
ADDING MACHINE INTELLIGENCE TO HYBRID MEMORY MANAGEMENT

A Dissertation
Presented to

The Academic Faculty

By

Thaleia Dimitra Doudali

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

August 2021

© Thaleia Dimitra Doudali 2021

ADDING MACHINE INTELLIGENCE TO HYBRID MEMORY MANAGEMENT

Thesis committee:

Professor Ada Gavrilovska, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Vivek Sarkar
School of Computer Science
Georgia Institute of Technology

Professor Alexey Tumanov
School of Computer Science
Georgia Institute of Technology

Professor Tushar Krishna
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Sudhanva Gurumurthi
Advanced Micro Devices Inc. (AMD)

Date approved: July 21, 2021

To my parents, Elsa and Dimitris

To my brothers, Giannis and Stelios

ACKNOWLEDGMENTS

First and foremost I owe my deepest gratitude to my advisor Ada Gavrilovska. She

gave me the time, resources and opportunities to grow as an independent researcher. I feel

truly lucky and privileged to have such a fantastic advisor, this is something that should

not to be taken for granted. Ada always believed in my potential and guided me through

challenging times and milestones. I admire her on how she balances life, family and career.

She was the key to me having an enjoyable PhD journey and pursuing a career in academia.

Her support in my academic job search was essential and I look forward to having her as a

life long mentor in career and life.

Next, I am very grateful to my committee members for their great support, feedback

and excitement about my work. I really appreciate the enthusiastic interest in this thesis

from Professors Tushar Krishna and Alexey Tumanov and I greatly admire their expertise

and academic achievements. Next, I am very grateful to Dr. Sudhanva Gurumurthi for his

mentorship and support in my academic job search. He was one of my mentors during a

summer internship at AMD Research, that resulted in a very well received publication and

fundamental contribution of this thesis. Last but not least, it has been a pleasure to interact

with Professor Vivek Sarkar, the current chair of the School of Computer Science (SCS). I

value his leadership and genuine interest in student well being. I am excited to see what he

will achieve alongside the Graduate Student Association of SCS, that I helped put together

and I will serve as an Alumni Outreach chair.

My time at Georgia Tech has been incredible and filled with so many memories and

experiences. I thoroughly enjoyed volunteering and organizing activities for the School of

Computer Science and interacting with the brilliant faculty and graduate students. I also

served on the executive board of the Hellenic Society at Georgia Tech, bringing together the

community of Greek students and faculty. I really liked attending conferences, presenting

posters and papers, networking and traveling all over the world. I sincerely appreciate hav-

iv

ing these opportunities, that were essential in developing an interest to pursue an academic

career.

All of these experiences would not have been the same without my incredible friends.

My wonderful labmates Carol, Harshit, Ranjan, Daniel, Misun, Jin, Jim, Tony and Pradeep

have been the greatest set of friends and collaborators, I wish them best of luck and success.

To my incredible international friends Samira, Sajad, and Saurabh, I will always remember

so many fun moments. Last but surely not least, I cherish my Greek friends Ria, Eva,

Kyveli, Alexandros, Alexandra and Thanos. Thank you for all of the laughs and love,

especially throughout the Covid-19 pandemic, I will dearly miss you and hope we soon

end up closer geographically.

Finally, this thesis is dedicated to my parents and two older brothers, for their never-

ending love, support and guidance. Cheers to 3/3 Dr. Doudalis in computer science!

This thesis has been partially funded by the Department of Energy UNITY project

under the SSIO program, the Department of Energy SICM project under the ECP program,

the NSF awards SPX-1822972 and CNS-2016701, a Facebook research award, and by

Intel’s VLAB program that provided access to persistent memory hardware.

v

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . x

List of Figures . xi

List of Acronyms . xiv

Summary . xv

Chapter 1: Introduction . 1

1.1 Statement of Problem . 2

1.2 Thesis Statement . 5

1.3 Contributions . 5

1.4 Organization . 7

Chapter 2: Motivation . 9

2.1 Background . 9

2.1.1 Emerging Hybrid Memory Platforms 9

2.1.2 Hybrid Memory Organization . 10

2.1.3 Emerging Complex Workloads . 11

2.2 Performance Gap . 13

vi

2.2.1 Hybrid Memory Management Policy 14

2.2.2 Hybrid Memory Management Frequency 15

2.3 Chapter Summary . 16

Chapter 3: Hybrid Memory Simulation and Performance Modeling 17

3.1 Memory Access Trace Collection . 17

3.2 Hybrid Memory System Simulation . 18

3.3 Page Scheduling Policies . 19

3.4 Native Hardware Validation . 19

3.5 Chapter Summary . 20

Chapter 4: Foundations for Practical Machine Learning-based Management . . 21

4.1 Overview . 21

4.2 Motivation . 23

4.3 Choosing the Machine Learning Method 26

4.4 Choosing the Patterns to Learn . 29

4.5 System Design of Kleio . 33

4.6 Evaluation . 40

4.7 Chapter Summary . 48

Chapter 5: Fine-tuning Critical Management Operations with Reuse Insights . 50

5.1 Overview . 50

5.2 Motivation . 53

5.3 Data Reuse Insights . 55

vii

5.4 System Design of Cori . 57

5.5 Evaluation . 63

5.6 Chapter Summary . 71

Chapter 6: Scaling Management Operations with Pattern Clustering 72

6.1 Overview . 72

6.2 Motivation . 74

6.3 Clustering Similar vs. Identical Patterns 77

6.4 System Design of Coeus . 86

6.5 Evaluation . 89

6.6 Chapter Summary . 94

Chapter 7: Reducing Operational Overheads with Pattern Visualization 96

7.1 Overview . 96

7.2 Visualization Insight . 98

7.3 System Design of Cronus . 100

7.4 Evaluation . 106

7.5 Discussion . 111

7.6 Chapter Summary . 114

Chapter 8: Related Work . 115

8.1 Software Solutions . 115

8.2 Hardware Solutions . 117

8.3 Machine Learning-based Solutions . 117

viii

8.4 Reducing Machine Learning Overheads 119

8.5 Image-based Solutions . 121

Chapter 9: Conclusion . 123

9.1 Summary . 123

9.2 Lessons Learned . 126

9.3 Future Directions . 133

References . 143

ix

LIST OF TABLES

2.1 Operational frequency of existing data tiering solutions. 16

3.1 Application kernels used in experiments. 18

4.1 Applications used for the evaluation of Kleio. 41

4.2 Hybrid memory technology parameters for Kleio’s evaluation. 43

5.1 Data movement frequency proposed across related works. 51

x

LIST OF FIGURES

2.1 Emerging hybrid memory systems. 10

2.2 Organization of hybrid memory systems. 11

2.3 Memory access patterns of complex workloads. 12

2.4 Performance gap due to sub-optimal data movement selection. 14

2.5 Performance gap due to sub-optimal data movement frequency selection. . . 16

4.1 Performance of existing and oracular hybrid memory management policies. 24

4.2 Layout of the deep neural network using long short term memory neurons. . 28

4.3 Memory access patterns across page scheduling periods. 31

4.4 System design of Kleio. 34

4.5 Page misplacements by history-based hybrid memory management. 36

4.6 Performance across increasing number of pages managed with machine in-
telligence. 36

4.7 System design of Kleio’s Page Selector component. 38

4.8 Evaluation of Kleio. 47

5.1 Application performance and data moved across currently proposed fre-
quencies. 54

5.2 Memory access patterns across applications. 57

xi

5.3 Relation between page reuse distance and data movement periods and its
effect on application performance. 58

5.4 System design of Cori. 60

5.5 Evaluation of Cori. 67

5.6 Validation of Cori on native hardware platform. 70

6.1 Scaling machine learning models to learn patterns across a page cluster
instead of a single page. 73

6.2 Application performance improvements across increasing number of per
page RNNs trained. 75

6.3 Workload sizes and characterization. 76

6.4 Patterns of page access hotness across scheduling periods. 77

6.5 Cluster inertia across increasing number of k clusters with k-means. 79

6.6 Similarity of page access patterns across increasing page scheduling period
durations. 82

6.7 Pattern similarity and application performance across the period duration
used in Kleio and Cori. 84

6.8 System design of Coeus. 87

6.9 System components of Coeus. 88

6.10 Evaluation of Coeus. 92

6.11 Overheads of Coeus. 93

7.1 Sequence of page identifiers prioritized for machine learning. 98

7.2 Visualization of the page priority ordering for machine learning. 99

7.3 System design of Cronus. 101

7.4 Effect of the image resolution to distinguish memory access patterns. 102

xii

7.5 Pattern detection methodology. 104

7.6 Pattern detection across workload images. 105

7.7 Page priority ordering for machine learning of Cronus vs. Kleio. 107

7.8 Application performance achieved by Cronus vs. Kleio. 108

7.9 Time to select pages between Cronus and Kleio. 109

7.10 Sensitivity of Cronus to the image resolution. 110

9.1 Summary of thesis contributions. 124

9.2 Lesson learned 1: Practical machine learning for system-level resource
management should learn data access behaviors, not management actions. . 126

9.3 Lesson learned 2: Kleio learns memory access patterns at the granularity of
a page, to enable the mix of machine learning with lightweight management
methods across pages. 128

9.4 Lesson learned 2: Cori tunes the granularity of periodic time intervals when
data is moved during hybrid memory management, to maximize application
performance and system resource efficiency. 129

9.5 Lesson learned 2: Coeus tunes the granularity at which patterns are inter-
preted by the machine learning-based hybrid memory manager. 130

9.6 Lesson learned 3: Coeus clusters together pages that share the same page-
level access patterns, bypassing the complexity of configuring and over-
heads from integrating unsupervised learning data clustering methods. . . . 131

9.7 Lesson learned 4: Cronus accelerates the time to select pages for machine
learning via an image-based approach. 132

9.8 Design challenges of online adaptive machine learning-based resource man-
agement at the system-level. 137

9.9 Future use of computer vision methods for data access pattern recognition,
classification and prediction as part of system-level resource management. . 140

9.10 Data access patterns change across the data storage hierarchy, as data ac-
cesses get filtered across the storage layers. 141

xiii

LIST OF ACRONYMS

APU Accelerated Processing Unit

CXL Compute Express Link

DNN Deep Neural Network

DRAM Dynamic Random Access Memory

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HPC High Performance Computing

LRU Least Recently Used

LSTM Long Short Term Memory

MI Machine Intelligence

ML Machine Learning

NUMA Non Uniform Memory Access

NVM Non Volatile Memory

PMEM Persistent Memory

RNN Recurrent Neural Network

TPU Tensor Processing Unit

xiv

SUMMARY

Computing platforms increasingly incorporate heterogeneous memory hardware tech-

nologies, as a way to scale application performance, memory capacities and achieve cost

effectiveness. However, this heterogeneity, along with the greater irregularity in the behav-

ior of emerging workloads, render existing hybrid memory management approaches inef-

fective, calling for more intelligent methods. To this end, this thesis reveals new insights,

develops novel methods and contributes system-level mechanisms towards the practical

integration of machine learning into hybrid memory management, boosting application

performance and system resource efficiency. The specific contributions of this thesis are as

follows.

First, this thesis builds Kleio, a hybrid memory page scheduler with machine intelli-

gence. Kleio deploys Recurrent Neural Networks to learn memory access patterns at a

page granularity and improve upon the selection of dynamic page migrations across the

memory hardware components. Kleio cleverly focuses the machine learning on the page

subset whose timely movement will reveal most application performance improvement,

while preserving history-based lightweight management for the rest of the pages. In this

way, Kleio bridges on average 80% of the relative existing performance gap, while laying

the grounds for practical machine intelligent data management with manageable learning

overheads.

Second, this thesis contributes Cori, a system-level solution for tuning the operational

frequency of periodic page schedulers for hybrid memories. Cori synthesizes information

on data reuse to properly identify the data movement frequencies to be tested, reducing

by 5× the number of tuning trials compared to existing empirical or insight-less tuning ap-

proaches. In this way, Cori delivers application performance levels within 3% from the case

of optimally selected frequency, eliminating the 10%-100% performance gap created when

using frequencies currently adopted by related works. Such improvements are complimen-

xv

tary to the use of machine learning and further boost its effect on application performance.

Third, this thesis contributes Coeus, a page grouping mechanism for hybrid memory

page schedulers with machine intelligence, such as Kleio. Coeus leverages the data reuse

insights revealed by Cori to fine-tune the granularity at which patterns are interpreted by the

page scheduler, increasing the pattern similarity across pages. Then, Coeus groups together

the pages that share the same access behavior, enabling the training of a single Recurrent

Neural Network per page cluster. As a result, Coeus reduces by almost 3× the associated

learning overheads compared to Kleio. In addition, Coeus achieves 3× higher application

performance, by the combined effects of applying machine learning to more pages and by

performing management operations at a fine-tuned granularity.

Finally, this thesis contributes Cronus, an image-based page selector for hybrid mem-

ory page schedulers with machine intelligence, such as Kleio. Cronus uses visualization

to accelerate the process of selecting which page patterns should be managed with ma-

chine learning. The visualization reveals spatial and temporal correlations across pages,

that Kleio cannot capture during its page selection process. Instead, Kleio uses elaborate

performance estimation models that come with non trivial operational overheads. Cronus

builds a lightweight visualization pipeline that detects page access patterns for machine

learning-based management. The quality of the selected pages is comparable to Kleio’s

and delivers similar levels of application performance, in return for 75× reduction in the

selection time. Cronus lays the foundations for future use of visualization and computer

vision methods in memory management, such as image-based memory access pattern clas-

sification, recognition and prediction.

xvi

CHAPTER 1

INTRODUCTION

Heterogeneous hardware emerged to address the slowdown of Moore’s Law and the expo-

nentially growing demand for compute and storage resources by popular big data analytics,

applications of artificial intelligence and scientific simulations. Regarding the memory

substrate, non volatile memory technologies of massive capacity capabilities emerged to

enable fast data retrieval and storage for data-intensive workloads, in response to the scal-

ing limitations and skyrocketing cost of the Dynamic Random Access Memory (DRAM).

For instance, Intel’s Optane DC persistent memory [1] provides terabytes of memory at

1/3 of DRAM’s cost [2]. Intel offsets the at least 3× slower access speeds of persistent

memory [3] by packaging together gigabytes of DRAM, which account for as little as 6%

of the platform overall memory capacity, thus creating a hybrid memory environment.

The efficient resource management of hybrid memory, via proper data tiering, allows

for the desired performance levels of the aforementioned classes of applications. To achieve

this, well established approaches in hybrid memory management build the necessary mech-

anisms to maximize the utility of the fastest available memory component via correspond-

ing dynamic movement of frequently accessed data. The task to identify which data is

most appropriate to move and at what times, is particularly challenging, depending on the

available data access information and performance estimates. Current solutions span the

software stack from algorithm- [4, 5], profiling- [6, 7], library- [8], runtime- [9, 10, 11] to

operating system-level [12, 13, 14, 15, 8, 16] solutions. Custom APIs [9, 6, 17, 8] and spe-

cialized hardware [13, 12, 18, 19, 15, 20] are frequently proposed as part of the solutions

across the software stack, to collect the necessary data access information and deliver the

desired performance levels.

However, the ever increasing complexity of emerging workloads and of the system pa-

1

rameter configuration space, breaks the effectiveness of current system-level and application-

agnostic solutions. More specifically, the use of current heuristics, that are fine-tuned for

conventional workloads, is not effective for analytics with more intricate or random ac-

cesses. In addition, the effectiveness of heavily used empirical configurations is vulnerable

to such emerging workloads, due to the impermissible overheads of fine-tuning all possible

combinations of parameters and scenarios. Therefore, existing approaches are not robust

across classes of emerging workloads and configurations of the heterogeneous hardware.

This results in substantial loss in performance and resource efficiency of the heterogeneous

memory hardware.

The increased complexity and resulting performance gap call for more intelligent and

insight-based solutions compared to existing human-derived heuristics and settings. Yet,

system-level solutions need to be lightweight so as to be commercially adopted and to

maximize performance with minimal software-level overheads. Although the effectiveness

of machine intelligence, that is machine learning methods, in addressing complexity is very

appealing for the purpose of hybrid memory management, its system-level adoption needs

to be sophisticated, due to the non-trivial learning overheads that are associated with the

massive memory footprints of modern data analytics. This raises a number of questions:

How to practically integrate machine learning in the system-level resource management?

At which part of the memory management software stack? Which machine learning method

to use and what exactly to predict? How to amortize the training costs given the massive

application data sizes? Is machine learning sufficient to maximize application performance

and system resource efficiency? We next discuss, in more detail, the need for machine

intelligence and the challenges introduced by its system-level integration.

1.1 Statement of Problem

Emerging complex application classes break the effectiveness of conventional hybrid

memory management approaches. The growing adoption of machine learning methods

2

across application domains creates a new class of workloads that require adequate system-

level support [21, 22, 23, 24, 25, 26]. Similarly, scientific simulations now capture even

more complex phenomena and relations [27]. These applications and methods have vastly

more intricate execution phases and access patterns, than traditional analytics. Yet, hybrid

memory management approaches have not evolved to address this newfound complexity in

data access behaviors, and continue using heuristics and approaches that are only proven to

work well across classes of conventional workloads.

In more detail, the use of access history information to predict future access behaviors

has been effective for traditional classes of workloads with sequential, strided and regular

access patterns. However, it generates vastly inaccurate predictions when reacting to sud-

den changes in execution phases or to completely irregular behavior, which is predominant

in emerging workloads. This results in an inefficient selection of data to be moved across

the memory components, due to mispredictions of upcoming patterns. In consequence,

application performance degrades due to the suboptimal data tiering, as well as the waste-

ful resource utilization that delivers such data migrations. The created performance gap is

substantial and requires novel access pattern prediction mechanisms enriched with machine

intelligence to realize the full potential of the heterogeneous hardware.

The increased complexity in the parameter configuration space hinders the fine-tuning

of critical operational parameters. The large configuration space of heterogeneous hard-

ware, the intricate resource requirements of emerging workloads and the explosion of

solution-level parameters, vastly complicate the configuration space. This leads to the

empirical setting of certain knobs, in an effort to minimize the associated tuning over-

heads. For instance, the frequency of data movements over hybrid memory has always

been empirically set at certain fixed values, that surprisingly varies substantially across

related works [12, 14, 28, 13, 15]. In consequence, such settings are not robust to new

workloads classes or scenarios that were not included in their experimental evaluation.

3

However, the importance of this parameter is enormous since its operation is on the critical

path of hybrid memory management, where a misconfigured value can lead to tremendous

aggregate movement overheads. An insight-based tuning of this important parameter that

enables minimal tuning effort, will be more effective and practical than current insight-less

settings, and can deliver the full benefits from the heterogeneous hardware.

Performance improvements are currently feasible either with very specialized solu-

tions or in return for significant operational overheads. To address the new require-

ments and behaviors of emerging workloads, researchers develop solutions with more in-

tricate performance models [10, 29] and heavy profiling [6] that increase the management

decision overhead, rely on new hardware support [13, 12, 29, 19], or resort in application-

guided [6, 8] or runtime-specific [9, 10, 11] solutions. Yet, commercial system-level sup-

port for emerging hardware chooses practicality over robustness and effectiveness across

applications. System-level solutions need to be lightweight and responsive to adhere to

decision time guarantees and to seamlessly cooperate with other system-level components.

For instance, to offer support for new technologies such as Intel Optane DC PMEM [1],

Linux simply extended its well established and lightweight autonuma component, that

was built for Non Uniform Memory Access (NUMA) platforms, to enable identification

and migration of hot and cold pages across DRAM and persistent memory [30].

Therefore, it is essential to preserve the practicality guarantee, while delivering more

intelligent hybrid memory management to boost application performance and system re-

source efficiency. Although machine learning can alleviate the human effort in this complex

management space, its insight-less adoption in the decision pipeline comes with unaccept-

able learning overheads. This is inherent to the enormous problem size of system-level

hybrid memory management, due to the massive memory footprints of emerging work-

loads executing over hybrid memory. Therefore, the use of machine learning needs to

be judicious and sophisticated, minimizing not only the training and learning but also the

4

operational overheads of its system-level integration.

1.2 Thesis Statement

To realize practical resource management methods that use machine intelligence to max-

imize the performance benefits from and efficiency of emerging heterogeneous memory

hardware, new solutions are needed that extend existing lightweight system-level tech-

niques, and augment them with machine learning via new mechanisms for extracting in-

sights about applications’ memory access behaviors.

1.3 Contributions

In support of this statement, this thesis makes the following contributions.

Foundations for practical machine learning-based hybrid memory management. To

address the inefficiency of existing approaches to accurately predict the complex access be-

havior of emerging workloads, this thesis introduces machine intelligence into the hybrid

memory management. It proposes Kleio, a hybrid memory page scheduler with machine

intelligence [31]. Kleio deploys Recurrent Neural Networks (RNNs) to learn memory ac-

cess patterns, that existing history-based solutions fail to accurately predict. Kleio does so

at the granularity of individual pages, to learn the pattern of their access frequency across

periods of time. The novelty in the design of Kleio comes from the selection of a small

page subset, whose machine intelligent management reveals most of the application per-

formance improvement, while using existing history-based management for majority of the

pages. The resulting hybrid management approach lays the ground for the practical inte-

gration of machine intelligence in the management of complex systems with heterogeneous

memories. Kleio’s impact is extremely promising, since it bridges on average 80% and up

to 95% of the existing performance gap.

Fine-tuning critical hybrid memory management operations with data reuse insights.

5

To address the inefficiency and inconsistency of empirically configured data movement

frequencies proposed across related works and for different classes of application, this the-

sis builds a tuning solution based on insights that can be captured at the system level. In

more detail, it proposes Cori, a system-level solution for tuning the operational frequency

of periodic page schedulers for hybrid memories [32]. The novelty of Cori comes from

observations on data reuse times and their alignment with the data movement frequency.

Cori synthesizes information on data reuse to properly identify the data movement fre-

quencies to be tested, reducing by 5× the number of tuning trials compared to existing

empirical or insight-less tuning approaches, and realizing almost maximum possible ap-

plication performance levels, within only a trivial margin of 3% on average from the case

of optimally selected frequency. Thus, Cori enables the proper fine-tuning that enables

maximum performance improvements that are suppplementary to the ones deriving from

machine intelligent management. Importantly, Cori is effective across application classes,

platform characteristics, and system-level memory management policies.

Scaling machine learning-based hybrid memory management with pattern cluster-

ing. To address the significant training overheads when introducing machine learning into

hybrid memory management, due to the huge memory footprints of target workloads, this

thesis builds a clustering mechanism to further reduce the associated learning overheads.

More specificaly, it builds Coeus, a page grouping mechanism that enables machine intel-

ligent page schedulers to train, in parallel, different models per large page clusters. We

identify that the resource and time requirements for training machine learning models vary

up to 9× across workload classes and input sizes. To reduce these requirements, Coeus

leverages the data reuse insights revealed by Cori to fine-tune the granularity at which pat-

terns are interpreted by the page scheduler, increasing the pattern similarity across pages.

Then, Coeus groups together the pages that share the same access behavior, enabling the

training of a single Recurrent Neural Network per page cluster. As a result, Coeus reduces

6

by almost 3× the associated learning overheads compared to Kleio. In addition, Coeus

achieves 3× higher application performance, by the combined effects of applying machine

learning to more pages and by performing management operations at a fine-tuned granu-

larity.

Reducing the operational overheads of machine learning-based hybrid memory man-

agement with pattern visualization. To address the non trivial operational overheads

when selecting the pages whose machine learning-based management would benefit ap-

plication performance, this thesis proposes a lightweight approach based on analysis of

visualized representations of memory access traces. To this end, this thesis contributes

Cronus, an image-based page selector for hybrid memory page schedulers with machine

intelligence, such as Kleio. Cronus uses visualization to accelerate the process of selecting

which page patterns should be managed with machine learning. The visualization reveals

spatial and temporal correlations across pages, that Kleio fails to capture since it focuses the

analysis on a per-page basis. Instead, Kleio uses elaborate performance estimate models

that come with non trivial operational overheads. Cronus builds a lightweight visualiza-

tion pipeline that detects page access patterns for machine learning-based management.

The quality of the selected pages is comparable to Kleio’s and delivers similar levels of

application performance, in return for 75× reduction in the selection time. Cronus lays

the foundations for future use of visualization and computer vision methods in memory

management, such as image-based memory access pattern classification, recognition and

prediction.

1.4 Organization

The remainder of this thesis document is organized as follows. Chapter 2 includes a back-

ground description of established methods and current challenges in hybrid memory man-

agement. In addition, the chapter highlights the gap in application performance left by

7

existing management solutions, that this thesis identifies and which motivates the thesis

contributions.

Chapter 3 describes the experimental methodology that majority of the thesis follows.

The thesis contributes a lightweight hybrid memory simulation and performance estimation

model that is validated over a native hardware platform.

Chapter 4 describes which machine learning method to use and at which part of the

hybrid memory management stack to be integrated. The chapter presents and evaluates

Kleio, a system-level machine learning-based solution to manage hybrid memory.

Chapter 5 analyzes the effects on performance when managing hybrid memory at fre-

quencies higher and lower than the application data reuse times. Then, the chapter describes

how to incorporate the revealed insights into a system-level frequency tuning solution, Cori,

that maximizes application performance.

Chapter 6 explores and identifies the limited practically and effectiveness of using well-

established data clustering methods to reduce the learning overheads of machine intelligent

hybrid memory managers. Instead, it leverages the data reuse insights revealed earlier in

the thesis and presents Coeus, a lightweight page grouping mechanism to identify page

patterns for machine learning.

Chapter 7 leverages visualization to better understand the correlations across pages

whose machine learning-based management benefits performance. The chapter describes

how to integrate visualization and computer vision techniques to identify pages for machine

learning, presents and evaluates the proposed solution Cronus.

Chapter 8 provides a brief survey of related work, and Chapter 9 summarizes the con-

tributions and lessons learned in this thesis. The thesis concludes with some thoughts on

future directions, with respect to the practical use of machine learning and the integration

of computer vision techniques in system-level resource management.

8

CHAPTER 2

MOTIVATION

This chapter provides background information on emerging heterogeneous hardware tech-

nologies, their commercial availability and deployment in datacenter and exascale comput-

ing environments. In addition, it highlights the increased complexity in the configuration

of the hybrid memory in current systems and the data access behaviors of emerging work-

loads. Finally, this chapter includes experimental results that motivate the need for more

intelligent hybrid memory management solutions, due to the significant gap in application

performance left by existing system approaches and configurations.

2.1 Background

2.1.1 Emerging Hybrid Memory Platforms

In the current post-Moore era of computing, the traditional model of homogeneous DRAM-

only memory systems is replaced with heterogeneous hardware to massively scale the main

memory capacity under permissible system cost. Figure 2.1 summarizes the recent trends in

hybrid memory configurations that include emerging hardware technologies and resource

disaggregation techniques. New hardware technologies introduce different trade-offs of

cost, speed, capacity and capabilities such as programmability and data persistence. For

instance, the Non Volatile Memory (NVM) hardware released by Intel, that is the Optane

DC Persistent Memory (PMEM) [1] provides terabytes of persistent data storage, at around

3× times cheaper [2] than DRAM, in return for at least 3× slower access speed [3, 33].

Yet, with appropriate data management, the 375 gigabytes of available DRAM, packaged

together with 6 terabytes of PMEM, are sufficient to deliver DRAM-like levels of appli-

cation performance [3]. Similarly, High Bandwidth Memory (HBM) deliver 5× - 10×

9

FPGA

DRAMHBM PMEM
DRAM
PMEM

High Speed
Interconnect

DRAM

PMEMCPU

DRAM

Traditional NUMA
DRAM-only Systems

DRAM

CPU

Emerging Hybrid Memory Platforms

Rack-attached
Memory PoolPer Node Memory1.5x slower

3x slower
10x slower

Figure 2.1: Heterogeneous memory hardware and memory disaggregation provide massive
memory capacities in return for bigger disparity in the access speeds and configuration of
the memory substrate, compared to traditional homogeneous systems.

more bandwidth compared to DRAM technologies [34]. It is widely used in the TOP500

Supercomputers at capacity of tens of gigabytes per node, either standalone [35] or to-

gether with DRAM [36]. Finally, well established techniques of resource disaggregation

[37, 38], now aggregate both volatile and non volatile node-local memory resources into

a massive shared pool of remotely accessible hybrid memory, and deliver high-speed data

transfers with novel interconnection fabrics and standards like Gen-Z[39] and Compute

Express Link (CXL)[40]. With these different hardware technologies we transition into the

exascale era of compute with platforms that exhibit extreme heterogeneity, since they can

include deep and wide hierarchies of hybrid memory and storage components, accelerator-

near memories, new interconnection fabrics and resource disaggregation. Managing intel-

ligently such complex computing platforms is most challenging and necessary than ever

before across high performance computing [41, 42] and datacenter environments [43, 44,

45].

2.1.2 Hybrid Memory Organization

The increased number of distinct memory technologies in the main memory substrate adds

new dimensions in the complexity of their configuration. Each hybrid memory unit may ex-

hibit different properties in terms of speed, capacity, programmability or other parameters,

complicating the decision regarding their optimal configuration. In addition, the available

10

DRAM

PMEM DRAM PMEM

Cache Organization Flat Organization

Hardware-managed
data prefetching

Software-managed
data tiering

Figure 2.2: The cache organization of hybrid memory enables hardware-managed data
prefetching techniques from PMEM to DRAM. The flat organization of hybrid memory
allows for software-based control of the data tiering across DRAM and PMEM.

memory components can be organized in two primary ways or in a combination thereof.

As depicted in Figure 2.2, for the example case of two memory tiers, there is the vertical

and horizontal hybrid memory organization. In the vertical (otherwise cache) organization,

one memory unit acts as a cache for the other and is managed by the hardware. In the hor-

izontal (otherwise flat) organization, all memories ‘lay flat’ and are managed by software

– the operating system or applications themselves. For instance, these correspond to the

Memory and App-direct modes in Intel’s Optane DC PMEM platform [1]. Each organiza-

tional mode introduces different trade-offs with respect to system resource efficiency and

application performance. For instance, recent work has shown that the cache organization

improves performance of graph applications [46]. In contrast, the flat organization allows

for lower energy cost and higher bandwidth use [47, 33], and a number of hardware and

software techniques have recently been proposed to further improve the associated man-

agement overheads [13, 12, 18, 19, 15]. This thesis is primarily focused on this ‘flat mode’

configuration of heterogeneous memories, that is explicitly managed by the systems soft-

ware.

2.1.3 Emerging Complex Workloads

New classes of popular workloads include machine learning methods with complex matrix

operations, massive graphs of random connectivity and scientific simulations that capture

irregular behaviors and phenomena. Figure 2.3 captures examples of such access patterns

11

Figure 2.3: Memory access patterns of emerging workloads with increasing complexity in
data access behavior. From sequential strides (backprop), triangular traversals (lud),
sparse tensors (cpd) to iterations of random accesses (pennant).

in increasing order of complexity. New or extended benchmark suites [21, 22, 23, 24, 27,

48] introduce such emerging workloads and together with well established suites [25, 26,

49, 50] drastically augment the application classes that require robust support for high per-

formance over heterogeneous hardware in particular. In particular, aritificial intelligence is

deployed in so many domains and use cases, that new systems are being design to specifi-

cally optimize such workloads and pipelines [51, 52].

Emerging workloads add complexity to the hybrid memory management because it is

harder to predict the randomness, frequent phase changes and other irregularities in their

access behaviors, compared to conventional workloads. The effectiveness of hybrid mem-

ory tiering relies on accurately forseeing the upcoming trends in access patterns, so as to

timely migrate future frequently accessed data in the fastest memory unit. This is partic-

ularly challenging given the use of past access history, that is readily available, since it is

not always sufficient to predict new patterns or old trends outside the retained information.

