
SCALABLE ENERGY-EFFICIENT MICROARCHITECTURES WITH
COMPUTATIONAL ERROR TOLERANCE

A Dissertation
Presented to

The Academic Faculty

By

Bobin Deng

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

May 2021

Copyright © Bobin Deng 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/478868177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SCALABLE ENERGY-EFFICIENT MICROARCHITECTURES WITH
COMPUTATIONAL ERROR TOLERANCE

Approved by:

Dr. Thomas M. Conte, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Dr. Alexandros Daglis
School of Computer Science
Georgia Institute of Technology

Dr. Arijit Raychowdhury
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Jeanine Cook
Computer Science Research Insti-
tute
Sandia National Laboratories

Date Approved: April 22, 2021

Enjoy a grander sight by climbing to a greater height

Zhihuan Wang

ACKNOWLEDGEMENTS

Thanks to my family for giving me unlimited tolerance and encouragement in the past

few years. Their support gave me continuous motivation to complete my Ph.D. degree.

Thanks to my thesis advisor, Dr. Thomas M. Conte. He has given me great support in

all aspects, including research work, writing, presentation, and teaching skills, so that I can

successfully complete my degree.

Thanks to Dr. Erik Debenedictis and Dr. Jeanine Cook for giving me many support and

suggestions on research projects, which helped me quickly enter a new research domain

and gave very constructive feedback on my research.

Thanks to all the members of TINKER and CRNCH, through continuous learning and

discussion with each other, my research capability and knowledge have been significantly

improved.

Thanks to thesis committee members, Dr. Thomas M. Conte, Dr. Hyesoon Kim, Dr.

Alexandros Daglis, Dr. Arijit Raychowdhury and Dr. Jeanine Cook, for their time to give

very valuable feedback on my thesis and research.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . ix

List of Figures . x

Summary . xiii

Chapter 1: Introduction and Background . 1

1.1 Computational Error Tolerance . 2

1.1.1 Dual/Triple Modular Redundancy 2

1.1.2 Residue Checking . 2

1.1.3 Residue Number Systems (RNS) 4

1.1.4 Redundant Residue Number Systems (RRNS) 5

1.2 Contributions . 6

1.3 Thesis Statement . 9

1.4 Thesis Outline . 9

Chapter 2: Scalable RRNS Microarchitectures for Millivolt Switches 11

2.1 (4,2)-RRNS Error Detection/Correction Algorithm 11

2.2 Error-tolerant Capability of (4,2)-RRNS 13

v

2.3 (n,r)-RRNS Error-Tolerant Extension . 15

2.4 Signed Number Representation . 16

2.5 Correction Factors . 18

2.6 Overflow Detection . 21

2.6.1 Unsigned Number Overflow Detection 21

2.6.2 Signed Number Overflow Detection 22

2.7 Comparison . 24

2.8 Optimized Multiplier Unit Design . 25

2.9 Base Selection for Scalable Systems . 27

2.10 RRNS Fixed Point Arithmetic . 29

2.10.1 2-RRNS Concat Representation 29

2.10.2 RRNS Logical Partition Representation 31

2.11 A Scalable (n,r)-RRNS Microarchitecture Supporting Detection and Cor-
rection . 33

2.12 Related Work . 35

2.12.1 RNS and RRNS . 35

2.12.2 Other Error-tolerant Techniques 36

2.12.3 State-of-the-art Checkpointing Schemes 37

Chapter 3: (n,r)-RRNS Detection&Restart-only Systems for Millivolt Switches . 39

3.1 RRNS Checkpointing&Restart Overview 39

3.2 RRNS Checkpointing Operations . 41

3.3 RRNS Checkpointing Hardware Overheads 43

3.4 Adaptive Checkpointing Schemes . 43

vi

3.4.1 Stochastic Overhead Estimation (SOE) 44

3.4.2 Error Interval Heuristics (EIH) . 49

3.5 Evaluation Methodology . 50

3.6 Experimental Results . 51

3.6.1 Exploration of The Minimum Signal Energy 51

3.6.2 The Potential of Checkpointing&Restart Systems 52

3.6.3 The Best Checkpointing & Restart Scheme 55

3.7 Conclusion . 57

Chapter 4: (n,r)-RRNS Correction-only Systems for Millivolt Switches 58

4.1 Size of Error Correction Lookup Table . 59

4.2 Energy Delay Production (EDP) Comparison 59

Chapter 5: (n,r)-RRNS Hybrid Systems for Millivolt Switches 61

5.1 (n,r)-RRNS Hybrid System Design . 61

5.2 Design Space Exploration of (n,r)-RRNS 61

Chapter 6: Thread-level Fault-tolerance for Exascale Computing 65

6.1 Motivation and background . 65

6.2 Asynchronous Many-Task (AMT) Programming model 67

6.3 Thread-level RRNS Resiliency . 71

6.3.1 RRNS-AMT Overview . 71

6.3.2 Thread-level RRNS Limitations and Solutions 73

6.3.3 RRNS-AMT Microarchitecture . 75

vii

6.4 Evaluation Methodology And Experimental Results 78

6.4.1 Benefits of Branch Predictor Combination 80

6.4.2 Error-free Scenarios . 81

6.4.3 Error-prone Scenarios . 85

6.5 Related Work . 87

Chapter 7: Conclusion and Future Work . 89

7.1 Conclusion . 89

7.2 Future Work . 91

7.2.1 Energy and Speedup Tradeoff of Different Pipeline Designs 91

7.2.2 Error Model Improvement . 91

7.2.3 RRNS Deep Neural Network . 92

References . 104

viii

LIST OF TABLES

1.1 A (4, 2)-RRNS example with a toy base set (3, 5, 2, 7, 11, 13). 11 and 13
are the redundant bases. 6

2.1 Error Correction table of RRNS System with Moduli (3,5,2,7,11,13) 12

2.2 Unsigned Number Overflow Examples in RRNS with Moduli (3,5,2,7,11,13) 22

2.3 Excess-M
2

Overflow Examples for addition of two positive numbers in RRNS
with Moduli (3,5,2,7,11,13) . 22

2.4 Excess-M
2

Overflow Examples for addition of two negative numbers in
RRNS with Moduli (3,5,2,7,11,13) . 23

2.5 Mapping table of GF (59) with a primitive root of 11 (g = 11) 26

2.6 Mapping table of GF (26) . 27

2.7 Conditions for choosing RRNS moduli: Multiple error detection (+), single
error correction (*), fractional multiplication optimization(#), index-sum
multiplication optimization (O), number of redundant moduli (r), number
of detectable errors (e). 28

2.8 Possible (4,2)-RRNS-DED Base Sets . 29

3.1 Equation Terminologies . 45

6.1 Percentages of RRNS unfriendly instructions 73

ix

LIST OF FIGURES

1.1 Triple Modular Redundancy in action. 3

1.2 Residue Checking Flowchart . 4

2.1 (4,2)-RRNS is capable of 1EC or 2ED . 13

2.2 Complement M*MR signed representation 17

2.3 Complement M signed representation . 17

2.4 Excess -M/2 signed representation . 18

2.5 One error detection and correction algorithm with overflow/underflow de-
tection . 23

2.6 Signed Overflow Detection and Comparison 25

2.7 2-RRNS Concat Multiplication . 30

2.8 An Example of 2-RRNS Concat Multiplication 30

2.9 Converting fixed-point representation to integer representation 32

2.10 Logical Partition Multiplication . 32

2.11 Converting integer representation back to fixed-point representation 32

2.12 The overview of a scalable (n,r)-RRNS microarchitecture capable of check-
pointing/restart and error correction . 33

2.13 Error-tolerant techniques of components 33

3.1 RRNS Checkpoint Overview . 40

x

3.2 RRNS Checkpointing&Restart Flowchart 41

3.3 Invalid Execution Segment . 46

3.4 Error Interval Heuristics (EIH) Mechanism Examples; Default parameters:
latest Error Interval(EI,200k cycles), minimal LI(30k cycles), minimal SI
(10K cycles); No error detected . 49

3.5 Error Interval Heuristics (EIH) Mechanism Examples; Default parameters:
latest Error Interval(EI,200k cycles), minimal LI(30k cycles), minimal SI
(10K cycles); An error is detected . 49

3.6 Minimal MTBF of computational logic in (4,2)-RRNS-2ED 53

3.7 Minimal Energy of computational logic in (4,2)-RRNS-2ED 53

3.8 Minimal EDP of computational logic in (4,2)-RRNS-2ED 54

3.9 EDP of 1EC vs 1ED vs 2ED . 54

3.10 Comparison of Checkponting&Restart Energy 55

3.11 Comparison of Checkponting&Restart Runtime 56

3.12 Comparison of Checkponting&Restart EDP 56

4.1 Energy Delay Production (EDP) Comparison 59

5.1 Memory-intensive;The energy consumption of RRNS schemes normalized
to (4,2)-RRNS-1EC . 62

5.2 Non-memory-intensive;The energy consumption of RRNS schemes nor-
malized to (4,2)-RRNS-1EC . 62

5.3 Energy Delay Pareto normalized to (4,2)-RRNS-1EC 63

6.1 TMR-AMT Example . 69

6.2 RRNS-AMT Example . 70

6.3 (4,2)-RRNS-AMT Overview . 72

xi

6.4 The Resilient Microarchitecture Overview of Thread-level Redundant Residue
Number System . 75

6.5 An Example of Converting An ADD Instruction Into Multiple ADD Micro-
instructions In The Decode Stage . 76

6.6 Performance Improvement (Delay Reduction) of Branch Predictor Combi-
nation . 80

6.7 Delay of Thread-level Redundant Residue Number System (RRNS); The
values in this figure are normalized to Triple Modular Redundancy (TMR) . 82

6.8 Energy of Thread-level Redundant Residue Number System (RRNS); The
values in this figure are normalized to Triple Modular Redundancy (TMR) . 83

6.9 Energy Delay Product (EDP) of Thread-level Redundant Residue Number
System (RRNS); The values in this figure are normalized to Triple Modular
Redundancy (TMR) . 83

6.10 Normalized delay results for different error detection frequencies and error
rates; X-Axis: error detection frequencies range from 102 to 106; Y-Axis:
instruction error rates range from 10−4 to 10−9; Z-Axis: Normalized thread-
level RRNS delay (TMR results are normalized to 1). 84

6.11 Normalized energy results for different error detection frequencies and er-
ror rates; X-Axis: error detection frequencies range from 102 to 106; Y-
Axis: instruction error rates range from 10−4 to 10−9; Z-Axis: Normalized
thread-level RRNS energy (TMR results are normalized to 1). 84

6.12 Normalized EDP results for different error detection frequencies and error
rates; X-Axis: error detection frequencies range from 102 to 106; Y-Axis:
instruction error rates range from 10−4 to 10−9; Z-Axis: Normalized thread-
level RRNS EDP (TMR results are normalized to 1). 84

7.1 A Conventional Neuron of Deep Neural Network 92

xii

SUMMARY

Dennard scaling of conventional semiconductor technology has reached its limit result-

ing in issues pertaining to leakage current and threshold voltage. Energy-savings found

at the transistor level by simply lowering supply voltage are no longer available for these

devices (e.g., MOSFETs) and has reached the Landauer-Shannon limit. Recent proposals

of minivolt switch technologies aim to extend the technology scaling roadmap by main-

taining a high on/off ratio of drain current with a much lower supply voltage. However,

high intermittent error probabilities in millivolt switches constraints their Vdd reduction for

traditional architectures. Thus, there is an urgent need for scalable and energy-efficient

micro-architectures with computational error-tolerance.

This thesis systematically leverages the error detection and correction properties of

the Redundant Residue Number System (RRNS) by varying the number of non-redundant

(n) and redundant (r) components (residues), and selects and discusses trade-offs about

configuration points from a two-dimensional (n, r)-RRNS design plane that meet certain

capabilities of error detection and/or correction. Being able to efficiently handle resilience

in this (n, r)-RRNS plane significantly improves reliability, allowing further Vdd reduction

and energy savings.

First, the necessary implementation details of RRNS cores are discussed. Second,

scalable RRNS micro-architectures that simultaneously support both error-correction and

checkpointing with restart capabilities for uncorrectable errors are proposed. Third, novel

RRNS-based adaptive checkpointing&restart mechanisms are designed that automatically

guarantee reliability while minimizing the energy-delay product (EDP). Finally, the RRNS

design space is explored to find the optimal (n, r) configuration points. For similar relia-

bility when compared to a conventional binary core (running at high Vdd) without compu-

tational error tolerance, the proposed RRNS scalable micro-architecture reduces EDP by

53% on average for memory-intensive workloads and by 67% on average for non-memory-

xiii

intensive workloads.

This thesis’s second topic is to alleviate fault rate and power consumption issues of ex-

ascale computing. Faults in High-Performance Computing (HPC) have become an urgent

challenge with estimated Mean Time Between Failures (MTBF) of exascale system pro-

jected as only several minutes with contemporary methodologies. Unfortunately, existing

error-tolerance technologies in the context of HPC systems have serious deficiencies such

as insufficient error-tolerance coverage, high power consumption, and difficult integration

with existing workloads. Considering Department of Energy (DOE) guidelines that limit

exascale power consumption to 20 MW, this thesis highlights the issue of energy usage

and proposes a thread-level fault tolerance mechanism compatible with current state-of-the

art exascale programming models while simultaneously meeting the requirements of full

system error protection. Additionally, an efficient micro-architecture and corresponding

mechanisms that can support thread level RRNS are discussed. Experimental results show

that this strategy reduces energy consumption by 62.25% and the Energy-Delay-Product by

58.67% on average when compared with state-of-the-art black box resilience techniques.

xiv

CHAPTER 1

INTRODUCTION AND BACKGROUND

Dennard scaling [1] has been one of the critical technology roadmap trendings through past

decades for computer efficiency improvement. This scaling’s main idea is that transistors

consume the same amount of power per unit area as they scale down in size. However, leak-

age current and threshold voltage issues from smaller MOSFET devices caused Dennard

scaling to be terminated [2]. This termination essentially negates possible performance

benefits that Moore’s law may provide.

This has not reached the limit of irreversible logic operations. Landauer [3] presented

the lower bound of energy dissipation of an irreversible logic operation to be on the order

of kT , where k is the Boltzmann’s constant and T is the absolute temperature. How-

ever, MOSFET is constrained by the 50× higher Landauer-Shannon limit [4]. The reason

for this disparity is that MOSFETs are limited to a sub-threshold slope of kT
q
ln10 ≈ 60

mV/decade. Certain new devices, known as millivolt switches, such as Tunnel FETs [5]

and Ferroelectric FETs [6], are possible to break through this wall. However, as the signal

strength of a cell phone becomes weaker as it moves further from the transmitter tower,

Agarwal et al. [7] conclude that error probability increases exponentially as signal energy

is lowered: Pe = exp(−Esignal

kT
). Pe in this equation denotes error probability, and Esignal

represents the signal energy of this transistor. If the size of a new device continually scal-

ing, it eventually leads to an error because there is no enough energy to distinguish the ’0’

or ’1’ status.

Therefore, to keep the failure rate of millivolt switch-based microarchitectures within

bounds and achieve optimal or suboptimal energy reduction, error-tolerance consideration

must be incorporated. In other words, to punch through the existing power wall via mil-

livolt switches, efficient error-detection, correction, and/or checkpoint&rollback schemes

1

are required. The technology roadmap would then be possible to scale further by reducing

the switch signal energy to close the Landauer limit.

1.1 Computational Error Tolerance

Standard error-correcting codes (ECC) [8] has already widely been using in modern com-

munication systems and storage units. However, ECC lacks the theoretical capability to

protect the computational units and corresponding components, such as Arithmetic Logic

Unit (ALU) or accumulator. Therefore, traditional ECC is insufficient to protect the whole

computing system at a low Vdd. Computational error-tolerant techniques that are commonly

used are now described in the following subsections.

1.1.1 Dual/Triple Modular Redundancy

Dual or Triple Modular Redundancy (D/TMR) is a conventional computational error-tolerant

scheme [9]. From the perspective of error-tolerant capability, DMR is able to detect one

error while TMR can correct one error from one of the components. As shown in Figure

1.1,the basic idea of TMR is to make two additional copies of the existing computational

logic and then followed by a majority vote from these three outputs. If one of the compu-

tational components arises an error while the remaining two are correct, this error is easily

fixed via an error-free majority vote. While TMR is simple and straightforward to imple-

ment, its overhead is more than 200% in both component area and power to detect and

correct the single error. The energy-saving potentials from lowering Vdd would therefore

be eliminated.

1.1.2 Residue Checking

IBM commercial processor series, such as z990, z10, z196, POWER6 and POWER7 [10,

11, 12, 13] use residue checking scheme to achieve the error tolerance. A residue is the

remainder from a given number is divided by a predefined module. The residue check-

2

+

13 14

27

+

13 14

25

+

13 14

27

Majority	 Vote

27

Figure 1.1: Triple Modular Redundancy in action.

ing methodology consists of two independent datapaths followed by a comparator, and

leverages the closure property of residue arithmetic wherein (A%m op B%m)%m =

(A op B)%m, for integers A, B, modulus m and arithmetic operation op. An error is

detected whenever the comparator returns a not-equal output. From the flowchart in Fig-

ure 1.2, m usually is represented by a small integer, such as 3, 9, or 15 in IBM processor

series.

Generally speaking, the overhead of residue checking technologies’ one-time error

detection is low. This is mainly because the bit-width of its redundant datapath is con-

strained by the selected modulus, which is usually less or equal to 4 bits. Unfortunately,

this lightweight protection may negatively impact the full system reliability. For example,

for m = 5, 1
5

of possible errors are undetectable (say the correct value is 2, all erroneous

values v satisfying v%5 = 2 such as 7, 12, 17 etc. would remain undetectable).

Furthermore, an error detection operation must be performed right after every arith-

metic computation. If no residue error check is inserted after the corresponding arithmetic

operation, then this error generated during the computation becomes undetectable forever.

Finally, as the residue checking datapath can only detect errors generated during the current

arithmetic computation, the input values must be verified (such as via performing an ECC

check on every register read) before this computation.

3

%m

+
Error?

A+B

A

B
%m

%m

%m
==?

+

Figure 1.2: Residue Checking Flowchart

An improved computational error-tolerant approach (RRNS, described below) over-

hauls residue checking to eliminate the above issues while still maintaining excellent sys-

tem robustness. RRNS has the following benefits:

1. RRNS may significantly reduce the undetectable error rate in general.

2. RRNS does not require checking the output of every arithmetic operation.

3. RRNS does not require checking input values.

Furthermore, ALU optimizations become feasible in RRNS, resulting in significantly

more energy-efficient addition, subtraction, and multiplication. Before discussing RRNS,

the Residue Number Systems (RNS) needs to be first described.

1.1.3 Residue Number Systems (RNS)

Residue Number Systems (RNS) have been widely utilized in many popular application

domains such as digital signal processing (DSP) [14, 15, 16], cryptography (RSA) [17, 18,

19] and in-memory neural network acceleration [20]. Due to the carry-free property [21,

22] and small bit-width datapaths, RNS is able to get benefits via replacing the conventional

binary system in computationally intensive domains. In an n-RNS, a non-negative integer

X < M bijectively maps to a set of n smaller integers, known as residues. Given a set of

n co-prime bases or moduli B = {mi ∈ N, i = 1, 2, 3, ..., n}, the ith residue is defined as

|X|mi
= X % mi. The RNS range of representable numbers is euqal to M =

∏n
i=1mi.

4

The arithmetic operations of RNS, such as addition, subtraction, and multiplication,

are very efficient. This is mainly because each residue performs parallel and independent

arithmetic computations and does not interfere with and interact with each other. The

parallel and independent properties offer great potential to improve the performance and

energy reduction, particularly for multiplication which is always slow and power-hungry

with conventional binary design. However, the general RNS division operation requires

relatively high overhead algorithms [23, 24], and most RNS architectures avoid division-

intensive workloads. For workloads with only a small ratio of division instructions, besides

the specific RNS division algorithm, RNS can also be converted to binary to perform a

binary division and then convert the output from binary back to RNS format after the binary

division completes.

1.1.4 Redundant Residue Number Systems (RRNS)

AS the residue has independence and isolation properties, the error generated on a partic-

ular residue should not propagate to others. By adding r redundant moduli to an n-RNS

system, error tolerance can then be achieved. This is known as the Redundant Residue

Number System, or (n,r)-RRNS in this case and now has an extended set of bases/moduli:

B = {mi ∈ N, i = 1, 2, 3, ..., n, n+1, ..., n+r}. Any non-negative integer number smaller

than M (=
∏n

i=1mi) can still be represented uniquely by its original n non-redundant

residues while the remaining r residues store redundant information to support error toler-

ance.

Since errors in a particular residue are self-contained, these errors from a particular

reisue should not infect the others. Furthermore, the errant residue can be detected and/or

corrected via the remaining residues [25]. Table 1.1 provides a simple (4,2)-RRNS system

(n = 4, r = 2) example with a toy base set (3, 5, 2, 7, 11, 13) to explain how RRNS

works for arithmetic computation. Table 1.1 is extended from the example table in [26].

Decimal 10 ≡ (2, 4, 1, 1, 7, 3) in this example and the range M = 3 × 5 × 2 × 7 = 210.

5

Table 1.1: A (4, 2)-RRNS example with a toy base set (3, 5, 2, 7, 11, 13). 11 and 13 are the
redundant bases.

Decimal %3 %5 %2 %7 %11 %13
10 1 0 0 3 10 10
19 1 4 1 5 8 6

10+19=29 (1+1)%3=2 4 1 1 7 3
10*19=190 (1*1)%3=1 0 0 1 3 8

In practice, base sets with more realistic ranges, such as (211, 421, 256, 347, 503, 509),

are discussed in Section 2.9. A (4,2)-RRNS system has the capability of correcting a one

residue in error (One Error Correction;1EC) or detecting two residues in error (Two Error

Detection;2ED) [25]. The relationships between (n,r) and RRNS error tolerance capabili-

ties with other related details are discussed in Chapter 2.2 and 2.3.

In general, RRNS is a great error-tolerant methodology with energy-efficient and low

area overhead potentials. Based on these advantages, RRNS can be widely used in remote

embedded systems, high-performance computers, spacecraft design, etc., all of which have

specific requirements of fault tolerance and low energy consumption. This thesis analyzes

RRNS from bit-level parallelism for millivolt switch and thread-level parallelism for exas-

cale computing. It also proposes related microarchitectures to achieve error-tolerance and

energy-efficiency goals.

1.2 Contributions

While modeling the RRNS cores with some empirical configuration points may get more

energy-efficient than unprotected binary ones with similar reliability, a systematic (n, r)-

RRNS design exploration yields even more energy benefit and is able to find out the corre-

sponding optimal or suboptimal configurations. On the one hand, by thoroughly exploiting

the potential of RRNS reliability, millivolt switches’ signal energy can further approach

the theoretical Landauer limit. On the other hand, by applying the RRNS methodology at

thread level granularity, the two urgent challenges of exascale computing, fault tolerance

6

and high energy consumption, can be alleviated to a certain extent.

This thesis starts with a specific RRNS configuration(zero-dimension, (4,2)-RRNS)

and verifies the feasibility and the potential of this resilient methodology. And then en-

hancing the zero-dimensional design to a two-dimensional scalable scalable architecture

framework supporting c-residue error correction and d-residue error detection (cECdED).

In theory, c and d can be any non-negative integers. For example, 1EC is equivalent to

1EC0ED, and 2ED is represented as 0EC2ED. The term ‘scalable’ above means that the

number of RRNS non-redundant (n) and redundant (r) moduli can be extended with error

tolerance adjustment. As such, the following key contributions are made for microarchi-

tecture designs of millivolt switches:

1. Propose a scalable, energy-efficient RRNS-based microarchitecture that simultane-

ously supports error correction and checkpointing&restart, when used with upcom-

ing millivolt switches.

2. Design and analysis of an efficient RRNS multiplier unit using the index-sum tech-

nique.

3. Design a set of novel RRNS-based checkpointing&restart mechanisms that benefit

from optimized checkpoint size and adaptive time interval adjustment. They narrow

the signal energy gap further to close the theoretical Landauer limit. Moreover, com-

pared with other checkpointing technologies, these methodologies further improve

memory usage efficiency.

4. Perform a systematic design space exploration of (n,r)-RRNS-cECdCR microarchi-

tectures via a tradeoff analysis between reliability and energy-delay overheads of

error correction and checkpointing. Solving such a discrete convex optimization

problem results in finding out the best RRNS configurations that minimize energy-

delay-product (EDP) while maximizing reliability.

