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SUMMARY 

The Continuous-Energy Coarse Mesh Transport (COMET) method is a neutron 

transport solution method that uses a unique hybrid stochastic-deterministic solution 

method to obtain high-fidelity whole-core solutions to reactor physics problems with 

formidable speed. This method involves pre-computing solutions to individual coarse 

meshes within the global problem, then using a deterministic transport sweep to construct 

a whole-core solution from these local solutions. In this work, a new implementation of the 

deterministic transport sweep solver is written which includes the ability to accelerate the 

calculation using up to 4 Graphics Processing Units (GPUs) on one computational node. 

The new implementation is written in C++ with GPU-facing logic leveraging the CUDA 

API.  

To demonstrate the new implementation, three whole-core benchmark problems 

were solved using the previous serial solver and various configurations of the new solver, 

with the relative performance compared. In this comparison, it was found that the 

application of one GPU to the problem resulted in between a 100x-150x speedup 

(depending on the specific problem) relative to the old serial solver. Excellent scaling up 

to 4 GPUs was observed, which brought the total speedup up to 450x-500x. Although the 

magnitude of the speedup was found to be problem dependent, it is noted that the overall 

strategy of the acceleration is not problem dependent. 

As an example of a new type of analysis which is enabled by the improved speed 

of the solver, a sensitivity study was performed on the convergence thresholds used in 

controlling the inner and outer iteration processes. This study involves repeatedly solving 



 xiii 

whole-core problems using slightly varying thresholds, including computing a “gold-

standard” solution to double-precision. These various runs would be prohibitively 

expensive if run using the old solver (upwards of weeks) but in this work were completed 

in around an hour. The results of the sensitivity study show that some examined cases 

indicate that converging the problem completely to the limits of single-precision numbers 

can result in pin power errors on the order of 0.1% as compared to a completely converged 

double-precision result. This behavior was found to be problem dependent. 
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CHAPTER 1. INTRODUCTION 

In the design and operation of a nuclear reactor, accurate modeling of the neutronic 

characteristics of the reactor is of paramount importance. This involves obtaining a solution 

to the Boltzmann neutron transport equation. The steady-state neutron transport equation 

involves 6 independent variables. As a result, the equation cannot be solved analytically in 

all but the simplest cases. To obtain solutions for real-word problems, numerical solution 

methods must be used. One such numerical transport method is the continuous-energy (CE) 

Coarse Mesh Transport (COMET) method developed at the Computational Reactor and 

Medical Physics Laboratory at Georgia Tech [1]. The COMET method uses a unique 

hybrid stochastic-deterministic solution method to obtain high-fidelity whole-core 

solutions to reactor physics problems with formidable speed. In this work, a new 

implementation of the CE-COMET method will be developed to leverage Graphics 

Processing Unit (GPU) architectures. 

1.1 Motivation 

The High-Performance Computing (HPC) landscape for scientific computing has 

seen a rise in General-Purpose GPU (GPGPU) computing. GPUs differ from regular CPUs 

in that their architecture is designed to support many more cores (5,120 CUDA cores on 

the NVIDIA Tesla V100 [2]) than a CPU. These cores are designed to support the execution 

of the same set of operations on a large number of different data regions. As a result, these 

devices excel in terms of both speed and efficiency at “data-parallel” problems: problems 

which perform a similar set of operations repeatedly over a large amount of data. The 

advancement of this technology has resulted in a shift in recent years toward an increased 



 2 

GPU to CPU balance ratio. The flagship HPC resources from Oak Ridge National 

Laboratory demonstrate this trend: Titan (1:1 ratio, 2012, [3]), Summit (6:2 ratio, 2018, 

[4]), and Frontier (4:1 ratio, scheduled 2021, [5]). 

To effectively implement an algorithm on GPU architectures, the maximum 

possible degree of data parallelism must be exposed in the problem. In this context, the 

deterministic transport sweep of the CE-COMET method is an excellent fit for GPU 

parallelization. The transport sweep consists of a nested iteration process in which the inner 

iterations correspond to a power iteration method used to converge to the dominant 

eigenvector of the global reactor problem. In the power method, the nth guess at the 

eigenvector is constructed using data only from the previous guess. With this, the 

operations used to update the eigenvector can be performed entirely independently, as will 

be shown in Chapters 2 and 3. This fact places the COMET transport sweep in a class of 

problems that can be called “embarrassingly parallel”. It is this inherent parallelism that 

will be exploited in this work to construct a GPU implementation of the method. 

Whole-core CE-COMET problems are an excellent candidate for a GPU-

accelerated parallel implementation. Calculations for these problems generally involve 

performing up to several hundred thousand dense matrix multiplications, with matrices up 

to 720 x 720 or larger in size. These matrix multiplications generally comprise upwards of 

99% of the program runtime, with operations taking place on tens-hundreds of gigabytes 

of data. These operations and memory accesses are highly regular, which are excellent 

features for a GPU implementation. It is well-demonstrated (as will be discussed in Chapter 

2) that, in highly regular operations such as these, one GPU can provide as much as 2+ 

orders of magnitude speedup as compared to one CPU thread. Such a speedup for a CPU-



 3 

only parallel implementation would likely require multi-threaded and multi-node 

execution, which brings extra complication when it comes to communication, problem 

decomposition, and work distribution. It is thus of great interest to explore shared-memory 

parallelism and GPU-acceleration to demonstrate the speed that could be achieved on one 

computational node before moving to a multi-node implementation. 

The fact that the block of matrix multiplication operations is so monolithic also 

implies that more than 1 GPU could be effectively employed in solving the problem. Since 

GPU-to-GPU data transfer is quite fast, the cost of communication can be kept low. It is 

thus reasonable to expect that additional GPUs applied to a CE-COMET problem will 

provide additional speedup, firmly planting the total speedup between 2 and 3 orders of 

magnitude. A multi-GPU approach also provides an additional benefit in that it enables 

larger problems to fit entirely into device memory (generally limited to a couple tens of 

GB). This is an excellent feature that enables continued applicability of the GPU solver as 

COMET is extended to operate on problems with larger and larger memory footprints. 

The promise of more than 2 orders of magnitude speedup and the suitability of 

COMET for a GPU implementation thus forms the motivation for this work. The 

implications of such a speedup for the future of the method are extensive. The speed could 

enable multi-physics, time-dependent, and depletion calculations while maintaining a 

reasonable total runtime. It will also be demonstrated in this work that this could enable a 

mixed-precision approach to the numbers involved in calculation. The objectives of this 

work are designed to demonstrate the applicability of the problem to a GPU-accelerated 

implementation and show the benefits of the additional speedup. 
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1.2 Objectives 

In this work, a new implementation of the COMET method will be developed that 

targets calculation on GPU architectures. As will be explained in Chapter 3, part of this 

undertaking involved the development of new host code as well, converting the serial 

Fortran solver into a C++ solver. This allows the opportunity to re-order operations and re-

arrange memory to allow for an optimized parallel implementation. A CPU-only shared-

memory parallel solver will also be developed as a secondary objective. 

As a demonstration of the improved performance due to the newly developed 

capabilities, in Chapter 4 the new solver is applied to a set of whole-core benchmark 

problems. The performance of the code is demonstrated via comparison against the current 

serial solver, and scaling studies are performed for 1, 2, and 4 GPU configurations. The 

GPU-accelerated solver is demonstrated to have 2+ orders of magnitude speedup as 

compared to the serial solver. 

As an example of a type of additional analysis unlocked by the new speed of the 

GPU-accelerated solver, a sensitivity study was performed on the specific thresholds used 

in truncating the iteration process. The methodology and results of this study are 

documented in Chapter 5. This type of analysis would have been technically possible with 

the serial solver (except for the double-precision runs), but the computation time alone 

would have spanned weeks, effectively prohibiting such a study. The specific runs for this 

study were completed in around an hour, including two special runs (per problem) in which 

gold-standard solutions were converged in double-precision (rather than the single-

precision COMET typically uses) to around machine epsilon. The results of the study 
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indicate that the problem-dependent nature of the convergence of COMET solutions can 

result in varying differences between solutions obtained with a specific set of convergence 

criteria and the gold-standard solution, including up to 3-4 orders of magnitude difference 

between the input threshold on relative residual eigenvector norm and the resulting error. 

In Chapter 6, a set of conclusions are drawn from the results of this work. 

Implications of the increased computational speed are discussed, and a recommendation is 

made for future work both on the solver itself and as studies unlocked by the speed.  
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CHAPTER 2. BACKGROUND AND THEORY 

In this chapter, the requisite background knowledge and theory for the work is 

described. The first section deals with background information on the neutron transport 

equation and the COMET solution method (primarily as described in [1]). This first section 

also includes a review of previous work that examined CPU-only parallelization of the 

method [6]. The second section gives background knowledge on GPU parallelization and 

the specific considerations that must be examined when writing GPU-capable programs. 

This section also includes a review of other neutron transport solvers (stochastic and 

deterministic) that have leveraged GPU architectures. The third section provides a brief 

interpretation of this background information that forms the basis for the following work. 

2.1 Neutron Transport and the COMET method 

The Boltzmann neutron transport equation (eq. 2.1.1) describes the distribution of 

neutrons in a steady-state system. In this equation, 𝑟 indicates the position in 3-dimensional 

space, Ω̂ indicates the angle of the neutron flight, 𝐸 indicates the neutron’s energy, 

𝜓(𝑟, Ω̂, 𝐸) indicates the angular neutron flux, 𝜎, 𝜎𝑠, and 𝜎𝑓 indicate the total, scatter, and 

fission cross sections, 𝑘 indicates the criticality eigenvalue, 𝜒 indicates the fission 

spectrum, and 𝜈 indicates the neutrons emitted per fission. This “steady-state transport 

equation” is observed to have 6 independent variables (3 spatial variables, 2 angular 

variables, and 1 energy variable), which makes direct solution impossible in all but the 

simplest cases. As such, obtaining solutions to whole-core problems involves the use of 

numerical methods and approximations.  
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Ω̂ ∙ ∇𝜓(𝑟, Ω̂, 𝐸) + 𝜎(𝑟, 𝐸)𝜓(𝑟, Ω̂, 𝐸)

= ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω̂′

4𝜋

𝜎𝑠(𝐸′, Ω̂′ → 𝐸, Ω̂)𝜓′(𝑟, Ω̂′, 𝐸′)

+
1

𝑘

1

4𝜋
𝜒(𝑟, 𝐸) ∫ 𝑑𝐸′

∞

0

𝜈𝜎𝑓(𝑟, 𝐸′) ∫ 𝑑Ω̂′

4𝜋

𝜓′(𝑟, Ω̂′, 𝐸′) 

(2.1.1) 

For brevity, we define an operator form of the transport equation (eq. 2.1.2), where 

H is termed the transport operator, F the fission operator, and B the boundary conditions 

for the problem. 

 

𝑯𝜓(𝑟, Ω̂, 𝐸) =
1

𝑘
𝑭𝜓(𝑟, Ω̂, 𝐸), 𝑟 ∈ 𝑉, 

𝜓(𝑟, Ω̂, 𝐸) = 𝑩𝜓(𝑟, Ω̂, 𝐸), 𝑟 ∈ 𝜕𝑉 &  Ω̂ ∙ n̂ < 0  

𝑯 = Ω̂ ∙ ∇ + 𝜎(𝑟, 𝐸) − ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω̂′

4𝜋

𝜎𝑠(𝐸′, Ω̂′ → 𝐸, Ω̂) 

𝑭 =
1

4𝜋
𝜒(𝑟, 𝐸) ∫ 𝑑𝐸′

∞

0

𝜈𝜎𝑓(𝑟, 𝐸′) ∫ 𝑑Ω̂′

4𝜋

 

(2.1.2) 

2.1.1  COMET Theory 

One such numerical solution method for the neutron transport equation is the 

continuous-energy COMET method. In the COMET method [1], the spatial domain of the 

problem V is divided into a number of contiguous coarse meshes Vi. From there, the angular 

flux that lies on the boundary of each mesh 𝜕𝑉𝑖 is expanded in terms of an orthogonal basis 

set as in eq. 2.1.3, where 𝜓𝑖𝑠
±  represents the outgoing or incoming flux on surface 𝑠 of the 
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𝑖th coarse mesh, 𝐽𝑖𝑠
±,𝑚

 represents the corresponding surface flux expansion coefficient, 𝑊(𝐸) 

is a positive weight function (discussed later in this section), and Γ𝑚 is the 𝑚th member of 

an orthogonal basis function set of M members. 

 𝜓𝑖𝑠
±(𝑟, Ω̂, 𝐸) ≈ ∑ 𝐽𝑖𝑠

±,𝑚𝑊(𝐸)Γ𝑚(𝑟, Ω̂, 𝐸)
𝑚=1…𝑀

        , 𝑟 ∈ 𝜕𝑉𝑖𝑠   (2.1.3) 

With the flux on the surface of each mesh expanded in terms of the basis set, we 

can then express the flux in the interior of each mesh in terms of a surface-to-volume 

response function, as in eq. 2.1.4. 

 𝜓𝑖(𝑟, Ω̂, 𝐸) = ∑ 𝐽𝑖𝑠
−,𝑚𝑅𝑖𝑠

𝑚(𝑟, Ω̂, 𝐸)
𝑠,𝑚

        , 𝑟 ∈ 𝑉𝑖   (2.1.4) 

These surface-to-volume response functions can be interpreted as the solution to a 

corresponding local problem in which a surface flux in the shape of the specific response 

function Γ𝑚 is imposed on surface s, as in eq. 2.1.5. 

 

𝑅𝑖𝑠
𝑚(𝑟, Ω̂, 𝐸; 𝑘) =

1

𝑘
𝑭𝑅𝑖𝑠

𝑚(𝑟, Ω̂, 𝐸; 𝑘)        , 𝑟 ∈ 𝑉𝑖 

𝑅𝑖𝑠
𝑚(𝑟, Ω̂, 𝐸; 𝑘) = {

𝑊(𝐸)Γ𝑚(𝑟, Ω̂, 𝐸)        , 𝑟 ∈ 𝜕𝑉𝑖𝑠,   Ω̂ ∙ �̂�𝑖𝑠
+ < 0

0        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   Ω̂ ∙ �̂�𝑖𝑠
+ < 0

 

(2.1.5) 

By examining the value of 𝑅𝑖𝑠
𝑚 along the surface of the mesh and expanding it in 

terms of the basis set in the outgoing direction, we arrive at the surface-to-surface response 

function coefficient 𝑅𝑖𝑠′𝑠
𝑚′𝑚, which represents the response on surface s in moment m due to 

a unit incoming flux on surface s’ in moment m’. Due to the linearity of the transport and 
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fission operators, the relationship between the outgoing and incoming flux expansion 

coefficients can be expressed as in eq. 2.1.6. 

 𝐽𝑖𝑠
+,𝑚 = ∑ ∑ 𝑅𝑖𝑠′𝑠

𝑚′,𝑚(𝑘)𝐽𝑖𝑠′
−,𝑚′

𝑚′𝑠′
  (2.1.6) 

By expressing the partial current expansion coefficients in vector form across the 

individual moments in the expansion basis set, eq. 2.1.6. can be expressed as a matrix-

vector operation as in eq. 2.1.7, where 𝒓𝑖𝑠′𝑠 represents an M x M surface-to-surface 

response function matrix for mesh i from surface s’ to s, and 𝒋𝑖𝑠
±  represents an M x 1 column 

vector of the outgoing/incoming individual partial current expansion coefficients for 

surface s of mesh i. 

