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SUMMARY

Robotics is now being applied to a diversity of real-world applications [1] and in

many areas such as industrial, medical, and mobile robotics, safety is a critical consid-

eration for continued adoption. In this thesis we therefore investigate how to develop

algorithms that improve the safety of autonomous systems using both a model-based

and model-free framework. To begin, we make a variety of assumptions (e.g., that

a model is known, there is a single safety constraint, there are no communication

limits, and that the state can be sensed everywhere), and show how to guarantee the

safety of the system. The contribution of the initial approach is a generalization of

an existing method for creating a barrier function, which is a function similar to a

Lyapunov function that can be used to make safety guarantees. We then investigate

relaxing these initial assumptions. In some cases, new additional assumptions are

required, performance may be reduced, or safety guarantees may no longer be avail-

able. We motivate the thesis with collision avoidance for fixed wing aircraft which

can be viewed as a pairwise constraint on each pair of aircraft. This introduces the

need for considering multiple safety factors simultaneously, and we show that an ad-

ditional assumption is needed in this case. We then relax the assumption that the

vehicles have unlimited communication and find that safety can still be guaranteed.

However, it is possible in this case that the overriding safety controller may be more

invasive than if more communication is allowed. When we then further relax the

assumption that the state can be sensed at all times, safety can still be guaranteed

in some specified situations but the system may be more permissive in approaching

safety boundaries. We finally remove the assumption of a known model for dynamics.

Although removing this assumption means the system is no longer guaranteed to be

safe, the benefit is that it allows a safety designer to build a far less invasive override

to get more performance out of the system.

xv



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Model-based engineering, where an environment or dynamics model is used to de-

rive properties of a system, is responsible for a myriad of control systems, such as the

Bernoulli equation that enables modern flight [2], to Lyapunov functions for humanoid

robots [3], to barrier functions for safety [4]. These properties are often critical for

real world operation as stability guarantees are important for predictable operations,

derived convergence rates enable cost effective manufacturing plants, robustness re-

sults allow for robots to operate in a real world that consists of unmodelled effects,

and safety guarantees are critical for systems interacting with humans.

Nevertheless, there can be limitations to model-based approaches. One exam-

ple is a model mismatch where it may be necessary to assume a simplified model

relative to the real system in order to derive properties. An example is where a

unicycle model is assumed for fixed-wing aircraft collision avoidance [5, 6, 7] where

closed form solutions are difficult to derive for more complicated 6 degree of freedom

models. This can lead to differences between the predicted performance and actual

performance on a live system. A second example of a limitation of a model-based

approach can be performance. In computer vision, deep learning frameworks have

risen in popularity as their performance has out-performed model-based methods [8].

Similarly, reinforcement learning, where an agent interacts with an environment and

tries to maximize reward is another area where model free approaches can outperform

model-based counterparts [9] and have led to human level performance in Atari [10],

Starcraft [11], and Dota II [12].
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Thus, there are tradeoffs to using model-based and model-free approaches. The

former are more applicable when the system is well understood and the ability to

predict system behavior is critical. The latter may be more applicable when the

system is extremely complicated and final performance is important. Nevertheless,

there have been a variety of approaches to combine these methods. For instance, in

[9] the authors start with a model based controller and transition to a model free

method at the end of training. The initial model allows the system to learn faster at

the beginning but the final model free approach improves final performance. Other

approaches have learned an environment model to then train an agent in reinforcement

learning as this can improve robustness of the final result [13, 14]. Alternatively, in

[15] there are two neural networks for a learned forward propagation model and

model-free learning, respectively. A final action selection layer then uses these two

networks.

Model based methods can also explicitly guide the trajectory of a learning agent.

For instance, in [16], the authors learn the dynamics, value function, and safety model

from a set of demonstration trajectories. They then apply model predictive control

using these functions under the constraint that the planned path ends with sufficient

probability in a known safe state. In [17] the authors use temporal logic to create

an overriding controller that assigns a reward when there is a mismatch between the

reinforcement learning and safety system. A similar idea is pursued in [18] where an

overriding controller keeps the state in an admissible set and adds a cost for unsafe

actions in order for the reinforcement learning system to also account for safety in its

reward function.

For systems where safety is an important consideration, an override of a model

free system can be pursued. For instance, in [19] a discrimination function is trained

to mimic a human blocking action. Similarly, in [20] the authors train a reset policy to

take a series of actions to get the agent back to safe initial conditions and is activated

2



when the reset policy value function gets below a threshold. Finally, in [21] it is shown

that while blockers are effective at avoiding unsafe conditions, the use of a blocker

can also be overly conservative, resulting in impaired overall performance.

This thesis investigates both model-based and model-free approaches to safety

with a motivating example of fixed-wing collision avoidance, an application of increas-

ing importance. As low-cost, unmanned aerial vehicles (UAVs) find civilian uses, the

low-altitude airspace is increasingly congested, leading to large-scale UAV operation

limitations including concerns for privacy, the environment, national security, and

safe-flight validation [22]. A key challenge for safe-flight validation in congested envi-

ronments is ensuring collision avoidance while enabling vehicles to accomplish their

designed missions. Thus, in this thesis we propose an algorithm that minimally alters

a vehicle’s nominal control input while still ensuring safe operations.

A variety of approaches to fixed-wing collision avoidance have been proposed.

Partially observable Markov decision processes are used in [23, 24] to achieve safe

flight distances. Velocity obstacles [25] provide a geometric framework for selecting

safe velocities. The dynamic window approach, originally introduced in [26] for static

obstacles and adapted to moving obstacles in [27], uses circular arcs for trajectories

and limits the set of allowable velocities to enable a quick optimization of the con-

trol input. In [5], the authors develop a first-order look-ahead algorithm that can be

applied to vehicles with unicycle dynamics in a decentralized way while guaranteeing

that collisions amongst k vehicles are avoided. Potential functions [28, 6] have also

been applied to fixed-wing collision avoidance, where it can be shown that vehicles

can safely avoid each other even when their sensing range is limited. Similarly, [7]

discusses how to combine potential functions with trajectory goals into a navigation

function in order to provide criteria under which collision avoidance can be guaran-

teed. Navigation functions have also been combined with Model Predictive Control

(MPC) by making inter-agent distance requirements implicit in the cost function [29].
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MPC has additionally been applied to UAV collision avoidance for vehicles with lim-

ited sensing [30] and communication constraints [31]. While MPC provides a flexible

framework for distributed collision avoidance, its limited horizon can make safety

guarantees difficult. In a more general case, the optimal control formulation in [32]

allows for collision avoidance guarantees, but it is computationally intensive as it

requires numerically solving the Hamilton-Jacobi-Bellman equations over an infinite

horizon.

Trajectory generation was analyzed in [33] where a nonlinear program is devel-

oped to find a safe reference trajectory constructed from polynomials. In [34] and

[35], the authors discuss trajectory generation using a randomly exploring random

tree (RRT) with dynamics constraints provided by Dubins paths and a waypoint

generation algorithm, respectively. Reference governors [36], where the input refer-

ence signal for a nominal closed loop controller is overridden in order to ensure that

safety and performance constraints are maintained, have also been applied to colli-

sion avoidance in [37]. In [37] the authors show how to ensure collision avoidance

for a distributed set of linear systems via a sequential mixed-integer programming

optimization. The approach considers a finite horizon in the optimization because it

is shown that a constant reference can then keep the system safe after that point.

Reference governors are similar to the approach of this thesis in that given a nominal

controller the approach seeks a minimal adjustment in order to improve safety char-

acteristics. However, they differ in how the minimal adjustment occurs. A reference

governor adjusts the set point that a nominal system is designed to achieve. On

the other hand, the approach of this thesis does not require a reference input to the

nominal system and instead allows a nominal controller to calculate a control input

as it normally would. Finally, in [38], the authors also consider a trajectory based

approach to avoid static obstacles. Similar to evasive maneuvers, traffic rules [39,

40] are a method for encoding hybrid behaviors that can include collision avoidance

4



trajectories. In [39], the authors show that a two vehicle system with limited sensing

range can avoid collisions while reaching position goals. While in general this may

result in conservative behaviors, they demonstrate in simulation that the decentral-

ized algorithm continues to allow vehicles to reach their target configuration while

avoiding collisions for as many as 70 vehicles. Reactive methods are useful because

they can often be calculated online while evasive maneuvers benefit from a lookahead

into the future. In this thesis we leverage the merits of both approaches within the

framework of control barrier functions.

Motivated by the importance of formal guarantees of collision avoidance that

are computationally feasible and minimally invasive we discuss in this thesis how to

apply barrier functions (e.g., [41], [4]) to the UAV collision avoidance problem, where

the system is subject to actuator constraints, nonlinear dynamics, and nonlinear

safety constraints. Barrier functions are similar to Lyapunov functions and allow for

guarantees that a system will stay safe (i.e., vehicles will maintain safe distances from

each other) for all future times. Further, under some assumptions detailed later, a

Quadratic Program (QP) can be used to calculate a safe control input implied by

a barrier function so that the calculation can be done online [4]. Given such safety

guarantees, barrier functions have been applied to a set of problems including collision

avoidance for autonomous agents ([42, 43]), bipedal robots ([3, 44]), adaptive cruise

control and lane following ([45, 4, 46, 47]), and in mobile communication networks

[48].

However, barrier functions rely on being able to find a function with particular

properties for safety to be guaranteed. For systems like a fixed wing UAV with

actuator constraints, nonlinear dynamics, and nonlinear safety constraints, generating

such a function can be difficult. In this respect they are similar to Lyapunov functions.

They provide guarantees when a system designer can find appropriate functions but

they may be difficult to construct.
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Nevertheless, there are a variety of approaches to finding a barrier function given

a system and safety constraints. One approach discussed for instance in ([45, 49,

41, 50]), uses a sum of squares decomposition [51]. In this approach an initially

conservative estimate for a barrier function is found and the associated safe set is

iteratively enlarged. Iterative approaches have also been developed when the system

has relative degree greater than one. The conditions for calculating a safe control

input for higher order systems are given in [52]. In [44], a backstepping approach is

developed that ensures a control barrier function can be constructed and a similar

approach is discussed in [53]. The approach discussed in this thesis is most similar to

[54] where a barrier function is formulated by calculating the distance to a backup set

after applying a backup controller. In this thesis we develop an alternative approach

that does not require the specification of a backup set.

Geometric insights have also been exploited in [3], where the authors develop

a barrier function for precise foot placement by ensuring that the foot is within the

intersection of two circles. Similarly, in [42, 43], the authors develop a barrier function

that ensures a circle and ellipsoid, respectively, around each robot will not overlap in

order to ensure there will be no collisions for double integrator and quadrotor robots,

respectively. Barrier functions have also been developed for unicycle dynamics in

[47], where the dynamics are simplified by considering a point slightly in front of the

vehicle.

Previous work on barrier functions has shown how, given the current state, a safe

control input can be selected to ensure the system is safe for all times. In this paper,

we also ensure system safety but do so by integrating the dynamics into the future

using a known evasive maneuver that is always available to keep the system safe. In

this respect the system is more predictable since it is known that a particular control

input will be safe. Further, we ensure that actuator limits are respected which is a

significant constraint in the case of UAVs where the system has non-zero minimum
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velocity.

Aside from ensuring a barrier function constraint can be satisfied given actua-

tor limitations, UAV collision avoidance also motivates the consideration of multiple

safety constraints that must be satisfied at all times. In particular, because collision

avoidance can be viewed as a constraint for each pairwise combination of vehicles [48,

55], we briefly review how barrier functions have been applied to systems with multiple

constraints. A contract-based approach is presented in [45]. A sum of squares de-

composition is presented in [50] where additional safety constraints map to additional

constraints in the optimization problem. In [53], necessary and sufficient conditions

are given for the existence of a control input that satisfies multiple barrier function

constraints. The approach generalizes to high order and time-varying systems but

requires that actuator constraints be unbounded. Barrier function composition has

also been addressed in [45, 48, 55]. In [45], the authors partition the state space into

regions for which a single barrier function is active in each component of the parti-

tion. In [48] and [55] non-smooth barrier functions are discussed, where the result

allows for combining barrier functions using boolean primitives. One drawback of the

boolean composition approaches is that it is not guaranteed that the composition of

barrier functions will result in a barrier function.

Barrier functions have also been used in the context of limited sensing [42, 56, 57,

45] and allow for safety guarantees so that when the system starts safe it will remain

safe for all future time. In [42] the authors provide a minimum sensing radius to

ensure a system of double integrator robots maintain safe distances from each other.

Further, they reformulate a Quadratic Program (QP) that only requires knowing the

relative position to other agents while still ensuring safety for both collaborative and

non-collaborative neighbors. In [56], the authors provide a decentralized strategy

for collision avoidance that does not require knowing neighbor barrier function pa-

rameters. While [57] does not address multi-agent systems, it does consider collision
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Figure 1.1: A simple system with a car that travels along the line. A safety override
system should prevent the car from traveling towards the wall at high speed when it
is close to the wall but can be more permissive when the car is far from the wall.

avoidance under limited range sensing for 3D quadrotors. The authors design a se-

quential QP that translates position-based constraints into rotational commands to

ensure safety. Sensing limitations can also be addressed with a disturbance to the

system dynamics. For instance, in [45] the authors model road curvature changes as

a bounded disturbance to apply barrier functions to adaptive cruise control and lane

keeping.

1.2 Barrier Functions Background

In this section we discuss how to generate a barrier function that ensures a system

will stay safe for all future times. To motivate the discussion, consider the example in

Figure 1.1 where a car has been designed to move along the x-axis in order to transport

people. The car’s controller applies acceleration commands to achieve speed set points

and eventually slows down as it gets to the correct location. While it may seem better

to design the car controller to achieve speed and safety goals simultaneously, this

can significantly complicate controller design, particularly as dynamics, performance

goals, or safety objectives become more complicated. For this reason, it may be that

the car’s controller may not be designed with safety goals in mind, like not hitting

the wall shown in the figure.
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Consider then how to design a safety system that, given the car’s original con-

troller, can allow the system to achieve its performance goal (get to a specific location

on the x-axis) while not sacrificing the safety goal (do not hit the wall). Clearly, if

the car is very close to the wall, the safety system should only allow the car to remain

in place or move to the right. On the other hand, if the car is extremely far from

the wall, the safety override can be very permissive because even if the car is mov-

ing very quickly towards the wall, there is still a substantial amount of time to slow

down and avoid a collision. In between these two extremes, the safety override might

try to balance allowing the car to approach the wall somewhat but not very quickly.

In other words, it is not just how close to the wall the car is but how quickly it is

approaching it that matters when considering how invasive a safety override should

be.

A barrier function is a function that allows the system’s safety designer to make

this type of tradeoff precise. In particular, it allows us to calculate both how far the

system is from the safety boundary as well as how quickly the system is approaching

it. This facilitates a calculation of how much each of the available control inputs will

affect how quickly the system approaches the boundary of safety. As a result, we can

then pick a control value that is as close as possible to the original system’s controller

that does not violate the safety objective. We will refer to the set of available control

inputs that do not approach the boundary too quickly as the admissible control space

and the system’s original controller as the nominal controller. Because a barrier

function allows the safety designer to select a control value as close as possible to the

nominal controller, we refer to the overriding safety controller as a minimally invasive

controller. Because a barrier function allows the safety designer to select a control

value as close as possible to the nominal controller, we refer to the overriding safety

controller as a minimally invasive controller. We make this idea precise below.

Consider now a more realistic example of a fixed-wing aircraft which will have
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more complicated dynamics than the simple car example of Figure 1.1. A common

use case is for a remotely controlled UAV that is equipped with an autopilot that

achieves waypoint commands. While the autopilot may be able to achieve waypoints,

it may not factor other aircraft into the calculation of the control inputs. For vehicles

operating in a dense region of space, simply using a waypoint following algorithm will

lead to high risk of aircraft collisions which can significantly disrupt operations, lead

to loss of aircraft, and place infrastructure below the crash at risk.

A simple solution to ensuring vehicles do not crash into each other is to be conser-

vative in what the vehicles are allowed to do. However, this can lead to performance

degradation. For the car example of Figure 1.1, this might mean that the car gets

to its goal location more slowly or simply cannot get to locations near to the wall.

Similarly, if high density operation is required for fixed-wing aircraft then an overly

conservative approach to safety might mean the system’s performance goal is com-

promised. However, as we discuss in this section, a barrier function allows the safety

system to select an overriding control value that is minimally invasive so it can get

as much performance out of the originally designed system without compromising

safety.

To design a barrier function, one needs to specify a model and then develop a

function that has particular properties that allow us to calculate both how far from

the safety boundary the state is and how quickly it is approaching the boundary. We

begin by specifying a model for fixed-wing aircraft. In particular, we assume small

bank and pitch angles and note that similar models have been used in prior work for

fixed-wing collision avoidance [5, 6, 7, 29, 39, 40]. We index each vehicle by i where

i ∈ {1, . . . , k} where k is the total number of vehicles. The state of each vehicle i is

then xi =
[
pi,x pi,y θi pi,z

]T
, where pi,x, pi,y, and pi,z are the x, y, and z positions

of vehicle, respectively, and θi is the rotation of the vehicle. The control input for

each vehicle is ui =
[
vi ωi ζi

]T
, where vi, ωi, and ζi are the forward speed, rotation
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speed, and vertical speed of the vehicle. We also assume that each vehicle can sense

the state of every other vehicle so that the sensing problem is a complete undirected

graph.

A critical consideration of this work is that the control inputs of the vehicle are

bounded and in particular, that the aircraft must maintain positive forward speed at

all times. The bounds for the control inputs are then vi ∈ [vmin, vmax] with vmin > 0,

|ωi| ≤ ωmax, and |ζi| ≤ ζmax. Then the individual vehicle dynamics are described by

ẋi =



cos(θi) 0 0

sin(θi) 0 0

0 1 0

0 0 1




vi

ωi

ζi

 . (1.1)

Note that (1.1) is linear in the control input. Collision avoidance involves more

than a single aircraft, so for this reason we consider the overall system state as the

concatenation of all aircraft states

x =

[
x1 x2 . . . xk

]T
. (1.2)

The system (1.2) is an instantiation of the more general system

ẋ = f(x) + g(x)u, (1.3)

where f and g are locally Lipschitz functions, x ∈ Rn, and u ∈ U ⊂ Rm. Note that

(1.3) is linear in the control input. This allows us to calculate an overriding control

value using a Quadratic Program (QP) and will be described later. We also assume

that solutions are forward complete, meaning the system has a unique solution for

all time t ≥ 0 given a starting condition x(0). This assumption means that a model

is well defined for all future times and is necessary in order to make claims that the
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system will stay safe over an infinite horizon.

Given the state x, we can calculate properties of the state with an output function

h. The discussion of the car example from Figure 1.1 emphasized that it is important

to know both how far the system is from the safety boundary as well as how quickly

it is approaching the safety boundary. The output function h allows us to calculate

both values. To do this, we specify a set as a superlevel set of h, namely

C = {x ∈ D : h(x) ≥ 0}. (1.4)

In other words, when h(x) = 0, the system is at the boundary of safety and as h(x)

increases the system is further from the safety boundary. Further, the derivative of

h measures how quickly the state is approaching the safety boundary. In the below

definition Lfh(x) =
∂h(x)
∂x

f(x) and Lgh(x) =
∂h(x)
∂x

g(x) denote the Lie derivatives.

Definition 1. [4] Given a set C ⊂ Rn defined in (1.4) for a continuously differentiable

function h : Rn → R, the function h is called a zeroing control barrier function

(ZCBF) defined on an open set D with C ⊂ D ⊂ Rn, if there exists a Lipschitz

continuous extended class K function α such that

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0, ∀x ∈ D. (1.5)

The terms Lfh(x) + Lgh(x)u of (1.5) represents the time derivative of h when

using u as a control input. In other words, for a fixed control input, (1.5) becomes

ḣ(x) ≥ −α(h(x)). (1.6)

We can use (1.6) to show that the above definition encapsulates the idea that the state

can approach the safety boundary quickly when it is far from the safety boundary.
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First, note that for h(x) = 0, the derivative of h must be greater than or equal to

zero. On the other hand, if h(x) > 0 then the derivative of h can also be negative.

Further, the derivative of h can be increasingly negative the larger h(x) becomes.

From Definition 1, it follows that the admissible control space is defined in [4] as

K(x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}. (1.7)

This is the set of control inputs that ensure that the system is not approaching the

safety boundary too quickly.

Theorem 1. [4] Given a set C ⊆ Rn defined in (1.4) for a continuously differentiable

function h, if h is a ZCBF on D, then any Lipschitz continuous controller u : D → U

such that u(x) ∈ K(x) will render the set C forward invariant.

