
PERFORMANCE PRIMITIVES
FOR ARTIFICIAL NEURAL NETWORKS

A Thesis
Presented to

The Academic Faculty

by

Marat Dukhan

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science and Engineering

Georgia Institute of Technology
May 2021

PERFORMANCE PRIMITIVES
FOR ARTIFICIAL NEURAL NETWORKS

Approved by:

Professor Edmond Chow,
Committee Chair
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor Robert van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Professor Richard Vuduc, Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

Nicolas Vasilache

Google Research

Professor Irfan Essa
School of Interactive Computing
Georgia Institute of Technology

Jeff Hammond

NVIDIA

Date Approved: 30 April 2021

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

SUMMARY . xi

I INTRODUCTION . 1

II CONVOLUTIONAL NEURAL NETWORKS 5

2.1 Fully Connected Layers . 8

2.2 Convolutional Layers . 12

2.2.1 im2col+GEMM algorithm 18

2.2.2 Fast Convolution algorithms 20

III PRIMITIVES FOR HIGH-INTENSITY CONVOLUTIONS . . . 30

3.1 Introduction . 30

3.2 Fast Fourier Transforms . 32

3.2.1 Layout of FFT coefficients 34

3.2.2 Composition of 2D FFTs . 34

3.2.3 Fused Butterfly Operations 36

3.3 Winograd Transforms . 37

3.4 Matrix Multiplication . 38

3.5 Performance . 39

3.6 Current Limitations and Future Work 44

3.7 Conclusion . 44

IV PRIMITIVES FOR LOW-INTENSITY CONVOLUTIONS . . . 46

4.1 Introduction . 46

4.1.1 Limitations . 48

4.2 The Indirect Convolution algorithm 48

4.2.1 GEMM Primitive . 49

4.2.2 From GEMM to Indirect GEMM 50

iii

4.2.3 Indirection Buffer . 53

4.3 Experimental Evaluation . 54

4.3.1 Experimental Setup . 55

4.3.2 Experimental Results . 59

4.4 Analysis . 60

4.5 Conclusion . 61

V PRIMITIVES FOR SPARSE CONVOLUTIONS 63

5.1 Sparse Inference . 64

5.2 Constraints on Computer Vision models 67

5.3 SpMM Primitive . 70

5.4 Experimental Evaluation . 73

5.4.1 Platform . 73

5.4.2 Protocol . 73

5.4.3 Pixelwise Convolutions . 74

5.4.4 Randomized Models . 76

5.4.5 End-To-End Models . 78

5.5 Conclusion . 79

VI PRIMITIVES FOR SOFTMAX . 81

6.1 The Three-Pass Algorithm . 83

6.2 The Two-Pass Algorithm . 85

6.3 Theoretical Analysis . 89

6.4 Experimental Evaluation . 90

6.4.1 Platform . 90

6.4.2 Protocol . 90

6.4.3 Implementation . 91

6.4.4 The Three-Pass Algorithms and Bandwidth Saturation . . . 93

6.4.5 The Two-Pass Algorithm . 98

6.4.6 Multi-Threaded Performance 100

iv

6.4.7 Comparison with Intel DNNL 102

6.4.8 Validation on Alternative Processors 104

6.5 Conclusion . 105

VII CONCLUSION . 107

REFERENCES . 110

v

LIST OF TABLES

1 Single-core performance on MobileNet v3 Large model on TensorFlow
Lite framework with the XNNPACK inference engine. 3

2 2D image tensor layouts in popular neural network frameworks 8

3 Shape of input, output, and weights matrices in a fully-connected layer 9

4 High-performance BLAS implementation for popular platforms 20

5 Configurations of parameters in convolutional layers in early CNN ar-
chitectures. 30

6 Instruction characteristics on Intel Skylake [26] 33

7 Configurations of convolutional layers in performance evaluation . . . 40

8 Transformation costs, measured through FP ARITH INST RETIRED
hardware counter . 44

9 Characteristics of mobile devices in performance evaluation. Microar-
chitecture (uArch) is specified for the big cores. 55

10 Types and count of Convolution operators in SqueezeNet 1.0 and ResNet-
18 models. Convolutions with identical parameters are counted only
once. 59

11 Geomean performance of modified GEMM primitive relative to stan-
dard GEMM primtive on 1x1 and non-1x1 Convolutions in ResNet-18
model. 59

12 Geomean performance of modified GEMM primitive relative to stan-
dard GEMM primtive on 1x1 and non-1x1 Convolutions in SqueezeNet
1.0 model. 59

13 Parameters of the first convolution in mobile-optimized computer vi-
sion models. 67

14 Comparison of dense and sparse model sizes, flops, and inference laten-
cies. All times are in milliseconds. *This model uses 80% unstructured
sparsity in all pointwise convolutions. 78

15 Characteristics of several public machine learning datasets. 82

16 Theoretical analysis of memory complexity and bandwidth costs of the
three softmax algorithms. 89

17 Characteristics of the Intel Xeon W-2135 processor used for experi-
mental evaluation of the softmax algorithms. 90

vi

LIST OF FIGURES

1 Accuracy and inference computations for the MobileNet v1 family of
neural network architectures . 1

2 Accuracy and inference computations for the MobileNet v2 family of
neural network architectures . 2

3 Accuracy and inference computations for the EfficientNet family of
neural network architectures . 2

4 Traditional neural network layer with 4 input and 7 output neurons . 5

5 Example of a deep neural network with three layers 6

6 The representation of a fully connected layer with implicit unit inputs
as a matrix-matrix multiplication with bias. The bias is broadcasted
along the column dimension and added to each column of the weights-
input product. 9

7 One-dimensional cross-correlation (left) and convolution (right). The
key difference is the traversal order of the kernel over the input. . . . 13

8 Two-dimensional cross-correlation. A 2D kernel (middle) slides along
the 2D input (left) to produce elements of the 2D output (right). The
same kernel elements are reused at different positions of the input. . . 14

9 Forward propogation in a 2D convolutional layer with 3-channel input.
The ? operator denotes cross-correlation operation. 15

10 Representation of forward propagation in a 2D convolutional layer as
a dot product operation. 16

11 Representation of forward propogation in a 2D convolutional layer with
multiple filters as a vector-matrix product operation. 16

12 Matrix-matrix multiplication-like structure of computations in the for-
ward propagation of a 2D convolutional layer with multiple filters and
a batch of input/output images. 17

13 Transformation of forward propagation in a convolutional layer into a
real matrix-matrix multiplication problem. 18

14 Repacking of elements in the im2col+GEMM algorithm. 19

15 2D convolution algorithm based on Fourier transform. 21

16 Circular 2D cross-correlation. 22

17 2D cross-correlation algorithm based on Fourier transform. 23

vii

18 Forward pass of a 2D convolutional layer based on Fourier transform. 24

19 Forward pass of a 2D convolutional layer based on Fourier transform
with tiling. 25

20 2D convolution algorithm based on Fourier transform. 26

21 2D convolution algorithm based on the Winograd transform. 28

22 Decimation-in-frequency and decimation-in-time FFT algorithms for
8-sample sequence . 31

23 Layouts of real-to-complex coefficients FFT of 8 samples 34

24 Implementation options for 2D FFT 35

25 Layout of an 8× 8 block of FFT coefficients. Red blocks indicate real
coefficients, and yellow and green blocks indicate real and imaginary
components of complex coefficients. 38

26 Speedup of my implementations against Caffe 41

27 Performance of batch transforms. The custom 2D FFT implementation
specialized for 8 × 8 and 16 × 16 blocks substantially outperform the
more generic implementations in Intel MKL. Both the 2D FFT and
the 2D Winograd transforms demonstrate performance close to the
memory bandwidth peak of the system. 42

28 Performance of complex matrix multiplication. For my implementation
I report performance of reduction of blocks of 8 × 8 FFT coefficients.
For MKL and OpenBLAS with report CGEMM performance withM =
B,N = Co, K = Ci . 43

29 GEMM operation as a component of GEMM-based convolution algo-
rithm. im2col buffer represents matrix A, filter tensor - matrix B, and
their product constitutes the output tensor. 49

30 Indirect GEMM operation as a component of Indirect Convolution
algorithm. The indirection buffer contains only pointers to rows of the
input tensor, and the Indirect GEMM operation reads rows of data
directly from the input tensor. 51

31 Performance of the Indirect Convolution algorithm and GEMM-based
Algorithm on convolution operators of the ResNet-18 model. Opaque
bars represent median performance across 25 runs. Error bars represent
20% and 80% quantiles. 57

32 Performance of the Indirect Convolution algorithm and GEMM-based
Algorithm on convolution operators of the SqueezeNet 1.0 model. Opaque
bars represent median performance across 25 runs. Error bars repre-
sent 20% and 80% quantiles. 58

viii

33 Examples of sparsity structure in a scientific computing problem and
trained neural network weights. Left: matrix dwt 209 from SuiteSparse
matrix collection [18]). Right: filter tensor of a pixelwise convolution
in a sparse EfficientNet B0 model. 65

34 Illustration of sparse inference for image classification tasks. 68

35 Illustration of sparse inference for object detection and other regression
tasks. 68

36 Illustration of sparse inference for segmentation and other dense pre-
diction tasks. 69

37 SpMM Primitive implemented using Read-Modify-Write microkernel. 71

38 SpMM Primitive implemented using Read-Accumulate microkernel. . 71

39 Block-SpMM Primitive implemented using Read-Accumulate micro-
kernel. 72

40 Performance of matrix multiplication problems corresponding to the
pixelwise convolutions in the MobileNet v1 architecture. 75

41 Dense and sparse inference latency in the three generations of Mo-
bileNet architectures. 77

42 Single-threaded performance comparison of the Softmax algorithms 1
and 2 in the AVX512 implementations on the Skylake-X system. Gray
dotted lines denote boundaries of level-1, level-2, and level-3 caches. . 93

43 Single-threaded performance comparison of the Softmax algorithms 1
and 2 in the AVX2 implementations on the Skylake-X system. Gray
dotted lines denote boundaries of level-1, level-2, and level-3 caches. . 94

44 Measured single-threaded memory bandwidth on the Skylake-X system
in the three passes of the Softmax algorithms 1 and 2, and in the
STREAM benchmark. Both the softmax implementations and the
STREAM benchmark use AVX512 instructions. 95

45 Measured single-threaded memory bandwidth on the Skylake-X system
in the three passes of the Softmax algorithms 1 and 2, and in the
STREAM benchmark. Both the softmax implementations and the
STREAM benchmark use AVX2 instructions. 96

46 Single-threaded performance comparison of the Algorithms 1, 2, and 3
in the AVX512 implementations. Gray dotted lines denote boundaries
of level-1, level-2, and level-3 caches. 98

47 Single-threaded performance comparison of the Algorithms 1, 2, and 3
in the AVX2 implementations. Gray dotted lines denote boundaries of
level-1, level-2, and level-3 caches. 99

ix

48 Absolute runtime of the passes in the Algorithms 1, 2, and 3 in both
the AVX2 and the AVX512 implementations. The algorithms were
evaluated on arrays of 8,650,752 single-precision elements on a single
threaded of the Skylake-X system. 100

49 Weak scaling (the number of elements scales proportionally to the num-
ber of threads used) of the softmax algorithms in the AVX512 imple-
mentations on the Skylake-X system. 101

50 Weak scaling (the number of elements scales proportionally to the num-
ber of threads used) of the softmax algorithms in the AVX2 implemen-
tations on the Skylake-X system. 102

51 Performance comparison of my implementation of Algorithms 1, 2,
and 3, with the softmax implementation in Intel DNNL library. Gray
dotted lines denote boundaries of level-1, level-2, and level-3 caches. . 103

52 Performance comparison of Algorithms 1, 2, and 3 on an Intel Broadwell-
based system. Gray dotted lines denote boundaries of level-1, level-2,
and level-3 caches. 104

53 Performance comparison of Algorithms 1, 2, and 3 on a Ryzen 9 3900X
system. Gray dotted lines denote boundaries of level-1, level-2, and
level-3 caches. 105

x

SUMMARY

Optimized software implementations of artificial neural networks leverage primi-

tives from performance libraries, such as the BLAS. However, these primitives were

prototyped decades ago and do not necessarily reflect the patterns of computations

in neural networks. I propose modifications to common primitives provided by per-

formance libraries to make them better building blocks for artificial neural networks,

with a focus on inference, i.e., evaluation of a pre-trained artificial neural network.

I suggest three classes of performance primitives for the convolutional operators and

two optimized building blocks for softmax operators.

High-intensity convolutional operators with large kernel sizes and unit stride ben-

efit from asymptotically fast convolution algorithms based on Winograd transforms

and Fast Fourier transforms. I jointly consider Fourier or Winograd transforms and

the matrix-matrix multiplication (GEMM) of blocks of transformed coefficients and

suggest a tuple-GEMM primitive, which balances the number of irregular memory

writes in the transformation with sufficient register blocking and instruction-level

parallelism in the matrix-matrix multiplication part. Tuple-GEMM can be thought

of as a batched GEMM with a fixed architecture-dependent batch size and can be

efficiently implemented as a modification of the Goto matrix-matrix multiplication al-

gorithm. I additionally analyze small 2D Fast Fourier transforms and suggest options

that work best for modern wide-SIMD processors.

Lower-intensity convolutional operators with small kernel sizes, non-unit strides,

or dilation do not benefit from the fast convolution algorithms and require a different

set of optimizations. To accelerate these cases I suggest replacing the traditional

xi

GEMM primitive with a novel Indirect GEMM primitive. Indirect GEMM is a slight

modification of GEMM and can leverage the extensive research on efficient GEMM

implementations. I further introduce the Indirect Convolution algorithm. It builds

on top of the Indirect GEMM primitive, eliminates the runtime overhead of patch-

building memory transformations, and substantially reduces the memory complexity

in convolutional operators compared to the traditional GEMM-based algorithms.

Pointwise, or 1x1, convolutional operators directly map to matrix-matrix multipli-

cation and prompt yet another approach to optimization. I demonstrate that neural

networks heavy on pointwise convolutions can greatly benefit from sparsifying the

weights tensor and representing the operation as a sparse-matrix-dense-matrix mul-

tiplication (SpMM). I introduce neural network-optimized SpMM primitives. While

SpMM primitives in Sparse BLAS libraries target problems with extremely high spar-

sity (commonly 99% or more) and non-random sparsity patterns, the proposed SpMM

primitive is demonstrated to work well with moderate sparsity in the 70− 95% range

and unpredictable sparsity patterns.

The softmax operator is light on elementary floating-point operations but involves

evaluation of the exponential function, which in many implementations becomes the

bottleneck. I demonstrate that with a high-throughput vector exponential function

the softmax computation saturates the memory bandwidth and can be further im-

proved only by reducing the number of memory access operations. I then construc-

tively prove that it is possible to replace the traditional three-pass softmax algorithms

with a novel two-pass algorithm for a runtime reduction of up to 28%.

I implemented the proposed ideas in the open-source NNPACK, QNNPACK, and

XNNPACK libraries for acceleration of neural networks on CPUs, which at the time

of their releases delivered state-of-the-art performance on mobile, server, and Web

platforms.

xii

CHAPTER I

INTRODUCTION

Artificial neural networks are a powerful tool. They are the state-of-the-art models

for image classification [41], object recognition [80, 62, 79], artistic image manipula-

tion [51, 29, 54], speech recognition [4], speech synthesis [91], machine translation [97],

and many other artificial intelligence tasks. However, neural networks stand out not

only in impressive effectiveness on a variety of artificial intelligence problems, but

also in their insatiable appetite for computational power. A higher computational

budget lets artificial intelligence researchers build larger models, scaling them up to

the limits of the modern hardware results in progressively higher accuracy [78, 89, 65].

Fig. 1, 2, 3 illustrate this relationship on three popular families of neural networks

architectures: MobileNet v1 [46], MobileNet v2 [82], and EfficientNets [89].

Machine learning on live perceptual data, such as video and audio streams, is

particularly challenging as real-time processing imposes a strict time limit for neural

network inference, while low latency requirements and privacy considerations associ-

ated with perceptual data dictate that neural network processing happen locally, on

the same end-user device that produced the audio or video stream. These devices can

50

60

70

80

90

0 0.25X 0.5X 500 0.75X 1000 1.0X
Computation, MFLOPs/image

A
cc

ur
ac

y,
 % Accuracy

Top−1

Top−5

Figure 1: Accuracy and inference computations for the MobileNet v1 family of neural
network architectures

1

60

70

80

90

0 0.35X 0.5X 300 0.75X 1.0X 900 1.3X 1.4X
Computation, MFLOPs/image

A
cc

ur
ac

y,
 % Accuracy

Top−1

Top−5

Figure 2: Accuracy and inference computations for the MobileNet v2 family of neural
network architectures

80

85

90

95

B0 0.5 B1 B2 B3 B4 5 B5 B6 B7 50
Computation, GFLOPs/image

A
cc

ur
ac

y,
 % Accuracy

Top−1

Top−5

Figure 3: Accuracy and inference computations for the EfficientNet family of neural
network architectures

range from IoT with microcontrollers to mobile phones to desktop computers, but

share two features: a CPU as the least common denominator of fragmented hardware

and orders of magnitude lower computational capabilities than the HPC-class GPUs

and neural network accelerators (TPUs) used to train neural network models. Table 1

illustrates practically achievable performance on four types of end-user devices and

suggests that neural network models operate in the mode where even slight reduc-

tions in model complexity to improve inference time costs a steep degradation in the

quality metrics for model outputs.

2

Table 1: Single-core performance on MobileNet v3 Large model on TensorFlow Lite

framework with the XNNPACK inference engine.

Device Form-Factor Environment Performance, GFLOPS

MacBook Pro 11,3 laptop macOS 46

MacBook Pro 11,3 laptop WAsm 5.1

Pixel 2 phone Android 9.9

Pixel 2 phone WAsm 1.5

Raspberry Pi 4 embedded Linux 5.9

Raspberry Pi Zero W IoT Linux 0.26

Researchers have explored two different paths to improve CPU performance on

neural network layers, which can be termed as the performance library approach and

the compiler approach. The performance library approach, implemented in most deep

learning frameworks, is to leverage existing scientific computing libraries for portable,

yet optimized implementation. In particular, the most computationally intensive neu-

ral network components – convolutional, recurrent, and fully-connected operators –

can be built upon the GEMM primitive from the BLAS libraries. For fully connected

and recurrent operators, a GEMM-based implementation is trivial, but convolutional

layers need certain data repacking that was first suggested by Chellapilla et al [10],

and then rediscovered and popularized by the author of Caffe [53]. Mathieu et al [67]

justified using a Fourier transform for convolutional layers, and Zlateski et al [103]

presented an implementation on top of Intel’s MKL FFT, fftw, and cuFFT libraries.

Later, Lavin [58] suggested using Winograd transforms for convolutional layers and

demonstrated implementation of top of the Intel’s MKL SGEMM primitive1. An-

other approach is to build a compiler to synthesize implementations optimized for

1A later version of the same paper, co-authored by Lavin and Gray, presents results only on
GPU, with a custom GEMM implementation.

3

specific cases that appear in neural networks. This approach can exploit all available

information, including parameters of the layers and their position in the computa-

tional graph. A modern take on this method is represented by TensorFlow XLA [59],

Apache TVM [12], and PyTorch Glow [81] frameworks, which leverage LLVM infras-

tructure for code-generation down to machine instructions. The compiler approach,

however, tends to suffer from less optimal code-generation in the critical loops than

expert-tuned assembly in performance libraries.

Here, I present a middle-ground approach. I aim to improve the performance of

neural network layers built on top of a low number of scientific computing primitives,

while preserving the portability inherent to this approach. I suggest that a slight

modification of conventional scientific computing primitives – basic lin-

ear algebra subroutines (BLAS), Fast Fourier transform, and elementary

functions – is sufficient to produce a high-performance implementation of

common neural network layers. This approach leverages the wealth of existing

research on efficient algorithms for scientific computing primitives and improves code

portability by sharing high-level parts of algorithms implementation, as well as unit

tests and benchmarks, for architecture-specific micro-kernels. Some of the proposed

modified primitives fit into other modern developments in scientific computing, e.g.,

batched and mixed-precision BLAS, and could share parts of implementation with

next-generation performance libraries that address these needs.

4

CHAPTER II

CONVOLUTIONAL NEURAL NETWORKS

w1,0 w1,1 w1,2 w1,3 w1,4

w2,0 w2,1 w2,2 w2,3 w2,4

w3,0 w3,1 w3,2 w3,3 w3,4

w4,0 w4,1 w4,2 w4,3 w4,4

w5,0 w5,1 w5,2 w5,3 w5,4

w6,0 w6,1 w6,2 w6,3 w6,4

w7,0 w7,1 w7,2 w7,3 w7,4

1

x1

x2

x3

x4

t1

t2

t3

t4

t5

t6

t7

f(t 1)

f(t 2)

f(t 3)

f(t 4)

f(t 5)

f(t 6)

f(t 7)

y1

y2

y3

y4

y5

y6

y7

×

Figure 4: Traditional neural network layer with 4 input and 7 output neurons

Artificial neural networks are machine learning models loosely inspired by neu-

roscience, a scientific discipline about the organization of the nervous system. In

artificial neural networks computations are organized in layers. A layer applies a

linear transformation to its input (a vector), produces an output vector, and then

transforms the output vector with a nonlinear activation function. Fig. 4 illustrates

this process. It is common to augment the input vector with an element hard-wired to

1.0 (purple input on fig. 4) so that, with some transformation parameters, the linear

transformation could produce negative outputs even if all inputs are positive. Most

practical activation functions transform each element independently, and the most

popular activation function – the rectified linear unit (ReLU) – just replaces negative

components with zeros.

5

×

f(·)

×

f(·)

×

f(·) Layer 3

Layer 2

Layer 1

Figure 5: Example of a deep neural network with three layers

A single layer has a limited capability of learning relationships in the data, so

artificial neural networks use multiple layers stacked on top of each other: the output

of one layer serves as input for another layer. For this reason, multi-layer artificial

neural networks are often called deep neural networks, and in advances in the

structure and initialization of neural networks increased the viable number of layers

from about a half-dozen to over a thousand [85, 88, 41]. Fig. 5 demonstrates the data

flow in a three-layer deep neural network. Besides stacking layers, it is common for

neural network architectures to concatenate outputs of several layers [88, 49, 47] or

combine them through addition [41] or maximum [31] operations.

