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on an icon to select a reward; currently the player has selected the customiz-
able avatar as their favorite reward type. . . . . . . . . . . . . . . . . . . . 153

6.3 The breakdown of the personalized version of Café Flour Sack’s mechanics
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SUMMARY

Despite the ubiquity of artificial intelligence and machine learning, some problems

and procedures have no or few effective algorithmic solutions. Some of these problems—

such as building commonsense knowledge understanding or generating creative works—

are considered or straightforward for humans to solve, as they often rely on intrinsic human

processes or capabilities that cannot be easily modeled by machines. Human computation

is the process of taking these computationally-intractable problems and leveraging human

problem solving with algorithmic aggregation, often by subdividing the overarching prob-

lem into smaller tasks whose solutions can be developed through human interaction, con-

sensus, and/or optimization.

Human computation games (HCGs) are playful, game-based interfaces for tackling

these kinds of crowdsourced problems. These games—also known as citizen science games,

scientific discovery games, Games with a Purpose, etc.—have been used to tackle problems

that were and still are considered complex for computational algorithms: accurately tag-

ging images to power Google image search, designing real-life proteins to be synthesized,

powering 3D reconstructions of buildings, and to generating vast data sets of creative arti-

facts (to name a few).

However, despite these successes, HCGs have not seen broad adoption compared to

other types of serious (e.g., educational) digital games. Among the many reasons for this

lack of adoption is the reality that these games are typically not seen as engaging or com-

pelling to play, in part because designing an ideal HCG must optimize for both providing

an engaging player experience and successfully solving the underlying task. Too often,

existing HCGs and HCG research focus only on optimizing these games for the task with

little to no consideration of an engaging player experience. This is in turn exacerbated by

the fact that creating HCGs comes at a high development cost (compared to other online

crowdsourcing platforms) to task providers who are typically not game design or develop-

xv



ment experts. As a result, HCGs continue to languish, perceived as niche or unengaging

experiences with their full potential woefully underexplored.

One potential solution to address this problem is to ensure that the necessary resources

and design knowledge are there to help task providers build better HCGs. But while the

digital games industry has no shortage of both anecdotal and empirically-validated, con-

temporary design and development resources (e.g., courses, conferences, frameworks, etc.),

HCGs lack any sort of formalized design knowledge base or understanding of how existing

game design resources may apply to building these games. Building such HCG-specific

design knowledge is not straightforward, given that it must address and leverage both the

understanding of making compelling player experiences and effectively solving the under-

lying task. This thesis is a one step in building and establishing this better understanding

of what game elements make an HCG both engaging and effective.

In this thesis, I explore reward mechanics in human computation games. Game me-

chanics are rules defining player interactions with a game’s systems and reward mechanics

define the reward systems which are responsible for providing player feedback. Under-

standing reward mechanics is integral in HCGs due to their role and association with player

motivation, player compensation, and task validation. I first propose a framework for under-

standing HCG mechanics and advocate for an experimental methodology considering both

player experience and task completion metrics to understand variations in HCG mechanics.

I then use these tools to frame and design three experiments that explore small-scale vari-

ations of reward systems in HCGs looking at three adjustable aspects of reward systems:

reward functions, reward distribution, and reward personalization. These studies demon-

strate that even small-scale variations in rewards (i.e., offering players the ability to choose

the type of reward) may have significant positive effects on both player experience and task

completion metrics. I also show that some variations (i.e., co-located, competitive reward

scoring) may have both positive and negative tradeoffs across these metrics. Moreover,

this work observes that existing, anecdotal design wisdom for HCGs may not always hold

xvi



(i.e., allowing players to verbally collude does not, in fact, lower task solution accuracy,

but actually predicts higher task solution accuracy). Altogether, this thesis demonstrates

that certain aspects of reward systems in HCGs can be varied to improve player experience

without compromising task completion, and works to build more empirically-tested design

knowledge for understanding and creating more engaging, effective HCGs.

xvii



CHAPTER 1

INTRODUCTION

1.1 Human Computation Games

Artificial intelligence and machine learning have been leveraged to solve a wide variety

of difficult and complex problems, from autonomously operating vehicles to generating

creative experiences. However, for certain problems, even the best algorithmic solutions

remain intractable for computers to tackle. Meanwhile, other problems require training data

that cannot be automatically generated or easily aggregated. One characteristic these types

of problems share is that their solutions typically depend on knowledge that is intrinsic

to humans and/or require complex models of human processes that lack straightforward,

computational representations.

How might one tackle these problems when no direct algorithmic answers are available

(or at best, require a domain-specific, knowledge-intensive, and potentially human-biased

solution)? One alternative is to leverage human aptitude directly through an approach for-

mally known as human computation [1]. As the name suggests, human computation is

a paradigm that combines the skills of human problem solvers with algorithmic aggre-

gation of their results, typically (but not necessarily) through a computer interface. This

outsourcing of computational work to a human “crowd” is also commonly referred to as

crowdsourcing.

The standard human computation approach to solving a difficult problem broadly con-

sists of the following steps. First, the problem—referred to as the task—is subdivided

or duplicated into smaller subproblems. Next, each subproblem is given an individual

person—often referred to as a worker—to solve. Subsequently, each resulting solution

is algorithmically recombined and then verified with all other individually solved results.
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Finally, the aggregate combination of these results is used to reach a consensus about or

determine a solution to the original task.

A classic example of applying human computation to a computer science problem is

that of image recognition [2]—the (natural language) identification of the objects in a two-

dimensional image. While myriads of other approaches to image recognition have been

since been explored, the human computation approach leverages the human visual recog-

nition process directly by asking workers to solve the problem (as opposed to architecting

a complex computational system that mimics their problem-solving abilities), the results of

which may be used directly or used as data to train other image recognition systems. An

image is distributed to multiple workers, who then provide natural language words (i.e.,

labels, tags, descriptors) that describe its contents. The most commonly suggested words

may then be taken as the labels or descriptors of its content. This straightforward verifica-

tion process is effective because the domain of natural language words is large, making the

likelihood of agreement on a label (by random chance) very low. But human computation

is not limited simply to computer science problems. Other broad classes of problems ad-

dressed using human computation approaches include media classification [3], biological

optimization [4, 5], and content generation [6, 7]—most of which rely on human problem

solving skills or human creativity to accomplish.

Currently, the most common interfaces for human computation work are online ser-

vices that give task providers a globally accessible platform to distribute tasks, recruit hu-

man workers, and compensate them for their work. Popular services include Amazon’s

Mechanical Turk and CrowdFlower, which provide online, end-to-end platforms for tack-

ling human computation tasks. For these types of interfaces, compensation is primarily

monetary, although other human computation efforts, particularly those addressing scien-

tific discovery problems, rely on volunteer efforts motivated by altruistic goodwill or public

recognition.

Games have been proposed as an alternative interface to online crowdsourcing services
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and workflows. These games are known by a variety of names: human computation games,

Games with a Purpose, scientific discovery games, citizen science games, and crowdsourc-

ing games. Henceforth, I will refer to them as human computation games, or HCGs. HCGs

span a wide range of experiences ranging from lightly gamified web forms to fully interac-

tive, immersive games where the human computation task is solved through player actions

during play. As such, these games share many commonalities with serious games designed

for purposes beyond pure entertainment, such as education, training, self-improvement, or

addressing real-world issues in politics and society.

So why might one advocate for using games as an alternative to traditional crowdsourc-

ing platforms? One argument for the use of games is that certain game elements may align

with the requirements of a particular task. For example, players’ in-game actions may ac-

curately capture the steps necessary to complete a given task. Additionally, flexible game

elements can be used to direct or to encourage players to more appropriately solve tasks.

For example, if a large number of task solutions is required, an HCG could reward players

for completing as many tasks as possible, whereas if a small quantity of high quality task

solutions is more desirable, the same HCG could instead reward players for more accurate

results. In an ideal case, in-game feedback, such as the player’s score, may help to inform

the player (or task provider) how well the player may be completing a given task.

Another argument is that otherwise mundane or simple tasks might be made more en-

gaging through gameplay—engaging enough that the gameplay experience might itself be

considered a form of compensation and/or motivation for completing the task. For exam-

ple, games used to collect real-world data (e.g., photos) can help to turn a mundane and

repetitive process (e.g., manually taking many photos of certain objects, photos at very

specific locations) into a more engaging experience. This makes games an attractive option

if monetary compensation is unsuitable or prohibitively expensive for a particular task. At

a minimum, an engaging game might assist in making tasks less burdensome or help to

recruit and retain players who might not normally participate in crowdsourcing work.
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As distribution platforms have increased and hardware costs have lowered, games have

become a more pervasive part of people’s everyday lives. Accompanying these changes,

tools for game development have become more sophisticated and accessible for non-technical

developers. This might suggest that task providers and developers of human computation

games would wish to take advantage of these growing audiences and better development

tools. However, beyond a few successful instances, HCGs have not seen wide adoption, let

alone appeared to have benefited from this growing ubiquity of play and ease of creation.

One possible explanation for the lack of adoption is that despite these improvements in

game development technology, the cost of developing a game still exceeds that of exposing

a simple crowdsourcing task on an existing platform such as Amazon’s Mechanical Turk.

Putting together a web form and utilizing an existing community of crowdsourced workers

requires substantially less effort and resources than developing (or contracting someone to

develop) an interactive experience with a time-consuming process for design, engineering,

and quality assurance. As a result, task providers who are typically not expert game devel-

opers might be reluctant to turn to games as the interface of choice in order to accomplish

their crowdsourced needs.

However, even when tools and development assistance are readily available, human

computation games present a nonstandard design challenge. Unlike other games designed

primarily to entertain, HCGs have an additional purpose: completing the underlying task.

Thus, HCGs have two, potentially conflicting design goals: completing a human computa-

tion task and entertaining the game’s players, which reflect the needs of the task providers

and players respectively. On the one hand, task providers may not care about the details

of the gameplay experience, but are concerned with the quality and quantity of the crowd-

sourced results. On the other hand, players may not even care about the task itself, but are

concerned with the quality of the experience and entertainment resulting from their interac-

tion with the game. A truly effective HCG must address both issues. It must enable players

to complete the task correctly, but must be beneficially entertaining enough to motivate
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players to interact with the game at all.

While there is a wealth of literature and readily available resources on general game

design, very little of it is tailored specifically for the design of human computation games.

Given that HCGs must also optimize for the task completion in addition to an engaging

player experience, it is unclear how existing design knowledge might even apply to HCGs.

Existing design knowledge for HCGs is currently limited to a handful of papers and ad-

hoc guidelines suggesting game templates or providing anecdotes from a few successful

examples. While these results provide useful starting points for the amateur HCG developer

or task provider, it is not always clear which specific game elements or combination of

them are responsible for ensuring both successful task completion and a positive player

experience, let alone how they might apply to a novel problem or unexplored considerations

of a potential HCG. Which game elements can be changed without negatively impacting

task completion and/or the player experience? Furthermore, how will these guidelines

generalize to expanding player audiences, and changes in technology? These are just two

of the many questions that remain unanswered in the existing space of HCG design.

Therefore, with little existing design knowledge to work with and no strong guarantees

to know whether or not a task could even be completed effectively using a game, it is no

wonder why task providers might be reluctant to invest the time and resources into game

development when other, more straightforward options are available. As a result, the design

space of human computation games remains woefully underexplored, the full potential of

these games remains undetermined, and the perception persists that these games are both

ineffective and unengaging.

Ideally, formalized design knowledge for human computation games would exist and

task providers would not necessarily need to be expert game developers. Instead, they

would be armed with tested principles, models, and design guidelines—a validated design

knowledge base tailored for HCGs—that would help them select game elements appropri-

ate for their given task while crafting a compelling gameplay experience. The long-term,
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overarching goal of this dissertation work is to help enable such a foundation of HCG

design.

1.2 Reward Mechanics

Creating a human computation game begins much like the standard development of any

game designed to entertain: by making a myriad of design decisions related to the ele-

ments that compose the experience—gameplay mechanics, visual and aural aesthetics, to

state but a few. However for HCGs, this design process is complicated by the fact that any

single element may have potential effects on both the desired player experience and the

task completion results. Understanding the effects of all possible game design decisions

for HCGs is considerably intractable, so the question then becomes: what game elements

should be prioritized? It would be ideal to focus on game elements that have a noticeable

impact on both aspects of the player experience and the underlying task. For this disserta-

tion, I propose focusing on game mechanics, specifically reward mechanics. In games, the

mechanics are the rules and systems associated with player interaction. Reward mechan-

ics are the game mechanics responsible for providing player feedback, which encompass

common game systems (or parts of such systems) such as scoring, leaderboards, and item

acquisition.

So why should rewards be emphasized? In games, rewards are the currency of posi-

tive feedback. More formally, reward mechanics are the rules of the underlying systems

that provide (primarily positive) feedback to players. These reward systems can take many

forms, but can be distinguished from each other by the currency or type of feedback they

provide to players. Common reward systems expose numerical scores (e.g., points, ranks)

or collectible digital objects (e.g., badges, equipment), which are explicit nominal metrics

distributed based on functions that measure aspects of player performance or progression.

For example, in the classic action game Super Mario Bros., the player encounters various

types of reward systems. In the game, players progress through increasingly dangerous 2D
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levels; each level has a numerical score which increments when the player accomplishes

certain actions, such as collecting coins strewn throughout the level, defeating enemies, and

completing the level within the time limit. Additionally, players may seek out powerups

(often placed in challenging-to-access places), which reward the player with extra protec-

tion when traversing the level or defeating enemies. Meanwhile, other rewards cannot be as

easily quantified and may be earned implicitly as a consequence of other mechanics or ex-

tradiegetic game elements, such as the social prestige based on competitive game rankings

or the subjective enjoyment derived from experiencing a game’s narrative. In Super Mario

Bros., one such implicit reward may be the sense of satisfaction may feel upon reaching the

end of the game, whereupon they may view a cutscene showing the successful rescue of an

in-game character. 1

In game design, reward mechanics are considered to be some of the most important

game elements because they play a pivotal role in providing feedback to players [8]. A

player’s experience with a game is typically driven by factors such their preferences for

particular game elements and motivations for play. Reward systems are often the most

powerful communicators of the intended experience—and thus are also powerful motiva-

tors for play. Ultimately, these systems influence whether or not a player has a positive

(or negative) experience with a game—and determine the likelihood that they will continue

playing it or not.

This is no different for human computation games; if anything, the role that reward

mechanics serve may be even more critical. HCGs rely on players to ensure that a task is

completed at all. Since reward mechanics affect the likelihood that a player will continue

to interact with the game and thus complete the task(s), I argue that the HCG research

community would benefit from the study of reward mechanics and their effects on task

results both the player experience and the task results. I now highlight two additional

1As mentioned, whether or not an implicit reward can be considered “rewarding” is entirely subjective.
For example, I do not derive any sense of satisfaction upon viewing this scene of Princess Peach’s rescue due
to an outright dislike of “save the princess” narratives in games.
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reasons why reward mechanics are both complicated and sensitive—and thus imperative to

study—in the context of HCGs.

First, motivations for players to participate in human computation games are compli-

cated by the addition of the human computation task. Unlike in other games, players may

also derive implicit reward via a sense of altruism or satisfaction from contributing to the

human computation or problem solving process. This means that some players may be

intrinsically motivated by the task itself whereas other players might only be compelled to

participate provided that the game mechanics (including the rewards which provide feed-

back on their performance) provide a satisfying experience [9, 10]. It is well-established in

general human computation and crowdsourcing research that worker motivation and com-

pensation type affect the completion of tasks. For example, intrinsically motivated workers

are known to be turned off by extrinsic (i.e., monetary) compensation for crowdsourced

work [11], making them less effective in certain scenarios. However, little is known about

whether or not this holds for HCGs, where typical reward systems such as points and as-

sociated leaderboards are treated as extrinsic compensation. Therefore, understanding how

reward systems in HCGs correspond to player motivations and which kinds of rewards are

effective given different kinds of players is necessary to improve the state of HCG design.

Second, in-game rewards are commonly compared to or considered alternatives to other

forms of compensation for human computation and crowdsourcing work. Approaches to

crowdsourcing as well related applications of gamification (i.e., applying game elements to

a process normally absent of play) have both raised concerns regarding the ethical treatment

of workers and players and the fairness of compensation. HCGs share many similarities to

these applications in design goals and public perception. Therefore, it is morally necessary

to ensure that reward mechanics provide both commensurate and appropriate feedback to

players through a positively-received player experience. This requires a deep understanding

of how reward mechanics function in HCGs and how they affect the players who interact

with them, not just their effects on the completion of the human computation task.
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To reiterate, human computation games and their mechanics, particularly rewards, must

respect the needs and desires of the players involved. Failure to do so—by blindly optimiz-

ing only for the human computation task at any serious expense to the player experience—

has long term consequences for HCGs as a whole. In the worst case, HCGs would garner

a reputation as being disrespectful of players’ time and effort. Without an engaged player

base, task providers are even more likely to decry these games as ineffective. This would

make HCGs an unappealing option for solving human computation tasks—long before we

can explore and understand their full potential. In order to prevent this, the HCG research

community needs to understand how game elements of human computation games truly

work, and in doing so, enable the creation of more effective HCGs.

1.3 Thesis

Varying properties of reward systems in human computation games can im-

prove the player experience while also improving or maintaining the quality,

quantity, and acquisition rate of the human computation task results.

In this dissertation, I begin by presenting a framework and methodology for conducting

human-subjects studies on human computation games to evaluate both task and player

experience metrics. I then use this framework and methodology to conduct three human-

subjects studies on HCG reward systems to support this statement. Table 1.1 provides a

summarizing chart of the questions, methods, data collection, and contributions of these

experiments.
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Table 1.1: Summary of the research questions explored in this dissertation and their contri-
butions. The metrics term refers to the combination of task completion and player experi-
ence metrics as defined by the methodology in Chapter 3.

Research Questions Methods Data Collected Contributions
Chapter 4
In multiplayer, what
effect will collaborative
versus competitive
reward scoring have on
metrics?

A within-subjects study
with two conditions:
singleplayer versus
multiplayer.

In the multiplayer
condition, a
between-subjects study
for two further
conditions:
collaboration versus
competition.

Gameplay telemetry,
Likert-like/rating
post-round/post-game
survey results, and
manual tracking of
multiplayer collusion.

Competitive multiplayer
was perceived as more
compelling than
collaborative
multiplayer, but also
resulted in less accurate
task results.

Overall, participants
strongly preferred both
multiplayer conditions
over singleplayer.

Would collusion (i.e.,
direct communication
between players
regarding the task)
result in lower metrics?

Collusion between
participants was a
predictor of higher task
accuracy.

Chapter 5
What effect will
randomly assigning
versus letting
participants choose
reward type have on
metrics?

A between-subjects
study with two sets of
conditions: reward
assignment—random
reward assignment
versus player reward
choice—and
audience—experts
versus amateurs.

Gameplay telemetry
(with a focus on reward
system interaction and
self-reported boredom)
and Likert-like/free
response post-game
survey results.

Participants able to
choose rewards
demonstrated higher
task and more positive
experience metrics.

What effect will using
an expert crowdsourced
worker audience versus
amateur (student)
worker audience have
on metrics?

Experts were better than
amateurs at all task
metrics. However,
amateurs performed
comparably to experts
when given the ability to
choose rewards.

Chapter 6
For more
time-consuming tasks,
what effect will
not-personalizing versus
personalizing the type
of reward have on
metrics?

A between-subjects
study with two
conditions: no
personalization versus
personalization.

Gameplay telemetry
(with a focus on reward
system interaction and
more time-consuming
task completion) and
Likert-like/free response
pre/post-game survey
results.

No differences were
detected between the
non-personalized and
personalized conditions.
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CHAPTER 2

BACKGROUND

In this chapter, I provide a general overview of human computation games. Each subse-

quent chapter will review its own relevant and background material:

1. Chapter 3 presents an overview of game design frameworks, existing game design

knowledge for HCGs, and an overview of experimental methods in games research

as part of a separate background section.

2. Chapter 4 discusses the study of relevant game mechanics—singleplayer versus mul-

tiplayer and collaboration versus competition—in both entertainment-oriented games

as well as HCGs—as part of its introduction.

3. Chapter 5 provides an overview of rewards in games, research surrounding rewards,

and how compensation affects crowdsourcing as part of its introduction.

4. Chapter 6 presents an overview of personalization and adaptive systems, which dynamically-

adjust game elements based on player interaction in games, as well as the player

modeling work which contributes to these systems, as part of its introduction.

Human computation games are an alternative, interactive interface for approaching

and solving crowdsourcing problems. These games are known by a variety of different

names [12]: Games With a Purpose (GWAPs), scientific discovery games, citizen science

games, crowdsourcing games, and knowledge games. In this dissertation, I refer to them

as human computation games, abbreviated as HCGs. The choice of “human computation

games” over other phrases is intended to encompass the broad set of games where humans

participate in the task or problem solving process (i.e., computation) through gameplay.

Schrier’s aforementioned survey outlines the various (and potential) pros and cons of the
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term “HCGs” versus others. My choice of term was independent of her work, but I have

eschewed other names for reasons similar to her observations. While my early publications

used the term “Games with a Purpose,” I have since transitioned from the use of this term to

avoid conflation with other serious games—almost all of which have goals or intended pur-

poses beyond entertainment. Arguably, all serious games are thus “games with a purpose”

(albeit not in the narrow definition originally utilized by the human computation commu-

nity [2]). Meanwhile, “scientific discovery,” “citizen science,” and “crowdsourcing” games

are associated with specific subsets of the broader collection of games in which humans

solve tasks through gameplay. I will discuss these subsets below.

Here, I provide an overview of existing human computation games, focusing on both

the tasks they have tackled and the interactive experiences they have provided players. For

convenience, I split these games into three broad categories based on the objective output

and the problem-solving process required to complete the task:

1. Classification: augmenting existing data with annotations, labels, or categories

2. Data Manipulation and Optimization: developing solutions to or refining partial

solutions of (often scientific) optimization problems

3. Data Collection and Artifact Creation: aggregation or collection of raw data, pos-

sibly refined or filtered during the human computation process

This categorization is not intended to be exhaustive or prescriptive. Detailed tax-

onomies such as those of Law [1], Krause and Smeddinck [13], Thaler et al. [14], and

Pe-Than et al. [15] provide detailed breakdowns and organizations of HCGs, also based on

task type and similarities of game elements. These taxonomies are unfortunately limited to

older examples of HCGs (i.e., those developed prior to the year 2013) and thus do not take

more recent games or developments into account. Similar to these prior taxonomies, this

overview groups these games by the tasks they have tackled (although into the three broad
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categories above, as opposed to a narrow focus on the individual tasks). Additionally, I

dedicate attention to recent HCGs not fully covered by existing taxonomies.

2.1 Classification

The earliest published instances of using games as an interface to tackle crowdsourcing

problems began with games that relied on human players to classify or annotate data. Struc-

turally, these tasks begin with unsorted or noisy data as input, then ask workers or players

to categorize or provide additional information regarding that input. (In this context, terms

such as “annotating,” “labeling,” and “tagging” may be considered synonymous for gener-

ality.) The output domain of acceptable solutions is often impossibly large (e.g., the set of

all natural language strings), or sufficiently complex to enumerate or describe. In tandem,

modeling the necessary or relevant human decision processes to solve these problems al-

gorithmically is often challenging if not infeasible. Instead, human computation on these

classification tasks seeks to solve these problems by leveraging human capabilities (e.g.,

the human visual cortex) or intrinsic knowledge with efficient algorithmic aggregation (e.g.,

commonsense knowledge acquired over years of existing in modern society).

The earliest—and possibly most seminal—example of a game used to classify data

was the ESP Game, an online guessing game responsible for popularizing the term Games

With a Purpose [2]. In the ESP Game, players worked in pairs to assign text labels which

described (and thus annotated) the content of photographic images. In each instance of the

game, a pair of players was networked over the internet, but remained anonymous to each

other and thus unable to communicate with their partner. Both players were then shown

an identical image and given a time limit. Each player was then responsible for typing as

many potential image labels into a text box and whenever both players entered the same

word (a match), they were rewarded with in-game points. Every image was distributed to

many rounds of players interacting with the game and for every round, the system tracked

the most frequently provided matches. The set of matches with the highest number of
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occurrences were determined to be labels for the image.

This anonymous, two-player arrangement was designed to encourage players to provide

labels that most accurately described the image in question. Players reaching consensus on

the same word acted as a means of verifying that label’s correctness (as the probability

that two arbitrary people might suggest the same word given the entire set of words in

the English language is extraordinarily small [1]). Additionally, the ESP Game alleviated

some of the burden required to build labeled datasets for image labeling algorithms, by

turning what was once a time-consuming manual effort on the part of those implementing

and hand-tuning image labeling algorithms (e.g., a single or several persons) into a broader

distributed effort across many others.

The success of the ESP Game encouraged the development of similar games: image-

object identification in Peekaboom [16], music tagging in Tag-a-Tune [3], and image rank-

ing [17]. These were followed up by a variety of other games such galaxy classification in

Galaxy Zoo [18] and music-tagging in Herdit [19]. Galaxy Zoo in particular is a notable

example, as its initial success led to the development of the Zooniverse [20] platform for

crowdsourcing that has since gone onto tackle a myriad of human computation problems

such as biodiversity tracking and architectural identification.

Other well-explored “classification” problems include relational information acquisi-

tion, or the construction of ontologies. In 2008, Siorpaes and Hepp introduced Ontogame [21],

followed by Krause and et al.’s OntoGalaxy [22]. Additionally, similar solving of common-

sense knowledge problems has also been accomplished for tasks such as object-relationship

understanding [23].

Currently, the use of human computation games for classification problems has been

largely outstripped by improvements in machine learning algorithms and the convenience

of other non-game crowdsourcing platforms such as Amazon Mechanical Turk and Crowd-

flower. However, a novel trend is to integrate human computation tasks into existing, high-

profile games for entertainment, or to use such games as a platform for human computation.
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In the classification space, these efforts include Project Discovery [24], a high-profile hu-

man computation game, due in part to its unique integration with an existing game: the

massively-multiplayer online strategy game Eve Online. Existing Eve Online players may

participate in a separate minigame, thematically set in the Eve Online universe while earn-

ing in-game currency for classifying images for a protein-function recognition task. Addi-

tionally, extradiegetic elements of the real world, such as the scientists involved with the

project, are integrated as digital characters or elements within the Eve Online universe.

2.2 Data Manipulation and Optimization

Beyond asking players to act as human data classifiers, human computation games have

also leveraged player skills to tackle scientific optimization problems. Correspondingly,

these games are often referred to as scientific discovery or citizen science games. Typically,

the input to these tasks is existing scientific data that must be refined or manipulated to meet

a desired goal (which can be occasionally measured using an objective function grounded

in existing theories or models of scientific processes). Many of these tasks rely on reasoning

or abilities that are difficult to represent algorithmically such as spatial reasoning.

One of the earliest and most well-known examples of scientific discovery games is

Foldit [4], which tasks players with the problem of “folding” proteins structures into their

lowest energy configurations. Such low-energy configurations for proteins are considered

the most natural, stable solutions for scientists to potentially synthesize, but tackling this

algorithmically requires computing a large, multi-dimensional optimization problem. In-

stead, Foldit relies on intrinsic human spatial reasoning skills, presenting players with a

3D model of a potential protein structure. Players then nudge, tweak, and drag molecu-

lar components using their mouse and keyboard; all the while, an optimization function

computes the energy configuration value based on the components and their structure, pro-

viding real-time feedback to players as they work on the task. The results from Foldit were

then (and continue to be) used to synthesize actual proteins as part of a collaboration with
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biochemistry researchers.

Other scientific tasks include RNA folding [5] in Eterna, DNA multiple sequence align-

ment [25] in Phylo, mapping dataflow diagrams onto hardware architectures [26], and

multigraph maximal-clique discovery [27]. For many of these tasks, players have uncov-

ered noticeably better solutions over existing algorithms, with players’ solution methods

often serving as guidance to develop new algorithms and optimizations. More recently,

scientific discovery games have been designed to act in conjunction with computational

and/or machine learning algorithms to build or improve existing datasets. For example, in

the game Mozak [28], players trace neurons in brain images to reconstruct neural pathways.

The game is but one form of verification in a larger system, which incorporates both algo-

rithmic optimization and non-player expert verification of solutions to rapidly converge on

solutions.

Several data optimization problems have also been integrated into high-profile games

intended primarily for entertainment, or utilize these games’ mechanics as a platform for

human computation. One such example is the game Phylo, which after its initial intro-

duction in 2012, expanded to address various other DNA multiple sequence alignment

problems (e.g., Ebola virus sequences [29]). Most recently, Phylo was integrated into the

high-profile game Borderlands 3 as a minigame called Borderlands Science [30], wherein

players can tackle multiple sequence alignment tasks under the auspices of an existing in-

game character, and earn special in-game currency and loot for their contributions. Another

recent example uses the popular, open-world game Minecraft to tackle the problem of de-

veloping effective compounds for treating chemotherapy-resistant cancers [31]. Players

in Minecraft are provided in-game block structures representing visualizations of partial

compound solutions, and by placing in-game blocks down, work towards solutions that

are analyzed in real-time. These games, as well as the aforementioned Project Discovery

platform, demonstrate how collaborations between the game industry and task providers

from research institutions can fruitfully leverage the player audiences of popular games for
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human computation solutions.

2.3 Data Collection and Artifact Creation

In addition to classifying and manipulating existing data, human computation games have

also tapped into crowdsourcing audiences to collect or generate new data or artifacts. These

tasks are similar to classification tasks in that players are asked to provide new information

(rather than refine or optimize existing solutions) and that the output of both types of tasks

is frequently used to train machine-learning systems. However, the key difference is that

the output of classification tasks is typically metadata (e.g., annotations/labels/mappings)

to existing input data, while the output of data collection tasks is the wholly new data

themselves. This distinction between classification and data collection tasks may appear

subtle, but because the creation of new data is the objective of data collection tasks, data

collection HCGs often require game interfaces and game mechanics specific to generating

that data and do not fit neatly into the pre-existing patterns for classification HCGs.

One example of a data collection game is the mobile HCG Photocity [6]. In Photocity,

players are asked to take pictures of various buildings and environments in order to recon-

struct 3D models of the environment. Players accomplish this by physically navigating to

a real-world location designated by the game and then taking pictures with their camera

phones. These pictures are then uploaded to a separate processing server that utilizes the

pictures to reconstruct 3D buildings using structure from motion algorithms. Players are

then awarded points based on the number of new vertices added to these 3D models.

Early examples of data collection games include those which gather artifacts such as

the aforementioned photographic images used for 3D environment reconstruction [6, 32],

provide detailed location tags [7], and commonsense knowledge [33]. More recently, data

collection involves the creation of artifacts that require players to perform creative infer-

ence or require procedures that are difficult for machines to generate naturally. One such

example is Quick, Draw! [34], wherein players are playing a guessing game against an AI
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agent trained on simple, hand-drawn images of nouns. Players’ drawings are then subse-

quently incorporated into a dataset used to train sketch-rnn [35], a recursive neural network

that can recreate simple hand-drawn images (which in turn, improves the AI agent used

in Quick, Draw!). Another example—though it may be argued that it is more of a play-

ful interface rather an HCG in the traditional sense—is the Amino Acid Synthesizer [36],

which maps the problem of protein synthesis to music generation and provides users with

20 musical tones (corresponding to the the 20 amino acids) that can be strung together into

compositions. These user-generated music compositions are then used to help train the

protein synthesis models.

Again, these tasks, despite surface differences and widely varying game interfaces,

share a common structure of having players provide artifacts, which are then checked

against a model of how that information should function to provide diverse inputs and

coverage of the desired domain. One metric of particular interest in these domains is the

diversity of provided data, since these tasks are often open-ended, ambiguous, or have def-

initions of correctness that are open to player subjectivity.
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CHAPTER 3

A FRAMEWORK FOR EXPLORING AND EVALUATING GAME MECHANICS

IN HCGS

3.1 Introduction

Creators of digital games oriented towards entertainment have no shortage of resources

when it comes to the design and development process. These options span everything from

professional online tutorials to libraries of published textbooks to anecdotal postmortem

videos to comprehensive educational programs (from primary to post-graduate). Typically,

these resources focus on how to craft interactive artifacts which optimize for a positive

player experience, focusing on elements and principles that encourage player engagement.

However, when considering specific kinds of games such as serious and educational

games, these resources become scarcer. One difference between serious and educational

games compared with games designed purely for entertainment, is the addition of a second,

often equally-important design focus or goal. This design focus might be the conveyance

of an extradiegetic message, the ensurance of player self-improvement (e.g., educational

goals), or the solution to a specific problem through gameplay (e.g., a human computation

task). Whereas the typical digital game designed by an entertainment company, indepen-

dent developer, or hobbyist may only need to consider how well the game engages its play-

ers, creators of serious games are burdened with the additional complication of ensuring

that their games must both accomplish their additional design goals while still remaining

faithful to promise of an entertaining experience.

Human computation game development must contend with this complication of need-

ing to ensure two different design goals. On the one hand, an HCG must provide a suf-

ficiently engaging experience for its players. On the other hand, an HCG must enable
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players to successfully complete the underlying human computation task. Balancing these

two goals is difficult, even for expert game developers, as the occasionally mundane or

repetitive nature of a human computation task does not always map cleanly to engaging

game elements. This tension (or worse, unawareness of the problem altogether) often re-

sults in games which prioritize one goal over the other (typically the task, as these games

are more often created by task providers rather than entertainment companies).

To compound this dilemma, very little design knowledge exists beyond a small number

of simple patterns from examples or specific takeaways from successful games. Most doc-

umentation about the design and development process of human computation games comes

from the research publications written by the task providers (i.e., researchers) interested in

solving a particular human computation task. As previously noted above, researchers typ-

ically prioritize only the task and develop games that function just long enough to attain

some semblance of a solution. Examples of failed efforts or games in this space are virtu-

ally nonexistent due to an unwillingness to publish or document negative results. The most

that one can often take away from many other publications is that a game was the novel

interface for solving a human computation task and that some (often arbitrarily-selected)

combination of game-like elements were implemented to enable the completion of the task.

Rarely do these efforts focus on deeply understanding what combinations of game elements

contributed to that success, how these elements may have impacted both the quality of re-

sults and the experiences of their players, and optionally, how this might generalize to the

design and development of future HCGs.