Theorem 1 says that if we pick a control input so that the system does not approach

the safety boundary too quickly then the system will stay safe for all future times.

Importantly, any selection such that u ∈ K(x) (provided it is Lipschitz continuous)

will suffice to ensure safety. As discussed in [4], this means that when K(x) has more

than one element, we can introduce performance criteria to select the best one.

Consider again the example of an autopilot that is designed to reach a waypoint.

We refer to the control input that is designed to reach a waypoint as the nominal

controller and denote this function by û. Suppose further that other aircraft are very

far away so that û(x) is safe in the sense that it will not cause a collision. In particular

assume that û ∈ K(x). Then by selecting the nominal control input, the system will

not only stay safe but also achieve its originally intended performance goal.

However, for the case that the nominal control input is not safe (i.e., û(x) /∈ K(x))

we can still select a safe control input that is close to the nominal control input. For

instance, suppose the nominal controller encodes a trajectory that points straight

at a waypoint but that this trajectory will lead to a collision. We may still allow
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the vehicle to deviate slightly from its intended target while still making progress by

selecting a control value in K(x) that is as close as possible to û as possible. Thus,

choosing u(x) ∈ K(x) ensures safety but choosing u(x) as close as possible to û can

retain performance, in the sense of being as close to the originally designed control

value as possible.

This idea is formalized in [4], where a QP is introduced to choose how to calculate

u(x) ∈ K(x) while being as close as possible to the nominal control value as possible.

A QP is an optimization problem where all of the constraints are linear and the

optimization cost is quadratic. Notice in particular that the constraint in (1.5) is

linear in u. Further, the constraints on the control input for fixed wing aircraft in

(1.1) can be described by a set of linear inequalities as follows:



1 0 0

−1 0 0

0 1 0

0 −1 0

0 0 1

0 0 −1




vi

ωi

ζi.

 ≥



vmin

−vmax

−ωmax

−ωmax

−ζmax

−ζmax


. (1.8)

We denote the constraint (1.8) by Aiui ≥ bi and note that for the system of k aircraft,

the constraint becomes

Au =



A1 0 0 · · · 0

0 A2 0 · · · 0

0 0
. . . · · · 0

... ... ... . . . ...

0 0 0 · · · Ak





u1

u2

u3
...

uk


≥



b1

b2

b3
...

bk


= b. (1.9)

Thus, the safety constraint (1.5) and actuator constraints (1.9) are both linear in the
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control in put u.

In addition to linear constraints, the QP must have a quadratic cost. Thus, to

encode the goal of picking a control input as close as possible to the nominal input û

we can minimize 1
2

∥∥∥ ˆu− û
∥∥∥2

as follows

u∗ = min
u∈Rm

1

2
∥u− û∥2 (1.10a)

s.t. Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0 (1.10b)

Au ≥ b. (1.10c)

The QP in (1.10) resolves two practical issues with applying barrier functions.

First, QPs can be solved very quickly so they are amenable to being run on UAVs

where a safe control input may need to be calculated many times per second. Second,

the QP will always be feasible. This is ensured because when h is a ZCBF as defined

in Definition 1, it satisfies the constraints of the problem.

Thus, when there is a ZCBF h available, safety can be guaranteed and a control

input can be calculated in an online manner. However, these strong conclusions are

predictated on having a ZCBF available for the system. This is non-trivial for sys-

tems such as fixed wing aircraft due to actuator constraints and nonlinear dynamics.

Nevertheless, we show in the next chapter how to derive such a ZCBF to guarantee

safety for fixed wing UAV collision avoidance.
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CHAPTER 2

CONSTRUCTING BARRIER FUNCTIONS

The last chapter introduced ZCBFs and how they can be used to make safety guar-

antees. However, it can be diffult to derive a ZCBF for a given system. We therefore

begin this chapter with a motivating example for fixed wing collision where the candi-

date ZCBF does not satisfy the constraint (1.5) before presenting a general approach

to deriving a ZCBF for the system.

2.1 Motivating Example

Consider a candidate ZCBF, h, that encodes a collision avoidance safety constraint

in a system of two vehicles with state x =

[
xT1 xT2

]T
and

h(x) = d1,2(x)−D2
s , (2.1)

where

d1,2(x) = (p1,x − p2,x)2 + (p1,y − p2,y)2 + (p1,z − p2,z)2

is the squared distance between vehicles 1 and 2 and Ds is a positive minimum safety

distance. In other words, the candidate barrier function encodes the safety constraint

directly. However, as we will show below, it does not fully account for the fact that

vehicles need to start avoiding each other well in advance of a collision. Intuitively,

we should not need wait for metal to crunch other metal to identify that the system is

unsafe. Instead, we should know well in advance of the collision point that a collision

is imminent which this candidate function does not encapsulate. We now examine

this point mathematically.

To show why h defined in (2.1) is not a ZCBF, we present an example where,
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even though the configuration of the aircraft is safe since x ∈ C, h(x) does not satisfy

constraint (1.5). Let x1 =

[
−Ds/2 0 0 ϵ

]T
and x2 =

[
Ds/2 0 π −ϵ

]T
for

some ϵ ≥ 0. First, we note that for x =

[
xT1 xT2

]T
∈ C, h(x) ≥ 0. Further,

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] = sup
u∈U

[
2(p1,x − p2,x)(v1 cos θ1 − v2 cos θ2)

+ 2(p1,y − p2,y)(v1 sin θ1 − v2 sin θ2)

+ 2(p1,z − p2,z)(ζ1 − ζ2)
]

= sup
u∈U

[−2Ds(v1 + v2) + 2ϵ(ζ1 − ζ2)]

= −4Dsvmin + 2ϵζmax.

Since vmin > 0 and Ds > 0, if the two vehicles’ initial positions satisfy 0 ≤ ϵ <

2Dsvmin/ζmax we observe that the quantity above does not satisfy constraint (1.5),

i.e., supu∈U [Lfh(x) + Lgh(x)u + α(h(x))] < 0. Therefore, we conclude that h(x)

defined in (2.1) is not a ZCBF. The problem with this candidate ZCBF is that it does

not account for the fact that by the time the vehicles are close to colliding, it may be

too late to avoid each other due to the limited turning radius and positive minimum

velocity.

Going back to the example of Figure 1.1, let the position of the vehicle be given

by p and let it be at the wall when p = 0. Although the safety objective is to ensure

that p ≥ 0 at all times, we cannot define h(x) = p because the car needs to brake

well in advance of the wall in order to slow down in time. In this case, when the car

is at the wall, h(x) = p = 0 so h indicates that the system is safe. However, if the car

has negative velocity there is nothing that can be done to prevent it from colliding

with the wall. Hence, a barrier function must encode not only that the system is safe

at the current moment, but also that the system is safe for future times as well. To

ensure this is the case, we now investigate how to define a barrier function in such a

way as to ensure that there is always a control input to keep the system safe whenever
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h(x) ≥ 0.

2.2 Constructing a Barrier Function via Evading Maneuvers

In order to overcome the difficulties demonstrated in the example of Section 2.1, we

introduce a method to systematically construct a ZCBF from a safety constraint. Let

ρ : D → R be a safety function that represents the safety objective we want to satisfy

at all times so that ρ(x) ≥ 0 indicates that the system is safe. In the example from

Section 2.1 for vehicles i and j,

ρ(x) = di,j(x)−D2
s . (2.2)

Alternatively, for the car example of Section 2.1, ρ(x) = p. Second, let γ : D → U

be a nominal evading maneuver. Section 2.3.2 discusses specific examples of γ for

the UAV collision avoidance problem. For the car example of Figure 1.1, an example

nominal evading maneuver is to accelerate to the right. Assuming γ has been selected,

let

h(x; ρ, γ) = inf
τ∈[0,∞)

ρ(x̂(τ)), (2.3)

be a candidate ZCBF where x̂ and ˙̂x are given by

x̂(τ) = x+

∫ τ

0

˙̂x(η)dη, (2.4)

˙̂x(τ) = f(x̂(τ)) + g(x̂(τ))γ(x̂(τ)). (2.5)

For ease of notation, we will omit the time dependencies whenever the time is clear

from the context. We assume in this paper that the solution (2.4) is well defined and
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Figure 2.1: An example of how to calculate a barrier function for a system of two
UAVs. In this case the vehicles start pointing at each other. The vehicles must
maintain a minimum forward velocity so they cannot stop. Thus, they apply an
evasive maneuver where both vehicles turn left. As the state is propagated using this
evasive maneuver, the worse case distance along this trajectory is the value of the
barrier function.

contained in D for all τ ≥ 0 so that ρ(x̂(τ)) is well defined. This choice of a candidate

ZCBF h is motivated by the fact that in (2.3), h measures how close the state will get

to the boundary of the safe set assuming γ is used as the control input for all future

time. In other words, if the system is currently safe as defined by h(x) ≥ 0 then by

applying the nominal evading maneuver for all time the system will remain safe. An

intuition behind the constructive method in (2.3) is shown in Figures 1.1 and 2.1.

In Section 2.1 we saw that we could not use the Euclidean distance for a ZCBF

because when a candidate ZCBF h is defined as in (2.1), K(x) could be empty for

some x ∈ D. In other words, although x ∈ D there was no control input available to

keep the system safe. With h defined in (2.3), this problem is alleviated.

Theorem 2. Given a dynamical system (1.3) and a set C ⊂ D defined in (1.4) for

a continuously differentiable h defined in (2.3) with a safety function ρ and locally

Lipschitz evading maneuver γ, h satisfies (1.5) for all x ∈ C. If in addition, Lgh(x) is

non-zero for all x ∈ ∂C and γ maps to values in the interior of U , then h is a ZCBF

on an open set D where C ⊂ D.
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Proof. We start by assuming x ∈ C and show that h satisfies (1.5). Because x ∈ C,

h(x) ≥ 0 so α(h(x)) ≥ 0. Further, note that Lfh(x) + Lgh(x)γ(x) is the derivative

along the trajectory of x̂. In other words,

Lfh(x) + Lgh(x)γ(x) = lim
a→0+

1

a

(
inf

τ∈[a,∞)
ρ(x̂(τ))− inf

τ∈[0,∞)
ρ(x̂(τ))

)
. (2.6)

Consider the term inside the parenthesis in (2.6), namely

inf
τ∈[a,∞)

ρ(x̂(τ))− inf
τ∈[0,∞)

ρ(x̂(τ))

and notice that it is the subtraction of an infimum of the same function ρ evaluated

on two different intervals. Further, note that the first interval is a subset of the second

interval since a approaches 0 from above. Thus, the term inside the parenthesis on

the right hand side of (2.6) is non-negative so Lfh(x)+Lgh(x)γ(x) ≥ 0. We can then

conclude that Lfh(x) + Lgh(x)γ(x) + α(h(x)) ≥ 0 so γ(x) ∈ K(x).

Now assume that Lgh(x) is non-zero for some x ∈ ∂C and γ maps to values in the

interior of U . We will show that there is an open set D that is a strict superset of C

for which (1.5) holds. Let x ∈ ∂C be such that Lgh(x) is non-zero and B(x, µ) be a

ball of radius µ > 0 such that for all z ∈ B(x, µ) \ C, Lgh(z) is non-zero. Such a ball

exists such that B(x, µ) \ C is nonempty because Lgh(x) is continuous. Let d(z) be

a non-zero vector such that d(z) + γ(x) ∈ U where d(z) is a non-zero vector in the

direction of Lgh(z). Note that such a vector exists because γ maps to the interior of

U . Also note that Lgh(z)d(z) > 0. Further restrict µ so that Lgh(z)d(z)+α(h(z)) ≥ 0

for all z ∈ B(x;µ) \ C. Note that for similar reasons discussed earlier in the proof,

Lfh(z) + Lgh(z)γ(z) ≥ 0. Then

Lfh(z) + Lgh(z)(γ(z) + d(z)) + α(h(z)) ≥ Lgh(x)d(z) + α(h(z)) ≥ 0.
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Remark 1. The intuitive reason why h satisfies (1.5) whenever h(x) is non-negative

is that we have by definition a control input γ available to keep the system safe.

A geometric view is presented in Figure 2.2. Note that γ is not the output of the

Quadratic Program (1.10). Instead, the role of γ is to allow h to be evaluated via

(2.3). In other words, there are three control values of interest in the safety override.

First, the nominal controller, û, is designed to accomplish a performance objective

like achieving a waypoint. The goal is to find a safe control value as close as possible

to û. Second, the evasive maneuver γ exists only to calculate h. Its role is to ensure

that the intersection of U and the hyperplane in Figure 2.2 is non-empty. Since this

intersection can have more than one point, we use the optimization (1.10) to get as

close as possible to û without violating the safety constraint. The solution to this

optimization is the third control value of interest which is the actually applied safe

control input u.

Remark 2. Theorem 2 holds for any class K function α. When α(h(x)) = 0, (1.5)

becomes ḣ(x) ≥ 0. In other words, Theorem (2) can also be used to prove Lyapunov

stability properties of a set by flipping the inequality.

2.3 Deriving a Barrier Function

2.3.1 Deriving a Barrier Function for Car Avoiding a Wall

We now discuss how to construct a barrier function for the example of Figure 1.1.

To do so we first define the car model as a double integrator. The state is then

x =

[
p vv

]T
where p and vv are the car position and velocity, respectively. The

dynamics are given by

ẋ =

0 1

0 0

x+
0
1

 av
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Figure 2.2: A geometric view of why h defined in (2.3) can be a barrier function.
Here U is shown as a closed convex polytope satisfying U = {u : Au ≥ b} and K(x)
is the half-space. The constraint (1.5) implies that the intersection of U and K(x)
is non-empty. When h is defined in (2.3), it satisfies this constraint by ensuring that
γ(x) ∈ U and γ(x) ∈ K(x) for all x ∈ C.

where av is the acceleration of the vehicle which is subject to the constraint that

|av| ≤ av,max. The safety constraint in this case is that the position of the vehicle

is nonnegative at all times. In other words, if the vehicle’s position is negative then

it has collided with the wall. For this reason we let ρ(x) = p. We then specify the

evasive maneuver as a positive acceleration av,γ that is less than av,max. We also

denote the initial position and velocity as p0 and vv,0, respectively. Given this setup,

the barrier function defined in (2.3) is given by

h(x) = inf
τ∈[0,∞)

ρ(x̂(τ))

= inf
τ∈[0,∞)

p0 + vv,0τ +
1

2
av,γτ

2. (2.7)

The τ that minimizes (2.7) is given by τmin = max(0,−vv,0/av,γ). Then (2.7) becomes

h(x) = p0 + vv,0τmin +
1

2
av,maxτ

2
min. (2.8)
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Note that (2.8) is continuously differentiable with respect to p and vv for τmin > 0.

For the case of τmin = 0, we verify that the derivative is the same whether τmin = 0

or τmin = −vv,0/av,γ. In the first case where τmin = 0, ∂h(x)
∂p

= 1 and ∂h(x)
∂vv

= 0. In the

second case, where τmin = −vv,0/av,γ so that vv,0 = 0, we have h(x) = p0− 1
2
v2v,0/av,γ.

Then ∂h(x)
∂p

= 1 and ∂h(x)
∂vv

= −vv,0/av,γ = 0 because vv,0 = 0.

2.3.2 Deriving a Barrier Function for UAV Collision Avoidance

We now consider how to calculate h defined in (2.3) for the UAV collision avoidance

problem. From Theorem 2 the only restriction on γ and ρ is that γ is locally Lipschitz

and that h is continuously differentiable so there is some flexibility in choosing γ and

ρ. In this section we discuss two cases where we can choose γ and ρ so that h

can be calculated in closed form. Let the initial state for vehicle i (i = 1, 2) be

given by
[
pi,x0 pi,y0 θi,0 pi,z0

]T
. For these examples we can calculate h in (2.3)

for arbitrary initial states in closed form. Section 3 generalizes the results from

Section 2.2 by showing how to calculate k(k − 1)/2 barrier functions to ensure that

the k(k−1)/2 pairwise distance constraints are always satisfied. Because the examples

in this section calculate h in (2.3) using pairwise distance constraints, the calculations

in these examples will also apply to the case of more than two vehicles. In other words,

with the result of this section we can calculate barrier functions in closed form from

arbitrary initial states and numbers of vehicles. Note that the solutions in this section

solve for h in (2.3) in closed form where τ approaches infinity.

We emphasize that the specification of an evasive maneuver γ is necessary to

evaluate h in (2.3). In other words, without a safety engineer specifying γ there

cannot be a barrier function h. However, γ is never actually directly applied to the

actuators. Instead, its role is to specify h so that the final actuator command u

calculated in (1.10) can actually be applied to the aircraft. In this section we give

two examples where for a given γ, h can be calculated in closed form even though it
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is an integration over an infinite horizon. Further, while we provide two examples of

an evasive maneuver to calculate a continuously differentiable h from (2.3) in closed

form, we note that it a system specific derivation and we have not identified a general

method for finding a γ for an arbitrary system that allows h to be calculated in closed

form.

Example 1. In the first case, let

γturn =

[
σv ω 0 v ω 0

]T
(2.9)

with 0 < σ ≤ 1, ω ̸= 0. In other words, γturn is defined by the same turn rate

for both vehicles but possibly different translational velocities. See Figure 2.1 for an

example. Define r = v
ω

to be the turn radius of the evasive maneuver when traveling

at speed v, b1,0 = p1,x0−σr sin(θ1,0), b2,0 = p2,x0−r sin(θ2,0), c1,0 = p1,y0 +σr cos(θ1,0),

c2,0 = p2,y0 + r cos(θ2,0), ∆b0 = b1,0 − b2,0, ∆c0 = c1,0 − c2,0, and δ > 0. Let

ρ(x) = d1,2(x)− 2δ + δ sin(θ1)− δ cos(θ1)−D2
s , (2.10)

where the δ terms are introduced to affect the smoothness of h. See the Appendix for

details. Note that given γturn the solution to the dynamics (1.1) for vehicles 1 and 2

are

x1(τ) =



b1,0 + σr sin(ωτ + θ1,0)

c1,0 − σr cos(ωτ + θ1,0)

ωτ + θ1,0

p1,z0


and x2(τ) =



b2,0 + r sin(ωτ + θ2,0)

c2,0 − r cos(ωτ + θ2,0)

ωτ + θ2,0

p2,z0


,
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respectively. Then

h(x) = inf
τ∈[0,∞)

(∆b0 + σr sin(ωτ + θ1,0)− r sin(ωτ + θ2,0)))
2

+(∆c0 − σr cos(ωτ + θ1,0) + r cos(ωτ + θ2,0))
2

+(p1,z0 − p2,z0)
2 − 2δ + δ sin(ωτ + θ1,0)− δ cos(ωτ + θ1,0)−D2

s .

By expanding the square terms and applying two trigonometric identities,1 we get

h(x) = inf
τ∈[0,∞)

∆b20 +∆c20 + (1 + σ2)r2 − 2σr2 cos(θ1,0 − θ2,0)

+2σ∆b0r sin(ωτ + θ1,0)− 2∆b0r sin(ωτ + θ2,0)

−2σ∆c0r cos(ωτ + θ1,0) + 2∆c0r cos(ωτ + θ2,0)

+ (p1,z0 − p2,z0)
2 − 2δ + δ sin(ωτ + θ1,0)− δ cos(ωτ + θ1,0)−D2

s .

(2.11)

Grouping constant terms and applying phasor addition yields

h(x) = inf
τ∈[0,∞)

A1 + A2 cos(ωτ +Θ)−D2
s , (2.12)

where A1 results from grouping constant terms, while A2 and Θ are the amplitude

and phase resulting from the phasor addition so that A1 and A2 are functions of x.

By convention A1 and A2 are nonnegative with appropriate calculation of Θ. The

minimum in (2.12) then occurs at τ = (π − Θ + l2π)/ω for integers l resulting in

nonnegative t so that h(x) = A1 − A2 −D2
s . Note that for the case where

ρ(x) =
√
d1,2(x)− 2δ + δ sin(θ1)− δ cos(θ1)−Ds, (2.13)

1The identities are sin2(α) + cos2(α) = 1 and cos(α− β) = cos(α) cos(β) + sin(α) sin(β).
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the same reasoning yields

h(x) =
√
A1 − A2 −Ds (2.14)

for ρ defined in (2.13). We refer to the h in (2.14) as hturn. To ensure that the square

root is well defined, we must then require that A1 − A2 ≥ 0 which occurs when the

vehicles do not get more than 2δ from each other along the trajectory defined by (2.4)

using γturn in (2.9). Since δ can be chosen to be arbitrarily small, it can be chosen

so that δ ≪ Ds so the vehicles are very far outside the safe set before this condition

occurs.