The linear transformations in the neural network layers can express contributions

6

of every input element to every output element, but this flexibility is not always good.

LeCun et al [60] discovered that artificial neural networks achieve better results on

computer vision tasks if they restrict the possible connections between inputs and

outputs to preserve locality and suggested the LeNet architecture for handwritten

digit recognition. Unlike previous neural network architectures, LeNet used new types

of layers, which take into account the 2-dimensional structure of images: convolutional

layers and pooling layers. A convolutional layer restricts the linear transformation

so that each output pixel depends only on a small neighborhood of input pixels. A

pooling layer aggregates a tile of neighboring pixels into a single output pixel, and, in

general, is not a linear transformation. Neural networks with convolutional layers are

called convolutional neural networks, and convolutional layers are typically their

most computationally intensive parts. Later research generalized convolutional and

pooling layers to arbitrary numbers of dimensions and demonstrated the usefulness

of 1D convolutions for speech recognition [2] and natural language processing tasks

as well as 3D convolutions for video classification.

Parameters of the linear transformation in neural network layers are learned in a

training process. During training samples from a dataset are supplied as inputs to

the first layer of a neural network, and weights are adjusted to make outputs closer

to the reference outputs from the dataset. Usually this process involves a two-step

backpropagation algorithm: first, in the forward pass, propagate the signals from the

input layers towards output layers and calculate the loss between the computed output

and reference output; then, in the backward pass, propagate the gradient of the loss

from the output layers towards the input layers. Additionally, the backward pass

computes the gradients of layer parameters with respect to loss. These gradients are

then used to update the parameters’ values. Most commonly, the stochastic gradient

descent with a momentum algorithm [57] is used to update the parameters, albeit

several advanced algorithms were suggested [21, 99, 56, 63, 44]. For better efficiency,

7

training usually consumes a dataset in batches of multiple samples. The batch size

is limited by the memory footprint of the network, including all intermediate signals

and gradients. Batches of up to 8, 096 were reported to be practical [34], and a typical

batch size is 64− 512 samples.

After the training process converges to a good set of parameters, the neural net-

work is ready to make predictions on new inputs – a process called inference. In

inference only the forward pass of a neural network is computed, and no gradients are

involved. Most applications of neural networks to live perceptual data are latency-

sensitive and limit the batch size in inference to a single image.

Table 2: 2D image tensor layouts in popular neural network frameworks

Name Shape Frameworks

NCHW batch× channels× height× width PyTorch [76], Caffe [53], Theano [3]

NHWC batch× height× width× channels Tensorflow [1], CNTK [98]

CHWN channels× height× width× batch cuda-convnet2, Neon

A number of high-level frameworks [76, 1, 53, 16, 3, 11, 98] were developed to

assist artificial intelligence research. These frameworks differ in the tensor layout they

use in their layers’ implementation, summarized in Table 2. NCHW layout enjoys

the widest support: even Tensorflow and CNTK frameworks, which started with

native NHWC-layout layers, can optionally use NCHW. However, NHWC and CHWN

layouts have their benefits, too: NHWC simplifies implementation of convolutional

layers via matrix-matrix multiplication, and the CHWN layout with large batch sizes

is particularly efficient for training on GPUs.

2.1 Fully Connected Layers

A fully connected layer represents a general linear transformation without any con-

straints. These layers consume and produce 2D tensors. If the layer input has more

8

than 2 dimensions, e.g., a multi-channel 2D image, its dimensions are reshaped into

a 2D matrix. Thus, in both the NCHW and NHWC frameworks, the inputs to the

fully connected layer have the same dimensions. Layer parameters are represented by

a 2D weights matrix, which has the same dimensions in NCHW, NHWC, and CHWN

layouts. Table 3 details dimensions of matrices in all three layouts.

Table 3: Shape of input, output, and weights matrices in a fully-connected layer

Layout Input matrix Output matrix Weights matrix

NCHW batch× channelsin batch× channelsout channelsout × channelsin

NHWC batch× channelsin batch× channelsout channelsout × channelsin

CHWN channelsin × batch channelsout × batch channelsout × channelsin

A fully connected layer can be thought of as an affine transformation of the input

matrix and can be implemented via matrix-matrix multiplication (GEMM) in a BLAS

library. If the input vectors are augmented with unit elements, this augmentation

is performed implicitly: the matrix-matrix multiplication of explicit input elements

is followed by the addition of a bias vector, which contains the column of weights

corresponding to the implicit unit element. This case is demonstrated in Fig 6.

w1,0 w1,1 w1,2 w1,3 w1,4

w2,0 w2,1 w2,2 w2,3 w2,4

w3,0 w3,1 w3,2 w3,3 w3,4

w4,0 w4,1 w4,2 w4,3 w4,4

w5,0 w5,1 w5,2 w5,3 w5,4

w6,0 w6,1 w6,2 w6,3 w6,4

w7,0 w7,1 w7,2 w7,3 w7,4

1

x1

x2

x3

x4

1

x1

x2

x3

x4

y1,1

y1,2

y1,3

y1,4

y1,5

y1,6

y1,7

y2,1

y2,2

y2,3

y2,4

y2,5

y2,6

y2,7

w1,1 w1,2 w1,3 w1,4

w2,1 w2,2 w2,3 w2,4

w3,1 w3,2 w3,3 w3,4

w4,1 w4,2 w4,3 w4,4

w5,1 w5,2 w5,3 w5,4

w6,1 w6,2 w6,3 w6,4

w7,1 w7,2 w7,3 w7,4

x1

x2

x3

x4

x1

x2

x3

x4

w1,0

w2,0

w3,0

w4,0

w5,0

w6,0

w7,0

× = × +

Figure 6: The representation of a fully connected layer with implicit unit inputs as

a matrix-matrix multiplication with bias. The bias is broadcasted along the column

dimension and added to each column of the weights-input product.

9

High-performance BLAS libraries for CPUs typically implement the Goto algo-

rithm for matrix-matrix multiplication [33]. Goto and van de Geijn suggested that

the most important factor for efficient matrix-matrix multiplication is cache block-

ing, i.e., reuse of loaded memory blocks, on multiple levels of the memory hierarchy:

registers, level-1 cache, and higher level caches. Their algorithm for matrix-matrix

multiplication, now widely adopted, arranges computations in several layers of block-

ing. On the lower level, it relies on a “micro-kernel”, which accumulates in registers

a product of long panels of the two matrices.

The micro-kernel is the key to the overall algorithm’s efficiency: Van Zee et al [92]

demonstrated that so long as the micro-kernel is well-optimized, all other parts of

the algorithm can be portably implemented in a high-level language and still pro-

duce a state-of-the-art implementation. The micro-kernel is typically implemented

in assembly and makes heavy use of SIMD, architecture-specific instruction features,

software prefetching, and pipelining. The micro-kernel expects one panel to reside

in the level-1 cache, and another panel to be streamed from the level-2 cache to the

level-1 cache. The width of the panels is limited by the number of registers, and

their length is dictated by the level-1 cache size. A loop around the micro-kernel

iterates panels of the second matrix factor inside level-2 cache, and another, outer,

loop iterates panels of first matrix factor inside level-3 cache. Additionally, two other

outer loops traverse level-3 cache-sized blocks of the first matrix factor and level-2

cache-sized blocks of second matrix factor to produced the complete matrix-matrix

multiplication algorithm.

To satisfy cache-associativity limitations, input matrices are typically repacked

so that the panels accessed by the micro-kernel are contiguously stored in memory.

With large matrices, the cost of repacking is negligible compared to the cost of matrix-

matrix multiplication: if the matrices are N ×N , then the cost of repacking is O(N2)

while computational cost is O(N3). However, for small matrices repacking can take

10

a considerable fraction of time and may offset the benefits of the blocked implemen-

tation. Recent studies have proposed several methods to improve BLAS efficiency on

small problems.

First, some BLAS libraries provide an interface to separately repack input matrices

and perform computations on repacked representations. This interface enables reuse

of a repacked representation for multiple operations and is particularly helpful for

neural network inference. In inference mode, the weights matrix is static and can be

repacked during initialization, and then re-used for multiple forward passes.

Secondly, it is possible to modify micro-kernels to access one or both panels in

the original layout without repacking. If the matrix is small, it may fit into cache

without associativity conflicts, but the efficiency of the micro-kernel would still suffer

from an imperfect operation of hardware prefetchers.

The third method is a variation of this approach where the code is generated for

the specific matrix shapes of the application. Heinecke et al [42] evaluated the use

of just-in-time (JIT) compilation for small-size BLAS problems and demonstrated

possible speedups of over 10x.

Unbatched inference deserves special attention, because in this common case

matrix-matrix multiplication becomes matrix-vector multiplication, and BLAS li-

braries provide a separate primitive (GEMV) for this operation. While matrix-

matrix multiplication is often compute-bound, matrix-vector product is intrinsically

bandwidth-bound. Matrix-vector multiplication can be decomposed into a series of

dot products and implemented on top of the DOT primitive from BLAS. In this

approach the input vector would be loaded into registers and, potentially, a higher

level of the memory hierarchy for each row of the factor matrix, which limits perfor-

mance of this bandwidth-bound operation. The number of loads can be reduced by

combining the computation of several dot products in a fused-DOT operation [92].

11

Alternatively, it can be thought of as a matrix-vector multiplication where the ma-

trix has a fixed small number of rows. The number of rows is limited by two factors:

floating-point registers and cache associativity. The multiple dot products are accu-

mulated in floating-point registers, and thus the number of floating-point registers on

the target architecture puts an upper bound on the fusion factor. But a fused-DOT

micro-kernel also reads multiple rows of the matrix in parallel, and if the matrix

length is close to a large power of 2, these loads may compete for the same sets in

the cache. Thus, cache associativity puts another, and usually tighter, limit on the

fusion factor.

2.2 Convolutional Layers

A convolutional layer a special linear transformation that consumes and produces

multi-channel 1D, 2D, or 3D signals1. Convolutional layers reuse the same set of

learned parameters at multiple locations of the image, which induces locality, and

improves model accuracy, especially on computer vision tasks. Due to the reuse

of parameters, convolutional layers are more computationally intensive than fully-

connected layers. Together with the closely related deconvolutional layers, they are

typically the most computationally expensive parts of neural networks.

1Generalizations to higher dimension exist, but are rarely used in practice.

12

8 -3 -8 -5 2 -2 5 2 4 1

×

2

×

0

×

-3

×

2

×

0

×

-3

40 9

+

-22 -4 -11 -10 -2

+

1

5 8 -1 9 -4 -3 -2 -2 9 2

×

1

×

-3

×

3

×

1

×

-3

×

3

+

-10 36 -34 36 -5 -5

+

9 -31

Figure 7: One-dimensional cross-correlation (left) and convolution (right). The key

difference is the traversal order of the kernel over the input.

A convolutional layer is built on top of two signal processing operations: cross-

correlation and convolution. Fig. 7 illustrates this operation in the 1D case. A kernel

(blue) slides along the input vector (green) and produces output elements (orange)

through a dot product operation. The same kernel parameters are reused in all

locations. The major difference between cross-correlation and convolution is in the

order in which the sliding kernel traverses the input: in cross-correlation the kernel

elements start traversing from the beginning of the input signal and are multiplied

by the signal in their direct order; in convolution the kernel traverses from the end

towards the beginning of the input, and its elements are multiplied by the signal in

reverse order. Importantly, the number of elements in the input, kernel, and output

vectors is linked through the relation

Nout = Nin −K + 1 (1)

where Nout and Nin is the number of elements in the output and input vector respec-

tively, and K is the number of elements in the kernel vector. As seen in Fig. 7, this

equation holds because there are not enough valid inputs to produce the last (first)

outputs of the cross-correlation (convolution).

13

Figure 8: Two-dimensional cross-correlation. A 2D kernel (middle) slides along the 2D

input (left) to produce elements of the 2D output (right). The same kernel elements

are reused at different positions of the input.

The two-dimensional case is presented in Fig. 8 and is widely used in image pro-

cessing. Here, a 2D kernel slides along the input image and produces the output

image through a dot product with input subimages. The shapes of the input, kernel,

and output images are connected through the equations,

Hout = Hin −HK + 1

Wout = Win −WK + 1

(2)

where Hout, Wout, Hin and Win are the height and width of the output and input

images respectively, and HK and WK are the kernel height and width.

14

Multi-channel
input image
Multi-channel
input image
Multi-channel
input image Filters

+

Single-channel
output image

⋆

⋆

⋆

Figure 9: Forward propogation in a 2D convolutional layer with 3-channel input. The

? operator denotes cross-correlation operation.

Convolutional layers add another dimension to the cross-correlation and convo-

lution operations: channels. A convolutional layer combines multiple kernels – as

many as there are channels in the input – into a filter. In the forward pass of a 2D

convolutional layer, every channel of the input is cross-correlated with a channel of

a filter, and then all channels are accumulated to produce a single-channel output.

Figure 9 illustrates this computation.

15

= ⋆⋆⋆

Figure 10: Representation of forward propagation in a 2D convolutional layer as a

dot product operation.

Computations in the convolutional layer exhibit structure similar to BLAS opera-

tions. If one replaces multiplication (×) with a cross-correlation (?), the computation

in Fig. 9 could be instead represented as a dot product operation, as in Fig. 10.

This representation is useful for analyzing the computational properties and limits of

convolutional layers, which are well-studied for BLAS operations.

= ⋆⋆⋆

Figure 11: Representation of forward propogation in a 2D convolutional layer with

multiple filters as a vector-matrix product operation.

In practical convolutional neural networks, convolutional layers have not one, but

many, filters. In the forward pass, the multi-channel input is cross-correlated with

each multi-channel filter to produce multiple output channels (as many as there are

filters). In the space with (+, ?) operations, this computation can be represented as

a vector-matrix multiplication, depicted in Fig. 11.

16

= ⋆

Figure 12: Matrix-matrix multiplication-like structure of computations in the for-

ward propagation of a 2D convolutional layer with multiple filters and a batch of

input/output images.

During model training and, in many use-cases, during inference, convolutional

layers are fed with a batch of inputs and produce a batch of outputs. In this operation,

every channel of every input image is cross-correlated with every channel of every

filter, and structure of computations, illustrated in Fig. 12 resembles matrix-matrix

multiplication. The dimensions of the input, filter, and outputs matrices in this

representation are batchsize × channels, channels × filters, and batchsize × filters

respectively.

Matrix-matrix multiplication performs O(n3) operations on O(n2) elements and is

compute bound for large problem sizes. Thus, the forward pass in the convolutional

layer is compute bound when batch size, number of channels, and number of filters

are all large, regardless of kernel size. Moreover, the commonly-used kernel sizes of

3×3 (18 FLOPs per output) and 5×5 (50 FLOPs per output) shift the balance even

further towards saturation of compute units.

17

2.2.1 im2col+GEMM algorithm

⋆

×

Figure 13: Transformation of forward propagation in a convolutional layer into a real

matrix-matrix multiplication problem.

A popular method to implement forward and backward propagation in convolutional

layers is to transform a convolution into a matrix-matrix multiplication and lever-

age matrix-matrix multiplication (GEMM) routines in a BLAS library to do the

actual computation. This method, illustrated in Fig. 13 and commonly known as the

im2col+GEMM algorithm, was first suggested by Chellapilla et al [10], and popular-

ized in the Caffe framework [53].

18

⋆

= ×
Figure 14: Repacking of elements in the im2col+GEMM algorithm.

Fig. 14 provides the intuition behind the transformation of forward propagation

in a convolutional layer into a matrix-matrix multiplication problem. Each element

of the output tensor (on the left) is a dot product of a filter (on the right) by a

multi-channel subimage of the input (middle). Different pixels of the same channel of

the output tensor are produced as a dot product of different multi-channel subimages

of the input and the same filter. Pixels in the same position in other channels are

produced via dot product of the same subimage of the input by different filters.

19

Table 4: High-performance BLAS implementation for popular platforms

Platform OpenBLAS BLIS Eigen Accelerate MKL ACML ESSL QSML

x86 Yes Yes Yes Yes Yes Yes No No

x86-64 Yes Yes Yes Yes Yes Yes No Yes

ARM Yes Yes Yes Yes No No No Yes

ARM64 Yes Yes Yes Yes No No No Yes

POWER Yes Yes Yes Yes No No Yes No

PNaCl No Yes Yes No No No No No

Asm.js No Yes Yes No No No No No

The im2col+GEMM algorithm has its pros and cons. On the plus side, it combines

good performance with universal portability: popular platforms provide a choice of

multiple high-performance BLAS implementations (see Tab. 4), and exotic platforms

can bootstrap an optimized BLAS implementations through auto-tuning [95]. The

major drawback of this algorithm is the substantial memory overhead of KH ×KW

times the size of layer input. Intermediate tensors are usually the largest memory

consumers in convolutional neural networks, especially with non-unit batch size, and

the proportial increase in memory consumption can be prohibitive in mobile, Web,

and IoT environments.

2.2.2 Fast Convolution algorithms

The convolution theorem states that, under certain conditions, a Fourier transform

of a convolution of two signals is a pointwise product of their Fourier transforms.

Combined with a Fast Fourier Transform algorithm, the convolution theorem suggests

a less computationally intensive alternative to the im2col+GEMM algorithm. Fig. 15

demonstrates the FFT-based 2D convolution algorithm: zero-pad the kernel to the

size of the input, transform the padded kernel and the input to the Fourier domain,

20

elementwise multiply the Fourier images, and compute the inverse FFT on the product

to get the convolution output.

FFT FFT
IFFT

×

×

×

Figure 15: 2D convolution algorithm based on Fourier transform.

The Fourier transform assumes periodic signals, and the full output computed

through the convolution theorem represents a circular convolution: its outputs near

the top-left border depend on a block of input that wraps around its border, as shown

in Fig. 16. These outputs are meaningless for the normal convolution operation,

thus it discards them and only uses the bottom-right block of (Hin −HK + 1) ×

(Win −WK + 1) outputs.

21

Figure 16: Circular 2D cross-correlation.

Computation of a 2D cross-correlation on top of the Fast Fourier Transform and

the convolution theorem differs in two details: we multiply the Fourier transform of

the input by the complex conjugate of the Fourier transform of the zero-padded kernel

and use the top-left block of inverse FFT outputs while discarding the outputs near

the bottom-right border. Fig. 17 illustrates the computations involved.

22

FFT FFT
IFFT

conj×

conj×

conj×

Figure 17: 2D cross-correlation algorithm based on Fourier transform.

A 2D cross-correlation trivially extends to multiple channels, as illustrated in the

first three columns of Fig. 18. The algorithm from Fig. 17 applies to each chan-

nel of the input and the filter to produce channels of the output image, which are

subsequently accumulated together. However, as the Inverse Fourier Transform is a

linear transformation, it can be factored out after the accumulation. The improved

algorithm, illustrated in the fourth column of Fig. 18, accumulates blocks of FFT

coefficients for the output image, and then computed the Inverse FFT of the result.

23

××
× +

FFT
FFT
FFT

FFT
FFT
FFT

IFFT
IFFT
IFFT

IFFT

⋆⋆
⋆ +

Figure 18: Forward pass of a 2D convolutional layer based on Fourier transform.

By leveraging Fast Fourier Transforms and the convolution theorem, the algo-

rithm in Fig. 18 reduces the number of floating-point operations in the forward pass

of a 2D convolutional layer compared to direct computation, but also involves two

inefficiencies that dramatically limit its practical applicability.

First, the filter needs to be zero-padded to the size of the input image. This

procedure is an intrinsically memory-intensive operation, and it greatly increases the

memory footprint of the filter. Commonly-used filter sizes are 3× 3 and 5× 5, while

input images can be on the order of QVGA (320 × 240) or higher, resulting in over

1, 000 times expansion in the memory footprint! Such an increase in would typically

exceed the capacity of the system, especially on mobile and embedded systems.

Secondly, the algorithm implies doing a Fast Fourier Transform on input image-

sized blocks, which are generally unconstrained. Although algorithms for doing Fast

Fourier Transform on arbitrary-sized blocks are known [27], their efficiency varies

across input sizes, resulting in unexpected performance cliffs.

24

××
× +

FFT
FFT
FFT

FFT
FFT
FFT

IFFT

Figure 19: Forward pass of a 2D convolutional layer based on Fourier transform with

tiling.

These inefficiencies can be resolved by tiling the Fourier transform-based convolu-

tion algorithm [93]. This modification, illustrated in Fig. 19, rather than computing

the Fourier transform of the input image all-at-once, splits the input image into fixed-

sized input tiles, computes the convolution of these tiles with the kernels using the

Fourier transform and the convolution theorem, and then concatenates output tiles

to cover the whole output image. Importantly, the output is densely covered with

non-overlapping tiles, but the corresponding input tiles do overlap, because they are

(HK − 1)× (WK − 1) pixels bigger.

Tiling works around the inefficiencies of the naive Fourier transform-based algo-

rithm. First, the filter is zero-padded only to the size of a tile, which is typically

25

much smaller than input image. Second, an implementation may choose the tile size

that is convenient for a Fast Fourier transform algorithm, e.g., a small power of two.

= ⋆

= ×

IFFT
IFFT
IFFT
IFFT

FFT
FFT
FFT

FFT
FFT
FFT

Figure 20: 2D convolution algorithm based on Fourier transform.

Fig. 20 illustrates how the Fast Fourier Transform with tiling transforms the nature

of the computation in the convolution operator. In the top row, the matrix elements

represent tiles of the input, output, and filter tensors, and “multiplication” of these

elements is represented by 2D cross-correlation operation. Importantly, the number

of multiply-adds in the 2D cross-correlation operation is directly proportional to the

kernel size in the filters. In the bottom row, the matrix elements represent frequency-

domain tiles of input, output, and filter tensors, and multiplication of these elements

is represented by elementwise multiplication of their complex-domain components.

Thus, in the bottom row, each multiplication costs two multiply-adds, regardless of

26

the kernel size in the filters. This simplification of the elementary operations is the

principal reason for the high efficiency of the FFT-based convolution algorithm.

Conversion between the top row and the bottom row representations requires a

Fourier transform on the tiles, and its cost cuts into the savings from multiplying

individual tiles. However, as seen in Fig 20, this conversion has lower asymptotic

complexity than the “matrix multiplication” part: we transform O(N2) elements in

each matrix to make the O(N3) matrix-matrix multiplication cheaper. Thus, when

the number of input channels, output channels, and input tiles is sufficiently large, the

cost of a Fourier transform on the tiles is negligible compared to the multiplication-

accumulation of the transformed tiles.