 𝒋𝑖𝑠
+ = ∑ 𝒓𝑖𝑠′𝑠(𝑘)𝒋𝑖𝑠′

−

𝑠′
  (2.1.7) 

These surface-to-surface response function coefficients can be used to construct a 

solution to the global problem by ensuring continuity between the outgoing flux expansion 

coefficient for a given mesh and surface and the corresponding incoming flux expansion 

coefficient on the neighboring mesh/surface. By concatenating the individual flux 

expansion vectors 𝒋𝑖𝑠
±  for the problem into a global partial current expansion coefficients 

vector J, this continuity condition can be expressed as in eq. 2.1.8, where 𝑹 represents a 

block-sparse matrix corresponding to the collection of the above 𝒓𝑖𝑠′𝑠 for the global 

problem, 𝑴 represents a connectivity matrix that connects the incoming and outgoing 

partial current expansion coefficients, and 𝜆 represents the discontinuity resulting from 

differences between the evaluated k and the true core eigenvalue k. 
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 𝑴𝑹(𝑘)𝑱 = 𝜆𝑱  (2.1.8) 

In the case where the response functions for the global problem 𝑹 are evaluated at 

the true core eigenvalue, 𝜆 is equal to unity and 𝑱 represents the true inter-mesh partial 

current expansion coefficients for the problem.  

Now, if the orthogonal basis set chosen to expand the surface flux (eq. 2.1.3.) is 

complete (infinite), then the solution is exact. The approximation in the method is 

introduced when selecting which basis set to use and at the order at which the set is 

truncated. For the COMET method, the typical basis set uses Legendre polynomials 𝑃𝑛 in 

the x, y  ̧and azimuthal (𝜙) variables and Chebyshev polynomials of the second kind 𝑈𝑛 in 

the (polar) 𝜇 variable, as in eq. 2.1.9. 

The dependence of the angular flux on the energy variable generally varies too 

sharply for a similar type of polynomial expansion method to be applicable. Instead, a 

weight function 𝑊(𝐸) is included in the expansion (eq. 2.1.3.) and divisions of unity (or 

zeroth-order B-splines) across a set of energy groups g are used to satisfy the orthogonality 

condition. The complete basis set is thus seen in eq. 2.1.9. 

 Γ𝑖𝑗𝑘𝑙𝑔(𝑥, 𝑦, 𝜇, 𝜙, 𝐸) = 𝑃𝑖(𝑥)𝑃𝑗(𝑦)𝑈𝑘(𝜇)𝑃𝑙(𝜙)𝐵𝑔,0(𝐸) (2.1.9) 

For a continuous-energy treatment, the weight function 𝑊(𝐸) is typically chosen 

to be the asymptotic neutron spectrum, computed from a typical single assembly or color 

set calculation. It is observed that the lowest-order base case corresponding to 𝑊(𝐸) = 1 

describes a multi-group treatment. 
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To create an expression for the core criticality eigenvalue k, it is useful to define 

two new response functions 𝑅𝑁𝐹𝑖𝑠
𝑚(𝑘) and 𝑅𝐴𝐵𝑖𝑠

𝑚(𝑘), describing the total fission and total 

absorption in a mesh i due to a unit flux imposed on surface s with shape m. A global 

particle balance can then be used to create an expression for k based on these total fission 

and absorption response functions and the flux expansion moments 𝐽𝑖𝑠
−,𝑚

 as in eq. 2.1.10.  

 𝑘 =
∑ 𝐽𝑖𝑠

−,𝑚𝑅𝑁𝐹𝑖𝑠
𝑚

𝑖,𝑠,𝑚

∑ 𝐽𝑖𝑠
−,𝑚𝑅𝐴𝐵𝑖𝑠

𝑚 + ∑ (𝐽𝑖𝑠
+,0 − 𝐽𝑖𝑠

−,0)𝜕𝑉𝑖𝑠∈𝜕𝑉𝑖,𝑠,𝑚

 (2.1.10) 

It is useful to condense the summation across the m index (as in going from eqs. 

2.1.6 to 2.1.7 above). By doing so, we express a vector inner product between the surface-

wise partial current moments vector 𝒋𝑖𝑠
−  and a total absorption or a total fission response 

vector 𝒓𝒂𝒃𝑖𝑠 or 𝒓𝒏𝒇𝑖𝑠 representing the total absorption or fission in the mesh due to an 

incident flux 𝒋𝑖𝑠
− . This condensation results in a new surface-wise particle balance equation, 

as in eq. 2.1.11. 

 𝑘 =
∑ 𝒓𝒏𝒇𝑖𝑠

𝑇𝒋𝑖𝑠
−

𝑖,𝑠

∑ 𝒓𝒂𝒃𝑖𝑠
𝑇𝒋𝑖𝑠

− + ∑ (𝐽𝑖𝑠
+,0 − 𝐽𝑖𝑠

−,0)𝜕𝑉𝑖𝑠∈𝜕𝑉𝑖,𝑠

 (2.1.11) 

2.1.2 COMET Numerical Steps 

When solving a reactor problem, COMET proceeds as a two-phase process. In the 

first phase, Monte Carlo transport is used to generate the requisite response functions by 

solving the local problems described by eq. 2.1.5. This phase is not the subject of the work 

described in this document, and thus a description of the process is omitted. In principle, 

the method used to generate the response functions is not required to even be Monte Carlo 
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transport and could instead be any solver capable of solving the local problems described 

by eq. 2.1.5. For more information on the response function generation phase, interested 

readers are directed to [1]. 

The second phase of the COMET method is a deterministic transport sweep to 

determine the true core criticality eigenvalue k and partial currents expansion eigenvector 

𝒋 as described in Section 2.1.1. This is a nested iteration process consisting of inner 

iterations on the eigenvector 𝒋 and outer iterations on the criticality k. The inner iterations 

solve the generalized eigenproblem described by eq. 2.1.8. The outer iterations update the 

guess for the core criticality k using the particle balance described in eq. 2.1.11. With this, 

the deterministic transport sweep algorithm proceeds (from [1]) as: 

1. Guess the initial eigenvalue k0 

2. Perform inner iterations for the specific eigenvalue computed in the previous 

step. 

a. Normalize the outgoing partial current moments. 

b. Use the external boundary condition or the internal interface condition 

to update the incoming partial current moments. 

c. Use response function coefficients to compute the outgoing partial 

current moments. 

d. Repeat (a.) – (c.) until the partial current moments are converged. 

3. Use the global particle balance to update the eigenvalue guess k. 

4. Repeat (2.) and (3.) until the eigenvalue is converged. 
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The current implementation of this process is written in Fortran. It stores the 

response function matrices in Common Data Format (CDF) [7], a self-describing portable 

binary data format maintained by the Space Physics Data Facility at Goddard Space Flight 

Center. In practice, the power method is used to solve the inner iteration eigenproblem, 

with a Chebyshev polynomial filtering acceleration method applied. It leverages Intel MKL 

[8] to perform the individual matrix multiplies expressed in eq. 2.1.7. The production build 

is serial, with no parallel computation capabilities (shared- or distributed-memory) for the 

deterministic transport phase of calculation. The results of the calculations are printed in 

output text files and parsed with a variety of post-processing tools. 

The order in which the code performs the individual small matrix multiplications 

(called the “sweep order”) can have a strong effect on the runtime of the program. For the 

current serial COMET, the sweep order used in practice groups together all multiplications 

by coarse mesh fill type and surface, such that consecutive multiplies are likely to use the 

same underlying response function matrix 𝒓𝑖𝑠′𝑠. In this way, it is more likely that the matrix 

will already reside in cache, and as such can be read and used in multiplication faster than 

if it needed to be fetched from memory. In principle, however, since the power iteration 

process only relies on the previous guess for the eigenvector, these multiplications can be 

performed in any arbitrary order, with any arbitrary degree of concurrency. In this way, the 

COMET method is ripe for parallelization. 

2.1.3 COMET Parallelization Study 

A previous Ph.D. dissertation examined the possibility of extending the COMET 

method to distributed-memory (CPU-only) parallel systems [6]. In this work, a proxy app 
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called COMET-MPI was developed as a fork of the (at the time) production build of the 

main COMET app. Written in Fortran, it leverages the Message Passing Interface (MPI) to 

distribute work to many independent processes, either residing on one or many physical 

CPUs. As a distributed-memory parallel program, each process maintains its own 

independent memory space and communicates with other processes by explicitly sending 

and receiving data. 

The COMET-MPI study used a geometric decomposition to partition work between 

the multiple processors, as seen in Figure 1. In such a scheme, the problem is divided such 

that each processor works on all calculations for a group of meshes that are contiguous in 

geometric space. In this way, processors need only exchange information about the borders 

between its own domain and that of the other processors. During each inner iteration, each 

processor performs the matrix multiplies necessary to update its own domain, then 

exchanges this new information with its neighbors.  

 

Figure 1: Geometric Domain Composition (Figure from [2]) 
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Testing with the proxy app indicated performance that was promising. The code 

was demonstrated on up to 125 MPI processors on two PWR problems, one with 

gadolinium and one with MOX. The results can be seen in Figure 2. It is observed that a 

maximum speedup of 50x was achieved with 100 processors on the PWR/MOX problem. 

Efficiency was problem-dependent and even varied depending on the specific run, but 

hovered between 20% and 60% for the investigated range. It is noted that these runs were 

performed on a shared cluster, and as such the absolute metrics could be expected to vary 

from run to run. However, the general trend was that of marginally decreasing efficiency 

with increased numbers of processors.  

 

  

Figure 2: COMET-MPI Scaling Study Results (Reconstructed from data in [2]) 
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The study identified a hybrid approach in which distributed-memory and shared-

memory parallelism are combined as an area of possible future work. This was partially in 

response to a case with higher-order function basis sets in which the distributed-memory-

only solver would run out of memory due to the fact that each process needs its own 

memory space, even when it resides on the same physical processor. The study 

implemented an initial hybrid implementation with OpenMP + MPI, but the results 

remained inconclusive, with the code showing either improved or worsened performance. 

2.2 General-Purpose GPU Computing 

General-purpose GPU (GPGPU) computing is a field in which Graphics Processing 

Units (GPUs) are applied to non-graphics workloads. This practice has been applied 

broadly to many different areas of scientific computing, including neutron transport.  

2.2.1 GPU Programming Considerations 

Due to the differences in design between GPUs and CPUs, writing programs that 

run on a GPU can involve restructuring large parts of algorithms and implementations. 

However, depending on the specific workload, this strategy can result in exceptional 

performance increases due to the strengths of GPUs. 

To understand the strengths of GPUs and thus the goals of GPGPU computing, it 

first of use to establish the differences between a GPU and a CPU. The primary purpose of 

a CPU is to perform an arbitrary string of operations as quickly as possible. Since the CPU 

must be general purpose, it needs to be able to quickly handle things like conditional 

branches that require dedicated circuitry to handle quickly (Figure 3). As a result, CPUs 
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can generally only perform operations on 10s of threads at a time, but each thread can 

operate independently and branch on its own with minimal performance impact. 

By contrast, GPUs (often simply called devices in the context of GPGPU 

computing) excel at single-instruction-multiple-data (SIMD) computation. In such 

computation, the same set of instructions is performed on multiple different data streams. 

This type of computation comprises the bulk of graphics workloads, in which points in 2D 

or 3D space have the same geometric transforms imposed upon them. To accommodate 

this type of SIMD computation, the silicon at the core of a GPU has a much higher 

proportion of transistors devoted to arithmetic and logic, rather than control circuits and 

cache (Figure 3). As a result, any individual GPU thread is comparatively weaker than a 

CPU thread. However, a GPU can operate many more threads at once than a CPU (1,000s 

to 10,000s).  

As a result of these device design features, there are several key differences 

between the way programs execute on a GPU vs. on a CPU. The most immediate difference 

Figure 3: CPU vs. GPU Architectures (Figure from [4]) 
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between parallel programs on a CPU and on a GPU is that, on GPUs, threads are broken 

into groups that must operate in lockstep. For NVIDIA GPUs, this grouping is called a 

“warp” and contains 32 threads on the Tesla and Ampere architectures [2], [9]. For the 

AMD CDNA architecture, this grouping is called a “wavefront” and contains 64 “work-

items” [10]. For the remainder of this document, unless otherwise specified, the NVIDIA 

terminology will be used for consistency, since the devices/library used in this work come 

from NVIDIA. 

The warp distinction is significant because all threads in a warp share only one 

actively executing instruction per cycle. If for some reason (e.g. conditional branching) one 

thread jumps to a different instruction than the remaining threads in a warp, that thread will 

sit idle while the others execute until its instruction is reached. For branch-heavy 

operations, this can be a significant performance penalty. If 16 threads branch to one 

instruction while the other 16 threads branch to a different instruction, the effective rate at 

which instructions are being executed is halved, as those threads are forced to sit idle. As 

such, it is imperative for maximum performance that the number of threads executing the 

same instruction (to the warp level) is maximized. The ratio between the number of threads 

in a streaming multiprocessor (SM) that are executing to the number that could be 

executing is called occupancy. Occupancy is affected by thread divergent execution, but 

can also be limited by the number of registers that a thread needs relative to the available 

resources on the SM, etc.  

The second difference between effective CPU and GPU programs is in optimal 

memory access patterns. For CPU programs, memory is often laid out to maximize the use 

of the cache. As such, it is generally structured such that consecutive instructions access 
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consecutive locations in memory. On the first access, the entire page is loaded into cache, 

so it is likely subsequent instructions will access memory locations that have already been 

loaded into cache. Since accessing cache is faster than accessing memory, performance is 

generally improved. An example of this is a matrix-vector multiplication in which the 

matrix is laid out in row-major order, such that a thread reads consecutive locations in 

memory as it accumulates across a matrix row. 

Optimal GPU memory layout requires slightly different logic, due in part to the 

warp-level threading considerations described above. If a warp is fully executing in 

lockstep, each of the 32 threads will reach a load instruction at the same time. In general, 

device memory is only capable of accommodating one request at a time. As such, this 

request would generally be serialized, and each thread would be served in turn. However, 

there are some specific access patterns for which these accesses “coalesce” and are 

condensed into fewer instructions that are served more quickly. The first is a “broadcast” 

type of read in which threads all read from the same memory location. The second is a read 

in which consecutive threads read from consecutive locations in memory. If the memory 

accesses match these patterns (with some paging and alignment concerns, per [11]), these 

reads will be served at the same time. As such, device memory is generally structured such 

that consecutive threads access consecutive locations in memory. An example of this is a 

matrix-vector multiplication in which the matrix is laid out in column-major order. In such 

an operation, each thread is responsible for one row, and consecutive threads read 

consecutive locations in memory from one column at a time. 

One more higher-level programming consideration for developing GPU programs 

derives from the way in which GPUs interact with the system. GPUs are devices that are 
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attached to a host node, typically over the PCI bus. As a result, transferring data between 

the host and the device is a relatively slow process, especially compared to either the host 

or device reading from its own memory. As such, it is imperative to transfer as much data 

as possible to the device before beginning computation, or to hide the transfer time by 

overlapping transfer and computation via a pipelining scheme. 

2.2.2 GPGPU Programming Interfaces 

GPU functions are called from a program running on the CPU. To interface with 

the GPU from such a program, it is required to use one of many APIs, libraries, or interfaces 

available for most programming languages. These interfaces range in origin from GPU 

manufacturers to open standards. They also range in granularity of control, with some 

comprising OpenMP-style compiler pragmas, with others providing explicit control over 

device memory allocation and movement. A brief overview of a set of the most common 

GPU interfaces is provided in this section. 

2.2.2.1 CUDA 

One of the most ubiquitous GPU computing libraries is CUDA, a first-party 

interface from NVIDIA [11]. CUDA allows the developer to write custom “kernels” that 

run on the device and provides a C++ API to interact with the devices, allocate and transfer 

memory, and launch kernels. CUDA programs are compiled using nvcc, a custom compiler 

driver that generates appropriate device code. CUDA defines a programming model that 

allows for concurrent execution of multiple threads and kernels.  
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The execution hierarchy in CUDA can be seen in Figure 4. The most atomistic unit 

of the CUDA programming model is the thread. When a kernel launches, each assigned 

thread runs a copy of the same kernel. Threads are first bundled into a block. Currently, 

blocks can consist of up to 1024 threads. The threads in a block are guaranteed to be 

assigned to the same compute core and thus can share certain types of on-processor 

memory/cache. Kernels are launched in a grid of such blocks. These blocks are not 

guaranteed to execute in any particular order or with any guarantee of concurrency or 

synchronicity. As such, each block needs to represent work that can be processed entirely 

independently of other blocks in the grid. 