Example 2. For a second case, let ρ be given in (2.2) and

γstraight =

[
v1 0 ζ1 v2 0 ζ2

]T
, (2.15)

where v1 ̸= v2. An example of the barrier function constructed from this ρ and γ is

shown in Figure 2.3. In other words, γstraight uses a zero turn rate while allowing the

vehicles to have different speeds. In this case we have

h(x) = inf
τ∈[0,∞)

(p1,x0 + τv1 cos(θ1,0)− p2,x0 − τv2 cos(θ2,0))
2

+(p1,y0 + τv1 sin(θ1,0)− p2,y0 − τv2 sin(θ2,0))
2

+(p1,z0 + τζ1 − p2,z0 − τζ2)
2 −D2

s , (2.16)

which is quadratic in τ so the minimum can be calculated in closed form. See the

Appendix for an analysis of the differentiability of h in this case. We refer to h

constructed from ρ(x) =
√
d1,2(x)−Ds and γstraight as hstraight.
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Figure 2.3: An example of a trajectory using an evasive maneuver where each vehicle
maintains a straight trajectory.

2.4 Some Considerations In Choosing An Evasive Maneuver

In this section we consider design tradeoffs in selecting a nominal evasive maneuver.

As the previous section suggests, a key aspect of choosing an evasive maneuver is being

able to find in closed form the worst case future safety function value when using the

evasive maneuver for all times. This was shown to be possible for both γturn and

γstraight in Section 2.3.2. Given multiple evasive maneuvers, we now consider how the

selection of an evasive maneuver can affect the observed performance the system.

We first discuss how the choice of an evading maneuver can affect the robustness

of the system to noise in the dynamics. Note that Theorem 2 requires that an eva-

sive maneuver be in the interior of the actuator constraints U . In particular, this

assumption allows the system to satisfy (2.3) even when the state is outside of the

safe set. Intuitively, the reason why it is important to define an evasive maneuver

well within actuator limits is that it allows for the control input to adjust in a neigh-

borhood around the evasive maneuver if anything goes wrong, as can happen when

there is a perturbation in the dynamics or the system starts in a configuration such

that h(x) < 0. The property that h satisfies (1.5) on an open set larger than C was

shown to make the system robust to perturbations in the dynamics in [46] and to be

important for ensuring system safety in Example 4 of [58]. Hence, it is important to
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select an evasive maneuver that operates well within the actuator limits.

Robustness to perturbations in dynamics is important since any model will have

some level of error in it when compared to a real world system. When the system is

robust it can possibly allow for a simpler model to be used when designing a controller.

We now consider a related idea, namely how a simple evasive maneuver might restrict

the available set of final overriding control values. For instance, notice that the evasive

maneuvers in (2.9) and (2.15) (when ζ1 = ζ2 = 0 in (2.15)) both encode trajectories

where the vehicles maintain the same altitude for all times. This might indicate that

the overriding safety controller might be limited to planar maneuvers and is therefore

not exploiting an important evasive capability of the aircraft, namely the ability to

change altitudes. However, this is not actually the case. Although γturn and γstraight

(for ζ1 = ζ2 = 0) are purely planar maneuvers, they nevertheless can induce behaviors

that exploit altitude changes. To see this, note that for h in (2.12) and (2.16),

∂h(x)

∂p1,z0
= 2(p1,z0 − p2,z0), (2.17)

which is not equal to zero for p1,z0 ̸= p2,z0 . A similar calculation also holds for ∂h(x)
∂p2,z0

.

In other words, h changes as a function of initial altitude. Specifically, this means

that the QP can exploit ζ1 and ζ2 because the fourth and eighth elements of Lgh(x(t))

are non-zero when p1,z0 ̸= p2,z0 , i.e., the QP in (1.10) can exploit the altitude control

input even though γturn and γstraight do not necessarily include an altitude changing

term in the evasive maneuver. Similarly, although γstraight appears to not encode the

ability to turn, we will observe in the simulation experiments of the next section that

the overriding control value does allow the system to turn.

This confirms an important distinction between the distinct control values we

consider in this thesis, namely the safe control value u(x) and the evasive maneuver

γ(x). The evasive maneuver only exists to facilitate the calculation of the barrier

28



function h. Unlike the safe control value, it does not ever need to be applied to the

system unless it happens to be a solution to the QP (1.10). However, the specification

of the evading maneuver γ can have a significant effect on the safe control value u.

2.5 Simulation of Two Vehicles

We demonstrate the theoretical development of this section in simulation using SCRIM-

MAGE [59]. SCRIMMAGE is a multi-agent simulator designed to scale to high num-

bers of vehicles and includes a plugin-interface that makes it easy to experiment with

different motion models and controllers without having to change code. This makes

it simple to swap out nominal controllers and vary the fidelity of fixed-wing UAVs

from the unicycle dynamics in (1.1) used in this section up to a 6-DOF model.

For the simulation, let k vehicles be positioned in a circle of radius 200 around

the origin, where k = 2 in this simulation. In other words, vehicle i has initial state

xi =

[
200 cos

(
i2π
k
+ π

)
200 sin

(
i2π
k
+ π

)
i2π
k
+ ψ ϵi

]T
, where ψ is an additional

offset so that vehicles are not necessarily starting with orientation pointing at the

origin. The goal position for vehicle i is on the other side of the origin: xi,g =[
200 cos

(
i2π
k

)
200 sin

(
i2π
k
π
)]T

.

This setup is selected so that the vehicles are on a collision course. The nominal

controller is that described in [60] with constant λ = 1. Additionally, we let vmin = 15

meters/second, vmax = 25 meters/second, ζmax = 3.9 meters/second, ωmax = 13

degrees/second, Ds = 5 meters, and δ = 0.01 meters2. The choice of ζmax results from

assuming a maximum pitch of 15 degrees while traveling at vmin. ωmax is chosen to be

consistent with a constant rate turn [61] with a 30 degree bank with a speed of vmax.

We note that while the experiments do not consider dynamics or sensor noise, the

robustness of barrier functions to noise was previously discussed in [46]. Each vehicle

evaluates (1.10) at each timestep where we use OSQP [62] to evaluate the QP. We

investigate the performance of the vehicles when h defined in (2.3) is constructed from
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γturn in (2.9) and γstraight (2.15), respectively, where γturn =

[
v ω 0 v ω 0

]T
,

γstraight =

[
v 0 0 v 0 0

]T
, and v = 0.9vmin + 0.1vmax and ω = 0.9ωmax. For the

scenario with γturn, we let ψ = 0 so that the vehicles start with orientation pointing at

the origin. For the scenario with γstraight, we let ψ = 2◦ because if the vehicles pointed

at the origin they would not start in the safe set. Additionally, for the γturn case we

use ρ in (2.13). Similarly, for the γstraight case we use ρ(x) =
√
d1,2(x)−Ds. Details

of the distance between the vehicles and control signals are shown in Figures 2.4

and 2.5. Note that the resulting trajectory can be different depending on which γ

is used as shown in Figure 2.5b. Nevertheless, in both cases the vehicles are able to

maintain safe distances from each other and satisfy actuator constraints throughout

the simulation regardless of which γ is used to construct a h.

In the second experiment, we examine the effect of altitude control on the evasive

behavior of the aircraft. Because (2.17) predicts that ∂h(x)
∂pi,z0

̸= 0 (for i = 1, 2) only

when the vehicles are not at the same altitude, we start the vehicles at an altitude of

−1 and 1, respectively. This offset is small enough to ensure that the nominal path of

the vehicles still involves a collision. As was done in the previous experiment, we set

ψ = 0◦ and ψ = 2◦ degrees when using γturn and γstraight, respectively. In Figure 2.6

we show the output of ζ1, where overriding behavior peaks around 8.2 seconds. Notice

that the actuator output is within the limits of ±ζmax. Further, the vehicles maintain

safe distances at all times. This occurs even though the evading maneuver does not

explicitly encode altitude changes.

2.6 Conclusion

In this chapter we have shown how to ensure that two fixed wing aircraft do not

collide. However, it involved a series of assumptions. In the rest of the thesis we

examine whether similar conclusions can still be achieved when these assumptions
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Figure 2.4: Control outputs for the scenario with 2 fixed-wing vehicles. The blue
dashed and orange solid lines are the output of the scenario where h is constructed
from γstraight and γturn, respectively. The barrier function chooses control values so
that vehicle 1 velocity, turn rate, and altitude rates are within the actuator limits in
(a), (b), and (c), respectively. Further note that the control values are within the
actuator constraints. Adapted with permission from [63] ©2018 IEEE.
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Figure 2.5: Safety outputs for the scenario with 2 fixed-wing vehicles. The blue
dashed and orange solid lines are the output of the scenario where h is constructed
from γstraight and γturn, respectively. The minimum distance between the vehicles is
shown to be above Ds in (a) where the output is very similar in both scenarios. The
path taken by vehicle 1 is shown in (b). Note that the choice of γ in constructing h
has a significant effect on the path taken. Adapted with permission from [63] ©2018
IEEE.
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Figure 2.6: (a) A plot of ζ1 as a function of time when h is parameterized by γturn
and γstraight, respectively. Note the overriding control values around 8.2 seconds and
that ζ1 is within ±ζmax. (b) The same plot zoomed in with individual control values
plotted to indicate that the control signal does not experience abrupt changes.
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Table 2.1: A list of initial assumptions required to ensure system safety

Assumption Effect of Removing Assumption
One Safety Constraint see Chapter 3
Unlimited Communication see Chapter 4
Infinite Range Sensors see Chapter 5
Known Dynamics Model see Chapter 6

are relaxed. See Table 2.1 for a summary of these assumptions. In some cases, safety

can still be guaranteed but there may be additional assumptions necessary or reduced

performance. We find that the only assumption we cannot relax without giving

up a strict safety guarantee is the assumption of a known model for the dynamics.

Nevertheless, even in this case we are able to derive an algorithm where, even though

there are non-zero observed collisions, the experimental collision rates are significantly

reduced when using the proposed algorithm over the nominal system. Further, the

algorithm that does not require dynamics allows the system designer to get more

performance out of the system than the approach of this chapter.
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CHAPTER 3

COMPOSITION OF MULTIPLE SAFETY CONSTRAINTS

The previous chapter showed how to create a framework to maximize the performance

of a system while ensuring that one safety constraint is always satisfied. In this chapter

we relax the assumption that only one safety constraint must be satisfied at all times

and instead consider the case of satisfying multiple constraints simultaneously. By

solving the problem of how to ensure safety while maximizing performance of the

system under arbitrarily many safety constraints, we are able to solve the specific

problem of arbitrarily many aircraft in a dense space without collisions.

We motivate the need for multiple safety constraints by introducing additional

vehicles into the collision avoidance problem. This means that while the prior chapter

only required that vehicles 1 and 2 maintain safe distances, we now must consider,

in the case of three vehicles, how to ensure that vehicles 1 and 2 do not collide in

addition to considering the distances between vehicles 1 and 3 as well as vehicles 2

and 3. We generalize the results to arbitrarily many vehicles.

A straightforward application of the previous chapter might be to create a barrier

function for each safety constraint in the system (e.g., a ZCBF to ensure vehicles 1

and 2 cannot collide, another ZCBF to ensure vehicles 1 and 3 cannot collide, etc)

and at each timestep have each vehicle select a safe actuator command satisfying all

of the constraints. However, while the prior chapter showed that there exists some

actuator value that satisfies each individual ZCBF constraint, it may be the case

that there is not an actuator value to satisfy all ZCBF constraints simultaneously.

To motivate the discussion, we begin by presenting one such example. The essential

issue is that the safety override to ensure one constraint is safe may lead to the other

constraint being violated and vice versa.
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Having shown that having a set of individual barrier functions is not sufficient

to guarantee that all safety constraints will be satisfied at all times, we introduce

an additional assumption called the shared evading maneuver assumption. This as-

sumption requires that the same evading maneuver is used to ensure safety for each

constraint. Recall that in the previous chapter we demonstrated that constructing a

barrier function with a nominal evading maneuver means the system can always use

the evading maneuver to satisfy the safety constraint. Similarly, the shared evad-

ing maneuver assumption means that the evading maneuver can be used to satisfy

each individual safety constraint, and as a consequence, it can be used to satisfy all

constraints.

3.1 Motivating Example

Although the constructive method introduced in (2.3) can produce a barrier function

in the presence of actuator constraints that ensures two vehicles do not collide, the

formulation does not extend immediately to collision avoidance for systems with more

than two vehicles. To see this, we present a specific example where three UAVs with a

collision avoidance safety objective cannot use the results from Section 2.2 to ensure

safety. A plot of this scenario is shown in Figure 3.1. We index the vehicles by

i = 1, 2, 3.

To ensure collision-free trajectories, and considering the safety function defined in

(2.10), three pairwise constraints must be nonnegative at all times:

ρ1(x) = d1,2(x)− 2δ + δ sin(θ1)− δ cos(θ1)−D2
s ,

ρ2(x) = d1,3(x)− 2δ + δ sin(θ1)− δ cos(θ1)−D2
s ,

ρ3(x) = d2,3(x)− 2δ + δ sin(θ2)− δ cos(θ2)−D2
s .

When these three functions are nonnegative for all future times, the vehicles will all
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Figure 3.1: A geometric view of the example given in Section 3.1. In (a), h1 defined
in (2.3) is constructed to design a function so that vehicles 1 and 2 stay safe. Here
γ1 encodes an evasive maneuver where vehicles 1 and 2 turn right. Further, vehicles
1 and 2 are placed so that turning right is the only available control input to keep
the system safe. In (b), a similar setup is shown for vehicles 1 and 3 where h2 has
been constructed from γ2 which encodes an evasive maneuver where vehicles 1 and
3 turn left and vehicles 1 and 3 are placed so they are only able to turn left to stay
safe. In (c), vehicle 1 cannot turn both right and left to avoid vehicles 2 and 3,
respectively. Although vehicle 1 can avoid them individually, it cannot avoid them
both simultaneously.

maintain safe distances from each other. We now apply the results of Section 2 to

these constraints and for simplicity, let δ be approximately 0. For each constraint,

define an arbitrarily chosen nominal evading maneuver

γ1(x) =

[
1 −1 0 1 −1 0 1 −1 0

]T
(3.0a)

γ2(x) = γ3(x) =

[
1 1 0 1 1 0 1 1 0

]T
. (3.0b)

In other words, γ1 encodes an evasive maneuver where all the vehicles turn right

while γ2 and γ3 encode a maneuver where all the vehicles turn left. We note that hj

(j = 1, . . . , 3) defined in (2.3) and constructed from ρj and γj are ZCBFs. In other

words, safety can be guaranteed for a single safety constraint (e.g., that vehicles 1

and 2 will not collide) but not necessarily all three constraints (e.g., that vehicles

1 and 3, or 2 and 3, will not collide). In this example we let vmin = 1, vmax = 2,

ωmax = 1, and Ds = 0.5 so that the vehicles follow a circular trajectory with radius

r = 1 when applying vmin and ωmax. Assume now that the vehicles have the following
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initial states

x1 =

[
0 0 0 0

]T
,

x2 =

[
(2r +Ds) sinψ (2r +Ds) cosψ − 2r π 0

]T
,

x3 =

[
(2r +Ds) sinψ 2r − (2r +Ds) cosψ π 0

]T
,

where ψ = arccos
(
Ds/2+2r
2r+Ds

)
. These states are selected so that h1(x), h2(x), and

h3(x) are all 0. See Figure 3.2 for the geometric setup that leads to these states being

selected. In particular these states imply that vehicles 1 and 2 must turn right to

avoid each other while vehicles 1 and 3 must turn left to avoid each other. At the

same time, the states also imply that h1(x), h2(x), and h3(x) are all nonnegative so

the system appears to be safe. We denote the safe sets associated with h1, h2, and

h3 as C1, C2, and C3, respectively.

Since h1(x) = h2(x) = h3(x) = 0, the barrier constraints in (1.5) for h1(x) and

h2(x) become

−0.4(v1 + ω1 + v2 + ω2) ≥ 0 (3.1)

0.4(−v1 + ω1 − v3 + ω3) ≥ 0. (3.2)

Although h1 and h2 are ZCBFs, these two constraints cannot be simultaneously sat-

isfied for vi ∈ [vmin, vmax] and |ωi| ≤ ωmax. In particular, after substituting the

minimum velocity v1 = v2 = 1, the first equation dictates that ω1 + ω2 ≤ −2 (i.e.,

vehicles 1 and 2 must turn right). Similarly, the second equation dictates that vehicle

1 and 3 must turn left. The problem with this scenario is that vehicle 1 cannot simul-

taneously execute both nominal evading maneuvers (i.e., turn both left and right at

the same time). To solve this problem, we will make sure that the evasive maneuver

applied by a vehicle is the same for every barrier function. A geometric view of the
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Figure 3.2: The geometric constraints that result in a case where safety cannot be
maintained for three vehicles simultaneously. Vehicles 1 and 2 are placed so that only
a hard right turn will keep them safe. Similarly, vehicles 1 and 3 are placed so that
only a hard left turn will keep them safe. Finally, vehicles 2 and 3 are placed so they
start Ds apart.
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(a) (b) (c)

Figure 3.3: A geometric view of why having a set of individual barrier functions does
not guarantee that a control input u exists to satisfy each associated constraint and
how the shared evading maneuver assumption resolves this issue. In (a), multiple
barrier function constraints are shown as half-spaces. To satisfy Corollary 1, a u
must be selected that is in the intersection of K1(x), K2(x), and U . In (b), although
there exists a u that is in the intersection of U and K1(x) as well as U and K2(x), as
ensured by the fact that h1 and h2 are ZCBFs, there does not exist a u that is in the
intersection of U , K1(x), and K2(x). This case corresponds to the specific scenario
for the three vehicle collision avoidance problem in Figure 3.1c. In (c), the problem
is resolved by the shared evading maneuver because γs(x) satisfies each constraint.

general problem and its solution are shown in Figure 3.3.

Recall now the example of Section 2.1. In that example, the problem was that

the candidate barrier function only calculated whether vehicles were currently in a

collision but did not encode whether a future collision would occur. By discarding

this candidate function in favor of hstraight and hturn, future collisions are taken into

account. Put another way, the candidate barrier function of Section 2.1 rendered

some states safe that were not actually safe because there was no overriding control

value available to keep the system safe. This problem is alleviated by using a barrier

function defined in (2.3) because γ is always available to keep the system safe. In

the example of this section, we actually have a related problem. In particular, there

are states where h1(x) and h2(x) are both nonnegative but the state is nevertheless

unsafe. We therefore need to update h1 and h2 so that there not only exists a safe

overriding control value to keep a single safety constraint value safe, but also it is the

same safe overriding value that can be used across all safety constraints. As we will
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see, the solution is to use the same γ across all barrier functions so that γ can be

used to keep the system safe for all safety constraints.

3.2 Sufficient Conditions for Satisfying Multiple Safety Constraints

In order to solve the issues arising when vehicles have to simultaneously respect

multiple constraints, we now extend the use of the constructive technique introduced

in (2.3). In this section we extend the reasoning of [4] to the case of q constraints.

Consider a nonlinear autonomous system

ẋ = f(x) (3.3)

where f is locally Lipschitz. Then we have a similar definition to Definition 1 for

autonomous systems.

Definition 2. [4] Given a set C ⊂ Rn defined in (1.4) for a continuously differentiable

function h : Rn → R, the function h is called a zeroing barrier function (ZBF) defined

on an open set D with C ⊂ D ⊂ Rn, if there exists a Lipschitz continuous extended

class K function α such that

Lfh(x) ≥ −α(h(x)), ∀x ∈ D. (3.4)

When there are q constraints, we consider the case of q barrier functions where

each barrier function is denoted hj on Dj with associated safe set Cj and admissible

control space Kj(x) for x ∈ Dj for j ∈ {1, . . . , q}. We are interested in the conditions

under which all safety constraints can be satisfied for all future times. In other words,

under the assumption that x(0) ∈ Cj we want to show that x(t) ∈ Cj for all t ≥ 0.

Hence, we are interested in the forward invariance of the intersection of all the safe
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sets, which motivates the following definitions

C∩ = C1 ∩ C2 ∩ · · · ∩ Cq, (3.5)

K∩(x) = {u ∈ U : u ∈ K1(x) ∩K2(x) ∩ · · · ∩Kq(x)}. (3.6)

where D∩ is an open superset of C∩ and x ∈ D∩. We can now present a multiple

constraint analogue of Theorem 1 by following the same reasoning as [4].

Proposition 1. Given a dynamical system (3.3) and a set C∩ defined by (3.5) for

continuously differentiable functions hj : Rn → R where hj is a ZBF on Dj with

Cj ⊂ Dj ⊂ R and ∂hj(x)
∂x
̸= 0 for any x ∈ ∂C∩ where hj(x) = 0, then C∩ is forward

invariant.