The Fourier transform-based convolution algorithm in Fig. 20 drastically reduces

the number of floating-point operations compared to im2col-based algorithms, but

it is possible to do even better. The Winograd transform-based convolution algo-

rithms [58] further reduces the number of floating-point operations by close to 2×.

Fig. 21 illustrates the general structure of computations in this algorithm, with its

substantial similarities to a Fourier transform-based algorithm. In fact, there are just

two differences between the Winograd transform-based and Fourier transform-based

algorithms:

1. These algorithms replace Fast Fourier transform (FFT) and Inverse FFT with

Winograd transforms. The algorithm uses three different Winograd transforms,

each specific to the type of blocks of coefficients: input Winograd transform

(IWT), kernel Winograd transform (KWT), and output Winograd transform

(OWT). Each Winograd transform is a linear transformation of a block of co-

efficients with a rather sparse transformation matrix.

2. While Fourier-transformed blocks contain complex elements, Winograd-transformed

27

blocks use only real coefficients. Multiplication-accumulation of complex num-

bers involves four floating-point operations, but multiplication-accumulation of

real numbers requires only two floating-point operations. Thus, the matrix-

matrix multiplication part in Fig. 21 is twice cheaper than the same part in

Fig. 20, and constitutes the main advantage of a Winograd transform-based

algorithm over a Fourier transform-based one.

= ⋆

= ×

OWT
OWT
OWT
OWT

IWT
IWT
IWT

KWT
KWT
KWT

Figure 21: 2D convolution algorithm based on the Winograd transform.

The Winograd transform-based method comes with its own disadvantages, too.

First, input/kernel/output Winograd transforms are specific not only to the tile size,

but also to the kernel size. If an implementation intends to support arbitrary kernel

sizes, it needs to provide many variants of Winograd transforms. Secondly, while FFT

28

involves only order-of-one coefficients, Winograd transform involves a combination of

large and small coefficients, which results in poor numerical stability. Thirdly, while

FFT can be used with very large tiles without becoming inaccurate, a Winograd

transform loses too much accuracy beyond 8× 8 tiles.

29

CHAPTER III

PRIMITIVES FOR HIGH-INTENSITY CONVOLUTIONS

3.1 Introduction

Model 1× 1 3× 3 5× 5
VGG Yes Yes No
U-Net Yes Yes No
ResNet Yes Yes No
AlexNet No Yes Yes
Overfeat No Yes Yes

Table 5: Configurations of parameters in convolutional layers in early CNN architec-
tures.

Early convolutional neural network architectures for computer vision extensively

relied on convolutions with large kernels to aggregate information across large neigh-

borhoods of pixels. Table 5 illustrates that many of these networks incorporated 3×3,

5 × 5, or even larger convolution kernels. Even though these neural network archi-

tectures are no longer state-of-art in terms of accuracy and efficiency, for a variety

of reasons they remain widely used in both research and industry, for the following

reasons.

• These neural network architectures are well-understood, covered in even intro-

ductory books on deep learning, and implemented in all major neural network

frameworks.

• The above neural network architectures are relatively simple, and can be easily

adapted to new datasets and experimental deep learning techniques, such as

quantization and pruning. ResNet and U-Net are often considered as a baseline

that new methods should be evaluated on or against.

30

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7

e-0·πi/4

 ×
 ×

 ×
 ×

+

+

+

+

-

-

-

-

e-1·πi/4

e-2·πi/4

e-3·πi/4

-

-

+

+

-

-

+

+

e-0·πi/4

 ×
 × e-1·πi/4

e-0·πi/4

 ×
 × e-1·πi/4

-

+

-

+

-

+

-

+

W
0

W
4

W
2

W
6

W
1

W
5

W
3

W
7

W
0

W
1

W
2

W
3

W
4

W
5

W
6

W
7

Butterfly
Twiddle
factors

Butterfly
Twiddle
factors

Butterfly
Bit

reversal
W

0

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
0

W
4

W
2

W
6

W
1

W
5

W
3

W
7

-

+

-

+

-

+

-

+

e-0·πi/4

 ×
 × e-1·πi/4

Bit
reversal

e-0·πi/4

 ×
 × e-1·πi/4

-

-

+

+

-

-

+

+

e-0·πi/4

 ×
 ×

 ×
 ×

e-1·πi/4

e-2·πi/4

e-3·πi/4

+

+

+

+

-

-

-

-

W
0

W
1

W
2

W
3

W
4

W
5

W
6

W
7

Butterfly
Twiddle
factors

Butterfly
Twiddle
factors

Butterfly

Decimation-in-Frequency (DIF) Decimation-in-Time (DIT)

Figure 22: Decimation-in-frequency and decimation-in-time FFT algorithms for 8-
sample sequence

• Image features produced by VGG architectures are knows to produce more

visually appealing results than features extracted by other architectures. This

advantage is intrinsically subjective and its origins are not well-understood,

but research on style transfer tends to prefer VGG architectures as feature

extractors.

Due to the above factors, achieving good performance and efficiency on legacy

neural network architecture remains an important goal. These architectures devote

the majority of their FLOPs budget to convolutions with large kernel sizes, and thus

the Fast Convolution algorithms that can reduce the computational complexity of

such convolutions are of crucial importance to accelerating legacy neural network

architectures. In this chapter, I present the details of adapting Fast Convolution al-

gorithms to modern wide-SIMD processors and suggest modifications to the standard

FFT and GEMM primitives that make them efficient building blocks for the Fast

Convolution algorithms.

I consider two types of transformations for the Tiled Fast Convolution algorithm:

the Fast Fourier transform and the Winograd transform.

31

3.2 Fast Fourier Transforms

The Fast Fourier Transform (FFT) is a family of algorithms to compute discrete

Fourier transforms in O(n log n) operations instead of O(n2) operations in its naive

implementation as a matrix-vector multiplication. Several variants of FFT algorithms

were proposed in the literature; for this research I choose to implement the radix-2

Cooley-Tukey algorithm, which has a simple structure and operates on blocks that

can be efficiently implemented on SIMD architectures. The radix-2 Cooley-Tukey

algorithm recursively reduces an FFT of N elements to two FFTs of n
2

elements.

Two variants of radix-2 Cooley-Tukey FFT algorithm are known: decimation-in-

time (DIT) and decimation-in-frequency (DIF) algorithm. The algorithms differ by

the order of recursive FFT steps: DIF algorithm starts with high-order FFT steps

and then descends to a two-sample FFT while DIT starts with a two-sample FFT

and then ascends to high-order FFT steps. The DIF algorithm expects the input

in normal order and produces output in bit-reversed order; a separate shuffle step is

required to rearrange the output to normal order. The DIT algorithm expects the

input in bit-reversed order and produces output in normal order. Fig. 22 illustrates

the difference between the two algorithms.

Additional optimizations are possible for Fourier transforms of real data. One

algorithm performs the FFT on a real sequence of N samples using a complex FFT

of N
2

samples. Another algorithm is known to do an FFT of two interleaved sequences

of N real samples each using a complex N -sample FFT.

32

Table 6: Instruction characteristics on Intel Skylake [26]

Instructions Execution Port Latency

FP ADD/SUB 0 or 1 4

FP MUL/FMA 0 or 1 4

FP LOGICAL 0, 1 or 5 1

FP STATIC BLEND 0, 1 or 5 1

FP PERMUTE/SHUFFLE 5 1 or 3

INT ALU 0, 1, 5 or 6 1

INT MUL 1 3

A large fraction of floating-point performance in modern CPUs comes from SIMD

instructions. Intel Skylake features 256-bit wide SIMD with AVX2 and FMA3 in-

struction sets, with instruction characteristics detailed in Tab. 6. The processor is

capable of issuing two floating-point additions, multiplications, or FMA instructions

each cycle, which produces a result after 4 cycles. Thus, at least eight independent

floating-point instructions are needed to saturate the computational resources. Two

kinds of instructions could lower the compute peak: integer multiplications and SIMD

shuffles. Integer multiplications run on port 1, same as floating-point instructions, so

each integer multiplication reduces the achievable compute peak. SIMD shuffles issue

in parallel with floating-point computations, but the processor is capable of executing

only one shuffle per cycle, and it can become a bottleneck. Logical and blend SIMD

instructions, as well as simple scalar integer instructions can issue on many execution

ports, and are less likely to become a bottleneck.

33

3.2.1 Layout of FFT coefficients

R
0

0 R
1

I
1

R
2

I
2

R
3

I
3

R
4

0 R
3

-I
3

R
2

-I
2

R
1

-I
1

R
0

0 R
1

I
1

R
2

I
2

R
3

I
3

R
4

0

R
0

R
1

I
1

R
2

I
2

R
3

I
3

R
4

R
0

R
1

I
1

R
2

I
2

R
3

I
3

R
4

W
0

W
1

W
2

W
3

W
4

W
5

W
6

W
7

Unpacked

CCS

PERM

SOA PERM

Figure 23: Layouts of real-to-complex coefficients FFT of 8 samples

A Fourier transform ofN real samples producesN complex samples, which can be rep-

resented with 2N real numbers. Many of these numbers are redundant, and the layout

of coefficients of real-to-complex FFT is an important aspect of a high-performance

implementation. Fig. 23 illustrates several possible layouts, with mathematically re-

lated numbers sharing the same color. The top row displays the layout of N complex

FFT coefficients. The coefficients exhibit Hermitian symmetry:

WN
2
+i ≡ WN

2
−i for i = 1 . . .

N

2
− 1.

The symmetry makes it possible to drop the last N
2
− 1 coefficients. The resulting

layout, called CCS, is shown in the second row. CCS layout is nearly standard

and supported by all major FFT libraries, including Intel MKL, FFTW, and FFTS.

However, this layout is not favorable to wide SIMD units: when N is a power of

two, which is convenient and efficient for SIMD implementation, the N
2

th element

would alone occupy a SIMD register. One solution is to pack this coefficient into

the imaginary component of element 0, which is implemented in PERM format in

Intel MKL, shown in row 3. In my implementation I use MKL PERM format and its

structure-of-arrays variant in row 4.

3.2.2 Composition of 2D FFTs

There are four options for implementing a 2D FFT, illustrated in Fig. 24. The

implementation of all four options would be very labor-intensive, so I argue about

34

Figure 24: Implementation options for 2D FFT

the optimal option from a theoretical analysis.

The main concern in the 2D FFT implementation is to keep the ratio of SIMD

shuffles to floating-point instructions as low as possible, to avoid bottlenecks on shuffle

units. The 1D FFT within rows and the 1D FFT across rows uses different numbers

of shuffle instructions. The within-rows variant does butterflies between elements of

the same SIMD register, which requires shuffling the register. The across-rows variant

does not need any shuffles. In addition to the 1D FFTs, options B and D include

transposition of the image tile. A SIMD implementation of transposition consists

mostly of SIMD shuffles, and it uses the same number of shuffle instructions as the

within-row FFT of a tile. Now we can subsequently eliminate most options:

• We can eliminate option B, because it consists of two 1D FFTs within rows and

35

a transposition and needs a redundant number of shuffle instructions.

• Options A and C differ only in the order of within-rows and across-rows FFTs.

I suggest that it is better to first do FFT across rows, because the first transfor-

mation is a real-to-complex FFT, and it exposes additional symmetries, which

are easy to use in an across-rows algorithm but require additional shuffles in

within-rows variant. This observation eliminates option A in favor of option C.

• Options C and D use the same number of shuffles (transposition needs as many

shuffles as within-row FFT of a tile), but in Option D they are all concentrated in

the transposition operation, and in Option C they are interleaved with floating-

point computations. Therefore, option C is less likely to create a pipeline bubble

of shuffle instruction, and should therefore be preferred over option D.

3.2.3 Fused Butterfly Operations

The butterfly is one of the two computational components of the FFT. Given two

elements, the bufferfly operation computes their sum and difference:

aout, bout := ain + bin, ain − bin

Some operations can be fused into butterfly at no cost:

• Negation of bin: aout, bout := ain − bin, ain + bin.

• Negation of bout: aout, bout := bin + ain, bin − ain.

On modern processors the FMA operation often has the same performance char-

acteristics as floating-point addition/subtraction. It makes it possible to fuse scaling

of either ain or bin by an arbitrary factor, e.g., butterfly(ain, bin · c) can be computed

with:

36

aout, bout := bin · c+ ain︸ ︷︷ ︸
fma(b,c,a)

,−bin · c+ ain︸ ︷︷ ︸
fnma(b,c,a)

No explicit product bin · c is formed, and the resulting code has the same cost as

a regular butterfly.

I use the fusion technique in the FFT across rows, with the following benefits:

• Eliminate all multiplications by twiddle factors in a 4-sample complex FFT (and

an 8-sample real FFT)

• Replace all multiplications by twiddle factors in an 8-sample complex FFT (and

a 16-sample real FFT) with only two floating-point additions.

• Eliminate final scaling by 1
N

in the inverse FFT.

• Eliminate several negations and multiplications in the real-to-complex 1D FFT

3.3 Winograd Transforms

I follow the specification of F (6 × 6, 3 × 3) – the largest transformation described

by Lavin [58] – which extends 3 × 3 kernels and 8 × 8 input tiles into 8 × 8 blocks

of transformed coefficients. The convolution of the original tile with the kernel is

equivalent to elementwise real product of transform coefficients. The output transform

produces a 6×6 tile of output samples. Thus, the F (6×6, 3×3) Winograd transform

behaves similarly to an 8× 8 Fourier transform on 3× 3 kernels. Unlike the Fourier

transform, the Winograd transform depends on the kernel size: my implementation

following Lavin [58] handles only 3×3 kernels; support for other sizes is possible, but

would require a separate implementation.

The 1D Winograd transform is a linear transformation and can be defined by a

transformation matrix. The transformation matrix has many zeroes and additional

structure, which I exploit in the implementation. I apply a 1D transform across rows

37

of data block, then transpose it, and apply the same transformation again. Overall,

both in the number of operations and in the structure of algorithm, the 2D Winograd

transform is simpler than the 2D FFT.

3.4 Matrix Multiplication

R

 I

R R

R R

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

R

 I

Figure 25: Layout of an 8 × 8 block of FFT coefficients. Red blocks indicate real

coefficients, and yellow and green blocks indicate real and imaginary components of

complex coefficients.

The blocks of coefficients from the Fourier or the Winograd transforms need to be

reduced through a matrix multiplication-like operation. The FFT blocks have special

structure, with few real and many complex elements, as depicted in Fig. 25 (blocks of

Winograd transform coefficients contain only real numbers). A naive way to perform

the reduction would be to arrange different elements of blocks into different matrices,

and then call SGEMM or CGEMM for these matrices. However, two issues make

such implementations undesirable.

First, to form the matrices for GEMM calls, each coefficient would need to be

scattered to a distinct memory location. The scatter operation would add a significant

cost to the transformation that produced the block of coefficients. To reduce the

number of distinct memory writes, I scatter not individual elements of transformed

blocks but SIMD tuples of elements. For example for the 8× 8 block on Fig. 25 the

first tuple would consist of the first two rows: they would be stored into a contiguous

38

location, and the next two rows would be stored into a different contiguous location.

Matrix multiplication on such tuples can be thought of as operating on interleaved

matrices. I implement a custom GEMM operation, which operates on tuples and

includes special handling for the real elements in the upper left corner of the block,

following the classical Goto algorithm [33] and its modern extension to multi-core

architectures [87]. Interleaving of matrices lowers the FLOPS-per-byte ratio in the

inner kernel of the matrix multiplication and raises concern about whether such as

implementation can be competitive with normal CGEMM. I address this concern in

the next section.

The second issue with rearranging block elements for GEMM is that it involves

double repacking of data. In the Goto algorithm [33], implemented by modern high-

performance BLAS libraries, the input matrices are internally repacked, so that the

data accessed by the inner kernel of a GEMM implementation is contiguously stored

in memory. The parameters of this packing are usually hidden behind the GEMM

interface. However, as one implements a custom matrix multiplication for tuples, one

can repack the tuples on-the-fly in the transformation code. In my implementation,

the FFT or Winograd transform that computes transformed blocks stores tuples of

elements in the order that would be later optimal for the matrix multiplication. This

optimization saves the extra repacking in the matrix multiplication implementation

and partially offsets the performance issues due to lower compute intensity in the

inner kernel.

3.5 Performance

I benchmarked my implementations on the convolutional layers of neural network

models that won the ImageNet large scale visual recognition challenge [19] in 2012 [57],

2013 [83] and 2014 [85]. Table 7 presents details on the benchmarked convolutional

layers. I excluded from the benchmark the first layers of AlexNet and Overfeat (fast

39

Model Layer Channels Input Padding Kernel 8× 8 16× 16

VGG-A conv1 3→ 64 224× 224 1 3× 3 1444 256
VGG-A conv2 64→ 128 112× 112 1 3× 3 361 64
VGG-A conv3.1 128→ 256 56× 56 1 3× 3 100 16
VGG-A conv3.2 256→ 256 56× 56 1 3× 3 100 16
VGG-A conv4.1 256→ 512 28× 28 1 3× 3 25 4
VGG-A conv4.2 512→ 512 28× 28 1 3× 3 25 4
VGG-A conv5 512→ 512 14× 14 1 3× 3 9 1
AlexNet conv2 64→ 192 27× 27 2 5× 5 49 9
AlexNet conv3 192→ 384 13× 13 1 3× 3 9 1
AlexNet conv4 384→ 256 13× 13 1 3× 3 9 1
AlexNet conv5 256→ 256 13× 13 1 3× 3 9 1
Overfeat conv2 96→ 256 24× 24 0 5× 5 25 4
Overfeat conv3 256→ 512 12× 12 1 3× 3 4 1
Overfeat conv4 512→ 1024 12× 12 1 3× 3 4 1
Overfeat conv5 1024→ 1024 12× 12 1 3× 3 4 1

Table 7: Configurations of convolutional layers in performance evaluation

model) because they use convolutions with strides while my implementation only

supports unit stride.

Fig. 26 illustrates the speedup of my implementations relative to the Caffe on an

Intel Core i7 6700K system with 4 cores and 8 hyperthreads. I disabled Turbo Boost

and dynamic frequency scaling so that the processor ran at a stable 4.0 GHz during

the tests. Caffe was built with an upstream version of OpenBLAS; I also consid-

ered Caffe configuration with Intel MKL, but an OpenBLAS version delivered better

performance1. The performance of my implementation was measured in standalone

benchmarks with cached data evicted between runs. Both Caffe and my implemen-

tations were benchmarked in multi-threaded mode with 8 threads.

On VGG model A and AlexNet, convolution based on a 16 × 16 FFT delivers

the best performance. On the layers of Overfeat with a 3 × 3 kernel, the algorithm

based on a Winograd transform delivers the best performance. In all cases, an 8× 8

FFT performs worse than 8 × 8 Winograd, which is reasonable: the FFT is more

1This is probably a performance bug in Caffe. In my standalone SGEMM benchmarks Intel MKL
is generally faster than OpenBLAS.

40

0

2

4

6

VGG/A:conv1 VGG/A:conv2 VGG/A:conv3.1 VGG/A:conv3.2 VGG/A:conv4.1 VGG/A:conv4.2 VGG/A:conv5 AlexNet:conv2 AlexNet:conv3 AlexNet:conv4 AlexNet:conv5 Overfeat:conv2 Overfeat:conv3 Overfeat:conv4 Overfeat:conv5

Network:layer

Sp
ee

du
p

ov
er

 C
af

fe

Algorithm FFT 8x8 FFT 16x16 F(6x6, 3x3)

Speedup of fast convolution over Caffe

Figure 26: Speedup of my implementations against Caffe

computationally expensive than a Winograd transform and requires complex matrix

multiplication to reduce transformed coefficients, which is up to twice slower than

real matrix multiplication after Winograd transform. The key predictor of whether

16×16 FFT or F (6×6, 3×3) Winograd transform would deliver better performance

is the number of tiles required to cover the input image. The number of tiles can be

computed as

n =

⌈
Hi + 2Pi −Hk + 1

Ht −Hk + 1
· Wi + 2Pi −Wk + 1

Wt −Wk + 1

⌉
The last two columns of Table 7 specify the number of 8 × 8 and 16 × 16 tiles

for the layers. A single 16 × 16 tile has the same number of elements as four 8 × 8

tiles. When the number of 8 × 8 tiles is less than 4× the number of 16 × 16 tiles,

the Winograd transform and the 16 × 16 FFT produce the same number of output

elements, and the Winograd transform-based convolution wins due to doing a real

matrix-matrix multiplication instead of a complex matrix-matrix multiplication for

the FFT coefficients.

41

One may question if the efficiency of the Winograd transform can be further

improved by using larger tiles. While it is mathematically possible to derive Winograd

transforms for larger tiles, Lavin [58] argues that this rapidly increases the magnitude

of coefficients in the transformation matrix, resulting in the accuracy loss of the

convolution. I observed that convolutions with F (6× 6, 3× 3) lose about half of their

significant bits, and it is substantially less accurate than fast convolution based on

Fourier transforms.

Besides benchmarking performance of the whole convolution, I also present per-

formance results for the two components of the fast convolution algorithm: my 2D

FFT and 2D Winograd transform implementations, and matrix multiplication.

0

10

20

30

8x8 FFT 8x8 IFFT 16x16 FFT 16x16 IFFT F(6x6,3x3):IT F(6x6,3x3):KT F(6x6,3x3):OT

Pe
rfo

rm
an

ce
, G

B/
s

Implementation NNPACK MKL/PERM

Figure 27: Performance of batch transforms. The custom 2D FFT implementation

specialized for 8 × 8 and 16 × 16 blocks substantially outperform the more generic

implementations in Intel MKL. Both the 2D FFT and the 2D Winograd transforms

demonstrate performance close to the memory bandwidth peak of the system.