7

The bit-level RRNS evaluation results with reasonable (n,r)-RRNS configurations (more

details are available in Chapter 2.3) present three insights: (i) Cores that employ a hybrid

detection-correction strategy (i.e., cd > 0) are more resilient. However, they suffer from

the combined overhead of both mechanisms in terms of energy as well as performance. (ii)

For memory-intensive workloads, the EDP of correction-only systems (d = 0) are superior

to detection-only (c = 0) ones within a reasonable range, resulting in 53% EDP reduction.

This is because of the higher state overheads in checkpoint-based systems for memory-

intensive workloads. (iii) For non-memory-intensive workloads, detection-based systems

are superior, resulting in 67% EDP reduction. Unless otherwise mentioned, all results

in this topic are compared against a conventional binary core that is not computationally

error-tolerant (runs at high Vdd) of similar reliability1.

In the optimization of exascale computing, the fault-tolerant RRNS API is added to the

Habanero C/C++ library (HClib)[27], which provides easy-to-use interfaces for the pro-

gramming model of exascale computing. Moreover, the thread-level RRNS CPU microar-

chitecture is proposed. When applications that require high fault-tolerance requirements

in a heterogeneous exascale computing system, they can be assigned to these fault-tolerant

cores to execute and achieve the purpose of fault-tolerance. Compared with the traditional

Triple Modular Redundancy(TMR) method, RRNS has the advantage of lower energy con-

sumption. Therefore, the following contributions are made for thread-level RRNS design:

1. Propose a thread-level Redundant Residue Number System (RRNS) scheme and de-

sign the corresponding microarchitecture by following the unique execution mode of

thread-level RRNS. This allows RRNS to be efficiently applied to exascale systems

improving their fault-tolerance and energy-efficiency.

2. Propose the RRNS API compatible with the current Habanero C/C++ library (HClib)[27],

which demonstrates the feasibility of thread-level RRNS in the current Asynchronous

1Mean Time Between Failures (MTBF) > Average Human Lifespan (100 years).

8

Many-Task (AMT)[28] programming model widely used for programming exascale

systems.

3. Through further optimizations of thread-level RRNS microarchitecture, this method

shows 62.25% and 58.67% reduction respectively in energy and Energy Delay Prod-

uct (EDP), compared with the state-of-the-art Asynchronous Many-Task (AMT) black-

box resiliency method.

1.3 Thesis Statement

Error-tolerant microarchitectures via Redundant Residue Number System can further ex-

tend the semiconductor technology roadmap, and alleviate reliability and power challenges

of exascale computing.

1.4 Thesis Outline

Chapter 2, 3, 4, and 5 of this thesis discuss the scalable energy-efficient and error-tolerant

CPU microarchitecture designs for millivolt switches.

Chapter 2 introduces the basic RRNS concepts, approaches, and optimizations that

are necessary for the CPU microarchitecture design. A scalable RRNS microarchitecture

framework that can be compatible with error correction and detection&restart is also pro-

posed. The publications related to Chapter 1 and Chapter 2 are [7, 26, 29, 30, 31].

Chapter 3 discusses the RRNS checkpointing&restart mechanisms in detail. First intro-

duced the static checkpointing&restart method, and then implemented two adaptive check-

pointting&restart strategies based on the system’s historical information. Finally, it shows

experimental results and analysis based on the (4, 2)-RRNS configuration.

Chapter 4 introduces the correction-only RRNS system and discusses the range of rea-

sonable error correction capabilities for the RRNS microarchitecture framework.

Chapter 5 demonstrates the hybrid RRNS system with the capability of both correction

9

and checkpointing&restart. Then find out the optimal or suboptimal design configuration

in the (n, r)-RRNS setting space with different fault-tolerant capabilities. The publication

related to Chapter 3, Chapter 4 and Chapter 5 is [26].

Chapter 6 introduces thread-level RRNS and its related microarchitecture. This design

aims to alleviate the critical exascale computing challenges regarding high error rates and

high energy consumption. Finally, through experimental simulation, it is found that thread-

level RRNS has better Energy Delay Product (EDP) results than thread-level TMR (Triple

Modular Redundancy). The publication related to Chapter 6 is waiting to submit.

Finally, Chapter 7 summarizes the previous discussions and proposes future work that

is related to this topic.

10

CHAPTER 2

SCALABLE RRNS MICROARCHITECTURES FOR MILLIVOLT SWITCHES

This chapter first describes the error-tolerant capabilities of one configuration point: (4,2)-

RRNS. The first digit ‘4’ refers to the number of non-redundant moduli/residues, and the

second digit ‘2’ refers to the number of redundant moduli/residues. Then, discussing the

relationship between the number of moduli/residues and the capability of fault-tolerance in

the entire design space. This chapter also introduces several detailed considerations that

are essential for the scalable RRNS microarchitecture design, including signed number

representation, correction factors, arithmetic overflow detection, comparison, multiplier

optimization, and RRNS base selection. Finally, a scalable RRNS microarchitecture that

can support error correction and error detection&roolback is proposed for the millivolt

switches.

2.1 (4,2)-RRNS Error Detection/Correction Algorithm

The algorithm for one error detection/correction was originally given by Watson [25]. How-

ever, RNS renders comparison and arithmetic overflow detection to be a non-trivial exer-

cise. This section presents algorithms to perform these functions by augmenting the error

checking algorithm. This way, no extra hardware is warranted beyond that required by the

error checking.

The one error correction algorithm proposed by Watson [25] is based on an error correc-

tion table. The working steps of this algorithm for a system with 4 non-redundant moduli

(m1,m2,m3,m4) and 2 redundant moduli (m5,m6), for any given integer X (< M =

m1m2m3m4) is as follows: (a) Use a base-extension Algorithm [32, 33, 25] to compute

|X ′|m5 and |X ′|m6 , where |X ′|m5 and |X ′|m6 are the outputs of the the base-extension al-

gorithm algorithm. The inputs to the base-extension algorithm are from the outputs of

11

Table 2.1: Error Correction table of RRNS System with Moduli (3,5,2,7,11,13)

∆m5,∆m6 i′ ε ∆m5,∆m6 i′ ε ∆m5,∆m6 i′ ε ∆m5,∆m6 i′ ε ∆m5,∆m6 i′ ε

1 , 10 4 6 4 , 5 1 1 5 , 12 3 1 7 , 7 4 3 9 , 3 2 2
2 , 10 2 3 4 , 6 4 4 6 , 1 3 1 7 , 8 1 2 10 , 3 4 1
2 , 12 4 6 4 , 7 2 1 6 , 4 2 4 8 , 1 2 2
3 , 3 1 1 4 , 11 4 5 6 , 5 4 3 8 , 4 4 2
3 , 9 4 5 5 , 8 4 4 7 , 2 4 2 8 , 10 1 2
3 , 12 2 3 5 , 9 2 1 7 , 6 4 2 9 , 1 4 1

non-redundant subcores: |X|m1 , |X|m2 , |X|m3 and |X|m4 , where |X|m = X mod m;

the computational output of the subcore with mi modulus. (b) For i = 5, 6: compute

∆mi = ||X ′|mi
− |X|mi

|mi
. (c) A non-zero difference indicates the presence of an error.

This pair of differences may index into an entry of a pre-computed (fixed) error correction

table, which contains the index of the residue that is in error and a correction offset that

needs to be added to that residue to correct said error.

The RRNS Error detection/correction algorithm could easily be activated via schedul-

ing the RRNS check instruction, which has been defined in CREEPY ISA [30]. For the

error detection step, the system would perform (a) and (b) to get values of ∆m5 and ∆m6.

For the error correction step (if necessary), it performs (c). Analysis of the algorithm re-

veals that the error detection step would take 8 cycles while the correction step takes 2

cycles. Therefore, once the system inserts an RRNS check instruction, the first step is to

execute the 8-cycle error detection procedure. If no error is found, then this RRNS check

instruction is complete and it takes 8 cycles in total. But if an error is detected, then we

need 2 more cycles for the RRNS correction operation to complete (resulting in 10 cycles

in total).

For ease of presentation, we present such an error correction table for a smaller (toy) set

of RRNS base moduli in Table 2.1. The total entries in such a table is at most 2
∑4

i=1(mi−

1). For the remainder of this chapter, this set of bases are used for explanatory purposes.

12

𝒓𝟓" = |𝟏𝟔𝟎|𝟏𝟏 = 𝟔
𝒓𝟔" = |𝟏𝟔𝟎|𝟏𝟑 = 𝟒

1 Error Binary %3 %5 %2 %7 %11 %13
Intended 168 0 3 0 0 3 12
Actual 42 0 2 0 0 3 12

𝒓𝟓" = |𝟒𝟐|𝟏𝟏 = 𝟗
𝒓𝟔" = |𝟒𝟐|𝟏𝟑 = 𝟑

∆𝒓𝟓 = |𝒓𝟓	−	𝒓𝟓" |𝟏𝟏 = 𝟓
∆𝒓𝟔 = |𝒓𝟔	−	𝒓𝟔" |𝟏𝟑 = 𝟗

∆𝒓𝟓 = |𝒓𝟓	−	𝒓𝟓" |𝟏𝟏 = 𝟓
∆𝒓𝟔 = |𝒓𝟔	−	𝒓𝟔" |𝟏𝟑 = 𝟗

∆𝒓𝟓,∆𝒓𝟔 𝒊#, 𝝐 ∆𝒓𝟓,∆𝒓𝟔 𝒊#, 𝝐 ∆𝒓𝟓,∆𝒓𝟔 𝒊#, 𝝐
1,10 4,6 4,11 4,5 7,7 4,3
2,10 2,3 5,8 4,4 7,8 1,2
2,12 4,6 5,9 2,1 8,1 2,2

3,3 1,1 5,12 3,1 8,4 4,2
3,9 4,5 6,1 3,1 8,10 1,2

3,12 2,3 6,4 2,4 9,1 4,1
4,5 1,1 6,5 4,3 9,3 2,2
4,6 4,4 7,2 4,2 10,3 4,1

4,7 2,1 7,6 2,4

One Error Correction Lookup
Table with moduli (3,5,2,7,11,13)

2 Error Binary %3 %5 %2 %7 %11 %13
Intended 0 0 0 0 0 0 0
Actual 160 1 0 0 6 0 0

Figure 2.1: (4,2)-RRNS is capable of 1EC or 2ED

2.2 Error-tolerant Capability of (4,2)-RRNS

Similar to other resilient techniques, the RRNS error-tolerant capability depends on the

amount of redundancy, i.e., the number of redundant moduli. For example, a (4,2)-RRNS

is capable of either 1EC or 2ED, but not both simultaneously. The term ‘1EC’ refers to

’1 Error Correction’, and ’2ED’ stands for ”2 Error Detection”. The reasoning for this, as

well as the working of the RRNS detection and correction algorithms, are now explained

by means of an example.

Consider there is a (4,2)-RRNS with toy bases (3,5,2,7,11,13). Say the result from

an operation is intended to be (0,3,0,0,3,12) whereas, due to a transient fault, the second

residue changes from 3 to 2 (Figure 2.1). If an RRNS error detection is performed immedi-

ately, the Chinese Remainder Theorem [34] or the Base Extension Algorithm [35, 25] can

be used to re-generate the redundant residues (r5′ = 9, r6′ = 3) from the non-redundant

residues (r1 = 0, r2 = 2, r3 = 0, r4 = 0). Now, the delta value pair (∆r5 = 5,

∆r6 = 9) is used to infer the possibility of an error and potentially restore the correct result.

Three cases arise for the delta value pair:

1. Both are zero. This implies that there are no errors in the RRNS data. No correction

13

or recovery is necessary.

2. 1EC mode:

• Exactly one of them is non-zero. This indicates that the corresponding non-zero

redundant residue is in error. Correction is performed by overwriting the errant

redundant residue with the re-generated value.

• Both are non-zero. It means that exactly one of the non-redundant residues is in

error, and a single error correction LUT1 must be consulted to handle the error.

3. 2ED mode: One of them is non-zero. This implies that at least one residue is in error.

No LUT consultation is necessary for error detection, but an efficient checkpoint-

ing/restart mechanism is necessary (Chapter 3)

In 1EC mode, the delta value pair (∆r5 = 5, ∆r6 = 9) should be used as an

input to index into the one error correction LUT. This returns (i′=2,ε=1), which translates

to the following: a correction offset of ‘1’ is to be added to the 2nd residue in order to

correct its errant value. However, consider the example of the double errors in Figure 2.1

where two residues are actually incorrect. Observe that the delta value pair is again

(∆r5 = 5, ∆r6 = 9), and 1EC mode performs incorrect restoration by accessing LUT,

resulting in system failure because its correction error model tolerates at most one residue

in error. However, if the (4,2)-RRNS system was working in a 2ED mode rather than 1EC,

then such a double error would indeed be detected. In other words, (4,2)-RRNS is capable

of exactly one of 1EC or 2ED. If both 1EC and 2ED are simultaneously supported in a

(4, 2)-RRNS system, it will cause similar delta value pair conflictions as shown

in Figure 2.1, resulting in incorrect behaviors. More redundant information is needed to

support both 1EC and 2ED in the same RRNS.

1The one error correction Lookup Table (LUT) is unique to the RRNS base set, and its size grows linearly
with the magnitude of the base moduli (summation).

14

2.3 (n,r)-RRNS Error-Tolerant Extension

The number of non-redundant moduli (n) and redundant moduli (r) can be adjusted for a

performance-energy-reliability tradeoff. n has a direct impact on the amount of bit-level

parallelism that one can leverage. Of more fundamental interest to this thesis, r has a direct

impact on error tolerance capabilities, as summarized in the two lemmas below by [36]:

1. An (n, r)-RRNS code can detect upto r residue errors, or correct upto b r
2
c reside

errors.

2. An (n, r)-RRNS code can correct upto t residue errors and simultaneously detect upto

v (> t) errors if t+ v 6 r.

The precondition for these lemmas is that the redundant moduli must be larger than the

non-redundant ones. This condition, along with other considerations for designing a set of

RRNS base moduli for energy-efficient and error-resilient microarchitectures are described

in detail in Section 2.9.

Using the lemmas, as an example, a (4,3)-RRNS architecture can either employ 0EC3ED

or 1EC2ED, while a (4,4)-RRNS architecture can choose between 0EC4ED and 1EC3ED.

The key advantage of a hybrid (correction+detection&rollback) architecture is that thanks

to the correction, rollbacks become statistically less expensive in terms of latency and en-

ergy. In theory, timely correction can avoid the frequency of rollbacks at a certain proba-

bility. On the other hand, with the help of detection&rollback, a higher error (multiplicity)

tolerant capability is achieved, which can in turn enable higher energy savings due to low-

ering Vdd further. These benefits are, of course, subject to the runtime overheads of error

correction and detection&rollback, therefore resulting in an expansive RRNS design space.

In other words, this thesis explores the optimal or suboptimal values for n, r, c and d in an

(n,r)-RRNS-cECdED architecture, given the constraints above.

Increasing n improves the parallelism in RRNS operations, upto a certain point, after

which the overheads of routing and duplication overshadow the benefits. Furthermore, too

15

large a value can hinder base selection in its ability to find co-primes, since larger the value

of n, lower is the bit width of each modulus for a given range. Finally, a higher value of n

also slows down the RRNS-Binary Conversion Unit (as shown in Figure 2.11). Hence, the

reasonable value of n is limited to {3, 4, 5} in RRNS design space exploration.

Increasing r improves reliability in general and can therefore help reduce Vdd and save

energy. However, after a certain point, the added overhead of the redundant residues and

the Error Detection Units (as shown in Figure 2.11) outweigh the savings due to lower Vdd.

As a thumb rule, r > n is avoided as the bit widths of redundant residues are at least as

wide as the non-redundant ones, and r > n would therefore add significant overhead.

Given the nature of increasing either n or r as outlined above, minimizing Energy

Delay Product (EDP) is therefore a discrete convex optimization problem in both these

dimensions. As such, it is sufficient to evaluate the ranges of 3 ≤ n ≤ 5 and 1 ≤ r ≤ n

as long as the minimum does not lie on the boundary of this surface. The results from

the empirical evaluation in Chapter 5.2 confirm this and finds that the checkpoint/restart

mechanism in isolation is generally superior to other approaches for non-memory-intensive

workloads. But for memory-intensive ones, the correction-only approach is the best bet.

2.4 Signed Number Representation

This chapter discusses and compares three competing ways of representing signed num-

bers. Each presents its set of trade-offs, which will be discussed in detail below. M is the

product of all the non-redundant moduli (M = m1*m2*m3*m4 in (4,2)-RRNS) and MR is

the product of all the redundant moduli (MR = m5*m6 in (4,2)-RRNS).

1. Complement M*MR Signed Representation

The M*MR complement signed representation is depicted by Figure 2.2. To provide

a few examples, 0 is represented by 0, 1 is represented by 1, M
2
− 1 is represented by

M
2
− 1, -1 is represented by M ∗MR− 1 and −M

2
is represented by M ∗MR− M

2
.

16

This is similar to signed binary representation. However, representing numbers in

this manner breaks known error correction algorithms[25].

+integers)integerserror+region

M/20 M*MR)M/2 M*MR

Figure 2.2: Complement M*MR signed representation

2. Complement M Signed Representation

The M complement signed representation is depicted in Figure 2.3. This is similar to

the M*MR complement representation, except that the wrap-around occurs at M as

opposed to M*MR. This representation does not break error correction algorithms,

provided that some correction factors (scaling and offset) are applied to the result of

each arithmetic operation. However, further analysis indicates that these correction

factors require knowledge of the signs of the operands, which are not trivial to deter-

mine like in binary. The RRNS sign determination is a time-consuming algorithm.

Moreover, THE overflow detection of an arithmetic operation is unknown for this

representation.

+integers)integers error+region

M/2=)M/20 M M*MR

Figure 2.3: Complement M signed representation

3. Excess-M
2

Signed Representation

The Excess-M
2

signed representation is depicted in Figure 2.4. The excess notation,

sometimes known as offset notation, merely shifts each number by M
2

. To further

elaborate, 0 is represented by M
2

, 1 is represented by M
2

+ 1 and -1 is represented

by M
2
− 1. Similar to the M Complement representation, the results of arithmetic

17

operations must be offset by a correction factor before they can be corrected. How-

ever, these correction factors turn out to be independent of the sign of the operands.

Moreover, this representation enables simple algorithms for comparison (and thereby

sign detection) and overflow detection of an arithmetic operation. In fact, these algo-

rithms make use of a technique used in the error detection/correction algorithm itself.

These algorithms are discussed in detail in Section 2.6 and Section 2.7.

!integers +integers error+region

M/2=00 M M*MR

Figure 2.4: Excess -M/2 signed representation

Through the above comparisons, Excess-M
2

was chosen as the de facto signed repre-

sentation scheme.

2.5 Correction Factors

This section discusses the addition, subtraction and multiplication operations on two num-

bers with correction factors that do not generate any overflow. Recall from Section 2.4

that suggests to use the Excess-M
2

notation, which means that there is a bijective mapping

from any number x such that −M
2
< x < M

2
to x + M

2
. Because of this offset, arithmetic

operations results need to be re-adjusted using values called correction factors. [However,

this has nothing to do with the RRNS error correction operation.]

Addition Consider the addition of two numbers x and y. To represent the mapping, define

a and b such that 0 ≤ a, b < M
2

so that there is no overflow.

Case 1: x, y ≥ 0

Consider x = a and y = b. The sum x + y can be represented for each subcore

1 ≤ i ≤ n+ r as follows:

18

∣∣∣∣|M2 + a|mi + |M
2

+ b|mi

∣∣∣∣
mi

=
∣∣|M |mi + |a+ b|mi

∣∣
mi

(2.1a)

= |a+ b|mi for 1 ≤ i ≤ n (2.1b)

However, the expected addition result is:

∣∣∣∣M2 + a+ b

∣∣∣∣
mi

=

∣∣∣∣|M2 |mi + |a+ b|mi

∣∣∣∣
mi

(2.2)

It follows that:

1. 1 ≤ i ≤ n and mi is odd: Examining equations 2.1b and 2.2 imply that no

correction factor is necessary.

2. 1 ≤ i ≤ n and mi is even: Examining equations 2.1b and 2.2 implies that a

constant correction factor of |M
2
|mi

needs to be added to the result.

3. n + 1 ≤ i ≤ n + r: Examining equations 2.1a and 2.2 imply that a constant

correction factor of |M
2
|mi

needs to be subtracted from the result.

Case 2: x, y < 0

Setting x = −a and y = −b, and re-working equations similar to Equations 2.1a,

2.1b and 2.2 result in correction factors that are identical to Case 1.

Case 3: x > 0, y < 0 (Without loss of generality.)

Setting x = a and y = −b, and re-working equations similar to Equations 2.1a, 2.1b

and 2.2 result in correction factors that are identical to Case 1.

Subtraction Due to the symmetric and offset based nature of the Excess-M
2

representation,

just one of the working cases is presented; without loss of generality: x = a and

19

y = b. Then, x− y becomes:

∣∣∣∣|M2 + a|mi − |
M

2
+ b|mi

∣∣∣∣
mi

= |a− b|mi (2.3)

However, the expected subtraction result is:

∣∣∣∣M2 + a− b
∣∣∣∣
mi

=

∣∣∣∣|M2 |mi + |a− b|mi

∣∣∣∣
mi

(2.4)

From examining equations 2.3 and 2.4, it follows that:

1. 1 ≤ i ≤ n and mi is odd: No correction factor is necessary.

2. 1 ≤ i ≤ n and mi is even: A constant correction factor of |M
2
|mi

needs to be

added to the result.

3. n+ 1 ≤ i ≤ n+ r: A constant correction factor of |M
2
|mi

needs to be added to

the result.

Multiplication Again, for brevity, we only present the case where two positive integers

are multiplied; without loss of generality: x = a and y = b; the product xy becomes:

∣∣∣∣|M2 + a|mi |
M

2
+ b|mi

∣∣∣∣
mi

=

∣∣∣∣|M2

4
+

(a+ b)M

2
|mi + |ab|mi

∣∣∣∣
mi

(2.5)

However, the expected multiplication result is:

∣∣∣∣M2 + ab

∣∣∣∣
mi

=

∣∣∣∣|M2 |mi + |ab|mi

∣∣∣∣
mi

(2.6)

As residues are typically 8-bit wide, consider a 511 entry LUT per subcore that stores

the following:

LUT (s) =

∣∣∣∣M2

4
+

(s− 1)(M)

2

∣∣∣∣
mi

(2.7)

From examining equations 2.5, 2.6 and 2.7, it follows that:

20

1. 1 ≤ i ≤ n and mi is odd: No correction factor is necessary.

2. 1 ≤ i ≤ n and mi is even: The correction factor can be effected by computing

s = a+ b and then subtracting LUT (s) from the result of the multiplier.

3. n+1 ≤ i ≤ n+r: The correction factor can be effected by computing s = a+b

and then subtracting LUT (s) from the result of the multiplier.

The addition and subtraction operations’ correction factors require a single, constant

addition/subtraction operation, whereas for multiplication, 2 additions/subtractions

and a modest table lookup are required. Another advantage of the schemes presented

here is that sign determination is not necessary and that they can be performed at the

subcore level, without the involvement of the Residue Interaction Unit (RIU).

2.6 Overflow Detection

2.6.1 Unsigned Number Overflow Detection

In the absence of any error or overflow, adding 2 unsigned RRNS numbers results in both

∆m5 and ∆m6 being zero. As has been just explained, the presence of an error is han-

dled by the error correction table. In the absence of error, it could be observed that any

overflow manifests itself as a fixed index into the error correction table, with the entry not

corresponding to any error. Table 2.2 provides some examples of this observation. While

the computation of the deltas is most efficient using a base-extension algorithm, the Chi-

nese Remainder Theorem(CRT) method is used to first convert the RRNS number to a

binary number before computing the delta value pair. This is solely for explanatory

purposes; binary conversion is not actually necessary to detect overflow.