This is not unexpected. Task providers and novice developers may not always have the

necessary backgrounds or experience in game design and development. A task provider

may already find it difficult to justify the risk of an expensive game development process,

particularly one with limited design resources that cannot guarantee that the final game may

even be successful at solving their desired human computation task. As a result, most HCGs

to date are built around specific kinds of templates or mechanics (and often only when tasks
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are similar enough to those for which such design knowledge is available). This conserva-

tive approach to HCG development leaves the space of HCGs woefully unexplored. How

what little HCG design knowledge exists might transfer to new tasks, new generations of

game interfaces (i.e., both hardware and software platforms), and the ever-changing player

appetites for certain kinds of games is an equally unexplored problem.

To facilitate broader adoption of games as an interface for human computation and

to enable greater ease of their development, human computation game design needs the

tools and frameworks to study and communicate about these games in a consistent manner.

HCG developers need to understand precisely what game elements—mechanics, aesthetics,

narratives, and more—make certain HCGs successful, that is both effective at engaging

players and solving tasks.

Contemporary, entertainment-oriented game design has been built up through deliber-

ate and dedicated efforts to consolidate design knowledge into formal representations and

vocabularies. I argue that the same must be done for HCGs, and in a way that incorporates

human computation specific concepts such as tasks and solution verification, while still

considering general game design concepts such as player audience and game mechanics.

A consistent, common language and representations for HCGs would then allow developers

to discuss and explore the space of possible HCG designs. Not only might these constructs

help to ensure that HCGs are as engaging and effective as possible, but they might also

enable current and future game developers to explore and diversify the space of HCGs.

In this chapter, I describe the framework I developed for defining and understanding

the mechanics of human computation games. This framework is motivated by the lack of a

formal language or any generalized design tools for defining HCGs. This framework aims

to break down HCGs into a common vocabulary and structure that allows for visualiza-

tion, comparison, and exploration of the space of HCG game mechanics. Alongside this

framework, I advocate for a methodology of building up HCG design knowledge, which

uses small-scale, controlled design experiments on tasks with known solutions to under-
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stand how variations of game elements may affect both the player experience and the task

completion. I utilize both this mechanics framework and the methodology to frame the

contributions of this dissertation consistently across its subsequent chapters.

This chapter consists of four parts:

1. A brief background on the existing game design literature for human computation

games.

2. The mechanics framework for human computation games, utilizing three successful

HCGs as illustrative examples.

3. The experimental methodology meant to accompany this framework, proposed as a

means to develop design knowledge for HCGs.

4. A case study exploring image-labeling HCGs using this framework and methodology

to compare and contrast the mechanics of these games.

As a reference, the peer-reviewed version of this work was published as a short paper

accompanied with a poster at the Foundations of Digital Games Conference in 2017 [37].

The extended version of this work can be found on arXiv [38].

3.2 Background

3.2.1 Contemporary Game Design and Development

In the field of game design, a myriad of design resources exist to help guide the design

process. These range from classic game design tomes such as Salem and Zimmerman’s

rules of play [39], Fullerton’s playcentric approach to game development [40], and Schell’s

lenses of game design [41]. These resources are often grounded in past game develop-

ment experience, providing design wisdom through anecdotal examples and examinations

of seminal games. Other approaches to design focus on formalizing and taxonomizing pat-

terns of game design. These include Björk and Holopainen’s game design patterns [42]
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and Falstein’s rules for game design [43]. Additionally, online resources, such the aggrega-

tion of design articles on the website Gamasutra [44] or the archives of professional design

talks hosted on the GDC Vault [45], also provide useful documentation and insight into

best game design practices in an often-opaque software engineering industry.

Overall, these design resources, anecdotes, and heuristics are extremely useful. How-

ever they have seen little empirical evaluation, except for rare instances [46, 47]. More-

over, all of these frameworks and guidelines are generally intended for commercial or

entertainment-oriented games. It is unclear how this knowledge would transfer to human

computation games, or other games that have an alternative purpose beyond providing en-

tertainment.

3.2.2 Game Design and Development for Human Computation Games

When it comes to games intended primarily for entertainment, there are a wide variety of

frameworks and tools available for game designers and developers. However, there are

few such affordances targeted specifically at human computation games. Existing serious

games literature [48] often focuses primarily on games intended to convey information or

messaging beyond or orthogonal to the entertainment provided by the game. Given that

human computation games are complicated by the addition of a secondary goal—solving

the human computation task—principles from serious games may be applicable. However

these resources often omit human computation games entirely [49] despite their similarities

to other serious games domains such as education.

Instead, human computation game design has been guided by examples of successful

games, rather than systematic study of HCG elements. Among the most utilized exam-

ples are von Ahn and Dabbish’s templates [50] in the context of classification and labeling

tasks. These templates define three game structures: output-agreement, inversion, and

input-agreement, which were based on the authors’ experiences developing games such

as the ESP Game [2], Peekaboom[16], and TagATune[3] respectively. Of these three tem-
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plates, output-agreement is perhaps the most well-known, given the seminal nature of the

ESP Game [2]. Similarly, in the domain of scientific discovery games, the work of Cooper

et al. [9] emerges as one of the most utilized resources due to a thorough discussion on the

design and development process of the successful, popular protein-folding game, Foldit.

Cooper et al. describe the consideration of two design goals: correctly solving the protein-

folding task, and making interaction “intuitive and fun” for the players. Additionally, their

work details their iterative development process, and provides both an evaluation of the

game’s usability as well as insights into the Foldit player audience.

Unfortunately, while it is clear that these combinations of design choices do work (as

evidenced by the relative success of these respective games), it is unclear which specific

gameplay elements are responsible, or how specific game elements influence the player

experience and the completion of the task at a more atomic level. This makes it difficult to

appropriately generalize these design anecdotes or consider new alternatives when it comes

to new or different tasks, not to mention new or different player audiences.

Beyond using anecdotally-developed HCG design patterns, several efforts have ex-

plored adapting existing design knowledge, patterns, and theories to the development of

HCGs. For example, Carranza and Krause [51] explore the application of the Mechanics-

Dynamics-Aesthetics (MDA) [52] framework to the development of the game OnToGalaxy.

A more recent example is the work of Miller et al., who use Self-Determination Theory

(SDT) and Cognitive Load Theory (CLT) as a design lens to successfully improve in-game

elements in Foldit [53]. These projects demonstrate how more general game design knowl-

edge or motivational theories might translate and apply to HCGs, but such work is rare and

otherwise unexplored.

Additionally, there remain unanswered questions about human computation design in

general. One such question is that of whether or not certain gameplay elements map better

to certain tasks than others (i.e., are some kinds of gameplay elements better for certain hu-

man computation tasks). The previously-cited HCG taxonomies, especially that of Pe-Than
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et al. [14, 15], highlight the similarities between the kinds of human computation tasks and

corresponding gameplay elements. These aggregations might suggest that certain kinds of

game elements are more effective for solving of certain kinds of human computation tasks.

Alternatively these similarities may simply be the result of existing games copying from

a limited set of templates and prior exemplars, rather than a thorough examination of the

human computation design space.

Discussion on how to best map gameplay elements to human computation tasks focuses

primarily on game mechanics. Jamieson et al. [54] introduce the term “isomorphs” to

describe the potential for games with similar underlying problems or tasks to be mapped

to different surface elements (e.g., game interfaces or genres). Meanwhile, Tuite [55] uses

the term “orthogonal mechanics” to describe gameplay mechanics that detract or divert the

player’s attention from solving the task, and advises against the inclusion of these elements.

However, others argue that the use of such “orthogonal mechanics” might be used to attract

alternative audiences or improve player engagement. Krause et al. [22] suggest that the

use of mechanics unrelated to the underlying task, but familiar in entertainment-oriented

games, may attract skilled players otherwise uninterested in HCGs. Ultimately, it is unclear

just if and to what extent the relationship between gameplay elements and the underlying

human computation task should be for a given HCG. Answering this question necessitates

establishing how certain gameplay elements affect both task completion and the player

experience through actual, empirical evaluation.

Finally, when it comes to the development process, reusable tools for developing and

publishing HCGs remain limited. While game engines and development tools are more

readily available and accessible than ever, virtually no attempts have been made to develop

dedicated game engines or game distribution platforms specifically for HCGs (e.g., there

is no equivalent to Amazon’s Mechanical Turk or Crowdflower for distributing HCGs).

Typically, HCGs are developed on a per-need basis using free or easily-available game

development tools and development environments. Exceptions include the work of Cam-
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bria et al. [56], who describe the development of a game engine for building commonsense

knowledge games. Most recently, the Massively Multiplayer Online Science (MMOS) plat-

form [57] was developed to help support the integration of HCGs into larger-scale games;

this platform currently supports ongoing initiatives such as the aforementioned Project Dis-

covery and Borderlands Science.

3.2.3 Experimental Evaluation of Games

While game design knowledge provides initial good practices and intuition about how to

build games, empirical or systematic evaluation of game elements and designs is required

to verify how successful these might generalize or how effective these elements and designs

may be for a given scenario. Prior research in games and human computation interaction

has shown that both qualitative and quantitative research methods can be used to study

game design. Broad approaches include methods from game usability [58], game analyt-

ics [59], and visual analysis [60].

In particular, between-subjects studies (or “A/B testing”) have been commonly applied

to test variations of design elements in games. Controlled studies have proved successful

for understanding and analyzing game design elements such as difficulty [61, 62], con-

trols [63, 64], and tutorials [65, 66, 67, 68]. Many of these studies (i.e., those of Ander-

sen et al. [65, 66] and Lomas et al. [61]) have been conducted on educational games. Like

HCGs, educational games must grapple with dual design goals; in educational this tension

occurs between the need to meet learning outcomes and drive knowledge retention versus

player (i.e., student) engagement with the game. It is unknown whether educational game

design knowledge might transfer to HCGs as solving a human computation task is a very

design goal (and activity) than ensuring long-term learning gains. However, the difficulty

of balancing two design goals is highlighted in many of these educational games studies.

For example, Andersen et al. [65] demonstrate how optional gameplay elements are shown

to harm player retention (and thus long term learning objectives) if they sufficiently distract
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from the primary elements (mechanics) of the game.

In the domain of general human computation, formal design studies have been used to

successfully measure the efficacy of structuring and distributing tasks in certain ways [1].

However, when it comes to HCGs, it is rare to see games elements evaluated for efficacy

beyond that of the task results. There are a few instances in which new HCGs are compared

to existing, older games (e.g., the ESP Game) to show improved engagement metrics [69,

51], but these lack detailed analysis and insight into what particular elements of design were

responsible for these improvements or how they also affected task completion. Even rarer

are instances of comparing games to non-gamified human computation systems; Goh et

al.’s investigations of image labeling applications and HCGs [70] are a notable exception. It

is only recently that researchers and HCG developers (i.e., still typically the task providers)

have begun to isolate and thoroughly test individual game elements for effectiveness at task

completion and player experience. The work of this dissertation is among them.

3.3 A Formal Representation of Human Computation Game Mechanics

I propose a formal representation for human computation game mechanics. The functions

of this representation are threefold:

1. To provide a common vocabulary and visual organization of HCG elements.

2. To enable formal comparisons of existing HCGs to better understand the space of

HCG designs.

3. To facilitate the creation of controlled experiments of HCG elements in order to build

further, generalizable knowledge of HCG designs.

This representation focuses on a specific kind of game element: human computation

game mechanics—the functional rules that define player interaction with the game. While

this excludes other elements of HCGs, such as aesthetic, narrative, or contextual compo-
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player(s)

action feedbackverification

Figure 3.1: Breakdown of HCG mechanics. Players provide inputs to take actions (shown
in blue), which are verified (shown in orange), and receive feedback (shown in gray) from
the game. Solid lines represent transitions through the gameplay loop.

nents, this framework and its accompanying methodology may be amenable to such addi-

tions (though such work is beyond the focus of this dissertation).

The representation categorizes the mechanics of human computation games into three

types: action mechanics, verification mechanics, and feedback mechanics. This break-

down, shown in Figure 3.1, reflects the core gameplay loop of most HCGs: a typical

instance of play begins with players taking in-game actions relevant to the process for

completing the task. These actions are typically followed by some kind of task-specific

verification or validation of that input, which in turn is presented back to the player as

some kind of (typically in-game) feedback.

I now define and describe these three types of mechanics in greater detail, illustrated

with three successful human computation games: the original ESP Game [2], Foldit [4],

and PhotoCity [6]. These three HCGs were chosen to match the three broad categories of

HCGs previously outlined in Chapter 2. An illustrative breakdown of these images can be

seen in Figure 3.2.

3.3.1 Game Mechanics

What are game mechanics? Game mechanics are functions invoked by agents (both human

and artificial) that enable interaction with the state of a game. This particular definition

comes from a survey by Sicart [71] which explores this exact question and proposes the

above definition. As Sicart points out, the definition of game mechanics is often fuzzy and

imprecise, due in part to conflation between the abstract description of the interaction—the
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Figure 3.2: Examples of HCGs [2, 4, 6] subdivided into action, verification, and feedback
mechanics. Arrows from feedback to players have been omitted for clarity.

rules—(e.g., “jumping” in a platformer game) and the underlying software implementation

of the interaction—the systems—(e.g., a game-specific physics system and input system

which jointly enable a player to “jump”).

Sicart, as well as Adams and Dormans [72] (who likewise survey the definitions of

game mechanics) focus primarily on the former, formalizing game mechanics as rules op-

erating on game state which are described by verbs. This use of rules and verbs as termi-

nology is common across game design literature. For example, in Anthropy and Clark’s

game design vocabulary [8], the term mechanics is eschewed altogether, but in favor of

using both the terms rules—defined as relationships between game elements—and verbs—

specific kinds of rules that enable player interaction.

By contrast, Hunicke et al. [52] define mechanics as the data representation and algo-

rithmic components of a game, whereas dynamics are defined by runtime behavior of the

mechanics due to player interaction.

In the framework I propose, I consider a single mechanic to map to a rule or verb

which describes a function (action) taken as part of the human computation game loop.
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The further classification of action, verification, and feedback mechanics is based on their

function and contribution to the human computation process.

Note that a mechanic may consist of multiple rules or verbs. For example “jumping”

may be specified as a sequence of rules wherein the user pressing a button, the game then

applying an impulse to an avatar’s game state (i.e., position), and then optionally, the game

applying a gravitational force downwards. The choice and composition of these verbs

may vary on a per-game basis. However, game designers still think of “‘jumping” as a

singular mechanic where the choice of exact rules composing it is considered a detail of

the particular game implementation.

Additionally, most definitions of game mechanics refer to or focus on what are known

as core mechanics—the rules which have the most impact on play. These are the mechanics

which considered the most representative of the genre or type of game they belong to. For

the subsequent examples and discussion, I will primarily on what may be considered core

mechanics.

3.3.2 Action-Verification-Feedback

Action Mechanics

Action mechanics are the functions that enable a player to complete the human computation

task. This task completion is accomplished through the in-game actions a player takes

through what are commonly referred to as the “gameplay elements” of the game. These

mechanics often require players to utilize skills necessary for solving the task as part of

play. Such mechanics may be as straightforward as entering a word into a text field or as

complicated as piloting a space ship through a virtual environment. These mechanics may

vary wildly based on the nature of the task and may be the combination of many in-game

systems intermixing in order to enable a single player action.

For example, “jumping” to avoid an obstacle (e.g., perhaps a metaphorical player action

“avoiding” an incorrect label in classification task) is a mechanic that relies on interactions
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between multiple possible systems: an input system responsible for processing the player

input, a physics system that translates that input into the physical simulation of the game to

determine whether or not the player’s in-game avatar collided with the object representing

the classification label, the game state management (system) that tracks which labels were

avoided or not, a health system that decrements the player’s health, etc. Suffice to say, there

may be a composition of multiple systems behind a single “mechanic,” however “jumping”

does not prescribe a specific set or combination of systems. Instead, the exact number and

kinds of systems that enable “jumping” as an action are an implementation detail of the

specific HCG. Therefore, in the following examples, a single action mechanic reflects the

overall single (or type of) player interaction, omitting the implementation of its underlying

system from the definition.

Examples of Action Mechanics

In the ESP Game, players are shown an image in each round of the game. Player actions

are limited to entering possible labels for that image via text entry into a text field. For

a given image (in each round of the game), each player’s provided labels are tracked for

future comparison.

In Foldit, players are shown a complex three-dimensional model representing the struc-

ture of a protein. Player actions include various operations to handle and move (i.e., rotate

and translate) different parts of this model in order to shape it into different configurations.

These manipulations may be applied in a sequence or individually. (Note that in Figure 3.2,

I denote these manipulations as a single node for clarity, but this node represents either a

single or repeated application of these actions.) Updated versions of the game include ad-

ditional actions, such as applying a specific sequence of moves (known as “recipes”) based

on the past actions and efforts of other players.

In PhotoCity, players are given a location on their mobile device. Player actions are

a combination of physical activity (e.g., physically relocating themselves to that real-life
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location) and in-game actions (e.g., taking pictures of buildings at that location using the

camera on their phones). These pictures are then uploaded to a database and later used to

construct a three-dimensional representation of the buildings in that location.

Discussion of Action Mechanics

Generally, the action mechanics in human computation games have been most closely

aligned with the direct process of solving the human computation task. The three exam-

ples described above and also shown in Figure 3.2 describe action mechanics that directly

facilitate with the process of solving a human computation task (as opposed to abstracting

the problem solving process with an unrelated player action). This suggests that the me-

chanics of these games may have been designed first and foremost with the task in mind,

as opposed to adapting the mechanics of existing, entertainment-oriented digital games.

There exist actual explorations of adapting mechanics from mainstream, entertainment-

oriented digital games for human computation games. However, these instances are few.

One example concerns the game OnToGalaxy [22], which addresses the ontology-construction

task tackled by previous HCGs such as Ontogame [21]. In OnToGalaxy, the task comple-

tion process is mapped onto to a space shooter game akin to the classic arcade game As-

teroids and the action mechanics consist of piloting a spaceship and shooting at the correct

ontological relations. Unfortunately, it is difficult to draw any conclusions about the effi-

cacy of this approach. OnToGalaxy was compared against the original ESP Game, and the

wide variations between the game mechanics as well as the human computation tasks make

direct comparison and generalization difficult. Another example (which I discuss in Chap-

ter 4), is the game Gwario, an HCG that turns a classification task from prior work [73] into

a platformer game resembling the classic action game Super Mario Bros. Accompanying

the development of this game was a survey sent to current HCG developers and researchers,

asking directly if mechanics from entertainment-oriented digital games should be adapted

into HCGs. In a divergence from prior HCG design theories [54, 55], these experts favored
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the idea of adapting mainstream game mechanics to HCGs, though not without cautioning

that such mechanics ought to be selected very carefully to avoid compromising the task

results.

Finally, a notable, inverse example comes in the form of Project Discovery [24]: an

HCG which is incorporated directly into an entertainment-oriented game (EVE Online)

as a “minigame” (i.e., a game within a game) in contrast to adopting mechanics directly

from an existing game. The action mechanics within Project Discovery game consist of

annotating images of proteins by highlighting portions of a given image with different

types (class) of protein patterns using the mouse. However, this experience, while set in

the diegetic narrative of EVE Online, scarcely resembles its encompassing game, which is

a massively-multiplayer galactic simulation.

The longstanding question of whether or not to adapt mechanics from popular, entertainment-

oriented games is driven by one of the major criticisms of human computation games. Tu-

ite details this issue in her critique of HCGs [55]. One of her primary observations is that

HCGs may often be perceived as shallow compared with entertainment-oriented digital

games and therefore may fail to attract potential or sufficient players. The adaptation of

familiar or successful mechanics from existing digital games might serve to address this

issue.

Action mechanics are the primary candidate mechanics for this kind of adaptation or in-

spiration from entertainment-oriented games (compared with shortly-to-be-discussed ver-

ification mechanics, which are admittedly not necessary for games focusing on entertain-

ment that do not have task results to validate). One reason is that these mechanics are

the mechanics with which the player interacts with first in an HCG. Given their forward

placement, these mechanics are the most likely to maintain player engagement and retain

players throughout the task-solving process. Proper adoption and implementation of such

mechanics could have a number of benefits. An HCG which successfully adopts action me-

chanics from a pre-existing genre or popular game may find a wider audience, particularly
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among players who prefer similar games and might not have tried an HCG otherwise. Ad-

ditionally, players familiar with such mechanics may also find it easier to learn and adjust

to gameplay, compared with players who are less familiar with HCGs. Conversely, there

are also potential pitfalls. Action mechanics may outright distract or impede the player if

poorly implemented, raising again the question of whether or not action mechanics should

be non-orthogonal to the task or not. Additionally, just as the action mechanics might at-

tract players to the game initially, familiar mechanics may also raise expectations about that

game that may not be met, especially given the constraints of solving the task alongside ex-

pected gameplay. For example, an HCG which adopts action mechanics from a successful

game may negatively impact players’ experiences (and thus, their continued participation)

if the design quality of the HCG does match that of its original inspiration.

As previously stated, there is no single or correct answer on the question of incorpo-

rating game mechanics from entertainment-oriented digital games into human computation

games or conversely, adapting HCGs into such entertainment-oriented games. I raise this

question here in part to highlight the lack of exploration and research in this area. This

absence necessitates the creation of more HCGs that attempt to incorporate successful ele-

ments of entertainment-oriented games, as well as the deliberate exploration and documen-

tation of these attempts.

Verification Mechanics

Verification mechanics are the functions which take an input of player actions to compute

an output of task-relevant outcomes. These mechanics facilitate the assessment and mea-

surement of task-relevant metrics such as the quality, volume, diversity, and rate at which

results to the completed human computation task are acquired.

Verification mechanics may exist as part of gameplay, responsible for validating these

task results in real-time. Alternatively, these mechanics may function as systems or appli-

cations external game interface entirely, validating results sent from the game to a delayed
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and often external mechanism (e.g., a network server). I refer to these as online and offline

mechanics respectively, referring to the response time in which and the location where this

verification occurs. I also note that these two categories are not mutually exclusive as some

HCGs utilize a combination of both.

Examples of Verification Mechanics

For many human computation tasks, an aggregated consensus on player input often serves

as verification. In the ESP Game (and many of the games inspired by its structure per

the output-agreement template), task results are verified using an online agreement check

that filters correct answers from incorrect answers by relying on agreement (i.e., receiving

identical or similar answers) between players. Arguably, the ESP Game also uses an offline

check as well, by further aggregating and filtering results saved following game rounds.

While initially, this offline check did not impact the game, subsequent versions of the ESP

Game would declare the most commonly-suggested results to be “taboo words” that could

not be entered, in order to promote data diversity once sufficient consensus on particular

labels was reached.

In Foldit, task results are verified using an online check: a task-based evaluation func-

tion that takes a given protein structure and computes its energy configuration. Foldit’s

protein energy configuration function thus determines the quality of player solutions in

real-time. Additionally, the game makes use social and sharing mechanics, allowing play-

ers to share solution procedures (called “recipes”) through its community interfaces. While

the application of recipes may be considered part of the action mechanics of the game (in

which players utilize existing recipes uploaded by other players as starting points for solv-

ing tasks), repeated use and ratings of a recipe’s utility may act as an informal validation of

the encoded solving strategy.

In Photocity, task results are verified as part of an offline process. After players take

photos at the desired location, the uploaded images are processed on an external server;
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player feedback is determined by the resulting alterations to a constructed three-dimensional

mesh of the desired location.

Discussion of Verification Mechanics

Verification requirements for a task greatly impact game design decisions such as the num-

ber of players required to play the game—singleplayer (asynchronous play) versus multi-

player (synchronous play)—and how these players might interact with each other.

The complexity of verifying the task results is often a determining factor how verifi-

cation is handled. Task results that can be evaluated using an objective function or can

be compared against existing data can utilize either online or offline verification processes.

In Foldit, protein configurations can be evaluated quickly using an objective function, en-

abling online verification. Contrastingly, PhotoCity requires comparing an image against

many existing images and computing the resulting three-dimensional mesh, a process han-

dled offline due to computational requirements. However, both games are similar in that

neither requires the consensus of multiple players at the same time, enabling these games

to be asynchronous, singleplayer experiences.

By contrast, the ESP Game relies on consensus from multiple players even if the ver-

ification step is a string comparison between player inputs. This makes the ESP Game a

synchronous, multiplayer experience, in which players are networked across the internet

simultaneously. Multiplayer experiences may also rely on simulated players to compensate

for instances when multiple players are required, but not necessarily available concurrently.

Such fallback mechanisms (demonstrated in the ESP Game, for example) may also allow

old solutions to be re-verified using fewer players.

Unfortunately, much like action mechanics, few design experiments have tested alter-

native verification mechanics in human computation games, let alone explored different

designs. One notable exception is the game KissKissBan [69], which modified the original

version of the ESP Gameby adding a third player to “ban” commonly-used words in order
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to promote data diversity. Compared with the ESP Game’s eventual use of taboo words,

KissKissBan enables alternative verification mechanics that players found to be engaging.

I discuss this further in Section 3.5.

In most human computation games, particularly those which rely on synchronous con-

sensus, players are commonly forbidden from direct communication with each other. Mul-

tiplayer verification mechanics are typically implemented using an anonymous pairing with

no means for a player to determine the identity of the other players they interact with. This

particular design paradigm was first implemented in the ESP Game as a way to prevent

minimize collusion between players, as such behavior might induce players into providing

deliberately incorrect answers while still succeeding at the game. For this reasons and oth-

ers (e.g., the added complexity of implementing multiplayer mechanics), many games do

not allow players to communicate or choose to remain entirely singleplayer experiences.

Only a few games (e.g., Foldit) allow players to interact through communication channels

such as game forums or community interfaces. I explore this specific design paradigm (i.e.,

banning direct communication to avoid avoid collusion) in Chapter 4.

Overall, verification mechanics are sadly, under-explored in human computation games.

However, there are still many unanswered questions about how such mechanics work. How

do different mechanics for verification influence task results (e.g., how do the sets of diverse

labels compare between the ESP Game’s taboo word implementation and KissKissBan’s

antagonistic third player)? Is online or offline verification preferable for some tasks over

others, and how might these affect both the task results and player feedback?

Feedback Mechanics

Feedback mechanics are functions take the results of player actions—partially or fully-

verified task completion–and provide players with information or digital artifacts. These

mechanics commonly encompass gameplay elements such as rewards and scoring. More-

over, the feedback provided by these mechanics can possibly be mapped to evaluation
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metrics for the underlying task, enabling both researchers and designers to assess player

performance at both the completion of the task and progression through the in-game expe-

rience.

Examples of Feedback Mechanics

For all of the games shown in Figure 3.2, players receive feedback as a change (typically

an increase, but occasionally a decrease for some HCGs) to a tracked score. In the ESP

Game, both players receive points when they agree on a label for a given image. By con-

trast, Foldit rewards players with points based how well they can minimize the value of the

energy function derived from the protein’s structural configuration. Since a lower energy

value is desirable, the visible score presented to the player is actually the negation of the

energy function value, which then lets players work towards a higher visible score. Finally,

PhotoCity rewards players for the number of points their provided photos add to the recon-

structed three-dimensional mesh. The scale of points differs between games (i.e., one point

in the ESP Game is not equivalent to one point in Foldit) as a game-specific value based on

the results of the completed task. These games are similar in that the feedback “currency”

is nominal—points which contribute to a numerical, increasing score—but vary in what

players are rewarded for.

Discussion of Feedback Mechanics

Aspects of feedback mechanics are some of the most well-explored and understood design

elements in human computation games. These mechanics are synonymous with in-game

rewards, which some consider comparable to the monetary compensation in other crowd-

sourcing systems.

One design question to be asked is what should feedback be provided for: player ac-

tions in the game, player performance at the task (as evaluated by verification mechanics),

or a combination of both? Typically, positive feedback in HCGs is structured to encourage
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participation in the crowdsourcing process. Players may receive rewards for first complet-

ing a task. Then, if verification of the task is immediately available, they may receive

additional rewards for completing it correctly or sufficiently. (For offline verification me-

chanics, in-game feedback may be delayed depending on the length of time taken to verify

results.)

Typically, this kind of positive feedback is given in response to collaborative player

behavior, which is reasonable given that human computation and crowdsourcing are ag-

gregate, collaborative processes that often rely on consensus. However, in entertainment-

oriented games, reward systems such as point-based scoring and player leaderboards are

often included as avenues to afford and encourage competitive player behavior. In the con-

text of HCGs, the inclusion of competitively-motivated rewards is a concern, since it may

be desirable to discourage competition in order to keep players focused on completing the

task correctly (i.e., players may optimize their in-game actions for the goal of outperform-

ing their peers, rather than towards completing the task successfully). Conveniently, HCG

research has actually explored the question of using collaboration versus competition as

motivator in HCGs. Both the aforementioned HCG KissKissBan [69] and a study by Goh

et al. [70] examined the question in the context of the ESP Game. Likewise, I explored this

question using the games Cabbage Quest [73] and Gwario [74]. In broad summary, this

research all shows that there are potential tradeoffs between emphasizing collaboration ver-

sus competition. However, for the moment, I withhold further discussion on the question

here; it will be revisited in extensive detail in Chapter 4.

In addition to examining what players are rewards for, one must also consider what

players are rewarded with. Multiple types of feedback—the many kinds of in-game rewards—

exist. As players have different motivations that may cause them to respond more positively

or negatively to different types of rewards, the types of rewards an HCG provides may be

the difference between attracting many versus few players to the game. But what kind of

players, and by extension their motivations, should be considered? Crowdsourcing research
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has found that players who are intrinsically-motivated to solve tasks are often disengaged

by monetary compensation [75] and that curiosity can be a strong incentive for crowd-

sourced work [76]. A common paradigm in HCG design is to consider standard in-game

rewards (i.e., point-based systems) as a replacement for monetary compensation, but the

aforementioned crowdsourcing research suggests that this substitution may not appeal to

all kinds of players. Specifically, players who are dedicated to the task might disengage

with the game if it emphasizes a certain kind of reward, particularly if it is one that they are

uninterested in. The existence of intrinsically-motivated players is not in question; in their

analysis of Foldit, Cooper et al. [9] identify a subset of such intrinsically-motivated players

who are driven primarily by their participation in the scientific discovery process.

So what are the alternatives to the standard point-based systems and player leader-

boards for players who may not find typical feedback systems compelling? In the context

of HCGs, research has explored a variety of different reward systems within the context

of the game. Goh et al. [77] report on utilizing points, badges, and non-gamified statis-

tics in a location-based content sharing HCG. Similarly, I investigate leaderboards, avatar

customization, unlockable narrative, and non-gamified statistics in the game Café Flour

Sack [78]. Additionally, Gaston and Cooper [79] explore three-star reward systems in the

context of Foldit. In broad summary, this research all shows that player audiences may be

affected by how and what kinds of rewards are available, and that players may behave dif-

ferently under different conditions. As before, however, I abstain from further discussion

on the topic; it will be revisited in extensive detail in Chapter 5.

Once again, it is worth noting that Project Discovery is an unusual case study in the

context of feedback mechanics among human computation games. The playable experience

directly integrated in EVE Online rewards players with currency that can be spent within

the greater game world, thus providing a potential motivation for the broader EVE Online

player audience to participate. Direct integration of HCGs into existing (entertainment-

oriented) games remains otherwise unexplored, but the potential to leverage large existing
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player audiences into playing HCGs still remains (provided there are opportunities to en-

able it).

3.4 An Experimental Methodology for Human Computation Game Design

The formal representation described above provides a breakdown of the different kinds of

mechanics in human computation games and their functionality in the human computation

process. Using this division, an HCG designer or developer might be able to express or

consider where exactly in the game loop they might target a specific mechanic and broadly,

how it might affect the completion of the task through play. However, this representation

alone is not enough. How might one explore the space of HCG designs, particularly in a

way that allows the buildup of generalizable design knowledge?

To complement this mechanics representation, I propose using a methodology of con-

trolled A/B design experiments that explore the space of human computation designs. This

procedure can be summarized as the use of between-subjects (or alternatively, within-

subjects) experiments on versions of HCGs with different mechanical variations while

measuring their effects on both the completion of the task and the overall player experi-

ence.

These design experiments should (1) implement a task ideally with a known solution,

while (2) focusing on a single element of an HCG’s design.

First, testing with a known solution permits objective evaluation of task-related metrics

without the conflation of simultaneously solving a (potentially novel) human computation

task. Such known solutions may be the result of pre-solved human computation problems

(e.g., image labeling, which will be further discussed in Section 3.5) or simple tasks (e.g.,

problems requiring commonsense human knowledge or which are easily verified). Data

collection tasks which prioritize a large quantity of (but not necessarily quality) data, such

as those for building training datasets for machine learning algorithms, are also amenable

because they do not require evaluation for quality or diversity.
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Second, focusing only on one particular element of an HCG’s design allows us to un-

derstand exactly what kind of impact that single element may have on both the players and

the task with minimal interaction effects The mechanics representation can be used to as-

sist in understanding where and how the introduction of a varied element (which may affect

one or more of the action, verification, and feedback mechanics) may affect the HCG game

loop.

Most importantly, these experiments should simultaneously evaluate how design deci-

sions meet the needs of both players and the task. Optimizing only for the player may result

in a game with mechanics that do not effectively solve the human computation task if even

if the game is considered engaging. Optimizing only for the task may result in a game that

players do not find engaging (and thus will not play) even if the game effectively solves the

task. I refer to these two axes of metrics as the player experience and the task completion.

Player experience encompasses both quantitative and qualitative metrics such as:

1. Engagement: how players interact with the game or rate their overall experience

with it

2. Retention: how likely players are to continue playing or return to the game after a

single play session

3. Other subjective metrics related to how players interact and perceive the game (e.g.,

preferences, unstructured self-reported feedback)

Task completion refers to (mostly quantitative) task-related metrics such as:

1. Quality: correctness or accuracy or task results

2. Volume: amount of completed tasks

3. Diversity: variation, breadth, or coverage in the domain of task results

4. Rate of Acquisition: speed or delivery measurement of completed task results
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The exact metrics to measure and test for often depend on a variety of factors. For the

player experience, the type of game (and its game elements) may determine or naturally

emphasize what kinds of metrics are important. For example, an HCG with daily challenges

may be more concerned with retention than an HCG intended to be played once (e.g., one

with a single series of challenges or specific tasks to be solved). Likewise, the platform of

distribution may enable or dissuade the collection of certain kinds of player-provided feed-

back (e.g., asking players of a mobile game to provide free form, unstructured feedback

is impeded by the limitations of a touchscreen keyboard). The nature of the underlying

human computation task may also affect which player experience metrics should be priori-

tized. For example, in HCGs with tasks whose solutions necessitate an extended tutorial or

training period for players (e.g., the complex optimizations of Foldit), player retention may

be considerably more important to measure than for HCGs where maintaining a skilled

player base is not necessary or a priority (e.g., the commonsense-knowledge-powered im-

age labeling process of the ESP Game).