In the CUDA model, the host and the device maintain separate memory spaces. 

Memory must be explicitly allocated on the device, and data transfer between the host and 

the device must be explicitly requested. This generally increases the complexity of CUDA 

code, as data structures must generally be created on the host, have space allocated for 

Figure 4: CUDA Execution Hierarchy (Figure from [7]) 
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them on the device, then instantiated manually with a memory copy call from host memory 

to device memory. To manage this complexity, newer CUDA devices also have a “unified” 

memory space, in which data can be allocated and accessed from both the host and the 

device at the same address [12]. In the case in which the memory has not been transferred 

to the device, the page will be fetched from the host memory automatically. However, to 

maximize performance, unified memory still needs to be pre-fetched or copied directly, 

which adds some (perhaps lesser) degree of complexity. 

The CUDA suite also provides several higher-level libraries and programs to aid in 

the development of CUDA programs. These include profilers to analyze the performance 

of CUDA kernels and programs, a linear algebra library (cuBLAS), and others. 

2.2.2.2 OpenACC 

The OpenACC standard is a higher-level approach to enabling GPGPU 

computation [13]. It takes the form of a set of compiler directives to directly expose 

parallelism in the code and allow the compiler to build parallel versions for a variety of 

different device backends. The primary goal of OpenACC is to prioritize portability across 

different compilers and device architectures. A limitation of this approach is that it often 

results in code that is marginally less efficient than a full hand-tuned implementation, but 

portability is vastly improved as opposed to e.g., a CUDA implementation, as the same 

code could be compiled and run with a different compiler/architecture stack. 

Programs that leverage OpenACC are marked up with pragmas that direct the 

compiler to data and operations that can be parallelized. The semantics of data allocation, 

transfer, specific calculation parameters, and results transfer are (unless necessary) the 
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responsibility of the compiler, rather than the developer. In this way, the details and best 

practices associated with different device architectures need not be handled by the 

developer, and the compiler can generate correct code with good performance.  

2.2.2.3 Kokkos 

Kokkos is a C++ library developed at Sandia National Laboratory [14]. It provides 

a programming model (and layer of abstraction) above vendor-specific GPU backends that 

aims to provide portability to different architectures while maintaining a degree of fine-

grained control over device memory and operations. The goal of this approach is to allow 

developers to write one set of source code that can be effectively deployed across parallel 

architectures, including multi-core and CPU-GPU architectures. 

Kokkos accomplishes this portability by allowing the developer to write algorithms 

that use templated Kokkos-specific data types and parallel execution patterns (including 

parallel_for, reduce, etc.). Beneath this layer of abstraction is one of several different 

“Execution Spaces” and “Memory Spaces” available to the developer. These spaces serve 

to translate the intermediate Kokkos representation to the specific representation that 

makes the most sense for the desired architecture. In this way, optimizations such as the 

row- vs. column- major matrix example described above are abstracted away from the user. 

Along with the library, the Kokkos ecosystem also includes extra features including BLAS 

functionality, profiling tools, and debugging tools. 
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2.2.2.4 OpenMP Accelerator Support 

The OpenMP standard is a standard that is most often used to enable shared-

memory multi-threading on a CPU via a set of compiler directives.  Beginning with the 

OpenMP 4.0 standard in 2013, the standard also provides a set of pragmas that enable the 

offloading of computation to an attached device [15]. As another pragma-based interface, 

the pros and cons of working with OpenMP accelerator support are similar to those of 

OpenACC. The primary benefit of such an interface is an increase in portability, as the 

compiler can translate these instructions for any arbitrary target architecture. The cost of 

this portability is not being able to control the more fine-grained aspects of memory 

movement and execution. 

2.2.2.5 HIP 

The Heterogeneous-compute Interface for Portability (HIP) is an API that aims to 

provide developers a level of control over execution that is akin to CUDA but does not 

limit the user to NVIDIA GPUs [16]. The HIP API includes many functions that represent 

a direct counterpart to a CUDA function (for example, hipMalloc/hipMemcpy vs. 

cudaMalloc/cudaMemcpy). The similarities are so strong that the HIP ecosystem offers a 

set of tools called hipify which are able to scan CUDA source code and either offer a direct 

HIP translation or identify the calls which are not translatable. 

2.2.3 GPGPU As Applied to Neutron Transport 

GPGPU computing techniques have been applied to a wide range of scientific 

computing workloads, and neutron transport is no exception. There have been examples of 
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deterministic and stochastic methods that have been applied to GPU architectures with 

varying degrees of success. This section provides a brief overview of a few of the most 

prominent examples, including case studies of both stochastic and deterministic methods. 

2.2.3.1 WARP 

The WARP (which can stand for “Weaving All the Random Particles”) code is a 

neutron transport solver developed from the ground up for computation on GPU 

architectures [17]. The algorithm used for WARP is based off research performed in 1984 

by Brown and Martin [18] which established a unique “event-based” Monte Carlo 

algorithm for SIMD vector computers.  

In a traditional Monte Carlo transport algorithm (referred to for comparison as 

“history-based” algorithm), threads proceed by calculating the entirety of a particle’s 

lifetime, then proceeding to a new particle. This type of algorithm is not well-suited for 

computation on a SIMD vector processor (or, in modern cases, GPUs) because, by the very 

definition of the Monte Carlo method, different particle lifetimes will play out differently. 

As such, consecutive particle histories can (and indeed are expected to) vary in terms of 

number of collisions, number of surfaces met, etc. As such, a new “event-based” algorithm 

was proposed in which particles are grouped into vectors based on the operation which is 

required by the current point in their history. For example, all particles currently 

undergoing a surface crossing operation are placed in a surface crossing buffer, and so on 

for other operations including scattering, etc. This exposes a much more SIMD calculation 

pattern, as most events of the same type require similar operations, even if being performed 

on different histories. 
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WARP was programmed in CUDA C++ and leveraged the NVIDIA first-party 

OptiX library to handle geometric specification and ray-tracing operations. Since the code 

was designed from the ground up for GPU computation, the work does not provide a direct 

performance comparison to an equivalent CPU execution, since no such direct comparison 

exists. A looser comparison can be found in a companion paper [19], wherein WARP was 

benchmarked against the mature CPU-only Monte Carlo transport codes Serpent and 

MCNP. In this study, it was found that one GPU using the warp code achieved performance 

equivalent to 0.84x-7.61x the performance of a modern CPU node. 

2.2.3.2 Shift 

Shift is a massively parallel Monte Carlo radiation transport package from Oak 

Ridge National Laboratory [20]. A 2019 study using both a history-based and an event-

based approach to extend the code to include operation on GPUs [21]. The GPU calculation 

logic for this study was written in CUDA C++. The study found that the event-based 

algorithm in which kernels only process one type of event at a time (either transport or 

collision) vastly outperforms the history-based algorithm in which threads process an entire 

particle history. The study found that this was due to increased occupancy (as described in 

Section 2.2.1 above) resulting from decreased divergent execution, which is likely to occur 

in a history-based approach as, e.g., some particles die off before others. 

The results produced by the study were very promising. For the event-based 

approach (with an additional fuel-partitioning optimization), it was determined that an 

NVIDIA V100 GPU provided the performance of about 150 individual CPU cores for the 

examined benchmark problems.  
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2.2.3.3 OpenMOC 

OpenMOC is an open-source method of characteristics neutral particle transport 

code developed at the Massachusetts Institute of Technology [22]. The code uses the 

method of characteristics to solve 2D problems, with solvers for multi-core CPUs as well 

as GPUs. The GPU solver is written in CUDA C++. The initial documentation surrounding 

the release of the code indicated an acceleration of 50x with respect to a single-threaded 

CPU solver when using a Tesla C2070 GPU. 

2.2.3.4 nTRACER 

The nTRACER code package is a direct whole-core neutron transport solver 

developed by Seoul National University [23]. nTRACER employs a hybrid method in 

which 2D problems are solved to high detail using the method of characteristics, and the 

solutions of these 2D solves are fed into a 3D coarse mesh finite difference (CMFD) solver. 

In a study which examined expanding the nTRACER neutronic solver to GPU 

architectures, it was determined that the GPU-accelerated version of the code would see a 

speedup of between 8.3x to 11x relative to a CPU-only version [24].  

2.3 Interpretation 

In this section, a description of the COMET method was provided, and results from 

a previous CPU-only COMET parallelization study were presented. A set of basic 

considerations for GPU programming were presented, along with an overview of a 

selection of interfaces and libraries available to write GPU programs. Finally, overviews 
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for a set of GPU acceleration studies for other neutron transport codes (both stochastic and 

deterministic) were presented.  

It is clear from this review that there is a strong case to be made for GPU 

acceleration of the COMET method. The matrix multiplies required to perform one inner 

iteration can be performed entirely independently, placing the method in a class of 

problems which can be called “embarrassingly parallel”. This parallelism was exploited in 

the COMET-MPI project in a distributed-memory manner, and shared-memory parallelism 

was suggested for further study.  

Furthermore, the specific considerations necessary for efficient GPU programming 

can be handled by the method. The response function libraries can fit entirely in device 

memory, which restricts communication of large amounts of data over the PCI bus to 

primarily the beginning of each outer iteration. The bulk of the runtime for COMET is 

associated with the small dense matrix multiplies (eq. 2.1.7), operations which can be 

speedily performed with the floating-point compute units on a GPU. The matrices can be 

laid out in column-major order on the device, ensuring that memory accesses will coalesce 

to a high degree, and thus memory performance (which usually bottlenecks matrix 

multiplies as low arithmetic intensity operations) can be made high.  
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CHAPTER 3. COMET-CPP DEVELOPMENT AND 

METHODOLOGY 

In this section, the development of a GPU-accelerated version of the COMET 

deterministic solver (including multi-GPU support) will be described. Although it would 

be technically possible to modify the existing COMET Fortran codebase to add GPU 

support, attempting to do so was not likely to result in an efficient implementation due to 

the order in which calculations are currently performed. Due to this ordering, memory 

layout concerns, and the lack of relative maturity for GPU interfaces in Fortran, the 

decision was made to develop an all-new implementation of the transport sweep portion of 

the COMET method in C++. The benefit of the ability to re-order calculations, restructure 

the way in which memory is laid out, and add a degree of modularity/separation between 

the philosophical representation of the problem and the raw matrices and vectors involved 

in calculation was determined to outweigh the cost of developing this all-new 

implementation. For the remainder of this document, the new implementation will be called 

“COMET-cpp” or the “new implementation”, and the original Fortran solver will be called 

the “serial solver” or the “old implementation”. 

It was decided that the GPU calculation capability for the new solver would be 

implemented in CUDA. There are several reasons for which CUDA was selected as the 

interface for use in this study:  

• As described in Section 2.2.3, CUDA has already been used to accelerate 

several different neutron transport methods. 
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• The machines on which the development of COMET-cpp was to take place all 

contained NVIDIA GPUs, which prevented the need for a more portable 

interface. The solver was developed to allow for clean connection points 

between the calculation front-end and back-end such that, if more portability is 

desired, a new calculation back-end could be written in a more portable 

interface. One possibility is porting the CUDA directly using the hipify 

toolchain discussed in Section 2.2.2.5. 

• The CUDA ecosystem itself includes the possibility for many different 

implementations for the GPU operations, including the use of the first-party 

linear algebra library cuBLAS and the use of CUDA unified memory. These 

were both investigated before the final full implementation was written. 

• As described in Section 2.2.2.1, the CUDA interface allows for very fine-

grained control of memory allocation, movement, and GPU operation. Since 

the solver was already being rewritten to pay careful attention to memory 

layout, the opportunity to write this logic from the ground up was already 

present. 

The first section of this chapter describes the new implementation of the CPU-only 

solver, including design elements to allow for switching on the calculation back-end. A 

CPU-only BLAS back-end is also described. The second section of the chapter describes 

the design of the GPU-accelerated algorithm, including details about memory movement 

and calculation kernel structure. This section also includes details about early attempts to 

leverage CUDA unified memory and the cuBLAS library, before settling on the final 

implementation that uses explicit memory management and custom calculation kernels. 
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The third section of this chapter describes a set of newly developed post-processing and 

visualization tools to interpret the text-based output from the new solver and plot the 

results. 

3.1 Host COMET-cpp Solver Development 

As described in the introduction, it was decided that a new host solver should be 

created as the development target for GPU calculation capabilities. To maintain a 

reasonable scope for the project while maximizing the utility of the solver (and allowing 

for the possibility for continued development), a set of goals for the solver were set forth, 

with some items explicitly excluded from scope: 

• The solver should have total backward compatibility with the current libraries 

and input files read by the serial solver. This clearly facilitates the continued 

development and use of the solver, but it also aids in restricting scope, as testing 

can be performed with the library of benchmark problems that have already 

been solved with COMET. 

• The solver should have the capability to perform regular forward transport 

calculations, with or without Chebyshev polynomial acceleration. The other 

functions of the deterministic solver (e.g. adjoint calculations, uncertainty 

calculations) rely on similar calculations, so regular forward calculation with 

Chebyshev acceleration is sufficient to demonstrate the techniques that would 

be involved in implementation of the other features. 

• Because COMET post-processing tools are currently written on a per-problem 

basis, backwards compatibility with the output file format was decided not to 
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be a goal of the new solver. Instead, a new format for output files was created, 

and a unified post-processing suite of tools was developed (per Section 3.3). 

• The new solver should have a modern build system generator and should be 

configurable at compile-time and run-time to include support for CPU-only 

(with configurable BLAS backend) or GPU-accelerated calculation on 

supported systems. 

The result of this refactor of the serial code was a new implementation of the 

deterministic sweep calculation which was more suitable for parallel computation, both 

CPU-only as described in Section 3.1.2 and GPU-accelerated as in Section 3.2.  

3.1.1 Solver Front-end 

The purpose of the COMET-cpp solver front end is to construct an interpretation 

of the reactor core represented by the text-based COMET input file for the run and interface 

with the CDF database files that contain the underlying 𝒓𝑖𝑠′𝑠 matrices used in calculation. 

The front-end first constructs a series of objects that contain information about the problem 

meshes (in-core location, material composition, etc.). From there, a set of information is 

assembled into packages that get passed to the back-end: 

• A mapping is made for each individual mesh i, surface s, and moment m entry 

into one global eigenvector J. 

• A list of small dense matrix operations is constructed (eq. 2.1.7) that, in total, 

describe the surface-to-surface current transfer for the global problem. These 

operation objects containing the following information: 
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o Offset into the global eigenvector of the “from” surface, giving the 

location of the first element of 𝒋𝑖𝑠′
− , 

o Offset into the global eigenvector of the “to” surface, giving the location 

of the first element of 𝒋𝑖𝑠
+ , 

o An object that describes the surface-to-surface response function matrix 

𝒓𝑖𝑠′𝑠 to use in the multiplication. 

• A list of boundary condition operations is constructed to enforce periodic or 

reflective boundary conditions for the global problem, if necessary. 

• A list of total absorption operations is constructed that, in total, comprise the 

total absorption for the problem (corresponding to the 𝒓𝒂𝒃 term in eq. 2.1.11). 

These operation objects contain the following information: 

o Offset into the global eigenvector of the “from” surface, giving the 

location of the first element of 𝒋𝑖𝑠
− , 

o An object that describes the total absorption response vector 𝒓𝒂𝒃𝑖𝑠 . 

• A list of total fission operations is constructed that, in total, encompass the total 

fission for the problem (corresponding to the 𝒓𝒏𝒇 term in eq. 2.1.11). These 

operation objects contain much the same information as the absorption 

operations above, except the objects describe the total fission response vector 

𝒓𝒏𝒇𝑖𝑠 instead of the absorption vector. 

