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SUMMARY

The Department of Defense (DOD) planning process currently works to translate na-

tional strategic goals into a force structure. The Joint Capabilities Integration and Devel-

opment System (JCIDS) requirements generation process for acquisition is a primary force

structure driver and is built around reducing redundancy between organizations, enabling

capability based acquisition, and evaluating both needs and solutions at a joint level. The

JCIDS process is an example of raising the organizational level at which needs and result-

ing resource requests are decided. The current acquisition environment has imposed new

fiscal and political constraints (e.g. budget reductions, continuing resolutions) while the

mission requirements have increased with an increase in operational needs. Uncertainty in

resources and requirements are driven by budgetary volatility and ever changing operational

need. The trade-off between technology refresh, asset recapitalization, and asset realloca-

tion has emerged as a primary driver during acquisition decisions to balance the constraints,

needs, and uncertainty. New methods are needed to ensure that individual DoD stakehold-

ers can maximize their mission success while remaining within the current constraints and

dealing with the uncertainty without another level of consolidated coordination. A new

methodology to devise a “playbook” of technology investment, system development, and

system allocation strategies with regards to other stakeholder decision making and future

uncertainty will help individual stakeholders better allocate their resources.

A military force structure can be defined as an acknowledged System of Systems (SoS).

A body of work exists that addresses SoS Engineering processes, the evaluation of SoS

performance, and SoS system evaluation. However, few approaches holistically address

the SoS planning and evolution problem at the level needed to assist defense stakeholders

in strategic planning. Current approaches do not address the impact of multiple-stakeholder

decisions, multiple goals for each stakeholder, the uncertainty of decision outcomes, and

the temporal component to strategic decision making.
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The author developed a three step methodology to address the above short-comings to

inform the production of a playbook for an individual stakeholder based on a review of the

current state-of-the-art and the synthesis of existing methods from other fields.

A game framework, considered a Truth Model, is assumed for this work and represents

the stakeholder’s decisions and resulting outcomes played out over time. The first step

creates a computationally reasonable meta-model from the complex game framework. The

Truth Model is sampled using Monte Carlo techniques to generate s, a, r, s sample tuples.

The tuples are used to train a meta-model MDP. The meta-model results in a lower dimen-

sion state space composed of meta-model states, specific action based transition probabili-

ties, and stochastic stakeholder rewards.

The second step addresses leveraging the now computationally manageable decision

space to extract useful information for the stakeholder of interest. The MDP meta-model is

used to evaluate risk-based policies, state significance, and action significance. A novel al-

gorithm was developed based on mean-variance portfolio theory applied to stakeholder util-

ity and combined with Reinforcement Learning (RL) policy iteration methods to construct

risk-based policies using the MDP meta-model. Entropy measurements of stakeholder met-

rics are taken before and after each state to measure state significance. The opportunity cost

between individual stakeholder metrics for a given action for each meta-model state-action

pair is measured using a comparison of mean outcome and outcome variance.

The final step generates the information to help inform a stakeholder specific playbook.

The risk-based policies are used to develop Risk-Tolerance Sensitivity Profiles (RTSP) at

each state. A state RTSP can identify the Pareto efficient and inefficient actions with regards

to risk and reward. The state RTSP can also identify the worst, low risk, and high risk

actions. Additionally, decision spaces can be analyzed to identify consistent trends among

similar RTSPs as well as bifurcations in RTSPs as a function of state values. The significant

states and actions are identified using entropy and opportunity cost metrics.

The output of the method is the derived action and state based risk-based information
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and is provided to stakeholders to support the development of a risk-based playbook.

The methodology was created in part to test the applicability of existing and novel con-

structs. Three hypotheses were developed as part of reviewing current methods, synthe-

sizing novel methods, and developing the overarching methodology. Hypothesis 1 asserts

that Pareto efficient actions can be identified using the novel risk-based policy algorithm.

Hypothesis 2 asserts that state-space reduction techniques can be applied to create a re-

duced MDP meta-model reducing computation time while maintaining usable risk-based

policy outputs. Hypothesis 3 asserts that the risk-based policy metrics can be used to derive

information above and beyond the current state-of-the-art, represented by optimal policy

methods.

Experiment 1 tests Hypothesis 1 using an increasingly complex set of MDPs and demon-

strates the ability of the risk-based policy algorithm to identify Pareto efficient and ineffi-

cient actions. Experiment 2 tests Hypothesis 2 by varying the state compression ratio and

demonstrating both a reduction in computation time and the similarity of resulting risk-

based policies. Experiment 3 tests Hypothesis 3 using both less complex scenarios and a

single full complexity scenario. The full capability of the methodology is demonstrated

and benchmarked against optimal policy methods. A significantly more nuanced set of

information is shown when compared to the result from optimal policy methods.

The successful evaluation of each hypothesis demonstrates that the methodology can

provide a military defense planner (a single SoS stakeholder) with information to develop

a risk-based playbook to assist in decision making over time in an uncertain environment

with multiple cooperative and non-cooperative stakeholders, budgetary constraints, and

expanding operational needs. This will allow for robust planning at the stakeholder level

without the need of an additional level of consolidation and review.
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Dissertation Structure

Chapter 1 presents the motivation for approaching long-term strategic defense planning

from a different perspective.

Chapter 2 presents a general characterization of the defense planning problem and iden-

tifies challenges with regards to long term strategic defense planning.

Chapter 3 reviews relevant background material, identifies gaps in current methods, and

presents the research objective.

Chapter 4 presents the research questions developed around the identified gaps, the sub-

sequent literature review, the synthesis of concepts, and the hypotheses developed to ad-

dress the research questions.

Chapter 5 presents the methodology developed in response to the research objective and

the developed hypotheses.

Chapter 6 describes the experiments designed to evaluate the hypotheses.

Chapter 7 presents the results and analysis from the experiments.

Chapter 8 discusses the application of the methodology, examines the resolution of hy-

potheses, reflects on the research objective, summarizes contributions of this work, and

provides areas of future work.
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CHAPTER 1

MOTIVATION

The motivation for this work stems from the challenges and limitations of the current

United States (U.S.) Department of Defense (DOD) Defense Planning system; specifically,

the ability of the system to adjust to the imposed external environment and internal con-

straints. Resource constraints on the defense community have increased without a reduc-

tion in operational need. Reduced resources and increased required performance makes the

value of cross-organizational force-level trades significant. The need for higher level trades

increases each time the defense system is squeezed to a new normal. Doing more with

limited resources requires an additional level of allocation management above the current

level that the defense acquisition community provides today. Another level of manage-

ment is not necessarily feasible but the need for individual stakeholders within the DoD to

continue to maximize the use of their given resources still exists. The inherent distributed

management of resources leads to the need for individual stakeholders to make strategic

decisions with consideration of the decisions of both cooperative stakeholders in addition

to changes in the global environment and non-cooperative stakeholders (adversaries). The

strategic decisions stakeholders face when determining resource allocation over time in-

clude refreshing the technology used in deployed systems, reallocating existing resources

to cover capability gaps, and expand current capabilities or systems.

1.1 Defense Planning

Defense Planning can be characterized as the “employment of analytical, planning, and

programming efforts to determine what sort of armed forces a state needs” [1]. The cur-

rent United States DoD approaches to Defense Planning, or force structure planning, is

outlined in Figure 1.1. Strategic national-level guidance is given through the National Se-
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Figure 1.1: Defense Planning Approaches [1]

curity Strategy (NSS), the National Defense Strategy (NDS), and the National Military

Strategy (NMS) as inputs to Defense Planning. The outputs yielded by Defense Planning

are spending priorities, feasible/affordable capabilities, and a comprehensive force struc-

ture.

Today, the effort varies to bridge the gap between the national-level strategy and the

resource allocation, capability needs, and force structure. Demand-based planning consti-

tutes the majority of planning and consists of developing new “strategies, capabilities, and

capacities” [1]. Supply-based planning takes the opposite approach and looks at current

structure, capabilities, and budgets in a more bottoms-up method. The Defense Planning

process evaluates options across the different armed services as part of the current DoD

acquisition system. The defense planning process is intimately tied to strategic defense

planning, force structure planning, and, ultimately, defense acquisition. [2]
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Figure 1.2: JCIDS Process Outline [4]

1.2 DoD Acquisition System

In 2003, The Department of Defense (DoD) reformed it’s acquisition process and began

using the Joint Capability Integration and Development System (JCIDS) [3]. The JCIDS

was created as a top-down acquisition process that would allow better coordination between

joint needs across DoD services. The goal is to facilitate synergies between branches and

organizations of the DoD while moving towards a capability based planning process. The

process does not begin with an idea for a new system or a technology concept but with

the identification of needed capabilities. The JCIDS process begins by identifying current

capability gaps through a Capability Based Assessment (CBA) as seen in Figure 1.2. The

CBA identifies the needed mission and capability gaps that currently exist. The goal is to

then define capability requirements which are not functional or physical requirements but

are capabilities that are ‘required to meet an organization’s roles, functions, and missions

in current or future operations’. [3]

The CBA first identifies the current gaps that exist in current capabilities and assesses
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for their risk against the completion of an organization’s mission. The process moves for-

ward to further action if there is an identified capability gap and the capability doesn’t

exist elsewhere in the joint force and the organization is not willing to accept the risk of

no capability. Once the gap is identified and assessed as in need of addressing, it is ei-

ther categorized as urgent need or a nominal need. For non-urgent needs, as most strategic

acquisitions will be, first non-material (DOTMLPF-P) and then material (acquisition) are

evaluated.

Studies and analyses related to the non-material and material solutions are done by

the individual organizations and then shared via responsible Functional Capability Board

(FCB) and with the Joint Capability Board (JPB) [3]. The goal of this step is to make sure

a material solution (new acquisition or recapitalization) is necessary instead of reallocating

existing resources. A non-material solution can be seen as a supply-based approach (using

existing force structure, capabilities, and budget) and a non-material as a demand-based

planning approach (increased force structure, capabilities, and budget).

If a non-material solution exists then a Doctrine, Organization, Training, materiel,

Leadership and Education, Personnel, Facilities, and Policy (DOTMLPF-P) Change Rec-

ommendation (DCR) is the output of the CBA. Otherwise, if a material solution is deter-

mined to be needed, a Initial Capabilities Document is generated which describes the need

for a material solution and outlines a material approach as the output of the CBA. The JROC

can decide to accept the operation risk of no change, move forward with a non-material so-

lution, or accept the need for a materiel solution. If a material solution is accepted, an

Analysis of Alternatives (AoA) identifies alternative material solutions that could fulfill

the capabilities identified in the ICD and evaluates the alternatives against their life-cycle

cost and mission effectiveness. Ultimately the output of the AoA is a draft Capabilities

Development Document (CDD) which outlines the requirements for the material solution.

The draft CCD is the ultimate output of the Pre-Milestone A portion of the DoD JCIDS

acquisition process and ultimately determines the next developed material solution. The
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material solution selected for Post-Milestone A development should ideally represent the

needs of and solutions from a joint point of view. [3]

The goal of the JCIDS process is to develop and acquire based on capability needs, not

legacy system and historical system specific missions. The initial purpose of the JCIDS

process was to help reduce overlap in capability and system development by individual

branches of the military by bringing joint requirements under a single roof. The JROC

(Joint Requirements Oversight Council) uses the JCIDS process to balance joint needs

equitably while making informed decisions. [3]

1.3 Pressures on DoD Long Term Planning

Over the last decade, a number of instigators have increased pressures on the defense plan-

ning system. (1) Budgetary pressures driven by sequestration and changing US priorities

have began to increase the constraints on future acquisitions [5, 6, 7]. (2) The political

volatility coupled with the short funding cycles have increased the amount of funding

uncertainty. This uncertainty ripples through the defense community, government and

contractor, and significantly impacts its long-term planning efforts [8]. (3) A pivot from

asymmetrical warfare in Iraq and Afghanistan to the Pacific has significant impacts on the

capabilities the DoD needs [9]. Technology changes, specifically an increase in connec-

tivity, has enabled new possibilities in system collaboration. The current pivot outlines the

need for an agile long-term strategic planning need. Long term strategic planning with in

the DoD will have to account for more fiscal constraints and uncertainty while working to

meet more mission requirements driven by more operational needs [10].

1.3.1 Budgetary Constraints and Uncertainty

The current domestic and international environment has increased financial resource con-

straints and uncertainty. These increases are driven by political and economic forces. Ex-

amining defense spending and its impacts over the last decade shows increased constraints
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with sequestration and uncertainty in funding due to Continuing Resolutions (CR). Se-

questration was the result of a automatic spending cuts enacted in 2013 due to lack of

intra-government agreement on a new budget act. During the first year, resource allocation

decisions accounted for only near-term impacts to current programs with little account for

interdependencies of cuts [11]. Short term decisions projected long term impacts [7]. In

2014, cuts to RDT&E were projected based on CRs demonstrating preference toward short

term needs versus long term investment [12]. Continued sequestration put all programs

at risk of delay or cancellation and upends the certainty of the long term enterprise force

structure [5]. The level of available funding would not allow for all major weapons sys-

tem acquisition to move forward as anticipated [13]. The cost constraints and uncertainty

are not just a factor of resources, but also consumption in terms of schedule and cost per-

formance of the systems [14, 11, 15]. Continuing resolutions impact cost and schedule

uncertainty of existing programs and increase the difficulty of beginning new programs.

Efficiencies in cost are reduced due to bulk buys and multi-year commitments to on going

efforts. [8]

1.3.2 Changing Mission Requirements

In addition to shrinking budgets, worldwide security concerns, and a rapidly changing

world —including technology development pace and threat advancement —drive a chang-

ing operational environment [13]. A enterprise military force structure must adjust to new

mission needs and shifting mission priority over time.

After the cold war, the United States moved from a peer focus to a regional, traditional,

non-peer threat focus, executing engagements like Desert Storm and Allied Force. Devel-

opment over the next decade toward the long term goals of peer and near-peer threats left

the US open to a new threat: terrorism. An asymmetrical threat developed and dominated

US military missions for the next decade and a half from 2001 to near present. The United

States was not prepared for the shift and required a significant revectoring to accommodate
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the new mission.

Yet again, a “Pivot to the Pacific” was declared and heads have been turned to near-peer

and peer threats for short term planning purposes [9, 16]. The Third Offset Strategy was

borne out of a need to address this new and changing environment with the goal of utilizing

technology superiority to enable a favorable cost differential for the United States [17, 18,

19].

The defense strategic planning process could be improved if the short term changes to

current force structure remained flexible, despite long-term development. A method that

allows the impact of a changing environment and mission priorities over time (e.g. near-

peer to asymmetric adversary) would enable strategic and tactical force-structure planning

to account for the ability to re-vector and re-orient the focus of the force structure.

1.4 Gaps in Current Military Strategic Planning

Section 1.1 and 1.2 outline the current Defense Planning system that drives the defense

structure planning for the US DoD. There are a number of gaps that exist with the current

strategic planning process within the existing acquisition system for individual stakehold-

ers. The specific issues derive from the ability of the current process to fully allocate

resources and make trades across divisional boundaries and across time frames. Allocating

resources across divisional, or stakeholder, boundaries would enable resource sharing to

better jointly prepare for individual stakeholder needs and to jointly allocate existing as-

sets to better accomplish multiple missions. Additionally, there is a lack of understanding

between the value of resources allocated to a short term versus a long term need that is

necessary to enable temporal trades.

1.4.1 Stove Piped Acquisitions

In March of 2007, the Government Accountability Office (GAO) examined methods that

could be used to better support weapon system program stability (i.e. better control over
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cost and schedule overruns). A number of commercial companies were surveyed and it

was found that enacting portfolio management techniques to evaluate cost/benefits in terms

of viability would increase stability. Specifically, appropriate portfolio management tech-

niques combined with the organizational capability to cut losses and make go/no-go deci-

sions based on anticipated viability were determined key to success. The GAO found that

the government make long term commitments early without respect to long term viability

and overall portfolio performance. Overall portfolio management is considered at the joint

level. It was found that individual services, though part of joint forces during mission exe-

cution, individually allocate resources. Integrated portfolio management was identified as

a serious need despite the implementation and continued refinement of the JCIDS process.

[20]

In August of 2015, a follow up report from the GAO was released which looked at

the extent to which the DoD had implemented the recommended integrated portfolio man-

agement approach. The GAO found that the implementation of the integrated portfolio

management system was inadequate and identified affordability challenges and program

duplication as evidence. It was found that integrating requirements, acquisition, and bud-

get information at an enterprise level would help but is typically hampered by fragmented

governance, lack of sustained leadership and policy, and perceived lack of decision making

authority. The GAO recommended high-level oversight, frequent reviews integrated with

key decisions points, and investment in analytical tools to support efforts. [21] Much of the

recommendations seem to echo the purpose behind the existing JCIDS process.

Part of the responsibilities of the JROC is to look across the forces and determine over-

lapping needs and capabilities before approving a solution. In 2011, the GAO Reviewed a

number of requirements approvals and found the the “JROC does not currently prioritize

requirements, consider redundancies across proposed programs, or prioritize and analyze

capability gaps in a consistent manner” [22]. The result of the review is an example of a

continued stakeholder and mission stove piped acquisition process living within the new
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JCIDS process.

The current implementation of the JCIDS process does not meet its initial goals [23,

22, 24, 25]. Influenced by legacy acquisition practices, there is still a significant focus

on one for one replacement present and issues crossing traditional stove pipes. Another

level of consolidated joint planning would not bring about an optimum resource allocation.

There is no appropriate consolidation level above the current JCIDS process. Stakeholders

within the DoD can only manage their own missions within the scope they control through

technology refresh, asset recapitalization, and asset reallocation. Each stakeholder does not

control the ultimate mission utility generated due to the many inter-dependencies between

the missions stakeholders need to accomplish and the assets they each control. There is a

need to enable stakeholders to optimize their resource allocation amidst this multi-mission,

mutli-stakeholder environment when no true overarching centralized authority exists.

There has been significant duplication in overlap between various DoD organizations

with respect to acquiring capabilities. A single example of this is the acquisition of ISR

platforms over the last two decades in support and in the aftermath of the Iraq war. A

case study that can act as a single use case to demonstrate current issues is the DoD’s

approach to it’s enterprise Intelligence, Surveillance, and Reconnaissance (ISR) over this

time frame. [26, 27, 28] This exemplar case exhibits a multi-stakeholder and multi-mission

environment with stove piped acquisitions dealing with constricting budgets and shifting

mission needs.

1.4.2 Balancing Long and Short Term Needs

The military strategic planning process can looked at through the lens of the ’Iron Trian-

gle of Painful Trade-offs (ITPT)’ [29]. The ITPT is characterized by the need to balance

“preparing to be ready today (readiness), preparing to be ready tomorrow (investment), and

sizing the force (structure)”. This can be recast as a short term (readiness) vs. medium term

(structure) vs. long term need (investment). Cancian reorganizes the triangle as “readiness
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(the ability of forces to do what they were designed to do), capacity (the size of the force),

and capability (the ability of forces or equipment to achieve a desired effect)” [30]. Given

a need for readiness (training and immediate preparedness for military conflict) there are

trades within the structure/capacity and the investment/capability categories. Structure and

capacity involved the resources allocated toward increasing the number of existing systems

or reallocating systems to new missions. Investing in future capability includes trades be-

tween new more-expensive system acquisitions (recapitalization of assets) and investing

in modernization (technology refresh). An increasingly common key trade has developed

between recapitalizing assets, refreshing technology of currently deployed assets, and real-

locating existing resources.

The trade-off between short and long term needs is intertwined with ever changing mis-

sion requirements 1.3.2. Wong examined the impact of short term needs when planning is

made with regards to longer term needs. A lack in flexibility within the system to identify,

analyze, and make acquisition decisions to provide flexibility to the force structure needed

to deal with near term changes in the environment. [31] The current planning and acquisi-

tion system is not equipped to handle the trade-off between short term and long term needs

given the long term uncertainty in changing mission requirements coupled with constricting

resources.

1.5 Impacts on Strategic Force Planning

The pressures described in Section 1.3 on the current defense planning system have had and

will have significant impacts on individual stakeholders within the defense planning and

acquisition communities. Planning and operating under severe budgetary constraints and

budget uncertainty while addressing an ever-evolving set of requirements will significantly

impact the acquisition of new systems. Continuing to strategically plan new technologies

and new systems using the current process will have a number of failure points that will

result in an ill prepared force that lacks the required capabilities to adequately execute
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needed operations.

The current acquisition process is (1) not structured to address defense planning holis-

tically and to take advantage of capability synergies in a single acquisition. The current

process also (2) lacks the capability to address high level force trades between individ-

ually stove piped planning groups. The ability to measure and evaluate high level force

structures across missions and groups is needed to address the issue. It is also imperative

to (3) join the long term strategic investing (technology development and early research)

with the tactical investing (asset acquisition) across organizations. Strategic investing di-

rectly impacts the available capabilities for tactical investments. All of the above needs

fall into the category of increasing efficiencies to adjust to the pressures that the acquisi-

tion system is experiencing. The efficiencies come together to facilitate a key and driving

need. Ultimately, the increased pressures create a need for acquisition planning to analyze

the trade-offs between technology refresh, system re-capitalization, and current asset re-

allocation at a much higher force structure level which the current acquisition system is not

prepared to address. Alternatively, it is the imperative of individual branches to try to best

allocate their resources (in an optimal or robust manner) within the current paradigm of a

loosely consolidated planning environment.

1.6 Motivation Summary

Several key insights can be taken from the current world environment described in the first

chapter of this proposal. Numerous stressing constraints, needs, and uncertainties have

emerged simultaneously highlighting the shortcomings of the current strategic planning

approach to acquiring, deploying, and managing military systems. Specifically, there are

tightening constraints that, at the same time as making trade-offs more significant, are

introducing larger amounts of uncertainty to force level planning:

1. Increased Resource Constraints

2. Increased Resource Uncertainty
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3. Acquisition Cost and Schedule Uncertainty

4. Shifting Operational Need over Time

5. Multi-Mission Objectives

6. Evolving and Dynamic Threats

The increase in constraints and needs, along with the accompanying uncertainty to each,

has shown that the current process to acquire, deploy, and manage the United States force

structure as a whole has the following shortcomings:

1. Stove Piped Planning and Acquisition Process

2. Lack of Planning Under Uncertainty

3. Inability to Efficiently Trade Short and Long Term Needs

4. Lack of Balancing Increased Constraints with Increased Operational Need
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CHAPTER 2

PROBLEM CHARACTERIZATION

The motivation for this research described in Chapter 1 outlines a growing issue with de-

fense planning as systems designed, acquired, and deployed by the United States govern-

ment become increasingly inter-connected and complex while at the same time there are

increased stresses in both resources and in capability need. The number of trade-offs that

must be made during acquisition has increased due to lower level budget constraints and

the greater demand for capabilities to address continuously evolving threats.

Developing and applying design methodologies requires first understanding and then

characterizing the problem at hand. In this chapter, a System of System definition and tax-

onomy is synthesized. The strategic force level trade problem that motivates this research

is then categorized and classified against the existing SoS body of work. Additionally, as-

pects of the defense planning problem that do not currently fit within classification methods

or need further definition are identified and included in the final synthesized taxonomy. A

clear characterization of the problem allows the further exploration of the applicability of

specific methods and techniques.

2.1 A System of Systems Definition

The term “System of Systems” has become commonplace and overused. In this section,

the author addresses the issue by defining terms that will be used for the remainder of this

work.

2.1.1 System Characteristics

Using the term System-of-Systems implies that there is an understood definition of a Sys-

tem. The term “System”, in the context of this proposal, is defined in order to help define
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Figure 2.1: System of System Hierarchy

a System of Systems and the taxonomy used to address them. A system can be seen as

the building block of a System of Systems just as traditional Systems Engineering defines

functional and physical Sub-Systems. A Sub-System is a delineation that applies to com-

ponents of a system that would be unable to function or contribute without the additional

Sub-Systems defined within the System [32]. A system can then be defined as:

• “any set of related parts for which there is sufficient coherence between the parts to

make viewing them as a whole useful” [32].

• “combination of interacting elements organized to achieve one or more stated pur-

poses” [33].

The commonality between definitions is bringing interacting elements together to ac-

commodate a specific function. The general definition can be applied very broadly and

does not draw strict problem boundaries. This leads to defining the complexity of a Sys-

tem. An example of such a taxonomy to describe and classify can be seen in Figure 2.1.

[34]
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Table 2.1: System Taxonomy [35]

System Type System Type System Type
Simple System Small number of components

Act according to well understood
laws

Pendulum

Complicated System Large number of components
Well defined components
Components behavior is well un-
derstood

Boeing 747-400

Complex System Large number of components
Components change behavior over
time
Behavior of components not well
understood

Flock of Geese
Stock Market

The system taxonomy does not give measurable boundaries but does give a context from

which to begin. The simple system can be described as something that is fully understood

and quantifiable. The behavior can be explicitly described and predicted. The development

of Simple Systems is commonplace and needs little overview. The understanding of Simple

Systems allows the development of Complicated Systems. Complicated Systems are not

an uncommon occurrence and are regularly developed, built, and deployed. Contemporary

Systems Engineering and Project Management practices have developed to manage the

System problem whereby the stakeholders, needed capabilities, requirements, resources,

and timeline are well defined and understood. [32]

The third and final category in the system taxonomy breaks down the assumption of

the solution being well defined and understood. A Complex System can also have a large

number of components but it lacks the system definition that is common in Simple and

Complicated Systems. Complicated Systems may not be developed but evolve from the

interaction of complex systems. Over time, the behavior of the Complex System changes

in response to the changing of the components that create it. [35]

For the purpose of this proposal, it is important to differentiate between commonly de-

veloped Complicated Systems and what they are brought together to create. A Complicated
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System, referred to onwards as a System, can be defined as [36]:

• has a well understood and controlled life-cycle.

• is discrete and can by itself provide utility.

• is created from components that do not independently provide utility.

• is created to fulfill a well-defined specification to produce well defined capabilities.

• has strict control over its components.

• as predictable behavior and can be tested before deployment.

Defining a System allows a characterization of Complex Systems to be developed. This

characterization is commonly known as a System of Systems.

2.1.2 System of System Characteristics

The term System of Systems has enjoyed an increase in use and attention over the last

twenty years. The general conceptual idea it represents has been defined many times:

System of Systems, Federation of Systems, Complex Systems, Collaborative Systems,

Network-Centric Systems, etc. There have been many attempts to consolidate and de-

fine the concept of a System of Systems [36, 37, 38, 39, 40] along with distinct individual

interpretations [39].

For the purpose of this work, the characterization of a System of Systems is based on

the previously defined System characteristics. This relative characterization is important to

distinguish a System of Systems from its components. It also allows the juxtaposition of

the currently well understood Systems Engineering process and the developing System of

Systems Engineering process. The most accepted primary characteristics of a SoS are [41,

42, 43, 44]:

• evolves over time and has a loosely defined life-cycle as constituent systems leave

and new ones join (Evolution) .
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• is created from components that can operation independently of the system to fulfill

a desired purpose (Operational Independence).

• is comprised of constituents that join together to fulfill a greater purpose beyond their

individual capabilities.

• is not directed or controlled by a central authority (Managerial Independence).

• does not have fully understood behavior and modes which leads to the emergence of

behavior as the SoS operations and evolves (Emergent Behavior).

• is often dispersed geographically (Geographic Distribution).

These primary characteristics of a SoS lead to additional secondary characteristics that

are commonly addressed. The Managerial and Operational independence leads to a collec-

tion of Stakeholders that represent both the constituent systems and the SoS. There may

be competition for resources and direction of the SoS or simply a prioritization of each

constituent system over the greater SoS. Many times, there is no single decision maker but

many decision makers acting in either a coordinated or independent fashion. [43]

The addition of many stakeholders brings into effect more than just technological solu-

tions and expands the problem to be Trans-Domain. As one examines both the evolution

and operations of a SoS it becomes necessary to address more than just stand alone sys-

tem development and supporting engineering and programmatics. It is essential to include

additional fields such as economics and public policy [45].

The evolutionary aspects and the dispersed control of a SoS make it difficult to define

the boundary of the SoS. A typical System is defined in scope by the stakeholder and

requirements where there are neither a single stakeholder nor a set of requirements provided

to a SoS. The Fuzzy Boundary condition is itself not an issue but becomes one when there

is a desire to analyze and guide the SoS as it evolves.

There are two remaining consequences of the primary characteristics are Diversity
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Table 2.2: System Engineering vs. System of Systems Engineering Characteristics [46]

SE SoSE
Focus Single Complex System Multiple Integrated Complex Systems

Objective Optimization Satisficing, Sustainment
Boundaries Static Dynamic

Problem Defined Emergent
Structure Hierarchical Network

Goals Unitary Pluralistic
Approach Process Methodology

Timeframe System Life Cycle Continuous
Centricity Platform Network

Tools Many Few
Management Framework Established Not Established

and Connectivity of constituent systems. Often, the resulting SoS is composed of a non-

homogeneous set of similarly defined and behaving systems. The result of having a large

number of geographically dispersed and heterogeneous constituents drives Interoperabil-

ity and connectivity to be a key aspect of the performance of the SoS. The degree of inter-

operability (ability to effectively communicate and collaborate) and connectivity (degree

to which the constituent systems are connected and share information) explicitly define the

complexity of a SoS.

Similarly, Boardman and Sauser developed elements, or axis, by which to measure the

difference between a System and a System-of-Systems [36]. The specific characteristics

are outlined in Table 2.3.

2.1.3 Synthesized System of Systems Definition

Moving forward in this work, the overarching and significant determinants that describe a

SoS are as follows:

Operational Independence: composed of distinguishable parts which alone can perform

their designed purpose.
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Table 2.3: System Engineering vs. System of Systems Engineering Characteristics [46]

Element SE SoSE
Autonomy Autonomy is ceded by parts in or-

der to grant autonomy to the sys-
tem.

Autonomy is exercised by con-
stituent systems in order to fulfill
the purpose of the SoS.

Belonging Parts are akin to family members;
they did not choose themselves but
came from parents. Belonging of
parts is their nature.

Constituent systems choose to be-
long on a cost/benefit basis; also in
order to cause greater fulfillment of
their own purposes, and because of
believe in the SoS supra purpose

Connectivity Prescient design, along with parts,
with high connectivity hidden in el-
ements, and minimum connectivity
among major subsystems

Dynamically supplied by con-
stituent systems with every
possibility of myriad connections
between constituent systems, pos-
sibly via a net-centric architecture,
to enhance SoS capability.

Diversity Managed i.e. reduced or minimized
by modular hierarchy; parts’ diver-
sity encapsulated to create a known
discrete module whose nature is to
project simplicity into the next level
of the hierarchy

Increased diversity in SoS capa-
bility achieved vy released auton-
omy, committed belonging, and
open connectivity

Emergence Foreseen, both good and bad behav-
ior, and designed in or tested out as
appropriate.

Enhanced by deliberately not being
foreseen, though its crucial impor-
tance is, and by creating an emer-
gence capability climate, that will
support early detection and elimina-
tion of bad behaviors
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Evolution: evolves as components are added and removed over time without a beginning

or an end.

Managerial Independence: there is no centralized directing authority such as a single

stakeholder or contributor.

Characteristics of a SoS (emergent behavior, connectivity, interdependence, etc.) are

separate from a specific definition. Characteristics of a SoS are further expanded as a Tax-

onomy is developed to identify and categorize occurrences. Under this simplified definition

a military force structure can be clearly categorized as a SoS.

Within the United States military there exists assets separately controlled and managed

which are attempting to work toward common goals and missions. These groupings of

systems with disparate control and guidance are also subject to the continuous acquisition,

deployment, and retirement of assets. Viewing the force level trade problem through the

lens of a SoS with multiple stakeholders and multiple objectives is a first step towards

identifying solutions to the strategic planning process.

2.2 System of Systems Taxonomy

A definition defines a term based on an external viewpoint. The next step, once a definition

is solidified, is to turn inward and begin to classify within the original definition. A Taxon-

omy allows further analysis and breakdown of a problem set to enable tailored responses.