Likewise, task completion metrics similarly depend on the game elements, but more so

on the nature of the human computation task. For example, an HCG designed to collect

a dataset for a machine-learning algorithm may prioritize volume of task results whereas

an HCG designed to solve a specific scientific optimization problem may be more con-

cerned with the quality of the task results. (This should not suggest that an HCG should not

consider all of these metrics, but optimizing for all of them simultaneously may be unfeasi-

ble.) Additionally, these requirements may change over time. Task providers may find that

their initial task completion results may not be sufficient or require additional refinement.

Nowhere is this better illustrated than in the evolution of the ESP Game and its variants (a

discussion which I will examine shortly in Section 3.5).

Altogether, this methodology can be broadly summed up as a series of steps.

1. Select a human computation task, ideally one with easily-verifiable or known results.

2. Select a specific or single game element that can be varied. The variation is the
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independent variable in the experiment. I should note that the mechanics repre-

sentation above is designed to help isolate such game mechanics (or potential ele-

ments/conditions) to try and avoid interaction effects as much as possible.

3. Build an HCG designed to test the specified game element with room for variation.

4. Run a between-subjects experiment (AB test)/within-subjects experiment across at

least two versions of the HCG.

5. Measure and evaluate the results of all conditions, focusing on both player experience

and task completion metrics.

The methodology which I enumerate here is not novel in the domain of human com-

putation games, as similar experimental testing approaches have been previously applied

(prior to the work in this dissertation). In one such early instance, Goh et al. [70] com-

pared a non-gamified control application for image labeling against two versions of the

ESP Game, one using collaborative scoring mechanisms and one using competitive scor-

ing mechanisms. Goh et al.compared completion results of the image labeling task, as

well as various user interaction aspects, across all three conditions: the application and the

two game variations. Their experiment and results are further described in the subsequent

section. In another early instance, I conducted an experiment using the HCG Cabbage

Quest [73] to test collaborative and competitive scoring mechanisms. The HCG utilized

a task with a known solution—categorizing everyday objects by their potential purchasing

locations—and controlled experiment compared two in-game scoring mechanisms: one

collaborative and one competitive. Task results were compared to a gold standard answer

set to evaluate task completion metrics while player actions and survey responses were

logged to evaluate player experience metrics. Both Goh et al.’s study and my study follow

this proposed methodology of taking a problem with a known solution or gold-standard

answer set, testing game elements by treating a set of game mechanics as independent

variables, and measuring aspects of both the player experience and task completion.
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While both experiments benefited from having known or evaluated solutions, this is not

a strong requirement. In some cases, a preexisting solution may not be available, especially

if the task of choice is a novel human computation problem. In such an instance, it may

be sufficient to evaluate first for player experience, then follow with late evaluation of task

completion upon verification of initial task results.

3.5 A Case Study: Comparison and Evolution of Image Labeling Games

In this section, I provide a discussion of the evolution of game design for image labeling

human computation games. This examination is intended to demonstrate how one might

utilize the mechanics framework to visualize and discuss the common elements (and adap-

tations) of these HCGs. Because the games in this example also underwent some amount

of empirical evaluation of their specific game elements, I also speak to how these games

partially apply the experimental methodology I proposed and use this to discuss how the

variations and evolution of certain game elements might have impacted aspects of both task

completion and player experience.

As previously discussed in Chapter 2, image labeling—the task of annotating or classi-

fying an image with labels or tags describing its visual contents—is one of the most iconic

and well-studied tasks in human computation games. Figure 3.3 illustrates three HCGs de-

signed to solve the image labeling problem, represented using the mechanics framework.

From left to right are the original ESP Game [2], followed by KissKissBan [69] and Goh

et al.’s ESP Games [70]. Figure 3.3 also colors the mechanical structure of the original

ESP Game in gray, thus highlighting (in white) the additions and adaptations of the two

subsequent iterations.

3.5.1 KissKissBan

Ho et al.’s KissKissBan was motivated by need to generate a wider, more diverse set of

labels for given images. One issue that emerged following the deployment of the origi-
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Figure 3.3: Mechanics breakdown of three image labeling HCGs [2, 69, 70]. On the left
is the original ESP Game, followed by subsequent variations that modified elements of
its original design. The mechanics of the original ESP Game are colored in gray; novel
mechanical variations are colored in white.

nal ESP Game was that the initial label results for an image tended to converge to a cor-

rect, but limited set of labels, often shorter in length due to the time constraints of each

round. While not shown in Figure 3.3, the original ESP Game eventually adopted the use

of “taboo” words—a set of banned words based on repetitive solutions derived from the

initial labelings—that players could not imput, forcing players to generate a more diverse

range of labels. KissKissBan providers an alternative solution to the problem, specifically

by introducing a third player. This third player, known as the “blocker” is tasked with

entering words that he or she might suspect the first two players, known as the “couple,”

may attempt to input. If the blocker inputs a label before both members of the couple input

the same label, the label is considered a “ban” and invokes a penalty on the couple. The

inclusion of this third, adversarial player, therefore encourages the first and second players

to avoid inputting more “obvious” words in favor of different words that the third player is

less likely to immediately consider (and therefore ban).

The inclusion of the third player affects mechanics at all levels of the human compu-

tation game loop as shown in Figure 3.3. The action mechanics are similar to those of
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the original ESP Game; all players input words as potential labels, including the new third

player. However, verification mechanics change substantially. If both couple players agree

on a label (forming a pair), the label is first considered as a potential solution. However, if

the blocker has already suggested the label, this label is considered a banned label. Note

that agreement between a label suggested by the blocker, and either or both of the couple

players constitutes a potential solution to the task.

These results of verification are resolved through the game’s adjusted feedback me-

chanics. The original ESP Game gave both players points for agreement and incremented a

score upon each successful label pair entered. By contrast, the couple in KissKissBan needs

only one such successful label pair to succeed at a round of the game. However, this label

pair cannot be banned by the blocker. If the blocker has banned the label, then the cou-

ple loses five seconds from the round. Should the round time expire without a successful

pairing, the blocker than automatically wins.

KissKissBan thus demonstrates one potential modification of the original ESP Game.

Experimentally, Ho et al. did re-implement a version of the original ESP Game as a com-

parison point. However, the only metric considered in their evaluation was the diversity of

the labels, specifically the number of distinct labels. Their brief results show that the orig-

inal ESP Game (without the “taboo” words) produced nearly half as many distinct labels

as KissKissBan (an average of 6.56 to 11.54). This result suggests that KissKissBan—and

its mechanical variations—may be more effective at promoting label diversity compared

with the original ESP Game, thus resulting in a possibly-compelling alternative. Unfortu-

nately, very little else can be drawn from their conclusions regarding the player experience.

While Ho et al. did conduct a gameplay survey on KissKissBan, it was not administered

for their ESP Game reimplementation. Thus, while players (unsurprisingly) suggested that

KissKissBan was fun, it is impossible to confirm how “fun” it was compared to the original

ESP Game.
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3.5.2 Goh et al.’s ESP Games

Goh et al.also demonstrate a modification of the original ESP Game: a competitive ver-

sion of the ESP Game wherein the two players compete for the highest score, rather than

attempting to maximize a joint score shared by both players. Traditionally, competitive

elements in human computation games are downplayed and restricted to extradiegetic ele-

ments of the game, such as global leaderboards. This choice of design is driven by the con-

cern that competitive elements might distract players from providing quality task results.

However, competitive gameplay elements are considered to be some of the most engaging

elements to (certain kinds of) players. Thus Goh et al.sought to answer the question of how

competitive elements might function in the context of a traditionally-collaborative game.

The changing of the ESP Game from a collaborative game to a competitive game is

shown in Figure 3.3. Of note is that both the collaborative and the competitive versions of

the ESP Game remain very similar in that players take the same actions and verification

of their results is identical (thus the action and verification mechanics remain unchanged).

Instead, the feedback provided to the players is where the two versions diverge. This di-

vergence (i.e., the split between the variations) is reflected as two branching nodes labeled

with the variations (i.e., conditions of the study). In the collaborative version, both players

are rewarded jointly when they agree on a label. In the competitive version, only the first

player to suggest the label is rewarded when both players agree.

Goh et al. then conducted a study using these collaborative and competitive versions

of the ESP Game, comparing them against a non-gamified control application. (Note: I

examine the results of this particular study in greater detail in the following chapter, along

with the discussion of other studies conducted on collaboration and competition in games,

but summarize some relevant results here.) Importantly, Goh et al. examined not only how

these three conditions affected the quality of tag labels (task completion), but also player

perceptions (player experience). One relevant finding was that Goh et al. found no sig-

nificant difference between the quality of labels (tags) between the collaborative and com-
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petitive versions of the game. This finding might suggest that collaborative and compet-

itive feedback mechanics might be interchangeable. Meanwhile, unstructured qualitative

feedback (i.e., commentary from study players) suggested that players found the competi-

tive version more compelling than the collaborative version. However, quantitative survey

feedback on questions such as “challenge,” “learnability,” and “appeal” demonstrated no

significant differences between the collaborative and competitive versions. Taken together,

these results might suggest that the competitive version of the ESP Game might be a vi-

able alternative to the collaborative version, as task quality was not compromised. Such

a change might also be simple to implement, since the changes required only affect the

feedback mechanics.

Summary

Understanding how certain mechanics are modified or extended on top of existing games

can provide potential insight into how these might be applied to other human computation

games. This discussion of image labeling games shows how one might take the changes

utilized by KissKissBan or Goh et al.’s ESP Games, and apply them to games that are

structurally similar to the ESP Game(or any other “input-agreement” inspired games for

that matter). Furthermore, the mechanics framework provides a consistent way to talk and

compare these games. For example, both KissKissBan and Goh et al.’s ESP Games add

“competition” to the ESP Game, but these variations are very different. Furthermore, these

variations address different metrics of the task results: KissKissBan is concerned with label

diversity, whereas Goh et al.’s ESP Games are concerned with label quality (correctness).

Using an experimental methodology that considers both player experience and task

completion can provide task providers with a better understanding of just how certain me-

chanics (or variations) are likely to affect the player experience and task completion. For

example, Goh et al.’s competitive ESP Game demonstrates a change of feedback mechan-

ics that may be interchangeable with the collaborative feedback mechanics (with respect to
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quality task results and player perceptions of the game). Ideally, as more comprehensive

design knowledge is built up, HCG developers might be able to treat these collections of

mechanics as modular when applying them to new tasks and integrating them into new

games—a transfer process which could be accomplished with confidence assisted by an

understanding of the potential effects on the player experience and task completion.

3.6 Conclusions

In this chapter, I describe a framework for breaking down and illustrating the mechanics of

human computation games. This formal representation describes the mechanics of HCGs

based on their functionality in the human computation game loop: action mechanics which

describe the task-relevant interactions through which the player may solve the human com-

putation task, verification mechanics which enable online or offline (or both) validation of

task results, and feedback mechanics which respond to task results by providing players

(and task providers) with information and artifacts based on task results.

To complement this framework, I also describe a methodology of running design exper-

iments that measure aspects of both player experience and task completion. These small-

scale experiments focus on systematically isolating and testing specific game elements in

order to understand the effect of variations on both players and task results.

To illustrate how one might use the framework and methodology to better understand

the impact of design changes on human comptuation games, I present an examination of

image labeling games based on the original ESP Game and its variants. Using the mechan-

ics framework demonstrates how subsequent image labeling games such as KissKissBan

and Goh et al.’s ESP Games explored mechanical variations on top of the original ESP

Game. Using the experimental methodology as a lens demonstrates how their findings

could have affected player experience and task completion.

Taken together, the combination of the mechanics framework and experimental method-

ology offers a way to illustrate and rigorously define how game elements (particularly game
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mechanics) should be considered, composed, and evaluated in HCGs. I will utilize this

framework throughout the entirety of this dissertation to identify and visualize particular

game mechanics that I test and evaluate.
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CHAPTER 4

REWARD FUNCTIONS — COLLABORATION, COMPETITION, AND

CO-LOCATION IN HCGS

4.1 Introduction

As previously emphasized, one longstanding concern in human computation game design is

ensuring that these games are entertaining enough to attract a sufficient audience of players

to merit the overhead of solving a human computation task using a game as the completion

interface. Developing a game is an expensive, time-consuming process; compared with

designing a web form to distribute a task on an online crowdsourcing platform, game de-

velopment incorporates not only technical (i.e., engineering) expertise, but also aesthetic,

design, production, and even business expertise to produce a fully-functional artifact. In

addition, while better development tools and more available platforms for game distribution

(i.e., mobile devices, consoles, etc.) can facilitate easier HCG development and distribution

(in particular for task providers who are not often professional game designers), these same

benefits also have resulted in an explosion of more and more games—all of which compete

for players’ time and attention. So while early HCGs such as the ESP Game may have been

able to benefit from novelty, modern HCGs can no longer afford to be experiences focused

solely on solving the human computation task. Ensuring that these games are also com-

pelling experiences to play and engage with now becomes a determining factor in whether

or not the underlying human computation problem can be solved sufficiently.

As discussed in previous chapters, one longstanding question in human computation

game design is whether or not elements of successful or iconic entertainment-oriented

games can be adapted into HCGs. The motivation for this question is driven by the re-

ality that human computation game developers are typically not professional or industry
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game developers. Barring a collaboration with industry developers, a task provider with no

game development experience might first opt to look at existing HCG literature for inspi-

ration. Alternatively, if a task provider is actually concerned with ensuring that their game

is entertaining enough to attract players, they may instead turn towards modern games and

design resources for inspiration. But while game design is rapidly becoming a formalized

field of study, most game design programs and resources focus primarily on entertainment-

oriented games. Thus, it is unclear if simply taking game elements from popular games is

enough—and more importantly, not detrimental—to the process of solving the human com-

putation task. At worst, adding too many game elements optimized for a positive player

experience or engagement may distract from the human computation task, yielding a game

that fails to achieve any useful results.1

This problem is exacerbated by the fact that solving a human computation may be a

short or mundane procedure. Therefore, game mechanics which facilitate task completion

may risk ending up equally short or mundane, which is orthogonal to most player expecta-

tions of the game being engaging. Given that much of the foundation of HCG design comes

out of academic research in which a game was developed to solve a novel human compu-

tation problem (wherein the game itself was argued to be the research contribution), I posit

that task providers in such instances were more likely to avoid any game elements that

could compromise the task completion. 2 Therefore, I reiterate that it is absolutely neces-

sary to explore this problem of adapting game elements—specifically game mechanics—

from successful entertainment-oriented games, particularly in scenarios where solving a

novel human computation problem is not the priority.

I propose that one avenue of exploration is to examine what measures existing human

computation games have taken to deliberately stymie “adversarial” player behavior—that

1For this reason, a common, risk-averse paradigm for low-budget HCGs is to copy an existing HCG (e.g.,
building an output-agreement clone of the ESP Game) and then to recruit enough college-age participants to
yield a moderate solution.

2Not to the mention, between conference page limits and a general aversion towards publishing nega-
tive results, valuable anecdotal evidence of failed mechanics or game designs is likely omitted from these
publications.
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is, behavior considered orthogonal to task completion. Much of HCG design is based on

anecdotal experiences from developing these games, however modern games have changed

dramatically since many of these design recommendations were made. As games (both

for entertainment and human computation) become more sophisticated and the audiences

of players interacting with these games continue to evolve, it is entirely possible that that

anecdotal HCG design tenets no longer hold true for HCGs (or may differ in utility depend-

ing on the kind of task or selected game elements).

4.1.1 Collaboration versus Competition

Crowdsourcing or human computation is an inherently collaborative process, in which

consensus between task solvers and/or experts (not to mention systems built to emulate

experts) is frequently required to validate task solutions. Collaborative consensus therefore

manifests as a verification mechanic in many games, where the game helps to facilitate

verification such as relying on player agreement in the ESP Game [2] or through the refining

process of recipes in Foldit [4]. Additionally, as previously mentioned in Section 3.3.2,

collaboration also influences much of the feedback to players. Players may be rewarded first

for participating in the human computation process (which is by definition, collaborative),

not to mention for any collaborative behavior they demonstrate or successful (collaborative)

verification they accomplish.

However, anyone who has interacted with modern entertainment-oriented games might

be familiar with just how many competitive elements these games contain. The presence of

game rewards such as numerical scores, leaderboards, level-up systems, and customizable

items for in-game avatars, facilitates comparison between players and therefore provides

players with a means to compete or outperform each other. At the highest levels of play,

the most popular games in e-sports belong to fiercely competitive genres such as battle

royale games (e.g., Epic’s Fortnite) and MOBAs (“multiplayer online battle arenas” such

as Riot’s League of Legends). In all of these games, players are rewarded primarily for com-
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petitive performance, even in games where collaboration (e.g., team support in Blizzard’s

Overwatch) may be necessary.

Researchers have studied the effects of player collaboration (also described interchange-

ably as “cooperation”) in the context of multiplayer games. Seif El-Nasr et al. evaluated

and identified common patterns in cooperative play [46]. Other studies have since looked

at how collaboration and its converse—competition—affect player experience metrics in a

broad variety of game types and genres: motor performance games [80], educational math

games [81], and co-located multiplayer games [82].

As previously described in Section 3.5, HCG research has also explored variations in

collaboration and competition. KissKissBan [69] modified the original collaborative ver-

sion of the image-labeling ESP Game [2] by introducing an adversarial third player to

create competitive mechanics that yielded more diverse label results, Goh et al. [70] con-

ducted their comparison of collaborative and competitive version of the ESP Game versus

a non-gamified control application. After measuring both the task results (e.g., the num-

ber and quality of image labels) and various player experience metrics (e.g., aspects such

as appeal, challenge, social interaction), they found no significant differences in task re-

sults. Players did, however, find the competitive version more compelling to engage with.

Likewise, my colleagues and I [73] conducted a study comparing collaborative and com-

petitive scoring systems in the context of a (simulated) networked multiplayer HCG called

Cabbage Quest. We found no significant differences in completed task accuracy, however

players found the competitive system more engaging. However, despite all of these inves-

tigations, HCGs tend to avoid the inclusion of competitive elements beyond the form of

external leaderboards (which are typically isolated from action or verification mechanics

of solving the task) in order to preemptively minimize any negative effect such elements

might have on task completion.

Taken together, the prevailing game industry practices and the results of these many

studies—both for entertainment-oriented games and more specifically for human computa-
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tion games—highlight two key points. First, players do find competitive games engaging,

often more so when compared to collaborative games, a result that is not entirely unex-

pected given the demographics (i.e., students experienced in playing games) audiences in

these studies. Second, these results demonstrate that competitive game mechanics may not

actually adversely affect solving the human computation task. This notion runs counter-

point to concerns that competitive game mechanics might compromise the quality of task

results through distracting gameplay.

4.1.2 Collusion

One of the defining characteristics of the original ESP Game and other games in its lineage

is that while these games facilitate and require multiplayer mechanics, these synchronous

players remain anonymous from each other and unable to directly communicate through in-

game means. The justification given for these limitations on player communication is that

it is absolutely necessary to prevent player “collusion”—the ability for players to jointly

communicate and then optimize for game objectives orthogonal to the task, such as individ-

ual players’ scores [50, 1]. For example, in the ESP Game, a degenerate strategy employed

by two players able to “collude” would be to (verbally) agree between themselves to enter

the same, shortest possible answers for every label (e.g., the letters “a,” “b,” “c,” etc.). This

procedure would then ensure that together, both players could enter in and agree on as many

labels as possible within the given time period, regardless of whether or not these labels

would actual describe the image in question (e.g., a “cat,” a “helicopter,” etc.). If HCGs

(accidentally) enabled such strategies, task providers would then have to grapple with a

percentage of players focused solely on maximizing task-orthogonal objectives (or worse,

deliberately providing incorrect solutions), which would risk tainting and ultimately com-

promising the quality of the final task results. This concern is justified particularly given

that HCGs do not always have the luxury of an established, (and for some tasks, a trained)

player base or an industry-scale marketing campaign to attract users, therefore relying on
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smaller audiences where every solution may count.

However, many entertainment-oriented games which support multiplayer make no such

efforts to stymie player communication. Cooperative games which support local (i.e., co-

located) multiplayer will often present players with side-by-side views of play on the same

screen, allowing players to see another player’s progress if needed. Likewise, cooperative

games played across networked connections will typically support communication through

in-game mechanics (i.e., in-game voice chat); if not, external communities and tools are

often readily available via websites or through (text/audio/video) chat software during play.

Research on co-location in digital games has validated that players behave differently

when playing with or against other human players, compared with singleplayer experiences

with or against artificial agents. For example, Webhe and Nacke [83] conducted a study of

the effects of co-location on players, finding that players demonstrated higher pleasure and

perceived arousal when in co-located multiplayer conditions than in singeplayer conditions.

These findings echo those of Mandryk and Inkpen [84], in which players found co-located

multiplayer gameplay with a friend to be more engaging—more “fun,” less frustrating, and

less boring—than the same (singleplayer) experience against an artificial opponent.

Additionally, studies of co-location have also been conducted in the context of educa-

tional math games [85, 81]. These studies showed that players demonstrated higher en-

gagement in co-located multiplayer experiences compared with singleplayer experiences.

Notably, no differences were found in educational outcomes. As educational math games

are analogous to human computation games in their pursuit of a secondary design goal (i.e.,

enabling positive learning outcomes), these results suggest that while co-location might

not improve secondary objectives, it might also not negatively affect such outcomes. Not

to mention, for some HCGs, permitting external (offline) communication often yields the

refinement and verification of task solutions, such as recipe sharing in Foldit [9]. These re-

sults suggest that optimistically, allowing players to sit next to each other and communicate

without restrictions might be able to improve task completion metrics, outweighing any
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negative results from players maliciously attempting to optimize for non-task outcomes.

4.1.3 Non-Puzzle Human Computation Games

A human computation task begins with an unknown input and asks players to provide a

solution to a question about that input. A natural mapping of this procedure to game me-

chanics is to frame each task as a level, a challenge, or a game round within a puzz le

game, or a game with puzzle-like elements. Many of these games, which containing other

game elements, still involve deduction or reasoning, such manually searching for a desired

protein configuration in Foldit or determining what the best location is to take a photo in

Photocity. While these games may be solving different tasks and therefore present play-

ers different kinds of task input (e.g., rasterized pixels/picture data, simplified 3D models

of chemical structures, etc.), these games are all similar in that the action mechanics of

these games correspond to puzzle-solving mechanics. However, mechanically (and aes-

thetically) these games rarely resemble their entertainment-oriented counterparts because

of this additional focus on solving the human computation task.

From humorous text-based adventures told through a terminal window to hyper-realistic

flight simulators raytraced with the fastest graphical hardware, modern entertainment-oriented

games range across a wide variety of genres and types. So then why is it then, that HCGs

are often limited to what players might describe as puzzle games, which rarely look or play

like their entertainment-oriented counterparts? One potential reason is that task providers

typically do not have the development resources, the budget, or the training that industry or

even independent game developers do, which often limits the aesthetic and design quality

of these games. Another reason is the fear that the addition of any game mechanics that

do not map directly to the task (i.e., mechanics which are “non-orthogonal” [55] or are not

“isomorphic” [54]) will distract from the problem solving process, thus compromising the

results. Even if a task provider wishes to look towards entertainment-oriented genres of

games, there are no guarantees about how a game mechanic known for resulting a positive
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player experience may affect task completion due to a lack of design resources.

The result is that very few efforts have accomplished making a human computation

game look and play like a non-puzzle, entertainment-oriented game. Notable exceptions to

these include OnToGalaxy [22] and the integrations of Project Discovery [24] and Phylo [30]

into EVE Online and Borderlands 3 respectively. Both Project Discovery and Phylo demon-

strate the potential to leverage very large, existing player bases, which suggest that players

sufficiently dedicated to a certain game or certain genre of game might be enticed into

participating provided that the game was familiar (or looked like such). Thus, it could be

entirely possible that making an HCG look like an existing game or modeling it after an

existing popular game genre might be able to yield more players or optimistically, improve

the quality of the task results.

4.1.4 Summary

Ultimately, the work in this chapter is motivated by three questions: First, how do compet-

itive reward mechanics affect task completion and player experience compared with more

traditional collaborative reward mechanics? Second, does collusion between players actu-

ally have an adverse effect on task completion and player experience? Third, can a human

computation game look and play like an entertainment-oriented game; alternatively, can

the mechanics from a successful entertainment-oriented game be adapted to a human com-

putation game? (This last question is proposed as purely exploratory; I do not prescribe the

answer is a contribution of this work. The implementation in this chapter demonstrates that

yes, this is possible, but the full, proper comparison and evaluation is beyond the purview

of this dissertation.)

In this chapter, I describe a game, Gwario, which was developed to explore these ques-

tions about mechanics and elements of human computation games. Specifically, Gwario ex-

plores collaborative and competitive scoring mechanics, as well as singleplayer and co-

located multiplayer mechanics—all while looking like a popular platformer game. I then
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describe a human-subjects study using pairs of players interacting with different varia-

tions/versions of Gwario to examine these questions. I also provide the anecdotal details

of a short survey regarding the research questions, which was sent to HCG experts (i.e.,

researchers and developers) independently of this study. I then summarize and discuss the

results of the primary study as four design implications regarding these three questions.

Throughout this chapter, I use the language of the mechanics framework and follow the

experimental methodology for testing game mechanics described in the previous chapter.

I wish to highlight that while this dissertation focuses primarily on feedback (reward)

mechanics, the latter two questions capture aspects of verification and action mechanics

respectively. I opt to address and discuss these questions as part of this chapter to present

the most comprehensive set of findings achieved with Gwario.

This chapter consists of four parts:

1. A description of Gwario, a game developed to study the three questions proposed

above.

2. A human-subjects study using Gwario and its results.

3. A small survey of HCG experts regarding the mechanics explored in the study.

4. Four design implications drawn from the results of the study.

For reference, the peer-reviewed version of this work (in its entirety) was published as

a full conference paper at the Foundations of Digital Games Conference in 2017 [37]. A

preprint of this work can also be found on arXiv [86].

4.2 The GWARIO Game

To test all of these hypotheses about various game mechanics: singleplayer versus mul-

tiplayer, collusion, and collaboration versus competition, my colleagues and I developed

a custom, human computation game called Gwario. Gwario—a portmanteau of the terms

60



“GWAP” and “Mario”—is at its core, a 2D platformer game inspired by the original Super

Mario Bros. (hereby abbreviated as “SMB” for this and all future chapters).

Super Mario Bros. asks players to control a player avatar—the titular Mario—as they

attempt to navigate and clear a series of 2D sidescrolling levels without falling into gaps and

colliding with too many enemies. As Mario, the player may move left and right, and may

also jump in order to avoid gaps in the level topology or to land on top of enemies (thereby

eliminating them from the level). Various, collectible “powerup” items are also hidden in

the level to assist the player. In addition to the primary goal of clearing the level by reaching

the end, the game presents players with a secondary objective: increasing a numerical score.

This score increases as players eliminate enemies, collect powerups, and (most importantly

for this discussion) collect coins scattered throughout the level. However, maximizing this

score is effectively optional since it provides no explicit (i.e., mechanical) benefit to the

player’s ability to complete the levels or the overall game.3

One immediate observation is that Gwario does not resemble a typical human compu-

tation game. Traditionally, HCGs tend to take the form of cooperative puzzle games [50] or

gamified interfaces designed specifically around the particular human computation task [4,

87]. HCGs are rarely classified into the popular genres of games designed purely for enter-

tainment (e.g., “role-playing games” or “action-adventure games”). A singular exception

to this is OnToGalaxy [22], an arcade shooter game whose authors (i.e., developers) em-

phasize the need to further explore this specific issue as part of their motivation behind the

feel and play of their game.

The decision to use an existing game—specifically SMB—as inspiration for a human

computation game was prompted by the fact that platformers in the Mario franchise are

considered design exemplars not only for the genre of platformer games, but among all

digital games. These games and their characters are both iconic and familiar to players.

Additionally, these games are well-studied by video game scholars (e.g., Anthropy and

3Games in the Mario franchise also do award players for specific scores, such giving the player an extra
life for every 100 coins they collect.
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Figure 4.1: A comparison of the original level from Super Mario Bros. (top) and the edited
level in Gwario (bottom), with item/enemy additions in blue and deletions in red. Coins
have been replaced with sprites of everyday items.

Clark [8] provide one of many studies into the design of the iconic “Level 1-1” of the

original game) and utilized as environments for testing game-related research [88].

In the context of human computation game research, choosing a game as well-studied

as SMB is analogous to the previously-proposed experimental methodology of selecting a

human computation task with a known solution to avoid the complications of solving a

novel human computation problem while simultaneously attempting to answer a research

hypothesis about HCG mechanics. Here, the game mechanics have been deliberately cho-

sen to ensure that the resulting HCG’s mechanics might be as entertaining as possible

initially. However, HCGs are not typically designed to adapt mechanics from commercial

or entertainment-oriented games. This adaptation necessitated changes to the original me-

chanics. To ensure that Gwario still functions as an HCG despite its origins as a platformer

game, my colleagues and I used von Ahn and Dabbish’s classical definition of HCGs [50]

as our design focus: “[games] in which people, as a side effect of playing, perform tasks

computers are unable to perform” with a focus on “useful output.” The subsequent sections

now describe Gwario’s adaptation and how it adheres to this definition.

4.2.1 Adapting Super Mario Bros. to an HCG

The original Super Mario Bros. does not have an implementation for, and therefore is

not playable on, currently-available modern computer hardware, barring (typically hob-

byist and unofficially-supported) software emulation of discontinued console hardware.

Thus, Gwario is implemented in a modern game engine [89], which in turn was based on

both the code of an older “Infinite Mario” engine [88] and personal observations of the
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original game (in emulation). In order to better match the expectations of a modern au-

dience, Gwario uses the equivalent visual components (i.e., 2D sprite sheets) from a later

game in the franchise, Super Mario World, rather than using or mimicking the original

visual elements from the original SMB.

As previously mentioned, the original Super Mario Bros. also does not function as a

human computation game. To adapt it into an HCG, I selected a simple human compu-

tation task—per the methodology previously described in Chapter 3—with a known solu-

tion: matching everyday items to a set of purchasing locations (e.g., one might purchase

a “breakfast cereal” item at the “supermarket”). This task was used in prior HCG work

comparing game mechanics [73] and provided an existing gold-standard answer set. As

the answer to these problems is already known, it thus becomes possible to measure the

accuracy of the task results objectively, without attempting to simultaneously solve a novel

human computation problem. The answer set contains around 60 items, each of which can

be assigned to one or more of three categories: “supermarket,” “department store,” and

“hardware store.”4

To incorporate solving this task in Gwario, my colleagues and I altered Super Mario

Bros.’s existing secondary objective by first, replacing collectible coins with images (i.e.,

2D sprites) of purchasable items, as seen in Figure 4.1. Next, we altered the game to assign

players a purchasing location (i.e., a category) at the start of each level. Players are then

asked to explicitly collect only those items which can be bought at their given location.

Visibly, this location is displayed at the top of the level screen as a reminder to the player.

Each playable game level has twelve items, four of which respond to one of three pur-

chasing locations (“supermarket,” department store,” and “hardware store”). This selection

ensures that there is always a consistent set of correct answers in each level. Players, how-

ever, are not informed of this distribution in order to avoid compromising task results.

Just as players in Super Mario Bros. receive points towards their total score for col-

4The original answer set used in prior work contained a fourth category—“pharmacy”—but it was omitted
from this set as only corresponded to two purchasable items.
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lecting coins, Gwario players receive points for collecting items. However, the scoring

function for item collection is changed to reflect the process of solving the task (as op-

posed to simply bestowing players a point for collecting a coin or powerup item). First, for

collecting any item, a player receives some initial “base” points, which reward the player

for participating in the human computation process (i.e., players are going out of their way

to collect items, even if it does not assist level completion, and this necessitates positive

feedback). Additionally, if a collected item correctly corresponds to the player’s assigned

purchasing location, the player then receives additional points, which reward the player for

providing the correct answer. While players are told initially that they receive more points

for correctly collecting items, they are importantly not informed how many points they

receive for collecting an item when they collect it. Furthermore, the player’s total score,

unlike that in SMB are, is not displayed to the player until the completion of the level.

While this lack of immediate feedback might be perceived as player-hostile, withholding

the player’s score until the end of the level is deliberate and helps to ensure that players

to not attempt to infer item correctness or incorrectness by reasoning over which or how

many items they have already seen.

Just as in Super Mario Bros., a level ends when the player either reaches the endpoint

of the level (i.e., the rightmost edge of the level content) or fails to complete the level (by

dying) after three “lives” (attempts). Failure to complete the level results in a game over

screen at the end of the level, as opposed to a screen which displays the player’s score. Note

that failure does not necessarily render the task result unusable. At worst, the task results

are incomplete for any items that the player could have collected (or likewise avoided) in

portions of the level that the player was unable to reach. Any results collected prior to the

player’s failure are still available for verification.

Gwario contains one additional, but significant design depature from the original Super

Mario Bros.: the addition of a simultaneous, two-player (multiplayer) game mode. The

original Super Mario Bros. contained a “multiplayer” mode for the game, but the two
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players do not interact with the game simultaneously. 5 Instead, only one player avatar is

present on the screen at one time, and players manually switch control of the game when

the avatars change. While Gwario’s multiplayer mode is a significant depature from that

of original game, it was based on later multiplayer mode implementations in the franchise,

such as that of the game New Super Mario Bros.