This results in a selection of data movements that do not optimize the data tiering, reduce

the utility of the fastest memory and waste resources with non useful migrations. This

translates in degradation of performance and efficiency. Therefore, such emerging classes

of applications require hybrid memory management approaches with more predictive ca-

pabilities and fine-grained access pattern predictions.

12

2.2 Performance Gap

The previous section describes all the factors that increase the complexity of hybrid mem-

ory management, from the hardware configurations all the way to emerging application

domains. In this section, we summarize current solutions used in commercial systems and

capture the extent to which they are effective. We reveal a significant gap in performance

that can be bridged via more intelligent and insightful management decisions.

Overview of System-level Hybrid Memory Management. Well established operating

system-level approaches for hybrid memory management, include a page scheduler com-

ponent, that periodically monitors page access behavior and selects pages to migrate across

the memory units. The selection of which pages to move is based upon a certain page

scheduling policy, that aims to dynamically adjust the page placement across hybrid mem-

ory adapting to changes in the application’s memory access patterns, to boost application

performance and system resource efficiency.

Current state-of-the-art solutions leverage existing NUMA-based page migration sup-

port [12, 14, 15, 20, 28], or appropriately extend NUMA-based data balancing policies [16,

53]. The policies proposed vary depending on the available page access information and

custom thresholds and heuristics that they use. The common factor is to move frequently

accessed (hot) pages to faster memory technologies replacing cold ones, to accelerate the

run time a workload spends in accessing memory. A policy is effective when it uses robust

models to predict how hot or cold pages will be in the future, given a window of observed

past access history. The frequency at which pages are monitored and moved is most com-

monly determined empirically, such that it offsets the time and resource cost of moving

pages with the performance benefit from the improved page placement.

13

2.2.1 Hybrid Memory Management Policy

To motivate the need for improved hybrid memory management policies, we capture the

gap in performance left by current history-based page scheduling policies, since the use of

purely historical information is not robust towards sudden changes or randomness in page

access patterns. We therefore assume an oracle page scheduler, that has a-priori knowledge

of the workload’s memory accesses, thus will always make an accurate page hotness pre-

diction. Figure 2.4 shows the reduction in speedup of a history page scheduler, compared to

an oracle one as a baseline, across a variety of hybrid memory capacity ratio configurations.

We observe up to 50% performance degradation, compared to oracle page schedulers, for

configurations that correspond to recent platforms, such as Intel’s Optane with 1/16 PMEM

to DRAM. This performance gap is due to the limited capabilities of accurately predicting

future behaviors with purely historical information, that translates to a poor selection of

page migrations by the page scheduler, wastes resources, reduces the efficiency of data

tiering and ultimately hurts application performance. More detailed analysis follows in

Section 4.2. Therefore, there is an opportunity to bridge this performance gap by building

more robust prediction models that will forecast page access hotness with higher accuracy,

resulting in page migrations that benefit performance.

Figure 2.4: Performance gap due to sub-optimal data movement selection as a result of
history-based access pattern predictions.

14

2.2.2 Hybrid Memory Management Frequency

Another factor that reveals a missed opportunity in the performance benefits from hybrid

memory corresponds to current approaches in selecting the frequency at which page sched-

ulers operate. The growing size of the configuration space of heterogeneous hardware and

the substantial overheads of properly setting each parameter, leads to empirical tuning of

the operational frequency of periodic hybrid memory management solutions. Suprisingly,

the values selected by related works, as summarized in Table 2.1, vary within orders of

magnitude, hinting towards potential ineffectiveness of these values for application classes

and configurations not included in their tuning process.

To establish the effect on performance, we compare workload runtime when the page

scheduler is configured with the proposed values versus when operating at the ‘best’ fre-

quency that maximizes performance, as determined after extensive experimentation. To

distinguish the effect that the page scheduling policy has on performance, we assume two

policies similar to the ones described in the previous section. A reactive page scheduler

operates similarly to a history one, and a predictive scheduler to the previously described

oracle, as we further explain in Section 3.3.

Figure 2.5 reveals 10% - 80% performance degradation compared to the performance

achievable with a best-case frequency, on average, across application domains and page

scheduling policies. In Section 5.2 we also depict the effect on resource efficiency via the

corresponding amount of data moved. Overall, we observe that no single proposed value

works best across all applications and page schedulers. Therefore, there is an opportunity to

close this performance gap with an insight-based tuning approach, rather than insight-less

empirical procedures.

15

Table 2.1: Operational frequency of existing data tiering solutions.

Solution Period Duration
Thermostat [12] 10 sec

Nimble [14] 5 sec
Ingens [28] 2 sec
HMA [13] 1 sec

Hetero-OS [15] 0.1 sec

Figure 2.5: Performance gap due to sub-optimal data movement frequency selection as a
result of empirical tuning of predictive and reactive (history-based) page schedulers.

2.3 Chapter Summary

This chapter summarized the latest hardware technologies, system-level solutions and chal-

lenges in hybrid memory management. In particular, this thesis identifies a significant gap

in application performance left by current solutions that have limited capabilities to predict

memory access behaviors and neglect to fine-tune critical operational parameters. The re-

mainder of this thesis shows how to close this performance gap by building lightweight,

practical and effective system components.

16

CHAPTER 3

HYBRID MEMORY SIMULATION AND PERFORMANCE MODELING

This chapter summarizes the experimental methodology followed throughout the thesis.

To allow for lightweight exploration of the effect of applying machine learning in system-

level hybrid memory management, this thesis contributes an open-source simulation envi-

ronment 1. In addition, we provide a public dataset 2 that includes memory access traces

of benchmarks across application domains. Next, we describe in detail the simulation in-

frastructure and provide evidence on its performance estimate validation against workload

execution over a native hardware hybrid memory platform.

3.1 Memory Access Trace Collection

Table 3.1 summarizes the applications that we selected for experimental evaluation from

the Rodinia [26], Coral-2 [27] and ParTI! [23] benchmark suites. The selected benchmarks

and mini-apps cover a wide range of application domains and memory access patterns. We

use Intel’s Pin [54] dynamic binary instrumentation tool to capture the memory address of

the last level cache misses out of a simulated three level data cache hierarchy. In order to

allow for reasonable trace sizes and analysis times we simulate a cache hierarchy of smaller

but proportional capacity ratio to a native hybrid memory platform with Intel Optane DC

Persistent Memory Modules (PMEM) [1], which contains 375 GB of DRAM and 6 TB of

persistent memory. Then we fix the application data inputs such that we observe similar

last level cache miss rate to application execution in the native hardware platform.

1https://github.com/GTkernel/cori-sim.git
2https://github.com/GTkernel/cori-sim/tree/master/traces

17

https://github.com/GTkernel/cori-sim.git
https://github.com/GTkernel/cori-sim/tree/master/traces

Table 3.1: Application kernels used in experiments.

Application Kernel Suite Domain
Back Propagation backprop Rodinia Machine Learning

Kmeans kmeans Rodinia Machine Learning
HotSpot hotspot Rodinia Physics Simulation

LU Decomposition lud Rodinia Linear Algebra
Breadth-First bfs Rodinia Graph Algorithms

B+Tree bptree Rodinia Databases
Pennant pennant Coral-2 Hydrodynamics

Quicksilver quicksilver Coral-2 Monte-Carlo
CP Decomposition cpd ParTI! Sparse Tensors

3.2 Hybrid Memory System Simulation

We develop a Python-based simulation environment that allows fast trace-based analysis

similar to [13]. In particular, we assume a flat organization of fast (e.g., DRAM) and slow

(e.g., PMEM) memory, similar to the App Direct mode configuration of the Intel Optane

platform. Following the observed PMEM access speeds [3] we set a 1:3 latency and 1:0.37

bandwidth ratio between the fast and slow memory. We assume that the overall capacity of

the memory system is equal to an application’s memory footprint, split into 20% DRAM

and 80% PMEM across all experiments. Since we are not using cycle-accurate simulation,

we assume that a period is the time duration when a fixed number of memory requests are

issued, e.g., 1,000 requests per period. To estimate the runtime we aggregate the access

latency of the memory requests for their coresponding memory allocation across periods.

In addition, we account for any limited bandwidth availability, by injecting appropriate

delays given the number of memory requests serviced over a window of time. Finally,

we add constant delays for every page migration and start of a period to account for the

overhead of the page scheduler itself, using the proposed values in [13, 18].

18

3.3 Page Scheduling Policies

We extend the Python-based simulation with a page scheduler that periodically aggregates

per page access counts from the collected access trace and migrates pages between fast

and slow memory. The initial page allocation is done in an interleaved manner across

memories, which is typical for NUMA systems. Every period the page scheduler identifies

the pages that are frequently accessed (hot) and moves to fast memory any hot pages that

reside in slow memory, replacing any Least Recently Used (LRU) pages. The number of

page migrations per period is capped by the available fast memory capacity, since hot and

LRU pages are swapped across hybrid memory. These page swaps happen asynchronously,

assuming DMA support, and sequentially in order of (hot, LRU) page pairs.

We refer to this type of page scheduler, that makes a selection of page migrations using

access history, as a history / reactive page scheduler, since it ‘reacts’ to the changes in

the memory access pattern, as also done in [12, 14, 28, 13, 20, 15]. We also simulate an

oracle / predictive page scheduler, that predicts memory access patterns, by having a-priori

knowledge of the access pattern, described as the oracular baseline in [13]. The reactive

page scheduler is configured to act upon a single period of past access history, and similarly

the predictive page scheduler to make an access pattern prediction for the upcoming period.

3.4 Native Hardware Validation

We validate the accuracy of the application performance estimate that the aforementioned

trace-based simulation generates, against workload execution over a native hybrid memory

hardware platform. Next we summarize the internal functionality of the validation system

and the experimental evidence is provided in the evaluation part of Chapter 5.

We have access to a server with Intel Optane DC Persistent Memory Modules (PMEM),

which we configure in App Direct mode. The machine contains 375 GB of DRAM and 6

19

TB of PMEM. More specifically, we make use of a page migration module3 built for Linux

kernel version 5.4 that attaches to a target process and periodically selects 4 KB pages to

move between DRAM and PMEM. Every period, the module identifies page accesses using

the available OS-level information, as also done in [20, 15]. In more detail, the module de-

termines which pages were accessed by scanning the target’s page table entries and record-

ing whether or not each accessed bit was set during that period. All accessed bits are then

cleared so that they can be tested again during the next scan. To estimate the page hotness,

the module calculates the exponential moving average (with a certain smoothing factor) of

the page’s accessed bit history and compare it with a hotness threshold that classifies a page

as hot or cold, as also done in [28]. Then, utilizing the move pages() function from the

kernel’s NUMA-based migration API, it asynchronously moves hot pages to DRAM and

cold pages to PMEM. The kernel module dynamically adjusts the page migration cutoff, di-

viding the process memory footprint across DRAM and PMEM at a certain capacity ratio,

that is 20% DRAM and 80% PMEM.

3.5 Chapter Summary

This chapter described the software and methodology that this thesis develops to design

and evaluate its system-level contributions. The thesis builds a lightweight simulation en-

vironment that configures hybrid memory platform characteristics, captures system-level

policies for data management and produces application runtime estimations. The accuracy

of these estimates is validated against workload execution over a native hardware hybrid

memory platform.

3https://github.com/GTkernel/x86-Linux-Page-Scheduler.git

20

CHAPTER 4

FOUNDATIONS FOR PRACTICAL MACHINE LEARNING-BASED

MANAGEMENT

The previous chapters describe how existing hybrid memory management systems fail to

maximize application performance and system resource efficiency, creating a significant

gap in the attainable performance. This is due to the limited effectiveness of current ap-

proaches against the increased complexity of emerging workloads and platform configura-

tions. To this end, this chapter introduces a Machine Learning (ML)-based hybrid memory

management system, Kleio1 [31], that improves performance via robust memory access

pattern predictions. More importantly, this chapter proposes design foundations that lay

the grounds toward the practical integration of machine learning inside system-level re-

source management. The chapter focuses on exploring which machine learning method is

most practical to use, at what part of the hybrid memory management software stack and

how to enable high prediction accuracy in return for permissible training overheads, due to

the massive data sizes of modern applications.

4.1 Overview

As we observed in Chapter 2, purely history-based page scheduling methods are limited in

the performance opportunities they can provide to applications running on hybrid memory

systems. Instead, they must be augmented with more intelligent, predictive methods.

Why a solution with Machine Intelligence (MI)?

As we will further show in Section 4.2, the immediately observed memory access behavior

is insufficient in capturing the necessary information that predicts future behavior for mak-

1The name is inspired by ancient Greek mythology, where Kleio is the muse of history, daughter of
Mnemosyne, goddess of memory.

21

ing clever placement decisions. Yet, a larger window of accesses should allow the ability

to capture the historic information (long term access), and also leverage the recent accesses

(short term access) for effective page placement. However, understanding how to couple

information from a window of past access history is not a trivial modeling process. For

this reason we explore the use of advanced machine learning models, that provide ready-

to-use mechanisms to handle temporal data capturing both short and long term page access

patterns. Such techniques are reinforcement learning and deep neural networks (recurrent

neural / long short term memory networks), which are currently widely explored to solve

various systems problems, as we summarize in Chapter 8.

Overview of Contributions

The primary goal is to use machine intelligence to build a hybrid memory page scheduler

that can bridge the performance gap between the current state-of-the-art history-based and

an oracular page scheduler. We build a new page scheduler – Kleio – and we answer im-

portant questions concerning how to achieve an effective solution (i.e., one that maximizes

the extent to which the performance gap is bridged), and a practical solution (i.e., one that

can be realized while expending only a controlled or limited amount of resources on the

typically compute-intensive machine intelligence processing tasks).

The specific contributions are the following:

• Gap in current solutions: We show the significant room for application performance

improvement that is feasible in hybrid memory systems via clever data placement.

This is due to the fact that predominantly used solutions, which look at recent mem-

ory access activity, are not computationally robust so as to capture complex page

access patterns (Section 4.2).

• MI-based page scheduling: We identify Recurrent Neural Networks (RNNs) as an

effective and practical technique for the page scheduling problem (Section 4.3). We

22

show that RNN training on a per application page granularity is highly accurate and

leads to significant performance improvements even when applied to a subset of

pages. While not exhaustively exploring all possible Deep Neural Network (DNN)

algorithms, we present insights on the important trade-offs that must be considered

when selecting an MI approach: its computational and space complexity and its ap-

plicability for the feature set which describes the page scheduling problem (Sec-

tion 4.4).

• Kleio: We design Kleio, a practical, hybrid MI-based page scheduler. Kleio is hy-

brid because it combines existing history-based page scheduling, when such more

lightweight methods are effective, with RNN-based machine intelligence, when history-

based methods fail. Kleio is practical because it incorporates a new method for iden-

tifying pages where MI-based scheduling leads to most significant performance boost

and prioritizing the use of system resources for these pages (Section 4.5).

• Performance improvements: Using a range of workloads from popular suites, we

show that Kleio can bridge on average 80% of the performance gap, that exists be-

tween the history-based page scheduling and oracular knowledge of the access pat-

tern of a small set of cleverly selected application pages (Section 4.6).

4.2 Motivation

In this section, we present more detailed graphs that capture the performance of existing

history-based versus oracular page schedulers for hybrid memories, as we summarized in

Chapter 2. We show the performance that is achieved by such page schedulers across

different capacity ratios of hybrid memory platforms. Recently emerged hardware plat-

forms, such as Intel’s Optane PMEM [1], are configured with 1/16 capacity ratio between

DRAM and PMEM / NVM. We expect that future platforms, node-attached and rack-

attached memories, will preserve substantial DRAM capacity, so as to offset the slower

23

0

50

100

D
R

A
M

H
it

R
at

e

Oracle Page Scheduler across variable DRAM/NVM capacity ratios

all-in-DRAM 1/8 1/16 1/32 1/64 1/128 1/256

lulesh
xsbench

BackProp
BFS

blackscholes
bodytrack

BPT canneal
Cobra dedup

fluidanimate

HybridEncoder
Kmeans

Knn
Leukocyte

Luxmark
raytrace

swaptions
gmean

0

20

40

60

S
p

ee
du

p
fr

om
al

l-
in

-N
V

M

(a) The Oracle page scheduler periodically migrates application pages such that DRAM hosts the
pages with the highest access counts in the current scheduling epoch until capacity is full.

0

50

100

D
R

A
M

H
it

R
at

e

History Page Scheduler across variable DRAM/NVM capacity ratios

all-in-DRAM 1/8 1/16 1/32 1/64 1/128 1/256

lulesh
xsbench

BackProp
BFS

blackscholes
bodytrack

BPT canneal
Cobra dedup

fluidanimate

HybridEncoder
Kmeans

Knn
Leukocyte

Luxmark
raytrace

swaptions
gmean

0

20

40

60

S
p

ee
du

p
fr

om
al

l-
in

-N
V

M

(b) The History page scheduler periodically migrates application pages such that DRAM hosts the
pages with the highest access counts in the previous scheduling epoch until capacity is full.

Figure 4.1: Application performance for decreasing ratio of DRAM to NVM and fixed
overall capacity to be the per application memory footprint.

24

access speeds of persistent memory, as well as reliability and write endurance and am-

plification issues [3]. For completeness we present performance numbers even over very

limited DRAM capacities.

Figure 4.1a shows the performance achieved by an Oracle page scheduler across de-

creasing availability of DRAM capacity. Even in the case of a-priori knowledge of the

workload’s access pattern, the restricted DRAM capacity can severely impact performance,

especially when it is available only in smaller amounts (e.g., 1/256 DRAM/NVM ratio). We

also validate the observation [55] that the use of the minimum necessary DRAM capacity

that is able to host the hot pages across the scheduling epochs (i.e., 1/8 in our case) can

provide almost the same performance as if having infinite DRAM capacity (i.e., all-in-

DRAM).

Figure 4.1b shows how the placement methodology of the current state-of-the-art His-

tory page scheduler can reduce performance up to 55% (in the case of lulesh) and 13%

on average. This is due to the fact that the history-based scheduler is built on the obser-

vation that applications preserve their page access pattern for certain time intervals, which

may span across multiple scheduling epochs. Although this leads to good page placement

decisions during such epochs, it fails to capture changes in the workload’s memory access

behavior. For example, there are times where the subset of hot pages may be completely

disjoint between consecutive scheduling epochs, as the application transitioned into compu-

tation that involves data allocated in different memory areas. In this case, the performance

impact is significant and makes a case for more intelligent data management using clever

extrapolation of the past memory access pattern and not just the immediately observed

behavior.

Takeaways

Current history-based page scheduling is not intelligent enough to boost application per-

formance across capacity configurations of hybrid memory platforms. To address this, we

choose to explore machine intelligence techniques given their ability to learn complex com-

25

binations of multi-featured information.

We aim to achieve two important goals:

1. Bridge the performance gap between the Oracle and History page schedulers.

2. Deliver low training and inference times by reducing the input problem space. This

would allow the approach to be possibly integrated in an online solution.

In doing so, we contribute answers to the following questions:

1. Which machine intelligence technique to use (Section 4.3)?

2. How should we formalize the data input to the machine intelligence algorithm, so

that it adheres to the purpose of predicting page access behavior to be used by a page

scheduler (Section Section 4.4)?

3. How can we reduce the input problem space? Do all pages actually need machine

intelligence-based management? How many are the pages whose timely placement

in DRAM significantly boosts performance, while the History scheduler fails to prop-

erly manage them (Section 4.5)?

4.3 Choosing the Machine Learning Method

In this section, we explore the machine intelligence techniques that seem to be a good

fit when designing an application page scheduler for data management over hybrid mem-

ory systems. The machine learning methods we consider are reinforcement learning and

recurrent neural networks, that are widely used across similar systems problems, as we

summarize in Chapter 8.

Reinforcement Learning

26

First, we explored deep reinforcement learning [56, 57, 58], a machine intelligence tech-

nique that enables an agent to learn through taking actions in a defined environment, in

order to maximize a reward entity via the received feedback. In more detail, the page

scheduler (agent) periodically interrupts the execution of the application to take an action,

that is to migrate pages across the memory components. Then, the application resumes ex-

ecution (environment) and during the next scheduling epoch (interrupt) the page scheduler

receives its reward, that is the DRAM hit rate with the most recent page placement (state).

In this way, the page scheduler learns the dynamic data layout that optimizes application

performance across its runtime.

Why it is not a good fit. Although the approach of reinforcement learning seems to be

a great fit into the problem description of a hybrid memory page scheduler, it cannot be

practically used. This is due to the prohibitively large amount of possible actions the agent

(page scheduler) can take. More specifically, a single action of a page scheduler involves

taking a placement decision for each individual application page. For example, if there are

two memory components and N pages, then there are 2N possible placements, thus actions

to choose from. Considering Table 4.1, that summarizes the number of pages across our

pool of applications, N can be in the order of hundred thousands. In addition, if anything

changes regarding the hybrid memory environment, such as the number of memory units,

their capacity and relative access speeds, then different actions may be more beneficial

and the reinforcement learning agent should be re-trained. Therefore, replacing the hybrid

memory manager with a reinforcement learning agent makes the system solution depen-

dent on the configuration of underlying memory hardware platform. In conclusion, the

exponential action space and sensitivity to changes in the hybrid memory configuration,

made us drop the approach of reinforcement learning for the context of our problem.

Recurrent Neural Networks

Another machine intelligence approach, which seemed appropriate for the purpose of the

27

xt-h xt-h+1..xt-1 xt

LSTMLSTMLSTMLSTM

LSTMLSTMLSTMLSTM

hththt
ht

ht’ ht’ ht’ ht’

ht’’ ht’’ ht’’ ht’’

yt+1xt+1

RNN
Layer 1

RNN
Layer 2

Dense
Layer

Input Sequence

Predicted ValueReal
Value

Loss

Back
Propagation

Figure 4.2: Example layout of a Recurrent Neural Network (RNN), using Long Short Term
Memory (LSTM) neurons.

hybrid memory page scheduler, is Recurrent Neural Networks (RNNs). Different from

reinforcement learning, where interaction with an environment facilitates learning, RNNs

are able to find long-term dependencies in a sequence of data points and make predictions

about future data behavior.

In the context of the page scheduler, these data points can be the sequence of pages

accessed throughout an application execution time interval. The page scheduler can deploy

an RNN in order to learn the page access pattern and make predictions about future page

accesses. Using those predictions the page scheduler can determine which pages should be

prioritized for allocation in the most appropriate memory component. For example, future

highly accessed pages should be allocated in the lowest access latency memory technology.

We choose to adapt this machine intelligence technique, since it has already been used to

solve similar problems, such as hardware memory prefetching [59]. In contrast with rein-

forcement learning, where the problem space was growing exponentially to the number of

application pages, in the case of RNNs it grows linearly with the number of pages. Further-

more, in Section 4.5 we show how it can be significantly reduced for the purpose of fast

and efficient learning.

28

RNN Functionality. Next, we present the internal functionality of RNNs on a very high

level. Currently, a widely used type of RNN is the Long Short Term Memory (LSTM)

Network, that given a sequence of data points from time t − h up to time t, can make a

value prediction for time t + 1, where h is the length of retained history. For example, if

the sequence represents the weather forecast of a city from April to November, the LSTM

can make a weather prediction for December. In more detail, a single LSTM neuron takes

the input sequence and converts it into an internal state ht, via a non-linear combination of

the weights and biases of its internal ‘gates’. There are the ‘input’, ‘output’ and ‘forget’

gates that dictate what information gets filtered from the input and propagated towards the

output. In this way, a single LSTM neuron is able to capture past data information into an

internal state representation and make predictions about future data points.

An RNN can be constructed via the combination of multiple LSTM neurons on a single

layer, stacked LSTM layers together with regular Dense layers, as depicted in Figure 4.2.

The input sequence is split into subsequences of history length h, in a rolling window fash-

ion. During a training epoch, all input subsequences are fed into the network, which then

makes a single value prediction for each subsequence. The difference between the pre-

dicted and actual values is captured through the loss function and back-propagated into the

network, where its weights and biases are getting updated according to the learning rate.

Training can terminate when there is no reduction in the loss, thus the network cannot make

any predictions closer to the actual value. In Section 4.5 we describe the network layout,

hyper-parameter values and further fine-tuning techniques that will facilitate learning for

the provided input data.

4.4 Choosing the Patterns to Learn

When using neural networks, an important step is choosing the features which describe

the problem and are to be used as inputs. In this section, we discuss the representation

of the data sequence related to memory access behaviors to be fed into the RNN and the

29

interpretation of the predicted value, as this is crucial for the training time and accuracy of

the generated model. We further explore possible ways to reduce the input problem space

and enable faster and more resource-efficient learning.

Input Data. The data we have available for each application is a memory access trace, as

depicted in Figure 4.3. More specifically, it is the sequence of the page accesses that were

serviced from main memory and not the processor’s hardware caches, as they happened

throughout the application run time. In Section 4.5 we describe in detail the way we acquire

the trace and the exact information it contains.

Learning Objective. The aim of the RNN training is to be able to make predictions with

respect to the number of future memory accesses, so as to aggregate the accesses on an

application page granularity and then determine an ordering of heavily accessed pages.

These predictions need to happen periodically, when the page scheduler is invoked, so that

the appropriate page migrations are determined and executed. That is future hot pages need

to be migrated to the memory technology component with lowest access latency.

Training Time. One of our main considerations is to enable fast learning via reduced train-

ing times and resource utilization optimized techniques. The duration of training models

can be critical when considering use of machine intelligence in systems solutions, which

to be practical, must operate within limited time and computational resource budgets. Un-

doubtedly the use of computationally robust technologies, like Graphics Processing Unit

(GPU), Tensor Processing Unit (TPU), custom accelerators, can accelerate learning. How-

ever, our primary goal is to explore ways to enable faster learning via the training method-

ology, that can further be boosted via appropriate hardware.

Across Pages Prediction

The most intuitive way to learn from a memory access trace is to feed it ‘as-is’ into the

RNN, following the x-axis in Figure 4.3. In this case, the RNN looks into a subsequence

30

Figure 4.3: Example memory access trace, from the PARSEC suite. For every consecu-
tive memory access (x-axis) we plot the page accessed (y-axis). The vertical gray lines
correspond to the scheduling epoch time intervals.

of page accesses and predicts the page to be accessed next. Such an RNN use case is used

by Hashemi et al. [59], for the purpose of prefetching future memory address accesses.

This approach has several limitations:

1. Large training time. To begin with, the input trace usually contains millions of memory

accesses, especially at the data input scales of High Performance Computing (HPC) appli-

cations. This makes training time prohibitively large, in the order of couple days, at least

when using the hardware setup described in Section 4.5.

2. Low prediction accuracy. Furthermore, when the output value space is significantly

large (number of different pages), the RNN prediction accuracy tends to be low. Neural

networks work better with normalized inputs (e.g., between 0 and 1 [59]). However, when

normalizing hundred thousand values in such a way (total number of pages according to

Table 4.1), there will be vast information loss. This is the reason why Hashemi et al.

[59], choose to reduce the output value space (number of different memory addresses), by

discretizing it into frequently appearing values (classes), and training different RNNs across

clusters of the address space covered by the application. Most importantly, they accept top-

31

k predictions at a time, so as to increase the chances of a correct prediction. Although

this is acceptable for the purpose of prefetching, it is not the case for a page placement

decision, where a single prediction is needed, in order to accumulate the number of per

page accesses.

3. Not an exact fit for the page scheduler description. The hybrid memory page scheduler

operates periodically, aggregating the per page access counts during an application runtime

interval referred to as scheduling epoch. Then the scheduler will determine the appropriate

page ordering and issue the necessary migrations across the memory components. How-

ever, the number of memory accesses differs across the scheduling epochs, as it is visible

by the vertical lines in Figure 4.3, where only 10% of the total memory accesses happened

during the first half of the scheduling epochs. This is subject to the code executed during

that time with respect to its computation to data access ratio and the technology parame-

ters of the processor and memory regarding the time it takes to execute an operation, load

data, etc. Throughout our application pool, we observe that just 10% of the total memory

accesses happen, on average, throughout the first 37% of the scheduling epochs. Thus,

there is no way to know before-hand how many accesses are going to happen in the next

scheduling epoch, that is how far in the future the RNN should make predictions for (unless

we train a different RNN for that purpose!).

In conclusion, we reject the idea to treat the input access trace as-is, given the restric-

tions described above. Next, we will see how we can extract the necessary information

from the trace, so as to enable faster and accurate learning, that is also more suitable for

the functionality of a page scheduler.

Per Page Prediction

Instead of predicting which page is going to be accessed next (across pages prediction), we

flip the problem and explore the case of predicting when a page is going to be accessed next

(per page prediction). So instead of predicting the y-value following the x-axis, we take

32

each y-value (page) and predict the sum of accesses across the scheduling epoch intervals

on the x-axis. Thus, we propose training individual RNNs for every single application page.

So, we feed into the per page RNN the sequence of access counts across the scheduling

epochs and predict the number of accesses that the page will receive in the next scheduling

epoch. In contrast with the prediction across page, the per page prediction:

1. Fits the page scheduler description. The above transformation of the input access trace

fits exactly the functionality of the page scheduler, which will aggregate the page access

counts on a scheduling epoch interval, so as to order frequently accessed pages and appro-

priately migrate them across the hybrid memory components.

2. Enables high prediction accuracy. Depending on the epoch duration and hotness of

the page, the maximum number of accesses per epoch is in the order of hundreds, which

is orders of magnitude less than problem space that the prediction across pages needed to

capture, normalize and predict. Thus, this output value range is more suitable for RNN

training.

3. Allows for low training times. Having a different RNN model per page, when the total

number of pages can be in the order of hundred thousands, is similar to having a single RNN

model that makes predictions across all these pages, as described earlier, since the input

problem size remains the same, as depicted in Figure 4.3. Similarly to clustering techniques

of the address space into memory regions and focusing on the frequently appearing memory

addresses, as Hashemi et al. [59] did, there is scope to focus on the pages that are critical

to application performance, which will significantly reduce the number of RNN models

and overall training time, thus resource consumption.

4.5 System Design of Kleio

We propose Kleio, a page scheduler for hybrid memory systems, that leverages the exist-

ing state-of-the-art data management solutions and optimizes application performance by

33

Page
Selector

Page

Page

Page

Page

Page

RNN

RNN

RNN

RNN

RNN

Pool of
Pages

History

pr
io

rit
y

Page Scheduling

1. Page Access Monitoring

Calculate hot vs. cold pages

3. Page Migration Selection

2. Page Hotness Prediction

RNN predictions History-based predictions

All Pages Hybrid
Memory

ho
t p

ag
es

co
ld

pa
ge

s

Page
Migrations

Page Selection

Pages for ML Pages for History

Figure 4.4: Kleio is a hybrid memory page scheduler, that combines the current state-of-
the-art page placement methodology together with machine intelligence based management
of the page subset, whose timely placement in the appropriate memory component is crucial
for application performance.

delivering machine intelligence based placement decisions for a cleverly selected page sub-

set. Figure 4.4, summarizes Kleio’s internal functionality, which includes a page selection

process and a page scheduling policy, described as follows:

During the page selection process Kleio:

1. Identifies a subset of the application pages that are important for performance, through

its page selector component, described in detail later on.

2. Trains an individual Recurrent Neural Network (RNN) for as many of the important

pages in their given order as it is allowed by the available resources for training. Kleio

learns the patterns of per page hotness across periodic time intervals of the applica-

tion runtime. Kleio does inference on the trained models to produce the associated

RNN predictions, to be used during page scheduling.

3. For the rest of the pages, Kleio generates lightweight history-based predictions as

what is used in existing solutions.

During the page scheduling Kleio:

34

1. Periodically monitors the page accesses and calculates the hotness of each page dur-

ing the current scheduling epoch.