By iterating through all possible combinations of numbers and operations, it can be

observed that the delta value pair (∆m5, ∆m6) of overflow is fixed. Moreover,

(∆m5, ∆m6) = (10,11) is not a legitimate address of the error correction table (Table 2.1),

thus enabling a distinction between an error and an overflow. This approach, however, does

21

Table 2.2: Unsigned Number Overflow Examples in RRNS with Moduli (3,5,2,7,11,13)

X+Y X RRNS Y RRNS X+Y RRNS CRT/MRC |X ′|m5,|X ′|m6 ∆m5, ∆m6

2+209 (2,2,0,2,2,2) (2,4,1,6,0,1) (1,1,1,1,2,3) (1, 1, 1, 1)⇔ 1 |1|11=1,|1|13=1 10 11
3+209 (0,3,1,3,3,3) (2,4,1,6,0,1) (2,2,0,2,3,4) (2, 2, 0, 2)⇔ 2 |2|11=2,|2|13=2 10 11

... 10 11
209+209 (2,4,1,6,0,1) (2,4,1,6,0,1) (1,3,0,5,0,2) (1, 3, 0, 5)⇔ 208 |208|11=10,|208|13=0 10 11

Table 2.3: Excess-M
2

Overflow Examples for addition of two positive numbers in RRNS
with Moduli (3,5,2,7,11,13)

X+Y X RRNS Y RRNS X+Y RRNS Add Correction Factors CRT/MRC |X ′|m5,|X ′|m6 ∆m5,∆m6

1+104 (1,1,0,1,7,2) (2,4,1,6,0,1) (0,0,1,0,7,3) (0,0,0,0,1,2) (0, 0, 0, 0)⇔ 0 |0|11=0,|0|13=0 10 11
2+104 (2,2,1,2,8,3) (2,4,1,6,0,1) (1,1,0,1,8,4) (1,1,1,1,2,3) (1, 1, 1, 1)⇔ 1 |1|11=1,|1|13=1 10 11

... 10 11

not apply to multiplication.

2.6.2 Signed Number Overflow Detection

Recall from Section 2.4 that the Excess-M
2

signed representation is used. There are two

independent scenarios of overflow:

1. Two positive numbers addition Table 2.3 provides a few examples illustrating the

algorithm (Correction factors are explained in detail in Section 2.5). The 1 + 104 in

the first column is represented in decimal. After Excess-M
2

mapping, the computing

equation is transformed to 106 + 209 since M
2

= 105 for the toy set of moduli.

Therefore, the X RRNS value is the the RRNS of 106 and Y RRNS value is the

RRNS of 209. We observe that the delta value pair (∆m5,∆m6) remains at a

fixed value (10,11).

2. Two negative numbers addition Similarly, examples for adding two negative numbers

are shown in Table 2.4. In this case, we can observe that the delta value pair

(∆m5,∆m6) is fixed to (1,2).

Note that neither (10, 11) nor (1, 2) is a legitimate entry index of Table 2.1, thereby enabling

a distinction between an error and an overflow. However, while this method works for both

addition and subtraction, it does not hold for detection of multiplication overflow as the

22

Table 2.4: Excess-M
2

Overflow Examples for addition of two negative numbers in RRNS
with Moduli (3,5,2,7,11,13)

X+Y X RRNS Y RRNS X+Y RRNS Add Correction Factors CRT/MRC |X ′|m5,|X ′|m6 ∆m5,∆m6

-1-105 (2,4,0,6,5,0) (0,0,0,0,0,0) (2,4,0,6,5,0) (2,4,1,6,10,12) (2, 4, 1, 6)⇔ 209 |209|11=0,|209|13=1 1 2
-3-104 (0,2,0,4,3,11) (1,1,1,1,1,1) (1,3,1,5,4,12) (1,3,0,5,9,11) (1, 3, 0, 5)⇔ 208 |208|11=10,|208|13=0 1 2

... 1 2

If#|X|mi#<=mi#*1#for#1<=#i#<=6

Use#|X|mi for#1<=#i <=4#to#compute#|X|’m5 and#|X|’m6

Set#|X|mi#=#0

N

Y

Calculate#|Delta|mc=#||X|’mc * |X|mc|mc for#5<=#c#<=6#

Replace#incorrect|X|mc with#
corresponding# |X|’mc

Correct# the#residue#value#via#
Error#Correction# Table(ECT)

Exit

Both* |Delta|mc=*0
One*|Delta|mc !=*0 Both* |Delta|mc !=*0&*

valid*addr of*ECT

Exit

|Delta|m5*=*10&*
|Delta|m6=*11

|Delta|m5*=*1&*
|Delta|m6=*2

Exit

Exit Exit
No*Error One*Error*in*a

Redundant*
Residue

One*Error*in*a
NonERedundant*

Residue

Overflow Underflow

Figure 2.5: One error detection and correction algorithm with overflow/underflow detection

delta-pair is not constant and sometimes indexes into a legal error correction table entry.

Figure 2.5 shows the overview of One error detection and correction algorithm with

overflow/underflow detection.

It can be observed that the described algorithm works in a similar manner even with the

base sets that meet particular requirements. E.g. Waston’s bases (199,233,194,239,251,509),

an overflow results in a delta-pair of (77, 289), whereas an underflow results in (174, 220).

Both these pairs do not index into legitimate entries of the error correction table for these

set of bases (cf. Appendix E, Watson [25]).

23

2.7 Comparison

Comparison is an essential operation because it may use in determining the direction of

the control flow. In a manner similar to overflow detection, the potential algorithms are

explored to perform RRNS comparison without incurring unnecessary hardware overhead.

Jen-shiun et al. [37] and Omondi [32] proposed number comparison methods for

residue numbers based on parity bits. However, a prerequisite of these parity comparison

methods is that all moduli are supposed to be odd (in addition to being pair-wise relatively

prime). In some other systems, one of the non-redundant moduli is even (to enable fast

fractional multiplication [25]), therefore this approach is not suitable in these scenarios.

Instead, this scheme leverages the error check algorithm itself to check for an overflow

post a subtraction: to compareX and Y , performX−Y and derive the delta value pair

(∆m5, ∆m6). Then, X ≥ Y iff the delta value pair is (0, 0) (i.e., no overflow) and

X < Y iff the delta value pair is (174, 220) (i.e., X − Y results in an underflow).

This new residue number comparison method can be used for both unsigned and Excess-

M
2

signed numbers. It is straightforward that this idea is suitable for unsigned residue

numbers: if X < Y , then X − Y /∈ [0,M), thereby resulting in an underflow. For an

Excess-M
2

signed number X, an injective mapped residue number can be defined as fol-

lows: Xmapped = M
2

+ X . Therefore, X ≥ Y iff Xmapped ≥ Ymapped, which reduces to an

unsigned comparison. A caveat to note is that correction factors should not be added for a

comparison operation. These are summarized in Figures 2.6a and 2.6b. In summary, this

RRNS comparison is performed via combining a simple subtraction with error checking.

If a comparison instruction is followed by an error checking instruction, this comparison

could be replaced with a subtraction. From another aspect, by executing this comparing

algorithm, a free error checking can be achieved on the corresponding data.

24

+/-/* +/- Consistency Check

Correction FactorRRNS_X

RRNS_Y

Error?
Overflow?

(a) Signed Overflow Detection

- Consistency Check

RRNS_X

RRNS_Y

Error?
X>=Y?

(b) Signed Comparison

Figure 2.6: Signed Overflow Detection and Comparison

2.8 Optimized Multiplier Unit Design

Many workloads in the domains of multimedia, image processing and digital signal pro-

cessing are highly multiplication intensive [38] . Index-sum multiplication [39, 40] was

proposed and its principle is analogous to using a logarithm operation, i.e., a multiplication

can be achieved via a table lookup, addition and a reverse table lookup, as summarized as

follows for the product of two numbers X and Y :

1. Use a pre-defined mapping table to generate index(X) and index(Y).

2. Compute the sum Z = index(X) + index(Y).

3. Use a pre-defined reverse mapping table to return the productXY as reverse index(Z).

If the computing data is 32-bit, the sizes of mapping tables are huge and need high area

and hardware overhead. RNS can significantly reduce the table size by separating the data

bit-width [39, 40]. This idea is extended into RRNS by adjusting the RRNS bases (cf. Sec-

tion 2.9) to be amenable to index-sum LUTs, the requirements for which, are summarized

below.

Index-sum multiplication is based on the theory of Galois fields, which can be classified

into 3 types: GF (p),GF (pm) andGF (2m), where, p is an odd prime number andm ∈ Z+.

The range of integers that can be represented bijectively in Galois fields, and the encod-

ing methodology depends on the GF type[40]: (The methodology of deriving GF (pm) is

skipped as these microarchitectures do not utilize this.)

25

Table 2.5: Mapping table of GF (59) with a primitive root of 11 (g = 11)

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
α 0 7 2 14 42 9 10 21 4 49 1 16 25 17 44 28 48 11 34 56
X 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
α 12 8 47 23 26 32 6 24 22 51 53 35 3 55 52 18 37 41 27 5
X 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
α 40 19 57 15 46 54 45 30 20 33 50 39 38 13 43 31 36 29

Ex: X = 3, Y = 6 =⇒ αX = 2, αY = 9, whose sum is 11, which reverse maps to 18 and
is indeed the desired product.

GF (p) : Any integer x ∈ [1, p − 1] can be uniquely coded as a single integral index code

α by the relationship X = |gα|p, where α ∈ [0, p− 2], and g is a primitive root such

that |gp−1|p = 1. See Table 2.5 for an example.

GF (2m) : Any integer x ∈ [1, 2m − 1] can be coded as a triple integral index code <

α, β, γ > by the relationship X = 2α|5β(−1)γ|2m , where α ∈ [0,m − 1], β ∈

[0, 2m−2 − 1] and γ ∈ [0, 1]. See Table 2.6 for an example.

Therefore, the relative preference of GF types are GF (p) > GF (pm) > GF (2m) as

they require 1, 2 and 3 index codes respectively. Furthermore, a smaller value of p and m

leads to a smaller LUT. These considerations impact the selection of RRNS base sets, as

shown in Section 2.9.

Using the index-sum technique in conjunction with RRNS, the complexity of multi-

plication is able to be significantly simplified. Index-sum multiplication can be efficiently

performed via a simple addition and two straightforward table lookup operations. This op-

timization achieves a reduction in ALU gate count using this approach by about 87% when

compared to using a traditional multiplier in RRNS, which itself reduces the gate count by

52% when compared to a traditional non-error-correcting binary ALU, thereby realizing

area, energy and reliability improvements, as demonstrated in Chapter 3.6.

26

Table 2.6: Mapping table of GF (26)

X 1 2 3 4 5 6 7 8 9 10 11 12
α, β, γ 0,0,0 1,0,0 0,3,1 2,0,0 0,1,0 1,3,1 0,10,1 3,0,0 0,6,0 1,1,0 0,5,1 2,3,1

X 13 14 15 16 17 18 19 20 21 22 23 24
α, β, γ 0,15,0 1,10,1 0,4,1 4,0,0 0,12,0 1,6,0 0,7,1 2,1,0 0,13,0 1,5,1 0,14,1 3,3,1

X 25 26 27 28 29 30 31 32 33 34 35 36
α, β, γ 0,2,0 1,15,0 0,9,1 2,10,1 0,11,0 1,4,1 0,8,1 5,0,0 0,8,0 1,12,0 0,11,1 2,6,0

X 37 38 39 40 41 42 43 44 45 46 47 48
α, β, γ 0,9,0 1,7,1 0,2,1 3,1,0 0,14,0 1,13,0 0,13,1 2,5,1 0,7,0 1,14,1 0,12,1 4,3,1

X 49 50 51 52 53 54 55 56 57 58 59 60
α, β, γ 0,4,0 1,2,0 0,15,1 2,15,0 0,5,0 1,9,1 0,6,1 3,10,1 0,10,0 1,11,0 0,1,1 2,4,1

X 61 62 63
α, β, γ 0,3,0 1,8,1 0,0,1

Ex: X = 3, Y = 6 map to, respectively, < 0, 3, 1 >,< 1, 3, 1 >, whose sum results in
< 1, 6, 2 >. Since γ ∈ [0, 1], the modulo sum results in < 1, 6, 0 >, which reverse maps to

18 and is the desired product.

2.9 Base Selection for Scalable Systems

Recall, RRNS bases (or moduli) play a vital role not only in determining the error de-

tection/correction capability of the architecture, but also in determining the operating data

range of an RRNS machine. Prior work by Waston [25] provides the necessary and suffi-

cient conditions of RRNS moduli in 1EC and multiple error detection. Preethy et al. [39,

40] discuss the limitations of index-sum multiplication optimization. The moduli condi-

tions of scalable architecture are summarized in Table 2.7. The size of the error correction

table exhibits exponential growth if the correctable capability needs to be improved. There-

fore, correcting two or more residues in error is not an efficient configuration. So in the

RRNS scalable architecture design, the number of correctable residues in a correction-only

or hybrid system is limited to 1. Based on the property of the target architecture, system de-

signers just need to pick the necessary conditions from the table. E.g., for a 1ECxED hybrid

system, the conditions for both single error correction (*) and multiple error detection (+)

are needed. Watson [25] also proposes an efficient algorithm for RRNS fractional multipli-

cation, but this benefit introduces a new condition (|mamb −mcmd| = 1). The conditions

in Table 2.7 are enough to cover the moduli selection of scalable RRNS architectures.

The total number of Core Bits (the bit width of one RRNS base set), which is re-

27

Table 2.7: Conditions for choosing RRNS moduli:
Multiple error detection (+), single error correction (*), fractional multiplication

optimization(#), index-sum multiplication optimization (O), number of redundant moduli
(r), number of detectable errors (e).

Conditions for choosing RRNS base mod-
uli

*+ All the residues in base set must be co-prime.
+ r > e.
+ For x ∈ [1, r], the product of any x+r-e

redundant moduli should be larger than the
product of any x non-redundant moduli

* r > 2.
* maxn+16i6n+r

MR

mi
> max16j6nmj; MR

refers to the product of all the redudant mod-
uli.

* MR > max16i 6=j6nmimj; MR refers to the
product of all the redudant moduli.

* MR 6= 2mimj − n1mi − n2mj; 1 ≤ i 6= j ≤
n; 1 ≤ n1 ≤ mj − 1; 1 ≤ n2 ≤ mi − 1

* MR ≥ 2
∑n

i=1(mi − 1) +
∑n+r

j=n+1(mj − 1)

|mamb −mcmd| = 1
O Each mi must be one of: prime (p), a power

of prime (pm), or a power of 2 (2m); The or-
der of preference is p > pm > 2m

lated to area, hardware and energy overhead and Range, where a larger range is better,

are key factors to be considered when choosing the bases. Table 2.8 lists the base set

candidates of the (4,2)-RRNS-DED system. For a range close to a 32-bit binary represen-

tation, (139,349,128,379,503,509) is a good base set that meets all the requirements. A

lower energy, albeit lower range alternative which still meets all the conditions could be

(113,239,128,211,241,251). It should be noted that for a higher range than 32-bit binary

(211,421,256,347,503,509) is a good candidate, which more than doubles the range, at an

expense of 1 additional core bit.

28

Subcore Bits Core Bits Range Possible Base Sets Base Format
7, 8, 7, 8, 8, 8 46 467921792 (97,223,128,169,241,251) (p, p, 27, 132, p, p)
7, 8, 7, 8, 8, 8 46 729405056 (113,239,128,211,241,251) (p, p, 27, p, p, p)
8, 8, 7, 8, 8, 8 47 635871872 (151,167,128,197,241,251) (p, p, 27, p, p, p)
7, 8, 8, 7, 9, 9 48 430002432 (89,233,256,81,503,509) (p, p, 28, 34, p, p)
7, 9, 7, 8, 9, 9 49 951568256 (109,283,128,241,503,509) (p, p, 27, p, p, p)
7, 9, 7, 8, 9, 9 49 1032240512 (89,361,128,251,503,509) (p, 192, 27, p, p, p)
8, 8, 8, 8, 8, 9 49 2149852322 (199,233,194,239,251,509) Waston
9, 7, 7, 9, 9, 9 50 1082179712 (491,67,128,257,503,509) (p, p, 27, p, p, p)
7, 9, 7, 9, 9, 9 50 1406512512 (81,463,128,293,503,509) (34, p, 27, p, p, p)
7, 9, 8, 8, 9, 9 50 1230080256 (81,433,256,137,503,509) (34, p, 28, p, p, p)
8, 9, 7, 9, 9, 9 51 2353365632 (139,349,128,379,503,509) (p, p, 27, p, p, p)
8, 9, 8, 9, 9, 9 52 7891035392 (211,421,256,347,503,509) (p, p, 28, p, p, p)
9, 9, 8, 9, 9, 9 53 7710332672 (277,317,256,343,503,509) (p, p, 28, pm, p, p)

Table 2.8: Possible (4,2)-RRNS-DED Base Sets

2.10 RRNS Fixed Point Arithmetic

The IEEE 754 floating-point arithmetic works efficiently for the binary number system

thanks to its efficient bit-shift operations (for normalize/denormalize). However, for RRNS,

although bit-shifting operations are able to be implemented as multiplications and opti-

mized scaling algorithms [41, 33], these need a large amount of overhead and make it very

inefficient. Furthermore, these algorithms involve minimal residue arithmetic and require

the centralized algorithm processed in RIU, thereby not really benefitting from RRNS.

As to overcome these issues, this section presents two alternatives of RRNS fixed point

arithmetic which can replace the traditional IEEE floating point for RRNS based microar-

chitectures.

2.10.1 2-RRNS Concat Representation

2-RRNS Concat proposes using two RRNS integer values to represent the integer and frac-

tional segment of a fixed-point number separately. RRNS fixed-point addition and multi-

plication can be easily performed by using this scheme. In addition, the carry bit from the

lower fractional segment to the higher integer segment is computed via overflow detection,

29

which can also be merged with an RRNS consistency check [30]. Hence, this addition

requires two (or three) RRNS integer additions and one overflow detection.

Multiplication is illustrated in Figure 2.7 and Figure 2.8. In order to maintain bit-width

consistency, the highest (overflow) and lowest (negligibility) segments of the result are cut

in this method. Steps 1-4 compute the intermediate results. In Step 1, fractional multiplica-

tion [25] is used to compute bXY
M
c. Step 2 involves a normal RRNS multiplication between

the integer parts of the two inputs, and the products across the fractional/integer portions

are computed via Step 3 and Step 4. Overflows are detected via the fractional multiplica-

tion algorithm on the inputs of Step 3 and Step 4. Hence, this multiplication methodology

requires three RRNS integer multiplications, three RRNS fractional multiplications, six

RRNS additions, and two overflow detections.

X_RRNS1 X_RRNS2

Y_RRNS1 Y_RRNS2

4 12 3

×
Z_RRNS1 Z_RRNS2Overflow Negligibility

Figure 2.7: 2-RRNS Concat Multiplication

20

× 30

06

4
4

162

800
201＋
0618

3

4

1
3

4

Figure 2.8: An Example of 2-RRNS Concat Multiplication

30

2.10.2 RRNS Logical Partition Representation

RRNS Logical Partition’s key idea is to use a single RRNS integer number to represent

a fixed point number for both integer and fractional parts. In this section, the example’s

values are represented by decimal and binary for simplicity. Assuming that the value range

of an RRNS is 2n, then the corresponding binary system range is n-bit. For an n-bit binary

computation input, logically, the higher n
2

bits are the integer segment and the remaining

lower bits make up the fractional part. Figure 2.9 shows examples of how to convert the

conventional fixed-point values to RRNS Logical Partition representation. If using this

presentation, no extra work is needed to take care of carry bit of this fixed point addition.

Hence, addition is identical to a standard RRNS integer addition.

In order to keep the computation result inbound, the lowest n
2

bits of the output of the

fixed-point multiplication should be discarded. To meet this requirement, a preprocessing

step of the multiplication inputs is necessary. Thus, this multiplication includes the fol-

lowing three steps: 1) The preprocessing step right-shifts n
4

bits (or divide by a constant in

RRNS) for both input X and input Y. 2) a regular RRNS integer multiplication 3) The final

output is the fixed point product. The overflow could be detected via a fractional multipli-

cation algorithm if the system needs to support overflow detection. Hence, the minimum

requirement of this multiplication is two RRNS scaling down and one RRNS integer multi-

plication. Figure 2.10 presents an example of Logical Partition Multiplication, and Figure

2.11 shows how to convert integer representation output back to fixed-point representa-

tion. This conversion back operation is unnecessary during the execution. The system can

directly use the Logical Partition representation as input or output.

The Logical Partition representation has a significantly lower overhead for multiplica-

tion compared to the 2-RRNS Concat representation from the previous discussion. How-

ever, performance comes at the cost of loss in precision and range. The fractional number

representation selection depends on the target application, and the tradeoff between perfor-

mance and range/precision should be taken into account.

31

Decimal fixed-point: 3.5
RRNS/Binary/Decimal
range: 2^8 = 256

8-bit Binary:
Higher 4-bit is the integer part
lower 4-bit is the fractional part

Decimal representation:
3*(2^4)+0.5 *(2^4) = 56
This can be converted to
corresponding binary/RRNS
representation.

Decimal fixed-point: 1.5
RRNS/Binary/Decimal
range: 2^8 = 256

8-bit Binary:
Higher 4-bit is the integer part
lower 4-bit is the fractional part

Decimal representation:
1*(2^4)+0.5 *(2^4) = 24
This can be converted to
corresponding binary/RRNS
representation.

Figure 2.9: Converting fixed-point representation to integer representation

3.5
1.5×
5.25

3*16+0.5*16
× 1*16+0.5*16

56
× 24

14
× 6

Right-shifting
n/4 = 2 bits

84

Range:256

×

0101 0100Overflow Negligibility

0001 1000
0011 1000 56

84

24

Figure 2.10: Logical Partition Multiplication

84/16 = 5
84/16 = 4

5 + 4/16 = 5.25

Figure 2.11: Converting integer representation back to fixed-point representation

32

RRNS
Subcore

…
“n” Non-redundant Subcores

…
“r” Redundant Subcores

Residue Interaction Unit(RIU) Common
LogicRRNS-Binary

Conversion
Unit (RBCU)

Fractional
Computing Unit

(FCU)

Error Handling
Unit (EHU)

Instruction
Cache

Decoder
Register

File
(Slice) ALU CR CW Valid,tag…data

L1 D-Cache (Slice)

Checkpointing & Restart Unit

PC Register File

CCB-O

Evicted CW=1 Cache Lines

CCB

Cache Writes
PC Register File

Control Logic
+ Prefetch

Error Correction Unit
LUT

ICB

Error Detection Unit
Consistency
Check Unit …“r” units

RRNS
Subcore

RRNS
Subcore

RRNS
Subcore

RRNS
Subcore

Consistency
Check Unit

C
h

eckp
o

in
ting

 &
 R

estart

C
o

rre
ctio

n

Figure 2.12: The overview of a scalable (n,r)-RRNS microarchitecture capable of check-
pointing/restart and error correction

Instruction Cache:
ECC

Core (Including Register
File, ALU and L1 D-Cache):

RRNS

Residue Interaction Unit (RIU):
High Vdd

Last level D-Cache:
RRNS

Main Memory:
ECC

Figure 2.13: Error-tolerant techniques of components

2.11 A Scalable (n,r)-RRNS Microarchitecture Supporting Detection and Correc-

tion

Figure 2.12 shows the microarchitecture of a general (n,r)-RRNS core. Each RRNS core

consists of n + r subcores, where n subcores are non-redundant, and r subcores are re-

dundant. For example, in the case of (4,2)-RRNS-2CR, there are 4 non-redundant subcores

and 2 redundant subcores. The instruction cache and instruction register are ECC protected

33

and are shared by all subcores. The D-Cache is distributed among the subcores such that

each subcore stores only the slice that corresponds to its RRNS residue. A subcore also

contains its own ALU with addition/subtraction and multiplication, and its slice of the reg-

ister file. Further, all the subcores share the Residue Interaction Unit (RIU), which houses

the RRNS-Binary Conversion Unit (RBCU), the Fractional Computing Unit (FCU) and

the Error Handling Unit (EHU). This scalable microarchitecture in this subsection is ex-

tended from the single error correction microarchitecture (CREEPY [30, 29]). Different

error-tolerant capabilities can be achieved via adjusting the number of RRNS subcores and

consistency check units. Extra hardware resources corresponding to checkpointing&restart

mechanism have also been included. Other basic designs such as instruction set architec-

ture do not need to be changed.

Figure Figure 2.13 shows the error-tolerant techniques of different system components.

Both main memory and instruction cache use ECC technology, while high Vdd is applied

in RIU to ensure error-free of corresponding RRNS algorithms. RRNS protects all the

remaining units. Considering the locality and reducing RRNS-binary conversion overhead,

register file and data caches are in RRNS format.