In Gwario’s multiplayer mode, the first player controls the “Mario” avatar and the sec-

ond player controls a “Luigi” (Mario’s brother) avatar. Both player avatars are present

on the same screen at once and the game’s camera view of the level centers on the first

player’s Mario avatar. This paradigm of using a single camera view, as opposed to games

that show two screens side-by-side (i.e., splitscreen) is used by modern games in the Mario

franchise.6

Regarding the human computation task, each player in multiplayer Gwario is assigned

a different purchasing location. This purchasing location is set manually (i.e., by the ex-

perimenter) for each player at the beginning of the level. In the context of the experiment

described below, this purchasing location is made to be the same location assigned to that

player for the singleplayer mode of the game (i.e., Player 1 will be assigned “supermarket”

both in their singleplayer and multiplayer playthroughs of the game).

Moreover, Gwario’s multiplayer mode contains two versions of scoring mechanics:

collaborative and competitive, which correspond to two experimental conditions elabo-

rated on below. The differences between these two versions lie in the scoring function and

the visual presentation of the players’ scores. In the collaborative version, both players’

individual scores are combined together at the each of each level. In the competitive ver-

sion, each player’s score is tracked separately. At the end of each level, players are then

presented their scores. In the collaborative version, the end level screen displays the single,

combined score both players worked to accomplish, whereas in the competitive version, the

5The original Mario Bros. game, however, did include a two-player game mode with both player avatars
on the screen at the same time.

6While this design choice arguably biases the game in favor of the first player, I chose to remain faithful
to the decision made by the Mario franchise game designers.
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Figure 4.2: The breakdown of Gwario’s mechanics. The singleplayer and multiplayer ver-
sions of the game are split for clarity, while the two versions of multiplayer (collaborative
versus competitive scoring) are noted using boldfaced braces.

end level screen displays each player’s score on a separate line to allow for visual compari-

son. The collaborative version, with its single joint score, thereby encourages both players

to work together to maximize their score. Meanwhile, the competitive version, with its

separate, comparable scores, encourages both players to compete for the higher score.

Figure 4.2 shows the full comparative breakdown of the mechanics between the single-

player and multiplayer versions of Gwario using the mechanics framework from Chapter 3.

The diagram demonstrates that while the basic action mechanics are the same between the

two versions, the multiplayer version adds not only another player, but also tracks addi-

tional verification mechanics—the ability for players to verbally communicate as a conse-

66



quence of co-located play. Likewise, the feedback mechanics in the multiplayer version

have been extended to allow for another player and a choice of either a collaborative or

competitive scoring function.

4.2.2 Game Levels

The levels of the original Super Mario Bros. are among some of the most played and

iconic platformer environments in gaming history. However, using these levels directly

in Gwario presents a potential problem, as experimental participants who may have pre-

viously played Super Mario Bros. or any similar game in the Mario franchise would than

have an advantage over participants who might not. Conversely, given the expectations of

quality game design associated with games in the Mario franchise, it is likewise unrealistic

to assume that researchers (i.e., experts in game research, but not necessarily professional

game design) might be able to design new game levels of equivalent or expected quality.

Thus, Gwario uses four levels from Super Mario Bros: The Lost Levels, a Japan-exclusive

sequel to the original SMB, which would be less familiar to a Western audience.

These four levels underwent some transformations in order to implement them in Gwario.

First, the existing coins in each level were changed to sprites of unique purchasing items.

Next, items that were spaced too closely together were either removed or respaced, as every

item needed enough space to be avoidable by a player (i.e., by jumping over or taking an

alternative route through the level). Then, in order to ensure uniformity between the levels,

additional items were added to levels that contained less than twelve items. These new

items were added in locations similar to those that existed in the level initially, as demon-

strated in Figure 4.1. At the end of this process, each level contained an equal share of

coins-changed-to-items from the three purchasing locations (“supermarket,” “department

store,” and “hardware store”).

Super Mario Bros.: The Lost Levels is somewhat notorious among players for its intense

difficulty. Based on preliminary personal and colleagues’ playthroughs of the game, it was
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Figure 4.3: A flowchart of the methodology used in the Gwario study.

anticipated that this difficulty would negatively impact any study results. To scale down the

difficulty, a serial of initial changes were implemented: removing aerial enemies from the

level entirely and replacing especially difficult jumps by additional additional platform or

floor blocks.

To address any concerns about the appropriateness of these design changes, I conducted

a pilot study with ten subjects in five pairs in which subjects played through the levels and

reported on their difficulty. Based on both reported and observational results of the pilot—

which indeed verified that these levels were still considered very challenging—the levels

were then adjusted even further. First, the maximum jump distance between particularly

wide gaps was decreased by adding even more blocks around gaps. Next, powerup items

were added to the beginning of each level to give players additional assistance. Finally, the

density of enemy groups was lowered as not to overwhelm players with large numbers of

enemies. An example of one of the final levels in comparison to its original is shown in

Figure 4.1. One should note that this level already contained powerups (i.e., hidden within

the question mark blocks) at the beginning, so no additional powerups were added for this

particular level.

4.3 Methodology

Equipped with Gwario’s singleplayer and (two) multiplayer modes, my colleagues and I

conducted a within-subjects study with pairs of participants. The study consisted of two

round of gameplay, followed by surveys after each round as well as a final survey following
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both rounds. Each round of gameplay used a different game version, either singleplayer or

multiplayer, and within the multiplayer condition, either the collaborative or the competi-

tive version. Figure 4.3 shows a visualization of the overall study flow.

A primary consideration in the study was to emulate a casual play experience as much

as possible. This factor guided many of the experimental design choices, such as tracking

collusion by hand instead of relying solely on microphones, utilizing post-play, external

surveys instead of building these intrusive measures into the game, and tracking whether

or not pair of participants were natural or artificial. Regarding this last item, participants

were able to sign up in pairs or they could sign up individually to be paired by the exper-

imenters. Pairs of participants who signed up together are distinguished as self-selected

or natural pairings, as the participants were more likely to have been acquainted prior to

the experiment. Pairs of participants who were scheduled together by the experimenters

are referred to as artificial, as such participants were unlikely to have paired up to play a

co-located game together in a natural setting.

Upon arrival for the study, pairs of participants were randomly assigned to play either

the singleplayer or the multiplayer round of the game first. For the multiplayer round, the

pair was also randomly assigned either the collaborative or the competitive version. For

each round, participants played two of the four levels (the previously-described, adjusted

game levels from Super Mario Bros.: The Lost Levels). To reduce the effects of ordering

and difficulty, these levels were randomly assigned across the conditions upon arrival: two

levels for the singleplayer round (in a random order) and the remaining two levels for the

multiplayer round (also in a random order). Each participant played the same two levels, in

the same order, for the singleplayer round; both players played the same two levels together

during the multiplayer round. This random ordering of game conditions and levels, as well

as the choice of collaborative or competitive multiplayer, was generated using a simple

computer script to avoid bias.

For the singleplayer round, participants were seated at separate computers and each
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played through the two singleplayer levels in isolation. For the multiplayer round, the

participants were seated at the same computer and presented with a single screen for game-

play (i.e., no splitscreen). During the multiplayer round, participants were explicitly told

the victory condition—either collaborative or competitive scoring—and were also told that

they could communicate if they so desired.

During the multiplayer round, the individual conducting the study would tag whether

or not collusion (i.e., any discussion of the task) occurred between the participants, as well

as any relevant quote(s). These quotes were later verified as instances of collusion by a

second individual, with disagreements resolved via further discussion. A verified example

of collusion would be players discussing what category a particular item belonged to (e.g.,

“I believe that’s your category, not mine.”) whereas communication unrelated to the task

was not classified as collusion (e.g., “Oops, I fell into a pit.”) and excluded.

There were no time limits imposed on play, however as previously described, partic-

ipants were given three “lives” or chances to restart upon death for each level. In the

multiplayer version, if one participant exhausted all of their lives, the remaining partic-

ipant was still allowed to progress through the remainder of the level alone (while their

life-exhausted partner watched). As previously mentioned, even if a participant exhausted

all of their lives, their task results remained usable and level completion was not tied to

anything but player experience and satisfaction.

Finally, after each round, participants were asked to answer several survey questions

about their experience with the just-completed round. After both rounds, participants were

given a final, longer survey to establish demographic information and to compare their

experience across both rounds.

4.3.1 Evaluation Metrics

To understand the efficacy of Gwario’s game mechanic variations, the evaluation focuses

on metrics concerning both the player experience and the task completion. This section

70



outlines precisely what data and information were gathered.

For evaluating the player experience, I report on data from the post-round and the post-

game surveys, as well as logged gameplay events and observations of collusion. Regarding

the surveys, participants were asked Likert-like questions on a scale of 1-5 about their per-

ceived fun/engagement, challenge, and frustration with the experience after each round (of

singleplayer or multiplayer). After both rounds, players then provided comparative rank-

ings between the two conditions (i.e., between singleplayer and multiplayer) for perceived

fun, challenge, frustration, and finally overall preference.

For evaluating the task completion, I report on additional results from telemetry logging

(i.e., data recorded from user interaction events in the game). Task answers were logged

throughout gameplay and compared against our gold-standard answer set to determine cor-

rectness. A player’s overall accuracy at the task was then calculated as the percentage of

their correctly-collected items over all collected items (e.g., if a player collected six of ten

items correctly, their overall accuracy would be 60%). In addition to this information, the

game logged the number of tasks completed overall, as well as the times (in seconds) it

took players to answer tasks and to complete the levels.

4.4 Results

My colleagues and I collected results from 64 individuals in 32 pairs over a two week

period. We advertised for participants in two undergraduate computer science courses (and

further via word of mouth). 18 of these participants self-identified as female; 46 self-

identified as male. Nearly all participants reported themselves between the ages of 18

and 24, with three participants reporting age 25 or older. 73% percent of participants

reported that they played games regularly; all but 10 of these participants reported playing

a platformer game before. While this distribution is admittedly a somewhat homogenous

mixture of participants, I contend that the majority of participants having played games

before is an acceptable stand-in for a population of players who would play a game that

71



looks and feels more like a conventional, entertainment-oriented game than a traditional

HCG. Additionally, seventeen participants reported having tried or played an HCG before,

which represents a significant number of experienced, or at the very least well-informed,

HCG players.

The study focused on co-located pairs of subjects. 15 of the 32 pairs were reported

as natural. As previously described, a natural pairing meant that both individuals signed

up to take the study together purposely. The remaining seventeen pairs were artifical,

consisting of participants who signed up to complete the study without a predetermined

partner. These singular participants were randomly assigned to an available partner based

on their available time slots.

For the multiplayer rounds, 8 natural pairs were randomly assigned to the collaborative

version and the remaining 7 to the competitive version. Similarly, for the artificial pairs,

8 pairs were randomly asssigned to the collaborative version and the remaining 9 to the

competitive version.

While there was concern that differences (i.e., prior acquaintanceship with a partner)

might impact the results, no significant differences were found between natural and artifi-

cial pairs of participants across any of the subjective (i.e., player experience) or objective

(i.e., task completion) metrics described below. Additionally, no significant differences

were found when accounting for participant gender.

4.4.1 Subjective Metrics—Player Experience

Surveys were used to collect participant responses on subjective experience for self-reported

fun (i.e., engagement), frustration, and challenge with five-point Likert-like ratings (1 be-

ing the least and 5 being the highest). Overall experience preference was collected as a

comparative ranking between singeplayer and multiplayer (e.g., of the form “singleplayer”

was “more challenging” than “multiplayer”).

No significant differences were found for subjective items with Likert-like ratings (us-
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Figure 4.4: A violin plot of fun/engagement rankings across the Gwario gameplay vari-
ations from 1.0 (most) to 0.0 (least) fun/engaging. The diameter across the length of the
violin indicates the number of results of that value—showing subjects preferred multiplayer
to singleplayer. The dark bar in each violin runs between the first and third quartiles.

ing the paired Wilcoxon Mann-Whitney U test), except in one case. Specifically, partic-

ipants in the competitive multiplayer condition rated the multiplayer round to be signifi-

cantly more challenging than the singleplayer round (p < 0.01, U = 365.5).

The ranking data were much more discriminatory. As shown in Figure 4.4, participants

across both multiplayer conditions ranked multiplayer as more fun/engaging than single-

player. Additionally, participants overall preferred multiplayer to singleplayer (using the

paired Wilcoxon Mann-Whitney U test, (p < 0.05, U = 170)). Finally, participants in

the competitive multiplayer condition ranked multiplayer as more challenging than single-

player (p < 0.01, U = 17.5), which reinforces the previous Likert-like challenge rating

results from participant surveys.
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4.4.2 Objective Metrics—Task Completion

Several objective metrics were used to measure participant performance at the human com-

putation task: the per-task accuracy (i.e., the percentage of correct task assignments to

total tasks in a given round), the average number of tasks completed, and the time it took

a participant or pair of participants to complete a level (successfully or not). Across all

study conditions, participants had an average 81.7% per-task accuracy. Additionally, par-

ticipants completed an average of 4.4 tasks per attempt, where an “attempt” corresponded

to a player’s life (from the moment they appeared in the game level till the moment they

either completed the level or died due to environmental hazards). As participants were

given three lives for each level, these numbers taken together with other metrics and factors

(e.g., the fact that each level contained twelve items—possible tasks) suggest that the par-

ticipants were able to perform fairly well at the task, despite having to also simultaneously

play through the game level.

Table 4.1: A summary of the objective results of the Gwario study across the three game
conditions.

Singleplayer Collaborative Competitive
Accuracy Avg. 82% 86% 77%
Time(s) Avg. 212 612 505
# of Tasks Avg. 22 16 14
# of Deaths Avg. 4.9 4.7 5.1

Table 4.1 summarizes these objective metrics by study condition. From these averages,

some distinctions between the two multiplayer and the singleplayer conditions emerge.

Focusing first on task accuracy, collaborative multiplayer has the highest average, how-

ever there is no significant difference between any of these distributions. Within the two

multiplayer conditions, however, there is a significant difference between the collabora-

tive and competitive conditions: players in the collaborative condition had significantly

higher task accuracy than in the competitive condition (using the Wilcoxon Signed Rank

test (p < 0.05)).
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Figure 4.5: The level completion times across the singleplayer and both multiplayer condi-
tions in the Gwario study.

Focusing next on average times, the results of Table 4.1 might suggest that collabora-

tive playthroughs of the levels took much longer than either singleplayer or competitive

multiplayer playthroughs, but this is not true for most cases. Figure 4.5 demonstrates that

collaborative playthroughs had a far wider distribution of times and a high upper bound,

but that the median collaborative time is below the median time.

The third row of Table 4.1 also shows the average number of tasks completed across

both levels within the condition (i.e., not the average number of tasks per attempt). Here,

participants accomplished the most tasks in the singleplayer mode, with collaborative and

competitive multiplayer second and third respectively. Finally, the fourth row shows the

average number of deaths per participant across levels. Despite participants consistently

rating and ranking competitive multiplayer as more challenging than singleplayer, no sign-

ficant difference in the number of deaths was found between the two conditions.

Additional analysis was conducted to better understand the variance in accuracy be-

tween the collaborative and competitive conditions. Due to the non-ordinal nature of the

data, an ANOVA with permutations was used to consider various factors: multiplayer con-
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dition, whether or not the pair was natural or artificial, all demographic information, and

collusion—whether or not the participants spoke about the task during gameplay. Of these

factors, collusion was the only significant predictor of accuracy (r = 12.24, p < 0.01).

This result may also suggest why the collaborative condition had the greatest variance in

time, as participants would have taken varying amounts of time to discuss the tasks between

each other.

4.5 Expert Opinions

On top of these results and to better contextualize these findings in the space of human com-

putation game design, my colleagues and I also pursued expert opinions on the mechanical

variations that were tested in Gwario.

My colleagues and I identified experts who were responsible for developing nine recent

human computation games (all of which were described in Chapter 2). An expert was con-

sidered to be someone who had developed an HCG and (with one exception) had authored

peer-reviewed publications on the findings or design of the game. None of the experts we

queried were made aware of the Gwario study or its results prior to taking the survey.

These experts were sent an online survey which consisted of four topics. The first

three topics covered different variations in human computation game mechanics: single-

player versus multiplayer, collaborative versus competitive scoring, and prohibiting ver-

sus permitting direct player communication (i.e., disabling or enabling the opportunity for

collision). For each of these topics, experts were asked how they thought a hypotheti-

cal game employing the second condition would compare to the first when considering

two metrics: task accuracy and player engagement.7 For each metric, experts then chose

from three multiple choice answers: “increased (accuracy/engagement),” “no difference

(in accuracy/engagement),” and “decreased (accuracy/engagement).” Experts were then

7I use the terms “task accuracy” and “player engagement” here (as well as in the survey) instead of task
completion and player experience as the prior two are more common terminology (i.e., the two primary
metrics that most HCGs are concerned with measuring), even if I prefer the latter terms for generality.
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able to provide optional short-answer descriptions about their choices. The last topic cov-

ered a longstanding HCG design question—should mechanics from successful digital (i.e.,

entertainment-oriented) games be incoporated into HCGs? Experts provided an answer of

“yes/no/maybe” as well as an optional short-answer elaboration.

Table 4.2: The results of the expert survey asking about expected accuracy and engagement
for the variations in HCG mechanics tested in the Gwario study.

Multiplayer would be Competition would be Direct communication
would be

Expert 1 no more accurate more accurate more accurate
more engaging no more engaging more engaging

Expert 2 more accurate no more accurate more accurate
more engaging more engaging more engaging

Expert 3 more accurate less accurate more accurate
more engaging no more engaging more engaging
than than than no
singleplayer collaboration communication

Three experts responded to the survey. Due to the small number of respondents, I

acknowledge that these results are limited and at best, anecdotal, but I have opted to include

this information to provide a broader context for the results of the Gwario study. 8 The

results of these questions are summarized in Table 4.2.

When looking at singleplayer versus co-located multiplayer, experts agreed that co-

located multiplayer would increase (or have no difference in accuracy and player engage-

ment). This suggests that co-located multiplayer might be perceived as more effective and

beneficial than singleplayer. Notably, Expert 3 compared the benefits to pair-programming,

but expressed that “local, as opposed to remote, co-operative games are harder to coordi-

nate.”

When looking at collaborative versus competitive scoring, experts did not agree on how

it would affect task accuracy. Expert 1 noted that “competition could increase accuracy for

certain tasks because it gives players a way to measure themselves and their contributions.”

8Additionally, it is still the case that there is very little work in surveying HCG developers on game design
wisdom.
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By contrast, Expert 3 noted that “competitive players will always find ways to win which

do not advance scientific goals if they are more expedient,” suggesting that adding com-

petition could encourage competitive players to provide less useful results at the expense

of non-competitive players. Regarding player engagement, experts were also mixed, but

all agreed that competition would not decrease player engagement. In particular, Expert 2

cited examples of HCGs where competition was shown to have positive benefits on player

engagement.

When looking at prohibiting versus permitting direct communication, experts all agreed

that direct player communication would lead to both increased task accuracy and player

engagement. However, Expert 1 did caution that allowing direct communication would

not work “if the mechanics are directly related to players coming up with ideas (e.g., ESP

Game),” but noted that not all HCGs follow the same format.

Finally, all experts agreed that mechanics from successful digital games should possi-

bly be incorporated into human computation games, with Expert 1 stating “maybe” and

Experts 2 & 3 stating “yes.” When asked why, experts focused on player familiarity with

game mechanics, but noted possible concerns with incorporating these mechanics in HCGs.

In particular, Expert 1 was concerned that mechanics which did not complement the task

might compromise the task results (i.e., mechanics should be “isomorphic” per Jamieson

et al. [54] or “non-orthogonal” per Tuite [55]). Expert 3 remarked that determining an

effective mapping of mechanics from successful games (where players have different mo-

tivations for play) to HCGs remains an open question.

4.6 Discussion

In this section, I summarize the major results of the Gwario study (with the occasional

anecdote from the expert surveys), comparing and contrasting these results against relevant

prior work. Given the focus on human computation game design, this discussion section
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is organized into a set of four design implications9 and how these designs relate to both

creating an engaging player experience and effectively solving the human computation

task.

These design implications are as follows:

1. Mapping item collection mechanics to human computation classification tasks

2. Allowing direct communication between players

3. Supporting synchronous competitive multiplayer

4. Supporting synchronous collaborative multiplayer

4.6.1 Mapping Item Collection Mechanics to Human Computation Classification

There exist a myriad of games where exploration for collectible items (e.g., coins, rings,

notes, power-ups,) is a major, but not necessarily primary, gameplay mechanic (e.g., con-

sider classic game franchises such as Mario, Sonic the Hedgehog, and Banjo Kazooie).

In the Mario franchise specifically, this mechanic is considered secondary; players may

collect both coins and powerups, but engaging in this collection is optional (although not

necessarily orthogonal) for completing the level.

In Gwario, the collectible items are converted from coins into purchasable items that

require classification. Thus, the player’s choice to collect an item or not maps to the process

of answering the human computation task, making such mechanics most appropriate for

classification or categorization tasks, ideally where the classes or categories are known a

priori. Outside of Gwario, OnToGalaxy [22] is an HCG that explores a similar adaptation:

an archetypal “space shooter” transformed into an HCG by altering collectable objects into

task answers. OnToGalaxy differs in that its categorization tasks are much fuzzier (e.g.,

collect [items] that could be labeled as “touchable objects”).

9I am obviously not suggesting that all HCGs implement these, but discuss their viability and potential
implementation in the context of similar tasks or games.
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Experts suggest that incorporating mechanics from successful digital games should be

considered for HCGs, but caution that the mechanics should be appropriate for the under-

lying human computation task. Gwario’s implementation maps collection mechanics to

the task of categorization, and appears to successfully address both dual design goals of a

positive player experience and effective task completion. Across conditions, we found an

average accuracy of more than eighty percent and a consistent median Likert-like rating

of “4” for fun/engagement on a five-point Likert-like scale. These above average values

suggest strong evidence that this design retains much of the fun and familiarity associated

with the original Super Mario Bros., while providing an effective interface for completing

the item-purchasing task. However, based on the adjustments before and after the pilot

study, one might expect the impact of using this “item collection as task categorization”

design to vary wildly depending on how challenging the base game (or inspiration) is and

may require additional changes to the underlying mechanics or game content.

Ultimately, further comparison on a larger participant population against another HCG

with the same human computation task (but different mechanics) would be required to

truly determine just how much more compelling (of an experience) and effective (as a task-

completion interface) Gwario is be compared to other HCGs.10

4.6.2 Allowing Direct Communication in Multiplayer HCGs

In games, direct communication between players can take on many forms and interfaces,

ranging from (but not limited to) in-person conversation when co-located, audio or video

chat, a text-only interface, or some discretized set of allowable messages. Communica-

tion may also also occur extradiegetically (i.e., outside of the game’s interface) through

applications that enable the above methods of communication, or even through game fo-

rums, online wikis, and help websites. Human computation games, however, typically

10Such a study would still not necessarily be able to tease out precisely which mechanics might
make Gwario more or less compelling/effective, a problem which can be seen in results of Krause et al. [22]
which outright compares two completely different games and tasks.
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dissuade player communication altogether and implement mechanics (e.g., anonymity) to

prevent players from communicating extradiegetically in real-time. This is due to preexist-

ing paradigms which suggest that collusion between players could hurt task accuracy [50,

90].

In Gwario, co-located multiplayer enables direct communication by forcing players to

sit within verbal proximity of each other (and then places no restrictions on verbal com-

munication). To the best of my knowledge, Gwario is still the only current example of

an HCG wherein co-located, direct communication between players is permitted during

the process of completing the task. However, asynchronous and indirect communication

have been previously explored in HCGs. For example, Foldit [4] permits asynchronous

communication by supporting online forums and allowing players to share partial solution

strategies (“recipes”) in game.

Direct communication has been shown to benefit games in other dual-purpose domains,

such as educational math games [81] in which side-by-side student play has been shown

to increase learning motivation and engagement. In a domain outside of games entirely,

this design manifests in the computer science practice of pair-programming in which two

individuals solve a programming problem at the same time, typically while seated at the

same device—a paradigm that has shown impressive positive results particularly in CS

education [91]. This analogy was cited by one of the experts in our surveys (Expert 3).

Furthermore, in contrast to preexisting concerns about collusion, our expert surveys

suggest that direct communication between players is perceived to have benefits for both

player engagement and task accuracy. The Gwario study found direct evidence of co-

located player communication’s impact task accuracy, as player collusion was a significant

predictor of increased task accuracy. While we did not find similar evidence linking com-

munication and engagement, the significantly-higher ranking of multiplayer fun/engagement

in comparison to singleplayer suggests a potential connection. These findings from both

the study and expert surveys question the assumptions made by prior HCG research which
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suggest that players may try to “game” the game to gain more rewards (e.g., in Gwario,

players might presume such a strategy to be to collect all of the coins regardless of correct-

ness to improve their end score). However, it is worth pointing out that there are strategies

to remedy and often neutralize potential data-tainting, such as cross-validating the results

across many dyads (i.e., more players) or identifying player reliability based on perfor-

mance on preexisting task solutions (which can still be implemented as part of a game

permitting direct communication).

As with all human computation game designs, incorporating mechanics that permit di-

rect communication may still be sensitive to particular task and desired gameplay mechan-

ics. Gwario’s multiplayer requires implementation of both multiplayer mechanics and for

players to gather at the same physical location for play—an onus that may not be amenable

for all tasks. Additionally, while the most predictive factor of accuracy was our boolean

measure of collusion, the most predictive factor of collusion was the collaborative mul-

tiplayer condition. In other words, players instructed to collaborate were more likely to

positively collude. One could therefore argue that this suggesting of collaboration might

have more of a similar effect to permitting direct communication. Thus, further verifi-

cation (not to mention whether or not similar results could be achieved over networked

multiplayer) is required to fully validate the design against preexisting negative hypothe-

ses about collusion. Nonetheless, this and other prior research extolling benefits of direct

communication could prove potentially useful in other serious game applications outside

of HCGs.

4.6.3 Synchronous Competitive Multiplayer HCGs

In the context of human computation games, synchronous competitive multiplayer is fa-

cilitated through the inclusion of game mechanics which permit two or more players to

make real-time, simultaneous decisions in an effort to outperform one another. “Outper-

forming” in this context typically refers to a player achieving a higher score (or other kind
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of feedback/reward) than that of the other players. Many HCGs contain competitive game-

play elements in the form of leaderboards, but synchronous competition between players

is less common. Examples of HCGs include many of those previously discussed in Chap-

ter Chapter 3. In KissKissBan [69], the third player synchronously competes with the two

other players who are working together to collaborate; all players are still contributing an-

swers to the underlying human computation task. In both Goh et al.’s ESP Games [70] and

Cabbage Quest [73], players (either collaborate or) compete to tag items as quickly as pos-

sible. However, Cabbage Quest differs from these examples in that players do not compete

in person, but against an artificial player that they are led to believe is another human.

Gwario’s results strongly suggest that competitive multiplayer is viewed as significantly

more challenging and more fun/engaging than singleplayer in Gwario. These results are in

line with the results from both KissKissBan and Cabbage Quest, which suggests that adding

competitive elements could promote a more positive player experience, especially with a

simple (and potentially mundane) task (as in Cabbage Quest and Gwario). Meanwhile,

Goh et al. found no difference in player engagement between the competitive and collab-

orative versions of their ESP Game, suggesting that competitive gameplay elements were

no worse than their collaborative counterparts. Altogether, these results echo the expert

opinions, which suggest that competition will not negatively impact player engagement.

Meanwhile, the effects of competitive game mechanics on task completion are less

straightforward and potentially negative. One design concern with using competitive me-

chanics in HCGs is a possible negative impact on task accuracy due to distraction (i.e.,

orthogonality) from the underlying task. Likewise, the expert surveys contain differing dif-

fering opinions on exactly how competition might impact accuracy. One expert-suggested

benefit of competition is the potential feedback for players to measure themselves and their

contributions, but one expert-suggest detriment is that competition might encourage ex-

pedient (but not necessarily correct) solutions. In the Gwario study, competitive players

were significantly less accurate than collaborative players. By comparison, both Goh et
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al.’s ESP Games and Cabbage Quest found no such significant difference. This discrep-

ancy could be due to any number of differences between Gwario and these other games.

In both Goh et al.’s ESP Games and Cabbage Quest, players were not co-located, could

not communicate, and had fewer mechanics available to antagonize the other player. In

competitive Gwario, players could antagonize each other by stealing power-ups from one

another, attempting to hurt/kill each other with shells, and jumping around to distract (and

thus impede) their partner.11 While some players seemed to enjoy these affordances, the

existence of these mechanic may have led to the poorer accuracy compared to that observed

in Cabbage Quest, which utilized the same human computation task.

4.6.4 Synchronous Collaborative Multiplayer

In the context of human computation games, synchronous collaborative multiplayer is facil-

itated through the inclusion of mechanics that require two or more players to work together

in real-time to improve the same in-game reward (i.e., score) or end result. Nearly all syn-

chronous, multiplayer HCGS, dating back to the original ESP Game [2] reward players for

this kind of collaborative interaction and play. Collaborative mechanics often map neatly to

the structure of the human computation process, in which verification of the result may be

accomplished through aggregated agreement. Feedback can often be provided quickly, as

player agreement may be enough to validate the (initial) task results, yielding synchronous,

real-time play. The collaborative version of Gwario is similar to existing collaborative de-

sign paradigms, but differs slightly from many historical examples in that both players are

separately categorizing tasks using a more discrete pool of possible categories (but this

still ensures that omitting an object from one category is verification that it may belong to

another).

The results from the Gwario study match previous expectations given the historical

11Another issue brought up previously is that the camera tracks (i.e., focuses on) the first player, meaning
that the first player can run far enough ahead/back so that the second player can no longer be seen on the
screen, which is a known tactic for antagonizing players in games with similar camera setups.
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use of collaboration in human computation games. Participants found collaborative multi-

player more fun/engaging and overall preferred it to singleplayer. In comparison to compet-

itive mechanics, prior work has suggested that competitive mechanics are more engaging,

but that certain aspects of the player experience may be higher for collaborative player

(e.g., player empathy in the collaborative version of Loadstone [82]). Meanwhile, the

surveyed experts were neutral (with one exception) on the idea that collaborative multi-

player was more engaging than competitive multiplayer. As the multiplayer conditions in

the Gwario study were conducted between subjects, direct comparison between the collab-

orative and competitive versions was not possible (as participants only played and ranked

one multiplayer version). Participants in the collaborative multiplayer condition did rank

fun/engagment higher than their counterparts in the competitive version (on a 1-5 Likert-

like scale), however this difference was not significant.

Combining collaborative mechanics and the affordance of direct communication during

multiplayer play resulted in a significant increase in accuracy in comparison to the competi-

tive version. These results are different from those of Goh et al.’s ESP Games and Cabbage

Quest, which found no significant difference in accuracy between their competitive and col-

laborative versions. However, the difference here may be due to our choice of additional

design features, such as permitting direct communication (i.e., whereupon collusion was

shown to be a predictor of task accuracy). As previously mentioned, Gwario’s variation

of collaborative multiplayer asks players to consider two distinct tagging tasks simultane-

ously as opposed to working towards agreement on a single task. This setup was shown to

be successful in terms of accuracy, time, and participants’ self-reported fun/engagement,

which suggests that Gwario’s variation of collaborative mechanics could be used to reduce

the size of the player base required to solve an HCG in the context of a similar task.
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4.7 Conclusions

In this chapter, I describe a human computation game, Gwario, and a study comparing

different mechanics variations using Gwario. The study compared singleplayer and co-

located multiplayer versions of Gwario, and within the multiplayer condition, two versions

of scoring: collaborative and competitive. I also describe the limited results of a survey

sent out to several HCG experts about the mechanics variations tested with Gwario. From

the combination of study results, survey results, and the context of the existing HCG design

research, I discuss four design recommendations around these different HCG mechanics.

This chapter began with three questions. The first question was: how do competitive

reward mechanics affect task completion and player experience compared with more tra-

ditional collaborative reward mechanics? For prior HCGs investigating similar questions,

competitive reward mechanics have shown no difference in task completion compared with

collaborative mechanics, while demonstrating more positive results for player experience

metrics. However Gwario demonstrates a scenario where this is not the case. Participants

in the competitive version were less accurate at the task than collaborative players, which

demonstrates that the concerns that competitive game elements might distract from task

solutions are not entirely unfounded. However, participants did rank the competitive ver-

sion of the game as more fun and challenging than the collaborative (not to mention the

singleplayer versions). Ultimately, some degree of competitive mechanics may help to

improve participants’ experiences with the game, but depending on the context, too much

competition may conversely hurt task completion metrics.

The second question was: does collusion between players actually have an adverse ef-

fect on task completion and player experience? Longstanding HCG wisdom suggests that

collusion is anathema to accurate task completion results, since malicious players could

provide incorrect results by choosing to optimize for non-task objectives (e.g., game score).

However, this study demonstrated the opposite: collusion was actually a predictor of task

86



accuracy. Furthermore, a small sample of HCC experts independently suggested this con-

clusion, suggesting that collusion may actually be more beneficial to human computation

games than previously assumed. Adversarially-minded players will always be a concern

for designers in all games, both entertainment-oriented and human computation. Given the

benefits of collusion demonstrated in this study, perhaps HCG developers and researchers

ought to look towards entertainment-oriented games and how these games deal with nega-

tive player behavior, as opposed to imposing design restrictions that ban collusion entirely.

Finally, Gwario provides an example of an HCG that can be made to look like an exist-

ing platformer. The task completion results from the Gwario study demonstrate that it can

in fact successfully solve a human computation task with a known solution. I acknowledge

that these results, along with the design we selected (wherein the process of task comple-

tion is adapted into the action mechanics facilitating the game’s secondary objective), are

at best anecdotal evidence that HCGs can look like platformer games. Whether or not a

platformer (or platformer-like mechanics) is the best choice for solving a human compu-

tation task would require an entirely different experimental setup where the same human

computation task is implemented in multiple games with different game mechanics (e.g, a

“puzzle” HCG version of the purchasing task compared with a “platformer” HCG with the

same task).
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CHAPTER 5

REWARD SYSTEMS — PLAYER AUDIENCES AND CHOOSING REWARDS IN

HCGS

5.1 Introduction

For some players, it is the rush of adrenaline upon claiming victory in a fierce round of

competition. For others, it is the promise—and subsequent fulfillment—of exploring an

unknown and open world. For yet others, it might be the emotional roller coaster of the

story, its compelling characters, or the plot twists enabled through play. There are nearly

limitless reasons—motivations—for why players choose the games they play.