• A list of the ordinate combinations 𝑖 and 𝑠 for which the surface lies on the 

boundary of the global problem (that is, 𝜕𝑉𝑖𝑠 ∈ 𝜕𝑉). This is necessary to 

construct the leakage term in eq. 2.1.11. 
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The information passed to the back-end is designed to completely describe the 

problem and the calculations necessary for the inner and outer iteration process while 

avoiding information that may vary between different calculation back ends. A graphical 

depiction of the exchange of information between the front-end and any particular back-

end can be seen in Figure 5 below. In this figure, the logic contained in the blue front-end 

box is constant regardless of the particular back-end used, and the logic contained in the 

green back-end box can vary depending on the target architecture, library, etc.  

The COMET-cpp front-end has two external dependencies. The gflags library [25] 

is used for command-line argument parsing. The CDF C library [7] is used to interface 

Figure 5: Separation and Exchange Between Front- and Back-ends 



 35 

with the CDF response function database files. Rather than use an external library to parse 

the text-based input files used by COMET, a new custom parser was developed. 

3.1.2 CPU-only Generic BLAS Back-end 

A CPU-only back-end for COMET-cpp was also developed in this work. This back-

end was developed for several reasons: 

• If COMET-cpp were to continue as the main development branch of the project, 

a CPU-only solver would be required to enable calculation on systems for 

which GPUs are not present. 

• By expressing the problem in the symbolic objects described in Section 3.1.1 

above, an opportunity for shared-memory parallelism is immediately available. 

It is thus of interest to gauge the performance of a shared-memory parallel 

implementation of the method (as recommended by the COMET-MPI study 

described in Section 2.1.3 above). 

• Having a CPU-only solver that matches the program flow of the GPU solver is 

a useful tool for debugging and correctness checks. 

Although it is not the main subject of this study, the details of the CPU-only shared-

memory parallel back-end are useful for understanding the techniques that will be used in 

the GPU back-end logic. As such, to provide a basis for full illustration of the similarities 

and differences between the two, the CPU-only solver is documented fully in this section. 

The first notable distinguishing feature of a particular back-end is the object that it 

uses to represent a particular 𝒓𝑖𝑠′𝑠 matrix in memory. For the CPU-only backend, this object 
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is relatively straight-forward. It uses a C++ standard library vector of single-precision 

(usually, although a double-precision version is explored in Chapter 5) floating-point 

values. The matrix is stored in row-major order for the cache-optimization rationale 

described in Section 2.2.1 above. The pointer to this matrix which is ultimately fed into the 

Basic Linear Algebra Subprograms (BLAS) function calls is obtained by calling the data() 

function on this vector. 

As described in Sections 2.1.2 and 2.1.3, a key feature of the COMET method 

which makes it an excellent candidate for parallel implementations is that the individual 

small matrix multiplications that comprise an inner iteration can be performed in any 

arbitrary order, called the “sweep order”. In the current serial COMET implementation, 

this sweep order groups together all operations that use the same underlying response 

function matrix (that is, operations on meshes that have the same material composition, 

from the same surface number to the same surface number) [1], [6]. This is done to optimize 

performance by maximizing re-use of matrices between contiguous operations, thereby 

maximizing cache use. 

In Section 3.1.1 and Figure 5 above, it is described how the individual operations 

are communicated from the front-end to the back-end in a 1-dimensional list of operation 

objects. In this context, any particular sweep order can be thought of as one permutation of 

this master list of operations. To recreate the sweep order explicitly enforced by the nature 

of the order of the serial solver operations, the COMET-cpp CPU-only backend begins 

setup by sorting the master list of operations according to the following variables in order 

of importance: 
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• Material number 

• “From” surface number 

• “To” surface number 

• “From” offset into global eigenvector 

• “To” offset into global eigenvector 

This sorting operation results in a list ordering that maximizes cache use in the same 

manner as the serial solver, grouping together operations that use the same underlying 

matrix. 

It is noted from eq. 2.1.7 that each outgoing partial current expansion coefficient 

for surface 𝑠 of mesh 𝑖 is a summation over the results of several matrix multiplies over 

the incoming surfaces 𝑠′ for the mesh. This means that any individual 𝒋𝑖𝑠
+  for the problem 

is obtained by summing the results of S matrix multiplies, where S is the number of surfaces 

per coarse mesh for the specific problem geometry (4 for 2-D Cartesian, 6 for 3-D 

Cartesian, 8 for 3-D hexagonal). On the surface, this poses a problem for the independence 

of the operations, as the current due to one surface must be added to the current due to the 

other incoming surfaces. COMET-cpp gets around this problem by setting up a set of S 

unique “intermediate results” buffers to which the results of the multiplies can be written 

independently. Once all the multiplies have been performed, these buffers can be summed 

and written to a final combined results buffer.  

A graphical depiction of this process for a 2-dimensional Cartesian problem with 2 

meshes can be seen below. A depiction of the problem geometry and the resulting global 

partial currents vector J can be seen in Figure 6. It is noted that, due to the continuity 
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condition, there is no explicit entry in the vector for the entries 𝒋0,1
+  and 𝒋1,0

+ . The partial 

currents moments that correspond to these surfaces are already represented by  𝒋1,0
−  and 𝒋0,1

−  

respectively, and as such there is no need for them. In general, outgoing partial current 

moments are only explicitly given their own entry in the global vector if they lie on the 

global boundary of the problem, and as such are not represented by any incoming partial 

current moments.  

The individual small dense matrix multiplies for the problem can be seen in Figure 

7. The full set of small matrix multiplies for the problem is of size 32 (4 incoming surfaces 

per mesh * 4 outgoing surfaces per mesh * 2 meshes), 10 of which are depicted in the 

figure. It is observed that, by having the results of each multiplication written to a different 

intermediate buffer based on the inward-facing surface number, no two operations write to 

the same location in memory. As such, there is no need for the operations to be performed 

Figure 6: Example Problem Geometry and Vector 
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with any particular order, synchronicity, or grouping. Thus, the need for atomic operations 

is not present, and the ordering of these operations can be changed arbitrarily. 

To obtain the full results of these multiplications, the intermediate buffers must be 

reduced, as in Figure 8. In the CPU-only backend, the results of this reduction are stored 

in the primary buffer as the most up-to-date guess for the eigenvector. 

As with the old serial solver, the Intel Math Kernel Library (MKL) [8] is leveraged 

to perform the matrix multiplies. However, to aid in the portability of the code to arbitrary 

systems, compile-time switches were also implemented to allow for building of the code 

with an open-source alternative, the OpenBLAS [26] library.  

Figure 7: Small Dense Matrix Multiplications for Inner Iteration 
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To exploit the parallelism exposed by the above-described untangling of front- and 

back-ends, a simple OpenMP loop over the (sorted) list of matrix multiplies is used, giving 

each thread a contiguous chunk of the global list. Because CPU parallelism was not the 

primary focus of this work, no further effort was made to optimize this strategy. Regardless, 

the examination of program execution seen in Chapter 4 clearly demonstrates the strength 

of the overall approach used by COMET-cpp to separate these operations.  

3.2 GPU Back-end Development  

The primary focus of this work is the development of a GPU-accelerated version 

of the solver. With the host front-end described in Section 3.1.1 and Figure 5, this problem 

is reduced to the development of a GPU-accelerated back-end.  

The first notable feature of the GPU backend is the object used to store the 𝒓𝑖𝑠′𝑠 

matrices used in computation. The initial implementation of this object was one that stored 

Figure 8: Intermediate Results Reduction 
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the matrix in CUDA unified virtual memory (UVM) [12]. This is a natural first test for a 

number of reasons, not least of which being that the same memory address can be directly 

written to on the host then pre-fetched on the device. The relative performance of this initial 

implementation was demonstrated in a brief test on a machine with a Ryzen 3800X and an 

NVIDIA GTX 1080 with 8GB of video memory. This test demonstrates the throughput of 

(an older build of) the algorithm on the VHTR benchmark problem [27], [28]. Note, this 

test was not performed with the most efficient version of the compute kernels (for 

compatibility reasons), and as such the absolute metrics should NOT be taken as indicative 

of overall performance. This test is only relevant as one measure of the relative 

performance of the UVM and explicit memory treatments achieved by COMET-cpp. The 

results of the test can be seen in Table 1. It is observed that the use of UVM to store the 

underlying matrices (with careful attention paid to prefetching) results in a modest 

performance penalty as compared to an explicit treatment. However, in the pursuit of 

maximum performance (as well as explicit control over the movement of memory between 

the host and one or more devices) an explicit treatment was subsequently developed. 

Table 1: UVM Test Results 

Memory Treatment Throughput (GB/s) Relative performance 

Explicit Management 789 - 

UVM 667 84.5% 

The final implementation of the matrix storage object uses explicitly allocated and 

managed CUDA memory. Each buffer used by the object stores the matrix in column-
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major order for the access-coalescing reason described in Section 2.2.1 above. The overall 

storage object consists of a host copy of the buffer that lives in OS-pinned memory, and 

one or more device mirrors of the host buffer. OS-pinned memory is used to maximize the 

performance of data transfers during operation, per [11]. The object only creates a mirror 

on any particular device when one is requested by the calculation space. This ensures that 

there are no redundant copies on any device that does not need one (if its particular chunk 

of operations does not involve that matrix). These device mirrors are updated whenever the 

underlying RF matrix is updated (e.g., due to a change in the guess for k). Such updates 

never occur during an outer iteration, meaning that the data is ONLY read (never written 

to) during the inner iteration process. This means that there is no communication between 

the host and the device related to these matrices during calculation, aligning with the 

communication-minimization goal described in Section 2.2.1. The object typically stores 

the numbers in each buffer in single-precision, but the program can be compiled for double-

precision calculation. 

As described above, a key feature of the COMET-cpp front-end is that it provides 

to the back-end a list of matrix operations that can be considered truly independent, in that 

they can be performed in any arbitrary order with any degree of concurrency (with the 

intermediate results buffer strategy described in Section 3.1.2).  The COMET-cpp GPU 

back-end takes this feature one step further and divides the operations between up to 4 

GPUs in the system. To implement such a division efficiently, it is clear that some degree 

of distributed-memory parallel principles must be introduced, and inter-GPU 

communication must occur. 
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The COMET-MPI study [6] discussed several different methods to separate a 

COMET problem for distributed-memory systems, and ultimately settled on a geometric 

decomposition. In such a decomposition, the only inter-processor communication that 

occurs is the communication of the currents that lie on the border between two geometric 

regions. Since it had been proven in a previous study (in addition to being generally applied 

for many parallel physics problems), such a decomposition was considered as a starting 

point for a multi-GPU problem division. This was ultimately decided against for several 

reasons: 

• GPU-to-GPU communication is generally quite fast when links are present, 

often being on par with or faster than host-to-GPU communication. This is 

much less relatively expensive than communication between multiple 

processors. As such, minimizing communication between GPUs is not as much 

of a concern as minimizing communication between processors in an MPI 

program. 

• Geometric decomposition introduces a degree of problem-dependence on the 

work division. It is preferable to investigate methods that are not problem-

dependent, although in practice the problem-dependence of this strategy on 

only up to 4 devices may be tolerable. 

• The material-major sweep ordering has a strong effect on runtime. Changing it 

to a geometry-based sweep ordering (as was done in the COMET-MPI study 

[6]) is worth avoiding, if possible, to maximize cache use, which still has a 

strong runtime effect even on a GPU. 
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• Depending on the layout of the problem, it is possible that the same matrix may 

be required to reside on and be operated with on more devices than is really 

required. Grouping the operations by matrix type and then splitting the list 

evenly increases the likelihood that matrices will only need to reside on 1 

device, allowing problems with higher numbers of unique coarse meshes to fit 

on the total device memory. Such memory concerns were identified in the 

COMET-MPI study [6] as an issue with geometric decomposition as the 

number of unique meshes increases. 

For these reasons, a more basic approach was selected in which each device keeps 

a copy of the entire global eigenvector J, and the vector is reduced across all devices after 

each iteration. As a result, the communication between GPUs during each inner iteration 

consists of copies of the entire vector, rather than some smaller subset being exchanged. In 

whole-core problems, this vector is no more than a couple hundred megabytes in size. This 

relatively small size of the vector and fast inter-device communication means that 

communication is not a dominant contributor to the runtime of the program. The matrix 

multiplications still contribute the vast majority of the runtime, as demonstrated in Section 

4.3. The reduction of the eigenvector involves 1 round of pairwise communication if 2 

GPUs are used or 2 rounds of pairwise communication if 4 GPUs are used, the pattern of 

which matches the hypercubic pattern typically used as the device interconnect topology. 

This communication can be seen in Figure 9. 

The remaining algorithmic choice in the division of work between multiple devices 

is the permutation of the operations list (as described in Section 3.1.2) and the distribution 

of this list between the multiple devices. In this work, it was selected to maintain the 
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material-major ordering used in both the serial solver and the CPU-only COMET-cpp 

back-end. The logic behind this decision is that, although the primary concern for memory 

layout in GPU programs is the access coalescing described in Section 2.2.1, the L1 and L2 

caches present on each SM still provide fast access to memory that was recently used. As 

such, if a cache-aware batched matrix multiplication algorithm is used (as described in this 

section below), it is generally beneficial to group together operations that use the same 

matrix. 

The distribution of this list between the devices used in this study is an even 

distribution of contiguous chunks. The reasoning behind this is two-fold. First, it maintains 

the cache optimization described above. Second, the as-needed allocation of device mirrors 

of the matrix storage objects means that it is likely that a representation of a specific matrix 

will only need to live on one device at a time. Although some matrices may be used more 

or less often than others in a problem, this will loosely scatter the matrices between the 

devices, enabling larger problems to fit into on-device memory. As problems grow in size, 

it is possible that this may need to be more strictly enforced in an alternate scheme, giving 

each device an even number of matrices, rather than operations. 

An example of the division of work and communication pattern for a 4 GPU 

example problem is seen in Figure 9. The top of the figure depicts the list of operations 

passed to the GPU back-end by the front-end, after the application of the material-major 

sorting operation. This list is split evenly between the 4 devices.  
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The first step of an inner iteration is the execution of the per-device list of small 

dense matrix multiplies. These operations are performed in parallel by a custom CUDA 

kernel, as will be described below. This process is by-and-large the same as it is for the 

CPU-only back-end, and as such this step for each device bears a resemblance to Figure 7 

above. In the same way, parallelization of these multiplies is fully unlocked by the use of 

S intermediate buffers to which results can be written, where S is the number of surfaces 

per coarse mesh in the problem. In this way, there are no conflicting writes, and the 

Figure 9: Multi-GPU Calculation Scheme 
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multiplies can be performed with any degree of parallelization or synchronicity. These 

intermediate results buffers are then summed to get the portion of the total results buffer 

due to the operations performed on this specific device. 

To obtain the full results vector, these partial representations are then reduced via 

a binary tree reduction operation, seen in the next two steps of Figure 9. This step entails a 

device-to-device copy of the partial results buffer, followed by a kernel to add the fetched 

buffer to the device primary buffer. This is a synchronous operation (between the devices) 

to ensure that the full results are fetched at each step. As described above, due to the fact 

that these transfers are generally performed over device-to-device interconnects (such as 

NVIDIA’s NVLink [29]), these transfers are relatively fast.  

After this reduction operation, each device has a copy of the total results vector 

which is obtained as if it performed all the operations itself. To obtain the true next guess 

for the eigenvector 𝑱𝒏+𝟏, each device enforces the boundary conditions separately, via the 

list of boundary condition operations passed to the back-end by the front-end (as described 

in Section 3.1.1). This represents an inefficiency in that the same work is being performed 

multiple times (redundantly). However, these boundary condition update operations 

typically represent only a small amount of work. As such, this redundant execution is worth 

it to avoid the need to communicate the results of this work to each device, if it were only 

performed on one device. 