A Taxonomy is necessary to refine and classify a SoS based on the characteristics defined

in the previous section. There have been just as many efforts to define SoS Taxonomies as

there have been to develop a SoS definition. Each taxonomy has similarities and nuances

that help define a standard viewpoint of SoS as well as set them apart. In this section,

prominent taxonomies are reviewed and reflected upon. Ultimately, a common taxonomy

is synthesized and used to classify the force level trade problem presented earlier. This clas-

sification allows for the identification of similar problem sets and definition of the solution
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space.

2.2.1 Traditional Taxonomy

Maier’s first largely accepted definition of a System-of-Systems also was branded with the

initial taxonomy by which to classify them. This can be thought of as the Traditional Tax-

onomy first used to classify and categorize types of Systems-of-Systems. This taxonomy

first identifies the discriminating factors that characterize the System of Interest (SOI) with

respect to Maier’s SoS definition described previously (focusing on Managerial and Op-

erational Independence) and then uses the taxonomy to classify the SoS. The Traditional

Classification focuses on the amount of centrality of the SoS with respect to the Operational

and Managerial Independence it possesses. The taxonomy can be considered in many ways

to be a single axis classification despite the two properties the classification relies upon.

The degree of centrality that leads to the classification revolves around two main consid-

erations: The level of managerial independence and the level of operational independence

the constituent systems have. From Maier [47] the two properties by which a SoS should

be classified are as follows:

Operational Independence of the Components: If the system-of-systems is disassem-

bled into its component systems the component systems must be able to usefully

operate independently. That is, the components fulfill customer-operator purposes

on their own.

Managerial Independence of the Components: The component systems not only can op-

erate independently, they do operate independently. The component systems are

separately acquired and integrated but maintain a continuing operational existence

independent of the system-of-systems.

The taxonomy is broken into four classifications [47, 48, 44]:

Virtual: “The SoS lacks central management and a centrally agreed-upon purpose.”
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Collaborative: “Component systems within the SoS interact more or less voluntarily to

fulfill agreed upon-central purposes.”

Acknowledged: “The SoS has recognized objectives, a designated manager, and resources,

while the constituent systems retain their independent ownership, objectives, fund-

ing, development, and sustainment approaches.”

Directed: “The SoS is built and managed to fulfill specific purposes. Constituent systems

operate independently, but their normal operational mode is subordinate to central

management purposes.”

2.2.2 Qualitative Taxonomy

It is clear that there can be more than a single axis on which to define and classify a System-

of-Systems. The Traditional Taxonomy defines a range from centralized managerial and

operational control to a fully federated SoS with independent managerial and operational

control. As the field of Systems-of-Systems Engineering (SoSE) has developed, there has

been a greater and greater need of a more descriptive way to describe and classify a SoS.

Typically, these SoS Taxonomies look to measure the different axis by which a SoS diverges

from a traditional system. Ultimately, these taxonomies pull heavily from the definition of

a SoS versus a System. [39]

The axis of this taxonomy system are Autonomy, Belonging, Connectivity, Diversity,

and Emergence as outlined in the relative System-of-Systems definition in Figure 2.2. This

taxonomy looks qualitatively at the point at which a System of System deviates from a

System against these metrics.

2.2.3 Three Dimensional Taxonomy

Independently from the Gorod taxonomy described above, Delaurentis defined a separate

taxonomy from which to view a SoS. This is a three axis taxonomy with elements for

22



Figure 2.2: SE vs. SoS Defined Taxonomy [39]

Connectivity, Majority Type of System, and Control/Autonomy [45]:

• System Type: Spectrum of wholly human system to wholly technological

• Control of Systems: Spectrum of fully centralized control to full autonomy granted

to individual constituent systems (control/autonomy)

• Connectivity of Systems: Degree to which constituent systems are interdependent

and share information

The Three Dimensional Taxonomy does not rely on the definition of a System of Sys-

tems. It relies on the evaluation characteristics of the SoS while still being based on the

structure and behavior of the System of Systems. Connectivity plays a role in the anal-

ysis of a network or network topology and its impact on the evaluation of a SoS. The

idea of Control of Systems is derived from Maier’s initial taxonomy that looks at Man-

agerial and Operational Control. The Connectivity of Systems is derived from the need to
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Figure 2.3: Three Dimensional SoS Taxonomy

evaluate emergent behavior based on the amount of intra-SoS information exchange and

intra-dependencies. An example of classifying systems is captured in 2.3. The Army’s

Future Combat System (FCS), the National Transport System (NTS), the internet, and US

healthcare are represented. The FCS is highly centralized (as many defense SoS are) and

designed with high connectivity for a human dominated system. The NTS has high con-

nectivity with moderate federation and a moderate amount of autonomy. The internet as

expected is high on machine versus human domination, high connectivity, and significant

decentralization.

2.3 Problem Synthesis and Description

The cycle of defense strategic and force level planning was outlined by Liotta as seen in

Figure 2.4. The depicted cycle works to take the defense planning goals [1] and tie them

down to the acquisition process [3]. This cycle can be combined with the depicted SoS

Trapeze model [49, 50] to yield a problem specific and SoS stakeholder specific description

(Figure 2.5).

The problem of stakeholder planning can be viewed in terms of the feedback loop de-

picted in Figure 2.5 where the SoS referenced would be any number of those existing under
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Figure 2.4: Defense Strategy and Force Planning Framework [2]
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Figure 2.5: Framing the Evolution of Defense SoS Problem

the umbrella of general force level planning. The current state capabilities is observed by

stakeholders and decisionmakers who act as the catalyst for decisions. Strategic technology

investments and tactical system acquisition decisions are made and feed the availability of

systems and technology. The environment which stakeholders respond to is influenced ex-

ternally by the operating environment and internally by budgets and priorities. These lead

to requirements and budgets that drive and constrain the available decisions (technology

and system investments).

A conceptual diagram of a methodology that addresses the evolution of SoS is depicted

in Figure 2.6. The environment specifically influences the current capabilities of the SoS

and the priorities of stakeholders. Technology and system investments are made based on

the perceived lack of capability. Together, the available resources (technology, system)

and requirements (objectives, desires of stakeholders) provide the SoS architecture trade-

space and performance metrics. Architectures can be selected and evaluated using methods
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Figure 2.6: Conceptual System of System Evolver

(further explored in Chapter 3) and provide the capability at a given time.

2.3.1 Intuitive Example Problem: Acquire or Develop

An intuitive example problem is used to bring more depth and understanding to the previ-

ously depicted theoretical problem synthesis. A understandable and concrete example is

used to explain initial concepts. The example problem encompasses key components but

leaves some complexity to be added to allow ease of understanding. This example problem

is used in Section 5 as an anchor point to walk through the Methodology.

Example Problem Overview

The intuitive example problem is a simple constructed multi-step game between two non-

cooperative stakeholders. At each time step, specific actions are available to each stake-

holder and represent potential decisions in the future. Each stakeholder can either develop

a new system or acquire a system previously developed. Discrete time steps are used as

decision points with some actions have impacts multiple time steps later.
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Table 2.4: Intuitive Example: Stakeholder System Ownership

St
ak

eh
ol

de
r

1
St

ak
eh

ol
de

r
2

System 1 1 0
System 2 1 0
System 3 1 0
System 4 1 0
System 5 0 1
System 6 0 1
System 7 0 1
System 8 0 1

A state is defined as the number of systems available for deployment at the specified

time step. Each system has a associated quantified performance it contributes to a Stake-

holder 1 versus Stakeholder 2 outcome. Stakeholder 1 systems impacts positively to the

engagement outcome and Stakeholder 2 systems negatively. A composite is used to de-

velop a single resulting mission score. A zero-sum game construct is used to define the

ultimate utility of each stakeholder.

The problem setup is described further below:

Stakeholders: Two non-cooperative stakeholders, or players.

Systems: Eight systems with four attributed to each stakeholder (Table 2.4).

System Life-Cycle: Each system follows the same life-cycle (Figure 2.7). The owning

stakeholder can make a decision to develop he system (equivalent to RDT&E) to start a

system along it’s life-cycle. The system is available for acquisition once the development

time has passed. The owning stakeholder can then make the decision to acquire a system

for use (equivalent to system production). The system is deployed once the acquisition
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Figure 2.7: Intuitive Example: System Life-Cycle

Figure 2.8: Intuitive Example: System Progression

time has passed. Additionally, Each system has a prerequisite system as defined in Table

2.6. The prerequisite system (columns) must be developed and ready for acquisition before

the the system-of-interest (rows) is available for development. A graphical representation

is presented in Figure 2.8. The initial conditions are set to have System 1 and System 5

already developed and ready for acquisition.

System Performance: Each deployed system can contribute to the scored mission level

outcome. The individual performance (p) of each deployed system contributes in accor-

dance with 2.4 to the individual stakeholder mission power (qh).

qh =
∑
m∈M

nmp
c
m (2.1)

where M is available systems for development, nm is the number of m systems available,

pm is the system power, and c is a scaling constant.
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Table 2.5: Intuitive Example Problem: System Definition
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M
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System 1 4 2 3
System 2 4 2 9
System 3 4 2 27
System 4 4 2 81
System 5 4 2 -3
System 6 4 2 -9
System 7 4 2 -27
System 8 4 2 -81

System Definition: Each system is defined by a development time, acquisition time, and

performance (Table 2.5).

Stakeholder Decisions (Actions): Each Stakeholder has a choice to develop a new sys-

tem or acquire a previously developed system. Only a single system can be under devel-

opment or acquisition at a given time. A stakeholder can choose a single development or

acquisition when no development or acquisition is in progress. The development and ac-

quisition decision opportunities otherwise follow what is outlined in the system life-cycle

(Figure 2.7).

Stakeholder Utility: The example problem is defined by a single mission. All systems

contribute to a single mission with no reallocation of assets to alternate missions. Each sys-

tem contributes to a single stakeholder’s mission power. The mission utility of Stakeholder
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Table 2.6: System Progression Matrix

Sy
st

em
1
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st

em
2

Sy
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em
3

Sy
st

em
4
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st

em
5

Sy
st

em
6
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em
7
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em
8

System 1 0 1 0 0 0 0 0 0
System 2 0 0 1 0 0 0 0 0
System 3 0 0 0 1 0 0 0 0
System 4 0 0 0 0 0 0 0 0
System 5 0 0 0 0 0 1 0 0
System 6 0 0 0 0 0 0 1 0
System 7 0 0 0 0 0 0 0 1
System 8 0 0 0 0 0 0 0 0

Table 2.7: State 1 Stakeholder Decision Matrix

Player 2
Acquire S5 Develop S6

Player 1 Acquire S1 State 4 State 3
Develop S2 State 3 State 2

1 (uh1) is the difference between the stakeholder mission power (Equation 2.5). The zero-

sum definition of the game mean that the mission utility of Stakeholder 2 (uh2) is opposite

that of Stakeholder 1 (Equation 2.6).

uh1 = qh1 − qh2 (2.2)

uh2 = −uh1 (2.3)

qh =
∑
m∈M

nmp
c
m (2.4)

uh1 = qh1 − qh2 (2.5)
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Figure 2.9: Stakeholder 1, Four Step, Multi-Stage Decision Space

uh2 = −uh1 (2.6)

Decision Trade Space Characterization

First examining the initial state decision space will allow the full space to be better under-

stood. The initial conditions of the example problem define System 1 and System 5 to be

ready for acquisition. This means that the single step decision space is defined by Table

2.7. Each stakeholder has two options: acquire the only developed system or develop the

next system with a higher performance. Note the development time is shorter than the ac-

quisition time for each system (Table refintExpSysDef). Each set of stakeholder decisions

leads to a specified resulting state (state numbers referenced . For single play through the

multi-stage game, a decision table exists at each each time step with the specifics depen-

dent on previous decisions made by each stakeholder. After every decisions, a new set of

available systems for use or new decision choices are available.

The multi-stage decision space is characterized by two aspects at a given point in

time: the available systems for deployment (the state) and the current available develop-

ment/acquisition decisions (the actions). A graph can be developed showing the sequential

state-to-state transitions, Figure 2.9. Each node represents a single state (State 1 being the
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Figure 2.10: Stakeholder 1, Four Step, Multi-Stage Decision Space

initial state). Each vertex represents the results of a set of decisions by the stakeholders.

The stakeholder decision are over laid in Figure 2.10.

A view of the decision space can be made for each stakeholder. The decision space, or

available actions at given states, for Stakeholder 1 is presented in Figure 2.11. The problem

setup dictates only a single system can be developed or acquired at a given time. The first

action (wait) is the result of no action being available. The initial state actions of acquiring

a System 1 or developing a System 2 are easily discerned (Actions 3 and 5 respectively).

If System 2 is not developed during the initial state and Acquiring System 1 is selected,

the opportunity to develop System 2 is available at time step 3. Alternatively, if System

2 development is selected, the opportunity to acquire System 2 is available at time step 3

along with the development of System 3.

The decision trade space also entails the resulting performance in addition to the state-

action space described above. The performance is measured in stakeholder mission utility

measured as described above. This utility is measured at every point in time and is the re-

sulting performance feedback from all previous decisions. This consolidated measurement

can be viewed as the stakeholders reward at any given time step. For Stakeholder 1, the

reward for the entire decisions space previously defined is presented in Figure 2.12. Many

simulation episodes were run to sample the decision space and develop the reward history.
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Figure 2.11: Stakeholder 1 Individual Action Graphs
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Figure 2.12: Example Decision Space Structure and Resulting Stakeholder Reward

A single episode, or path through the multi-stage game, is highlighted. The reward history

is shown as a function of 6 time steps. The reward symmetry about the zero reward axis is

a result of the zero-sum game definition.

Adding Complexity

Thus far in the example problem development there has been no inclusion of uncertainty.

The addition of uncertainty increases the complexity of the problem. Two sources of un-

certainty can be used to demonstrate the impact (Table 6.9). First is temporal uncertainty

and the second is performance uncertainty. Temporal uncertainty represents uncertainty

in the RDT&E timeline or production timeline for a given system. It is represented as a

uncertainty in the development or acquisition time for a given system. Performance uncer-

tainty represents uncertainty in the resulting utility of a given system and it’s impact on the

a capability or a mission level outcome. The performance uncertainty is represented by by

variation in system’s contribution to stakeholder mission power.

An example of the impact of independently adding each uncertainty category, and then

both, to the decision trade space is represented in Figure 2.13. Adding temporal uncertainty

alone modifies the number of states but ultimately does not modify the bounds of poten-

tial stakeholder reward. The state increase is due to the added combination of available
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Table 2.8: Intuitive Example Problem: System Definition with Uncertainty
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System 1 4 2 1 1 3 0.6
System 2 4 2 1 1 9 1.8
System 3 4 2 1 1 27 5.4
System 4 4 2 1 1 81 16.2
System 5 4 2 1 1 -3 0.6
System 6 4 2 1 1 -9 1.8
System 7 4 2 1 1 -27 5.4
System 8 4 2 1 1 -81 16.2

systems and system states over time due to the temporal uncertainty. Adding performance

uncertainty alone modifies the structure of the reward without directly impacting the re-

sulting state space. The reward structure change is due to variations along the otherwise

deterministic reward paths.

The simple case outlined here demonstrates the significant impact of uncertainty on

problem complexity. Additional complexity exist beyond uncertainty and what has been

defined in the example problem. Remaining complexy includes allocating systems and

resources to multiple missions, removal of systems from availability as they reach end of

life, and budget limits impacting available decisions.
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Figure 2.13: Adding Complexity

2.3.2 Methodology Requirements

Previously in this chapter, the SoS problem was defined and characterized. The force struc-

ture planning problem as defined in Chapter 1 can be directly mapped to the SoS problem

described in this chapter. The force structure problem specifically has the following unique

aspects that must be accounted for in any applicable methodology:

Technology Investments are made by individual stakeholders and represent strategic de-

cisions. The payoff via technology insertion on a future system is subject to uncer-

tainties in the time till system availability, the cost it takes to mature, and the final

impact on system performance. The decisions to invest money at a given point in

time have a slow response to long term system development and subsequently SoS

performance. Often it could be a decade before a specific technology moves from a

TRL 1-3 to a TRL 6+ maturity.

Budget Constraints are the primary factors that limit military stakeholders. It is the driv-

ing force behind the need to make recapitalization, technology refresh, and real-

location trade-offs. Budgets constrain both strategic (technology investments) and
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tactical (recap, tech refresh, and reallocate systems) decisions.

Recapitalization is the first of three primary defense stakeholder decisions. This involves

investment in a new system which can be evolutionary or revolutionary. Evolution-

ary incremental development is the most predictable and usual development method.

Moving away from one-for-one system replacements is key to fully evaluating higher

cross-stovepipe-cutting trades.

Technology Refresh is the second of three primary defense stakeholder decisions and con-

sists of utilizing existing systems while adding new capabilities via technology in-

sertion into existing platforms. This option may take advantage of new available

technologies enabling improved system performance and mission capabilities while

at the same time minimizing the costs by extending the life of existing systems.

Reallocation represents the last of the primary defense stakeholder decisions addressed

in this body of work. Reallocating systems between missions and objectives be-

comes the final options when budgets are constrained and technology insertion and

recapitalization are not options but a certain level of mission utility is required. Re-

allocation goes beyond DOTmLPF-P solutions and results in moving assigned assets

from one mission need to another. It can involve moving control of assets from one

stakeholder to another with or without a two-way transaction.

Multiple Stakeholders can be interested in the same mission and the same available as-

sets. It is crucial to capture the interest that a single stakeholder has in each given

mission. Additionally, it is crucial to capture the control a stakeholder has over the

development of constituent systems that, as a part of a SoS, provide mission level

utility.

Multiple Missions need to be balanced during defense planning. The need to balance be-

tween missions that span stakeholders and span the portfolio of ultimate needs of the
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United States. One example of this is balancing between ballistic missile defense,

strike capabilities, and naval power projection in both technology development, sys-

tem development, and system allocation.

Uncertain Future Scenarios must be considered with regard to the applicable red force

structure or geographic engagement. The red force can be approached similarly to

the blue force structure over time with the evaluation of either force structure at a

given time a product of the opposing force. Inherently, there is a need to capture the

uncertainty of the state of the scenario dictated by external forces in which the SoS

will operate.

Uncertain Future Budgets can drive the particular policy or decision chain selected by

stakeholders. In addition to budget constraints, taking into account the impacts of

budget uncertainty over time (e.g. continuing resolutions, sequestration) is essen-

tial for any long-term planning. Exploration of the impacts due to risk posture and

lack of knowledge can significantly improve the helpfulness of the strategic planning

analysis.

The problem formulation leads to specific capabilities that need to be present in any

method used to explore the planning and evolution of a military at the highest level, or

called here the force structure level planning. From the above aspects of the general System

of Systems evolution problem and the specific defense oriented SoS problem the following

required aspects of a methodology have been identified:

Multi-Stakeholder Decision Making: At each decision cycle there are multiple stake-

holders that make decisions separately and cooperatively. Each stakeholder is at-

tempting to maximize its return on investment against the missions and objectives.

There is a significant decision trade space that is generated from individual stake-

holder decisions to allocate financial and system resources and from combining the

individual decision spaces in order to develop a single step action outcome.

39



Evolutionary Feedback Loop: Capturing just the multi-stakeholder decision making is

not enough. The feedback loop is key to capture the evolutionary loop described in

previous Figures 2.6 and 2.5. Capturing the feedback loop entails capturing the long

term impacts of both the strategic technology investment decisions and the tactical

system decisions. It also includes the impacts due to the change in the environment

both internal and external.

Technology and System Development: It is important to track the ongoing development

of technology based on TRL, capture the anticipated cost, and anticipate the final

capability after implementation. Additionally, the system acquisition life-cycle must

be included. The choice to initiate system development, refresh, or retirement is cru-

cial to representing the decision trade-space along with how the decisions ultimately

manifest themselves in a mission capability when new assets with new technologies

become available.

Capturing of Uncertainty: When attempting to provide a road map or plan for strate-

gic decision making, it is imperative to consider the impact of uncertainty from all

sources that will affect planning. This allows for the testing and understanding of

how robust or flexible stakeholder decisions are with respect to potential future sce-

narios.

Architecture Representation and Evaluation: The ability to first define and describe an

architecture is essential to developing alternatives and quantitatively evaluating them.

Evaluating a given architecture against a specific objective is essential to determining

the capability of a SoS once alternatives have been developed.

Environment and Scenario Representation: Capturing the external environment that is

not impacted by the SoS itself is key to defense planning. The external environ-

ment constitutes scenarios that will remain static with regards to the evolution of the

defense SoS.
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Multiple Mission Objectives: When looking at multiple SoS (as the force level strategic

planning problem looks at) it is key to understand the impact any changes will have

to multiple missions. Mission utility is the measure used for stakeholders to evaluate

the current success of a given state. The trade between reallocating systems from one

to another as well as the ability to capture the impact of prioritizing the allocation of

resources to one mission over another is needed when looking at a military force

structure as a whole. Being able to analyze multiple missions in a method enables

the necessary trades between resource allocation and mission capability.

Defined SoS Engineering Reference Process: A method addressing the long-term evo-

lution of a SoS needs to be based on a defined SoSE process and align to a defined

SoS life cycle. A clear process of adding and evaluating new systems is essential to

outlining and developing a model.
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CHAPTER 3

BACKGROUND, OBSERVATIONS, AND RESEARCH OBJECTIVE

System of Systems Engineering (SoSE) is no longer in its infancy, and the definitions and

taxonomies above are familiar ideas. Even though SoSE has been explored theoretically

and fully characterized, gaps still exist regarding quantitative methods for directed SoS

planning.

This chapter explores current analysis and planning methods potentially applicable to

the strategic force planning problem from the viewpoint of a stakeholder within the SoS

construct. The following planning methods may or may not be derived specifically for

a SoS in mind. Applicable contributions and gaps for each method will be identified and

compared to the specific needs outlined in Chapter 2. The identified gaps yield the Research

Objective of this work (Section 3.10) and lead to the posed Research Questions outlined in

Chapter 4.

3.1 System of System Planning Models

A key need demonstrated for the stakeholder planning problem is to adhere to a defined

SoSE reference process. There has been a significant body of work addressing not just the

system development process (SE Vee) but also the SoS development process (Trapeze and

Wave Models).

3.1.1 Systems Engineering Vee

The Systems Engineering Vee diagram has become ubiquitous with Systems Engineering

itself. It is the foundation that allows complicated systems to be appropriately managed

from conception through disposal. Typically, the process is used during the development

and manufacturing of specific systems. The method is clearly defined, though the specifics
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Figure 3.1: INCOSE General Systems Engineering Vee Diagram [51]

of implementation may vary slightly from organization to organization. It provides a clear

process that has been honed repeatedly over time [51]. The SE Vee process works very

well for developing well defined systems against well defined static requirements as seen

with Complicated Systems.

3.1.2 Trapeze and Wave Model

As previously established, a large net-centric or inter-connected military is an example of

a System of Systems. As a military plans it’s future force structure it is implicitly planning

the future state of a System of Systems. With this observation, the Office of the Under

Secretary of Defense for Acquisition, Technology and Logistics developed the Systems

Engineering Guide for Systems of Systems formalizing a Systems Engineering process

to use to address the continuous planning, development, and deployment of a formalized

System of Systems as depicted in Figure 3.2. [52, 53, 54]

The Trapeze model outlines the seven core elements of SoS Systems Engineering.

Translating Capabilities addresses taking a general capability expected to be provided by

the SoS of interest and translating it into inputs to other functions (SoS requirements, sys-

tem requirements, monitoring, and assessing). The idea of evolution is key to the Trapeze
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Figure 3.2: System of System Trapeze Model [52]

model as seen in the described continuous monitoring and assessing of performance while

understanding the relationships between systems. Ultimately, understanding the SoS allows

new architectures to be developed against evolving requirements enabling the orchestration

of upgrades [52]. The key concepts of the model are the evolutionary aspect of assessing,

monitoring, evaluating, and upgrading with the continually evolving environment. Any an-

alytical method addressing the planning or evolution of a SoS should incorporate a similar

process. Dahmann expanded on the Trapeze Model to create the Wave model as depicted

in Figure 3.3. Similarly, it depicts the evolution of a SoS over time through continuous

monitoring, assessing, evaluating, and upgrading. [49, 50]

The Trapeze Model is a process that was developed from analyzing the use of SoS

within the United States military. It is consolidated and released by a central authority. The

developed process helps to standardize the way in which SoS evolution is viewed. Any

work that addresses the planning and evolution of a SoS should address where it falls and

fits within this process. The process and framework do not in and of itself determine how

to evolve a SoS, rather it provides a method to follow. Similar to the SE Vee discussed

above, the method dictates a process but does not specify how to achieve each step. Like

tailoring the SE Vee to any system level development and manufacturing with specific

implementations, the Trapeze should be used to guide the development of any SoS planning
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Figure 3.3: Relationship Between the Trapeze and Wave Models [49]
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Figure 3.4: Technology Identification Evaluation and Selection Model [57]

and evolution method.

3.2 Technology Evaluation

Technology evaluation is used to determine the most promising areas of investment. Tech-

nology evaluation methods are applied early in the technology development life-cycle

based on potential future impact. A number of methods have been developed to handle

the relative rating and evaluation of new technologies. Each method below addresses the

problem from a different perspective.

3.2.1 Technology Identification Evaluation and Selection Method

The Technology Identification Evaluation and Selection (TIES) method is well established

and outlines a systematic process for evaluating future technologies to be added to a sys-

tem.[55] The TIES approach provides a structured method to explore the concept, design,

and technology space. Combined with a unified trade-off environment (UTE) the design,

technology, and requirements spaces can be explored in near real time [56]. The explicit

TIES process steps are described in 3.4 with more detail in 3.5.

TIES uses K-factors to represent the impact of specific technologies on an existing
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baseline design. From alternative selection, to baseline design, through technology evalua-

tion, each step optimizes the results. The process is explicit and repeatable while providing

a traceable and quantitative method. Uncertainty development can be included utilizing

robust design techniques with distributions assigned to technology impacts as a function of

TRL.

If identifying a system-level alternative is not time consuming, the resulting process is

manageable. When expanded to a SoS (not just a single system) the churning on architec-

ture alternatives increases the needed evaluation time. Additionally, with SoS, it is key to

consider the non-linearly combined impact of systems and technology.

3.2.2 Technology Impact Forecasting Method

The objective of the Technology Impact Forecasting (TIF) method is to identify significant

impact areas for future technologies. The TIF method allows an exploration of potential

futures not constrained by the current technology state or expected progression. It uses in-

dependent K-Factors combined with the Response Surface Methodology (RSM) to project

the impact of potential technologies on a baseline system. [58, 59] It does not capture the

dependencies between impacts of technologies, rather it captures the individual impacts

a technology could have. Another assumption is having knowledge of intermediate vari-

ables (system level technology impacts) to which K-factors are applied. The TIF process

is detailed in Figure 3.5. [55]

3.2.3 Capability Based System Technology Evaluation

Capability Based System-of-System Technology Evaluation methods have the same goal as

the system technology evaluation methods (such as TIES and TIF), which is to identify the

most promising technologies for future development. For the capability-based-methods,

the performance of more than a single system is used to evaluate technology. [61]

Biltgen developed a comprehensive process to evaluate technologies against their mis-
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Figure 3.5: Technology Impact Forecasting Model [60]
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Figure 3.6: Capability Based System Technology Evaluation Methodology [61]

sion level capability (Figure 3.6). The method addresses the trade-off between technologies

using mission capability rather than system performance. System tactics are used in the

evaluation of technologies at the mission level (e.g. training a battle manager). The inclu-

sion of tactics and behavior is often not addressed in system and technology evaluation and

plays a large role in the resulting synergies between platforms. [61]

The scalability of the method largely depends on the complexity of the Modeling &

Simulation (M&S) but often proves difficult. To expand from a single Analysis of Alterna-

tives (AoA) to the challenge of evaluating the evolution of a SoS proves difficult.
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3.3 System of System Architecture Development Methods

As complexity increases, it becomes important to use a defined method to represent and

describe architectures. A number of efforts have been put forward to grow traditional

system architecture modeling to accommodate SoSE needs.

3.3.1 Representing Architectures

The idea of architecting a system, and even a SoS, is not a new concept. The use of standard

descriptive modeling techniques has become common. Descriptive modeling is the practice

of capturing the structure and behavior of a System of Interest (SOI) whether it is a software

architecture, system architecture, or a SoS architecture [32]. Common descriptive modeling

techniques used to describe system and SoS level architectures include UML [62], SysML

[63, 64, 65], and DoDAF [66, 67].

3.3.2 Descriptive Architecture Modeling

Developing descriptive models allows for the documenting and communication of architec-

tures. It does not explicitly provide quantitative measurements. The ARCHITECT method

developed by Griendling looks to generate and evaluate architectures using executable de-

scriptive models. This provides the capability to generate architecture alternatives and

evaluate them against mission requirements [68]. Others have developed similar meth-

ods or have used executable models for SoS evaluation all based on common descriptive

modeling techniques [40, 69, 70, 71, 72, 73].

Software architecting has long been a field of study and application. Many common

patterns have been identified when architecting software [74, 75]. Kalawsky expands this

idea to the SoS problem. A process for developing and applying the patterns through the

evolution of a SoS was defined. Patterns are developed and applied as the SoS is evolved.

[76]
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The Comprehensive Modelling for Advanced Systems of Systems (COMPASS) is a

European consortium focused on developing Model Based Systems Engineering techniques

for SoS [77, 78, 79, 80, 81, 82]. The goal is to enable the architecture development and

evolution of large complex systems.

3.4 Optimal, Robust, and Flexible Design

Historically, design has focused on producing an optimal result with an eye toward max-

imizing performance within a design space through traditional optimization techniques

(Lagrangian, gradient decent, stochastic optimization, genetic algorithms etc.) even with

respect to SoS. Two separate additional design approaches address uncertainty in perfor-

mance and requirements. The first, Robust Design, attempts to find a system design that

immunizes its performance by ensuring that variations in requirements or environment have

little impact on the performance [83]. The second method, Flexible Design, also works to

address the impact of changing environments and requirements. Instead of immunizing

against uncertainty, flexibility is “the capability to easily modify a system after it has been

fielded in response to a changing environment or changing requirements”. [84] LaFluer

expands this technique to look at the flexibility in planning for future space missions [85]

with small state and decision spaces. A comparison of each technique can be seen in Fig-

ure 3.7. The concepts of robust and felixible design are key when addressing the military

strategic planning problem though direct translations can be more difficult.

3.5 Scenario and Environment Representation

Scenario and environment representation defines the external inputs outside of a SoS and its

stakeholders. Scenario-based planning has become key to strategic planning methods and

provides a macro-level and backcasting (future to present) view [86]. A classic example is
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Figure 3.7: Robust Design vs. Flexible Design [84]

Political, Economic, Social-Cultural and Technology (PEST) analysis which is a qualitative

method of exploring high level drivers above and beyond direct influence [87]. The Strategy

Optimization for the Allocation of Resources (SOAR) developed by Raczynski is a formal

top-down process for strategic planning utilizing MODM/MADM techniques. The top

starts with world scenarios and an organizational vision which that is derived from lower

level requirements and needs. The process is static and based on Subject Matter Expert

(SME) input at each level to help derive requirements [88]. This approach ties high level

needs and breaks them down in a more traditional SE process. In defense planning, defining

and exploring many future scenario is key [89]. Defining and exploring future scenarios

and environments with a one way flow into the area of interest, in this case a SoS, is a

mature practice with long term applications inside and outside the defense community.

3.6 Value-Driven Design and Cost-Capability Analysis

The concept of Value-Driven Design (VDD) works to quantify the impact of a designers

preferences into the design process via value maximization [90]. Value-Driven Design

works to provide an objective, repeatable, and transparent method [91]:

1. Objective means that decisions should not be opinionated. Instead, every design

decision should be based entirely on facts, test results, and analyses.
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2. Repeatable means that, given the same facts, test results, and analyses, the same

decision will always result, even if the decision is made by a different designer or a

different design team.