Playing games may once have been marketed at specific kinds of players, as a niche

hobby requiring niche hardware. However, as the barrier for entry to digital games has

been lowered (i.e., through everyday platforms such as mobile devices and web browsers),

games have become more mature and accessible to demographics of players who might not

have initially considered play. Broader player audiences bring new motivations for play,

making traditional game incentives (i.e., those implemented as feedback or reward me-

chanics) potentially less compelling to new players. In response, game design for modern,

entertainment-oriented games have explored many kinds of reward systems for providing

both explicit and intrinsic rewards.

By contrast human computation games have been slow to adopt these systems, relying

instead on point-based numerical systems, without truly taking in the vast potential audi-

ence of players into account. I reiterate that this is a concern for two reasons. First, serious

games are complicated by the addition of a secondary goal, one which may be orthogo-

nal or unrelated to entertainment. Second, research has shown that there do exist players

who are intrinsically motivated to solve the task [9] while other research shows that ex-
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trinsic rewards undermine the effects of intrinsic motivation in crowdsourced workers [75].

This might suggest that focusing only on extrinsic rewards, such as point-based numerical

systems, may come at the cost of disincentivizing potential players who would otherwise

participate in the task solving process.

As previously emphasized in Chapter 4, there is a need to understand how one might

adapt game mechanics from successful, entertainment-oriented games. The previous chap-

ter explored, among other game mechanics, how collaborative and competitive reward sys-

tems affected task completion and the player experience. In this chapter, I now propose

examining other aspects of reward systems, focusing on what the effects of having multiple

reward systems might be on task completion and the player experience. Related to this, I

wish to examine how different player audiences respond to multiple reward systems, and

whether or not player audience has any effect on task completion and the player experience.

5.1.1 Multiple Rewards in Human Computation Games

Traditionally, most human computation games have adopted simple reward systems with

mechanics that align with the collaborative and social nature of the human computation

process. Point-based scoring systems are generally the most common form of feedback

to players. Such systems are typically straightforward to implement (as they typically do

not require additional aesthetic or artist-driven assets) and also provide a form of direct,

easily-quantifiable feedback to players. Additionally, point-based scores that map cleanly

to task completion metrics (e.g., scenarios where task output can be measured using some

kind of objective or optimization function) may also give task providers ways to monitor

and evaluate performance of task results in real-time. Point-based scoring systems also

dominate the recent survey work in HCGs [13, 15], which examine rewards merely as

forms of incentives available to the player.

As previously discussed in Section 3.3.2, human computation game research has ex-

plored reward types beyond point-based scoring systems. Goh et al. [77] compare utilizing
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points, badges, and non-gamified statistics in a location-based, content sharing HCG. Gas-

ton and Cooper [79] utilize three-star reward systems in the context of Foldit. The work in

this chapter is similar to that of Goh et al. in that it investigates multiple types of rewards,

but differs in certain types of rewards while also investigating the effect of different player

audiences.

By contrast, many modern games designed for entertainment provide players with mul-

tiple kinds of rewards or feedback for interaction. These include genres such as massively-

multiplayer-online games (MMOs) or roleplaying games (RPGs), which are designed to

accommodate the diverse motivations of their monolithic player bases [92]. Within these

games are myriad kinds of digital artifacts for players to collect—equipment, upgrades,

customization options, badges, etc.—or explicit feedback—leaderboards, rankings, social

recognition, etc.—which players might then share or compare amongst others. Tangen-

tially, other games have eschewed these traditional, extrinsic (i.e., “gamified”) rewards

altogether. Such games are designed to appeal to players who are not interested in dig-

ital artifacts, but instead are often motivated intrinsically by the desire to interact with a

specific experience. Examples include narrative games (which reward players with a com-

pelling narrative or fictional outcomes) and walking simulators (which typically reward

players with an emotional digital environment to explore).

Beyond the myriad of practical implementations of these many reward systems, both

game design and game research have examined reward systems. Common approaches in

general game design for understanding and designing effective rewards in games are driven

by theories based around player motivations and incentives for play. Early approaches for

designing and implementing rewards in games sought to understand how player motiva-

tions mapped to game mechanics. These investigations occurred in the context of game

genres with complex game mechanics and diverse player bases, such as Bartle’s player

types for multi-user dungeon games (MUDs) [93] and Robin’s Laws for tabletop roleplay-

ing games [94]. While these results are based primarily on anecdotal studies of players
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within these game contexts, they continue to be used as rule-of-thumb tools for digital

game designers even today.

More recent research has been driven by empirical evaluation of player data and self-

reported player preferences. These results include Choi’s study of online games [95] and

Yee’s seminal work on motivational components based on a study of players in massively-

multiplayer online games (MMOs) [92]. Other efforts have focused on creating player

typologies based on player preferences. Brain Hex is a neurobiologically-inspired typol-

ogy that classifies players into one of seven different types [96]. Similarly, the Hexad

framework utilizes an empirically-evaluated survey to classify players into one of six user

types derived from player motivations [97]. While these efforts are backed by data from

actual players (as opposed to just anecdotes from game development), the development of

these frameworks and typologies was conducted in the context of entertainment-oriented

games, which do not capture motivational aspects around the secondary goals seen in seri-

ous games (e.g., motivation to learn in educational games, motivation to participate in the

crowdsourcing process for human computation games).

Related research has explored models for player motivation and engagement, which

incorporate psychological theories, such as self-determination theory [98]. A comprehen-

sive overview of motivational theory as it applies to gamification and serious games can be

found in the work of Richter et al. [99]. Richter et al. note that point systems are the most

commonly utilized form of reward feedback, and while their discussion focuses primarily

on extrinsically-motivated rewards, they note that the effect of extrinsic rewards on intrinsic

motivation still remains unknown. How these existing theories might need to be modified

in order to accommodate motivations unique to human computation is an open question.

Unfortunately, only few attempts have been made to understand motivations in the con-

text of HCGs. Using their game Indagator, Lee et al. [100] explore motivations for partic-

ipating in mobile content-sharing using a model of player gratification. Similarly, in their

analysis of Foldit [4], Cooper et al. report on the results of a survey asking a subset of users
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about motivations for playing the game. Their responses were categorized based on Yee’s

motivational components [92], amended with an additional “purpose” category to capture

intrinsic motivations for participation (i.e., assisting with scientific discovery). More re-

cently, Lessel et al. [10] ran a study looking at the ability to turn off gamified elements

in an image-tagging task. They found that players who were given the ability to do so

(and who did turn off those elements, as a possible indicator that they were not motivated

by them) were more likely to do more tasks. Finally, similar investigations have been un-

dertaken in analogous serious game domains such as educational games [101], which also

make adjustments to existing theories to accommodate for intrinsic motivations beyond

those driven by gameplay.

More broadly, crowdsourcing research, specifically in the context of paid crowdsourc-

ing platforms, has also examined the effects of motivation on worker performance at tasks.

In these scenarios, extrinsic motivation is captured by financial compensation for the work,

whereas intrinsic motivation workers may have for the task is captured by workers’ self-

motivation or self-satisfaction. Existing research demonstrates that monetary reward may

undermine the effects of intrinsic motivation in crowdsourced workers [75] and that while

increasing the amount of financial compensation may yield more results, these results are

not necessarily of a higher quality [11].

Studies have also examined the interchangeability between paid crowdsourcing plat-

forms and human computation games [102, 103]. The results suggest that the quality of the

completed work between the two interfaces is interchangeable, however Sabou et al. [103]

remark that maintaining player motivation in HCGs may be more difficult than that of

financially-compensated crowdsourcing platforms. This suggests that motivational find-

ings in the context of financially-compensated crowdsourcing platforms may not translate

directly to HCGs (i.e., when such results are examined over a longer period of time). As

a result, it is unclear whether how, if so, and to what extent, rewards in HCGs compare

directly with or map to financial compensation.
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Altogether, there is a breadth of work looking at rewards in games, how these rewards

correspond to player motivations and types, and finally how motivation affects crowdsourc-

ing in general (and how this crowdsourcing research may generalize from paid crowdsourc-

ing platforms to human computation games). Beyond the few explorations of different

reward systems, it is not clear how applicable any of this preexisting work is when trans-

lated to HCGs. A first step would be to explore novel or different reward systems, which

comes with the promise of broadening the potential audience of players (and would permit

studying motivations and player types), but also comes with potential tradeoffs in the time

and effort necessary to implement these systems. But before one might even start to pose

the question of how many or which reward systems to put into an HCG, it is necessary to

address the question of whether or not having multiple reward systems will even matter.

5.1.2 Player Audiences

Traditionally, human computation games have paid little attention to the audiences of play-

ers they recruit. Research efforts in human computation games generally rely on word-of-

mouth marketing or traditional human subject study pools to find players to interact and

play their games. These practices can be fairly reliable, as many human computation tasks

require commonsense or intrinsic knowledge that an average game player can be expected

to possess. Alternatively, the task can be broken down into smaller sub-problems that sup-

port many kinds of players specialized in or able to be trained on various parts of the task [4,

9].

By contrast, entertainment-oriented games are no strangers to understanding their play-

ers. Players are drawn to particular games based on game elements which appeal to their

motivations for play. Some games may choose to target niche audiences, whereas other

games may desire to appeal to the largest audience possible. In the latter case, these games

often implement myriad kinds of rewards and feedback systems in order to support diverse

player audiences, wherein there are players who may not always be motivated the same
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kinds of rewards, yet can play the same game by interacting with the only systems they

prefer. Unsurprisingly, much of the foundation of motivational research in games is built

on player experiences from these games (e.g., MMORPGs [92]).

Player audience is yet another factor that could potentially affect task completion and

player experience within the same HCG. However, very little understanding or study has

been dedicated to player audience in the context of HCGs. However, the importance of un-

derstanding player audience cannot be understated. In order to remain effective at solving

tasks, human computation games must be able to retain prior players and attract new play-

ers, often in competition with the ever-growing list of games that continue to be released

year after year. Moreover, assumptions and findings about successful game elements may

not hold if HCGs wish to attract new or specific audiences. For example, an HCG asking

for language translations may wish to attract a player audience from particular locales; in

order to be truly effective, its developers need to know what kinds of game elements play-

ers in that locale prefer. Ideally, they might even know how these elements affect the task

completion and player experience. But with next to little knowledge on player audiences

for HCGs, such questions cannot be answered.

5.1.3 Summary

The work in this chapter is motivated by the following two questions: First, how does ran-

domly distributing a reward versus giving players a choice of reward affect task completion

and player experience? Second, do different player audiences have noticeable differences

on task completion and the player experience?

In this chapter, I describe a game, Café Flour Sack, which was developed to explore

hypotheses around multiple reward systems in human computation games. Café Flour

Sack provides players with four different reward systems to interact with: leaderboards,

customizable avatars, unlockable narratives, and (non-gamified) progress tracking. I then

describe a human-subjects study using Café Flour Sack that compares two different types
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of reward distribution across two different player audiences. I then summarize the results

of this study. I also describe a followup study, again using Café Flour Sack, that combines

a play session with semi-structured interviews to better understand sentiment around re-

wards and motivations in the context of HCGs. I then discuss several design considerations

around reward systems, reward distribution, and player audience. Throughout this chapter,

I continue to use the language of the mechanics framework and follow the experimental

methodology for testing game mechanics described in Chapter 3.

This chapter consists of four parts:

1. A description of Café Flour Sack, a game developed to examine hypotheses around

multiple reward systems.

2. A human-subjects study using Café Flour Sack and its results.

3. A summary of eleven semi-structured interviews discussing multiple reward systems

in the context of Café Flour Sack.

4. Three design implications drawn from the results of the study.

For reference, the peer-reviewed version of (most of) this work was published as a full

conference paper at the Annual Symposium on Computer-Human Interaction in Play (CHI

PLAY) in 2016 [78].

5.2 Expanding on Rewards in Human Computation Games

Beyond point systems and leaderboards, we know very little about how other types of re-

ward systems behave in human computation games. However, it is clear—based on the

myriad of different player motivations and types—that not all players are necessarily mo-

tivated by point systems and leaderboards. These players are motivated by other extrinsic

reward types or more immersive reasons which are not always captured by the commonly-

used numerical point systems (and the occasional, accompanying online leaderboards).
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The diversity of reward and feedback systems in modern, entertainment-oriented games,

demonstrates many attractive and potential alternatives, thus resulting in the followup ques-

tion of how can these systems (such as customizable avatars or game narrative) be utilized

in HCGs?

5.2.1 A Game with Multiple Reward Systems

To explore this question, I built a human computation game with multiple reward systems.

This game—called Café Flour Sack—is a cooking-themed HCG that assigns players the

culinary-commonsense-knowledge task of pairing food ingredients (e.g., “eggs,” “sugar,”

and “cabbage”) to recipes which are likely to contain those ingredients (e.g., “cake,” “ice

cream,” or “stew”). Café Flour Sack contains four different reward systems (also referred

to as reward categories) for players to interact with: global leaderboards, customizable

virtual avatars, unlockable narratives and a global progress tracker.

Café Flour Sack’s cooking task is an artificial task with a known solution set, which—

per the methodology described in Chapter 3—enables evaluating the efficacy of the reward

mechanics without the complications of needing to simultaneously solve a novel human

computation problem. I chose ingredient-recipe classification as described above due to its

similarity to other classification and commonsense-knowledge problems, not to mention its

relative simplicity (i.e., players do not need actual culinary training, but merely knowledge

of what ingredients could be used in classes of recipes). For this experiment, I used a gold-

standard answer set containing 157 common cooking ingredients and 24 recipes. Each

ingredient either belonged to a given recipe or not, and could also belong to multiple recipes

(e.g., “sugar” is an ingredient in both “cake” and “ice cream” but not in “meat stew”1).

Players complete tasks by accepting rounds of gameplay; each round consists of five

1Arguably, there exist meat stews in which sugar is an ingredient. Similarly, “trout” can in fact be made
into “ice cream.” I note that due to the binary nature of the classification problem, this answer set—given
that it was not constructed by molecular gastronomists or modern chefs—arguably reflects whether or not an
ingredient is likely to be used in a given recipe, as opposed to whether or not it is possible that an ingredient
can be used in a given recipe. I would also argue that this is appropriate, given that the audiences involved in
this study are very unlikely to make dishes such as trout ice cream.
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Figure 5.1: An example minigame from Café Flour Sack. Here, the player drags all ingre-
dients that can be used in a corresponding recipe (“grilled meat”) into a bin in the center of
the screen.

small minigames. Each minigame presents the player with a recipe and four possible in-

gredients to select from (which either belong to the recipe or do not). Figure 5.1 shows

an example of one such minigame, in which a player is presented with a recipe (“grilled

meat”), four ingredients (“bell peppers,” “macaroni,” “ketchup,” and “chicken”), and a fifth

ingredient labeled “none” which the player can use if they believe none of the items belong

to the recipe. 2 The player must then drag the correct ingredients into a bin in the center

of the screen, then may hit the “Done!” button to proceed to the next minigame. At the

end of the round, a player receives a reward from one of three (of four) possible reward

systems. The amount reward is based on the particular system it is associated with, and

consists of a base amount for completing the task and an additional amount based on how

many minigames they completed successfully.

2The impetus for this fifth ingredient is to ensure that players actually attempt the task seriously by man-
ually forcing them to commit to an answer if none of the provided ingredients are correct instead of allowing
them to proceed without clicking on anything.
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Café Flour Sack’s four reward systems were selected to appeal to a broad audience of

players and to thereby cover a variety of different motivations for play (e.g., such as those

described by Yee [92]). Leaderboards are the most commonly-utilized system in most

HCGs (popularized by the ESP Game [2] and customizable avatar systems are similar to

other collectible item systems (e.g., badges [77]). Unlockable narratives were included as

a novel reward system that would both address alternative player motivations and would

not interfere with the other reward systems. Finally, the global progress tracker was added

to accommodate players uninterested in extrinsic digital game rewards, but who still might

be intrinsically by participating in the learning or crowdsourcing process (i.e., those akin

to intrinsically-motivated players identified in Foldit [4]).

Each reward system, barring the global progress tracker, has its own “currency” which

corresponds to the nature of the reward available in that system. Completing a task (i.e.,

a series of minigames further discussed in detail below) awards players currency for one

of the reward systems. The exact amount of currency reward and its utility within that

particular reward system again depend on the nature of the system. One commonality

between all systems is that the currency units are referred to as “points” (as opposed to

other synonyms for monetary units), but are prepended with the respective system name

(e.g., points in the unlockable narrative are referred to as “narrative points”).

The user interfaces for the four reward systems correspond to four screens in the game

and are shown in Figure 5.2. I now describe these systems in detail as follows:

Global Leaderboards

In the global leaderboards, “leaderboard” currency is automatically applied upon acquisi-

tion to the player’s total score on the leaderboard. In addition to a numerical score (i.e., the

number of leaderboard currency points), a player also is given a “rank” which corresponds

to successfully reaching a score threshold. There are five “ranks” a player can attain on the

leaderboards, with “base” being the lowest and “platinum” being the highest.
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Figure 5.2: The four reward systems in Café Flour Sack. Starting clockwise from the
upper-left: the global leaderboards, the customizable avatar, the progress tracker, and the
unlockable narratives.

Figure 5.2 shows the leaderboard screen in the upper left corner. The user interface

consists of a sorted list of all player entries on the leaderboard. The list is sorted based on

player score, from highest to lowest. Each entry of the leaderboard shows—in order from

left to right—a player’s rank (denoted with a medal consisting of a chef’s knife and ladle

in a rank-appropriate color), followed by their numerical position relative to other players,

the player’s name, and finally the player’s numerical leaderboard score. For example, in

Figure 5.2, the player named “CHI PLAY 2016” (an homage to the conference in which this

work was published) is at the “base” rank and in the 24th position relative to other players

with a numerical score of 1. Finally, the panel on the right side of the screen clarifies and

communicates the player’s rank, as well as the number of points the player must acquire

before moving up to the next rank.

All players are added to the leaderboards by default, however players who do not re-
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ceive leaderboard currency (or choose not to) remain at the default score of 1 (and therefore

at “base” rank).

Customizable Avatars

In the customizable avatar system, “avatar” currency is given to the player in the form of

points that can be spent on customizing a digital avatar representing the player. Possible

customization options for the player’s avatar (a chef made out of a flour sack) include

various chef-themed clothing items and culinary objects.

Figure 5.2 shows the avatar screen in the upper right corner The user interface consists

of a digital avatar on the right and an expanding menu of customizable items on the left.

The menu of items contains buttons for each item category; within each category is a list of

available items (again as buttons). Each item button indicates its name, visual appearance,

and cost. Clicking on an item (while having sufficient points) will allow the player to

purchase that item; if a player already owns that item, clicking the button will instead equip

(i.e., visually place) the item on the character. Finally, the number of available points to

spend is listed in the bottom corner. As an example, in Figure 5.2, the player is currently

viewing the “Hand” category of items wherein items such as “Leek” and “Special Pudding”

are available for purchase; currently the player has only 1 point available, rendering them

unable to purchase any of the 3-point items currently shown.

All players are equipped with a default chef’s hat at the game’s start, but may purchase

more items if they choose to pursue rewards in this system.

Unlockable Narratives

In the unlockable narrative system, “narrative” currency is used to unlock short stories set

in the culinary universe of the game. These stories are presented in a linear progression;

the player is required to unlock the preceding stories before a subsequent story may be

unlocked. The content of the stories plays out as conversation scenes between the player
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and the in-universe characters of a restaurant (the titular “Café Flour Sack”); this interface

is similar to that seen in narrative game genres such as visual novels.

Figure 5.2 shows the narrative screen in the bottom left corner. The list of available sto-

ries is shown on the right; stories annotated with lock icons indicate these have not yet been

unlocked. Players may unlock a story by clicking on the respective story button, provided

they have enough narrative points (as indicated by the label in the bottom right). Addi-

tionally, players may also replay through previous stories by simply clicking the respective

story button again. On the left, a text box displays dialogue with the given character image

(rendered behind the text box). In Figure 5.2, the player is in the middle of a conversation

with a character named Farro as part of the “Welcome to Cafe Flour Sack” story.

All players are given enough narrative points at the beginning of the game in order to

unlock the first story.

Global Progress Tracker

In the global progress tracker, currency is unavailable because the reward system, by de-

sign, does not give the player any form of virtual reward for completing tasks. Similarly,

the global tracker cannot be selected as a reward option for completing tasks, as it acts as

an intrinsic reward for players who may not derive enjoyment or motivation from the other

extrinsic, in-game rewards. Instead, the tracker allows players to view statistics showing

their overall contribution to the tasks being completed by all players in the game.

Figure 5.2 shows the global tracker screen in the bottom right corner. The panels on the

screen show both the player’s individual records as well as the global totals of all player

records. In Figure 5.2, the player has completed 5 tasks (which resolves to the 1% of the

current number of tasks completed). The global records on the adjacent panel reveal that

26 players have completed 501 tasks, utilizing 1187 ingredients.
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5.2.2 An Experiment with Multiple Reward Systems

Combined with the methodology proposed in Chapter 3, Café Flour Sack and its multiple

reward systems provides an environment to explore questions around reward systems in

human computation games. A starting question for a game with multiple reward systems

might be to ask what the most preferred reward system is. This particular question was pre-

viously explored by Goh et al. [77], who tested three versions of an HCG each with a dif-

ferent reward systems: leaderboards, collectible badges, and a non-gamified control. The

authors found the leaderboard and badge versions yielded the highest (player-perceived)

task metrics (accuracy and completeness) and enjoyment metrics, with both significantly

outperforming the gamified control. Between the leaderboard and badge versions, no sig-

nificant differences in metrics were detected (save for greater cognitive enjoyment 3 in the

badge version). Overall, these results suggest that having any kind of reward is more ben-

eficial than no rewards, and that these two different reward systems perform similarly with

respect to task completion and player experience metrics. However (and as Goh et al. point

out in their conclusions and limitations), it is insufficient to draw conclusions from the re-

sults of one game, especially when rewards and their content are specific to the particular

game—and thus the particular task—in which these systems are implemented. For exam-

ple, leaderboards in a singleplayer game are not necessarily comparable to leaderboards in

a multiplayer game, despite similar presentations and player interactions. Beyond testing

multiple reward systems across multiple HCGs, it is difficult to draw conclusions about a

single reward system when so much of its content is contextualized by the task and the

HCG solving it.

I instead propose testing other aspects of reward systems in the context of having multi-

ple reward systems. For example, does having multiple reward systems have an impact on

task completion and player experience? On the one hand, multiple reward systems—and

3By Goh et al.’s definition, “cognitive enjoyment” refers to measures “to which the user perceives favor-
able thoughts and beliefs about HCGs such as being worthy, effective, and interesting.” [77]
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the ability to let players interact with them—might not only improve the player experience

but also potentially yield better task completion metrics. On the other hand, implementing

such systems is costly (in both time and effort) when it is unclear they may have no such

effect, or worse, prove to be distractingly orthogonal to the completion of the task.

This question of choice—the ability to let players choose whether or not they wish

to interact with rewards—is the condition I propose testing. To minimize the differences

between game versions for such an experiment (i.e., avoiding a complicated permutation

of different reward systems across many conditions), I propose that both versions of the

game utilize the same set of reward systems and that the player’s ability to choose which

rewards they want is the experimental condition. I posit that randomly-assigned rewards

(i.e., the control condition) is a proxy for how current HCGs behave. Specifically, most

HCGs make no effort to tailor, let alone understand, what the most effective reward system

is for a given player or player audience. If the game knows nothing about what rewards

players prefer and supports multiple reward systems, it can, at best, assign these randomly.

Given any player, a randomly-assigned reward may align with their motivations or prefer-

ences, whereas other times, it will not. Meanwhile, players given the ability to choose their

rewards are more likely to interact primarily with the systems they find compelling.

Additionally, if having multiple reward systems is intended to broaden the potential au-

dience of players, do different player audiences even have an effect on task completion and

player experience? This question is particularly pertinent in the context of HCG research,

which often uses either university student pools or outreach to professional crowdsourcing

workers to test research hypotheses.

Finally, as a side effect of these particular questions and experimental setup, I also chose

to investigate preferred reward systems using Café Flour Sack, although I caution that, in

addition to the concerns identified above, these results are not fully representative of games

with multiple reward systems. Games which contain multiple kinds of extrinsic and intrin-

sic feedback often intertwine these systems. For example, level-up mechanics (e.g., those
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which reward the player with new abilities) require player engagement should the player

wish to progress further in the game, thus making enjoyment of other progression systems,

such as that of the game’s narrative, dependent on player engagement with leveling. Café

Flour Sack’s reward systems are deliberately kept mechanically isolated from each other to

avoid this exact scenario, as forcing a player to engage with a system they may or may not

prefer in order to engage with another would complicate measuring player experience met-

rics between these reward systems (e.g., if what customizable items players could unlock

in the customizable avatars somehow depended on one’s position in the global leader-

boards, players would be forced to participate in the leaderboards and might report greater

dissatisfaction with the customizable avatar if they did not prefer leaderboards). 4

Figure 5.3 shows the full comparative breakdown of the mechanics between the ran-

dom and choice versions of the game, using the mechanics framework from Chapter 3. The

diagram illustrates how following the action and the verification mechanics, the difference

between the two versions is in the feedback mechanics of the game. In the random con-

dition, the game automatically selects one of the three rewards for the player, whereas in

the choice condition, the player makes a choice of which of the three rewards they wish to

accept. Furthermore, the diagram shows the two additional conditions for this experiment:

the two audiences of players receiving the game.

5.3 Methodology

Café Flour Sack was released as an online game.5 Upon starting the game, participants

were randomly assigned to one of two conditions—random or choice—which reflect the

control and experimental conditions respectively. The choice of condition was determined

by a call to the game’s backend servers (ensuring that the experiment was conducted from

4Anecdotal feedback from a test pilot used to validate the Amazon Mechanical Turk platform, followup
feedback, and the later interviews suggested players were, in fact, convinced they were playing against an
actual player base and not an artificially-simulated one.

5While a version of Café Flour Sack remains online as of the writing of this dissertation, the particular
versions utilized in this experiment are no longer available.
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Figure 5.3: The breakdown of Café Flour Sack’s mechanics and experimental conditions.
At the top, two different player audiences constitute two conditions, while the ability to
choose a reward category versus having it randomly assigned constitutes another two con-
ditions. Experimental conditions are noted using boldfaced braces.

the same random source).

The condition changed how participants were assigned rewards from the three avail-

able reward categories: the global leaderboards, the customizable avatar, and the unlock-

able narratives. (The global progress tracker was excluded from this selection since it

deliberately does not reward players for anything but participation, which is tracked auto-

matically.) In the random condition, participants were automatically, randomly assigned

a reward from one of the three available reward categories upon starting a round (i.e., se-

ries of five minigames). In the choice conditions, participants were allowed to manually

selected one of the three reward categories at the beginning of each round. Visibly and

interactively, the only difference between the two game versions is the reward selection

screen, as shown in Figure 5.4. Participants in the random condition were shown a high-
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Figure 5.4: Screenshots of the reward selection screen between the two versions of Café
Flour Sack. On the left, the random version selects a reward category (in this case, the
avatar category) automatically. On the right, the choice version allows the participant to
click on their preferred category.

lighted icon of the reward selected for them, whereas participants in the choice condition

could click on one of the three icons to select their reward of choice.

Gameplay began with a short tutorial round of five minigames, after which participants

were given currency in all three possible reward categories (minus the global tracker, which

has no currency). Participants were then instructed to view each of the reward menus in

order to view or spend those currencies before further progressing in the game, which both

informed participants of and instructed them how to spend currency for each respective

reward system.

Participants were then asked to complete as many tasks as they desired for the remaining

duration of the experiment. They were also informed that they could interact with as many

or as few of the reward systems as they desired. From the start of the tutorial round through

the end of the experiment, participants were given a total of twenty minutes (but were not

explicitly informed how long this duration was, although participants were told in the con-

sent form that the entire experience would take “around half an hour”). Finally, participants

were asked to fill out a post-game survey at the end of the experiment. Throughout game-

play, the game continuously logged telemetry (event) data on player completion of tasks

and interactions with the various reward systems.

I recruited participants from two populations. The first population consisted of crowd-
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sourcing professionals (workers) through Amazon Mechanical Turk. Previous work has

successfully explored the use of paid crowdsourcing platforms—Amazon Mechanical Turk

among them—and this was taken into consideration when setting up this experiment. Café

Flour Sack was made available as a task (HIT) on the Mechanical Turk platform, where

workers were shown an external link to the game and then returned with code retrieved

at the end of the post-game survey. Inputting this code into the Mechanical Turk task

would then compensate workers once the code was validated against the telemetry data.6

The second population consisted of university students recruited through an undergraduate

computer science class. These students were compensated with course credit for writing a

report on their experience participating in the experiment.7

One long-term goal of human computation games is to broaden their accessibility, so I

deliberately chose to evaluate this work not only across two different experimental condi-

tions, but also across two different audiences—a first for HCGs. On the one hand, the Ama-

zon Mechanical Turk workers represent a more demographically diverse group of players

who are highly-skilled experts at crowdsourcing work, but who typically perform such

work through a monetarily-compensated online interface. These workers are therefore not

necessarily experts playing at human computation games, nor can it be expected that they

might be familiar with games at all. On the other hand, the student population (particularly

one in an engineering field of study) represents an audience likely to be familiar with digital

games, but not necessarily crowdsourcing work.

Because this experiment looks at understanding player experience and engagement in

the context of rewards, I took some additional steps to account for the fact that players

might have extrinsic motivations for completing the task quickly. First, as previously men-

6Workers were paid $7 (USD) for completing the experiment; I validated with other colleagues that this
was appropriate considering the then-commonly-utilized $10 (USD) minimum wage for an hour’s work in
the United States).

7We received feedback post-proceedings publication that a more considerate approach would be to com-
pensate students both monetarily for participation and then with (lesser amounts of) course credit for an ex-
ternal report. I wish to acknowledge this concern as well as to reiterate that future experiments implemented
this better compensation model or utilized monetary compensation only.
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tioned, participants were required to play the game for at least twenty minutes, during

which they were allowed to freely allocate their time between completing tasks (thus yield-

ing additional reward currency as a byproduct of task completion) and interacting with the

reward systems (thus viewing or spending that currency on the various reward systems).

This forced duration of play was implemented to ensure that participants would not be in-

centivized to rush through the experiment as quickly as possible. Without this, completing

the experiment in the shortest (optimal, particularly for Amazon Mechanical Turk workers)

time would be to avoid interaction with the reward systems at all. Similarly, participants

were not required to complete a certain number of tasks.

Second, I introduced a button in the game’s menu, which I refer to as the “boredom”

button. Participants were explicitly asked to press the button when they would have con-

sidered quitting the game under non-experimental conditions (i.e., had they been playing

the game without time enforcement or financial compensation). Pressing this button was

optional and did not have any impact on whether or not (Amazon Mechanical Turk) par-

ticipants were compensated. The inclusion of this button was designed to act as a proxy

of retention. Measuring retention in this experiment would otherwise be untenable, given

that a fixed play duration was enforced and that without it, players would optimally strive

to complete the experiment as quickly as possible.

Finally, I wished to ensure that participants who completed the study later would not

be biased by the presence and progression of players whose results were already a part of

the reward systems with visible social elements—namely the leaderboards and the global

progress tracker. In order to preserve the social elements of the game while maintain-

ing consistency across all participants, real-time adjustments to both the leaderboards and

progress tracker were simulated using a fake set of players and results. After each round

of the game, these fake players were updated with artificially-simulated progress, which

also included the occasional addition of new fake players (e.g., as new scores that would

appear on the leaderboards, etc.) to further create the perception that other players were
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simultaneously playing the game.

5.4 Results

The study was conducted over the course of several weeks, during which the game was

made available online both to workers on Amazon Mechanical Turk and a university stu-

dent population. I report on results from 78 participants who took part in the study. When

divided by condition, 40 participants were placed in the random condition and 38 were

placed in the choice condition. When divided by audience, 39 participants were from

Amazon Mechanical Turk (randomly selected from a larger population of 59 workers) and

39 participants were students.

When considering population demographics, 24 participants self-reported as female

and 54 participants self-reported as male. Most players reported themselves as 18-40 years

old. Additionally, around 80% of participants reported prior experience playing games;

however only around 20% of participants reported any prior experience playing human

computation games.

The evaluation focuses on both the results of the player experience and the task comple-

tion. Investigation focuses on differences between the two conditions of random (the con-

trol) and choice (the experimental). I also investigate differences between the two popula-

tions of the player audience—Amazon Mechanical Turk workers and university students—

while accounting for interaction effects with the experimental conditions. The majority

of the dependent variables had nonparametric distributions. To measure the differences

and interactions between the conditions, I used two-way ANOVAs with aligned rank trans-

forms [104] to account for the nonparametric nature of the data unless otherwise stated.

The subsequent sections report on the results; the discussion of their implications follows

in Section 5.6.
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Table 5.1: Counts of participants’ favorite rewards across both experimental condition and
participant audience in the Café Flour Sack study.

Leaderboards Avatar Narrative Tracker
Random AMT Workers 4 8 5 0

Students 13 6 2 2
Choice AMT Workers 14 2 6 0

Students 8 3 5 0
Total 39 19 18 2

5.4.1 Subjective Metrics—Player Experience

The data contributing to the evaluation of the player experience consist of telemetry events

detailing player interactions with the game, combined with player responses to questions

on the post-game survey. Of interest is understanding how participants engaged with the

reward systems, as well as why they may have become disengaged with these systems.

I first report on participants’ survey responses regarding their favorite and least favorite

reward systems in Café Flour Sack, an question of whether or not players perceived they

had a choice of reward systems. Next, I report on participants’ interaction time within the

each of the reward systems. Finally, I report on participants’ interaction with the boredom

button in order to understand why they would have disengaged with the game—and if our

reward systems were responsible for that disengagement.

Reward Preference

By design, Café Flour Sack provides players with four different reward systems—a natural

investigation is to determine how participants responded to each of the different reward sys-

tems made available to them. In the post-game survey, participants were asked to provide

their favorite and least reward systems in Café Flour Sack. For participants’ favorite reward

systems, 39 participants selected the leaderboards, 19 participants selected the unlockable

narratives, 18 participants selected the customizable avatar, and 2 participants selected the

progress tracker. Table 5.1 shows the exact breakdown of participants’ favorite rewards

across both the experimental condition and participant audiences.
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Table 5.2: Counts of participants’ least favorite rewards across both experimental condition
and participant audience in the Café Flour Sack study.