The matrix multiplications shown in Figure 7 and Figure 9 comprise what could 

loosely be considered a “batched-GEMV” operation, where GEMV is the typical 

terminology used by BLAS programs to denote a GEneric Matrix-Vector operation 
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(multiplication). The concept of batched BLAS calls has gained popularity in recent years 

due in part to the proliferation of machine-learning workloads in which batched-GEMM 

(GEneric Matrix-Matrix) calls play a large part [30]. Since a GEMV operation can be 

expressed as a GEMM operation, an initial implementation of this step leveraged the built-

in batched-GEMM available in the cuBLAS library [31]. To demonstrate the relative 

performance of this call as compared to a naïve custom implementation, a brief test was 

performed on a machine with a Ryzen 3800X and an NVIDIA GTX 1080 with 8GB of 

video memory. The results can be seen in Table 2 below. Note, the kernel used in 

comparison is a very simple initial implementation, and NOT the final cache-aware kernel 

developed later in this work. As such the results should not be taken in absolute terms. This 

is only provided as a rough comparison. 

Table 2: cuBLAS Comparison Results 

Calculation Executor Throughput (GB/s) Relative performance 

Custom batched-GEMV kernel 479 - 

cuBLAS batched-GEMM 243 50.7% 

It can be seen from this test that the batched-GEMM provided by cuBLAS is not a 

good fit for the type of calculations involved in a typical whole-core COMET-cpp run. This 

may not be altogether too surprising, considering the typical use case of batched-GEMM 

calls. Typically, these calls are used to perform matrix multiplications A x B in which both 

A and B are typically both of dimensions around 8 x 8 (or slightly smaller/larger). The 

heuristic optimizations likely present in the cuBLAS library for these ranges likely do not 
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apply to COMET operations, which involve the multiplications of up to a 720 x 720 matrix 

(or larger) and a 720 x 1 vector. As such, it was determined that a custom kernel should be 

developed and tuned for the operations that occur during a COMET run. 

A typical matrix used in a COMET run (720 x 720) yields a total storage 

requirement for one matrix of around 2 MB (in single-precision, or 4 MB in double-

precision). This is too large to fit into L1 cache in a typical modern card (128 KB on a 

V100 [2] and 192 KB on an A100 [9]). As such, it is desirable to construct a kernel that 

attempts to work on smaller chunks of the matrix that can be loaded into and kept in L1 

cache. This approach is described below. 

Before describing the cache-aware kernel developed in this work, it is worth noting 

that one clear alternative approach would be to explicitly manage the fast-access memory 

available to the SM via the use of CUDA shared memory. Shared memory can be thought 

of as an explicitly managed cache, and indeed, on the V100 and A100 architectures they 

are in fact substitute goods that share the same physical memory on the unit [2], [9]. It has 

been demonstrated, however, that this “unified cache” provides cache-only performance 

that increasingly rivals an explicit shared memory treatment, up to around 93% in relative 

performance [2]. Explicitly leveraging shared memory often involves high amounts of 

additional logic which, as applied to COMET, would likely require a degree of problem 

dependence (e.g., depending on the size of the problem basis set). Additionally, there is 

likely a trade-off between shrinking chunks to fit entirely in cache and the increased 

stashing of intermediate results as described below. For these reasons, an explicit shared 

memory treatment was not pursued in this work. It is identified as a possible area for future 
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work, subject to the caveats described above. Instead, the kernel used in this work was 

designed to group operations to most effectively leverage the L1 cache. 

As described in Section 2.2.2.1,  the CUDA execution hierarchy describes the way 

that the many threads concurrently executing on a GPU interact with each other: 

• A thread is the most granular level of execution. It has a separate register file 

from all other threads. 

• 32 threads execute in a group called a warp. These threads execute in lock-step. 

If threads branch differently, some threads will sit idle until their execution path 

rejoins with the others. Certain memory access patterns occur very quickly in a 

process called coalescing. 

• A group of warps execute in a thread block. This block executes on one SM 

and shares a level of cache and a separate shared memory bank. 

• A group of blocks executes in a grid. The blocks are distributed across the 

available resources on the device and execute with no guarantee of concurrency 

or synchronicity. Ordering of operations can only be ensured by launching two 

separate kernels with two separate grids. 

We begin constructing a layout for the custom batched-GEMV kernel in the context 

of this execution hierarchy from the bottom up. Since results accumulate across a row in 

matrix multiplication, it is natural to have threads be responsible for 1 row and proceed 

across the columns in the matrix. By executing such that consecutive threads are 

responsible for consecutive rows in the matrix, we can leverage the column-major memory 

layout and ensure that threads access consecutive memory locations, and as such those 
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accesses coalesce. Additionally, threads will only branch differently at the bottom of the 

matrix, when there are not enough remaining rows to saturate the number of dispatched 

threads. Since the idle threads are not waiting to perform useful work (and instead have 

finished their work), this does not represent an inefficiency. 

As mentioned above, the matrices used in calculation do not fit entirely into L1 

cache. As such, one algorithmic optimization is to operate on smaller chunks of the matrix 

that are likely to fit in cache. Since matrices are laid out in column-major order, this 

corresponds to some number of whole columns. When the last column in the chunk is 

reached, the intermediate results are stashed, and the threads stride down to the next group 

of rows in the matrix. Since this memory is likely to already reside in cache, these 

subsequent accesses are likely to be fast. 

After completing calculation with the matrix chunk, instead of moving on to the 

next chunk in the operation, the threads then proceed to the next operation in the list. Due 

to the material-major operation ordering described in Section 3.1.2, this subsequent 

operation is likely to use the same underlying matrix as the previous operation. As such, 

the threads will likely be operating on the same chunk of data as the previous operation. In 

this case, the matrix chunk will already reside in cache, and accesses will be fast. If the 

operation does not use the same matrix, a new chunk will be loaded in, and the previous 

chunk will be evicted from cache. Since the threads have already done all they can with 

the previous chunk, this eviction does not represent an eviction of useful data. The threads 

proceed in this manner through all operations in the list. After the end of the operation list 

is reached, the threads wrap back around to the start of the list, proceeding to the next chunk 
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of the first operation. Rather than start with a 0-initialized accumulator value, threads load 

the previously stashed intermediate results from prior chunks and proceed. 

The pseudo-code representing the final custom cache-aware batched-GEMV kernel 

used in this work can be seen in Figure 10. A graphical depiction of this ordering of 

operations can be seen in Figure 11. The resulting algorithm includes three primary tuning 

“knobs” which can be changed for specific devices and problems: 

• The number of threads per block 

• The number of blocks in the grid 

• The number of columns per chunk 

Values for these parameters were fuzzed and set to values that result in generally good 

performance for the whole-core benchmark problems tested in this study.  

 

Figure 10: Batched-GEMV Pseudo-code 

Batched-GEMV Kernel: 

for chunk in chunks: 

  for op in operations: 

    for row in rows: 

      if chunk_index == 0: 

        accumulator = 0 

      else: 

        accumulator = y_list[op][row] 

      for column in cols_in_chunk: 

        accumulator += x_list[op][col] * matrix[op][col][row] 

      y_list[op][row] = accumulator 
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Figure 11: Batched-GEMV Kernel Visualization 



 54 

3.3 Post-processing and Visualization Tools 

In this project, a new suite of post-processing and visualization tools was 

developed. There are several reasons this suite was targeted as a development goal for this 

project: 

• A tool to visualize the output of the program is instrumental in the process of 

debugging, ensuring output correctness, etc. 

• Since it is an important goal of this work to match the solutions produced by 

the serial solver to a high precision (within convergence criteria), a “differ” that 

compares two cores (e.g., one produced by the serial solver and one produced 

by the new solver) is necessary to demonstrate agreement. 

• As the solver is being entirely re-written, it is a natural fit to overhaul the format 

of the output printed by the solver and develop a new suite of tools to take 

advantage of the increased level of information printed in these files. 

To improve the usability of the solver, a set of new output print tables was 

developed with the goal of being comprehensive, fully detailed, and self-describing. All 

floating-point numbers in the output files are printed to the full precision allowed by the 

variable data type (single- or double- precision). The output tables that can be printed by 

the new solver are described in Table 3. 
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Table 3: Output Tables 

Table 

Number 

Table Description Data contained in File 

100 

“Contains a representation of the 

problem as understood by 

COMET” 

• Geometry metadata 

• RF database metadata 

• Core layout by material 

• Core layout by mesh index 

• Individual mesh coordinates 

and spectral identities by 

surface 

101 

“Contains the assembly and pin 

powers calculated by COMET per 

coarse mesh in the problem” 

• For all fuel-containing meshes 

in the problem: 

o Index 

o Assembly power 

o Number of pins 

o Pin powers 

102 

“Contains the final converged 

inward-facing partial currents by 

mesh for the problem” 

• Number of surfaces per mesh 

• Number of 0th-order partial 

current expansion moments in 

the basis set 

• For all meshes in the problem: 

o All 0th-order partial 

current moments for 
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Table 

Number 

Table Description Data contained in File 

each surface in the 

mesh 

103 

“Contains information about the 

core eigenvalue and its 

convergence throughout the run” 

• Final converged eigenvalue 

• Total fission, absorption, and 

leakage for the problem 

• Total number of outer 

iterations 

• Criticality eigenvalue by outer 

iteration number 

104 

“Contains information about the 

convergence behavior of the 

partial currents during the run” 

• Total number of outer 

iterations 

• Final residual norm 

• For each outer iteration: 

o Number of inner 

iterations  

o Calculated residual 

norms in the outer 

iteration 

To facilitate post-processing of this data, a suite of Python tools was developed. 

The first in this set of tools is a module that parses these text-based output files and 

produces a Python dictionary with the information from any output files requested to be 
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printed. This custom module uses only Python built-in functions (such that it has no 

dependencies). The dictionary describing the reactor core is structured to closely mirror the 

internal representation of the reactor core in the COMET-cpp solver to facilitate activities 

like debugging. This module also includes the ability to read and parse the text-based 

output files generated by the old serial solver.  

The second tool is a comprehensive analysis and visualization tool called the 

COmet Rendering and Output Navigation Application (CORONA). This tool uses the 

COMET parsing tool described above to read the output files produced by the solver and 

provides a number of useful metrics and result visualizations to help interpret the results 

of the program. As a result of the high number of individual data points that are visualized 

(up to a couple million pin powers, for example), a GPU-accelerated plotting library is 

required. After testing of a couple libraries, the library was selected to be PyQtGraph [32]. 

PyQtGraph was selected for its OpenGL acceleration capabilities which provide excellent 

performance on the large number of points required for the visualization tool and the ease 

of incorporating the visualization panes in a larger PyQt application. A PyQt user interface 

was developed around these visualizations to facilitate navigation. 

The application has two main modes: single-core visualization mode and a two-

core comparison mode. A screenshot of the single-core visualization mode can be seen in 

Figure 12.  
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This single-core visualization mode contains the following four information panes: 

• A 3-D assembly power visualization in which fuel-containing meshes are 

plotted in 3-D space and colored according to the power being produced. The 

viewport can be moved, rotated, zoomed, and panned in real-time. This pane 

includes the ability to select one plane of the core to highlight for clarity while 

the rest of the code fades out to only 10% opacity. 

• A 3-D pin power visualization in which a pin-mapping file is used to map 

individual pin powers into 3-D space, coloring them according to the power 

produced. The same movement and highlighting capabilities are present in this 

pane as are present in the assembly power pane. The assembly and pin power 

panes can be animated in sync, highlighting every Z-plane in the core in 

sequence, spaced 1 second apart. 

Figure 12: Single-core Visualization Mode Screenshot 
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• A stackable pane with 3 options: 

o A plot of the convergence of the core criticality eigenvalue against outer 

iteration number. 

o A plot of the convergence of the partial currents vector against 

cumulative inner iteration number (displayed in Figure 13). 

o A 3-D visualization of the inward-facing surface-wise 0th-order current 

expansion moments. This pane includes a drop down to select the 

desired energy bin for visualization. The points are colored based on the 

magnitude of the expansion coefficient. This pane contains the same 

highlighting capability as the assembly and pin power panes but cannot 

be animated. 

• A text pane containing the following information about the core: 

o Final eigenvalue 

o Final currents residual 

o Number of inner and outer iterations 

o Number of fuel assemblies 

o Maximum assembly power (and the location of this maximum power) 

o Minimum assembly power (and its location) 

o Number of fuel pins 

o Maximum pin power (and its location) 

o Minimum pin power (and its location) 
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A screenshot of the two-core “differ” mode of the visualization application can be 

seen in Figure 13. This mode reads in the results of a reference COMET run and a perturbed 

COMET run with some differing parameters and compares the results. In this mode, all the 

information from the single-core visualization mode is present as well as: 

• The absolute and relative differences between the assembly powers, pin powers, 

and 0th-order partial current expansion moments, all plotted in 3-D space. 

• The following text-based information about the difference between the cores: 

o Absolute and relative reactivity difference between the cores 

o Maximum and mean error between the assembly powers (absolute and 

relative) 

o Maximum and mean error between the pin powers (absolute and 

relative) 

Figure 13: Two-Core Difference Visualization Mode Screenshot 
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o Relative L2 norm of the difference between the global vector of pin 

powers (consisting of all the pin powers in the problem concatenated 

into one vector) 

This difference tool is the basis of the convergence threshold sensitivity study 

documented in Chapter 5 of this document. Additionally, in the development of the solver, 

this mode was used to verify that the solutions produced by COMET-cpp and the serial 

solver agree to within convergence criteria. 

There are several other applications where such a mode could be useful, including 

a similar sensitivity study performed on the order of flux expansion used in the problem, 

and a quick assessment of the difference between two cores that differ in a small way (e.g., 

two assemblies swapped in a loading pattern, or control rods inserted to differing depths).  
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CHAPTER 4. BENCHMARK TIMING STUDY 

To assess the performance of the GPU-accelerated solver, a timing study was 

performed on a set of benchmark problems. Three different whole-core problems were 

selected for demonstration, described in Section 4.1. A methodology based on inner 

iteration throughput was selected so as not to unfairly penalize the serial solver for extra 

operations not performed in COMET-cpp, or COMET-cpp optimizations not related to the 

iteration procedure. This methodology is described in Section 4.2. The results of the study 

for the three benchmark problems are presented in Section 4.3.  

Since COMET-cpp and the serial solver were verified (with the “differ” 

visualization tool discussed in Section 3.3) to produce the same solution to within 

convergence criteria, the accuracy of the COMET-cpp solutions relative to MCNP are not 

discussed explicitly. Instead, the description of each benchmark problem in Section 4.1 

contains a brief description of the accuracy of the serial solver results. 

4.1 Benchmark Problems 

To demonstrate the capabilities of the new solver with respect to a wide variety of 

applications, a set of benchmark problems were selected which varied in geometry, size, 

and reactor type (e.g., coolant and moderator material). Three problems were selected from 

the range of benchmarks already solved with the COMET method: the Very-High-

Temperature Reactor (VHTR), the Integral Inherently Safe Light Water Reactor (I2S-

LWR, or just I2S), and the Advanced High-Temperature Reactor (AHTR). In this section, 
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each of these benchmark problems will be described, as well as the accuracy of the COMET 

solutions to the problem relative to MCNP. 

4.1.1 Very-High-Temperature Reactor 

The VHTR is a Generation IV reactor concept that features a graphite-moderated, 

helium-cooled thermal core [27]. The reactor poses a challenge to neutronic modelling 

tools due to its complex geometry, high degree of heterogeneity due to the uranium 

oxycarbide tri-structural isotropic (TRISO) fuel spheres embedded in the fuel pins, and its 

large active core region. To aid in the development and licensing of this reactor concept, a 

set of full-heterogeneity benchmark problems were created to test the validity of neutronics 

codes on this concept [27].  

Figure 14: VHTR Layer Depiction (Figure from [29]) 
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The VHTR benchmark core has 14 axial layers, each comprising 7 full rings of 

blocks around a central column with an additional fractional reflector layer at the periphery, 

as seen in Figure 14. In this figure, the gray blocks represent reflector blocks and the yellow 

blocks represent fuel assemblies, each with or without a channel for a control element. 