Proof. The proof is the same as that for Proposition 1 of [4], namely ḣj(x) = −α(x) ≥

0 for any j such that hj(x) = 0 so the result follows by Nagumo’s Theorem [64]. We

add the assumption that ∂hj(x)
∂x

is non-zero for all x ∈ ∂C∩ such that hj(x) = 0 to

ensure that the tangent cone in Nagumo’s Theorem is non-empty.

Then for autonomous systems with dynamics (1.3), we have the following corollary

of Theorem 1.

Corollary 1. Given a dynamical system (1.3) and a set C∩ defined by (3.5) for con-

tinuously differentiable functions hj : Rn → R where hj is a ZCBF on Dj and
∂hj(x)
∂x
̸= 0 for any x ∈ ∂C∩ where hj(x) = 0, then any Lipschitz continuous controller

u : D∩ → U such that u(x) ∈ K∩(x) will render the set C∩ forward invariant.

Corollary 1 means that multiple safety constraints can be simultaneously satisfied

provided the safety overriding controller satisfies the assumptions. Note an important

difference between Theorem 1 and Corollary 1 however. In Theorem 1 it shows the

constraints on a controller to keep the state within a single set C. On the other

hand, Corollary 1 gives constraints on a controller to keep the state within a possibly
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much smaller set C∩. In other words, the conclusion of Corollary 1 is a stronger

statement and therefore hints that satisfying u(x) ∈ K∩(x) in Corollary 1 is more

difficult than satisfying u(x) ∈ K(x) in Theorem 1. This suggests that to satisfy

this stronger requirement we may need an additional assumption which we discuss

in the next section. The assumption, which we call the shared evading maneuver

assumption, ensures that K∩(x) is non-empty by ensuring that the same nominal

evading maneuver is in Kj(x) for k = 1, . . . , q. With this additional assumption, we

can ensure that a safety overriding controller not only exists but also that it can be

calculated in real-time.

3.3 The Shared Nominal Evading Maneuver Assumption

Suppose there are q constraints ρj : Dj → R (j = 1, . . . , q) that must be greater than

or equal to 0 at all times. For the k agents with pairwise constraints, q = k(k− 1)/2.

We assume that for each constraint j = 1, . . . , q, a locally Lipschitz nominal evading

maneuver γj has been selected using the framework in (2.3). An example for fixed-

wing UAVs with collision avoidance safety constraints is given in (2.9). Given q safety

functions ρj and evading maneuvers γj for j ∈ {1, . . . , q}, we construct q output

functions hj defined on Dj similarly to (2.3) where

hj(x; ρ, γ) = inf
τ∈[0,∞)

ρj(x̂j(τ)), (3.7)

x̂j(τ) = x+

∫ τ

0

˙̂xj(η)dη, (3.8)

˙̂xj(τ) = f(x̂j(τ)) + g(x̂j(τ))γj(x̂j(τ)). (3.9)

Section 3.1 showed an example where K∩(x) could be empty for some x ∈ C∩. As

a result, the assumptions of Corollary 1 could not be satisfied. In order to address

the issue discussed in Section 3.1, we introduce an additional constraint on γj (j =

1, . . . , q) that all hj are constructed from the same nominal evading maneuver.
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Assumption 1. Given a dynamical system (1.3) and q output functions hj defined in

(3.7) for given safety functions ρj and evading maneuvers γj for j ∈ {1, . . . , q}, the

shared evading maneuver assumption holds if γ1(x) = · · · = γq(x) for all x ∈ D∩.

The shared evading maneuver is denoted γs so that

γs(x) = γ1(x) = · · · = γq(x) (3.10)

for all x ∈ D∩.

Remark 3. This assumption requires that each hj (j = 1, . . . , q) be constructed from

the same nominal evading maneuver. Note, however, that this does not imply that

each hj must be constructed from the same safety function ρj.

Remark 4. To gain an intuition of the importance of the shared evasive maneuver,

consider an example unrelated to barrier functions, namely the paradox of Buridan’s

Donkey.1 In this paradox, a donkey is placed perfectly in the middle between two

completely identical stacks of hay. Due to the symmetry of the problem, there is

no reason to choose one stack over the other, so the donkey will eventually starve.

Similar to Buridan’s Donkey, the situation in Figure 3.1 is an impossible choice be-

cause both safety factors are critical. There is no mechanism to prioritize one safety

objective over the other because both objectives must be met at all times. However,

an indirect solution that applies to both the paradox and Figure 3.1 is to avoid the

problematic situation altogether. For Buridan’s Donkey, that means only letting the

donkey see one stack of hay (see Figure 3.4). For barrier functions, that means using

only one evasive maneuver across all barrier functions. This means that the situation

in Figure 3.1 will never occur because in this case h1(x) would not be safe since the

shared evasive maneuver requires that both vehicles turn left.

The example in Section 3.1 does not satisfy Assumption 1 because γ1(x) and
1https://en.wikipedia.org/wiki/Buridan%27s_ass
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(a) (b)

Figure 3.4: (a) Buridan’s Donkey cannot decide which stack of hay to eat so it starves.
(b) By giving the donkey only one stack of hay, it is able to avoid starvation. The
solution in (b) avoids starvation by not allowing the situation in (a) to occur in the
first place. The same idea occurs with the shared evading maneuver. Rather than
allowing situations where there is no control action available to satisfy two safety
constraints, the shared evading maneuver simplifies the problem by ensuring a single
solution exists across all safety problems.

γ2(x) defined in (3.1) are not the same. To enforce that the shared evasive maneuver

assumption holds, one option is to change γ1 so that

γ1(x) =

[
1 1 0 1 1 0 1 1 0

]T
. (3.11)

In other words, using γ1 defined in (3.11) and γ2 and γ3 in (3.0b) implies an evasive

maneuver where all vehicles turn left for each constraint. Another example where the

shared nominal evading maneuver assumption holds is as follows:

γs(x) = γ1(x) = γ2(x) = γ3(x) =[
1 1 0 1.5 0 0 2 −1 0

]T
.

In this case, γs(x) encodes an evasive maneuver where vehicle 1 turns left with a linear

velocity of 1, vehicle 2 stays straight with a linear velocity of 1.5, and vehicle 3 turns

right with a linear velocity of 2. These three nominal evading maneuvers satisfy the

shared evasive maneuver assumption because for all x ∈ D∩, γ1(x) = γ2(x) = γ3(x).
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To see the purpose of Assumption 1, we first examine the case of a single con-

straint. In particular, let h be defined in (2.3) and consider the role of γ in establishing

that h is a ZCBF. From Definition 1, for h to be used for a barrier function, K(x)

must be nonempty for all x ∈ D. With h defined as in (2.3), this property is satisfied

by γ(x) or a perturbation of γ(x) for all x ∈ D (see Theorem 2). The analogue

condition for multiple constraints is that K∩(x) is non-empty for all x ∈ D∩. If each

hj defined in (2.3) is a ZCBF and is constructed from γj then by similar reasoning to

Theorem 2, γj(x) or a perturbation of γ(x) is in Kj(x) for all x ∈ D∩. This allows

us to state a multiple constraint analogue to Theorem 2. In the following, we denote

the inner product as ⟨Lghj1(x), Lghj2(x)⟩ for j1, j2 ∈ {1, . . . , q}.

Theorem 3. Given a dynamical system (1.3) and a set C∩ ⊂ D∩ defined in (3.5) for q

continuously differentiable functions hj defined in (3.7) with safety functions ρj and

evading maneuvers γj where k ∈ {1, . . . , q}, if hj is a ZCBF for k ∈ {1, . . . , q} and

Assumption 1 holds then K∩(x) is non-empty for all x ∈ C∩. If in addition, γs defined

in (3.10) maps to the interior of U and for all x ∈ ∂C∩, ⟨Lghj1(x), Lghj2(x)⟩ > 0 for

j1 ̸= j2 and j1, j2 ∈ {1, . . . , q}, then there is an open set that is a superset of C∩ for

which K∩(x) is non-empty for all x in the open set.

Proof. To prove the first statement, note that it was shown in the proof of Theorem 2

that γs is in Kj(x) for j = 1, . . . , q and x ∈ C∩. To prove the second statement, note

that we can use the same method as was used in the proof of Theorem 2 to find

a vector d(z) such that hj(z) satisfies (1.5) for all z ∈ B(x, µ) given x ∈ ∂C∩. In

particular, because ⟨Lghj1(x), Lghj2(x)⟩ > 0, Lghj(x) ̸= 0 for j = 1, . . . , q there exists

a vector dall(x) such that ⟨dall(x), Lghj(x)⟩ > 0. We choose dall(x) with sufficiently

small norm. Using the notation of the proof of Theorem 2, for sufficiently small µ,

the projection of dall(x) onto Lgh(z) will be in the direction of Lgh(z) for z ∈ B(x, µ)

because Lgh(x) is continuous.
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Remark 5. A geometric view of the problem introduced in Section 3.1 and its resolu-

tion via the shared evading maneuver assumption is shown in Figure 3.3.

Theorem 3 gives sufficient conditions for ensuring that multiple safety constraints

can be satisfied for all times. Further, we can calculate the safe overriding control

value in real time by adding constraints to (1.10). In particular, for q safety con-

straints, let û =

[
ûT1 ûT2 · · · ûTk

]T
where ûi is the nominal input of vehicle i for

i = 1, . . . , k. To emphasize that all hj are constructed from γs, we write hj,s for each

j = 1, . . . , q as follows:

u∗ = min
u∈Rm

1

2
∥u− û∥2 (3.12)

s.t. Au ≥ b.

Lfh
j,s(x) + Lgh

j,s(x)u+ α(hj,s(x)) ≥ 0 j ∈ {1, . . . , q}.

In other words, safety for multiple constraints can be guaranteed with a fast on-

line calculation by satisfying the shared evading maneuver assumption and adding

constraints to the QP.

3.4 Conclusion

In this chapter we have shown that merely being able to ensure individual safety

constraints are satisfied does not mean all constraints can be satisfied simultaneously.

To verify this insight we presented a particular example where it is impossible to

satisfy multiple constraints. This occurs where a vehicle must turn left to avoid one

of its neighbors but must turn right to avoid its other neighbor. The example hints

that always using a consistent evasive maneuver for all safety objectives can resolve

this problem. We encode this intuition in the shared evading maneuver assumption

and show that under this assumption we can ensure that multiple safety constraints

can be satisfied for all future time. We therefore add this conclusion to the table of
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Table 3.1: A list of assumptions required to ensure system safety after adding the
shared evading maneuver

Assumption Effect of Removing Assumption
One safety constraint still safe but additional assumption required (shared

evading maneuver)
Unlimited Communication see Chapter 4
Infinite Range Sensors see Chapter 5
Known dynamics model see Chapter 6

assumptions in Table 3.1.
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CHAPTER 4

RELAXING COMMUNICATION CONSTRAINTS

In Chapter 2 we showed that by specifying an evasive maneuver, we could guarantee

the system will stay safe for all times. Chapter 3 then expanded on this concept by

showing that if the same evasive maneuver is used to across multiple safety constraints

then all the constraints could be satisfied for all times. In other words, the previous

chapter relaxed one assumption from Chapter 2, namely that there was only one safety

objective. In this chapter we remove another assumption, namely that the vehicles can

communicate their control signals. In particular, we show that the calculation of the

admissible control space requires knowledge of all vehicle control values and therefore

implies a significant communication overhead in the case of a swarm of aircraft. Thus,

in this chapter we remove the assumption that vehicles can communicate their low

level control signals and show that we can still ensure safety in this case.

Consider now how to implement the conclusions of Chapters 2 and 3 for UAV

collision avoidance. In particular, after specifying a dynamics model, we construct hj

in (2.3) by using the same evasive maneuver γ for each hj. After that we calculate

the QP in (3.12) at every timestep to ensure the control value applied to the vehicles

is not only safe but also as close as possible to the original control value û.

To make such a calculation, the vehicles then need access to the following: the

evasive maneuver of the other vehicle γs and safety objectives ρj, the state x, and the

nominal control value û. We assume that the evasive maneuver γs and safety functions

ρj are known at deployment time via a locker room agreement. We consider the case

where x is not always known in the next chapter. In this chapter we consider û.

Recall that û =

[
û1 û2

]T
is the nominal control value that is the concatenation of

both vehicle’s individual nominal control values. In other words, for the first vehicle to
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calculate the QP in (3.12), it must know the nominal control value of the other vehicle.

This implies a communication link between the two vehicles that requires frequently

communicating this value without any delays. However, frequently communicating

this signal when there are many vehicles may reduce throughput for other important

messages or introduce communication delays because a network can only support a

limited number of bits per second through a network. Thus, we show how to ensure

safety constraints can be satisfied by reformulating the QP so that the vehicles can

calculate a safe control signal without requiring each other’s nominal control input.

However, we continue to assume that each vehicle can sense the state of every other

vehicle. See Chapter 5 for relaxing this assumption.

The approach discussed below is to start with the ZCBF constraint (1.5) and note

that the components Lgh(x) and u are vectors. Hence their inner product is the sum of

individual terms. The insight below is that we can then break up the individual terms

of Lgh(x)u into terms where some terms only depend on the first aircraft’s control

input while the other terms only depend on the second aircraft’s control input. This

results in breaking (1.5) into two constraints where the first constraint only depends

on the first individual aircraft’s control value and similarly for the second constraint.

We finally exploit the fact that γ can be similarly decomposed and can then be used

to ensure that both individual constraints can always be satisfied. The result is each

individual aircraft can calculate a QP that only depends on its own control value that

nevertheless ensures safety.

4.1 Limited Communication for Two Vehicles

We start by considering the two vehicle case and then generalize to the k vehicle case.

Let γs =
[
γs

T

1 γs
T

2

]T
be the shared evading maneuver where γs1 is the part of γs that

is applied to vehicle 1 and therefore has the same size as u1. Define γs2 similarly

for vehicle 2. Similarly decompose b in (1.10c) as b =

[
bT1 bT2

]T
and Lgh

j,s(x) as
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Lgh
j,s(x) =

[
[Lgh

j,s(x)]T1 [Lgh
j,s(x)]T2

]T
. Further, let A in (1.10c) be block diagonal

with block entries A1 and A2 so that Aiuu ≥ bi represents the actuator constraint for

vehicle i for i = 1, 2.

We want to find a way of calculating u1 and u2 such that u =

[
uT1 uT2

]T
satisfies

Au ≥ b and u ∈ Kj(x) for all x ∈ D where the calculation for u1 does not require

knowledge of û2 or the final value for u2. Similarly, we want to calculate u2 without

knowledge of û1 or u1. This is a trivial requirement for actuator constraints since

Aiui ≥ bi for i = 1, 2 if and only if Au ≥ b. However, the constraint that u ∈ K∩(x)

involves both u1 and u2 so we reformulate it. We leverage the fact that

Lgh(x)u =

[
[Lgh(x)]1 [Lgh(x)]2

]u1
u2

 = [Lgh(x)]1u1 + [Lgh(x)]2u2

so that

0 ≤ Lfh
j,s(x) + Lgh

j,s(x)u+ α(hj,s(x)) (4.1)

= κ1(x, u1) + κ2(x, u2) (4.2)

where

κ1(x, u1) = Lfh
j,s(x) + [Lgh

j,s(x)]1u1 + α(hj,s(x)) + [Lgh
j,s(x)]2γ

s
2

−1

2
(Lfh

j,s(x) + Lgh
j,s(x)γs + α(hj,s(x))) (4.3)

and

κ2(x, u2) = Lfh
j,s(x) + [Lgh

j,s(x)]2u2 + α(hj,s(x)) + [Lgh
j,s(x)]1γ

s
1

−1

2
(Lfh

j,s(x) + Lgh
j,s(x)γs + α(hj,s(x))). (4.4)
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Notice that κ1 is not a function of u2 and κ2 is not a function of u1. In other

words, if we can select u1 and u2 such that κ1(x, u1) ≥ 0 and κ2(x, u2) ≥ 0 then

u =

[
uT1 uT2

]T
∈ K∩(x) ∀x ∈ D. We must then show that K∩(x) is non-empty for

all in an open set that is larger than C∩. For x ∈ C∩, this can be done by letting

u1 = γs1(x) and u2 = γs2(x) and noting that this implies

κ1(x, γ
s
1) + κ2(x, γ

s
2) = Lfh

j,s(x) + Lgh
j,s(x)γs + α(hj,s(x)) ≥ 0.

For x /∈ C∩, a perturbation of γs1(x) and γs2(x) using a similar method as shown in the

proof of Theorem 3 suffices. In other words, we can find u without vehicle 1 needing

to know û2 or u2 and similarly for vehicle 2. Each vehicle i (i = 1, 2) could then

calculate the following QP:

u∗ = min
u∈Rmi

1

2
∥u− ûi∥2 (4.5)

s.t. Aiui ≥ bi

κi(x, ui) ≥ 0.

Note that κi(x, ui) is linear in ui. To summarize, we started with the ZCBF con-

straint in (1.5), and split the Lgh(x)u term into two components that depend on u1

and u2 respectively. Because each vehicle can always use the component of γ that

corresponds to its own control input, there is always a control input to keep the ve-

hicles safe. Further, this calculation can again be done with a QP so there is a fast

online calculation of the safe control input available at all times.

4.2 Limited Communication for k Vehicles

We now generalize the discussion in Section 4.1 to k vehicles. Let γs =
[
γs

T

1 · · · γs
T

k

]T
,

where γsi maps to vectors of the same size as ui for i = 1, . . . , k with similar decom-

52



position for b =

[
bT1 · · · bTk

]T
and Lgh

j,s(x) =

[
[Lgh

j,s(x)]T1 · · · [Lgh
j,s(x)]Tk

]T
.

Further, assume A in (1.10c) is block diagonal with block entries Ai for i = 1, . . . , k

where Ai is a mi ×mi matrix. This assumption means that actuator constraints are

not coupled between vehicles.

The main difference when there k > 2 than when k = 2 is that not every vehicle

affects every constraint. For instance, in the example of Section 3.1, vehicle 3 does

not affect h1 since h1 is only designed to keep vehicles 1 and 2 from colliding. For

this reason we denote

Vj = {i ∈ {1, . . . , k} : ∃x ∈ D s.t. [Lgh
j,s(x)]i ̸= 0mi

}

where 0mi
is the zero vector in Rmi and j ∈ {1, . . . , q}. Vj represents the set of vehicles

whose control input affects the time derivative of hj for some x ∈ D. We let |Vj|

denote the cardinality of Vj, and note that for the case of pairwise collision avoidance,

|Vj| = 2 for all j = 1, . . . , q. In the example with three vehicles in Section 3.1,

V1 = {1, 2}, V2 = {1, 3}, V3 = {2, 3}. We also denote Si = {j ∈ {1, . . . , q} : i ∈ Vj}

so that Si is the set of safety constraint indices where ui has an effect on the time

derivative of the associated barrier function for some x ∈ D. For the three vehicle

example of Section 3, S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3}.

Finally, we denote u\i =
[
uT1 · · · uTi−1 uTi+1 · · · uTk

]T
, with similar definitions

for γs\i, û\i, and [Lgh
j,s(x)]\i. With the above definitions, we can now state a limited

communication analogue for the admissible control space in (1.7). In analogy with

the admissible control space in (1.7), the limited communication admissible control

space for constraint j (j = 1, . . . , q) and vehicle i (i ∈ Vj) is defined as

Kji (x) =
{
ui ∈ Ui : 0 ≤ Lfh

j,s(x) + [Lgh
j,s(x)]iui + α(hj,s(x)) + [Lgh

j,s(x)]\iγ
s
\i(x)

−|V
j| − 1

|Vj|

(
Lfh

j,s(x) + Lgh
j,s(x)γs(x) + α(hj,s(x))

)}
. (4.6)
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Notice that the constraint of Kji (x) is the same as the constraint κ1(x, u1) ≥ 0 in

(4.3) when i = 1 and k = 2 so that it is a generalization of the situation when

there are two vehicles. However, Kji only encodes controls that satisfy one safety

constraint so we now take the intersection over all j where aircraft i affects the jth

constraint. The limited communication admissible control space for vehicle i is then

Ki(x) =
∩
l∈Si
Kli(x). Although Ki(x) is the set admissible controls that encode safety

for all constraints, it is only specific to one aircraft, namely aircraft i. We therefore

concatenate the vectors to arrive at a set of admissible controls similar that results in

a set that is K∩. The overall limited communication admissible control space is then

K(x) =

{
u =

[
uT1 · · · uTk

]T
∈ U : ui ∈ Ki(x) ∀i ∈ {1, . . . , k}

}
.