Leaderboards Avatar Narrative Tracker
Random AMT Workers 3 4 7 3

Students 3 4 13 3
Choice AMT Workers 3 4 8 7

Students 2 6 7 1
Total 11 18 35 14

Meanwhile, when it came to participants’ least favorite reward systems, 35 partici-

pants selected the unlockable narratives, 18 participants selected the customizable avatar,

14 participants selected the progress tracker, and 11 participants selected the leaderboards.

Table 5.2 shows the exact breakdown of participants’ least favorite rewards across both the

experimental condition and participant audiences.

There were no differences or effects on task performance based on participants’ favorite

or least favorite reward systems.

Perception of Choice

Next, I looked at whether or not participants perceived they had a choice of rewards avail-

able. I refer to this metric as “perception of (reward) choice.” In the post-game survey,

participants were asked to rate the statement “I was able to choose which rewards I wanted”

on a Likert-like scale from 1 to 5 (with 1 corresponding to “Strongly Disgree” through 5

corresponding to “Strongly Agree”).

Both experimental condition and participant audience had significant main effects on

participants’ perception of reward choice. In the choice condition, participants reported

significantly higher perception of choice than in the random condition (F = 73.631, p <

0.001). Tangentially, Amazon Mechanical Turk participants reported significantly higher

perception of choice than student participants (F = 5.548, p < 0.05). No significant

interaction effects were detected.
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Table 5.3: Mean duration (in seconds) of time spent in a single view for all four reward
systems across both participant audience type and experimental condition in the Café Flour
Sack study.

Leaderboards Random Choice
AMT Workers 10.174 7.828
Students 12.829 10.174
Customizable Avatar Random Choice
AMT Workers 11.157 10.939
Students 12.039 12.694
Narratives Random Choice
AMT Workers 45.093 60.980
Students 47.070 58.036
Global Tracker Random Choice
AMT Workers 6.068 6.808
Students 10.278 7.654

Duration of Play

As previously described, interaction within the game was limited to 20 minutes. It was

assumed that Amazon Mechanical Turk participants were already incentivized to partici-

pate for financial reasons (and would therefore complete tasks as quickly, but adequately

as possible). Furthermore, Amazon Mechanical Turk also imposes a time limit for submit-

ting task results, so these participants would have been highly unlikely to continue playing

under this additional time. Under these limitations, it is insufficient to look at total duration

of play as an indication of engagement or retention.

Instead, I examine where and how players spent their time during those 20 minutes of

play. Specifically, the metrics of interest are how long players spent in each of the different

reward systems. Each reward system had its own dedicated screen and the game recorded

how long players spent in these screens. Direct comparison between these screens is im-

mediately useful as some screens, such as the leaderboards and the progress tracker, show

very short durations. In these cases, short durations are expected as participant interaction

was limited to viewing information such as leaderboard rank or task progress, rather than

engaging with the reward interfaces. By comparison, the unlockable narratives required
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participants to read and actively click through character dialogues. Table 5.3 shows the

mean time spent in each view of the corresponding reward menu, broken down by experi-

mental condition and participant audience.

In the leaderboards, both experimental condition and player audience has a significant

main effect on the duration of interaction. Participants in the random condition spent longer

in the leaderboards than participants in the choice condition (F = 7.319, p < 0.01) with a

mean time of 11.904 seconds versus 8.868 seconds. No interaction effects were observed.

No significant differences in duration of interaction were observed between experi-

mental condition and participant audience for the three remaining reward systems: the

customizable avatar, the unlockable narratives, and the global progress tracker.

Boredom

62 of the 78 participants in the study pressed boredom button. Of these participants, 32

were in the random condition (resulting in an 80% press rate) and 30 were in the choice

condition (resulting in a 79% press rate). 34 of these participants were from Amazon Me-

chanical Turk whereas 28 were student participants. When observing the times from the

start of the game to the point at which the boredom button was pressed, no significant dif-

ferences were detected between the experimental conditions and the participant audience.

As part of the post-game survey, participants were asked to clarify why they had pressed

the boredom button (if they had chosen to do so). These answers consisted of free-form

sentences; participants were not limited to a single reason. (As a result, the following

counts are not exclusive of each other.) Overall, 26 participants (42% of participants) de-

scribed their primary reason for pressing the boredom button as due to the repetitive nature

of the task (i.e., lack of variety in the tasks or tasks that were too similar). 10 participants

described their primary reason as due to finishing or running out of reward content. Other

reasons included a lack of interest in the task and game overall (10 participants), general

confusion or unfamiliarity with certain ingredients (4 participants), a lack of challenge (3
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participants), and a lack of purpose and/or learning (3 participants).

Given that the task was repetitive in nature (and addressing these issues for boredom

would involve looking at action mechanics beyond the scope of this study), I looked closely

at the 10 players who described boredom due to finishing and running out of reward content.

Of these participants, 4 were in the random condition and 6 were in the choice condition,

while 8 players were Amazon Mechanical Turk participants and 2 were students. A major-

ity of these participants (6 of 10) listed their favorite reward as the unlockable narratives,

with 2 more preferring the customizable avatar and the last 2 preferring the leaderboards.

5.4.2 Objective Metrics—Task Completion

To evaluate the task completion, I highlight and focus on three metrics: the correctness

of the task answers, the number of tasks completed, and the timing of task completion.

These metrics reflect the typical considerations of task providers. For an actual human

computation task, different metrics might be prioritized over others depending on the task

requirements; here however, I present all metrics equally.

Correctness of Completed Tasks

To verify answer correctness, each task—the pairing of four cooking ingredients with a

recipe—was assigned a score. This score was computed using a gold-standard answer

set and is the ratio of correctly-assigned ingredients to the total number of ingredients in

the task. A task was considered correct if 75% (a corresponding ratio of 0.75) or more

of its ingredients belonged the given recipe. For example, the “ice cream” recipe would

be considered correct if “milk,” “eggs,” and “strawberries” were correctly selected (and if

“onions” was not).

The results show that both experimental condition and participant audience had signif-

icant effects on answer correctness. Participants in the choice condition had higher mean

scores than players in the random condition: 0.724 versus 0.696 (F = 9.474, p < 0.01).
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Table 5.4: Mean task scores split by experimental condition, first broken down into separate
player audiences and then shown in total, in the Café Flour Sack study.

Random Choice
AMT Workers 0.725 0.722
Students 0.670 0.725
Total 0.696 0.724

Amazon Mechanical Turk participants had higher mean scores than student players: 0.724

versus 0.692 (F = 9.072, p < 0.01).

The experimental condition × participant audience interaction was significant (F =

28.648, p < 0.001). Table 5.4 shows the mean task scores split across experimental con-

dition and participant audience. Amazon Mechanical Turk participants in the random con-

dition demonstrate the highest mean scores (0.7254) with student players in the choice

condition performing closely behind (0.7245). Meanwhile, student players in the random

condition demonstrate the lowest mean scores (0.670).

Number of Completed Tasks

I also looked at the number of tasks completed per participant across both experimen-

tal condition and player audience. These observations are further broken down into three

categories: the total number of tasks completed, the number of correct tasks completed,

and the number of incorrect tasks completed. On average, Amazon Mechanical Turk

participants provided significantly more total answers (82.308 answers) compared to stu-

dent participants (70.128 answers) (F = 5.083, p < 0.05). Additionally, when look-

ing only at correct answers, Amazon Mechanical Turk participants provided significantly

more correct answers (57.410 answers) compared to student participants (44.590 answers)

(F = 5.083, p < 0.05). No other significant effects were observed across experimental

condition and participant audience.
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Table 5.5: Mean task completion times (in seconds) for total tasks split by experimental
condition, first broken down into separate player audiences and then shown in total, in
the Café Flour Sack study.

Random Choice
AMT Workers 8.382 9.129
Students 14.229 12.753
Total 11.492 10.507

Timing of Completed Tasks

The final task completion metric is the time (in seconds) it took players to complete tasks.

Similarly to the observations of number of tasks completed, these results are broken down

by the timing of total tasks, correct tasks, and incorrect tasks.

When it came to the number of seconds it took participants to complete all (total)

tasks, both experimental condition and participant audience had significant main effects.

Participants in the choice condition showed faster mean times for total task completion

than participants in the random condition: 10.507 seconds versus 11.492 seconds (F =

8.228, p < 0.01). Meanwhile, Amazon Mechanical Turk participants showed faster means

times for total task completion than student participants: 8.788 seconds versus 13.652

(F = 281.682, p < 0.001).

There were also interaction effects. When accounting for experiment condition × par-

ticipant audience interaction across all tasks, there was a significant effect (F = 40.875, p <

0.001). Table 5.5 shows the mean task completion times for all tasks split across exper-

imental condition and participant audience. Overall, Amazon Mechanical Turk partici-

pants in the random condition demonstrated the fastest mean times (8.382 seconds) and

are slightly slower in the choice condition (9.128 seconds). Conversely, these results are

flipped across conditions for student participants, who demonstrated faster mean times in

the choice condition (12.753) compared with the overall slowest mean times in in the ran-

dom condition (14.229 seconds).

Next, when looking only at the mean times it took participants to complete tasks cor-
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rectly, it was once again the case that both experimental condition and participant audience

had significant effects (though no interaction effects were observed). Participants in the

choice condition were faster at completing tasks correctly than participants in the random

condition, 9.773 seconds versus 10.820 seconds (F = 5.809, p < 0.05). Meanwhile, Ama-

zon Mechanical Turk participants were faster at completing tasks correctly than student

participants, 8.348 seconds versus 12.780 seconds (F = 190.930, p < 0.001).

Similarly, when looking only at the mean times it took participants to complete tasks

incorrectly, both experimental condition and participant audience had significant effects.

Participants in the choice condition were slightly faster completing tasks incorrectly than

players in the random condition, 12.262 seconds versus 12.726 (F = 10.22, p < 0.01).

Again Amazon Mechanical Turk participants were faster at completing tasks (incorrectly)

compared to student participants, 9.802 seconds versus 15.174 seconds (F = 21.868, p <

0.001). Significant effects for experimental condition × participant audience interaction

were also observed (F = 43.596, p < 0.001). Amazon Mechanical Turk participants were

the fastest overall at 9.371 and 10.167 seconds in seconds in the random and the choice

conditions respectively. Student participants were slower overall at 14.991 and 15.531

seconds in the random and choice conditions respectively.

In summary, participants in the choice condition had faster times for overall (all) task

completion than participants in the random condition. Additionally, Amazon Mechanical

Turk participants were significantly faster at completing tasks than student participants.

This particular finding was observed not just across all tasks, but also for tasks answered

correctly and tasks answered incorrectly. When simultaneously considering both experi-

mental condition and participant audience, Amazon Mechanical Turk participants in the

random condition were the fastest at completing total tasks, while student participants in

the random condition were the slowest. Similarly for incorrectly-answered tasks, Amazon

Mechanical Turk players in the random condition were the fastest, while student partici-

pants in the choice condition were the slowest.
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5.5 Interviews

The study with Café Flour Sack demonstrated how giving participants the choice of reward

(or not) and participant audiences affected task completion and player experience.

However, Café Flour Sack was designed specifically to test multiple reward systems

in a human computation game as part of an experimental setting. To better understand

how the results of that study might compare or generalize to other HCGs, not to mention

reward systems in other games, I wanted to untangle why and how participants might have

responded as they did. After all, there still remain many outstanding questions about how

reward systems function in HCGs. For example, how do rewards in HCGs compare to

other rewards in entertainment-oriented games? Additionally, what might motivate players

to play HCGs and would particular kinds of rewards able to motivate players who might

normally not be interested? Furthermore, what kinds of rewards in addition to the rewards

tested in Café Flour Sack would players even want to see in HCGs? These—and many

other questions—remained unanswered from both the quantitative results of prior work

and the results described above from the Café Flour Sackstudy.

So to dig deeper into some of these questions, I ran an exploratory, two-part followup

study using Café Flour Sack. The first part of the study consisted of a play session, in which

participants played through Café Flour Sack, going through a similar flow as the prior study.

The second part of the study consisted of an optional, semi-structured interview following

the play session. This interview covered questions spanning four topic areas: rewards in

games, HCGs, rewards in Café Flour Sack, and future rewards in HCGs. The full interview

script can be found in Appendix A.

Participants were recruited via word of mouth and email, and were recruited from a

similar student population as that of the student audience from the previous experiment.

Given the delay between the previous experiment and this study, none of the original par-

ticipants from that audience were available to participate (nor would an interview based
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on a recollection of an experiment taken several months prior be likely to yield clear rec-

ollections). Study participation was forcibly limited to the student audience as Amazon

Mechanical Turk’s Terms of Service prohibit direct contact between task workers and task

providers.8

The followup study was conducted in the lounge area of a research lab located on a

university campus. For the first part of the study, participants were given a computer (or

allowed to use their own if preferred) and given the link to the online version of Café

Flour Sack. The version of Café Flour Sack used for this followup study was the choice

condition from the previous study, in order to allow participants to explore the different

reward systems as freely as possible. This version also differed by providing a new pre-

game survey (not present in the prior study) and a modified post-game survey following

gameplay.

Participants were asked to play for fifteen minutes; free-form feedback from multiple

participants in the previous experiment noted that the original study duration felt too long.

Participants were not observed during this portion of the study in order to provide a more

natural play setting. After around twenty total minutes of interaction (the fifteen minutes

of play in combination with pre-game and post-game survey completion), the game would

direct participants to conclude.

For the second part of the study, participants were informed that the interview was

optional. If they chose to be interviewed, the interview took place in the lounge area of the

lab and were recorded via a hand-held audio recording device. The interview consisted of a

minimum of ten questions (and as many as sixteen depending on their responses to certain

questions). After the interview, participants were allowed provide additional feedback or

ask questions about the study.

Regarding compensation, all participants were compensated with gift cards based on

8I am aware that researchers and task providers do solicit audio recordings from Amazon Mechanical
Turk workers. However, an interview is well beyond the purview of this (arguably unscrupulous) kind of data
collection (i.e., which is intended for training data acquisition rather than qualitative analysis).
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whether or not they participated in both parts of the study. Participants would receive $5 of

gift credit for taking the first part of the study and could receive an additional $5 of gift for

the interview. All participants chose to be interviewed and thus received a total of $10 of

gift credit for study participation.

5.5.1 Results

The study was conducted over the course of several weeks, during which this particular

version of Café Flour Sack was made available online (although participants would only

receive the link during the study). I report on results from 11 participants who responded

and who took part in this followup study. Participant names have been anonymized and

abbreviated (e.g., “Participant 1” will referred to as “P1” and so on). Demographic and

initial game experience data was taken from the post-game survey in the first part of the

study9. All other results came from transcriptions of the interviews.

Demographics and Game Experience

As previously mentioned, all participants came from a student population that was similar

to the previous university student population. 10 of 11 participants reported as male; the

remaining participant reported as female. All participants were between the ages of 18-

30. 7 of 11 participants reported that they played games regularly (although all but one

participant listed their favorite games, indicating that 10 of 11 participants had any expe-

rience playing games). Only one participant listed any experience with HCGs. Finally,

participants reported their top-three favorite genres of games. Participants listed 15 sep-

arate genres10 Of these, genres favorited by at least 3 participants included role-playing

games—RPGs—(5 participants) and shooters/first-person shooters (3 participants).

9The previously-mentioned pre-game survey was ultimately not used.
10The full list of genres included: action, adventure, fighting, massively-multiplayer online first-person

shooters (MMOFPS), massively-multiplayer online role-playing games (MMOs/MMORPGs), platformers,
rhythm action games, real-time strategy (RTS), role-playing games (RPGs), shooters/first-person shooters
(FPS), simulation games, sports, strategy, and turn-based strategy.
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These participants represent a limited subset of the audiences from the prior experiment,

particularly with regards to participant demographic. I acknowledge that this demographic

distribution—primarily self-reported male and regular players of games—is far from ideal,

particularly in comparison to the demographics from the previous study. While I do discuss

the results of this work as part of the discussion in this chapter, I emphasize that at best,

these results should be considered exploratory, anecdotal, and/or prompts for avenues for

future work on reward systems in HCGs. Further followup on this kind of study would be

compelling, in particular since at the time of writing, qualitative research of HCGs remains

scarce and no qualitative studies beyond these interviews have been conducted on HCGs

players in the context of reward systems.

5.5.2 Analysis

Participant interviews were recorded using handheld audio equipment during the study and

then manually transcribed into text prior to analysis. From initial readings of the transcripts

and several of the items captured in the survey data described above, my colleagues and

I developed a set of 17 codes. These codes capture motivations (or inversely, inhibitions)

for play, and range from abstract concepts (e.g., “challenge”) to specific genres of games

(e.g.“RPGs”) wherein some desired experience is reflected. For convenience, I classify

these codes into three categories: concepts, rewards, and game genres.

The concepts codes describe broad aspects of game mechanics and/or the overall play

experience. As the name suggests, they are not necessarily tied to specific game elements

or mechanics, but instead reflect interactions that players desire to have (or to avoid) within

games.

• Compensation

Reward of some real or digital currency in response for completing in-game actions

(e.g., quests in RPGs, tasks in HCGs, etc.). Often contextualized by fairness or value.

• Progression
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The presence of changing interactions of play, often in the form of the addition of

new or the escalation of existing game elements/experiences.

• Aesthetics

Emphasis on a game’s visual elements.

• Repetition

Use of repeated elements in the game. Typically a source of frustration for players.

• System Interaction

Whether or not certain mechanics interact with other systems in the game; in this

study’s context, primarily whether or not feedback mechanics interact with action

mechanics both in HCGs and other games.

• Completionism

Whether or not players feel compelled to experience all game content. Some players

respond positively to this; others do not.

• Challenge

The difficulty of interaction involved with the game’s mechanics. Some players re-

spond positively to this, while others do not.

The rewards codes describe explicit kinds of reward or feedback systems present in Café

Flour Sack as well as other games. Like the previous codes, these codes—specifically the

interactions players have with these systems—are cited as motivations for play. The first

four codes correspond to the four reward systems available in Café Flour Sack.

• Leaderboards/Points/Ranking Up

Systems or mechanics that give players a nominal ranking or comparison metric
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against other players or in-game entities. 11

• Customization

Systems or mechanics that allow the player to personalize some aspect of their game,

typically related to their in-game representation.

• Narrative

Systems or mechanics that provide players with story elements and/or background

information about the diegetic context of the game.

• Purpose

Systems or mechanics that convey the purpose or alternative goal of the game (e.g.,

the task for HCGs, learning outcomes for education games, etc.).

• Collection

Systems of mechanics that allow players to aggregate in-game currency or objects.

• Social

Systems or mechanics that encourage the player to and facilitate with other players.

The game genre codes describe various genres brought up by participants in the study.

Participants often referred to these genres to provide (mostly positive) comparisons or ex-

amples in response to interview questions. Originally, this set of codes contained all genres

from the previous post-game survey demographics, but those which were not explicitly

mentioned were removed.

• RPG (Role-Playing Games)

Story-driven games in which players typically assume the role of a virtual charac-

11This item does not include “leveling up” or “level systems” which are covered under the “Progression”
item in the previous category.
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ter. Often contain diverse sets of game mechanics such as combat, navigation, and

strategy.

• Shooter/FPS (First-Person Shooters)

Action games, which often place the player in the role of a combatant and typically

emphasize skilled hand-eye-coordination. Often presented from a first-person cam-

era view.

• Strategy Games

Games designed around problem-solving and logical reasoning through the simula-

tion of realistic or real-world scenarios.

• MMO(RPG) (Massively-Multiplayer Online Role-Playing Games)

A specific subset of RPGs in which the game environment simultaneously hosts many

players connected via a network. Tends to encourage social or multiplayer interac-

tion (more so than traditional RPGs).

Rewards in Games

First, participants were asked about their experiences and motivations with games in gen-

eral. Participants were asked to describe which rewards they liked in games they played,

followed by what motivated them to interact with these rewards. While least one partic-

ipant touched on nearly every conceptual theme as a motivation for play, motivations for

play were clustered around specific reward systems. Multiple participants (P3, P4, P5, P7,

P8) cited leaderboards or ranking up as reward systems that they resonated with in games.

Collection (P2, P4, P5, P10) and narrative (P6, P8, P9, P11) were also cited as motiva-

tors for play, although there was variation in the kinds of collectible objects and narrative

elements. As examples of variation in collectable objects, P2 cited collectible “things” (us-

ing the Pokémon series’ collectible monsters as a further example) whereas P5 described

collectible badges. As examples of variation in narrative elements, P6 emphasized “lore
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(...) story or background worldbuilding” whereas P9 emphasized narrative “themes” (using

the game Bioshock as a specific example). Notably, many participants drew comparisons

to their preferred genres of games such as role-playing games (P1, P6), shooters (P4, P5,

P8, P11), and strategy games (P9), and often provided specific examples of games in these

genres. 12

Inversely, participants were then asked if certain rewards made them feel less motivated

to play a game. Several common themes that participants highlighted negatively included

challenge (P9, P10), customization (P4, P7), and social (P1, P11). Regarding challenge, P9

emphasized beating an easy game was not sufficient motivation for playing it, whereas P10

expressed dislike for games where there was too much challenge. Regarding customiza-

tion, both P4 and P7 described customization systems as not providing enough value to

play the game. Additionally, several participants (P2, P6, P11) cited that specific (to each

participant) elements of MMORPGs made them less motivated to play those games.

Human Computation Games

To better understand the findings from the post-game survey (in which only one player

reported any experience with HCGs), participants were then asked if they had previously

played human computation games. All participants were given the clarification that “human

computation games” was synonymous with other terms such as “citizen science games” or

“crowdsourcing games” (to name a few).

Four participants (P1, P5, P6, P11) definitively stated that they were familiar with or

had heard of human computation games, or similar games. Of these, three (P5, P6, P11)

described having played games that would meet the definition of a human computation

game (per the definition from Chapter 2). Participants did not express wide interest in

playing these games nor did they choose to clarify why. 13 Only two participants (P1, P11)

12The diversity of games named in these examples was quite broad. Across all interviews, no two (or more)
participants used the same game as an example, with the exception of Call of Duty (twice).

13I did not press this question further during the interviews to avoid coming across as confrontational to
interviewees.
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stated outright that they would be interested in playing an HCG in the future (with another

two (P8, P9) suggesting “maybe”). Only one participant (P11) gave a detailed answer as

to why they might be interested to try an HCG: to “try to see what issues people face and

trying to solve this problem and like see how hard it is to do it and why don’t you take a

stab it yourself and in this process learn something.”

Rewards in the Context of Café Flour Sack

Participants were then asked four questions related to the rewards in Café Flour Sack. First,

they were asked how they thought the rewards in Café Flour Sack compared to rewards

in other games. While some participants emphasized that the rewards were comparable

to those seen in existing digital games, three participants (P1, P2, P6) expressed that the

rewards in Café Flour Sack did not feel like rewards in other games because of a lack of

system interaction (i.e., the reward systems were isolated and did not interact with the other

mechanics in the game). These three participants expressed some desire to see their rewards

feedback into the other parts of the game; for example, P2 mentioned (in the context of the

customizable avatar) that “you couldn’t ever see them outside of the avatar editor” and as a

result, “(...) it was like sort of like not real, like I couldn’t really use the things I was getting

so that kind of distanced me from it.”

Next, participants were asked what their favorite and least favorite reward systems in

the game were. Participants expressed favorite and least favorite reward systems across all

reward systems, with the exception of the global tracker. 14 Below, I detail the responses

for each reward system.

Global Leaderboards Five participants cited the leaderboards as their favorite reward

system in Café Flour Sack. Reasons for preference in the leaderboards included an interest

in ranking up or seeing one’s position relative to others, preferably on the top (P3, P4, P7,

14Regarding participants’ favorite and least favorite reward systems, no participants considered the global
tracker as their favorite or least favorite reward system, with the exception of one participant (P10) who listed
the global tracker as their least favorite reward system because they “don’t pay much attention” to it.
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P10). Other participants highlighted the social aspects of the leaderboards (e.g., P7 stated

“I’m thinking mostly the media and peers playing the game as well”).

Conversely, one participant cited the leaderboard as their least favorite reward system

in Café Flour Sack. This participant (P2) cited their disinterest in competition as the rea-

son for not interacting with the leaderboards: “I didn’t do anything with the leaderboards

because I just don’t really like competition that much.”

Customizable Avatars Two participants cited the customizable avatar as their favorite

reward system in Café Flour Sack. One participant (P2) cited their enjoyment of collection

and character customization, while the other participant (P5) described the customizable

items as the most rewarding because “the items were something physical and kind of fun

in the game.”

Conversely, seven participants cited the customizable avatar as their least favorite re-

ward system in Café Flour Sack. Multiple participants (P1, P4, P6 P11) highlighted that

the lack of interaction with the rest of the game turned them off from the customization

options. For example, P4 stated “cause for me that doesn’t really help me in any way in

achieving any other goal in the game.” Two participants (P3, P7) added that the value of

the rewards wasn’t sufficient: either too expensive (P3) or “not really sufficient” (P7). Re-

garding the items, P7 also added that “I wasn’t really interested in keeping them since it

was like a one-time game.” Finally, one participant (P9) stated that it was their least fa-

vorite simply by process of elimination (i.e., they preferred both the leaderboards and the

narratives more).

Unlockable Narratives Four participants cited the unlockable narratives as their fa-

vorite reward system in Café Flour Sack. Two participants (P1, P6) described their interest

in the narratives (and “worldbuilding”) of other games they had played, including RPGs

(P6), whereas the other two participants (P9, P11) stated that they opted to interact with the

narrative when the other reward systems did not meet their expectations. 15

15Of note with regards to the game development process, P9 pointed out that “at least the narrative some-
body like put work into this,” among their reasons for interacting with the narrative over other reward systems.
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Conversely, two participants cited the unlockable narratives as their least favorite re-

ward system in Café Flour Sack. One participant (P5) commented that the narratives “were

kind of long” while the other participant (P8) stated they expected the quality of the narra-

tives to be better.

Reward System Rankings

Participants were asked to rank the rewards from most preferred to least preferred. While

nearly all participants did not consider the global tracker to be a reward system for the pur-

poses of the previous question, participants were asked to include it as part of their rankings

for this question. Furthermore, participants were allowed to rank systems as equally pre-

ferred (e.g., a participant could rank both the global tracker and the leaderboards as their

“least preferred” reward system).

Overall, participants described a total of eight different rankings. Three of these rank-

ings were shared between two different participants; no ranking was shared between more

than two participants, suggesting a diversity of preference rankings.

No participants ranked multiple reward systems equally as their most preferred, sug-

gesting that all participants had an explicitly-preferred choice of reward. Meanwhile, three

participants ranked their second and third preferences as equal while three other partici-

pants ranked their third and fourth (i.e., their least) preferred reward systems as equal.

Future Rewards for HCGs

Finally, participants were asked what rewards they would have liked to have seen in human

computations games (i.e., what reward systems did they think were missing from a game

such as Café Flour Sack).

While some participants (particularly P11) did remark that Café Flour Sack covered

sufficiently many reward systems, participants still provided suggestions for game elements

they thought might improve the game. One common theme that emerged was a desire for
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progression to the rewards, be it through different tasks (or “levels”) (P1, P3, P4, P5),

bonuses (i.e., “combos”) across multiple tasks (P3), or through an player-centric, leveling-

up systems (like those seen in RPGs) (P1, P6). For example, P1 went so far as to describe

“a roadmap [for] all of the (...) all of the possible achievements or to say rewards you can

get” and how it would aid completionists. Similarly, P8 described a concrete example of

their ideal interaction between the reward systems: “So like let’s say if I have like this

special scarf that the chef like wears or like special like knife or whatever, then you get

twice as many uh points on the leadership board when you answer a question correctly or

something like that.”

Similarly, this theme of progression was commonly tied to desires for better system

interaction (between the rewards and the action mechanics of the game). Two participants

(P8, P10) separately described “power-up” systems that would reward players with abilities

that could adjust the challenge of tasks.

Finally, other suggestions included using of badges/trophies (P5) as seen in other games

or adding more social elements to existing game elements such as the leaderboards (P9).

5.6 Discussion

In this section, I summarize the major results of the Café Flour Sack study and its followup

interview study, comparing and contrasting these results against relevant prior work. Given

the focus on human computation game design, this discussion section is organized into a

set of three design considerations, and how these topics relate to both creating an engaging

player experience and effectively solving the human computation task.

These design considerations are as follows:

1. Supporting Multiple Reward Systems in HCGs

2. Offering Reward Choices to Players

3. Adjusting Reward Mechanics for Specific Player Audiences
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5.6.1 Supporting Multiple Reward Systems in HCGs

Before examining the considerations around reward choice and player audiences, I first

begin by discussing the considerations about supporting multiple reward systems in human

computation games.

As previously reiterated, most human computation games utilize point-based reward

systems as their primary in-game feedback mechanics for players. Common game elements

include the use of an increasing, nominal score and often a leaderboard presentation or

side-by-side listing where players can compare themselves against each other. With the

exception of the work conducted by Goh et al. [77], most human computation games have

not explored different types of reward systems.

In their work, Goh et al. examined the task of providing location-based content (i.e.,

annotating map locations with user-generated comments). They developed three mobile

games, each with a different reward system, then conducted a within-subjects study which

compared task completion and player experience metrics across these three game versions.

The “Track” version awarded players points, which were then displayed on a global leader-

board. The “Badge” version of the game awarded players digital badges for completing

certain actions within the game (e.g., contributing content, rating content, etc.) which

could then be displayed on the players’ profiles. The “Share” version of the game acted as

a control and provided no rewards beyond a summary of player actions performed. These

three reward systems may be considered comparable to the global leaderboards, the cus-

tomizable avatar, and the global progress tracker in Café Flour Sack.

Overall, Goh et al. found the “Track” and “Badge” versions of the game performed bet-

ter than the “Share” version of the game, both with respect to task completion metrics such

as perceived content accuracy and player experience metrics such as perceived enjoyment.

However, no differences were found between “Track” and “Badge” versions of the game,

save for increased cognitive enjoyment in the “Badge” version of the game. These results

suggest that having some kind of reward system in such HCGs would be ultimately better
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than no explicit reward system (with respect to more effective task completion and a more

positive player experience), but do not prescribe which specific reward system would be

the most appropriate.

Café Flour Sack is a very different game from the three mobile games tested by Goh et

al., but there are some similarities in the reward systems utilized by both sets of studies.

Café Flour Sack’s global leaderboards and the “Track” version both use nominal point

comparison between players as feedback for task completion. Likewise, Café Flour Sack’s

global progress tracker displays statistics on player task completion comparable to those

displayed in the “Share” version. Finally, Café Flour Sack’s customizable avatars share

some similarities with the “Badge” version; both use a personalizable avatar that can be

decorated with digital items, however the process of acquiring and the type of said items

differs greatly.

Unfortunately, the results of the studies and interviews I conducted with Café Flour

Sack are not directly comparable to those of Goh et al., as Café Flour Sack does not

specifically treat different reward systems as experimental conditions (since it provides all

of them). There are some similarities; much like how Goh et al. found nearly no differences

between their two “Track” and “Badge” reward systems (besides cognitive enjoyment), I

similarly found no differences in task completion metrics based on the player experience

results of participants’ favorite and least favorite rewards. These similarities could possibly

reinforce the conclusion that having some kind of reward system at all has more of an

effect on task completion and player experience than the actual type or kind of reward

system provided. However, drawing general conclusions about what kind of reward system

is most appropriate for a given HCG would require further investigation and remains to

difficult to test, since many reward systems are sensitive to the context of the task and

aesthetic of the game.

Ultimately, the absence of a clear, most effective or overwhelmingly favored reward

system suggests that there may be no detriment to considering different (i.e., not just leader-
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boards) or multiple reward systems in human computation games. I now present some of

the observations gleaned from both the Café Flour Sack study and the subsequent inter-

views. The numbers from the Café Flour Sack study are reported in aggregate across both

conditions for generality (as no difference in preferences was observed between condi-

tions). To be clear, I do not prescribe that any one reward system should be utilized over

others (beyond a humble plea that it might be worth exploring other systems beyond leader-

boards), but now outline some design considerations should one wish to implement similar

systems in HCGs.

Leaderboards and point-based systems are the most widely-used options for reward

systems in human computation games. The implementation of leaderboards in Café Flour

Sack is very similar to leaderboards in other HCGs, wherein players are given points for

completing tasks and receive more points if tasks are completed correctly. In the Café

Flour Sack study, 39 participants (50% of participants) selected the leaderboards as their

favorite reward systems while only 11 participants selected it as their least favorite. When

interviewees (around 50% of whom also selected the leaderboards as their favorite reward

system in Café Flour Sack) were asked to further explain why they felt this way, inter-

viewees highlighted their interests in ranking up and comparing themselves against other

players, as well as the social elements of leaderboards. Conversely, the one interviewee

who did not enjoy leaderboards highlighted their dislike of competition as a disincentive to

engage with the system.

The customizable avatar is an example of a reward system utilizing collectible, in-

game objects as rewards and allowing for player personalization. The implementation of

the customizable avatar in Café Flour Sack mimics other personalization systems by pro-

viding objects that may be purchased using the currency resulting from task completion. In

the Café Flour Sack study, 18 participants (around 23% of participants) selected the cus-

tomizable avatar as their favorite reward system, while inversely, 18 participants selected

it as their least favorite. Interviewees who considered the customizable avatar (2 partic-
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ipants, or around 18%) to be their favorite system noted their enjoyment of collection,

customization, and the physicality of having items in the game. Conversely, interviewees

who considered it their least favorite highlighted its lack of interaction with other elements

of the game and that it was a poor investment (given that Café Flour Sack was a one-time

game). The lack of interaction with other game elements is an unfortunate limitation of

how Café Flour Sack is set up to run experiments on, but this setup is not required (and

not necessarily recommended) for potential customizable avatar implementations. Fur-

thermore, there exist other examples of systems which may appeal to players who enjoy

collection or customization mechanics. The “Badge” version of Goh et al.’s location-based

content generation HCG presents one such alternative, which is ever so slightly better at

cognitive enjoyment than leaderboards and otherwise no differently at other task comple-

tion and player experience metrics. One interviewee even highlighted badges as a system

that Café Flour Sack could support. Finally, the interviewee feedback regarding invest-

ment highlights the importance of ensuring rewards are considered meaningful to players.

