B, and B→ C→ A

respectively (and are thus ignored).

The table below describes the minimal fleet size necessary to serve demand as well as

the cost of the route given a fleet size (for up to 3 vehicles). This data assumes that package

demands are given by qA = qC = 1 and qB = 10 and service vehicles have a capacity of

Q = 350.
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Table C.1: Supporting information for Figure 4.1.

mmin
r cr|mr = 1 cr|mr = 2 cr|mr = 3

A→ B→C 1 648 486 432

A→C→ B 2 ∞ 658 594

B→C→ A 2 ∞ 494 430

C.4 Details regarding the generated inputs in Section 4.5

The generated demand points, labeled 1 through 10, were located at (−5,2), (−2,−9),

(1,−4), (−4,6), (0,2), (1,−10), (2,−4), (−9,−1), (6,4), and (4,−7), respectively. As

a reminder the depot location is given at the origin, (0,0). These demand nodes have a

demands of 2, 3, 5, 1, 1, 2, 5, 1, 3, and 5 packages per hour respectively.
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