
EXPLORING THE METHOD OF MOVING ASYMPTOTES FOR VARIOUS
OPTIMIZATION APPLICATIONS

A Dissertation
Presented to

The Academic Faculty

By

Emily Alcazar

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Civil and Environmental Engineering

Georgia Institute of Technology

August 2021

© Emily Alcazar 2021



EXPLORING THE METHOD OF MOVING ASYMPTOTES FOR VARIOUS
OPTIMIZATION APPLICATIONS

Thesis committee:

Dr. Glaucio Paulino, Advisor
School of Civil and
Environmental Engineering
Georgia Institute of Technology

Dr. Yang Wang
School of Civil and Environmental
Engineering
Georgia Institute of Technology

Dr. David Rosen
The George W. Woodruff School of
Mechanical Engineering
Georgia Institute of Technology

Dr. Jonathan Russ
Plato Development Team
Sandia National Laboratories

Date approved: July 30, 2021



To my family



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Dr. Glaucio H. Paulino for his

endless support and guidance in the preparation of this thesis. His mentorship has served

as a constant source of inspiration for me, both professionally and academically.

I would like to thank the members on my thesis committee, Dr. David Rosen and Dr.

Yang Wang, for their valuable comments and suggestions in the preparation of this work.

I would especially like to acknowledge Dr. Jonathan Russ for his participation on this

committee and his ongoing support in the development of this work through productive,

enlightening discussions.

I would also like to extend my gratitude to my colleagues, Emily Sanders, Tuo Zhao,

Fernando Senhora, Oliver Giraldo-Londoño, Larissa Novelino, and Yang Jiang, for their

always informative discussions, invaluable advice, and continuous motivation.

In recognition of the financial support of this work, I would like to thank the National

Science Foundation (NSF) Graduate Research Fellowship Program (GRFP) and the Ray-

mond Allen Jones Chair endowment through the Georgia Institute of Technology.

Finally, I would like to thank my family for their never-ending support and encourage-

ment in all of my endeavors. I am eternally grateful for the admiration and inspiration I

receive from my two sisters, Isabel and Katie. To my parents, words cannot express how

fortunate I am for your unconditional love and belief in me. It is with great pleasure that I

dedicate this thesis to them.

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Brief Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: On Sequential Explicit, Convex Approximations . . . . . . . . . . . . 4

2.1 Sequential Linear Programming, SLP . . . . . . . . . . . . . . . . . . . . 7

2.2 Sequential Quadratic Programming, SQP . . . . . . . . . . . . . . . . . . . 9

2.3 Convex Linearization, CONLIN . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Method of Moving Asymptotes, MMA . . . . . . . . . . . . . . . . . . . . 11

2.5 Globally Convergent Method of Moving Asymptotes, GCMMA . . . . . . 16

2.6 Further Extensions of the MMA . . . . . . . . . . . . . . . . . . . . . . . 19

v



Chapter 3: Solving the MMA Subproblem: Primal-Dual Relationships . . . . . 20

3.1 Dual Solution Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4: Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 One-Dimensional Function . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Sizing Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Analytical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Solution by CVX . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 Solution by MMA . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Compliance Minimization Topology Optimization . . . . . . . . . . . . . . 34

4.4 Stress Constrained Topology Optimization . . . . . . . . . . . . . . . . . . 41

4.5 Three-Dimensional Topology Optimization in PLATO . . . . . . . . . . . . 45

Chapter 5: Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendix A: MMA Transformation Proofs . . . . . . . . . . . . . . . . . . . . 52

Appendix B: MMA Computational Implementation Modifications . . . . . . . . 56

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



LIST OF TABLES

4.1 MMA empirical parameters and final optimal objective values . . . . . . . 37

4.2 Results by varying MMA iterations . . . . . . . . . . . . . . . . . . . . . . 44

vii



LIST OF FIGURES

4.1 MMA approximations of a 1D function implementing asymptotes which
replicate SLP and CONLIN behavior . . . . . . . . . . . . . . . . . . . . . 24

4.2 MMA approximations of a 1D function considering multiple move asymp-
tote magnitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Cantilever beam design domain . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Convergence history of the design variable, x2 . . . . . . . . . . . . . . . . 29

4.5 Convergence of the objective function and constraint . . . . . . . . . . . . 30

4.6 Contour plot of the sizing optimization problem . . . . . . . . . . . . . . . 31

4.7 Convergence history of the design variable, x2, by a more conservative
MMA approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8 Convergence of the objective function and constraint by a more conserva-
tive MMA approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.9 Convergence of the objective function and constraint by ill-chosen empiri-
cal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.10 Design domain of the MBB beam . . . . . . . . . . . . . . . . . . . . . . . 36

4.11 Optimized results of the MBB beam considering various MMA parameters . 37

4.12 MBB beam topology achieved by k = 150 and k = 200 . . . . . . . . . . . 39

4.13 Topology generated by the update scheme (a) OC (b) MMA (c) sensitivity-
separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.14 Convergence history of the objective function by solution schemes the Opti-
mality Criterion (OC), Method of Moving Asmyptotes (MMA), and sensitivity-
separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



4.15 CPU time for the MBB topology optimization problem solved by OC,
MMA, and the sensitivity-separation . . . . . . . . . . . . . . . . . . . . . 42

4.16 Optimization procedure solving the stress constrained problem using the
augmented Lagrangian approximated by the unconstrained MMA [15] . . . 43

4.17 Stress constrained L-bracket . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.18 Von Mises stress map for varying MMA iterations . . . . . . . . . . . . . . 45

4.19 Design domain of the bolted bracket . . . . . . . . . . . . . . . . . . . . . 46

4.20 Final optimized topologies of the bolted bracket achieved by the a) MMA
in an isometric view b) MMA in a side view sliced through the center c)
OC in an isometric view d) OC in a side view sliced through the center . . . 47

4.21 Convergence history of the bolted bracket for the OC and MMA update
schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



LIST OF ACRONYMS

BFGS Broyden Fletcher Goldfard Shanno

CONLIN Convex Linearization

DFP Davidon Fletcher Powell

GBMMA Gradient Based Method of Moving Asymptotes

GCMMA Globally Convergent Method of Moving Asymptotes

KKT Karush-Kuhn-Tucker

LP Linear Programming

MMA Method of Moving Asmyptotes

NLP Nonlinear Programming

OC Optimality Criterion

PLATO PLAtform for Topology Optimization

SIMP Solid Isotropic Material with Penalization

SLP Sequential Linear Programming

SQP Sequential Quadratic Programming

x



SUMMARY

The development of sequential explicit, convex approximation schemes has allowed for

expansion of the size of optimization problems that can now be achieved. These approx-

imation schemes use information from the original optimization statement to generate a

series of approximate subproblems allowing for an efficient solution strategy. This thesis

reviews established sequential explicit, convex approximations in the literature along with

a brief overview of their associated solution schemes. A primary focus is placed on the

theory and application of the Method of Moving Asymptotes (MMA) approximation due

to its continued regard in the field of structural topology optimization. Numerical examples

explore optimization problems solved by the MMA approximation in order to demonstrate

the behavior of this method and impact of the prescribed empirical parameters. Other nu-

merical examples study structural topology optimization problems in the 2D and 3D setting

to compare with alternative, competitive update schemes such as the OC and to highlight

the benefit of using the MMA in more complex settings.
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CHAPTER 1

INTRODUCTION

Structural topology optimization is an immensely powerful tool to aid engineers and de-

signers alike by informing the optimal placement of material and void, inspiring designs

that are both elegant and efficient, uniting the fields of art and engineering seamlessly

as never before. This idea, as emphasized in this work, was introduced by Bendsoe and

Kikuchi, who proposed a technique to find the optimal layout of an anisotropic material

formed by void and homogeneous, isotropic material microstructures [1]. This work led to

the creation of the modern field of structural topology optimization in 1988. Since then,

many advancements to the literature have been made [2, 3, 4]. More specifically within

the realm of solution strategies of optimization problems, significant progress has been

made by the approach of convex approximations [5, 6]. This thesis will focus on the the-

ory and application of these sequential explicit, convex approximations in solving various

optimization problems.

1.1 Brief Literature Review

The concept of sequential explicit, convex approximations was proposed by the mathe-

maticians Schmidt, Farshi, and Fleury in their approach of linearized approximations of

the optimization problem coupled with dual methods for a complete and efficient solution

scheme [7, 8]. This method confronted the challenges associated with solving large-scale

optimization problems where the explicit solutions may be highly complex (and their im-

plementation extremely computationally expensive) or in many cases nonexistent. The in-

troduction of this framework led to further development of the approximation subroutines,

Sequential Linear Programming (SLP) and Sequential Quadratic Programming (SQP), im-

proving these methods for greater robustness in the context of optimization applications [9,
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10]. It also influenced the development of new convex approximation subroutines such as

Convex Linearization (CONLIN) [11], the Method of Moving Asymptotes (MMA) [6], and

Globally Convergent Method of Moving Asymptotes (GCMMA) [12]. The MMA subrou-

tine revolutionized the topology optimization field due to its robustness in solving problems

of any form, e.g. multiple constraints, nonlinear functions, etc. and it continues to dominate

as the sequential convex approximation scheme of choice. This approximation technique

coupled with an efficient solution strategy (Chapter 3.0) and further developed computa-

tional capabilities has allowed for its vast expansion in the field. Such work includes topol-

ogy optimization for mass minimization subject to local stress constraints handled by the

augmented Lagrangian method, where the MMA was used to minimize the augmented La-

grangian function [13]. The MMA has also been applied to solve optimization problems of

ultra high resolution shell structures considering over ten millions elements, demonstrating

the scale by which these problems can now be achieved [14].