3. Transparent means that the design process should easily yield the reasons for the

decision. That is, the process should not be a black box into which data are entered

and then a result is generated. Instead, a clear understandable method is required in

which the engineer and everyone else can observe and critique the process.

Value-Driven Design works to combine both traditional quantitative and qualitative

metrics at all levels into the design process. It combines traditional attribute based de-

sign, capability based design, business/economic evaluations. [92] It provides a point of

convergence of economics, optimization, and systems engineering. [91]

VDD allows for trade-offs to be made at multiple levels of a system (component to

mission) as well as cost vs. capability trades to evaluated. It provides a framework to view

and execute multi-objective design. A key concept used is the value of a system expressed

conceptual in Equation 3.1.

V alue =
Performance

Cost
(3.1)

The performance can be evaluated at any level equated to overall system effectiveness or

a specific key performance parameter of a subsystem. The cost can represent the Recurring

Engineering (RE) of a unit or the Life-Cycle Cost (LCC) of a system. The net result

is the concept of the overall value of a given design. An extension looking at Cost as

an Independent Variable (CAIV) and Cost-Capability Analysis has become common [93].

The concept looks at evaluating the Pareto efficient frontier of cost versus capability (or

Value) as part of the design process. A conceptual example is presented in Figure 3.8.
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Figure 3.8: Cost-Capability Analysis (CCA) Pareto Efficient Frontier Example

3.7 System of Systems Analytic Workbench

A recent approach to analyzing and planning within the Systems of Systems community

comes from the DoD’s Systems Engineering Research Center (SERC) and focuses on the

development of an Analytical Workbench toolset. The fundamental idea behind its de-

velopment is that no single analytical approach can be applied to all SoS analysis. The

Analytic Workbench is a collect methods that can be selected and applied as needed by a

SoS analyst. The collected methods are designed to be domain-agnostic and inter-operable

in order to simplify the barrier of entry for analysts. A number of examples are available

demonstrating the use of each collected method, including combined use, to analyze SoS

problems.

The SoS Analytical Workbench (Figure 3.9) fits within a process developed around the

Wave Model previously introduced (Section 3.1.2). At each step, whether in review, update

or implement, the appropriate tools can be selected to help guide SoS decision making.

Higher fidelity M&S methods can be used to evaluate any decisions made. Results from
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Figure 3.9: SoS Analytic Workbench
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the real world can be fed back once a decision is made and implemented. This higher

level, generic process can be applied to almost any continued system development or to the

evolution of a SoS. The discriminators of this method lie in how the Analytical Workbench

will be used, a process in and of itself. [94, 95, 96]

The process starts with archetypal questions which are used to guide the method selec-

tion from the SoS Analytic Workbench toolset (“what do you want to know?”). Questions

are mapped to the available methods (FDNA/DDNA, Bayesian Networks, Robust Portfolio

Optimization, Colored Petri Nets, Stand-in Redundancy). Specific inputs are defined and

used for each of these methods. The analysis uses a simplified model of the SoS and is

then V&V’d using a ‘Truth Model’ or, in usual methods, an Agent Based Model. Many of

the tools and methods within the process that have been collected [97] are similar to those

previously described [98, 99, 95, 100].

Current significant components of the SoS Analytic Workbench include both standard

and new techniques:

Robust Mean Variance Portfolio Optimization is used to balance the rewards of acqui-

sition with the risks of development time. It uses a defined SoS hierarchical net-

work description which is common across the workbench’s techniques. Each node

in the graph has capabilities (payoffs) and requirements (costs). The SoS level per-

formance is the investment portfolio performance and the risks are developed from

common SoS risk postures. The risk and reward formulation based on common fi-

nancial portfolio optimization also takes into account the compatibility of systems

and the satisfaction of system requirements. [94, 101, 95, 100]

Functional Dependency Network Analysis and Developmental Dependency Network Analysis

are both based on graph theory and network analysis but are used to measure two ’-

ilities’ [100] of a SoS. FDNA is used to represent dependencies predecessor and suc-

cessor systems or capabilities (as capabilities may not always entail a single system)

using an acyclic graph. Links represent operational or developmental dependencies
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through weightings Strength of Dependency (SOD) and the Criticality of Depen-

dency (COD) between nodes. FDNA allows a look into what happens when failure

in the SoS occur. The models can be made stochastic through probability distribu-

tions linked to failures and the impact on the overall SoS performance. Development

Dependency Network Analysis (DDNA) is used to analyze the effects of develop-

ment delays, in a similar manner to SOD and COD, except the links are tied to a

PERT network and don’t represent an operational scenario. Inputs include beginning

and end time for each system and dependencies. Similar network methods can be

used to analyze an operational SoS (FDNA) or the development of a SoS (DDNA).

[99, 100, 95, 102] PERT analysis is commonly used in industry for schedule analysis.

Bayesian Networks (BN) are used to analyze the operational domain (as opposed to the

development domain) utilizing Directed Acyclic Graphs (DAG) with probability weight-

ings on edges. The BNs are used to analyze the impact of operational failures in the

Analytic Workbench. This allows the resilience of the SoS to be evaluated. [99, 98,

95]

Stand-In Redundancy is an evaluation method for a SoS overtime using two axis of mea-

surement: Level of Performance and Level of Reliability. Level of Performance is a

measure of capability of the SoS such as a mission level metric. The Level of Reli-

ability measures the instantaneous probability of failure (e.g. gradually reduces over

time once deployed due to probability of failure). [103, 104, 94, 98, 105]

Approximate Dynamic Programming is a common non-linear programming method which

is used in the Analytic Workbench to “introduce computational strategies that can

provide objective, multi-stage decisions that balance impacts of near-term and long-

term SoS architectural decisions” made by stakeholders [98, 102]. The basic idea

is to use ADP to evaluate an architectural decision tree where decisions are made

based on a policy. [106, 97, 95, 100, 98] The decision tree formulation is not fully
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made but, if created, ADP would be an acceptable technique for finding optimum

solutions for a small trade-space of future possibilities unconstrained by stakeholder

decisions. Current implementations for SoS architecture development do not address

uncertainty.

Petri Nets are a common Discrete Event Simulation (DES) modeling technique, especially

in failure analysis. Petri-Nets are used by the Analytic Workbench to quickly evaluate

a SoS performance without a complex simulation. [70, 99, 98]

Approximate Dynamic Programming and Transfer Contract : Fang introduces the idea

of tackling the curse of dimensionality that grows with analyzing sequential decision

making for SoS stakeholders. Additionally, the concept of a transfer contract is used

to exchange payment for shared resources. A decentralized planning method is used

based on the transfer contract approach. Uncertainty is added by defining system ca-

pability at a given time as a probability distribution with repeat runs to sample. [106,

102]

The work surrounding the SoS Analytic Workbench has progressed the areas of SoS

architecture representation, evaluation, and evolution. It has begun to address the evaluation

of SoS over time and the impact of stakeholder decisions over time [107, 102, 108]. A key

missing aspect is decision making under extreme uncertainty.

3.8 Adaptive SoS Architecture Evolution

A key component of the defense planning problem is generating and evolving SoS architec-

ture from a current state to a future state. Agarwal developed a evolutionary methodology

using meta-architectures to represent architectures and enable genetic algorithms to op-

timize against an architecture evaluation process [109, 110, 111, 112, 113, 114]. Work

has been done using dynamic programming and ADP to solve for the optimum potential
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future architecture [102]. The Cognitive Evolutionary Computation (CEC) for SoS archi-

tectures focused on optimizing the evolution of a SoS using the CEC algorithm modeling

divergent, convergent, and long term memory in combination with architecture definition

and evaluation methods [115]. These are examples of recent developments in architecture

optimization.

The field of architecture optimization for a single architecture given a definition and

an evaluation method is quickly reaching maturity. Each one of these methods focuses

on finding an optimum architecture for a future state. This works well for directed SoS

with centralized control. An explicit assumption in the methods is the direct control of the

resulting SoS by a single stakeholder. None directly represent multiple-stakeholders with

multiple-missions over time. Each method works in a non-stochastic environment and, at

best, uses a simple mean return to value given architectures.

3.9 Summary of Observations and Gaps

Throughout Chapter 3, various techniques that can be applied to the force level trade prob-

lem were presented and evaluated. The following are SoS disciplines and methods that,

based on the literature search presented in this chapter, are individually mature:

Architecture Representation, Evaluation, and Optimization: There has been significant

work in developing methods to represent, evaluate, and optimize SoS. Representation

examples using existing architecture description modeling methods include DoDAF,

SysML, and UML. Efforts exist to expand these methods to enable executable ar-

chitectures. The executable architecture evaluations use varying levels of MS&A

including Discrete Event Simulations and Agent Based Modeling. General optimiza-

tion methods include genetic algorithms, simulated annealing, Lagrange, etc. These

efforts have been focused on developing static or near-static representations and not

on dynamic evolutionary capability.
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Addressing SoS as a Concept (definition and taxonomies) Describing and categorizing

SoS has been thoroughly explored and defined. The characteristics put forth by Maier

[47, 43], DeLaurentis [45], and Gorod [46] (along with many others) have fully ex-

hausted the characterization of a SoS. Taxonomies have been equally explored and

help further help categorize SoS based on their characteristics [47, 48, 45, 46].

Defined SoS Process and Life-Cycle Starting with Maier’s work in the late 90’s [47] to

the current DoD SoSE Guide [52] to including work by Dahmann [116] there has

been maturation of a common SoS definition and a common SoS life cycle. The

Wave Model developed by Dahmann [50] builds on the DoD SoSE Guide’s Trapeze

Model [52] and provides the commonly accepted SoS life cycle. The maturity of the

life-cycle description allows for a common reference when addressing problems that

span a single development cycle of a SoS. The accepted Wave Model is used in this

work.

A comprehensive method does not exist today to address the evolution of Systems of

Systems as seen during military SoS stakeholder planning. A comprehensive method re-

quires the exploration of system acquisition, system development, technology refresh, and

system reallocation trade space available to individual stakeholders. The long term view

introduced by life-cycles and decision impacts, the multi-stakeholder environment, and the

need to account for uncertainty in the long term planning process are not yet addressed in

the presented methods. The following is a summary of the specific observations of capa-

bilities lacking in current individual methods:

Observation 1: Lack of Uncertainty Quantification There is inherent uncertainty in the

outcome of any decision. Capturing decision-related uncertainty is crucial to in-

formed decision making. The defense planning problem defined in Chapter 1 has

specific uncertainties that need to be represented: scenario and environment, devel-

opment of technology and systems, and system performance. Each of these particular
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uncertainties is individually captured in the methods outlined in this chapter but not

together. Addressing the defense planning problem requires capturing all the uncer-

tainty sources and evaluating their impact. Cumulative uncertainty could increase the

noise with regard to measuring future states and become an overwhelming concern.

Observation 2: Lack of Addressing Multi-Mission, Multi-Stakeholder Aspects Current

SoS methods focus on a single set of systems with a single mission. Current methods

need to be expanded to address multiple SoS and missions simultaneously. The abil-

ity to not just take the view of a single SoS stakeholder, but multiple stakeholders, is

key to addressing multiple SoS and missions.

Observation 3: Lack of Temporal SoS Influence Model Current methods described in

this chapter lack attention to the temporal aspects of a evolving system of systems.

Many methods evaluate a specific grouping of systems or optimizing the construct

of systems for a static point in time or for the next time step in an evolution. In re-

ality, the development of a SoS is highly dependent on the time sequential decisions

stakeholders make and the delayed feedback loop present due to the development

process.

Observation 4: Lack of Robust and Flexible Design Considerations: Architecture eval-

uation and determination has largely been based on optimization techniques. Little

regard has been given to the impact of uncertainty (robust design) or shifting require-

ments (flexible design) on the evaluation and formation of a ‘new’ SoS. Designing

against uncertainty and shifting future requirements is a key part of the SoS defense

planning process.

Observation 5: Lack of Stakeholder Constraints Very few methods fully take into ac-

count the constraints that are imposed on each of the Stakeholders. Looking at the

individual budgets applied to system acquisition and potentially operation is one

step. Developing an understanding of the impact past decisions decision is key to
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constraining those further in the future. This includes technology and system de-

velopment delayed availability for use by stakeholders above and beyond budget

constraints. Additionally, the need to not only supply a single mission capability but

invest in multiple mission capabilities allows the results of the budgets constraints to

fully be realized.

Observation 6: Lack of Stakeholder Decision Space Exploration Few of the methods

identified address exploring the full stakeholder decision trade space. The decisions

made by military stakeholders are not a simple yes or no. At a high level, stakehold-

ers can decide to reallocate current resources, recapitalize or acquire new systems, or

refresh current systems combined together within resource constraints.

Observation 7: Lack of a Concrete, Multi-Cycle Evaluation Many of the methodologies

applied to stakeholder decision making outlined above focus on a single design cycle

or a single stage in ongoing decision making. A key aspect of a SoS is its evolution-

ary characteristics. The central concept for evolution is a dynamic boundary with old

obsolescent systems leaving and new systems joining. No single stakeholder con-

trols the addition and retraction of systems. No methods address the evolutionary

characteristics present in the military forces structure planning problem.

3.10 Research Objective

In summary, there has been a large body of work surrounding SoS Engineering for de-

scribing architectures, developing architecture alternatives, and evaluating architectures

(including SoS environmental impacts). The body of work explored through this chap-

ter and aligned with the conceptual model developed in Chapter 1 is summarized in Figure

3.10. Stakeholder decisions making is at the center of the feedback loop needed to ad-

dress SoS evolution. The identified gaps show a lack of multi-stakeholder, multi-mission
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Figure 3.10: Concentration of this Work

decision maker evaluation.

It is crucial to address the problem of defense stakeholder planning given the observa-

tions of the current capability gaps. Therefore, the objective of this dissertation is:
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Research Objective: To develop a new methodology that will instantiate the

evolution of a System of Systems with regards to the decision making of the

stakeholders accounting for the influence of the external environment, the mor-

phing of the requirements, and the availability of resources over the lifetime of

a SoS to enable individual stakeholder decision making under uncertainty.
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CHAPTER 4

LITERATURE REVIEW, RESEARCH QUESTIONS, AND HYPOTHESES

Chapter 3 outlined the specific capabilities needed to address the stakeholder defense plan-

ning problem as a System of Systems analysis problem. Current SoS analysis methods

were outlined and evaluated in their ability to address the defined problem. Mature areas of

research and definition were identified as well gaps within the existing body of knowledge.

Many aspects of SoS analysis have grown to a mature level including the representa-

tion of architectures, the evaluation of architectures, and applicable SoSE processes. But,

there is a lack of multi-mission, multi-stakeholder decision-making including uncertainty

associated with the SoS planning and stakeholder strategic defense planning processes. In-

cluding these aspects in a SoS planning process would enable a clear picture of the SoS

evolution. The research questions define in this chapter are developed from the observed

gaps previously identified and focused on addressing the Research Objective of this work.

Research Questions 1, 2, and 4 are individually motivated by Research Objective of

this work. Research Question 1 (RQ1) addresses the development and capture of a deci-

sion trade-space . Researh Question 2 (RQ2) addresses the the evaluation of the decision

trade-space. The investigation of RQ1 and RQ2 result in Research Question 3 (RQ3) which

addresses developing a tractable and computationally solvable representation. Research

Question 4 (RQ4), developed from the RQ3 investigation and the Research Objective, ad-

dresses the creation of usable decision information from decision space evaluation. Each

Research Question is investigated through a search of literature, an identification of alterna-

tive approachs or solutions, and a comparison of alternative solutions existing in the present

state of the art. Hypotheses are developed based on the evaluation of alternative solutions,

the solutions capability to help address the defined problem, and the identified gaps in state

of the art.
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4.1 Representing and Populating the Decision Trade Space

The first step to in enabling the exploration of stakeholder decisions is to appropriately rep-

resent and evaluate the decision space. The representation encompasses how to represent

the decisions a given set of stakeholders may make, the resulting SoSs and developmental

states, and the utility each stakeholder gains in return. It should account for the size of the

decision space and the uncertainty surrounding decision outcomes.

Research Question 1: How can the time-dependent decisions of multiple stake-

holders be captured and combined to develop a full representation of potential

outcomes for evaluation given resource constraints and uncertainty?

RQ1 can be decomposed into two components, capturing the decision space and eval-

uating the decision space. The first comonent addresses how to mathamatically capture a

stakeholder decision space in order to evaluate stakeholder decisions (Research Question

1.1). The second questions how to evaluat the decision space and provide usable metrics to

help inform stakeholders (Research Question 1.2).

4.1.1 Representing the Decision Alternative Space

A generic conceptual model of defense stakeholder planning was outlined in Chapter 2

and captured in Figure 2.5. Populating the multi-stakeholder decision space is needed to

create a decision making playbook in order to help inform a single stakeholder. To address

Research Question 1, a trade space of all stakeholder decisions and their outcomes must be

developed:

Research Question 1.1: How can the decision alternatives of multiple-stakeholders

be captured and combined to develop a full accounting of potential outcomes

for evaluation?

The decision space (i.e available stakeholder actions) is dynamic and changes over time.

The decision space is a result of the current state reached by the stakeholders and SoSs as
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Figure 4.1: Simple Single Stakeholder Decision Tree

a whole. Three alternatives are explored below in their applicability to representing the

decision and outcome space needed to address RQ1.1.

Decision Tree

A decision tree is commonly used to represent a player’s sequential choices and outcomes

with the goal of identifying an optimal policy or path through the tree, Figure 4.1. At each

node a player can select specific actions that result in a transition to a new node in the graph

[117]. In this paradigm, each stakeholder can be considered a player, each node, or state,

represents a SoS implementation, and each action represents a stakeholder’s decisions.

Throughout this work, the following definition will be used with respect to states and

actions regarding decision trees:

• S is a set of states {s1, s2, · · · , sn}

• a is a set of actions {a1, a2, · · · , am}
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A “stakeholder” will be synonymous to a “player” within a decision or game frame-

work. The specific decisions a stakeholder can make are referred to as “actions”. A given

SoS composition and progress of investments is used to represent a given “state”.

Using the decision tree construct enables a number of different methods for exploitation

including dynamic programming, tree search and path finding methods. Additionally, the

techniques can be expanded to include stochastic attributes given a selected action at any

given state along with utility functions that describe risk behavior (aversion or seeking).

[117]

There are two options to handle the potential size of the decision tree, or decision trade

space, when growing and representing during exploitation. The decision tree can either be

pruned during growth (pre-pruned) or it can be reduced after growth (post-pruned). Pre-

pruning is used while developing the decision tree and post-pruning is used while solving

it.

Pre-Pruning The Decision Tree Pre-pruning smartly grows the decision tree during ini-

tial development. At each decision cycle for stakeholders, there will be a set of decisions

available to them. Pre-pruning can limit these decisions by available resources, actual and

anticipated rewards, and agent based rules.

One option is to constrain the available decisions. An example of constraints would

be limits on budgets for technology maturation and system development. Additionally,

previous year or time step resource commitments reduce currently available resources.

Another option is to pre-prune by not growing the entirety of the tree and limiting

the growth via a set of rules or behaviors. These rules and behaviors can be adjusted to

develop an understanding of what would be a full set of decision trees. An example of

agent behavior rules could be prioritizing technology investment over system development,

prioritizing a single mission above others, or optimizing for single decision-cycle impacts.

Pre-pruning acts to limit the growth of the tree but would require multiple trees to be grown
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to approximate a full decision tree. Pre-pruning results in either a tree representing a subset

of all possibilities or is a composite of many different trees.

Post-Pruning The Decision Tree Post-pruning can follow many existing algorithms in-

cluding Branch and Bound, A*, D*, etc., all of which are varying algorithms that span

the continuum between Depth First Search (DFS) and Breadth First Search (BFS). The-

ses algorithms work to identify a single optimal, or near optimal, path through a directed

weighted graph. The ultimate reward experienced on a given traverse is based on transition

returns.

The algorithms could be used to grow the tree but often are used once a decision tree

exists. Additionally, backwards induction techniques fully solve a deterministic decision

tree working backwards from the end leaves. This includes Dynamic Programming that an-

swers the question: “What is the best action now, assuming optimal behavior at all potential

future decision points?” [117]. The method is described in Equation 4.1. Any method of

post-pruning requires the development of the entire graph before they can be fully applied

and run. At best, the computation order is O(|E||V |) where E is the number of edges and

V is the number of vertices or nodes.

V ∗t(x) = max
a∈A(x)

[rt(x, a) + V ∗t+1(xt+1(a))] (4.1)

where Vt(x) is the Value of state x with V ∗ representing the optimal value, and rt(x, a) is

the return from taking action a in the current state xt.

Game Theory

Traditional game theory is a second option to use to populate the decision and decision out-

come space. Traditionally, game theory has worked to solve for an equilibrium state in 1v1

deterministic and static games where a payoff is known (e.g. Prisoners Dilemma, Hawk-

Dove) [118]. These basic game theory approaches lack the needed temporal component.
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The addition of a temporal component, or continued decisions, results in combinatorial

games characterized by win-loss, deterministic, and known outcomes of decisions [119].

Many standard two player games (simple to complex) fall into this category (e.g. connect

four, checkers, chess, baduk). Many solution techniques are similar to those above for

decisions trees [118].

The above traditional game theory techniques do not address cooperative multi-player

aspects. It is possible to extend the traditional 1v1 game to three non-cooperative players

[120]. A number of approaches exist to address the cooperative player aspects including

shapley values representing relative influence [120, 121, 122, 123, 124, 125] and coalition

based decision making (to join or not to join blocks) [126, 127, 121, 122, 128, 120, 124].

Additional constructs and mechanics can be used. An example used specifically for SoS

evolution coordination between stakeholders is a transfer contract method developed by

Fang [70, 129]. The constructs used don’t lend themselves to traditional deterministic

solving methods due to the size and complexity of the state-action space [129].

In order to apply traditional game theory to develop the decision and outcome space,

an asymmetric, cooperative, sequential, imperfect knowledge, discrete game must be de-

veloped and then solved. Stochastic aspects to address uncertainty are developed in a

Section 4.1.2. It quickly becomes difficult to identify a deterministic solution with the

growing complexity of the game type even before the addition of uncertainty. Typical

player decision methods, or decision rules, used to solve games include equilibrium and

minimax/maximin approaches. At each stage a decision is made using a heuristic. Tech-

niques beyond simple heuristics are needed as rules are applied over time (sequentially),

across multiple players (cooperative), and with asymmetric outcomes (varying rewards and

goals). Additional ways to handle the complexity are discussed in Section 4.3.1.
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Modeling and Simulation

Modeling and simulation becomes relevant when deterministic analytical solutions are not

available and/or a temporal based understanding of the problem is needed. Primary cate-

gories of simulations include: Discrete Event Simulation (DES), System Dynamics, and

Agent-Based Modeling. System dynamics is traditionally associated with solving systems

of equations and looking at non-transient and transient behavior of inputs over time. There

is current work to extend the SD paradigm to apply to and solve SoS problems [130].

DES are built around cause-effect relationships without constant temporal representation.

Agent-Based Modeling traditionally relies on time-step based simulation (though DES can

be used) but is defined by the model of an agent continuously sensing it’s environment,

evaluating actions, and acting on it’s environment.

Agent-Based Modeling is the most applicable simulation type to the problem. It allows

a construct or framework to be developed along with agent decision methods as inputs.

These inputs can be statically held during the dynamic simulation execution. Rules can

be given to each agent similar to heuristics used at each step in a sequential game. The

execution allows a brute force exploration of potential outcomes and, in this case, a varia-

tion of behaviors to explore within a scenario. The brute force runs do not result in exact

state/action pairs as a function of time and therefore pose challenges to consolidate into a

play book.

Truth Model Development

The explored decisions space representation alternatives offer benefits but each has as-

sociated downsides (Table 4.1). The Decision Tree paradigm offers a construct utilized

previously in SoS evolution work [129]. Each action vector, composed of individual ac-

tions by each stakeholder, can be used to play out an outcome and develop a subsequent

state, defined by the current definition of all SoS under consideration. The Game The-

ory approach offers a fundamental view of decision making at each individual state based
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Table 4.1: Decision Trade-space Representation Alternatives

Alternative Pro Con
Decision Tree Appropriate construct unfold-

ing SoS decision-cycle;
Does not scale well

Dynamic (Sequential)
Game Theory

Appropriate construct for in-
dividual decisions

No temporal memory or player
learning over time
Issues scaling closed form solutions
as complexity grows

Agent Based Model-
ing

Simple problem setup Partial sampling of decision space
Decision rules determination
Difficult to aggregate state-action
pairs

on the anticipated return (mission utility) for individual stakeholders. Game Theory has

been used in previous SoS evolution problems [34, 131]. A more exploratory method than

Game Theory is needed due to the complexity of the decision space and representation of

the defined defense planning “game”. Agent-Based Modeling provides that framework to

develop agents with heuristic decision making and play out scenarios via simulation. ABM

does not allow for a full accounting of the decision space but can help accommodate the

complexity. Forming discrete states can be difficult when approaching continuity via time

step simulation. Discrete Event Simulation (or potentially course time steps) can result

in discrete steps. A Discrete Event Simulation with hard time steps combined with agent

representations can result in a simulation that can both be sampled (instead of fully deter-

mined) and will result in discrete state-action points. A final comparison of the alternatives

is summarized in Table 4.2.

A fundamental assumption and input of this problem is the development of the scenario

and agent models. The resulting analysis of the decision space is rooted on the assumptions

and understanding of the development. The validity of this model is assumed during the

body of this work and will be subsequently referred to at the Truth Model from which all

decision evaluation is done.
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Table 4.2: Decision Trade-Space Representation Comparison
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Decision Tree  G#  # ⊗  

Dynamic (Sequential) Game Theory # # G# # ⊗  

Agent Based Modeling G#  #  ⊗ #

�excellent,  good, G#fair, #poor, ⊗ none

4.1.2 Capturing Uncertainty

Uncertainty can dominate future outcomes of actions and comes in many forms. Future

outcomes of actions made in the present, especially at a significant distance forward in

time, can be dominated by compounded uncertainty and have results that often are indeter-

minable. Stakeholder strategic actions with respect to defense stakeholder planning include

deciding to invest in maturing a specific technology, initiating an acquisition, or deciding to

re-appropriate existing resources to a new mission. The cumulative result of each of these

decisions made in the present on the resulting force capabilities is subject to uncertainty as

defined in Chapter 3.

Will the new technology result in the system capability needed? Will the system ac-

quisition schedule and capability results be as expected? Will the system acquisition result

in the capabilities needed in the time frame expected? Will the developed technology and

acquired system even perform as expected when combined with the rest of the force struc-

ture? What will the force structures ability to execute a mission at a given time even be?
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The results for RQ1.1 leave the following still open:

Research Question 1.2: How can the uncertainty existing in the multi-player,

multi-objective decision space be represented, captured, and accounted for?

In this section, representation of uncertainty is explored and characterized. Subse-

quently, three options to handle the uncertainty within the framework described in Section

4.1.1 are explored in light of the characterization.

Representing Uncertainty

There are two fundamental classifications of uncertainty, epistemic and aleatory:

Epistemic Uncertainty: This is commonly referred to as systematic uncertainty. This

references the degree of uncertainty strictly formed as a function of the chosen model

or representation. This could be due to the selection of a lower fidelity model or due

to a model developed around incomplete knowledge of the underlying phenomenon.

With more information and a better model (higher fidelity) the uncertainty can be

reduced. Conceptually, a perfect model will have zero epistemic uncertainty.

Aleatory Uncertainty: This is commonly referred to as inherent uncertainty in a non-

deterministic event. With increased knowledge or a better model, there is no reducing

aleatory uncertainty. It is the inherent randomness in the world.

The purpose of classification is to enable representations. In the framing of the decision

representation in Section 4.1.1, a definition of a Truth Model was determined as an input

to this work. This Truth Model is to be used to measure the methods explored and selected

for the methodology (Chapter 5).

The classification of epistemic and aleatory, or representation and fundamental, uncer-

tainty enables the ability to appropriately address each one. In the outlined problem of

stakeholder defense structure planning, the uncertainty in the future is categorized as fun-

damental with only time (e.g. continued progress of technical maturation and fundamental
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Figure 4.2: Representing Uncertainty in Models

understanding of technology) culling the uncertainty. The fundamental uncertainty is the

uncertainty needed to be represented within the Truth Model. The Truth Model will also

represent epistemic uncertainty.

A final classification of uncertainty comes with a representation built on the Truth

Model (e.g. meta-model used for evaluation purposes). Any derived representation or

analysis regarding the Truth Model fundamentally is subject to epistemic uncertainty. This

uncertainty is added stochastic error introduced when abstracting the Truth Model. This as-

pect is further explored in subsequent sections that address meta-models for the described

Truth Model (Section 4.1.1).

Capturing Uncertainty in a Model or Simulation

The goal with capturing either case of uncertainty is to quantify and represent it in a model.

When modeling, there are inherently four options to capture the impact of uncertainty as

depicted in Figure 4.2.

Fundamentally, modeling uncertainty means dealing with repeat runs with a stochastic

model or Monte Carlo runs with a deterministic model. If there is uncertainty in both the

inputs and the model itself, there is no fundamental way to distinguish between the two im-

76



Figure 4.3: Example Multi-Player Action with Uncertain Outcomes

pacts. Potentially, less accurate methods can be used, for example, when using the Monte

Carlo method, repeat runs can be recorded with means and variances as appropriate. Ulti-

mately, any randomness used to incorporate uncertainty manifests itself as a distribution of

the output metrics. It is common to represent the stochastic outputs as a mean and variance

of a normal distribution that assumes the Central Limit Theorem applies.

Markov Decision Process

Game trees and complex games can be extended to include stochastic outcomes using

Markov Decision Processes. MDPs make two inherent assumptions: (1) time-separable

and (2) additive. The first assumption means that cost and rewards are independent of time

and only a function of state. The second assumption emerges from the additive property

of rewards received from each state. [132] Both are inherently derived from the Markov

property of MDPs but should be noted in comparison to this stakeholder defense problem

which has temporal components.

A Markov Decision Process (MDP) adds another layer of complexity to the idea of a
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decision tree with variable outcomes. It adds the idea of a state variable space that defines

each state. Additionally, the actions able to be executed are time dependent. This work

looks at finite-horizon models. Fundamentally, MDPs are build on Equation 4.2. The next

state is ultimately represented as a stochastic function of the current state and the current

action. Application to the SoS problem is visually captured in Figure 4.3.

p(xt + 1|ht, at) = p(xt + 1|xt, at). (4.2)

where X is a set of state variables {x1, x2, · · · , sk}, A is a set of actions {a1, a2, · · · , aj},

and (xt, at) represent state-action pairs available at t = {1, 2, 3, · · · }, and ht is a set of the

history up to time t, (x0, a0, x1, a1, ...xt−1, at−1, xt).

Expected values for the state-value and action-value functions are depicted in Equation

4.3 and Equation 4.4 respectively.

Vπ(s) = Eπ[Gt|st = s] = E
[∑
s∈S

γkRt+k+1|St = s
]

(4.3)

Qπ(s, a) = Eπ[Gt|st = s, at = a] = E
[∑
s∈S

γkRt+k+1|st = s, at = a
]

(4.4)

There exist a number of well defined extensions to the vanilla MDP. Partially Observ-

able MDPs (POMDP) combines the idea of a deterministic Hidden Markov Model with an

MDP. An agent making decisions within the environment does not have perfect knowledge

of states and represents the truth-states with belief-states. The agent has a “belief” of the

current state and makes decisions based on that belief. Extending this further is the con-

cept of Decentralized POMDP (DEC-POMDP). The DEC-POMDP construct incorporate

the stochastic and partial observations with distributed agent decision making. Solving of

DEC-POMDP in an efficient and scalable manor is a focus of current research [133, 134,

135, 136, 137, 138].
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Stochastic Dynamic Programming Traditional methods used to solve a Markov Deci-

sion Process or Stochastic Decision Tree can be used to solve their determinsitic counter-

parts in a similar manner. Stochastic Dynamic Programming answers the same question as

Dynamic programming but utilizes the expected return for each action given the transition

probabilities to a new state (Equation 4.5).