RRNS-Binary Conversion Unit (RBCU) serves as a data format converter, which is nec-

essary for RRNS division and bit-shifting operations. Fractional Computing Unit (FCU) is

used to handle the RRNS fractional number computation. The Error Handling Unit (EHU)

contains the Checkpoiting&Restart Unit, the Error Detection Unit and the Error Correc-

tion Unit. The Error Detection Unit is necessary for both correction and checkpointing

schemes. Finally, the main memory is protected via ECC, and therefore is assumed to be

error-free in this work.

While the correction scheme requires a LUT to correct errors, the checkpointing scheme

tracks changes between Complete Checkpoint (CC) intervals using modified data cache

blocks and two additional buffers. The Complete Checkpoint (CC) refers to a copy of the

entire system state updates. Unlike Incremental Checkpoint (IC) [42], CC can be applied

34

as inputs such that the system is able to directly rollback to a previously valid state. The

IC update has to go through the copies one by one in sequential order. Loads and stores

between two CCs are tracked using a combination of the cache and a checkpoint buffer

(Complete Checkpoint Buffer (CCB) in Figure 6.4). Each cache block contains an extra

bit, ‘CR’, which is set when the block is read from. The existing dirty bit of the writeback

cache is re-used as a ‘CW’ bit, to mark blocks written to. Cache evictions are stored

in the CCB as (address, value) pairs for fast, energy-efficient lookup during checkpoint

destruction (described later in Section 3.2). If the CCB buffer has a conflict or gets full,

an overflow buffer (CCB-O) of significantly smaller capacity is available for storing these

records.

The Consistency Check Unit responsible for generating the delta values from Sec-

tion 2.2 resides in the Error Detection Unit, and is shared by the Checkpoiting&Restart

Unit and the Error Correction Unit. However, since its design-specifics are orthogonal to

the main focus of this work, it has not been explicitly shown in Figure 6.4. In general,

a scheme that has r redundant cores requires r Consistency Check Units. This presents

an energy-reliability trade-off based on the number of errors the architecture chooses to

correct or restart. For example, (4,1)-RRNS-1CR, while using only one Consistency Check

Unit, saves dynamic computation and consistency check energy, will not be able to de-

tect 2-errors. Therefore, its Mean Time Between Failures (MTBF) would be lower for the

same signal energy than that of a (4,2)-RRNS-2CR since the latter will be able to catch all

1-residue and 2-residue errors (and some multiple-errors).

2.12 Related Work

2.12.1 RNS and RRNS

The energy efficient properties of RNS due to its low-bit-width operations and absence of

carries across residues have found applications in the digital signal processing (DSP) [14,

15, 16] domain. Furthermore, the representability of high bit-width integers as a tuple-of-

35

resides has been leveraged by the cryptography (RSA) [17, 18, 19] community. Ander-

son [22] proposed an architecture and ISA for an RNS co-processor designed to run dat-

apath operations in tandem with a general-purpose processor running binary instructions,

where the primary role of the general purpose processor is to handle control flow. The

RNS co-processor uses an accumulator-based ALU and does not support caching or com-

putational error correction (RRNS). Furthermore, it requires a conversion to binary (and

vice-versa) for comparison operations, which is expensive. Clearly, this architecture is able

to be further improved. A unique feature of their ISA is their ability to encode instructions

targeting two ALUs simultaneously. But this can easily be extended to architectures in this

thesis and enable such superscalar-like capabilities if need be.

Chiang et al. [37] provide RNS algorithms for comparison and overflow detection, but

assume all bases to be odd and do not consider error correction. Similarly, Preethy et al.

[39, 40] integrate index-sum multiplication into RNS, but do not consider its impact on the

properties of RRNS bases critical to this chapter.

Ever since Watson and Hastings [33, 25, 35] introduced RRNS as an efficient means for

computational error correction, there has been a significant body of research [43, 44, 45,

46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 34, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,

69] that strives to improve upon it. These are orthogonal to this chapter, and further such

algorithmic research can be used to optimize aspects of the core itself, such as the RIU.

2.12.2 Other Error-tolerant Techniques

RAZOR[70] and DECOR [71] are timing speculation methods which make corrections via

circuit timing violations. However, these methods use classical transistors as the system

infrastructure. If exploring the potential energy benefit by decreasing Vdd, the frequency

must reduce and result in setup time violations. DIVA[72] achieves redundancy by par-

tially duplicating the pipeline. DIVA essentially belongs to Double Modular Redundancy

while maintaining the simple core without errors. That is to say, the overhead to keep the

36

computational reliability must be more than 100%.

2.12.3 State-of-the-art Checkpointing Schemes

Checkpointing is a widely used resilient methodology in exascale systems, especially when

the error rate soars as the design complexity increases. Thus, the checkpointing becomes

an indispensable resilient candidate of exascale systems[73]. Plank et al.[74] proposed

diskless checkpointing to eliminate the performance degradation causing by remote disk

accesses. However, diskless checkpointing has to allocate extra memory space for the

correct checkpoint copy. Because this copy is usually huge, diskless checkpointing may

pollute the memory and reduce its use efficiency.

Young [75] and Daly [76] presented mathematical models to compute optimal static

Long Intervals (LI) from the first-order to the higher-order estimation. However, they lack

Incremental Checkpointing (IC) considerations and assume that recovery time is the same

throughout execution.

Chinchilla [77] is a recent proposed adaptive checkpointing scheme. Its basic idea is to

deploy as many checkpoints as necessary initially to ensure continuous execution. It then

removes the unnecessary checkpoints by the history status. However, Chinchilla has the

following limitations: 1) The potential market of Chinchilla is for the intermittent comput-

ing of energy-harvesting devices. In this system, a checkpoint should be inserted before

devices run out of energy. After the energy is restored, the system uses the last checkpoint

to reboot the program and make sure the application makes progress. That said, the check

frequency of this adaptive mechanism is limited by the energy availability of the devices.

2) Chinchilla does not incorporate error detection. The goal of their mechanism is to en-

sure continuous execution after energy restoration. 3) They use basic blocks as checkpoint

intervals. However, the size of the basic block is usually small (4-6 instructions). Thus,

the check frequency is much higher than necessary if used in an RRNS energy-efficient

system. Using Chinchilla would eliminate the energy savings getting from lowering Vdd.

37

Levitin et al. [78] designed another dynamic checkpointing policy for heterogeneous

standby systems. However, its limitations are summarized below: 1) They assumed the

error detection is perfect. Their detection model can report an error immediately when

it happens, and the time for detection is zero. In other words, they did not consider the

system overheads of monitoring errors. 2) Their dynamic method needs to know the total

operations (M) of the entire task. Extra efforts to compute M are required. 3) We find that

incremental checkpointing may significantly reduce the re-execution overhead. However,

they did not consider this optimization. 4) Moreover, this mechanism is optimized for a

standby system that needs N elements to achieve reliability. The RRNS checkpointing

tolerant technique discussed in this thesis needs only a single element.

Amnesic Checkpointing and Recovery(ACR) [79] is orthogonal methodology. It re-

duces the overhead by recomputing a subset of checkpoint entries. However, ACR deploys

modular redundancy to detect computational errors. From the discussion in Section 1.1,

modular redundancy has been summarized as an inefficient method. Furthermore, their

checkpoints are uniformly distributed over the execution. That said, their checkpointing

intervals are static. We improve this by proposing two new adaptive schemes.

Thus, new RRNS checkpointing mechanisms are necessary to further exploring the

potential of energy reduction. The adaptive checkpointing methods proposed in this thesis

improve feasibility and efficiency by overcoming problems from the state-of-the-art. More-

over, checkpointing mechanisms in this thesis constrain the current dirty machine states in

cache hierarchy and overflow buffers, providing the possibility of response time reduction

in recovery and update.

38

CHAPTER 3

(N,R)-RRNS DETECTION&RESTART-ONLY SYSTEMS FOR MILLIVOLT

SWITCHES

A core that leverages error detection alone, such as (4,2)-RRNS-2ED, requires an efficient

rollback mechanism to avoid error diffusion. In this section, first the overview of the check-

pointing&rollback scheme is described, followed by the details of checkpointing operations

(Chapter 3.2), the hardware overhead (Chapter 3.3) and the conditions for moduli selection

(Chapter 2.9). Finally, two adaptive interval adjustment schemes (SOE and EIH in Chap-

ter 3.4) are proposed to improve energy and EDP further.

3.1 RRNS Checkpointing&Restart Overview

Traditional checkpointing mechanisms maintain an extra checkpointing copy in memory.

This memory state copy includes Program Counter (PC), register file as well as all the

identical memory footprints from the beginning of the application. Maintaining such a

complete copy therefore reduces memory capacity. Even when an efficient compression

technique [80, 81] is applied, each process still must sacrifice a large amount of extra

main memory capacity to record its verified checkpoint copy/copies. The approach in this

chapter avoids this pitfall by adding an extra ‘CR’ bit in each cache line and using Long

Interval (LI) based Complete Checkpoints (CC) in conjunction with Short Interval (SI)

based Incremental Checkpoints (IC).

The active CC is maintained using the Complete Checkpoints Buffer (CCB) (Section 3.2)

and the cache hierarchy itself (via the CR/CW bits in cache lines). As shown in Figure 3.1,

a CC starts at the beginning of each LI-cycle period. The current CC is automatically up-

dated by the store operations until the end of this LI. At the same time, the LI is further

divided into several SIs where ICs are inserted to reduce re-execution overhead.

39

str data1, addr1
……
str data2, addr2 addr2, data2

addr1, data1

str data3, addr3
……
str data4, addr1
……
str data5, addr5

addr5,data5

addr1,data4

addr3,data3

str data6, addr6
……

addr6, data6

addr7,addr7

addr6,addr6

addr5,addr5

addr1,data4

addr3,data3

addr2,data2

……
str data7, addr7
……

Time

CC CC
Short Interval (SI)

IC
IC

IC

Long Interval (LI)

Figure 3.1: RRNS Checkpoint Overview

Whenever a modified line is written to the CCB/CCB-O (eviction victim), it is verified

by the Consistency Check Units, in parallel with program execution. At the end of the LI,

the RF and the modified lines still present in the cache hierarchy are also verified. Note

that read lines do not need to be verified as incorrect reads can be detected as they spread to

the RF or become visible via subsequent writes that use these reads, both of which would

be checked at the end of an LI. This optimization is possible only because RRNS does not

require a consistency check after each operation (unlike residue checking). The ‘CR’ bit

is still necessary to track the lines that were actually read and to thereby avoid a deadlock,

which would occur if the erroneous read is not remedied (by using a clean copy from main

memory) upon rollback.

As depicted in Figure 3.2, at the end of the LI (Long Interval), if no error is detected

during verification, the modified lines are written back to the main memory and a new

CC (Complete Checkpoints) is created. However, at any point, if an error is detected, the

system rolls back to the latest error-free state and execution restarts from that point with

the help of the ICs (Incremental Checkpoints), which are applied in chronological order. At

the time of restoring from an IC, it is checked for errors in a procedure similar to the CC.

More details of checkpoint creation, verification, and either rollback or commit are now

presented in Section 3.2.

40

Start of a new LI;
Construct Complete and
Incremental Checkpoints

Creation

Check all CW marked entries in
D-Cache and the Register File Verification

Long Interval(LI)

1) Update with new PC
2) Write back all CW entries from cache
hierarchy, CCB and CCB-O to memory
3) Copy architecture RF to RF copy in
Checkpoint & Restart Unit
4) Reset all CR and CW bits

Commit

1) Read all CR and CW entries from
main memory, update them in the
cache hierarchy
2) Move backup RF to architecture RF
3) Use Incremental Checkpoints to
recover execution state.
4) Reset all CR and CW bits

Rollback

No Error Error Detected

Figure 3.2: RRNS Checkpointing&Restart Flowchart

3.2 RRNS Checkpointing Operations

At the beginning of Complete Checkpoints (CC) creation, the current (verified) register file

(RF) is copied into the Complete Checkpoints Buffer (CCB)’s RF, along with the current

Program Counter (PC). All load and store instructions executed during the current Long

Interval (LI) mark the ‘CR’ and ‘CW’ bits of the D-Cache blocks respectively. Cache

evictions during this time, which have the ‘CW’ bit set, are captured in the CCB in the

common-case (or the CCB-O if CCB has no space). It should be noted that RRNS checks

are performed on these evicted lines (in a pipelined fashion) before they are stored in the

aforementioned buffers. If an error is found at this time, an immediate rollback is initiated.

As they are contained within the RIU, the CCB and CCB-O operate at high Vdd, and are

therefore error-resilient.

During Incremental Checkpoint (IC) creation, performed every Short Interval (SI) cy-

cles, the PC and RF snapshots, along with any stores, are saved into the Incremental Check-

41

point Buffer (ICB). The ICB is in essence a streaming (next-line-prefetch) buffer, and is pe-

riodically flushed to a reserved segment of main memory called the Incremental Checkpoint

Segment (ICS). The role of ICS is to facilitate rollback from an IC in the future.

The verification of the CC involves a cache sweep where the (pipelined) RRNS error

detection is performed for all lines in the cache hierarchy with the ‘CW’ bit set high, and

for all the registers in the architecture register file. This verification starts right after the

last cycle of current LI. When the state of the machine is found to be error-free during

verification, the checkpoint commit operation is performed. All the cache lines with the

‘CW’ bits set high are written to the CCB (or CCB-O), and all ‘CW’ and ‘CR’ bits are

reset to 0. The next checkpoint is then created, and execution resumes. The CCB and

CCB-O are written back to memory while the core continues execution. The CCB and

CCB-O act like conventional store buffers, in that they have the ability to provide data to

the cache on a miss. Moreover, the Incremental Checkpoints are marked invalid in the ICS

at this time so that newer incremental checkpoints can overwrite them, ensuring that the

size of the ICS remains sufficiently small.

Conversely, if the machine state is found to have at least one error or a cache line

eviction was found to contain an error, the rollback procedure is triggered. During rollback,

the RF and PC are restored to the copies that were created during checkpoint creation. All

cache lines with the ‘CW’ and ‘CR’ bits set are read from main memory, and the ICs

are applied serially (oldest to most recent) to the machine state to reduce re-execution of

instructions. The ICs are streamed back from their segment in memory (ICS) into the ICB

(using the simple next-line-prefetch logic to hide memory latency). The ICB is initially

filled while the D-Cache is being swept for ‘CW’ and ‘CR’ entries. Once the error detection

for an IC begins, the remaining entries for that IC and the next are streamed from the ICS.

After an IC is completely verified (as valid), the PC, RF and cache are updated.

Since the ICB is logically split into two (with separate read and write ports), machine

state recovery by the current IC and the next IC error detection can happen in parallel. This

42

process continues until there are no more valid ICs left or an IC is found to contain an error.

At this point the ‘CR’ and ‘CW’ bits are reset, and execution resumes. While this rollback

changes the start point of LI, note that a subsequent error will still rollback to the previous

CC since no new complete checkpoint is created at this re-execution point. It should also

be noted that re-execution will have a variable cache hit rate since the cache state does

not perfectly rollback to its pre-execution state. This does not impact correctness in any

manner.

3.3 RRNS Checkpointing Hardware Overheads

This section captures the hardware overheads of RRNS checkpointing schemes. In most

cases, an 8-way 32KB CCB (Complete Checkpoints Buffer) and an 8-way 1 KB CCB-O

(Overflow) are adequate for buffering dirty lines evicted from the cache. If an overflow

of CCB-O itself is detected, the system halts the current LI (Long Interval) and moves

on to checkpoint verification and potentially starts a new LI. These buffers can also be

co-located with existing lower-level caches via set or way partitioning. The sizes of these

buffers can potentially be further reduced by utilizing a segment of main memory and

smartly prefetching the required data. For the ICs (Incremental Checkpoints), the ICB

(Incremental Checkpoint Buffer) is used as a streaming buffer to hide DRAM (Incremental

Checkpoint Segment (ICS)) access latency. It is assumed that the ICS is accessible every

cycle, with a head fill latency of 100 cycles. As such, 1 KB is sufficient for the ICB. After

a successful verification of a given IC i, it proceeds to the phase of state recovery by IC i.

In order to continue verification of IC i+ 1 in parallel with that, the ICB capacity needs to

be doubled. Thus, the ICB is designed as two 1 KB FIFOs.

3.4 Adaptive Checkpointing Schemes

Having described the overall checkpointing mechanism and microarchitecture, the natural

question that arises is regarding the frequency of CC and IC (Section 3.1). That is to say,

43

the intervals, LI (Long Interval) and SI (Short Interval) may significantly affect workload

execution characteristics such as reliability, the number of rollbacks and re-play overhead.

Young [75] and Daly [76] propose theoretical methodologies to compute optimal static

Long Intervals (LI) from the first-order to the higher-order estimation. However, they lack

IC (SI) considerations, and assume that the recovery time is the same throughout execution.

The best static configuration is highly dependant on the application. Furthermore, the

best static configuration (on average) is 42% better (EDP) compared to the worst static

configuration. Clearly, there is a need to design intelligent adaptive schemes, two of which

are proposed in Sections 3.4.1 and 3.4.2.

3.4.1 Stochastic Overhead Estimation (SOE)

As evidenced by prior work above, LI is critical to optimizing the trade-off in performance,

energy and reliability. A coarse-grained self-adjusting model is now presented that esti-

mates the next LI based on history information, assuming a fixed SI of 5000 cycles in this

example.

Upon a successful Complete Checkpoint (CC) commit, Formulae (1-3) of overhead

estimation are computed:

Inv Exe+ Sum CCs+ Sum ICs (3.1)

Inv Exe D + Sum CCs× 0.5 + Sum ICs (3.2)

Inv Exe H + Sum CCs× 2 + Sum ICs (3.3)

Formula (3.1) computes the total overhead due to checkpointing between the last 2

errors detected; Formula (3.2) estimates the total overhead of doubling LI in that duration;

Formula (3.3) estimates the total overhead of halving LI in that duration. The terms of

formulas are explained in Table 3.1.

44

Table 3.1: Equation Terminologies

Term Explanation
Sum CCs Total overhead due to CCs’ creation and verifi-

cation between the last 2 errors
Sum ICs Total overhead due to ICs’ creation and verifi-

cation between the last 2 errors
Inv Exe The invalid execution overhead between the last

2 errors. An example of the invalid execution is
shown in Figure 3.3. The further computation
is available in Equation (3.4)

Inv Exe D The estimated invalid execution overhead be-
tween the last 2 errors if the LI value is doubled

Inv Exe H The estimated invalid execution overhead be-
tween the last 2 errors if the LI value is halved

LI Time interval between 2 CCs
ave LI Average value of LI between the last 2 errors
E(X) Expected value of cycle when error was gener-

ated in the last LI
num ICs Number of ICs in the last LI

With the checkpointing recovery mechanism’s help, the machine state could roll back to

the last valid IC or CC. For the purposes of model-based, stochastic estimation, assume the

worst-case execution scenario wherein no immediate rollback upon error detection during

the course of LI is done. In other words, any error is detected only at the end of the LI. Then,

the execution between the last error-free IC (or CC) and the last cycle of the current LI is

invalid. The execution in this period is called Inv Exe and is shown in Figure 3.3. Formula

(3.4) approximates the value of Inv Exe. Once calculating the expected error encountering

cycle (i.e., E(X), which will be discussed later), the number of Short Intervals (SIs) after

the error encountering cycle can be estimated by b(1 − E(X)
LI

) × (num ICs + 1)c. The

number of total SIs in a LI is equal to num ICs+1. The SI that imports the error should be

considered as a part of invalid execution because of its irrecoverability. Thus, ’1’ is added

at the end of the numerator in Formula (3.4). Finally, the Inv Exe is computed by the

percentage of invalid execution in last LI multiplies the average Long Interval of the last

two errors. Similarly, Inv Exe D refers to the estimation of the invalid execution overhead

45

if the LI value is double and Inv Exe H if the LI value is halved. Because the LI is double

or halved in Formula (3.5) and Formula (3.6), the number of SI (i.e., num ICs+1) and the

estimation LI (i.e., ave LI) should be double or halved respectively to meet requirements.

Time… …

CC CC

IC ErrorIC IC

Invalid Execution

Figure 3.3: Invalid Execution Segment

Inv Exe =
b(1− E(X)

LI
)× (num ICs+ 1)c+ 1

num ICs+ 1

× ave LI (3.4)

Inv Exe D =
b(1− E(X)

LI
)× 2× (num ICs+ 1)c+ 1

(num ICs+ 1)× 2

× 2 × ave LI (3.5)

Inv Exe H =
b(1− E(X)

LI
)× 0.5× (num ICs+ 1)c+ 1

(num ICs+ 1)× 0.5

× 0.5 × ave LI (3.6)

The term overhead in this context can refer to latency (cycles) or energy. However,

since accurate energy overheads are not easily obtained in general, latency is used instead.

If Formula (3.1) returns the minimum value, then the LI value remains unchanged. If

Formula (3.2) returns the minimum value, LI is doubled. Else, LI is halved. In other

words, the goal of this adaptive model is to derive LI’s value such that it minimizes the

overhead of checkpointing.

46

The key parameter upon which the effectiveness of the model rests is E(X): the expected

value of the cycle at which the first error was generated in the last LI. It can be defined and

derived as follows:

E(X) = lim
N→∞

Sum of Error Cycles in N Experiments
Num of Errors in N Experiments

(3.7)

= lim
N→∞

N ∗ (1 ∗ P1 + 2 ∗ P2 + 3 ∗ P3...+ LI ∗ PLI)
N ∗ (P1 + P2 + P3...+ PLI)

(3.8)

=
(1 ∗ P1 + 2 ∗ P2 + 3 ∗ P3...+ LI ∗ PLI)

(P1 + P2 + P3...+ PLI)
(3.9)

, where, Pi in Formula (3.8) represents the probability of an error detected in the ith

cycle (given no errors in cycles upto i− 1) of the last LI . If A is the probability of at least

one transistor being in error in a specific cycle, then Pi = A(1−A)i−1. Since A is instruc-

tion dependent, evaluating Formula (3.9) becomes intractable at runtime. A simplifying

assumption is therefore made wherein each instruction is treated as a simple load from the

cache such that A is a constant; A = 1 − (1− Perr sram t)
TCount, where Perr sram t is the

probability of an SRAM transistor experiencing a transient fault and TCount is the active

number of SRAM transistors relevant to the load operation.

As a result, Formula (3.9) can be re-written as:

E(X) =

∑L
i=1 i ∗ A(1− A)i−1∑L
i=1A(1− A)i−1

(3.10)

For the denominator of Formula (3.10):
L∑
i=1

A(1− A)i−1 =
L∑
i=1

(1− A)i−1 −
L∑
i=1

(1− A)i (3.11)

=
1− (1− A)L

1− (1− A)
− (1− A)(1− (1− A)L)

1− (1− A)
(3.12)

=
(1− A)L+1 − (1− A)L + A

A
(3.13)

Similarly, for the numerator of Formula (3.10):
L∑
i=1

i ∗ A(1− A)i−1 =
L∑
i=1

i ∗ (1− A)i−1 −
L∑
i=1

i ∗ (1− A)i (3.14)

47

Define a variable T :

T =
L∑
i=1

i ∗ (1− A)i = (1− A) + · · ·+ L(1− A)L (3.15)

Multiply both sides of Formula (3.15) by (1− A):

(1− A)T = (1− A)2 + 2(1− A)3 + · · ·+ L(1− A)L+1 (3.16)

Subtract Formula (3.16) from Formula (3.15):

T − (1− A)T = (1− A) + · · ·+ (1− A)L − L(1− A)L+1 (3.17)

=
1− A− (1− A)L+1

A
− L(1− A)L+1 (3.18)

From Formula (3.18), T can be computed:

T =
1

1− (1− A)
∗ (

1− A− (1− A)(L+ 1)

A
− L(1− A)L+1 (3.19)

=
1− A− (1− A)L+1

A2
− L(1− A)L+1

A
(3.20)

∴ Formula (3.14) = (
1

1− A
− 1) ∗ T (3.21)

=
1− (1− A)L

A
− L(1− A)L (3.22)

Substituting Formula (3.13) and (3.22) into Formula (3.10), and E(X) can be effectively

computed as:

E(X) = Formula(3.10)

= [
1− (1− A)L

A
− L(1− A)L]× A

(1− A)L+1 − (1− A)L + A

=
1− (1− A)L − AL(1− A)L

(1− A)L+1 − (1− A)L + A
=

1− (1 + AL)(1− A)L

A− A(1− A)L
(3.23)

48

Time

CC

ICICICIC

CC
SI:10k

4th LI: 30k

CC CC

3rd LI: 30k

CC

IC

2nd LI: 50k

SI: 25k

1st LI: 100k

…

Figure 3.4: Error Interval Heuristics (EIH) Mechanism Examples; Default parameters:
latest Error Interval(EI,200k cycles), minimal LI(30k cycles), minimal SI (10K cycles); No
error detected

Time

CC

ICIC

CC
SI:10k

CC

3rd LI: 30k

CC

IC

2nd LI: 50k

SI: 25k

1st LI: 100k Recover

Re-execute
with new
LI and SI

Figure 3.5: Error Interval Heuristics (EIH) Mechanism Examples; Default parameters:
latest Error Interval(EI,200k cycles), minimal LI(30k cycles), minimal SI (10K cycles); An
error is detected

3.4.2 Error Interval Heuristics (EIH)

The second adaptive checkpointing mechanism proposed is Error Interval Heuristics (EIH).