Due to the generality and computational efficiency of the MMA, it has been imple-

mented into many structural topology optimization computer programs. This includes its

incorporation into educational codes such as PolyStress where the MMA handles a formu-

lation of multiple local stress constraints considering material nonlinearities in a Matlab

program [15]. Another application was the use of the MMA-like function approximations

implemented in a 250-line Matlab code for solving topology optimization formulations

considering linearized buckling criteria [16]. The MMA procedure was also presented in

an open source Matlab code in finding level set topology and shape optimization using den-

sity methods [17]. Furthermore, large-scale optimization problems have been computed in

the setting of a C/C++ code coupled with parallel implementation of the MMA [18]. In

addition to research endeavors, the MMA method has also proved to be an effective up-

date scheme for industry use with software such as PLAtform for Topology Optimization

(PLATO) by Sandia National Laboratories which handles topology optimization problems

for compliance minimization, heat flow maximization, or stress minimization in the 2D and
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3D setting [19]. Another powerful commercial software for topology optimization using

the MMA is TRINITAS which is capable of generating a 2D or 3D finite element mesh

for the desired design domain [20]. Note that the previously mentioned works are only a

few of many that have benefited by the MMA approach. Thus this review is by no means

complete and is intended just to highlight the diverse use of the MMA in optimization.

This thesis serves as a pedagogical approach in explaining and demonstrating the theory

behind sequential explicit, convex approximations. With the use of these methods being so

prominent in the field of structural topology optimization, it is essential to have a clear

understanding on the methodology, behavior, and influence these techniques have on the

final optimization solution.

1.2 Thesis Organization

The remainder of the thesis is presented in the following order. Chapter 2 will explain some

widely used sequential explicit, convex approximations while also serving as a brief liter-

ature review for other existing schemes. Chapter 3 describes the duality method in which

several of the sequential explicit, convex approximations can be solved. Chapter 4 demon-

strates various examples illustrating the behavior of different approximation schemes, with

a primary focus on the MMA scheme, in the context of both general optimization and struc-

tural topology optimization problems. Lastly, Chapter 5 concludes the notable discoveries

found in the numerical results of this extensive study.

3



CHAPTER 2

ON SEQUENTIAL EXPLICIT, CONVEX APPROXIMATIONS

An optimization problem can be described in the following most general mathematical

programming form:

min
x

f(x)

s.t. gi(x) ≤ i = 1, ...,m

hj(x) = 0 j = 1, ..., n.

(2.1)

The formulation can be translated as finding the design variable or set of design variables,

x, that minimize the optimization goal otherwise referred to as the objective function, f(x),

while satisfying the m imposed inequality and n equality constraints, gi(x) and hj(x),

respectively. In regards to structural topology optimization, the optimization formulation

more commonly takes the following form:

min
x

f(x)

s.t. gi(x) ≤ 0 i = 1, ...,m

x ∈ X =
{

x ∈ Rn xminj ≤ xj ≤ xmaxj , j = 1, ..., n
}

with K(x)u = F(x).

(2.2)

Here f(x) is the objective function which in the structural design setting commonly refers

to compliance i.e. the inverse of stiffness, but may differ depending on the structural design

target. The objective function is defined in terms of n design variables, x, which may

describe the area, density, thickness, etc. The design domain is restricted by m inequality

constraints. These constraints could include an imposed volume limit, an allowable stress,

a deflection constraint, or any restriction that may inform a more efficient design depending
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on the desired structural application. In addition, x is subjected to n box constraints with

lower and upper bounds of xminj and xmaxj to ensure feasible solutions. The formulation

described in Equation 2.2 enforces a state equation describing the linear elastic equilibrium

equation with u being the displacement vector, K(x) being the stiffness matrix, and F(x)

being the force vector. However, the state equation and response variables may vary among

topology optimization problems to describe different physical phenomena. Coupling the

optimization with finite element analysis allows the equilibrium equation to be used to

find the response variable as a function of the design variable (in this case u(x)), which

may be a term in the objective function such as in the case of compliance minimization

(C = FTu(x)). For the sake of simplicity, we employ a linear state equation. However, the

method can also handle nonlinear state equations, which is a field of much interest - see

references [21, 15].

Most structural topology optimization problems that are modeled to simulate a realistic

design setting often consider various constraints and are discretized into a fine mesh for

high-resolution results, thus transforming their mathematical formulation into a large-scale

numerical problem. These large-scale problems can obtain upwards of thousands to mil-

lions of degrees of freedom and typically take a nonconvex form, which makes finding their

explicit solution computationally expensive or in most cases either impractical or impos-

sible [22]. To combat these limitations, an approach to approximate large scale problems

as a sequence of explicit, convex subproblems was proposed [7, 8]. The idea behind this

method was that a subproblem would serve as a conservative yet precise approximation to

the original optimization formulation, obtaining properties of both convexity and separa-

bility ensuring a unique solution of the subproblem and an efficient solution strategy. Once

one subproblem is solved, if the convergence criteria is not satisfied, it formulates a new

subproblem using the solution from the previous iteration, hence achieving a final solution
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by a series of subproblems:

min f̃k(x)

s.t. g̃ki (x) ≤ 0, i = 1, ...,m

x ∈ X =
{

x ∈ Rn xminj ≤ xj ≤ xmaxj , j = 1, ..., n
}

with K(xk)u = F(xk).

(2.3)

The sequence of subproblems are formulated using information from the original optimiza-

tion formulation (see Equation 2.2) such as the objective function, inequality constraints,

gradient information (for first order approximations), and even Hessian information (for

second order approximations). In the optimization subproblem, as seen in Equation 2.3,

the terms f̃(x) and g̃i(x) represent the approximations of the objective function and the

constraints. The index k represents the number of iterations or subproblems to be solved

before convergence is reached. By reformulating the original optimization problem into a

series of explicit, convex, separable approximations, one can take advantage of using the

dual approach or other efficient mathematical techniques for solving the subproblem. The

sequence of subproblems can be solved efficiently thus leading to minimal computational

effort. Once the solution reaches the stopping criteria, such as a predefined tolerance of

the change between two previous solutions, the solving of the sequential approximate sub-

problems will end resulting in a final solution to the original optimization statement. This

methodology for solving optimization problems via sequential convex approximations is

described more explicitly in Algorithm 1. Note that it is assumed in all of the approxima-

tion techniques that the sensitivity information can be computed either numerically (e.g.

the adjoint method [23], automatic differentiation [24], etc.) or analytically for simple

problems.
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Algorithm 1 Procedure for Solving Optimization Problems using Approximation Schemes

1: Start with an initial design variable guess x0

2: Define maxIter, set k = 0
3: for k = 0 to maxIter do
4: Conduct finite element analysis: Solve K(xk)u = F(xk)
5: Compute the displacement vector, u(xk)
6: Calculate the objective function f(xk), constraints gi(xk), their gradients∇f(xk)

and ∇gi(xk), and if needed the Hessian H(xk)
7: Formulate the explicit, convex approximate subproblem about xk
8: Solve the subproblem to generate the next design variable update xk+1

9: if stopping criteria is satisfied then
10: break
11: end if
12: end for

The solution scheme by duality will be discussed more extensively in Chapter 3. The

remainder of this Chapter will discuss in detail the sequential, convex programming al-

gorithms that are commonly used in large-scale optimization problems. These algorithms

include SLP, SQP, CONLIN, MMA, and other variations of the MMA.

2.1 Sequential Linear Programming, SLP

One of the original methods for approximating optimization problems was by implement-

ing the first order expansion of the Taylor series using first order information from the

original optimization problem. This transforms the optimization problem into a set of first

order, convex subproblems:

min f̃k(x) = f(xk) +∇f(xk)T (x− xk)

s.t. g̃ki (x) = gi(xk) +∇gi(xk)T (x− xk) ≤ 0, i = 1, ...,m

x ∈ X =
{

x ∈ Rn αkj ≤ xj − xkj ≤ βkj , j = 1, ..., n
}
.

(2.4)

The SLP algorithm approximates the original optimization formulation by linearizing the

objective and constraints about the change in the design variables, x−xk. The approximate

objective function, f̃k(x), is defined using information from the original optimization prob-
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lem, the function and its gradient, f(xk) and ∇f(xk), evaluated at each k iteration starting

with x0 as the initial guess. The inequality constraints are formulated in a similar matter

using first order information from the original inequality constraint evaluated at each se-

quential iteration, g(xk) and ∇g(xk). Thus all the quantities in the formulation are known,

explicit functions of the design variables. Due to its linearity, the subproblem can be solved

through a variety of Linear Programming (LP) algorithms such as the simplex method [25].

To improve the SLP by bounding the solution domain and informing feasible changes

in the design, move limits are applied as introduced by Pope [9]. The lower move limit and

the upper move limit, αkj and βkj , describe the lower and upper bounds for the change in the

design variables, respectively. The selection of the move limits drastically impacts the speed

of convergence and even the success of the SLP algorithm [25]. In the case that the move

limits are too large there will be oscillations in the solution, and in the case that they’re

too small, the solution may converge slowly or never converge. Thus it is crucial to have

an understanding of the type of problem being solved in order to select reasonable move

limits. To remove the random selection of move limits from the design process, techniques

to calculate the move limits could be implemented. Several authors have proposed different

approaches to finding move limits, some based on search direction criteria [26] and others

based on gradient information [27, 28]. For example, Lamberti et al. [29] has demonstrated

that the implementation of the Constraints Gradient based Move Limit [27, 28] technique

in SLP has improved efficiency with comparable CPU time to other solution schemes in

the literature.