Fig. 27 presents performance of multi-threaded batch 2D FFT and 2D Wino-

grad transforms with my implementation and Intel MKL 11.3 Update 1. I display

performance in gigabytes per second to underline that my implementation saturates

memory throughput: both 8×8 and 16×16 FFT reach approximately the same levels

42

0

100

200

300

400

VGG−A:conv1 VGG−A:conv2 VGG−A:conv3.1 VGG−A:conv3.2 VGG−A:conv4.1 VGG−A:conv4.2 AlexNet:conv2 AlexNet:conv3 AlexNet:conv4 AlexNet:conv5 OverFeat:conv2 OverFeat:conv3 OverFeat:conv4 OverFeat:conv5

Network:layer

P
er

fo
rm

an
ce

, S
P

 G
F

LO
P

S

Implementation Intel MKL OpenBLAS This paper

Figure 28: Performance of complex matrix multiplication. For my implementation I
report performance of reduction of blocks of 8 × 8 FFT coefficients. For MKL and
OpenBLAS with report CGEMM performance with M = B,N = Co, K = Ci

of memory bandwidth. My implementation outperforms Intel MKL by 1.8 − 3.4×

on forward 2D FFT and by 1.3 − 2.3× on inverse FFT. Lower performance of my

implementation on inverse transforms is due to inability to use streaming stores: I use

masked store to save a subset of output samples, resulting in excessive memory traf-

fic. Winograd transform saturates memory channels just like 2D FFT, albeit delivers

marginally better performance.

Fig. 28 illustrates multi-core performance of reduction of blocks of FFT coeffi-

cients. For my implementation, the performance is measured directly. For Intel MKL

and OpenBLAS libraries, I measure performance of CGEMM calls with the same

parameters as could be used for reduction of the FFT blocks. The figure suggests

that despite the fact that my implementation operates on interleaved matrices with

resulting lower arithmetic intensity, it can attain performance competitive with these

highly optimized libraries.

43

3.6 Current Limitations and Future Work

One limitation of my implementation is its lack of support for strided convolutions.

Strided convolutions could be enabled with a minor modification of inverse transform

function: it could write out only the valid elements. Such implementation would be

quite inefficient, because it would throw out most computed outputs, but since strided

convolutions are normally used with very large kernel sizes (e.g. 11× 11 in AlexNet),

it could still outperform the naive implementation. A better approach would be to use

the efficient method of computing strided convolutions with Fast Fourier Transform

suggest by Brosch and Roger [8].

Table 8: Transformation costs, measured through FP ARITH INST RETIRED hard-

ware counter

Transformation FLOPs

Forward FFT 8× 8 912

Forward FFT 16× 16 4056

Inverse FFT 8× 8 992

Inverse FFT 16× 16 4480

Input F (6× 6, 3× 3) 736

Kernel F (6× 6, 3× 3) 304

Output F (6× 6, 3× 3) 480

3.7 Conclusion

I demonstrated that training convolutional layers of Imagenet-winning models on

CPUs can be accelerated up to 7.5× through a combination of fast convolution algo-

rithms and highly tuned implementations. These substantial speedups are achieved

by a combination of several techniques:

44

• High-performance 2D FFT, based on both decimation-in-time and decimation-

in-frequency radix-2 Cooley-Tukey algorithm, complex-to-complex, real-to-complex,

and dual-sequence real-to-complex 1D FFT. The resulting 2D FFT implementa-

tion outperforms Intel MKL by 1.3−3.4 times and saturates memory bandwidth

on Intel Skylake system.

• High-performance 2D Winograd transform, which delivers even higher through-

put than the 2D FFT.

• Custom SGEMM- and CGEMM-like kernels, which tightly integrate with trans-

formation code: the transformation routines repack outputs for better GEMM

efficiency, and GEMM work with interleaved matrices to make memory access

pattern in the transformation routines friendlier to memory subsystem.

45

CHAPTER IV

PRIMITIVES FOR LOW-INTENSITY CONVOLUTIONS

4.1 Introduction

Early neural network architectures for computer vision utilized convolutions with

large kernel sizes as the primarly building block. 3x3 convolutions were particularly

popular: VGG and ResNet feature extractors were a common building block for image

classification, object detection, and style transfer, while U-Net was the high-accuracy

architecture for segmentation, and all of these architecture spend the majority of

FLOPs in 3x3 convolutions. For 3x3 convolutions, algorithmic acceleration with

Winograd- and Fourier-transform-based algorithms is the key to efficient inference.

However, in recent years, new types of convolutions emerge as common building

blocks, and require different methods.

Depthwise separable convolutions, popularized by Xception and MobileNet archi-

tectures, gain popularity as the basic building blocks of computer vision architectures.

Depthwise separable convolutions can be thought of as factorizations of traditional

convolution with large kernel size into two convolutions: pixelwise convolution (con-

volution with 1x1 kernel), followed by a depthwise convolution. Whereas traditional

convolution recombines data both from different channels and from neighbouring

spatial locations, depthwise separable convolution factorize this transformation into

separate recombination across different channels (in the 1x1 convolution) and recom-

bination across neighbouring spatial locations (in the depthwise convolution).

0This chapter is based on the single-author workshop paper [23] with minor modifications: ”Marat
Dukhan. The Indirect Convolution Algorithm. Presented on the Efficient Deep Learning for Com-
puter Vision workshop, June 2019.”

46

The components of depthwise separable convolutions exhibit much lower arith-

metic intensity, and are less susceptible to acceleration through fast convolution algo-

rithms. For pixelwise convolutions, fast convolution algorithms bring nothing at all,

and for depthwise convolutions the advantage of convolution in Fourier or Winograd

space is eroded by inability to amortize the cost of transformations across either input

or output channels. These types of convolutions, which I denote low-intensity con-

volutions, require a different approach to optimization. As they stress the memory

subsystem more than computational units, algorithmic optimizations have to focus

on minimizing memory operations, in particular the memory layout transformations

in the im2col and col2im patch-building algorithms.

In this section I present a novel type of algorithm for Convolution computation,

named the Indirect Convolution algorithm. The Indirect Convolution algorithm

is a modification of GEMM-based algorithms, and like GEMM-based algorithms it

can efficiently support arbitrary Convolution parameters, and leverage the vast trove

of research on high-performance GEMM implementation. Additionally, the Indirect

Convolution algorithm has two major advantages over GEMM-based algorithms:

• The Indirect Convolution algorithm eliminates expensive and memory-

intensive im2col transformations. Elimination of im2col transformations

improves performance by up to 62% compared to GEMM-based algorithms. The

performance improvement is particularly prominent on Convolutions with small

number of output channels, when im2col comprises a large share of Convolution

runtime.

• The Indirect Convolution algorithm allows to replace the im2col buffer with

a much smaller indirection buffer. The size of im2col buffer scales linearly

with the number of input channels, but the size of indirection buffer does not

depend on the number of input channels. Thus, the memory footprint advantage

of Indirect Convolution algorithm is the greatest for Convolutions with many

47

input channels.

4.1.1 Limitations

The high efficiency of the Indirect Convolution algorithm is contingent on certain

conditions:

• The algorithm is optimized for the NHWC layout, supported by Tensor-

Flow [1], TensorFlow Lite, and Caffe2 frameworks. While the algorithm can be

adapted to work in the NCHW layout (native to PyTorch [76] and Caffe [53]

frameworks), I don’t expect it would be competitive with the state-of-the-art

patch-building algorithms of Andersen et al [100] due to its strided memory

access in the NCHW layout.

• The algorithm is optimized for the forward pass of the Convolution opera-

tor, and has limited applicability to the backward pass of Convolution

operator and to the Transposed Convolution operator. The Indirect

Convolution algorithm presented in this paper replaces the GEMM-based algo-

rithms using im2col or im2row transformations. However, for the backward pass

of a strided Convolution operator and for the strided Transposed Convolution

operator, col2im and row2im-based algorithms are more optimal due to smaller

number of arithmetic operations.

• Similarly to the GEMM-based convolution, the Indirect Convolution algo-

rithm is not efficient for depthwise convolutions. Depthwise convolu-

tions [14] independently convolve each channel with its own set of filters.

4.2 The Indirect Convolution algorithm

The Indirect Convolution algorithm can be represented as a modification of GEMM-

based algorithms. Where GEMM-based algorithms reshuffle data to fit it into the

GEMM interface, the Indirect Convolution Algorithm instead modifies the GEMM

48

copy

im2col buffer

filter tensor

input tensor

Figure 29: GEMM operation as a component of GEMM-based convolution algorithm.
im2col buffer represents matrix A, filter tensor - matrix B, and their product consti-
tutes the output tensor.

primitive to adopt it to the original data layout. The modified GEMM primitive,

denoted the Indirect GEMM in this paper, has a similar computational structure

as the standard GEMM, and can reuse the same optimizations.

4.2.1 GEMM Primitive

For an M ×K matrix A (optionally transposed), K ×N matrix B (optionally trans-

posed), and M × N matrix C, and scalar constants α and β, the GEMM primitive

computes

C ← αA×B + βC

In the context of the forward pass of a Convolution operator, A contains input ten-

sor data, B the constant filter data, and C represents output tensor data. In the

traditional im2col+GEMM algorithm, α = 1, and β = 0, albeit newer low-memory

GEMM-based algorithms [5] make use of β = 1 case as well. Fig. 29 illustrates

the role of GEMM primitive in GEMM-based convolution algorithm, and Listing 4.1

demonstrates the basic building block of a GEMM primitive – a GEMM micro-kernel

that produce 2 rows and 2 columns of matrix C.

49

Listing 4.1: Implementation of GEMM micro-kernel in C

void uGEMM(

int k, const float* pw ,

const float* pa, int lda ,

float* pc, int ldc)

{

const float* pa0 = pa;

const float* pa1 = pa + lda;

float c00 = 0, c01 = 0, c10 = 0, c11 = 0;

do {

const float a0 = *pa0++, a1 = *pa1++;

const float b0 = *pw++;

c00 += a0 * b0;

c10 += a1 * b0;

const float b1 = *pw++;

c01 += a0 * b1;

c11 += a1 * b1;

} while (--k != 0);

pc[0] = c00; pc[1] = c01;

pc += ldc;

pc[0] = c10; pc[1] = c11;

}

4.2.2 From GEMM to Indirect GEMM

I suggest two modifications that jointly make the GEMM primitive directly suitable

for the convolution implementation:

1. Removing the assumption that rows of matrix A are separated in memory by

a constant stride. Instead, pointers to rows of matrix A are loaded from an

array of pointers provided by the caller and denoted indirection buffer. In

50

filter tensor

indirection buffer

input tensor
Figure 30: Indirect GEMM operation as a component of Indirect Convolution algo-
rithm. The indirection buffer contains only pointers to rows of the input tensor, and
the Indirect GEMM operation reads rows of data directly from the input tensor.

the context of a 2D convolution, the indirection buffer specifies the address of

a row of pixels in the input tensor that contribute to the computation of the

output pixel.

2. Secondly, I add an extra loop over elements of the kernel. For each iteration of

this loop, the modified GEMM primitive loads new pointers to input rows from

the indirection buffer, computes dot products of K elements specified by these

pointers with the filter data, and accumulates the results of the dot product

with results of the previous loop iterations.

These modifications enable Indirect Convolution algorithm to implement a fused

51

im2col + GEMM operation, but without ever storing the result of im2col operation

in memory. Fig. 30 illustrates the data flow in Indirect GEMM primitive and Listing

4.2 provides an example of an Indirect GEMM micro-kernel.

Listing 4.2: Implementation of Indirect GEMM micro-kernel in C

void uIndirectGEMM(

int n, int k, const float* pw ,

const float ** ppa , int lda ,

float* pc, int ldc)

{

float c00 = 0, c01 = 0, c10 = 0, c11 = 0;

do {

const float *pa0 = *ppa++;

const float *pa1 = *ppa++;

int kk = k;

do {

const float a0 = *pa0++, a1 = *pa1++;

const float b0 = *pw++;

c00 += a0 * b0;

c10 += a1 * b0;

const float b1 = *pw++;

c01 += a0 * b1;

c11 += a1 * b1;

} while (--kk != 0);

} while (--n != 0);

pc[0] = c00; pc[1] = c01;

pc += ldc;

pc[0] = c10; pc[1] = c11;

}

52

4.2.3 Indirection Buffer

The Indirection buffer is a buffer of pointers to rows of input pixels. Each row has C

pixels, and the rows can optionally be strided. For each output pixel position and for

each kernel element the indirection buffer contains a pointer to a row of input pixels

that would be convolved with a row of the filter weights for the corresponding kernel

element to produce the corresponding output pixel.

It is common to use an implicit padding for convolutions with non-unit kernels. In

convolutions with an implicit padding, the input tensor is implicitly padded with zeros

along the spatial dimensions before computing convolution. To handle the padded

convolution, the Indirect Convolution algorithm requires an explicit zero vector - a

constant vector with C elements initialized to zeros. The explicit zero vector does not

need to be contigious with the input tensor, and can even be shared between multiple

convolution operators. During an initializing of the indirection buffer, pointers to

input rows which fall outside of the input tensor range are replaced with pointers to

the explicit zero vector.

The Indirection buffer depends on several parameters: shapes of input, output,

and filter tensors, convolution stride, dilation, and implicit padding, and pointers to

input tensor and explicit zero tensor, and stride of pixel rows in the input tensors.

These parameters can be categorized into several groups, according to the frequency

of their change and implications of their change on indirection buffer:

• Convolution stride, dilation, kernel size, implicit padding, number of input chan-

nels, and output channels are parameters of a neural network model and once

the model is instantiated, they are practically immutable.

• Changes in the height and width of input or output tensors require a complete

reinitialization of indirection buffer. However, for most types of models, and in

particular in the production environment, such changes are rare.

53

• Changes in the batch size require a partial reinitialization of the indirection

buffer only for batch indices that were not previously initialized.

• Changes in pointers to the input tensor or the explicit zero vector require a

complete reinitialization of indirection buffer. To avoid the cost, a high-level

framework implementing the convolution can guarantee that in the absence of

shape changes, tensors have persistent location.

4.3 Experimental Evaluation

Four factors affect performance of the Indirect Convolution compared to the GEMM-

based convolution algorithms:

1. Elimination of the im2col transformation for non-unit convolutions.

2. Improved caching of the input rows for convolutions with large kernels as Indi-

rect GEMM reads input rows contributing to different output pixels from the

same location while GEMM would read these input rows from different locations

in the im2col buffer.

3. Overhead of loading pointers to rows of the input data from the indirection

buffer compared to computing them under a constant stride assumption.

4. Potentially lower efficiency of two nested loops with R × S and C iterations

in the Indirect GEMM operation compared to a single loop with R × S × C

iterations in the GEMM operation.

These factors are closely coupled together, but I can separately benchmark the

effect of the first two (which positively affect the Indirect Convolution algorithm

performance) and the last two (with negative effect on performance) by benchmarking

three variants of convolution implementation:

• The Indirect Convolution algorithm

54

Table 9: Characteristics of mobile devices in performance evaluation. Microarchitec-
ture (uArch) is specified for the big cores.

Device Chipset uArch

Samsung Galaxy S8 Exynos 8895 Exynos-M2
Google Pixel 2 XL Snapdragon 835 Cortex-A73
Google Pixel 3 Snapdragon 845 Cortex-A75

• The traditional GEMM-based Algorithm. Unless the convolution uses 1x1 ker-

nel and unit stride, this algorithm involves the im2col transformation.

• The GEMM part of the traditional GEMM-based algorithm. This benchmark

excludes the im2col transformation, and therefore does not produce the correct

result. I include it only as a way to separate the effect of different factors on

performance.

4.3.1 Experimental Setup

Platforms I evaluated performance on three ARM64 Android devices with charac-

teristics listed in Table 9. The processors in these mobile devices include two types of

cores: high-performance (big) cores and low-power (little) cores. In my experiments,

all benchmarks were run in single-threaded mode with thread pinning to a single big

core.

Implementation I use highly optimized implementations of GEMM and the

Indirect GEMM micro-kernels in ARM64 assembly with software pipelining for out-

of-order cores. Both micro-kernels produce 4x8 output tile (i.e. 4 output pixels with 8

output channels each), and use exactly the same instruction sequence in the inner loop

of the Indirect GEMM micro-kernel and the main loop of the GEMM micro-kernel.

Unlike many other GEMM implementations which use the Goto algorithm [33], I

do not repack panels of matrix A accessed in a micro-kernel into a contiguous memory

region. Goto and Van de Geijn [33] suggested repacking as a way to overcome limited

cache associativity. In contrast, I find that with GEMM matrices that typically occur

55

in neural network architectures, limited cache associativity is not a concern because

whole panels of the A and B matrices read by the micro-kernel fit into level-1 cache.

Note that avoiding repacking of matrix A in GEMM and Indirect GEMM primitives

is my implementation detail, and both GEMM-based algorithm and the Indirect

Convolution algorithm can be implemented either with or without repacking of inputs.

However, my implementations of GEMM and Indirect GEMM micro-kernels assume

that matrix B, which contains filter weights, is repacked into a contigious memory

region, because filter weights never change at inference time, and such repacking can

be done only once with no additional run-time cost.

Protocol I implement all micro-benchmarks on top of the Google Benchmark

framework, which takes care of estimating sustained performance for the micro-

benchmark. On top of it, each micro-benchmark is repeated 25 times. To bring

measurements with different convolution parameters to a common scale, I compute

resulting performance (in GFLOPS), and report median metric of the 25 runs, as well

as 20% and 80% quantiles.

For each run of micro-benchmark I simulate the cache state during neural network

inference: filter, bias, and output tensors, and indirection buffer are cleaned from

cache, input tensor is prefetched into L1 cache, and the im2col buffer stays in cache

between convolution invocations to represent the same im2col buffer space re-used

between different convolution operators. The indirection buffer is initialized only once

(outside of the benchmarked snippet), and reused across invocations of the Indirect

Convolution algorithm.

Models I choose to evaluate performance on the convolution parameters of ResNet-

18 [41] and SqueezeNet 1.0 [49] models. Unlike more recent mobile-optimized models

like MobileNet v2 [82] and ShuffleNet v2 [64], which almost exclusively use 1x1 and

depthwise convolutions, ResNet and SqueezeNet models employ a variety of convolu-

tion parameters, and provide a more balanced experimental workload. Both models

56

0

5

10

15
G

al
ax

y
S

8
P

er
fo

rm
an

ce
, G

F
LO

P
S

Algorithm Indirect Convolution GEMM−based Convolution GEMM only (w/o im2col cost)

0

5

10

P
ix

el
 2

P
er

fo
rm

an
ce

, G
F

LO
P

S

0

5

10

15

20

R
es

N
et

18
/I:

22
4x

22
4/

C
:3

−>
64

/K
:7

x7
s2

R
es

N
et

18
/I:

56
x5

6/
C

:6
4−

>6
4/

K
:3

x3
R

es
N

et
18

/I:
56

x5
6/

C
:6

4−
>1

28
/K

:3
x3

s2
R

es
N

et
18

/I:
28

x2
8/

C
:1

28
−>

12
8/

K
:3

x3
R

es
N

et
18

/I:
56

x5
6/

C
:6

4−
>1

28
/K

:1
x1

s2
R

es
N

et
18

/I:
28

x2
8/

C
:1

28
−>

25
6/

K
:3

x3
s2

R
es

N
et

18
/I:

14
x1

4/
C

:2
56

−>
25

6/
K

:3
x3

R
es

N
et

18
/I:

28
x2

8/
C

:1
28

−>
25

6/
K

:1
x1

s2
R

es
N

et
18

/I:
14

x1
4/

C
:2

56
−>

51
2/

K
:3

x3
s2

R
es

N
et

18
/I:

7x
7/

C
:5

12
−>

51
2/

K
:3

x3
R

es
N

et
18

/I:
14

x1
4/

C
:2

56
−>

51
2/

K
:1

x1
s2

P
ix

el
 3

P
er

fo
rm

an
ce

, G
F

LO
P

S

Figure 31: Performance of the Indirect Convolution algorithm and GEMM-based
Algorithm on convolution operators of the ResNet-18 model. Opaque bars represent
median performance across 25 runs. Error bars represent 20% and 80% quantiles.

start with a 7x7 stride-2 convolution, and then include 3x3 stride-1 convolutions.

SqueezeNet additionally features 1x1 stride-1 convolutions and ResNet-18 makes use

57

0

5

10

15
G

al
ax

y
S

8
P

er
fo

rm
an

ce
, G

F
LO

P
S

Algorithm Indirect Convolution GEMM−based Convolution GEMM only (w/o im2col cost)

0

4

8

12

P
ix

el
 2

P
er

fo
rm

an
ce

, G
F

LO
P

S

0

5

10

15

20

S
qu

ee
ze

N
et

/I:
22

4x
22

4/
C

:3
−>

96
/K

:7
x7

s2

S
qu

ee
ze

N
et

/I:
55

x5
5/

C
:9

6−
>1

6/
K

:1
x1

S
qu

ee
ze

N
et

/I:
55

x5
5/

C
:1

6−
>6

4/
K

:1
x1

S
qu

ee
ze

N
et

/I:
55

x5
5/

C
:1

6−
>6

4/
K

:3
x3

S
qu

ee
ze

N
et

/I:
56

x5
5/

C
:1

28
−>

16
/K

:1
x1

S
qu

ee
ze

N
et

/I:
55

x5
5/

C
:1

28
−>

32
/K

:1
x1

S
qu

ee
ze

N
et

/I:
55

x5
5/

C
:3

2−
>1

28
/K

:1
x1

S
qu

ee
ze

N
et

/I:
55

x5
5/

C
:3

2−
>1

28
/K

:3
x3

S
qu

ee
ze

N
et

/I:
27

x2
7/

C
:2

56
−>

32
/K

:1
x1

S
qu

ee
ze

N
et

/I:
27

x2
7/

C
:3

2−
>1

28
/K

:1
x1

S
qu

ee
ze

N
et

/I:
27

x2
7/

C
:3

2−
>1

28
/K

:3
x3

S
qu

ee
ze

N
et

/I:
27

x2
7/

C
:2

56
−>

48
/K

:1
x1

S
qu

ee
ze

N
et

/I:
27

x2
7/

C
:4

8−
>1

92
/K

:1
x1

S
qu

ee
ze

N
et

/I:
27

x2
7/

C
:4

8−
>1

92
/K

:3
x3

S
qu

ee
ze

N
et

/I:
27

x2
7/

C
:3

84
−>

48
/K

:1
x1

S
qu

ee
ze

N
et

/I:
27

x2
7/

C
:3

84
−>

64
/K

:1
x1

S
qu

ee
ze

N
et

/I:
27

x2
7/

C
:6

4−
>2

56
/K

:1
x1

S
qu

ee
ze

N
et

/I:
27

x2
7/

C
:6

4−
>2

56
/K

:3
x3

S
qu

ee
ze

N
et

/I:
13

x1
3/

C
:5

12
−>

64
/K

:1
x1

S
qu

ee
ze

N
et

/I:
13

x1
3/

C
:6

4−
>2

56
/K

:1
x1

S
qu

ee
ze

N
et

/I:
13

x1
3/

C
:6

4−
>2

56
/K

:3
x3

S
qu

ee
ze

N
et

/I:
13

x1
3/

C
:5

12
−>

10
00

/K
:1

x1

P
ix

el
 3

P
er

fo
rm

an
ce

, G
F

LO
P

S

Figure 32: Performance of the Indirect Convolution algorithm and GEMM-based Al-
gorithm on convolution operators of the SqueezeNet 1.0 model. Opaque bars represent
median performance across 25 runs. Error bars represent 20% and 80% quantiles.

of 1x1 stride-2 and 3x3 stride-2 convolutions. Table 10 summarized the composition

of the convolution parameters in both models.