EIH is designed based on the following assumption: since errors accumulate over time, the

probability that an error is generated in the first half of an expected Error Interval (EI)

is generally lower. EI is defined as the time interval between two consecutive errors. A

higher LI with no IC is initially advisable, after which the checkpointing frequency may be

gradually increased in an exponential manner. Note that reducing redundant checkpoints

not only directly reduces latency and energy overheads, but also improves reliability by

reducing the amount of time available for errors to creep in.

49

Figure 3.4 depicts the EIH mechanism before an error is detected. In this example, the

latest EI is initialized to 200k cycles and the 1st LI is set to half the latest EI (100k) with

no IC. Next, the system halves the old LI and inserts exactly one IC. Subsequently, the

LI is halved and the number of incremental checkpoints is doubled, upto predefined lower

bounds, such that the minimal LI and SI are 30k and 10k cycles, respectively. Once the

bounds are reached, the intervals are kept unchanged until an error is detected.

As depicted in Figure 3.5, once an error is detected (marked with red arrow), either

upon checking a cache eviction or at the end of the LI, a rollback is initiated (Section 3.1

and 3.2). Assuming the error is caught during the CC verification stage (at the end

of the 3rd LI) in this example, the error detected cycle is T = (100k + 50k + 30k +

CC verification overheads). Then the latest EI is re-initialized to T , and the process above

is repeated until the workload is complete.

3.5 Evaluation Methodology

Evaluation of scalable RRNS cores should consider the aspects of reliability, performance,

and energy. For the results discussed in this chapter, an in-order, unpipelined, trace-based

cycle-accurate simulator was used [29, 30]. The simulator supports the proposed static

and adaptive checkpointing schemes. For memory accesses, explicit conversion of RRNS

based addresses to binary is not necessary. The RRNS format address may affect the data

locality benefit and then reduce the system performance. Srikanth et al. [31] proposed

and compared different methodologies to overcome this problem. Traces were generated

using the trace-based debugging mode of gem5 [82]. The workloads used for evaluations

are picked from SPEC2006, Mantevo and user-defined matrix multiplications. With the

purpose of achieving a more thorough analysis on the scalable RRNS error-tolerant system,

the workloads are divided into two parts: memory-intensive and non-memory-intensive.

Gobmk, bzip2, mcf and miniFE are treated as memory-intensive while the rest are non-

memory-intentive.

50

With the purpose of meeting the specific error model requirements of an RRNS ar-

chitecture, a stochastic fault injection mechanism was designed and implemented in the

simulation infrastructure. The error model and energy model of this section are the same as

CREEPY [30, 29].The energy model for simulations is based on simple signal energy and

active transistor count metric at a per operation granularity. Because these new millivolt

switches do not have the leakage current problem, each instruction’s energy consumption is

counted through its activate transistor number and the corresponding signal energy value.

Finally, the total energy consumption is calculated by accumulating the energy of each in-

struction in this workload. The signal energy input of the RRNS error-tolerant system is

a 3-tuple with separated voltage domains [83, 84] for the general units (e.g., ALU), cache

hierarchy (and RF), and RIU. Moreover, it should be noted that reduced Vdd transistors can

still operate at frequencies similar to high Vdd transistors [85], allowing for a direct energy

and delay comparison with a high Vdd binary core.

3.6 Experimental Results

Experimental results in this section are collected through models and methodologies de-

scribed in Section 3.5. Section 3.6.1 shows the lowest signal energy values of workloads

that meet the reliability threshold requirement. Other subsections use these lowest signal

energy values as one of their inputs and explore the various configurations from different

dimensions to evaluate system energy, delay, and Energy Delay Product (EDP).

3.6.1 Exploration of The Minimum Signal Energy

The minimal signal energy of common logic in (4,2)-RRNS-1EC systems ranges from 28-

31 kT [30]. In theory, the signal energy of common logic could be further reduced by

adopting (4,2)-RRNS-2CR, enabling stronger error detection capability. Before exploring

the RRNS design space, two (4,2)-RRNS configurations are used as examples to compare

thoroughly, and the energy reduction potential of the RRNS checkpointing&restart mech-

51

anism is evaluated. In order to measure the effect of signal energy, three metrics are pre-

sented: MTBF, energy, and EDP. For the trials in this subsection, LI and SI are fixed to

100k and 5k cycles respectively.

Figure 3.6 shows the MTBF of signal energies between 16-20 kT of (4,2)-RRNS-2CR,

where an acceptable MTBF is greater than or equal to average human lifespan (100 years).

From this figure, the minimal signal energy satisfying the MTBF constraint is 17 kT to

meet the reliability requirements of all the benchmarks. Figure 3.7 illustrates the normal-

ized energy consumption of signal energies between 17-23 kT , where energy consumption

is normalized to 23 kT . For signal energies less than 17 kT , energy overhead becomes

inhibiting due to the rapidly growing error rates. Energy is minimized for signal energies

between 17-19 kT , depending on the workload. Similarly, Figure 3.8 indicates that an

optimal EDP is achieved for signal energies of 17-19 kT . That is to say, the checkpoint-

ing system can further cut down the signal energy of common logic to close the Landauer

limit. It should be noted that for all the following evaluations in this chapter, (4,2)-RRNS-

2CR configurations are operated between 17-19 kT for different considerations.

As this is significantly lower than the state-of-the-art (4,2)-RRNS-1EC system that re-

quires 28-31 kT , a corresponding EDP improvement in non-memory-intensive workloads

is seen, which is depicted in Figure 3.9.

3.6.2 The Potential of Checkpointing&Restart Systems

In Figure 3.9, both checkpointing-only configurations, (4,2)-RRNS-2CR and (4,1)-RRNS-

1CR, are static checkpointing results, which are obtained by setting the fixed LI = 100k

cycles and the fixed SI = 5k cycles. All the values in this diagram are normalized to (4,2)-

RRNS-1EC. Normalizing to (4,2)-RRNS-1EC allows for a direct comparison against related

work [30, 35]. Note that with (4,1)-RRNS, only 1CR meets the lemmas’ requirements in

Section 2.3.

Typically the checkpointing-only mechanism is not an appropriate candidate for memory-

52

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

16 17 18 19 20

M
TB

F(
Ye
ar
s)

Signal Energy(KT)

perlbench gobmk
miniXyce hmmer
fft dct
mcf matmul
miniFE gcc
bzip2

Figure 3.6: Minimal MTBF of computational logic in (4,2)-RRNS-2ED

0.4

0.6

0.8

1

1.2

1.4

17 18 19 20 21 22 23

N
or

m
al

iz
ed

 E
ne

rg
y

Signal Energy(KT)

perlbench gobmk
miniXyce hmmer
fft dct
mcf matmul
miniFE gcc
bzip2

Figure 3.7: Minimal Energy of computational logic in (4,2)-RRNS-2ED

intensive applications because of the large-sized checkpoint creation and verification. In

terms of EDP for memory-intensive jobs, the relatively better checkpointing-only scheme,

(4,1)-RRNS-1CR, is 65% worse than (4,2)-RRNS-1EC on average. (4,1)-RRNS-1CR is in-

tuitively considered as a low-cost candidate as it has a lower number of redundant residues.

For the average non-memory-intensive results, (4,2)-RRNS-2CR beats the (4,2)-RRNS-1EC

by 27% EDP reduction due to it manages relative lightweight checkpoint copies. This re-

53

0.3

0.7

1.1

1.5

1.9

2.3

17 18 19 20 21 22 23

N
or

m
al

iz
ed

 E
D

P

Signal Energy(KT)

perlbench gobmk
miniXyce hmmer
fft dct
mcf matmul
miniFE gcc
bzip2

Figure 3.8: Minimal EDP of computational logic in (4,2)-RRNS-2ED

0%

50%

100%

150%

200%

perl
ben

ch
gobm

k
min

iXyc
e
hmm

er
min

iFE fft dct
mat

mul gcc bzip
2 mcf

M-I-
ave
M-N

I-ave

(4,2)-RRNS-1EC (4,1)-RRNS-1CR (4,2)-RRNS-2CR

Figure 3.9: EDP of 1EC vs 1ED vs 2ED

sult confirms the EDP reduction potential of checkpointing&restart configurations. (4,1)-

RRNS-1CR is 17% worse than (4,2)-RRNS-2CR on average, despite having lower subcore

area and fewer Consistency Checking Units in the RIU. This is because of (4,1)-RRNS-

1CR’s higher signal energy (23-25kT) requirement to satisfy the MTBF lifespan constraint.

For fairness, we minimize signal energy for each configuration such that MTBF > 100

years when comparing EDP in Figure 3.9 (23-25 kT , 28-31 kT , and 17-19 kT for (4,1)-

RRNS-1CR, (4,2)-RRNS-1EC, and (4,2)-RRNS-2CR respectively). Further improvements

can be drawn from profiled static configurations (static-best) and the adaptive schemes pro-

54

0%
20%
40%
60%
80%
100%
120%
140%

perlb
ench gobm

k
mini

Xyce hmm
er fft dct mini

FE
matm

ul mcf gcc bzip2 M-I-a
ve
M-N

I-ave

Bin Bin_residue_check_3 Bin_residue_check_15
(4,2)-RRNS-1EC (4,2)-RRNS-2CR-static-ave (4,2)-RRNS-2CR-static-worst
(4,2)-RRNS-2CR-static-best (4,2)-RRNS-2CR-SOE (4,2)-RRNS-2CR-EIH

Figure 3.10: Comparison of Checkponting&Restart Energy

posed in Sections 3.4.1 and 3.4.2, as described next.

3.6.3 The Best Checkpointing & Restart Scheme

Figure 3.10 systematically compares the energy consumption of all the proposed check-

pointing&restart schemes on (4,2)-RRNS configurations, normalized to a conventional bi-

nary core (Bin). Bin residue check x (x refers to the modulus value) is the residue checking

method discussed in Section 1.1. (4,2)-RRNS-2CR-static-ave denotes the arithmetic mean

of 35 static configurations, which are obtained by varying LI and SI in the ranges 1k-500k

and 1k-100k cycles respectively, such that SI ≤ LI. The three most notable RRNS check-

pointing&restart schemes, ordered from least to most efficient, are SOE, static-best, and

EIH. Here, static-best chooses, for each workload, the fixed SI-LI configuration that leads

to its lowest EDP. On average, EIH realizes an energy reduction of 70%, 27%, and 1% over

Binary, (4,2)-RRNS-1EC, and (4,2)-RRNS-2CR-static-best respectively for non-memory-

intensive workloads.

The performance of RRNS configurations is always worse than Bin, as shown in Fig-

ure 3.11. This is because of the inherently slow comparison, bit-shift and division oper-

ations in the RNS domain. However, the performance overhead introduced by RRNS (to

maintain reliability while also lowering system energy) can be made relatively insignifi-

55

0%
30%
60%
90%

120%
150%
180%
210%

perlb
ench gobm

k
mini

Xyce hmm
er fft dct mini

FE
matm

ul mcf gcc bzip2 M-I-a
ve
M-N

I-ave

Bin Bin_residue_check_3 Bin_residue_check_15
(4,2)-RRNS-1EC (4,2)-RRNS-2CR-static-ave (4,2)-RRNS-2CR-static-worst
(4,2)-RRNS-2CR-static-best (4,2)-RRNS-2CR-SOE (4,2)-RRNS-2CR-EIH

Figure 3.11: Comparison of Checkponting&Restart Runtime

0%

50%

100%

150%

perl
ben

ch
gob

mk
min

iXyc
e
hmm

er fft dct
min

iFE
mat

mul mcf gcc bzip
2
M-I-

ave
M-N

I-av
e

Bin Bin_residue_check_3 Bin_residue_check_15
(4,2)-RRNS-1EC (4,2)-RRNS-2CR-static-ave (4,2)-RRNS-2CR-static-worst
(4,2)-RRNS-2CR-static-best (4,2)-RRNS-2CR-SOE (4,2)-RRNS-2CR-EIH

Figure 3.12: Comparison of Checkponting&Restart EDP

56

cant using techniques introduced in this chapter. In particular, the EIH scheme degrades

performance by only 11% on average based on non-memory-intensive jobs.

Therefore, the EDP results in Figure 3.12 present a conclusion similar to that of energy.

EIH is consistently as efficient as or more efficient than static-best, and considering that

these reductions can be realized without profiling an application to determine its optimal

configuration, EIH offers significant energy and EDP reductions relative to its integration

complexity in the architecture. On average of non-memory-intensive applications, EIH

achieves an EDP reduction of 67%, 30%, and 1% over Bin, (4,2)-RRNS-1EC, and (4,2)-

RRNS-2CR-static-best respectively.

3.7 Conclusion

A scalable RRNS microarchitecture that simultaneously supports both, error-correction, as

well as checkpointing with restart capabilities upon detecting uncorrectable errors is pro-

posed in Chapter 2. At the beginning of this chapter, static RRNS checkpointing&restart

mechanisms are designed to verify the potential of this idea. And then, two novel RRNS-

based adaptive checkpointing&restart mechanisms that automatically guarantee reliabil-

ity while minimizing the energy-delay product (EDP). For similar reliability when com-

pared to a conventional binary core without computationally error-tolerant (runs at high

Vdd), the proposed RRNS scalable microarchitecture reduces EDP by 67% on average for

non-memory-intensive workloads. Similarly, EIH achieves an EDP reduction of 30% over

(4,2)-RRNS-1EC on average for these non-memory-intensive jobs.

57

CHAPTER 4

(N ,R)-RRNS CORRECTION-ONLY SYSTEMS FOR MILLIVOLT SWITCHES

From Chapter 3, if a workload is memory-intensive, the system should spend more energy

on checkpoint creation, verification, restoration, etc. Thus, correction-only RRNS config-

urations to avoid the enormous memory footprint tracking are also necessary. The RRNS

correction-only methodology contains three consecutive steps: 1) detect possible errors,

2) check error correction Lookup Table (LUT) before proceeding to the next step or com-

plete the correction procedure by directly replacing the wrong residue(s) with the correct

value(s) by regenerating them via the Base Extension Algorithm, and 3) add the correction

factor(s) from error correction LUT if necessary. An earlier example in Chapter 2 describes

this 3-step correction process.

CREEPY[30] is one of the (4,2)-RRNS systems supporting only One Error Correction

(1EC). However, the (4,2)-RRNS-1EC is just a specific configuration of the general (n,r)-

RRNS correction system. Essentially it explores only a point within the RRNS plane (n and

r dimensions) without considering any other configurations. In order to support multiple

error correction in RRNS, as discussed in Section 2.3, the number of redundant residues has

to be increased. In the correction example of Chapter 2, the delta value pair is used

as the input of error correction LUT, and returns the ID of error residue with a correction

factor. Waston [25] concludes the size of error correction LUT grows in an exponential way

with the number of correctable errors increasing. In the 1EC mode, accessing the LUT is

necessary only when the error is located in one of the non-redundant residues. If the error

is found in one of the redundant residues, the correction procedure is to simply replace the

incorrect residue with the corresponding Base Extension Algorithm output.

58

4.1 Size of Error Correction Lookup Table

The size of error correction LUT is a critical consideration of the system’s feasibility.

Based on the theorems in combinatorics, the amount of possible error cases in the ith non-

redundant residue equals to (mi − 1). mi is the ith modulus in this RRNS base set and

1 ≤ i ≤ n. In the ith residue with modulus mi, it may change to any of the other (mi − 1)

values and become erroneous. So the total possible error cases that have to access LUT is∑n
i=1(mi−1). That is to say, the size of LUT isK

∑n
i=1(mi−1),whereK is the maximum

number of entries for each error case. Assuming the size of each entry is 4 bytes with n=4,

K=2 andmi=256, the total size of this single error LUT is roughly equal to 8KB. Similarly,

for double error detectable configuration, the size of LUT is K
∑

(mi− 1)(mj − 1), where

1 ≤ i 6= j ≤ n and (i, j) 6= (j, i). In order to simplify the size estimation, assume mi = mj

= m = 256, n=4 , K=2 and 4 bytes per entry. So the size of double error correction LUT is

4K
∑

(m − 1)2= 4K
(
n
2

)
(m − 1)2≈ 3MB. For the tripe error correction, the approximate

LUT size is 4K
∑

(m − 1)3= 4K
(
n
3

)
(m − 1)3≈ 512MB. So the LUT size increases in an

exponential manner [25] if raising the number of correctable errors.

4.2 Energy Delay Production (EDP) Comparison

Figure 4.1: Energy Delay Production (EDP) Comparison

59

A large LUT implies long access latency and a power-hungry design, defeating the pur-

pose of the single error correction design. Figure 4.1 shows the Energy Delay Production

(EDP) comparison of 1EC (EC: Error Correction), 2EC and 3EC. The EDP value of 1EC

is normalized to 1. It can be seen that as the error correction capability of an RRNS core

is increased, the corresponding EDP values also increases significantly. For configurations

with stronger correction capabilities, not only are the LUT access delays larger, but also

more redundant moduli (subcores in the hardware) are required. Therefore, configurations

with better error correction capabilities require more overhead. Compared with 1EC, on

average, the EDP values of 2EC and 3EC increase by 31.81% and 67.45% respectively.

RRNS multiple error correction is not a good candidate for lowering EDP, area, and

hardware overhead. Therefore, the error correction capabilities of correction-only or hybrid

systems should be limited to no more than one error correction.

60

CHAPTER 5

(N ,R)-RRNS HYBRID SYSTEMS FOR MILLIVOLT SWITCHES

5.1 (n,r)-RRNS Hybrid System Design

The scalable RRNS architecture proposed in Section 2.11 simultaneously supports both

correction and checkpointing&restart. The first level of resilience is correction while the

second lower level is detection with checkpointing&restart. The essential criterion of this

hybrid system is if the first level resiliency is insufficient, then the lower level kicks in to

offer protection.

On the one hand, this hybrid system may avoid heavyweight recovery and re-execution

if the numbers of error residues of all the detected error entries are less than its correction

capability. In other words, the probability of complete system recovery and restart may

reduce with the help of correction. However, the high overhead correction schemes, such

as multiple error correction discussed in Chapter 4, should be avoided. Based on the size

consideration of correction LUT, the resilient capability of hybrid systems should be lim-

ited to at most one error correctable for a particular RRNS value. On the other hand, the

transistor’s fault probability is relatively high in the low signal energy environment. Even

if only one RRNS value in CC is verified as uncorrectable, the system has to roll back to

the last valid machine state. In such a case, all the correction operations of current LI are

wasted and further increase total overhead.

5.2 Design Space Exploration of (n,r)-RRNS

This section explores best results for n, r, c and d in an (n,r)-RRNS-cECdCR architecture.

Section 2.3 discusses the theoretical foundation of (n,r)-RRNS design space extension. The

scalable error-tolerant RRNS architectures can hence be classified into three categories:

61

0%

20%

40%

60%

80%
(3
,2
)-1
EC

(5
,2
)-1
EC

AV
E-
EC

(3
,2
)-2
CR

(3
,3
)-3
CR

(4
,1
)-1
CR

(4
,2
)-2
CR

(4
,3
)-3
CR

(4
,4
)-4
CR

(5
,1
)-1
CR

(5
,2
)-2
CR

(5
,3
)-3
CR

(5
,4
)-4
CR

(5
,5
)-5
CR

AV
E-
ED

(3
,3
)-1
EC
2C
R

(4
,3
)-1
EC
2C
R

(4
,4
)-1
EC
3C
R

(5
,3
)-1
EC
2C
R

(5
,4
)-1
EC
3C
R

(5
,5
)-1
EC
4C
R

AV
E-
HY
BR
ID

Figure 5.1: Memory-intensive;The energy consumption of RRNS schemes normalized to
(4,2)-RRNS-1EC

-40%

-20%

0%

20%

(3
,2
)-1
EC

(5
,2
)-1
EC

AV
E-
EC

(3
,2
)-2
CR

(3
,3
)-3
CR

(4
,1
)-1
CR

(4
,2
)-2
CR

(4
,3
)-3
CR

(4
,4
)-4
CR

(5
,1
)-1
CR

(5
,2
)-2
CR

(5
,3
)-3
CR

(5
,4
)-4
CR

(5
,5
)-5
CR

AV
E-
ED

(3
,3
)-1
EC
2C
R

(4
,3
)-1
EC
2C
R

(4
,4
)-1
EC
3C
R

(5
,3
)-1
EC
2C
R

(5
,4
)-1
EC
3C
R

(5
,5
)-1
EC
4C
R

AV
E-
HY
BR
ID

Figure 5.2: Non-memory-intensive;The energy consumption of RRNS schemes normalized
to (4,2)-RRNS-1EC

62

0.95

1.05

1.15

1.25

1.35

1.45

1.55

1.65

1.75

1.85

0.95 1.15 1.35

E
n
e
rg

y

Delay

Correction-Only
Checkpoint-Only
Hybrid

(4,2)-1EC

(a) Memory-intensive

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.9 1 1.1 1.2

E
n
e
rg

y

Delay

Correction-Only
Checkpoint-Only
Hybrid

(4,2)-2ED

(b) Non-memory-intensive

Figure 5.3: Energy Delay Pareto normalized to (4,2)-RRNS-1EC

checkpointing-only (Chapter 3), correction-only (Chapter 4) and correction-checkpointing-

hybrid (Chapter 5) systems.

Figure 5.3 plots, normalized to (4,2)-RRNS-1EC, energy and delay of various (n, r)-

RRNS-cECdED schemes. Section 3.6.3 shows that checkpointing/restart is not suitable

for workloads that include high-frequency memory operations. Therefore, workloads are

divided into memory-intensive and non-memory-intensive for separate discussions. Non-

memory-intensive and memory-intensive workloads are represented by perlbench and gobmk

respectively in this subsection. Recall that due to the exponential scaling behavior of er-

ror correction LUT sizes, the correction based configurations are limited to at most one

correctable error. All checkpointing/restart configurations in this subsection use the Error

Interval Heuristics (EIH) adaptive method. Similarly, Figure 5.1 and Figure 5.2 show the

energy consumption of all the explored configurations.

As shown in Figure 5.1, Figure 5.2 and Figure 5.3, (4,2)-RRNS-2CR and (4,2)-RRNS-

1EC are the configurations which give the best results for non-memory-intensive and memory-

63

intensive workloads respectively. From Figure 5.3, (4, 2)-RRNS-1EC gets the lowest

EDP in memory-intensive workload while (4, 2)-RRNS-2CR performs best in non-memory-

intensive workloads. For the non-memory-intensive jobs, it can be observed that the best

checkpointing-only scheme with novel mechanisms described in this thesis significantly

reduces the total energy (by around 30% when compared with the best correction-only

configuration), while maintaining similar delay. The hybrid schemes are slightly worse

on average because of extra energy overhead while simultaneously supporting both error-

tolerant capabilities. Moreover, the error rate of transistors is relatively high in the low

signal energy environment. Even if only one RRNS value goes into the undetectable error

during the current LI, the system has to roll back to the previous verified machine state. In

such a case, the previous corrections of this hybrid system become useless. For memory-

intensive jobs, correction-only schemes are the best bet. From the perspective of storage

overhead, correction-only is a lightweight method that avoids the memory footprint track-

ing.

64

CHAPTER 6

THREAD-LEVEL FAULT-TOLERANCE FOR EXASCALE COMPUTING

Given all that has been learned about RRNS systems in prior chapters, RRNS can now be

applied to challenges of Exascale computing at a thread level.