The SLP technique has been proved to be an efficient design variable update scheme

in several works of structural topology optimization considering compliance minimization,

multi-physics problems, dynamic formulations and more [30, 31, 32]. Due to its mathe-

matically simple form, the subproblem can be readily solved numerically and can account

for various different types of optimization problems. Limitations of the SLP algorithm

include the need for precise selection of move limits, which may require some trial and
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error runs, to avoid unfeasible solutions (in the scenarios where techniques to calculate the

move limits are not used). Although the SLP method also obtains a relatively, conservative

approximate form, depending on the optimization problem, it may not be informed enough

to reach a local minimum.

2.2 Sequential Quadratic Programming, SQP

To improve the robustness of the approximate subproblem generated by the SLP algorithm,

the objective function approximation can be extended considering second order information

transforming it into a SQP formulation [33, 10]:

min f̃k(x) = f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)TH(xk)(x− xk)

s.t. g̃ki (x) = gi(xk) +∇gi(xk)T (x− xk) ≤ 0, i = 1, ...,m

x ∈ X =
{

x ∈ Rn xminj ≤ xj ≤ xmaxj , j = 1, ..., n
}
.

(2.5)

The objective function is now approximated as a quadratic function by adding the sec-

ond order term of the Taylor expansion where H(xk) denotes the Hessian of the original

objective function evaluated at the design variable of the iteration. In most large-scale

optimization problems, finding the exact Hessian may be computationally expensive for

practical application, thus Hessian approximations are employed through techniques such

as Broyden rank-one quasi Newton updates, Davidon Fletcher Powell (DFP), or Broyden

Fletcher Goldfard Shanno (BFGS) [34].

The SQP algorithm has proved to be extremely useful in the optimization setting [35,

36]. Due to the quadratic nature of the approximate objective function, the problem be-

comes bounded and thus the need for move limits becomes less critical, which serves as

an advantage over the SLP technique [25]. However, drawbacks do exist such as the sub-

problem not being separable and thus the dual approach no longer being an efficient solver.

Because quadratic approximations are highly informative in representing certain optimiza-
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tion problems, efforts have been placed into efficiently solving the Nonlinear Programming

(NLP) problem [37, 38]. One of the most widely used approaches is that of Schittkowski

[39], where the solution of the quadratic programming subproblem is the search direction

and the corresponding Lagrange multipliers which are used to determine the next steepest

descent direction.

2.3 Convex Linearization, CONLIN

CONLIN is another method of sequential explicit, convex approximations proposed by

Fleury and Braibant [11]. In this method, the authors took notice of certain linear and

reciprocal features found often in structural optimization problems and created an approx-

imation that linearizes these terms with either direct or reciprocal variables, xj or 1/xj ,

respectively:

min f̃k(x) = f(xk) +
∑

+

∂f(xk)
∂xj

(xj − xkj ) +
∑
−

∂f(xk)
∂xj

xkj (xj − xkj )
xj

s.t. g̃ki (x) = gi(xk) +
∑

+

∂gi(xk)
∂xj

(xj − xkj ) +
∑
−

∂gi(xk)
∂xj

xkj (xj − xkj )
xj

≤ 0, i = 1, ...,m

x ∈ X =
{

x ∈ Rn 0 < xminj ≤ xj ≤ xmaxj , j = 1, ..., n
}
.

(2.6)

Both the objective function and the constraints in the approximate subproblem are formu-

lated in the same manner in (Equation 2.6) where
∑

+ denotes the functions, f(xk) and

gi(xk), with a positive derivative and where
∑
− denotes the functions with a negative

derivative, indicating the correct usage of either direct or reciprocal variables. The approx-

imation is convex (as per the name) and separable which means it can be readily solved

via a dual method approach. Fleury has since proposed a unique dual optimizer approach

tailored specifically for the CONLIN subproblem with reduced dimensionality in the pri-

mal and dual variables for an efficient solution scheme [40]. CONLIN has been proven to
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be the most conservative estimate formulated by direct and reciprocal variables [41] and

thus can solve a wide array of structural optimization problems, generating solutions in the

feasible domain. Such large-scale structural optimization problems have even included the

designs of naval and floating hydraulic structures [42].

It is important to note, however, that some restrictions arise from this method as a

result of the fixed curvature of the approximation. This may lead to poor fitting of the

original optimization problem and thus slow or unstable convergence. These issues were

later addressed by Svanberg in his sequential approximation technique, the MMA [6].

2.4 Method of Moving Asymptotes, MMA

The MMA technique, produced by Svanberg in 1987 [6], continues to be the most popular

choice of all sequential approximation methods in the structural topology optimization field

[21]. This is due to its ability in handling various types of characteristics in structural

optimization functions, all types of constraints, and expensive function evaluations. Its

flexibility has made it the favored approximation scheme for guaranteed convergence to

the local minima.

To improve upon the CONLIN approach, which had fixed conservatism, the MMA in-

troduces moving asymptotes, Lkj and Uk
j , which allow the level of conservatism of each de-

sign variable at each iteration to be controlled. In the context of optimization, conservatism

is defined as increasing the convexity terms to reduce the size of the trust region in order to

avoid constraint violations or by the mathematical definition g̃(k,0)
i (x̂(k,0)) ≥ gi(x̂(k,0)) [43].

The lower and upper asymptotes relationship with respect to the design variable is de-

scribed below:

Lkj < xkj < Uk
j . (2.7)

11



The MMA subproblem is defined by the following formulation now where 1/(Uk
j − xj)

and 1/(xj − Lkj ) serve as the intervening variables for

min g̃0
k(x) = rk0 +

n∑
j=1

(
pk0j

Uk
j − xj

+
qk0j

xj − Lkj

)

s.t. g̃ki (x) = rki +
n∑
j=1

(
pkij

Uk
j − xj

+
qkij

xj − Lkj

)
≤ 0, i = 1, ...,m

x ∈ X =
{

x ∈ Rn αkj ≤ xj ≤ βkj , j = 1, ..., n
}
,

(2.8)

where

pkij =


(Uk

j − xkj )2 ∂gi
∂xj

, if
∂gi
∂xj

> 0

0, if
∂gi
∂xj
≤ 0

qkij =


0, if

∂gi
∂xj
≥ 0

−(xkj − Lkj )2 ∂gi
∂xj

, if
∂gi
∂xj
≤ 0

rki = gi(xk)−
n∑
j=1

(
pkij

Uk
j − xkj

+
qkij

xkj − Lkj

)
.

(2.9)

The terms in Equation 2.9 will be computed for i = 0, ...,m. Note that the objective

approximation will now be denoted as g̃0
k in place of the previously used f̃k for a more

comprehensible definition in Equation 2.9. As interpreted from Equation 2.9 and Equa-

tion 2.7, pkij ≥ 0 and qkij ≥ 0. This information coupled with the evaluation of the gradient

and Hessian of the approximation functions (see Equation 2.10) demonstrates that the ap-
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proximation is indeed convex due to the Hessian being positive semi-definite:

∂gki (x)

∂xj
=

pkij
(Uk

j − xj)2
−

qkij
(xj − Lkj )2

∂2gki (x)

∂x2
j

=
2pkij

(Uk
j − xj)3

+
2qkij

(xj − Lkj )3

∂2gki (x)

∂xj∂xl
= 0 if j 6= l.

(2.10)

By taking notice of the form of the Hessian it can be seen that as the Lkj and Uk
j bounds

move closer to the xkj , the curvature of the approximation increases and thus so does the

level of conservatism. This is how the selection of the asymptotes, Lkj and Uk
j , control

how conservative the MMA approximation will behave. The flexibility and control of the

MMA can be demonstrated by changing the magnitudes of Lkj and Uk
j . If the asymptotes

are set to Lkj → −∞ and Uk
j → +∞ the MMA approximation is transformed into the

SLP approximation. If the asymptotes are instead defined as Lkj = 0 and Uk
j → +∞ the

MMA subproblem will be identical to that of the CONLIN. These claims are verified by

the proofs in Appendix A.

The move limits, αkj and βkj , defined in the formulation in Equation 2.8 serve to avoid

division by zero. To preserve this, the following inequalities must hold

Lkj < αkj < xkj < βkj < Uk
j , (2.11)

where

αkj = max(xminj , Lkj + µ(xkj − Lkj ))

βkj = min(xmaxj , Uk
j − µ(Uk

j − xkj ))
(2.12)

and where 0 < µ < 1. Note that the definition of the move limits has since been slightly

updated in its computational implementation by introducing a move parameter, C4, to help

control the speed of the convergence-see Appendix B for more information.
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The selection of the asymptotes has a drastic impact on the behavior and consequently

the efficiency of the MMA procedure. The effect of these parameters will be further ex-

plored in the numerical examples-see Chapter 4.0 for reference. For proper selection of the

move asymptotes and limits, to avoid oscillations in the iterations or slow convergence, an

iterative protocol is defined.

For the first two iterations, k = 0, 1, the moving asymptotes can be defined by the

following expressions:

Lkj = xkj − sinit(x
max
j − xmin

j )

Uk
j = xkj + sinit(x

max
j − xmin

j ),

(2.13)

where xkj is the value of the design variable at iteration k, 0 < sinit < 1, and xmin
j , xmax

j

are the lower and upper limits of the design variable, xj . In the later iterations, k ≥ 2,

the asymptotes are defined depending on the behavior of the design variable solutions in

the previous three iterations. If the change between the previous iterations, xkj − xk−1
j and

xk−1
j − xk−2

j , obtain opposite signs, this indicates that the solution is oscillating and hence

the approximation is not conservative enough. To increase the degree of conservatism the

asymptotes will be brought closer together by the following equations:

Lkj = xkj − sslower(x
k−1
j − Lk−1

j )

Uk
j = xkj + sslower(U

k−1
j − xk−1

j ),

(2.14)

where 0 < sslower < 1. In the case that the signs of xkj − xk−1
j and xk−1

j − xk−2
j are instead

the same sign, the approximation may be too conservative and could be sped up by the

following expressions:

Lkj = xkj − sfaster(x
k−1
j − Lk−1

j )

Uk
j = xkj + sfaster(U

k−1
j − xk−1

j ),

(2.15)
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where sfaster > 1.