V ∗t(x) = max
a∈A(x)

[rt(x, a) +
∑
x′∈X

p(x′|x, a)V ∗t+1(x
′)] (4.5)

where Vt(x) is the Value of state x with V ∗ representing the optimal value, and rt(x, a) is

the return from taking action a in the current state xt.

Stochastic Games

The formulation of repeated and stochastic games quickly converges on an MDP. Similar

solution methods can be used to address repeated stochastic games as were previously

mentioned for an MDP [118, 139, 140, 141]. This representation may also include the

application of standard decision making techniques from game theory in combination with

expected returns [139]. With non stochastic games, the evaluation begins to quickly grow

uncontrollably as the state and/or action space grows and other approaches are needed

[142]. The problem space that MDPs and repeated-stochastic games converge on can be

call Decision-Theoretic Planning [132].

Representing Uncertainty and Selected Representation

When looking at the variability due to a given policy, Prashanth attributes it to two types of

uncertainties: “(i) uncertainties in the model parameters, which is the topic of robust MDPs

and (ii) the inherent uncertainty related to the stochastic nature of the system, which is the

topic of risk-sensitive MDPs”[143]. The first of the two is out of scope of this work and

is subjected to the development of an acceptable Truth Model 4.1.1. The second source

is key to this body of work and will define how uncertainty is handled (see Section that
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addresses risk-sensitive policy generation). Uncertainty is introduced through the definition

of the Truth Model which includes definition of all stochastic variables. Specifically, the

Truth Model can be represented using a high dimensional MDP. Further sections address

how uncertainty is handled when developing the decision trade space and subsequently

evaluating it.

4.2 Evaluating Stakeholder Decisions

It is necessary to establish metrics to evaluate the decision trade space previously defined.

Measuring the impacts of decisions quantitativily is necessary for evaluating decisions.

This yields the following research question:

Research Question 2: How can the decision space be evaluated and sequential

decision alternatives be compared?

Three metrics for evaluating the decision space are presented: (1) risk, (2) volatility

reduction, (3) opportunity cost. Risk based decision making allows for the exploration of

stakeholder risk postures and helps tie it to concrete policies/strategies and their poten-

tial outcomes. State-action importance is key to understanding significant decision points.

Volatility decreases across a state (given the available sets of actions) shows the culling of

uncertainty and importance of that decisions point. Measuring the impact that a decision

has on the precluding of future outcomes allows a relative measure of action impact. Mea-

suring the relative opportunity cost of any given action set will provide important insight to

decision significance.

4.2.1 Evaluating Risk and Reward

It is imperative to enable robust planning for defense stakeholders. Representing uncer-

tainty is the first step to enabling robust planning (Section 4.1.2). The second is risk-based

evaluation techniques and policy development. Evaluating stakeholder risk is crucial to

80



developing risk based policies that are necessary for robust playbook creation. Thus, the

following research question is posed:

Research Question 2.1: How can the risk and reward of a stakeholder’s indi-

vidual decisions be assessed and compared?

Understanding the risk associated with a specific decision is just as important as under-

standing the relative significance or classification of decisions. In financial engineering, a

traditional method of evaluating portfolios of assets is to utilize mean-variance theory. This

theory takes past data to estimate values of volatility (or risk) and mean-return (or reward)

for making the decisions to purchase and hold particular assets. The concept applies to

individual asset investments as well as portfolios of assets. The constructed volatility and

return is indexed against a zero-risk (or no volatility) assets, typically an assumed bank

holding rate of return. This method can be used to evaluate various investment decisions

against each other based on a decision maker’s risk tolerance vs. desired returns. [144]

A similar method can be used to develop risk measurements for decisions being pre-

sented to a stakeholder at any state. Each decision can be viewed as a portfolio of assets

held by the stakeholder with each individual action resulting in a portfolio selection. At any

given point in time, a volatility measurement can be taken with regards to the future states

within the MDP (similar to the Black-Scholes method where a pricing lattice is used for

asset valuation [144]). A risk measurement can be taken based on the volatility of future

states in addition to the expected reward.

Other methods have been developed over time to measure risk based on the mean and

volatility of a return. Examples of statistical properties include value-at-risk (VaR), condi-

tional value-at-risk (CVaR), or exponential-utility [145]. Value at risk looks for the single

metric of value based on an acceptable probability margin [146, 144]. CVaR is defined as

the expected loss (or return) for a given worst case probability [144]. These options are

similar but vary in risk-acceptance definition. VaR and CVaR look at a single metric rather

than multi-criterion such as mean-variance portfolio theory. There is no effort to build a
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set of decisions when using VaR or CVar as exists when using portfolio theory. Some work

has been done to apply the VaR and CVaR approaches to SoS [101] but it is not yet mature.

Thus far, traditional risk consideration techniques have been derived from investment

science techniques. The field of risk-sensitive MDPs is an alternative that combines MDPs

that traditionally look at the expected return and incorporates a sensitivity to the volatility

of the return as well [145]. Methods involving MDPs have traditionally excluded this

topic as the expected return provides significant computational issues alone, without the

addition of variance inputs [147]. Typical risk-sensitive metrics work to calculate a variance

of return in addition to an expected return for a given state-value or action-value [147,

148]. The sampling can be computationally expensive and done brute force with a MC

sampling method [147]. Other methods build on risk measurements to encompass full

RL techniques like the multi-level time scale optimization method using Lagrangian policy

optimization with a lower level actor-critic setup with returns constrained by variance [143].

There are two commonalities of traditional risk-sensitive approaches: (1) They require

specific sampling methods to ensure a variance measurement can be made and (2) they

don’t account for the volatility directly but only indirectly through a cost function placed

on the reward.

A summary of each method can be found in Table 4.3 with a clear gap emerging. A

portfolio approach for analyzing an action-portfolio at each state is necessary to develop

policies for each state. Relative comparisons and indirect representations provided by risk-

sensitivty methods are not sufficient. A direct comparison of the return and volatility nec-

essary to fully attribute the results to a commonly defined (absolute) risk tolerance.

Using the explored techniques, a hybrid approach can be formed. The mean-variance

approach allows for these needs on a per state basis to be addressed. Combined with the

MC methods of the more brute force risk-sensitive MDP approaches allows for the appro-

priate variance metric to be calculated at the expense of computational need. The increased

computation time can be accepted as long as it is applied to the reduced meta-model, not
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Table 4.3: Risk-Reward Policy Evaluation Options

Alternative Pro Con
Mean-Variance
Portfolio Theory

Accounts fully for variance
Allows direct scaling of risk-
sensitivity
Supports portfolio selection

Not yet applied to MDP problem

VaR Comparative metric between
similar risk profiles (return
open)

Single metric based
Indirect scaling of risk-
sensitivity

CVaR Comparative metric for similar
return profiles (risk open)

Single metric based
Indirect scaling of risk-
sensitivity

Risk-Sensitive
MDP

Incorporates risk into existing
MDP problem definition

Requires significant sampling
for variance measure
Variance is not fully accounted
for
Variance is not directly scalable,
’k-factor’ like metric

Mean-Variance
Risk-Sensitive
Policy Genera-
tion Hybrid

Allows for direct scaling of risk-
sensitivity
Enables action-portfolios to gen-
erate policies
Directly accounts for return vs.
volatility

Requires brute force sampling
(computationally costly)

the full Truth Model MDP.

The hybrid approach if fully detailed in Section 5.4.1 as part of the methodology. The

approach first samples the mean and variance of an individual stakeholder return for all

available actions for each state. A action Pareto frontier is established and a risk-tolerance

level (ξ) is used to select a position on the frontier. The risk-tolerance based point yields a

relative weighting for efficient actions. This risk-tolerance level based weighting is used to

create a risk-tolerance based policy. A direct comparison of methods can be seen in Table

4.4.

Hypothesis 1 If the risk-tolerance level of a stakeholder is varied as an input to

the Return mean-variance risk-based policy algorithm, then the Pareto efficient

actions will be identifiable.
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Table 4.4: Risk-Based Policy Approach Alternatives
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Mean Variance Method  G# G#  #

Value at Risk  # # # G#

Conditional VaR  # # # G#

Risk-Sensitive MDP G# # # G#  

Hybrid Mean-Variance/Risk Sensitive Method     ⊗
�excellent,  good, G#fair, #poor, ⊗ none

4.2.2 Evaluating Decision Importance

In addition to developing specific policies that an individual stakeholder can follow, it is

important to identify when an important decision point is reached. An important decision

point can be identified by the reduction in volatility of a future return. Each state acts as a

decision point and actions result in a maintenance or a decrease in outcome volatility. Thus

there is the following research question:

Research Question 2.2: How can the volatility before and after a given state

be measured in order to identify significant decision points?

A given state’s importance can be determined by evaluating the measure of uncertainty

reduction. Any decision by a stakeholder (or action by a player in the Truth Model) will

yield a given distribution of future stakeholder mission utility (or reward). More specif-

ically, the significance of a state can be determined by the relative remaining uncertainty
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after each action is taken. The state can be identified as important if there is a significant

difference between uncertainty measurements for each action. There are two identified

potential methods of measuring relative uncertainty depicted in Table 4.5.

Measuring the entropy of a data set has been used across many fields including infor-

mation theory. Specifically, “graph entropy” has been used as a measure to characterize

structure, complexity, and noise of data sets [149]. The generic equation that defines en-

tropy is captured in Equation 4.6.

E(G) =
∑
i∈G

−Pilog2Pi (4.6)

where Pi is the probability of occurrence for value of state i in graph G.

When a single state is analyzed, the relative entropy between actions can be analyzed

to demonstrate the importance of the decision. If entropy is high, then there is a significant

impact due to a decision or outcome along that specific policy. Typically, a measure is made

before and after a split is developed in a decision tree. As the tree grows and is used to

classify data, the entropy of the data characterized at each node is reduced. The entropy of

a general data set can be calculated using the probability of occurrence of individual items

(or characters) and the traditional formula, seen in Equation 4.6 [150]. Similar approaches

to general architectures of systems have been used to measure system complexity in truly

complex systems: manufacturing, power grid, and railway transport systems. [151]

The alternative is to use traditional variance calculations of similar MC samples nec-

essary for the entropy measurements. The variance provides an absolute measure of un-

certainty whereby a single measure relative uncertainty is necessary. Traditional variances

cannot be equally applied across separate metric types or measurements and are impacted

by the scale of the metric. A relative comparison and rating of the options is summarized

in Table 4.6.

Conjecture 1: The relative importance of each state can be evaluated using an

entropy calculation of the overall stakeholder utility of finite time horizon MC
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Table 4.5: State Significance Options Options

Alternative Pro Con
Variance of
Return

Quantifies uncertainty measure-
ment

Absolute measure of uncertainty
Requires MC samples per state

Entropy Relative measure of uncertainty
Applicable to non-normalized
returns

Simple calculation given samples
Requires MC samples per state

Table 4.6: State Significant Determination Methods
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Variance of Return # G# #

Entropy Method  G# #

�excellent,  good, G#fair, #poor, ⊗ none
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samples before and after each action using the meta-model.

4.2.3 Evaluating Opportunity Cost

Identifying the importance of a specific decision follows identification of significant de-

cision points. Action significance is a factor of opportunity cost where decision-point-

significance concentrates on volatility. Stakeholders must understand when they are mak-

ing a decision that precludes returns in one area versus returns in another. They must

understand when they are trading future mission utility between two separate missions.

This need yields the following research question:

Research Question 2.3 How can the opportunity cost between individual stake-

holder metrics for a given decision be assessed and compared?

When considering and planning, it is imperative to identify opportunity costs. Tra-

ditionally, opportunity cost for a given decision compares a deterministic return from an

action selection to the best of all other potential actions. This results in a static, determin-

istic measurement for a single return-metric.

A stochastic, multi-metric approach to opportunity cost is necessary to apply to the

stochastic, multi-stakeholder, multi-mission problem previously outlined. The stochas-

tic approach will compare the mean and variance for each individual stakeholder metric

against that of all other actions (similar to comparing an actions outcome to the best of all

others). Opportunity cost between metrics can be measured in relative shift of mean and

variance of individual actions as outlined in Figure 4.4. The difference between the two

alternatives is outlined in Table 4.7 with a relative scoring outlined in Table 4.8.

Conjecture 2: Individual stakeholder metric opportunity cost can be identified

by comparing the mean and variance of stakeholder utility metrics.
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Figure 4.4: Stochastic Opportunity Cost Comparison

Table 4.7: Opportunity Cost Evaluation Alternatives

Alternative Pro Con
Traditional
Oppor-
tunity
Cost

Simple and standard measure-
ment

Single metric opportunity cost evaluation
Will require additional sampling
Will require additional sampling (no
closed for approach to problem)

Stochastic
Oppor-
tunity
Cost

Compare two metric opportunity
cost

More complex calculation and compari-
son
Will require additional sampling (no
closed for approach to problem)
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Table 4.8: Opportunity Cost Calculation Methods
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4.3 Reducing Dimensionality of Decision Trade-Space

Consider a simple single stake-holder responsible for a single mission, equivalent to a

single SoS. It is easy to visualize a simple decision tree based on the single stakeholder’s

decisions to add or subtract systems over time as shown in Figure 4.1. Each state represents

a stable point in the SoS with each action adding or subtracting from it.

In reality, the single stakeholder has many actions consisting of all combinations of

technology refresh, asset recapitalization, and asset reallocation that fit within resource

constraints. This is similar to the problem of attempting to fit as many high value objects

of varying 3-D dimensions into a backpack. If the problem is expanded to include multiple

stakeholders who make decisions which impact the performance of multiple missions (or

multiple SoS) then the tree will grow beyond a usable form. If there is even a low number of

potential actions for each stakeholder at a given node the tree size becomes unmanageable.

Powell identifies three places that Decision Trees and Markov Decision Processes are

subject to the Curse of Dimensionality: the state space (St = {St1, St2, · · · , Stn}), the

outcome space (probability of an outcome), and the action space (at = {at1, at2, · · · , atn}).

[152] These three aspects of developing a tree are key drivers in unreasonable growth and
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are present in the force level planning problem. Each needs to be mitigated in order to

maintain the feasibility of the problem. All three of these are much higher than traditional

problems represented and solved via the MDP structure.

Two categories of options were previously presented to manage the size of the generated

graph: pre-pruning during growth or post-pruning after growth (Section 4.1.1. Neither of

these options present a usable solution to dealing with the significant size of the action and

state space of the presented problem. This section investigates alternative methods that can

be employed to deal with such large action-state spaces generated via methods explored in

Section 4.1.1 and 4.1.2 to address Research Question 1.3:

Research Question 3: How can the inevitable resulting dimensionality of the

multi-player decision space be reduced to a digestible and actionable trade-

space?

4.3.1 Reinforcement Learning Concepts

Reinforcement Learning (RL) has grown in popularity with the success of Deep Blue [153],

AlphaZero [154, 155], and even multi-player video game AI players [156, 157, 156, 158].

Small state and action space games such as tic-tac-toe and connect four have been fully

solved [159]. More complex games such as chess and go consisting of larger state spaces

and deterministic outcomes require RL methods [159].

All RL methods are rooted in the simple agent-environment model show in Figure

4.5. The foundation of RL methods is the development of an agent (or player) who acts

on its environment and then receives a return before moving to a new state. More com-

plex formulations include multiple agents, partial observability of states, and multiple re-

wards. Many RL methods assume an underlying MDP exists in a SARSA formulation:

(sn, an, rn+1, sn+1, an+1) where s is the current state, a is an action, and n is the current

discrete step. [158]

Dynamic stochastic games can easily be represented with an MDP construct where
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Figure 4.5: Reinforcement Learning Agent-Environment Interaction [158]

general state-value, action-value, and policies can be trained [140, 142, 160]. The paradigm

can be extended to learning for large number of players [142], distributed learning for

cooperative players (e.g. DSL MARL algorithm) [140], and combining cooperative and

adversarial players (e.g. USCG algorithm) [160]. Many other solution paradigms exist as

do representative problems to solve [161] with many solutions being problem-centric.

The general focus of reinforcement learning applied to sequential stochastic games is

to solve for an optimal policy based on rewards for a set number of stakeholders in a live

learning environment (simulation or real world). The resulting policies are then exploited in

the real world. The problem formulations (e.g. grid world, robot and coffee) and common

algorithms for solving lack the scalability to deal with the defense stakeholder planning

problem. Each time step creates a number of unique states and unique actions tied to each

state. Given these shortcomings, there are still RL techniques that can be applied to solve

a large state and action space problem. [162, 158]

4.3.2 Learning Techniques and Approaches

Reinforcement Learning can be used to develop knowledge about an existing decision tree

or MDP. In the most basic form, there are two intertwined objectives for RL: the first is to

estimate the value of a given state or action and the second is to determine optimal policies.
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Optimal policies can be described as a series of optimal action selections through a defined

game. Q-learning, and its many variants, exist to solve for a Q function given a policy. A

policy can then be determined using the value approximation Q.

A Q matrix, or action-value matrix, is trained instead of fully calculating the reward for

each and every state by fully characterizing the tree. Each sample of the matrix selects a

single state and looks to calculate the next best state and its associated value. The reward is

saved then the value is calculated using Bellman’s equation (Equation 4.7) for that particu-

lar state. This can be done if the Markov property holds true since the previous state does

not matter.

Q(s, a) = r + γmaxa′Q(s
′, a′) (4.7)

where s is the selected state and a is the selected action, r is the reward for action a at state

s, γ is the discount factor, s′ is the state determined based on action a, and a′ is an action

available at state s′.

Q-Learning techniques focus on developing a representation of the action-value func-

tion [163, 125]. A matrix Qs×a is developed and can be used to approximate if not solve

for the optimum policy. It is possible to be sub-optimal as the number of approximated

entries in the Q matrix is determined by the number of samples. A full sampling would

yield a perfect knowledge. If a Q matrix is available in multi-player games, a number of

common game theory approaches can be applied at each state as players make their ac-

tion selections (e.g. Nash Q-Learning[164], Minimax-Q Algorithm[164], Friend-or-Foe

Q-learning [165], Correlated-Q learning (CE-Z) [166], and Nash bargaining solution Q-

learning (NBS-Q) [167] as examples [164]. Given the processing power, each decision can

be treated as a single step game given the estimated Q payoff function [165, 125, 163, 168,

156].

Similar methods can be applied to develop a state-value function, or V (s) similar to the

action-value function, Q(s, a). Many techniques exist to train a model to represent either.
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Figure 4.6: Traditional Reinforcement Learning Algorithms [158]

Each technique depends on sampling the MDP, game, or construct in different ways and

updating the function under evaluation (V (s) or Q(s, a)). Many learning algorithms can be

described by the continuum that exists between depth and breadth sampling (Figure 4.6).

[158]

Estimating the state-value or action-value for a given player (or stakeholder) is only

half of the goal of reinforcement learning. The other half entails developing optimal poli-

cies given a set value. Many policy optimization methods exist as do the Q-learning or

V-learning methods described above. Traditionally, policy optimization and value opti-

mization are done one at a time in a sequential procedure. Actor-Critic methods use an

actor to learn value while a critic simultaneously adjusts the policy to an optimal state.

[158]

Lastly, the concepts of policy determination and value approximation can be achieved

using function approximation. Many different approaches exist from simple tabular forms

to deep neural networks representing actor and/or critic. Convolution Neural Networks

can be used to extract features from state spaces and map them to value or policy deci-
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sions. Recurring Neural Networks (or Long Short-Term Memory for more stability) can

be used establish value or policies for sequential games. Function approximation methods

are commonly used amonst the more challenging problems facing reinforcement learning

today. [158]

4.3.3 State Factorization

A common issue when applying MDPs to real world problems is a substantial increase in

state space [169, 170]. The defense stakeholder planning problem characterized in Chapter

2 has a state space that grows substantially with the number of time steps considered. This

section explores techniques to reduce the state space given an intractable MDP.

The classic example of factorization is to use a two-stage temporal Bayes net (2TBN)

to factor state variable transitions [171, 172, 132]. The 2TBN factorization results in a

Conditional Probability Table (CPT) for each state variable to its next state as a function

of an action [132]. This helps represent a large state-to-state transition matrix as a set of

smaller matrices but does assume independence among state variables. Algorithms have

been and continue to be developed for standard value and policy iterations for single and

multiple decision makers [173, 174, 175, 176].

The large number of state and action spaces have become a classic issue in multi-agent

MDP, POMDP, and Dec-POMDP. Kumar et al. takes a value-factorization approach in

addition to state-factorization which does not provide enough relief [177]. MDP, POMDP,

and Dec-POMDP solution methods have concentrated on previously discussed reinforce-

ment learning methods. The Q-Learning with Adaptive State Segmentation (QLASS) algo-

rithm was designed to help solve large state spaces combined with Q-learning [178]. The

QLASS algorithm uses a “sensor subspace” to represent a state space. The subspace is

dynamically updated based on samples and highly explored areas. The QLASS algorithm

gradually builds the sensor space online until a convergence occurs and is dependent on a

given policy selection method (e.g. Boltzmann distribution). [178]

94



Graph minimization is a necessary part of analyzing large graphs with few state vari-

ables and no actions (e.g. social network data). Hamilton looks at examining proximity of

nodes to train an encoder that shrinks the overall network to a single encoded node. This

method uses common encoding/decoding machine learning techniques. Another approach,

when “neighborhoods” are not available, is to begin to contract node by node based on

structure (e.g. single string nodes collapsed to a single node). These methods work well

for graphs but fail as full state-variables are characterized and as transition probabilities

need to be maintained in an MDP reduction.

4.3.4 Clustering Similar Decisions and States

Clustering algorithms are used to group similar items based on an n-dimensional feature

space. Clustering is an unsupervised learning method: there is no target value (class label)

to be predicted, the goal is finding common patterns or grouping similar data points [179].

An example of a common clustering method is K-Means Clustering that aims to divide a

n-dimensional data set into k clusters which commonly minimizes the following Euclidean

distance function:

f(x) = argmin
j
‖x(i) − µj‖2 (4.8)

K-Means can add center points stochastically or deterministically and proceeds to clus-

ter based on minimum distance values (e.g Euclidean, Manhattan, cos(θ)). K-Means fails

on classifying convex data surfaces and will not be able to classify visually obvious clusters.

Many other algorithms exist to extract such features and are common in ML libraries today.

Significant ongoing research exists in new algorithms applied to clustering subsets [180,

181, 182, 183, 184, 185] (e.g Stochastic/Deterministic, Hard/Fuzzy, Partition/Hierarchical,

Agglomeration/Division, Incremental/Non-Incremental [182]). Clustering can be used to

find commonality among states, values, and actions across the decision-state trade-space as

needed to potentially reduce the dimensionality.
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Figure 4.7: Relationship Between MDP, POMDP, and POSG [186]

A base MDP state-space can be clustered and converted to a Baysian game using

POMDP techniques built on the POMDP belief-states. The believe-states can be collapsed

to generate a more tractable problem than a full POMDP or POSG alone [186]. The state

space reduction from state space to believe space is described in Figure 4.7 where the

believe-state represents a potential tractable problem. The overall POSG is split into pro-

gressive sub-problems and converted to a Baysian game. [186]

4.3.5 Dealing with Dimensionality

Three primary solution options were outlined and their positive and negative aspects are

noted in Table 4.9. It is clear that traditional MDP solution techniques will not scale appro-

priately and RL techniques have difficulty in directly representing the variance of outcomes.

Ultimately, it is necessary to factor the state space into a subspace, similar to a full state

space reduced to a belief space, and apply traditional and RL techniques to the constructed

meta-model. A relative scoring of each alternative can be found in Table 4.10.

4.3.6 Tractable Representation of Decision Space

Through the observations of Section 4.1 it is clear that the most advantageous approach

to reducing the dimensionality is to factor the state space to a subspace. The resulting

reduced order MDP will be refered to as the meta-model of the full order MDP. Actions are

held constant and transition probabilities are constructed using POMDP techniques. The

state-action transitions are appropriatly concerved during the meta-model generation.
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Table 4.9: Alternatives for Handling Dimensionality of State Space

Alternative Pro Con
MDP Solution Ap-
proach

Standard and well defined so-
lution methods
Focused on identifying opti-
mal policy solutions

Fails to scale with states and
action space

Reinforcement learn-
ing

Flexible and defined options
(e.g. Q-Learning, Actor-
Critic)
Focused on identifying opti-
mal policy solutions

Fails to maintain direct vari-
ance for uncertainty

Factorization Shrinks solution space
Allows uncertainty distribu-
tions to be maintained

Does not directly represent
the original MDP
Applied evaluations must be
re-applied to original MDP

Table 4.10: Comparison of Dimensionality Handling Techniques
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The approach is fully described in Section 5.3 and is part of the first step in the method-

ology addressed in this work. The original Truth Modelis sampled using MC methods

using exploratory RL techniques. A reduced order state space is used to generate a meta-

model MDP. This meta-model is then evaluated and metrics are reapplied to the original

state space. The state space compression, evalutation, and remapping leads to the following

hypothesis:

Hypothesis 2: If a full MDP is reduced to a meta-model MDP, the resulting

risk-based policies generated will preserve the Pareto efficient action determi-

nation with reduced computation time.

4.4 Stakeholder Strategy Development and Decision Making

Lastly, the construction and evaluation of the decision trade-space must be used to facilitate

stakeholder decision making. A stakeholder must have the information to develop a robust

playbook (robust to the significant future uncertainty provided a risk-tolerance level) that

can enable decision making over time. This yields the following research question:

Research Question 4 How can insights be developed to enable the creation

of a playbook that addresses a stakeholder’s decisions through an uncertain

multi-stakeholder-influenced future?

The final goal of the methodology is to develop information that can be used to facilitate

the creation of a stakeholder playbook. This is done by reducing the epistemic uncertainty

regarding actions and resulting possible outcomes. Analysis using the defined evaluation

metrics identified (risk-based policies, state-action Return entropy, and opportunity cost)

in Section 5.4 results in increased insights. Specifically, individual states and action spaces

can be evaluated using the outlined metrics. This provides state based and action based

rule set development as a function of stakeholder risk-tolerance. Section 5.5 outlines the

development of insights that can be used to develop a risk-based playbook.

The methodology must be benchmarked against state of the art approaches. The rules

98



and recommendations determined via analysis of the evaluation metrics provide additional

insights than what is available today. Benchmarking the methodology is equivalent to com-

paring the provided insights against current methods. Today, optimal policies are used to

evaluate decision spaces over time and to develop stakeholder strategies.

The need to provide useful information to playbook generation and benchmark the cur-

rent methodology yields the following hypothesis:

Hypothesis 3 If risked based policies, state metrics, and action metrics derived

from the meta-model are used to evaluate the decision space, then more in-

sight is provided to the relevant stakeholders than traditional optimal strategy

solutions.

4.5 Summary of Research Questions and Hypotheses

The Research Objective of this work identified the goal to provide a SoS stakeholder with

increased information regarding decision making in a multi-stakeholder, multi-objective,

and uncertain environment. Three Research Question (RQ) were derived from needs to

meet the overarching goal (RQ1, RQ2, and RQ4). RQ1 addresses the need to fully pop-

ulate the decision trade space. Investigation of RQ1 led to the need for a Truth Model

as an assumed input to the developed methodology and using an MDP for Truth Model

representation.

RQ2 was motivated by the Research Objective and more specifically by the represen-

tation selection. Three evaluation needs were investigated: risk based action evaluation,

result volatility evaluation, and opportunity cost evaluation. Risk based evaluation meth-

ods were researched and a risk-tolerance based policy development method was selected

as the path forward for risk based evaluation. The method provides the needed metrics

but comes at a computation cost. The use of the risk-based policy development method

results in Hypothesis 1. Hypothesis 1 asserts the risk-based policy development method

can provide the identification of Pareto efficient actions. The investigation of volatility and
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opportunity cost yields two conjectures that are not further explored and become part of an

assumed evaluation option.

RQ3 is motivated by the computational cost resulting from the selected risk-based pol-

icy development method. Reinforcement learning (RL) and state space reduction tech-

niques were explored. A combination of RL methods and state space reduction was deter-

mined to be a viable path forward. RQ3 results in Hypothesis 2 which asserts the solving of

a meta-model (reduced order MDP) will result in similar usable results as compared with

the solution of full MDP derived directly from the Truth Model.

RQ4 is motivated by the need to provide a usable output to stakeholders and a need to

benchmark the methodology outlined in this work. RQ4 results ins Hypothesis 3 which

assets that the information developed using the methodology results in more information

provided to a SoS stakeholder than an optimal policy solution method.

A summary of the Research Objective, Research Question, and Hypothesis can be

found in Figure 4.8. Chapter 5 describes the consolidated methodology developed from

the work presented in Chapter 4. Chapter 6 depicts the associated experiments developed

to test each hypothesis outlined in Chapter 4.

100



Fi
gu

re
4.

8:
R

es
ea

rc
h

Q
ue

st
io

ns
an

d
H

yp
ot

he
se

s

101



CHAPTER 5

METHODOLOGY

5.1 Methodology Overview

The methodology consists of a single initialization step (Step 0) followed by three defined

steps (Figure 5.1). Step 0 entails setting up the problem and Truth Model for evaluation

using the methodology. Step 1 samples the truth model and develops a usable meta-model.

Step 2 evaluates the meta-model to produce risk-based policies, state significance metrics,

and action significance metrics. Step 3 uses the metrics calculated to better inform the

stakeholder of interest and produce rules sets to help generate a stakeholder playbook.

The flow of information between steps is capture in Figure 5.2. Step 1 ingests unique

states, unique actions, and tuples based on Truth Model MC sampling. A meta-model

characterized by a transition, mean reward, and reward variance matrix are developed and

passed to Step 2 along with the unique state and action definitions. Step 2 generates Risk-

Tolerance Sensitivity Profiles (RTSP) and other state/action metrics which feed Step 3. The

RTSP and metrics are used to generate insights in the form of risk-based state and action

based rules. These rules are provided to analysts to inform decision makers.

The Georgia Tech Generic IPPD Methodology (Figure 5.3) outlines a generic decision

making process. The process consists of the central column of the process. The outlined

generic process can be applied to any decision making problem, including the described

force structure planning problem addressed by the outlined methodology. The methodol-

ogy is mapped to the the generic decision making steps in Figure 5.4. The initial step (Step

0) represents the required inputs and the information that an analyst must produce before

using the methodology. This includes establishing the need, defining the problem, and

establishing value. These three activities are characterized by defining: stakeholder objec-
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Figure 5.1: Methodology Overview

Figure 5.2: Methodology Data and Information Flow
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Figure 5.3: Georgia Tech Generic IPPD Methodology

tives, stakeholder priorities, stakeholder constraints, mission scenarios, available systems,

and mission measurements. The next activity is to generate feasible alternatives. Step 1

creates a meta-model that captures the full decision space of an individual stakeholder con-

strained by resources and availability. Next, the feasible alternatives are evaluated. In step

2, the decision space is fully evaluated using Risk-Tolerance Sensitivity Profiles and other

state/action metrics. Finally, a decision is made based on the evaluation. Step 3 supports

the last activity by generating action and state based rules. The final output is a set of risk-

based state and action based rule sets. These rules sets help provide decision makers and

help cull the feasible alternatives based on a stakeholder’s risk-tolerance.

5.2 Step 0: Defining the Truth Model

Step 0 defines the Truth Model to be used to sample future scenarios. The Truth Model

allows future scenarios to be simulated starting from a fixed initialization point. Ultimately,

the Truth Model has requirements to provide information used in Step 1. Specifically, it is

required to provide sequential states, actions, and rewards.
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Figure 5.4: Methodology and Decision Making

The Truth Model can be described in the context of the conceptual system of system

evolution cycle outlined in Chapter 2, Figure 2.6. The simulation must provide an open

loop cycle of stakeholder decisions, decision impacts in SoS state, and the military utility

provided to each stakeholder by each SoS (Figure 5.5)). The simulation should begin with

a set of SoS states for each stakeholder. Each stakeholder should have a define set of

decisions that can be made. Given resource constraints (e.g. budgets), stakeholders can

decide to spend on asset creation, invest in technology, and allocate assets to specific SoS,

or missions. The SoS will be defined by the state determined by current and previous

stakeholder decisions. The current state of the SoS are evaluated against their respective

missions.