We now show that K(x) can be used in a similar way as K∩(x) was used in Theorem 3

for ensuring safety.

Theorem 4. Given a dynamical system (1.3) and a set C∩ ⊂ D∩ defined in (3.5) for

q continuously differentiable functions hj defined in (3.7) with safety functions ρj

and evading maneuvers γj where k ∈ {1, . . . , q}, if hj is a ZCBF for k ∈ {1, . . . , q}

and Assumption 1 holds then ∀x ∈ D∩, K(x) ⊆ K∩(x). Further, K(x) is non-empty

for all x ∈ C∩. If in addition, γs maps to the interior of U and for all x ∈ ∂C∩,

⟨[Lghj1(x)]i, [Lghj2(x)]i⟩ > 0 for j = 1, . . . , q and i = 1, . . . , k and j1 ̸= j2 and

j1, j2 ∈ {1, . . . , q}, then there is an open set that is a superset of C∩ for which K(x)

is non-empty for all x in the open set.

Proof. For the first statement, assume u ∈ K(x) so that ui ∈ Ki(x) ∀i ∈ {1, . . . , k}.

This means that Aiui ≥ bi so that, because A is block diagonal, Au ≥ b. Further, it
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means that for any constraint j = 1, . . . , q and any i ∈ Vj,

0 ≤ Lfh
j,s(x) + [Lgh

j,s(x)]iui + α(hj,s(x)) + [Lgh
j,s(x)]\iγ

s
\i(x)

−|V
j| − 1

|Vj|

(
Lfh

j,s(x) + Lgh
j,s(x)γs(x) + α(hj,s(x))

)
. (4.7)

To simplify (4.7), note that by definition, [Lghj,s(x)]i = 0mi
for i ̸= Vj so that

∑
i∈Vj

[Lgh
j,s(x)]iui =

∑
i∈{1,...,k}

[Lgh
j,s(x)]iui

= Lgh
j,s(x)u. (4.8)

Using (4.8) in the following then yields

∑
i∈Vj

[Lgh
j,s(x)]\iγ

s
\i(x) =

∑
i∈Vj

(
Lgh

j,s(x)γs(x)− [Lgh
j,s(x)]iγ

s
i (x)

)
= |Vj|Lghj,s(x)γs(x)−

∑
i∈Vj

[Lgh
j,s(x)]iγ

s
i (x)

= |Vj|Lghj,s(x)γs(x)− Lghj,s(x)γs(x)

= (|Vj| − 1)Lgh
j,s(x)γs(x). (4.9)

Summing (4.7) over i ∈ Vj and using (4.8) and (4.9) yields

0 ≤ |Vj|Lfhj,s(x) + Lgh
j,s(x)u+ |Vj|α(hj,s(x)) + (|Vj| − 1)Lgh

j,s(x)γs(x)

−(|Vj| − 1)
(
Lfh

j,s(x) + Lgh
j,s(x)γs(x) + α(hj,s(x))

)
= Lfh

j,s(x) + Lgh
j,s(x)u+ α(hj,s(x)).

Since this is true for all j = 1, . . . , q, u ∈ K∩(x). Then K(x) ⊆ K∩(x) for all x ∈ C∩.

Consider now the second statement, namely that γs ∈ K(x). For j = 1, . . . , q,
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consider any i ∈ Vj and let ui = γsi . Then

Lfh
j,s(x) + [Lgh

j,s(x)]iui + α(hj,s(x)) + [Lgh
j,s(x)]\iγ

s
\i(x)

−|V
j| − 1

|Vj|

(
Lfh

j,s(x) + Lgh
j,s(x)γs(x) + α(hj,s(x))

)
=

1

|Vj|
(
Lfh

j(x) + Lgh
j(x)γs(x) + α(hj(x))

)
≥ 0.

The inequality is true because x ∈ C∩ implies α(hj,s(x)) ≥ 0. See the proof for

Theorem 2 for why Lfhj,s(x)+Lghj,s(x)γs(x) ≥ 0. Then γsi ∈ K
j
i for any j = 1, . . . , q

and i ∈ Vj. Then γsi ∈ Ki. Then γs(x) ∈ K(x).

Finally, the last statement where K(x) is nonempty for all x in an open set that

is a superset of C∩ follows similarly to the proof of Theorem 3.

Theorem 4 means that each aircraft can choose its control value to be in Ki(x)

because the resulting control value across all aircraft will be in K(x) which is a subset

of K∩(x). Further, because of the shared evading maneuver assumption, Ki(x) will

always be non-empty. This allows us to then write a QP similar to (3.12) but without

requiring knowledge of other agents’ low level control values as follows:

u∗i = min
ui∈Rmi

1

2
∥ui − ûi∥2 (4.10)

s.t. Aiui ≥ bi

Lfh
j,s(x) + [Lgh

j,s(x)]iui + α(hj,s(x)) + [Lgh
j,s(x)]\iγ

s
\i(x)

−|V
j| − 1

|Vj|

(
Lfh

j,s(x) + Lgh
j,s(x)γs(x) + α(hj,s(x))

)
≥ 0 j ∈ Si.

.
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4.3 A Comparison of Safety With and Without Communication

We note that the solution from the centralized QP (3.12) may be different than the

solution from the limited communication QPs (4.10) because K(x) may be a strict

subset of K∩(x). To see this, let k = 2, q = 1, Lfh(x) = 0, α(h(x)) = 0, m1 = m2 = 1,

[Lgh(x)]2γ
s
2(x) = −1, and [Lgh(x)]1γ

s
1(x) = 1. Then the barrier function constraint

in (4.10) becomes [Lgh(x)]1u1 ≥ 1, while the barrier function constraint in (3.12)

becomes Lgh(x)u ≥ 0. Since u1 = 0 is feasible for the latter but not the former

equation, we do not have that K(x) = K∩(x). Because K(x) ⊂ K∩(x), it may be

that the total cost of each vehicle calculating (4.10) is higher than the centralized

calculation (3.12). In other words, the calculated safe control may not be as close

to the nominal control signal in a least squares sense when using (4.10) as opposed

to (3.12). Nevertheless, in either case of (3.12) or (4.10), a solution exists to the

corresponding QP such that u ∈ K∩.

Although a specific example has been given to show that K(x) can be a strict

subset of K∩(x), consider more generally why this is the case by analyzing (4.2)

again. The generalization of this equation is the sum over Vj of equation (4.7) but

for simplicity we consider (4.2) and note the same conclusion holds in the more

general case. Note then that in the limited communication case where vehicle 1 does

not know u2 and vehicle 2 does not know u1 that in order to ensure the inequality

holds, we must require that κ1(x, u1) ≥ 0 and κ2(x, u2) ≥ 0. However, when there

is unlimited communication, we only need to have that κ1(x, u1) + κ2(x, u2) ≥ 0. In

other words, when there is unlimited communication, we can have that κ1(x, u1) <

0 or κ2(x, u2) < 0 provided that their sum is positive. This means that limited

communication is introducing an additional constraint on the set of available control

inputs and it is therefore not surprising that the set of controls that satisfies the

safety constraint using limited communication, namely K(x), is smaller than the set
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of controls that satisfy the safety constraint when there is unlimited communication,

namely K∩(x).

Another difference between the limited communication (4.10) and the centralized

(3.12) QPs is how the size of the optimization variable and number of constraints

vary with the number of vehicles k. In the centralized approach (3.12) the size of

the optimization variable grows linearly with k while the number of constraints grows

quadratically. On the other hand, in the limited communication QP (4.10), the

size of the optimization variable and number of constraints are constant and linear,

respectively.

4.4 Simulation of 20 Vehicles With Limited Communication

We now repeat the scenario discussed in Section 2.5 but consider k = 20 vehicles. For

the scenario where h is constructed from γturn, we use
[
v ω 0 v ω 0

]T
where

v = 0.9vmin + 0.1vmax and ω = 0.9ωmax. For the scenario where h is constructed

from γstraight, we let γi =
[
(1 + 0.01i)v 0 0

]T
so that each vehicle uses a different

translational velocity as is required to ensure differentiability of h (see Section 2.3.2).

Note that this does not violate the shared evading maneuver assumption because

γs =

[
(γ1)T · · · (γk)T

]T
. Additionally, we let ψ = 0 and ψ = 25◦ in the scenario

where h is constructed from γturn and γstraight, respectively. Offsetting the initial

orientation 25◦ from pointing at the origin is required so that the vehicles can start in

the safe set when using γstraight. Screenshots for the case of γturn and γstraight are shown

in Figures 4.1 and 4.2, respectively. A video of the resulting behavior is available in

[65]. Quantitative results for both scenarios are shown in Figures 4.3 and 4.4 which

shows similar outputs to the results for the two vehicle simulation shown in Figures 2.4

and 2.5. We also compare the approach of this paper to a navigation function from [7]

in Figures 4.3 and 4.4. Note that when using a navigation function the vehicles begin

the evasive maneuver earlier than when the collision avoidance algorithm is based on
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Table 4.1: A list of assumptions required to ensure system safety after adding the
shared evading maneuver and removing the need to communicate control values.

Assumption Effect of Removing Assumption
One Safety Constraint still safe but additional assumption required (shared

evading maneuver)
Unlimited Communication still safe but overriding control value may deviate

more significantly from nominal control value
Infinite Range Sensors see Chapter 5
Known Dynamics Model see Chapter 6

a barrier function constructed from γturn. Using a less aggressive α function, such

as a linear function with a small coefficient instead of a cubic function, may have

caused the behavior from the barrier function override to similarly override earlier.

A comparison of potential and barrier functions can also be found in [66]. Also note

that the pairwise distance between all vehicles are kept above the minimum safety

distance Ds while satisfying actuator constraints.

4.5 Conclusion

In this chapter we investigated a practical implementation consideration involving

limited communication. We found that implementing Theorem 3 in the QP (3.12)

required both infinite range sensing and high frequency communication of control

values between aircraft. By splitting the safety constraint into groups of values that

only depend on individual aircraft, we were able to reformulate the QP (3.12) to

only depend on individual aircraft control values. This means we can ensure system

safety without requiring the overhead of frequent communication of low level control

values. However, we also find that while safety can be ensured, it may be that the

resulting overriding control value may deviate more significantly from the nominal

control value than when allowing for more communication. The summary of this

discussion is therefore added to Table 4.1. We address limited sensing in the next

chapter.
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(a) (b)

(c) (d)

Figure 4.1: A demonstration of 20 fixed-wing vehicles applying barrier functions
to ensure collisions are avoided when constructing h defined in (2.3) by γturn. (a)
The starting position of 20 vehicles. (b) The vehicles approach the origin and begin
avoidance behavior around 50 meters away from the origin. (c) The vehicles circle
the origin. (d) The vehicles reach approach their target position.
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(a) (b)

(c) (d)

Figure 4.2: A demonstration of 20 fixed-wing vehicles applying barrier functions to
ensure collisions are avoided when constructing h defined in (2.3) by γstraight. (a)
The starting position of 20 vehicles. (b) The vehicles approach the origin and begin
avoidance behavior around 50 meters away from the origin. (c) The vehicles circle
the origin. (d) The vehicles reach approach their target position. The asymmetry
is due to the fact that the vehicles have different speeds for their nominal evading
maneuvers. As the speed for the nominal maneuvers approaches the same value the
result is a more symmetric pattern.
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Figure 4.3: Control outputs for the scenario with 20 fixed-wing vehicles. The blue
dashed and orange solid lines are the output of the scenario where h is constructed
from γstraight and γturn, respectively. The green dotted line is the output from using
a navigation function. Vehicle 1 velocity and turn rates are shown to be within
the actuator limits in (a), (b), and (c) for velocity, turn rate, and altitude rate,
respectively. The navigation function starts avoiding a collision well in advance of
when using h constructed from γturn.
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Figure 4.4: Outputs for the scenario with 20 fixed-wing vehicles. The blue dashed and
orange solid lines are the output of the scenario where h is constructed from γstraight
and γturn, respectively. The green dotted line is the output from using a navigation
function. Vehicle 1 is plotted as a representative output since all 20 vehicles cannot
be shown on the same plot. In (c), the minimum distance between any two vehicles
is shown to be above Ds. (d) is the path taken by vehicle 1. Note that the behavior
is significantly different when constructing h with γturn and γstraight. The navigation
function starts avoiding a collision well in advance of when using h constructed from
γturn.
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CHAPTER 5

SAFETY WITH LIMITED RANGE SENSORS

5.1 Introduction

Chapters 3 and 4 relaxed two assumptions from Chapter 2, namely that there was

only one safety objective to be satisfied at all times and that the vehicles could

communicate high numbers of messages, respectively. In this chapter we relax another

assumption, namely that the vehicles can sense each other at all times. Recall the

discussion at the beginning of the last chapter, where we noted that to calculate a

safe control value, the vehicles must know the shared evading maneuver, the safety

objectives, the nominal control value, and the state. The last chapter removed the

need to know the nominal control value of other vehicles. This chapter removes the

need to always know the state. In particular, we consider safety when the state is not

known at all times and find that in some cases we can still ensure the system stays

safe.

In the prior chapters, we have shown how to ensure a system of k UAVs maintain

safe distances for all time while taking into account dynamics constraints. However,

the discussion did not consider limited range sensing. Thus, in this chapter we relax

this limitation with the following contributions. First, we show that the barrier

functions do not necessarily guarantee safety when the UAVs are subject to limited

range sensing. Second, we introduce a method for constructing a new barrier function

that accommodates limited sensing range from a previously existing barrier function

that may not necessarily accommodate limited range sensing. Finally, we conduct

an experiment consisting of a scenario of 20 fixed wing aircraft, where because of the

proposed algorithm, the vehicles are able to maintain safe distances from each other
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(a) (b)

Figure 5.1: (left) When there is infinite sensing the car knows when to start deceler-
ating in order to avoid the wall. (right) When there is limited sensing the car might
not sense the wall until it is too late.

even though the vehicles are subject to limited range sensing.

5.2 Motivation

Recall the car example of Figure 1.1 where a car starts some distance from the wall.

Given its current position and velocity, we specify an evasive maneuver to maximally

accelerate away from the wall, forward propagate under this hypothetical control

action, and let the barrier function be the closest distance the vehicle gets to the wall

under this forward propagation. Consider then when the car has a limited sensing

range due to lighting conditions. If the sensing range becomes too small to stop

after initially sensing the wall then collision avoidance can no longer be guaranteed

(see Figure 5.1). We further motivate this idea with specific examples from collision

avoidance for fixed-wing aircraft.

We assume there is a sensor modeled via a set S ⊂ D such that, if the system state

x is such that x ∈ S, then x is completely known to both vehicles, whereas if x ̸∈ S,

then all that is known is that x ̸∈ S. In the case of UAV collision avoidance where

each UAV is equipped with an omnidirectional sensor with range R, S = {x ∈ D :

d1,2(x) ≤ R2}. In this section we present two motivating examples to illustrate two

distinct issues that can arise when using barrier functions in the presence of limited

range sensing. In both cases, the critical problem is that K(x) cannot be calculated
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for all x ∈ D because S ⊂ D.

The first issue that limited range sensing introduces is that that safety can no

longer be guaranteed. In particular, we construct a scenario where h(x(0)) ≥ 0 and,

because K(x) cannot be calculated, there is a future time for which h(x(t)) < 0. In

other words, we can have a continuously differentiable barrier function h that satisfies

(1.5) but still not be able to guarantee safety. The second issue we examine is that

there can be discontinuities in actuator commands even though h is continuously dif-

ferentiable. This can cause alarm or discomfort for systems designed to ensure safety

of human passengers (e.g., cruise control [4]). In the following examples, consider two

UAVs equipped with omnidirectional sensors (e.g. radar) of radius R, with dynamics

governed by a nominal controller û(x). See Figure 5.2 for illustrations.

Example 3. A Barrier Function Without a Safety Guarantee. Suppose the two vehicles

start at x1(0) =

[
r1 +R/2 r1 −π/2 0

]T
, x2(0) =

[
−r2 −R/2 r2 −π/2 0

]T
,

respectively, where vehicle 1 has a nominal control input of û1 =

[
v1 −ω

]T
and

vehicle 2 has a nominal control input of û2 =

[
v2 ω

]T
so that they both follow

a circular trajectory with radius r1 = v1/ω and r2/ω, respectively (see Figure 5.2a).

Then hstraight(x(0)) = (r1+r2+R)−Ds ≥ 0 as long as R ≥ max(0, Ds−r1−r2) so the

vehicles start safe according to hstraight. Further, note that because the vehicles cannot

sense each other, K(x) cannot be calculated. This is because to calculate K(x), the

values of Lfh(x), Lgh(x), and h(x) are required. Because K(x) cannot be calculated,

there is no means to ensure that the control input applied to the vehicle will be in

K(x). In particular, it means that it is unknown whether the nominal control input û

is in K(x) and a design decision must be employed for what actuation input to apply

to the vehicles. If the design decision is, for instance, to apply the nominal controller

to the vehicles then the vehicles will reach
[
R/2 0 π 0

]T
and

[
−R/2 0 0 0

]T
,

respectively. Once the vehicles have reached this state, hstraight(x) = −Ds. This
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(a)

(b)

Figure 5.2: Two examples where limited range sensing creates issues when applying
barrier functions to fixed-wing aircraft collision avoidance. In (a), the vehicles start
so that hstraight(x) = (r1+r2+R)−Ds ≥ 0 but because the vehicles cannot sense each
other, achieve a configuration where hstraight(x) = −Ds. In (b), the vehicles travel
along the x-axis until they sense each other at a distance of R apart, at which point
the safe control implied by hturn requires high turn speed. Adapted with permission
from [67] ©2021 IEEE.
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means that the vehicles started in a state x such that h(x(0)) ≥ 0 but there exists

a later time t such that h(x(t)) < 0. This is because K(x) cannot be calculated for

x /∈ S so the control input applied to the aircraft does not always satisfy (1.5). In

other words, because K(x) cannot be calculated for all x ∈ D, Theorem 1 cannot be

used to guarantee safety.

Example 4. Loss of Smoothness. For hturn let γturn be specified with v = vmin and

ω = ωmax in (2.9). Let the two aircraft have sensor radius R = (Ds + 2r) cos(η) + 4δ

where r = vmin/ωmax and η = arcsin(r/(r+Ds/2)). As in Figure 5.2b, let the vehicles

have initial positions of

[
(Ds/2 + r) cos(η) + 2δ + ϵ 0 −π 0

]T

and [
−(Ds/2 + r) cos(η)− 2δ − ϵ 0 0 0

]T
,

respectively, where ϵ > 0. See Figure 5.3 for the geometric setup. Further, let each

aircraft have a nominal trajectory that continues toward the origin. Because the

aircraft cannot sense each other, K(x) cannot be calculated. This means that there

will be no collision avoidance override so the applied actuator command will be equal

to the nominal controller command of ûi(x) =

[
vmax 0

]T
until the vehicles reach

states [
(Ds/2 + r) cos(η) + 2δ 0 −π 0

]T
and [

−(Ds/2 + r) cos(η)− 2δ 0 0 0

]T
,

respectively. At this point, the vehicles can sense each other and the constraints (1.5)

in the QP (1.10) can be calculated, resulting in a discontinuity in the constraint in

the QP (1.10).
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Figure 5.3: The geometric setup for the chosen variables for Example 4.

5.3 Constructing a Barrier Function for Safety Guarantees Despite Limited Range

Sensing Restrictions

In Section 5.2 we saw that limited range sensing can lead to practical issues including

the loss of safety guarantees even when a ZCBF, h, exists for the system. This means

that UAVs may collide with each other when they are equipped with limited range

sensors. When limited sensing is not taken into account in the design of a ZCBF h,

the problem is that values of h cannot be evaluated for all x ∈ D, as required by

Definition 1, and so h cannot be used to guarantee safety. In this section we provide

a solution to this issue.

Definition 3. For a given ZCBF h and a sensor with a sensor set S, h is sensor

compatible if h is a positive constant for all x /∈ S.

Remark 6. A sensor compatible ZCBF h must be positive outside S since otherwise

this would imply for x /∈ S that (1.5) becomes α(h(x)) < 0 so (1.5) does not hold for

any u ∈ U .
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Importantly, implementing a safety overriding controller requires an exact calcu-

lation of the ZCBF constraint (1.5) only if K(x) ̸= U . When K(x) = U , there is no

need to calculate h(x) or its derivatives because any u ∈ U is already known to be

safe. Because of the additional structure on a sensor compatible ZCBF, we can relax

the need to check u ∈ K(x) for all x ∈ D in Theorem 1 because it is already known

that u ∈ K(x) for all u when x /∈ S, as is made precise in the following Corollary.