In the rare occasion that the product of the difference between the the previous design

variables, (xkj − xk−1
j )(xk−1

j − xk−2
j ), is 0 the the move asymptotes will be defined by the

following expressions:

Lkj = xkj − (xk−1
j − Lk−1

j )

Uk
j = xkj + (Uk−1

j − xk−1
j ).

(2.16)

The MMA has had a few modifications for the purpose of computational implementa-

tion in efforts to improve the efficiency of the approximation scheme [43]. The equation

modifications and reasoning behind the changes made is highlighted in Appendix B for

reference.

While the methodology for selecting asymptotes in the MMA approximation has proven

to be quite robust there still exists uncertainty on the role of the empirical parameters,

sinit, sslower, sfaster, µ, and C4 on the speed of convergence and how to tune such param-

eters according to the problem at hand. The current understanding is that, in general, the

empirical parameters are problem dependent and cannot be tuned in any systematic way.

One way to eliminate the uncertainty of the optimal value of finding the empirical param-

eters would be to remove them all together. Such an idea was introduced by Fleury who

proposed calculation of the moving asymptotes using second order sensitivity information,

which could determine the curvature of the original function and use it in place of the em-

pirical parameters [5]. The results from this work indicate that either the same or fewer

iterations were needed to solve the subproblem using the proposed second order MMA

versus the original MMA approach. However the scalability of the second order MMA

may not be as strong as the MMA due to the added cost of the Hessian calculation.
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2.5 Globally Convergent Method of Moving Asymptotes, GCMMA

Although the MMA procedure has shown to be extremely effective in most optimization

problems, there are occasional scenarios in which the solution never converges due to the

approximation being monotonic [44]. To alleviate these occurrences, modifications to the

MMA have since been proposed to ensure global convergence via non-monotonic function

approximations, the most popular being the GCMMA introduced by Svanberg [12, 45].

To ensure global convergence, the GCMMA approach suggests extending the MMA

method by adding another series of iterations to the subproblem, which will be referred

to as inner iterations, `. The inner iterations guarantee that each approximate subproblem

is conservative. The indexing for the iterations will be denoted by the outer and inner

iteration, (k, `).

To elaborate upon the methodology of this approach let us start with an initial guess of

x(k,0) to form the approximate subproblem. If the solution of the approximate subproblem,

x̂(k,0), results in the approximate function evaluations to be greater than the original opti-

mization function, g̃(k,0)
i (x̂(k,0)) ≥ gi(x̂(k,0)), the approximation is conservative and satisfies

the inequality constraints, providing a solution in the feasible design domain. The sequence

of approximate subproblems will then continue onto the next outer iteration, x(k+1), con-

tinuing the conservative check at each iteration until convergence is reached.

In the case that the conservative check is not satisfied, g̃(k,0)
i (x̂(k,0)) < gi(x̂(k,0)), an inner

iteration will be made to create a new subproblem at x(k,1)
i , which will be more conservative

than the previous subproblem due to the conservative parameter ρ(k,v)
i . The inner iterations

will incrementally increase until the subproblem satisfies the conservative check, which

normally only takes a finite, small number of iterations.
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The subproblem is described by the same formulation as the MMA, as seen in Equa-

tion 2.8, however the coefficients p(k,`)
ij , q(k,`)

ij , and r(k,`)
ij are now dependent on the inner

iterations as follows:

min g̃0
(k,`)(x) = r

(k,`)
0 +

n∑
j=1

(
p

(k,`)
0j

Uk
j − xj

+
q

(k,`)
0j

xj − Lkj

)

s.t. g̃
(k,`)
i (x) = r

(k,`)
i +

n∑
j=1

(
p

(k,`)
ij

Uk
j − xj

+
q

(k,`)
ij

xj − Lkj

)
≤ 0, i = 1, ...,m

x ∈ X =
{

x ∈ Rn αkj ≤ xj ≤ βkj , j = 1, ..., n
}
.

(2.17)

The terms pij , qij , and ri for i = 0, ...,m are calculated using gradient information and

parameters, σkj and ρ(k,`)
i .

p
(k,`)
ij = (σkj )2max

{
0,
∂fi
∂xj

(xk)

}
+
ρ

(k,`)
i σkj

4

q
(k,`)
ij = (σkj )2max

{
0,− ∂fi

∂xj
(xk)

}
+
ρ

(k,`)
i σkj

4

r
(k,`)
i = fi(x

k)−
n∑
j=1

p
(k,`)
ij + q

(k,`)
ij

σkj

(2.18)

The conservative parameter at the beginning of any outer iteration (when ` = 0), ρ(k,0)
i , is

calculated by the following expression:

ρ
(1,0)
i = 1,

ρ
(k+1,0)
i = max

{
0.1ρ

(k,ˆ̀(k))
i , ρmin

i

}
,

(2.19)

where ρmin
i is a strictly positive small number. Here ˆ̀(k) denotes the required number of

inner iterations. For the following calculations of the conservative parameter, ρ(k,`)
i , in-

formation from the solution of the most previous subproblem is used. The approximate

subproblem can be rewritten in a new form to more easily determine the the next approxi-
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mate value of ρ(k,`)
i .

g̃
(k,`)
i (x) = hki (x) + ρ

(k,`)
i dk(x) (2.20)

where

dk(x) =
n∑
j=1

(Uk
j − Lkj )(xj − xkj )2

(Uk
j − xj)(xj − Lkj )(xmaxj − xminj )

(2.21)

In an attempt find a ρ(k,`+1)
i that satisfies the conservative check at the next iteration, the

following equation is applied:

hki (x̂(k,`)) + (ρ
(k,`)
i + δ

(k,`)
i )dk(x̂(k,`)) = gi(x̂(k,`)), (2.22)

where

δ
(k,`)
i =

gi(x̂(k,`))− g̃(k,`)
i (x̂(k,`))

dk(x̂(k,`))
. (2.23)

This relationship implies that ρ(k,`)
i + δ

(k,`)
i will be an reasonable estimate for ρ(k,`+1)

i . The

following equations use this information while preserving global convergence.

ρ
(k,`+1)
i = min{1.1(ρ

(k,`)
i + δ

(k,`)
i ) 10ρ

(k,`)
i } if δ

(k,`)
i > 0,

ρ
(k,`+1)
i = ρ

(k,`)
i if δ

(k,`)
i ≤ 0

(2.24)

The σkj term in the approximation functions are updated in a similar fashion to that of the

move asymptotes where for the first two outer iterations, k = 1, 2,

σkj = 0.5(xmax
j − xmin

j ). (2.25)

For the next outer iterations, the σki parameter is updated by,

σkj = γkj σ
(k−1)
j , (2.26)
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where

γkj =


0.7 if (xkj − xk−1

j )(x
(k−1)
j − x(k−2)

j < 0

1.2, if (xkj − xk−1
j )(x

(k−1)
j − x(k−2)

j > 0

1.0, if (xkj − xk−1
j )(x

(k−1)
j − x(k−2)

j = 0.

(2.27)

This term must preserve the bounds,

0.01(xmax
j − xmin

j ) ≤ σkj ≤ 10(xmax
j − xmin

j ). (2.28)

An extensive proof of global convergence of the GCMMA can be found in [45]. Note

that global convergence only implies a guaranteed convergence from any starting point to

a local minimum and not to the global minimum. In most scenarios, the GCMMA has

shown to perform slower and less efficiently in comparison to MMA, however, in cases in

which the MMA has difficulty to reach a stable solution, the GCMMA may prove to be an

effective alternative choice.

2.6 Further Extensions of the MMA

Extensions of the GCMMA have since been proposed to improve the curvature of the ap-

proximation by using non mixed second order sensitivity information instead of the non-

monotonic parameter, this method is known as the second order GCMMA [46, 44]. Other

extensions have focused on improving the GCMMA through obtaining gradient informa-

tion from the previous subproblem iteration and applying it in place of the conservative

parameter otherwise referred to as the Gradient Based Method of Moving Asymptotes

(GBMMA) [47]. All of the discussed MMA variations can be solved using the techniques

discussed in Chapter 3.0.
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CHAPTER 3

SOLVING THE MMA SUBPROBLEM: PRIMAL-DUAL RELATIONSHIPS

There are several ways in which a solution to an MMA subproblem can be achieved. The

MMA approximation formulation or otherwise referred to as the primal problem, obtains

properties such as convexity and separability making it an ideal candidate for many numer-

ical solution schemes. Of these solution strategies, duality will be discussed in detail in the

context of solving the MMA subproblem.

3.1 Dual Solution Scheme

The primal optimization problem, P, of the MMA approximation as defined in section 2.4

is equal to the following:

P



min g̃k0(x) = rk0 +
∑n

j=1

(
pk0j

Uk
j − xj

+
qk0j

xj − Lkj

)

s.t. g̃ki (x) = rki +
∑n

j=1

(
pkij

Uk
j − xj

+
qkij

xj − Lkj

)
≤ 0, i = 1, ...,m

x ∈ X =
{

x ∈ Rn αkj ≤ xj ≤ βkj , j = 1, ..., n
}
,

(3.1)

where the g̃ki terms are convex and continuously differentiable functions. In many cases, the

primal problem may be difficult to solve directly using the optimality conditions, Karush-

Kuhn-Tucker (KKT) conditions [48], due to possible nonlinearity of the functions and large

number of design variables and constraints which would make its implementation compu-

tationally expensive. For nonconvex problems the KKT conditions are necessary but not

sufficient conditions in which the Lagrangian function obtains a local optima (minima or

maxima). In the case of that the problem is convex and that Slater’s constraint qualification

is satisfied [22], such as in the case of the primal problem, P, generated by the MMA ap-
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proximation, the KKT conditions are both necessary and sufficient for finding the optimal

point [22]. In addition, the primal problem’s convexity property implies that the following

dual problem, D is equivalent to P.