Each described function does not need to be part of a monolithic simulation. The se-

lection of asset and technology investment can be guided technology evaluation method

(Section 3.2). The architecture selection and evolution could use Adaptive SoS Architec-

ture Evolution (Section 3.8). Allocations don’t have to be set deterministically and can be

selected at random. During sampling of the Truth Model it is essential that all decisions can
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Figure 5.5: Conceptual Truth Model Open Loop Representation

be explored in a stochastic manor. The Truth Model is required to provide the capability

to stochastically select decisions in addition to using stochastic models (Figure 4.2). This

allows the exploration of decisions during sampling instead of using a pre-determined set

of rules or optimization to make stakeholder decisions.

The Truth Model must provide three specfic outputs based on the decision exploration

policies used during sampling (Figure 5.6). The truth model must provide discrete actions,

discrete states, and stakeholder utility with a clearly defined chain of cause and effect. This

data is used during the sampling process to create state and action based samples. The

samples are then used to create a reduced meta-model.

A consideration can be given to both quantitative and qualitative metrics. The con-

cept of Value-Driven Design should be applied to ensure the multi-level connections from

subsystem to mission are made as well as the impacts of non-performance metrics on stake-

holder utility (e.g. economic).
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Figure 5.6: Truth Model Cycle Mapped to State, Action, and Reward Sampling

5.3 Step 1: Generating the Meta-Model

Step 1 of the methodology intakes the Truth Model developed in Step 0 and outputs a

reduced state space Markov Decision Process (MDP), or meta-model. The Truth Model

is first sampled using the Monte Carlo method to generate state-action-reward tuples, a

unique state record, and a unique action record. The records are used to reduce the size of

the state space creating a meta-model state space. The sampled tuples are used to produce

a MDP using the reduced state space. The unique state records, unique action records,

the full to reduced state space mapping, and the reduced MDP are then used in Step 2 for

evaluation.

5.3.1 Truth Model Sampling

The sampling method used is a depth based Monte Carlo method (Figure 4.6) . The Truth

Model is repeatedly sampled with the same initial conditions and a complete single simu-

lation, or episode, is executed through a pre-defined simulation time. The constant initial

conditions produce a fixed starting point for all episodes. Each episode produced a set of

depended states, actions, and rewards. A single episode yields a chain of potential state-

action pairs (s0, a0 → s1, a1 → ...→ sT−1, aT−1 → sT , aT ) where T is the number of time
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Figure 5.7: Number of States and Actions as a Function of Episode Samples

steps) all starting with a fixed s0. There are three key pieces of information gathered during

each episodes: states, actions, and rewards.

The intuitive problem introduced in Section 2.6 can be used as an example. The sam-

pling metrics from the sampling of the Truth Model are shown in Figure 5.7. The actions,

as expected, increase very quickly to five total actions in accordance with the breakdown

of the decisions space (‘Wait’, ‘Acq Sys 1’, ‘Acq Sys 2’, ‘Dev Sys2’, ‘Dev Sys1’). The

number of unique states begins to decrease as the re-sampling of states increases.

The reward as a function of state and action is recorded. It can be viewed as a function of

time step (Figure 5.8). The simple reward versus time plot demonstrates the large amount

of noise that uncertainty introduced. A view by time step provides another perspective

(Figure 5.16.

Each state is defined by a quantitative characteristic vector. The state characteristic

vector represents all information captured for future use. It can encompass temporal char-

acteristics (e.g. time step, time in development for a system), asset quantities, and asset

allocations. The decision can be made to incorporate or not incorporate portions of the

recorded vectors. For example, if a stakeholder of interest may not have knowledge of

an opponent stakeholder’s asset quantity then it can be disregarded during sampling. This

allows the evaluation to be made on partial or full state knowledge. This allows either a
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Figure 5.8: Reward versus Time Step

Figure 5.9: CDF of Reward by Time Step
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single common state vector or stakeholder unique state vectors to be produced and used.

Any simulation state reached resulting in the same state characteristic vector will be viewed

as the same state through out usage in the methodology.

Each action is defined using quantitative and Boolean characteristics. The action char-

acteristic vector has the capability to uniquely define decisions made by stakeholders in

the Truth Model. A unique action vector is produced for each stakeholder individually.

The action characteristic vector can included asset creation decisions records as a Boolean

(e.g. decision to develop a specific system, decision to acquire a system) and as cardinal

numbers (e.g. number of systems to be acquired, number of assets allocated to a specific

mission). A specific action or set of actions may be available at any given state.

The development of the initial reward can be measured directly from the simulation

for each stakeholder or can be developed during sampling as a composite of available sim-

ulation outputs. At each time step the Truth model will produce evaluations of specific

mission level metrics. The mission level metrics (independent of a stakeholder) are the

result of a given state (e.g. allocated systems by all stakeholders, available budgets). The

mission level metrics at each state can be used to develop individual stakeholder utility

metrics. Each state has a unique mission level metric profile and derived individual stake-

holder utilities produced by the simulation. The stakeholder utility is mapped as the reward

a stakeholder receives when reaching a specific state. The Reward is defined as a specific

single step return.

A single episode path through the simulation yields a dependent string of states, actions,

and rewards. The episode state-action-reward path is translated into a set of individual

(s, a, s′, r) tuples. Each tuple acts as a single transition measurement. Each tuple sample

is aggregated into the an going sample metrics generated after each episode is run. The

aggregated sampling metrics are:

• Sum of Rewards Matrix (rs×s×a)

• Sum of Squares of Rewards Matrix (sss×s×a)
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• Number of Samples Matrix (ns×s×a)

• Unique State Vector Set (ssampled)

• Unique Action Vector Set (asampled)

where s is the number of unique sampled states and a is the number of unique sam-

pled actions.

5.3.2 Reducing State Space

The state space reduction can use any of the sampled metrics created from sampling the

Truth Model. The goal of the state space reduction is to reduce the number of overall states

while maintaining a relevant model in evaluating the original Truth Model scenario. This

is done by clustering states based on characteristics and maintaining consistency with the

original sampled data.

The first step to reducing the state space is performing a clustering analysis on the

unique state vectors generated during Truth Model sampling. Each individual application

of the methodology is unique and can require tailoring of the clustering space. Specifically,

it can be useful to add the available actions or additional temporal factors to the state space

prior to clustering. Ensuring applicable variables are used to cluster the state space is

essential as the complexity of the application increases.

The applications in this work use the unique state characteristics and their available

actions as inputs to the clustering algorithm. An agglomerative hierarchical clustering is

used to allow the impact of variable magnitude characteristics while ensuring the division

of the state space is always at the most impactful point in the state space. The size of the

reduction is specified in the total number of clusters. Each cluster will become a unique

state in the meta-model. Each sampled state (s) has a many-to-one mapping to the new

reduced state space (s → s′). The number of clusters selected represents the total number

of states to be present in the meta-model. The ratio of the number of clusters, or meta-model
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states, to the unique sampled states yields the state space compression ratio (Equation 5.1).

A mapping between the uncompressed state space and the meta-model states is generated

as an output of the clustering analysis.

κ =
Nstates,meta−model

Nstates,sampled

(5.1)

The sample metrics are aggregated together based on the meta-model states identified

via the clustering algorithm. The sample metric matrices (rs×s×a, sss×s×a, and ns×s×a)

are aggregated together based on the state space mapping to a new set of sample metrics

(r′s′×s′×a, ss
′
s′×s′×a, and n′s′×s′×a).

The aggregation of the sample metrics results in the following sets of aggregated and

sampled data which is used to construct the reduced state-space MDP:

• Aggregated Sum of Rewards (r′s×s×a)

• Aggregated Sum of Squares of Rewards (ss′s×s×a)

• Aggregated Number of Samples (n′s×s×a)

• Unique State Vector Set

• Unique Action Vector Set

• Sampled State Space to Reduced State Space Mapping (sreduced → ssampled)

The aggregated and sample data is specific to an individual stakeholder point of view.

The action selection and reward functions are stakeholder unique under all conditions. The

state space may also be tailored to individual stakeholder’s based on the anticipated knowl-

edge expected.
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5.3.3 Generating Reduced-Dimensional Meta-Model

The meta-model is a Markov Decision Process with added reward variance. The meta-

model is generated using the reduced state-space sample metrics. The meta-model consists

of the following attributes:

• Transition Probability Matrix (Ts′×x′timesa)

• Reward Mean Matrix (Rµ,s′×x′×a)

• Reward Variance Matrix (Rσ2,s′×x′timesa)

The meta-model is generated using the observations aggregated together into r′s×s×a,

ss′s×s×a, and n′s×s×a. The meta-model is produced by identifying (1) the transition proba-

bilities as a function of action and (2) the reward matrices based on the reduced state space

sample metrics.

A transition probability matrix mapping a given (s, a) pair to a next state (s′) is gen-

erated using Equation 5.2. The transition probability is based on the ratio of all observed

(s, a) pairs to those that explicitly lead to s′. The number of observations (N − obs) of a

given starting state, action, or ending state are present in the n′s×s×a sample metric. The

actions at this stage represent a single stakeholder. The selection and result of other stake-

holder actions are by definition absorbed into the probability of transition.

T (s, s′, a) = P (s′|s, a) = Nobs(s, s
′, a)

Nobs(s, a)
, s ∈ sreduced (5.2)

The inclusion of the reward variance matrix is essential to the algorithms used to eval-

uate the meta-model and is a primary reason the state space reduction is necessary. Split-

ting the reward into a mean and variance allows for uncertainty to be captured and ac-

counted but at the expense of additional evaluation complexity. The individual reward mean

(rµ(s, s′, a)) and reward variance (rσ(s, s′, a)) are calculated for each state-action-state tu-

ple to develop both of the Reward matrices (Rµ and Rσ2). The Reward mean matrix is
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Figure 5.10: Example MDP Structure Graph with States 1 and 13 Highlighted

populated using Equation 5.3. The Reward variance matrix is populated using Equation

5.4.

Rµ(s, s
′, a) =

r′(s, s′, a)

n′(s, s′, a)
, s ∈ sreduced (5.3)

Rσ2(s, s′, a) =
ss′(s, s′, a)− r′2(s,s′,a)

n′(s,s′,a)

n′(s, a, s′)− 1
, s ∈ sreduced (5.4)

The final output of the meta-model generation is a MDP. The structure of the resulting

graph can be viewed in two ways. The first is a structure graph that does not account for

actions and only accounts for transitions (Figure 5.10). This can be considered ‘action

collapsed’.

The second method is to break apart the MDP by action and display the transitions when

a given action is available (Figure 5.11). These two view points give an understanding of

the structure of the MDP. For example, at step 1, the primary action is to ‘Wait’. This is

due to acquisitions and developments conducted in the initial state requiring all resources
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and multiple time steps. Additionally, more branches require the stakeholder to ‘Wait’ after

‘Dev Sys 2’ in the initial state. Lastly, ‘Acq Sys 2’ is only available in branches that have

already ‘Dev Sys 2’.

5.4 Step 2: Evaluating the Meta-Model

The meta-model generated during Step 1 is used to explore each individual meta-model

state. This exploration which would not be feasible with a full MDP accounting for ev-

ery possibility from the Truth Model. This step (1) develops risk-reward based policies

for stakeholders, (2) identifies significant decision points, and (3) evaluates the opportunity

cost of actions at each state. The output of Step 2 associates significance and opportunity

cost to each state enabling identification of states of interest. The risk-based policies gen-

erated in Step 2 enable further evaluation in Step 3. The policies enable the generation

of Risk-Tolerances Sensitivities Profiles (RTSP). Ultimately, these metrics and evaluations

enable the generation of stakeholder playbooks.

5.4.1 Risk Based Policy Generation

In traditional model-based reinforcement learning, a policy (πh) describes the probability

that an agent (a stakeholder, h in this problem description) will select an available action

when in a specific state. An optimal policy can be seen as a 100% probability of selecting

a single action at each state. A policy is defined by Equation 5.5 and has an entry for every

state and action pair. The sum of all policy entries for a given state must equal 1.

π(s, a) = P (a|s) (5.5)

where
∑

a∈A π(s, a) = 1 for any (s) and available actions (A)

A risk-based policy is generated as a function of a risk tolerance metric (ξ, [−1, 1]) and

a stakeholder of interest (h). The final policy is generated based on a set of policy iterations.
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At each iteration, the Return mean and variance are calculated for each action based on the

current policy. Pareto efficient portfolios defined by the relative weighting of individual

actions are determined. A relative action weighting is determined based on the selected

ξ. The relative weightings re used to update the current policy for use in the next iteration

or for final output. The algorithm is captured in Algorithm 1 and described in more detail

below.

Algorithm 1 Risk Based Policy Algorithm
1: Set Risk-Tolerance (ξ)
2: Set sampling time horizon (t)
3: Set Return discount (α)
4: Set learning rate as a function of iteration (γ)
5: πξh ← π0 . Initialize the stakeholder policy
6: repeat
7: for Each Stakeholder do
8: Collapse action-space to Stakeholder
9: for Each s ∈ S do

10: for Each a ∈ A do
11: Collapse the action space
12: Run N samples t steps in time
13: Calculate Return sample mean (expected Return)
14: Calculate Return sample variance (Return volatility)
15: end for
16: Establish mean-variance Pareto frontier
17: Calculate relative action weightings (w) as a function of ξ
18: πξh(s)← (1− γ) ∗ πξh(s) + γ ∗ w
19: end for
20: end for
21: until policy convergence or max iterations reached

A single iteration of the algorithm is first walked through to provide a more in depth

description. Then, the iteration-to-iteration behavior in the context of convergence of the

algorithm is described.

Each iteration has an initial policy (pi), time horizon (t), policy learning rate (γ), Return

discount (α) and Risk-Tolerance level (ξ) provided as an input. This policy is updated

through out the iteration. The output policy of the iteration acts as the input policy to the

next iteration or as the final output policy if convergence (or a maximum iteration number)
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is reached. The other inputs are used through out the policy iteration process and are

individually described in more detail below.

During an iteration, each state is addressed individually from leaf states to the initial

state. Each action available in the current state is evaluated. The long term expected Return

and Return volatility is measured for each action. A set of N samples is MC episodes

are run starting in the initial state (s0) and selecting the action of interest (a0). Each MC

episode is run to the defined time horizon, t. Each episode yields a string of sarsa samples,

s0, a0, r1, s1, ..., rt, st.

The samples are based on the current policy and will progressively change as the policy

is updated. When the sampling is done, the policy (action selection) is combined with the

transition matrix (transition probability given a starting state and action) to yield a direct

state to state transition probability (Equation 5.6).

P (s|s′) =
∑
a∈A

T (s′|s, a)πξh(s, a) (5.6)

A Return is calculated for each sarsa sample string. Traditionally the sum of dis-

counted Rewards (Equation 5.7) is used to calculate the Return. The discount (α) variable

sets the relative impact of future Rewards on the current Return. Traditionally, the discount

variable is kept less than 1 (α ∈ (0, 1]. The impact of future rewards therefore decreases as

time from the initial state increases.

R =
i=t∑
i=0

αiri (5.7)

Alternative discount approaches exist. A non-traditional approach is to use an α > 1.

This allows future Rewards to more heavily impact the current Return but does introduce

potential instability at long time horizons. Additionally, a customized weighting profile can

be used to replace the αi term in Equation 5.7. A relative weighting based on time from the

current state enables the selections of a specific impact profile. An absolute weighting rel-

118



ative to the initial state of the MDP under evaluation provides targeted time based impacts

of relative reward for the specific stakeholder under consideration.

The sampling of each action for a state of interest results in a distribution of future Re-

turns as a function of the action selected. The expected Return for each action (Rπ,s0
µ (a)) is

computed using Equation 5.8 for each action. The Return volatility is computed computed

using Equation 5.9 for each action.

Rπ,s
µ (a) = E[Rπ,s0(a)] =

∑
o∈O(s,a)

Rπ,s(o)

Nobs(a)
, s ∈ sreduced, a ∈ A (5.8)

where the sample set, O, terminated at time t, seeded at state s with action a

Rπ,s
σ2 (a) = var[Rπ,s0(a)] =

∑
o∈O(s,a)

(Rπ,s(o)−Rπ,s
µ (a))2

Nobs(a)− 1
, s ∈ sreduced, a ∈ A (5.9)

where the sample set, O, terminated at time t, seeded at state s with action a

The expected Return and Return Volatility for each action yield a single mean-variance

point for each action. The mean-variance plot (or mean-variance map) can visually depict

the relative Return performance across the action space of the state of interest. An example

mean-variance map for a State 1 and State 13 of the intuitive problem are shown in Figure

5.12.

A Pareto frontier is then developed based on the available mean-variance Return of

each action. Portfolios of actions (pa) are generated to form the Pareto efficient frontier.

The process is similar to stock portfolio design using the expected mean and variance of

future individual investments. A full efficiency frontier can be visualized in Figure 5.13.

Note that in this application both the traditional higher-mean and lower-variance frontier

and the lower-mean and lower-variance frontier are highlighted. The upper half of the

119



(a) State 1

(b) State 13

Figure 5.12: Example Return Mean-Variance Maps
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efficiency frontier represents realistically feasible alternatives of non-dominated solutions.

The lower half of the efficiency frontier represents fully dominated solutions or solutions

that do not dominate other solutions.

The Pareto frontier highlighted in Figure 5.14 is constructed by combining available

actions using a paramaterized weighting vector:

w =



w2

w2

...

wm−1

wm



where m is the available number of actions and
∑m

i=1wi = 1.

Action portfolios are defined by the relative weighting vector (w(pa)). The expected

Return and Return volatility of an individual action portfolio are calculated using Equation

5.10 and Equation 5.11 respectively.

µ(pa) =
m∑
i=1

wi(pa)R
π,s
µ (a), s ∈ sreduced, a ∈ A (5.10)

σ2(pa) =
m∑
i=1

w2
i (pa)R

π,s
σ2 (a), s ∈ sreduced, a ∈ A (5.11)

Each point on the frontier represents a single action portfolio constructed using the

defined weighting vector. Selecting a point along the frontier is equivalent to selecting

an action portfolio and a relative weighting. The frontier path can be paramaterized by a

Risk-Tolerance (ξ). A visual depiction of the paramaterization is shown in Figure 5.13.

The Risk-Tolerance parameter describes a stakeholder’s desire to accept risk and is defined

[−1, 1].

There are three key positions along the full frontier:
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Figure 5.13: Risk-Tolerance Paramaterization of the Pareto Frontier

• Highest Risk Point (ξ = 1)

• Minimum Risk Point (ξ = 0)

• Worst Point (ξ = −1)

The point of highest risk is represented by a Risk-Tolerance of 1. This action portfolio

has the highest-variance and highest-mean Return of all action portfolios. The point of

minimum risk is represented by a Risk-Tolerance of 0. The minimum risk action portfolio

has the least-variance of any other portfolio achievable. All action portfolios represented

by ξ ∈ [0, 1] are realistic options and feasible Pareto efficient alternatives. These action

portfolios remain non-dominated by all other potential action portfolios. No other action

portfolio will result in a higher mean and lower variance in Return. For these action portfo-

lios, as the risk is increased (Return variance) the expected Return increases (mean Return).

A feasible trade-off between risk and return exists. Examples from State 13 for the realis-

tically feasible and unrealistic non-feasible Pareto frontiers are shown in Figure 5.14.
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(a) ξ ∈ [−1, 0) (b) ξ ∈ [0, 1]

Figure 5.14: State 13, Three Action, Pareto Frontiers

The worst action portfolio is represented by a Risk-Tolerance of -1. The worst action

portfolio is characterized by the lowest-mean and highest variance. The portfolio has the

most Return volatility with the lease expected Return. This represents the worst relative

weighting of actions. All action portfolios represented by ξ ∈ [−1, 1) represent full dom-

inated options. Each portfolio has no other portfolio that has a lower mean and lower

variance. This section of the frontier represents non-feasible alternatives. As the risk is

increased (Return variance) the expected Return decreases (mean Return). A non-feasible

negative feedback between risk and return exists for the fully dominated action portfolios.

A action profile is selected based on the input Risk-Tolerance which is held constant

across all policy iterations. This yields a relative weighting vector selection as a function

of Risk-Tolerance for the state of interest. The policy for the state of interest is updated

using the Risk-Tolerance selected weighting vector (Equation 5.12).

πξ,i+1
h (s) = (1− γ(i)) ∗ πξ,ih (s) + γ(i) ∗ wi (5.12)

where i is the current policy iteration number.

The policy update concludes the single state specific evaluation and is applied across

all MDP states during each policy iteration. Note that γ is a function of the policy itera-

tion number and must be set as a decreasing function to guarantee convergence. Example
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functions include exponential (Equation 5.13) and geometric (Equation 5.14).

γ(i) = 1− e
imax−i
imax (5.13)

γ(i) =
1− ( i

imax
)2

2
(5.14)

The decreasing influence of each iteration helps convergence of the policy. An example

of policy convergence with an initial equal policy (all actions weighted equally) across

varying Risk-Tolerances is shown in Figure 5.15. The gradual convergence on the final

policies is clearly shown for available actions. Unavailable actions in State 13 equal zero

for all iterations. The varying convergence points as a function of Risk-Tolerance gives an

initial look at the sensitivity of risk-based policies to the Risk-Tolerance of a stakeholder.

The result of the risk-based policy algorithm is a single policy matrix that has an entry

for each reduced state and action representing a probability of selection based on the se-

lected Risk-Tolerance (πξs×a). The risk-based policies can be paramaterized as a function

of Risk-Tolerance. The paramaterized policies are used in Step 3 to assist in stakeholder

decision making by providing more significant information than the selected optimal action

at each state.

5.4.2 Evaluating Decision Significance

The significance of a single believe state, s, is determined by evaluating all (s, a) pairs

available under a specified polity, π. Each action is evaluated based on the entropy of

future states for a set finite time horizon. Samples of the meta-model are made using the

risk based policies starting with the state-action pair of interest as the initializing starting

point. The samples are used to calculate an entropy, E, at a finite time horizon for each

(s, a) pair. The entropy is compared across all a for a given s.
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(a) ξ = −1 (b) ξ = 0

(c) ξ = 1

Figure 5.15: Policy Convergence Examples for State 13

Figure 5.16: Pareto Frontier Convergence for ξ = 1
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(a) Policy Iteration 1 (b) Policy Iteration 3

(c) Policy Iteration 5

Figure 5.17: Action Weighting Vectors as a Function of Iteration State 13
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E(π, s, a) =
∑

o∈O(s,a)

−PVbin,h
(o)log2PVbin,h

(5.15)

where O(sb, ah, t) are the observations at time horizon t with state action predecessor

(sb, ah).

A similar entropy across all a for a given s shows little impact difference between

actions. A significant difference in entropy between available actions identifies a key deci-

sion point due to the variation in the future. This can help identify key states, actions, and

state-action pairs during Step 3 policy development.

5.4.3 Evaluating Opportunity Cost

Similar to the significance determination, the meta-model and risk-based policies are used

to evaluate each state-action pair’s cumulative reward at a finite time horizon. Instead of

utilizing the overall utility of each stakeholder, Vh(s), the utility for individual missions is

used (Equation 5.16 and 5.17.

µVh(s) = E[Vh(s)] =

∑
o∈O(s)

Vh(o)

Nobs(s)
, s ∈ Sb (5.16)

σ2
Vh(s)

= var[Vh(s)] =

√√√√ ∑
o∈O(s)

(Vh(o)− µVh(s))2

Nobs(s)− 1
, s ∈ Sb (5.17)

Significant differences in the mean or variance of individual mission metrics demon-

strate that a specific action within a given state will yield an either-or choice to a stake-

holder. Figure 5.18 demonstrates an example comparison of two actions in a single state-

action set.
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Figure 5.18: Opportunity Cost Indicator Example

5.5 Step 3: Generate Stakeholder Insights

The evaluation methods used in Step 2 to evaluate the meta-model generated in Step 1 pro-

duced the data necessary to provide evaluation of the stakeholder decision space. Using

the metrics from the evaluation step allows the culling of decisions under specific situation.

The metrics can be used to generate rules and paths forward that can guide a stakeholder

in both present day and through future events. Four methods of generating stakeholder in-

sights are presented and their potential impact on the generation of a stakeholder playbook.

The meta-model state based metrics are mapped from the reduced state space to the

full state space using the ssampled → sreduced mapping and an action mask. The action

mask allows only action metrics from the reduced space that were present in the full state

space for each individual state. This includes state-action entropy, state-action return mean,

state-action return variance, and state policies.
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Figure 5.19: Interpreting Risk-Tolerance Sensitivity Profile

5.5.1 Risk-Tolerance Sensitivity Profile Analysis

Risk-Tolerance Sensitivity Profiles (RTSP) are generated for each state using the risk-based

policy algorithm described in Section 5.4. The profiles represent the policy trends as the

risk-tolerance level is varied. A set of risk-based policies are generated for risk-tolerances

from ξ = −1 to ξ = 1. The policy trends are plotted against risk-tolerance. The profiles

allow insight beyond what is gained from a single optimal policy (Figure 5.19).

The first piece of information that can be extracted are the Pareto inefficient actions.

The Pareto inefficient actions will not peak as a the risk-tolerance is varied. Their contri-

bution to the policy will remain low and without significant trends. The second piece of

information is the identification of actions that make up the low-mean and high-variance

returns, the worst actions. These actions represent those that should be avoided. This set

of actions represents non-productive actions. The final piece of information is the identifi-

cation of Pareto efficient and productive actions. These actions are characterized by higher

policy contributions for a risk-tolerance of 0 < ξ < 1. These action sets are actions sets

representing low to high risk future outcomes. A selection of a risk-tolerance for a stake-

holder will yield a productive policy. A stakeholder with a lower risk-tolerance will want

to look more towards a ξ = 0 path where a stakeholder with a high risk-tolerance will want
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(a) State 1 Risk-Tolerance Sensitivity Profile (b) State 13 Risk-Tolerance Sensitivity Profile

Figure 5.20: Example Risk-Tolerance Sensitivity Profiles

to look towards a ξ = 1 policy.

Two examples of RTSP are depicted in Figure 5.20. The first RTSP plot (Figure 5.20a)

depicts State 1 with two actions available. The ‘Acquisition of System 1’ action peaks at

ξ = 1 where ‘Develop System 2’ peaks at ξ = −1. The development action falls in the

worst action category. The acquisition action falls in the productive action category. The

second example RTSP (Figure 5.20b) is for a three-action state, State 13. A similar patter

seen in State 1 can be seen in State 3 between ‘Develop System 3’ and ‘Acquire System

2’. The new aspect is a third action which peaks near ξ = 0. Developing System 3 is a

non-productive action and should not be selected. There is then a trade-off between which

system to acquire, 1 or 2. System 1 will yield lower risk outcomes and System 2 will yield

higher risk outcomes.

A more complete description of the interpretation of an RTSP is done in Appendix C.

Selected inputs and RTSP outputs are used to deep dive into the calculation and interpreta-

tion of simple and complex RTSPs. Each of the examples ties back to selected experiment

setups and subsequent results.
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(a) State 1 (b) State 13

Figure 5.21: Example Entropy Measurements

5.5.2 State-Action Entropy Evaluation

In addition to the RTSP, the relative entropy of each action can be measured and compared.

The entropy is a product of a policy and is therefore measured by state, action, and policy.

Higher entropy means there is more variation in future states once that action is taken.

It should be note that a higher variance in Return does not always directly manifest as a

higher entropy across all risk-tolerance levels. Two examples of risk-tolerance are depicted

in Figure 5.21. The entropy trend for the two-action State 1 shows a lower entropy for

the non-productive action and a higher entropy for the productive action (Figure 5.21a). It

is possible that the development action could possess a lower mean and a higher variance

that acquisition action. This would correlate to a higher entropy in the productive state

than the non-productive state. State 13 entropy (Figure 5.21) depicts the highest risk action

as the highest entropy action. The development action has a much lower entropy. This

identifies a significant decision point. The low entropy action shows little changes in the

future if that action is selected. A high Return and low entropy state will tend to guarantee

positive results. A non-productive state with low entropy should be avoided as it locks in a

stakeholder in poor track.
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5.5.3 State-Action Return Mean-Variance Map

For a given policy, the Return mean and variance is measured for each state-action. This

allows the long term Return to be analyzed as a function of risk-tolerance and action for a

given state. The resulting map will yield a reference for the generation of the RTSP graphs

and help identify trends, differences, and anomalies. Figure 5.12 is an example of a Return

map for a specific state. The black markers with a centered white dot represent the ξ = −1

points. The black markers with a centered white ‘x’ represent the ξ = 1 points. Each dot in

between represents discrete ξ steps in between. Each line corresponds to a separate action

available at the given state. A more specific interpretation relative to the RTSPs is depicted

in Appendix C.

5.5.4 Decision Space Analysis

Thus far, decision evaluations have been state-centric. Grouping states together based on

available actions can yield a more action based evaluation method. A decision space is

defined as a set of states with the same, or similar, available actions. Evaluating an action set

can establish action set based rules (e.g. general preferences or non-preferences regardless

of state). Variations in action preference yield additional information. Variations in action

preference can be correlated to state differences and state based rules can be developed for

action selection. Figure 5.22 represents a look at states that have the same three actions as

State 13. State 13 is only one of many states that make up this three action decision space

which is characterized by the ‘Acquire System 1 or Acquire System 2 or Develop System

3’ action set. In this example, there is a clear trend aligning to the observations previously

made for the RTSP for State 13.

132



Figure 5.22: Example Decision Space Perspective

5.6 Output: Insights for Playbook Development

The final output of the methodology is are increased insights for stakeholders to help de-

velop a stakeholder playbook or rule set. This rule set acts as a guide to sequential strategic

decision made in real time. There are two types of rules that can be created: state based

rules and action based rules. Individual state RTSP, entropy, and return mean-variance

based analysis yield rule sets for specific states a stakeholder may find themselves. The

decision space analysis yields action based rules that provide guidance despite the specific

state or as a function of specific state variables.

Two states and one action set were analyzed for the example problem outlined in Sec-

tion 2.3.1 throughout the methodology overview in Chapter 5. The following derived rules

set can be prescribed from the analysis presented:

• In State 1, the stakeholder should select to Acquire System 1 over Developing System

2.

• In State 13, the stakeholder should never choose to Develop System 3.
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• In State 13, the stakeholder should select Acquiring System 1 if they are risk adverse.

• In State 13, the stakeholder should select Acquiring System 2 if they are more risk

tolerant.

• When selecting between Acquiring System 1 and Developing System 2, the stake-

holder should always choose to Acquire System 1.

• If System 2 is developed and the stakeholder is selecting between Acquiring Sys-

tem 1, Acquiring System 2, and Developing System 3 the stakeholder should never

choose to Develop System 3.

• If System 2 is developed and the stakeholder is selecting between Acquiring Sys-

tem 1, Acquiring System 2, and Developing System 3 the stakeholder should select

Acquiring System 1 if they are risk adverse.

• If System 2 is developed and the stakeholder is selecting between Acquiring Sys-

tem 1, Acquiring System 2, and Developing System 3 the stakeholder should select

Acquiring System 2 if they are more risk tolerant.
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CHAPTER 6

EXPERIMENTS

Each Experiment Set is designed to test a single hypothesis. A mapping between the pro-

posed methodology, identified research questions, hypotheses, and experiments are shown

in Figure 6.1. Experiment 1 demonstrates the risk-based policy generation methods ability

to produced risk varying policies against varying complexity input scenarios. Experiment

2 compares the evaluation results from the reduced meta-model against the full MDP de-

rived from the Truth Model to demonstrate the usability of the reduced model. Experiment

3 compares the information generated by the risk varied policies and the optimal policies

to generate an increase in information. Additionally, Experiment 3 benchmarks the full

methodology against the current solution method (optimal policy based analysis). Experi-

ment 3 results in an example rules set that can be used to generate a stakeholder playbook.