2. Uses a hybrid policy to predict the page hotness for the next scheduling epoch. Kleio

uses the inferred RNN predictions for the pages selected for ML and history-based

ones for the rest of the pages.

3. It then sorts the pages in descending hotness order, moving hot pages to DRAM and

replacing cold ones, until DRAM capacity is full.

Page Selector Component

We next describe the page selector component of Kleio. Its design is driven by the fol-

lowing observations regarding the importance of correct page placement to application

performance:

• There is only a certain subset of pages that needs more clever data management, than

what the existing history-based solutions can provide. That subset is significantly

small for limited DRAM capacity.

• Pages that need machine intelligence based management, can be ordered with respect

to the performance impact of their placement into the appropriate memory compo-

nent. We define a benefit metric that enables the page ordering, prioritizing pages

with high access counts and number of misplacements by the History page sched-

uler.

• Intelligent management of the pages following the aforementioned ordering does not

correspond to linear performance improvement. In contrast, intelligent placement for

only (a small) part of them can bring most of the performance benefits we would get

by applying intelligent placement across all application pages.

We define a misplacement of a page by the History scheduler, when at the start of a schedul-

ing epoch, a page was supposed to be allocated in DRAM, but it was not, because of wrong

35

lulesh
xsbench

BackProp
BFS

blackscholes
bodytrack

BPT canneal
Cobra dedup

fluidanimate

HybridEncoder
Kmeans

Knn
Leukocyte

Luxmark
raytrace

swaptions
gmean

0

25

50

75

100

P
ag

es
(%

)

Pages Misplaced by History Page Scheduler across variable DRAM/NVM capacity ratios
1/8 1/16 1/32 1/64 1/128 1/256

Figure 4.5: Percentage of pages misplaced at least one time across the scheduling epochs
by the History page scheduler. This is the set of pages that need machine intelligence based
management. This observation is crucial since it highlights that the problem space of per
page RNN training can be significantly reduced as the size of available DRAM does.

0 10 20 30 40 50 60 70 80 90 100

Percentage of ordered pages misplaced by History
and managed by Oracle

20

30

40

50

60

70

80

90

100

D
R

A
M

H
it

R
at

e

DRAM/NVM = 1/8
1/32 for lulesh and xsbench

lulesh

xsbench

BackProp

BFS

blackscholes

bodytrack

BPT

canneal

Cobra

dedup

fluidanimate

HybridEncoder

Kmeans

Knn

Leukocyte

Luxmark

raytrace

swaptions

Figure 4.6: DRAM hit rate when an Oracle Page scheduler manages the misplaced-by-
History pages and the History page scheduler manages the rest. Pages are ordered in de-
scending performance benefit. Clever management of even a small percentage of these
pages, can give most of the performance benefits we would have by managing cleverly all
pages.

36

hotness prediction. Figure 4.5 depicts the percentage of application pages, which are mis-

placed by the History page scheduler, at least during one scheduling epoch, across reducing

DRAM capacity. This signifies the set of pages that need more clever management. In com-

bination with the actual per application page count summarized in Table 4.1 and the limited

DRAM capacity, the number of such pages can be in the order of hundreds. This drastically

reduces the problem space of RNN training.

However, even by reducing the number of such pages, there still may not be enough

resources or time to train per page RNN models. Thus, there needs to be a priority or-

dering of these pages, so as to cleverly manage those that can give the biggest application

performance boost, when timely placed into DRAM. For this reason, we capture the im-

portance of a page in the benefit that its correct placement would provide to application

performance. The benefit increases with the hotness of a page, similarly to prioritizing fre-

quently accessed pages for DRAM allocations across the scheduling epochs. However, we

also need to take into account the number of misplacements-by-the-history-scheduler each

page received, as the timely placement of a page in DRAM together with its hotness, will

boost performance. To this extent, we define the following benefit factor for prioritizing

the pages in need of RNN training.

Benefit = Number of accesses × Number of misplacements

Next, we capture the range of application performance boost we would get, if we could

manage part of the aforementioned misplaced pages with the Oracle page scheduler and

the rest with the History page scheduler, since it already places hot pages in DRAM in

time. This will set the upper limit of the performance boost we can get with RNN train-

ing of the misplaced pages. Figure 4.6 captures this performance improvement. When the

Oracle scheduler manages 0% of the misplaced pages, it is equivalent to all pages being

managed by the History scheduler, thus is the lowest bound of performance. In contrast,

when the Oracle scheduler manages 100% of the misplaced pages, it is equivalent to the

Oracle managing all the application pages, since the rest of the pages were not misplaced

37

Memory Access Trace

Perf. Estimate
History Predictions

Perf. Estimate
Oracular / History Predictions

Misplaced Pages

Pages Prioritized
for ML

Pe
rf

Repeat

Hybrid Memory
Configuration Performance Goal

Page IDs Selected for ML

Kleio’s Page Selector

Figure 4.7: Kleio’s page selector component is able to identify the pages whose machine
intelligence based management will bring the highest application performance improve-
ments, while enabling focused and practical RNN training.

by the History scheduler. That sets the upper bound of performance we can have on a

per application basis. We observe a non-linear relation between the set of pages and the

performance enhancement. This is due to the page ordering with respect to the defined ben-

efit factor, that is able to prioritize hot pages, whose timely DRAM allocation guarantees

significant performance improvement. For example, in the case where the curve shows a

distinct knee, the pages after the knee, received far less accesses, thus their timely DRAM

placement will bring trivial benefit to the DRAM hit rate.

Page Selection Pipeline. Kleio’s page selector component captures the above observations

and provides insight into the relation between the number of pages that need RNN training

together with a best case scenario of corresponding application performance improvement.

Figure 4.7 summarizes the work flow of the page selector component, its internal function-

ality, input parameters and generated output. Kleio utilizes models to estimate application

performance depending on the configuration of the hybrid memory (i.e., number of com-

ponents, capacity ratios, access speeds) by simulating the page scheduling process. First,

Kleio’s Page Selector generates an application runtime estimate when using history-based

predictions during page scheduling. In this way, Kleio captures the number of times each

page is misplaced (e.g., moved to slower memory even though the page was hot), due to

38

mispredicting the page hotness when using purely historical information. Kleio couples this

information together with the page hotness into a benefit factor, that determines the page

priority for machine learning-based management. Then, following this page priority order,

Kleio runs the estimate model repeatedly to generate a performance curve when simulating

perfectly accurate (oracular) predictions for pages with high priority and history-based ones

for the remainder of the pages. Given a performance goal (e.g., 90% of all possible perfor-

mance improvements), Kleio’s Page Selector outputs the identifiers of the corresponding

pages in descending priority order. After this page selection process, Kleio will train per

page RNNs for the selected pages.

System Implementation Details

In the remainder of this Section, we describe further details about the implementation and

configuration of the Recurrrent Neural Networks used as part of Kleio’s system design.

Neural Network Layout. Figure 4.2 gives a visual representation of the RNN we deployed,

consisting of LSTM neurons. The network consists of two stacked RNN layers with 128

LSTM neurons each, followed by a Dense Layer. The history length is 16, thus the input

data series is split in sequences of length 16, on a rolling window fashion, while 70% of

them are used as a training dataset and 30% of them for validation. The neural network

tries to minimize the mean squared error (loss) between the predicted and actual values,

using the Adam [60] optimizer on a learning rate of 0.001. The model training stops, if

the loss for the validation dataset is not reduced for 20 consecutive training epochs. The

duration and accuracy of the trained models is reported later in this Section.

Neural Network Data Manipulation. As described earlier, the RNN input corresponds to

a sequence of per page access counts during consecutive scheduling epochs, while the

output is the predicted number of accesses the page will receive during the next epoch. The

predicted number will then be used by the page scheduler to determine the hotness order

across all pages. Thus, there is room for the prediction to be slightly different than the

39

actual number of accesses, as long as it will not influence the hotness order of the page, and

therefore its placement decision, on the particular scheduling epoch.

Therefore, we normalize the input sequences between 0 and 1, since RNNs work better

in this case as observed by Hashemi et al. [59] and then denormalize the data for the

final prediction. Different from [59], there is no need for us to make predictions over

distinct integers, treating the prediction problem as classification. Our experiments with

the classification approach, highlighted the possibility of misprediction with a great margin

from the actual value and gave reasoning as to why Hashemi et al. [59] chose to consider

top-k predictions at a time. Although this approach works great with the prefetching logic,

where more data can be prefetched even if they do not end up being accessed, this is not

necessary for the purpose of our predictions.

It is important to observe that, even though the input data (memory access trace) is the

same between this work and [59], the prediction use case transforms the way they should

be manipulated for RNN training and the accepted level of prediction accuracy.

Code Implementation. We use the Keras [61] high level API to deploy the described RNN

layout, using the existing implementations for the LSTM neurons, the network layers con-

nectivity, the Adam optimizer and model training, applying any default hyper-parameter

values if not explicitly mentioned above. The backend RNN execution engine is Tensor-

flow [62].

4.6 Evaluation

Experimental Methodology

We first describe the specific methodology used to evaluate Kleio.

Applications. Table 4.1 summarizes the set of workloads we used to motivate and evalu-

ate Kleio, spanning across domains with representative computation kernels and stressing

different components of the system (e.g., memory, CPU, GPU). We included workloads

40

Table 4.1: Workloads used for evaluation. Number of pages × 4 KiloBytes will be the
total application memory footprint. Scheduling epochs is the number of times that the page
scheduler was periodically invoked within the application runtime, so as to reposition pages
across the hybrid memory subsystem.

Application Suite Domain Pages (4 KB) Sched. Periods
Lulesh CORAL Hydrodynamics 847,252 206

XSBench CORAL Monte Carlo 136,098 856
blackscholes PARSEC Finance 8,033 302

bodytrack PARSEC Comp. Vision 13,259 389
canneal PARSEC Engineering 56,974 398
dedup PARSEC Storage 131,259 657

fluidanimate PARSEC Animation 54,286 333
raytrace PARSEC Visualization 22,890 347

swaptions PARSEC Finance 12,633 491
BackProp Rodinia Pattern 35,083 117

BFS Rodinia Graph 27,396 26
BPT Rodinia Filesystems 142,923 485

Kmeans Rodinia Data Mining 70,783 87
Knn Rodinia Data Classifier 84,691 118

Leukocyte Rodinia Medical 56,580 180
Cobra Windows Video Transcode 83,720 168

HybridEncoder Windows Video Transcode 73,787 178
Luxmark Windows Image Creation 53,491 108

41

from the CORAL [63] suite, the PARSEC [64] suite utilizing the simlarge input sizes, and

Rodinia [65], with the default input data sizes. Finally, we also included few Windows

desktop applications. Concerning the memory footprint of these applications, Table 4.1

includes this information as a multiple of 4 KB pages, that gives a range of couple hundred

MBs. These memory footprint sizes, though small in the context of real systems, are sig-

nificant relative to the cycle-level memory simulation environment, and adequately capture

the use case where the data will span across multiple main memory components, due to

the limited capacity of available DRAM in future hybrid memory systems. Regarding the

application runtime, it is again summarized in Table 4.1, as a multiple of the scheduling

epoch intervals, when the page scheduler is periodically triggered throughout application

execution. Our applications serve a variety of short and long running executions. Due to the

difference in the trace collection methodology, for the CORAL workloads the scheduling

epoch interval is 1 second, whereas for the rest is 0.01 seconds.

Memory Access Trace Collection. For each application we collect detailed traces of the

data accesses that missed the last level of processor hardware caches and resulted in main

memory accesses. For the CORAL workloads we used the Instruction Based Sampling

(IBS) that is available on AMD’s processors. This mechanism samples every Nth micro-

operation, that goes through the processor’s pipeline, out of which we filter the loads and

stores. For the rest of the workloads, we collected unsampled traces for memory accesses

that miss the last level cache on a system with an AMD A10-5800K Accelerated Processing

Unit (APU) clocked at 3.8GHz and 16GB memory. The information included for each

individual access is a timestamp, the physical and virtual memory address, the CPU core

ID, the application thread ID, whether the access was a load or a store and a hit or miss.

For the purpose of our analysis, we extract the 4 KB virtual page ID, that corresponds to

the virtual memory address accessed and we group memory accesses into scheduling epoch

intervals according to the timestamp, as depicted in Figure 4.3.

Hybrid Memory System Simulation. We simulate a hybrid memory system that contains a

42

Table 4.2: Technology parameters used in the simulated hybrid memory system, differen-
tiating for Reads (R) and Writes (W) and sequential versus random accesses.

Technology R/W BW (GB/s) Seq. & Rand. R/W Latency (ns)
DRAM 19.2/19.2 8/8 & 50/50
NVM 10.24/1.024 8/8 & 100/1000

fast memory component (i.e., DRAM) and one with lower access latency (i.e., NVM). Both

memory technologies serve as flat main memory, as they are part of a continuous physical

memory address space. Table 4.2 summarizes the technology parameters of the simulated

memory types. The capacity of the memory system is assumed to be the application’s

memory footprint. For example, when we refer to a DRAM/NVM capacity ratio of 1/16,

we mean that DRAM will have space to accommodate 1/16 of the application pages and

NVM will service the rest.

Apart from gathering the DRAM hit rate as an application performance metric, we also

use the analytical model used by Meswani et al. [13] to extrapolate the application runtime,

based on the number of accesses that are serviced from DRAM and NVM appropriately. In

the case of the CORAL workloads, the number of accesses is properly adjusted based on

the sampling rate. The model uses the Leading Loads method, which splits the application

runtime into the time to perform computations and the time to satisfy memory requests,

via the use of hardware performance counters. Regarding the time to service a memory

request, the method maps it to the time spent servicing the leading (first out of many) load

request that misses the last level hardware cache. This load time depends on the memory

technology that serviced the request (e.g., DRAM versus NVM), whose differences are

summarized in Table 4.2. This gives us a worst case performance estimate, since it does not

take into account actions that reduce latency, such as parallel computation or prefetching.

Also, we assume dedicated DMA engines that allow seamless page migration, which is

overlapped with the computation, as explored in [66, 67].

Hardware testbed for training ML models. We conduct experiments using an AMD ma-

chine with 512 GB memory and 64 Opteron™ 6370P CPU cores of 2 GHz each. CPUs

43

have been used to accelerate RNN-based deep learning models [216077]. Kleio speeds up

the training by intelligently selecting to train the application pages that will bring actual

performance benefits. Instead, a more naive approach would rely on accelerators and rack-

scale size machines in order to accommodate RNNs for all pages, wasting resources for

training models whose predictions have trivial performance impact or can be achieved by

simple history-based policies.

Evaluation of Application Performance

First, we evaluate the accuracy of Kleio’s RNN training with respect to the correspond-

ing application performance improvements, which is what Kleio promises to deliver. As a

reminder, Kleio identifies the pages that are misplaced by the History page scheduler and

applies RNN training in order to get predictions of their per epoch access counts and deter-

mine the global page hotness order for prioritizing DRAM allocations. If the RNN predic-

tions are extremely accurate, then it would be equivalent to having an Oracle page scheduler

manage the misplaced pages. To this extent, Figure 4.8a depicts the performance that Kleio

can achieve when applying RNN training to 100 pages in the order defined by its page se-

lector component, for a given DRAM/NVM capacity ratio. We fix DRAM/NVM=1/32 for

the CORAL workloads and DRAM/NVM=1/8 for the rest, which is the capacity ratio for

which the clever management of even a small number of pages, can bring significant per-

formance improvements (Figure 4.6). Performance is normalized between 0%, when all

pages are managed by History page scheduler and 100%, when the selected pages are man-

aged by Oracle and the rest by History. In this way, we can understand the degree to which

the RNN predictions are sufficiently accurate, so as to provide all the possible performance

improvement.

We observe that in most cases, the RNN predictions are sufficiently accurate to bring

80% of the possible performance improvement, on average and more than 95% for half of

the applications that we considered. Unfortunately, there are cases such as bodytrack

and raytrace, where less than 50% of the possible speedup is achieved, in which case

44

more pages need to be trained so as to further provide significant speedup.

Overall, we prove that the accuracy of the RNN predictions is such that it can deliver

application performance similar to what would be possible with oracular knowledge of the

access frequency. Kleio’s page selector is useful, so as to determine the number of pages

that is necessary to train in order to observe significant performance improvements.

Evaluation of Prediction Accuracy

We next present the actual prediction accuracy of the per page RNN training. Figure 4.8b

depicts the distribution of the Mean Absolute Error (MAE), in boxplot representation, be-

tween the cumulative per epoch page access counts and the actual values, across the trained

application pages. For example, mean MAE of 30, means that the RNN predicted 30 more

accesses on average per epoch per page. On the same graph, we treat the decisions of the

History page scheduler also as predictions and plot the corresponding MAE. The History

page scheduler predicts that on the next scheduling epoch a page will receive the same

access counts as to those of the current epoch.

As expected, the History prediction can be far from reality, as it is common for a page

to convert from being frequently accessed to not being accessed at all on two consecutive

epochs, thus the prediction MAE can be significantly high. In contrast, the RNN is able

to make better predictions via the efficient LSTM learning, although still they may seem

not as accurate enough. However, even if the per epoch access count prediction is not

extremely accurate, as long as it does not affect the correct global page hotness order and

actual page placement, there will be no application performance impact of the prediction.

This is highlighted in Figure 4.8a, where for example Luxmark has a mean MAE of 50,

though still achieves 85% of the possible performance improvements.

Figure 4.8c, further strengthens the above statement by showing the percentage reduc-

tion of page misplacements achieved by Kleio for the selected trained pages, compared to

the History page scheduler across all pages. Although, Kleio still misplaces the selected

pages on some scheduling epochs, the per page access count during those epochs is not

45

big enough to drastically impact the DRAM hit rate. Thus, Kleio manages to reduce on

average 85% of the selected pages misplacements across the application lifetime.

Resource Utilization

RNN training goes on until there is no further reduction of the loss over the validation data

for a certain number of training epochs. The duration of the training is primarily affected

by the network layout itself, that is the hyperparameter values and the length together with

the number of the input sequences. Thus, the more training data the longer it takes to learn.

Since we perform training on a per application and per page granularity, the number of

input sequences is the number of scheduling epochs, divided by the history length hyper-

parameter. Looking back at Table 4.1, this number will be in the order of couple hundreds,

which enables fast training times.

More specifically, we report the following average metrics across pages and across

applications, for the given hardware testbed described earlier. Training lasts on average for

120 training epochs, that translates into a time duration of 2 hours per model, when all

models are trained at the same time, utilizing all system’s resources. As far as memory

utilization during training is concerned, the maximum observed per model was in the order

of tens of GBs. Finally, regarding the storage overheads of saving the models after training,

for the purpose of future inference and analysis, using the Hierarchical Data Format (.hdf5)

available from the Keras library, it was less than 0.5 MB per model. Regarding the resource

utilization for the purpose of inference, it was trivial and the duration instantaneous (3-4

seconds).

Putting all this information together, there is no doubt that the hardware resource re-

quirements of RNN training are significant, especially as far as memory consumption is

concerned. However, training times in the order of couple of hours are generally consid-

ered to be low, for machine intelligence purposes. As we summarize in Chapter 8, there is

a plethora of software and hardware solutions that promise to accelerate ML training times.

Regarding the use of CPUs for training, in particular, DeepCPU [68] is a library-level so-

46

0

50

100

D
R

A
M

H
it

R
at

e

Performance improvement
via RNN predictions for DRAM/NVM = 1/8

lulesh
xsbench

BackProp
BFS
blackscholes

bodytrack
BPT

canneal
Cobra

dedup

fluidanimate

HybridEncoder

Kmeans
Knn

Leukocyte

Luxmark
raytrace

swaptions
gmean

0

50

100

S
p

ee
du

p
fr

om
al

l-
in

-N
V

M
DRAM/NVM = 1/32 for lulesh and xsbench

(a) Performance achieved by machine intelligence based management of the first 100 most important
to performance pages, while a History page scheduler manages the rest. Hit rate is normalized
between 0, that is the worst-case where all application pages are managed by History and 100, that
is the ideal case where Oracle manages these 100 pages. Kleio can deliver over 80% (gmean) of the
performance improvements that an Oracle page scheduler would for the selected pages.

lulesh
xsbench

BackProp
BFS
blackscholes

bodytrack
BPT

canneal
Cobra

dedup

fluidanimate

HybridEncoder

Kmeans
Knn

Leukocyte

Luxmark
raytrace

swaptions
gmean

0

50

100

150

M
ea

n
A

bs
ol

ut
e

E
rr

or DRAM/NVM = 1/32 for lulesh and xsbench
Prediction MAE for DRAM/NVM = 1/8

History

Kleio

(b) Prediction accuracy of the number of access counts across the scheduling epochs for the selected
trained pages.

lulesh
xsbench

BackProp
BFS
blackscholes

bodytrack
BPT

canneal
Cobra

dedup

fluidanimate

HybridEncoder

Kmeans
Knn

Leukocyte

Luxmark
raytrace

swaptions
gmean

0

25

50

75

100

P
er

ce
nt

ag
e

DRAM/NVM = 1/32 for lulesh and xsbench
Reduction in page misplacements for DRAM/NVM = 1/8

(c) Reduction in the number of page misplacements via the achieved RNN prediction accuracy,
compared to the History page scheduler.

Figure 4.8: Evaluation of the application performance Kleio can deliver via the achieved
levels of prediction accuracy and reduction in page misplacements across hybrid memory.

47

lution that improves the RNN performance on CPUs by an order of magnitude. Using such

solutions can drastically reduce the learning overheads of Kleio. Either way, the user may

be limited with respect to how many per page models can train, given the available system

resources.

Kleio has provisioned for the case of limited hardware resources through its page selector

component, that provides the user with information regarding which pages to prioritize for

RNN training and the corresponding expected application performance improvements.

Reaching our initial Goals.

1. Kleio promises to bridge the performance gap between the Oracle and History page

schedulers, delivering on average 80% of the theoretically possible performance

when managing selected pages, through the achieved RNN prediction accuracy.

2. Kleio delivers low training and inference times, via deploying RNN models for

cleverly selected application pages, whose timely placement in DRAM significantly

boosts performance. Kleio shows that not all pages are in need of intelligent data

management, drastically reducing the input problem space.

4.7 Chapter Summary

In this chapter, we describe Kleio, a page scheduler with machine intelligence for appli-

cations that execute over hybrid memory systems. In an effort to deliver a practical so-

lution, Kleio reveals that an approach that replaces resource management with a machine

intelligent component, like a reinforcement learning agent, will not be scalable and robust

to hardware configuration changes. Given the massive memory footprints of applications

executing over hybrid memories, Kleio identifies a small page subset, whose machine intel-

ligent management boosts application performance. Then, Kleio deploys Recurrent Neu-

ral Networks to learn page-level access patterns, while using lightweight existing history-

based predictions for majority of the application pages. In this way, Kleio bridges on av-

48

erage 80% of the relative performance gap between existing and oracular solutions. While

Kleio shows great promise that a machine learning-based approach can be highly effec-

tive and practical, there are concerns that remain regarding the non trivial operational and

learning overheads associated with such a solution. The remainder of the thesis explores

ways to minimize such overheads and missed opportunities to further boost application

performance, that are complementary to the use of machine learning.

49

CHAPTER 5

FINE-TUNING CRITICAL MANAGEMENT OPERATIONS WITH REUSE

INSIGHTS

So far this thesis contributes the system design choices that enable practical foundations

for the integration of machine learning in hybrid memory management, bridging the perfor-

mance gap left by current history-based methods. In this chapter we explore ways to further

boost application performance and system resource efficiency by identifying a missed op-

portunity in maximizing the benefits from hybrid memory due to empirical configurations

of the system’s operational frequency. To this end, we propose Cori1 [32], a system-level

tuning solution for hybrid memory management solutions that this thesis improves upon.

The chapter reveals insights regarding the relationship among the operational frequency

and the application data reuse that are then used to build a lightweight and highly effec-

tive tuning tool. The described improvements unlock new performance levels, that can be

further boosted with the use of machine learning-based management that this thesis con-

tributes.

5.1 Overview

Regarding current hybrid memory management solutions, while a significant body of re-

search focuses on optimizing the selection of which data to move, there is little insight

towards when that data should be moved. Focusing on the latter, Table 5.1 summarizes the

operational frequencies of related data tiering solutions, whose difference in time ranges

four orders of magnitude. These values are empirically tuned to meet the performance

requirements of the specific pool of applications evaluated for their respective systems.

1The name is inspired by the ancient Greek mythology, where Cori (short for Terpsichore) was the muse
of dance and daughter of Mnemosyne, the goddess of memory.

50

Table 5.1: Frequency of data monitoring and movement across existing solutions mapped
to our simulation-based analogy.

Solution Period Duration Requests per Period
Thermostat [12] 10 sec 100,000

Nimble [14] 5 sec 50,000
Ingens [28] 2 sec 20,000
HMA [13] 1 sec 10,000

Hetero-OS [15], -Visor [20] 0.1 sec 1,000
Kleio [31] 0.01 sec 100

Unimem [9] MPI phase N/A

Empirical tuning of page scheduling frequency can miss significant performance improve-

ments by not testing certain frequency ranges in an effort to minimize tuning overhead. For

example, a common approach [13, 18] is to experiment with period durations that are an or-

der of magnitude apart, e.g., 0.01 sec, 0.1 sec and 1 sec, so as to identify in only three trials

which offers the highest DRAM hitrate while maintaining reasonable data movement over-

head. On the other hand, exploring all frequency choices leads to impractical tuning over-

heads. In addition, the periodic solutions in Table 5.1 fix their operational frequency at the

system-level, so that they do not have to repeat the empirical tuning for every application.

However, this can potentially leave a significant amount of unexploited performance for ap-

plications with data access behaviors and sizes that the empirical tuning did not consider.

Another approach is to completely rely on the application to explicitly control data alloca-

tion and movement, via use of specialized pragmas or malloc-like APIs. Such modified

applications then explicitly control how the underlying system-level solution maintains the

necessary state to dynamically manage data tiering across hybrid memory [6, 8, 9, 10].

Problem Statement. Impractical tuning overheads and lack of insight force existing data

tiering solutions to rely on empirical tuning of their operational frequency, or on application-

level modifications suitable for specific execution models and APIs. As a result, for general

scenarios where modifying the applications is not appropriate, there can be significant lev-

els of performance that existing data tiering solutions do not realize across applications,

51

due to their empirically-tuned and fixed operational frequency.

Contributions. To address this, we propose Cori – a system-level solution for tuning the

operational periods in page schedulers, that maximizes the effectiveness of the schedulers

in terms of application performance and platform efficiency, and achieves that with low

tuning overheads. Cori operates in an application and runtime-agnostic manner, and relies

on observation-based insights to guide the frequency tuning process to a small number of

viable candidates. We demonstrate that Cori is effective, irrespective of the data access be-

havior and page scheduling effectiveness, and can be practically integrated into the existing

hybrid memory management software stack.

The specific contributions are the following:

• We demonstrate that current data tiering solutions can experience 10%-100% perfor-

mance loss due to sub-optimal choice of their operational frequencies (Section 5.2).

• We identify a relationship among observable application properties – their data reuse

– and the favorable scheduling periods (Section 5.3).

• We describe the design of Cori and its frequency tuning methodology, for a simulation-

based prototype and in real system settings. (Section 5.4). The implemented code

base is open sourced2.

• We evaluate Cori, demonstrating its ability to identify operational frequencies which

realize performance improvements within only 3% from the ideal frequency selec-

tion, on average, across applications and page scheduling variations. Cori achieves

this with 5× fewer number of tuning trials, compared to insight-less tuning ap-

proaches (Section 5.5).

• We validate Cori’s insights, effectiveness and practicality on a real hardware testbed

with DRAM and Intel’s Optane DC PMEM (Section 5.5).
2https://github.com/GTkernel/cori-sim.git

52

https://github.com/GTkernel/cori-sim.git

5.2 Motivation

Performance Gap

Comparison with existing solutions aims to capture the application performance impact

caused only by the selection of when to move data, not which and how much data to move.

For this purpose we assume the page scheduling policies described in Chapter 3 and evalu-

ate upon the data movement frequencies of existing solutions, as summarized in Table 5.1.

Since these proposed values vary across orders of magnitude, we create corresponding

period durations, summarized in Table 5.1 that map to the hybrid memory simulation envi-

ronment described in Chapter 3.

Next, we capture the application performance gap created by using these proposed fre-

quencies as opposed to an optimal frequency across a wide range of data access patterns.

Figure 5.1 captures application runtime slowdown from the case of an optimal frequency

that provides best performance, together with the corresponding amount of data moved

as a percentage of the application’s memory footprint. The performance of our proposed

solution Cori is also included in the figure, but will be further analyzed in Section 5.5.

The proposed frequencies create a 10%-100% performance slowdown compared to the

performance achievable with a best-case frequency, on average, across applications and

page schedulers. This makes a case for the need for a more robust tuning approach than

the empirical one. Taking a closer look, we observe that no single frequency works best

across applications and page schedulers. In more detail, predictive vs. reactive page sched-

ulers experience the lowest slowdown, on average, for frequencies that are an order of

magnitude apart, that is a period duration of 1 second proposed by HMA vs. 10 seconds

by thermostat, respectively. Additionally, the frequency that works best on average

for a certain page scheduler may not provide best performance across all applications. For

example, the lowest slowdown for a reactive page scheduler provided by thermostat is

not the best choice for pennant, lud, hotspot and kmeans. In particular, it incurs

53

100

101

102

predictive page scheduler - % slowdown from best frequency
cori thermostat nimble ingens HMA Hetero Kleio

100

102

104
predictive page scheduler - % total page pairs moved

100

101

102

reactive page scheduler - % slowdown from best frequency

backprop
kmeanshotspot

quicksilver cpd lud bfs bptree
pennant

average
100

102

104
reactive page scheduler - % total page pairs moved

Figure 5.1: Performance comparison of a predictive and reactive page scheduler across
operational frequencies of existing solutions and the proposed solution Cori, given a simu-
lated hybrid memory system with DRAM and PMEM at a 20%:80% capacity ratio.

an average 8% slowdown from the respective best proposed frequency, that is additional to

the slowdown from the best frequency itself.

Takeaways. This initial experiment validates our initial observations [69] and reveals that

frequencies proposed by existing solutions leave a significant performance gap of 10%-

100% across applications and page scheduler designs. No single proposed value works

best across all applications and page schedulers. Therefore, there is an opportunity to close

this performance gap with a more insightful tuning approach.

Tuning Overheads

Existing solutions choose to empirically tune their page scheduling frequency and fix it

54

across applications, to avoid the non-trivial tuning overheads of fine-grained frequency ex-

ploration. Stated more formally, an empirical tuning approach has O(1) time complexity,

since it chooses upon a constant set of frequencies. The choice of the frequencies them-

selves is critical, since an insight-less selection can lead to the aforementioned performance

gap.

An exhaustive tuning approach has O(N) time complexity, because the number of pos-

sible frequencies grows linearly with the application runtime. For example, the possible

period durations for an application that generates N memory requests in total, are the win-

dows of any length between [1, N
2
], assuming that a page scheduler should run for at least

two periods of N
2

requests each. Similarly, if we consider the time domain instead of the

memory request domain, the number of possible period durations is such that is splits the

application runtime at multiples of a timestep, where a timestamp could be related to the

Linux scheduling time slice, for instance.

The need for some insight. The long runtime of applications that require massive hy-

brid memory systems makes an exhaustive tuning approach completely impractical. By

using a more insightful tuning method we can drastically reduce these overheads, and also

eliminate the performance gap caused by a poor choice of migration frequency made by

empirical selection approaches.