D


max
λ

f(λ)

s.t. λi ≥ 0, i = 1, ...,m

(3.2)

where

f(λ) = min
x ∈ X

L(x,λ) = min
x ∈ X

{
g̃0(x) +

m∑
i=1

λig̃i(x)
}

(3.3)

The dual objective function is the Lagrangian function, L, composed of the original objec-

tive function of the primal problem and the addition of the constraints with an associated

Lagrangian multiplier, λi. The dual problem is subjected to the constraints that the λi be

nonnegative.

It is beneficial to reformulate the primal subproblem into the dual subproblem because

the constraints are now simpler to handle in this setting such that m is a relatively small,

finite number. Now considering the n design variables the Lagrangian function takes the

form:

Lj(x,λ) =
n∑
j=1

Lj(xj,λ) =
n∑
j=1

{
(g̃0j(xj) +

m∑
i=1

λig̃ij(xj)
}
. (3.4)

Thus transforming the dual objective function into,

f(λ) = min
x ∈ X

n∑
j=1

Lj(xj,λ). (3.5)

Due to the separability and convex characteristics of the Lagrangian function, the rela-

tionship between the Lagrangian multipliers and design variables can be determined by

applying the optimality condition to the dual function:

∂Lj(xj,λ)

∂xj
= 0 =

∑m
i=0 λipij

(Uj − xj)2
−
∑m

i=0 λiqij
(xj − Lj)2

, (3.6)
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where λ0 = 1. Rearranging this expression we obtain:

xj(λ) =
Uj + ηLj
η + 1

, (3.7)

where

η =

√∑m
i=0 λipij∑m
i=0 λiqij

. (3.8)

This term will be substituted back into the Lagrangian where the λ terms will be determined

by using the bisection method or alternatively by a direct method [49].

The optimal values of the Lagrange multipliers λ∗ can be used in the expression for

xj(λ) (Equation 3.7) to determine the values of the optimal design variables. The design

variables must go through a final check in order to satisfy the box constraints such that:

xj(λ) = x∗j if αj ≤ x∗j ≤ βj

xj(λ) = αj if x∗j ≤ αj

xj(λ) = βj if x∗j ≥ βj.

(3.9)

Once found, these updated design variables, xj(λ), will either not satisfy the convergence

criteria and be used to continue the next MMA subproblem or they will satisfy the conver-

gence criteria, completing the solution scheme.

Alternative approaches for solving the approximate subproblem include a primal-dual

interior point method proposed by Svanberg in the context of the MMA and GCMMA sub-

problem (for an efficient Matlab implementation) [43]. This is the method that is used to

solve the MMA sequence of subproblems in the sizing optimization and topology optimiza-

tion examples in the following Chapter. In the commercial software, PLATO, the problems

are solved using a trust region method [50].
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CHAPTER 4

NUMERICAL RESULTS

In this section we will examine the MMA in several optimization settings. In Section 4.1 a

one-dimensional function will be analyzed considering multiple variations of move asymp-

totes to explore how they impact the curvature of the approximation and how under certain

values they even replicate other sequential convex approximation schemes. Section 4.2

studies a sizing optimization problem comparing the solution achieved analytically, with

a Matlab package CVX [51], and by the MMA. This example also investigates the rela-

tionship between the MMA empirical parameters with the move limits and asymptotes. In

Section 4.3 the MMA is examined in the compliance minimization topology optimization

problem where the impact of the empirical parameters on the final topology is explored as

well as comparing the MMA to other update schemes. The Section 4.4 example examines

the use of the MMA in the stress constrained topology optimization framework, elaborat-

ing on the interplay between the MMA iterations and the augmented Lagrangian steps.

Lastly in Section 4.5 the application of the MMA in the PLATO software is explored in the

three-dimensional topology optimization setting.

4.1 One-Dimensional Function

In this first example the MMA is explored in the setting of a one-dimensional function:

f(x) = −x sinx. (4.1)

The approximation functions are explored at two different points, x0 = 1.5 and x0 = 4.5,

with x ∈ [0, 6]. At each point, two MMA approximations are evaluated with lower and

upper asymptotes of L0
1 → −∞, U0

1 → +∞ and L0
1 = 0, U0

1 → +∞ to replicate SLP
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and CONLIN approximations respectively (see Appendix A). The first point x0 = 1.5 has

a negative gradient by ∂f(x)/∂x = − sinx−x cosx and ∂f(1.5)/∂x = −1.1036, thus the

MMA approximation acting as CONLIN will have the form of a reciprocal approximation

as described in Section 2.3. The MMA approximation acting as an SLP function takes

a linear form as expected. Both of these approximations, as seen in Figure 4.1, demon-

strate the flexibility of the MMA in being able to approximate functions of many forms by

modifying only the move asymptotes.

Figure 4.1: MMA approximations of a 1D function implementing asymptotes which repli-
cate SLP and CONLIN behavior

The same MMA function approximations are evaluated at x0 = 4.5 which has a positive

gradient of ∂f(4.5)/∂x = 1.9261. According to the CONLIN definition, because the

function has a positive gradient it will be approximated by a linear function thus both MMA

approximations take the same linear form (see Figure 4.1). This illustrates how CONLIN

(or in this case MMA acting as CONLIN) is the most conservative possible approximation

using linear and reciprocal variables [41]. This study is illustrated in Figure 4.1 where f(x)
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represents the actual actual function, f(x)M,S represents the MMA which replicates SLP

behavior, and f(x)M,C represents the MMA which replicates CONLIN behavior.

Using the same one-dimensional function, the MMA approximations are now made

around x0 = 3 with a lower asymptote of L0
1 = 0 and four different upper asymp-

totes, U0
1 → +∞, U0

1 = 10, U0
1 = 4, and U0

1 = 3.25. For the first approximation

(L0
1 = 0, U0

1 → +∞) the MMA takes the form of the CONLIN approximation as studied

previously. Again it is seen that because the function has a positive gradient at x0 = 3,

∂f(3)/∂x = 2.8289, the CONLIN will act as a linear approximation. In the following ap-

proximations as the upper asymptotes are reduced so are the move asymptote intervals. As

seen in Figure 4.2, as the move asymptotes move closer to each other the approximations

become more conservative. This demonstrates the capability of the MMA technique for

approximating functions to any degree of conservatism.

Figure 4.2: MMA approximations of a 1D function considering multiple move asymptote
magnitudes
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4.2 Sizing Optimization

The next problem to be analyzed is a two dimensional optimization problem. The problem

is defined as a sizing optimization problem, which is a type of structural optimization in

which the only design variables are cross sectional area parameters. Here the design vari-

ables represent the cross sectional width dimensions, x1 and x2, of a two segment cantilever

beam which is fixed on the left end and subject to a point load on the right, free end [22].

Figure 4.3: Cantilever beam design domain

We optimize the structure such that the weight is minimized considering a displacement

inequality constraint and box constraints about the design variables.

min f(x1, x2) = x1 + x2

s.t. g1(x1, x2) =
1

x3
1

+
7

x3
2

− 1 ≤ 0

0.1 ≤ x1 ≤ 10, 0.1 ≤ x2 ≤ 10

(4.2)
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4.2.1 Analytical Solution

Due to the mathematical simplicity of the problem, the solution can be readily achieved

analytically. This will be executed and used to compare against the optimal solutions ob-

tained by the MMA subroutine. The analytical solution is achieved by assuming that the

inequality constraint is active by setting it as an equality. This equality can then be rewritten

by solving for one design variable as a function of the other as done for the design variable,

x2, below.

x2 = 3

√
7

1− x−3
1

(4.3)

Equation 4.3 will then be substituted back into the objective function where we calculate

the gradient of the function and set it equal to zero to obtain an optimal solution at the

stationary point,
∂f

∂x1

= 0 = 1− 3
√

7x−4
1

(
1

1− x−3
1

)4/3

. (4.4)

Once solved, we obtain the solution to the optimization problem:

x∗1 =
3
√

1 + 71/4 ≈ 1.3797 x∗2 =
3
√

7 + 73/4 ≈ 2.2442,

with a final objective value of

f(x∗) ≈ 3.6240.

Switching Objective and Constraint

Now let’s examine the solution if the objective and constraint functions were reversed for

an optimization objective to minimize deflection subject to a weight constraint, where W
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is some arbitrary weight limit.

min f(x1, x2) =
1

x3
1

+
7

x3
2

s.t. g1(x1, x2) = x1 + x2 ≤ W

x1 > 0, x2 > 0

(4.5)

Following the same procedure as described above we reach the following solution.

x∗∗1 ≈ 0.3807W x∗∗2 ≈ 0.6193W

It is observed from evaluating the solutions in both cases, that the ratios between the design

variables are equivalent

x∗∗2
x∗∗1

=
x∗2
x∗1
≈ 1.6267,

which brings to light a scaling property in which the solution of one problem can be found

by scaling the solution of the other. This holds true for cases in which the box constraints

are not active and that the optimal solutions satisfy the KKT conditions.

4.2.2 Solution by CVX

As an additional form of verification to the solution of this problem, the sizing optimization

problem was solved in CVX, a Matlab software for convex programming [51, 52]. The

CVX software had returned the optimal solution at x1 = 1.3737 and x2 = 2.2442 for

a optimal objective function value of f(x∗) = 3.62399 in agreement with the analytical

solution previously found.
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4.2.3 Solution by MMA

We now solve the same optimization formulation as in Equation 4.2 using the MMA sub-

routine. The optimizer parameters are set such that sinit = 0.1, sfaster = 1.2, sslower = 0.5,

C4 = 0.5, and µ = 0.1. The initial guess is defined by x0
1 = x0

2 = 5 and 10 iterations are

run. Figure 4.4 demonstrates the convergence of the design variable, x2, with its associated

move limits and asymptotes. The convergence of the objective function and the constraint

are shown in Figure 4.5.