58

Table 10: Types and count of Convolution operators in SqueezeNet 1.0 and ResNet-18
models. Convolutions with identical parameters are counted only once.

Convolution ResNet-18 SqueezeNet 1.0

7x7 stride-2 1 1
3x3 stride-2 3 0
3x3 stride-1 4 6
1x1 stride-2 3 0
1x1 stride-1 0 15

Table 11: Geomean performance of modified GEMM primitive relative to standard
GEMM primtive on 1x1 and non-1x1 Convolutions in ResNet-18 model.

Device non-1x1 1x1 stride-2

Samsung Galaxy S8 +10.97% +8.02%
Google Pixel 2 XL +23.26% +0.84%
Google Pixel 3 +4.31% +0.51%

4.3.2 Experimental Results

Figs. 31 and 32 illustrate performance of the Indirect Convolution algorithm, the

GEMM-based algorithm, and just the GEMM part of the GEMM-based algorithm

on the ResNet-18 and SqueezeNet 1.0 models respectively. In 1x1 stride-1 Convolu-

tions in the SqueezeNet model the GEMM-based algorithm directly call into GEMM

primitive without using im2col transformation; for this reason, I do not separately

show GEMM-only performance for these Convolutions.

These plots reveal that in most cases the Indirect GEMM has similar perfor-

mance to the GEMM primitive post-im2col transformation; however, the addition of

Table 12: Geomean performance of modified GEMM primitive relative to standard
GEMM primtive on 1x1 and non-1x1 Convolutions in SqueezeNet 1.0 model.

Device non-1x1 1x1 stride 1

Samsung Galaxy S8 +5.70% -1.84%
Google Pixel 2 XL +11.29% -0.25%
Google Pixel 3 +2.67% -1.91%

59

the im2col transformation makes the Indirect Convolution algorithm outperform the

GEMM-based Convolution on all Convolutions that involve im2col transformation.

Tables 11 and 12 quantify this impact by types of convolution layers in the ResNet-18

and SqueezeNet 1.0 models. The Indirect Convolution algorithm has varying impact

depending on the convolution parameters:

• Convolutions with larger than 1x1 kernels see the biggest impact, with major

performance improvement in the 2.7− 23.3% range.

• 1x1 stride-2 convolutions, which similarly need im2col transformation in GEMM-

based algorithms, but don’t benefit from improved cache locality in the Indirect

GEMM, see smaller improvements in the 0.5− 8.0% range.

• 1x1 stride-1 convolutions, where GEMM-based algorithms incur no im2col over-

head, demonstrate a minor performance regression in the 0.3− 1.9% range, due

to the extra complexity of the Indirect GEMM primitive compared to the tran-

ditional GEMM.

These results suggest that the Indirect Convolution algorithm can provide sub-

stantial improvement for convolutions which involve im2col transformation in GEMM-

based algorithms. However, the GEMM primitive has a small edge on 1x1 stride-1

convolutions, which do not involve the im2col transformation, and for best overall per-

formance it is beneficial to switch between the GEMM or Indirect GEMM primitives

depending on convolution parameters.

4.4 Analysis

The roofline model [96] provides a convenient analysis tool for predicting which pa-

rameters affect the relative performance of the Indirect Convolution algorithm and

GEMM-based algorithms. For the analysis, I denote output height and width as Hout

and Wout, input and output channels as C and K, and kernel height and width as R

and S.

60

With the above notation, both GEMM and the Indirect GEMM algorithms involve

K ×C ×Hout×Wout×R× S compute-bound operations (FLOPs)1. GEMM-based

convolution with patch-building transformation additionally incurs 2 × C × Hout ×

Wout×R×S memory operations. Assuming a system’s arithmetic intensity (ratio of

FLOPs to memory loads in balanced code) λ, then one does (K + 2λ)× C ×Hout ×

Wout × R × S FLOPs-equivalent operations in GEMM-based convolution and the

speedup of Indirect Convolution algorithm is 1 + 2λ
K

. Thus, the Indirect Convolution

algorithm is the most beneficial when the number of output channels is small. The

upper bound on speedup is 1 + 2λ, and suggests that as the systems’ arithmetic

intensity continues to grow with each generation, so will the advantage of the Indirect

Convolution algorithm.

4.5 Conclusion

The Indirect Convolution algorithm is a modification of GEMM-based Convolution

algorithms where the GEMM operation reads addresses of rows in the input tensor

from indirection buffer. Experiments revealed that this modified GEMM-like oper-

ation has similar performance as the traditional GEMM operation, and suggested

that the major differences between the two types of algorithms stem from the dif-

ference between the im2col buffer in GEMM-based algorithms and the indirection

buffer in the Indirect Convolution Algorithm. Unlike im2col buffer in GEMM-based

algorithms, the Indirection buffer is constant in the number of input channels, and

can persist between convolution invocations.

The Indirect Convolution algorithm offers the universality of the GEMM-based

algorithm, but with a smaller memory footprint and the elimination of the im2col

transformation cost. These characteristics make the Indirect Convolution algorithm

a viable option for default implementation of the convolution operator.

1I can exclude memory operations in GEMM and Indirect GEMM from the analysis, as these
operations are almost always compute-bound.

61

The Indirect Convolution algorithm potentially has interesting performance char-

acteristics beyond the scope of this paper. In particular, the algorithm may have ad-

ditional performance advantage over GEMM-based algorithms during multi-threaded

convolution invocation. The modified GEMM operation is compute-bound, and

should scale linearly with the number of cores, while im2col-component of GEMM-

based convolution would be saturated by memory or cache bandwidth, which has

sublinear scaling in number of cores. Exploring these other dimensions of perfor-

mance is a topic for further research.

62

CHAPTER V

PRIMITIVES FOR SPARSE CONVOLUTIONS

Neural networks are overparametrized machine learning models and have substan-

tial redundancy in their trained parameters. Reducing such redundancy poses an

opportunity to reduce the size of neural network models and improve their inference

performance, and is long-standing research subject in the deep learning community.

Some of the methods proposed for addressing redundancy include low-rank decom-

positions [20], low-precision weights representations, including fixed-point quantiza-

tion [52], ternary [102] and binary networks [48, 77], pruning [40] and bucketing [38]

of weights. Pruning, or sparsification, of weights works by either shrinking low-

magnitude weights to zero and modifying the training procedure to guarantee that

the weights stay at zero during further weight updates or by adding L1 loss on the

weights. Unlike other methods that eliminate redundancy in neural network models,

moderate degrees of pruning do not sacrifice model accuracy, and can even improve

it [39]. Importantly, this result holds not only on obviously overparametrized large

architectures like ResNet but also on smaller mobile-optimized architectures [49].

Most research to date has focused on using sparsity in weights to reduce model

size [38], and application of sparsity to inference acceleration has been limited to

specialized hardware [37], the case of highly structured sparsity patterns [94], or the

relatively simple case of the Fully Connected layers [38]. In this Chapter I demon-

strate that unstructured sparsity is practically useful for accelerating state-of-the-art

convolutional neural networks for computer vision on general-purpose processors and

0This chapter is loosely based on the conference paper [25] with major revisions: “Erich Elsen,
Marat Dukhan, Trevor Gale, and Karen Simonyan. Fast Sparse Convnets. Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 14629–14638, 2020. ”
Only the parts where I am the main contributor are included in this Chapter.

63

discuss the primitives that make performance improvement possible.

5.1 Sparse Inference

I focus on the case of CNN architectures based on depthwise separarable convolu-

tions, i.e., a combination of pixelwise convolutions (convolutions with a 1x1 kernel)

and depthwise convolutions, which are mainstream in efficiency-optimized architec-

tures [46, 64, 89]. Pixelwise convolutions account for nearly all computations in such

architectures and directly map to the GEMM primitive from BLAS libraries in the

traditional inference implementation. The key idea of sparse inference is to induce a

large number of zeroes in the pixelwise convolution weights during training and re-

place dense matrix-matrix multiplication (GEMM) with sparse matrix-dense matrix

multiplication (SpMM). There are several differences between the sparse matrix-dense

matrix multiplication in sparse pixelwise convolution and that of traditional scientific

computing applications:

• While many sparse matrices resulting from scientific computing problems have

identifiable high-level sparsity structure that specialized SpMM implementa-

tions can detect and optimize for, sparse matrices resulting from neural network

training have no apparent sparsity structure and look completely stochastic.

• Sparse matrices in scientific computing represent the constraints of real-world

data or the scientific algorithm, and while it is possible to rearrange rows and

columns for better efficiency, the mathematical pattern of sparsity structure is

fixed. By constrast, sparse matrices resulting from neural network inference

training are learned and can be modified by adjusting the training procedure.

In particular, it is possible to induce block-sparse structure, but doing so comes

at a cost: a neural network model with block-sparse weights achieves lower

accuracy than the same-scale model with unstructured sparsity. To recover

this accuracy loss one needs to train a larger model. Thus, there is a trade-off

64

between structured sparsity patterns and matrix sizes in sparse neural network

inference.

• The sparse weights in the pixelwise convolutions never change during inference,

and can be repacked into an optimal layout for SpMM computation with a

one-time cost.

Figure 33: Examples of sparsity structure in a scientific computing problem and

trained neural network weights. Left: matrix dwt 209 from SuiteSparse matrix col-

lection [18]). Right: filter tensor of a pixelwise convolution in a sparse EfficientNet

B0 model.

In a pixelwise convolution the filter tensor has only two non-degenerate dimensions

corresponding to input channels and output channels. A coefficient in the filter tensor

quantifies how much the input channel affects the output channel, and applies to every

65

pixel: if the coefficient is non-zero, all input pixels of the corresponding input channel

are multiplied by it and accumulated to all output pixels of the corresponding output

channel, and if the coefficient is zero, the implementation can skip all pixels related

to this pair of input and output channels. To make operations on groups of pixels

efficient, particularly on wide SIMD architectures, the pixels within the same channel

should be stored contiguously in memory. Among the standard tensor layouts only

the NCHW layout stores pixels contiguously, but most ML systems operate with

NHWC layout as it is more efficient for dense inference with low-intensity neural

network models (Chapter IV).

The dilemma of choice between NCHW layout for efficient sparse inference and

NHWC layout for compatibility with existing machine learning systems can be solved

through a combination of two techniques: dynamic layout rewriting and mixed-

layout convolutions. Dynamic layout rewriting modifies the operator graph of a

machine learning model by replacing NHWC-layout operators with NCHW-layout

operators when the latter are expected to be more efficient, e.g., for sparse inference.

However, when done naively, such layout rewriting would modify the layout of model

inputs and outputs as well, causing it to become incompatible with expected inputs

and outputs. Mixed-layout convolutions solve this problem by consuming tensors of

one layout (e.g. NHWC) on input and producing tensors of another layout (e.g.,

NCHW) on output, thereby enabling implicit layout conversion at no cost.

66

Table 13: Parameters of the first convolution in mobile-optimized computer vision

models.

Model Kernel Stride Padding Channels

MobileNet v1 [46] 3× 3 2 Same 3→ 32

MobileNet v2 [82] 3× 3 2 Same 3→ 32

MobileNet v3 Large [45] 3× 3 2 Same 3→ 16

ShuffleNet [101] 3× 3 2 Same 3→ 24

ShuffleNet v2 [64] 3× 3 2 Same 3→ 24

EfficientNet B0 [89] 3× 3 2 Same 3→ 32

ESPNet [69] 3× 3 2 Same 3→ 16

ESPNet v2 [70] 3× 3 2 Same 3→ 32

In theory, mixed-layout convolutions present a tremendous expansion in the num-

ber of combinations of convolution parameters, input and output tensor shapes, and

input and output tensor layouts. In practice, however, for many types of computer

vision models it suffices to have only the very first convolution to be mixed-layout

to convert from the input NHWC tensor to an output NCHW tensor, and this very

first convolution is surprisingly stable across many machine learning models, as seen

in Table 13.

5.2 Constraints on Computer Vision models

Convolutional neural network models utilizing sparse inference are thus subject to a

number of constraints:

• The model starts with a mixed-layout 3× 3 stride-2 convolution that consumes

input in NHWC layout and produces output in NCHW layout.

• The sparse part of the model operates in the NHWC layout.

67

• The last operation in the sparse part of the model either produces output in

NCHW layouts, or aggregates across all pixels so that the output layout (NC)

does not have (H) height and (W) width dimensions.

While the above restrictions are not compatible with all computer vision mod-

els, the main types of computer vision problems can be implemented within these

constraints.

Figure 34: Illustration of sparse inference for image classification tasks.

Fig. 34 illustrates the architecture of a sparse image classification model. The

image features produced by the last operation in the sparse part of the model are

aggregated through global average pooling, which removes the distinction between

NCHW and NHWC layouts, and normalized through a softmax operation to produce

a matrix of per-class probabilities for each image in the batch.

Figure 35: Illustration of sparse inference for object detection and other regression

tasks.

Fig. 35 similarly illustrates the architecture of a sparse object detection model.

The image features produced by the last operation in the sparse part of the model

are aggregated through global average pooling and refined through a series of fully

68

connected operators to produce a matrix of coordinates for the bounding boxes or

keypoints. Importantly, as the output coordinates depend on all pixels of the input,

this model works best for refining a crop of a single input object rather than the raw

image with multiple objects in it.

Figure 36: Illustration of sparse inference for segmentation and other dense prediction

tasks.

Dense prediction tasks, such as segmentation, depth prediction, or generative

adversarial networks (GANs), produce a 2D tensor of pixel values and present an

additional challenge: unlike classification and regression tasks, there is no part of

the network where the spatial dimensions are flattened and the tensor layout can be

treated simultaneously as NCHW and NHWC. Instead, dense prediction models must

produce output image in NHWC layout while internally processing data in NCHW for

efficient sparse inference. The discrepancy between the internal NCHW and external

NHWC layouts can be resolved in several ways:

• Explicitly transpose tensor data at the end of the sparse inference part of the

model. However, this would add non-trivial overhead as dense prediction tasks

operate with large feature maps in all parts of the model.

• Use mixed-layout deconvolution operation that consumes NCHW input and pro-

duce NHWC output. While this solution is possible in principle, it is challenging

in practice, as different models use deconvolution with different parameters, and

each would require a separate implementation.

69

• Use a mixed-layout resize operator and process an upscaled final image with a

convolution operator [72]. However, computing the convolution operator on the

upscaled image is significantly more expensive than upscaling image as a part

of a deconvolution operator.

• Use mixed-layout subpixel convolutions [84], implemented via a pixelwise con-

volution followed by a mixed-layout pixel shuffle operation. This option is the

most efficient for sparse inference, as pixelwise convolution can use sparse com-

putations, and only the pixel shuffle operation needs to support mixed layout

with NCHW input and NHWC output. As the pixel shuffle is intrinsically a

transposition primitive, combining it with layout-changing transposition results

in just another transposition operation.

Fig. 36 illustrates the architecture of a sparse segmentation model. The image

features produced by the last pixelwise operation in the sparse part of the model are

supplied to the mixed-layout pixel shuffle operation, which produces the final model’s

output in NHWC layout.

5.3 SpMM Primitive

SpMM, or sparse matrix-dense matrix multiplication, is the key primitive in sparse

convolutional neural network inference. SpMM multiplies a dense matrix (input acti-

vations) by a sparse matrix (static weights) and produces a dense matrix with output

activations. Unlike dense matrix-matrix multiplication (GEMM), SpMM organizes

the computations in such a way that all zero elements of the sparse matrix are ignored

and the runtime is proportional only to the number of non-zero weights. This feat

is achieved by using special data structures for the sparse matrix, which store only

non-zero values and sufficient metadata to recover the positions of these non-zero

elements. In sparse pixelwise convolutions these data are non-zero weight elements

and the corresponding input channel and output channel numbers.

70

×
Figure 37: SpMM Primitive implemented using Read-Modify-Write microkernel.

The naive way to organize computations in the SpMM microkernel is to process

each non-zero weight element one-by-one. This type of microkernel, illustrated in

Fig. 37 and denoted as the Read-Modify-Write microkernel, loads all pixels from the

input channel corresponding to a non-zero weight, multiplies them by the weight

value, and accumulates the result to all pixels of the output channel corresponding

to the weight. The Read-Modify-Write microkernel has the benefit of doing only

contiguous memory loads and stores, at the cost of two reads and one write for every

multiply-add operation. This low arithmetic intensity1 makes this type of microkernel

inefficient on most processor architectures.

×
Figure 38: SpMM Primitive implemented using Read-Accumulate microkernel.

Fig. 38 illustrates a different type of microkernel, denoted a Read-Accumulate

microkernel. This microkernel uses an in-register buffer to accumulate products of

non-zero weights elements by the pixels of the correponding input channels before

writing out the accumulated results. The inner loop of the Read-Accumulate micro-

kernel contains only memory read and multiply-add operations. This instruction mix

is similar to the inner kernel of dense matrix-matrix multiplication [33], which delivers

1high ratio of memory operations to arithmetic operations

71

near-peak performance on most modern processors. However, the Read-Accumulate

microkernel comes with two drawbacks. First, the in-register accumulation buffer has

a fixed size, so the microkernel processes only a fixed-size block of pixels in the inner

loop and loads blocks of pixels corresponding to different input channels, resulting in

non-contiguous memory access across the blocks of pixels, unlike the Read-Modify-

Write microkernel where all pixels are read and updated contiguously. Secondly, the

Read-Accumulate microkernel has an approximately 1:1 ratio of memory loads to

multiply-accumulate operations, which makes it susceptible to the performance lim-

its of the memory subsystem, especially when the loaded pixels are streamed from

higher levels of the cache hierarchy.

×

Figure 39: Block-SpMM Primitive implemented using Read-Accumulate microkernel.

Block-Sparse Matrix-Dense Matrix multiplication (Block-SpMM) is a modification

of SpMM primitive that assumes blocked sparsity structure: non-zero elements are

arranged into regular fixed-sized blocks, where all elements within a block are non-

zero. In the case of sparse pixelwise convolutions, blocking in the output channels

dimension is the most efficient as it enables reuse of loaded pixels for each input

channel for updating multiple output channels. By comparison, blocking in the input

72

channels dimension would reduce the amount of metadata to load for each non-

zero weight, but would not enable any reuse of pixel data. Fig. 39 illustrates Read-

Accumulate microkernel for Block-SpMM primitive with block size 2 in the output

channels dimension. Each loaded input pixel is used to update two output pixels in

adjacent output channels, resulting in an approximately 1:2 ratio of memory loads to

multiply-accumulate operations. Blocked SpMM Read-Accumulate microkernels are

even closer to GEMM microkernels in their instruction mix and can usually achieve

near-peak performance.

5.4 Experimental Evaluation

5.4.1 Platform

I evaluate the performance impact of my sparse inference primitives on a Google Pixel

4a 5G mobile phone with Qualcomm Snapdragon 765G SoC. All experiments were

performed for single-threaded execution, as using multiple cores tends to exceed the

power constraints of the mobile device and leads to throttling and high performance

variability.

5.4.2 Protocol

The performance benchmarks rely on the Google Benchmark framework to estimate

sustained performance. I set the minimum run-time for each measurement to 1 second

for SpMM benchmarks and 5 seconds for end-to-end model benchmarks. In the SpMM

benchmarks I additionally repeat each measurement 25 times and record the median

of the 25 runs, and simulate the cache state during neural network inference: the

output vector is evicted from the cache before each iteration, but the input tensor

stays in cache as long as it fits.

73

5.4.3 Pixelwise Convolutions

Figure 40 presents the performance of the GEMM (dense matrix-matrix multipli-

cation), SpMM (sparse matrix-dense matrix multiplication), and BSpMM (SpMM

with block sparsity structure illustrated in Fig. 39) on the matrix-matrix multipli-

cation problems corresponding to pixelwise convolutions of the MobileNet v1 archi-

tecture [46]. The horizontal axis represents the sparsity, i.e., the share of zeroes

in the weights matrix. The vertical axis represents effective GFLOPS: for dense

matrix-matrix multiplication it match the actual GFLOPS metric achieved on this

computation, while for sparse matrix-dense matrix multiplications effective GFLOPS

represents how many GFLOPS a dense matrix-matrix multiplication would need to

deliver to match the observed timings. For both sparse and dense matrix multi-

plications, effective GFLOPS are inversely proportional to wallclock runtime of the

operation.

74

0

50

100

150

200

250

50% 65% 80% 95%

P
er

fo
rm

an
ce

, e
ffe

ct
iv

e
G

F
LO

P
S

112x112 image, 32−>64 channels

0

50

100

150

200

250

50% 65% 80% 95%

56x56 image, 64−>128 channels

0

50

100

150

200

250

50% 65% 80% 95%

56x56 image, 128−>128 channels

0

50

100

150

200

250

50% 65% 80% 95%

P
er

fo
rm

an
ce

, e
ffe

ct
iv

e
G

F
LO

P
S

28x28 image, 128−>256 channels

0

50

100

150

200

250

50% 65% 80% 95%

28x28 image, 256−>256 channels

0

50

100

150

200

250

50% 65% 80% 95%

14x14 image, 256−>512 channels

0

50

100

150

200

250

50% 65% 80% 95%
Sparsity

P
er

fo
rm

an
ce

, e
ffe

ct
iv

e
G

F
LO

P
S

14x14 image, 512−>512 channels

0

50

100

150

200

250

50% 65% 80% 95%
Sparsity

Primitive GEMM SpMM BSpMM

7x7 image, 512−>1024 channels

Figure 40: Performance of matrix multiplication problems corresponding to the pix-

elwise convolutions in the MobileNet v1 architecture.