5.3 Data Reuse Insights

We perform the aforementioned exhaustive tuning approach to extract insights. We select

applications with a wide range of data access behavior. Figure 5.2 shows a visual represen-

tation of their memory access patterns, as analyzed by the collected traces. We observe the

strided array traversals of backprop and quicksilver vs. the distinctly shaped sparse

tensor traversals of cpd, the triangular multiplication in lud, and the irregular memory

accesses of pennant over a fixed number of repetitive cycles.

Page Reuse Distance. The top graphs in Figure 5.3 depict information on data reuse. In the

55

context of these analyses, we use page reuse distance as a measure for page reuse, where

the page reuse distance is the number of memory accesses that are issued to other pages,

between two consecutive accesses to a particular page. There is a clear connection between

the page reuse distances and the access patterns in Figure 5.2. For example, for backprop

the reuse distance of 20,000 requests maps to the gap between the large access strides, and

it appears 15 times since there are 16 strides. In contrast, the decreasing appearances of

page reuse distances for lud and pennant correspond to the triangular array traversal

and random access behavior, respectively.

Relation of Performance and Data Reuse. The bottom graphs in Figure 5.3 capture

the application runtime slowdown from the case of infinite DRAM capacity and from the

case of optimal frequency selection, across all possible period durations for predictive and

reactive page schedulers. The x-axis is aligned with the histogram (top graph) and aims to

capture the relation between the page reuse distances and page scheduling period durations.

We observe that predictive page schedulers, which make a better selection of which

pages to move, provide best application performance for much shorter periods than reac-

tive ones. However, irrespective of the page scheduler’s effectiveness, very short periods

create a significant aggregate data monitoring and movement overhead, as also shown in

Figure 5.1. In addition, arbitrarily long periods do not allow the page scheduler to react

promptly to changes in the access pattern behavior, thus create insufficient data move-

ment to dynamically improve the data tiering. Moreover, the effectiveness of reactive page

schedulers suffers at periods whose length is shorter than the page reuse distances with sig-

nificant appearances, incurring an average of 50% additional performance slowdown com-

pared to predictive schedulers. For example, this is the case for backprop when periods

are shorter than 20,000 requests per period, which is the page reuse distance of its strided

access pattern. The scheduler’s effectiveness drops because its reactive design identifies as

hot pages the ones that correspond to a certain part of the access stride, then moves them to

the limited DRAM capacity, but they will not be accessed in the next period, when the rest

56

Figure 5.2: Representative memory access traces. The vertical lines correspond to the fixed
period boundaries that provide best performance, as selected by Cori.

of the pages of the stride will be accessed. Such reactive page scheduling approaches are

more effective when they operate over larger windows of access history, enabled either by

longer periods or longer history of shorter periods. Regardless, the time window of access

history should be large enough to not ‘break’ the data reuse.

Lessons learned. This extensive application performance characterization shows a clear

relationship among the data reuse times and the page scheduling period durations which

provide best performance. Reactive page schedulers benefit from periods that don’t break

the data reuse, to make better page migration decisions. Both reactive and predictive sched-

ulers should avoid very short periods that reveal the data monitoring and movement costs,

as well as arbitrarily long periods that do not allow a prompt response to changes in the

data access pattern and create insufficient aggregate data movement.

5.4 System Design of Cori

Design Goals. The objectives of our proposed frequency tuning solution are as follows:

G1 Bridge the performance gap left by existing solutions that do not properly tune their

page scheduling frequency.

57

Requests
0

10

backprop
Page Reuse Distance Histogram

Requests per Period
100

200

20% DRAM
% slowdown from infinite DRAM

Page Scheduler
predictive
reactive

102 103 104 105

Requests per Period

0

50

20% DRAM
% slowdown from best frequency

Page Scheduler
predictive
reactive

Requests
0

20

quicksilver
Page Reuse Distance Histogram

Requests per Period
100

200

20% DRAM
% slowdown from infinite DRAM

Page Scheduler
predictive
reactive

102 103 104 105

Requests per Period

0

50

20% DRAM
% slowdown from best frequency

Page Scheduler
predictive
reactive

Requests
0

50

cpd
Page Reuse Distance Histogram

Requests per Period

100

200

20% DRAM
% slowdown from infinite DRAM

Page Scheduler
predictive
reactive

102 103 104 105

Requests per Period

0

50

100

20% DRAM
% slowdown from best frequency

Page Scheduler
predictive
reactive

Requests
0

50

lud
Page Reuse Distance Histogram

Requests per Period

250

500

20% DRAM
% slowdown from infinite DRAM

Page Scheduler
predictive
reactive

102 103 104 105

Requests per Period

0

200

20% DRAM
% slowdown from best frequency

Page Scheduler
predictive
reactive

Requests
0

20

pennant
Page Reuse Distance Histogram

Requests per Period

100

200

20% DRAM
% slowdown from infinite DRAM

Page Scheduler
predictive
reactive

102 103 104 105

Requests per Period

0

100

20% DRAM
% slowdown from best frequency

Page Scheduler
predictive
reactive

Figure 5.3: Histogram of page reuse distance and its relationship with application perfor-
mance across period durations, for a predictive and reactive page scheduler over a simulated
platform with DRAM and PMEM at a 20% : 80% capacity ratio. The red dots correspond
to the performance of the candidate frequencies generated by Cori.

58

G2 Drastically reduce the number of tuning trials needed to find the frequency that en-

ables desired performance.

G3 Build a generic tuning approach that works across applications and page schedulers.

G4 Enable practical system-level integration using readily available information on ap-

plication data access behavior, without explicit code-level modifications or specific

APIs.

To address these goals, we propose Cori, a method for tuning data movement fre-

quency in hybrid memory systems. Cori gleans data-movement requirements based on

application-specific data reuse trends to guide the frequency tuning process, and select a

frequency which delivers performance gains or increases in data movement efficiency (G1)

with a small number of tuning trials (G2). Cori extracts the necessary information from

execution profiles, and does not require any changes to applications or the memory man-

agement stack (G3). Experimental results from a real testbed with DRAM and Intel Optane

PMEM validate the simulation-bases evaluation of Cori, and demonstrate the feasibility of

its system-level integration (G4).

Cori Overview. Figure 5.4 illustrates the system design of Cori and its interactions with

the hybrid memory page scheduler, summarized as follows:

1. The Reuse Collector executes a single profile run of the application to collect infor-

mation on data reuse.

2. The Frequency Generator analyzes the data reuse profile and generates a range of

proposed data movement frequencies. To achieve this, it first calculates the dominant

reuse period as a weighted average of the observed reuses (2a). Then, it generates

a range of candidate frequencies at time intervals that are multiples of the dominant

reuse period (2b), and outputs the frequencies to the Tuner in decreasing order, from

higher to lower frequencies, thus shorter to longer periods.

59

Cori

DRAM PMEM

cold pageshot pages

Hybrid Memory System

Page Scheduler

3a.Frequency1.

3b. Performance

Frequency Generator
2a. Dominant Reuse

2b. Candidate Frequencies

Reuse
Collector

Application Execution

2.
3.

Tuner

number
of trials

Figure 5.4: System components of Cori and its integration with the hybrid memory soft-
ware stack.

3. The Tuner makes a number of tuning trials with the candidate frequencies in the pro-

posed order. It configures the page scheduler to operate at each of the recommended

frequencies (3a). It then observes the application runtime and resource use and deter-

mines whether the application performance has reached best or desired levels (3b).

If not, the Tuner moves on to the next frequency in order, going back to step 3a.

Next, we describe in more detail these steps and system components.

Reuse Collector

The goal of the Reuse Collector component is to generate a histogram of data reuse similar

to the ones shown in Section 5.2. In the context of the simulation-based analysis we collect

memory access traces and have access to detailed information on data reuse in terms of

page reuse distances at the granularity of each individual memory access. This cannot be

generally achieved for arbitrary applications, therefore, we propose a practical system-level

alternative to collect similar information on data reuse.

Loop Durations. We make the intuitive realization that data reuse appears mostly within

loop operations during application execution. Therefore, information on the time duration

of loops can be a practical estimation to page reuse distance in the time domain. Figure 5.6a

60

depicts the time duration of loops across applications including backprop and lud. We

observe a similar histogram shape to the ones generated via the memory access traces for

the page reuse distances in Figure 5.3: backprop has distinct loop durations that repeat

around 15 times, which corresponds to the 16 data access strides depicted in Figure 5.2, and

lud shows a gradual degradation in the loop durations due to the triangular array traversal

and decreasing reuse of the number of pages shown in the same figure. We validate that

the loop duration histograms of the remaining applications match what we observed via the

memory access trace collection.

Collection of Loop Durations. In the context of validating Cori on a native testbed in Sec-

tion 5.5, we instrumented the applications source code and individually timed the duration

of the primary for loops. In principle, however, such instrumentation can easily be per-

formed using compiler-level [70, 71] or binary instrumentation techniques [72, 73]. Cur-

rently, we do not present a complete Cori tool which integrates such techniques, rather we

focus on establishing the methodology that forms the basis of such a tool, and demonstrate

via manual instrumentation that the methodology is effective. We verify that we can obtain

accurate loop timings using a LLVM compiler pass, similar to what has been used as part

of the Beacons compiler framework [71], which automatically generates the instrumented

binary without any application source code modifications.

Frequency Generator

Dominant Reuse. The Frequency Generator analyzes the data reuse histogram provided

by the Reuse Collector, in order to identify the one that best represents the range of cap-

tured reuses. We refer to this as the dominant reuse. Dominant reuse (DR) is computed

as a weighted average of the observed data reuses (N different reuses) in the histogram,

as summarized in Equation 5.1. The weights are the number of appearances repeati of a

reuse reusei in the corresponding histogram. This will shift the average towards the data

reuse distances that repeat more times. Additionally, we introduce an extra weight (N − i)

61

that favors shorter reuse distances, because this will allow us to generate a more calibrated

selection of candidate frequencies, that works irrespective of the page scheduler’s effec-

tiveness, as we evaluate in Section 5.5.

DR =

∑N
i=1(N − i)× repeati × reusei∑N

i=1(N − i)× repeati
(5.1)

CandidatePeriods = [DR, 2×DR, 3×DR, ...,
Runtime

2
] (5.2)

Output Candidate Frequencies. Based on DR, the Frequency Generator creates a sequence

of candidate data movement periods at time intervals that are multiples of DR, as shown

in Equation 5.2. The last possible candidate in the sequence is the one that splits in half

the overall application runtime that the Reuse Collector has previously observed. The can-

didate frequencies are derived by simply inverting the values of the candidate periods.

Figure 5.3 includes a visual representation of the candidate periods as red dots. Finally, the

Frequency Generator outputs to the Tuner the candidate frequencies in the specified order

from shorter to longer periods, thus higher to lower data movement frequencies. This pri-

ority ordering, together with the dominant reuse calculation, is essential to Cori’s success,

compared to other possible solutions, as we evaluate upon in Section 5.5.

Tuner

The Tuner uses the sequence of candidate frequencies to perform the actual tuning pro-

cedure. The Tuner starts its initial trial with the first frequency in order, sets it as the

operational page scheduling frequency and executes the application over the hybrid mem-

ory. If performance is within desired levels or the best one observed (after the first trial),

the Tuner chooses to stop or continue the tuning process. When the Tuner finds the fre-

quency that provides best performance after a number of trials, the selected frequency is

kept for any subsequent execution of the particular application on the given combination of

62

platform configuration and page scheduler.

Discussion

Cori currently improves upon tuning approaches, such as the empirical ones, by observing

best performance across a number of tuning trials of actual application execution. The de-

cision of after how many trials the tuning stops is flexible. There can be a fixed number

of trials or tuning can stop after performance reaches desired levels or shows no significant

variation from the last trial. However, such an execution-based tuning methodology may

be impractical for long running applications, such as training machine learning models and

scientific simulations. Nonetheless, Cori only requires the collection of data reuse informa-

tion, that can be made readily available using compiler-assisted instrumention, laying the

grounds towards an online frequency tuning solution. Cori can be extended with system-

level performance metrics and combined with online access pattern detection solutions

used in prefetching [59, 74], or machine intelligent page schedulers [31], so as to adapt the

page migration frequency to dynamic changes in data reuse and access patterns. Finally,

the recommendations made by Cori depend on the calculation of the dominant reuse, and

are therefore sensitive to the granularity at which the data reuse information is collected

and aggregated. The evaluations presented later base the calculation on reuse information

captured at granularity of 1000s of data accesses (in the simulation framework) and of each

loop (on the real hardware testbed). This instrumentation granularity can be dynamically

adjusted to trade among the tuning overheads vs. the quality of the recommendations.

5.5 Evaluation

The goal of the evaluation is to demonstrate how Cori realizes its design goals. First, we

highlight the benefit of using Cori with respect to application performance improvements

and system resource efficiency. Second, we evaluate the tuning overheads of using Cori.

Finally, we validate the effectiveness and practicality of Cori on the native Intel Optane

63

platform.

Benefit of Using Cori

Figure 5.1 includes the application performance and data moved when the page scheduling

frequency is tuned with Cori, compared to the frequencies proposed by existing solutions.

Regarding application performance, using the frequencies selected by Cori achieves on

average a 3% slowdown compared to when using the best possible frequency for each

of the applications. In comparison, the frequencies used by other techniques result in an

average 10%-100% slowdown from the ideal case. For cases where Cori does not provide

the best application performance, as in the case of quicksilver with a predictive page

scheduler, the performance with Cori is less than 3% away from the best observed one.

As discussed in Section 5.2, no other set of frequencies proposed by existing solutions

provides as good performance across all applications and page schedulers, as Cori.

In this experiment, the frequency tuning in Cori is performed to optimize application

performance, so it is not surprising that it does not provide uniformly lowest data move-

ment. However, Cori realizes the necessary data movements to achieve the provided appli-

cation performance levels. For instance, the increased data movement compared to some of

the predictive schedulers (e.g., 3× more compared to thermostat), are offset by the reduc-

tions in the slowdown compared to the best frequency case (5×). We highlight the actual

number of GBs moved for a native hybrid memory platform later in Section 5.5.

Cori meets the G1 design goal by bridging the performance gap left by existing solu-

tions and achieves only a 3% average slowdown from an optimal frequency selection across

applications and page schedulers.

Overhead of Using Cori

We evaluate the overheads of using Cori by comparing the number of tuning trials required

by Cori to find the best frequency vs. what is required to find that value using other tuning

methods. We also evaluate whether Cori’s overheads are justified, by comparing how close

Cori is to the performance of a system which operates at the best possible frequency for

64

each of the applications, vs. how close would the other methods be if they use the same

number of trials as Cori.

Given the lack of a non-empirical tuning approach, we construct a baseline, which like

Cori, operates at the system-level, but is blind to any insights it might have regarding ap-

plication requirements. This baseline explores the O(N) problem space of all possible fre-

quencies by using a simple step function, with candidate periodic time intervals that differ

by a duration of timestep, as summarized in Equation 5.3, The corresponding frequencies

are derived by inverting the periodic time intervals.

Base Candidates = [timestep, 2× timestep, ...,
Runtime

2
] (5.3)

Next, we vary the priority ordering of the generated candidate frequencies. First, the

base-left baseline starts from low frequencies (large periods) and moves to the left

towards higher frequencies (short periods) in the sequence described in Equation 5.3. The

base-right baseline starts from high frequencies and moves towards the right to lower

ones, similar to Cori. Third, we also assume a base-random approach that randomly

explores values in the sequence.

Figure 5.5a shows the number of tuning trials required for best application performance.

Among the baseline variations none of them works best across all applications and page

schedulers. More specifically, while base-right is the baseline approach that requires

least trials for a predictive page scheduler across application, base-left works best for

reactive page schedulers. Thus, a baseline approach that explores frequencies in a certain

priority ordering needs further insights to identify best performance in a reasonable number

of tuning trials. Even though base-random is independent of such a priority ordering,

its unpredictable frequency selection results in worst-case average tuning overheads.

In contrast, the guided frequency selection performed by Cori, allows it to make a

recommendation in just two trials on average for predictive page schedulers. Across appli-

65

cations and page schedulers Cori reduces the number of trials by 5×, from 25 on average

across baselines down to only 5 trials. The only corner case where Cori requires up to

20 trials is for applications with random access patterns like bfs and bptree where the

access pattern prediction capabilities of a reactive page scheduler are limited. This is the

reason why for such applications, when a more predictive page scheduler [31] is not avail-

able, the cache organization of the hybrid memory is shown to be more beneficial [46].

Cori meets the G2 design goal by reducing by 5× the number of tuning trials needed

to reach an average of only 3% performance slowdown, compared to baselines that ignore

insights about application requirements, and as low as 2 trials on average for predictive

page schedulers.

Figure 5.5b shows the performance that the baselines provide when executing for the

same number of tuning trials that Cori requires to find best performance. The values are

averaged across the page schedulers. On average, the baselines incur higher performance

slowdown because they require significantly more trials to reach best performance, as

shown in Figure 5.5a. Within the execution overhead of Cori, only the base-random

approach seems to be able to still choose frequencies that provide good performance,

but only for some of the applications; for others (e.g., quicksilver and pennant),

base-random is less effective even compared to some of the other baselines.

For completeness, in Figure 5.5c, we also show the best frequencies selected by Cori

for the two types of schedulers. We highlight that the best frequency that maximizes appli-

cation performance differs across schedulers and across applications, further justifying the

use of Cori.

Cori meets the G3 design goal since it provides maximum performance improvements

for minimum number of tuning trials across applications and page schedulers.

Optane DC PMEM Validation

We validate the simulation-based observations about Cori by providing results from a native

hybrid memory platform. These experiments also demonstrate the feasibility of using Cori

66

20

40

60

1 5 3 1 1 4 3 3 3 2

predictive page sceduler

Frequency Tuning Solution
base-random base-left base-right cori

20

40

3 3 5 5 4 4

reactive page scheduler

backprop
kmeans hotspot

quicksilver cpd lud bfs bptree
pennant

average

20

40

2 4 4 3 2 5 3 5

Average across page schedulers

(a) Number of tuning trials to find best performance. Cori (blue text) requires the minimum number
of trials on average across all applications and page schedulers.

backprop
kmeanshotspot

quicksilver cpd lud bfs bptree
pennant

average
0

20

40

Pe
rc

en
ta

ge
 (%

) Average across page schedulers

Frequency Tuning Solution
base-random base-left base-right cori

(b) Performance slowdown from best frequency for Cori’s number of trials. Cori is the only solution
that provides lowest slowdown consistently for every application and page scheduler.

backprop
kmeanshotspot

quicksilvercpd lud bfs bptree
pennant

average
0

50000

100000

150000

Re
qu

es
ts

 p
er

 P
er

io
d

Page Scheduler
predictive reactive

(c) Final period time duration selection of Cori.

Figure 5.5: Comparison of Cori with a baseline frequency tuning solution for a simulated
hybrid memory system with DRAM and PMEM at 20%:80% capacity ratio.

67

as a practical system-level solution for frequency tuning. The experiments are conduced on

an Intel Optane platform, configured with 20%:80% DRAM to PMEM capacity ratio, and

a reactive page scheduler kernel module that operates over a window of past access history,

both as described in Chapter 3. Then, we go through the steps of Cori as summarized in

Figure 5.4 and report our findings in Figure 5.6.

Recreating Cori’s steps. First, we gather information on data reuse. More specifically, we

collect the time duration of the loops across applications, as shown in Figure 5.6a, using the

suggested approach in Section 5.4. Second, we calculate the dominant reuse as described

in Equation 5.1 and generate the candidate period durations at multiples of the dominant

reuse, as shown in Figure 5.6b. While for backprop, kmeans, hotspot the domi-

nant reuse is around 1 sec, for lud it is much less, given the corresponding loop duration

histogram. We also include period durations that are less than the dominant reuse, to vali-

date whether performance indeed is not best for such periods that Cori does not include in

its sequence of candidates. Third, we replicate Cori’s tuning process by executing the ap-

plications for the selected period durations in increasing order and observe the runtime, its

slowdown from the ideal case of infinite DRAM and data moved, as shown in Figure 5.6c.

The final choice according to Cori is the first period duration in the experimentation order

that drastically reduces the amount of data moved and thus appropriately reduces the run-

time. Figure 5.5c inidicates in blue the final period choice and the number of tuning trials

it required.

Validation observations. First, we observe that period lengths that are shorter than the

dominant reuse (DR/4, DR/2), create tens of GBs of more data moved, consistently across

all applications. This confirms the insight presented in Section 5.2 that the operational pe-

riod should not be shorter than the data reuse pattern. Also, it validates Cori’s effectiveness

in calculating the dominant reuse and choosing it as the initial point of tuning. The perfor-

mance with much larger periods is not included in Figure 5.6c, since it can be substantially

worse, such as 50% of runtime slowdown for lud at 5 second periods, and Cori’s tuning

68

ends at much shorter periods.

Second, regarding application performance and system resource efficiency, Cori selects

the period duration that reduces to their lowest levels both the data moved and the run-

time slowdown from the case of infinite DRAM capacity, across all applications. For some

applications these levels of runtime slowdown are less significant than others. For appli-

cations like kmeans and lud very short periods that force the reactive page scheduler

to create a burst of asynchronous data movements, are not enough to stress the Optane’s

bandwidth and proportionally reflect on their runtime. Regardless, Cori identifies the page

scheduling frequency that enables the best performance levels allowed by the available

DRAM capacity and minimizes data movement overheads. Additionally, the levels of run-

time slowdown observed in this experiment, are very similar to the ones captured in our

simulation (Figure 5.3), validating its correctness.

Finally, the selected periods themselves are different across applications and range be-

tween 1-3 seconds. Even though this doesn’t seem as a substantial difference, empirical

approaches may have ignored values in such proximity, however, for backprop the run-

time slowdown reduces by 50% when going from 1 second to 3 second periods, and for

hotspot by 30% when switching from 1 second to 2 second periods. This validates

the benefit from using Cori toward realizing significant application performance improve-

ments, within only 2-3 average tuning trials, minimizing the tuning overheads.

Cori meets the G4 design goal by allowing for a practical integration with existing

hybrid memory system-level managers, and can be realized without modification to appli-

cations and system-level components. Validation of Cori on the Intel Optane DC PMEM

platform, confirms the simulation-based motivational arguments and insights, and high-

lights the benefit of using Cori in return for minimal tuning overhead.

69

0 1 2 3
Time (sec)

0

10

backprop

0.95 0.96 0.97 0.98 0.99 1.00
Time (sec)

0

20
kmeans

1.0 1.1 1.2 1.3
Time (sec)

0

25

hotspot

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

0

500

lud

(a) Cori Step 1: Collect loop time durations.

backprop kmeans hotspot lud
0

2

4

6

Ti
m

e
(s

ec
)

3 trials

1 trials
2 trials

4 trials

Cori Candidate Periods > DR
DR/2
DR/4

DR
2 DR

3 DR
4 DR

5 DR
cori

(b) Cori Step 2: Calculate the dominant reuse DR and generate candidate period lengths at multiples
of the DR. Final Choice: Select the first period length (blue bar) after x trials, that brings lowest
runtime and migrations.

0

200

Pe
rc

en
ta

ge
 (%

)

Slowdown from infinite DRAM

Period Duration
DR/2
DR/4

DR
2 DR

3 DR
4 DR

5 DR
cori

0

500

Ti
m

e
(s

ec
) Runtime

backprop kmeans hotspot lud
0

50

GB
s

Data moved across all periods

(c) Cori Step 3: Tuning trials of application performance.

Figure 5.6: System-level validation of Cori for a reactive page scheduler that executes on a
native Optane DC PMEM platform for 20%:80% DRAM:PMEM capacity ratio.

70

5.6 Chapter Summary

This chapter presented Cori, a system-level solution for tuning the operational frequency of

data tiering solutions that periodically move data across flat hybrid memory components.

Cori reveals that related works do not properly configure their operational frequency rely-

ing on empirical tuning, thus failing to deliver up to 100% of performance improvements.

Cori synthesizes insights on data reuse information to better guide the process of select-

ing frequency candidates, reducing by, on average, 5× the number of tuning trials from

an insight-less exploration. This way, Cori delivers performance improvements within 3%

from the case of optimally chosen frequency. Cori is robust, and provides benefits across

application data access patterns and page migration policies. Such benefits are complemen-

tary to the use of machine learning and further boost its effect on application performance.

71

CHAPTER 6

SCALING MANAGEMENT OPERATIONS WITH PATTERN CLUSTERING

The previous chapters describe solutions that enable machine learning-based predictions

(Kleio), and fine-tuned operation (Cori), and deliver significant performance improvements

over current hybrid memory management systems. The reminder of this thesis focuses on

how to reduce the operational overheads of machine learning-based hybrid memory man-

agers, like Kleio, and strengthen the foundations for their practical use as system-level

solutions. In this chapter, we identify that even though Kleio selects a small page subset for

machine learning-based management, the size of the subset can vary across workload sizes

and patterns, resulting in significant learning overheads. To this end, this thesis contributes

Coeus1, a page clustering mechanism that enables the management of more pages under a

single machine learning model, thus reduces the aggregate number of models and the asso-

ciated training costs. In this chapter, we reveal the limited effectiveness and practicality of

using well known data clustering methods. In contrast, we leverage the data reuse insights

described in the previous Chapter, to increase pattern similarity and facilitate lightweight

page grouping.

6.1 Overview

In Chapter 4 we presented Kleio, a hybrid memory page scheduler with machine intelli-

gence. Kleio lays the foundations for the practical use of machine learning by identifying

a small page subset (small with respect to the overall memory footprint of the application)

that benefits from ML-based management. However, the absolute number of the pages

managed with machine intelligence can vary substantially across workloads. It depends

on various parameters, such as the aggregate number of pages and type of access patterns.

1The name is inspired by ancient Greek mythology, where Coeus was the titan god of intelligence.

72

Page
Selector

Page

Page

Page

Page

Page

RNN

RNN

RNN

RNN

RNN

Pool of
Pages

History

pr
io
rit
y

Page hotness
predictions

Page
Cluster
Selector

Page
Cluster

Page
Cluster

RNN

RNN

Pool of
Pages

History

pr
io
rit
y

Page hotness
predictions

Figure 6.1: Scaling machine learning models to learn patterns across a page cluster instead
of a single page.

Therefore, certain applications may need significantly more resources for training than oth-

ers. To realize a practical system-level integration of solutions based on machine learning

effectively across application classes and inputs, it is necessary to further reduce the re-

source requirements and overheads associated with machine learning.

The most intuitive approach in reducing the overheads of deploying per page models

is to create fewer models that correspond to more pages by clustering pages and training

a single model per page group, as depicted in Figure 6.1. Yet, this is not a trivial task,

as it introduces new design questions and challenges. For instance, which, how many and

with what criterion should pages be grouped in the same cluster? What is the optimal

number and composition of clusters for the purpose of training a single RNN per cluster

with high prediction accuracy and low training times? The use of unsupervised machine

learning clustering methods can potentially resolve some of these questions. However,

these come with substantial execution overheads and configuration constraints, such as

knowing a priori how many clusters to create. We ask then; Can we build a fast and robust

approach that allows machine learing models to be associated with a larger number of

pages – as what could be achieved with clustering – without the additional complexity that

use of unsupervised learning techniques would introduce?

Contributions. This part of the thesis proposes Coeus, a page grouping mechanism that fa-

cilitates the practical integration of machine learning in system-level hybrid memory man-

73

agement. Coeus bypasses the complexities and overheads of running well-established data

clustering methods. Instead, Coeus leverages data reuse insights to analyze the training

data and to then instantly create efficient clusters of pages. The specific contributions are

the following:

• We demonstrate that the resource requirements for training a single machine learn-

ing model per page, for the page subset selected by Kleio, vary up to 9× across

applications with different memory footprints and data access patterns (Section 6.2).

• We explore widely used machine learning data clustering methods to group pages to-

gether, so as to train a single machine learning model per page cluster. We argue that

these methods introduce additional overheads and complexity to the already complex

hybrid memory management pipeline (Section 6.3).

• We leverage insights on data reuse times to group pages together at no additional

overhead, while ensuring efficient RNN deployments (Section 6.3).

• We describe the design of Coeus and how it integrates with existing machine in-

telligent hybrid memory management solutions, such as Kleio. (Section 6.4). The

implemented code base is open sourced2.

• We evaluate Coeus against Kleio and show that it reduces the associated learning

overheads by almost 3× and increases application performance by 3× (Section 6.5).

6.2 Motivation

Kleio’s original evaluation over 20 different workloads, given the substantial amount of re-

sources required and the available experimental setup, allowed for training RNNs for only

100 pages per workload, as summarized in Section 4.6. Figure 6.2 shows how application

performance increases (y-axis) the more RNNs are deployed (x-axis) compared to the ones

2https://github.com/GTkernel/coeus-sim

74

https://github.com/GTkernel/coeus-sim

1x 5x 9x 13x 17x
More RNNs trained than Kleio

0

20

40

60

80

100

120

Pe
rc

en
t (

%
)

Performance Improvement

backprop
kmeans
hotspot
quicksilver
cpd
lud
bfs
bptree
pennant

Figure 6.2: Application performance improvements across larger number of per page
RNNs deployed from the ones allowed by the available rersources in Kleio’s evaluation
(1×).

used in Kleio’s evaluation. We observe that certain workloads, such as quicksilver re-

quire at least 9× more RNNs to be trained, to reach maximum performance improvements,

which are 120% higher than the one provided with Kleio’s evaluation. Similarly, the per-

formance of backprop improves by 80% and cpd by 20% with 4× more RNNs than

Kleio. The non-linear increase in performance of these workrloads is inherent to the page

priority ordering that Kleio follows, as mentioned above. Finally, workloads with more

random access behaviors, such as bptree and bfs, linearly improve their performance

by 20% for 9× more RNNs than Kleio.

The variability in the performance improvements across larger number of RNN train-

ings, is inherent to application-level characteristics regarding their data input sizes and

data access patterns. Figure 6.3 shows on the x-axis the size of the memory footprint

for the data input sizes configured in our experimental setup. The scale is relative to the

smallest memory footprint we observe across workloads, that is the one corresponding to

hotspot. This characteristic is one parameter contributing to the number of per page

RNNs needed to achieve maximum performance improvements, which is particularly high

for quicksilver, bptree and bfs that have larger number of pages compared to the

rest of the workloads.

75

0x 1x 2x 3x 4x 5x 6x
Relative Size of Memory Footprint

0%

20%

40%

60%

80%

100%

Pa
ge

s M
isp

la
ce

d

backpropkmeans

hotspot

quicksilver
cpdlud

bfs
bptree

pennant

Figure 6.3: Workload characterization with respect to the relative size of their memory
footprint for the selected data inputs (x-axis). Percentage of page misplacements by history-
based page schedulers (y-axis).

Apart from the aggregate memory footprint, the other application-level characteristic

that contributes to the number of RNNs that need to be trained, is the complexity in the

access patterns. Applications with higher complexity in access behavior have higher need

for machine learning-based management, because history-based management fails to ef-

fectively capture more intricate patterns. Kleio’s Page Selector identifies such complex

patterns by observing which pages are frequently misplaced by simple history-based pre-

dictors. The y-axis of Figure 6.3 shows the percentage of such misplaced pages from the

overall workload’s memory footprint. We observe that workloads with more complex, yet

structured access patterns, such as quicksilver, have 70% of their memory footprint

be misplaced, thus mis-managed, by history page schedulers, thus would benefit from the

RNN training of this page subset. Similarly, in the case of bfs and bptree that exhibit

irregular and random accesses, they also require more than 60% of their footprint to be

trained with RNNs.

Takeaways. The resource requirements for machine learning-based hybrid memory man-

agement can vary significantly across workloads. This is inherent to the workload’s mem-

ory footprint and access patterns, as well as to the design choice of training a single RNN

model per application page out of a insight-fully selected page subset, whose size varies

across workloads.