This is particularly relevant for content which may be interpreted subjectively 16, as players

may be actively motivated or de-motivated to interact with these systems based on their

preferences and experiences with the content.

Unlockable narratives in Café Flour Sack are an example of a novel reward system that

has not been utilized or tested in human computation games before. The implementation of

narrative content in Café Flour Sack is visually and interactively similar to dialogue scenes

in narrative games such as visual novels and interactive fiction, and consists of stories that

are unlocked as players complete tasks to unlock them. In the Café Flour Sack study, 19

participants (around 23% of participants) selected it as their favorite reward system, while

35 participants (around 44% of participants) selected it as their least favorite. Interviewees

who considered the unlockable narratives to be their favorite reward system (around 36%)

16Points, for example, may be considered objective rewards—all players receive the same points. There
is nothing to like more or less about the points, beyond liking or disliking the point systems themselves. By
comparison, a hat for a virtual avatar may be considered a subjective reward, as some players may like the
hat (i.e., aesthetic qualities, utility, etc.) whereas other may dislike it for the opposite reasons.
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described their interest in narratives and worldbuilding in other games such as RPGs or

cited it as an alternative to other systems they did not enjoy. Conversely, interviewees (2

participants, or around 18%) who considered it their least favorite stated the narratives were

too long or of insufficient quality. Indeed, participants across all combinations of condition

and audience spent anywhere from four to eight times as long in the narrative rewards than

they did in other reward systems. This increased time investment may bode as a positive

indicator that players could become more invested in the game (and by extension, task

completion) provided that they enjoy the narrative content. At the same time, there is the

concern that given a limited amount of time, players spending more time interacting with

the narrative may solve fewer tasks (though this could be solved by aggressively gating

such content behind task completion, albeit to the detriment of the player experience).

The most effective presentation of narrative content is still an open question; Café Flour

Sack provides only one possible implementation. Another example of an HCG exploring

how to incorporate narrative content (albeit not as a reward) is Project Discovery [24],

wherein real-world scientists have been incorporated into the game universe to facilitate the

activities of solving the human computation tasks, thus utilizing the broader game universe

to contextualize the task and engage players. Ultimately, narrative content—from story

arcs to worldbuilding aspects such as the “lore” described by interviewees—can be treated

as a reward for players and represents an aspect of HCGs meriting further investigation.

Finally, the global progress tracker in Café Flour Sack was as evaluated reward system

despite provided no explicit rewards as it still provides non-gamified feedback, similar to

the implementation in Goh et al.’s “Share” game, which acted as a control in the absence

of in-game rewards. In the Café Flour Sack study, 2 participants selected it as their favorite

while 14 participants selected it as their least favorite; no interviewees in the followup

study and interviews listed it as either, save one who reported that it was their least favorite

simply by virtue of the fact that they didn’t pay much attention to it. The fact that any

participants even selected it as their favorite reward system reinforces that there is in fact
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a (small) subset of players who do not prefer any rewards (echoing the observations by

Cooper et al. [9]). Fortunately, given that most HCGs are already tracking the summarized

information in these systems, exposing this information would benefit such intrinsically-

motivated players while only requiring the implementation of an additional user interface

(e.g., screen). However, per the results of Goh et al.’s work, providing only a global tracker

or only exposing this information in lieu of other reward systems may be less effective

(with respect to task completion and player experience metrics) than using it alongside

other reward systems.

Beyond these four reward systems, multiple interviewees described wishing to see re-

ward systems with some kind of progression or escalation to the distribution of rewards,

as well as integration between reward systems (e.g., a player could buy a powerup, which

could then be used to assist with task completion, which then in turn would help them earn

more points for the leaderboards). As previously discussed, Café Flour Sack isolates its

reward systems—by design—to avoid these specific interaction effects, but could support

such interaction were such restrictions not in place (e.g., allowing players’ customizable

avatars to show up on the leaderboards or as part of the narrative content).

5.6.2 Offering Reward Choices to Players

As part of the loop of any game, players receive rewards as feedback for their actions in

game. As part of the design and development process of a human computation game, HCG

developers must decide what kinds of feedback (rewards) they wish to provide players.

But beyond simply picking how many and which kinds of reward systems to implement,

there are many aspects and nuances of how these rewards should behave that must also

be answered Assuming multiple reward systems are available or that players are given the

choice to interact with multiple reward systems at all, should players be given the choice to

pick which rewards they get for completing tasks?

Affording players the agency to choose their rewards may seem like the obvious choice
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for a positive player experience, but like all decisions regarding game mechanics in human

computation games, one must balance for both task completion and the player experience.

For example, if rewards are assigned randomly, players are not guaranteed to always end up

with the rewards they want and might end up completing more tasks to attain those rewards,

albeit potentially at the expense of a positive player experience. 17 Similarly, if offering

players a choice of reward allows them to engage with the rewards they care about, it is

possible that players may spend more time engaging with the rewards than solving tasks,

especially if the time spent interacting reward mechanics is balanced poorly with respect to

time spent interacting with action (task) mechanics.

Therefore, in the Café Flour Sack study, one of the conditions being tested was whether

or not participants were allowed to choose which reward systems they wanted to interact

with. Overall, players in the choice condition demonstrated higher task correctness and

were faster at completing tasks. Additionally, players in the choice condition perceived that

they did in fact have more choice of rewards. This, however, did not appear to significantly

affect interaction with the reward systems as there were no differences found in the duration

of interaction between conditions, suggesting that the lengths of player experience were

similar. The only exception was that players in the random condition spent longer in the

leaderboards, but despite these (significant) differences, the duration was only on the order

of several seconds. From these results, I conclude that that offering players the choice of

reward benefits both task completion and the player experience.

Finally, these results also align with the work explored by Lessel et al. [10], who

showed that players who could (and did) turn off gamified elements in the image-tagging

application completed more tasks. Despite looking at different game elements, both their

findings and the results from Café Flour Sack suggest that providing players the choice to

interact with HCGs in a way that might more closely reflect players’ motivations (rather

17These kind of randomized mechanics are central to genres such “roguelike” games, which rely on me-
chanics such as randomizing item drops and thus work to retain players who are motivated by the chance of
getting better items and progressing further in replays of the game.
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than forcing them into an unchangeable, interactive game experience) may have benefits to

task completion metrics, not just those related to the player experience.

5.6.3 Choosing Reward Mechanics for Different Player Audiences

Beyond simply looking at whether or not to give players a choice of reward, I also exam-

ined the effect of asking different player audiences to complete the task. In the Café Flour

Sack study, the two study populations consisted of participants recruited through Amazon

Mechanical Turk, a professional crowdsourcing platform where workers complete tasks for

both full and part-time work, and participants from a university study population, specif-

ically students from engineering backgrounds who were likely to be familiar with games,

but not crowdsourcing work (or HCGs).

Overall, Amazon Mechanical Turk participants performed significantly better than stu-

dent participants at all task completion metrics: task correctness, number of tasks com-

pleted, and rate of task completion. These results are unsurprising, given that Amazon

Mechanical Turk participants are considered crowdsourcing experts. 18

As previously mentioned, Amazon Mechanical Turk participants in the random con-

dition were the most effective players overall, significantly so when it came to both task

correctness and the rate of task completion. However, these differences in task completion

metrics, compared to the next most effective population, are significant but small. When

separating student participants by experimental condition, student participants in the choice

condition have task completion metrics nearly comparable to those of Amazon Mechani-

cal Turk participants. This is not the case with the random condition, where the gap in

metrics is much larger. So while the two participant audiences performed very differently

on task completion in one experimental condition (student participants significantly lower

18Arguably the AMT participants were also motivated by monetary compensation; whether or not such
compensation is comparable or greater than to student participants’ additional motivation by course credit
is unclear. Given that that the overall play duration was a set time limit (in which there were no other
requirements beyond “play”), neither audience would have been more motivated than the other to do more
tasks or to complete them faster, which suggests that expertise at task solving may have played a large role.

137



than Amazon Mechanical Turk participants in random), they were comparable in the other

condition choice. The findings are limited because the task was selected for its simplic-

ity, relying primarily on commonsense knowledge without additional training. However,

for more complicated tasks, such improvements could be very valuable. Combined with

the previous consideration, these results suggest that design decisions—such as offering

players multiple rewards—have the potential to greatly improve task completion without

negatively affecting the player experience.

Indeed, a design concern unique to human computation game design is determining

which gameplay elements have the most significant effects on both task completion and the

player experience. In the Café Flour Sack study, the visible difference between the random

and the choice conditions was a single screen that either showed the upcoming reward (ran-

dom) or allowed the player to choose their reward before the upcoming round of gameplay

(choice). 19 This subtle variation suggests even very small changes in design of reward

mechanics could have potentially large impacts on task completion and the player expe-

rience. Furthermore, the interaction effects between how participants were rewarded and

the participant audiences involved demonstrates the importance of paying attention to the

intended player audience, and if possible, even tailoring small aspects of the game’s design

to optimize for both the task and players. Taken altogether, the results of the Café Flour

Sack study help to reaffirm the importance of reward mechanics to both task completion

and the player experience.

5.7 Conclusions

In this chapter, I describe a human computation game, Café Flour Sack , and a study us-

ing the game which compares reward distribution mechanisms across two different player

audiences. There are two reward distribution mechanisms treated as experimental condi-

tions: one in which players are given random reward versus one in which players are given
19This is, of course, accompanied by the very simple game logic to either randomly select a reward or to

turn on the buttons allowing players to select the reward instead.
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a choice of reward. Additionally, the study population is deliberately spread across two

separate player audiences: Amazon Mechanical Turk workers and university students, re-

flecting expert versus amateur crowdsourcers. I also describe the setup, as well as some

anecdotal results of a followup study conducted with student participants, which consists

of a play session using Café Flour Sack and semi-structured interviews afterward, designed

to better understand how participants respond to different kinds of rewards in HCGs.

This chapter began with two questions. The first question was how does randomly

distributing a reward versus giving players a choice of reward affect task completion and

player experience? Overall, the results demonstrate choice of reward is beneficial, espe-

cially for task completion metrics. Participants in the choice condition were both faster

and more correct at solving tasks. The results for the player experience metrics are more

nuanced. Participants in the choice condition did perceive that they had more choice of

rewards, however there was no difference in the duration of interaction with the reward

systems, suggesting that participants’ interactions with the rewards between the two sys-

tems were similar. There was one exception: participants in the random condition spent

significantly longer interacting with leaderboards (albeit on the order of a couple of sec-

onds). Overall, this clear benefit to the task completion metrics (in combination with the

few, but positive effect on player experience metrics) suggests that offering players the

choice of reward (assuming multiple reward systems are available) is the superior option

compared to randomly assigning players rewards.

The second question was do different player audiences have noticeable differences

on task completion and the player experience? Here, two different player audiences—

professional crowdsourcing workers (recruited through Amazon Mechanical Turk) and am-

ateur crowdsourcers (recruited through a university student population)—were used for the

study. Perhaps unsurprisingly, Amazon Mechanical Turk participants outperformed the

student participants at all task completion metrics: task correctness, number of tasks com-

pleted, and rate of task completion. While this result may seem predictable, professional
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crowdsourcing workers are also not guaranteed to be expert game players and the task in

question—pairing food items to potential recipes—was a commonsense knowledge task

that does not require expertise that professionals are guaranteed to have over amateurs.

However, the interaction effects between the two experimental conditions: random ver-

sus choice of rewards, combined with the two participant audiences, yielded some un-

expected results. Notably, student participants in the choice condition performed almost

comparably to Amazon Mechanical Turk participants overall in task completion metrics

such as task correctness and the rate of task completion (whereas student participants in

random condition yielded much poorer results). This suggests that subtle changes in re-

wards mechanics could potentially induce amateur crowdsourcers to perform comparably

to experts. While the impact on a commonsense problem with a knowledge solution is

small, such differences could potentially impact (and hopefully benefit) more complex hu-

man computation tasks. Additionally, these results reaffirm that even small changes in

game mechanics, like a single screen difference related reward distribution, can have po-

tentially significant effects on task completion metrics. This observation, as well as the

other interaction effects described above, demonstrate that reward mechanics appear to be

sensitive to player audience and that intended player audience should be taken into account

when considering their design.

Finally, Café Flour Sack, its initial study, and the subsequent interviews demonstrate

potential implementations of various reward systems in games, as well as providing quan-

titative data and qualitative feedback of their utility. While leaderboards remain the most

preferred system in Café Flour Sack, reward systems such as the customizable avatar and

the unlockable narratives resonated with substantial percentages of other players for dif-

ferent reasons. Importantly, participant preference for reward system did not impact task

completion and player experience metrics, echoing similar results from studies of different

reward systems [77]. This suggests that reward systems beyond leaderboards may be vi-

able alternatives, particularly if certain demographics or audiences of players with known
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preferences and motivations for play are being targeted. 20 The results of the interviews

also scratch the surface of why players prefer certain kinds of rewards; further work is

needed to understand just how these different reward systems map to different motivations

for play. I consider all of these results promising for HCGs, as diversifying the kinds of

reward systems utilized by HCGs will serve wider player audiences, thus helping to keep

HCGs relevant and useful in the ever-expanding ocean of digital games.

20Though obviously, the effort required to implement different systems are not equal. For example, the
unlockable narratives require written content, which could be consider substantially more work than imple-
menting an automatically-increasing leaderboard.
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CHAPTER 6

PERSONALIZED REWARD SYSTEMS IN HCGS

6.1 Introduction

Imagine a world where a robust and rigorous body of design knowledge for building human

computation games has been developed. Task providers and small-scale game developers

can look up any game element and easily understand how its inclusion into an HCG for a

given task will affect both the player experience and task completion. As a result, HCGs are

both easier to make and more effective to use, resulting in these games becoming broadly

adapted interface for solving crowdsourcing tasks.

However, even in an unrealistically idealized scenario such as this, human computation

games are not immune to changing task requirements and the whims of players preferences.

What if an HCG developer wishes to reuse their currently-successful HCG for a similar, yet

novel task? What if the HCG must target a new demographic or audience of players whose

preferred game mechanics are the opposite of those currently implemented in the game?

What happens as developments in game hardware and game design enable entirely unpre-

dictable game experiences? Such unforeseen changes may necessitate changing, updating,

or even re-implementing the entire HCG.

Even with the best possible design knowledge available at hand, making changes to

a game may be expensive even for the most well-funded task providers (not to mention

industry-scale game developers). Updating and changing games may be nearly as time

consuming as making a new game and as repeatedly emphasized, task providers and small-

scale HCG developers typically do not have the unlimited resources able to facilitate this

process. As shown in the previous chapter, even small changes to an HCG may have

significant effects on task completion and the player experience. So when addressing an
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unknown task, a brand new player audience, a new hardware platform—any one of a myriad

of unknowns for which design knowledge may ultimately not exist—HCG developers will

continue to face challenges keeping their games updated, efficient, and relevant.

While I have advocated for a robust, rigorous compendium of human computation game

design knowledge that addresses both task and player needs throughout this dissertation,

I also acknowledge that this is just a first step to making HCGs effective and successful.

Every year, more and more games become available to players. Every year, player tastes

change as different genres and types of games wax and wane in popularity. To be as acces-

sible and effective as possible, HCG design and the games themselves need to be able to

adapt to these external changes, but in a way that respects the resource limitations of their

task providers and game developers.

One potential means of easing the burden of HCG development on task providers is

to consider systems that automatically adapt or tune elements of the game to changing

circumstances. In games, algorithmically adapting or adjusting gameplay mechanics or el-

ements is driven in response to player interactions taken in the game is commonly known as

dynamic-difficulty-adjustment (DDA) [105] or challenge-tailoring [106]. These techniques

observe player interaction with the game, utilize or infer a model of player performance or

preferences, and then automatically select or parametrize game elements to create a more

customized play experience. The potential of adaptive techniques has been demonstrated

across a wide variety of game genres, including platformer games [107], action roleplay-

ing games [108], first-person shooters [105], puzzle games [109], and interactive narrative

systems [110, 111]. More recently, high-profile games such as Left 4 Dead [112] and

Middle-earth: Shadows of Mordor [113] have implemented adaptive systems to commer-

cial and critical success. Beyond specific game genres, adaptive techniques have been used

to parametrize and tune more general categories of game elements, such as the aesthetics

of in-game objects (e.g., ship sprites) [114] and movement controls based on player sen-

sitivities [115]. Beyond gameplay, adaptive techniques have been applied to tools in the
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game design process as a way to use designer preferences to explore the design space for

domains such as game maps [116], rhetorically-inspired minigames [117], and aesthetic

content retrieval [118, 119].

Most personalization and adaptive systems rely on the ability to understand players

from in-game behavior, in order to infer player performance and preferences. Modeling

player behavior has been thoroughly studied across a wide variety of game domains [120,

121], including serious games [122]. When it comes to modeling player preferences, popu-

lar approaches include utilizing existing player typologies, such as Yee’s motivational com-

ponents [92], the neurobiologically-inspired Brain Hex [96], and the gamification-focused

Hexad framework [97], or alternatively, learning mappings of in-game behaviors (e.g.,

those aggregated through in-game telemetry data) to modifiable game elements/parameters

directly [123].

Beyond general games, personalization and adaptive techniques have also been applied

in other serious game domains. Personalization systems have been shown to be effective

for serious games [124] and gamification [125]. In education, adaptive techniques are com-

monly used to select, generate, or personalize educational or curricular content based on

student needs’ or preferences. Adaptive techniques power intelligent tutoring systems [126]

and other serious games [127, 101], adjusting student material to match perceived knowl-

edge models or learning mindsets. Adaptive techniques have also been utilized in training

and simulation games [110], where in-game scenarios are altered based on the needs of

and in-game choices made by players. However, it is not well understood how effectively

these techniques and models might transfer and apply between domains (i.e., to HCGs).

For example, not all typologies designed for general games successfully transfer to serious

game domains such as education [128].

Meanwhile, personalization and adaptive game elements are a relatively-unaddressed

area of research and design for human computation games. At best, HCGs may update

their mechanics or in-game tasks to accommodate changes to the task or its requirements.
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Seminal examples of this include the addition of taboo words in the ESP Game, which were

added after the game’s task providers desired a more diverse list of labels for their images,

and the updates of new protein folding challenges in Foldit, which came about as the result

of task providers choosing to use the game as a platform to solve subsequent protein folding

optimizations, not just the original set of tasks. In these examples, all of these changes were

reactive and required the intervention of the games’ developers to update the mechanics or

content of the games. However, most recently, Lessel et al.’s work using a gamified image-

tagging application [10] shows the potential for improving task completion metrics when

players are given the choice to turn gamified elements on and off (i.e., allowing players

the ability to “personalize” their ideal task environment and experience). So while other

serious game domains have explored personalized and adaptive game elements, HCGs have

only taken the first steps for investigating this kind of work.

Beyond the benefits to engagement highlighted in other domains, why could human

computation games benefit from the use of personalized game elements? One reason is

that, as alluded to above, limited design and developer resources make systems that handle

the iterative, but timing-consuming nature of game mechanic parameter-tuning easier. An-

other reason is that adaptive systems rely on heuristics and player models to detect when to

adjust game mechanics. HCGs already have these heuristics available—often implemented

as part an HCG’s verification mechanics—thus making optimizing for objective task qual-

ity a possibility. Thus HCGs are a good candidate for exploring personalization systems,

even for “fuzzier” (but more commonly-explored) metrics such as player challenge (e.g.,

providing easier or different tasks if a player repeatedly fails to provide results of sufficient

quality) or player engagement (e.g., enticing players with different/personalized content if

they appear to be bored with existing tasks or rewards).
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6.1.1 Personalizing Rewards

What would it mean to personalize rewards? Personalization systems typically operate

by observing some input—player actions, inferred metrics, player models, etc.—and then

adjusting some aspect or parameter of the game’s mechanics as output in response.

For human computation games, inputs such as player performance or player preferences

are similar to those seen in entertainment-oriented games, albeit with a focus on solving

tasks. In the context of HCGs specifically, performance at solving tasks—how well, many,

or varied the results of a task are—may be observed as players interact with action mechan-

ics and validated via verification mechanics. For example, HCG players who have a low

percentage of correctly-solved tasks might be analogous to players who repeated fail an

in-game challenge in an entertainment-oriented game. In both cases, the solution might be

to provide different or easier tasks/in-game challenges. Other player-centric metrics such

as player preferences for certain in-game elements can be utilized. For example, players

in a role-playing game may prefer certain types of quests (e.g., those which give a specific

kind of reward), which in turn may induce an personalized system to offer those players

more quests of that type (with those particular rewards). For HCGs, a similar example

might involve players who prefer solving certain kinds of tasks (e.g., labeling only pictures

of cute animals), in which a personalization system might surface these kinds of tasks more

frequently to such players to keep them more engaged with the game.

Given these inputs, what specific aspects or parameters of HCG rewards could be mod-

ified as a result of player performance or preferences? Both the previous chapters and prior

work have explored and discussed variable aspects of reward systems such as reward func-

tion (Chapter 4), reward distribution (Chapter 5), and reward type (Chapter 5, as well as

prior work [79, 77]).

Before proceeding, I wish to highlight that personalizing or adapting aspects of in-game

rewards is not as ethically straightforward as adjusting other game elements. Feedback and

reward mechanics are typically the primary form of compensation to players, providing
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intangible, digital, and emotional rewards often in lieu of what might be monetary compen-

sation on a non-gamified crowdsourcing platform. At their very worst, any personalized or

adaptive reward systems may not compensate players sufficiently for their time and work,

and/or fail to disclose to players about how their rewards are being adjusted. In particu-

lar, while the amount of reward given to players may appear to be an easy parameter to

adjust in an adaptive system, inappropriate implementations risk turning the HCG into an

opaque, automated arbiter which distributes player compensation in unintended ways or

induces players to “game” the system to maximize compensation at the expense of task

results. However, at their best, personalized reward systems could help task providers to

build a healthy relationship with their players. For example, by providing players with their

preferred rewards (or extra rewards for going above and beyond the expected task work),

players may be more inclined to participate in a crowdsourcing process that they feel is fair,

and/or respectful of their time and interests than one which is impersonal or outright an-

tagonistic. It is for this reason that I now propose focusing on personalized reward systems

that rely on player preferences as input, specifically player reward preference. I strongly

reiterate that optimizing rewards purely for the benefit of task providers at the expense of

players not only risks unfair compensation, but also may result in ineffective HCGs that no

one will wish to play and risk affecting the perception of HCGs as a whole.

6.1.2 Summary

The work in this chapter is motivated by the following question: how do personalized

reward systems affect task completion and player experience? Specifically, how do reward

systems which use the player’s preferred reward to give players more of that reward for

longer tasks compare against those which do not?

In this chapter, I describe the modifications to the Café Flour Sack game. These modi-

fications include the inclusion of new reward mechanics, such as allowing players to select

from multiple tasks of different lengths with longer tasks providing more rewards, and the
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basic implementation of a personalized system that will automatically select the player’s

preferred reward when distributing these longer tasks. I then describe a study using Café

Flour Sack that compares two versions: one with a non-personalized reward system against

one with the personalized reward system. I then summarize the task completion and player

experience metrics measured during the study and follow with a discussion of their po-

tential design implications. This chapter continues to use the mechanics framework and

experimental methodology described in Chapter 3.

This chapter consists of three parts:

1. A description of a modifications to an HCG, Café Flour Sack, made to explore per-

sonalization in HCGs.

2. A human-subjects study using personalized Café Flour Sack and its results.

3. Discussion of the results of the study.

6.2 Extending Café Flour Sack

Applying personalization to games comes with the potential to provide a more customized

experience for each player that in turn may yield a more enjoyable experience with the

game. In the case of human computation games, personalized game mechanics may work

to serve both the dual goals of both player experience and completion of the human com-

putation task. Personalized game mechanics may ensure that HCG players are given a play

experience that aligns with their interests, ideally one which respects their particular ex-

trinsic or intrinsic motivations for play. Simultaneously, personalization may optimize task

completion metrics by inducing HCG players to complete tasks more correctly or quickly

by changing in response to their performance. Like all elements of HCGs, optimizing for

only one of these may come at the expense of the other; an ideal personalization system

should optimize for both tasks and players.
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Most existing work in personalization and adaptive techniques would apply to what

may be considered the action mechanics of human computation games. However, this

dissertation work focuses on feedback and reward mechanics. As previously mentioned, I

propose investigating personalized reward systems that rely on player preference as input,

as opposed to systems that look at player performance. In this section, I argue that adjusting

the specific reward type of certain tasks is an appropriate scenario for an personalized

reward system and describe an implementation as an extension to an existing HCG.

6.2.1 An Experiment in Personalized Reward Distribution

So what aspect of reward systems could be personalized? I propose if that multiple re-

wards are available (to accommodate different types of players and motivations) that play-

ers should also be rewarded more favorably for tasks that are more complex or time con-

suming. Not all (sub)tasks for a given human computation problem are created equally.

An image in a data set may be perniciously blurry or contain a multitude of ambiguous ob-

jects. A particularly gnarly protein structure may have an optimal energy configuration that

is near-impossible to manipulate in a 3D rendering interface. A real-life building requiring

pictures for 3D model generation may be in a particularly isolated location that the average

person could not reach. All of these scenarios are instances wherein a task requires more

effort (or even a specialized solution) from the player compared to the average task. All

of these are scenarios that task providers could potentially (and in some cases, have) en-

counter(ed). I refer to these kinds of tasks informally as super tasks—human computation

tasks that require above-average time or effort to solve.

If reward systems are the primary mechanism for player feedback, compensation, and

gratification, then it goes without saying that players should be rewarded more for com-

pleting such tasks. But personalized reward systems have the potential to take this further.

Personalizing rewards may allow HCGs send the message to players that task providers ap-

preciate the extra effort involved for solving such super tasks. I therefore propose exploring
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this idea of giving players their favorite rewards for super tasks. For the player, receiving

more rewards of their favorite category is a further acknowledgment of the additional work

or effort required to complete the super task. For the task provider or HCG developer,

a preferred reward may act as motivator for the player attempting the task or an impetus

to provide a better task solution. Thus, personalizing to a player’s favorite reward in the

context of super tasks could benefit both the player experience and the task completion.

6.2.2 Updating Café Flour Sack for Personalization

To explore this question, I chose to re-utilize Café Flour Sack, the game developed previ-

ously for the experiments in Chapter 5. Using Café Flour Sack leverages its its multiple

reward systems, its known task solution set, and the infrastructure enabled by the previous

experiments.

As a brief recapitulation, Café Flour Sack is a cooking-themed HCG that assigns play-

ers the culinary-commonsense-knowledge task of pairing food ingredients to recipes that

likely contain those ingredients. This commonsense-knowledge task is an artificial task

with a known solution set that allows measuring task completion metrics objectively with-

out needing to simultaneously solve a novel human computation problem. Additionally,

the game contains four separate reward systems or categories: global leaderboards, cus-

tomizable virtual avatars, unlockable narrative stories, and a non-gamified global progress

tracker. For more details on the reward systems, please refer back to Section 5.2.1); be-

yond some light parameter tuning (e.g., changing the costs of certain items in avatar and

narrative reward systems), these rewards remain otherwise unchanged from their original

implementation.

In the original versions of Café Flour Sack from the previous studies, players would

click a button to start each round. Based on the condition of the study, players would either

be randomly assigned one of the three available reward types 1 (the random condition) or

1The available reward types are the leaderboards, the customizable avatar, and the unlockable narratives.
The global progress tracker is not available as a reward type because it has no explicit reward currency
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Figure 6.1: The new start screen for Café Flour Sack. For each round, the player selects
one of three available options; this round has a super task available for the avatar category.

be allowed to choose a reward type at the start of the round (the choice condition). Each

round would then contain five minigames (tasks). Each task would consist of a recipe for a

food dish (e.g., cake) and a random selection of ingredients, from which the player selected

those which could (or could not) be used to make the assigned food dish (e.g., “flour” may

be used to make cake, but “anchovies” may not). At the end of the round, the player would

be informed how many tasks they completed correctly and this would correspond to the

amount of reward they would receive for the given reward system.

Selecting Multiple Round Options and the Super Task

As choice of reward was determined to be the better option, I modified the implementation

slightly to make multiple options (i.e., sets of minigames) available to the player. Instead

of pressing a button get a single option of five randomly-generated minigames, players

attached to it.
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are now shown a list of three round options. Figure 6.1 shows a screenshot of this new

implementation, with a list of three options. Clicking on an option will start a round where

players will be given rewards in the system whose icon is on the option.

While this implementation may appear mechanically identical to the use of the reward

selection screen from the choice condition, exposing separate round options per reward

type comes with a benefit. The original Café Flour Sack has no notion of anything like a

super task, since a round was defined by exactly five tasks, each with a randomly-selected

recipe and randomly-selected ingredients. In the updated Café Flour Sack, a super task is a

round of the game which increases the number of minigames (tasks) from five to eight (i.e.,

multiplying the amount of work by 1.5). 2 I chose to make the super task a longer round

of minigames rather than a more “difficult” series of minigames, since a more “difficult”

task is not particularly easy to define for a commonsense-knowledge problem with a known

solution (particularly one which involves a basic understanding of what ingredients go into

common food items).

To compensate players for completing the super task, the amount of reward they are

given at the end of the round is doubled. For example, if a player earns four points of

leaderboard score by solving four of five tasks in a round correctly, these would be doubled

for a final score of eight points were this the super task. This particular multiplier makes

selecting the super task an attractive option for players looking to maximize their rewards,

as players can do one and a half times the amount of work for twice the rewards. Because

of the scaling factor, I had to adjust some of the costs for items in the customizable avatar

and the unlockable narratives, as the original costs would have allowed players to unlock

them too quickly.

However, since the rewards for accepting the super task are (deliberately) skewed in

favor of the player,3 the super task appears once every three rounds of gameplay (i.e.,

2The increase from five to eight minigames was chosen after some amount of tuning for this particular
study; doubling the minigames, in particular, was found to be overly long.

3In reality, an HCG would probably be much more selective about balancing parameters like multipliers
and such.
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Figure 6.2: The new reward selection screen for Café Flour Sack. The player can click on
an icon to select a reward; currently the player has selected the customizable avatar as their
favorite reward type.

every third set of options), and is assigned to only one of the three options available for

that round. Figure 6.1 shows such a set of options where a super task is available for the

avatar; the corresponding option shows that it has eight minigames (labeled as “dishes” in

the in-game text) with a “2x” or double multiplier. With these adjustments, the decision

of which reward type is assigned to the super task can now be random...or in the case of

this experiment, delegated to a personalization system that looks at player preferences to

determine the appropriate reward type.

Identifying Player Preferences

In order to make a personalized reward system work, Café Flour Sack needs a way to

infer player preferences—specifically which reward type at any given point in time, is the

player’s favorite reward. One method to determine this information is to train a player

modeling system to infer a player’s preferences based on their in-game actions, where the
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benefit of automatic inference is that there is little to no direct player input. However,

given that Café Flour Sack is designed to be run in an experimental setting for a much

shorter duration of gameplay than most games, it is difficult to automatically infer a player’s

preferred reward with such limited information (which would also require training a model

on players in the target audience). Another way is to simply ask players, either directly

or through indirect means such as a pre-game survey (i.e., which then would map player

answers to a particular reward system).

For the updated Café Flour Sack, I opt the latter approach of asking players directly by

adding a “favorite reward selection screen,” which is accessible from the main start screen

of the game. This screen gives players a short form description of each reward and then

allows them to select a current favorite reward type. Figure 6.2 shows a screenshot of this

interface, in which the customizable avatar is currently selected as the player’s favorite

reward type.

Players are required to select an initial favorite reward after being shown all four reward

systems (as part of an upgraded tutorial) before proceeding through the rest of the game,

thus giving them exposure to the reward systems before asking them to make a choice.

Additionally, because a player’s preference for certain game elements is not guaranteed to

be the same throughout the entire duration of gameplay (i.e., players may no longer have

the same favorite or wish to explore others), players are allowed to return to this screen at

any point and reselect a different reward.

By tracking the player’s current favorite reward, the updated Café Flour Sack now has

the means of knowing what reward type to assign players for the super task. A personal-

ized reward system can now use this information directly; a non-personalized version of

the same reward system simply pick the reward type randomly (thus ignoring the player’s

specified preference). Figure 6.3 demonstrates the final breakdown for this experiment

using the mechanics framework from Chapter 3.
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Figure 6.3: The breakdown of the personalized version of Café Flour Sack’s mechanics
and experimental conditions. Here, the selection of the reward type of the super task is the
experimental condition (shown in boldfaced braces).

6.3 Methodology

The overall methodology for this experiment follows a similar flow to the previous studies

conducted in Chapter 5. The experimental condition changed what the reward type of the

super task would be. In the control condition, the super task would be randomly assigned

to one of the two reward categories that were not the participant’s currently selected fa-

vorite reward. In the personalized condition, the super task would always be assigned to

be the participant’s currently selected favorite reward. There were no visual or interactive
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differences between the two versions (i.e., no additional screens, UI elements, or changes

in interaction flow). The only difference between the versions would be which reward type

the super task was assigned to. For example, Figure 6.1 shows a list of tasks where the

super task is assigned to the avatar category. If the participant had selected the customiz-

able avatar as their current favorite reward type (e.g., as shown in Figure 6.2), then this

screen would reflect the personalized condition, wherein their favorite reward matches the

category of the super task. In the corresponding control condition, the super task would

instead be assigned randomly to either the leaderboard or narrative categories.

For this experiment, I recruited participants from a single population: crowdsourcing

professionals (workers) from Amazon Mechanical Turk. This decision was made based

on the results of the previous experiment in Chapter 5, which demonstrates the utility of

using Amazon Mechanical Turk workers as well as potential interaction effects from using

different player audiences. 4 Café Flour Sack was posted as a task (HIT) on the Mechanical

Turk platform, where workers were shown a form with a set of instructions and a link to the

external website hosting the game. 5 The HIT was distributed in batches of nine (i.e., nine

workers participating on the same batch). Only one batch was available at any given time

(to make the results easier to monitor and validate) and batches were distributed at various

times of day to accommodate a global range of workers (i.e., to avoid the scenario wherein

only workers awake in accommodating time zones could become part of the batch).

Upon accessing the game, workers (now referred to as participants) were shown consent

information and asked to take a pre-game survey (identical to the one used in the followup

study described in Section 5.5). After submitting the survey, participants were then ran-

domly assigned to one of the two conditions—control or personalized—whose differences

were previously described. As before, the game’s backend servers generated the experi-

mental condition randomly.