The performance plots show that with minimal block sparsity structure, SpMM

has comparable efficiency to GEMM at as little as 50% sparsity, and with unstructured

sparsity SpMM breaks even with GEMM at 70− 80% sparsity. From the break-even

point the advantage of SpMM grows inversely proportionally to the number of non-

zeroes and at 95% sparsity reach over 6X for the the balanced matrix multiplication

problems in the middle of MobileNet architecture and over 3X for the less balanced

matrix multiplication problems in the beginning and in the end.

75

The advantage of the SpMM primitive over GEMM illustrated in Fig. 40 reinforces

the idea of sparse pointwise convolutions as a means to accelerate inference in convo-

lutional neural networks. However, it is by itself insufficient to fully validate this idea,

as sparse inference also requires swapping other CNN operator for NCHW-layout or

mixed-layout variants.

5.4.4 Randomized Models

To further validate the idea of acceleration through sparse neural network inference, I

compare the latency of dense and unstructured sparse inference in MobileNet v1 [46],

v2 [82], and v3 [45] architectures with varying sparsity in neural network weights. The

values of the weights and sparsity patterns were randomized, but to my understanding

it doesn’t affect inference latency compared to the latency of models with trained

weights and sparsity patterns. Both sparse and dense networks operate with inputs

in NHWC layout and outputs in NC layout. However, dense inference uses NHWC

layout internally while sparse inference employs a mixed-layout first convolution to

convert the layout and do inference in the inner operators in NCHW layout, which

favors efficient SpMM implementation.

76

0

20

40

60

80

50% 65% 80% 95%

La
te

nc
y,

 m
s

MobileNet v1

0

10

20

30

40

50% 65% 80% 95%

La
te

nc
y,

 m
s

MobileNet v2

0

10

20

30

50% 65% 80% 95%
Sparsity

La
te

nc
y,

 m
s

MobileNet v3 Large

0.0

2.5

5.0

7.5

50% 65% 80% 95%
Sparsity

La
te

nc
y,

 m
s

Inference type Dense Sparse

MobileNet v3 Small

Figure 41: Dense and sparse inference latency in the three generations of MobileNet

architectures.

Fig. 41 presents the latency of sparse and dense inference at different levels of

weights sparsity. At unstructured 50% sparsity dense inference is more efficient,

but as we look at increasing sparsity levels, the two types of inference break-even

between 55 − 65% sparsity, and sparse inference becomes more efficient, peaking at

over 2X speedup in a 95% sparse network. Notably, large networks benefit more from

sparse inference compared to small ones, as can be seen by comparing MobileNet v3

Large and MobileNet v3 Small architectures. This effect arises as sparse inference

77

accelerates only pointwise convolutions, and pointwise convolutions occupy a larger

share of total runtime in large networks since the complexity of pointwise convolutions

grows quadratically with the number of channels while complexity of most other

neural network operators, including depthwise convolutions, is linear in the number

of channels.

The results in Fig. 41 further confirm the efficiency of sparse neural network in-

ference, but miss one important detail: in practice high degrees of sparsity result in

degradation in end-to-end accuracy, and thus highly sparse models need to be slightly

larger than dense models to achieve equivalent end-to-end accuracy as discussed be-

low.

5.4.5 End-To-End Models

Model Scale Top-1 MFLOPs Pixel 2 Pixel 3a Pixel 4a 5G

MNv1
Dense 1.0 70.9 1120 125 106 58
Sparse 1.4 72.0 268 58 64 34

MNv1
Dense 0.75 68.4 636 73 64 33
Sparse 1.0 68.4 146 31 34 19

MNv1
Dense 0.5 63.3 290 36 33 18
Sparse 0.75 64.4 90 21 21 12

MNv2
Dense 1.4 75.0 1110 150 129 64
Sparse 2.0 74.5 406 93 91 48
Sparse* 1.8 74.9 411 102 108 59

MNv2
Dense 1.0 71.8 580 83 74 35
Sparse 1.4 72.0 220 54 53 31

MNv2
Dense 0.75 69.8 375 64 57 24
Sparse 1.15 70.2 165 40 39 21

MNv2
Dense 0.5 65.4 182 33 30 12
Sparse 0.8 65.2 90 26 24 13

Table 14: Comparison of dense and sparse model sizes, flops, and inference latencies.
All times are in milliseconds.
*This model uses 80% unstructured sparsity in all pointwise convolutions.

78

For the ultimate validation of the sparse inference acceleration, I evaluate end-

to-end latency of dense and sparse MobileNet v1 [46] and MobileNet v2 [82] models

trained to approximately equivalent end-to-end accuracy. As expected, the sparse

models require larger scale to achieve equivalent accuracy with smaller dense models.

All models were trained with input sizes of 224× 224, sparse MNv1 models are 90%

sparse in every layer, and sparse MNv2 models are 85% sparse. In sparse MobileNet v1

models, pointwise convolution 12 uses blocking along the output channels dimension

with block size of 4. In sparse MobileNet v2 models, pointwise convolutions 11 and

onward use blocking along the output channels dimension with block size of 2.

Table 14 summarizes the performance evaluation and shows that sparse inference

delivers end-to-end speedup compared to dense models of equivalent accuracy. The

speedup can range from 25% to over 2X, with larger models typically being more

favorable to sparse inference. Notably, this improvement in efficiency is completely

transparent to the users of a machine learning framework, as the inputs and outputs

of the machine learning model have the same layout and meaning as they do in dense

inference.

5.5 Conclusion

I presented the key ingredients for efficient sparse inference in convolutional neural

networks: sparsification of pointwise convolutions with replacement of dense matrix-

matrix multiplication with sparse matrix-dense matrix multiplication as the driver for

acceleration, dynamic graph rewriting into NCHW layout for efficient sparse matrix-

dense matrix multiplication, and Read-Accumulate microkernels for sparse matrix-

dense matrix multiplication with GEMM-like instruction mix and low-level efficiency.

Combined together, these ingredients deliver up to 2X improvement in inference la-

tency on common convolutional neural network architectures for computer vision

while maintaining the input/output interface standard in dense inference machine

79

learning frameworks.

The sparse inference code presented in this Chapter is available as open source

software in the XNNPACK library and its integration into TensorFlow Lite machine

learning framework. While the results in this chapter validated efficiency improve-

ments on mobile devices, the implementation in XNNPACK goes beyond mobile and

powers commercial products using WebAssembly inference.

80

CHAPTER VI

PRIMITIVES FOR SOFTMAX

The softmax (also called softargmax) function is a smooth approximation to the

argmax function. The softmax function σ(x) operates on a vector of real-valued

scores xi and normalizes them into a probability distribution

pi = σ(x)i =
exi∑
k e

xk

where pi ≥ 0 and
∑

i pi = 1.

The softmax function is commonly used in machine learning to assign a proba-

bilistic interpretation to real-valued scores, such as the outputs of classification mod-

els [6]. Classification models output a probability for every possible object class, and

the number of classes in modern datasets can reach millions. For example, natural

language processing models may predict probability distribution over each possible

word in a vocabulary, and recommendation systems may model the probability dis-

tribution over users, products, web pages, or their interactions. Table 15 summarizes

the number of classes on several public classification datasets.

0This chapter is based on the workshop paper [22] with minor modifications. ©2020 IEEE.
Reprinted, with permission, from “Marat Dukhan, and Artsiom Ablavatski. The Two-Pass Softmax
Algorithm. 2020 IEEE International Parallel and Distributed Processing Symposium Workshops,
pages 386–395, May 2020.” I am the main contributor to the algorithm development, implementation,
analysis, and experimental evaluation.

81

Table 15: Characteristics of several public machine learning datasets.

Dataset Class description Class Count

ImageNet [19] Image category 22 thousand

One Billion Word [9] Unique Words 0.8 million

Wikilinks [86] Wikipedia pages 3 million

DepCC [73] Web documents 365 million

Hierarchical Softmax [32] (HSM) and its modifications [36] are common techniques

to scale classification models to large number of classes. HSM models jointly consider

the softmax function and the matrix-matrix multiplication that produced its input,

and replace them by a low-rank approximation. Thus, HSM methods improve perfor-

mance by reducing the matrix-matrix multiplication cost, and do so by approximating

the original machine learning model.

Unlike previous research, this work focus on the softmax function in the context of

inference using a pre-trained model. This situation commonly arises in machine learn-

ing frameworks, such as TensorFlow [1] or PyTorch [76], when the training dataset

or metaparameters needed to devise an accurate approximation to the model are

not available. In this case, the model must be computed exactly according to the

specification and unsafe approximations are not possible.

My contributions in this work are as follows:

• I demonstrate that a well-optimized implementation of the softmax function can

be memory-bound even in single-threaded execution. This result emphasizes the

importance of eliminating memory operations for further improvements in the

performance of the softmax function.

• I introduce a novel algorithm for computing the softmax function. The new

82

algorithm employs an exotic representation for intermediate values, where each

value is represented as a pair of floating-point numbers: one representing the

“mantissa” and another representing the “exponent.” Thanks to the special

representation of intermediate results, the new algorithm needs only two passes

over an input vector versus three passes for traditional algorithms.

• I present and evaluate high-performance implementations of the new Two-Pass

softmax algorithms for the x86-64 processors with AVX2 and AVX512F SIMD

extensions. The experimental study demonstrates speedups of up to 28% on an

Intel Skylake-X system.

The proposed improvements to the softmax implementation are orthogonal to

matrix-matrix multiplication optimizations, and can be combined with sparsifica-

tion [61, 74], low-rank decomposition [20], low-precision arithmetic [52, 75, 90], or

hardware acceleration [37, 55] for the matrix-matrix multiplication that produces the

softmax input.

6.1 The Three-Pass Algorithm

Direct calculation of the softmax function according to the formula σ(x)i = exi∑
k e

xk
is

fraught with numerical issues. A single-precision ex function overflows1 for x > 89

and underflows2 for x < −104, and, in turn, causes NaN3 outputs in näıve implemen-

tations. In practice, the parts of the machine learning models that produce input to

the softmax function are rarely bounded, and thus an implementation can’t assume

that the input would fall into such narrow range.

1Produce floating-point infinity because result is too large to be represented as a finite single-
precision floating-point number

2Produce 0 because result is too small to be distinguishable from zero in the single-precision
floating-point format

3Not a Number: a special floating-point value defined by IEEE 754 standard indicating an invalid
result

83

To overcome numerical instability issues machine learning frameworks adapt a

workaround by using the equivalence [30]:

σ(x)i =
exi∑
k e

xk
=

e(xi−c)∑
k e

(xk−c)

which holds for any c value. In particular, if c = maxxi
i

, then:

• No inputs to ex function exceed zero

• There is at least one zero input to the ex function, and thus the denominator

of the fraction is non-zero.4

Together, these properties result in good numerical behavior of the computation and

lead to Algorithm 1.

Algorithm 1 The Three-Pass algorithm with re-computation of exponential function

function SoftmaxThreePassRecompute(X, Y)

N ← Length(X)

µ← max
1≤i≤N

Xi . Pass 1: read X

σ ←
∑

1≤i≤N
Exp(Xi − µ) . Pass 2: read X

λ← 1/σ

for all 1 ≤ i ≤ N do

Yi ← λ ·Exp(Xi − µ) . Pass 3: read X, write Y

end for

end function

Both of Pass 2 and Pass 3 in Algorithm 1 compute e(xi−µ) with the same xi and

µ values. This observation hints at a potential optimization: if computing ex is

expensive, one could save the computed e(xi−µ) values to avoid recomputing them in

the Pass 3. Such a modification is presented in Algorithm 2.

4Mathematically, the denominator of the fraction is always non-zero regardeless of the choice of
c, but in floating-point arithmetics it can turn into numerical zero due to underflow when all inputs
to the ex function are large and negative.

84

Algorithm 2 The Three-Pass algorithm with re-loading of exponential computations

function SoftmaxThreePassReload(X, Y)

N ← Length(X)

µ← max
1≤i≤N

Xi . Pass 1: read X

σ ← 0

for all 1 ≤ i ≤ N do

Yi ← Exp(Xi − µ) . Pass 2: read X, write Y

σ ← σ + Yi

end for

λ← 1/σ

for all 1 ≤ i ≤ N do

Yi ← λ · Yi . Pass 3: read Y, write Y

end for

end function

Algorithm 2 computes e(xi−µ) values only once, but this reduction in the number

of computations comes at a cost: the second pass of Algorithm 2 does both a read

and a write for each element, unlike Algorithm 1 where the second pass does only

reads.

6.2 The Two-Pass Algorithm

The Three-Pass Algorithms 1 and 2 avoid numerical issues by normalizing inputs

relative to their maximum value, but then require an additional memory pass to find

the maximum value. In this section I suggest that it is possible to get the numerical

stability without the extra memory pass, and present a practical Two-Pass algorithm

for softmax computation.

The immediate reason for the numerical instability of a näıve softmax implemen-

tation is the saturation of ex for inputs outside of the narrow range of [−104, 89].

85

Therefore, one has to look inside the ex function for a solution.

The ex function can be implemented in many ways, but practical implementa-

tions [28, 50, 66, 24] in IEEE floating-point arithmetic follow the traditional structure

of elementary function implementation [71], and include three steps:

1. Range reduction, where the problem of approximating ex on the infinite input

domain x ∈ (−∞,+∞) is reduced to a problem of approximating ex on a small

finite range. For ex, a natural range reduction derives from the equivalence

ex = e

t∈[− log 2
2 ,

log 2
2]︷ ︸︸ ︷

x− log 2 · bx · log2 ee · 2

n∈Z︷ ︸︸ ︷
bx · log2 ee

which decomposes the approximation of ex on x ∈ (−∞,+∞) into approxi-

mating ex on t ∈
[
− log 2

2
, log 2

2

]
and multiplying the result by 2n where n is an

integer.

2. Approximation of the function on the reduced range, i.e. on
[
− log 2

2
, log 2

2

]
for

ex. This step is achieved through a polynomial or rational approximation, often

in combination with table look-ups.

3. Reconstruction of the final ex value from the approximation on the reduced

range. For ex, the reconstruction step consists of multiplication of et by 2n,

and can be achieved at low cost by manipulating the exponent field of a binary

floating-point number m := et. It is this step where the underflow and

overflow situations arise: et ∈
[√

2
2
,
√

2
]

and thus always fits into a single-

precision floating-point number, but n = bx · log2 ee can exceed the range of the

exponent field, causing underflow or overflow.

The key idea that enables the Two-Pass Softmax algorithm is to remove the

reconstruction step, and instead keep the result of ex as a pair of floating-point values

(m,n), where m = et. Mathematically, ex = m ·2n, but in general this expression can

86

not be evaluated in floating-point arithmetic without overflowing or underflowing the

result. The representation of n as a floating-point number is important: although n

is by design always an integer, it can have a very large magnitude and fall outside of

the range of standard integer formats. Therefore, the result ex must be represented as

two, rather than one, floating-point numbers. Using multiple floating-point numbers

to represent the real-valued result has a long history in double-double, triple-double,

quad-double [43] representations and Error-Free Transformations [35]. However, these

representations use multiple floating-point numbers to improve precision of floating-

point arithmetic, whereas I suggest using two floating-point numbers to extend its

dynamic range.

87

Algorithm 3 The Two-Pass softmax algorithm. ExtExp denotes an exponential

function that produce a pair (m,n) of floating-point values.

function SoftmaxTwoPass(X, Y)

N ← Length(X)

msum ← 0

nsum ← −∞

for all 1 ≤ i ≤ N do

mi, ni ← ExtExp(Xi) . Pass 1: read X

nmax ←Max(ni, nsum)

msum ← mi · 2ni−nmax +msum · 2nsum−nmax

nsum ← nmax

end for

λsum ← 1/msum

for all 1 ≤ i ≤ N do

mi, ni ← ExtExp(Xi) . Pass 2: read X, write Y

Yi ← mi · λsum · 2ni−nsum

end for

end function

Algorithm 3 presents the softmax computation in just two passes by implementing

addition for the (m,n) representation. The reduction pass tracks the running maxi-

mum n value among all elements and accumulates the scaled m values to the running

sum. It avoids the floating-point overflow by scaling m values by the difference be-

tween the corresponding n values and maximum of n values. As this difference is never

positive, m values are never scaled up, which ensures the absence of the floating-point

overflow.

88

Algorithm Memory reads Memory writes Bandwidth cost

Three-Pass (Recompute) 1 3N 1N 4N
Three-Pass (Reload) 2 3N 2N 5N
Two-Pass 3 2N 1N 3N

Table 16: Theoretical analysis of memory complexity and bandwidth costs of the
three softmax algorithms.

6.3 Theoretical Analysis

While the number of memory passes in the presented softmax algorithms is evident

from the names, the number of actual memory operations is more nuanced. Every

pass of the Three-Pass algorithm with Recomputing reads the input array, while the

last pass also writes the output array. The Three-Pass algorithm with Reloading just

reads the input array in the first pass, reads the input array and writes the output

array in the second pass, and reads-modifies-writes the output array in the last pass.

The Two-Pass algorithm reads the input array in both passes, and also writes the

output array in the second pass. Thus, the memory bandwidth requirements of the

Two-Pass algorithm are similar to just the last two passes of the Three-Pass algorithm

with Recomputing.

Table 16 summarizes the number of memory reads, memory writes, and the mem-

ory bandwidth cost for the three algorithms on arrays ofN elements. Per Table 16, the

Two-Pass algorithm has a memory bandwidth advantage of 33% over the Three-Pass

algorithm with Recomputing and 67% over the Three-Pass algorithm with Reload-

ing. In practice, I should treat these numbers as upper bounds, because higher

computational complexity of the Two-Pass algorithm cuts into gains from bandwidth

reduction.

89

6.4 Experimental Evaluation

6.4.1 Platform

I evaluate the performance of the three softmax algorithms on the Intel Xeon W-2135

processor based on Skylake-X microarchitecture and with the characteristics listed in

Table 17. To improve performance stability I disabled dynamic frequency scaling in

the processor for the duration of my experiments.

Table 17: Characteristics of the Intel Xeon W-2135 processor used for experimental

evaluation of the softmax algorithms.

Characteristic Value

Microarchitecture Skylake-X

Number of cores 6

Number of hyperthreads 12

Base frequency 3.7 GHz

L1 cache size (per core) 32 KB

L2 cache size (per core) 1 MB

L3 cache size (shared by all cores) 8.25 MB

AVX2 / AVX512 FMA throughput 2 / cycle

AVX2 / AVX512 FMA latency 4 cycles

Additionally, in Sec. 6.4.8 I replicate a subset of the experiments on a Broadwell-

based Intel Xeon E5-2696 v4 processor and on an AMD Ryzen 9 3900X processor

with Zen 2 microarchitecture.

6.4.2 Protocol

I use the Google Benchmark framework to estimate sustained performance of the

softmax implementations. I set the minimum run-time for each measurement to 5

90

seconds, repeat each measurement 25 times and record the median of the 25 runs.

In each benchmark run I simulate the cache state during neural network inference:

output vector is evicted from the cache before each iteration, but the input tensor

stays in cache as long as it fits.

6.4.3 Implementation

I developed highly optimized implementations of the Three-Pass Algorithms 1 and 2,

and the Two-Pass Algorithm 3 in C. For all three algorithms, I did two templated

implementations targeting AVX2 and AVX512 instruction sets. I expressed high-

level optimization parameters, such as unroll factor for the loops and the number of

accumulator variables in reduction functions, as meta-parameters of the templated

implementations, and employed auto-tuning to discover their optimal values.

An efficient implementation of vectorized ex function is a key component of all soft-

max variants. For my implementation, I adapted the throughput-optimized methods

of Dukhan and Vuduc [24] to single-precision floating-point evaluation. Algorithm 4

presents the resulting table-free, branch-free, and division-free algorithm.

Algorithm 4 Calculation of ex in the Three-pass softmax algorithms

function Exp(x)

n← bx · log2 ee

t← x− n · log 2 . Cody-Waite range reduction

p← 1 + t(c1 + t(c2 + t(c3 + t(c4 + t · c5))))) . Polynomial approximation

y ← p · 2n . Reconstruction

return y

end function

Algorithm 4 follows the traditional structure of elementary function implementa-

tion [71], described in Sec. 6.2. It starts with a range reduction to reduce approxi-

mation on the infinite input domain to approximation on a small and finite range.

91

The calculation of the reduced argument t in Algorithm 4 uses Cody-Waite range

reduction [15]: log 2 is represented as a sum of two single-precision constants, loghi 2

and loglo 2, to improve the accuracy of this step. Range reduction results in a reduced

argument t in the [− log 2
2
, log 2

2
] range and a reduced integer argument n. Next, et is ap-

proximated on [− log 2
2
, log 2

2
] with a degree-5 polynomial. The polynomial coefficients

are produced by the algorithm of Brisebarre and Chevillard [7] as implemented in

the Sollya software package [13]. Following [24], I evaluate the approximation poly-

nomial with a Horner scheme using Fused Multiply-Add instructions to minimize the

number of floating-point instructions and maximize the throughput. In the last stage

Algorithm 4 reconstructs the final output value of the function by multiplying the

polynomial approximation result p by 2n. In the AVX2 implementation, I do this

multiplication by directly manipulating floating-point exponent to construct a scale

number s:

s :=


2n n >= −1260

0 n < 126 ≤ x

and compute the final step as y ← p · s. This reconstruction trick has two built-in

assumptions: the argument x to ex is negative,5 and subnormal floating-point numbers

can be flushed to zero without significant accuracy impact. The reconstruction step in

the AVX512 implementation leverages the new VSCALEFPS instruction [17], which

computes p · 2n as a single hardware operation.

The resulting ex implementation has a maximum error under 2 ULP, validated

through exhaustive evaluation on all valid inputs. This accuracy is comparable to

other vectorized elementary function implementations, e.g., SIMD functions in the

GNU LibM library guarantee maximum error under 4 ULP.

Implementation of the ExtExp in the Two-Pass softmax algorithm is similar to

Algorithm 4 with the reconstruction step removed. Thus, implementations of both

5Always the case for the ex evaluation in the Three-Pass softmax algorithms.

92

the Three-Pass and the Two-Pass algorithms use exactly the same range reduction

and approximating polynomials to compute the exponential function.