Each Experiment Set consists of a subset of experiments denoted by an alphabetic se-

quenced character (e.g. Experiment Set 1a, Experiment Set 2b). Each subset is selected

based on a significant contribution to testing a hypothesis and results in a varied experi-

mental setup. Each subset may be decomposed into Cases. A Case represents a discrete

change in a significant experimental parameter or setup definition. Each Case contributes

stand alone knowledge toward proving or disproving a hypothesis. Cases are composed of

Scenarios which varying lower level experimental settings and are the lowest discritization

of an Experiment. Each Experiment and it’s decomposition are defined by the experimen-

tal setup and the selected variables at each level. Table 6.1 provides a summary of all

experiments described in Chapter 6.

135



Figure 6.1: Research Questions, Methodology, Hypothesis, and Experiments
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Table 6.1: Experiment Description Table

Exp.Set Name Description Section
1a Explicit MDPs Test the risk-based policy algorithm

against explicitly defined MDPs.
Section 6.1.1

1b Sequential Deci-
sion Making

Test the risk-based policy algorithm
against increasingly complex Truth
Model cases.

Section 6.1.2

2a Repeated Pareto
Efficient Actions

Test the impact of state-space com-
pression on risk-based policies us-
ing a Truth Model set-up resulting
in simple decision spaces.

Section 6.2

2b Acquire vs. De-
velop Scenario

Test the impact of state-space com-
pression on risk-based policies us-
ing Truth Model set-up with more
complex asset creation decisions
space.

Section 6.2

2c Multi-Mission
Acquire vs. De-
velop Scenario

Test the impact of state-space com-
pression on risk-based policies us-
ing a Truth Model set-up resulting
in asset creation and allocation de-
cision spaces.

Section 6.2

3a Lower Complex-
ity Problems

Compare the derived information of
increasing complex test cases used
in Experiment Set 1b and Experi-
ment Set 2 to that of an optimal pol-
icy solution.

Section 6.3.1

3b Full Complexity
Problem

Demonstrate the methodology ap-
plication to a realistic scenario and
compare the derived information to
an optimal policy solution.

Section 6.3.2
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6.1 Experiment Set 1: Risk-Based Policy Development

The first set of experiments (Experiment Set 1) is designed to evaluate Hypothesis 1. Hy-

pothesis 1 theorizes a relationship between the variation of the risk-tolerance (ξ) and the

policies generated using the risk-based policy algorithm used in Step 2 of the methodology.

There are two specific measure tied to the variation in risk-tolerance. First, the resulting

mean and variance of stakeholder return will produce a return with a relative

• higher mean and higher variance for a high risk-tolerance (e.g. ξ = 1)

• lower mean and lowest variance for a lowest risk-tolerance (e.g. ξ = 0)

• lowest mean and high variance for a worst risk-tolerance (e.g. ξ = −1)

Second, through varying the risk-tolerance of a stakeholder, the Pareto optimal (and

non-optimal) Action frontier can be determined.

The independent variable in Experiment Set 1 is the risk tolerance level of the stake-

holder of interest. A different explicit MDP or basic Truth Model set up are used for each

scenario. The measurements for a given scenario are the resulting policies produced for

each risk tolerance level. The policies are used to evaluate their use in the full MDP or

Truth Model to demonstrate the relative mean and variance. The policies are also used to

identify the Pareto optimal and non-optimal actions for a given state. The first indepen-

dent variable is the Return vs. Time resulting from policy implementation. The second

independent variable is the policy risk-tolerance sensitivity profile.

Two steps of complexity are used to demonstrate the dependency of the Pareto efficient

actions on the risk-tolerance level. Experiment Set 1a explicitly defines MDPs with varying

actions and reward profiles allowing direct comparison of the defined action-rewards and

the resulting policies. Experiment Set 1b uses a Truth Model with varying degrees of

scenario complexity to investigate the Pareto efficiency of actions and the risk-tolerance

level.
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Table 6.2: Experiment Set 1 Overview

Independent Variable Risk-Tolerance Level (ξ)
Dependent Variable Initial-State Risk-Tolerance Policy Sensi-

tivities
Case Variables MDP Source (Explicit or Truth Model

Derived)
Scenario Variables MDP and Scenario Complexity

Figure 6.2: Experiment Set 1a Setup

6.1.1 Experiment Set 1a: Solving Explicit MDPs

Experiment Set 1a is defined by the use of explicit MDPs to evaluate the policy generation

algorithm used in Step 2 of the methodology. The design of the explicit MDP is varied

across the Scenarios while other Experiment Set 1 variables are held constant (Table 6.3).

The experimental setup is outlined in Figure 6.30. Each explicit MDP is solved using tradi-

tional Q-learning via TD-λ to generate an optimal solution and the risk-based policies used

in Step 2 of the methodology. The risk-based policies are compared against the expected

outcome and the optimal policies. The comparison between the calculated and expected

outcome demonstrates the algorithm produces appropriate risk sensitive policies and iden-

tifies Pareto efficient (and inefficient) actions. The comparison against an optimal solution

demonstrates the information lost when uncertainty is not taken into account.
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Table 6.3: Experiment Set 1a Overview

Independent Variable Risk-Tolerance Level (ξ)
Dependent Variable Initial-State Risk-Tolerance Policy Sensi-

tivities
Case Variables Explicit MDP
Scenario Variables MDP Complexity

Figure 6.3: Experiment Set 1a, Case 1 MDP Set Up

Experiment Set 1a, Case 1: Simple Staged MDPs

Experiment 1a, Case 1 is characterized by the use of a constant action set with specified

action rewards. The state space is independent of action selection and therefore solely time

dependent. Figure 6.3 illustrates the action collapsed structure of the MDP (three steps,

four states).

The constant action set results in sequential decision making at each time step. The

number of actions and the associated reward are varied with each Scenario. Scenario 1

begins with a simple two-action equal-variance setup with more complexity added for each

additional scenario. Scenario 9 culminates in a full set of Pareto efficient and inefficient

sequential actions.
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Figure 6.4: Two Actions with Equal Variance Action-Reward Profile

Scenario 1: Two Actions The simplest MDP scenario is a sequential game with two

actions (Figure 6.5). The action reward is set to an equal reward variance and symmetric

reward mean (µr(a1) = −µr(a1)). The selected action rewards and the Pareto frontier are

shown in Figure 6.4.

Scenario 2: Three Actions, Equal Variance Scenario 2 adds a third action available

to stakeholder at each state (Figure 6.6). The new action maintains an equivalent reward

variance with a mean of zero (Figure 6.7).

Scenario 3: Three Actions, Equal Mean Scenario 3 is again defined by four states and

three actions (Figure 6.6) but with a modified action-reward profile. The action-reward

profile is modified to have a constant mean and varied variance across the three available

actions (Figure 6.8).

Scenario 4: Three Actions, Linear Scenario 4 is again defined by four states and three

actions (Figure 6.6) but with a modified action-reward profile. The action-reward profile is

modified to have a linear change in variance with respect to mean across the three available
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Figure 6.5: Four States, Two Action MDP

Figure 6.6: Four States, Three Action MDP
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Figure 6.7: Three Actions with Equal Variance Action-Reward Profile

Figure 6.8: Three Actions with Equal Mean Action-Reward Profile
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Figure 6.9: Three Actions with Linear Mean-Variance Relationship Action-Reward Profile

actions (Figure 6.9).

Scenario 5: Four Actions, One Mild Pareto Inefficient Scenario 3 expands to four

states and four actions (Figure 6.3 with n = 4). The action-reward profile builds on Sce-

nario 2 and is depicted in Figure 6.10.

Three actions represent Pareto efficient options with two extreme options with equal

variance (σ2(a1) = σ2(a3)) and symmetric mean rewards (µr(a1) = −µr(a3)). A near

minimal variance action is characterized by µr(a3) = 0 and a σ2(a2) < σ2(a1) = σ2(a3).

A fourth action-reward is defined such that it will be Pareto inefficient. This is done by

setting µr(a4) = 0 (µr(a4) < |µr(a1)| = |µr(a3)|) and σ2(a1) = σ2(a3) < σ2(a4).

Scenario 6: Four Actions, One Significant Pareto Inefficient Scenario 6 builds on

Scenario 5 by increasing the extent of the Pareto inefficiency of a4 (Figure 6.11). This is

done by increasing the variance in the action-reward of a4 such that σ2(a1) = σ2(a3) <<

σ2(a4).
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Figure 6.10: Three Pareto Actions with One Mild Pareto Inefficient Action Action-Reward
Profile

Figure 6.11: Three Pareto Actions with One Significant Pareto Inefficient Action Action-
Reward Profile
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Table 6.4: Seven-Action Pareto Efficient Action-Reward Profile

Action µr σ2
r

a1 -10 3.33
a2 -8 2.13
a3 -2 0.13
a4 0 0
a5 2 0.13
a6 8 2.13
a7 10 3.33

Figure 6.12: Seven-Action Pareto Efficient Action-Reward Profile

Scenario 7: Explicit Pareto Frontier Action Space Scenario 7 further extends the char-

acterization of a Pareto frontier beyond the more simple setup used in Scenario 5. The

action-reward profile is expanded to a four-state seven-action MDP depicted in Figure 6.12.

The explicit values for the action-reward profile are documented in Table 6.4.

Scenario 8: Explicit Pareto Frontier Action Space, Mild Pareto Inefficient Actions

Scenario 8 builds on Scenario 7 similar to how Scenario 5 builds on Scenario 2. Eight

additional actions were added to the MDP making n = 15 as defined in Figure 6.3. The

additional actions µr and σ2
r were selected to be Pareto inefficient with a bounding rule

of −2 < mur(ainefficient) < 2 and 4 < σ2
r(ainefficient) < 8. Note the Pareto inefficient
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Figure 6.13: Seven-Action Pareto Efficient with Eight Mild Pareto Inefficient Actions
Action-Reward Profile

action-rewards are bounded within the Pareto efficient action-rewards (Figure 6.13).

Scenario 9: Explicit Pareto Frontier, Significant Pareto Inefficient Actions Scenario

9 begins with the setup used for Scenario 8 and increases the reward variance for the Pareto

inefficient actions (Figure 6.14). The shift to 30 < σ2
r(ainefficient) < 60 further increases

the Pareto inefficiency of the actions. The Pareto optimal action-rewards remain the same.

Experiment Set 1a, Case 2: Short and Long Term Stakeholder Preferences

Moving from Case 1 to Case 2 for Experiment Set 1a add complexity to the action space.

In Case 1, the full MDP was characterized by a single state at each time step. In Case

2, each action selected results in both a unique reward and a resulting next state. Addi-

tionally, each state-action reward profile is uniquely selected to test information extracted

via risk-tolerance sensitivity analysis. Each selected MDP is unique to a given scenario.

The general structure for each MDP is outlined in Figure 6.15. Scenario 1 demonstrates

expected outcomes using the most simplistic state-action set up. Scenario 3 increases the

complexity of the MDP and introduced the concept of short versus long term preference.
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Figure 6.14: Seven-Action Pareto Efficient with Eight Significant Pareto Inefficient Actions
Action-Reward Profile

Scenario 3 and 4 test the concept of Pareto efficient action identification similar to Case 1

Scenarios 5 through 9.

Scenario 1: Baseline Multi-Action Multi-State Scenario 1 begins with the simplest

of scenarios and examines using the algorithm over multi-stage (3 step) two-action MDP

(Figure 6.16). For each state, there are the same two actions available with the same return

mean and variance. The mean-variance is similar to that used in Case 1 Scenario 1 for the

repeat cases. Each action yields a unique state and is not shown for simplicity. The blue

represents a state reached via the higher mean reward action and the green represents a state

reached via the lower mean reward.

Scenario 2: Short Term Reward Versus Long Term Return The second scenario adds

another action to each state and modifies the relative action mean-variance to enable short

term versus long term trades. The action space at each state represents a simple Pareto

frontier, similar to Case 1 Scenario 2. The relative mean and variance rewards for state-

actions along with the MDP structure are depicted in Figure 6.17. Each state has a max-
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Figure 6.15: Experiment Set 1a, Case 2 MDP Set Up

Figure 6.16: Experiment Set 1a, Case 2, Scenario 1 Setup Description
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Figure 6.17: Experiment Set 1a, Case 2, Scenario 2 Setup Description

Figure 6.18: Experiment Set 1a, Case 2, Scenario 2 State-Action Reward Clusters

risk, min-risk, and worst action. The relative mean and variance of each state’s actions set

is varied as shown in Figure 6.18. The second step action-set varies across states 2, 3, and 4

relative to the first time-step action-set seen in state 1. State 1 to State 2 is the lowest of the

first state action rewards but the subsequent action-set yields the highest reward relative to

all other action-sets across all states. Similarly, State 1 to State 4 is the highest reward initial

action with the State 4 actions-set the lowest return of all actions sets. It is anticipated, if the

time horizon is long enough, that the preferred action in the first state will be contributed to

by the actions available in the second step states. In this case, it is anticipated that despite

a lower initial reward, Action 1 in State 1 will be preference for a higher-return higher-risk

scenario. Similarly, Action 3 in State 1 will be preferred at a low risk-tolerance level.
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Figure 6.19: Experiment Set 1a, Case 2, Scenario 3 Setup Description

Figure 6.20: Experiment Set 1a, Case 2, Scenario 4 Setup Description

Scenario 3: Multi-Action Multi-State Pareto Frontier Actions and Mild Pareto Inef-

ficient Actions Scenario 3 setup establishes a baseline for consecutive Pareto efficient

actions with a single mildly inefficient action building on Case 1 Scenario 5. Each state has

four actions as depicted in Figure 6.19.

Scenario 4: Multi-Action Multi-State with Pareto Efficient and Significant Pareto In-

efficient Actions Scenario 4 builds on Scenario 3 by increasing the level of inefficiency

of the Pareto inefficient action (Figure 6.20).
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Experiment Set 1a, Case 3: Fully Random MDP

A third case for Experiment Set 1a is used to demonstrate the policy generation using a

randomly developed graph. Two levels of comlexity are used. The first random graph is

generated using a three action algorithm and the second is generated using a five action

algorithm.

For the first, at each node, three actions max are available and can result in single or

multiple new states. The tree is randomly grown with these rules in mind. The mean and

variance of the reward is randomly seeded for each state-action-state tuple. The developed

MDP structure is depicted in Figure 6.21 with only state-to-state transitions. The MDP

action space is depicted in Figure 6.22 displaying the specific state-action-state transitions.

The width of the line is the resulting probability of transition given a specific state-action

selection (independent of selected policy).

Five actions max are available and can result in single or multiple new states for the

second random graph. Similar to the first scenario, the five action graph is grown using

the same rules and random state-action-state Reward means and variances. The developed

MDP structure is depicted in Figure 6.23a with only state-to-state transitions. The MDP

action space is depicted in Figure 6.23b displaying the specific state-action-state transitions.

6.1.2 Experiment Set 1b: Sequential Decision Making

Experiment Set 1b adds the use of the Truth Model with prescriptive scenarios to test the

policy algorithm (Figure 6.24 and Table 6.5). The prescriptive scenario defines the setup of

the Truth Model. The Truth Model is sampled via MC episodes and a full MDP is generated

(note: The generation of the meta-model and state space compression is the focus of Ex-

periment Set 2). Similar The resulting uncompressed MDPs are evaluated using the policy

algorithm and state-action metrics used in Step 2 of the methodology. Additionally, opti-

mal strategies are developed against the Truth-Model-generated uncompressed MDP. The

resulting risk-tolerance sensitivities are evaluated against anticipated results. A description
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Figure 6.21: Experiment Set 1a, Case 3, Scenario 1 MDP Graph
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Figure 6.22: Experiment Set 1a, Case 3, Scenario 1 MDP Graph
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Figure 6.24: Experiment 1b Setup

Table 6.5: Experiment Set 1b Overview

Independent Variable Risk-Tolerance Level (ξ)
Dependent Variable Risk-Tolerance Policy Sensitivities
Case Variables Truth Model Setup
Scenario Variables Truth Model Definition Variables (se-

lected cases only)

of the Truth Model can be found in Appendix B.

Experiment 1b, Case 1: Repeated Pareto Efficient Actions

The identification of the Pareto frontier under increasing complex scenarios is necessary

to demonstrate the capability of the risk-based policy algorithm. At teach time step, the

stakeholder of interest can select between a set actions to acquire a system from a defined

set of systems. The resulting system is added to the available deployed systems for the

next time step (acquisition time is set equal to a single time step). The difference between

Scenario 1 and Scenario 2 is defined mean and variance of the system performance. Varying

the presence of the inefficient acquisition options demonstrates the ability to discern the

Pareto efficient actions from the Pareto inefficient actions. Both temporal and performance

uncertainty are included in both scenarios.

156



Figure 6.25: Experiment Set 1b, Case 1, Scenario 1 Setup Description

Figure 6.26: Experiment Set 1b, Case 1, Scenario 2 Setup Description

Scenario 1: Baseline Repeated Pareto Efficient Actions Scenario 1 represents a set of

acquisition decisions that can result in a defined Pareto frontier (Figure 6.25).

Scenario 2: Repeated Pareto Efficient Actions With Pareto Inefficient Actions Sce-

nario 2 adds Pareto inefficient actions to the decisions space of the stakeholder (Figure

6.26). At each state, the stakeholder has the additoinal option to select the acquisition of

various Pareto inefficient systems.

Experiment 1b, Case 2: Acquire vs. Develop Scenario

The general Truth Model setup for Experiment 1b is outlined in Chapter 2 with the in-

troduction of the example problem. At each step, the stakeholder-of-interest can select to

develop a new system (higher mean and higher variance in performance) or to acquire a

previously developed system. The development time and and performance are both subject

to uncertainty. Case two also adds sequential development of systems. A predeceasing sys-
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Figure 6.27: Experiment Set 1b, Case 2 Setup Description

tem must be developed before a stakeholder has the option to develop the next higher-mean

higher-variance performing system. There is a single mission of interest that each system

applies their capabilities, or performance, against. The stakeholder utility is a zero-sum

game between the two stakeholders, or players. An overview of the Case setup is depicted

in Figure 6.27.

Scenario 1: Baseline Acquire Versus Develop The baseline scenario uses a trend of

increasing mean performance and performance variation as Stakeholder one develops new

systems. Both the mean and variance in system definition are described in Table 6.9.

Scenario 2: Long-Term Acquire Versus Develop The variation for Case 2 is the mean

performance of System 2. The mean performance of System 2 is increased significantly.

This allows the impact of short time frames versus longer time frames on the policy algo-

rithm.
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Table 6.6: Experiment Set 2c: Stakeholder System Ownership

St
ak

eh
ol

de
r

1
St

ak
eh

ol
de

r
2

St
ak

eh
ol

de
r

3

System 1 1 0 0
System 2 1 0 0
System 3 1 0 0
System 4 1 0 0
System 5 0 1 0
System 6 0 1 0
System 7 0 1 0
System 8 0 1 0
System 9 0 0 1
System 10 0 0 1
System 11 0 0 1
System 12 0 0 1

Case 3: Multi-Mission Acquire Versus Develop

Case 3 adds additional complexity to case four providing additional testing of the policy

algorithm. A third stakeholder is added with Stakeholder 1 and Stakeholder 2 cooperating

against Stakeholder 3. A second mission is added which allows each stakeholder to allo-

cate current resources to specific missions as part of their decision space at at each time

step. The development sequence is also modified to incorporate an acquisition, refresh, or

develop trade. Stakeholder utility is now based on a weighting vector describing the im-

portance they give each individual mission. Each of the three stakeholders has a different

budget and similar choices to make. Each stakeholder is examined as a separate scenario.

The detailed description is outlined below.

Stakeholders: Three stakeholders, two are cooperative (Stakeholder 1 and Stakeholder

2).
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Figure 6.28: Experiment Set 1b Case 3: System Life-Cycle

Figure 6.29: Experiment Set 1b Case 3: System Progression

Systems: Twelve systems with four attributed to each stakeholder (Table 6.6).

System Life-Cycle: The modeled system life-cycle has grown in complexity. The ability

to refresh a system once it has reached the end of it’s like is now and option. It is modeled

as a new development with the ability to upgrade systems that would otherwise be disposed

of (technology refresh). The system life-cycle is depicted in Figure 6.28 and the system

progression is depicted in Figure 6.29.

System Performance: The system performance of a given system is defined by the a

mean and variance capability which is attributed to a given mission. The system perfor-

mance mean (Figure 6.8) and variance (Figure 6.7) are defined to demonstrate the result in
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Table 6.7: Experiment Set 1b Case 3: System Mean Performance

M
is

si
on

1

M
is

si
on

2

System 1 3 3
System 2 9 27
System 3 27 9
System 4 0 0
System 5 3 3
System 6 9 27
System 7 27 9
System 8 0 0
System 9 -3 -3
System 10 -9 -27
System 11 -27 -9
System 12 0 0

decisions resulting from mission preference (defined below).

System Definition: The system timelines are defined in Table 6.9. The asymmetry in

the development and acquisition time allows the impact of temporal variations on the risk-

sensitive profiles to be realized. The uncertainty associated with timelines was set to zero

to allow the sensitivity to timeline to be clearly measured.

Stakeholder Decisions (Actions): Two classes of actions are now present in the defined

scenario: asset creation and asset allocation. The asset creation encompasses the develop-

ment, refresh, and acquisition of systems. The new component to Experiment Set 2c is the

addition of allocating systems to specific missions. Each stakeholder also has a vary budget

(Table 6.10). The budget is expressed in terms of the number of asset creation actions that

can be taken. Each acquisition, refresh, or development in progress takes one action.
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Table 6.8: Experiment Set 1b Case 3: System Performance Variance

M
is
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on

1

M
is

si
on

2

System 1 0.6 0.6
System 2 1.8 5.4
System 3 5.4 1.8
System 4 0 0
System 5 0.6 0.6
System 6 1.8 5.4
System 7 5.4 1.8
System 8 0 0
System 9 0.6 0.6
System 10 1.8 5.4
System 11 5.4 1.8
System 12 0 0

Stakeholder Utility: Stakeholder utility is no longer a direct result of the systems de-

ployed. Each stakeholder has the decision to allocate available assets to different missions.

Two missions are defined for Case 3 as described above in system performance. Individual

mission level outcome (positive or negative) is determined as previously described in Chap-

ters 2 and Chapter 6. Each stakeholder has a preference vector that defines the contribution

of each mission metric to their stakeholder utility. The matrix for this case is defined in

Table 6.11.

6.2 Experiment Set 2: State Space Compression

The second set of experiments (Experiment Set 2) is designed to evaluate Hypothesis 2.

Hypothesis 2 asserts that the policies generated from compressed MDPs (meta-models)

will remain usable as the compression ratio is increased. The compression of the state

space and action space is used in Step 1 of the methodology to ensue tractability of the

MDP to be evaluated (Figure 6.1).
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Table 6.9: Experiment Set 1b Case 3: System Timeline Definition with Uncertainty
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System 1 4 0 2 0
System 2 2 0 1 0
System 3 4 0 2 0
System 4 - - - -
System 5 4 0 2 0
System 6 2 0 1 0
System 7 4 0 2 0
System 8 - - - -
System 9 4 0 2 0
System 10 2 0 1 0
System 11 4 0 2 0
System 12 - - - -

163



Table 6.10: Experiment Set 1b Case 3: Stakeholder Budgets
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1 1 2 4
2 1 2 4
3 1 2 4
4 1 2 4
5 1 2 4

Table 6.11: Experiment Set 1b Case 3: Stakeholder Mission Preference

Stakeholder M
is

si
on

1

M
is

si
on

2
Stakeholder 1 1 0.25
Stakeholder 2 0.25 1
Stakeholder 3 -1 -1

Figure 6.30: Experiment 2 Setup
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Table 6.12: Experiment Set 2 Overview

Independent Variables Risk-Tolerance Level (ξ)
State Compression Ratio

Dependent Variables Risk-Tolerance Policy Sensitivities
Policy Generation Computation Time

Case Variable Truth Model Setup
Scenario Variables Truth Model Definition Variables (se-

lected Cases only)

The independent variable in Experiment Set 1 is the compression ratio of the state and

action space relative to the full MDP (Table 6.30). The scenarios defined by specific Truth

Model inputs used in Experiment 1b are used in Experiment Set 2. There are two measure-

ments taken. The first is the risk-tolerance sensitivity profiles generated by state for each

compression ratio. The second is the mean, across risk-sensitivity inputs, policy computa-

tion time. The resulting risk-tolerant policy sensitivities are compared for key states across

compression ratios to measure consistency and where consistency breaks down. The rela-

tive computation time allows the measurement of increased tractability as the compression

ratio is decreased. The experimental setup is outlined in Figure 6.12.

Three steps of complexity are used to evaluate the consistency of policy generation and

decreased computation time. Each step corresponds to increased complexity described in

Experiment 1b. Case 1 uses the repeat acquisition-only decision of Pareto efficient system

capabilities. Case 2 adds the complexity of system development and non-ideal system

performance profiles. Case 3 adds varied resource constraints, asset allocation to multiple

objectives, and additional stakeholders.

6.3 Experiment Set 3: Generating Insights from Derived Information

Experiment Set 3 tests the generation of informative insights based on the data generated in

methodology Step 2. The provided information is analyzed and insights into the decision

making process are generated. The generated insights are compared to those generated

using an optimal policy to benchmark the methodology against current best techniques. A
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Table 6.13: Experiment Set 3 Overview

Independent Variable Scenario Complexity (across Experiment
3a and Experiment 3b)

Dependent Variables State-Based Rule Sets
Action-Based Rule Sets
Additional Insights

Case Variables Experiment 3a: Truth Model Setup
Experiment 3b: n/a

summary overview of the Experiment 3 set-up can be found in Table 6.13.

6.3.1 Experiment Set 3a: Lower Complexity Problems

Experiment Set 3a builds upon Experiment 1b and Experiment 2 cases. The evaluation

of the meta-model conducted in Experiment Set 1b are used to generate insights and are

compared against the insight gained from optimal policies. The following three scenarios

are addressed:

• Acquire Only Case (Extension of Experiment 1b Case 1)

• Acquire and Develop Case (Extension of Experiment 1b Case 2)

• Acquire, Develop, and Allocate Case (Extension of Experiment 1b Case 3)

6.3.2 Experiment Set 3b: Full Complexity Problem

Experiment Set 3b is the culmination of the complexity increases applied in Experiment Set

1b and Experiment Set 2. Experiment Set 3b fully exercises the developed methodology

using a full complexity Truth Model setup (Figure 6.31). The experiment is the primary

test for Hypothesis 3. To test the hypothesis, both the risk-based methodology presented in

Chapter 5 and a traditional optimal strategy method are used to evaluate the full complexity

problem. The insights garnered from both methods are then evaluated against each other.

The full complexity problem is described by the Truth Model set-up used to exercise

the methodology. The description of the Truth Model set-up depicts the multi-stakeholder,
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Figure 6.31: Experiment 3 Setup

multi-objective, and uncertainty aspects used in constructing the model. The problem in-

cludes five stakeholders (3 blue and 2 red) and three mission level objectives. Both perfor-

mance and temporal uncertainty are used in the definition of system creation and system

performance.

Experimentation Equivalency

Specific requirements for the methodology were outlined in Section based on the unique

aspects of the problem addressed. These aspects are also requirements on the experimental

test bed which is the Truth Model for the full complexity test case, Experiment 3b. Sec-

tion 5.2 describes an example Truth Model set-up and the required outputs. A full set-up

entails, at a minimum, the development of multiple mission level evaluation simulations,

stakeholder decision space generation, technology life-cycle modeling, system life-cycle

modeling, and an architecture selection mechanism. Experiment 1 and 2 operated on less

than full complexity test cases. Experiment 3b looks to fully address the complete problem.

The requirements specified above apply to the Truth Model test bed used in Experiment 3b.

The Truth Model used as an input for experiments is described in Appendix B. The
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specific Truth Model set-up used to fully exercise and benchmark the methodology is de-

scribed later in this section. The combination of the Truth Model and the Truth Model

set-up must provide the necessary multi-stakeholder, multi-objective, and uncertain envi-

ronment with which to test the methodology. The model and set-up fully addresses the

prescribed requirements outlined in Section :

Multi-Stakeholder Decision Making: Variable stakeholders can be defined, each with

their own independent decision cycle at each time step. Each stakeholder is treated

equally as an independent entity. The stakeholder state, actions, and utilities are in-

dependently tracked and recorded. The impacts of individual stakeholders impact the

overall mission level metrics that feed into individual stakeholder utility metrics.

Evolutionary Feedback Loop: The impact of decisions at an initial time step, the later

time step impacts, and stakeholder utility feedback are captured as a central compo-

nent of the Truth Model.

Technology and System Development: Technology and system development cycles are

modeled through a state machine process for system life-cycle and represent the tem-

poral aspects of developing systems and technology.

Capturing of Uncertainty: Uncertainty is modeled in two primary factors: temporal and

performance. This capture the life-cycle uncertainty and time of received impact of

decisions as well as the uncertainty in the utility feedback due to performance.

Architecture Representation and Evaluation: Architecture representation is depicted by

the allocation to a mission and the evaluation is based on a system to mission utility

transfer function. Each system allocated by a stakeholder has a specified impact on

the mission outcome. There are varying profiles that modify the impact of adding

another system up to a maximum impact value.
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Environment and Scenario Representation: The environment and scenarios are repre-

sented by adding in independent adversary and cooperative stakeholder. Each of

these stakeholders is modeled similarly to the stakeholder of interest. Additionally

the resources and mission preferences of each stakeholder allow the representation

of future scenarios outside of stakeholder actions.

Multiple Mission Objectives: Each stakeholder can allocate systems to a specific capabil-

ities or missions. An allocation represents adding that system to a specific SoS. The

resulting stakeholder utility is an Overall Evaluation Criteria (OEC) of the feedback

from all SoS performances (mission level metrics).

Defined SoS Engineering Reference Process: The truth model follows the Wave model

as a framework to define the progression of a SoS over time.

Motivation and Conceptual Description

The full complexity problem is derived from the current development of the Future Combat

Air System (FCAS) by Germany, France, and Spain (Figure 6.32). The FCAS represents

a multi-national System of Systems at the early stages of development. The corner stone

asset is the stealthy Next Generation Fighter (NGF) focused on near peer threats and pen-

etrating strike. Autonomous Remote Carriers (RC) will act as teammates to the NGF. An

accompanying communications layer, the Combat Cloud, is another planned acquisition

that will tie together not just the new air platforms but legacy air platforms, naval assets,

and space-based assets. The two new air platforms and communication infrastructure com-

pose the core of the FCAS SoS.

There are additional assets that will integrate using the Combat Cloud infrastructure.

The joint European Mutli-Role Tanker Transport (MTRR) will be integrated as a refuel-

ing asset. Legacy fighters (Tornado, Typhoon, Eurofighter, Rafale, Mirage, etc.) from all

contributing countries are candidates for integration as well.
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Figure 6.32: FCAS OV-1 [187]

For the purposes of this work, the nominal mission set for the FCAS will be scoped

to two categories: addressing a conventional threat and addressing a near-pear adversary

threat. For a conventional threat, the objective is to dismantle a less-than-peer adversary’s

Integrated Air Defenses System (IADS). Traditionally this is done using a mixture of non-

stealthy fighters, bombers, and EW aircraft. The final goal is to have air superiority over the

conventional adversary controlled region. The near-peer threat consists of more advanced

IADS system and requires a different approach than full air superiority. A penetrating strike

scenario is used to evaluate the near-peer threat. This requires a varied set of capabilities

from an air platform based SoS.

Each stakeholder, or contributing nation, of the FCAS family of programs has alterna-

tive approaches to a future architecture that could be fielded to achieve some portion of the

capability desired. Germany currently deploys both Panavia Tornados interdiction/strike

(IDS), Panavia Tornados electronic combat/reconnaissance (ECR), and Eurofighter Ty-

phoons. Germany is currently phasing out the Eurofighter Typhoons while also looking

at the long term replacements the Panavia Tornado (IDS and ECR). The NGF and RC to-
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Figure 6.33: Conceptual Timeline for Germany

gether could be considered a replacement capability wise for both with the added capability

of performing the penetrating strike mission. Additionally, Germany could refresh existing

Tornado aircraft with new technology (avionics, sensors, etc.) for both the ECR and the

IDS variant. Alternatively, Germany could purchase F/A-18 aircraft to replace the Tornado

IDS and F-18G aircraft to replace the Tornado ECR.