Corollary 2. Suppose h is a sensor compatible ZCBF. Then any Lipschitz continuous

controller u : D → U such that u(x) ∈ K(x) for all x ∈ S will render the set C

forward invariant.

Proof. By assumption u(x) ∈ K(x) for all x ∈ S. Suppose then that x /∈ S so that

h(x) is a positive constant. Then K(x) = U since Lfh(x) + Lgh(x)u + α(h(x)) =

α(h(x)) > 0 is satisfied for all u ∈ U . Hence u(x) ∈ K(x) for all x ∈ D so the

assumptions of Theorem 1 are satisfied.

Remark 7. The difference between Theorem 1 and Corollary 2 is that the condition

u(x) ∈ K(x) only needs to be the case for x ∈ S rather than x ∈ D due to the extra

structure on a sensor compatible ZCBF. This is an important distinction because

when there are sensing limitations, it may not be possible to calculate K(x) for all

x ∈ D.

Remark 8. For an arbitrary sensor, neither hstraight nor hturn are necessarily sensor

compatible. To see this for hstraight, let R > 0, x1 =

[
R + ϵ Ds π 0

]T
, and

x2 =

[
−R + ϵ 0 0 0

]T
. Then x /∈ S for ϵ > 0 and in this case h(x) = 0. However,

if x2 =

[
−R + ϵ −Ds 0 0

]T
, then x /∈ S but h(x) = Ds. Then hstraight is not

sensor compatible because h(x) is not constant for all x /∈ S. A similar calculation

can be done to show hturn is not sensor compatible. Hence, we cannot always apply

Corollary 2 to hstraight or hturn when there is limited range sensing.
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Consider now some ZCBF h that is not necessarily sensor compatible. We now

show how to create h̃ from h so that h̃ is sensor compatible even though this is not

the case for h. This allows us to be able to apply Corollary 2 to h̃. However, it is not

always possible to create h̃ from h so that h̃ is sensor compatible and we therefore

consider two cases. First, although hturn is not necessarily sensor compatible for

an arbitrary sensor, we give sufficient conditions to construct a ZCBF to be sensor

compatible. Second, we show how to verify when it is impossible to construct a sensor

compatible ZCBF using the proposed method. We show this is the case for hstraight.

To construct h̃, we first introduce an interpolation function to ensure that h̃

is continuously differentiable, as required by the definition of a ZCBF. Let ξ > 0,

0 < β < 1, and ψ be a continuously differentiable, non-decreasing, real valued function

on an open set including [βξ, ξ] chosen to satisfy

ψ(βξ) = βξ

ψ′(βξ) = 1

ψ′(ξ) = 0. (5.1)

Example 5. An example of such a function ψ can be found by fitting a quadratic

function. Let ψ(η) = c1η
2 + c2η + c3. Then (5.1) can be solved for c1 = −1

2ξ(1−β) ,

c2 = −2ξc1, and c3 = βξ − c1(βξ)2 − c2βξ.

We now define h̃ as follows

h̃(x) =


h(x) h(x) ≤ βξ

ψ(h(x)) βξ < h(x) < ξ

ψ(ξ) ξ ≤ h(x)

(5.2)

where we let Bξ = {x ∈ D : h(x) ≤ ξ} be a sub-level set of h (see Fig 5.4), where
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ξ denotes the maximum value of h for which the safety constraint affects the value

of h̃. Bξ is the set of states where the safety constraint affects the value of h̃. β is a

mixing term for states where βξ < h(x) < ξ and exists to ensure the differentiability

of h̃.

Remark 9. With this setup, we can take the following steps to show when a ZCBF

h̃ is sensor compatible. First, the system designer chooses ξ which determines Bξ.

Second, the system designer determines if Bξ ⊆ S. In other words, ξ > 0 must be

chosen with the sensing range in mind in order to verify that Bξ ⊆ S. The second

step verifies that a sensor exists so that any value of h(x) such that h(x) < ξ can

be calculated. Since h̃ does not require knowledge of x for h(x) ≥ ξ, h̃(x) can be

calculated for all x ∈ D. We prove this intuition below. Note that when multiple ξ

satisfy the above steps, it may be preferable to select larger ξ because h(x) = h̃(x)

for all x ∈ D such that h(x) ≤ βξ.

Lemma 1. Assume h defined in (2.3) is a ZCBF where γ is locally Lipschitz. Let h̃

be defined as in (5.2). Then h̃ is a ZCBF on D.

Proof. Note that because of how ψ is defined and because h is a continuously differ-

entiable function, that h̃ is a continuously differentiable function. Also note that for

βξ < h(x) < ξ, ψ(h(x)) > 0 since ψ is a non-decreasing function that is positive at

βξ.

To show that h̃ satisfies (1.5), let x ∈ D. We consider three cases. First, if

h(x) ≤ βξ then the inequality (1.5) holds for h̃(x) because h(x) is a ZCBF. If h(x) ≥ ξ

then (1.5) for h̃(x) becomes α(ψ(ξ)) ≥ 0 which is true for all u ∈ U because ψ(ξ) > 0

and α is a class K function. Finally, suppose βξ < h(x) < ξ and note that because ψ
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Figure 5.4: A graphical view of a hypothetical barrier function h (blue) along with h̃
(orange) of a one-dimensional system. Given h, the system designer’s choice of ξ and
β defines h̃ and Bξ. According to Theorem 5 when the system designer can identify
a ξ > 0 that defines Bξ where Bξ ⊆ S, h̃ is a ZCBF compatible with a sensor s.
Adapted with permission from [67] ©2021 IEEE.
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is non-decreasing that ∂ψ(h(x))
∂h(x)

≥ 0. Then

Lf h̃(x) + Lgh̃(x)γ(x) + α(h̃(x))

=
∂ψ(h(x))

∂h(x)
(Lfh(x) + Lgh(x)γ(x)) + α(ψ(h(x)))

≥ 0.

The first line uses the chain rule. The second line uses the fact that ∂ψ(h(x))
∂h(x)

≥ 0 and

that Lfh(x)+Lgh(x)γ(x) ≥ 0, as was established in the proof of Theorem 2. Finally,

note that α(ψ(h(x))) ≥ 0 because ψ(h(x)) > 0 and α is a class K function. Then h̃

is a ZCBF.

Theorem 5. For a given sensor S, assume h defined in (2.3) is a ZCBF where γ is

locally Lipschitz and there exists a ξ > 0 such that Bξ ⊆ S. Then h̃ defined in (5.2)

is a sensor compatible ZCBF.

Proof. h̃ is a ZCBF by Lemma 1. Suppose x /∈ S. Then because Bξ ⊆ S, h(x) > ξ so

h̃(x) = ψ(ξ). Then h̃ is a positive constant for all x /∈ S and is sensor compatible.

Theorem 5 is the justification of the steps listed in Remark 9. Combined with

Corollary 2, Theorem 5 states how the forward invariance of a set C can be guaranteed

even though there is limited range sensing. However, it is predicated on finding a

ξ > 0 that defines a sublevel set Bξ for which Bξ ⊆ S. We now give an example of

such a case for fixed wing collision avoidance where each aircraft is equipped with an

omnidirectional sensor with a given range R.

Example 6. It was shown in Remark 8 that hturn is not necessarily sensor compatible

for an arbitrary sensor. We now use Theorem 5 to define sensing requirements so that

we can create h̃ from hturn so that h̃ is sensor compatible. For hturn, the trajectory

defined in (2.4) is a circle for each aircraft with radius r1 = σv/ω and r2 = v/ω,

respectively. Let ∆x(t) = p1,x(t) − p2,x(t), and ∆y(t) = p1,y(t) − p2,y(t), so that the
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vehicles start at a planar distance of (∆x2(t)+∆y2(t))1/2 from each other. Assuming

the planar distance between the vehicles, (∆x2(t)+∆y2(t))1/2, is greater than 2(r1 +

r2), the closest the distance can be along the trajectory (2.4) is d1,2(x(0))1/2−2r1−2r2.

Assume each vehicle has an omnidirectional sensor with range R large enough so

that (
(R− 2r1 − 2r2)

2 − 4δ
)1/2 −Ds > 0. (5.3)

Equation (5.3) implies S for this example. Having defined the sensing limitations

for this problem, we now follow the steps in Remark 9 to show that h̃ is a sensor

compatible ZCBF. First, we choose ξ so that we can prove Bξ ⊆ S, namely

(
(R− 2r1 − 2r2)

2 − 4δ
)1/2 −Ds = ξ > 0. (5.4)

Second, we show that Bξ ⊆ S. Suppose x(t) /∈ S so that d1,2(x(t)) > R2. Then

because the trajectories of each vehicle is a circle in (2.4),

h(x(t)) = inf
τ∈[0,∞)

ρ(t+ τ)

≥ ((d1,2(x(0))
1/2 − 2r1 − 2r2)

2 − 4δ)1/2 −Ds

> ((R− 2r1 − 2r2)
2 − 4δ)1/2 −Ds

= ξ

> 0.

Then x(t) /∈ Bξ. Then Bξ ⊆ S. In other words, given a sensor of radius R, we

can choose ξ according to (5.4) and use h̃ defined in (5.2) to ensure safe operations

between two fixed wing aircraft.

While Example 6 showed how to use hturn with Theorem 5, the same cannot be

done for hstraight (see Figure 5.5).

Corollary 3. Assume h defined in (2.3) is a ZCBF where γ is locally Lipschitz. Suppose
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Figure 5.5: Theorem 5 can be used to calculate specify precise sensing range require-
ments to ensure safety guarantees but there is no finite range sensor for which the
same can be done for hstraight.

there exists an x ∈ D such that h(x) < 0 and x /∈ S. Then for all ξ > 0, Bξ ̸⊆ S.

Proof. Note that for the given x, x ∈ Bξ for any ξ > 0 since h(x) < 0. Then x ∈ Bξ

but x ̸∈ S.

Remark 10. We now use Corollary 3 to show hstraight cannot be used with Theorem 5

to guarantee safety. Let x1(0) =
[
−R/2− ϵ 0 0 0

]T
x2(0) =

[
R/2 + ϵ 0 π 0

]T
,

the sensing radius be R, and ϵ > 0, Then h(x) = −Ds and x ̸∈ S since the vehicles

are further than R apart.

5.4 An Interpretation of h̃ As a More Permissive ZCBF Than h

Consider again Theorem 5, which gives sufficient conditions to guarantee safety even

though the state cannot always be sensed. The key idea that leads to Theorem 5

is the construction of a barrier function h̃ that is constant for the set of states that

cannot be sensed. In other words, the coefficient on u in equation (1.5) is zero so any

u satisfying the actuator constraints also satisfies the safety constraint. This means

that if the nominal controller is within the actuator constraints that there will be no

safety override to alter the nominal control value. What we should expect in this case
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is that the state can approach the safety boundary more quickly than if there were

not any sensing restrictions. In this section we make this intuition precise by showing

the conditions for which using h̃ as the barrier function is at least as permissive as

the original barrier function h.

Consider a ZCBF h that is not necessarily sensor compatible but for which it is

possible to construct h̃ so that h̃ is a sensor compatible ZCBF. In this section we

characterize how h̃ is more permissive than h. For notational convenience we denote

∇hψ(h(x)) =
∂ψ(h(x))
∂h(x)

and assume the following.

Assumption 2. Assume on (βξ, ξ), α is continuously differentiable. Further, assume

the derivative of α is non-increasing on (βξ, ξ).

Remark 11. The assumptions on α can be satisfied for any α that is linear on the

region (βξ, ξ).

Assumption 3. Assume the domain of ψ is extended by letting ψ be the identity

function for inputs h(x) < βξ. Further, assume the first derivative of ψ is strictly

positive but non-increasing on (βξ, ξ) and the second derivative of ψ is negative on

(βξ, ξ).

Remark 12. Note that because the first derivative of ψ is strictly positive for h(x) < ξ,

(∇hψ(h(x)))
−1 is well defined on h(x) < ξ.

Remark 13. The ψ discussed in Example 5 satisfies Assumption 3 by letting ψ(h(x)) =

h(x) for h(x) ≤ βξ.

We begin by expanding the barrier condition (1) for h̃ in terms of h. This will then

be used to show the conditions such that K(x) ⊆ K̃(x) where K̃(x) is the admissible

control space of h̃ at x. Under Assumption 3 and noting Remark 12, for h(x) < ξ we
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have for x ∈ D that

Lf h̃(x) + Lgh̃(x)u+ α(h̃(x))

= ∇hψ(h(x)) (Lfh(x) + Lgh(x)u) + α(ψ(h(x)))

= ∇hψ(h(x))
(
Lfh(x) + Lgh(x)u+

(∇hψ(h(x)))
−1α(ψ(h(x)))

)
.

Then because ∇hψ(h(x)) > 0 and letting

α2(h(x)) = (∇hψ(h(x)))
−1α(ψ(h(x))), (5.5)

we have, letting sgn be the sign of the expression,

sgn(Lf h̃(x) + Lgh̃(x)u+ α(h̃(x))) (5.6)

= sgn(Lfh(x) + Lgh(x)u+ α2(h(x))).

Lemma 2. Suppose h is a ZCBF, let h̃ be as defined in (5.2), let Assumptions 2 and 3

hold, and let α2 be as defined in (5.5). If h(x) < ξ then α2(h(x)) ≥ α(h(x)).

Proof. Suppose h(x) ≤ βξ. Then because ψ(h(x)) = h(x), α2(h(x)) = α(h(x)).

Suppose now that βξ < h(x) < ξ. We prove α2(h(x)) ≥ α(h(x)) with the comparison

lemma [68].

It has already been shown that α2(h(x)) = α(h(x)) at h(x) = βξ. We now show
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that ∇hα2(h(x)) ≥ ∇hα(h(x)) for h(x) ∈ (βξ, ξ). By the chain rule,

∇hα2(h(x))

= −
(

1

∇hψ(h(x))

)2

∇2
hψ(h(x))α(ψ(h(x))

+

(
1

∇hψ(h(x))

)
∇ψα(ψ(h(x)))∇hψ(h(x))

≥ ∇ψα(ψ(h(x))).

The inequality holds because the second derivative of ψ is negative and α(ψ(h(x)) ≥ 0

for h(x) ∈ (βξ, ξ). We must now show that ∇ψα(ψ(h(x))) ≥ ∇hα(h(x)) to conclude

that α2(h(x)) ≥ α(h(x)) for h(x) ∈ (βξ, ξ).

Because ψ(h(x)) = h(x) for h(x) = βξ, the first derivative of ψ is 1 at h(x) = βξ

and the first derivative is non-increasing on h(x) ∈ (βξ, ξ), so ψ(h(x)) ≤ h(x) for

h(x) ∈ (βξ, ξ). Then because the derivative of α is non-increasing for h(x) ∈ (βξ, ξ),

∇ψα(ψ(h(x)) ≥ ∇hα(h(x)).

Remark 14. Note that α2 is a class K function. By definition, α2(0) = 0 and is

strictly increasing on (0, βξ). To see that α2 is strictly increasing on (βξ, ξ), note

that it has already been proven that ∇hα2(h(x)) ≥ ∇ψα(ψ(h(x))) ≥ ∇hα(h(x)).

Further ∇hα(h(x)) > 0 since α is a class K function. Then ∇hα2(h(x)) > 0.

Theorem 6. Suppose h is a ZCBF, assume h̃ be as defined in (5.2) is sensor compatible,

and let Assumptions 2 and 3 hold. Then K(x) ⊆ K̃(x) for all x ∈ D.

Proof. Suppose x is such that h(x) < ξ and u ∈ K(x). Then Lfh(x) + Lgh(x)u +

α(h(x)) ≥ 0. Then since α2(h(x)) ≥ α(h(x)) from Lemma 2 we have Lfh(x) +

Lfh(x)u + α2(h(x)) ≥ 0. Then from (5.6), Lf h̃(x) + Lgh̃(x)u + α(h̃(x)) ≥ 0. Then

u ∈ K̃(x).
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Suppose x is such that h(x) ≥ ξ and u ∈ K(x). Then because u ∈ U , u ∈ K̃(x)

since K̃(x) = U .

Remark 15. In particular, Theorem 6 gives the conditions under which any u satisfying

the QP (1.10) using h will be satisfied in a QP (1.10) when using h̃.

Theorem 6 shows the conditions under which h̃ is at least as permissive as the

original barrier function h. This means a safety override based on h̃ will be less

invasive than a barrier function based on h. However, it is important to ask whether

this is something a system designer actually wants. In particular, we generally want

to take small overriding actions when the state is not yet close to the safety boundary

in order in case there is noise in the modeling or sensors. This is the role of α in (1.5).

In other words, when using h with unlimited sensing, the safety overriding con-

troller will start to take action when the system is further from the safety boundary.

When there is a loss of sensing outside some radius, the state can travel arbitrarily

quickly (within actuator limits) towards the boundary. Although safety can still be

guaranteed in this case, it may involve approaching the boundary more quickly than

desired. Incorporating longer range sensors directly solves this issue but if this is not

possible, this discussion implies introducing additional conservatism elsewhere may

be desirable. Examples of where additional conservatism can be introduced are in α,

the evading maneuver, or adding artificial actuator limits. For instance, instead of

using cubic α, a linear alpha with a small coefficient may be preferable. Similarly, as

discussed in Chapter 2 it may be preferable to choose an evasive maneuver well within

the actuator limits so there is significant room to deviate from the modeled evasive

maneuver. This was shown to be important for a ZCBF to satisfy (1.5) outside of

the safe set in the proof of Theorem 2. Finally, by adding artificial actuator limits

(e.g., limiting the actual speed of the aircraft to something much smaller than vmax)

can also reduce how quickly the vehicles approach the safety boundary.
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5.5 Simulation Experiments

In this section we conduct a simulation experiment with SCRIMMAGE [59]. We

consider two vehicles with initial states of
[
−200 0 0 0

]T
and

[
200 0 π 0

]T
with goal positions of

[
200 0 0

]T
and

[
−200 0 0

]T
, respectively.

We use hturn, letting v = 0.9vmin + 0.1vmax and ω = 0.9ωmax in (2.9) where

vmin = 15 meters/second, vmax = 25 meters/second, δ = 0.01 meters2, and ωmax = 13

degrees/second. The choice of ωmax results from assuming a 30 degree max bank

angle while traveling at vmax and using a constant rate turn formula, as in [61].

In the first experiment, we examine the effect of sensing range on the result-

ing closest distance the vehicles experience during the simulation. In Example 6 we

showed how to apply the steps described in Remark 9 by choosing ξ so that Bξ ⊆ S

to conclude that that h̃ is sensor compatible. The conclusion required that the sens-

ing range was above a threshold in (5.3). Using the parameters of this experiment,

equation (5.3) implies R > 318.4. Because the inequality is strict, we start the exper-

iment with R = 319. As shown in Figure 5.6, provided the sensing range is above the

threshold calculated in (5.3), the vehicles are able to maintain safe distances through-

out the simulation. Further, as the sensing range approaches the limit predicted by

(5.3), the minimum distance between the vehicles during the simulation approaches

Ds.

In the second experiment we repeat the experiment of Chapter 4 where 20 vehicles

are applying a barrier function and are positioned around a circle with a nominal

controller that cause the vehicles to arrive at the origin at the same time. The

difference in this experiment from Chapter 4 is that we include a limited sensing

range of 350 for each vehicle and start the vehicles 1250 feet from the origin so they

start the scenario without being able to sense each other. A screenshot of the initial

conditions and evasive maneuver are shown in Figure 5.9 and a video simulation
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Figure 5.6: The minimum vehicle distance vs sensing range. The green dashed line
is the minimum sensing range using (5.3). Note that for all sensing ranges above the
minimum sensing range, the vehicles are able to maintain safe distances. Adapted
with permission from [67] ©2021 IEEE.

is shown in [69]. The vehicles are able to maintain safe distances throughout the

simulation.

5.6 Conclusion

In this chapter we have found that safety guarantees are still possible even when there

is limited range sensing. In order to arrive at this conclusion we construct a new

barrier function from a previously existing one and ensure the new barrier function is

constant outside the set of states that can be sensed. However, we note there are two

downsides to this process. First, for any given barrier function it is not guaranteed

that we can construct a new barrier function that can maintain safety when there is

limited sensing. This is the case for hstraight and shown more generally in Theorem 6.