6.4.4 The Three-Pass Algorithms and Bandwidth Saturation

●
●

● ● ●

●
●

● ● ● ● ●

0

1

2

3

4

5

1K 10K 100K 1M 10M 100M

Number of elements

P
er

fo
rm

an
ce

, G
E

le
m

en
ts

/s

Algorithm ● Three−Pass (Recomputing) Three−Pass (Reloading)

Figure 42: Single-threaded performance comparison of the Softmax algorithms 1 and 2

in the AVX512 implementations on the Skylake-X system. Gray dotted lines denote

boundaries of level-1, level-2, and level-3 caches.

Fig. 42 presents the single-threaded performance of the Three-Pass softmax Algo-

rithm 1 with recomputing of exponentials and the Three-Pass softmax Algorithm 2

with reloading of computed exponentials in the AVX512 implementations. Reloading

of exponential computations delivers 30−55% speedup when the data is small enough

to fit into private L1 and L2 caches, but turns into 15% slowdown when operating

on L3 cache, and eventually levels off at 4− 6% advantage when working set exceeds

last-level cache.

93

● ● ● ● ●

●
●

●
● ● ● ●

0.0

0.5

1.0

1.5

2.0

1K 10K 100K 1M 10M 100M

Number of elements

P
er

fo
rm

an
ce

, G
E

le
m

en
ts

/s

Algorithm ● Three−Pass (Recomputing) Three−Pass (Reloading)

Figure 43: Single-threaded performance comparison of the Softmax algorithms 1

and 2 in the AVX2 implementations on the Skylake-X system. Gray dotted lines

denote boundaries of level-1, level-2, and level-3 caches.

The AVX2 implementation of the same Three-Pass softmax Algorithm 1 and Al-

gorithm 2 is illustrated in Fig. 43 and demonstrates similar trends. As the working

set increases, the 13− 16% speedup from reloading of exponential computations goes

down, and eventually levels off at 3− 6% for large arrays.

The small difference between recomputing and reloading of exponential computa-

tions on Fig. 42 and Fig. 43 suggests that despite the expensive exponential function,

softmax might be memory-bound for large arrays. To directly test this hypothesis, I

decompose Algorithms 1 and 2 into individual memory passes and compare measured

bandwidth to STREAM benchmarks [68].

94

15.56
13.65

16.14 15.2

27.92

14.94 15.04

0

10

20

30

Thr
ee

−P
as

s

Sof
tm

ax
 (p

as
s 1

)

Thr
ee

−P
as

s S
of

tm
ax

w. R
ec

om
pu

tin
g

(p
as

s 2
)

Thr
ee

−P
as

s S
of

tm
ax

w. R
ec

om
pu

tin
g

(p
as

s 3
)

Thr
ee

−P
as

s S
of

tm
ax

w. R
elo

ad
ing

 (p
as

s 2
)

Thr
ee

−P
as

s S
of

tm
ax

w. R
elo

ad
ing

 (p
as

s 3
)

STREAM
 C

op
y

STREAM
 S

ca
le

B
an

dw
id

th
, G

B
/s

Figure 44: Measured single-threaded memory bandwidth on the Skylake-X system

in the three passes of the Softmax algorithms 1 and 2, and in the STREAM bench-

mark. Both the softmax implementations and the STREAM benchmark use AVX512

instructions.

95

15.55

10.67

15.33
14.02

27.37

14.95 14.87

0

10

20

30

Thr
ee

−P
as

s

Sof
tm

ax
 (p

as
s 1

)

Thr
ee

−P
as

s S
of

tm
ax

w. R
ec

om
pu

tin
g

(p
as

s 2
)

Thr
ee

−P
as

s S
of

tm
ax

w. R
ec

om
pu

tin
g

(p
as

s 3
)

Thr
ee

−P
as

s S
of

tm
ax

w. R
elo

ad
ing

 (p
as

s 2
)

Thr
ee

−P
as

s S
of

tm
ax

w. R
elo

ad
ing

 (p
as

s 3
)

STREAM
 C

op
y

STREAM
 S

ca
le

B
an

dw
id

th
, G

B
/s

Figure 45: Measured single-threaded memory bandwidth on the Skylake-X system

in the three passes of the Softmax algorithms 1 and 2, and in the STREAM bench-

mark. Both the softmax implementations and the STREAM benchmark use AVX2

instructions.

Fig. 44 and 45 illustrate the memory bandwidth in each pass of the Three-Pass

softmax Algorithms 1 and 2, as well as Copy and Scale STREAM benchmarks [68]. As

recommended in STREAM’s documentation, I set the array size to four times the size

of last-level cache (8, 650, 752 single-precision elements for Softmax, and 4, 325, 376

double-precision elements for STREAM). The first softmax pass (max-reduction) is

the same in both versions of the Three-Pass algorithm and thus presented only once.

This pass reads one input array and doesn’t have a direct equivalent in STREAM.

96

However, it achieves similar bandwidth to STREAM Copy and Scale benchmarks,

which both read one array and write one array. The second pass in Algorithm 1 reads

one array, computes exponentials on the inputs, and accumulates them. It achieves

91% of STREAM Copy bandwidth in AVX512 version and 71% in AVX2 version.

The second pass Algorithm 2 is similar, but additionally stores computed exponents

into the output array. Although it achieves higher bandwidth than the second pass in

Algorithm 1, it takes substantially longer to complete; the higher bandwidth is due

to doubling the number of transferred bytes with a less than proportional increase in

run time. The third pass of Algorithm 1 reads one array, computes exponentials on

the inputs, scales them, and writes results to another array. This pass does the same

number of memory operations as STREAM Scale benchmark, but substantially more

computational operations. Yet, my auto-tuned implementations exceed the perfor-

mance of STREAM Scale benchmark in both the AVX512 and the AVX2 versions.

The third pass of the Algorithm 2 is an in-place variant of STREAM Scale bench-

mark. The processor clearly favors in-place operation: it is 86% faster than STREAM

Scale with AVX512, and 84% faster with AVX2.

To summarize, passes 1 and 3 of the Algorithm with Recomputing 1 demonstrate

similar memory performance to STREAM benchmark, and pass 2 in AVX512 im-

plementation is not far behind. Passes 1 and 2 of the Algorithm 2 with Reloading

similarly perform close to STREAM bandwidth, and pass 3 is significantly faster than

STREAM Scale benchmark. These results confirm that performance of Three-Pass

softmax algorithms is limited by achievable memory bandwidth and suggest that

softmax computation can be further accelerated only through reducing

the number of memory operations.

97

6.4.5 The Two-Pass Algorithm

●
●

● ● ●

●
●

●
● ● ● ●

0

1

2

3

4

5

1K 10K 100K 1M 10M 100M

Number of elements

P
er

fo
rm

an
ce

, G
E

le
m

en
ts

/s
Algorithm ● Three−Pass (Recomputing) Three−Pass (Reloading) Two−Pass

Figure 46: Single-threaded performance comparison of the Algorithms 1, 2, and 3 in

the AVX512 implementations. Gray dotted lines denote boundaries of level-1, level-2,

and level-3 caches.

On Fig. 46 I present the performance of the Two-Pass softmax algorithm in compar-

ison with the two versions of the Three-Pass algorithm in AVX512 implementations.

On out-of-cache working sets the proposed Two-Pass softmax algorithm outperforms

Three-Pass algorithms by 18%− 28%.

98

●
● ● ● ●

●
●

●
● ● ● ●

0.0

0.5

1.0

1.5

2.0

1K 10K 100K 1M 10M 100M

Number of elements

P
er

fo
rm

an
ce

, G
E

le
m

en
ts

/s

Algorithm ● Three−Pass (Recomputing) Three−Pass (Reloading) Two−Pass

Figure 47: Single-threaded performance comparison of the Algorithms 1, 2, and 3 in

the AVX2 implementations. Gray dotted lines denote boundaries of level-1, level-2,

and level-3 caches.

Fig. 47 similarly compares performance of the Two-Pass and the Three-Pass al-

gorithms in the AVX2 implementations. Here, the Two-Pass algorithm outperforms

Three-Pass algorithm with Reloading of exponential computations by 16%− 18% on

out-of-cache workloads. The smaller speedups, compared to AVX512 implementa-

tion, are explained by relatively higher cost of recomputing exponentials in AVX2

compared to AVX512. Compared to the Three-Pass Algorithm 1, which similarly

recomputed exponentials, the Two-Pass algorithm wins by 19− 25%.

In Fig.48 I decompose the absolute run-time for the three algorithms and two

SIMD instruction sets into individual memory passes and offers insight into the origin

of performance improvements with the Two-Pass algorithm. The two passes of the

Two-Pass softmax algorithm have similar, but slightly higher absolute run-time to

99

AVX2 Three−Pass w/Reloading

AVX2 Three−Pass w/Recomputing

AVX2 Two−Pass

AVX512 Three−Pass w/Reloading

AVX512 Three−Pass w/Recomputing

AVX512 Two−Pass

0.0 2.5 5.0 7.5 10.0

Time, ms

A
lg

or
ith

m

Pass 3 2 1

Figure 48: Absolute runtime of the passes in the Algorithms 1, 2, and 3 in both the
AVX2 and the AVX512 implementations. The algorithms were evaluated on arrays
of 8,650,752 single-precision elements on a single threaded of the Skylake-X system.

the last two passes of the Three-Pass softmax algorithm with recomputation of re-

computation of exponential function, which share the same memory access pattern.

The slightly higher run-time in the passes of the Two-Pass algorithm can be explained

by larger number of operations needed for accumulation on the (m,n) representation

compared to just accumulating scalar floating-point values.

6.4.6 Multi-Threaded Performance

The benchmarks in Sec. 6.4.4 and Sec. 6.4.5 presented performance of a single-

threaded softmax computation and demonstrated that on HPC-class systems softmax

saturates memory bandwidth even when running on a single core. Utilizing multi-

ple cores increases available computational resources faster than achievable memory

bandwidth, and therefore increases the advantage of the bandwidth-saving Two-Pass

softmax algorithm. To quantify this advantage, I fix the size of the array at 4 times

the last-level cache size [68] and vary the number of threads from 1 to 6 (number of

cores in the system) to 12 (number of logical processors, including hyperthreads, in

the system).

100

●

●

●

●
● ● ●

0

1

2

3

4

1 2 3 4 5 6 12

Number of threads

P
er

fo
rm

an
ce

, G
E

le
m

en
ts

/s

Algorithm ● Three−Pass (Recomputing) Three−Pass (Reloading) Two−Pass

Figure 49: Weak scaling (the number of elements scales proportionally to the number

of threads used) of the softmax algorithms in the AVX512 implementations on the

Skylake-X system.

Fig. 49 illustrates weak multi-core scaling of the AVX512 implementations. As

the number of threads grows, the advantage of the Two-Pass over Three-Pass algo-

rithms remains unchanged at 25 − 28%. Interestingly, the reloading variant of the

Three-Pass algorithm scales worse than the recomputing variant, and the recomput-

ing Algorithm 1 outperforms the reloading Algorithm 2 when at least 3 cores are

being utilized.

101

●

●

●

●
● ● ●

0

1

2

3

4

1 2 3 4 5 6 12

Number of threads

P
er

fo
rm

an
ce

, G
E

le
m

en
ts

/s

Algorithm ● Three−Pass (Recomputing) Three−Pass (Reloading) Two−Pass

Figure 50: Weak scaling (the number of elements scales proportionally to the number

of threads used) of the softmax algorithms in the AVX2 implementations on the

Skylake-X system.

Fig. 50 similarly illustrates weak multi-core scaling of the AVX2 implementations.

The advantage of the Two-Pass over Three-Pass algorithms grows from 9% on a single

core to 19% when utilizing all 6 cores to 22% when also using hyperthreads.

6.4.7 Comparison with Intel DNNL

The results in Sec. 6.4.5-6.4.6 demonstrate that on out-of-cache inputs the Two-Pass

softmax algorithm outperforms the Three-Pass softmax algorithms in my implemen-

tation, but leaves out the question of whether my implementations are competitive

with the state-of-the-art. To demonstrate the absolute effectiveness of the Two-Pass

algorithm, I compared my implementations of the three softmax algorithm to the

softmax primitive in Intel Deep Neural Network Library (DNNL) version 1.1.1.

Intel DNNL implements the Three-Pass softmax Algorithm 2 with reloading of

102

●

● ● ● ●

●
●

● ● ● ● ●

0

1

2

3

4

5

1K 10K 100K 1M 10M 100M

Number of elements

P
er

fo
rm

an
ce

, G
E

le
m

en
ts

/s

Implementation ● Three−Pass w/Reloading (Intel DNNL) Three−Pass w/Reloading (Ours) Two−Pass (Ours)

Figure 51: Performance comparison of my implementation of Algorithms 1, 2, and 3,
with the softmax implementation in Intel DNNL library. Gray dotted lines denote
boundaries of level-1, level-2, and level-3 caches.

computed exponentials. It includes implementations for SSE4.1, AVX, and AVX512

instruction sets, and automatically dispatches to an AVX512 implementation on the

Skylake-X processor. Unlike my implementations, Intel DNNL generates its imple-

mentation at runtime using Just-in-Time (JIT) technology. JIT code generation

potentially allows adaptation of the implementation to parameters of a particular

softmax operator (e.g., the number of channels).

Fig. 51 presents the comparison between two implementations (Ours and DNNL)

of the Three-Pass algorithm with reloading of exponentials, and the Two-Pass soft-

max algorithm in my implementation. For the Three-Pass algorithm with reloading,

my implementation ourperforms Intel DNNL for the majority of problem sizes. Its ad-

vantage is particularly high – over 2X – when data fits into L1, diminish to 72− 94%

within L2, and levels off at 7 − 8% for out-of-cache problem sizes. As the imple-

mentation in Intel DNNL is less efficient than ours, my Two-Pass softmax algorithm

outperforms DNNL softmax primitive on all problem sizes: it is 28 − 41% faster on

out-of-cache problem sizes, and up to 87% when input fits into L1 cache.

103

6.4.8 Validation on Alternative Processors

The results in Sec. 6.4.4-6.4.7 were all collected on the Xeon W-2135 processor with

the Intel Skylake-X microarchitecture, which prompts a question as to whether the

advantage of the Two-Pass softmax algorithm is restricted to a specific type of pro-

cessor. To demonstrate that the Two-Pass algorithm generalizes to other types of

processors, I replicated results of Sec. 6.4.5 on Xeon E5-2696 v4 processor with Intel

Broadwell microarchitecture and Ryzen 9 3900X with AMD Zen 2 microarchitecture.

Both of these processors support AVX2, but not AVX512, and have different cache

hierarchy parameters than the Intel Skylake-X system.

●
● ● ●

● ● ● ●
●

● ● ●

0.00

0.25

0.50

0.75

1.00

1.25

1K 10K 100K 1M 10M 100M

Number of elements

P
er

fo
rm

an
ce

, G
E

le
m

en
ts

/s

Algorithm ● Three−Pass (Recomputing) Three−Pass (Reloading) Two−Pass

Figure 52: Performance comparison of Algorithms 1, 2, and 3 on an Intel Broadwell-

based system. Gray dotted lines denote boundaries of level-1, level-2, and level-3

caches.

Fig. 52 presents performance of the three softmax algorithms on the Intel Broad-

well system. Although the Two-Pass softmax algorithm demonstrates inferior per-

formance on problems which fit into L2 cache, it is competitive with the Three-Pass

104

softmax algorithms on L3-sizes problems, and outperforms them by 21 − 23% on

out-of-cache problems.

●
● ● ● ● ● ●

●

● ● ● ●

0

1

2

1K 10K 100K 1M 10M 100M

Number of elements

P
er

fo
rm

an
ce

, G
E

le
m

en
ts

/s

Algorithm ● Three−Pass (Recomputing) Three−Pass (Reloading) Two−Pass

Figure 53: Performance comparison of Algorithms 1, 2, and 3 on a Ryzen 9 3900X

system. Gray dotted lines denote boundaries of level-1, level-2, and level-3 caches.

Fig. 53 shows a similar picture on AMD Zen 2 microarchitecture. Here, the Three-

Pass algorithms deliver superior performance as long as data fits into L3 cache, but

lose 14− 16% to the Two-Pass algorithm when the data exceeds cache size.

6.5 Conclusion

I presented a novel Two-Pass algorithm for softmax computation and demonstrated

that my new Two-Pass algorithm is up to 28% faster than the traditional Three-Pass

algorithm on large input vectors. The algorithm, however, offers no advantage over a

reloading variant of the Three-Pass algorithm when the data fits into the processor’s

cache.

105

This study focused on performance on a CPU, but the algorithm has great po-

tential for GPUs and hardware AI accelerators. These platforms further shift the

balance between compute and memory performance towards expensive memory and

cheap floating-point operations, and would favor the reduced memory intensity of the

presented Two-Pass softmax algorithm.

106

CHAPTER VII

CONCLUSION

In less than a decade neural networks transitioned from a curious novelty to a standard

instrument of scientific research and engineering practice. Common performance

library interfaces, such as BLAS, FFTW, and Intel MKL, predate the explosion in

neural network adaption and incur inefficiencies when directly used for neural network

inference. These inefficiencies primarily arise from insufficient flexibility of classical

performance primitives, and require expensive memory layout transformations to map

neural network inference computations to the performance primitives provided by

existing libraries.

In this dissertation I demonstrated how the primitives from performance libraries

dense matrix-matrix multiplication, sparse matrix-dense matrix multiplication, 2D

Fourier transform, and vector mathematical functions can be modified to exceed

state-of-the-art performance for neural network inference. Importantly, the modified

primitives differ in their interfaces, yet exhibit similar structure to the classical well-

studied variants from performance libraries, and this change has two implications.

First, most research on improving matrix-matrix multiplication, Fourier transforms,

and vector mathematical functions can be with small modifications adapted for the

optimized neural network inference primitives, enabling AI optimizations to tap into

a vast trove of prior art. Secondly, current hardware, extensively optimized over

decades for classical scientific computing primitives, is by extension well suited for

neural network inference provided that the software uses the most efficient algorithms.

The thesis leaves several questions related to the modified performance primitives

unexplored. First, as the proposed primitives improve the efficiency of convolutions

107

and softmax, elementwise operations such as addition, elementwise multiplica-

tion, and activation functions become responsible for a sizeable fraction of infer-

ence runtime. Elementwise operations are intrinsically memory-bound and become

ideal candidates for fusion into the proposed performance primitives, e.g., Inverse

Fourier transform (for FFT-based fast convolution), Output Winograd Transform

(for Winograd-based fast convolution), Indirect GEMM (for low-intensity dense con-

volution), or SpMM (for sparse pixelwise convolution). Naturally, is it infeasible to

provide every possible fused primitive as a part of a performance library, but it re-

mains to be studied if a constrained set of fused primitives is sufficient to accelerate

most widely used neural networks. Compilers may have a role in carrying out such

fusion transformations. Secondly, the question of combining the proposed primitives

with quantization is largely open. Indirect GEMM is clearly useful for quantized infer-

ence (and this was explored by the author in the QNNPACK library), but it remains

to be seen if the primitives for fast convolution algorithms or sparse inference can

be quantized without dramatic degradation of end-to-end accuracy. Both fast convo-

lution algorithms and especially sparse inference involve some accuracy loss, and so

does quantization; whether this accuracy loss is orthogonal to the accuracy loss from

quantization is an open question. Adaptation of the Two-Pass Softmax algorithm to

quantized inference is yet another open question: the original algorithm heavily re-

lied on properties of floating-point numbers. Thirdly, two of the proposed primitives,

Tuple-GEMM for fast convolution algorithms and Indirect GEMM for the indirect

convolution algorithm, are both neccesiated by the constrained nature of the original

GEMM primitive, but in different ways: for Tuple-GEMM the critical constraint was

lack of efficient batching support in the GEMM interface, and for Indirect GEMM

it was the only reduction dimension being insufficient to represent multi-dimensional

reduction in the convolution operator. It is unclear if both generalizations could be

combined in an efficient and practically useful manner.

108

The ideas on efficient neural network inference outlined in this dissertation were

implemented in the NNPACK, QNNPACK, and XNNPACK libraries, which are

widely disseminated in the machine learning community. In particular, among the

three largest ecosystems of machine learning frameworks, the PyTorch ecosystem in-

cludes NNPACK, QNNPACK, and XNNPACK libraries, the TensorFlow ecosystem

makes use of XNNPACK library, and the TVM ecosystem integrates NNPACK li-

brary. With NNPACK, QNNPACK, and XNNPACK libraries being integrated into

the Android Open Source Project, Instagram, and Snapchat, the impact of these

libraries extends beyond machine learning engineers and researchers, and enables AI-

powered experiences for over two billion people.

109

REFERENCES

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Leven-
berg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker,
P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.,
“Tensorflow: A system for large-scale machine learning,” in Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, (USA), p. 265–283, USENIX Association, 2016.

[2] Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., Deng, L., Penn, G., and
Yu, D., “Convolutional neural networks for speech recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 22, no. 10,
pp. 1533–1545, 2014.

[3] Al-Rfou, R., Alain, G., Almahairi, A., Angermüller, C., Bahdanau,
D., Ballas, N., Bastien, F., Bayer, J., Belikov, A., Belopolsky,
A., Bengio, Y., Bergeron, A., Bergstra, J., Bisson, V., Snyder,
J. B., Bouchard, N., Boulanger-Lewandowski, N., Bouthillier, X.,
de Brébisson, A., Breuleux, O., Carrier, P. L., Cho, K., Chorowski,
J., Christiano, P. F., Cooijmans, T., Côté, M., Côté, M., Courville,
A. C., Dauphin, Y. N., Delalleau, O., Demouth, J., Desjardins, G.,
Dieleman, S., Dinh, L., Ducoffe, M., Dumoulin, V., Kahou, S. E., Er-
han, D., Fan, Z., Firat, O., Germain, M., Glorot, X., Goodfellow,
I. J., Graham, M., Gülçehre, Ç., Hamel, P., Harlouchet, I., Heng,
J., Hidasi, B., Honari, S., Jain, A., Jean, S., Jia, K., Korobov, M.,
Kulkarni, V., Lamb, A., Lamblin, P., Larsen, E., Laurent, C., Lee,
S., Lefrançois, S., Lemieux, S., Léonard, N., Lin, Z., Livezey, J. A.,
Lorenz, C., Lowin, J., Ma, Q., Manzagol, P., Mastropietro, O.,
McGibbon, R., Memisevic, R., van Merriënboer, B., Michalski, V.,
Mirza, M., Orlandi, A., Pal, C. J., Pascanu, R., Pezeshki, M., Raf-
fel, C., Renshaw, D., Rocklin, M., Romero, A., Roth, M., Sadowski,
P., Salvatier, J., Savard, F., Schlüter, J., Schulman, J., Schwartz,
G., Serban, I. V., Serdyuk, D., Shabanian, S., Simon, É., Spiecker-
mann, S., Subramanyam, S. R., Sygnowski, J., Tanguay, J., van Tul-
der, G., Turian, J. P., Urban, S., Vincent, P., Visin, F., de Vries,
H., Warde-Farley, D., Webb, D. J., Willson, M., Xu, K., Xue, L.,
Yao, L., Zhang, S., and Zhang, Y., “Theano: A python framework for fast
computation of mathematical expressions,” CoRR, vol. abs/1605.02688, 2016.