Figure 4.4: Convergence history of the design variable, x2

The solution achieved by the MMA with this set of parameters was reported as x∗ =

(1.3799, 2.2441) at the end of the tenth iteration, which is extremely close to that of the

analytical solution. The chosen empirical parameters set large search intervals for the de-

sign variables as per the definition of the move limit and asymptote bounds. By examining

Figure 4.4, it is seen that the move asymptotes have the same range for the first two iter-

ations as expected (see Equation 2.13). On the third iteration, the descent of the design
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variable, x2, in the past iterations results in move asymptotes that move farther apart for a

less conservative approximation in effort to speed up the convergence. This continues until

x2 oscillates and thus the move asymptotes and limits are brought closer together in the fifth

iteration for more conservative bounds. After this is done the design variable converges to

the optimal solution.

Figure 4.5: Convergence of the objective function and constraint

As seen in Figure 4.5, the history of the objective and constraint have a direct relation-

ship to the history of the design variable. At the fourth iteration, where the move limits

have a large range, the inequality constraint it violated. However once the approximation

becomes more conservative at the next iteration the design variable corrects, enforcing the

objective and constraint to converge smoothly with an inequality constraint that becomes

active, g1(x∗) = 0, and the objective which is minimized to f(x∗) = 3.6240, same as the

analytical solution and solution by CVX.

The complete history on the convergence of the design variables is visualized in Fig-

ure 4.6. The initial guess of the design variables is seen at (5, 5) in the feasible domain.
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Figure 4.6: Contour plot of the sizing optimization problem

Iteratively, at each solution of the MMA subroutine, the design variables move closer to-

ward the optimal solution. Near the fifth iteration, the solution converges in agreement with

the previous convergence plots.

Next the empirical parameters are defined to achieve a more conservative approxima-

tion from the start of the subroutine. This is done by tightening the bounds for the lower and

upper asymptotes through setting, sinit = 0.05, sfaster = 1.1, sslower = 0.4, and C4 = 0.3,

which are all decreased from the previous MMA sizing optimization problem.

Expectedly, as demonstrated in Figure 4.7, the bounds of the move asymptotes are

tighter throughout the convergence history and do not increase by the same order of magni-

tude as in the previous example. The more conservative move asymptotes are a result of the

decreased s empirical parameters and hence the move limits are also more conservative. It

is discovered that as a result of the conservative approximations, the design variables take

longer to converge. In this example x2 doesn’t oscillate until the eighth iteration versus the

fifth in the previous example. Also the final solution at the end of the fifteenth iteration is
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Figure 4.7: Convergence history of the design variable, x2, by a more conservative MMA
approximation

x∗ = (1.3815, 2.2425) which is close to the analytical solution however the previous, less

conservative approximation achieved a solution more near the analytical solution at the end

of only the tenth iteration.

The convergence of the objective and constraint functions is more gradual and smooth

when applying an approximation of greater conservatism, as seen in Figure 4.8 where at the

final iteration f(x∗) = 3.6240 and g1(x∗) = 0. When x2 oscillated the inequality constraint

was violated as in the previous MMA procedure. However, in this more conservative ap-

proximation the inequality constraint was not violated nor did the design variable oscillate

to the same extent as before. Applying a more conservative approximation by the MMA

will increase the computational time especially considering large scale problems, however

in some cases it may be pragmatic to avoid excessive oscillation and ensure steady conver-

gence.
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Figure 4.8: Convergence of the objective function and constraint by a more conservative
MMA approximation

In the final variation of the sizing optimization problem, the MMA subproblem is de-

fined by the same empirical parameters from the first cantilever example except with one

modification, increasing sinit from 0.1 to 0.5. This examples serves as a reminder of the

impact each empirical parameter has on the approximation and performance of the MMA

subroutine, thus it is important to have a thorough understanding on how these empirical

parameters influence the approximation scheme and hence the solution. The increase of

sinit created much larger bounds of the initial move asymptotes which consequently ef-

fected the the following move asymptote bounds. The lack of conservatism led to lots of

oscillation of the objective, constraint, and design variables in the initial iterations. How-

ever, this example also demonstrates the robustness of the MMA procedure such that even if

poor selection of empirical parameters are chosen, in most cases the MMA will eventually

reach a stable convergence and feasible solution.
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Figure 4.9: Convergence of the objective function and constraint by ill-chosen empirical
parameters

4.3 Compliance Minimization Topology Optimization

In this example, sequential approximation update schemes are studied in a topology opti-

mization problem in the continuum setting considering the classical topology optimization

framework, compliance minimization subject to a single, linear volume constraint [53].

min
ρ

f(ρ,u) =

∫
Γ̄N

t · uds

s.t. g(ρ) =
1

|Ω|

∫
Ω

mV (ρ)dx− v̄ ≤ 0

ρi ∈ [0, 1] i = 1, ..,m

with K(ρ)u = F

(4.6)
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In this formulation the objective function of compliance is defined by the design vari-

able of element densities via a continuous parametrization function and response variable

vector of displacements, ρ and u. The compliance is found by integrating the dot product

of the traction, t, with u over the space where nonzero tractions are applied, Γ̄N . The vol-

ume constraint, g(ρ), is defined about the entire domain, Ω, in which mV (ρ) represents the

volume interpolation function and v̄ the volume fraction. The densities are penalized by

the material interpolation function following the Solid Isotropic Material with Penalization

(SIMP) formulation to primarily take values of 0 or 1. The state equation governs linear

elastic behavior.

In topology optimization, the continuum setting discretizes the design domain into

thousands or millions of elements to perform finite element analysis to determine the el-

ement densities. The intermediate densities are then interpolated by a single-material in-

terpolation function, such as the SIMP, to make the final topology continuous and discrete

[54]. When considering the classical topology optimization problem, the OC method has

demonstrated rapid convergence with the implementation of a damping parameter proposed

in the augmented, heuristic version by Bendsoe [55]. This method was also demonstrated

to obtain identical behavior to sequential convex approximations of exponential and recip-

rocal intervening variables [56]. Due to the efficiency of the method it has been widely

popularized when solving this class of compliance minimization problems. However the

OC method obtains severe limitations when solving problems considering more than one

constraint or non-monotonic formulations. To accommodate for solving non-self-adjoint

problems, a new update scheme, named the sensitivity-separation method, uses an approx-

imation based on the sum of non-monotonic functions for a construction enabled by sensi-

tivity separation [57]. However the MMA scheme remains as the most robust solver, which

can handle both multiple constraints and non-self-adjoint formulations.

The following numerical example will evaluate an MBB beam using the educational

code, PolyTop [53]. The first part of the example will serve to explore the impact of the
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MMA empirical parameters on the final optimized topology in a compliance minimization,

continuum setting. The second study will compare the topological solutions achieved by

the MMA, OC, and sensitivity-separation update schemes.

Figure 4.10: Design domain of the MBB beam

The structure is simply supported, with dimensions of L = 6 m and H = 1 m, subject

to a downward load of P = 0.5 N located mid-span of the beam (see Figure 4.10). In the

first study half of the MBB beam domain is analyzed considering 10,000 polygonal finite

elements [58], a constant SIMP penalization term p = 3, a filter radius of R = 0.04 m,

a volume fraction of v̄ = 0.5, a poisson’s ratio of v = 0.3, and k = 150 iterations. A

series of six different variations of MMA empirical parameters were evaluated, as seen in

Table 4.1, to explore the affects of changing these parameters has on the topology and to

what degree. All examples are run on Matlab R2019a on a desktop computer with Intel(R)

Xeon(R) CPU E5-1660 v3, 3.00 GHz processor with 64.0 GB of RAM.
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Figure 4.11: Optimized results of the MBB beam considering various MMA parameters

sinit sfaster sslower C4 f(x∗)
a 0.5 1.2 0.7 0.5 50.772
b 0.5 1.2 0.55 0.5 50.685
c 0.1 1.1 0.1 0.1 51.02
d 0.99 5 0.5 0.5 50.411
e 0.1 1.2 0.55 0.2 50.364
f -same as e, obj scaled by 10- 5.025

Table 4.1: MMA empirical parameters and final optimal objective values

In Figure 4.11a a standard set of empirical parameters were chosen resulting in an ob-

jective of 50.772 at the end of the final iteration. By slightly reducing the sslower parameter

in Figure 4.11b the performance improves slightly with a lower final objective of 50.685

resulting in the same topology as in the Figure 4.11a. In Figure 4.11c the empirical param-

eters are chosen to enforce an extremely conservative MMA approximation, as expected

this leads to a higher final objective value of 51.02 with the objective function arriving at a

new local minima for a different topology than the previous examples. In Figure 4.11d the

empirical parameters are chosen such that the MMA scheme is a non-conservative approx-
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imation. Because the objective function of compliance under the SIMP penalization term

p = 3 is highly nonlinear, the objective function yet again reaches another local minima

for a different final topology achieving the lowest objective function yet of 50.411. The

next selection of the empirical parameters in Figure 4.11e influences the initial bounds to

be conservative but obtains customary bound update parameters, this results in a topology

similar to that in the Figure 4.11a but with a slightly lower objective than all the previous

examples at 50.364 indicating an increased performance. The final simulation keeps the

same empirical parameters as the previous but scales the objective function and its gra-

dients. As described by Svanberg’s implementation of the MMA into Matlab [43], the

algorithm works most efficiently when the objective function value is within the range

1 − 100. Although the current objective value is within this range we consider a scaling

factor of 10 to explore the effects of scaling on the optimization performance. The results

of the scaling in Figure 4.11f includes a topology with a new feature in the top right corner

which differentiates itself from the topology in part e. The scaled final objective value is

5.025 for an unscaled final objective of 50.25 the lowest of all the examples run. These

simulations all demonstrated the impact of the selection of the MMA empirical parameters

has on the topology optimization problem. It also demonstrated that there is no intuitive

way for selecting these parameters for improved performance other than by trial and error

and with comparison of these previous sizing optimization example in section 4.2 we see

how appropriate parameter selection is a problem-dependent issue.