Second, because the state cannot be sensed outside of a given range, the resulting

barrier function permits all control values that are within actuator constraints. The

result is that the state may approach the safety boundary more quickly than if a

longer range sensor were available. We summarize this discussion with an addition

to Table 5.1.
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Figure 5.7: Control outputs for the scenario with 20 fixed-wing vehicles subject to
limited sensing where h is constructed from γturn. Vehicle 1 velocity and turn rates are
shown to be within the actuator limits in (a), (b), and (c) for velocity, turn rate, and
altitude rate, respectively. Note that h constructed from γstraight is omitted because
it has been shown that this h is not sensor compatible.
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Figure 5.8: Outputs for the scenario with 20 fixed-wing vehicles subject to limited
sensing where h is constructed from γturn. Vehicle 1 is plotted as a representative
output since all 20 vehicles cannot be shown on the same plot. In (c), the minimum
distance between any two vehicles is shown to be above Ds. (d) is the path taken by
vehicle 1. Note that the behavior is significantly different when constructing h with
γturn and γstraight. Note that h constructed from γstraight is omitted because it has
been shown that this h is not sensor compatible.
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(a) (b)

Figure 5.9: (a) A screenshot of the initial conditions of 20 vehicles whose nominal
controller will put them on a collision course through the origin. The circles around
the vehicles are the sensing range so that the vehicles cannot sense each other at the
beginning of the scenario. (b) A sideview of the aircraft as they maneuver around
each other near the origin.

Table 5.1: A list of assumptions required to ensure system safety after adding the
shared evading maneuver while removing the need to communicate and infinite range
sensing.

Assumption Effect of Removing Assumption
One Safety Constraint still safe but additional assumption required (shared

evading maneuver)
Unlimited Communication still safe but overriding control value may deviate

more significantly from nominal control value
Infinite Range Sensors only some barrier functions can be used to guarantee

safety and the state may approach the safety bound-
ary more quickly than with unlimited sensing

Known Dynamics Model see Chapter 6
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CHAPTER 6

MODEL FREE SAFETY VIA IMPLICIT EVADING MANEUVERS

Chapters 3 through 5 removed assumptions of a single safety objective, unlimited

communications, and unlimited sensing, respectively, made in Chapter 2. In particu-

lar, we found that safety could be guaranteed even when removing these assumptions.

In this chapter we look at how to increase the performance goal. We find that we can

increase performance by removing another assumption, namely that we have a known

dynamics model. The result is to another method for constructing a barrier function

that allows for a more performant system than a model based approach while still

improving on the safety of the original system.

As shown in previous chapters, barrier functions can be used to maximize the

performance of a system while satisfying a safety constraint. However, if the safety

constraint arising from the barrier function is overly restrictive then performance

can be needlessly diminished. For example, in an adaptive cruise control setting,

safety designers can choose a minimum inter-vehicle distance that the vehicle must

satisfy. Setting this minimum distance too high (e.g., hundreds of meters) will result in

excessive inter-vehicle distances where speed setpoints are difficult to achieve. In other

words, the performance goal (speed) is negatively impacted by an overly conservative

constraint (inter-vehicle distances).

In this chapter we generalize this point by demonstrating that it extends beyond

simple scalar settings like inter-vehicle distance. In particular, we consider the case of

unmanned aerial vehicle (UAV) collision avoidance and demonstrate that even with

a fixed minimum inter-vehicle safety distance, the observed behavior of the safety

override resulting from a barrier function can be needlessly conservative. Specifically,

we first consider the case where the barrier function safety constraint ensures each
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vehicle can maintain a straight trajectory without a future collision. We show in this

case that even when the vehicles are arbitrarily far apart that the barrier function

indicates the vehicles are unsafe. This can result in significant performance implica-

tions on a waypoint-following UAV. To see this, consider another vehicle located far

away and its effect on how well our own vehicle achieves its waypoints. The other

vehicle could orient itself in a way that makes the barrier function imply an override

is needed. This can make the system more unpredictable as non-local factors (e.g.,

vehicles far away) can have significant impact on the control choices. Further, it could

even be exploited by malevolent actors who could conceivably choose to orient their

own aircraft in a way that forces the waypoint-following aircraft to adjust and move

in a way that a malevolent actor intends.

However, the concerns go further than that. We therefore consider a second case

where a barrier function ensures the vehicles can employ a turning maneuver to main-

tain safe distances for all future time. However, in this case we construct a scenario

where the nominal controller, a controller designed for a performance objective like

waypoint following but that does not ensure safety, would result in inter-vehicle dis-

tances many times greater than the minimum safety threshold. Nevertheless, when

an override from a barrier function is employed, the vehicles significantly alter their

course in a way that causes them to barely exceed the minimum safety distance from

each other. In other words, not only does the safety override needlessly alter the

original system’s control value, significantly reducing system performance, in doing

so it also causes the vehicles to barely exceed the safety thresholds. Further, it can

reduce trust in a system as observers see the safety override causing the system to fly

needlessly close to the other vehicle.

Prior work has investigated how to relax the invasiveness of an override while

ensuring that the system is always safe, often looking at how to construct a barrier

function that specifically accounts for the nominal controller. For instance, in [50]
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the authors introduce an optimization to maximize the set of safe states that are

compatible with a region of attraction so that the safety constraint considers the

performance objective. Similarly, an action policy and barrier function are learned

simultaneously in [70]. Imitation learning has also been employed as in [71] where

a barrier function is constructed from expert trajectories where the expert is able to

consider both performance and safety factors. More broadly, barrier functions have

also been used to not only enforce safety constraints but also guide exploration in

[72] via off policy reinforcement learning. Similarly, in [73] the authors introduce a

barrier function to constrain the policy update in reinforcement learning.

In this chapter, rather than simultaneously training both the nominal controller

and safety override, we instead seek to maximize the set of safe controls available that

could be applied to any nominal policy. This allows for a separation of concerns that

simplifies the controller design process [42]– the nominal controller can be designed

for performance while the safety override resulting from the barrier function overrides

the nominal controller as little as possible while improving safety. In particular, we

show that maximizing the set of safe states is not enough to ensure that a safety

override is not restrictive. In other words, given a state that is safe for two different

barrier functions, it may be that the available set of controls to keep the system safe

is larger for a barrier function that has a smaller overall safe set.

We also construct a barrier function without requiring a dynamics model. A ben-

efit of this is that it reduces the model mismatch that can occur when using simpli-

fied modeling assumptions (e.g., assuming linearity in the control input even though

aircraft are subject to 6-DOF dynamics) that can lead to differences in simulated

versus real-world performance. It has been more broadly discussed that model-free

approaches can often outperform model-based systems [9] as they are less restricted

in fitting to data. Thus, we propose model free barrier functions, which are learned

from interactions with the environment, to reduce how much the system is overrid-
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den. This chapter makes the following contributions. First, we motivate model free

barrier functions with examples from fixed wing collision avoidance that demonstrates

a model based approach induces unnecessary overrides. Second, we derive model free

barrier functions. Third, we demonstrate the approach in simulation.

This chapter is organized as follows. Section 6.1 introduces the background for

barrier functions. Section 6.2 derives model free barrier functions. Section 6.3 demon-

strates the algorithm in simulation.

6.1 Background

In this section we introduce barrier functions in the context of discrete time [74] and

compare model-free with model-based barrier functions. Thus we introduce a UAV

dynamics model for two UAVs indexed by i (i ∈ {1, 2}) where the state for each UAV

at time k is given by xk,i =
[
pk,i,x pk,i,y θk,i pk,i,z

]T
. The components pk,i,x, pk,i,y,

and pk,i,z are the x, y, and z position of aircraft i and θk,i is the orientation. The

discrete time dynamics are given by

xk+1,i =



pk,i,x + vk,i cos θk,i∆t

pk,i,y + vk,i sin θk,i∆t

ωk,i∆t

pk,i,z + ζk,i∆t


where vk,i is the translational velocity, ωk,i is the rotational velocity, ζk,i is the vertical

velocity, and ∆t is a integration step parameter. These velocities serve as control

inputs and are subject to actuator limits vmin and vmax where vmin > 0, |ωk,i| ≤

ωmax, and |ζ| < ζmax, respectively. Given two aircraft, the system with state xk =[
xTk,1 xTk,2

]T
has dynamics of the form

xk+1 = f(xk, uk) (6.1)
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where xk ∈ Rn, uk ∈ U ⊂ Rm, and U is the set of available controls for the system.

In [74] the authors consider dynamics of the form (6.1) to develop barrier functions

for discrete time systems which we briefly summarize here. Let h : Rn → R be an

output function of the state and define the safe set C as a superlevel set of h so that

C = {xk ∈ Rn : h(xk) ≥ 0}. (6.2)

We also let ∆h(xk, uk) = h(xk+1) − h(xk). When the output function h satisfies the

following property it can be used to ensure that if the state starts in C then it will

stay in C for all future time. The following definition is an adaptation from Definition

4 of [74] using terminology similar to that in [4].

Definition 4. A map h : Rn → R is a Discrete-Time Exponential Control Barrier

Function (DT-ECBF) on a set D where C ⊆ D if there exists a control input uk ∈ Rm

and λ such that

∆h(x, u) + λh(x) ≥ 0 (6.3)

and 0 ≤ λ ≤ 1 for all x ∈ D.

We therefore define the admissible control space as

K(xk) = {u ∈ U : ∆h(xk, uk) + λh(xk) ≥ 0}. (6.4)

The following is an adaptation from Proposition 4 of [74] using the terminology

of an admissible control space from [4].

Proposition 2. Given a set C ⊂ Rn defined in (6.2) for an output function h, if h is a

DT-ECBF on D then any controller u : Rn → U such that u(x) ∈ K(x) for all x ∈ D

will render the set C forward invariant.

Assuming the system has a controller designed to achieve a performance goal that

does not necessarily ensure safety, barrier functions can be used to select a control
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value u as close as possible to the original controller û while ensuring safety via the

following optimization program:

u =argminu∈U
1

2
∥u− û∥2 (6.5)

s.t. u ∈ U

u ∈ K(x).

As discussed in [74], equation (6.5) is a nonconvex program which can be difficult

to solve in real-time. We resolve this runtime issue in this paper by assuming U

is a discrete set small enough to calculate this optimization in real time. The final

implementation is in a neural network where a single forward pass through a network

can calculate many values for K(x) in parallel as discussed for instance in [75].

6.2 Generating a Model Free Barrier Function via Evasive Maneuvers

6.2.1 Constructing Barrier Functions For Discrete Time Systems

Prior chapters have demonstrated a method for constructing a barrier function for

continuous time systems. We therefore first adapt that method to discrete time. Let

ρ : Rn → R be a safety function that must be nonnegative at all times for the system

to be safe. Let γ : Rn → U be an evasive maneuver that can keep the system safe.

Note that γ is not necessarily the safety override but is instead used to construct

a barrier function. To construct a candidate DT-ECBF we forward propagate the

state using γ as the controller and calculate the worst case safety value using ρ for

all future times. In other words, let

h(x0) = inf
k≥0

ρ(x̂k) (6.6)
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be a candidate DT-ECBF where x̂0 = x0 and x̂k for k > 0 is the future state when

using γ for all future time, namely

x̂k+1 = f(x̂k, γ(x̂k)). (6.7)

Using this formulation, we can show that h in (6.6) is a DT-ECBF. The theorem

and proof are similar to Theorem 2 but applied to discrete time systems.

Theorem 7. Given a dynamical system (6.1) and a function h defined in (6.6) with a

safety function ρ and an evasive maneuver γ, h is a DT-ECBF on the set C.

Proof. Suppose x ∈ C so that h(x) ≥ 0. Then

∆h(x, γ(x)) = inf
k≥1

ρ(x̂k)− inf
k≥0

ρ(x̂k).

The right hand side is nonnegative because it is the subtraction of the infimum of

same function on different intervals where the first interval is a subset of the second

interval. Then ∆h(x, γ(x)) ≥ 0. Recalling as well that x ∈ C means that h(x) ≥ 0,

this implies that ∆h(x, γ(x))+λh(x) ≥ 0. Then γ(x) ∈ K(x) so h is a DT-ECBF.

Remark 16. Although in Definition 4 D can be a larger set than C, Theorem 7 is only

valid for C = D. See Theorem 2 for sufficient conditions for C ⊂ D in the continuous

time domain.

6.2.2 The Effect of The Evasive Maneuver on Safe Sets

While Theorem 7 shows that h defined in (6.6) is a DT-ECBF and can therefore be

used to guarantee safety, it does not explicitly imply anything about the topology

of the safe set C that is implied by h. In particular, for different choices of γ, the

associated safe set can be drastically different.
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Consider the two examples of a barrier function discussed in Section 2.3.2, namely

hturn and hstraight as the h in (6.6) constructed from γturn and γstraight, respectively.

The reason these evasive maneuvers were considered previously is because they enable

a closed form solution to (6.6) so that the barrier function constraint can be calculated

in real-time. We consider some examples where the safe set implied by hturn and

hstraight results in either an unnecessary invasive override or labeling states as unsafe

that have ample room to avoid a collision. A graphical view of these two scenarios is

in Figure 6.1. The actual path traversed by the vehicles for the scenario of Figure 6.1b

is demonstrated in Figure 6.2.

Example 7. States Are Labelled Unsafe Where Collisions Can Be Avoided. Suppose

h is parameterized by γstraight and consider an initial condition where the two vehicles

are positioned at the same altitude with orientations pointing at each other. Then

no matter how far apart the vehicles start, the calculation of (6.6) yields h = −Ds,

implying that the initial conditions are not safe. This is because using γstraight as the

evasive maneuver implies that the two vehicles will continue on a collision course until

they collide. Clearly, as the vehicles are placed arbitrarily far apart, there is ample

time to turn to avoid a collision. Nevertheless, according to hstraight, this configuration

is outside of the safe set.

Example 8. An Unnecessary Invasive Override. While using hturn resolves the issue

raised in Example 7, there are other initial conditions that lead to an unnecessary

override even when using γturn. For instance, suppose that the vehicles pass on the

left of each other with a lateral separation of more than the safety distance but less

than four turn radii. Then if the vehicles continue straight the vehicles will eventually

approach an unsafe condition according to hturn and the overriding safety controller

will induce a large path correction so that each vehicle can pass on the others’ left.

Examples 7 and 8 indicate hstraight and hturn may be restrictive. Another way of

looking at this problem is to plot the set of unsafe states for a variety of configurations

93



(a)

(b)

Figure 6.1: (a) When the two vehicles are pointing towards each other, the vehicles
are not safe when using hstraight no matter how far apart the vehicles start from each
other. (b) When the vehicles pass to each others’ left, the vehicles are not in the safe
set when using hturn because the evasive maneuver implies the vehicles would collide
with each other. The practical takeaway in these two cases is that even though safety
can be guaranteed, the particular states that are safe may be different. In either case
though, collision avoidance can be achieved provided the vehicles start in a state such
that h(x) ≥ 0 for either hstraight or hturn.
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Figure 6.2: A plot of the trajectory of vehicle 2. When using γstraight to construct the
barrier function, vehicle 2 does not deviate from the nominal control value. When
using γturn, vehicle 2 deviates significantly. This is because the barrier function always
makes sure that vehicle 2 can execute γturn to keep the vehicles safe even if there are
better selections for an overriding controller (e.g., in this case, continuing straight).
The trajectory for vehicle 1 is similar.

as is done in Figure 6.3. Figure 6.3 demonstrates that even when the vehicles are

not pointing at each other, the vehicles can be spaced far apart and be in an unsafe

state when using γstraight as the evasive maneuver. Further, Figure 6.3a even shows

that the vehicles can be considered unsafe even when they have flown past each

other when using hturn. The point of these examples is that there are cases where

a barrier function can induce overly restrictive safety overrides. We note that while

these two examples demonstrate that a safety override using barrier functions may

result in overly restrictive behavior this is not necessarily the case for all barrier

functions. In particular, this chapter resolves these issues by finding a barrier function

whose safe set is much larger than the safe set associated with either hturn or hstraight

(see Fig. 6.5). It also shows using a maximum of barrier functions can increase the

admissible control space.

6.2.3 An Initial Model Free Barrier Function

The issues in Figures 6.1 and 6.3 result because the evasive maneuvers used to calcu-

late h are constant. More complicated evasive maneuvers might for instance involve
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(a) (b)

(c) (d)

Figure 6.3: A plot of the unsafe set for four different configurations of the aircraft
when using hstraight (blue) or hturn (orange). In all cases one of the vehicles is at
the origin with orientation pointing along the positive x-axis. The plot shows when
the set of states that are outside the safe set as the second vehicle changes x and
y positions. In particular, it shows that some states are needlessly labelled unsafe.
An example is in (a) where hturn labels states as unsafe even when the vehicles have
flown past each other. (a) The second vehicle is pointing left. (b) The second vehicle
is pointing up. (c) The second vehicle is pointing right, (d) The second vehicle is
pointing down.

96



turning right when the other vehicle is on the left and turning left when the other

vehicle is on the right. More generally, we might expect that the evasive maneuver

use the state to select an evasive maneuver which is not the case for γstraight and γturn.

In this section we present a solution to this problem.

Another consideration not discussed in Section 6.2.2 for using Theorem 7 is that

it requires that (6.6) be calculated over an infinite horizon. Nevertheless, as demon-

strated in Section 2.3.2, h can be calculated in closed form for γturn and γstraight.

To do so, we assumed a particular model and chose an evading maneuver to enable

closed form calculations. However, as shown in Section 6.2.2, this may result in safe

sets that exclude many seemingly safe states.

More generally, it may be difficult to generate a barrier function if the system

dynamics are complicated. Nevertheless, as demonstrated in Theorem 7, the evasive

maneuver can be any function that maps from the state to the action space.

Because it may be difficult to calculate h in (6.6) in closed form for an arbitrary γ,

we propose taking a data driven approach. To do so, we can start the state at some

x0 ∈ Rn and apply some evasive maneuver γ that we specify.1 Because the nominal

controller is available, we could for instance let γ = û and create a sequence {xk}Tk=0

where T is some horizon over which safety is evaluated. In the case of UAV collision

avoidance, T may represent battery life of the vehicles where collisions will obviously

not occur beyond time T .

Note that the sequence {xk}Tk=0 is the enumeration of the minimum on the right

hand side of (6.6). Thus, given a starting state x0, we can calculate ρmin = mink≥0 ρ(xk)

to calculate a sample h(x0). Suppose this process is repeated N times to form a

dataset D = {(xj0, ρ
j
min)}Nj=1. Then we can fit a function ĥ to approximate the map-

ping (6.6) with the dataset D. In the perfect case where there is no error in ĥ we are
1Note that x0 is sampled from Rn rather than D so that during the data-generation phase, the

vehicles may start in an unsafe condition. This is to provide more data in fitting the learned ĥ.
If the data did not include unsafe states then the data would have a bias towards predicting that
states are safe.
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left with a function that directly calculates (6.6) without having to do the integration

in (6.6) because the integration is implicit in the fitting of the data.

However, when fitting ĥ there will be errors. Errors where the learned ĥ is less

than the true h leads to more conservative behavior by considering states to be unsafe

that are actually safe. On the other hand, when the learned ĥ over predicts relative

to the data, it can imply the state is safe when it is not. A conservative approach is

to therefore bias the learned ĥ downward to reflect uncertainty. This can be done by

biasing the loss function as was done in [76] or alternatively with a Bayesian approach

(e.g., Gaussian Processes [77] were used for barrier functions in [78]. Bayesian neural

networks [79, 80] can also output an uncertainty) by subtracting a desired number of

standard deviations learned model output. We note though that while this method

reduces the chances that the fitted ĥ will over predict the true h, because it cannot

be guaranteed this type of error does not occur, the strict safety guarantee arising

from of Theorem 7 is lost.

6.2.4 Iteratively Expanding the Admissible Control Space

Consider the output of ĥ when applied to fixed wing collision avoidance with a way-

point finding nominal controller. Position two vehicles arbitrarily far apart with way-

points located at the starting position of the other vehicle, and orientations pointing

at their respective waypoint. This configuration will be unsafe for ĥ for the same rea-

son as described in Example 7. We now show how to improve on this initial estimated

ĥ with an iterative algorithm.

We therefore examine the case where a barrier function h is available and seek to

generate a new barrier function h1 with a larger safe set than h. Given a state x0 ∈ Rn

and a nominal control value û, let γ1 : Rn → U be the result of the optimization2

in equation (6.5). We note that the function γ1 can be used as an evasive maneuver
2Note that because x0 is sampled from Rn rather than D it is not guaranteed that the optimization

program has a solution when x /∈ D. This can be resolved for instance by adding a slack variable.
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since it is a function that maps to the action space as required by Theorem 7. In

other words, we can form a new barrier function h1 via (6.6) such that

h1(x0) = min
k≥0

ρ(x̂k) (6.8)

where

x̂k+1 = f(x̂k, γ
1(x̂k)). (6.9)

We denote the safe set of h1 as C1.

Theorem 8. Given a dynamical system (6.1) let h be defined in (6.6) with safety

function ρ and evasive maneuver γ. Let h1 be defined in (6.8) with safety function ρ

and evasive maneuver γ1 defined as the output of (6.5). Then C ⊆ C1.