6.1 Motivation and background

As High-Performance Computing (HPC) complexity grows exponentially and advances to-

wards Exascale, runtime errors become a critical issue for upcoming system designs. Some

researchers predict that the Mean Time Between Failures (MTBF) of exascale systems

might go down to just several minutes[86, 87]. Moreover, upcoming energy-efficient tech-

niques (i.g, Near Threshold Voltage (NTV) [88] computing) aimed at extending Dennard

scaling further increase the system’s error rate. The state-of-the-art resilience techniques

for HPC have serious shortcomings, including, but not limited to insufficient error detec-

tion capabilities, challenging to use, and energy-inefficiency. Instead of adopting a unique

fault-tolerance technique, Elliott et al. [89] suggested using a Triple Module Redundancy

(TMR) with a checkpointing&restart mechanism for exascale systems. However, this rec-

ommendation was made by only considering the tradeoff between reliability and delay.

Orthogonal to reliability, power-efficiency is another urgent challenge of exascale sys-

tems[90]. The Green500 List[91], which features power-efficiency, was announced as a

supplementary of the TOP500 List. Unlike the Top500 List that highlights TFlops, the

Green500 List utilizes GFlops/Watts as the primary evaluation metric [92]. Moreover,

the Department of Energy (DOE) Exascale Initiative Roadmap indicates that an exascale

system’s power constraint should be limited to 20 MW [93, 94, 92], while research

reports at around 2010 estimated that such systems needed at least 60 MW even with

some idealized assumptions [90, 95]. Frontier[96], an exascale computer (theoretical peak

65

performance>1.5 exaflops) jointly developed by Cray, AMD, and Oak Ridge National Lab-

oratory, is expected to be delivered in 2021. The power consumption of Frontier has been

estimated as 29 MW[97]. Despite ten years of technical upgrades and improvements, there

is still a significant gap between the DOE threshold and this state-of-the-art estimated value.

Therefore, systematic explorations for power optimization of exascale systems still needs

to continue.

This chapter presents the microarchitecture of an in-order pipelined core for exascale

systems relying on the Redundant Residue Number System (RRNS) to support thread-level

fault-tolerance and significantly reduce power consumption. By analyzing the working

principles of computational error-tolerant techniques, it could reach the conclusion that

RRNS has more advantages than traditional Triple Modular Redundancy (TMR) [98] in

terms of power consumption and computational logic area. Since power consumption and

reliability are now critical for exascale system design, RRNS concepts could be integrated

into exascale system designs to limit their power consumption [95]. The design and op-

timizations presented in this chapter can achieve sufficient system reliability with lower

power consumption to bring exascale systems closer to the efficiency threshold proposed

by DOE.

CREEPY and related improvements [29, 7, 30, 31, 26] is an instruction-level RRNS

core design, which implies that all the subcores in a CREEPY core execute the same

instruction at a specific timestamp. CREEPY’s instruction behavior is similar to Single

Instruction Multiple Data (SIMD) from Flynn’s taxonomy [99], and the synchronization

interval among residues/subcores is only a single instruction. In this chapter, the constraint

of executing an identical instruction among all subcores is removed and establishes an

asynchronous thread-level mode similar to Multiple Instruction Multiple Data (MIMD).

Thus, allowing a reduction in system performance degradation introduced due to RRNS

integration. Moreover, this thread-level RRNS resiliency model can be easily transplanted

to existing exascale programming models.

66

This chapter presents a thread-level Redundant Residue Number System (RRNS) scheme

and discusses the corresponding microarchitecture design by following the unique execu-

tion mode of thread-level RRNS. This allows RRNS to be efficiently applied to exascale

systems improving their fault-tolerance and energy-efficiency. It also shows the RRNS

API compatible with the current Habanero C/C++ library (HClib)[27], which demonstrates

the feasibility of thread-level RRNS in the current Asynchronous Many-Task (AMT)[28]

programming model widely used for programming exascale systems. Through further opti-

mizations of thread-level RRNS microarchitecture, this method shows 62.25% and 58.67%

reduction respectively in energy and Energy Delay Product (EDP), compared with the state-

of-the-art Asynchronous Many-Task (AMT) black-box resiliency method.

6.2 Asynchronous Many-Task (AMT) Programming model

Resilience is projected to be one of the urgent challenges in achieving exascale comput-

ing and beyond, mainly due to the higher fault rates in such systems compared to current

designs. These faults could be classified into two main categories [100]: fail-stop and fail-

continue. Fail-stop faults directly cause the compute nodes to stop or crash, which results

in the loss of all computational states and data. Typically, such failures are detected by the

operating system or middleware used in HPC systems. On the other hand, fail-continue

faults often caused due to soft/transient errors can cause the process to fail, but still con-

tinue to execute. There are some cases where these soft/transient errors go undetected by

the conventional hardware, operating system, and other middleware components. Such er-

rors are called Silent Data Corruptions (SDC) [101]. Even when such errors are detected,

the process might not be able to correct them and even continue execution (Detected Un-

correctable Errors - DUE) [101]. Faults due to soft/transient errors are the more critical

issue when compared to fail-stop faults in exascale systems [100].

The Asynchronous Many-Task (AMT) is a category of programming and execution

models proposed as an alternative to the dominant bulk synchronous programming mod-

67

els. In the AMT programming model, an application program is decomposed into small,

transferable units of work called tasks with associated data inputs rather than directly de-

composing at the process level such as MPI [102] ranks. AMT foundations of transferable

task units have shown promising potential [103, 104, 105, 106, 107] in mitigating the ef-

fects of fail-continue faults. To enable resilience, it is necessary to identify the program

location and data to perform error checking and recovery. In AMT programming models,

the task boundary provides an ideal program location around which can directly implement

resilience. The data that is passed across the task boundary, i.e., the task outputs, gives us

the targeted data that needs to be checked to ensure correctness.

Before discussing the fault-tolerance of AMT models, the types of resilient techniques

should be defined and classified. Similar to the testing classification, according to the

user’s understanding of the application/algorithm, the resilient techniques can be divided

into black-box resiliency and white-box resiliency. Black-box resiliency means that the

users do not need to understand the target application/algorithm deeply, and they just use

one or more simple APIs to denote which program segments need the resilient technique’s

support. In contrast, white-box resiliency requires users to have an in-depth understand-

ing of the target application/algorithm and provide one or more user-defined error detec-

tion/correction methods to achieve fault-tolerance.

Paul et al. [106] demonstrated a comprehensive approach to achieve resilience in AMT

programming models with a focus on remedying Silent Data Corruption (SDC) on shared

memory systems that often go undetected by the conventional hardware, operating system,

and middleware. Different resilience techniques, including task replay which includes re-

playing a task in case of a failure, task replication which includes creating multiple copies

of a task to compare their results, algorithm-based fault tolerance (ABFT) which includes

application-specific error correction provided by the user, and checkpointing which allows

restoring data from a previous checkpoint in case of failure, are demonstrated in this work.

They use Habanero C/C++ library (also known as HClib) as an exemplar AMT runtime

68

hclib::async_await([=]() {
int_obj *n2 = prom1->get_future()->get();
printf("Value2 %d\n", n2->n);

}, prom1->get_future());

hclib::async_await([=]() {
int res = prom_res->get_future()->get();
printf("Success : %d\n", res);
if(res == 0) exit(0);

}, prom_res->get_future());

diamond::async_await_check<3>([=]() {
int input = *(prom->get_future()->get());
int compute_result;

//Computing Code Segment

int_obj *n2 = new int_obj();
n2->n = compute_result;
prom1->put(n2);

}, prom_res, prom->get_future());

hclib::async_await([=]() {
int *n= new int(input_val);
prom->put(n);

});

Task 1

Task 2 Task 3

Task 4

Figure 6.1: TMR-AMT Example

for this purpose. Paul et al. [107] further extended the resilient HClib runtime from [106]

by adding support for communication across nodes using the MPI communication library.

This work [107] demonstrates how to tolerate fail-stop faults along with silent data cor-

ruption by adding support for transparent recovery from a node crash without any user

intervention.

Now let us analyze the various resilience techniques described above in terms of energy

efficiency and ease of use. The task replication resilient technique is similar to Dual/Triple

Module Redundancy(D/TMR), which has been demonstrated as energy-inefficient in Sec-

tion 6.4. The remaining first-level resilient methods (task replay and ABFT), require the

user to understand the algorithm/application and implement application-specific resiliency

case by case. That is to say, extra algorithmic research works are needed to get reliabil-

ity. The state-of-the-art resilient techniques in software AMT models are either energy-

inefficient (task replication, which offers black-box resiliency) or hard to use (task replay

and ABFT, which provide white box resiliency).

69

hclib::async_await([=]() {
int_obj *n2 = prom1->get_future()->get();
printf("Value2 %d\n", n2->n);

}, prom1->get_future());

hclib::async_await([=]() {
int res = prom_res->get_future()->get();
printf("Success : %d\n", res);
if(res == 0) exit(0);

}, prom_res->get_future());

diamond::async_await_check_RRNS<6>([=]() {
int* input_ptr = prom->get_future()->get();
RRNS* RRNS_input = INT_TO_RRNS (input_ptr);
RRNS_Residue input = GET_Residue(RRNS_ input);
RRNS_Residue compute_result;

//Computing Code Segment

RRNS_int_obj *n2 = new RRNS_int_obj();
n2->n = compute_result;
prom1->put(n2);

}, prom_res, prom->get_future());

hclib::async_await([=]() {
int *n= new int(input_val);
prom->put(n);

});

Task 1

Task 2 Task 3

Task 4

Figure 6.2: RRNS-AMT Example

Figure 6.1 shows an example of implementing task replication through HClib APIs [27].

async await API calls are used to create asynchronous tasks. The executing body of each

task is represented by a user-defined C++ lambda expression. The dependency between

asynchronous tasks is defined by the Promise & Future pair [108] which was introduced

in C++11, such as the prom→put(n) and prom→get future() marked in green. Figure 6.1

shows an example of the Triple Modular Redundancy (TMR) resilient technology, which

is implemented through the resilient task creation API async await check in Task 2. Task-

level TMR uses two extra tasks internally to run the same computation. When these three

subtasks are completed, async await check performs equality checking on the three in-

ternal subtask’s results that were added to prom1 and satisfies this promise on success,

subsequently scheduling task 3.

The equality checking can also fail, in which case, that information needs to be com-

municated with the user. This information of success(1) or failure(0) is reflected in the

prom res parameter which activates Task 4 once the equality checking finishes. More de-

70

tails about HClib and AMT replication are available in [106].

A suitable RRNS setup is theoretically more energy/area efficient than TMR for com-

putational error detection and correction. This could be achieved via augmenting the

existing HClib framework with RRNS through a similar TMR-AMT method and mod-

ify the corresponding APIs, as shown in Figure 6.2. The library needs to create a new

async await check RRNS API, which can adjust the number of lightweight threads ac-

cording to the RRNS configuration. For example, the configuration is (4,2)-RRNS, which

can support six lightweight subtasks, and each task processes the corresponding residue.

In other words, the bit-width of a lightweight task is the same as its corresponding residue,

such as 8/9 bits. The TMR method’s task is a complete copy of the original computation

(such as 32 bit), not a lightweight task unlike RRNS. When async await check RRNS is

completed, the AMT runtime will collect all the six residue results added to the promise

prom1 and performs RRNS error checking on them. Once it succeeds, the runtime will

use a user-provided function to assemble the residues and convert them to int obj and use

it to satisfy the promise, which schedules Task 3 for execution. Thus, this should be able

to transplant thread-level RRNS to the existing AMT programming model with minimal

changes to the existing APIs through this proposed method.

6.3 Thread-level RRNS Resiliency

6.3.1 RRNS-AMT Overview

For multithreading programming models, such as AMT, the input data is converted from

conventional binary format to RRNS format and maps the corresponding residues to inputs

of a group subtasks (low-bitwidth threads) to achieve reliability.

Similar to the example in Table 1.1, an execution overview example shown in Figure 6.3

also adopts a (4, 2)-RRNS configuration. The first four threads are logically grouped to-

gether as non-redundant threads, while the remaining two are called redundant threads.

However, all six threads are low-bandwidth threads. That is to say, the bit width of these

71

threads is typically 8/9-bits, equal to the bit-widths of practical RRNS moduli, instead of

the usual 32/64-bit threads found in Dual/Triple Modular Redundancy(D/TMR). Each of

these lightweight threads asynchronously executes the same set of micro-instructions, i.e.,

the same opcodes issued in sequential order with each thread handling a different residue

of the RRNS data. For example, the 2nd thread of the group only uses the 2nd residue of

a particular RRNS data as input, and its output only contributes to the 2nd residue of the

RRNS output. When an RRNS unfriendly instruction, such as a comparison operation, is

encountered, the threads are synchronized similar to a barrier operation, since the RRNS

unfriendly instruction needs all its corresponding residues to be available before it can be

executed.

sync_Instr

T1 T2 T3 T4 T5 T6

non-redundant
threads

redundant
threads

Figure 6.3: (4,2)-RRNS-AMT Overview

When the system or the user needs to perform error detection, each thread sends its

residue of the corresponding RRNS value to the Residue Interaction Unit (RIU). The RIU is

a centralized hardware unit that handles RRNS synchronized operations, including RRNS

to binary conversion, fractional multiplication, and error detection/correction logics. Syn-

chronizing threads for error detection is unnecessary because RRNS error detection occurs

off of the critical path of execution. A simple auxiliary register waits for the remaining

residues of an RRNS instruction that have not arrived. The RIU cannot proceed until all

six residues of a corresponding instruction are ready. If an error is detected, the correction

72

or recovery&re-execution procedure is called according to the system configuration. If no

error is detected, the execution of the critical path proceeds uninterrupted.

6.3.2 Thread-level RRNS Limitations and Solutions

The RRNS-AMT mode relaxes unified instruction constraints by allowing all RRNS sub-

cores to operate independently on multiple instructions. However, an RRNS unfriendly

instruction such as division, bit manipulation, or comparison needs a barrier like synchro-

nization for further processing via the Residue Interaction Unit. From experience with

parallel programming, it is known that frequent insertion of barriers for thread synchro-

nization improves significant overhead and might seriously degrade the performance of

exascale systems. Therefore an effective method for minimizing the number of barriers

generated by RRNS unfriendly instructions needs to be proposed.

Table 6.1: Percentages of RRNS unfriendly instructions

Cmp Bit-Op Div Sqrt
perlbench 11.46% 2.52% <0.01% 0.00%

gobmk 18.72% 0.17% 0.00% 0.00%
miniXyce 9.33% 1.95% 0.06% 0.01%
hmmer 12.38% 1.27% 0.15% 0.00%

fft 2.72% <0.01% <0.01% <0.01%
dct 2.44% <0.01% <0.01% 0.00%

matmul 13.58% 0.12% <0.01% 0.00%
miniFE 11.23% 0.17% 0.03% <0.01%

mcf 15.98% 0.49% 0.00% 0.00%
gcc 12.03% 3.05% <0.01% 0.00%

bzip2 12.87% 4.05% 0.00% 0.00%
average 11.16% 1.25% 0.02% <0.01%

Table 6.1 summarizes the proportions of RRNS unfriendly instructions in each of the

workloads (from the SPEC, Mantevo Miniapp Suite, and user-defined benchmarks) evalu-

ated in this chapter. The most straightforward conclusion from this instruction breakdown

is that comparison (cmp) instructions are the most significant contributor to RRNS bar-

rier synchronizations. On average, cmp instructions account for 11.16% of all instructions,

73

while the sum of the remaining three categories is less than 1.28%. Therefore, reducing the

frequency of cmp induced synchronizations in the critical path is the primary prerequisite

for optimizing thread-level RRNS performance.

Systematic profiling of the ARM assembly traced used for evaluations shows that on

average, 68% of cmp instructions are closely related to branches. More specifically, this

category of cmp instructions is directly followed by a related branch which uses the result

from the cmp instruction to determine its jump direction. The cmp instruction sets the

Current Program Status Register (CPSR), which the branch uses to decide if it should be

taken or not. By following this observation, an efficient methodology is proposed to reduce

the synchronization frequency of RRNS barriers by simple modifications to the branch

predictor’s input. Typically, when a cmp instruction is detected in the decode stage, the

pipeline is immediately stalled, and the cmp-related residues are forwarded to the RIU.

However, this is equivalent to adding a long synchronization stall on the critical path of

execution, which has the potential for adverse effects on exascale systems’ performance.

On the other hand, this optimization checks if the instruction in the pipeline’s fetch stage

is a corresponding branch. If the following instruction is a branch, it can safely remove the

cmp in the decode stage from the critical execution path because the purpose of this cmp is

to set the value of status registers for the upcoming branch. The branch predictor’s result

is used to determine the branch’s behavior allowing execution to proceed without stalling,

providing the opportunity to execute the cmp instruction outside the critical path. When the

result of the cmp is available from the RIU, the branch predictor’s correctness is verified.

If the branch is mispredicted, the branch misprediction process is followed: the pipeline is

flushed, status recovered and the program is re-executed right after the mispredicted branch.

This optimization is called the Branch Predictor Combination.

The Program Counter (PC) adder in the fetch stage is an orthogonal constraint that may

hurt the system’s energy efficiency. The intuitive design of a thread-level RRNS core is

to include the pipeline’s Instruction Fetch stage in a closed subcore according to the cor-

74

IF

ID

Op Dest_# SRC1_Val SRC2_Val

…

Valid

6 bits 5 bits 8/9 bits 8/9 bits 1 bit

Microinstruction Buffer

MEM

WB

EXE

IBUF

MEM

WB

EXE

IBUF

MEM

WB

EXE

IBUF

MEM

WB

EXE

IBUF

MEM

WB

EXE

IBUF

MEM

WB

EXE

IBUF

A_ID Addr Remaining #

2 bits 32 bits 3 bits

Memory Address Buffer

A_ID

2 bits Valid

1 bit

Figure 6.4: The Resilient Microarchitecture Overview of Thread-level Redundant Residue
Number System

responding residue’s bit-width. From this intuitive design, the fetch stage of each subcore

must contain an independent PC adder. For example, if the core uses a 6-residue configu-

ration, five extra PC adders are required to support thread-level RRNS. This undoubtedly

goes against the goal of lowering power consumption. Moreover, these additional adders

also increase the core area, making it paramount to remove the requirement of additional

adders in RRNS subcores. To accommodate this constraint, a shared fetch stage is designed

and optimized such that only one PC adder is required. A simple micro-instruction buffer is

added per subcore and the pipeline is augmented with an IBUF stage between the Instruc-

tion Decode and Execute stages. More details of this augment and how these are leveraged

to achieve efficient thread-level RRNS are detailed in Section 6.3.3.

6.3.3 RRNS-AMT Microarchitecture

This section discusses the CPU microarchitecture details of the thread-level RRNS core that

supports the RRNS-AMT. Figure 6.4 illustrates the overview of the microarchitecture of a

pipelined processor featuring six RRNS subcores where each subcore corresponds to one

residue and four cores are non-redundant subcores, and the remaining two are redundant

subcores used to detect potential errors. In the orthogonal direction, this microarchitecture

has a six-stage in-order pipeline. Five stages of this six-stage design correspond to stages

in the classic five-stage MIPS pipeline, while a new IBUF stage is added between the ID

75

ADD r1 r2 r3
r1 -- --

residue 1- 6

-- -- -- --
r2 1 2 0 5 5 4
r3 0 1 1 2 7 12

……
Redundant Residue Number System (RRNS)

Register File

ADD r1 1 0
……

Subcore1
Micro Instruction Buffer

-- 1 ADD r1 4 12
……

Subcore6
Micro Instruction Buffer

-- 1
…… r4 -- -- -- -- -- --

Figure 6.5: An Example of Converting An ADD Instruction Into Multiple ADD Micro-
instructions In The Decode Stage

and EXE stages.

The IBUF stage contains a Micro-Instruction Buffer (MIB) per subcore, and the size

of which is between 5-10 instructions per the system design requirements. If a valid un-

executed micro-instruction is available in this buffer, the corresponding subcore fires it

according to resource availability. The MIB of each subcore is completely isolated in the

horizontal direction, i.e., it does not interfere with MIBs of other subcores.

The translation from the original instructions to the micro-instructions are processed

and assembled in the Instruction Decode (ID) stage, and then forwarded to the MIBs of

the relevant subcores based on their residue order. The instructions in the MIB are tracked

via two pointers, one each at the beginning and end of valid instructions (beg ptr and

end ptr), to form a circular buffer, rendering it unnecessary to move instructions around

when inserting or deleting micro-instructions from the MIB. On insertion, the location

following the current end pointer (end ptr+1) of the MIB is checked, and if the valid bit

of that location is set to 0, the micro-instruction is inserted and the end pointer incremented.

If the valid bit of location end ptr+1 is set to 1, it indicates that this subcore has no free

slots because the micro-instruction presently in that slot is still waiting to be issued. When

this happens, the pipeline’s fetch and decode stage are immediately stalled. The two stages

cannot resume execution until each the subcore finds an unoccupied location in its MIB.

In this processor, both the Register File (RF) and the cache hierarchy store data in

76

the RRNS format. When an instruction reaches the decode stage, the system reads the

necessary source operands from the RF, and the corresponding slice-values (residues) are

forwarded to the relevant fields of subcores’ micro-instruction buffers. Figure 6.5 is an

example of an ADD (ADD R1, R2, R3) instruction being converted into multiple ADD

micro-instructions in the decode stage of the pipeline. Similar to the decode mechanism

in a traditional pipeline, the first source register (R2)’s contents are read, but the residue

values from RF are distributed to the subcores, the first residue value to subcore1 and so

on and so forth. The second source register’s (R3) contents are also read and distributed

in a similar manner at the same time. When all the necessary fields in the MIB entry are

set (Opcode, Dest #, SRC1 Val, and SRC2 Val in the case of ADD), the status bit is set to 1

(Valid) and the micro-instruction is ready to be fired.

Load and Store instructions need to access the cache hierarchy in the MEM stage of

the pipeline. However, in thread-level RRNS, this process is not straightforward since each

subcore contains a fraction of the operation’s memory address and it is impossible for a sin-

gle thread to figure out the corresponding complete memory address by relying solely on

its own fraction. Assembling complete memory addresses requires synchronizing threads

at every memory operation by adding a barrier overhead like other RRNS unfriendly in-

structions, which is really prohibitive to performance. Another intuitive approach is to

allocate a complete memory address field in each micro-instruction (i.e., per core). How-

ever, this would significantly increase the MIB’s size reducing energy gains due to RRNS,

and therefore is not a good solution.

To effectively conquer the memory operation address problem, a lightweight Memory

Address Buffer (MAB) is added for maintaining active memory addresses, as shown in Fig-

ure 6.4. This solution has a smaller overhead than storing the entire memory address in the

micro-instructions. A new entry is allocated in the MAB whenever a memory instruction is

encountered in the Instruction Decode stage and there is available space. Each MAB entry

includes four fields: a memory address ID, (A ID), the complete memory address (Addr),

77

a counter to track the number of threads that still require the address (Remaining #), and

a valid bit for the entry. The address ID is forwarded to each subcore and added to the MIB

entry of the memory instruction as part of the micro-instruction of that core. The usage

counter is initially set to the number of threads in the RRNS core to represent the number

of times the entry will be used before it becomes invalid. For example, the usage counter is

set to 6 (Remaining #=6) for the RRNS architecture in Figure 6.4. Whenever a subcore

reads an entry from the MAB, the (Remaining #) counter is reduced by 1. When an

entry in the MAB’s (Remaining #) reaches 0, it can be reclaimed for reuse and its valid

bit is set to 0. As you will notice, this scheme is conservative in nature and allocates a new

entry in the MAB even if two memory instructions map to the same complete address. This

scheme’s resource allocation relies on the instruction stream rather than on unique memory

addresses, and from experience, a MAB between 5-10 entries depending on the workload’s

nature was found to be adequate. Please note that when the MAB has no available slots,

the pipeline is stalled until any presently executing memory instructions finish and an entry

is freed.

To summarize, this section presents the detailed core microarchitecture of a processor

that supports thread-level resiliency via the use of RRNS. However, this does not imply

that the entire exascale system needs to use this core in order to attain reliability. This type

of core is intended as a small subset distributed in heterogeneous exascale systems where

reliability and energy expenditure are top-level constraints along with good performance

characteristics.