A zoomed in view of the fuel and reflector blocks can be seen in Figure 15. In this 

figure, gray represents the underlying graphite structure, yellow represents a fuel pin 

region, green represents a burnable absorber region, and white represents a channel for the 

helium core coolant. It is noted that the high degree of heterogeneity results from the fact 

that the yellow regions of Figure 15 comprise thousands of uranium oxycarbide TRISO 

fuel particles, modeled discretely. 

Figure 15: VHTR Component Blocks (from [29]): Fuel Block (top left), Fuel Block 

with Control Channel (top right), Reflector Block (bottom left), Reflector Block with 

Control Channel (bottom right) 
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COMET solutions to this prismatic VHTR benchmark problem have been obtained 

and documented [28]. A previous study using the serial solver found that the solutions to 

the uncontrolled and controlled benchmark problems agreed with the MCNP solutions to 

0.36% and 0.53% in average pin fission density difference, respectively. The calculated 

core criticality eigenvalue was found to agree to 66 ± 6 and 69 ± 6 pcm, respectively. In 

this work, the all-rods-in (ARI) benchmark problem is used. 

4.1.2 Integral Inherently Safe Light Water Reactor 

The Integral Inherently Safe Light Water Reactor (I2S) is a pressurized water 

reactor concept designed to leverage several inherent passive safety mechanisms (including 

the use of uranium silicide fuel) in a gigawatt-scale reactor [33]. The core consists of 121 

assemblies loaded according to an equilibrium loading plan depicted in Figure 16. In the 

multi-group COMET model of the I2S core, there are 21 axial layers [34]. 

Figure 16: I2S Loading Plan (from [28]) 
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The multi-group COMET solutions to the I2S benchmark problem are notable 

because they were the basis for a study on Monte Carlo solution convergence [34]. In this 

study, both the radially integrated and pin-wise fission densities obtained by COMET were 

compared against several MCNP runs and demonstrated to agree within ~0.2% in axial 

fission density against a 50-run MCNP average and 0.4% in pin fission density average 

against a representative MCNP run. 

4.1.3 Advanced High-Temperature Reactor 

The Advanced High-Temperature Reactor (AHTR) is a fluoride-salt-cooled high-

temperature reactor (FHR) concept that features plank-type TRISO-containing fuel with a 

graphite moderator [35].  This reactor poses similar difficulties to neutronics modelling 

tools as were discussed for the VHTR, most notably a very high degree of heterogeneity 

resulting from the TRISO fuel particles embedded in the fuel planks. 

Figure 17: AHTR Problem Layout (from [36]): Radial (left), Axial (right) 
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The AHTR benchmark problem consists of 20 axial layers, with each layer 

consisting of 10 complete rings of meshes around a central mesh, as seen in Figure 17. In 

the radial layout, blue represents a permanent reflector block, green represents a 

replaceable reflector block, and brown represents a fuel block.  

The composition of these blocks can be seen in Figure 18. It is noted that the region 

labelled “Fuel stripe” in this figure contains many TRISO particles pressed into the graphite 

matrix. It is this design feature that introduces the high degree of heterogeneity. 

Figure 18: AHTR Mesh Composition (from [36]): Fuel (top), Upper Support (middle 

left), Lower Support (middle right), Top/Bottom Reflector (bottom left), 

Replaceable Reflector (bottom middle), Permanent Reflector (bottom right) 
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COMET solutions to this benchmark problem have been obtained and documented 

[36]. Average stripe-wise fission densities were found to agree with MCNP to under 0.5% 

on average, with a discrepancy in core criticality eigenvalue of between 17-88 pcm for the 

benchmarks calculated. For the remainder of this analysis, the all-blades-out benchmark 

problem is used. 

4.2 Timing Comparison Methodology 

In devising a fair methodology for the purpose of comparing the relative 

performance of the GPU-accelerated solver to the serial solver, there are a couple 

confounding factors that need to be considered. First, since the accelerated solver was being 

re-written from the ground up, care was taken to add additional optimizations in other non-

iteration procedures in the code, including threading and an in-memory cache of the library 

when interfacing with the RF database CDF files. Since the focus of this work is the 

suitability of the iteration method for GPU-acceleration, this additional performance ought 

not be taken into account. A second difference between the codes is that the current GPU-

accelerated solver does not include low-order acceleration capabilities. Since low-order 

acceleration involves solving the same problem but with a reduced basis set, it was decided 

that this would not be explicitly implemented for this initial study. As such, low-order 

acceleration must be excluded from the comparison. A third difference is that there are 

subtle differences in the ways in which the two solvers determine whether or not a problem 

has converged, and as such they may perform slightly different numbers of iterations (inner 

and outer) before terminating. For these reasons, it was determined that total runtime alone 

is an insufficient metric for comparison. 
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The metric settled on for comparison used in this study is inner iterations per second 

(𝑖𝑛𝑛𝑒𝑟 𝑖𝑡𝑠.
𝑠⁄ ) performed on a problem with no acceleration. This metric corresponds to 

the inverse of the time it takes the solver to perform one 𝑴𝑹(𝑘)𝑱 multiplication (as in eq. 

2.1.8) and enforce any relevant boundary conditions. This metric provides the fairest 

comparison for this analysis, as it avoids the extraneous operations which may differ 

between the two solvers. In interpreting the results of this study, however, it must be noted 

that the speedup interpreted from the comparison of this metric would not be applicable to 

the runtime of the entire program. This is due to the presence of non-parallelizable work in 

accordance with Amdahl’s law including startup, RF database interfacing, output printing, 

and others. The presence of other optimizations in the solver means that the speedup 

experienced over the entire runtime of the program might be correspondingly more or less 

than what is reported when comparing these metrics.  

To put this inner iteration throughput data into context, it is useful to also define a 

related speedup metric. This metric is useful in providing a direct comparison of the relative 

performance of two different configurations of the solver. For some configuration A with 

inner iteration throughput 𝑅𝐴 and configuration B with throughput 𝑅𝐵, the speedup of B 

relative to A is defined as in eq. 4.2.1, with higher speedup values representing improved 

performance. 

 𝑆𝐵,𝐴 =
𝑅𝐵

𝑅𝐴
 (4.2.1) 

The speedup metric is useful because it allows comparison between two 

configurations, even when there are architectural differences between them. When the main 
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difference between the two configurations is a mere increase in compute units (such as 

number of threads on a CPU, number of CPUs, or number of GPUs), we can use this 

speedup metric to define an efficiency metric. This metric compares a configuration with 

1 compute unit against a configuration with 𝑛𝐶𝑈 compute units and gives an idea of how 

well the problem scales across this range. The definition of this efficiency metric can be 

seen in eq. 4.2.2, where Tn represents the execution time with 𝑛𝐶𝑈 compute units. 

 𝜀 =
1

𝑛𝐶𝑈

𝑇1

𝑇𝑛
=

1

𝑛𝐶𝑈

𝑅𝑛

𝑅1
=

𝑆𝑛,1

𝑛𝐶𝑈
 (4.2.2) 

This metric generally varies between 0 and 1, with 1 called the “ideal” or “linear” 

speedup case, the case in which there is no increased cost associated with the use of the 

additional compute units. In some cases, the observed efficiency may exceed 1, in a case 

called “super-linear” speedup. This behavior can result from several factors and can be 

harder to track down. Often, this results from the increased amount of cache available to 

the system since additional compute units usually bring their own cache. 

Two other metrics will be presented in this study: the achieved memory bandwidth 

in reading the RF matrices (GB/s) and the achieved single-precision floating-point 

operations per second (SP-FLOPs/s, or just FLOPs/s). These metrics are more 

representative of the true calculations going on in hardware, and as such provide a way of 

normalizing performance across different problems. These values can be derived from the 

inner iteration throughput 𝑅 defined above by multiplying by the memory read per iteration 

or the number of required operations per iteration, respectively. Since the matrix multiplies 

dominate the iteration work, other operations are neglected, resulting in a lower bound for 
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the true achieved bandwidth and FLOPs/s. The required memory 𝑀 and operations 𝑂 per 

iteration can be seen in eqs. 4.2.3 and 4.2.4 respectively, where 𝑛𝑚𝑢𝑙𝑡 is the number of 

individual small dense matrix multiplications performed per iteration, 𝑚 is the size of the 

basis set used in the calculation, and 𝑠 is the size of the floating-point representation used 

to store the matrices and vector (4 for single-precision, 8 for double-precision). The factor 

of 2 in eq. 4.2.4 comes from the fact that each matrix element requires a fused multiply-

add (FMA), which involves 2 floating-point operations. 

 𝑀 = 𝑛𝑚𝑢𝑙𝑡 ∗ (𝑚2 + 2𝑚) ∗ 𝑠 (4.2.3) 

 𝑂 = 2 ∗ 𝑛𝑚𝑢𝑙𝑡 ∗ 𝑚2 (4.2.4) 

In this study, the three benchmark problems described in Section 4.1 are solved for 

six individual configurations of the solver: one configuration for the serial solver and five 

configurations for COMET-cpp. In each case, an average raw inner iteration throughput is 

presented, as above. In cases where the notion of a corresponding 1 compute unit case 

applies, a speedup metric is also presented corresponding to a comparison against this 1 

compute unit case. In these cases, an efficiency metric is also presented. The six cases 

examined in this study (along with the metrics to be presented) are: 

a) Serial solver 

• Raw iteration throughput 

b) COMET-cpp, CPU-only, 1 thread 

• Raw iteration throughput  

• Speedup relative to a) 
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c) COMET-cpp, CPU-only, all available threads 

• Raw iteration throughput 

• Speedup relative to a) 

• Speedup and efficiency relative to b) 

d) COMET-cpp, GPU-accelerated, 1 device 

• Raw iteration throughput 

• Speedup relative to a) 

e) COMET-cpp, GPU-accelerated, 2 devices 

• Raw iteration throughput 

• Speedup relative to a) 

• Speedup and efficiency relative to d) 

f) COMET-cpp, GPU-accelerated, 4 devices 

• Raw iteration throughput 

• Speedup relative to a) 

• Speedup and efficiency relative to d) 

4.3 Results 

The results in this section were generated on one of the GPU nodes of the Sawtooth 

cluster at Idaho National Laboratory. These nodes contain dual Xeon Platinum 8268 

processors (24 cores each) and four NVIDIA V100 GPUs, each with 32GB of on-device 

memory. The serial solver was compiled with the Intel Fortran compiler version 19.1. The 

COMET-cpp executable was compiled with the Intel C++ compiler version 19.1 and the 

NVIDIA CUDA compiler version 10.2. 
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The inner iteration throughput metrics presented in this section were collected via 

10 repeated trials. Only the resulting average and standard deviation are presented in this 

section. Since the variance for this metric is found to be very low, the uncertainty is not 

carried through to the derived metrics. The full results (including the result of each 

individual trial) can be seen in Appendix A. 

The performance of the serial solver for each problem is seen in Table 4. This 

performance forms the baseline for comparison against COMET-cpp. 

Table 4: Serial Solver Performance 

 VHTR I2S AHTR 

Iteration throughput 

(inner its./s) 
0.10979 ± 0.00002 0.08031 ± 0.00012 0.02342 ± 0.00014 

Matrix bandwidth 

(GB/s) 
22.13 22.28 23.56 

Achieved 

computation speed 

(GFLOPs/s) 

11.07 11.14 11.78 

The performance of the COMET-cpp solver using the CPU-only backend is seen 

in Table 5.  

Table 5: COMET-cpp CPU-only Performance 

 Metric VHTR I2S AHTR 

1 thread 

Iteration throughput 

(inner its./s) 
0.11620 ± 0.00068 0.08333 ± 0.00037 0.02325 ± 0.00016 

Speedup relative to 

serial solver 
1.06 1.04 0.993 

Matrix bandwidth 

(GB/s) 
23.42 23.12 23.39 

Achieved 

computation speed 

(GFLOPs/s) 

11.71 11.56 11.70 

48 threads 

Iteration throughput 

(inner its./s) 
2.636 ± 0.013 1.901 ± 0.019 0.5398 ± 0.0043 

Speedup relative to 

serial solver 
24.01 23.67 23.05 
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 Metric VHTR I2S AHTR 

Speedup relative to 

1-thread config. 
22.68 (47% eff.) 22.81 (48% eff.) 23.21 (48% eff.) 

Matrix bandwidth 

(GB/s) 
531.36 527.51 543.04 

Achieved 

computation speed 

(GFLOPs/s) 

265.68 263.75 271.52 

These results clearly demonstrate the immediate speedup resulting from shared-

memory parallelism available from the restructuring of the algorithm in Chapter 3 and 

Section 3.1.2. The CPU-only matrix multiplication function represents one of the simplest 

batched-GEMV implementations (simply OpenMP parallel-for looping over individual 

GEMV BLAS calls – effectively a 1 line addition), but this alone is sufficient to achieve 

23x speedup relative to the serial solver.  

The parallel efficiency between the three problems for the all-available-threads case 

remained consistent at around 47-48%. Since matrix multiplication is generally a memory-

bound operation, this is reasonable, as thread execution is likely being limited by memory 

operations. To investigate this further, a brief thread-wise scaling study was performed on 

the VHTR benchmark. The results of the study can be seen in Figure 19 below.  

Figure 19: CPU-only Thread-wise Scaling Study 
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It can be seen from these results that scaling generally starts out quite near ideal 

(99%, 98% and 96% efficiency for 2, 4, and 8 threads respectively) but departs farther as 

tens of threads are used. This indicates that small numbers of threads can be effectively fed 

from memory, but as more and more threads are introduced, they begin to compete for 

bandwidth. 

The performance of the COMET-cpp solver using the GPU-accelerated backend 

can be seen in Table 6. A plot of the overall achieved speedups can be seen in Figure 20. 

Table 6: COMET-cpp GPU-Accelerated Performance 

 Metric VHTR I2S AHTR 

1 GPU 

Iteration throughput 

(inner its./s) 
15.710 ± 0.045 9.177 ± 0.022 2.2836 ± 0.0042 

Speedup relative to 

serial solver 
143.09 114.28 97.52 

Matrix bandwidth 

(GB/s) 
3,167 2,546 2,297 

Achieved 

computation speed 

(GFLOPs/s) 

1,583 1,273 1,140 

2 GPUs 

Iteration throughput 

(inner its./s) 
32.006 ± 0.056 20.924 ± 0.066 5.1520 ± 0.0068 

Speedup relative to 

serial solver 
291.53 260.55 220.02 

Speedup relative to 

1-GPU config. 
2.04 (102% eff.) 2.28 (114% eff.) 2.26 (113% eff.) 

Matrix bandwidth 

(GB/s) 

6,452 

(3,226 per GPU) 

5,806 

(2,903 per GPU) 

5,183 

(2,591 per GPU) 

Achieved 

computation speed 

(GFLOPs/s) 

3,226 

(1,613 per GPU) 

2,903 

(1,451 per GPU) 

2,591 

(1,296 per GPU) 

4 GPUs 

Iteration throughput 

(inner its./s) 
55.20 ± 0.11 36.30 ± 0.14 11.379 ± 0.021 

Speedup relative to 

serial solver 
502.75 452.05 485.93 

Speedup relative to 

1-GPU config. 
3.51 (88% eff.) 3.96 (99% eff.) 4.98 (125% eff.) 

Matrix bandwidth 

(GB/s) 

11,127  

(2,782 per GPU) 

10,073 

(2,518 per GPU) 

11,446 

(2,862 per GPU) 

Achieved 

computation speed 

(GFLOPs/s) 

5,563 

(1,391 per GPU) 

5,037 

(1,259 per GPU) 

5,723 

(1,431 per GPU) 
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The acceleration shown in Table 6 and Figure 20 demonstrates that the use of 1 

GPU brings acceleration between 100x and 150x relative to a single CPU thread, and 

excellent scaling up to 2 and 4 GPUs (often super-linear, as is explored below) is observed. 

This result is well in line with results observed for other neutron transport programs (as in 

Section 2.2.3), and clearly demonstrates the data-parallel nature of the COMET method as 

expressed in Chapter 3. The maximum speedup achieved was 502x for the VHTR problem 

running with 4 GPUs, a substantial reduction in computation time. 