Proof. Let x0 ∈ C. From Proposition 7, because γ1 maps to values in K(x) for all

x ∈ D, ρ(x̂k) ≥ 0 for k ≥ 0 where x̂k is defined in (6.9). Then h1(x0) ≥ 0. Then

x0 ∈ C1.

Theorem 8 says that by using γ1 rather than γ as the evasive maneuver, the safe

set does not get smaller. We now show a case where C is a strict subset of C1.

Example 9. Consider a discrete double integrator system

xk+1 =

1 ∆t

0 1

xk +
 0

∆t

u, (6.10)

where xk,1 is the position and xk,2 is the velocity. Let ρ(xk) = xk,1 so that the system

is point wise safe when the position is nonnegative. Let γ(x) = 1 and ∆t = 0.1. Let

x0 =

[
0.5 −1

]T
. Then h(x0) = −0.05 so x /∈ C. In the case where û = 2 ∈ U , the

result of (6.5) is γ1(x) = 2. Then using γ1 to construct h1 via (6.8), h1(x0) = 0.2 so

x0 ∈ C1.
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The point of Example 9 is that γ1 can in some cases do a better job at avoiding

unsafe conditions and as a result the safety set is enlarged. However, as discussed in

Section 6.2.3, there is a drawback to using γ1. In particular, to apply Theorem 8,

one then needs to forward propagate the dynamics (6.9) for all future time where

the controller at every future timestep is the result of a nonconvex program (6.5)

and return the minimum ρ(xk) for the resulting sequence {x̂k}Tk=0. For online safety

overrides, this is not computationally feasible. Thus, we pursue the data driven

approach discussed in Section 6.2.3. The algorithm is described in Algorithm 1.

Algorithm 1: Initial algorithm for learning a model free barrier function.
input : h (barrier function), N (number of samples), û (nominal controller),

T (safety horizon)
output: ĥ1

1 Function ExpandSafeSet(h, ρ, N , T ):
2 D = {};
3 for m← 1 to N do
4 select a random x0;
5 x← x0;
6 ρmin ← ρ(x);
7 for j ← 1 to T do
8 γ1 ← from equation (6.5) using x, h, and û;
9 x← f(x, γ1);

10 ρmin ← min(ρmin, ρ(x));
11 end
12 append {x0, ρmin} to D;
13 end
14 ĥ1 ←fit to D;
15 return ĥ1;

Given Theorem 8 and Example 9 and that there are no errors in fitting ĥ1 to to

h1, we expect that C1 will be a superset of C. However, notice that we can continue

this process to form γ2 with the property that γ2(x) ∈ K1(x) for all x ∈ C1 where

K1(x) = {u ∈ U : ∆ĥ1(x) + γĥ1(x) ≥ 0}. (6.11)
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This approach is summarized in Algorithm 2. In general, for a barrier function hi we

denote the admissible control space by Ki and the safe set by Ci.

Algorithm 2: Algorithm for Iteratively Expanding the Safe Set
input : h (barrier function), N (number of samples), û (nominal controller),

T (safety horizon), L (number of expansions)
output: ĥL

1 ĥ0 ← h;
2 for i← 1 to L do
3 ĥi ←ExpandSafeSet(ĥi−1, ρ, N , û, T );
4 end

However, Algorithm 2 ignores a subtle issue, namely that it is not necessarily the

case that Kj(x) ⊆ Ki(x) for any i > j even though Theorem 8 shows that Cj ⊆ Ci.

This is demonstrated in the following example.

Example 10. Consider again the double integrator system in Example 9. Let x0 =[
2 −1

]
, γ(x) = 0.5, and λ = 0.9. Then a numerical calculation shows that K(x0) =

{u : u ≥ −3.77}. Let

û(x) =


1 x0,0 = 2 and x0,1 = −1

0.5 otherwise
.

Then K1(x0) = {u : u ≥ −3.67}. In other words, even though Theorem 8 shows

that C ⊆ C1, it is not the case that K(x) ⊆ K1(x).

Example 10 shows that even though the safe set is enlarged when using Algo-

rithm 2, the set of controls available to keep the system safe may be reduced. This

means that in some places of the safe set there may be a more aggressive safety over-

ride when using h1 rather than h. For this reason we would like to use the maximum

of the barrier functions hj for j ≤ i in Algorithm 2. We note that the use of maxi-

mums for boolean composition of barrier functions for continuous time systems was

previously analyzed in [55].
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Theorem 9. Given a dynamical system (6.1) and DT-ECBFs h1 and h2, the function

h3 defined by h3(x) = max(h1(x), h2(x)) is a DT-ECBF on the set C1 ∪ C2. Further,

K1(x) ⊆ K3(x) on the set C1 and K2(x) ⊆ K3(x) on the set C2.

Proof. We first prove that h3 is a DT-ECBF on C1 ∪ C2. Suppose x ∈ C1 ∪ C2 and

without loss of generality, assume h1(x) ≥ h2(x) so h3(x) = h1(x). Suppose u ∈ U

satisfies ∆h1(x, u) + λh1(x) ≥ 0 and let x1 = f(x, u). Such a u exists because h1 is a

DT-ECBF. Then

∆h3(x, u) + λh3(x)

= [max(h1(x1), h
2(x1))−max(h1(x), h2(x))]+

λmax(h1(x), h2(x))

= max(h1(x1), h
2(x1))− h1(x) + λh1(x). (6.12)

Case 1: If h1(x1) ≥ h2(x1) then (6.12) becomes

∆h3(x, u) + λh3(x) = ∆h1(x, u) + λh1(x) ≥ 0.

Case 2: If h1(x1) < h2(x1) then (6.12) becomes

∆h3(x, u) + λh3(x) = h2(x1)− h1(x) + λh1(x)

≥ h1(x1)− h1(x) + λh1(x)

= ∆h1(x, u) + λh1(x) ≥ 0.

Then h3 is a DT-ECBF.

Note that this also establishes that K1(x) ⊆ K3(x) on the set C1 under the

condition that h1(x) ≥ h2(x). We now consider the case where x ∈ C1 and h1(x) <
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h2(x) to show that K1(x) ⊆ K3(x) on the set C1. When h1(x) < h2(x) we have

∆h3(x, u) + λh3(x)

= [max(h1(x1), h
2(x1))]− h2(x) + λh2(x)

≥ [max(h1(x1), h
2(x1))]− h1(x) + λh1(x).

Continuing the same logic as cases 1 and 2 above we conclude K1(x) ⊆ K3(x) on the

set C1 under the condition that h1(x) < h2(x). Then K1(x) ⊆ K2(x) on C1. The case

of K2(x) ⊆ K3(x) on C2 is proven the same way.

Remark 17. The optimization (6.5) is non-convex so finding an online solution may

be computationally intensive. A direct solution to this is to assume U is a small

finite set and allow the calculation to be done in a single forward pass of a neural

network. However, an alternative occurs when h1 is defined via (6.6) for some γ and

x ∈ C1. Theorem 7 demonstrates that γ is always a feasible solution of (6.5) provided

h1(x) ≥ 0 (and similarly for an evasive maneuver used to construct h2 for x ∈ C2).

Because K1(x) ⊆ K3(x) for all x ∈ C1, this means that γ is a feasible solution for

(6.5) when using h3 and x ∈ C1.

Theorem 9 provides the justification for adjusting Algorithm 2 to use a maximum

so that the safety set is enlarged as well as the admissible control space. However, the

direct application of Theorem 9 implies that L barrier functions must be maintained,

which implies memory growth and reduces online computation capability. For this

reason, we elect to adjust the dataset accordingly in Algorithm 3. Note that the

difference between the functions ExpandSafeSet and ExpandSafeSetWithMax occurs

in line 18 in Algorithm 3 where the max is used.
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Algorithm 3: Algorithm for Iteratively Expanding the Safe Set and the Ad-
missible Control Space

input : h (barrier function), N (number of samples), û (nominal controller),
T (safety horizon), L (number of expansions)

output: ĥL
1 ĥ0 ← h;
2 for i← 1 to L do
3 ĥi ←ExpandSafeSetWithMax(hi−1, ρ, N , T );
4 end
5 Function ExpandSafeSetWithMax(h, ρ, N , û, T ):
6 D = {};
7 for m← 1 to N do
8 select a random x0;
9 x← x0;

10 ρmin ← ρ(x);
11 for j ← 1 to T do
12 γ1 ← from equation (6.5) using x, h, and û;
13 ;
14 x← f(x, γ1) ;
15 ρmin ← min(ρmin, ρ(x));
16 end
17 end
18 append {x0,max(h(x0), ρmin)} to D;
19 ĥ1 ←fit to D;
20 return ĥ1;
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6.2.5 Model Free Barrier Functions

While hL in Algorithm 3 may appear to be model-free, a model is still required to

select γ1(x) in line 12 because K(x) requires a calculation of ∆h(x) which requires

a model for the dynamics. Thus, to make the final result of Algorithm 3 model-free

we must also create a learned function ∆ĥ. To do so, we simply record the minimum

ρ(x) occurring after j = 1 in Algorithm 3.

6.3 SIMULATION EXPERIMENTS

In this section we validate the approach of Algorithm 3. We let v1 = v2 = 15

meters/second in equation (2.15) and restrict the action space of both agents to

a selection of [−12, 0, 12] degrees per second for ω while holding velocity fixed at

15 meters per second and altitude rate at 0. The initial state for each vehicle

is between
[
−200 −200 −π 0

]T
and

[
200 200 π 0

]T
. We also let ρ(x) =

max(50,
√
d1,2(x)−Ds). We use a ρ that is clipped at 50 rather than just

√
d1,2(x)−Ds

to simplify data normalization so that the target values are not unbounded and note

that this clipping does not change C. Hyperparameters are listed in Table 6.1 and

training statistics are plotted in Figure 6.4.

Similar to Figure 6.3, we plot in Figure 6.5 the safe set for the mean value of the

model free barrier function as well as when three standard deviations are subtracted.

When subtracting three standard deviations from the mean output of the model-free

barrier function, the unsafe set is enlarged. We also plot how the unsafe set changes

as the ExpandWithMax in Figure 6.6 to demonstrate that the safe set is enlarged as

the algorithm proceeds.

We list the percentage of collisions at each training iteration in Table 6.2. Given

the model-free barrier function at the given iteration we show what percentage of

episodes the vehicles come within 25 meters of each other when the barrier function
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Table 6.1: Hyperparameters when fitting a model free barrier function

Hyperparameter Value
Learning Rate 1e-4
Batch Size 50000
Epochs 10000
Dropout Percent 50%
Num Samples for Stdev Calculation 50
Number of Fully Connected Layers 4
Width Per Layer 1024

Table 6.2: The percentage of episodes where the vehicles collide from random initial
conditions when the initial state is safe according to the barrier function versus the
scenario where only the nominal controller is used. Notice that safety is significantly
improved when using a model-based barrier function but that safety is nevertheless
not guaranteed as there is noise in fitting to the data.

Iteration Barrier No Barrier
1 0.2 8.9
2 0.5 8.8
3 0.4 8.9
4 0.5 8.8
5 0.5 9.0

value of the first state is nonnegative. Notice that the number of collisions when using

a model free barrier function is less than 10% of the number of collisions when using

no barrier function. Additionally note that there are not zero collisions when using

a model-free barrier function as there is noise in fitting to the data. Nevertheless,

safety is significantly improved over using the nominal controller alone.

6.4 Conclusion

In this chapter we have discussed a few issues with model based barrier functions,

namely that barrier functions may label safe states as unsafe (Example 7), barrier

functions may cause unnecessary overrides that cause the state to get closer to the

boundary of the safe set than without an override (Example 8), for complex systems it

may be difficult to solve for a barrier function in closed form (hturn and hstraight exist

due to closed form solutions but lead to large unsafe sets, see Fig. 6.5), and it can
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Figure 6.4: Training data when fitting a model-free barrier function. (a) The val-
idation error of the model-free network, (b) The standard deviation output by the
network, and (c) How often the network outputs a value that is higher than the true
value when subtracting 3 standard deviations from the mean of the network output.
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(a) (b)

(c) (d)

Figure 6.5: A plot of the unsafe set for the four different configurations of Fig. 6.3
for model based and a model free method. The model free method shows the mean
output of a neural network as well as the case where we subtract three standard
deviations from the mean. Note that the safe set for the mean output of the model
free-barrier function is a subset of the model free unsafe sets. When subtracting
3 standard deviations from the model-free barrier function the unsafe set is larger
than when using the mean. The data for fitting the model-free barrier function was
sampled from positions (-200, -200) to (200, 200) so out-of-sample points are often
labelled as unsafe due to the higher data uncertainty of those states. (a) The second
vehicle is pointing left. (b) The second vehicle is pointing up. (c) The second vehicle
is pointing right, (d) The second vehicle is pointing down.
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(a) (b)

(c) (d)

Figure 6.6: A plot of the unsafe set for the four different configurations of Fig. 6.3
for comparing early vs later iterations of the model free barrier functions. A plot
demonstrating that the safe set grows as the algorithm proceeds. Note that on unsafe
set of the barrier function at iteration 5 is a subset of the unsafe set at iteration 1,
as predicted by Theorem 9. (a) The second vehicle is pointing left. (b) The second
vehicle is pointing up. (c) The second vehicle is pointing right, (d) The second vehicle
is pointing down.
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Table 6.3: The effect assumptions have on safety when using barrier functions.

Assumption Effect of Removing Assumption
One Safety Constraint still safe but additional assumption required (shared

evading maneuver)
Unlimited Communication still safe but overriding control value may deviate

more significantly from nominal control value
Infinite Range Sensors only some barrier functions can be used to guarantee

safety and the state may approach the safety bound-
ary more quickly than with unlimited sensing

Known Dynamics Model less invasive safety override but loss of safety guaran-
tee

be numerically infeasible to solve for a barrier function when there is a long horizon

(see equation (6.6)). To resolve these problems, we introduced model-free barrier

functions which take a data-driven approach to developing a barrier function. The

tradeoff is that because the barrier function cannot perfectly fit to the data, safety

guarantees are lost but the benefit is that the safety set may be significantly enlarged

(Fig. 6.5). Further, the optimization required to solve for a safe control input can be

done in a single forward pass through a neural network. We demonstrated the efficacy

of the approach in a fixed-wing aircraft collision avoidance scenario where, because

of the model free barrier function, the safety of the system is significantly improved

over using a nominal controller alone. We summarize this discussion in Table 6.3.
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CHAPTER 7

CONCLUSION

In this thesis we have shown how to construct a minimally invasive framework to

ensure safety while getting as much performance out of the system for arbitrarily

many agents even with limited communication and sensing. In particular, the main

contributions as as follows:

• Generalize a Method for Constructing a Barrier Function [63] - Given an evasive

maneuver and a safety function that must be non-negative at all times for the

system to be safe we construct a barrier function by forward propagating the

dynamics using the evasive maneuver and calculate the smallest value along

that trajectory to calculate a barrier function.

• Safety Composition [81] - We give sufficient conditions for multiple safety ob-

jectives to be satisfied for all future time.

• Limited Communication Safety [81] - We relax the assumption that each agent

has knowledge of the other’s control value and show that safety guarantees can

still be made.

• Safety With Limited Range Sensing [67] - We give sufficient conditions to con-

struct a barrier function in the context of limited range sensing that can be

used to ensure the system stays safe for all times.

• Model Free Safety - We discuss limitations of model based barrier functions and

introduce model free barrier functions to reduce the invasiveness of the safety

override.
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We demonstrate the contributions to barrier functions in a scenario of twenty

fixed-wing aircraft whose nominal trajectories are designed to cause a collision but

because of the proposed approach, are able to maintain safety and reach their goal

location.
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APPENDIX A

AN ANALYSIS OF THE ROLE OF δ IN THE CONTINUOUS

DIFFERENTIABILITY OF HTURN

Note that (2.12) is not necessarily differentiable when A2 = 0 since A2 results from

a square root performed in phasor addition. Thus, in this section, we consider how

to ensure A2 is continuously differentiable to ensure h in (2.12) is continuously dif-

ferentiable. Consider (2.12) in phasor form

A1 −D2
s + A2e

jΘ = A1 −D2
s + σA3e

j(θ1,0−π/2) + A3e
j(θ2,0+π/2) + δej(θ1,0−π/2)

+σA4e
j(θ1,0−π) + A4e

jθ2,0 + δej(θ1,0−π)

= A1 −D2
s + A5e

jΘ5 + A6e
jΘ6 (A.1)

where A3 = 2∆b0r, A4 = 2∆c0r, A5e
jΘ5 = σA3e

j(θ1,0−π/2)+A3e
j(θ2,0+π/2)+δej(θ1,0−π/2),

and A6e
jΘ6 = σA4e

j(θ1,0−π) + A4e
jθ2,0 + δej(θ1,0−π). Notice that Θ5 − Θ6 = π/2. In

other words, A2 is zero only when both A5 and A6 are zero. For δ = 0, A5 and A6

are both zero on the set Z1 ⊆ D where θ1,0 = θ2,0 or θ1,0 = θ2,0 + π. Although Z1 is a

zero measure set, we note that for δ > 0 that A2 is zero on a set Z2 ⊂ Z1 where Z2

is the restriction of Z1 to a specific set of positions which we now specify.

Case 1. Vehicles Start in Opposite Directions. Suppose θ1,0 = θ2,0 + π. Then A5 = 0

when δ = −(1 + σ)A3 = −2(1 + σ)∆b0r. Similarly, A6 = 0 when δ = −(1 + σ)A4 =

−2(1 + σ)∆c0r. Suppose δ is fixed. Then A2 = 0 when − δ
2(1+σ)r

= ∆b0 = p1,x0 −

p2,x0 + r(1 + σ) sin θ2,0 and − δ
2(1+σ)r

= ∆c0 = p1,y0 − p2,y0 − r(1 + σ) cos θ2,0.

Case 2. Vehicles Start in the Same Direction. Suppose θ1,0 = θ2,0. Then A5 = 0 when

δ = (1− σ)A3. Similarly, A6 = 0 when δ = (1− σ)A4. For σ = 1, let δ > 0 to ensure

A5 and A6 are not simultaneously 0. For 0 < σ < 1, a similar analysis to the previous
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case implies A2 = 0 when when − δ
2(1−σ)r = ∆b0 = p1,x0 + p2,x0 − r(1− σ) sin θ2,0 and

− δ
2(1+σ)r

= ∆c0 = p1,y0 − p2,y0 − r(1 + σ) cos θ2,0.
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APPENDIX B

AN ANALYSIS OF THE CONTINUOUS DIFFERENTIABILITY OF HSTRAIGHT

From (2.16) we expand terms to get

h(x) = inf
τ∈[0,∞)

c(x) + b(x)τ + a(x)τ 2 (B.1)

where c(x) = ∆x2+∆y2+∆z2−D2
s , b(x) = 2(∆x∆C+∆y∆S), a(x) = ∆C2+∆S2,

∆x = p1,x0 − p2,x0 , ∆y = p1,y0 − p2,y0 , ∆z = p1,z0 − p2,z0 , ∆C = v1 cos θ1 − v2 cos θ2,

∆S = v1 sin θ1 − v2 sin θ2. We also note that a(x) > 0 since

a(x) = (v1 cos θ1 − v2 cos θ2)2 + (v1 sin θ1 − v2 sin θ2)2

= v21 + v22 − 2v1v2 cos(θ1 − θ2)

= v21 + v22 − 2v1v2 + 2v1v2 − 2v1v2 cos(θ1 − θ2)

= (v1 − v2)2 + 2v1v2(1− cos(θ1 − θ2))

> 0

since v1 ̸= v2 and v1 and v2 are positive. Then τmin(x) = −b(x)/2a(x) is well defined.

Then h has a minimum at τnonneg,min = max(0, τmin(x)).

For τnonneg,min(x) > 0, h is continuously differentiable because c, b, τmin, and a are

continuously differentiable. Consider now when τnonneg,min(x) = 0. We verify that
∂h(x)
∂x

= ∂c(x)
∂x

for either the case of τmin = 0 or τmin = −b(x)/2a(x). In the first case,

h(x) = c(x) and ∂h(x)
∂x

= ∂c(x)
∂x

. In the second case, h(x) = c(x) + b(x)τmin + a(x)τ 2min
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and

∂h(x)

∂x
=
∂c(x)

∂x
+
∂b(x)

∂x
τmin(x) + b(x)

∂τmin(x)

∂x
+
∂a(x)

∂x
τmin(x) + 2a(x)τmin

∂τmin(x)

∂x

=
∂c(x)

∂x

because in this case b(x) and τmin(x) are 0.
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