76

(a) Page access patterns are similar over very short page scheduling periods.

(b) Page access patterns become identical over larger page scheduling periods.

Figure 6.4: The memory access patterns, that machine intelligent page schedulers learn,
are the per page access counts across the scheduling periods.

6.3 Clustering Similar vs. Identical Patterns

The results in the previous section show that the deployment of a single machine learning

model per application page is not scalable with respect to resources required for training

across workload classes and inputs. To reduce the aggregate learning overheads and re-

source utilization it is necessary to increase the granularity of the address space managed

under a single model. Our approach is to train individual models at the granularity of a

page cluster, and learn the specific access patterns of the pages in the cluster.

Machine intelligent page schedulers, like Kleio, learn patterns across time, not space,

training a single RNN per page. These patterns correspond to the sequence of page ac-

cess counts (hotness) across the page scheduling periods. Figure 6.4a shows a heatmap

of the page hotness for two neighboring pages of the workload backprop. The hotness

across the two pages seems to be very similar, with few differences in the absolute access

counts for specific periods. Since their patterns are so similar, it is intuitive that these

77

two pages should belong in the same page cluster and correspond to the same RNN de-

ployment. Therefore, we need a mechanism that identifies similarities across page access

patterns and creates such groups of pages. The challenge in this approach is to execute

the page clustering incurring trivial overheads. The machine intelligent hybrid memory

management already involves substantial overheads and complexity, which should not be

further exacerbated with an intricate clustering process.

Therefore, we first try to use unsupervised machine learning data clustering methods

that are widely used across domains. In particular, they are very effective in forecasting

time-series (patterns in time), that are grouped according to their similarity [75, 76, 77].

However, we make a case that it is particularly challenging to optimize upon the number of

clusters created, while the process introduces additional overheads and configuration con-

straints. Then, we show how to bypass such complexities and use data reuse insights to

instantly create large page groups of identical access patterns, which can be inferred using

a single input to a single machine learning model.

Clustering Similar Patterns

Overview of K-means. First, we explore widely used machine learning methods to group

together data that share similar characteristics. Common terminology refers to the input

data as observations or samples, that each have a set of features, i.e., characteristics. The

similarity between the observations is referred to as distance, which involves some al-

gebraic calculation of the difference between the values of the individual features across

observations, e.g., euclidean distance. One of the most commonly used clustering algo-

rithms is k-means, which partitions observations into a predefined number of k clusters.

The algorithm works by randomly selecting k observations as centroids and groups to-

gether observations with a small distance from these centroids. The algorithm repeats and

optimizes the centroid selection, so that the sum of squared distances from the centroid,

known as inertia, minimizes.

78

0 500 1000 1500
Number of Clusters

0

500

1000

1500

In
er

tia
 (D

iss
im

ila
rit

y)

Page Clustering with KMeans

backprop
hotspot
pennant
lud
kmeans
cpd
bfs
bptree
quicksilver

Figure 6.5: Page cluster inertia (dissimilarity) across increasing number of clusters created
with k-means, for the page subset selected for machine learning. Larger number of clusters
include fewer pages that are more similar.

Number of clusters. K-means requires to define the number of clusters before execution.

Yet, setting this value is not always intuitive for a given dataset, whose characteristics we

are not aware of. According to a thorough survey of all clustering methods, finding the

optimal number of clusters and the similarity metric are the two biggest challenges and

constraints in clustering [78]. This is why other methods such as hierarchical clustering,

have higher time complexity, since they create a hierarchy of all possible number of clus-

ters. One way to find the optimal number of clusters k for k-means, is to run the algorithm

for a reasonable range of k values and select the one, after which clusters don’t change dras-

tically. In a more formal mathematical description, this is described as the elbow method

or otherwise known as finding the ‘knee of a curve’. In particular, for k-means the curve

corresponds to how the inertia, i.e., the sum of squared distances of observations to their

cluster’s centroid, decreases as we increase the number k of clusters. Lower inertia means

higher similarity within a cluster. Zero inertia corresponds to clusters of data samples with

identical feature values. A good selection of k number of clusters is the one where inertia

doesn’t drastically reduce, i.e., ‘shows a knee’, if we create an additional cluster.

Application of K-means. In the context of page clustering, the input observations are the

different application pages and the per page features are the page access counts across

79

the scheduling periods, as depicted in Figure 6.4. This feature selection allows k-means

to cluster together pages that received similar number of accesses across periods. Prior

to clustering the features are normalized between 0 and 1, as it is a common practice in

machine learning.

Complexity in the Configuration of the Clustering. Figure 6.5 shows how the dissimilarity

of the pages in a cluster decreases, the more clusters we create, thus the fewer pages a

cluster contains. The lower the inertia the more similar are the pages within the cluster.

When inertia is zero the pages of the cluster are identical, meaning they receive exactly the

same access counts across scheduling periods. The clustered pages are the ones selected for

RNN training by the machine intelligent page scheduler. The selected page subset contains

pages whose patterns cannot be accurately predicted with history-based approaches, thus

need machine learning-based predictions.

In general, we observe that the inertia decreases very slowly the more clusters we create,

almost in a linear way. There is not a distinct number of clusters where the inertia curve

significantly dips, in other words there is no ‘knee’. Therefore, it is not obvious which

number of clusters is best to choose even after experimenting with all possible cases, let

alone defining it prior to k-means execution, as required. This behavior is inherent to the

patterns of the pages selected for machine learning. These patterns are highly dissimilar

and this is exactly why they need machine learning-based management. We also observe

that empirically selecting a number of clusters that could work well for one application,

may not be as effective for another. For example, creating 500 clusters is best for cpd, but

results in highly dissimilar clusters for bfs, quicksilver and bptree. Therefore, the

number of clusters needs to be tuned on an application basis.

Additional Complexity in the RNN deployment. Another design aspect of clustering based

on similarity, that is not straight-forward, is how to train a single RNN model across inputs

of different pages. There are two possible design choices. The RNN model can take as input

the access patterns of all pages. Therefore, now the input grows linearly to the number of

80

pages in the cluster. This will increase the training time of a single RNN model, as it

has to manipulate bigger input, learn more patterns and possibly take longer to converge.

Arbitrary increase of the cluster size may lead to prohibitive training times, which is the

primary reason why machine intelligent page schedulers create models at the granularity

of the page. To avoid this increase, which contradicts the purpose of this work, the input to

the RNN model can be the access pattern of a single page of the cluster. This page should

correspond to the centroid of the cluster, which has highest similarity with the rest of pages

of the cluster. However, according to the size of the cluster and how similar pages are, there

may be the case that the RNN model that is trained on the centroid, does not make highly

accurate access patterns predictions for the rest of pages of the cluster. This can particularly

be the case since the clustering is applied across pages which have already been identified as

ones which need machine learning to aid with page scheduling, and thus are more likely to

have dissimilar patterns. Therefore, we ideally need a clustering mechanism that does not

increase the per model training times and does not compromise on the prediction accuracy.

Takeaways. The use of machine learning clustering methods for the purpose of page clus-

tering introduces new complexity in the already strenuous problem of hybrid memory man-

agement. The complexity comes from the fact that is not intuitive how many page clusters

to create, given how dissimilar the target pages are, and how to best configure the training

of a single RNN model for input of more than one page with minimal overheads. Ideally,

we seek a simple technique to completely bypass all such complexities, leveraging insights

and observations that will allow for instant creation of large clusters of pages that do not

require any changes to the way RNNs are deployed.

Clustering Identical Patterns

We next make the observation that it is trivial to calculate the number of page clusters

created with zero inertia, i.e., where pages are identical. This is the point where the curve

hits the x-axis in Figure 6.5 and corresponds to the case where each cluster contains data

81

1x 5x 10x 50x
100x

500x
1000x

Period Duration

0

20

40

60

80

100

%
 p

ag
es

Number of pages with non-identical patterns

backprop
kmeans
hotspot
quicksilver
cpd
lud
bfs
bptree
pennant

Figure 6.6: Number of pages with non-identical patterns as percentage of per application
pages across longer periods compared to Kleio’s (1×) period duration. Fewer pages means
fewer and larger clusters with identical pages.

samples whose features have exactly the same values. This can be done with a single

comparison of the per page access patterns to see if they already belong to the global set

of patterns. In this way, we can instantly create clusters of pages and completely remove

the complexity in the configuration of the clustering as described in the previous section.

In addition, the fact that patterns of a cluster are identical, also removes the complexity in

the RNN deployment. The input to the RNN now can be the access pattern of a single page

of the cluster, which does not require any increase in the training times. Since each page

of the cluster shares the exactly same pattern, this trivially preserves the same prediction

accuracy as when the model has been trained on the input of each page individually.

The challenge that still remains is that the number of clusters with identical pages varies

significantly across workloads and can be significantly large given how dissimilar pages

are, and the workload’s memory footprint and patterns. Is there a way to create fewer and

larger clusters of pages with identical patterns?

Looking back at Figure 6.4 we see how the page access patterns look in the context of

machine intelligent page scheduling. The difference between Figure 6.4a and Figure 6.4b

is the number of page scheduling periods. A page scheduling period determines not only

when page scheduling operations are performed, but also the granularity at which page

82

access data (or data traces) can be used as inputs to an RNN model. This impacts the

length of the pattern and its absolute values. Longer periods create patterns that span a

smaller number of periods and have larger page hotness values, since more page accesses

are received at a longer time interval. When zooming out and observing page access counts

over larger periods, the access patterns of the same pages transform from very similar (

Figure 6.4a) to completely identical (Figure 6.4b).

Observing patterns at the right granularity. Given these insights, observing patterns at a

more coarse-grain granularity, that is the duration of the page scheduling period, increases

the similarity of certain page access patterns to be completely identical. Figure 6.6 shows

how the number of page clusters with identical patterns decreases, as the page scheduling

periods become longer in time. The period duration selected by related works, such as 0.01

seconds in Kleio, is too fine-grained and creates dissimilarities in the patterns, as depicted

in Figure 6.4a. Periods that are 10×, 100× and 1000× longer than Kleio’s, create fewer and

larger page clusters with identical patterns for majority of the workloads evaluated. Related

memory management solutions [12, 14, 28, 13, 15] adopt such values of data monitoring

and page scheduling intervals, that span across orders of magnitude. The decrease in num-

ber of clusters with identical patterns is prominent for workloads that have certain structure

in their patterns, even if these are simple access strides, such as backprop, kmeans and

hotspot or more complex ones, such as cpd and quicksilver. For these workloads,

zooming far out at very long periods, creates fewer and larger clusters of identical patterns,

whose number corresponds to only 10% - 30% of the workload’s memory footprint. This

is not necessarily the case for applications with more irregular data access behavior. For

instance, the triangular matrix traversal of lud and high accesss randomness bfs result

in page access patterns that are dissimilar, no matter the length of period. In conclusion,

longer page scheduling periods enable the observation of the patterns of page access counts

across periods at a granularity that allows the creation of larger and fewer page clusters with

pages of identical patterns for applications with structured access patterns.

83

0

25

50

75

%
 p

ag
es

(a) Number of pages with non-identical patterns

Period Duration
0.01 sec DomReuse

back
prop

km
ean

s
hots

pot

quick
silv

ercpd lud bfs
bptre

e

pennant

ave
rag

e
0

1

2

3

Ti
m

es
 (x

)
(b) Performance improvement

Figure 6.7: Number of pages with non-identical patterns (a) and application performance
improvement (b) for history-based management over the period duration selected by Kleio
(0.01 sec) and the one (DomReuse) calculated by Cori.

Which is the right granularity? However, changes in the duration of the page schedul-

ing period have a direct impact on application performance, since it affects the timeliness

and frequency of data movements across the hybrid memory. Arbitrarily increasing the

length of the period may result in insufficient data movements that do not respond in time

to changes in the workload’s memory access behavior. We need to set the period duration

such that it is large enough to create few and large page clusters of identical patterns, with-

out compromising on performance. To this end, our own previous work builds a practical

system-level tuning solution – Cori [32] – that finds the page scheduling period duration

which maximizes application performance over hybrid memory systems. Cori uses readily

available information on page access behavior to extract the per page reuse times and syn-

chronizes the page scheduling periods with the average reuse times. More specifically, Cori

calculates the weighted average of the reuse times that are ‘dominant’ across pages, that

is the dominant reuse time. Experimental evaluation of Cori over simulation infrastructure

and validation with an actual hardware platform with DRAM and Intel Optane persistent

84

memory shows that hybrid memory page schedulers which operate at a period duration that

matches the per workload’s dominant reuse time, provide maximum levels of application

performance.

Figure 6.7 shows the relation between the number of pages with non-identical patterns

and performance when we set the page scheduling period as the dominant reuse time, com-

pared to the 0.01 seconds that Kleio has chosen in its original configuration. Regarding

application performance (Figure 6.7(b)) we see that the choice of dominant reuse as pe-

riod provides almost 2× performance improvements, on average, across workloads. This

is for the case when a history-based scheduler is used, therefore we expect that a machine

intelligent scheduler will also benefit, as we will see in Section 6.5. At the same time, the

period selection results in 30% fewer pages with non-identical patterns, on average across

workloads, compared to Kleio’s period selection, as shown in Figure 6.7(a). This essen-

tially means 30% reduction in the total number of clusters that have pages with identical

patterns. The reduction can be as drastic as 60% for workloads like quicksilver, which

have structured yet complex access patterns. However, as previously mentioned it is not

as significant for workloads with irregular or random access patterns. In conclusion, using

the period duration proposed by Cori, with trivial calculations over readily available page

access information, allows the observation of the patterns at a granularity that facilitates the

creation of large page clusters with identical patterns, while also maximizing application

performance.

Takeaways. Observing page access patterns at a coarse-grain granularity increases their

similarity to being completely identical. Clustering pages with identical access patterns al-

lows us to bypass complexities and overheads of applying machine learning data clustering

methods. The use of insights on data reuse times allows the instant calculation of the page

scheduling period duration that enables the creation of fewer and larger page clusters with

identical patterns, while ensuring high application performance levels.

85

6.4 System Design of Coeus

Design goals. The objectives of the proposed solution are as follows:

G1 Reduce the aggregate number of RNNs that need to be deployed to enable maximum

application performance improvements. In other words, manage more pages intel-

ligently with a certain number of RNNs, compared to current machine intelligent

solutions that deploy a single RNN per page of a specific page subset.

G2 Deliver higher application performance when training the same number of RNNs as

current machine intelligent solutions.

G3 Introduce minimal operation overhead in the machine intelligent hybrid memory

management process.

To address these goals, we propose Coeus, a page grouping mechanism for machine

intelligent page schedulers over hybrid memory systems. Coeus creates clusters of pages

with identical patterns of page access counts across the page scheduling periods, leveraging

data reuse insights to increase the pattern similarity. Then, Coeus identifies the patterns

for which RNNs should be trained. In this way, Coeus enables the machine intelligent

management of more pages (G1), by using a single RNN per pattern, thus page group.

In addition, Coeus drastically improves application performance (G2), not only due to

the intelligent management of more pages, but also due to the fine-tuned page scheduling

frequency, that current machine intelligent page schedulers, such as Kleio [31], had missed

to achieve. Finally, Coeus leverages the same input with such solutions and runs at a trivial

overhead (G3), since all of its actions take trivial time to complete.

Coeus Overview. Figure 6.8 illustrates the system design of Coeus and its interactions

with a machine intelligent page scheduler for hybrid memory systems.

1. The Pattern Analyzer takes as input the memory access trace and extracts a heatmap

86

history
Page access

counts predictions

RNN

Pattern
Selector

Pattern
Pattern
Pattern
Pattern
Pattern

Pool of
patterns

RNN
RNN
RNN
RNN

ML-based
Page Scheduler

Pattern
Analyzer

Coeus

Figure 6.8: System design of Coeus and its interaction with a machine intelligent page
scheduler.

of per page access counts across page scheduling periods, calculating the dominant

page reuse distance and using it as the period duration (Step 1a). Then, it identifies

the page access patterns that are unique across pages, creating clusters of pages with

identical patterns (Step 1b).

2. The Pattern Selector runs Kleio’s Page Selector ‘as-is’ using the page access count

heatmap from the Pattern Analyzer (Step 2a). Then, the Pattern Selector chooses

the unique patterns that are shared across pages selected for machine learning-based

management (Step 2b). The final output are these unique patterns that are the input

for training a different RNN model per pattern, in parallel.

Next, we describe in more detail the internal functionality of the system components.

Pattern Analyzer. Figure 6.9a shows the pipeline of the Pattern Analyzer component of

Coeus. First, the Pattern Analyzer converts the memory access trace into a heatmap of page

access counts across page scheduling periods (Step 1a). To make this conversion the Pattern

Analyzer first sets the period duration to be the length of the application’s dominant page

reuse distance, as described in Section 6.3. This distance is calculated using information

that is already available in the memory access trace and the analytical formula proposed by

Cori [32]. Kleio extracts similar page access count heatmap, but arbitrarily sets the page

scheduling period duration at 0.01 seconds across workloads. Next, the Pattern Analyzer

87

Step 1a: Page Access Patterns Step 1b: Page Clustering

Memory Access Trace

Unique Page Access Patterns

(a) Pattern Analyzer.

Kleio’s Page Selector

Other Pages

Page Access Patterns
Unique PatternsStep 2a

Step 2b:
comparison

Patterns for ML

RNN

RNN

Output

Pages for ML

(b) Pattern Selector.

Figure 6.9: System components of Coeus.

isolates the sequences of page access counts across periods (page access patterns) that are

unique across pages. This process is equivalent to creating clusters of pages with sequences

that are completely identical, meaning that every access count across periods is exactly the

same for the pages of the cluster (Step 1b). Finally, the Pattern Analyzer outputs the set of

unique page access patterns.

Pattern Selector. Figure 6.9b shows the internal functionality of the Pattern Selector com-

ponent of Coeus. The input to this component is the heatmap of page access patterns and

the unique patterns that the Page Analyzer identified. The Pattern Selector runs Kleio’s

Page Selector component ‘as-is’, taking advantage of its clever selection of which pages

88

to prioritize for RNN training. The output of Kleio’s Page Selector are two different page

subsets. One corresponds to pages that should be managed intelligently and the other to the

rest of the pages which are efficiently managed by lightweight history-based page sched-

ulers. At this point Kleio would proceed with training RNNs for as many pages as possible

out of the corresponding subset. In contrast, Coeus compares the patterns of the pages se-

lected for machine learning with the unique patterns provided by the Pattern Analyzer. In

this way, the Pattern Selector returns which patterns, not pages, should be prioritized for

RNN training, following the priority ordering of the corresponding pages.

Interaction with Page Scheduler. Coeus provides the unique page access patterns for

which a machine intelligent page scheduler should deploy RNNs for offline training and

online inference. In addition, Coeus provides the page scheduling period duration that will

improve upon the scheduler’s performance, as described in Section 6.3. During application

execution, upon every page scheduling period, the page scheduler will use the same RNN to

infer the access counts of all pages that share the same pattern, belonging to the same page

cluster, using as an identity matching the pattern itself. In this way, the page clustering

allows for higher number of pages to be managed intelligently compared to the number

of RNNs deployed. Coeus does not intervene in the page scheduling itself, that is the

selection of which pages to move. The page clustering of Coeus is not used to schedule

groups of pages, only to facilitate the accurate prediction of page access counts that the page

scheduler employs to decide which pages to periodically move across hybrid memory.

6.5 Evaluation

The goal of the evaluation is to demonstrate how Coeus realizes its design goals, as de-

scribed in Section 6.4. We highlight the application runtime performance and reduction

in machine learning overheads that Coeus enables. Second, we enumerate the execution

overheads of Coeus and argue that they have trivial impact on the ML-based page schedul-

ing overheads. The experimental evaluation is done over the hybrid memory simulation

89

environment, performance estimates and applications described in Chapter 3.

We evaluate Coeus against Kleio, since it is designed to optimize upon the initial de-

sign of Kleio. However, for the evaluation of Coeus, we do not go through an actual

deployment of Recurrent Neural Networks, since we have evaluated the achieved predic-

tion accuracy levels in Section 4.6. Since Coeus inputs identical patterns to a single model,

it preserves the high prediction accuracy, low training and inference times per model as

evaluated in Kleio. Instead, we assume perfectly accurate access pattern predictions, via

a-priori knowledge of the memory access patterns through the collected traces.

Application Runtime

We first evaluate the application runtime and machine learning overheads, when using

Coeus to configure the deployment of a machine intelligent page scheduler, such as Kleio,

compared to standalone execution of Kleio. We also include a comparison with the case

when Kleio operates at very fine-tuned page scheduling periods (Kleio + OPT period),

compared to 0.01 seconds that was selected for its original evaluation. We have shown

in Section 6.3, how the selection of 0.01 second periods is sub-optimal even for purely

history-based page schedulers. This comparison will isolate the performance improve-

ments of Coeus that derive from the page scheduling frequency itself vs. the effects of

page clustering. Kleio with optimal period selection manages the same pages as in Kleio,

since there is no page clustering involved.

Page clustering effectiveness. Figure 6.10(a) shows how many more pages Coeus manages

intelligently via its page clustering mechanism, compared to Kleio as a baseline (1×).

On average, Coeus manages almost 3× more pages than Kleio, when training the same

number of machine learning models. Coeus works exceptionally well for workloads with

complex patterns, such as quicksilver, for which it manages almost 7× more pages

than Kleio, due to the use of a page scheduling frequency that enables the creation of

large page clusters with identical patterns. Similarly, Coeus manages 2× - 3× more pages

90

for workloads with high regularity in access patterns, such as backprop, kmeans and

hotspot, helping observe these patterns at a granularity that facilitates their clustering.

Similarly, Coeus works well for certain applications with irregular access patterns, such

as bptree and pennant. These specific workloads have part of their memory footprint

accessed randomly and another part accessed fairly regularly. Coeus helps cluster together

the latter subset of pages. In contrast, the page clustering of identical patterns is not quite

possible for workloads with completely random accesses across all pages, such as bfs,

decreasing memory footprint, such as lud and sparse matrix operations, such as cpd.

In conclusion, Coeus accomplishes its design goal G1, reducing by almost 3× the ma-

chine learning models trained, thus the aggregate overheads and resource requirements for

their deployment. There are two reasons for this drastic reduction. First, Coeus’s sophisti-

cated selection of page scheduling frequency facilitates the creation of large page clusters

to be managed with a single machine learning model. Second, the clustering of identical

patterns as input to a single RNN model, does not increase the per model training times.

In this way, the reduction in the number of RNN models trained, reduces the aggregate

learning overheads.

Breakdown of performance gain. Figure 6.10(b) captures the application performance im-

provement of Coeus and Kleio with fine-tuned periods (Kleio + OPT period) compared

to the original configuration of Kleio (1×). On average, Coeus improves performance by

3×. There are two reasons for this significant performance improvement, that relate to

Coeus’s selection of page scheduling periodicity. The sophisticated period selelction en-

ables more effective page clustering, as well as better tuned operational frequency of the

page scheduler itself. The configuration of Kleio at an optimally tuned frequency (Kleio +

OPT period) captures the maximum extent of performance increase due to the operational

frequency itself. Its difference from Coeus isolates the effect of better page clustering alone,

on application performance. Breaking down the performance of Coeus, we observe that, on

average, 2× of the performance enhancement comes from the operational frequency itself

91

1x
2x
3x
4x
5x
6x
7x

(a) Pages managed with ML

Solution
Kleio Kleio + OPT Period Coeus

back
prop

km
ean

s
hots

pot

quick
silv

ercpd lud bfs
bptre

e

pennant

ave
rag

e

1x
2x
3x
4x
5x
6x
7x

(b) Performance improvement

Figure 6.10: Evaluation of standalone Kleio vs. using Coeus, for the same number of
RNNs, that is the required by Coeus to deliver best performance.

(Kleio + OPT period) and the rest 1× comes from the page clustering.

Regarding the contributions of the page clustering to application performance (differ-

ence in the bars of Coeus vs. Kleio + OPT period), we see that in certain cases, such as

kmeans, it improves performance by 3×. Similarly, for backprop, quicksilver and

bptree the isolated performance increase that corresponds to the page clustering ranges

from 1× - 2×. These performance improvements result from using RNNs for more pages,

and applying more efficient data tiering and data movement decisions to larger portion of

the application working set. However, the management of more pages intelligently, does

not always result in application performance improvements. This is the case for applica-

tions like hotspot and pennant whose active memory footprint fits in the available

DRAM capacity. Therefore, even though we can make more accurate access pattern pre-

dictions with the machine intelligent management of almost 2× more pages, these extra

pages do not need to migrate, thus it does not reflect on performance. Finally, for appli-

cations such as cpd, lud and bfs, where zero inertia page clustering is not so effective,

Coeus still provides performance improvements of up to 10% - 30%.

92

Page
Selector RNNs training

Offline pipeline of Kleio

RNNs training

Offline pipeline of Coeus
Pa

ge
 ac

ce
ss

co
un

t h
ea

tm
ap

Pa
ge

 C
lus

ter
ing

Pa
tte

rn

Com
pa

ris
on

Memory
Access
Trace

Page
Selector

Dom
ina

nt
Reu

se

Pa
ge

 ac
ce

ss

co
un

t h
ea

tm
ap

Figure 6.11: Offline overheads of running Kleio vs. Coeus alongside Kleio.

Regarding the contributions of the operational frequency to application performance

(Kleio + OPT period), these are significant across all workloads. The fine-tuned page

scheduling frequency contributes, on average, 2× of the performance improvements of

Coeus, and is significant even in cases where Coeus clustering alone makes small con-

tributions to performance. This reveals an opportunity for Coeus to improve Kleio, by

fine-tuning the operational parameters of machine intelligent memory managers, to reduce

the management overheads and improve the performance impact.

In conclusion, Coeus accomplishes its design goal G2 delivering 3× higher application

performance from existing machine intelligent page schedulers. There are two reasons for

this drastic increase. First, the page clustering and intelligent management of more pages,

improves data tiering and data movement selection. Second, the insight-based selection of

page scheduling periods improves the operational frequency of the scheduler itself.

Overheads of Using Coeus

Next, we demonstrate the operational overheads of using Coeus prior to Kleio, compared

to the standalone execution of Kleio, as shown in Figure 6.11. Prior to workload execu-

tion, Kleio takes as input the workload’s memory access trace, converts it to a heatmap of

93

per page access counts across scheduling periods. This operation is trivial and involves a

single analytical pass to the memory trace, thus has runtime linear to the total number of

memory accesses. Then, Kleio runs its Page Selector to identify which pages need machine

intelligent management and deploys a single RNN per selected page.

Coeus enriches Kleio’s offline pipeline with few more operations with trivial overhead.

First, Coeus extracts data reuse information with a single pass to the memory access trace,

to calculate the dominant reuse for setting the duration of the page scheduling periods.

Then, similarly to Kleio, Coeus converts the trace to a heatmap of page access counts

across periods. Next, Coeus groups pages into clusters with identical page access patterns.

This operation leverages data structures like sets, thus incurs runtime linear to the total

number of pages, which is even more trivial than the time to create the heatmap. Coeus

runs Kleio’s Page Selector component ‘as-is’, thus incurs the same overhead. Coeus then

selects which patterns to train RNNs for, with a simple comparison of the page clusters with

the pages returned by the Page Selector. Finally, Coeus trains on average 3× fewer RNNs

than Kleio, as evaluated previously, thus incurs only a third of the learning overheads.

In conclusion, Coeus comes with minimal operational overheads, realizing its design

goal G3. It also drastically reduces the learning overheads, overall reducing by almost 3×,

on average, the offline pipeline of hybrid memory management prior to workload execution.

6.6 Chapter Summary

In this chapter we presented a solution to reduce the learning overheads of machine intel-

ligent page schedulers for hybrid memory systems. In order to be practical and effective,

such memory schedulers focus the machine learning on a carefully selected page subset and

train per page models in parallel. Yet, the resource and time requirements for training these

models vary up to 9× across workload classes and input sizes. To reduce the aggregate

learning overheads it is necessary to increase the granularity of the application’s memory

address space for whose patterns single models are learned. Widely used data clustering

94

methods, such as k-means, incur non-trivial configuration constraints and overheads, given

the high dissimilarity of pages selected for machine learning-based management. In re-

sponse, we build Coeus, a page grouping mechanism that enables machine intelligent page

schedulers to train, in parallel, different models per large page clusters. Coeus is extremely

lightweight and highly effective, compared to data clustering methods, because it lever-

ages data reuse insights to fix the granularity of page access patterns, transforming “alike”

patterns to completely “like” ones. As a result, Coeus reduces by almost 3× the learn-

ing overheads, by managing more application pages under a single model, thus decreasing

the aggregate number of models, without increasing the training time of the model itself.

Choosing the granularity at which page access patterns are clustered and analyzed, enables

Coeus to improve application performance by 3×, compared to the performance levels

enabled by the configuration of existing machine intelligent page schedulers.

95

CHAPTER 7

REDUCING OPERATIONAL OVERHEADS WITH PATTERN VISUALIZATION

So far this thesis built mechanisms to maximize the performance and efficiency of hybrid

memory management by leveraging insights on data reuse distance, page-level access be-

haviors and pattern similarity across neighboring pages. These insights were primarily

derived by visualizing memory access behaviors and relations. Images can capture copi-

ous information that is much more cumbersome to extract through analysis, thus have the

potential to reduce system operational overheads. This chapter aims to explore the feasi-

bility of integrating computer vision methods over image-based mechanisms in the context

of hybrid memory management. As a use case, we explore the effectiveness of an image-

based approach for selecting pages for machine learning-based management, by building

Cronus1. This chapter reveals spatial and temporal correlations across pages, through

appropriate visualization of the memory access patterns. Kleio is not able to capture rela-

tions across pages, since it operates at the granularity of a page and learns per page access

patterns. We explore the integration of visualization in hybrid memory management and

propose an image-based page selection process, that drastically reduces Kleio’s operational

costs, while preserving the effectiveness of the page selection and achieved performance

levels.

7.1 Overview

In Chapter 4 we described Kleio, a machine intelligent page scheduler for hybrid memo-

ries. Kleio aims to improve application performance levels with machine learning-based

memory management, in return for reduced overheads associated with training and deploy-

1The name is inspired by ancient Greek mythology, where Cronus (Kronos) was the King of the Titans
and the god of time.

96

ing the ML models. Thus, Kleio focuses on selecting a small page subset whose ML-based

management will boost application performance. The process of identifying such pages is

not trivial. Kleio deploys performance estimate models, customized for the configuration

of the hybrid memory platform, and executes those models repeatedly to produce runtime

estimate curves. Since Kleio’s design is centered around performance and focuses its op-

eration on a per page basis, it doesn’t capture temporal and spatial access characteristics

across pages.

Problem Statement. Our current approach in practically integrating machine learning in

hybrid memory management includes performance-based methods to select subset of the

pages for machine learning model training. Focusing on maximizing application perfor-

mance for the given configuration of the hybrid memory platform, our performance-based

page selection method incurs non trivial execution overheads. In this part of the thesis,

we explore the use of computer vision techniques, such as visualization and pattern recog-

nition, for the purpose of building a lightweight mechanism to select the page subset for

machine learning-based page scheduling over hybrid memory systems.

The specific contributions are:

• We visualize the pages selected for machine learning-based management by Kleio

and reveal spatial and temporal correlations (Section Section 7.2).

• We propose the idea of integrating image-based analysis as part of the page selection

process. We explore factors such as the image size, resolution, mapping pixels to

page access information. We leverage computer vision methods to detect and extract

areas of the images that include page access patterns. We couple all these into the

design of Cronus (Section 7.3).

• We evaluate Cronus against Kleio, with respect to the page selection overheads and

quality of the selections as they reflect on application performance through Kleio’s

ML-based management (Section 7.4).