Germany has an additional mission that is not levied on the other two stakeholders in

the FCAS SoS. The additional mission is a nuclear delivery mission derived from NATO

agreements. The only aircraft currently certified for nuclear delivery is the Eurofighter

Typhoon. Germany will need to find a replacement for it once it is retired. The Tornado

aircraft is not nuclear capable and the NGF is planned to be nuclear capable. There is no

immediate stop gap from the retirement of the Typhoon and NGF. The F/A-18 is nuclear

capable of nuclear weapons delivery. The need to satisfy the nuclear delivery mission and

the available assets creates another dimension of complexity.

Both France and Spain are at very similar decision points regarding the path forward

for their fighter aircraft. France has the aging Mirage 2000 introduced in 1995 and the

newer Rafale introduced in 2006. Spain has an aging F/A-18 fleet and a newer Eurofighter

Typhoon fleet. Both are looking toward NGF as a next generation replacement and both
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Figure 6.34: Conceptual Timeline for France

Figure 6.35: Conceptual Timeline for Spain

have alternatives to consider. France can continue to acquire Rafale aircraft. Spain can

select additional F/A-18 or Eurofighter Typhoons as a replacement.

The above scenario was used as motivation for the full complexity problem. The sce-

nario was translated into system definitions, stakeholder definitions, and mission descrip-

tions. The concentration is placed on Germany as the stakeholder of interest. Spain and

France are treated as cooperative stakeholders. The conventional and near-peer adversary

are treated as non-cooperative stakeholders.
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Stakeholder Inquiries

Each stakeholder involved will have their own evaluations conducted to answer questions

of what decision should be made today and what actions should be taken. Germany is the

stakeholder of interest for Experiment 3. At the initial state there are a number of example

question that Germany may be seeking to answer given the set-up scenario:

• Should Germany invest in (NGF, Cloud Combat, Remote Carries) new novel systems

to address emerging near peer capabilities?

• Is it worth investing in a short term solution (F/A-18 platforms) or long term solutions

to keep continuity of the nuclear carry mission?

• Will new and novel solutions (NGF, Cloud Combat, Remote Carries) enable enough

mission utility across all missions or should there be additional investments in EW

platforms (Tornado ECR, F-18G).

• Should Germany refresh current Tornado platforms or seek an alternate route such as

new development or acquisition of alternative aircraft?

Evaluation Metrics

Systems can be allocated to three difference scenarios that generate mission level metrics

for all stakeholders based on all stakeholder allocations:

1. Conventional SEAD

2. Penetrating Strike

3. Nuclear Delivery

Each stakeholder can allocate available assets to the scenarios outlined above. Mis-

sion level metrics that represent the outcome of the scenarios are generated based on the
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allocations of all stakeholders. The allocation-to mission-level-metric transfer function rep-

resents the results of a engagement or mission level simulation evaluation (e.g. FLAMES,

AFSIM, SEAS etc.). The utility of each stakeholder is derived from a composite of the

mission level metrics based on an individual mission-level-metric-to-utility mapping.

Stakeholder Definition

Each stakeholder is defined by their attributed assets, time based budget, and utility map-

ping. The time phased relative budgets represented in normalized currency ($̂) are captured

in Table 6.14. Both simulation time and the corresponding conceptual year are represented.

France, Germany, and the Near Peer Adversary have twice the available budget for new ac-

quisitions and development as do Spain and the Conventional Adversary.

The budget allows the constraint of the decision space to feasible alternatives. Addi-

tionally, the time based change in budget and the uncertainty in budget can be addressed.

For Experiment 3b, the relative budgets were held constant.

The Reward and Return used in the methodology is based on an overall stakeholder

utility. The stakeholder utility is based on the preferences of each stakeholder. The pref-

erences are used to create a mapping from mission metrics to stakeholder utility (Figure

6.15).

Each stakeholder has ownership and influence on the development, acquisition, and

allocation of specific assets. The stakeholder ownership and influence is captured in Figure

6.16 in the system-to-stakeholder mapping. A 1 represents a connection and a 0 represents

no connection. This matrix is used to determine the decision space of and cost incurred by

each stakeholder stakeholder.

Germany, France, and Spain each have individual assets. As part of the future FCAS

SoS family, there are multi-stakeholder dependent systems that rely on all three blue stake-

holders. The adversary stakeholders each have individual assets assigned to them (systems

15 through 23).
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Table 6.14: Experiment Set 3b: Stakeholder Budgets
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0 2020 4 4 2 2 4
1 2021 4 4 2 2 4
2 2022 4 4 2 2 4
3 2023 4 4 2 2 4
4 2024 4 4 2 2 4
5 2025 4 4 2 2 4
6 2026 4 4 2 2 4
7 2027 4 4 2 2 4
8 2028 4 4 2 2 4
9 2029 4 4 2 2 4

10 2030 4 4 2 2 4
11 2031 4 4 2 2 4
12 2032 4 4 2 2 4
13 2033 4 4 2 2 4
14 2034 4 4 2 2 4
15 2035 4 4 2 2 4
16 2036 4 4 2 2 4
17 2037 4 4 2 2 4
18 2038 4 4 2 2 4
19 2039 4 4 2 2 4
20 2040 4 4 2 2 4
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Table 6.15: Experiment Set 3b: Stakeholder Mission Preference
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Germany 0.4 0.4 0.2
France 0.7 0.3 0
Spain 0.9 0.1 0
Conventional Adversary -1 0 0
Near Peer Adversary 0 -1 0

System Definition

The system definition is defined by the system development mapping, the system perfor-

mance, system cost, and the system timelines. The system development mapping allows

sequential develop, refresh, and acquire decision space to be derived. The system cost

for development, acquisition, and refresh enables the impact of budget and budget uncer-

tainty to be captured. The system development, refresh, and acquisition timelines enable

the impact of long term decision feedback and uncertainty to be captured.

The system development mapping (Figure 6.36). The system dependency mapping

captures system predecessors and successors. Once a system is developed the dependent

systems are then available for development. For example, the NGF is a predecessor to

the RC system development. The Cloud Combat for legacy systems has not predecessor

itself but is a predecessor to the future system Cloud Combat. The Tornado is a prede-

cessor to the Tornado refresh, Tornado ECR, and the F/A-18 developments. The system

development and refresh dependencies defined by the mapping allow the development of

sequential acquisition decisions.

Each system is represented by four inputs per mission: a mean performance, perfor-
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Table 6.16: Experiment Set 3b: Stakeholder System Ownership and Influence

System Name Sy
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Next Gen Fighter 1 1 1 1 0 0
Combat Cloud (legacy) 2 1 1 1 0 0
Combat Clout (next gen) 3 1 1 1 0 0
Remote Carrier 4 1 1 1 0 0
Tornado 5 1 0 0 0 0
Tornado Refresh 6 1 0 0 0 0
Tornado ECR 7 1 0 0 0 0
F/A-18 (German Variant) 8 1 0 0 0 0
F-18G (German Variant) 9 1 0 0 0 0
Rafale 10 0 1 0 0 0
Mirage 11 0 1 0 0 0
F/A-18 (Spanish Variant) 12 0 0 1 0 0
Eurofighter 13 0 0 1 0 0
F/A-18 Update (Spanish Variant) 14 0 0 1 0 0
Conventional EW Radar 15 0 0 0 1 0
Conventional TTR Radar 16 0 0 0 1 0
Conventional SAM 17 0 0 0 1 0
Near Peer EW Radar 18 0 0 0 0 1
Near Peer TTR Radar 19 0 0 0 0 1
Near Peer SAM 20 0 0 0 0 1
Near Peer Next Gen EW Radar 21 0 0 0 0 1
Near Peer Next Gen TTR Radar 22 0 0 0 0 1
Near Peer Next Gen SAM 23 0 0 0 0 1

Figure 6.36: System Development Mapping

177



Figure 6.37: Alloaction to Utility Functions Examples

mance variance, maximum asset impact, and utility as a function of number of assets allo-

cated. The system contribution to the mission level metric is captured in Figure 6.17. The

table represents the raw performance for each individual system allocated to the specified

mission. Each system type has a specified maximum impact allocation.

If more systems are allocated beyond the maximum impact allocation amount there is

no incremental benefit. Additionally, the contribution of each incremental system is not

necessarily linear. Varying utility functions are used to modify the incremental impact of

additional systems (Figure 6.37. The customization of incremental impact provides a more

nuanced result than a pure linear uncapped mapping. The non-linear function allows a

more sophisticated mission level simulation to be represented in the test bed.

The normalized system development and acquisition cost are captured via yearly mean

and variance costs (Figure 6.18). Additionally, the development and acquisition time is

represented by a mean and variance. The timeline and cost uncertainty are combined for a

final total cost impact. The last timeline is the deployment time which is left deterministic

for the purposes of this experiment.
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Table 6.17: Experiment Set 3b: System Performance
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µ 3σ µ 3σ µ 3σ
Next Gen Fighter 20 10 30 8 20 5
Combat Cloud (legacy) 15 8 0 0 0 0
Combat Cloud (next gen) 0 0 20 4 0 0
Remote Carrier 0 0 10 2 0 0
Tornado 5 1 0 0 0 0
Tornado Refresh 10 1 0 0 0 0
Tornado ECR 15 2 5 1 0 0
F/A-18 (German variant) 5 1 0 0 15 2
F-18G (German variant) 15 5 5 1 0 0
Rafale 5 1 0 0 0 0
Mirage 5 1 0 0 0 0
F/A-18 (Spanish variant) 5 2 0 0 0 0
Eurofighter 10 1 0 0 0 0
F/A-18 Update (Spanish variant) 10 2 0 0 0 0
Conventional EW Radar -25 5 0 0 0 0
Conventional TTR Radar -20 4 0 0 0 0
Conventional SAM -15 3 0 0 0 0
Near Peer EW Radar 0 0 -10 2 0 0
Near Peer TTR Radar 0 0 -5 1 0 0
Near Peer SAM 0 0 -5 1 0 0
Near Peer Next Gen EW Radar 0 0 -40 8 0 0
Near Peer Next Gen TTR Radar 0 0 -40 8 0 0
Near Peer Next Gen SAM 0 0 -40 8 0 0
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Table 6.18: Experiment Set 3b: System Cost and Timeline Definition
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Next Gen Fighter 2 1.5 8 5 5 2 20
Combat Cloud (legacy) 2 1 8 5 5 2 ∞
Combat Clout (next gen) 2 1 5 5 5 2 ∞
Remote Carrier 2 1 5 5 5 2 20
Tornado - - - - - - 20
Tornado Refresh 2 1 3 1 3 1 20
Tornado ECR 2 1 3 1 5 2 20
F/A-18 (German variant) 2 1 2 0 3 0 20
F-18G (German variant) 2 1 2 1 5 1 20
Rafale - 1 - - 5 0 20
Mirage - - - - - - 20
F/A-18 (Spanish variant) - - - - - - 20
Eurofighter - 1 - - 2 0 20
F/A-18 Update (Spanish variant) 2 1 2 1 3 0 20
Conventional EW Radar - 1 - - 1 0 15
Conventional TTR Radar - 1 - - 1 0 15
Conventional SAM - 1 - - 1 0 15
Near Peer EW Radar - 1 - - 1 0 15
Near Peer TTR Radar - 1 - - 1 0 15
Near Peer SAM - 1 - - 1 0 15
Near Peer Next Gen EW Radar 2 1 7 0 1 0 15
Near Peer Next Gen TTR Radar 2 1 7 0 1 0 15
Near Peer Next Gen SAM 2 1 7 0 1 0 15
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Benchmark: Optimal Strategy

The goal of RL and ADP is to identify the optimal policy that should be followed through

sequential states and actions. An optimal policy will identify a single action that should

be taken in each state. The optimal policy is deterministic and not stochastic. An optimal

policy represents a ‘optimal’ stakeholder strategy. Traditional methods, as discussed in

Chapter 4, do not account for the variance in outcomes. Roughly, only the mean return

is used to determine an optimal strategy. it should be noted that ‘optimal’ refers to the

traditional name given to the solution and optimality will differ depending on the desired

outcome. If uncertainty is necessary to consider, traditional optimal policy methods will

not address the need.

For Experiment 3, action-value and policy iterations are used to calculate the approx-

imate solution to the meta-model MDP (Figure 6.38). The meta-model MDP solution is

then mapped back to the full state space using the same mapping used for the risk-based

policy methods. The meta-model MDP is sampled using Monte-Carlo samples using first

an initializing policy (π0). The state-action value matrix is updated using an on-policy n-

TD SARSA method. For each MC sample, a state Return is calculated using Equation 6.1.

The Return is used to update the action-value function using Equation 6.2.

Ge(s) =
i=t∑
i=0

γiri (6.1)

where e is the MC episode, s is an episode state, r is a state-action reward, t is the time

horizon, and γ is the discount.

Qπ(s, a)← Qπ(s, a) + α(Ge(s)−Qπ(s, a)) (6.2)

where π is the current policy, Q is the action-value function, s is a episode state, a is an

episode action.
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Figure 6.38: Policy and Value Iterations Diagram [158]

The policy is then updated once the policy dependent action-value function (Qπ(s, a))

is calculated. A new complete policy is created for each state using the softmax function

(Equation 6.3) which normalizes relative arbitrary scored values. The policy is updated us-

ing a monotonically decreasing α value based on the maximum number of policy iterations

(Equation 6.4).

π(s, ao) =
eQ(s,ao)∑
a∈A e

Q(s,a)
(6.3)

where A are all available actions in a given state and ao is the specfic action of interest in a

given state.

π ← (1− λ) ∗ π + λ ∗ π′ (6.4)

where λ is the update factor, π is the policy in use, π′ is the new policy based on the

action-value iteration.
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CHAPTER 7

RESULTS AND ANALYSIS

The results and analysis of each of the executed experiments described in Chapter 6 are

captured in Chapter 7. Experiment Set 1 results demonstrate the identification of Pareto

efficient actions and the capabilities provided by applying the risk-based policy algorithm

to scenarios with varying degrees of complexity. Experiment Set 2 demonstrates the abil-

ity to maintain usable risk-based metrics when evaluating a meta-model generated from a

compressed state-space. Lastly, Experiment Set 3 results demonstrate the ability to derive

nuanced information from the risk-based evaluation of the meta-model and benchmarks the

methodology against optimal policy solutions.

7.1 Experiment Set 1: Risk-Based Policy Development

Experiment Set 1 results first explore the application of the risk-based policy method to

explicitly defined MDPs. Second, the algorithm is applied to full MDPs derived from Truth

Model scenarios of increasing complexity. The analysis demonstrates that Hypothesis 1 to

be true.

7.1.1 Experiment Set 1a: Explicit MDPs

Experiment Set 1a defines explicit MDPs and uses the constructed MDP for direct eval-

uation. The constructed MDP is directly used for evaluation using the risk-based policy

algorithm.

Experiment Set 1a: Simple Stated MDPs

The purpose of Experiment Set 1a Case 1 is to demonstrate the identification of Pareto

frontier actions by comparing the change in risk-based policies as the risk-tolerance level
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Figure 7.1: Experiment Set 1a Case 1: State One, Two Actions, Equal Reward Mean RTSP

of a stakeholder in varied explicitly defined scenarios. The anticipated results are compared

with the policy risk-tolerance sensitivity profiles for each scenario to demonstrate the iden-

tification of the Pareto frontier. The risk-tolerance sensitivity profiles plot the policy as a

function of risk-tolerance.

Scenario 1 examines the simplest of cases. A repeating state with two available deci-

sions for the stakeholder. As the risk-tolerance level is moved from minimum to maximum,

the expected result is to see the lower mean action selected near the minimum and the higher

mean action at the maximum. A gradual symmetrical swapping of preference is anticipated

in between. The results for the risk-tolerance sensitivity plot for the initial state policies are

shown in Figure 7.1.

The results for Scenario 1 show the anticipated pattern of gradual change in action

preference as well as the symmetry about the minimum risk point (ξ = 0).

Scenario 2 adds an addition available action with an intermediate mean and equal vari-

ance. The anticipated result is an additional preference near the minimum risk point for the

new intermediate action. This pattern can be observed in Figure 7.2.

The antithesis of Scenario 2 is Scenario 3, where only the variance is modified across
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Figure 7.2: Experiment Set 1a Case 1: State One, Three Actions, Equal Reward Mean
RTSP

actions. Here, there is no identified Pareto frontier and the results should display that. It is

anticipated that there should be no distinction in preference as the risk-tolerance is varied

but for an increase in the minimum variance action near the minimum risk point. Figure

7.3 shows the lack of policy sensitivity everywhere along the risk-tolerance axis sans near

the minimum risk point.

Scenario 4 demonstrates the ability to find the pareto frontier formed by a linear mean-

variance action set. Figure 7.4 shows the linear trend in mean-variance leads to a near

constant relative alignment for the lower half of the Pareto frontier with the expected trend

for a near Pareto frontier profile formed by the linear mean-variance trend. The Pareto

optimal profile for ξ < 0 is near a point and represents a near constant policy case. A

representation of this phenomenon can be seen in the problem construction (Figure 6.6).

Scenario 5 and 6 demonstrate the ability for the method to identify the Pareto frontier,

both efficient and anti-efficient, while identifying the Pareto inefficient actions as well. The

preference of an action is anticipated to near zero for all risk-tolerance levels as the action is

moved from near Pareto efficiency to significantly out of the Pareto efficient region. Action
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Figure 7.3: Experiment Set 1a Case 1: State One, Three Actions, Equal Reward Variance
RTSP

Figure 7.4: Experiment Set 1a Case 1: State One, Three Actions, Linear Reward RTSP
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Figure 7.5: Experiment Set 1a Case 1: State One, Four Actions, One Mild Pareto Inefficient
RTSP

4 in Figure 7.5 and Figure 7.6 represents the inefficient action. The action is made more

inefficient by increasing the variance from Scenario 5 (Figure 7.5) to Scenario 6 (7.6). A

decrease in overall preference across risk-tolerance can be observed in Action 4. The same

Pareto frontier identified in Scenario 2 can be identified in Scenario 5 and 6.

Scenario 7 shows the results of an expanded Pareto frontier action space with no in-

efficiencies (Figure 7.7). Similar to Scenario 2, the anticipated results are for individual

actions to peak near where a similar single step-action Pareto frontier would peak. The

risk-tolerance sensitivity of each action demonstrates the appropriate peak.

Three of the actions have direct corollaries to the three actions seen in Scenario 2. Ac-

tion 1 is the highest-risk lowest-mean action with Action 7 being the highest-risk highest-

mean. They are symmetrically biased at the extremes of risk-tolerance as anticipated. Ac-

tion 4 is the minimum risk action and peaks as anticipated near the minimum risk risk-

tolerance level. Actions 2 and 3 lie on the Pareto inefficient frontier and peak in order as ξ

varies from −1 to 0. Similarly and in a symmetric manor about ξ = 0 axis Action 5 and 6

peak in the anticipated trend.
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Figure 7.6: Experiment Set 1a Case 1: State One, Four Actions, One Significant Pareto
Inefficient RTSP

Figure 7.7: Experiment Set 1a Case 1: State One, Seven Actions, Pareto Inefficient RTSP
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Figure 7.8: Experiment Set 1a Case 1: State One, Seven Pareto Efficient Actions, Eight
Mild Pareto Inefficient RTSP

Scenario 8 and 9 once again add Pareto inefficient actions of varying magnitude. Sce-

nario 8 adds mild Pareto inefficient actions (Action 8 through 15) and Scenario 9 adds

significantly Pareto inefficient actions (Actions 8 through 16) by increasing the action re-

ward variance. The risk-tolerance sensitivity profile for Scenario 8 is shown in Figure 7.8

and for Scenario 9 in Figure 7.9. The relative preference for inefficient actions decreases

as the inefficiency of the actions are increased.

Experiment Set 1a Case 2: Short and Long Term Stakeholder Preferences

Scenario 1 examines an explicit set-up with two actions that lead not to a similar state with

similar action but two separate states with varying action results. This adds adds a mutli-

tiered state to with near repeated actions on top of Case 1. The resulting State 1 RTSP is

shown in Figure 7.10. This demonstrates the same expected RTSP patter as scene in Case 1,

Scenario 1. Case 1 had repeating decisions and Case 2 introduced non-repeated decisions

resulting in varied states.

Scenario 2 examines the impact of multiple actions resulting in varied states. The con-
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Figure 7.9: Experiment Set 1a Case 1: State One, Seven Pareto Efficient Actions, Eight
Significant Pareto Inefficient RTSP

structed MDP is created to demonstrate the impact of short Reward versus long term Re-

turn. The swapping of selected preferences at low risk-tolerances and high-risk tolerances

is demonstrated in Figure 7.11, the State 1 RTSP.

Scenario 3 and Scenario 4 examine the impact of adding non-repeated Pareto inefficient

actions into the decision space. The State 1 RTSP (Figure 7.12) shows the mild Pareto in-

efficient action (shown in blue) to never be preferred over the other three Pareto efficient

actions under a mild in-efficiency setting. Figure 7.13 shows the RTSP of State 1 with the

significant Pareto inefficient action included. The impact of the inefficient action (again

shown in blue) is clearly even more insignificant having a even more reduced policy repre-

sentation across all risk-tolerance levels.

Experiment Set 1a Case 3: Fully Random MDP

Case 3 uses randomly generated MDPs to test the policy generation algorithm. Two sce-

narios of varying complexity are used to exercise the algorithm. The first scenario consists

of a maximum of three actions per state. Each action has the opportunity to develop to
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Figure 7.10: Experiment Set 1a Case 2 Scenario 1: State 1 RTSP

Figure 7.11: Experiment Set 1a Case 2 Scenario 2: State 1 RTSP
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Figure 7.12: Experiment Set 1a Case 2 Scenario 3: State 1 RTSP

Figure 7.13: Experiment Set 1a Case 2 Scenario 4: State 1 RTSP
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multiple states. The second scenario increases the maximum actions to five for any given

state and increases the number of resulting states per action.

The random MDPs produce scenarios that are still simple enough to understand and

evaluate without the aid of algorithms. The resulting policy trends for each MDP are eval-

uated along side the randomly generated MDP itself. This allows the determination of the

effectiveness of the policy generation algorithm to me measured. States where decisions

are present are identified and the policy is evaluated against the anticipated result based

on the mean and variance of the reward graph. Moving from a simple defined MDP to a

multi-stage, action-decoupled MDP allows the impact of Reward versus Return to be an-

alyzed. Previous experiments tested either single step Returns or repeat-reward profiles

where Reward can be approximately considered equal to Return.

Scenario 1: Three Action Random MDP The three state randomly generated MDP

structure is captured in Figure 7.14 along with the states of interest. The selected states of

interest are based on explicit decision points. The MDP, including s−a−s′ reward charac-

teristics (µr(s, a, s′), σ2
r(s, a, s

′)), is fully captured in Figures 7.15 and Figure 7.16. For ex-

ample, State 2 is a decision point. The Stakeholder can choose Action 1 (µr(2, 1, 4) = 5.1,

σ2
r(2, 1, 4) = 85) or Action 3 (µr(2, 3, 5) = 5.1, σ2

r(2, 3, 5) = 14). The State 2 rewards can

be visualized in Figure 7.18.

The resulting Risk-Tolerance Sensitivity Profile generated using the risk-based pol-

icy algorithm for State 2 (Figure 7.17) shows an expected trend between the lower-mean,

lower-variance action (Action 1) and the higher-mean, higher-variance action (Action 3) as

expected. The additional metric of Return (R(ξ, s, a)) can be used to evaluate the the pol-

icy trends in the Risk-Tolerance Sensitivity Profile (Figure 7.19). The return is presented

as a function of the risk-tolerance (ξ). The risk-tolerance is varied from worst (ξ = −1), to

minimum risk (ξ = 0), and then maximum risk (ξ = 1) just as in the Risk-Tolerance Sen-

sitivity Profile. It is clear that the relative positioning on the mean-variance map of the two
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Figure 7.14: Experiment Set 1a Case 3 Scenario 1: MDP Graph and Highlighted Selected
States of Interest

Figure 7.15: Experiment Set 1a Case 3 Scenario 1: Reward Mean
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Figure 7.16: Experiment Set 1a Case 3 Scenario 1: Reward Variance

actions remains constant as the risk-tolerance is varied and as they shift the mean-variance

plane. The relative position consistency yields the Risk-Tolerance Sensitivity for State 2.

State 4 demonstrates the same trends seen in State 2. The lower-mean, lower-variance

versus higher-mean, higher variance reward (Figure 7.21) yields the anticipated policy

trend is seen in the Risk-Tolerance Sensitivity Profile (Figure 7.20). The Return mean-

variance plot shows the relative position consistency (Figure 7.22) is maintained as ξ is

varied.

State 6 adds two additional complexities yet to be seen under previous conditions evalu-

ated. Three actions are present and one of the actions (Action 3) can result in two different

states. Each state represents a different s − a − s′ − r tuple (Figure 7.24). It might be

expected to see Action 2 preferred at the worst ξ case, Action 1 preferred at the minimum

risk case, and Action 3 and maximum risk case based the results from Experiment Set 1a

Case 1 and Case 2. The resulting Risk-Tolerance Sensitivity Profile (Figure 7.23) shows

Action 3 preferred with Action 1 less preferred at maximum risk.

The explanation is found in the mean-variance plot of State 6 Return (Figure 7.25). The

combination and transition probabilities show that in the worst case (ξ = −1) that Action 3
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Figure 7.17: Experiment Set 1a Case 3 Scenario 1: RTSP for State 2

Figure 7.18: Experiment Set 1a Case 3 Scenario 1: Immediate Reward for State 2
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Figure 7.19: Experiment Set 1a Case 3 Scenario 1: Long Term Return for State 2

Figure 7.20: Experiment Set 1a Case 3 Scenario 1: RTSP for State 4
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Figure 7.21: Experiment Set 1a Case 3 Scenario 1: Immediate Reward for State 4

Figure 7.22: Experiment Set 1a Case 3 Scenario 1: Long Term Return for State 4
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Figure 7.23: Experiment Set 1a Case 3 Scenario 1: RTSP for State 6

is considered the highest risk option (note Action 2 dominates at this risk-tolerance because

it is the worst option). As ξ is varied toward 1 (max risk case) the Action 1 becomes the

riskiest action at the minimum risk point (ξ = 0). Action 3 once again takes the riskiest

action position as ξ reaches 1 for the maximum risk case. This patter is a result of the

combined Return resulting from multiple state results from Action 3 and the impacts of ξ

on the relative Return mean-variance.

State 7 tests another condition resulting from the relative Return mean-variance shifting

as the risk-tolerance in varied. State 7 is another two action state with a lower-mean, lower-

variance action and higher-mean, higher variance action (Figure 7.27). The resulting Risk-

Tolerance Sensitivity Profile (Figure 7.26) shows the same action (Action 1) preferred at

the lowest and highest risk-tolerance levels. This is a result of the shifting relative Return

mean-variance as the risk-tolerance is varied (Figure 7.28).

State 6 and State 7 have Risk-Tolerance Sensitivities Profiles that yield results not di-

rectly aligned to the s − a − s′ Rewards. The profiles are a result of the long term Return

and not just the immediate Reward. The change difference can be attributed to the change

in decisions made after the specified decisions point. Return accounts for future decisions
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Figure 7.24: Experiment Set 1a Case 3 Scenario 1: Immediate Reward for State 6

Figure 7.25: Experiment Set 1a Case 3 Scenario 1: Long Term Return for State 6
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Figure 7.26: Experiment Set 1a Case 3 Scenario 1: RTSP for State 7

Figure 7.27: Experiment Set 1a Case 3 Scenario 1: Immediate Reward for State 7
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Figure 7.28: Experiment Set 1a Case 3 Scenario 1: Long Term Return for State 7

and results in deviations from the immediate Rewards of a given state and action.

Scenario 2: Five Action Random MDP Four decisions states were selected for analysis

and are highlighted in Figure 7.29. The first state (State 1) represents a nominal three action

case. The second (State 2) represents a four action case with a Pareto inefficient action. The

third (State 3) represents a four action case without a Pareto inefficient action. The fourth

(State 4) represents a five action scenario.

Three actions are available at State 1 with Action 1 resulting in three separate states

(Figure 7.31). The immediate reward for all states resulting from Action 3 have a higher

mean but less variance than the other Actions. Action 4 results in a moderate-mean but

high-variance. The Risk-Tolerance Sensitivity Profile for State 1 (Figure 7.30) results in

Action 2 preferred at the worst case, Action 4 peaking near the minimum risk case, and

Action 1 preferred at both the minimum and maximum risk case. This would yield a

determination that Action 4 is mildly Pareto inefficient but is a potential viable alternative

for a minimum risk profile. The Return mean-variance plot shows Action 4 dominated by
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Figure 7.29: Experiment Set 1a Case 3 Scenario 2: MDP Graph and Highlighted Selected
States of Interest

Action 1 and Action 2 at each risk-tolerance level (7.32). Just above the minimum risk point

(ξ just above 0), the Return means from Action 1 and Action 4 are near equal. The offset

in variance at that point results in a slight preference to Action 1 just above the minimum

risk point in the Risk-Tolerance Sensitivity Profile.

The four action state (State 2) results align with those expected from Experiment 1a

Case 1 and Case 2 regarding Pareto inefficient actions. Results built from the view point

of the immediate state-action rewards (Figure 7.34) would yield the potential of Action

1 being dominated by Action 3, Action 4 being the worst action, and Action 5 peaking

in preference just under the minimum risk point. The results seen in the Risk-Tolerance

Sensitivity Profile for State 2 (Figure 7.33) result in a different preference profile. Action

3 is fully dominated and inefficient across all ξ. This is a result of the balance between

resulting states ensuring that, given the uncertainty, the resulting mean and variance of the

multi-s′ action will be dominated by the single-s′ actions. The relative dominance can

been visualized in the Return mean-variance plot (Figure 7.35) where the relative mean-

variance between Actions is relatively constant and Action 3 has a moderate-mean and

high-variance.

State 3 with no Pareto inefficient actions can be juxtaposed against State 2. Each action
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Figure 7.30: Experiment Set 1a Case 3 Scenario 2: RTSP for State 1

Figure 7.31: Experiment Set 1a Case 3 Scenario 2: Immediate Reward for State 1
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Figure 7.32: Experiment Set 1a Case 3 Scenario 2: Long Term Return for State 1

Figure 7.33: Experiment Set 1a Case 3 Scenario 2: RTSP for State 2
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Figure 7.34: Experiment Set 1a Case 3 Scenario 2: Immediate Reward for State 2

Figure 7.35: Experiment Set 1a Case 3 Scenario 2: Long Term Return for State 2
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Figure 7.36: Experiment Set 1a Case 3 Scenario 2: RTSP for State 3

reward is grouped relatively close (Figure 7.37) and provides a gradual mean and variance

trend. The Risk-Tolerance Sensitivity Profile shows the gradual policy trend from Action

5 (worst) to Action 2 or 4 peaking (minimum risk) to Action 3 (maximum risk). This is

in line with the results of a Pareto efficient action scenario from Experiment Set 1a Case

2. The Return mean-variance (Figure 7.36) supports the above trend and shows that each

action, as it peaks in policy contribution as a function of ξ, is not fully dominated by other

actions. Note that Action 3 and Action 4 are near equal in mean and variance between

minimum and maximum risk points. This yields the peak in policy contribution by Action

4 just above the minimum risk that is near the contribution of Action 3.