One phenomenon apparent in Table 6 is that super-linear speedup is observed for 

the 2 GPU configuration of the VHTR and I2S problems and the 2 GPU and 4 GPU 

configurations of the AHTR problem. Super-linear speedup is not impossible, but it is 

exceedingly rare. This is typically the result of an entire problem space fitting in the 

increased levels of cache resulting from multiple machines, a condition which is assuredly 

not met in the large problems being solved in this study. As such, additional profiling was 

Figure 20: GPU Acceleration Relative to Serial Solver 
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performed to characterize the source of this behavior more carefully. This profiling was 

performed on the AHTR benchmark since it demonstrates super-linear speedup across both 

the 2 and 4 GPU cases. 

A screenshot of an NVIDIA Visual Profiler session documenting a run of the 

AHTR problem on 1 GPU can be seen in Figure 21 below. The large teal block represents 

the kernel that performs the matrix multiplies. This dominates the runtime, accounting for 

upwards of 97% of GPU computation. In this run, it was found that an average matrix 

multiplication kernel took about 427 milliseconds (ms). The intermediate buffer summing 

took 2.5 ms, and other operations took 2.5 ms, for a total of around 432 ms per inner 

iteration. 

Runs for the 2 GPU and 4 GPU configurations were examined with a similar 

methodology. The execution time associated with various GPU operations for these 

configurations (and the 1 GPU configuration) can be seen in Table 7. Screenshots of the 

profiler for these runs can be seen in Figure 22. 

Figure 21: AHTR 1 GPU Profiling 
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Table 7: AHTR Inner Iteration Execution times 

 1 GPU 
2 GPUs 4 GPUs 

GPU 0 GPU 1 GPU 0 GPU 1 GPU 2 GPU 3 

Matrix Multiplication 427 ms 144 ms 183 ms 68 ms 66 ms 67 ms 71 ms 

Intermediate Summing 2.5 ms 2.5 ms 2.5 ms 2.5 ms 2.5 ms 2.5 ms 2.5 ms 

Waiting - 39 ms - 3 ms 5 ms 4 ms - 
Communication - 5.6 ms 10.3 ms 

Other Operations 2.5 ms 2.6 ms 2.7 ms 

Total: 432 ms 193.7 ms 86.5 ms 

Matrix Multiplication 

Total: 
427 ms 327 ms 272 ms 

Figure 22: AHTR Multi-GPU Profiling: 2 Devices (top), 4 GPU (bottom) 
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It is seen from Table 7 that, although communication accounts for 2.9% and 11.9% 

of the total runtime per inner iteration of the 2 and 4 GPU cases, respectively, the costs are 

far outweighed by a drastic reduction in the total GPU time devoted to matrix 

multiplication, which reduces by 100 ms and 150 ms. Such a substantial reduction is 

notable, and not explainable by the cache effect alone. To investigate this effect, a custom 

one-off version of the solver was developed that breaks the list of matrix multiply 

operations into 4 chunks, but executes them all on 1 device. Effectively, this solver breaks 

up the monolithic 1 GPU kernel seen in Figure 21 into the 4 kernels seen in the bottom of 

Figure 22, but still dispatches them all to 1 device. Profiling data for this run can be seen 

in Figure 23. The execution time of the 4 separate kernels seen in Figure 23 can be seen in 

Table 8. 

Table 8: Small Chunk Kernel Execution Times 

 Batch 1 Batch 2 Batch 3 Batch 4 Total 

Execution 

Time 
66 ms 65 ms  68 ms 71 ms 270 ms 

 

Figure 23: Small Chunk Solver Profiling 
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It is observed that the execution times for the 4 batches in Table 8 match up quite 

well with the execution times seen for the individual batches executing on 4 different GPUs 

in Table 7. This is an indication that the primary difference between the 1 GPU and 4 GPU 

matrix multiplication execution times in Table 7 is not due to a cache effect, but rather due 

to the specific parameters used in launching the kernels (such as the number of thread 

blocks in the grid relative to the number of operations in the list). As described in Chapter 

3, these parameters can have a strong runtime effect and are generally optimized by fuzzing 

over a range of values. The results seen from the custom small-chunk solver indicate that 

these parameters are a poor fit for the AHTR problem on only 1 GPU. As such, the super-

linear speedup observed in the general timing study is merely a relic of an inefficiency in 

the 1 GPU case due to the selected execution parameters being sub-optimal for these 

problems. To demonstrate this, Table 9 demonstrates a re-calculation of the scaling seen in 

Table 6 using the custom smaller-chunk solver as the new 1 GPU case. It is observed that 

the smaller-chunk solver has an inner iteration throughput improvement of 60% relative to 

the base result in Table 6. 

Table 9: AHTR Scaling, Small-Chunk Solver 

 1 GPU 2 GPU 4 GPU 

Inner iteration 

Throughput 
3.584 5.1520 11.379 

Scaling relative to 

1 GPU case 
- 1.43x 3.17x 

Parallel Efficiency - 71.5% 79.3% 

These results are more in line with what might be expected from the multi-GPU 

scaling. Indeed, even the 2 GPU efficiency being lower than the 4 GPU efficiency can be 

explained as higher workload imbalance, indicated by the large time GPU 0 waits per 
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iteration seen in Table 7 and Figure 22 above. As such, the super-linear speedup observed 

in the overall results is best explained as inefficiency in the 1 GPU case.  

These results are also reasonably taken to be an indication that there is further room 

to optimize these execution parameters. Due to the very large parameter space over which 

optimization would need to be done (including problem-specific characteristics, 

architecture characteristics, etc.) no such problem-dependent tuning of the parameters was 

included in the final solver. This means that super-linear speedup will be observed for some 

problems. A more thorough parameter optimization study is identified as an area for future 

work. 

One final aspect of these benchmark timing results worth examining is where the 

raw metrics of achieved memory bandwidth and operations per second sit relative to the 

maximum achievable on the device. The achieved values of these metrics as seen in Table 

6 are summarized and compared against architecture-specific maximum values (obtained 

from [2] and the NVIDIA Visual Profiler) in Table 10. 

Table 10: Achieved GPU Performance Metrics 

 VHTR I2S AHTR 

Memory 

Bandwidth 

Achieved 2,800-3,200 GB/s 2,500-2,900 GB/s 2,300-2,900 GB/s 

Theoretical 

Device  
900 GB/s (global memory) 

Operations 

per 

Second 

Achieved 
1,400-1,600 

GFLOPs/s 

1,200-1,500 

GFLOPs/s 

1,100-1,400 

GFLOPs/s 

Theoretical 

Device 
15,700 GFLOPs/s (single-precision)  
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It is seen from these results that, as expected, the overall speed of the execution is 

limited by memory bandwidth. This is expected, as matrix multiplication has a low 

arithmetic intensity (FLOPs per byte of memory) and is thus generally memory bound. It 

is also seen from these results that, to some degree, the unified cache on the device is being 

effectively utilized, and the limit imposed by simply reading from global memory is well 

exceeded. This is an indication that the cache-aware batched-GEMV kernel developed in 

Chapter 3 does provide additional computational speedup relative to a naïve kernel. These 

raw performance metrics are seen to vary by problem, but overall indicate strong 

performance relative to device capabilities.  
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CHAPTER 5. CONVERGENCE THRESHOLD SENSITIVITY 

STUDY 

As an example of a type of analysis unlocked by the additional computational speed 

of the GPU-accelerated solver, a sensitivity study was performed on the specific thresholds 

used as convergence criteria in controlling the inner and outer iteration processes. The 

purpose of this analysis is to attempt to quantify the type of statements that can be made 

about the error of the solution relative to the residual resulting from one step of the iteration 

process and how this behavior changes with respect to problem type. Although this study 

would have been technically possible with the serial solver (not-withstanding the lack of 

double-precision support), the runs would have been prohibitively expensive in terms of 

computation time, with the gold-standard runs alone taking up to 1-2 days (estimated) to 

complete. The methodology of this study is discussed in Section 5.1, with the results and 

interpretation discussed in 5.2. 

5.1 Methodology 

As described in Section 2.1.2, the COMET method consists of a nested iteration 

process. The inner iterations consist of a power iteration method used to converge to the 

dominant eigenvector of the global problem, and the outer iterations serve to update the 

guess for the global criticality eigenvalue k. Thus, two different criteria are constructed 

with which convergence is checked: one for the inner iteration process and one for the outer 

iteration process. 
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A natural choice for the parameter used in the inner iteration convergence criterion 

is the relative norm of the residual vector for the global partial current moments 

eigenvector. This choice is suggested by Saad [37], among others. One useful feature of 

this specific convergence metric is that it lends itself easily to specific thresholds that 

represent the limits of single-precision or double-precision calculation of around machine 

epsilon. These example conditions are expressed in eq. 5.1.1. 

 

|
𝑴𝑹(𝑘)𝑱𝒏

𝜆𝑛 − 𝑱𝒏|

|
𝑴𝑹(𝑘)𝑱𝒏

𝜆𝑛 |
< 𝜖𝑱 , 𝜖𝑱 = {

10−7,   𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

10−14 ,   𝑑𝑜𝑢𝑏𝑙𝑒 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (5.1.1) 

The limit expressed in eq. 5.1.1 represents close to the maximum convergence that 

can be achieved for a given degree of precision for the numerical representation of the 

vectors and matrices used in calculation. A reasonable question is the degree to which this 

level of convergence impacts the accuracy of the solution obtained with the method. 

Rephrased with slightly more rigor, the guiding motivation for this study is what types of 

statements one can make about the numerical error of the solution given some information 

about the residual resulting from an iteration step. 

A secondary area of interest is the convergence of the core criticality eigenvalue. It 

is natural to define a similar convergence metric for this parameter representing the relative 

change resulting from one outer iteration. Equivalent thresholds can be given to match the 

specific values from eq. 5.1.1, corresponding to effectively the limits of single- or double-

precision numbers. Such a threshold can be seen in eq. 5.1.2. 
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|𝑘𝑛+1 − 𝑘𝑛|

|𝑘𝑛+1|
< 𝜖𝑘 , 𝜖𝑘 = {

10−7,   𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

10−14 ,   𝑑𝑜𝑢𝑏𝑙𝑒 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (5.1.2) 

In this sensitivity study, the values of 𝜖𝑱 and 𝜖𝑘 were set to values logarithmically 

spaced between 1.77E-04 and 3.16E-07. As a gold-standard run for comparison (used as 

the true value for the “error” calculations), a double-precision version of the solver was 

developed. In this solver, all floating-point numbers (including the RF matrices, vectors, 

and accumulators for the total fission, absorption, and leakage) are represented in double-

precision. The results in this double-precision solver were converged with 𝜖𝑱 and 𝜖𝑘 = 1.0E-

13. It is estimated that these gold-standard runs alone would take around 1-2 days each 

with the serial solver, if double-precision capability were to be implemented. 

In the solver, these thresholds can be implemented separately, and iteration ceases 

only when both convergence criteria have been satisfied. There is a moderate additional 

complexity to this, however, since the convergence behavior of the outer iterations depends 

strongly on the behavior of the inner iterations. As an example, take a situation in which 

the inner iterations have already converged. The guess for k is updated, and the RF matrices 

are updated for the new guess. After a small number of inner iterations, the relative norm 

of the residual vector is likely to match the level it was before the outer iteration update, 

and thus the inner iteration process will cease. As such, the difference between 𝑘𝑛+1 and 

𝑘𝑛 will only be representative of the result of a very small number (less than 5, often) of 

inner iterations. As such, a hugely integral quantity such as the core eigenvalue is not likely 

to change that much, and as such it will be more likely that the convergence criterion is 

satisfied.  
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In this sensitivity study, the inner iteration process is truncated after 250 iterations 

per outer iteration (to prevent such vector over-converging for an under-converged 

eigenvalue), and 𝜖𝑱 and 𝜖𝑘 were only varied in tandem (that is, set to the same input value). 

This was selected as a balance between the over- and under- converge conditions. A more 

detailed analysis of this phenomenon (including the possibility of setting a minimum 

number of inner iterations, in addition to a maximum) is recommended as future work. 

The results of these analyses were interpreted and analyzed with the new COMET 

post-processing tools developed along with the new solver as described in Section 3.3. The 

pin powers and eigenvalues for each run were read into a Python object. The results were 

then examined on both a pin-to-pin and assembly-to-assembly basis, tabulating the relative 

pin/assembly power error. These errors are combined into a set of aggregate quantities: the 

mean absolute error (MAE) in the pin/assembly power and the max absolute error (max 

AE) in pin/assembly power. Note the subtlety in this context of the word absolute. In this 

analysis, the word absolute refers only to the fact that it has had the absolute value operation 

applied. At an individual level, these errors are relative errors, meaning that the difference 

between the test value and the gold-standard value have been normalized by the gold 

standard value. The definitions of these parameters can be seen in eqs. 5.1.3, 5.1.4, and 

5.1.5, where N represents the total number of pins/assemblies in the core. 

 𝑒𝑖,𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝑝𝑖,𝑡𝑒𝑠𝑡 − 𝑝𝑖,𝐺𝑆

𝑝𝑖,𝐺𝑆
  (5.1.3) 

 𝐸𝑀𝐴𝐸 =
∑ |𝑒𝑖,𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒|𝑁

𝑖=1

𝑃
 (5.1.4) 
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 𝐸𝑀𝑎𝑥 𝐴𝐸 = max (|𝑒𝑖,𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒| 𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑁) (5.1.5) 

The analyses in this section were performed on the same Sawtooth cluster at Idaho 

National Laboratory used in Chapter 4. For maximum speed, the 4 GPU configuration was 

used. The convergence criteria were controlled using the currents-epsilon and eigenvalue-

epsilon command line arguments for the solver, and the batch of tests was automated using 

a Bash script. The gold-standard runs were done with a version of the solver built with the 

COMET_DOUBLE_PRECISION CMake variable set to on, which converts most floating-

point variables in the solver to double-precision variables.  

5.2 Results  

A quantitative assessment of the results is given in Section 5.2.1. A per-problem 

discussion of the differences between cores converged to varying tolerances is given in 

Section 5.2.2. 

5.2.1 Overall Quantitative Results 

A plot of the error in core criticality eigenvalue relative to the input threshold used 

for 𝜖𝑱 and 𝜖𝑘 can be seen in Figure 24. For the reasons mentioned above relating to the 

tangling of the inner and outer iterations, these results should be taken with a grain of salt, 

as the specific values are heavily dependent on parameters invisible to this analysis, such 

as the maximum/minimum number of inner iterations per outer iteration. The main results 

that should be taken away from this specific portion of the analysis is that the convergence 

behavior is problem-dependent, and that for the specific case of 250 maximum inner 

iterations per outer iteration, the error in criticality eigenvalue could be expected to vary 
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anywhere from slightly less than the input convergence threshold to up to an order of 

magnitude higher than the convergence threshold. 

A plot of the errors (both maximum AE and mean AE) in assembly and pin power 

relative to the input threshold (𝜖𝑱 and 𝜖𝑘) can be seen in Figure 25. It can be seen from 

these plots that the difference between the input threshold (again, compared against the 

relative norm of the residual vector of partial current moments) and the resulting powers 

can be up to 3 orders of magnitude in mean error, and up to 4 orders of magnitude in 

maximum error. This substantial difference is due to the fact that the ratio of the second-

largest and largest eigenvalues (sometimes called the dominance ratio) corresponding to 

Figure 24: Criticality Eigenvalue Sensitivity 
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the global problem represented in eq. 2.1.8. can be very high. The power iteration method 

converges according to this ratio [37], so convergence on the global eigenvector can be 

very slow. The net result of this is that, although any one individual step may be relatively 

small, so many of these steps are being taken that the overall error is far greater. 