97

472, 467, 463, 471, 613, 464, 468, 593, 597, 601, 605, 476, 475, 589,
466, 604, 488, 600, 484, 609, 483, 487, 461, 465, 469, 473, 612, 608,
470, 596, 462, 479, 381, 616, 523, 592, 474, 480, 486, 477, 481, 485,
595, 482, 614, 478, 611, 615, 603, 599, 602, 610, 598, 606, 607, 594,
591, 590, 655, 380, 387, 516, 517, 379, 769, 315, 489, 377, 522, ...

Figure 7.1: Page IDs of cpd selected for machine learning by Kleio.

7.2 Visualization Insight

In an effort to reduce the page selection overheads, we first aim to better understand the

relations (spatial and temporal) of the pages selected for machine learning-based manage-

ment by Kleio, as summarized in Section 4.5. Figure 7.1 shows, for the cpdworkload, how

pages are prioritized for machine learning according to their benefit factor that combines

page hotness and misplacements by history-based page scheduling. We observe that pages

are not consecutive, not even in a specific range of spatially neighboring pages. Thus, the

exact page priority ordering is not sufficient to reveal any insights about the characteristics

of the selected pages.

Throughout this thesis the most successful way to derive insights was through visualiz-

ing certain behaviors. For example, for Cori visualizing how the page scheduling periods

‘break’ the page access patterns (Figure 5.2) and capturing the effect on performance, led

to the insight to ‘not break the data reuse’ (Section 5.3). For Coeus visualizing the page-

level access patterns for fine- vs. coarse-grained page scheduling frequency (Figure 6.4),

led to the insight of how similar patterns transform to identical ones (Section 6.3). Clearly,

a picture is worth a thousand words and visualization is a great way to reveal insights and

build robust solutions.

Therefore, we visualize the memory access patterns of the workloads in Table 3.1.

We plot the memory accesses as scattered points which correspond to the sequence of

memory requests (x-axis) to virtual page identifiers (y-axis). Figure 7.2 shows this visual

representation together with a coloring scheme that captures the page priority ordering.

98

High Priority Low Priority

Figure 7.2: Visual representation of a workload’s page access sequence, colored according
to the page priority ordering for machine learning-based management.

Points with darker color correspond to pages with higher priority, and lighter color to those

with lower priority, as depicted in the horizontal colormap bar.

The images clearly reveal spatial and temporal correlations across the pages prioritized

for machine learning, that are not obvious when looking at the specific priority order, as in

Figure 7.1. Spatially neighboring pages that are part of distinct temporal access patterns

receive similar priority. This is due to the fact, that these groups of pages receive similar

levels and patterns of page hotness across runtime, thus are managed very similarly when

using history-based predictions. The misplacement metric, that Kleio considers, is particu-

larly visible in the case of cpd, where the page group at the top of the image receives low

priority even though it has relatively high page hotness. For the specific experimental setup

and hybrid memory configuration, that is described in Chapter 3, this page group ends up

benefiting from history-based page scheduling.

Takeaways. Visualizing the pages selected for machine learning-based management at

the granularity of the workload’s memory access patterns through time and space, reveals

99

new insights on the characteristics that lead to their selection. Pages that are neighboring

in space and part of distinct access patterns in time receive similar levels of priority for

machine learning, since they have similar access behavior across the workload’s runtime.

7.3 System Design of Cronus

In this section we describe the system components of Cronus, an image-based pipeline for

selecting the pages for machine learning-based hybrid memory management. We discuss

the challenges of building such a system and the insights that lead into the system design

choices. Figure 7.3 depicts the internal functionality of Cronus and how it interacts with

ML-based hybrid memory managers, summarized in the following steps:

1. Image Creation. This step visualizes the raw data of a memory access trace, map-

ping pages (y-axis) and requests (x-axis) into pixels of an image.

2. Pattern Detection. This step identifies parts of the image that correspond to groups

of pages participating in access patterns across application runtime.

3. Page Selection. This step processes the image to extract the range of pages that cor-

respond to the previously detected pattern and prioritizes them for ML-based man-

agement given their overall hotness across application runtime. The selected pages

are then fed into the ML-based hybrid memory manager for per page training of ML

models.

Image Creation

As we have shown earlier in Section 7.2 plotting the virtual page access sequence from a

collected memory access trace, visualizes the page access patterns in a way that is com-

prehensible to the human eye. Thus, we can create a single black-and-white image out of

a sequence of page accesses across the application runtime. The choice of black color is

100

Memory Access Trace

1. Image Creation 2. Pattern Detection

Page
Page
Page
Page
Page

RNN
RNN
RNN
RNN
RNN

Pool of
Pages History

Priority = Page hotness

Page hotness
predictions

3. Page Selection

Kleio

Memory Access Trace

Cronus

Human

256 x 256

Figure 7.3: System design of Cronus.

enough to capture the memory access trace information and uses less bytes for storage than

a colored RGB image. The resolution of the image is critical because it will determine the

extent to which memory access patterns are visibly comprehensible.

Image Resolution. The most intuitive approach is to map a single page access out of the

memory access trace to a single pixel of the image. However, this 1-1 mapping will cre-

ate images of massive size as there can be hundred thousands of pages on the y-axis and

accesses on the x-axis. Instead, the average image resolution across datasets used for com-

puter vision and machine learning, such as ImageNet [79], is 256x256 pixels. We explore

the creation of images with increasing resolution from 64x64 pixels up to 1024x1024 pixels

in exponential size increments, as shown in Figure 7.4 for the cpd workload. We observe

that small image resolution e.g., 64x64 and 128x128, is not enough to clearly depict the

patterns for the given size of the workload. Many pages map to a single image pixel, thus

their requests aggregate over few pixels and create very dense areas of black pixels. As a

result it is hard to distinguish which pages (y-axis) participate in the sparse tensor opera-

tions that the workload performs, as summarized in Table 3.1. In contrast, higher resolution

of 512x512 and 1024x1024 enables details of the patterns to be visible, such as the strided

accesses over parts of the memory. The middle range of resolution 256x256 is enough to

101

(a) 64 x 64 pixels.

(b) 128 x 128 pixels.

(c) 256 x 256 pixels.

(d) 512 x 512 pixels.

(e) 1024 x 1024 pixels.

Figure 7.4: Effect of the image resolution to distinguish memory access patterns.

102

visualize the overall pattern, but not further details.

The decision of which image resolution to use is not trivial. On the one hand, high res-

olution allows for clear visibility of the details of the type of memory access patterns, such

as accesses strided across memory, something that is valuable for the purpose of access pat-

tern classification [80, 81]. On the other hand, high resolution creates images with higher

storage and processing time overheads. This is the reason why image-based machine learn-

ing uses small resolution, such as less than 256x256 in ImageNet [79]. For the purpose of

designing the prototype of Cronus, a system that selects pages for ML-based management,

the middle range of image resolution (256x256) is high enough to capture the overall trends

in memory access patterns and extract the corresponding pages that participate in the pat-

tern. The details of the patterns will be derived from the raw data of the memory access

trace, that Kleio then uses to train per page recurrent neural networks for the selected pages.

Thus, Cronus uses 256x256 across workloads for their given sizes. Each pixel will repre-

sent pages per pixel= #pages/256 number of pages and accesses per pixel

= #accesses/256 accesses to these pages.

Pattern Detection

After visualizing the page accesses into images, the next step is to detect areas of the images

corresponding to patterns across the application runtime. The simplest way to detect such

patterns on an image is manually marking areas of the image that correspond to patterns

with bounding boxes via human observation. Of course a human-based observation is

subjective, thus it may lead to cases of sub-optimal page selection, whose effectiveness

we evaluate in Section 7.4. We next describe the methodology we use to determine the

positioning of the bounding boxes depending on the workload’s access patterns depicted

on the generated image.

We consider two cases, when there are patterns across time over page groups that over-

lap in space and page groups that are distinct. Figure 7.5a shows the memory access pat-

terns of backprop. Intuitively, we would mark the two set of strided patterns separately.

103

Overlapping
page ranges

(a) backprop workload.

Non
Overlapping
page ranges

(b) hotspot workload.

Figure 7.5: Pattern detection methodology.

However, the corresponding pages (y-axis) overlap in space, thus for the purpose of build-

ing an image-based page selection pipeline, we can create a single bounding box that en-

compasses the full page range. Second, Figure 7.5b shows the patterns of the hotspot

workload where we can observe two distinct sets of strided patterns. In this case, we mark

two separate bounding boxes instead of one because the corresponding page ranges do not

overlap. In this way, we avoid including into the selection the horizontal white space be-

tweet the two patterns, that correspond to pages that were only initially accessed and should

not be selected for ML-based management. Following the above methodology, Figure 7.6

captures the detected patterns for the lud and cpd workloads. Regarding the implemen-

tation of the pattern detection step, we use functions from the OpenCV Computer Vision

Python-based library, to pop-up the image for user interaction and mark regions with the

mouse cursor to create the red bounding boxes.

Human-based pattern detection. The pattern detection step can be automated by training

ML classifier models over a dataset of images, created with the methodology described in

104

(a) lud (b) cpd

Figure 7.6: Page access pattern visualization with 256x256 pixel resolution. The red
bounding boxes correspond to the manual pattern detection by the user.

the first step of the Cronus pipeline. Although an automated step is desirable for a system-

level component, there is great value behind human-based pattern detection. For the ML

classifier to be trained, the image dataset needs to be first annotated. The images need to

be associated with labels of the objects they contain, and these objects need to be marked.

Thus, the step of using human observation to label memory access patterns as objects of

the image is necessary to automate the pattern detection process. We share more thoughts

on this idea in Section 9.3, as future directions of this thesis.

Page Selection

After detecting the page access patterns and selecting the corresponding image regions,

thus pages, the last step is to extract the corresponding pages and create a priority ordering

of the pages to feed into Kleio’s page-level management. We perform a reverse mapping

of the pixels selected to the underlying page identifiers. The resolution of the image will

determine the effectiveness of this mapping, as evaluated in Section 7.4. After extracting

the range of selected pages, we go back to the raw memory access trace data and calculate

the overall hotness of the pages. Then, we order the pages in descending hotness. Different

from Kleio we will make no use of performance estimates to test the effectiveness of a

purely image-based page selection process, which we further evaluate in Section 7.4.

105

7.4 Evaluation

In this section we evaluate the effectiveness of the page selection process that Cronus pro-

poses compared to the one designed for Kleio, the ML-based hybrid memory management

system that this thesis contributes, as described in Chapter 4. We compare the absolute page

priority and selection that the two systems generate, the resulting application performance

via the ML-based management, the time it takes to select the pages and the sensitivity of

Cronus to the resolution of the generated image per workload.

Page Selection

Figure 7.7 shows the priority ordering of the pages (y-axis) that Cronus generates based

on image-based analysis compared to Kleio’s performance-based selection. Overall, the

orderings between the two solutions are similar across applications. Since the visualization

approach selects page regions in bounding boxes, it completely ignores (yellow) pages with

low priority (light green) outside the regions. There are cases where Kleio will give low

priority to pages that Cronus will give a high one, such as for hotspot and the pages

in the top for cpd. This is due to the page misplacement metric that Kleio uses on top

of page hotness for its performance-based selection, which Cronus is not aware of since

it performs a purely image-based selection. Next, we describe the effect in application

performance due to the difference in the number and order of the selected pages.

Application Performance

Figure 7.8 shows the application performance improvements (y-axis) when managing pages

with ML following the priority ordering that Cronus vs. Kleio calculate via image-based

and performance-based analysis, respectively. The baseline case where zero pages are man-

aged with ML, corresponds to having a purely history-based page scheduling approach, as

described in Chapter 3. We observe that the page priority ordering that Cronus calculates,

results in application performance that is not as a high as Kleio, yet not significantly lower

106

Kleio Cronus

Pa
ge

backprop

Kleio Cronus

Pa
ge

hotspot

Kleio Cronus

Pa
ge

lud

Kleio Cronus

Pa
ge

cpd

High Priority Low Priority

Figure 7.7: Page priority ordering for machine learning of Cronus vs. Kleio.

either. This is to be expected because Kleio as a solution is designed to optimize upon

performance, compared to Cronus that is purely image-based. For backprop the perfor-

mance curves of Kleio and Cronus are very close, since the corresponding page ordering

shown in Figure 7.7 is very similar. For lud and cpd performance differs less than 10%

across the curve, since the page priorities also have more distinct differences. There are

cases, as for the hotspot workload, where performance does not improve drastically,

due to the fact that there is enough DRAM capacity to accommodate the active working set

of the workload, for the configuration described in Chapter 3.

In conclusion, we show that an image-based page selection pipeline (Cronus) can still

deliver high levels of application performance, with less than 10% difference across work-

loads compared to an analytical selection that uses performance estimates. The effective-

ness derives from the insights we described in Section 7.2 regarding the spatial and tem-

poral correlations of pages selected for ML-based management by Kleio, that Cronus cap-

tures with image-based operations. Cronus design does not consider performance related

metrics, such as page misplacements, as Kleio does, yet there is no restriction in future

107

0 200 400
Pages managed with ML

0%

10%

20%

30%

40%

50%

60%

Pe
rf.

 im
pr

ov
em

en
t

backprop

Kleio
Cronus

0 50 100 150
Pages managed with ML

0%

10%

20%

Pe
rf.

 im
pr

ov
em

en
t

hotspot

Kleio
Cronus

0 100 200 300 400
Pages managed with ML

0%

10%

20%

Pe
rf.

 im
pr

ov
em

en
t

lud

Kleio
Cronus

0 100 200 300 400
Pages managed with ML

0%

10%

20%

Pe
rf.

 im
pr

ov
em

en
t

cpd

Kleio
Cronus

Figure 7.8: Application performance via the ML-based management of the pages in the
priority calculated by Cronus vs. Kleio.

108

backprop hotspot cpd lud average
101

102

103

Se
co

nd
s

Time to Select Pages
Kleio Cronus

Figure 7.9: Time to select pages between Cronus and Kleio.

integration of such metrics, as we discuss later in this section. Cronus focuses on capturing

the effectiveness of a purely image-based solution, and proves that it can deliver the desired

performance levels.

Selection Runtime

Figure 7.9 captures the runtime in seconds of running Cronus and Kleio’s Page Selector

component. We observe that Kleio has significant operational overheads, since it involves

the repeated execution of application performance estimate models, as we have described

in detail in Section 4.5. In contrast, Cronus runs for all applications in less than 10 seconds.

This includes the time it takes to analyze the memory access trace, the user to interact with

the image and detect patterns, and the time to process the image into the page priority

output. Overall, the visualization pipeline reduces the page selection time overheads of

Kleio by 75×, on average.

Sensitivity to Image Resolution

Figure 7.10 captures the sensitivity of Cronus to the resolution of the images it generates.

We focus on the cpd workload whose image representations across different resolutions

we have shown in Figure 7.4. In this experiment, we assume that in the pattern detection

step the user selects the same bounding box to mark the underlying pattern of sparce tensor

operations. The resolution impacts the mapping of pixels to pages, thus influences the page

109

Cronus-64x64

Cronus-128x128

Cronus-256x256

Cronus-512x512

Cronus-1024x1024

Pa
ge

cpd

High Priority Low Priority

(a) Page priority ordering for machine learning.

100 200 300 400
Pages managed with ML

0%

10%

20%

30%

Pe
rf.

 im
pr

ov
em

en
t

cpd

Cronus-64x64
Cronus-128x128
Cronus-256x256
Cronus-512x512
Cronus-1024x1024

(b) Application performance via the ML-based management of the pages in the above priority or-
dering.

Figure 7.10: Sensitivity of Cronus to the image resolution.

110

selection step. Figure 7.10a shows the page ordering that Cronus generates over images of

cpd with increasing resolution. Although the user aims to select the same region of the

image at each resolution, the absolute number of selected pages becomes less when the

resolution is higher, thus the selection more precise.

The effect on application performance of the image resolution is depicted in Figure 7.10b.

We observe that very low resolution, e.g., 64x64, results in slower increase in performance

than others. The rest of the resolutions deliver similar performance levels, since the size of

the workload is such that there is not much information lost via the page-to-pixel mapping.

Therefore, the choice of 256x256 pixels that Cronus makes for the specific set workloads

is robust against any sensitivity to the image resolution.

Takeaways

In conclusion, the evaluation of Cronus shows that purely image-based solutions that are

designed based on insights, can be effective and deliver levels of performance comparable

to solutions that use analytical models based on performance estimates, as Kleio’s page se-

lector does. Most importantly, they drastically reduce the associated operational overheads

and accelerate the time it takes to complete the selection process, by 75x on average.

7.5 Discussion

Next, we discuss some aspects of the design of Cronus that can further enhance its effec-

tiveness.

• Image resolution and hierarchy. The algorithm that our Python-based implemen-

tation uses to change the resolution of the image, results in resizing the image, as

shown in Figure 7.4. To reduce the resolution, the default algorithm essentially down

samples input data by visualizing some and excluding others. Similarly, increased

resolution results in larger images through the visualization of more input data into

the 2-D image representation. For the purpose of page selection, there is no need

111

for high resolution, as we argued in Section 7.3. However, for the purpose of pat-

tern classification and detection, there are various re-sampling algorithms that can

provide high resolution and detail for a certain image size, by interpolating values

across data samples [82].

However, these algorithms have higher computation cost, thus will end up increasing

the image rendering times. Enabling some level of resolution hierarchy can be used to

amortize the processing times. One approach is using lower resolution for the whole

image and marking regions to ‘zoom in’ and enlarge them with higher resolution,

in a separate image, creating a hierarchy. For example, looking at the image of the

cpd workload in Figure 7.4, we could use 256x256 for the full image and create

a separate image with higher resolution that zooms into the pattern that capture the

sparse tensor traversal. There is great potential in exploring the trade-offs among the

number of created images, their size, the depth of the hierarchy and the associated

image processing times and storage overheads.

• Image metadata. One other aspect that is worth exploring is having any metadata

associated with the created images, especially when thinking about the general ap-

plicability of image-based resource management. For instance, the information that

can be associated with the images is the number of pages and requests, the size of

the pages, the level of data storage hierarchy that the patterns come from (e.g., last

level cache misses), any other particular information on the hardware platform and

process of collecting the raw data that are visualized, the workload’s name, domain

and execution phase. This can help in the image annotation and facilitate further

analysis based on the images.

• Automatic pattern detection. The current prototype of Cronus includes manual pat-

tern detection, a step that is necessary to create ML-based image classifiers that can

be trained to automatically recognize similar patterns. However, there can be analyt-

112

ical ways to automate the pattern detection process. For example, application-level

information or compiler-level methods to associate memory regions with data objects

/ arrays are ways to identify regions of pages that will share access patterns across

time. In addition, one could use the methodology of data prefetching techniques that

capture differences in the memory addresses accessed across time to capture sequen-

tial, strided and other classes of patterns [80, 81]. There is great value in exploring

which option is more robust for pattern recognition and has the least operational

overheads and dependencies.

• Reducing the page selection overheads. There can be other ways to reduce Kleio’s

page selection overheads. For example, by sampling the memory access trace or run-

ning the performance models fewer times, can produce in less accurate version of the

performance estimate curve, that Kleio generates. These approaches will most prob-

ably reach performance levels in between the one shown in Figure 7.8, compared to

an image-based approach (Cronus) and a performance-based one (Kleio). However,

the goal of Cronus is to evaluate the effectiveness of a purely image-based approach,

focusing on the page selection as a use case, to lay the foundations for future use of

computer vision methods in system-level resource management.

• Enriching the image-based page selection. Cronus can reach higher performance

levels by associating the pages selected from the image with information on the hy-

brid memory platform where the application will execute. For example, information

on the capacity ratios, initial allocation policies, page migration order of execution

can help estimate some data movement actions through appropriate modeling and

can capture the page misplacement metric that Kleio uses to select pages along with

the overall page hotness. In this way, one can improve the quality of the page se-

lection process and the performance levels achieved, in return for increased runtime

overheads compared to a purely image-based approach.

113

7.6 Chapter Summary

This chapter explores the effectiveness of using computer vision methods and image-based

decisions in the context of machine learning-based hybrid memory management, that this

thesis contributes. Leveraging the power of images to reveal insights and accelerate deci-

sions, we revisit the page selection process for machine intelligent management, proposed

in Kleio’s initial design (Section 4.5), aiming to drastically reduce the associated oper-

ational overheads. This chapter reveals insights on how the pages selected for machine

learning by Kleio correlate in space and time by visualizing the memory access patterns.

We build a system solution, Cronus, that is a lightweight image-based solution to detect

page-level patterns for machine learning. The quality of the selected pages and the achieved

performance levels are comparable to Kleio’s, while reducing by 75× the page selection

time compared to Kleio. Importantly, Cronus shows the great potential of using purely

image-based decisions and lays the design foundations for future use of visualization and

computer vision methods in memory management, such as image-based memory access

pattern classification, recognition and prediction.

114

CHAPTER 8

RELATED WORK

This chapter summarizes recent advances in various aspects of hybrid memory manage-

ment, implemented across the software and hardware stack. Then, we reference sys-

tems that use machine learning for the purpose of resource management and highlight

approaches to reduce the associated learning overheads.

8.1 Software Solutions

In this Section, we summarize recent work specific to hybrid memory management whose

implementation spans across the layers of the software systems stack.

Application-level Solutions. Starting at the top of the software stack, inside applications

themselves, related works optimize the algorithmic design to perform more efficiently over

the underlying hardware. For instance, the k-means NUMA Optimized Routine (knor)

library [4] optimizes k-means for modern NUMA architectures and minimizes synchro-

nization barriers. Similarly, algorithm features, common numerical operations, and algo-

rithm structures can be used to direct data placement for conjugate gradient, fast Fourier

transform, and LU decomposition of a matrix [5]. In addition, application-level hints are

widely used by related works across the software stack to appropriately guide the focus of

the hybrid memory management into user-identified critical data structures and regions. To

this extent various solutions propose custom data allocation APIs, that require application

source code modifications, to improve initial and dynamic data placement of the marked

data regions. [6, 7, 9, 17, 11].

Middleware-level Solutions. Regarding contributions at the user library-level, Memkind

[8] is a user extensible heap manager that can be adopted by other middleware solutions

to improve performance over heterogeneous memories. Similarly, runtime solutions allow

115

for easy detection of execution phases to properly align data monitoring and movement

time intervals. More specifically, Unimem [9] leverages the MPI communication phases

to launch data movements and Tahoe [10] aligns task-based execution with corresponding

data migrations. Moreover, various middleware-level solutions rely on application profiling

of data access behaviors, build performance and data movement cost models to optimize

data tiering [6, 7, 11]. Finally, compiler analyses and code generation methods have been

proposed to dynamically migrate pages and improve data locality [83].

Operating System-level Solutions. Lastly, operating system-level solutions rely on page

access information available on the kernel’s page tables, to identify frequently accessed

pages and to periodically migrate them. Certain solutions leverage existing NUMA-based

page migration support [12, 14, 15, 20, 28], or appropriately extend NUMA-based data

balancing policies [16, 53]. Recent analysis of NUMA-based approaches for systems with

emerging persistent memory technologies reveals unexpected performance in specific con-

figurations, such as when using huge pages [84]. Spanning across the software stack,

Memif [17] introduces a user interface, a user space library and kernel space service to

accelerate page migrations across hybrid memory.

Static Data Placement. The complete software-level solution space also includes opti-

mizations in the initial static data placement across hybrid memories. To this end, our own

prior work CoMerge [85] proposes a memory sharing placement policy that improves the

hybrid memory resource efficiency upon shared use. In addition, we have also built Mnemo

[55], a memory sizing and data tiering consulting tool, that permits quick exploration of

the cost-benefit trade-offs associated with different configurations of the hybrid memory

components used by key-value store workloads. Other related works include CHOPT [86],

which aims to be an optimal offline algorithm for data placement over multi-tiered hetero-

geneous systems. Finally, the effectiveness of various static data placement methods has

been evaluated against disaggregated memory systems with non volatile memories [87].

116

8.2 Hardware Solutions

In this Section, we reference hybrid memory management solutions that are implemented

as or assisted by custom specialized hardware.

Hardware-assisted Solutions. Software-level solutions create significant associated over-

heads, which often are impractical for the decision time guarantees of resource manage-

ment solutions. To this extent, a significant body of the aforementioned software-level so-

lutions propose specialized hardware to reduce critical overheads. For instance, hardware-

assisted page hotness tracking with custom hardware elements is highly suggested by op-

erating system-level solutions [13, 12, 18, 19, 15, 20]. The availability of such hardware is

critical in providing similar performance levels between the different organization modes of

tiered memory, that is software-managed flat memory mode and hardware-managed cache

memory mode.

Hardware-based Solutions. Purely hardware-level solutions introduce custom counters

to monitor data accesses and enable threshold-based data migration triggers [88, 29]. In

addition, additional hardware buffers for data copies enable access to data that is under

migration, reducing associated stalls and improving application performance [29]. Custom

memory controller hardware is also proposed to enable support for page migrations in dis-

aggregated non-volatile memories [18]. In addition, Mempod [19] builds a clustered archi-

tecture that enables scalable migration support over multi-level memories, that outperforms

prior work which transparently manages hybrid memories configured in a combination of

cache and flat organization [89, 90].

8.3 Machine Learning-based Solutions

This thesis is the first to contribute a machine learning-based approach for the purpose

of hybrid memory management. Among the plethora of machine learning strategies, this

thesis investigates the applicability and practicality of using Recurrent Neural Networks

117

versus Reinforcement Learning. Both methods have been proposed across various aspects

of memory and resource management, exposing various practicality limitations, which we

summarize in this Section.

Recurrent Neural Networks. The use of Recurrent Neural Networks (RNNs), in particu-

lar Long Short Term Memory (LSTM) models, has been shown to be effective for learning

memory access patterns for the purpose of data cache prefetching by Hashemi et al. [59],

though its integration is not yet practical according to the authors. Section 4.4 and Sec-

tion 4.5 describe in detail the design differences between this prior work and our proposed

use of RNNs. The major difference is the granularity at which they learn memory ac-

cess patterns and the achieved prediction accuracy levels. We propose to learn page-level

(Kleio contribution) and page cluster-level (Coeus contribution) access patterns, compared

to learning the sequence of most commonly observed clusters of memory address deltas.

Our approach enables the parallel and faster training of smaller RNN models that reach

high levels of prediction accuracy, while facilitating the use of lightweight non ML-based

predictions for majority of the application pages.

Most recent optimizations enhance the achieved LSTM prediction accuracy via building

hierarchical models [91] or compressed models [92, 93, 94], enabling online predictions

and creating the foundations for practical machine learing-based data prefetching. In addi-

tion, Recurrent Neural Networks have been used to learn and predict the lifetime of mem-

ory objects and reduce the memory fragmentation of huge pages on C++ server workloads

[95]. Similarly, a hierarchical LSTM-based approach is taken to learn the throughput of a

set of instructions, reaching higher prediction accuracy than state-of-the-art hand-written

tools currently used in compiler backends and static machine code analyzers [96]. Finally,

Recurrent Neural Networks are deployed in cloud environments to learn spatial and tem-

poral patterns that translate to QoS violations for the purpose of performance debugging

[97].

Reinforcement Learning. The semantics of Reinforcement Learning allow for its appli-

118

cability across resource management problems, but as this thesis and others [98] highlight,

its practical use is not guaranteed. To this end, Reinforcement Learning has been proposed

for the purpose of garbage collection [99] and data prefetching [100]. Also, it has been

explored for job scheduling [101] in cluster environments and placement across heteroge-

neous compute hardware [102]. In addition, the authors of [103] build a deep reinforcement

learning (DRL) framework, named DRLPart, for solving the problem of coordinating the

partitioning of multiple resources in commodity servers. Also, reinforcement learning has

been explored for learning interconnection routing for adaptive network traffic optimization

[104]. Finally, ConfuciuX is an autonomous strategy to find optimized hardware resource

assignments for DNN Accelerators using Reinforcement Learning [105].

Other Machine Learning Methods. We also summarize few other machine learning

methods that have been recently proposed for the purpose of resource and data manage-

ment. Perceptron-based Prefetch Filtering [106] increases the coverage of cache prefetch-

ers without negatively impacting accuracy. Latent factor collaborative filtering is used to

find the configuration of cloud compute and storage resources that provides optimal cost-

to-performance trade-offs [45]. Also, the authors of [107] show how replacing the data

indexing part of the database management stack with machine learning-based components

can deliver significant performance benefits.

8.4 Reducing Machine Learning Overheads

This thesis contributes methodologies to reduce the significant time and resource overheads

associated with training Recurrent Neural Networks over the target memory footprints of

applications executing over hybrid memory systems. These are to integrate machine learn-

ing models with lightweight existing methods and leverage data clustering. In this Section,

we summarize other ways to reduce these overheads and accelerate learning across related

works and industry trends.

Reducing the Problem Space. First, we summarize the approaches to reduce the learning

119

overheads that the machine-learning based memory management solutions we described

above take to reduce the overheads associated with training Recurrent Neural Networks.

First, machine learning-based cache prefetchers [59] treat learning the memory addresses

accessed as a classification problem. To reduce the number of unique classes / addresses,

Hashemi et al. cluster the memory address space in different groups and deploy a single

RNN per cluster. The number of clusters created is empirically chosen to be six, with no

further insight or sensitivity analysis to reason about the impact of the number of clusters.

In addition, the authors of other machine-learning based prefetchers [92] compress the clas-

sification vocabulary of the address space. More specifically, the authors convert the input

and output memory addresses into 16-bit binary format, reducing the parameter size, thus

improving upon training times without significant loss in prediction accuracy. Finally, an-

other method used to reduce training overheads is sampling, as used by the authors of [95]

who are able to produce accurate enough predictions even when applying a high sampling

rate to their input data. Yet, the effectiveness of sampling is inherent to the information

captured in the data. High sampling over a memory access trace may result in significant

distortion of the pattern in memory accesses.

Accelerating Machine Learning. More generically, a plethora of hardware accelerators

have been manufactured by industry vendors [108, 109, 110, 111, 112] or proposed by

researchers [113, 114, 115, 116] to optimize training and inference times of machine learn-

ing methods. Specific to Recurrent Neural Networks, whose use is proposed in this thesis,

there are efforts to accelerate their training and inference times across the software and

hardware stack. Starting from the algorithmic design of RNNs there is a continuous effort

to accelerate their inner units [117, 118, 119]. Then, moving to the library-level, DeepCPU

[68] improves the RNN performance on CPUs by an order of magnitude, while cuDNN

optimizes execution over GPUs of RNNs [120] and other deep learning methods [121].

120

8.5 Image-based Solutions

Throughout this thesis we leverage insights initially observed by visualizing behaviors re-

garding memory access patterns and relations between performance and configuration pa-

rameters. The last part of this thesis explicitly targets visualization as a technique that can

aid in resource management, and presents image-based processing and computer vision

methods to facilitate the detection and extraction of page-level access patterns. Therefore,

we summarize related works that also leverage visualization-based insights and solutions

that actually integrate visuals and image-based pipelines, often coupled with machine learn-

ing, into their design.

Insights from Visualizing Behaviors. There is a plethora of visualization-based tools

to monitor and showcase metrics, behaviors and performance counters across computing

environments. Just to name a few, there is Amazon CloudWatch [122] and Grafana [123]

for cloud based platforms, Nagios [124] and LLView [125] for high performance computing

environments and Intel’s VTune [126] for native hardware servers. Observing behaviors

visually helps system administrators better configure the systems, manage the resources,

identify bottlenecks and fine tune the system operation. For example, regarding memory

management in particular, the authors of LLAMA [95], that was mentioned earlier in this

chapter, visualize the timeseries of server memory usage across time when using huge 2MB

vs. 4KB pages, to highlight the huge page fragmentation problem. In another example,

Kaleidoscope is a system that introduces VM state coloring to characterize and classify the

different types of memory states of virtual machines in a cloud datacenter, and to use this

information to enable better cloud micro-elasticity [127]. In conclusion, using visualization

and coloring techniques is a robust and intuitive way to gain insights, monitor and classify

behaviors to improve the system operation.