4Some global, logistical difficulties at the time of running the study also made using a student population
prohibitively more difficult.

5All old versions of Café Flour Sack used in prior experiments were removed. This version is available
as of the writing of this dissertation.
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Gameplay began with a short tutorial round of five minigames (tasks), after which

participants were given currency in all three eligible reward categories (minus the global

tracker, which does not use currency). Participants were then directed to all four reward

screens in order to view or spend those currencies before progressing further. Finally, par-

ticipants were directed to the new screen that allowed them to specify their favorite of

the rewards (minus the global tracker, which again has no currency). Participants were

informed that they could change their favorite reward at any point by revisiting this new

screen.

Participants were then asked to complete as many rounds as they desired for the re-

maining duration of the experiment. They were also informed that they could interact with

as many or as few of the reward systems as desired. From the start of the tutorial round

through the end of the experiment, participants were given a minimum required time of ten

minutes (but were not explicitly informed how long this duration was; the consent form

and task instructions stated that the entire study would take “around twenty minutes,”).

For this experiment, participants were required to complete at least three rounds of

tasks. This requirement ensured that participants would be exposed to a super task being

made available at least once (on the third of those required rounds). Participants were

not told of this requirement to ensure that they did not attempt to subvert any part of the

experiment. Only after playing for the required duration and completing the required three

tasks would the “Finish the Study” button appear. (Participants were told that if this button

did not appear to try to complete more tasks.)

After clicking the “Finish the Study” button, participants were asked to fill out a post-

game survey about the experience (and to provide demographic information if desired).

Participants were then provided a code which could be used to provide proof of com-

pletion. Submitting this code would then compensate Mechanical Turk workers once the

online submission was validated against logged telemetry data. 6 Workers were allowed to

6As previously, workers were paid $7 for completing the experiment; please note that this experiment was
shorter in duration than the studies conducted in Chapter 5.
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complete the study only once; duplicate attempts (e.g., through the use of multiple accounts

per person) were removed when detected.

As before, I took additional steps to account for extrinsic motivations (i.e., monetary

compensation), particularly since the compensation rate for participation was considerably

higher than the average Mechanical Turk HIT. First, participants were required to play

the game for at least a fixed amount of time and to complete at least a certain number of

tasks. The exact time duration and number of required tasks were not directly disclosed

to the participants. As noted above, this forced duration of play was again used to ensure

that participants would not be incentivized to rush through the experiment as quickly as

possible. Unlike the previous experiment, participants did need to complete a required

number of tasks (to guarantee exposure to the super task mechanic).

For this experiment, I removed the “boredom button” from the game’s menu. The

previous studies used the button as a proxy for when players would have wished to quit

the game due to boredom (i.e., a measure of retention), however no significant differences

were detected between the experimental conditions and the participant audiences when

measuring the time it took participants to press the button. While previous studies provided

useful feedback above why players pressed the button (e.g., running out of reward content,

lack of interest in the game, confusion, etc.), I chose to streamline the interface of the

game and use the screen space to prioritize the button which would take participants to the

favorite reward selection instead. Thus, in comparison to the previous studies, boredom

was not a subjective metric measured in this experiment.

Finally, as before, real-time adjustments to both the leaderboards and the progress

tracker using a simulation of fake players and results were used to normalize the expe-

rience for all players by providing the perception that other players were simultaneously

playing the game, but without using previous participants’ results. This would prevent any

scenarios, such as later players being discouraged from social elements like the leader-

boards, should an earlier player display extremely high results. Instead, all participants
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would see similar sets of simulated social results.

6.4 Results

The study was conducted over the course of a week and a half, during which the game was

made available online to workers on Amazon Mechanical Turk. I report on results from 74

participants who took part in the study. In actuality, I acquired data from 94 participants,

20 of which were determined to be duplicate users based on similarity of results. While

the task on Amazon Mechanical Turk was set up so the workers could not repeat it (and

were explicitly told not to), there is nothing stopping participants from using alternative

user accounts to repeat the task. To detect duplicated users, I compared in-game user

names (which participants enter on start so that in-game characters can address them by a

provided name), in-game completion times, and survey results, and then excluded data for

any users whose results were too similar to those previously provided. 7

When divided by condition, 37 participants were assigned to the control condition and

37 participants were assigned to the personalized condition.

When considering self-reported population demographics, 22 participants self-reported

as female and 52 self-reported as male. Figure 6.4 shows the breakdown of participant age.

Most subjects fell into range of ages from 23–30. 61 participants reported that they played

games regularly; 20 participants reported having played an HCG before.

The evaluation focuses on both subjective metrics related to the player experience and

objective metrics related to the task completion between the control and the personalized

(experimental) conditions. All data were treated as nonparametric in nature. Wilcoxon rank

sum tests were utilized for continuous data analysis; Kruskal-Wallis tests were also utilized

when the number of data points between the two conditions was tied. For categorical data,

Pearson’s Chi-Squared tests were utilized.

7The post-survey questions proved to be a very good litmus test for detecting duplicate results, as duplicate
users would frequently repeat the same three favorite games—occasionally with identical spelling errors—
when asked this question during the post-survey.
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Figure 6.4: The age distribution for participants in the personalized Café Flour Sack study.

The subsequent sections report on these results; the discussion of their implications

follows in Section 6.5.

6.4.1 Subjective Metrics—Player Experience

As in the previous studies with Café Flour Sack, the data contributing to the evaluation

of the player experience consist of both player responses to questions on the post-game

survey 8 and telemetry events from player interactions with the game.

First, I report on participants’ survey results. These include responses regarding their

favorite rewards (when ranked), as well the responses to post-survey questions regarding

aspects of play such as engagement and perception of reward fairness.

Next, I report on participants interactions with different reward-related aspects of the

game. I begin with reports on the duration of play within the reward system screens. Addi-

tionally, I report on participant interactions with choosing the option for each round, how

8The pre-game survey results were not used, although they did have the benefit of being an excellent
means of helping to screen of the study results for participants who attempted to take the study twice, since
repeat participants using different worker IDs would frequently fill out the study repeating the same value for
all questions in the survey.
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Table 6.1: Counts of participants’ favorite rewards in the personalized Café Flour
Sack study.

Leaderboards Avatar Narrative Tracker
Control 20 4 10 3
Personalized 17 7 7 6
Total 37 11 17 9

those choices aligned with participants’ currently-selected favorite reward or the presence

of a super task. Finally, I report on participant interactions with the favorite reward selec-

tion screen.

Favorite Rewards

As part of the post-game survey, participants were asked to rank the reward systems in order

of preference. Table 6.1 shows the distribution of favorite (i.e., highest ranked reward)

across the two conditions. In total, participants’ favorite rewards were the leaderboards

(37 participants), the unlockable narratives (17 participants), the customizable avatar (11

participants), and the global progress tracker (9 participants). This ordering held across

both conditions (with the unlockable narratives being slightly more preferred in the control

condition, but equivalently so with the customizable avatar in the personalized condition).

No significant differences were detected between conditions.

Post-Survey Questions

The post-game survey asked participants various questions on their experience. Here, I

report on five questions from the post-game survey in which players were asked to rate

the statements on a 1–7 Likert scale, where “1” corresponded to “strongly disagree,” 4

corresponded to “neither agree nor disagree,” and 7 corresponded to “strongly agree.”

The five statements were as follows:

1. “I found the reward systems engaging.”

2. “I found the reward systems frustrating.”
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Figure 6.5: Score distributions for the five post-survey Likert questions in the personal-
ized Café Flour Sack study. For each question, the data for the control condition are shown
on the left and the data for the personalized condition are shown on the right (in blue and
orange respectively).

Table 6.2: Mean scores for the five post-survey Likert questions in the personalized Café
Flour Sack study.

Engagement Frustration Challenge Fair Rewards Matched Preferences
Control 5.162 2.865 4.324 5.270 5.162
Personalized 5.00 2.595 3.973 5.216 4.865
Total 5.081 2.730 4.149 5.243 5.014

3. “I found the reward systems challenging.”

4. “I felt like I was being fairly rewarded for the tasks I was completing.”

5. “I felt like the rewards I was being given matched my preferences for the rewards

in the game.”

The mean scores for these questions, broken down by condition are broken down by

condition in Table 6.2. The score distributions can be observed in Figure 6.5 with the

control condition on the left and the personalized condition on the right for each question.

For all five questions, no significant differences were detected between conditions.
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Table 6.3: Mean duration (in seconds) of time spent in a single view for all four reward
systems across both participant audience type and experimental condition in the Café Flour
Sack study.

Leaderboards Avatar Narrative Tracker
Control 8.877 10.717 29.380 7.622
Personalized 9.611 13.379 33.000 11.786

Table 6.4: Choice counts showing whether or not participants selected the round option
corresponding to their currently-selected favorite reward in the personalized Café Flour
Sack study.

Favorite Selected Favorite Not Selected
Control 130 101
Personalized 125 115
Total 255 216

Duration of Play

Like the previous studies involving Café Flour Sack, this study had a fixed duration, so I

again focus on where and how players spent their time during the required play time. As

Amazon Mechanical Turk workers are incentivized to participate for financial reasons, ob-

serving play duration assumes that participants were working to complete tasks as quickly,

but adequately as possible. So while the study duration was well within the time limit

Amazon Mechanical Turk imposes for completing and submitting task results (before a

worker’s “lock” on that HIT expires and another worker is allowed to accept it), it was

once again insufficient to look at the total duration of play as an indicator of engagement.

Once again, metrics of interest are related to rewards, and specifically how long play-

ers spent in each of the different reward systems menus. Table 6.3 shows the mean time

spent per view of each reward menu, broken down by experimental condition. Despite the

suggestions above that participants spent more time in reward menus in the personalized

condition, these differences were not significant.
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Table 6.5: Choice counts for rounds with a super task showing whether or not participants
selected the option corresponding to their currently-selected favorite reward in the person-
alized Café Flour Sack study.

Favorite Selected Favorite Not Selected
Control 23 32
Personalized 29 29
Total 52 61

Choosing Favorite Rewards and Super Tasks

As favorite reward type plays a large role in the experimental conditions of this study, I

sought to understand the impact, if any, a participant’s current favorite reward type had on

their choice of the three options available at the start of each round.

When observing whether or not participants picked round options that corresponded

to their currently-selected favorite reward, participants did not always pick the option that

corresponded to their favorite. In the control condition, participants selected the option

with their favorite reward 56% of the time. In the personalized condition, participants

selected the option with their favorite reward 52% of the time. Table 6.4 demonstrates the

breakdown; no significant differences were detected between conditions.

Regarding rounds in which super tasks were available, participants in the control con-

dition selected the super task option 42% of the time. In the personalized condition, par-

ticipants selected the super task option 50% of the time. Table 6.5 shows this breakdown;

again, no significant differences were detected between conditions.

Altogether, these results suggest that the experimental condition had no effect on whether

or not participants picked round options corresponding to their currently-selected favorite

reward type.

Changing Favorite Rewards

As participants had the ability to change their current favorite reward at any point during

the experiment, one may raise questions such as how frequently did participants change
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Table 6.6: Counts of initial choices for participants’ favorite reward type when interacting
with the favorite reward selection screen during the tutorial of the personalized Café Flour
Sack study.

Leaderboards Avatar Narratives
Control 20 13 4
Personalized 17 16 4
Total 37 29 8

their rewards and between which kinds of rewards did these changes occur. The game

did not explicitly explain what the purpose of changing one’s favorite reward type might

have on the game (as this was the primary difference between the two conditions). Thus,

participants were forced to infer its purpose, if they chose to interact with the favorite

reward selection screen at all.

As part of the tutorial, participants were forced to interact with this screen to pick an

initial, favorite reward type from among the three available rewards presented: the leader-

boards, the customizable avatar, and the unlockable narratives. This choice occurred after

participants were asked to visit all three reward menus to understand how the rewards

worked, and thus could be expected to have a minimal understanding of each system. Ta-

ble 6.6 shows the breakdown of these initial choices, with participants in both conditions

overall preferring (in order) the leaderboards, the avatar, and the narratives. No significant

differences were observed between the two experimental conditions.

Following this initial interaction, players were not required to change their favorite

reward again, but could do so whenever they wished. Altogether, players in the control

condition utilized this ability a total of 72 times, for a mean 1.946—nearly twice—times

per participant. Players in the personalized condition, however, utilized this ability a total

of 179 times, for a mean 4.838 times per participant, over double that of players in the

previous condition. However, these differences in the number of times a favorite reward

was changed were not significant.
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6.4.2 Objective Metrics—Task Completion

To evaluate the task completion, I focus on the same three metrics observed in the previous

studies using Café Flour Sack: the correctness of the task answers, the number of tasks

completed, and the timing of task completion. These metrics reflect the typical consider-

ations of task providers. For an actual human computation task, different metrics might

be prioritized over others depending on the task requirements; here however, I present all

metrics equally.

Correctness of Completed Tasks

As in previous studies, task correctness for a given task is the ratio of correctly-assigned in-

gredients to the total number of ingredients in the task, as determined by the gold-standard

solution set. A task was considered correct if 75% (a corresponding ratio of 0.75) or more

of its ingredients belonged the given recipe. Participants in the control condition demon-

strated an average mean task correctness of 0.693. Participants in the personalized con-

dition demonstrated an average mean task correctness of 0.697. The differences between

these two conditions were not significant.

I conducted further analysis using two-way ANOVAs with aligned rank transforms [104],

considering factors such as participants’ favorite reward types, and whether or not task was

part of a super task option. However, these factors did not have an effect on task correct-

ness.

Number of Completed Tasks

Additionally, I examined the number of tasks completed per participant between the two

experimental conditions. These results were further broken down into three categories: the

total number of tasks completed, the number of correct tasks completed, and the num-

ber of incorrect tasks completed. When considering total tasks, participants in the control

condition completed a mean 33.081 tasks, while participants in the personalized condition
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completed a mean 34.784 tasks. When considering only correct tasks, participants in the

control condition completed a mean 21.243 correct tasks, while participants in the person-

alized condition completed a mean 22.676 correct tasks. Finally, when considering only

incorrect tasks, participants in the control condition completed a mean 11.838 incorrect

tasks, while participants in the personalized condition completed a mean 12.108 incorrect

tasks. Overall, participants in the personalized condition completed more tasks, but these

differences are not significant.

Timing of Completed Tasks

Finally, I focused on the amount of time (in seconds) it took players to complete tasks. As

with the observations into the number of tasks completed, these results are broken down

into the completion times of total tasks, correct tasks, and incorrect tasks.

When considering total tasks, participants in the control condition had a mean comple-

tion time of 12.348 seconds, while participants in the personalized condition had a mean

completion time of 11.789 seconds. When considering only correct tasks, participants in

the control condition had a mean completion time of 11.440 seconds, while participants in

the personalized condition had a mean completion time of 10.983 seconds. Lastly, when

considering only incorrect tasks, participants in the control condition had a mean comple-

tion time of 13.977 seconds, while participants in the personalized condition had a mean

completion time of 13.300 seconds. Overall, participants in the personalized condition ap-

pear to have slightly faster average times for task completion, but again, these differences

are not significant.

6.5 Discussion

Overall, the results of the study show no noticeable differences between the two conditions:

control and personalized. Some potential, but not significant, trends were observed. For

subjective (player experience) metrics, participants rated aspects of the game such as en-
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gagement, reward fairness, and preference matching slightly higher in the control condition

than in the personalized condition. Additionally, control participants were more likely to

select round options corresponding to their favorite reward. By comparison, participants

in the personalized condition found the game less frustrating, less challenging, and were

more likely to select super task options corresponding to their favorite reward. Personal-

ized participants also interacted with the favorite reward selection screen nearly twice as

much as control participants. For objective (task completion) metrics, participants in the

personalized condition were more correct at solving tasks, completed more tasks, and com-

pleted tasks faster than their counterparts in the control condition. However, nearly all of

these differences were small and these differences were not significant, which ultimately

suggests there was no difference between the two conditions.

Taken literally, these results suggest that personalized reward systems are no better than

a non-personalized system at improving either task completion or player experience. An

uncharitable reading of the results might even prompt the question of then why even bother

with personalized reward systems at all (given that they are typically more time-consuming

and resource-intensive to implement, even for an implementation like that in Café Flour

Sack which does not rely on a complex player modeling system to infer player preferences)?

At the very least, it is worth noting that the personalized reward systems in Café Flour

Sack demonstrated no negative effects on task completion, which is often a concern for such

systems. The results show that participants in the personalized condition did in fact use the

favorite reward selection screen more frequently; in spite of this interaction arguably taking

away time from solving tasks, the task completion results from personalized participants

trended higher. Further investigation would be required to see if these results might in fact

still hold across a larger or different audience of participants.

I instead propose that rather than dismissing personalized reward systems outright, that

these results might have been a consequence of the variation between the two conditions

being too subtle. One particularly telling, though not statistically-significant, observation
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comes from the post-game survey. In the control condition, participants rated the statement

“I felt like the rewards I was being given matched my preferences for the rewards in the

game” higher than participants in the personalized version. This result, notably the fact

that the control version of Café Flour Sack was not adapting to participants’ favorite re-

wards (i.e., deliberately giving them the opposite) suggests that the experimental condition

may have been too subtle for this particular study, especially when compared to the previ-

ous Café Flour Sack study in which participants in the choice condition did perceive they

had more choice compared to participants in the random condition.

So why might this particular implementation of providing personalized rewards for

more work-intensive tasks have been too subtle to demonstrate a noticeable effect?

For this personalized study, the only visual difference between the two versions of Café

Flour Sack was which reward option the super task was assigned to. In-game, this change

occurred once every three rounds when the super task was present and visually changed

the set of round option buttons the participants saw (i.e., Figure 6.1). While I consider the

single screen difference between the random and choice conditions from the previous Café

Flour Sack study to be similarly subtle, this difference was exposed every round—thus

three times more frequently than the experimental condition with the super task.

Another potential issue may have been the short study duration, which is both a con-

sequence of its deployment to Amazon Mechanical Turk and feedback from the previous

study, in which some participants expressed free-form feedback that the play duration was

too long. Many HCGs solving classification tasks, like the one utilized in Café Flour Sack,

are set up as puzzle games with short play durations, particularly when compared against

optimization tasks (e.g., consider Foldit wherein players typically complete multiple tuto-

rials before being given an actual protein folding problem, thereby giving them a longer

period of time to become comfortable interacting with the game). While this makes Café

Flour Sack similar to existing classification HCGs, it is possible that personalized reward

systems (which benefit from extended play duration) may not be as impactful in games
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where the player is not intended to repeat play sessions or interact for extended periods of

time.

In combination, the limited exposure of the experimental condition with the change

to the reward type of the super task in combination with short duration of study (again

compared to the previous Café Flour Sack studies) could have resulted in the variation

being too subtle to create any noticeable effect between the two versions. However, these

results do not completely invalidate personalized reward systems as designed in Café Flour

Sack. Potential follow-up explorations to this particular investigation could provide super

tasks more frequently.9 Alternatively, one might consider looking at HCGs with longer

tasks, particularly (scientific) data optimization tasks (which often require more thorough

training or tutorialization, thereby resulting in more interaction with game systems). The

benefit of examining or using HCGs with more involved or time-consuming gameplay

sessions would also permit the use of more complex player typologies or player modeling

systems, which require extended periods or multiple sessions of player interaction with the

game in order to properly understand player preferences.

Finally, I wish to address the role that participant audience may have played in the study

results. As the previous study with Café Flour Sack demonstrated, audience does in fact

have an impact on the results. For this personalized Café Flour Sack study, I chose to uti-

lize workers from Amazon Mechanical Turk based on the results of the previous Café Flour

Sack studies, in which Amazon Mechanical Turk participants demonstrated high task com-

pletion results in line with prior research such of that of Sabou et al. [103]. Such prior work

does suggest the interchangeability of paid crowdsourcing platforms and HCGs, particu-

larly when it comes to task completion metrics, although questions still remain around how

motivation for monetary compensation may affect motivation for play and engagement.

One observation from this particular study was that there was a high percentage of par-

ticipants who attempted to repeat the study using different Amazon Mechanical Turk user

9Such a change would necessitate a sufficiently larger amount of reward content than Café Flour Sack cur-
rently provides.
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accounts. While I was able to detect these instances, 20 of the logged 94 participants were

detected to be duplicates, suggesting that around 21% of the participants did attempt to re-

complete the study despite the instructions explicitly asking otherwise.10 By comparison,

such an incident was only detected once during the original Café Flour Sack study. This

would suggest that monetary compensation was an overwhelmingly strong motivator for

participation (again in line with concerns that Sabou et al. highlighted in their work, but

did not fully explore). 11 While it is unclear what the exact effect of overwhelming extrinsic

motivation for monetary compensation may have had on the results, I hypothesize that it

may have at the very least, distracted or taken away from extrinsic motivations for in-game

rewards. Ultimately, I consider these issues around player audience a good cautionary

takeaway for running HCG research on paid crowdsourcing platforms and future work is

needed to truly understand just how extrinsic motivation for monetary compensation may

interact (or worse, interfere) with extrinsic motivation for in-game rewards.

6.6 Conclusions

In this chapter, I describe a modified version of the Café Flour Sack human computation

game and its use in a study of personalized reward systems. The study compared two ver-

sions of Café Flour Sack: a control version which did not personalize players’ preferred

rewards for more involved tasks super tasks and a personalized version which always as-

signed players’ preferred rewards for more involved tasks. I finish with a discussion of the

study results and what factors may have contributed to the lack of difference between the

conditions, as well as some potential future directions for work.

This chapter began with the question of understanding how using personalization based

10Anecdotally, I noticed that this problem appeared to be more exacerbated during certain times of the day
when releasing batches of HITs on the Amazon Mechanical Turk platform (as I made concerted efforts to
distribute tasks at different times of the day to account for a more global audience of Amazon Mechanical
Turk workers). I opted not to deliberately avoid these particular times of day to avoid biasing player audience
selection, and instead focused on detecting and removing duplicates instead.

11I also acknowledge that this study was conducted during a global pandemic, during which job loss was
global concern and may have inflated the motivation for monetary compensation.
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on player preferences in reward systems would affect task completion and player experi-

ence metrics. The results of the study suggest personalization had no significant effects

on either the task completion and player experience. While the results trended towards

higher task completion metrics for the personalized condition with mixed (split) results

for player experience metrics between, none of these results were statistically significant.

These results suggest that preference-focused, personalized rewards systems may have no

difference on task completion metrics, primarily in that they do not appear to adversely

affect or distract from task solutions. However, it is not the case that preference-focused,

personalized reward systems generate more positive player experience metrics.

While this might suggest that personalized reward systems may not be as effective as

initially hypothesized or do not appear to be a useful avenue of exploration for HCGs, I

emphasize that this is not the case. It is true that personalized reward systems involve more

initial work to implement, but the study with this personalized version of Café Flour Sack is

just the first exploration of personalization in the context of reward systems. Given the com-

plex role that rewards have regarding player feedback, player motivation, and fair compen-

sation for human computation work, it is possible that other aspects of reward systems—to

name a few: reward function (i.e., for what in-game actions are rewards given), reward

distribution (i.e., how in-game rewards are distributed), and other unexplored reward types

(e.g., badges, in-game powerups, intrinsic rewards)—may have larger effects. It may also

be the case that personalization and adaptive techniques may be more effective (with re-

gards to both task completion and player experience) for different tasks (particularly HCGs

with tasks necessitating longer or repeated play sessions which could take better advantage

of more complex player modeling techniques) or different combinations of game elements.

Ultimately, very little is known about how personalization and adaptive techniques may

play a role in HCGs. However, as player modeling and techniques for inferring player

preferences become more sophisticated (in combination with growing support for logging

and understanding player data), more and more mainstream, digital games are looking at
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personalization and adaptive techniques as a way to keep players engaged with their ex-

periences. Additionally, personalization and adaptive techniques enable systems where

time-consuming, rote tasks such as tuning parameters or tweaking content can automat-

ically assist with this process, which is of particular benefit to HCG developers who do

not have the time or resources of industry-scale studios. In order for HCGs to remain

competitive with the growing number of games that rely on personalization and adaptive

techniques, HCGs must keep up and explore new ways to make their games more effective.

This chapter is only the start of what may hopefully become future investigations into per-

sonalization and adaptive techniques, not just for reward systems, for HCG mechanics and

game elements altogether.
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CHAPTER 7

CONCLUSIONS

From classifying cat pictures to folding protein configurations to sketching silly doodles,

human computation games have been used to provide playful solutions to complex prob-

lems that remain difficult and intractable for computers solve. Yet in spite of these suc-

cesses, making games remains a complicated, time-consuming, and multidisciplinary pro-

cess, one which is not always straightforward or possible for scientists, researchers, and

task providers to undertake. Making an HCG comes with even more complications, the

most noteworthy of which is that HCGs have two primary, often contradictory, goals. The

first goal is to solve some underlying human computation task, which may sometimes be

mundane, ambiguous, and in many cases, difficult to translate to engaging game mechan-

ics. The second goal is to provide an engaging player experience, since without players,

an HCG is incapable of generating sufficient solutions to the underlying task. At best, the

game mechanics of an HCG work towards both of these goals without interference to cre-

ate an engaging, effective experience. However, at worst, an HCG is either an unenaging,

insipid experience optimized wholly around the task—one which players will not play—or

an experience so engaging that players are too distracted by other elements—one which

does not solve the task.

Given that most HCG developers are experts at the task they wish to solve rather than

professional game developers, many HCGs are task-focused experiences that lack the en-

gagement necessary to sustain these games beyond the initial acquisition of results. This

creates an ominous prospect in a games industry that where every year, more and more

games become available for potential players to interact, where HCGs must compete for

the time and attention of players who may choose to avoid HCGs entirely given their lack-

luster reputation for engagement. While some HCGs [20, 4, 25] have managed to elevate
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themselves into mature platforms and others have managed to foster successful collabora-

tions with large-scale, big-budget games [24, 30], not all potential HCGs may be so fortu-

nate. Design knowledge specific to HCGs remains limited—at best anecdotal—with few

generalizable guiding principles, thus resulting in games that mimic old patterns and risk

failing to engage newer player audiences. Realistically, the average task provider may look

at this current state of HCG design and ask why they should risk a lengthy, complicated

development process to end up with a game that may not even be effective or engaging. As

a result, HCGs continue to remain a relatively unexplored area of design study, even when

compared with other serious game domains like education and training.

In this thesis, I address a specific subset of human computation game mechanics: re-

ward mechanics. Reward mechanics are the game mechanics responsible for providing

players feedback about their effort in solving tasks, typically in the form of in-game digital

rewards or catering to intrinsic motivation for participating in the crowdsourcing process.

Given that HCGs typically do not compensate their players monetarily compared with paid,

online crowdsourcing platforms (e.g., Amazon Mechanical Turk, Crowdflower), reward

mechanics are very important to HCGs for their role in compensation and providing play-

ers an engaging experience in gratitude for their participation in the human computation

process.

In Chapter 3, I propose a framework for understanding and visualizing the mechanics

of human computation games. This framework breaks down HCGs into three types of

mechanics: action, verification, and feedback (rewards), which align the core gameplay

loop with the steps of the human computation process. I propose this framework alongside

a methodology for evaluating variations in HCG mechanics that considers the impact of

variations on both the player experience and the task completion—the dual design goals

which HCGs must optimize for. The descriptions of this framework and methodology are

illustrated using examples of existing, successful HCGs; throughout subsequent chapters, I

use both framework and methodology to contextualize and design controlled experiments.
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In Chapter 4, I begin investigations into reward mechanics using a between-subjects

study comparing collaborative and competitive reward functions. This study simultane-

ously examined singleplayer and multiplayer game mechanics, and was accomplished us-

ing an HCG developed specifically for this purpose: Gwario, a Super Mario Bros.-inspired

platformer that uses a commonsense knowledge task to test design hypotheses. Addition-

ally, I report on the results of a survey sent to HCG experts (i.e., developers) to understand

expert opinions on the variations on the game mechanics explored in the study. The study

and interviews show, among many results, that collaborative reward mechanics result in

higher task completion metrics, while competitive reward mechanics yield higher player

experience metrics and that collusion between players enabled higher task accuracy.

In Chapter 5, I continue investigations into reward mechanics, this time looking at mul-

tiple reward types and the impact of offering players a choice of reward using a between-

subjects study. The study also examined different HCG audiences by comparing the results

between a population of crowdsourcing experts and a population of student players. Addi-

tionally, I report on the results of a series of semi-structured interviews conducted with a

student player population to better understand multiple reward systems. The study shows,

among other results, that choice of reward demonstrated benefits to both player experience

and task completion metrics.

In Chapter 6, I end with investigations into personalized reward systems, specifically

what impact personalizing the type of reward a player receives might have on more effort-

intensive tasks. The study results using a personalized reward system are inconclusive;

personalized reward systems did not show any significant negative effects on task com-

pletion compared with non-personalized reward systems, but showed no benefits to player

experience either.

Taken altogether, these results show that variations in HCG reward systems do have an

impact on player experience and task completion. Specifically, I show that various prop-

erties of reward systems can in fact, improve the player experience without compromising
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task completion metrics such as solution quality, such as offering players choice of reward

type—and may occasionally improve task completion metrics, too. In other cases, there

are nuances, such as in the case of collaborative and competitive reward systems. Prior

work [70, 73] has shown the inclusion of competitive reward systems results in no differ-

ence in task completion metrics, but the results of Chapter 4 suggest that competitive reward

mechanics resulted in lower task accuracy than the collaborative version of those reward

mechanics.

In the process of these investigations into reward systems, I also explored a number of

other variations not simply limited to feedback mechanics. Chapter 3 provides an example

of how to adapt an HCG to a platformer game (i.e., exploring platformer action mechan-

ics), a rarely-explored avenue of HCG design (although one of increasing interest given

how many recent HCGs [24, 30, 31] have been integrated into large-scale, entertainment-

oriented games not originally intended for human computation). That chapter also demon-

strates results (from both the study and HCG expert interviews) that contradict contradict

existing HCG design wisdom [50, 90], such as how allowing players to collude or commu-

nicate proved to be a predictor of task accuracy. Such results suggest that there is in fact a

need to continue updating HCG design knowledge and not to blindly rely on existing (and

often dated) design tenets. Additionally, Chapter 5 looks into the unexplored area of player

audience, showing that different audience do respond differently to variations in reward

mechanics. For example, by offering players choice of reward type, student players per-

formed closer to expert crowdsourcers at metrics such as task correctness and rate of task

completion, compared with offering random reward types where the differences between

the two audiences were far greater.

Ultimately, all of these results—both rewards mechanics and other game aspects—

reiterate that human computation game design knowledge is not and should not be a static

handful of old design patterns and generalizations based on anecdotes. HCG design knowl-

edge can and should be based on empirically testing and evaluating variations of game
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elements when possible while considering the effects on both player experience and task

completion metrics. By understanding how the inclusion of certain game elements in vari-

ous HCG contexts work, HCG developers will have better information about how to build

these games in a way that gives them more confidence that their games will be both engag-

ing and effective.

Finally, this thesis only addresses one aspect of HCG mechanics in the context of only

several kinds of human computation tasks. In the context of reward mechanics specifically,

there is plenty of room in the future to explore other aspects of reward mechanics such as

different reward types not explored in this thesis (e.g., badges, other forms of feedback for

intrinsic motivation), across a wider variety of tasks. Specifically, this dissertation focused

on classification and commonsense knowledge tasks; how these results might generalize

to data optimization and scientific discovery tasks is an open question. Furthermore, some

investigations explored in this thesis, such as personalized reward systems, remain incon-

clusive.

The future remains kind to the need for human computation games. Artificial intel-

ligence and machine learning become more ubiquitous every year, and will continue to

require data sets and information where humans are currently the optimal solution solvers

or creators. Scientific optimization and citizen science efforts will continue to encounter

new scenarios—diseases, novel protein configurations, and untackled DNA sequences, to

name a few—that humans remain the experts at navigating. Games become more and more

accessible across existing and novel platforms, and the tools to build these experiences will

be more readily available for novices and non-experts to use. With all of these aspects in

their favor, HCGs do not deserve to fade into obscurity when there remain (and will likely

always be) computationally-intractable problems and the digital tools to build the experi-

ences to tackle them. But only by giving HCG developers and task providers the best, most

rigorous design knowledge about how to build these games to address both the needs of

tasks and players can these games reach their true potential.
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APPENDIX A

FULL SCRIPT FOR THE INTERVIEW TO THE CAFÉ FLOUR

SACK FOLLOWUP STUDY

The following text was printed on paper and kept on hand during the interview with partici-

pants. Handheld recording began with the interviewer greeting and ended with the closing;

participants’ questions following the closing were not recorded or considered part of the

interview.

Interviewer Greeting: Thank you for agreeing to conduct this interview with me. I’d like

to ask you a couple of questions about the experience you had. If you have any feedback

for us, there will be time at the end of the interview to ask.

A.1 General Questions about Rewards in Games

1. What kinds of rewards to you enjoy in games?

(a) (If rewards given) What motivates you to interact with these rewards? (Alter-

native phrasing: Why do you like these rewards?)

2. Have you ever felt like certain rewards made you less motivated to play a game?

A.2 Human Computation Games

3. Do you play human computation games? Have you ever tried one?

(a) (If positive response given) Can you describe what motivates you to play these

games?
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(b) (If neutral or negative response given) Can you explain or describe why not?

What might motivate you to play one of these games?

A.3 Rewards in the Context of the Study’s HCG (Café Flour Sack)

4. How do you think the rewards in the HCG you just played (Café Flour Sack) com-

pared to rewards in other games?

5. What was your favorite reward system in the HCG you just played (Café Flour Sack)

and why?

6. What was your least favorite reward system in the HCG you just played (Café Flour

Sack) and why?

7. (Optional, as this may be answered by prior questions) Can you give me a preference

ranking of the reward systems in Café Flour Sack? (For each, ask why if possible.)

A.4 Future Rewards

8. What kinds of rewards would you like to have seen in a human computation game

(including this one in the study)?

(a) (If positive response given) Are these the kinds of rewards that you regularly

interact with in games that you frequently play or enjoy?

(b) (If positive or neutral response given) Are there any other rewards that you think

could be implemented in a human computation game that weren’t available

here?

Interviewer Closing: Finally, do you have any other feedback for me? This is also an

opportunity to ask me any additional questions you have about the study.
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