If we examine the topology in Figure 4.11c, it is recognized that the solution has not

yet converged with grey regions remaining in the center of the beam. This is due to the

problem being solved by a conservative MMA approximation, as defined by the empirical

parameters, which implies a slower convergence. When increasing the iterations to k =

200, we notice that the topology converges to a more discrete solution, see Figure 4.12,

with a final objective of 50.636.
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Figure 4.12: MBB beam topology achieved by k = 150 and k = 200

The MBB beam is now studied under SIMP continuation as p increases from 1 to 4

at increments of 0.5, holding the same parameters as the previous example, for three dif-

ferent update schemes; the OC, the MMA, and the sensitivity-separation scheme. The

update scheme completes for each penalization term when either the change in the two

most previous solutions is less than the tol = 0.01 or when the iteration count reaches the

MaxIter = 150.

Figure 4.13: Topology generated by the update scheme (a) OC (b) MMA (c) sensitivity-
separation
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The solutions generated by the different update schemes in the continuation setting all

obtain similar topologies as seen in Figure 4.13. When the OC update scheme was used

it took 917 iterations to converge to the final objective of f(x∗) = 52.253 with a total

CPU time of 6.65 minutes with little of the time designated to the update scheme. For

the MMA update scheme empirical parameters of sinit = 0.5, sfaster = 1.2, sslower =

0.55, and C4 = 0.5 were selected. The solution of f(x∗) = 53.157 was achieved after

832 iterations with a final CPU time of 7.40 minutes now with a considerable percentage

of the time dedicated to computing the update scheme. In the solution achieved by the

sensitivity-separation scheme, a total of 951 iterations were needed to converge to a final

objective of f(x∗) = 52.847 with a total CPU time of 6.88 minutes, similar to the OC

in total time and small CPU time required for the update scheme. When comparing the

convergence history in Figure 4.14 and the CPU time in Figure 4.15 , the MMA may

require less iterations in comparison to the other solution strategies however those iterations

are more computationally involved during the update scheme as seen in Figure 4.15 where

the CPU time per iteration is compared among the different update schemes. Although

the MMA approximation may not be the most efficient solver in this classical topology

optimization framework, in cases of more complex optimization formulations, the MMA

may be the only feasible update scheme that leads to a solution as to be demonstrated in

the following example considering a stress constrained topology optimization formulation.
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Figure 4.14: Convergence history of the objective function by solution schemes the OC,
MMA, and sensitivity-separation

4.4 Stress Constrained Topology Optimization

In this example the use of the MMA approximation is explored in a more complex op-

timization setting, the stress-constrained problem. Here we study the stress-constrained

problem solved by an augmented Lagrangian method, aggregation-free approach which

handles local stress constraints [13, 15]. The optimization formulation is defined by the

following:

min
ρ

f(ρ) =
1

|Ω|

∫
Ω

mV (ρ)dx

s.t. gj(ρ,u) = mE(ρ)Λj(Λ
2
j + 1) ≤ 0, j = 1, .., n

with Λj = σvj /σlim − 1

K(ρ)u = F,

(4.7)
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Figure 4.15: CPU time for the MBB topology optimization problem solved by OC, MMA,
and the sensitivity-separation

where now the objective is to minimize the mass ratio or volume fraction subjected to n

local stress constraints, one per finite element. The stress constraints are defined by the

material interpolation function, mE(ρ), and Λj which is a function of the von Mises stress

measured by the Cauchy stress tensor and the stress limit of the material. For this study

only linear elastic material was considered however, the PolyStress work can also handle

nonlinear material constitutive models [15].

The augmented Lagrangian based approach reformulates the optimization statement

into an Lagrangian function written as the objective of mass ratio summed with all the

local stress constraints and their associated Lagrange multipliers. This method, coupled

with appropriate scaling of the constraints, allows us to handle the large quantity of local

stress constraints. The augmented Lagrangian function is solved by a series of solutions

to the MMA approximate which are found explicitly. The solution strategy considers i

outer iterations for solving the augmented Lagrangian function and k inner iterations for

minimizing the augmented Lagrangian by the MMA. The flowchart in Figure 4.16 depicts

this procedure.
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Figure 4.16: Optimization procedure solving the stress constrained problem using the aug-
mented Lagrangian approximated by the unconstrained MMA [15]

The following stress constrained example evaluates an L-bracket domain which is pinned

along the top edge and subjected to a downward point load on several nodes on the edge,

see Figure 4.17a. The domain has a length of L = 1 m, a load P = −0.25 N, 10,000

elements, a filter radius of R = 0.05 m, a constant penalization term p = 3.5 m, a

tol = 0.002, 5 maximum MMA inner iterations k, and a total augmented Lagrangian

steps of i = 150. The MMA parameters are defined for a conservative approximation

by sinit = 0.2, sfaster = 1.1, sslower = 0.5, and C4 = 0.15.

The MMA scheme served as an efficient update scheme in solving the stress constrained

problem converging at 41 iterations and 42 seconds, achieving a final objective of 0.323 for

the volume fraction. The von Mises map in Figure 4.17c depicts the von Mises stress map

indicating areas of high stress in the red regions. While the sensitivity-separation was de-

rived to handle non-self-adjoint problems, it was originally derived considering only one

global constraint, thus under these circumstances the present version of the sensitivity-

separation is not a valid update scheme. However this update scheme may work if red-
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Figure 4.17: Stress constrained L-bracket featuring (a) the design domain (b) the final
topology (c) the von Mises stress map

erived for the stress constrained optimization formulation. This example demonstrates how

the MMA may be advantageous to other update schemes in certain problems due to its

generality and robustness. It is for this reason that the MMA is typically the implemented

update scheme when the optimization formulations are complex.

To explore the interplay between the number of MMA iterations, k, and augmented

Lagrangian steps, several simulations are examined under different MMA iterations. We

see in the previous solution that the L-bracket converges to a discrete structure using a

maximum of 5 MMA iterations. It is now questioned whether the maximum number of

MMA iterations can be reduced to decrease the optimization time and to what effect will

this have on the final topology.

k AL Steps Obj Opt time (s)
1 150 0.691 38
2 70 0.451 30
3 49 0.354 30
4 46 0.333 36

Table 4.2: Results by varying MMA iterations
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Figure 4.18: Von Mises stress map for varying MMA iterations

As seen in Figure 4.18, when k = 4 a structure with discrete elements, as ideal for addi-

tive manufacturing purposes, is obtained with a optimal volume fraction of f(ρ∗) = 0.333,

higher than when k = 5. It is discovered that as k decreases, the topology becomes in-

creasingly complex and the objective value increases, neither being desirable scenarios.

The computational time reduces for k = 2, 3, however for k = 1, the computational time

instead increases as a result of the increased augmented Lagrangian steps. From this infor-

mation it is learned that a finite number of MMA iterations is necessary to minimize the

augmented Lagrangian function most successfully.

4.5 Three-Dimensional Topology Optimization in PLATO

To demonstrate the translation of topology optimization academic research into industry,

this example utilizes the software PLATO by Sandia National Laboratories at large [19].

This software is built off a C++ programming language which allowed for its high com-

putational efficiency when dealing with large-scale problems. It is with this computational
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efficiency that structural analysis problems for real-world applications are able to be an-

alyzed, leading to major advancements of topology optimization implementation in the

automotive, construction, and aeronautic industry.

For this example, the design domain to be evaluated is a 3D bolted bracket, as seen

in Figure 4.19, which is fixed on the left end and subject to a downward y traction of

P = 1000 N/m in the circular hole. This example will compare the topology achieved

by using the MMA and OC update schemes. The bracket has dimensions of L = 4.5 m,

H = 3 m, and t = 0.5 m. This is a widely used design component that if the weight

was minimized, would lead to a more efficient structure overall. The domain is designed

for a compliance minimization (stiffness maximization) objective subject to a single vol-

ume constraint, similar to the previous example. The problem is investigated considering

185, 411 linear tetrahedral elements, a filter radius of R equal to the twice the average size

of the elements, a poisson’s ratio of v = 0.3, a penalization of p = 3, and 150 itera-

tions. The MMA optimizer is computed with the parameters, sinit = 0.4, sfaster = 1.1,

sslower = 0.6, and C4 = 0.2.