Image-based solutions. Yet, to the best of our knowledge the use of visualization inside

systems solutions is still very limited, despite the plethora of visualization-based tools.

121

This is inherent to the fact that visualization often requires human interaction and observa-

tion, to determine the corresponding system-level actions. However, a significant body of

machine learning models are build for image classification and object detection. Coupling

together computer vision methods to process the image, can automate the pipeline of using

images inside system-level solutions. The most popular example is the case of autonomous

driving and self-driving cars, where a video frame from the car’s camera is processed to

produce a steering command [128]. In the financial domain, trading companies argue that

they are able to better predict stock market values by training classification models over

image representations of the time series data, instead of the raw numerical values [129].

In the bioinformatics domain, proteins are encoded into graphic representations, that are

then used to train image-based classifiers and neural networks to predict protein functions

enabling high throughput real time analysis [130, 131]. In the environmental sciences do-

main, timeseries data, that capture earthquake related seismic waves, are transformed into

visual representations of their frequencies, called spectograms. These spectograms are then

used to enable fast analysis for finding similarities across observed seismic waves and de-

tecting new eartquakes with similar behaviors [132]. In conclusion, there is great promise

in using visualization across scientific domains and this thesis aims to lay the grounds for

such image-based solutions in system-level resource management.

122

CHAPTER 9

CONCLUSION

This dissertation contributes system-level mechanisms to enrich hybrid memory manage-

ment with machine intelligence. This chapter begins with concluding remarks and a sum-

mary of the thesis contributions. Then, we present the lessons learned throughout the pro-

cess of developing this thesis, that are valuable in general systems research and in particular

when designing solutions augmented with machine learning. Finally, the chapter concludes

with future directions and next steps that build upon and extend the contributions of this

thesis.

9.1 Summary

Application data sizes are ever exploding, while the data access patterns of emerging appli-

cation domains become more complex and irregural. Traditional memory hardware tech-

nologies fail to scale in the necessary capacities and speeds to accelerate modern analytics.

In response, new hardware technologies with diverse characteristics, such as data persis-

tence, are integrated in the memory subsystem to boost application performance and system

cost efficiency. Yet, existing system-level resource management policies and configurations

are not effective against this new heterogeneity in the memory hardware and application

data access behaviors. This thesis identifies a significant gap in performance (Section 2.2)

between current solutions and what could be achieved when optimally managing these

emerging hybrid memory platforms. To close this gap in performance, this thesis explores

the effectiveness and practicality of using machine learning methods in system-level hybrid

memory management. Figure 9.1 gives a visual representation of the system-level compo-

nents that thesis contributes and how they fit into the hybrid memory management software

stack.

123

Figure 9.1: Summary of thesis contributions.

Chapter 4 presents the first contribution, Kleio, which makes the case that completely

replacing the hybrid memory manager with a machine intelligent component, such as a

reinforcement learning agent, is not scalable and robust to hardware configuration changes.

Given the massive memory footprints of applications executing over hybrid memories,

Kleio identifies a small page subset, whose machine intelligent management boosts appli-

cation performance. Then, Kleio deploys Recurrent Neural Networks to learn page-level

access patterns, while using lightweight existing history-based predictions for majority of

the application pages. In this way, Kleio bridges on average 80% of the relative perfor-

mance gap between existing and oracular solutions, while laying the grounds for practical

machine intelligent data management with manageable learning overheads.

The next contribution of this dissertation aims to further boost the performance and ef-

ficiency of system-level hybrid memory managers. Chapter 5 reveals that related works do

not properly configure their operational frequency relying on empirical tuning, thus failing

to deliver up to 100% of performance improvements. The second thesis contribution, Cori,

leverages insights on application data reuse to tune the duration of the periodic time inter-

124

vals at which hybrid memory managers operate. Cori is lightweight and practical, reducing

by 5× the number of tuning trials compared to existing empirical or insight-less tuning

approaches. In this way, Cori delivers application performance levels only 3% away from

the ones feasible via optimal frequency tuning. Such improvements are complementary to

the use of machine learning and further boost its effect on application performance.

The third contribution aims to scale the operation of machine learning-based hybrid

memory management to cover a larger part of the application memory footprint, while re-

ducing the associated learning overheads. Chapter 6 presents Coeus, a system-level mech-

anism that groups together pages that share the same access behavior, enabling the training

of a single Recurrent Neural Network per page cluster. Coeus leverages the data reuse

insights revealed by Cori to fine-tune the granularity at which patterns are interpreted by

the page scheduler, increasing the pattern similarity across pages. As a result, Coeus re-

duces by almost 3× the associated learning overheads compared to Kleio. In addition,

Coeus achieves 3× higher application performance, by the combined effects of applying

machine learning to more pages and by performing management operations at a fine-tuned

granularity.

Finally, the last contribution of this thesis revisits the page selection process for ma-

chine intelligent management, proposed in Kleio’s initial design (Section 4.5), aiming to

drastically reduce the associated operational overheads. Chapter 7 shows how the pages se-

lected for machine learning by Kleio correlate in space and time by visualizing the memory

access patterns. This thesis proposes Cronus, a lightweight image-based solution to detect

page-level patterns for machine learning. The quality of the selected pages is comparable

to Kleio’s and delivers similar levels of application performance, while reducing by 75×

the page selection time compared to Kleio. Cronus lays the foundations for future use of

visualization and computer vision methods in memory management, such as image-based

memory access pattern classification, recognition and prediction.

In conclusion, this thesis sets the design foundations for practical and effective hybrid

125

Application

System

Hybrid Memory
Manager
RL Agent

2. Change of state
(page placement)

3. Change in
performance

Hardware

4. Reward

1. Action
(page migrations)

Black box

Hybrid
Memory ho

t p
ag

es

co
ld

pa
ge

s

System
Hardware

Hybrid Memory Manager

1. Page Access Monitoring

2. Page Hotness Prediction

Calculate hot vs. cold pages
3. Page Migration Selection

Hybrid
Memory

using ML.

Kleio

Figure 9.2: Lesson learned 1: Practical machine learning for system-level resource man-
agement should learn data access behaviors, not management actions.

memory management enriched with the necessary use of machine learning to boost applica-

tion performance and system resource efficiency. Most importantly, the proposed solutions

are based on insights that allow for lightweight and robust mechanisms that do not add to

complexity and overheads of machine intelligent management.

9.2 Lessons Learned

In the process of designing and building the contributions of this thesis, we developed

insights and learned valuable lessons that are applicable overall in systems research. Next,

we summarize our observations and experiences.

Learn the Behavior, Not the Action

This thesis adds machine intelligence into the system-level resource management of hy-

brid memories. Thus, the most fundamental design aspect was to decide which machine

learning method to use and at what part of the systems software stack to integrate it. At

first, we explored the applicability of Reinforcement Learning (RL). That meant replac-

ing the hybrid memory manager systems component with a reinforcement learning agent,

126

that learns via taking actions, as depicted in Figure 9.2. The agent would select and move

pages across hybrid memory and learn whether this choice of page migrations was ben-

eficial by observing any potential performance improvement due to the new data tiering.

However, this type of learning, via observing the effect from the action (data movement),

makes the solution dependent on the specific hardware configuration of the hybrid memory

environment. If anything changes regarding the number of memory units, their capacity

and relative access speeds, in that case different actions may be more beneficial and the

RL agent should be re-trained. In addition, the action space in hybrid memory manage-

ment is exponential, since it involves deciding about the placement of every single page

for massive memory footprints. In conclusion, the use of machine learning methods that

replace systems components in resource management require re-training upon changes in

the hardware configuration, breaking the robustness of the system.

To avoid such constraints, we explored the use of machine learning as part of the hybrid

memory manager’s functionality, as depicted in Figure 9.2. A system-level hybrid mem-

ory manager periodically monitors page access behavior, projects future access patterns

and, according to these predictions, decides which pages to move across hybrid memory

following certain heuristics and policies. The most predominant and effective data tiering

policy across related works is to move frequently accessed (hot) pages to faster memory

technologies. That means that we already have robust policies to decide what action to

take. The part that needs extra intelligence is making more accurate predictions of future

page access patterns given the behaviors observed so far. This is why this thesis pro-

poses the use of Recurrent Neural Networks (RNNs) to learn memory access behaviors.

In addition, this design choice enables the use of machine learning models for complex

behaviors, and simpler and more lightweight prediction models for others. In this way,

the integration of machine learning can be practical and effective. In conclusion, the use

of machine learning methods that enrich current systems components in resource manage-

ment with the necessary amount of machine intelligence, allow for a practical, effective

127

Pe
rio

d
(T

im
e)

Page (Space)

Page Access Hotness per Period

Kleio

Access (Time)

Pa
ge

 (S
pa

ce
)

Page Access Sequence

Figure 9.3: Lesson learned 2: Kleio learns memory access patterns at the granularity of a
page, to enable the mix of machine learning with lightweight management methods across
pages.

and configuration-independent solution.

It is all about the Right Granularity

This thesis reveals three situations where operating at the right granularity is critical for the

system’s practicality and performance. To begin with, regarding the machine intelligent

management of hybrid memories, Kleio trains machine learning models at the granularity

of a page. The observations that led to this design choice were the following. At first,

the most intuitive way to deploy recurrent neural networks was to use a single model per

application, taking as input the overall sequence of page accesses across runtime. In this

way the model would learn which page would be accessed next. We quickly realized that

given the massive memory footprint of the target applications, the model would take days

to train and properly tune the hyperparameters. In addition, we observed that the resulting

accuracy of the predictions was very low. Suprisingly, related works [59] that have trained

single RNN models for the purpose of data prefetching, would consider top-k predictions.

For the purpose of hybrid memory management this is not useful, since we wanted an

accurate prediction of which pages would be accessed next, so as to move the appropriate

pages across hybrid memory.

Therefore, we decided to design Kleio so that it learns patterns at the granularity of a

page, not the whole application’s memory footprint. Thus, the RNN models would learn

128

Period Length

Very short

= Overheads
Very long

= Insufficient

Page Reuse Distance

≈ Performance sweet spot

Figure 9.4: Lesson learned 2: Cori tunes the granularity of periodic time intervals when
data is moved during hybrid memory management, to maximize application performance
and system resource efficiency.

how hot a particular page would be in the future, as depicted in Figure 9.3. This allows for

the parallel training of models and faster training since the input for the models is now much

smaller in size. Also, we were able to properly tune the hyperparameters of the models and

reach high levels of prediction accuracy. Operating at the granularity of a page also enabled

Kleio’s hybrid approach of managing a small page subset with machine learning and using

existing lightweight history-based predictions for majority of the pages. In conclusion, the

operational granularity of Kleio allows for practicality and effectiveness.

The second contribution of this thesis, Cori, also highlights the importance of sys-

tems operating at a proper granularity to deliver maximum application performance im-

provements. Cori reveals that setting of operational configuration parameters at arbitrary,

insight-less or empirical granularity, may significantly hurt the performance of a system.

Related works focus on improving performance through optimizing various design points,

such as which pages to move and at what granularity (huge pages vs. regular pages), but

ignore the effect of critical parameters such as when to move the pages. Cori explores the

effect on application performance from the relation of the per page reuse distance in time

with the duration of the periodic time intervals when data is moved during hybrid memory

management. Cori reveals insights, as depicted in Figure 9.4, and uses them to fine-tune the

frequency of data movements by page schedulers over hybrid memories. Most importantly,

Cori reveals our poor choice of frequency in our configuration of Kleio. At that time, we

129

Figure 9.5: Lesson learned 2: Coeus tunes the granularity at which patterns are interpreted
by the machine learning-based hybrid memory manager.

did not realize how the extremely fine-grained operational frequency of Kleio allowed data

monitoring and movements costs to dominate.

Our third thesis contribution, Coeus, integrates Cori’s insights into the operation of

machine intelligent page scheduling and delivers significant application performance im-

provements. In addition, Coeus shows how observing page access behaviors at a more

coarse-grain granularity, like zooming out, increases their similarity, blurring out any mi-

nor differences. In the context of page access patterns, longer page scheduling periods

allow for sequences of page access counts across periods that are completely identical, as

depicted in Figure 9.5. Coeus aims to scale the machine learning-based management across

more pages, training recurrent neural networks at the granularity of a page cluster. Using

these observation on page access pattern similarity, Coeus automates the process of page

clustering and alleviates the need to employ machine learning data clustering methods.

Keep it Smart but Simple

This thesis explores the use of machine learning in hybrid memory management, aiming

to deliver a practical solution, which is not a trivial task. Kleio, goes through an intricate

process to identify which part of the application’s memory footprint benefits from machine

learning-based management. Even though the selected page subset is small compared to

130

Figure 9.6: Lesson learned 3: Coeus clusters together pages that share the same page-level
access patterns, bypassing the complexity of configuring and overheads from integrating
unsupervised learning data clustering methods.

the application data scale, the learning overheads are still non negligible. This thesis con-

tributes solutions like Cori, Coeus and Cronus, whose functionality complements and aims

to boost the effects of machine learning-based management with Kleio. Therefore, we were

very careful to design these solutions to be lightweight and to not further complicate the

hybrid memory management process and introduce overheads that hinder their practical

use.

Yet, the use of machine learning methods in solving systems problems is particularly

popular, and it is interesting to show the extent of their effectiveness. We were also ini-

tially excited to see the effects of using unsupervised learning data clustering methods,

such as k-means, for the purpose of scaling the granularity of training RNN models per

page clusters, that Coeus explores. Quickly we realized that the integration of k-means

introduces additional overheads and extra configuration parameters for fine-tuning. Most

importantly, we came to the conclusion that it was not even necessary to use machine

learning for the purpose of page clustering. Often, observing a problem from a different

angle and at the right granularity enables simpler and more robust solutions. As depicted

in Figure 9.6, Coeus simply clusters together the pages that share the same sequence of

page access counts across periods of time, by leveraging Cori’s insights on fine-tuning the

period duration. The use of machine learning in system-level solutions calls for practical,

131

Memory Access Trace

Perf. Estimate
History Predictions

Perf. Estimate
Oracular / History Predictions

Misplaced Pages

Pages Prioritized
for ML

Pe
rf

Repeat

Hybrid Memory
Configuration Performance Goal

Page IDs Selected for ML

Kleio’s Page Selector

Cronus

Page IDs Selected for ML

Figure 9.7: Lesson learned 4: Cronus accelerates the time to select pages for machine
learning via an image-based approach.

judicious, carefully thought-out methods, applied only when necessary to avoid their non

trivial overheads and configuration constraints.

A Picture is Worth 1000 Words

All of the thesis contributions are either enriched or based on insights that derived from

visualizing the memory access patterns of applications. In systems research we often try

to derive behaviors by observing their effect on performance or capturing meta-metrics,

such as page hotness. Instead, this thesis highlights that directly visualizing behaviors is

most beneficial to develop insight-based systems techniques. By visualizing the page-level

access patterns this thesis produced the following insights.

First, Cori reveals the relation between data reuse and duration of page scheduling peri-

ods. This insight originated from visualizing the period lengths as vertical lines on memory

access patterns, as shown in Figure 5.2. Observing how the vertical lines ‘break’ the strided

and structured access patterns, while comparing the achieved performance levels, was key

to unlock the data reuse insights. Second, Coeus reveals the effect on the patterns of page

hotness when varying the duration of the page scheduling periods, thus the relative valua

of page acess hotness per period. Visualizing these patterns, as shown in Figure 6.4, across

long and short periods unlocked the insight that patterns transition from similar to being

132

completely identical after certain lengths. Third, Cronus visualizes the page priority that

Kleio calculates for machine learning-based management, as shown in Figure 7.2. In this

way, it unlocks the insight that the pages selected for machine learning are page clusters

that are part of distinct access patterns across runtime.

Finally, this thesis explores the potential of having a purely image-based system com-

ponent and make use of computer vision methods. The thesis contribution Cronus shows

how an image-based approach, as depicted in Figure 9.7, can accelerate the time it takes to

select the pages for machine learning-based management by Kleio. Cronus achieves per-

formance levels comparable with the analytical selection that Kleio originally makes and

shows great promise for further use of image-based components in system-level resource

management. In conclusion, this thesis shows how insightful the use of visualization can

be and how there is great benefit in using image-based approaches to speed up system

operations. In this way, we believe that an image is worth 1000 LoC (lines of code).

9.3 Future Directions

In this section, we propose various directions and ideas that someone can use to build upon,

extend and enrich the contributions of this thesis.

Relative Aspects of Hybrid Memory Management

This thesis contributes system-level mechanisms that enable the practical integration of

machine learning in hybrid memory management. These contributions focus on improving

the selection and fine-tuning the frequency of dynamic page migrations, in a practical and

insightful way. Next, we describe some other aspects of hybrid memory management that

can further enrich and complement this thesis.

Page size. This thesis proposes the use of machine learning methods to learn memory

access patterns at the granularity of a page, assuming a 4 KB page size that is predomi-

nantly used across systems. However, there are many benefits from using huge pages, e.g.,

133

2 MB page size, that emerging memory platforms use [1, 84]. Given the massive memory

footprints of emerging applications and workloads, learning patterns at the granularity of

a huge page would reduce the associated learning overheads, by reducing the aggregate

number of ML models. Essentially, this is what we achieve with the Coeus contribution

compared to Kleio’s original design. Coeus automatically clusters together pages that share

the exact same sequence of page access patterns across periods of time. These are pages

that are neighboring in space, as shown in Figure 9.5. In this way, Coeus affects the size

of the pages managed with machine intelligence, but keeps the granularity of monitoring

and moving pages at 4 KB. Regarding the general management of regular (4 KB) vs. huge

pages (2 MB), systems like Ingens [28] and LLAMA [95] resolve fragmentation issues that

may arise and systems like Thermostat [12] and Nimble [14] enable transparent huge page

management. The operation of these systems is complementary to the systems proposed in

this thesis and all together contribute to effective hybrid memory management.

Energy efficiency. In hybrid memory management the dynamic data movements that are

triggered to improve application performance through data tiering, directly affect the en-

ergy efficiency of the system since moving data requires time and resources. The Cori

contribution of this thesis fine-tunes the frequency of page migrations across hybrid mem-

ory, by offseting the cost of moving the data with the benefit from achieving data tiering

that improves application performance. As a tuning solution, Cori allows the user to se-

lect the frequency which satisfies their performance and efficiency levels. Thus, Cori can

provide the frequency that maximizes the system’s energy efficiency via minimizing the

aggregate data movements.

Data object information. Information about application-level data objects / arrays / vari-

ables has been used across hybrid memory management solutions to guide data tiering

decisions via custom data allocation APIs [6, 7, 9, 17, 11] or compiler-level guidance [83].

These solutions can mark memory regions and keep track of the corresponding application-

level data objects. Such information can be beneficial to better guide the page selection for

134

machine learning-based management. The contributions of this thesis are entirely at the

system-level, where there is no information about how pages associate to the application

data. As future directions of this thesis, it is interesting to see how application-level data

object information can aid in improving the following aspects. First, will machine learning-

based management benefit from automatically clustering the pages that belong to the same

data object? Can this approach help reduce the ML related overheads, while reaching high

prediction accuracy that is comparable to the one provided by Kleio and Coeus? Second,

can we use application-level insights to decide which data objects / pages to manage with

machine intelligence? Is it the case that application domain experts can have much bet-

ter understanding of the complexity of the data access patterns, compared to what can be

derived at they system-level? How does an application-level page selection compares to

the system-level (Kleio) and image-based (Cronus) approach? In conlusion, there is great

potential into enriching the contributions of this thesis with application-level information.

Hardware technologies for hybrid memory. The proposed approach of this thesis to

apply machine intelligence for learning memory access patterns, instead of hybrid memory

management actions (Section 9.2) makes the design robust across configurations of the

underlying hardware. Since these are system-level contributions, they can work against any

other mix of technologies such as DRAM, persistent memory (PMEM), high bandwidth

memory (HBM) and MRAM, when they organized in flat mode, as described in Section 2.1.

The systems that this thesis builds are evaluated against hybrid memory platforms with

DRAM and PMEM, as is the recently released Intel’s Optane persistent memory platform

[1] that we use for validation. In the context of this thesis, persistent memory is treated as

non volatile memory used to scale the overall systems memory capacity.

Building upon this thesis, it is worth exploring the effect of leveraging persistent mem-

ory in machine learning-based hybrid memory management. One use case can be to use

persistent memory for storing trained ML models, that can be quickly retrieved for infer-

ence or re-training, compared to retrieving them from storage. Similarly, extending the

135

design to use persistent data structures within machine learning methods. Also, one can

explore other aspects of persistent memory such as reliability, write endurance and ampli-

fication, in the context of machine learning-based hybrid memory management.

Regarding the future of hybrid memory, disaggregated memory platforms of large scale

will prevail in the exascale era of compute with fast speed interconnects, such as CXL, as

described in Section 2.1. The contributions of this thesis can be enriched with comple-

mentary solutions that provide additional support for data movement over disaggregated

platforms [38, 87]. In such platforms the sweet spot of amortizing the data movement

cost will shift, thus tuning solutions like Cori are essential. Also, it will be interesting to

compare the page subset that Kleio selects to maximize performance via ML-based man-

agement in single node vs. disaggregated platforms. Can an image-based page selection

process, like Cronus, be effective across both platforms? What additional information on

the underlying hardware configuration is necessary to capture?

In conlusion, there is great value into further exploring the effect of hybrid memory

hardware technologies and configurations in ML-based management. This thesis con-

tributes a design that is robust and can be further enriched to support operation over disag-

gregated platforms, and leverage technology characteristics such as data persistence when

using PMEM.

Online Adaptive Machine Learning-based Management

The contributions of this thesis lay the grounds for the practical integration of machine

intelligence in system-level hybrid memory management. The thesis proposes an insight-

based and sophisticated design of how machine learning can be used to enrich existing

solutions and maximize application performance and system resource efficiency. We ad-

dress fundamental questions, such as which machine learning method to use, what exactly

to learn and predict, which part of the systems software stack to extend with intelligence?

All of that while keeping in mind the exploded data sizes of target applications, that hinder

the insight-less use of machine learning over all application data. The thesis builds robust

136

Online Inference

Library of stored
trained ML models

Data Access
Monitoring

Re-train vs. new model

Resource
Management

Memory

Storage

Pattern
Detection

Online Training

Use existing model

Figure 9.8: Design challenges of online adaptive machine learning-based resource man-
agement at the system-level.

foundations for the practical use of machine learning. In addition, the proposed design is

not dependent on the underlying hardware configuration, since it uses machine learning to

learn the behavior and not the action, as described in Section 9.2. Focusing on exploring

the most lightweight design that delivers high levels of prediction accuracy, Kleio performs

the page selection, the ML training and inference during an offline profiling step, prior to

the actual workload execution.

The immediate next steps are to focus on enabling online adaptive training and infer-

ence of the machine learning models. Figure 9.8 shows a design draft of such a system that

continuously learns. There are many design points that require exploration and insight, as

they can introduce interesting trade-offs, which we summarize as follows:

• Pattern detection. This will be a critical system component that analyzes the data ac-

cess behaviors, identifies new or already seen patterns, and makes a decision whether

to do inference on a existing pre-trained model, re-train an existing model or build

and train a completely new model.

• Library of trained ML models. Making the decision between online inference or

training requires the bookkeeping of a library of ML models. Where do these models

reside? In memory or in storage? Is there a hierarchical storage model?

• Pattern-to-Model mapping. There needs to be a way to identify and match the

existing models to an observed pattern / behavior. What is the identity function, how

137

to ensure uniqueness? Kleio simplifies this process and maps a single page to a single

model that is identified by the virtual page address. How to extend this mapping to

cases where randomization of the address space happens, or the same application

executes over different inputs, thus memory footprints?

• Operation while online training. While the system does online training and in-

ference, how does it ensure smooth operation and uninterrupted resource manage-

ment? How frequently is a decision made to do online training, what triggers such

a decision? Kleio’s hybrid approach enables the use of lightweight history-based

predictions as a fallback to the machine learning-based ones, while training is done.

Other solutions perform online training periodically [91], training during one period

and using the inferred predictions during the next. Is this design robust, or it reveals

sensitivity to the quality of the predictions and the accuracy reached?

• Application runtime. Long running applications are a better match for online man-

agement compared to short ones, since they allow for enough time to do online train-

ing and inference during the workload’s execution. How can we enrich the system

with information on application runtime? Do we make use of explicit information or

solutions that leverage machine learning to predict runtimes and resource use [133]

and object allocation lifetimes [95]? Or should the resource management system

be completely agnostic to application-level characteristics and focuses purely on the

underlying access patterns that it observes?

• Accelerating ML. Accelerating the runtime of online training and inference are crit-

ical in amortizing the associated costs. It is critical to use emerging hardware tech-

nologies or other software-based methods, as described in Section 8.4, to enable fast

training and inference times, while applications are running. It is also important

to ensure that the operation of the resource management system is not affected by

changes in the underlying hardware that is used, as this thesis contributes with the

138

design of Kleio.

In conclusion, this thesis sets the design foundations for online adaptive machine learning-

based hybrid memory management. We described our thoughts on how the contributions

of this thesis can be extended to online operation and captured the set of challenges that

need to be addressed for a robust design.

Coupling Machine Learning-based Management with Computer Vision Methods

The last contribution of the thesis makes a case for leveraging visualization to build image-

based components for machine learning-based system-level resource management. Taking

it a step further, we aim to explore the use of images for the purpose of memory access

pattern classification, recognition and prediction. This ties together with the proliferation

of machine learning models trained over image input datasets, such as ImageNet [79] and

CIFAR-10 [134]. Across scientific domains there is a plethora of machine learning and

computer vision methods coupled together to classify and detect objects, as summarized in

Section 8.5.

Similarly, we aim to build a dataset of annotated images, where the objects in the im-

age are categories of memory access patterns across application domains and sizes. The

creation of such a dataset requires human based annotation with appropriate labels and

metadata depending on the class of the patterns. How can we consistently categorize pat-

terns, so as to enable public contributions from the community? There are various classes

proposed across works particularly for the context of data prefetcing [80, 81]. What meta-

data is necessary to keep to facilitate the mapping of image pixels to memory accesses?

Also, the image resolution should be properly set to minimize information loss. Should a

hierarchical approach be followed that allows ‘zoomin in’ to areas of the image? This thesis

lays the foundation for the creation of such a dataset, through the suggested visualization

methodology and pattern extraction in Chapter 7. Such a dataset will then enable the use

of machine learning models to classify and detect and computer vision techniques to ex-

139

Select ML model

Resource
Management

Decision

Take ML related
action

Pattern
Class

Example Use Cases

Pattern
Recognition

stride

stride

image + metadata

Pattern
Prediction

future pattern

Pattern
Classification

Figure 9.9: Future use of computer vision methods for data access pattern recognition,
classification and prediction as part of system-level resource management.

tract such patterns in unseen images. In addition, it will be extremely beneficial to better

understand data access behaviors across application domains with contributions from the

research community and industry.

Finally, having an image dataset of memory access behaviors can further enrich the ma-

chine learning-based system-level resource management with image-based components, as

depicted in Figure 9.9. For example, images can now be used to identify patterns, map

patterns to machine learning models and trigger any necessary re-training or new model

creations, as we described earlier in the section. Moreover, convolutional neural networks

coupled together with recurrent neural networks can be used to learn and predict memory

access patterns across times based on their image representations. Such machine learning

models have been shown to reach higher prediction accuracy than using recurrent neural

networks over numerical data [129]. How does an image-based pattern prediction compare

against the design proposed in this thesis? What part of the memory footprint corresponds

to an image, how many models are trained per application? These are interesting compari-

son points and there is great potential in improving upon the contributions of this thesis.

In conclusion, this thesis opens up a new research direction that couples machine learn-

ing with computer vision for the purpose of resource management. It is exciting to evaluate

the extent and the context where such image-based machine learning models will be more

140

Cache

Memory

Storage

Figure 9.10: Data access patterns change across the data storage hierarchy, as data accesses
get filtered across the storage layers.

effective, reach higher levels of performance and reduce learning overheads, compared to

training machine learning models over numerical data with features that capture data access

behaviors analytically.

Extending the Machine Learning-based Management Across the Data Storage Hier-

archy

The contributions of this thesis improve upon current solutions in systems with heteroge-

neous memory hardware by adding machine intelligence. However, there is potential for

the proposed approach of integrating machine learning methods to be extended to the man-

agement of storage technologies. Our key design point that we propose is to use machine

learning to enrich existing lightweight and practical solutions with the necessary machine

intelligence and learn behaviors, rather than actions, as described in Section 9.2. This

approach can be applied for managing data stored across memory-only hardware, storage-

only hardware, across memory and storage, as well as when considering data offloads to

GPUs and accelerators [135]. However, the data access patterns will slightly differ across

layers, since each layer filters the amount and type of data that reach the lower levels of

the storage layers, as depicted in Figure 9.10. Leveraging the similarity of these images

presents an opportunity to expand an image-based resource management approach across

141

emerging computing platforms with extreme heterogeneity [41], such as layers of hier-

archical heterogeneous memory and storage, accelerators and accelerator-near memories,

and emerging disaggregated platforms.

Final Remarks. This thesis is written at a time where there is a lot of excitement in the

research community as well as interest from industry to use machine learning for system-

level resource management. We contribute initial steps and design foundations on how to

practically use machine learning, while the full integration of machine learning requires

a lot more work, as described in the future directions of this thesis. We hope that the

lessons learned will inspire and will be of general use to researchers and students that will

pursue these topics, particularly since most of the software system solutions that this thesis

develops are open sourced for community exploration and contributions.

142

REFERENCES

[1] Intel® OptaneTM DC Persistent Memory, https://www.intel.com/content/www/us/
en/architecture-and-technology/optane-dc-persistent-memory.html.

[2] MemVerge - More Memory. Less Cost. https://www.memverge.com/more-memory-
less-cost/.

[3] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh, Z. Wang,
Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, Basic performance measurements of
the intel optane dc persistent memory module, 2019. arXiv: 1903.05714 [cs.DC].

[4] D. Mhembere, D. Zheng, C. E. Priebe, J. T. Vogelstein, and R. Burns, “Knor:
A numa-optimized in-memory, distributed and semi-external-memory k-means li-
brary,” in Proceedings of the 26th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’17, Washington, DC, USA: ACM,
2017, pp. 67–78, ISBN: 978-1-4503-4699-3.

[5] P. Wu, D. Li, Z. Chen, J. S. Vetter, and S. Mittal, “Algorithm-directed data place-
ment in explicitly managed non-volatile memory,” in Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and Distributed Comput-
ing, ser. HPDC ’16, Kyoto, Japan: ACM, 2016, pp. 141–152, ISBN: 978-1-4503-
4314-5.

[6] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J. Jack-
son, and K. Schwan, “Data tiering in heterogeneous memory systems,” in Pro-
ceedings of the Eleventh European Conference on Computer Systems, ser. EuroSys
’16, London, United Kingdom: Association for Computing Machinery, 2016, ISBN:
9781450342407.

[7] D. Shen, X. Liu, and F. X. Lin, “Characterizing emerging heterogeneous memory,”
SIGPLAN Not., vol. 51, no. 11, pp. 13–23, Jun. 2016.

[8] C. Cantalupo, V. Venkatesan, J. Hammond, K. Czurlyo, and S. D. Hammond,
“Memkind: An extensible heap memory manager for heterogeneous memory plat-
forms and mixed memory policies.,” Mar. 2015.