[4] Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Batten-
berg, E., Case, C., Casper, J., Catanzaro, B., Cheng, Q., Chen,

110

G., Chen, J., Chen, J., Chen, Z., Chrzanowski, M., Coates, A., Di-
amos, G., Ding, K., Du, N., Elsen, E., Engel, J., Fang, W., Fan, L.,
Fougner, C., Gao, L., Gong, C., Hannun, A., Han, T., Johannes,
L. V., Jiang, B., Ju, C., Jun, B., LeGresley, P., Lin, L., Liu, J., Liu,
Y., Li, W., Li, X., Ma, D., Narang, S., Ng, A., Ozair, S., Peng, Y.,
Prenger, R., Qian, S., Quan, Z., Raiman, J., Rao, V., Satheesh, S.,
Seetapun, D., Sengupta, S., Srinet, K., Sriram, A., Tang, H., Tang,
L., Wang, C., Wang, J., Wang, K., Wang, Y., Wang, Z., Wang, Z.,
Wu, S., Wei, L., Xiao, B., Xie, W., Xie, Y., Yogatama, D., Yuan,
B., Zhan, J., and Zhu, Z., “Deep Speech 2: End-to-end speech recognition
in English and Mandarin,” in Proceedings of the 33rd International Confer-
ence on International Conference on Machine Learning - Volume 48, ICML’16,
p. 173–182, JMLR.org, 2016.

[5] Anderson, A., Vasudevan, A., Keane, C., and Gregg, D., “High-
performance low-memory lowering: GEMM-based algorithms for DNN convolu-
tion,” in 2020 IEEE 32nd International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), pp. 99–106, 2020.

[6] Bridle, J. S., “Probabilistic interpretation of feedforward classification net-
work outputs, with relationships to statistical pattern recognition,” in Neu-
rocomputing (Soulié, F. F. and Hérault, J., eds.), (Berlin, Heidelberg),
pp. 227–236, Springer Berlin Heidelberg, 1990.

[7] Brisebarre, N. and Chevillard, S., “Efficient polynomial L-
approximations,” in 18th IEEE Symposium on Computer Arithmetic (ARITH
’07), pp. 169–176, 2007.

[8] Brosch, T. and Tam, R., “Efficient training of convolutional deep belief
networks in the frequency domain for application to high-resolution 2D and 3D
images,” Neural Comput., vol. 27, p. 211–227, Jan. 2015.

[9] Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn,
P., and Robinson, T., “One billion word benchmark for measuring progress
in statistical language modeling,” tech. rep., Google, 2013.

[10] Chellapilla, K., Puri, S., and Simard, P., “High performance con-
volutional neural networks for document processing,” in Tenth Interna-
tional Workshop on Frontiers in Handwriting Recognition (Lorette, G.,
ed.), (La Baule (France)), Université de Rennes 1, Suvisoft, Oct. 2006.
http://www.suvisoft.com.

[11] Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z., “MXNet: A flexible and effi-
cient machine learning library for heterogeneous distributed systems,” CoRR,
vol. abs/1512.01274, 2015.

111

[12] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M.,
Shen, H., Wang, L., Hu, Y., Ceze, L., Guestrin, C., and Krishna-
murthy, A., “TVM: An automated end-to-end optimizing compiler for deep
learning,” in Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation, OSDI’18, (USA), p. 579–594, USENIX Associa-
tion, 2018.

[13] Chevillard, S., Joldeş, M., and Lauter, C., “Sollya: An environment for
the development of numerical codes,” in Mathematical Software – ICMS 2010
(Fukuda, K., Hoeven, J. v. d., Joswig, M., and Takayama, N., eds.),
(Berlin, Heidelberg), pp. 28–31, Springer Berlin Heidelberg, 2010.

[14] Chollet, F., “Xception: Deep learning with depthwise separable convolu-
tions,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1800–1807, 2017.

[15] Cody, W. J., Software Manual for the Elementary Functions (Prentice-Hall
Series in Computational Mathematics). USA: Prentice-Hall, Inc., 1980.

[16] Collobert, R., Kavukcuoglu, K., and Farabet, C., “Torch7: A
matlab-like environment for machine learning,” in BigLearn, NIPS Workshop,
no. EPFL-CONF-192376, 2011.

[17] Cornea, M., “Intel AVX-512 instructions and their use in the implementation
of math functions,” Intel Corporation, 2015.

[18] Davis, T. A. and Hu, Y., “The University of Florida sparse matrix collection,”
ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, pp. 1–25,
2011.

[19] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.,
“Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition, pp. 248–255, Ieee, 2009.

[20] Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R.,
“Exploiting linear structure within convolutional networks for efficient evalua-
tion,” in Advances in Neural Information Processing Systems (Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q.,
eds.), vol. 27, Curran Associates, Inc., 2014.

[21] Duchi, J., Hazan, E., and Singer, Y., “Adaptive subgradient methods for
online learning and stochastic optimization,” J. Mach. Learn. Res., vol. 12,
p. 2121–2159, July 2011.

[22] Dukhan, M. and Ablavatski, A., “Two-Pass Softmax algorithm,” in 2020
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), (Los Alamitos, CA, USA), pp. 386–395, IEEE Computer Society,
may 2020.

112

[23] Dukhan, M., “The Indirect Convolution algorithm,” CoRR,
vol. abs/1907.02129, 2019.

[24] Dukhan, M. and Vuduc, R., “Methods for high-throughput computation
of elementary functions,” in Parallel Processing and Applied Mathematics
(Wyrzykowski, R., Dongarra, J., Karczewski, K., and Waśniewski,
J., eds.), (Berlin, Heidelberg), pp. 86–95, Springer Berlin Heidelberg, 2014.

[25] Elsen, E., Dukhan, M., Gale, T., and Simonyan, K., “Fast sparse con-
vnets,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), (Los Alamitos, CA, USA), pp. 14617–14626, IEEE Computer
Society, jun 2020.

[26] Fog, A. and others, “Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel, AMD and VIA cpus,”
Copenhagen University College of Engineering, vol. 93, p. 110, 2011.

[27] Frigo, M. and Johnson, S., “FFTW: an adaptive software architecture for
the FFT,” in Proceedings of the 1998 IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP ’98 (Cat. No.98CH36181), vol. 3,
pp. 1381–1384 vol.3, 1998.

[28] Gal, S., “An accurate elementary mathematical library for the IEEE floating
point standard,” ACM Trans. Math. Softw., vol. 17, p. 26–45, Mar. 1991.

[29] Gatys, L. A., Ecker, A. S., and Bethge, M., “A neural algorithm of
artistic style,” CoRR, vol. abs/1508.06576, 2015.

[30] Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning. MIT
Press, 2016.

[31] Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., and
Bengio, Y., “Maxout networks,” in Proceedings of the 30th International Con-
ference on Machine Learning (Dasgupta, S. and McAllester, D., eds.),
vol. 28 of Proceedings of Machine Learning Research, (Atlanta, Georgia, USA),
pp. 1319–1327, PMLR, 17–19 Jun 2013.

[32] Goodman, J., “Classes for fast maximum entropy training,” in Acoustics,
Speech, and Signal Processing, IEEE International Conference on, vol. 1, (Los
Alamitos, CA, USA), pp. 561–564, IEEE Computer Society, may 2001.

[33] Goto, K. and van de Geijn, R. A., “Anatomy of high-performance matrix
multiplication,” ACM Trans. Math. Softw., vol. 34, May 2008.

[34] Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P., Wesolowski,
L., Kyrola, A., Tulloch, A., Jia, Y., and He, K., “Accurate, large mini-
batch SGD: training ImageNet in 1 hour,” CoRR, vol. abs/1706.02677, 2017.

113

[35] Graillat, S. and Ménissier-Morain, V., “Error-free transformations in
real and complex floating point arithmetic,” in International Symposium on
Nonlinear Theory and its Applications (NOLTA’07), (Vancouver, Canada),
pp. 341–344, Sept. 2007.

[36] Grave, É., Joulin, A., Cissé, M., Grangier, D., and Jégou, H., “Ef-
ficient softmax approximation for GPUs,” in Proceedings of the 34th Interna-
tional Conference on Machine Learning (Precup, D. and Teh, Y. W., eds.),
vol. 70 of Proceedings of Machine Learning Research, pp. 1302–1310, PMLR,
06–11 Aug 2017.

[37] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A.,
and Dally, W. J., “EIE: Efficient inference engine on compressed deep neu-
ral network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pp. 243–254, 2016.

[38] Han, S., Mao, H., and Dally, W. J., “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding,”
CoRR, abs/1510.00149, vol. 2, 2015.

[39] Han, S., Pool, J., Narang, S., Mao, H., Tang, S., Elsen, E., Catan-
zaro, B., Tran, J., and Dally, W. J., “DSD: regularizing deep neural
networks with dense-sparse-dense training flow,” CoRR, vol. abs/1607.04381,
2016.

[40] Han, S., Pool, J., Tran, J., and Dally, W., “Learning both weights and
connections for efficient neural network,” in Advances in Neural Information
Processing Systems (Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
and Garnett, R., eds.), vol. 28, Curran Associates, Inc., 2015.

[41] He, K., Zhang, X., Ren, S., and Sun, J., “Deep residual learning for im-
age recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[42] Heinecke, A., Henry, G., Hutchinson, M., and Pabst, H., “LIBXSMM:
Accelerating small matrix multiplications by runtime code generation,” in SC
’16: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 981–991, 2016.

[43] Hida, Y., Li, X., and Bailey, D., “Algorithms for quad-double precision
floating point arithmetic,” in Proceedings 15th IEEE Symposium on Computer
Arithmetic. ARITH-15 2001, pp. 155–162, 2001.

[44] Hinton, G., Srivastava, N., and Swersky, K., “Lecture 6a overview of
mini–batch gradient descent,”

[45] Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L.-C., Tan,
M., Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Adam, H., and Le, Q.,

114

“Searching for MobileNetV3,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 1314–1324, 2019.

[46] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H., “MobileNets: Ef-
ficient convolutional neural networks for mobile vision applications,” CoRR,
vol. abs/1704.04861, 2017.

[47] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q.,
“Densely connected convolutional networks,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269, 2017.

[48] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio,
Y., “Binarized neural networks,” in Advances in Neural Information Processing
Systems (Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett,
R., eds.), vol. 29, Curran Associates, Inc., 2016.

[49] Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J.,
and Keutzer, K., “SqueezeNet: AlexNet-level accuracy with 50x fewer pa-
rameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[50] Iordache, C. and Tang, P., “An overview of floating-point support and
math library on the Intel XScale architecture,” in Proceedings 2003 16th IEEE
Symposium on Computer Arithmetic, pp. 122–128, 2003.

[51] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A., “Image-to-image trans-
lation with conditional adversarial networks,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976, 2017.

[52] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A.,
Adam, H., and Kalenichenko, D., “Quantization and training of neural
networks for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[53] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,
R., Guadarrama, S., and Darrell, T., “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22nd ACM International Con-
ference on Multimedia, MM ’14, (New York, NY, USA), p. 675–678, Association
for Computing Machinery, 2014.

[54] Johnson, J., Alahi, A., and Fei-Fei, L., “Perceptual losses for real-time
style transfer and super-resolution,” in European Conference on Computer Vi-
sion, pp. 694–711, Springer, 2016.

[55] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G.,
Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle,
R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau,

115

M., Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gul-
land, W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J., Hundt,
R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khai-
tan, H., Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J.,
Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacK-
ean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R.,
Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M.,
Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani,
E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Steinberg, D.,
Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E.,
Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H.,
“In-datacenter performance analysis of a tensor processing unit,” SIGARCH
Comput. Archit. News, vol. 45, p. 1–12, June 2017.

[56] Kingma, D. and Ba, J., “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[57] Krizhevsky, A., Sutskever, I., and Hinton, G. E., “ImageNet classi-
fication with deep convolutional neural networks,” Commun. ACM, vol. 60,
p. 84–90, May 2017.

[58] Lavin, A., “Fast algorithms for convolutional neural networks,” CoRR,
vol. abs/1509.09308, 2015.

[59] Leary, C. and Wang, T., “XLA: TensorFlow, compiled,” TensorFlow Dev
Summit, 2017.

[60] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[61] Liu, B., Wang, M., Foroosh, H., Tappen, M., and Penksy, M., “Sparse
convolutional neural networks,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 806–814, 2015.

[62] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y.,
and Berg, A. C., “SSD: Single shot multibox detector,” in Computer Vision
– ECCV 2016 (Leibe, B., Matas, J., Sebe, N., and Welling, M., eds.),
(Cham), pp. 21–37, Springer International Publishing, 2016.

[63] Loshchilov, I. and Hutter, F., “Fixing weight decay regularization in
Adam,” CoRR, vol. abs/1711.05101, 2017.

[64] Ma, N., Zhang, X., Zheng, H.-T., and Sun, J., “ShuffleNet v2: Practical
guidelines for efficient CNN architecture design,” in Proceedings of the European
Conference on Computer Vision (ECCV), pp. 116–131, September 2018.

116

[65] Mahajan, D., Girshick, R. B., Ramanathan, V., He, K., Paluri, M.,
Li, Y., Bharambe, A., and van der Maaten, L., “Exploring the limits of
weakly supervised pretraining,” CoRR, vol. abs/1805.00932, 2018.

[66] Markstein, P., IA-64 and elementary functions - speed and precision. 2000.

[67] Mathieu, M., Henaff, M., and LeCun, Y., “Fast training of convolutional
networks through FFTs,” CoRR, vol. abs/1312.5851, 2013.

[68] McCalpin, J. D., “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Committee
on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec. 1995.

[69] Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., and Hajishirzi,
H., “ESPNet: Efficient spatial pyramid of dilated convolutions for semantic
segmentation,” in Proceedings of the European Conference on Computer Vision
(ECCV), September 2018.

[70] Mehta, S., Rastegari, M., Shapiro, L., and Hajishirzi, H., “ESPNetv2:
A light-weight, power efficient, and general purpose convolutional neural net-
work,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 9182–9192, 2019.

[71] Muller, J.-M., Brisebarre, N., De Dinechin, F., Jeannerod, C.-P.,
Lefevre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S., and
others, “Handbook of floating-point arithmetic,” 2010.

[72] Odena, A., Dumoulin, V., and Olah, C., “Deconvolution and checkerboard
artifacts,” Distill, 2016.

[73] Panchenko, A., Ruppert, E., Faralli, S., Ponzetto, S. P., and Bie-
mann, C., “Building a Web-scale dependency-parsed corpus from Common-
Crawl,” in Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018) (chair), N. C. C., Choukri, K.,
Cieri, C., Declerck, T., Goggi, S., Hasida, K., Isahara, H., Mae-
gaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis,
S., and Tokunaga, T., eds.), (Miyazaki, Japan), European Language Re-
sources Association (ELRA), May 7-12, 2018 2018.

[74] Park, J., Li, S. R., Wen, W., Li, H., Chen, Y., and Dubey, P., “Holistic
SparseCNN: Forging the trident of accuracy, speed, and size,” arXiv preprint
arXiv:1608.01409, vol. 1, no. 2, 2016.

[75] Park, J., Naumov, M., Basu, P., Deng, S., Kalaiah, A., Khudia, D. S.,
Law, J., Malani, P., Malevich, A., Satish, N., Pino, J., Schatz, M.,
Sidorov, A., Sivakumar, V., Tulloch, A., Wang, X., Wu, Y., Yuen,
H., Diril, U., Dzhulgakov, D., Hazelwood, K. M., Jia, B., Jia, Y.,
Qiao, L., Rao, V., Rotem, N., Yoo, S., and Smelyanskiy, M., “Deep

117

learning inference in Facebook data centers: Characterization, performance op-
timizations and hardware implications,” CoRR, vol. abs/1811.09886, 2018.

[76] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.,
“PyTorch: An imperative style, high-performance deep learning library,”
in Advances in Neural Information Processing Systems 32 (Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Gar-
nett, R., eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[77] Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A., “XNOR-
Net: ImageNet classification using binary convolutional neural networks,” in
Computer Vision – ECCV 2016 (Leibe, B., Matas, J., Sebe, N., and
Welling, M., eds.), (Cham), pp. 525–542, Springer International Publishing,
2016.

[78] Real, E., Aggarwal, A., Huang, Y., and Le, Q. V., “Regularized evolu-
tion for image classifier architecture search,” Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 33, pp. 4780–4789, Jul. 2019.

[79] Redmon, J. and Farhadi, A., “Yolo9000: Better, faster, stronger,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6517–6525, 2017.

[80] Ren, S., He, K., Girshick, R., and Sun, J., “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in Advances in Neu-
ral Information Processing Systems (Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M., and Garnett, R., eds.), vol. 28, Curran Associates, Inc.,
2015.

[81] Rotem, N., Fix, J., Abdulrasool, S., Deng, S., Dzhabarov, R., Hege-
man, J., Levenstein, R., Maher, B., Satish, N., Olesen, J., Park, J.,
Rakhov, A., and Smelyanskiy, M., “Glow: Graph lowering compiler tech-
niques for neural networks,” CoRR, vol. abs/1805.00907, 2018.

[82] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C.,
“MobileNetV2: Inverted residuals and linear bottlenecks,” pp. 4510–4520, 06
2018.

[83] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and
LeCun, Y., “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[84] Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A., Bishop,
R., Rueckert, D., and Wang, Z., “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” 06 2016.

118

[85] Simonyan, K. and Zisserman, A., “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning Repre-
sentations, 2015.

[86] Singh, S., Subramanya, A., Pereira, F., and McCallum, A., “Wikilinks:
A large-scale cross-document coreference corpus labeled via links to Wikipedia,”
University of Massachusetts, Amherst, Tech. Rep. UM-CS-2012, vol. 15, 2012.

[87] Smith, T. M., Van De Geijn, R., Smelyanskiy, M., Hammond, J. R.,
and Van Zee, F. G., “Anatomy of high-performance many-threaded matrix
multiplication,” in Parallel and Distributed Processing Symposium, 2014 IEEE
28th International, pp. 1049–1059, IEEE, 2014.

[88] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A., “Going deeper with con-
volutions,” in 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1–9, 2015.

[89] Tan, M. and Le, Q. V., “EfficientNet: Rethinking model scaling for convolu-
tional neural networks,” CoRR, vol. abs/1905.11946, 2019.

[90] Tulloch, A. and Jia, Y., “High performance ultra-low-precision convolutions
on mobile devices,” arXiv preprint arXiv:1712.02427, 2017.

[91] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O.,
Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K.,
“WaveNet: A generative model for raw audio,” in 9th ISCA Speech Synthesis
Workshop, pp. 125–125, 2016.

[92] Van Zee, F. G. and van de Geijn, R. A., “BLIS: A framework for rapidly
instantiating BLAS functionality,” ACM Transactions on Mathematical Soft-
ware, vol. 41, pp. 14:1–14:33, June 2015.

[93] Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S.,
and LeCun, Y., “Fast convolutional nets with fbfft: A GPU performance
evaluation,” arXiv preprint arXiv:1412.7580, 2014.

[94] Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H., “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information Processing
Systems (Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett,
R., eds.), vol. 29, Curran Associates, Inc., 2016.

[95] Whaley, R. C. and Dongarra, J. J., “Automatically tuned linear algebra
software,” in Proceedings of the 1998 ACM/IEEE conference on Supercomput-
ing, pp. 1–27, IEEE Computer Society, 1998.

[96] Williams, S. W., Auto-tuning performance on multicore computers. Univer-
sity of California, Berkeley Berkeley, CA, 2008.

119

[97] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey,
W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J.,
Shah, A., Johnson, M., Liu, X., Lukasz Kaiser, Gouws, S., Kato,
Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang,
W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Cor-
rado, G., Hughes, M., and Dean, J., “Google’s neural machine translation
system: Bridging the gap between human and machine translation,” CoRR,
vol. abs/1609.08144, 2016.

[98] Yu, D., Eversole, A., Seltzer, M., Yao, K., Kuchaiev, O., Zhang, Y.,
Seide, F., Huang, Z., Guenter, B., Wang, H., Droppo, J., Zweig, G.,
Rossbach, C., Gao, J., Stolcke, A., Currey, J., Slaney, M., Chen,
G., Agarwal, A., Basoglu, C., Padmilac, M., Kamenev, A., Ivanov,
V., Cypher, S., Parthasarathi, H., Mitra, B., Peng, B., and Huang,
X., “An introduction to computational networks and the computational net-
work toolkit,” Tech. Rep. MSR-TR-2014-112, October 2014.

[99] Zeiler, M. D., “ADADELTA: an adaptive learning rate method,” CoRR,
vol. abs/1212.5701, 2012.

[100] Zhang, J., Franchetti, F., and Low, T. M., “High performance zero-
memory overhead direct convolutions,” in Proceedings of the 35th International
Conference on Machine Learning (Dy, J. and Krause, A., eds.), vol. 80 of
Proceedings of Machine Learning Research, pp. 5776–5785, PMLR, 10–15 Jul
2018.

[101] Zhang, X., Zhou, X., Lin, M., and Sun, J., “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 6848–6856,
2018.

[102] Zhu, C., Han, S., Mao, H., and Dally, W. J., “Trained ternary quantiza-
tion,” CoRR, vol. abs/1612.01064, 2016.

[103] Zlateski, A., Lee, K., and Seung, H. S., “ZNNi: Maximizing the inference
throughput of 3D convolutional networks on CPUs and GPUs,” in Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’16, IEEE Press, 2016.

120