Figure 4.19: Design domain of the bolted bracket
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Figure 4.20: Final optimized topologies of the bolted bracket achieved by the a) MMA in
an isometric view b) MMA in a side view sliced in half c) OC in an isometric view d) OC
in a side view sliced in half

The optimized topologies for the bolted bracket achieved by the MMA and the OC,

shown in Figure 4.20, are similar but obtain some different features, most notably near

the center of the domain. Figure 4.21 demonstrates that the convergence history of the

optimization obtained by the MMA and OC are nearly identical with the final objective

function value at the end of the 150th iteration by the MMA being 0.8994 and for the OC

being 0.9139.
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Figure 4.21: Convergence history of the bolted bracket for the OC and MMA update
schemes
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CHAPTER 5

CLOSING REMARKS

This thesis presented a literature review on a number of sequential explicit, convex ap-

proximation schemes with the main focus being placed on the MMA scheme [6], which

since its development has been the primary sequential approximation scheme of choice in

the field of structural topology optimization. The numerical examples explored the MMA

from many perspectives including demonstrating the effect of the move asymptotes on the

curvature of the approximation on a simple one-dimensional function; tighter bounds in-

dicating a more conservative approximation. The results also verified how certain move

asymptotes enforced in the MMA will replicate sequential approximation schemes, CON-

LIN and SLP, both through derivations and computational experiments. The problem of

sizing optimization found that lower empirical parameters impose a tighter range of move

asymptotes, leading to a more conservative approximation with slower convergence and

vice versa for empirical parameters with greater magnitudes. Structural topology optimiza-

tion examples were explored in the classical topology optimization framework examining

the impact of the MMA empirical parameters on the final topology. These examples also

compared the computational time and results of the MMA against other competing updates

schemes, the OC and sensitivity-separation method. These results demonstrated that the

MMA obtains greater CPU time in the update scheme subroutine in comparison to the al-

ternative methods. The robustness of the MMA is demonstrated in the setting of solving the

stress constrained topology optimization problem where in addition the interplay between

the MMA iterations and augmented Lagrangian steps was explored. Lastly, the PLATO

example demonstrated the application of the MMA for large-scale topology optimization

problems while also highlighting the importance of the connection between academia and

industry at large.

49



5.1 Future Work

The work of this thesis has inspired several future areas of research. Although this thesis

demonstrated the behavior of the MMA as a result of the empirical parameter selection,

there still remains a large amount of uncertainty regarding how to choose the most effi-

cient set of parameters when solving a problem. Areas of future work could include using

second order information to inform the approximation of the function’s curvature and thus

eliminating the need of empirical parameters. Another direction could be to rederive the

sensitivity separation scheme to handle formulations with no inequality constraints which

could expand its applications such as in the stressed constrained problem solved by the

Augment Lagrangian method. The sensitivity separation technique could also be imple-

mented into PLATO which would allow this software to solve certain non-self-adjoint for-

mulations more efficiently, such as in the problem it was originally formulated for, the

design-dependent loading optimization problem. Studying the MMA has motivated in-

terest in deriving unique update schemes tailored to specific types of structural topology

optimization frameworks to generate the most efficient solution strategy.
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APPENDIX A

MMA TRANSFORMATION PROOFS

A.1 MMA to CONLIN

By setting the move asymptotes as Lkj = 0 and Uk
j → +∞ the CONLIN is obtained. This

is verified by the following proof starting by rewriting the expression

1

U − xj
=

1

U(1− xjU−1)
= U−1(1 + xjU

−1 +O(U−2)), (A.1)

where Uk
j is denoted by U for simplicity. This expression resulted from expanding the term

1/(1− xjU−1) into a Taylor series where O(U−2) represents the remainder of the series as

U → +∞.

The MMA approximation is written as

gM,k
i (x) = gi(xk)−

∑
+

(U−xkj )gi,j+
∑
−

xkj gi,j+
∑

+

(U − xkj )2

U − xj
gi,j−

∑
−

(xkj )
2

xj
gi,j, (A.2)

following Equation 2.8 and Equation 2.9 in Section 2.4. In this approximation gi,j =

∂gi(xk)/∂xj and
∑

+ represents summation over the terms in which gi,j > 0, while
∑
−

represents summation over the terms where gi,j < 0. By substituting the final expression

of Equation A.1 into Equation A.2 we obtain

gM,k
i (x) = gi(xk)−

∑
+

(U − xkj )gi,j +
∑
−

xkj gi,j

+
∑

+

U−1
(
1 + xjU

−1 +O(U−2)
) (
U2 − 2Uxkj + (xkj )

2
)
gi,j −

∑
−

(xkj )
2

xj
gi,j,

(A.3)
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where further simplification leads to

gM,k
i (x) = gi(xk)−

∑
+

(U − xkj )gi,j +
∑
−

xkj gi,j

+
∑

+

(
1 + xjU

−1 +O(U−2)
) (
U − 2xkj + U−1(xkj )

2
)
gi,j −

∑
−

(xkj )
2

xj
gi,j.

(A.4)

After distributing the terms and simplifying we arrive at

gM,k
i (x) = gi(xk) +

∑
+

xkj gi,j +
∑
−

xkj gi,j +
∑

+

(
xj +O(U−1)− 2xkj

)
gi,j

−
∑
−

(xkj )
2

xj
gi,j.

(A.5)

By letting U → +∞ the MMA approximation reaches the following form

gM,k
i (x)→ gi(xk) +

∑
+

(xj − xkj )gi,j +
∑
−

(
xkj −

(xkj )
2

xj

)
gi,j, (A.6)

which is equivalent to that of the CONLIN approximation.
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A.2 MMA to SLP

The SLP approximation will be obtained by setting the move asymptotes in the MMA to

Lkj → −∞ and Uk
j → +∞. Similarly to Equation A.1, the term 1/(xj − Lkj ) can be

rewritten in the form of a Taylor expansion

1

xj − L
=

1

L(L−1xj − 1)
= −L−1 1

(1− L−1xj)
= −L−1(1 + xjL

−1 +O(L−2)), (A.7)

where L = Lkj and O(L−2) denotes the remainder of the expansion as L→ −∞. We now

write the MMA approximation by the following

gM,k
i (x) = gi(xk)−

∑
+

(U − xkj )gi,j +
∑
−

(xkj − L)gi,j

+
∑

+

(U − xkj )2

U − xj
gi,j −

∑
−

(xkj − L)2

xj − L
gi,j.

(A.8)

By substituting the expressions from Equation A.1 and Equation A.7 into Equation A.8 we

arrive at

gM,k
i (x) = gi(xk)−

∑
+

(U − xkj )gi,j +
∑
−

(xkj − L)gi,j

+
∑

+

U−1
(
1 + xjU

−1 +O(U−2)
) (
U2 − 2Uxkj + (xkj )

2
)
gi,j

+
∑
−

L−1
(
1 + xjL

−1 +O(L−2)
) (

(xkj )
2 − 2xkjL+ L2

)
gi,j.

(A.9)

After distributing the U−1 and L−1 terms, the expression reduces to

gM,k
i (x) = gi(xk)−

∑
+

(U − xkj )gi,j +
∑
−

(xkj − L)gi,j

+
∑

+

(
1 + xjU

−1 +O(U−2)
) (
U − 2xkj + U−1(xkj )

2
)
gi,j

+
∑
−

(
1 + xjL

−1 +O(L−2)
) (
L−1(xkj )

2 − 2xkj + L
)
gi,j.

(A.10)
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Further simplification of the approximation leads to the following equation:

gM,k
i (x) = gi(xk) +

∑
+

xkj gi,j +
∑
−

xkj gi,j +
∑

+

(
xj +O(U−1)− 2xkj

)
gi,j

+
∑
−

(
xj − 2xkj +O(L−1)

)
gi,j.

(A.11)

Letting U → +∞ and L→ −∞ the MMA transforms into the form

gM,k
i (x)→ gi(xk) +

∑
+

(xj − xkj )gi,j +
∑
−

(xj − xkj )gi,j, (A.12)

which is identical to the SLP approximation.
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APPENDIX B

MMA COMPUTATIONAL IMPLEMENTATION MODIFICATIONS

The MMA subroutine was implemented into a Matlab code (available at http://www.smoptit.

se/) with several adjustments from the original formulation to provide slight improvements

to the framework [43]. This appendix will address these modifications and the reasoning

behind their application.

The first changes in the subproblem were made to the pkij and qkij expressions. Their

original formulation by Equation 2.9 is defined such that if the gradient ∂gi/∂xj > 0, pkij

will be some finite value and qkij will be 0 and vice versa if ∂gi/∂xj < 0. Now an additional

term is added to the pkij and qkij expressions to improve the convergence.

The pkij and qkij formulas are reformulated in the following manner:

pkij = (Uk
j − xkj )2

(
C1

(
∂gi
∂xj

(xk)

)+

+ C2

(
∂gi
∂xj

(xk)

)−
+

C3

xmaxj − xminj

)
(B.1)

qkij = (xkj − Lkj )2

(
C2

(
∂gi
∂xj

(xk)

)+

+ C1

(
∂gi
∂xj

(xk)

)−
+

C3

xmaxj − xminj

)
, (B.2)

where
(
∂gi/∂xj(x

k)
)+ denotes the largest of

(
∂gi/∂xj(x

k)
)

and 0 while
(
∂gi/∂xj(x

k)
)−

denotes the largest of −
(
∂gi/∂xj(x

k)
)

and 0. The constants are defined as C1 = 1.001,

C2 = 0.001, and C3 = 10−5.

Another slight modification was made to the move limits, αkj and βkj , to have better

control over the speed of convergence.

αkj = max(xminj , Lkj + µ(xkj − Lkj ), xkj − C4(xmaxj − xminj )) (B.3)
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βkj = min(xmaxj , Uk
j − µ(Uk

j − xkj ), xkj + C4(xmaxj − xminj ) (B.4)

Here the αkj and βkj have an additional term which may be used to determine their

value. If the introduced term does control the move limits, the constant C4 or the ’move

parameter’ serves to increase or decrease the domain in which the new design variable can

be chosen, where 0 < C4 < 1. For example, a C4 of 0.5 is relatively large and will increase

the range of the move limits, if instead C4 = 0.2 the range in between the move limits

will decrease. In problems where the design variables seem to be converging in the same

direction, setting a larger C4 will speed up the convergence. For nonlinear problems where

the design variables are oscillating, the C4 may need to be reduced to achieve convergence.

The introduced move parameter now allows for more user freedom for selecting proper

move limits.
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