[9] K. Wu, Y. Huang, and D. Li, “Unimem: Runtime data managementon non-volatile
memory-based heterogeneous main memory,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’17, Denver, Colorado: ACM, 2017, 58:1–58:14, ISBN: 978-1-4503-5114-0.

[10] K. Wu, J. Ren, and D. Li, “Runtime data management on non-volatile memory-
based heterogeneous memory for task-parallel programs,” in Proceedings of the

143

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.memverge.com/more-memory-less-cost/
https://www.memverge.com/more-memory-less-cost/
https://arxiv.org/abs/1903.05714

International Conference for High Performance Computing, Networking, Storage,
and Analysis, ser. SC ’18, Dallas, Texas: IEEE Press, 2018, 31:1–31:13.

[11] Y. Chen, I. B. Peng, Z. Peng, X. Liu, and B. Ren, “Atmem: Adaptive data place-
ment in graph applications on heterogeneous memories,” in Proceedings of the
18th ACM/IEEE International Symposium on Code Generation and Optimization,
ser. CGO 2020, San Diego, CA, USA: Association for Computing Machinery,
2020, pp. 293–304, ISBN: 9781450370479.

[12] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent page man-
agement for two-tiered main memory,” in Proceedings of the Twenty-Second In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’17, China: Association for Computing Machin-
ery, 2017, pp. 631–644, ISBN: 9781450344654.

[13] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H. Loh,
“Heterogeneous memory architectures: A hw/sw approach for mixing die-stacked
and off-package memories,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), vol. 00, Feb. 2015, pp. 126–136.

[14] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page management
for tiered memory systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’19, Providence, RI, USA: Association for Computing Ma-
chinery, 2019, pp. 331–345, ISBN: 9781450362405.

[15] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, “Heteroos: Os design for
heterogeneous memory management in datacenter,” in Proceedings of the 44th An-
nual International Symposium on Computer Architecture, ser. ISCA ’17, Toronto,
ON, Canada: Association for Computing Machinery, 2017, pp. 521–534, ISBN:
9781450348928.

[16] Z. Duan, H. Liu, X. Liao, H. Jin, W. Jiang, and Y. Zhang, “Hinuma: Numa-aware
data placement and migration in hybrid memory systems,” in 2019 IEEE 37th In-
ternational Conference on Computer Design (ICCD), 2019, pp. 367–375.

[17] F. X. Lin and X. Liu, “Memif: Towards programming heterogeneous memory asyn-
chronously,” in Proceedings of the Twenty-First International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ser. AS-
PLOS ’16, Atlanta, Georgia, USA: Association for Computing Machinery, 2016,
pp. 369–383, ISBN: 9781450340915.

[18] V. R. Kommareddy, S. D. Hammond, C. Hughes, A. Samih, and A. Awad, “Page
migration support for disaggregated non-volatile memories,” in Proceedings of the
International Symposium on Memory Systems, ser. MEMSYS ’19, Washington,

144

District of Columbia: Association for Computing Machinery, 2019, pp. 417–427,
ISBN: 9781450372060.

[19] A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D. M. Tullsen, “Mempod:
A clustered architecture for efficient and scalable migration in flat address space
multi-level memories,” in 2017 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2017, pp. 433–444.

[20] V. Gupta, M. Lee, and K. Schwan, “Heterovisor: Exploiting resource heterogene-
ity to enhance the elasticity of cloud platforms,” in Proceedings of the 11th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
ser. VEE ’15, Istanbul, Turkey: Association for Computing Machinery, 2015, pp. 79–
92, ISBN: 9781450334501.

[21] MLPerf - Fair and useful benchmarks for measuring training and inference perfor-
mance of ML hardware, software, and services. https://mlperf.org/.

[22] MLBench: Distributed Machine Learning Benchmark, https://mlbench.github.io/.

[23] J. Li, Y. Ma, and R. Vuduc, ParTI! : A parallel tensor infrastructure for multicore
cpus and gpus, Last updated: Jan 2020, Oct. 2018.

[24] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali, “Lonestar: A suite of par-
allel irregular programs,” in ISPASS ’09: IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, Boston, MA, USA, 2009.

[25] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton
University, Jan. 2011.

[26] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in Proceedings of
the 2009 IEEE International Symposium on Workload Characterization (IISWC),
ser. IISWC ’09, Washington, DC, USA: IEEE Computer Society, 2009, pp. 44–54,
ISBN: 978-1-4244-5156-2.

[27] CORAL-2 Benchmarks, https://asc.llnl.gov/coral-2-benchmarks/, 2020.

[28] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated and ef-
ficient huge page management with ingens,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, ser. OSDI’16, Sa-
vannah, GA, USA: USENIX Association, 2016, pp. 705–721, ISBN: 9781931971331.

[29] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-based hybrid
memory management,” in 2017 IEEE International Conference on Cluster Com-
puting (CLUSTER), 2017, pp. 152–165.

145

https://mlperf.org/
https://mlbench.github.io/
https://asc.llnl.gov/coral-2-benchmarks/

[30] Pin - A Dynamic Binary Instrumentation Tool, https://software.intel.com/content/
www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html.

[31] T. D. Doudali, S. Blagodurov, A. Vishnu, S. Gurumurthi, and A. Gavrilovska,
“Kleio: A hybrid memory page scheduler with machine intelligence,” in Proceed-
ings of the 28th International Symposium on High-Performance Parallel and Dis-
tributed Computing, ser. HPDC ’19, Phoenix, AZ, USA: ACM, 2019, pp. 37–48,
ISBN: 978-1-4503-6670-0.

[32] T. D. Doudali, D. Zahka, and A. Gavrilovska, “Cori: Dancing to the right beat of pe-
riodic data movements over hybrid memory systems,” in 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2021.

[33] O. Patil, L. Ionkov, J. Lee, F. Mueller, and M. Lang, “Performance characterization
of a DRAM-NVM hybrid memory architecture for HPC applications using intel
optane DC persistent memory modules,” in Proceedings of the International Sym-
posium on Memory Systems, MEMSYS 2019, Washington, DC, USA, September 30
- October 03, 2019, ACM, 2019, pp. 288–303.

[34] S. Li, D. Reddy, and B. Jacob, “A performance & power comparison of modern
high-speed dram architectures,” in Proceedings of the International Symposium on
Memory Systems, ser. MEMSYS ’18, Alexandria, Virginia, USA: Association for
Computing Machinery, 2018, pp. 341–353, ISBN: 9781450364751.

[35] Specifications - Supercomputer Fugaku : Fujitsu Global, https://www.fujitsu.com/
global/about/innovation/fugaku/specifications/, November 2020.

[36] Summit - Oak Ridge Leadership Computing Facility, https://www.olcf.ornl.gov/
olcf-resources/compute-systems/summit/.

[37] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. Wenisch,
“Disaggregated memory for expansion and sharing in blade servers,” in Proceed-
ings of the 36th Annual International Symposium on Computer Architecture, ser. ISCA
’09, Austin, TX, USA: Association for Computing Machinery, 2009, pp. 267–278,
ISBN: 9781605585260.

[38] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and T. F.
Wenisch, “System-level implications of disaggregated memory,” in Proceedings
of the 2012 IEEE 18th International Symposium on High-Performance Computer
Architecture, ser. HPCA ’12, USA: IEEE Computer Society, 2012, pp. 1–12, ISBN:
9781467308274.

[39] Gen-Z Consortium: Computer Industry Alliance Revolutionizing Data Access, https:
//genzconsortium.org/.

146

https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://genzconsortium.org/
https://genzconsortium.org/

[40] Compute Express Link: The Breakthrough CPU-to-Device Interconnect, https : / /
www.computeexpresslink.org/.

[41] J. S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf, K. An-
typas, D. Donofrio, T. Humble, C. Schuman, B. Van Essen, S. Yoo, A. Aiken, D.
Bernholdt, S. Byna, K. Cameron, F. Cappello, B. Chapman, A. Chien, M. Hall, R.
Hartman-Baker, Z. Lan, M. Lang, J. Leidel, S. Li, R. Lucas, J. Mellor-Crummey,
P. Peltz Jr., T. Peterka, M. Strout, and J. Wilke, “Extreme heterogeneity 2018 - pro-
ductive computational science in the era of extreme heterogeneity: Report for doe
ascr workshop on extreme heterogeneity,” Dec. 2018.

[42] K. Bergman, T. Conte, A. Gara, M. Gokhale, M. Heroux, P. Kogge, B. Lucas, S.
Matsuoka, V. Sarkar, and O. Temam, “Future high performance computing capa-
bilities: Summary report of the advanced scientific computing advisory committee
(ascac) subcommittee,” Mar. 2019.

[43] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger, “Tetrisched: Global rescheduling with adaptive plan-ahead in dynamic
heterogeneous clusters,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16, London, United Kingdom: Association for
Computing Machinery, 2016, ISBN: 9781450342407.

[44] A. Tumanov, J. Cipar, G. R. Ganger, and M. A. Kozuch, “Alsched: Algebraic
scheduling of mixed workloads in heterogeneous clouds,” in Proceedings of the
Third ACM Symposium on Cloud Computing, ser. SoCC ’12, San Jose, California:
Association for Computing Machinery, 2012, ISBN: 9781450317610.

[45] A. Klimovic, H. Litz, and C. Kozyrakis, “Selecta: Heterogeneous cloud storage
configuration for data analytics,” in Proceedings of the 2018 USENIX Conference
on Usenix Annual Technical Conference, ser. USENIX ATC ’18, Boston, MA,
USA: USENIX Association, 2018, pp. 759–773, ISBN: 978-1-931971-44-7.

[46] G. Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali, “Single machine graph
analytics on massive datasets using intel optane dc persistent memory,” Proc. VLDB
Endow., vol. 13, no. 8, pp. 1304–1318, Apr. 2020.

[47] I. B. Peng, M. B. Gokhale, and E. W. Green, “System evaluation of the intel optane
byte-addressable nvm,” in Proceedings of the International Symposium on Memory
Systems, ser. MEMSYS ’19, Washington, District of Columbia: Association for
Computing Machinery, 2019, pp. 304–315, ISBN: 9781450372060.

[48] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-generation com-
pute benchmark,” in Companion of the 2018 ACM/SPEC International Confer-
ence on Performance Engineering, ser. ICPE ’18, Berlin, Germany: Association
for Computing Machinery, 2018, pp. 41–42, ISBN: 9781450356299.

147

https://www.computeexpresslink.org/
https://www.computeexpresslink.org/

[49] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput. Archit.
News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[50] PolyBench/C - The Polyhedral Benchmark suite, http: / /web.cse.ohio- state.edu/
∼pouchet.2/software/polybench/.

[51] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z.
Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A distributed framework for
emerging AI applications,” in 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), Carlsbad, CA: USENIX Association, Oct.
2018, pp. 561–577, ISBN: 978-1-939133-08-3.

[52] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “Cirrus: A serverless
framework for end-to-end ml workflows,” in Proceedings of the ACM Symposium
on Cloud Computing, ser. SoCC ’19, Santa Cruz, CA, USA: Association for Com-
puting Machinery, 2019, pp. 13–24, ISBN: 9781450369732.

[53] D. Gureya, J. Neto, R. Karimi, J. Barreto, P. Bhatotia, V. Quema, R. Rodrigues,
P. Romano, and V. Vlassov, “Bandwidth-aware page placement in numa,” in 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2020,
pp. 546–556.

[54] autonuma: Optimize memory placement for memory tiering system, https://lwn.net/
Articles/835402/, October 27, 2020.

[55] T. D. Doudali and A. Gavrilovska, “Mnemo: Boosting memory cost efficiency in
hybrid memory systems,” in 2019 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2019, pp. 412–421.

[56] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis, “Human-level control through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, Feb. 2015.

[57] A. Mirhoseini, H. Pham, Q. Le, M. Norouzi, S. Bengio, B. Steiner, Y. Zhou, N. Ku-
mar, R. Larsen, and J. Dean, “Device placement optimization with reinforcement
learning,” 2017.

[58] E. Ipek, O. Mutlu, J. F. Martınez, and R. Caruana, “Self-optimizing memory con-
trollers: A reinforcement learning approach,” SIGARCH Comput. Archit. News,
vol. 36, no. 3, pp. 39–50, Jun. 2008.

[59] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang, C. Kozyrakis, and
P. Ranganathan, “Learning memory access patterns,” in Proceedings of the 35th In-

148

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://lwn.net/Articles/835402/
https://lwn.net/Articles/835402/

ternational Conference on Machine Learning, J. Dy and A. Krause, Eds., ser. Pro-
ceedings of Machine Learning Research, vol. 80, PMLR, Oct. 2018, pp. 1919–
1928.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014. arXiv: 1412.6980.

[61] F. Chollet et al., Keras, https://keras.io, 2015.

[62] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vi-
jay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems, Software available from tensorflow.org, 2015.

[63] CORAL Benchmark Codes, https://asc.llnl.gov/CORAL-benchmarks/, Dec. 2018.

[64] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton
University, Jan. 2011.

[65] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in Proceedings of
the 2009 IEEE International Symposium on Workload Characterization (IISWC),
ser. IISWC ’09, Washington, DC, USA: IEEE Computer Society, 2009, pp. 44–54,
ISBN: 978-1-4244-5156-2.

[66] F. X. Lin and X. Liu, “Memif: Towards programming heterogeneous memory asyn-
chronously,” SIGARCH Comput. Archit. News, vol. 44, no. 2, pp. 369–383, Mar.
2016.

[67] S. Kaestle, R. Achermann, T. Roscoe, and T. Harris, “Shoal: Smart allocation and
replication of memory for parallel programs,” in 2015 USENIX Annual Techni-
cal Conference (USENIX ATC 15), Santa Clara, CA: USENIX Association, 2015,
pp. 263–276, ISBN: 978-1-931971-225.

[68] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “Deepcpu: Serving rnn-based deep
learning models 10x faster,” in Proceedings of the 2018 USENIX Conference on
Usenix Annual Technical Conference, ser. USENIX ATC ’18, Boston, MA, USA:
USENIX Association, 2018, pp. 951–965, ISBN: 9781931971447.

149

https://arxiv.org/abs/1412.6980
https://keras.io

[69] T. D. Doudali, D. Zahka, and A. Gavrilovska, “The case for optimizing the fre-
quency of periodic data movements over hybrid memory systems,” in The Inter-
national Symposium on Memory Systems, ser. MEMSYS 2020, Washington, DC,
USA: Association for Computing Machinery, 2020, pp. 137–143, ISBN: 9781450388993.

[70] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly - Performing polyhedral opti-
mizations on a low-level intermediate representation,” Parallel Processing Letters,
vol. 22, no. 4, 2012.

[71] V. Deodhar, H. Parikh, A. Gavrilovska, and S. Pande, “Compiler Assisted Load
Balancing on Large Clusters,” in 2015 International Conference on Parallel Archi-
tecture and Compilation (PACT), 2015.

[72] T. Moseley, D. Grunwald, D. A. Connors, R. Ramanujam, V. Tovinkere, and R.
Peri, “LoopProf : Dynamic Techniques for Loop Detection and Profiling,” in Work-
shop on Binary Instrumentation and Applications (WBIA), 2006.

[73] DynInst: Putting the Performance in High Performance Computing, dyninst.org.

[74] H. A. Maruf and M. Chowdhury, “Effectively prefetching remote memory with
leap,” in 2020 USENIX Annual Technical Conference (USENIX ATC 20), USENIX
Association, Jul. 2020, pp. 843–857, ISBN: 978-1-939133-14-4.

[75] N. N. Astakhova, L. A. Demidova, and E. V. Nikulchev, “Forecasting method for
grouped time series with the use of k-means algorithm,” Applied Mathematical
Sciences, vol. 9, pp. 4813–4830, 2015.

[76] F. Martinez Alvarez, A. Troncoso, J. C. Riquelme, and J. S. Aguilar Ruiz, “Energy
time series forecasting based on pattern sequence similarity,” IEEE Transactions
on Knowledge and Data Engineering, vol. 23, no. 8, pp. 1230–1243, 2011.

[77] K. Bandara, C. Bergmeir, and S. Smyl, Forecasting across time series databases
using recurrent neural networks on groups of similar series: A clustering approach,
2018. arXiv: 1710.03222 [cs.LG].

[78] Rui Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on
Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.

[79] ImageNet, https://image-net.org/.

[80] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, “Classifying memory access
patterns for prefetching,” in Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems, ser. ASPLOS ’20, Lausanne, Switzerland: Association for Computing Ma-
chinery, 2020, pp. 513–526, ISBN: 9781450371025.

150

https://arxiv.org/abs/1710.03222
https://image-net.org/

[81] S. Byna, Y. Chen, and X.-H. Sun, “A taxonomy of data prefetching mechanisms,”
in 2008 International Symposium on Parallel Architectures, Algorithms, and Net-
works (i-span 2008), 2008, pp. 19–24.

[82] Interpolations for imshow - Matplotlib documentation, https : / / matplotlib . org /
stable/gallery/images contours and fields/interpolation methods.html.

[83] G. Piccoli, H. N. Santos, R. E. Rodrigues, C. Pousa, E. Borin, and F. M. Quintão
Pereira, “Compiler support for selective page migration in numa architectures,” in
Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, ser. PACT ’14, Edmonton, AB, Canada: Association for Computing
Machinery, 2014, pp. 369–380, ISBN: 9781450328098.

[84] T. Mason, T. D. Doudali, M. Seltzer, and A. Gavrilovska, “Unexpected perfor-
mance of intel® optane™ dc persistent memory,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 55–58, 2020.

[85] T. D. Doudali and A. Gavrilovska, “Comerge: Toward efficient data placement in
shared heterogeneous memory systems,” in Proceedings of the International Sym-
posium on Memory Systems, ser. MEMSYS ’17, Alexandria, Virginia: Association
for Computing Machinery, 2017, pp. 251–261, ISBN: 9781450353359.

[86] L. Zhang, R. Karimi, I. Ahmad, and Y. Vigfusson, “Optimal data placement for het-
erogeneous cache, memory, and storage systems,” Proc. ACM Meas. Anal. Comput.
Syst., vol. 4, no. 1, May 2020.

[87] V. R. Kommareddy, A. Awad, C. Hughes, and S. D. Hammond, “Exploring al-
location policies in disaggregated non-volatile memories,” in Proceedings of the
Workshop on Memory Centric High Performance Computing, ser. MCHPC ’18,
Dallas, TX, USA: Association for Computing Machinery, 2018, pp. 58–66, ISBN:
9781450361132.

[88] C. Chou, A. Jaleel, and M. Qureshi, “Batman: Techniques for maximizing system
bandwidth of memory systems with stacked-dram,” in Proceedings of the Interna-
tional Symposium on Memory Systems, ser. MEMSYS ’17, Alexandria, Virginia:
Association for Computing Machinery, 2017, pp. 268–280, ISBN: 9781450353359.

[89] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim, “Transparent
hardware management of stacked dram as part of memory,” in 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, 2014, pp. 13–24.

[90] C. C. Chou, A. Jaleel, and M. K. Qureshi, “Cameo: A two-level memory organi-
zation with capacity of main memory and flexibility of hardware-managed cache,”
in 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,
2014, pp. 1–12.

151

https://matplotlib.org/stable/gallery/images_contours_and_fields/interpolation_methods.html
https://matplotlib.org/stable/gallery/images_contours_and_fields/interpolation_methods.html

[91] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin, “A hier-
archical neural model of data prefetching,” in Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS 2021, Virtual, USA: Association for Computing
Machinery, 2021, pp. 861–873, ISBN: 9781450383172.

[92] A. Srivastava, A. Lazaris, B. Brooks, R. Kannan, and V. K. Prasanna, “Predicting
memory accesses: The road to compact ml-driven prefetcher,” in Proceedings of
the International Symposium on Memory Systems, ser. MEMSYS ’19, Washington,
District of Columbia, USA: Association for Computing Machinery, 2019, pp. 461–
470, ISBN: 9781450372060.

[93] A. Srivastava, T.-Y. Wang, P. Zhang, C. A. F. De Rose, R. Kannan, and V. K.
Prasanna, “Memmap: Compact and generalizable meta-lstm models for memory
access prediction,” in Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Springer, 2020, pp. 57–68.

[94] P. Zhang, A. Srivastava, B. Brooks, R. Kannan, and V. K. Prasanna, “Raop: Recur-
rent neural network augmented offset prefetcher,” in The International Symposium
on Memory Systems, ser. MEMSYS 2020, Washington, DC, USA: Association for
Computing Machinery, 2020, pp. 352–362, ISBN: 9781450388993.

[95] M. Maas, D. G. Andersen, M. Isard, M. M. Javanmard, K. S. McKinley, and C.
Raffel, “Learning-based memory allocation for c++ server workloads,” in Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’20, Lausanne,
Switzerland: Association for Computing Machinery, 2020, pp. 541–556, ISBN:
9781450371025.

[96] C. Mendis, A. Renda, D. Amarasinghe, and M. Carbin, “Ithemal: Accurate, portable
and fast basic block throughput estimation using deep neural networks,” in Pro-
ceedings of the 36th International Conference on Machine Learning, K. Chaud-
huri and R. Salakhutdinov, Eds., ser. Proceedings of Machine Learning Research,
vol. 97, PMLR, Sep. 2019, pp. 4505–4515.

[97] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. Delimitrou, “Seer:
Leveraging big data to navigate the complexity of performance debugging in cloud
microservices,” in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, ser. AS-
PLOS ’19, Providence, RI, USA: Association for Computing Machinery, 2019,
pp. 19–33, ISBN: 9781450362405.

[98] M. Maas, “A taxonomy of ml for systems problems,” IEEE Micro, vol. 40, no. 5,
pp. 8–16, 2020.

152

[99] L. Cen, R. Marcus, H. Mao, J. Gottschlich, M. Alizadeh, and T. Kraska, “Learned
garbage collection,” in Proceedings of the 4th ACM SIGPLAN International Work-
shop on Machine Learning and Programming Languages, ser. MAPL 2020, Lon-
don, UK: Association for Computing Machinery, 2020, pp. 38–44, ISBN: 9781450379960.

[100] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality and context-
based prefetching using reinforcement learning,” SIGARCH Comput. Archit. News,
vol. 43, no. 3S, pp. 285–297, Jun. 2015.

[101] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh,
“Learning scheduling algorithms for data processing clusters,” in Proceedings of
the ACM Special Interest Group on Data Communication, ser. SIGCOMM ’19,
Beijing, China: Association for Computing Machinery, 2019, pp. 270–288, ISBN:
9781450359566.

[102] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar, M.
Norouzi, S. Bengio, and J. Dean, “Device placement optimization with reinforce-
ment learning,” in Proceedings of the 34th International Conference on Machine
Learning, D. Precup and Y. W. Teh, Eds., ser. Proceedings of Machine Learning
Research, vol. 70, PMLR, Jun. 2017, pp. 2430–2439.

[103] R. Chen, J. Wu, H. Shi, Y. Li, X. Liu, and G. Wang, “Drlpart: A deep reinforce-
ment learning framework for optimally efficient and robust resource partitioning
on commodity servers,” in Proceedings of the 30th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’21, Virtual
Event, Sweden: Association for Computing Machinery, 2020, pp. 175–188, ISBN:
9781450382175.

[104] S.-C. Kao, C.-H. H. Yang, P.-Y. Chen, X. Ma, and T. Krishna, “Reinforcement
learning based interconnection routing for adaptive traffic optimization,” in Pro-
ceedings of the 13th IEEE/ACM International Symposium on Networks-on-Chip,
ser. NOCS ’19, New York, New York: Association for Computing Machinery,
2019, ISBN: 9781450367004.

[105] S.-C. Kao, G. Jeong, and T. Krishna, “Confuciux: Autonomous hardware resource
assignment for dnn accelerators using reinforcement learning,” in 2020 53rd An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020,
pp. 622–636.

[106] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A. Jiménez, “Perceptron-
based prefetch filtering,” in Proceedings of the 46th International Symposium on
Computer Architecture, ser. ISCA ’19, Phoenix, Arizona: Association for Comput-
ing Machinery, 2019, pp. 1–13, ISBN: 9781450366694.

153

[107] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for learned
index structures,” in Proceedings of the 2018 International Conference on Manage-
ment of Data, ser. SIGMOD ’18, Houston, TX, USA: Association for Computing
Machinery, 2018, pp. 489–504, ISBN: 9781450347037.

[108] NVIDIA Deep Learning Accelerator, http://nvdla.org/.

[109] Intel Deep Learning Inference Accelerator, https : / / www . intel . com / content /
dam/support /us/en/documents/server- products/server- accessories/Intel DLIA
UserGuide 1.0.pdf.

[110] Intel FPGAS for Artificial Intelligence, https://www.intel.com/content/www/us/en/
artificial-intelligence/programmable/overview.html.

[111] Deep Learning Accelerators - Micron Technology, Inc. https://www.micron.com/
products / advanced - solutions / advanced - computing - solutions / deep - learning -
accelerators.

[112] Cloud Tensor Processing Units (TPUs) - Google Cloud, https://cloud.google.com/
tpu/docs/tpus.

[113] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible dataflow mapping
over dnn accelerators via reconfigurable interconnects,” SIGPLAN Not., vol. 53,
no. 2, pp. 461–475, Mar. 2018.

[114] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and T.
Krishna, “Sigma: A sparse and irregular gemm accelerator with flexible intercon-
nects for dnn training,” in 2020 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2020, pp. 58–70.

[115] H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “Fa3c: Fpga-accelerated deep rein-
forcement learning,” in Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems, ser. ASPLOS ’19, Providence, RI, USA: Association for Computing Machin-
ery, 2019, pp. 499–513, ISBN: 9781450362405.

[116] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, F. Yu, and J. E. Gonzalez, “IDK
cascades: Fast deep learning by learning not to overthink,” in Proceedings of the
Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018, Mon-
terey, California, USA, August 6-10, 2018, A. Globerson and R. Silva, Eds., AUAI
Press, 2018, pp. 580–590.

[117] D. Neil, M. Pfeiffer, and S.-C. Liu, “Phased lstm: Accelerating recurrent network
training for long or event-based sequences,” in Proceedings of the 30th Interna-

154

http://nvdla.org/
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-accessories/Intel_DLIA_UserGuide_1.0.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-accessories/Intel_DLIA_UserGuide_1.0.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-accessories/Intel_DLIA_UserGuide_1.0.pdf
https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/overview.html
https://www.intel.com/content/www/us/en/artificial-intelligence/programmable/overview.html
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/deep-learning-accelerators
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/deep-learning-accelerators
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/deep-learning-accelerators
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus

tional Conference on Neural Information Processing Systems, ser. NIPS’16, Barcelona,
Spain: Curran Associates Inc., 2016, pp. 3889–3897, ISBN: 9781510838819.

[118] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma, “Fastgrnn:
A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network,”
in Proceedings of the 32nd International Conference on Neural Information Pro-
cessing Systems, ser. NIPS’18, Montréal, Canada: Curran Associates Inc., 2018,
pp. 9031–9042.

[119] A. Mujika, F. Meier, and A. Steger, “Fast-slow recurrent neural networks,” in Ad-
vances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30,
Curran Associates, Inc., 2017, pp. 5915–5924.

[120] J. Appleyard, T. Kocisky, and P. Blunsom, Optimizing performance of recurrent
neural networks on gpus, 2016. arXiv: 1604.01946 [cs.LG].

[121] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E.
Shelhamer, Cudnn: Efficient primitives for deep learning, 2014. arXiv: 1410.0759
[cs.NE].

[122] Amazon CloudWatch, https://aws.amazon.com/cloudwatch/.

[123] Grafana, https://grafana.com/.

[124] Nagios, https://www.nagios.org/.

[125] LLView - Graphical monitoring of batch system controlled cluster, https://www.fz-
juelich.de/ias/jsc/EN/Expertise/Support/Software/LLview/ node.html.

[126] Intel VTune Profiler, https://software.intel.com/content/www/us/en/develop/tools/
oneapi/components/vtune-profiler.html.

[127] R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi, M. Hiltunen, A. Lagar-
Cavilla, and E. de Lara, “Kaleidoscope: Cloud micro-elasticity via vm state color-
ing,” in Proceedings of the Sixth Conference on Computer Systems, ser. EuroSys
’11, Salzburg, Austria: Association for Computing Machinery, 2011, pp. 273–286,
ISBN: 9781450306348.

[128] M. Bojarski, D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end
learning for self-driving cars,” ArXiv, vol. abs/1604.07316, 2016.

[129] N. Cohen, T. Balch, and M. Veloso, “Trading via image classification,” CoRR,
vol. abs/1907.10046, 2019. arXiv: 1907.10046.

155

https://arxiv.org/abs/1604.01946
https://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1410.0759
https://aws.amazon.com/cloudwatch/
https://grafana.com/
https://www.nagios.org/
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/LLview/_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/LLview/_node.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://arxiv.org/abs/1907.10046

[130] T. Estrada, J. Benson, H. Carrillo-Cabada, A. M. Razavi, M. A. Cuendet, H. We-
instein, E. Deelman, and M. Taufer, “Graphic encoding of macromolecules for ef-
ficient high-throughput analysis,” in Proceedings of the 2018 ACM International
Conference on Bioinformatics, Computational Biology, and Health Informatics,
ser. BCB ’18, Washington, DC, USA: Association for Computing Machinery, 2018,
pp. 315–324, ISBN: 9781450357944.

[131] H. Carrillo-Cabada, J. Benson, A. Razavi, B. Mulligan, M. A. Cuendet, H. We-
instein, M. Taufer, and T. Estrada, “A graphic encoding method for quantitative
classification of protein structure and representation of conformational changes,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp. 1–1,
2019.

[132] K. Rong, C. E. Yoon, K. J. Bergen, H. Elezabi, P. Bailis, P. Levis, and G. C. Beroza,
“Locality-sensitive hashing for earthquake detection: A case study of scaling data-
driven science,” Proc. VLDB Endow., vol. 11, no. 11, pp. 1674–1687, Jul. 2018.

[133] A. Matsunaga and J. A. Fortes, “On the use of machine learning to predict the time
and resources consumed by applications,” in 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, 2010, pp. 495–504.

[134] The CIFAR-10 dataset, https://www.cs.toronto.edu/∼kriz/cifar.html.

[135] L. Yu, J. Protze, O. Hernandez, and V. Sarkar, “Arbalest: Dynamic detection of
data mapping issues in heterogeneous openmp applications,” in 2021 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), 2021, pp. 464–
474.

156

https://www.cs.toronto.edu/~kriz/cifar.html

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction
	Statement of Problem
	Thesis Statement
	Contributions
	Organization

	2 | Motivation
	Background
	Performance Gap
	Chapter Summary

	3 | Hybrid Memory Simulation and Performance Modeling
	Memory Access Trace Collection
	Hybrid Memory System Simulation
	Page Scheduling Policies
	Native Hardware Validation
	Chapter Summary

	4 | Foundations for Practical Machine Learning-based Management
	Overview
	Motivation
	Choosing the Machine Learning Method
	Choosing the Patterns to Learn
	System Design of Kleio
	Evaluation
	Chapter Summary

	5 | Fine-tuning Critical Management Operations with Reuse Insights
	Overview
	Motivation
	Data Reuse Insights
	System Design of Cori
	Evaluation
	Chapter Summary

	6 | Scaling Management Operations with Pattern Clustering
	Overview
	Motivation
	Clustering Similar vs. Identical Patterns
	System Design of Coeus
	Evaluation
	Chapter Summary

	7 | Reducing Operational Overheads with Pattern Visualization
	Overview
	Visualization Insight
	System Design of Cronus
	Evaluation
	Discussion
	Chapter Summary

	8 | Related Work
	Software Solutions
	Hardware Solutions
	Machine Learning-based Solutions
	Reducing Machine Learning Overheads
	Image-based Solutions

	9 | Conclusion
	Summary
	Lessons Learned
	Future Directions

	References