6.4 Evaluation Methodology And Experimental Results

This chapter aims to provide an easy-to-use black-box fault-tolerant methodology that

meets low energy consumption requirements to solve exascale computing’s current and

future critical challenges of reliability. While white-box resiliency methods such as re-

play or Algorithm-Based Fault Tolerant (ABFT) may offer alternate solutions to resiliency,

78

they require user-defined error detection algorithms and a deeper understanding of the un-

derlying applications. This makes white-box techniques less versatile and harder to use.

Moreover, the complexity and overheads of error detection vary from algorithm to algo-

rithm and depend on their specific implementations. Therefore, this chapter’s proposed

methodology compares to other black-box resiliency techniques that meet the versatility

and ease-of-use criterion. The section primarily discusses and analyzes three evaluation as-

pects: performance delay, energy consumption, and Energy-Delay-Product (EDP) of each

methodology.

As discussed in Section 6.3.2, RRNS unfriendly instructions require mandatory syn-

chronization of all residue threads, thus reducing system performance and energy effi-

ciency. Although the Branch Predictor Combination (comparison+branch) reduces the

total number of synchronizations to a certain extent, these RRNS-related synchroniza-

tions cannot be completely eliminated. Due to the need for mandatory synchronization

of such unfriendly RRNS instructions, simulations are unable to be performed directly on

the HClib[27] platform. Because the use of HClib API is directly oriented to programmers,

the minimum schedulable granularity is a single C/C++ instruction, not a single assem-

bly instruction required by the thread-level RRNS. Moreover, the HClib platform does not

support the corresponding energy evaluation model. Based on the above requirements, a

cycle-accurate trace-driven simulator is designed to model the thread-level RRNS schemes.

Gem5 [109] is used as the simulation front end, generates ARM assembly traces through its

trace-based debugging method, and then using these traces as the simulator’s inputs. These

simulation traces are collected from Mantevo Miniapp Suite, SPEC2006 Suite, and user-

defined workloads. Energy evaluation results are obtained by integrating each module’s

signal energy, estimated transistor counts, error detection frequency, and other correspond-

ing factors.

79

0.6

0.7

0.8

0.9

1

1.1

per
lbe
nch

gob
mk

min
iXy
ce
hm

me
r fft dct

ma
tm
ul

min
iFE mc

f
gcc bzi

p2 ave

Figure 6.6: Performance Improvement (Delay Reduction) of Branch Predictor Combina-
tion

6.4.1 Benefits of Branch Predictor Combination

In Section 6.3.2, it can be observed that comparison instructions take up the vast major-

ity of RRNS unfriendly instructions in the evaluated workloads. Based on this interesting

observation, a modification to the CPU microarchitecture is needed where a comparison in-

struction and its related (following) branch are combined as an input to the branch predictor,

thereby reducing the frequency of RRNS comparison synchronization in the critical path of

program execution. This section compares the Branch Predictor Combination method with

the intuitive design to see how much system performance improvement can be achieved via

adopting this optimization.

Figure 6.6 shows the delay comparison between the proposed Branch Predictor Com-

bination (subsection 6.4.1) optimized and the intuitive implementation which adds barrier

like synchronization for every comparison instruction. The delay on the x-axis has been

normalized to the conventional implementation. The optimization is able to reduce the de-

lay in the best case scenario (mcf) by 17.69% while in the worst-case scenario (fft) by

0.02%. fft does not get a significant benefit from the Branch Predictor Combination since

its fraction of comparison instructions is quite low (2.72%) and out that only 0.69% are fol-

lowed by a related branch. On average, the Branch Predictor Combination Optimization is

80

able to reduce the delay by 9.82%, improving the usability of thread-level RRNS.

6.4.2 Error-free Scenarios

This section presents a comparison between two black-box techniques for resiliency, the

RRNS-AMT approach and TMR-AMT, for the error-free scenario along with the delay,

energy and energy-delay product metrics. The error-free scenario implies that no errors are

generated nor injected during execution. However, the system’s cost of error detection is

still must be paid. The orthogonal error-prone scenario is discussed later in section 6.4.3.

The error detection frequencies in the evaluation range from every hundred instructions to

every million instructions. Figures 6.7, 6.8, and 6.9 summarize the performance of RRNS-

AMT normalized to TMR-AMT for delay, energy and EDP metrics. Because TMR-AMT

only has the ability to perform Single Error Correction (SEC), the RRNS-AMT core is

limited to a (4, 2)-RRNS configuration, which according to [110] only has the one error

correction ability, for a fair comparison. Following on, unless otherwise stated, all RRNS-

AMT results are presented using the (4, 2)-RRNS configuration.

Delay: Figure 6.7, the delay results, shows that TMR performs better than RRNS across

the benchmark applications. This is attributed to the prevalence of RRNS unfriendly in-

structions. For example, every bit-operation, such as bitwise AND, requires the system

to first convert the RRNS operands to binary, perform the computation, and then convert

the result back to RRNS format. Further, RRNS error detection requires extra processing

compared with TMR, since RRNS sends residues to the RIU for consistency checks, while

TMR only requires a simple majority vote on the output. However, the performance degra-

dation of RRNS is quite limited, between 20.73% (gobmk) in the worst case and 0.55%

(dct) in the best case scenario. On average, RRNS suffers from a 10.24% increase in delay

compared to TMR when checks are made every million instructions for both.

Energy: Figure 6.8 compares the energy consumption between RRNS and TMR AMT.

(4, 2)-RRNS has significantly lower energy consumption when compared with TMR across

81

0.9

1

1.1

1.2

pe
rlb
en
ch

go
bm
k

mi
niX
yc
e

hm
me
r fft dc

t

ma
tm
ul

mi
niF
E

mc
f

gc
c

bz
ip2 av

e

100

1K

10K

100K

1M

Figure 6.7: Delay of Thread-level Redundant Residue Number System (RRNS); The values
in this figure are normalized to Triple Modular Redundancy (TMR)

all configurations. The primary reason for this energy reduction is RRNS remarkable

advantage in total computational bit-width and subsequently area compared with the re-

dundancy in TMR. Additionally, RRNS energy consumption can be further reduced for

multiplication-intensive workloads by optimizing RRNS multipliers using the index-sum

multiplication techniques. fft sees the best energy reduction of 79.44% while the worst,

mcf still has an energy reduction of 49.80% when compared with TMR. On average, (4, 2)-

RRNS with an error detection frequency of one million instructions lowers energy con-

sumption by 63.54%.

EDP: The energy delay product (EDP) further reveals the tradeoff between energy and

delay for each scheme. Figure 6.9 shows that on average, the EDP of (4, 2)-RRNS with

an error detection frequency of one million instructions is 59.80% compared to the Triple

Modulo Redundancy AMT scheme. That is to say, RRNS sacrifices 10.24% delay in ex-

change for 63.54% energy reduction. Considering the critical need for energy reduction in

exascale systems, RRNS provides a compelling case for its use.

82

0

0.1

0.2

0.3

0.4

0.5

0.6

pe
rlb
en
ch

go
bm
k

mi
niX
yc
e

hm
me
r fft dc

t

ma
tm
ul

mi
niF
E

mc
f

gc
c

bz
ip2 av

e

100

1K

10K

100K

1M

Figure 6.8: Energy of Thread-level Redundant Residue Number System (RRNS); The val-
ues in this figure are normalized to Triple Modular Redundancy (TMR)

0

0.1

0.2

0.3

0.4

0.5

0.6

pe
rlb
en
ch

go
bm
k

mi
niX
yc
e

hm
me
r fft dc

t

ma
tm
ul

mi
niF
E

mc
f

gc
c

bz
ip2 av

e

100

1K

10K

100K

1M

Figure 6.9: Energy Delay Product (EDP) of Thread-level Redundant Residue Number
System (RRNS); The values in this figure are normalized to Triple Modular Redundancy
(TMR)

83

102
103

104
105

106
10−9

10−8
10−7

10−6
10−5

10−4

1

1.1

1.2

x y

z

(a) perlbench

102
103

104
105

106
10−9

10−8
10−7

10−6
10−5

10−4

1

1.1

1.2

x y

z

(b) dct

102
103

104
105

106
10−9

10−8
10−7

10−6
10−5

10−4

1

1.1

1.2

x y

z

(c) mcf

Figure 6.10: Normalized delay results for different error detection frequencies and error
rates; X-Axis: error detection frequencies range from 102 to 106; Y-Axis: instruction error
rates range from 10−4 to 10−9; Z-Axis: Normalized thread-level RRNS delay (TMR results
are normalized to 1).

102
103

104
105

106
10−9

10−8
10−7

10−6
10−5

10−4

0.2

0.4

0.6

x y

z

(a) perlbench

102
103

104
105

106
10−9

10−8
10−7

10−6
10−5

10−4

0.2

0.4

0.6

x y

z

(b) dct

102
103

104
105

106
10−9

10−8
10−7

10−6
10−5

10−4

0.2

0.4

0.6

x y
z

(c) mcf

Figure 6.11: Normalized energy results for different error detection frequencies and error
rates; X-Axis: error detection frequencies range from 102 to 106; Y-Axis: instruction er-
ror rates range from 10−4 to 10−9; Z-Axis: Normalized thread-level RRNS energy (TMR
results are normalized to 1).

102
103

104
105

106
10−9

10−8
10−7

10−6
10−5

10−4

0.2

0.4

0.6

x y

z

(a) perlbench

102
103

104
105

106
10−9

10−8
10−7

10−6
10−5

10−4

0.2

0.4

0.6

x y

z

(b) dct

102
103

104
105

106
10−9

10−8
10−7

10−6
10−5

10−4

0.2

0.4

0.6

x y

z

(c) mcf

Figure 6.12: Normalized EDP results for different error detection frequencies and error
rates; X-Axis: error detection frequencies range from 102 to 106; Y-Axis: instruction error
rates range from 10−4 to 10−9; Z-Axis: Normalized thread-level RRNS EDP (TMR results
are normalized to 1).

84

6.4.3 Error-prone Scenarios

In this section, RRNS-AMT and TMR-AMT are compared under the error-prone scenario.

In order to present a comprehensive evaluation and take into account the possible devi-

ation in predicted Mean Time Between Failures (MTBF), the instruction error rates are

conservatively set between 10−6 and 10−9. The error checking/detection frequency is var-

ied between 100 instructions and one million instructions similar to section 6.4.2. If the

reciprocal of total instructions in a benchmark is greater than the corresponding error-rate

for a specification, then the execution is deemed error-free. Conversely, assuming that the

errors are distributed to different data entries if more than one error is to be injected in a

given interval. Within this error model, both (4, 2)-RRNS and TMR can directly correct

each data entry, one after another. Otherwise, it is necessary to use a more complex mecha-

nism such as checkpoint plus restart as the second level of resiliency to ensure the system’s

correctness. A comprehensive resiliency scheme using checkpointing is not discussed in

this chapter.

Figures 6.10, 6.11, and 6.12 compare the delay, energy and EDP of (4, 2)-RRNS and

TMR for the error-prone cases. Workloads can be typically categorized into three cat-

egories: multiplication intensive, memory intensive and others. The detailed results are

obtained by integrating error rates and error detection frequencies for one representative

application belonging to each type - dct:multiplication intensive, mcf:memory-intensive,

and perlbench:other.

In figure 6.10, the delay values are mapped to the z-axis and are normalized to those

of TMR-AMT. Error injection rates are on the y-axis and error detection frequency of

the system on the y-axis, both using a logarithmic scale. As mentioned before, the error

detection frequency is varied between 102 and 106 instruction and the error rate between

10−4 and 10−9. The surface in the figure makes up the delay values for various error

rates. It can be observed that as the error detection frequency decreases, the delay value

overhead of RRNS relative to TMR also decreases. This is attributed to the reduction in

85

the expensive error detection overhead of RRNS. In this sampling range, when the error

rate value increases, the relative delay value also slightly increases, although the trend is

not very straightforward from this figure. For HPC, 10−4 is already much higher than the

expected error rate, so we are not necessary to evaluate the larger values. Using (4, 2)-

RRNS, perlbench, dct, and mcf incur a delay overhead of 15.50%, 0.55%, and 8.23%

respectively over TMR-AMT.

Figure 6.11 shows the energy consumption of RRNS normalized to TMR on the z-

axis. The other two axes are similar to the ones in Figure 6.10. Energy consumption

follows a similar trend to delay, and decreases with a decrease in error detection frequency.

Moreover, energy increase with higher error injection rates is insignificant. perlbench,

dct, and mcf consume 43.53%, 25.04%, and 44.67% of TMR’s energy respectively. This

implies energy savings of 56.47%, 74.96%, and 55.33% for each of the benchmarks. These

significant savings are attributed to the comparatively lean bit-widths of the RRNS design

when compared with the two normal threads’ overhead in TMR. On average, using thread-

level RRNS instead of TMR achieves 62.25% energy reduction.

Similarly, Figure 6.12 reveals the normalized results of the RRNS Energy Delay Prod-

uct (EDP) on the Z-axis. The coordinate axes (x and y) and related parameters are the

same as Figure 6.10 and Figure 6.11. The EDP of perlbench, dct, and mcf is 50.28%,

25.18%, and 48.53% that of TMR respectively. On average, using the proposed thread-

level RRNS architecture reduces the EDP by 58.67% when replacing TMR. This reduction

in EDP makes RRNS-AMT a great candidate for exascale systems where energy reduction

with good performance characteristics are both important design criteria.

In this section, the evaluation results are based on an in-order RRNS core that sup-

ports the Asynchronous Many-Task programming model as proof of the great potential of

RRNS in exascale computing systems where reliability and resiliency along with energy-

efficiency are first world constraints. Future designs exploiting smarter pipelines may bring

performance(delay) closer to traditional cores while providing the required characteristics

86

with negligible overheads.

6.5 Related Work

The Asynchronous Many-Task (AMT) programming model is a good candidate for ex-

ascale computing. Conventional bulk-synchronous programming models such as MIP-

X [111] are unable to meet the critical requirements (such as performance heterogeneity,

increase error mitigation, etc.) of exascale systems [28]. AMT is effectively able to allevi-

ate these challenges, making it suitable for exascale computing [28]. The Habanero C/C++

library (HClib) [27] is one such AMT-based lightweight runtime that presents several

programming constructs facilitating users to easily express parallelism. However, HClib

initially did not directly target critical exascale computing issues such as fault-tolerance

and energy efficiency. Resilience techniques in the form of task replication, task replay,

Algorithm-Based Fault Tolerance (ABFT), and checkpointing were added as an extension

to the runtime by [106]. Unlike other techniques, checkpointing works as a second-level

technique such that if other techniques fail, the system can restart from an earlier check-

point.

Task replication is similar to Dual/Triple Modular Redundancy [98] and directly repli-

cates the entire computational logic. While easy to use since it requires no understanding

of a specific algorithm and underlying application, the critical shortcoming of task repli-

cation is its extremely high energy overhead, with a theoretical overhead as high as 200%.

On the other hand, task replay and ABFT require the programmer to define and implement

specific error-detection algorithms, making them relatively difficult to use and a part of

the white-box resilience techniques family. The RRNS based AMT model presented in

this chapter overcomes these implementation challenges while maintaining its advantage

of being extremely energy efficient.

On the software front, Chen et al. have proposed compiler-assisted resiliency methods

in their work CARE [112]. However, CARE’s error coverage rate is only around 83%,

87

much lower than the capability of RRNS, and hence it cannot guarantee a complete fault

tolerance. Finally, CARE does not take the power consumption limitations of exascale

computing into account. Its orthogonal features, when used in conjunction with RRNS can

enhance the resiliency of the overall system.

Deng et al. [29, 30] have presented designs of unpipelined RRNS core microarchitec-

tures that target upcoming millivolt switches [113, 114] with instruction behavior similar to

Single Instruction Multiple Data (SIMD) architectures. In contrast, the design presented in

this chapter is an in-order pipeline that can support AMT-based threading based on HClib.

Moreover, this design’s instruction execution mode is similar to Multiple Instruction Mul-

tiple Data (MIMD), allowing better system performance and making it more suitable for

exascale systems.

88

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

At around 2006, the transistors’ energy density is no longer able to be described by Denard

scaling. A critical reason for this Breakdown is the leakage current from the CMOS cir-

cuit, leading to an increase in energy consumption. Therefore, researchers began to design

new millivolt switches to extend the technology roadmap scaling further. Next-generation

devices such as tunneling FETs and ferroelectric FETs enable reducing the supply voltage

to a few tens of millivolts. However, as a result of operating near the kT noise floor, they

are subject to intermittent, stochastic bit errors in logic. Therefore, to use this new type

of device, it is necessary to design energy-efficient and error-tolerant microarchitectures to

extend Denard scaling further. RRNS is a promising approach towards using such ultra-

low-power devices by employing efficient computational error correction and/or detection

with checkpointing&restart.

This topic presents theoretical and practical aspects towards the design and analysis

of scalable RRNS-based microarchitectures with correction and checkpointing&restart ca-

pabilities. Then, the RRNS-based static checkpointing&restart system is proposed and

demonstrates its potential for further energy and EDP reduction. By combining the novel

adaptive checkpointing&restart schemes, this scalable, resilient system design achieves no-

table energy reduction for non-memory-intensive workloads when compared to correction-

only methodology, without significant impact on performance. Based on the error cor-

rection and error detection&restart mechanisms, the RRNS design space is also explored

within a reasonable range to find the optimal or sub-optimal configuration points. After ex-

ploring RRNS design space systematically, (4,2)-RRNS configurations perform best in the

89

two-dimensional (n,r)-RRNS design plane. When compared to a binary core without com-

putational resilience that runs at high Vdd, the proposed RRNS scalable microarchitecture

reduces EDP by 53% on average for memory-intensive workloads and by 67% on average

for non-memory-intensive workloads.

Since RRNS has great potential for energy efficiency and error tolerance, besides mil-

livolt switches, RRNS can also be applied to exascale systems to alleviate their current

critical challenges.

The system complexity of today’s HPC continues to increase. Thus the probability

of error also rapidly grows as more resources are integrated into the system. The Near

Threshold Voltage (NTV) technique applied to the exascale system makes things even

worse. In addition to the error rate, the exascale computer also faces the problem of power

consumption restriction. Thus, more powerful and efficient fault-tolerant technologies are

needed to ensure the entire system’s correctness and improve its Mean Time Between Fail-

ures(MTBF). However, state-of-the-art resilient techniques for exascale computing only

emphasize latency optimization and lack of power/energy considerations. According to

the power consumption requirements of the exascale system proposed by DOE, the current

most advanced exascale HPC still has a significant gap away from this threshold. There-

fore, it is still necessary to find more efficient methods for power optimization. This thesis

presents the thread-level RRNS concept and designs a microarchitecture with a correspond-

ing Asynchronous Many-Task (AMT) programming framework that can efficiently support

this scheme. Under the premise of sacrificing a small amount of speedup, the advantages

of low energy consumption, better fault-tolerance, and ease of use are obtained. Finally,

it can be concluded through experimental results that, on average, the thread-level RRNS

method has an 8.23% increase in delay compared to TMR, but the related energy and EDP

have 62.25% and 58.67% reductions, respectively.

90

7.2 Future Work

7.2.1 Energy and Speedup Tradeoff of Different Pipeline Designs

In the microarchitecture design for exascale computing, the in-order pipeline setting is

used. This means that the instruction issue and complete totally follow the original pro-

gram order. From an intuitive analysis, an out-of-order pipeline configuration requires a

large number of extra hardware resources and operations, which should lead the system

to become more power hungry. However, there are many different out-of-order execution

versions, such as the scoreboard method, also known as FICO (Fire In-order Complete

Out-of-order). It means that the instructions issue follows the original program order, but

the sequence of instructions complete could be in any different order. Similarly, FOCO

(Fire Out-of-order Complete Out-of-order) means that all the instructions could issue and

complete in any order. Its order constraint should come from hazards, not the original pro-

gram order. For example, Tomasulo Approach and PReg (RAT) Approach both belong to

FOCO. One opportunity from this topic for future work is to design different versions of

the pipeline microarchitecture with RRNS. It is also possible to build some compromise

designs from existing approaches and make a better tradeoff between speedup and energy

consumption. On this basis, it is possible to find out the most suitable RRNS pipeline de-

sign through experiments, which may further improve the system’s reliability and energy

benefits.

7.2.2 Error Model Improvement

The error probability of each instruction is accumulated to calculate the total number of

errors, and subsequently the MTBF. This statistical error probability model can be fur-

ther optimized by considering the error spreading behaviors within the system. The error

model will be much closer to reality in terms of error occurrences by supporting the error

spreading behaviors and further demonstrates RRNS techniques’ benefits.

91

w0v0

w1v1

wnvn

SUM FUNC
…

output

Figure 7.1: A Conventional Neuron of Deep Neural Network

7.2.3 RRNS Deep Neural Network

Deep Neural Network (DNN) [115] is currently a hot research domain, and it can be

applied to a large number of applications [116]. Integrating RRNS into DNN may have a

great potential to optimize the neutron structure and the entire network, thereby improving

the reliability and achieving the purpose of energy efficiency.

Figure 7.1 is the basic structure of a neuron in DNN. Each neutron from each layer

mainly includes three steps: 1) weight multiplications, 2) summation, and 3) executing

an activation function. In other words, a large number of multiplications are required for

neutron operations. The RRNS index-multiplication approach mentioned in Section 2.8 can

also be applied here by further reducing the network’s energy consumption and improving

system reliability. Salamat et al. [20] use RNS in the neutron, but they did not consider

the fault-tolerance problem and did not use the index-sum approach to optimize multipliers

further.

A fault may be generated from inputs, connections, weights, multipliers, accumulators,

and activation functions. Thus RRNS would be a good candidate for fault-tolerance in

these scenarios. RRNS-DNN should change all the data representation from binary to

RRNS, including inputs, weights, adders, multipliers, etc.

On the one hand, through the above discussion and analysis, RRNS-DNN contains

92

the following advantages: 1) Multiplication dominates DNN computing. RRNS works

efficiently in both addition and multiplication. Moreover, RRNS index-sum multiplication

(Replacing multiplication by one RRNS addition and two LUT accesses) makes this benefit

from good to great. 2) Less RRNS unfriendly instructions, such as division and shifting.

3) The RRNS error detection does not need to be performed in every neuron. It only needs

to check when it is necessary. Therefore, optimizing DNN through RRNS is not only

possible to improve the network reliability but also likely to reduce energy consumption

via simplifying the multiplier.

93

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[2] A. McMenamin, “The end of dennard scaling,” 2013.

[3] R. Landauer, “Irreversibility and heat generation in the computing process,” IBM
journal of research and development 5.3, pp. 183–191, 1961.

[4] M. Neyman, “The negentropy principle in information-processing systems,” Telecom-
munications and Radio Engineering 2, 1966.

[5] U. E. Avci, D. H. Morris, and I. A. Young, “Tunnel field-effect transistors: Prospects
and challenges,” IEEE Journal of the Electron Devices Society, vol. 3, no. 3, pp. 88–
95, 2015.

[6] S. George, K. Ma, A. Aziz, X. Li, A. Khan, S. Salahuddin, M. Chang, S. Datta,
J. Sampson, S. Gupta, and V. Narayanan, “Nonvolatile memory design based on
ferroelectric fets,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), 2016, pp. 1–6.

[7] S. Agarwal, J. Cook, E. DeBenedictis, M. P. Frank, G. Cauwenberghs, S. Srikanth,
B. Deng, E. R. Hein, P. G. Rabbat, and T. M. Conte, “Energy efficiency limits of
logic and memory,” in 2016 IEEE International Conference on Rebooting Comput-
ing (ICRC), 2016, pp. 1–8.

[8] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. Else-
vier, 1977.

[9] J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms from
unreliable components,” Automata studies, vol. 34, pp. 43–98, 1956.

[10] D. Lipetz and E. Schwarz, “Self checking in current floating-point units,” in 2011
IEEE 20th Symposium on Computer Arithmetic, 2011, pp. 73–76.

[11] J. Warnock, Y. Chan, W. Huott, S. Carey, M. Fee, H. Wen, M. J. Saccamango,
F. Malgioglio, P. Meaney, D. Plass, Y. H. Chan, M. Mayo, G. Mayer, L. Sigal,
D. Rude, R. Averill, M. Wood, T. Strach, H. Smith, B. Curran, E. Schwarz, L.
Eisen, D. Malone, S. Weitzel, P. K. Mak, T. McPherson, and C. Webb, “A 5.2ghz

94

microprocessor chip for the ibm zenterprise system,” in 2011 IEEE International
Solid-State Circuits Conference, 2011, pp. 70–72.