Figure 25: Assembly (top) and Pin (bottom) Power Sensitivities 
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These results bring a couple of interesting implications. The first is that the residual 

cannot be used on its own as an analogue for the numerical error, at least in terms of 

magnitude. Especially when it comes to maximum error in pin or assembly powers, a 

difference of 3-4 orders of magnitude is not negligible and must be taken explicitly into 

account when accounting the accuracy of the obtained solutions. The second implication 

derives from the first, as applied to the limits of single-precision numbers. In keeping 

calculated parameters in single-precision, for problems like the I2S, accuracy in parameters 

like maximum pin power error can be limited to at most around 0.1%. Although the worth 

of that last 0.1% could be debated (and likely depends on the context in which the 

calculation and results are to be used), it is important to understand this limitation for 

versions of the solver built with only single-precision support, especially if stronger claims 

about the numerical error relative to a specific level of convergence are desired. 

5.2.2 Per-Problem Convergence Assessment 

It is also of interest to take a qualitative inventory of the differences between two 

cores that represent the same input problem converged to different tolerances. In this 

analysis, a visualization of such differences can be obtained quickly using the “differ” 

mode of the COMET Rendering and Output Navigation Application. This mode allows for 

a quick visualization of the difference between two cores in assembly power, pin powers, 

and 0th-order currents, in addition to the quantitative differences discussed above. The 

VHTR is discussed in Section 5.2.2.1. The I2S is discussed in Section 5.2.2.2. The AHTR 

is discussed in Section 5.2.2.3. 
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5.2.2.1 VHTR 

To visualize the type of error caused by under-convergence in the VHTR, figures 

depicting the absolute and relative pin power differences are presented for three different 

pairs of cores. These individual plots can be seen in Figure 26. A plot of the residual norm 

with respect to the cumulative inner iteration number for the problem can be seen in Figure 

27. 

The error pattern for the VHTR is observed to have a very even shape across the 

entire convergence range (after iteration ~500) with the main difference simply being 

decreasing magnitude of the error. The pattern can be described as general undershoot 

Figure 26: VHTR Pin Power Differences 
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towards the bottom of the problem and general overshoot towards the top of the problem, 

with the level of error being quite consistent within any one z-plane. It is noted that this 

problem is reflected on the bottom, and as such this physically represents an undershoot in 

the middle region of the core and overshoot at the axial periphery. 

5.2.2.2 I2S 

To demonstrate this behavior for the I2S, the same set of convergence thresholds 

are pictured in Figure 28. Due to the high number of pins and axial layers in the problem, 

the pin power plot is too dense to be effectively translated to a 2-D still image, and as such 

the plots in Figure 28 are of the assembly power errors instead. The pin power plots 

demonstrate a similar trend, so this substitute is still representative of the trend.  

 

Figure 27: VHTR Partial Currents Vector Convergence 
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A plot of the residual vector norm with respect to cumulative inner iteration number 

is seen in Figure 29. This plot combines with the patterns in Figure 28 to give us a clearer 

picture of the convergence process. The first row of Figure 28 (indicating the comparison 

between thresholds of 1.00E-04 and 1.78E-04) depicts a noticeably different error pattern 

than the remaining rows. Examining Figure 24 reveals that, due in part to the Chebyshev 

acceleration used in this problem, a convergence threshold this loose results in a 

“converged” problem that has not yet actually converged out the components of the vector 

guess due to the eigenpairs of more than the second-largest magnitude. As such, a very 

different error pattern is observed, likely corresponding to the contribution of these lesser-

Figure 28: I2S Assembly Power Differences 
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magnitude eigenvectors. After the final region is reached, however, a regular pattern is 

reached (indicating the difference between the dominant and second-most dominant 

eigenvectors) as seen in the bottom two rows of the figure. This pattern is similar (although 

inverted) to the pattern seen above for the VHTR. This is notable since the I2S problem is 

not reflected as the VHTR problem is. 

5.2.2.3 AHTR 

The behavior of the convergence of the partial currents vector for the AHTR 

problem has a bit more nuance. To begin the discussion of this behavior, it is of use to first 

examine the plot of the residual vector norm with respect to cumulative inner iteration 

number, seen in Figure 30. In contrast to the previous two problems, this plot demonstrates 

a clear intermediate region between iterations ~500 and ~4200. In this region, it is likely 

that the component of the vector guess due to the third-largest eigenpair is still being 

converged out. This component is not fully reduced until around iteration ~4200, at which 

Figure 29: I2S Partial Currents Vector Convergence 
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point the component due to the second-largest eigenpair begins to dominate convergence. 

This claim can be bolstered by examining the differences between the solutions in the two 

different regions. 

A plot of the relative assembly power differences (with the plane corresponding to 

Z = 9 highlighted) between solutions converged to 3.16E-07 and 5.62E-07 can be seen in 

Figure 31. This error pattern is quite interesting relative to those observed in the VHTR 

and I2S analyses above. Rather than being flat within one z-plane, it is relatively constant 

between z-planes, mostly varying within a z-plane. Within these planes, the general pattern 

is under-prediction in the center of the plane and over-prediction towards the periphery of 

the plane. By contrast, a plot of the relative assembly power differences with the same 

plane highlighted for solutions converged to 1.0E-13 and 1.0E-12 can be seen in Figure 32. 

 

Figure 30: AHTR Partial Currents Vector Convergence 
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Figure 31: AHTR Assembly Power Relative Differences, 3.16E-07 vs. 5.62E-07 

Figure 32: AHTR Assembly Power Relative Differences, 1.0E-13 vs. 1.0E-12 
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The error pattern seen in Figure 32 is clearly different from that seen in Figure 31, 

indicating that this is an entirely different regime of convergence, bolstering the claim 

above that this represents a reduction in largely different components of the vector guess. 

Like the VHTR and I2S primary convergence patterns, this pattern is monotonic across one 

axis, starting with over-prediction and ending with under-prediction. However, unlike 

those problems, the dimension of variance is a radial dimension, rather than the axial 

dimension. The pattern is, in fact, relatively consistent across multiple z-planes, and only 

strongly varying within the planes. 

This phenomenon is quite notable because the transition in convergence region 

occurs after the vector has converged past the limit of single-precision computing which 

occurs around 10-7 in relative residual norm. This means that single-precision versions of 

the solver are inherently reasonably limited to the region of the problem in which there are 

contributions to the guess at the primary eigenvector not only in the direction of the second-

most dominant eigenvector, but also the third-most dominant eigenvector. As such, 

attempts to estimate the ratio of |
𝜆2

𝜆1
⁄ | by the convergence behavior would result not in 

the true value of this ratio, and would in fact likely be closer to the ratio |
𝜆3

𝜆1
⁄ |. 

Now, it must be re-iterated that, per Figure 24 and Figure 25, in this region of 

convergence, the error in the criticality eigenvalue and the powers themselves have already 

reached values of less than a fraction of a percent. As such, the use of single-precision 

numbers does not pose a challenge to the overall correctness of the solution. Rather, there 

is more to the overall convergence behavior that is not captured.  
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CHAPTER 6. SUMMARY, CONCLUSIONS, AND FUTURE 

WORK 

In this work, a new solver for the deterministic transport sweep phase of the 

continuous-energy COMET method was developed. The new solver leverages a slight re-

ordering of operations to expose massive inherent parallelism in the method and exploits 

this parallelism for both CPU-only and heterogenous CPU-GPU architectures. The new 

solver is demonstrated on a set of 3 whole-core benchmark problems. Relative to the serial 

solver, the new solver is demonstrated to have a 100-150x speedup for the 1 GPU case, 

and 450-500x speedup for the 4 GPU case. As an example of the types of analysis enabled 

by the improved computational speed, a sensitivity study is performed on the specific 

thresholds used to control convergence of the inner and outer iteration processes. In this 

study, it is found that there can be up to 3-4 orders of magnitude of difference between the 

input threshold used to compare the relative residual norm of the eigenvector guess and the 

“error” of the solutions relative to a fully converged, double-precision solution. 

Additionally, for the largest problem, there are behaviors observed which indicate that 

holding the vector and matrices in single-precision may result in an incomplete picture of 

the convergence of the problem. 

The implications of this work on the future of the continuous-energy COMET 

method are promising. With a 500x speedup, whole-core benchmark problems like those 

examined in Chapters 4 and 5 can be solved in under 1 or 2 minutes depending on the size 

of the problem and the specific criteria used for convergence control. The application of 

low-order acceleration could be expected to further reduce this runtime by 2-3x [1]. As 
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features continue to be added to the COMET method, including time-dependent 

calculation, burnup/depletion analyses, and multi-physics capabilities, the computational 

speed provided by the GPU acceleration will be invaluable in keeping the overall 

computational cost of the calculations to a reasonable level. The problem-independent 

nature of the speedup and the fact that there is only minimal CPU-GPU communication 

(with no large transfers of data) within one outer iteration are particularly promising 

features of the method and implementation in this respect. 

There are several areas of future work identified in this analysis. The first area of 

future work recommended by this study is a thorough parameter optimization, taking into 

account problem-specific and architecture-specific parameters. The super-linear speedup 

observed in Chapter 4 was attributed via profiling and the development of a differently-

tuned solver to inefficiency in the 1 GPU case resulting from the input parameters on 

execution. With an adaptive tuning of these parameters, the performance of the solver in 

cases like this could be improved. 

Additionally, as described in Chapter 3, the choice was made in this study to pursue 

a matrix multiplication kernel that leverages the unified cache implicitly, rather than 

explicitly leveraging CUDA shared memory. This study and the parameter-optimization 

study could each bring separate improvements in execution speed, with improvements of 

up to 50% or more resulting in some cases, as was shown with the smaller-chunk solver in 

Chapter 4. 

Another area of future work recommended in this analysis stems from the 

convergence criteria threshold study in Chapter 5. A study that examines the interplay 
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between the separate thresholds 𝜖𝑱 and 𝜖𝑘 used in assessing convergence of the partial 

currents eigenvector and core criticality eigenvalue, respectively, would be beneficial in 

more accurately characterizing the behavior of the core eigenvalue convergence. The 

intricacies of this behavior are briefly discussed in Chapter 5, but the net result is that 

examining the error of k with respect to the threshold 𝜖𝑘 is in general insufficient, as 

differences in the convergence of the partial currents eigenvector can result in situations in 

which this criterion is readily satisfied. This presents a confounding factor in assessing the 

convergence of the problem not taken into account in this work. 

One additional area of future work resulting from the sensitivity study in Chapter 5 

is an examination of double- or mixed-precision calculation. One of the example problems 

showed interesting convergence behavior that occurred after the limit of single-precision 

numbers. Although it is firmly demonstrated that this does not pose an issue to the 

correctness of the solutions, it does indicate that storing some of the variables (such as the 

accumulators used in matrix multiplication) in a higher precision could unlock other 

behavior masked by floating-point round-off. 

The final area of future work recommended by this study is to leverage the newly 

developed separation between the front-end and back-end. With this separation, the 

workload required to port the solver to new architectures or implement new solution 

methods is significantly reduced. As an example, it could be interesting to attempt to use 

other eigenproblem solution methods via a linear algebra package such as Trilinos/Anasazi 

[38]. 
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With the results of this work, the continuous-energy COMET method is set to take 

advantage of GPU architectures as they continue to become more prevalent in the high-

performance computing landscape. The implementation developed in this work uses the 

tremendous data-parallel computation power of these devices to deliver transport-quality 

solutions to whole-core problems with great speed. With this capability, the COMET 

method is well set up to continue into the future with additions for time-dependent, multi-

physics, and other extended calculation capabilities. 
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APPENDIX A: RAW BENCHMARK TIMING DATA 

Table 11: Raw VHTR Benchmark Timing Data 

Config: Serial CPU-only 1 

thread 

CPU-only 

48 threads 

1 GPU 2 GPUs 4 GPUs 

Num CUs: 1 1 48 1 2 4 

       

Run 1 throughput 0.10973 0.11699 2.61935 15.80923 31.95143 55.06714 

Run 2 throughput 0.1098 0.11698 2.63678 15.76372 32.11376 55.37819 

Run 3 throughput 0.1098 0.117 2.62725 15.72372 32.05961 55.26159 

Run 4 throughput 0.109795 0.11703 2.63594 15.70919 32.04183 55.33927 

Run 5 throughput 0.1098 0.11559 2.61751 15.68204 32.0248 55.24175 

Run 6 throughput 0.10977 0.11568 2.65341 15.69351 31.99846 55.20074 

Run 7 throughput 0.109774 0.11567 2.63498 15.69367 32.0124 55.19388 

Run 8 throughput 0.109793 0.11568 2.63943 15.66691 31.9398 55.12877 

Run 9 throughput 0.1098 0.11572 2.65668 15.6674 31.94633 55.11327 

Run 10 throughput 0.1098 0.11568 2.63726 15.68642 31.97473 55.02926 

       

Average: 0.109786 0.116202 2.635859 15.709581 32.006315 55.195386 

Std. dev: 0.000023 0.000688 0.012655 0.045298 0.055896 0.113485 

Std. dev as %: 0.02% 0.59% 0.48% 0.29% 0.17% 0.21% 
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Table 12: Raw I2S Benchmark Timing Data 

Config: Serial CPU-only 1 

thread 

CPU-only 

48 threads 

1 GPU 2 GPUs 4 GPUs 

Num CUs: 1 1 48 1 2 4 

       

Run 1 throughput 0.080463 0.083773 1.87894 9.19283 20.87047 36.06554 

Run 2 throughput 0.080013 0.083772 1.90353 9.177073 20.87325 36.22335 

Run 3 throughput 0.080191 0.08353 1.9042 9.18145 20.97271 36.404011 

Run 4 throughput 0.080362 0.083918 1.85916 9.19324 20.97791 36.4007 

Run 5 throughput 0.080367 0.082982 1.91536 9.18459 20.98336 36.40626 

Run 6 throughput 0.080339 0.08303 1.92602 9.14465 20.83576 36.122861 

Run 7 throughput 0.080327 0.083046 1.91023 9.18517 20.96023 36.42828 

Run 8 throughput 0.080351 0.083075 1.89821 9.19331 20.97359 36.39222 

Run 9 throughput 0.080349 0.083101 1.90655 9.18895 20.97588 36.41024 

Run 10 throughput 0.080307 0.083098 1.90897 9.12979 20.81807 36.17539 

       

Average: 0.08030690 0.08333250 1.90111700 9.177105 20.9241 36.3028 

Std. dev: 0.00012291 0.00037123 0.01907075 0.021965 0.06642 0.14025 

Std. dev as %: 0.15% 0.45% 1.00% 0.24% 0.32% 0.39% 
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Table 13: Raw AHTR Benchmark Timing Data 

Config: Serial CPU-only 1 

thread 

CPU-only 

48 threads 

1 GPU 2 GPUs 4 GPUs 

Num CUs: 1 1 48 1 2 4 

       

Run 1 throughput 0.0237954 0.0236718 0.54523 2.29326 5.16584 11.41408 

Run 2 throughput 0.0234011 0.0232015 0.54614 2.28739 5.1584 11.40838 

Run 3 throughput 0.0233917 0.0231473 0.54001 2.2858 5.15411 11.3886 

Run 4 throughput 0.0233849 0.023155 0.53867 2.2813 5.15359 11.38785 

Run 5 throughput 0.0233862 0.0232266 0.53817 2.28331 5.15387 11.38383 

Run 6 throughput 0.023396 0.0232 0.542285 2.28029 5.14581 11.36889 

Run 7 throughput 0.0233497 0.023301 0.53393 2.28115 5.14926 11.36095 

Run 8 throughput 0.0233322 0.023171 0.53288 2.27903 5.14293 11.3612 

Run 9 throughput 0.023365 0.023145 0.53983 2.28183 5.14571 11.35778 

Run 10 throughput 0.0233584 0.023316 0.54114 2.28238 5.15006 11.35435 

       

Average: 0.0234160 0.02325352 0.5398285 2.283574 5.151958 11.378591 

Std. dev: 0.0001351 0.00015881 0.0042683 0.004221 0.006785 0.021314 

Std. dev as %: 0.58% 0.68% 0.79% 0.18% 0.13% 0.19% 
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