[12] D. Henderson, B. Warner, and J. Mitchell, “Ibm power6 processor-based systems:
Designed for availability,” in White Paper, IBM Corporation, 2007.

[13] D. Henderson, J. Mitchell, and G. Ahrens, “Power7 system ras: Key aspects of
power systems reliability, availability, and serviceability,” in White Paper, IBM Cor-
poration, 2010.

[14] R. Chokshi, K. S. Berezowski, A. Shrivastava, and S. J. Piestrak, “Exploiting residue
number system for power-efficient digital signal processing in embedded proces-
sors,” in Proceedings of the 2009 international conference on Compilers, architec-
ture, and synthesis for embedded systems, ACM, 2009, pp. 19–28.

[15] E. D. Di Claudio, F. Piazza, and G. Orlandi, “Fast combinatorial rns processors for
dsp applications,” IEEE transactions on computers, vol. 44, no. 5, pp. 624–633,
1995.

[16] J Ramirez, A Garcia, S Lopez-Buedo, and A Lloris, “Rns-enabled digital signal
processor design,” Electronics Letters, vol. 38, no. 6, pp. 266–268, 2002.

[17] J.-C. Bajard and L. Imbert, “A full rns implementation of rsa,” IEEE Transactions
on Computers, vol. 53, no. 6, pp. 769–774, 2004.

[18] C. Y. Hung and B. Parhami, “Fast rns division algorithms for fixed divisors with ap-
plication to rsa encryption,” Information Processing Letters, vol. 51, no. 4, pp. 163–
169, 1994.

[19] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, “Rsa speedup with chinese remain-
der theorem immune against hardware fault cryptanalysis,” IEEE Transactions on
computers, vol. 52, no. 4, pp. 461–472, 2003.

[20] S. Salamat, M. Imani, S. Gupta, and T. Rosing, “Rnsnet: In-memory neural network
acceleration using residue number system,” in 2018 IEEE International Conference
on Rebooting Computing (ICRC), 2018, pp. 1–12.

[21] E. B. Olsen, “Introduction of the residue number arithmetic logic unit with brief
computational complexity analysis (rez-9 soft processor),” Whitepaper, Digital Sys-
tem Research, 2015.

[22] D. Anderson, “Design and implementation of an instruction set architecture and
an instruction execution unit for the rez9 coprocessor system,” M.S. Thesis, U of
Nevada LV, 2014.

95

[23] M. Labafniya and M. Eshghi, “Non-iterative rns division algorithm,” 2012.

[24] S Talahmeh and P Siy, “Arithmetic division in rns using galois field gf(p),” Com-
puters and Mathematics with Applications, vol. 39, no. 5, pp. 227 –238, 2000.

[25] R. W. Watson, “Error detection and correction and other residue interacting opera-
tions in a residue redundant number system,” in Univ. California, Berkeley, 1965.

[26] B. Deng, S. Srikanth, A. Jain, T. Conte, E. Debenedictis, and J. Cook, “Scalable
energy-efficient microarchitectures with computational error tolerance via redun-
dant residue number systems,” IEEE Transactions on Computers, Early Access,
2021.

[27] M. Grossman, V. Kumar, N. Vrvilo, Z. Budimlic, and V. Sarkar, “A pluggable
framework for composable hpc scheduling libraries,” in 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2017, pp. 723–
732.

[28] J. Wilke, K. Franko, D. Hollman, S. Knight, H. Kolla, P. Lin, G. Sjaardema, N.
Slattengren, K. Teranishi, J. Bennett, and R. Clay, Asynchronous many-task pro-
gramming models for next generation platforms, URL: https://www.osti.
gov/biblio/1261059, 2015.

[29] B. Deng, S. Srikanth, E. R. Hein, P. G. Rabbat, T. M. Conte, E. DeBenedictis, and J.
Cook, “Computationally-redundant energy-efficient processing for y’all (creepy),”
in 2016 IEEE International Conference on Rebooting Computing (ICRC), 2016,
pp. 1–8.

[30] B. Deng, S. Srikanth, E. R. Hein, T. M. Conte, E. Debenedictis, J. Cook, and
M. P. Frank, “Extending moore’s law via computationally error-tolerant comput-
ing,” ACM Trans. Archit. Code Optim (TACO)., vol. 15, no. 1, 8:1–8:27, Mar. 2018.

[31] S. Srikanth, P. G. Rabbat, E. R. Hein, B. Deng, T. M. Conte, E. DeBenedictis, J.
Cook, and M. P. Frank, “Memory system design for ultra low power, computa-
tionally error resilient processor microarchitectures,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018, pp. 696–
709.

[32] A. Omondi and B. Premkumar, “Residue number systems: Theory and implemen-
tation,” Imperial College Press.

[33] C. W. Hastings, “Automatic detection and correction of errors in digital computers
using residue arithmetic,” in Region Six Annu. Conf., IEEE, 1966, pp. 429–464.

96

https://www.osti.gov/biblio/1261059
https://www.osti.gov/biblio/1261059

[34] O. Goldreich, D. Ron, and M. Sudan, “Chinese remaindering with errors,” in Pro-
ceedings of the thirty-first annual ACM symposium on Theory of computing, ACM,
1999, pp. 225–234.

[35] R. W. Watson and C. W. Hastings, “Self-checked computation using residue arith-
metic,” Proceedings of the IEEE, vol. 54, no. 12, pp. 1920–1931, 1966.

[36] L. liang Yang and L. Hanzo, “Coding theory and performance of redundant residue
number system codes,” IEEE TRANS. INFORM. THEORY, 1999.

[37] J.-S. Chiang and M. Lu, “Floating-point numbers in residue number systems,”
Computers & Mathematics with Applications, vol. 22, no. 10, pp. 127–140, 1991.

[38] E. G. Walters III, M. G. Arnold, and M. J. Schulte, “Using truncated multipliers in
dct and idct hardware accelerators,” in Optical Science and Technology, SPIE’s 48th
Annual Meeting, International Society for Optics and Photonics, 2003, pp. 573–
584.

[39] A. Preethy and D Radhakrishnan, “A 36-bit balanced moduli mac architecture,”
in Circuits and Systems, 1999. 42nd Midwest Symposium on, IEEE, vol. 1, 1999,
pp. 380–383.

[40] A. Preethy and D. Radhakrishnan, “Rns-based logarithmic adder,” in IEE Proceedings-
Computers and Digital Techniques, vol. 147, IET, 2000, pp. 283–287.

[41] B. P. Yinan Kong, Residue number system scaling schemes, 2005.

[42] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive incremental check-
pointing for massively parallel systems,” in Proceedings of the 18th Annual Inter-
national Conference on Supercomputing, ser. ICS ’04, Malo, France: ACM, 2004,
pp. 277–286, ISBN: 1-58113-839-3.

[43] T. F. Tay and C.-H. Chang, “A non-iterative multiple residue digit error detection
and correction algorithm in rrns,” IEEE transactions on computers, vol. 65, no. 2,
pp. 396–408, 2016.

[44] J.-C. Bajard, J. Eynard, and N. Merkiche, “Multi-fault attack detection for rns cryp-
tographic architecture,” in Computer Arithmetic (ARITH), 2016 IEEE 23nd Sympo-
sium on, IEEE, 2016, pp. 16–23.

[45] H. Xiao, H. K. Garg, J. Hu, and G. Xiao, “New error control algorithms for residue
number system codes,” ETRI Journal, vol. 38, no. 2, pp. 326–336, 2016.

97

[46] L. Xiao and X.-G. Xia, “Error correction in polynomial remainder codes with non-
pairwise coprime moduli and robust chinese remainder theorem for polynomials,”
IEEE Transactions on Communications, vol. 63, no. 3, pp. 605–616, 2015.

[47] C.-H. Chang, A. S. Molahosseini, A. A. E. Zarandi, and T. F. Tay, “Residue num-
ber systems: A new paradigm to datapath optimization for low-power and high-
performance digital signal processing applications,” IEEE circuits and systems mag-
azine, vol. 15, no. 4, pp. 26–44, 2015.

[48] T. F. Tay and C.-H. Chang, “A new algorithm for single residue digit error correc-
tion in redundant residue number system,” in Circuits and Systems (ISCAS), 2014
IEEE International Symposium on, IEEE, 2014, pp. 1748–1751.

[49] P. Yin and L. Li, “A new algorithm for single error correction in rrns,” in Communi-
cations, Circuits and Systems (ICCCAS), 2013 International Conference on, IEEE,
vol. 2, 2013, pp. 178–181.

[50] H.-Y. Lo and T.-W. Lin, “Parallel algorithms for residue scaling and error correction
in residue arithmetic,” Wireless Engineering and Technology, vol. 4, no. 04, p. 198,
2013.

[51] A. Sengupta and B. Natarajan, “Performance of systematic rrns based space-time
block codes with probability-aware adaptive demapping,” IEEE Transactions on
Wireless Communications, vol. 12, no. 5, pp. 2458–2469, 2013.

[52] N. Z. Haron and S. Hamdioui, “Redundant residue number system code for fault-
tolerant hybrid memories,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 7, no. 1, p. 4, 2011.

[53] Y. Tang, E. Boutillon, C. Jégo, and M. Jézéquel, “A new single-error correction
scheme based on self-diagnosis residue number arithmetic,” in Design and Archi-
tectures for Signal and Image Processing (DASIP), 2010 Conference on, IEEE,
2010, pp. 27–33.

[54] V. T. Goh and M. U. Siddiqi, “Multiple error detection and correction based on re-
dundant residue number systems,” IEEE Transactions on Communications, vol. 56,
no. 3, 2008.

[55] A. Sweidan and A. A. Hiasat, “On the theory of error control based on moduli with
common factors,” Reliable computing, vol. 7, no. 3, pp. 209–218, 2001.

[56] R. S. Katti, “A new residue arithmetic error correction scheme,” IEEE transactions
on computers, vol. 45, no. 1, pp. 13–19, 1996.

98

[57] H. Krishna, B. Krishna, K.-Y. Lin, and J.-D. Sun, Computational Number The-
ory and Digital Signal Processing: Fast Algorithms and Error Control Techniques.
CRC Press, 1994, vol. 6.

[58] E. D. Di Claudio, G. Orlandi, and F. Piazza, “A systolic redundant residue arith-
metic error correction circuit,” IEEE Transactions on Computers, vol. 42, no. 4,
pp. 427–432, 1993.

[59] H. Krishna, K.-Y. Lin, and J.-D. Sun, “A coding theory approach to error control
in redundant residue number systems. i. theory and single error correction,” IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 39, no. 1, pp. 8–17, 1992.

[60] J.-D. Sun and H. Krishna, “A coding theory approach to error control in redundant
residue number systems. ii. multiple error detection and correction,” IEEE Trans-
actions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 39,
no. 1, pp. 18–34, 1992.

[61] J.-D. Sun, H. Krishna, and K. Lin, “A superfast algorithm for single-error cor-
rection in rrns and hardware implementation,” in Circuits and Systems, 1992. IS-
CAS’92. Proceedings., 1992 IEEE International Symposium on, IEEE, vol. 2, 1992,
pp. 795–798.

[62] G. A. Orton, L. E. Peppard, and S. E. Tavares, “New fault tolerant techniques
for residue number systems,” IEEE transactions on computers, vol. 41, no. 11,
pp. 1453–1464, 1992.

[63] C.-C. Su and H.-Y. Lo, “An algorithm for scaling and single residue error correc-
tion in residue number systems,” IEEE Transactions on Computers, vol. 39, no. 8,
pp. 1053–1064, 1990.

[64] V. Ramachandran, “Single residue error correction in residue number systems,”
IEEE transactions on computers, vol. 32, no. 5, pp. 504–507, 1983.

[65] M Etzel and W Jenkins, “Redundant residue number systems for error detection and
correction in digital filters,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 28, no. 5, pp. 538–545, 1980.

[66] F. Barsi and P. Maestrini, “Error detection and correction by product codes in
residue number systems,” IEEE Transactions on Computers, vol. 100, no. 9, pp. 915–
924, 1974.

[67] S.-S. Yau and Y.-C. Liu, “Error correction in redundant residue number systems,”
IEEE Transactions on Computers, vol. 100, no. 1, pp. 5–11, 1973.

99

[68] T. R. Rao, “Biresidue error-correcting codes for computer arithmetic,” IEEE Trans-
actions on computers, vol. 100, no. 5, pp. 398–402, 1970.

[69] N. S. Szabo and R. I. Tanaka, Residue arithmetic and its applications to computer
technology. McGraw-Hill, 1967.

[70] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T.
Austin, K. Flautner, et al., “Razor: A low-power pipeline based on circuit-level
timing speculation,” in Microarchitecture,MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, IEEE, 2003, pp. 7–18.

[71] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and D. Brooks, “Decor: A de-
layed commit and rollback mechanism for handling inductive noise in processors,”
in High Performance Computer Architecture, HPCA, IEEE 14th International Sym-
posium on, IEEE, 2008, pp. 381–392.

[72] T. M. Austin, “Diva: A reliable substrate for deep submicron microarchitecture
design,” in Microarchitecture, MICRO-32. Proceedings. 32nd Annual International
Symposium on, IEEE, 1999, pp. 196–207.

[73] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, “Hybrid checkpointing using
emerging nonvolatile memories for future exascale systems,” ACM Trans. Archit.
Code Optim., vol. 8, no. 2, 6:1–6:29, Jun. 2011.

[74] J. S. Plank, Kai Li, and M. A. Puening, “Diskless checkpointing,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 9, no. 10, pp. 972–986, 1998.

[75] J. W. Young, “A first order approximation to the optimum checkpoint interval,”
Commun. ACM, vol. 17, no. 9, pp. 530–531, Sep. 1974.

[76] J. T. Daly, “A higher order estimate of the optimum checkpoint interval for restart
dumps,” Future Gener. Comput. Syst., vol. 22, no. 3, pp. 303–312, Feb. 2006.

[77] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe efficient inter-
mittent computing,” in 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), 2018, pp. 129–144.

[78] G. Levitin, L. Xing, Y. Dai, and V. M. Vokkarane, “Dynamic checkpointing policy
in heterogeneous real-time standby systems,” IEEE Transactions on Computers,
vol. 66, no. 8, pp. 1449–1456, 2017.

[79] I. Akturk and U. R. Karpuzcu, “Acr: Amnesic checkpointing and recovery,” in
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 30–43.

100

[80] K. B. Ferreira, R. Riesen, R. Brighwell, P. Bridges, and D. Arnold, “Libhashckpt:
Hash-based incremental checkpointing using gpuâs,” in European MPI Users’ Group
Meeting, Springer, 2011, pp. 272–281.

[81] D. Ibtesham, D. Arnold, P. G. Bridges, K. B. Ferreira, and R. Brightwell, “On
the viability of compression for reducing the overheads of checkpoint/restart-based
fault tolerance,” in 2012 41st International Conference on Parallel Processing,
2012, pp. 148–157.

[82] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[83] S. Rusu, “Multi-domain processors design overview,” in ISCA tutorial on Multi-
domain Processors: Challenges, Design Methods, and Recent Developments, 2010.

[84] Y. Shimazaki, R. Zlatanovici, and B. Nikolic, “A shared-well dual-supply-voltage
64-bit alu,” IEEE Journal of Solid-State Circuits, vol. 39, no. 3, pp. 494–500, 2004.

[85] S. K. Samal, S. Khandelwal, A. I. Khan, S. Salahuddin, C. Hu, and S. K. Lim,
“Full chip power benefits with negative capacitance fets,” in 2017 IEEE/ACM In-
ternational Symposium on Low Power Electronics and Design (ISLPED), 2017,
pp. 1–6.

[86] D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “An analysis of re-
silience techniques for exascale computing platforms,” in 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2017, pp. 914–
923.

[87] E. Meneses, X. Ni, G. Zheng, C. L. Mendes, and L. V. Kalé, “Using migratable
objects to enhance fault tolerance schemes in supercomputers,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 7, pp. 2061–2074, 2015.

[88] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar, “Near-
threshold voltage (ntv) design — opportunities and challenges,” in DAC Design
Automation Conference 2012, 2012, pp. 1149–1154.

[89] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann, “Com-
bining partial redundancy and checkpointing for hpc,” in 2012 IEEE 32nd Interna-
tional Conference on Distributed Computing Systems, 2012, pp. 615–626.

[90] V. Sarkar, W. Harrod, and A. E. Snavely, “Software challenges in extreme scale
systems,” in Journal of Physics: Conference Series, IOP Publishing, vol. 180, 2009,
p. 012 045.

101

[91] T. Scogland, B. Subramaniam, and W.-C. Feng, “The green500 list: Escapades to
exascale,” Comput. Sci., vol. 28, no. 2–3, 109–117, May 2013.

[92] S. Labasan, “Energy-efficient and power-constrained techniques for exascale com-
puting,” Semanticscholar: Seattle, WA, USA, 2016.

[93] “Doe exascale initiative roadmap,” in Architecture and Technology Workshop, 2009.

[94] S. A. et al., “The opportunities and challenges of exascale computing,” in Sum-
mary Report of the Advanced Scientific Computing Advisory Committee (ASCAC)
Subcommittee, 2010.

[95] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Fran-
zon, W. Harrod, K. Hill, J. Hiller, et al., “Exascale computing study: Technology
challenges in achieving exascale systems,” Defense Advanced Research Projects
Agency Information Processing Techniques Office (DARPA IPTO), Tech. Rep, vol. 15,
2008.

[96] Frontier (olcf-5) - supercomputers, URL: https://en.wikichip.org/
wiki/supercomputers/frontier.

[97] A. Geist, Ornl’s frontier exascale computer, URL: https://smc.ornl.gov/
wp-content/uploads/2019/09/Geist-presentation-2019.pdf,
2019.

[98] J. V. Neumann, “Probabilistic logics and the synthesis of reliableorganisms from
unreliable components,” in Automata studies, vol. 34, 1956, 43–98.

[99] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE Trans-
actions on Computers, vol. C-21, no. 9, pp. 948–960, 1972.

[100] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, and M. Snir, “Toward exascale
resilience: 2014 update,” Supercomputing Frontiers and Innovations: an Interna-
tional Journal, vol. 1, no. 1, pp. 5–28, 2014.

[101] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed lightweight
soft error resilience,” ser. LCTES’15, Association for Computing Machinery, 2015,
ISBN: 9781450332576.

[102] W. D. Gropp, E. L. Lusk, and A. Skjellum, Using mpi - portable parallel program-
ming with the message-parsing interface, URL: https://www.worldcat.
org/oclc/41548279, 1999.

[103] N. Gupta, J. R. Mayo, A. S. Lemoine, and H. Kaiser, “Towards distributed software
resilience in asynchronous many-task programming models,” in 2020 IEEE/ACM

102

https://en.wikichip.org/wiki/supercomputers/frontier
https://en.wikichip.org/wiki/supercomputers/frontier
https://smc.ornl.gov/wp-content/uploads/2019/09/Geist-presentation-2019.pdf
https://smc.ornl.gov/wp-content/uploads/2019/09/Geist-presentation-2019.pdf
https://www.worldcat.org/oclc/41548279
https://www.worldcat.org/oclc/41548279

10th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS), IEEE, 2020,
pp. 11–20.

[104] O. Subasi, J. Arias, O. Unsal, J. Labarta, and A. Cristal, “Nanocheckpoints: A task-
based asynchronous dataflow framework for efficient and scalable checkpoint/restart,”
in 2015 23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, 2015, pp. 99–102.

[105] C. Cao, T. Herault, G. Bosilca, and J. Dongarra, “Design for a soft error resilient
dynamic task-based runtime,” in 2015 IEEE International Parallel and Distributed
Processing Symposium, 2015, pp. 765–774.

[106] S. R. Paul, A. Hayashi, N. Slattengren, H. Kolla, M. Whitlock, S. Bak, K. Teranishi,
J. Mayo, and V. Sarkar, “Enabling resilience in asynchronous many-task program-
ming models,” in Euro-Par 2019: Parallel Processing, R. Yahyapour, Ed., Cham:
Springer International Publishing, 2019, pp. 346–360.

[107] S. R. Paul, A. Hayashi, M. Whitlock, S. Bak, K. Teranishi, J. Mayo, M. Grossman,
and V. Sarkar, “Integrating inter-node communication with a resilient asynchronous
many-task runtime system,” in 2020 Workshop on Exascale MPI (ExaMPI), 2020,
pp. 41–51.

[108] Future, URL: http://www.cplusplus.com/reference/future/.

[109] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5 simulator,” ACM
SIGARCH computer architecture news, vol. 39, no. 2, pp. 1–7, 2011.

[110] L.-L. Yang and L. Hanzo, “Coding theory and performance of redundant residue
number system codes,” IEEE Trans. Inform. Theory, 1999.

[111] Compilers and more: Mpi+x, URL: https://www.hpcwire.com/2014/
07/16/compilers-mpix/.

[112] C. Chen, G. Eisenhauer, S. Pande, and Q. Guan, “Care: Compiler-assisted recov-
ery from soft failures,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp. 1–23.

[113] U. E. Avci, D. H. Morris, and I. A. Young, “Tunnel field-effect transistors: Prospects
and challenges,” IEEE Journal of the Electron Devices Society, vol. 3, no. 3, pp. 88–
95, 2015.

[114] S. George, K. Ma, A. Aziz, X. Li, A. Khan, S. Salahuddin, M. Chang, S. Datta,
J. Sampson, S. Gupta, and V. Narayanan, “Nonvolatile memory design based on

103

http://www.cplusplus.com/reference/future/
https://www.hpcwire.com/2014/07/16/compilers-mpix/
https://www.hpcwire.com/2014/07/16/compilers-mpix/

ferroelectric fets,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), 2016, pp. 1–6.

[115] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neu-
ral networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12,
pp. 2295–2329, 2017.

[116] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E.
Muharemagic, “Deep learning applications and challenges in big data analytics,”
Journal of big data, vol. 2, no. 1, pp. 1–21, 2015.

104

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Introduction and Background
	Computational Error Tolerance
	Dual/Triple Modular Redundancy
	Residue Checking
	Residue Number Systems (RNS)
	Redundant Residue Number Systems (RRNS)

	Contributions
	Thesis Statement
	Thesis Outline

	Scalable RRNS Microarchitectures for Millivolt Switches
	(4,2)-RRNS Error Detection/Correction Algorithm
	Error-tolerant Capability of (4,2)-RRNS
	(n,r)-RRNS Error-Tolerant Extension
	Signed Number Representation
	Correction Factors
	Overflow Detection
	Unsigned Number Overflow Detection
	Signed Number Overflow Detection

	Comparison
	Optimized Multiplier Unit Design
	Base Selection for Scalable Systems
	RRNS Fixed Point Arithmetic
	2-RRNS Concat Representation
	RRNS Logical Partition Representation

	A Scalable (n,r)-RRNS Microarchitecture Supporting Detection and Correction
	Related Work
	RNS and RRNS
	Other Error-tolerant Techniques
	State-of-the-art Checkpointing Schemes

	(n,r)-RRNS Detection&Restart-only Systems for Millivolt Switches
	RRNS Checkpointing&Restart Overview
	RRNS Checkpointing Operations
	RRNS Checkpointing Hardware Overheads
	Adaptive Checkpointing Schemes
	Stochastic Overhead Estimation (SOE)
	Error Interval Heuristics (EIH)

	Evaluation Methodology
	Experimental Results
	Exploration of The Minimum Signal Energy
	The Potential of Checkpointing&Restart Systems
	The Best Checkpointing & Restart Scheme

	Conclusion

	(n,r)-RRNS Correction-only Systems for Millivolt Switches
	Size of Error Correction Lookup Table
	Energy Delay Production (EDP) Comparison

	(n,r)-RRNS Hybrid Systems for Millivolt Switches
	(n,r)-RRNS Hybrid System Design
	Design Space Exploration of (n,r)-RRNS

	Thread-level Fault-tolerance for Exascale Computing
	Motivation and background
	Asynchronous Many-Task (AMT) Programming model
	Thread-level RRNS Resiliency
	RRNS-AMT Overview
	Thread-level RRNS Limitations and Solutions
	RRNS-AMT Microarchitecture

	Evaluation Methodology And Experimental Results
	Benefits of Branch Predictor Combination
	Error-free Scenarios
	Error-prone Scenarios

	Related Work

	Conclusion and Future Work
	Conclusion
	Future Work
	Energy and Speedup Tradeoff of Different Pipeline Designs
	Error Model Improvement
	RRNS Deep Neural Network

	References