The selected five action state (State 4 and 5) provides one more step in complexity and

begins to pus the boundaries of useful intermediate metrics. There are a few unique aspects

to the action rewards (Figure 7.40). Action 1 has a lower-mean but split variance. Action

4 has a lower variance but a split mean. The resulting Risk-Tolerance Sensitivity Profile

(Figure 7.39) shows that Actions 2 and 5 are preferred under high risk-tolerant conditions

with Actions 1, 3, & 4 preferred at negative risk tolerance levels. It appears that Action

1 dominates Actions 3 and 4 as the risk-tolerance approaches the worst case. The Return
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Figure 7.37: Experiment Set 1a Case 3 Scenario 2: Immediate Reward for State 3

Figure 7.38: Experiment Set 1a Case 3 Scenario 2: Long Term Return for State 3

208



Figure 7.39: Experiment Set 1a Case 3 Scenario 2: RTSP for State 4

mean-variance supports the trend (Figure 7.41) where Actions 2 and 5 continually are the

highest risk options across all ξ. Action 1 dominates as the worst options across all ξ

with Action 3 dominating at the minimum risk point across all ξ. Action 4 is continually

dominated by Action 1 across all ξ for the worst action though the mean-variance trends

are closely aligned.

The second five action state (State 5) has multiple actions with mare than a single

resulting state (Figure 7.43). The Risk-Tolerance Sensitivity Profile (Figure 7.42) shows

the dominance of Action 3 at high risk-tolerances over Action 5. At negative risk-tolerance

Action 2 dominates Actions 1 and 4. This is directly in line with the measured Return mean

and variance (Figure 7.44). There is a clear bifurcation between Actions 3 & 5 and Actions

1, 2, & 4. Action 3 maintains a variance advantage relative to Action 5 over all ξ.

The final state of interest (State 6) has only three actions but Action 3 results in three

states with a highly divers mean-variance Reward for each (Figure 7.46). The mean and

variance of the Returns as a function of risk-tolerance (Figure 7.47) show Action 3 con-

sistently with the lowest-mean and highest-variance. This makes it consistently the worst

action. This is present in the Risk-Tolerance Sensitivity Profile for State 6 (Figure 7.45).
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Figure 7.40: Experiment Set 1a Case 3 Scenario 2: Immediate Reward for State 4

Figure 7.41: Experiment Set 1a Case 3 Scenario 2: Long Term Return for State 4
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Figure 7.42: Experiment Set 1a Case 3 Scenario 2: RTSP for State 5

Figure 7.43: Experiment Set 1a Case 3 Scenario 2: Immediate Reward for State 5
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Figure 7.44: Experiment Set 1a Case 3 Scenario 2: Long Term Return for State 5

Figure 7.45: Experiment Set 1a Case 3 Scenario 2: RTSP for State 6
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Figure 7.46: Experiment Set 1a Case 3 Scenario 2: Immediate Reward for State 6

Figure 7.47: Experiment Set 1a Case 3 Scenario 2: Long Term Return for State 6
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7.1.2 Experiment Set 1b: Sequential Decision Making

Experiment Set 1b defines scenarios and samples it’s representation from a full Truth

Model. The samples are then used to generate a full MDP on which to apply the risk-

based policy algorithm.

Experiment Set 1b Case 1: Repeated Pareto Efficient Actions

The experimental setup for Case 1 is depicted in Chapter 6 which describes the Truth

Model setup. Included in Case 1 is the sampling of the Truth Model. Sampling metrics

as a function of sample size are depicted in Figure 7.48. Three metrics are tracked to

identify state-action space sampling health. The number of unique states and actions track

the growth of the decision space. The number of states and actions will plateaus as all state-

action pairs are discovered and episodes begin to only sample already discovered states and

actions. Ten thousand episodes were run to populate the decision space for Case 1 with the

small action space fully sampled and the state space near fully sampled.

The sampled s−a−s′ reward for all samples shows the gradual fan out in performance

uncertainty (Figure 7.49). The Probability Density Function (PDF) of reward at each time

step gives a different view, Figure 7.50. In this simple scenario, peaks at near similar states

can be seen at t = 5 with a gradual fan out. Additionally, the total sample size of each bin

decreases as the time steps increase. The distribution mean and 3-σ are displayed for each

time step.

The resulting MDP can be visualized in the structure graph depicting state to state

transitions, Figure 7.51. The small actions space allows it to be fully visualized (Figure

7.52). At any given state with actions, three actions should be present for Case 1. It should

be noted that there are cases where previous actions and the resulting timelines do not allow

the selection of one acquisition action. Actions 2 through 4 can be seen as options at the

initialization state (t = 0). Action 1, the wait action which is present due to resources being

allocated based on previous actions, is first present after the initial state as systems are now
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Figure 7.48: Experiment Set 1b Case 1: Episode Sample Metrics

Figure 7.49: Experiment Set 1b Case 1 Baseline: Sampled Reward versus Time
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Figure 7.50: Experiment Set 1b Case 1 Baseline: Sampled Reward PDFs

being developed. Given the uncertainty in development, acquisition actions are available at

t = 1 though only in a few resulting state where the acquisition time was less than or equal

to a single time step.

The resulting Risk-Tolerance Sensitivity Profile for State 1 (Figure 7.53) generated

based on the above MDP should resemble the three action Pareto efficient action scenario

from Experiment 1a Case 1. The preferences follow the implied Pareto action frontier de-

spite the increase in complexity (multi-step impact of actions and temporal uncertainty).

The addition of a system with mild Pareto inefficient capability (Figure 7.54, it an be seen

that the mild inefficient action is mildly dominated across ξ. A significant increase in inef-

ficiency of the system results in the acquisition option of the system to be fully dominated.

The policy preference for the acquisition of the inefficient system nears zero for all ξ (Fig-

ure 7.55).

Experiment Set 1b Case 2: Acquire vs. Develop Scenario

Case 2 introduces varying decision spaces across states. Case 1 used specifically defined

set of acquisition options that were available at every decisions point. Case 2 allows the
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Figure 7.51: Experiment Set 1b Case 1: Full MDP Graph

simulation to play out based on initial conditions with out pre-orchestrating the decision

space. States can be grouped by their available actions. These groupings represent specific

decision spaces that exist across a subset of states. Each state will have it’s own Risk-

Tolerance Sensitivity Profile and each decision space will have states with the same actions

available. This creates a portfolio of Risk-Tolerance Sensitivity Profiles by all states. Two

selected decision spaces are highlighted for further investigation. The first is the Acquire

System 1 or Develop System 2 (AS1vDS2) decision space. The second is Acquire System

1 or Acquire System 2 or Develop System 3 (AS1vAS2vDS3).

The AS1vDS2 decision space is one of the first that is encountered. The specific states

are highlighted in Figure 7.56. States include the initial state and subsequent states where

the Acquire System 1 was selected. Selected Risk-Tolerance Sensitivity profiles from the

AS1vDS2 decision space show a common trend in decision preference (Figure 7.57). A

preference can be seen for Acquiring System 1 as risk-tolerance increases.

The second decision space is realized once System 2 has been developed. The second

decision space states (Figure 7.58) have three actions available to the Stakeholder. Selected

217



Fi
gu

re
7.

52
:E

xp
er

im
en

tS
et

1b
C

as
e

1:
A

ct
io

n
G

ra
ph

218



Figure 7.53: Experiment Set 1b Case 1: Baseline RTSP

Figure 7.54: Experiment Set 1b Case 1 Mild Inefficiency: Risk-Tolerance Sensitivity Pro-
file
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Figure 7.55: Experiment Set 1b Case 1: Significant Inefficiency RTSP

Figure 7.56: Experiment Set 1b Case 2: Decision Space States for Acquire System 1 or
Develop System 2 States
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Figure 7.57: Experiment Set 1b Case 2: Decision Space States for Acquire System 1 or
Develop System 2 RTSPs
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Figure 7.58: Decision Space Acquire System 1 or Acquire System 2 or Develop System 3
States

state Risk-Tolerance Sensitivity Profiles show a consistent pattern of preference as a func-

tion of risk-tolerance (Figure 7.59). Acquisition of System 2, a high-mean high-variance

capability system, is preferred at the maximum risk point. The lower-mean lower-variance

option, Acquiring System 1, is preferred at the minimum risk point. Development of Sys-

tem 3 is the worst option. Horizon timeline is important and the development of System

3, even if selected at it’s earliest time, does not yield a fully acquired and ready for alloca-

tion System 3 within the considered time horizon. In short, the Return due to developing

System 3 is not accounted for due to the time horizon constraint.

The second variant under consideration (Scenario 2) is artificially increasing the mean

capability of System 2 (Figure 7.60) as compared to the nominal case above (Figure 7.61).

The expectation is for Developing System 2 to begin to be preferred at the initial state. The

difference between the nominal and inflated System 2 capability scenarios State 1 Risk-

Tolerance Sensitivity Profiles (Figure 7.62) show the impact. Development of System 2 is

preferred at almost all risk-tolerance levels sans the minimum risk point.

Once again, an examination of the relative Return as a function of ξ provides insight.
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Figure 7.59: Decision Space Acquire System 1 or Acquire System 2 or Develop System 3
Risk-Tolerance Sensitivity Profiles

Figure 7.60: State One Immediate Action-State Reward for Higher System 2 Performance
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Figure 7.61: State One Risk-Tolerant Action Return Profile for Higher System 2 Perfor-
mance

Figure 7.62: Low (left) Versus High (right) System 2 Capability Risk-Tolerance Sensitivity
Profiles
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Figure 7.63: State One Immediate Action-State Reward

The nominal Return mean-variance plot (Figure 7.63) shows little variation in absolute

or relative Return mean and variance as a function of risk-tolerance. In the inflated case

(Figure 7.64) there is a swapping of which action has the lowest-mean and highest-variance.

This swap is caused by selecting Develop System 2 and no capitalizing on it’s development

in the worse case risk-based policy case (ξ = 0). Decisions past the initial state have a direct

impact on future Rewards and the initial state action Returns. If Developing System 2 takes

time to develop and it’s never capitalized on, the action then becomes the worse case option.

Acquiring System 2 is preferred in later states as the risk-tolerance is increased. This shift

lets the high mean capability of System 2 to be realized in the Return of the initial state.

Experiment Set 1b Case 3: Multi-Mission Acquire vs. Develop

Experiment Set 1b Case 3 introduces the new complexity of resource constraints, system

refresh, increased stakeholders, and system allocations. The state and action space signifi-

cantly increases with these complexities. The results are analyzed as a function of decision

spaces or groupings of states with the same available actions to the stakeholder of inter-

est. Each of the three stakeholders have a varied resource pool (e.g. budget) an are ana-
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Figure 7.64: State One Risk-Tolerant Action Return Profile

lyzed relative to each other. Stakeholder 1 allows a look at allocation decisions of varying

complexity and asset creation decisions. Stakeholder 2 allows the evaluation of increased

allocation space. Finally, Stakeholder 3 enables the impact of no resource constraints.

Allocation Only Decision Space Resource constraints on Stakeholder 1 result in a lim-

ited decision space. At any given state, there is a single acquisition or development deci-

sion that can be feasibly selected. The limitation leads to allocation only decision spaces

to dominate Stakeholder 1 decisions spaces. Three selected significant decision spaces al-

low the evaluation of the risk-based policy generation algorithm applied to a multi-mission

problem.

The first decision space consists of four feasible actions defined by allocation (Table

ds13ActionTable). Stakeholder 1 can allocate System 1 to either Mission 1 or Mission 2.

Recall from the experiment setup described in Chapter 6, Stakeholder 1 prefers Mission 1

and System 1 provides more capability to Mission 1 than Mission 2. The Risk-Tolerance

Sensitivity Profile portfolio for the decision space shows a consistent solution (Figure 7.65).

Action 7 represents System 1 applied to Mission 1. Action 7 is the preferred action as
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Figure 7.65: Allocation of Three Systems Only Selected Risk-Tolerance Sensitivity Profiles
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Table 7.1: Allocation of Three Systems Only Decision Space

Action n
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1
to
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1
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2

Action 1 0 3
Action 3 1 2
Action 5 2 1
Action 7 3 0

the risk-tolerance level is increased and aligns with exceptions. Similarly, Action 1 is pre-

ferred at the worst risk-tolerance levels in accordance with expectations. The intermediate

options (Action 3 and Action 5) behave as do moderate-mean lower-variance options due

in Pareto efficient action spaces. This correlates to the moderate allocations for the two

actions.

The second decision space is characterized by an increase in available systems from

three to four (Table 7.6). Selected profiles from the Risk-Tolerance Sensitivity portfolio

show consistency to trends across states with similar actions (Figure 7.66). The trends

match a preference for allocating System 1 to Mission 1 at the maximum risk point with

allocating System 1 to Mission 2 at the worst point. The now equal allocation (Action 6)

shows a peak near the minimum risk point. Action 4 and Action 8 show a symmetry about

the minimum risk point.

The third decision space is characterized by an increase in available systems and the

consistent selection of Acquiring System 2 (Table 7.6). Selected profiles from the Risk-

Tolerance Sensitivity portfolio show consistency to trends across states with similar actions

(Figure 7.67). The trends match a preference for allocating System 1 to Mission 1 as
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Figure 7.66: Allocation of Four Systems Selected RTSPs
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Table 7.2: Allocation of Four Systems Decision Space

Action n
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2

Action 2 0 4
Action 4 1 3
Action 6 2 2
Action 8 3 1
Action 9 4 0

anticipated. The now equal allocation (Action 17) shows a peak near the minimum risk.

Action 14 and Action 20 show a symmetry about the minimum risk point as expected.

Allocation and Asset Creation Stakeholder 1 does have a decision space that includes

both asset creation and asset allocation (Table 7.5). Asset creation includes acquisition

and development of systems. The decision space represents the largest and most diverse

examined thus far. There is little distinguishable trend upon initial examination of the

profile portfolio (Figure 7.68).

The individual actions within the decision space can be grouped and the cumulative

policy examined. The mission grouped actions represented in the selected policy portfolio

(Figure 7.69) show clear trends in line with the allocation only decision space evaluations.

Acquire New Asset or Refresh Old Asset The balance of budget and system action op-

portunities provides an opportunity to evaluate an acquisition of a new asset versus refresh

of an old asset (Table 7.5). When the decision space is split by allocation (Figure 7.70)

a clear correlation between risk-tolerance and allocation is clear. Stakeholder 2 prefers

Mission 2 allocations which aligns with Stakeholder 2’s preferred mission.
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Table 7.3: Allocation of Four Systems with Single Acquisition Decision Space
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Action 11 X 0 4
Action 14 X 1 3
Action 17 X 2 2
Action 20 X 3 1
Action 22 X 4 0

Table 7.4: Merging the Decision Space Decision Space

Action A
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Action 12 X 0 5 M2
Action 15 X 1 4 M2
Action 18 X 2 3 None
Action 21 X 3 2 None
Action 23 X 5 0 M1
Action 24 X 1 4 M2
Action 25 X 2 3 None
Action 26 X 4 1 M1
Action 27 X 5 0 M1
Action 28 X 0 5 M2
Action 29 X 3 2 None
Action 30 X 4 1 M1

231



Figure 7.67: Allocation of Four Systems with Single Acquisition Selected RTSPs
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Figure 7.68: Allocation and Acquisition Decision Space RTSPs
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Figure 7.69: Allocation Grouped Decision Space RTSPs
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Figure 7.70: Merged Acquire, Develop, and Allocate Decision Space RTSPs
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Table 7.5: Acquire, Develop, and Allocate Decision Space
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Action 5 X 0 3 M2
Action 6 X 1 2 M2
Action 7 X 2 1 M1
Action 11 X X 0 3 M2
Action 12 X X 1 2 M2
Action 13 X X 2 1 M1
Action 14 X X 3 0 M1
Action 15 X 3 0 M1

Impact on Equal Mission Preference and No Budget Constraints Stakeholder 3 rep-

resents a fully unconstrained scenario. At each decision point, all available acquisition and

development decisions can be selected. There is no forced decision due to resource con-

straints. The decision space of interest for Stakeholder 3 (Table 7.6) represents a signifi-

cant allocation space (seven total assets to allocate). Stakeholder 3 does not have a mission

preference by design. The impact can be seen in the allocation grouped Risk-Tolerance

Sensitivity Profile portfolio (Figure 7.71)

7.2 Experiment Set 2: State Space Compression

Experiment Set 2 evaluates the impact of compression ratio on Risk-Tolerance Sensitivity

Profiles for initial and subsequent states. The setups for Experiment Set 1b cases are used

as inputs and a state compression ratio of 1 to 0.1 is applied to the full MDP examined

in the previous experiment. Risk-Tolerance Sensitivity Profiles are generated from each

compressed MDP, or meta-model, for selected states across time steps. The relative change
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Figure 7.71: Allocation with No Utility Preference Decision Space RTSPs
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Table 7.6: Allocation with No Utility Preference Decision Space

Action A
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Action 10 X 1 6
Action 11 X 2 5
Action 12 X 3 4
Action 13 X 4 3
Action 14 X 6 1
Action 31 X 0 7
Action 32 X 7 0
Action 36 X 5 2

in profiles is used to judge the impact of the compression algorithm. Additionally, the

relative time to calculate the risk-based policies is evaluated as a function of compression

ratio.

7.2.1 Experiment Set 2a: Repeated Pareto Efficient Actions

Compressed MDP Visualization

The Truth Model setup was held constant for Experiment Set 2a. The state compression

ratio used in the generation of the meta-model MDP was varied. The resulting risk-policy

trends generated using each meta-model were measured along with the mean time to com-

pute a risk-tolerance policy.

Figure 7.72 depicts the full MDP graph. The depiction is a visual baseline for the

size and complexity of the three action simulation. At each time step a decision point

state is highlighted. A decision point is a state where a acquisition selection can be made

by Stakeholder 1. These highlighted decision points are selected points where the risk-
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Figure 7.72: Experiment Set 2a: Full MDP Graph with Highlighted States of Interest

tolerance sensitivity will be compared across compression ratios.

The graph for a 75% reduction in states space meta-model is captured in Figure 7.73.

Little visual change can be noted. As the compression is decreased to 50% (Figure 7.74),

25% (Figure 7.75), and 10% (Figure 7.76) the visual change becomes more apparent. The

breakdown of the original structure can clearly be seen as the compression ratio reaches

10%.

Risk-Tolerance Sensitivity Comparison

At time step t = 0 there is a single state. This state is the initializing state for all episodes

that sample the Truth Model. The initial state is the most sampled state and has the most

sampling of future states. The resulting risk-tolerance sensitivity as a function of meta-

model compression ratio is depicted in Figure 7.77. The resulting risk-tolerance sensitivity

is maintained through a 50% compression. Anticipated, Identifiable trends can be observed

at the lower compression ratios of 25% and 10%. At the lower compression ratio mild
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Figure 7.73: Experiment Set 2a: 75% State Compressed MDP Graph

Figure 7.74: Experiment Set 2a: 50% State Compressed MDP Graph
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Figure 7.75: Experiment Set 2a: 25% State Compressed MDP Graph

Figure 7.76: Experiment Set 2a: 10% State Compressed MDP Graph
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anomalies can be seen in increased asymmetry.

At time step t = 1, the selected state has two options (Acquire System 1 or Acquire

System 2). This presents a simpler action space than what was seen at t = 0. Little fidelity

in the risk-sensitivity profile is lost as the compression ratio reaches 50% (Figure 7.78).

The shifting of the equal policy point and breakdown of symmetry at 25% and 10% is once

again seen.

At time step t = 2, there are far less state and future state samples. The breakdown in

symmetry begins to be seen at a compression ratio of 50% (Figure 7.79). At a compression

ratio of 10% the risk-tolerance sensitivity profile is fully lost.

As the time steps increase (t = 3 and t = 4) the ability to sample future states de-

creases along with the total number of state samples. The information gathered and used to

generate earlier time steps remains valid. Future sampling for later states is not available.

The resulting risk profiles (Figure 7.80 and Figure 7.81) show skewed profiles and earlier

breakdown as the compression ratio is decreased.

Policy Generation Computation Time

The average computation time for risk-based policy generation across risk-tolerance values

significantly decreased as the compression ratio decreased (Figure 7.82). A linear relation-

ship in computation time and the number of states can be observed as expected.

7.2.2 Experiment Set 2b: Acquire vs. Develop Scenario

The Truth Model setup was held constant for Experiment Set 2b. The state compression

ratio used in the generation of the meta-model MDP was varied. The resulting risk-policy

trends generated using each meta-model were measured along with the mean time to com-

pute a risk-tolerance policy.

Figure 7.83 depicts the full MDP graph. The depiction is a visual baseline for the

size and complexity of the three action simulation. The selected decision points, or states
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Figure 7.77: Experiment Set 2a: Time Step t = 0 State of Interest RTSP versus State
Compression Ratio
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Figure 7.78: Experiment Set 2a: Time Step t = 1 State of Interest RTSP versus State
Compression Ratio
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Figure 7.79: Experiment Set 2a: Time Step t = 2 State of Interest RTSP versus State
Compression Ratio
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Figure 7.80: Experiment Set 2a: Time Step t = 3 State of Interest RTSP versus State
Compression Ratio
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Figure 7.81: Experiment Set 2a: Time Step t = 4 State of Interest RTSP versus State
Compression Ratio
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Figure 7.82: Experiment Set 2a: Computation Time

where multiple actions are available, for evaluation are highlighted. The policy profiles and

computation time examined as a function of compression ratio.

The graph for a 75% reduction in states space meta-model is captured in Figure 7.84.

Again, little visual change can be noted. As the compression is decreased to 50% (Figure

7.85), 25% (Figure 7.86), and 10% (Figure 7.87) the visual change becomes more apparent.

The breakdown of the original structure can clearly be seen as the compression ratio reaches

10%.

Risk-Tolerance Sensitivity Comparison

The initializing state is the sole state at t = 0. This state is the initializing state for all

episodes that sample the Truth Model. The resulting risk-tolerance sensitivity as a function

of meta-model compression ratio for the first state is depicted in Figure 7.88. The resulting

risk-tolerance sensitivity maintained through a 50% compression. Anticipated, Identifiable

trends can be observed at the lower compression ratios of 25% and 10%. At the lower

compression ratio mild anomalies can be seen in increased asymmetry.

At time step t = 1, the selected state has two options (Acquire System 1 or Develop
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Figure 7.83: Experiment Set 2b: Full MDP Graph with Highlighted States of Interest

Figure 7.84: Experiment Set 2b: 75% State Compressed MDP Graph
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Figure 7.85: Experiment Set 2b: 50% State Compressed MDP Graph

Figure 7.86: Experiment Set 2b: 25% State Compressed MDP Graph
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Figure 7.87: Experiment Set 2b: 10% State Compressed MDP Graph

System 2). Little fidelity in the risk-sensitivity profile is lost as the compression ratio

reaches 50% (Figure 7.89). A loss in fidelity is seen at a 10% compression ratio as in the

high risk-tolerance response.

At time step t = 2, there are far less state and future state samples. The breakdown in

consistency is observed at a compression ratio of 10% (Figure 7.90). Little is lost at higher

compression ratios.

As the time steps increase (t = 3) the ability to sample future states decreases along

with the total number of state samples. The information gathered and used to generate ear-

lier time steps remains valid. Future sampling for later states is not available. The resulting

risk profiles (Figure 7.91 show skewed profiles and earlier breakdown as the compression

ratio is decreased. At previous time steps the breakdown was observed by a 10% compres-

sion ratio. At t = 3 the breakdown is seen of the profile is seen by 25% percent.
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Figure 7.88: Experiment Set 2b: Time Step t = 0 State of Interest RTSP versus State
Compression Ratio
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Figure 7.89: Experiment Set 2b: Time Step t = 1 State of Interest RTSP versus State
Compression Ratio
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Figure 7.90: Experiment Set 2b: Time Step t = 2 State of Interest RTSP versus State
Compression Ratio
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Figure 7.91: Experiment Set 2b: Time Step t = 3 State of Interest RTSP versus State
Compression Ratio

255



Figure 7.92: Experiment Set 2b: Computation Time

Policy Generation Computation Time

The average computation time for risk-based policy generation across risk-tolerance values

significantly decreased as the compression ratio decreased (Figure 7.92). A significant

negative relationship between computation time and the number of states can be observed

as expected.

7.2.3 Experiment Set 2c: Multi-Mission Acquire vs. Develop Scenario

Experiment Set 2c builds on the Experiment Set 1b Case 3 and the multiple stakeholders.

Each stakeholder represents a varying degrees of complexity between asset allocation and

creation decisions.

Stakeholder 1

The Stakeholder 1 MDP structure from full representation to 10% compression ratio are de-

picted in Figure 7.93, Figure 7.94, Figure 7.95, Figure 7.96, and Figure 7.97. The selected

evaluation states are highlighted in Figure 7.98.
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Figure 7.93: Experiment Set 2c: Stakeholder 1 Full MDP Graph with Highlighted States
of Interest

Figure 7.94: Experiment Set 2c: Stakeholder 1 75% State Compressed MDP Graph
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Figure 7.95: Experiment Set 2c: Stakeholder 1 50% State Compressed MDP Graph

Figure 7.96: Experiment Set 2c: Stakeholder 1 25% State Compressed MDP Graph
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Figure 7.97: Experiment Set 2c: Stakeholder 1 10% State Compressed MDP Graph

Figure 7.98: Experiment Set 2c: Stakeholder 1 Selected States for Evaluation
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The selected state Risk-Tolerance Sensitivity Profiles are depicted in Figure 7.99, Fig-

ure 7.99, Figure 7.101, Figure 7.102, and Figure 7.103. Each sensitivity profile maintains

the originating full profile through at compression ratio of at least 50% with artifacts ap-

pearing by a compression ratio of 10%.

Stakeholder 2

. The Stakeholder 2 MDP structure from full representation to 10% compression ratio are

depicted in Figure 7.104, Figure 7.105, Figure 7.106, Figure 7.106, and Figure 7.107. The

selected evaluation states are highlighted in Figure 7.108.

The selected state Risk-Tolerance Sensitivity Profiles are depicted in Figure 7.109, Fig-

ure 7.109, Figure 7.111, Figure 7.112, and Figure 7.113. Each sensitivity profile maintains

the originating full profile through at compression ratio of at least 50% with artifacts ap-

pearing by a compression ratio of 10%.

Stakeholder 3

The Stakeholder 3 MDP structure from full representation to 10% compression ratio are

depicted in Figure 7.114, Figure 7.115, Figure 7.116, Figure 7.117, and Figure 7.118. The

selected evaluation states are highlighted in Figure 7.119.

The selected state Risk-Tolerance Sensitivity Profiles are depicted in Figure 7.109, Fig-

ure 7.120, Figure 7.122, Figure 7.123, and Figure 7.124. Each sensitivity profile maintains

the originating full profile through at compression ratio of at least 50% with artifacts ap-

pearing by a compression ratio of 10%.

Computation Time

The computation time for all three stakeholders mainta)ins the signficant negative correla-

tion relationship with compression ratio seen in above in less complex Experiment Set 2

sub-experiments (Figure 7.125a, Figure 7.125b, and Figure 7.125c.
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Figure 7.99: Experiment Set 2c: Stakeholder 1 Time Step t = 0 State of Interest RTSP
versus State Compression Ratio
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Figure 7.100: Experiment Set 2c: Stakeholder 1 Time Step t = 1 State of Interest RTSP
versus State Compression Ratio
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Figure 7.101: Experiment Set 2c: Stakeholder 1 Time Step t = 2 State of Interest RTSP
versus State Compression Ratio
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Figure 7.102: Experiment Set 2c: Stakeholder 1 Time Step t = 3 State of Interest RTSP
versus State Compression Ratio
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Figure 7.103: Experiment Set 2c: Stakeholder 1 Time Step t = 4 State of Interest RTSP
versus State Compression Ratio
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Figure 7.104: Experiment Set 2c: Stakeholder 2 Full MDP Graph with Highlighted States
of Interest

Figure 7.105: Experiment Set 2c: Stakeholder 2 75% State Compressed MDP Graph
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Figure 7.106: Experiment Set 2c: Stakeholder 2 25% State Compressed MDP Graph

Figure 7.107: Experiment Set 2c: Stakeholder 2 10% State Compressed MDP Graph
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Figure 7.108: Experiment Set 2c: Stakeholder 2 Selected States for Evaluation

7.3 Experiment Set 3: Generating Insights from Derived Information

7.3.1 Experiment Set 3a: Lower Complexity Problems

Experiment Set 3a builds on the results of Experiment 1b. The evaluation using the risk-

policy based algorithm and state-action metrics are analyzed to produce guidance for in-

dividual stakeholders. The selected results from Experiment 1b are used as exemplars to

demonstrate the information provided via the optimal policy versus the methodology.

Acquire Only Case

Experiment 1b Case 1 examines the case where a stakeholder only has the option to acquire

systems designed to provide a Pareto frontier decision from the Return mean-variance per-

spective. The optimal strategy that will develop to select the most risky action at every

opportunity. For Scenario 1, the no inefficient action case, will result in always desiring to

acquire System 3. The risk-based policy algorithm and the RTSPs allowed the potential ac-

tions to be categorized into action never to be taken, low risk actions, high risk actions, and
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Figure 7.109: Experiment Set 2c: Stakeholder 2 Time Step t = 0 State of Interest RTSP
versus State Compression Ratio
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Figure 7.110: Experiment Set 2c: Stakeholder 2 Time Step t = 1 State of Interest RTSP
versus State Compression Ratio
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Figure 7.111: Experiment Set 2c: Stakeholder 2 Time Step t = 2 State of Interest RTSP
versus State Compression Ratio
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Figure 7.112: Experiment Set 2c: Stakeholder 2 Time Step t = 3 State of Interest RTSP
versus State Compression Ratio
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Figure 7.113: Experiment Set 2c: Stakeholder 2 Time Step t = 4 State of Interest RTSP
versus State Compression Ratio
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Figure 7.114: Experiment Set 2c: Stakeholder 3 Full MDP Graph with Highlighted States
of Interest

Figure 7.115: Experiment Set 2c: Stakeholder 3 75% State Compressed MDP Graph
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Figure 7.116: Experiment Set 2c: Stakeholder 3 50% State Compressed MDP Graph

Figure 7.117: Experiment Set 2c: Stakeholder 3 25% State Compressed MDP Graph
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Figure 7.118: Experiment Set 2c: Stakeholder 3 10% State Compressed MDP Graph

Figure 7.119: Experiment Set 2c: Stakeholder 3 Selected States for Evaluation
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Figure 7.120: Experiment Set 2c: Stakeholder 3 Time Step t = 0 State of Interest RTSP
versus State Compression Ratio
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Figure 7.121: Experiment Set 2c: Stakeholder 3 Time Step t = 1 State of Interest RTSP
versus State Compression Ratio
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Figure 7.122: Experiment Set 2c: Stakeholder 3 Time Step t = 2 State of Interest RTSP
versus State Compression Ratio
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Figure 7.123: Experiment Set 2c: Stakeholder 3 Time Step t = 3 State of Interest RTSP
versus State Compression Ratio
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Figure 7.124: Experiment Set 2c: Stakeholder 3 Time Step t = 4 State of Interest RTSP
versus State Compression Ratio
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(a) Stakeholder 1 Computation Time (b) Stakeholder 2 Computation Time

(c) Stakeholder 3 Computation Time

Figure 7.125: Experiment Set 2c: Computation Time
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Pareto inefficient actions. This first and simple study case has demonstrated the ability of

the methodology to produce more information than an optimal policy method. A more in-

depth analysis under following more complex scenarios fully demonstrates the capabilities

of the methodology.

Acquire or Develop Case

The optimal strategy results in a single action selection per state. The recommendation

derived from the optimal policy for the selected analysis states are:

• In State 1, choose to Acquire System 1.

• In State 13, choose to Acquire System 2.

A greater amount of information, more specific and nuanced, is available for the stake-

holder when using the methodology. The information is derived from the methodology

outputs, Risk-Tolerance Sensitivity profiles and the state-action metrics. The following

information is derived from the Experiment 1b Case 2 results:

• In State 1, the stakeholder should select to Acquire System 1 over Developing System

2.

• In State 13, the stakeholder should never choose to Develop System 3.

• In State 13, the stakeholder should select Acquiring System 1 if they are risk adverse.

• In State 13, the stakeholder should select Acquiring System 2 if they are more risk

tolerant.

• When selecting between Acquiring System 1 and Developing System 2, the stake-

holder should always choose to Acquire System 1.

• If System 2 is developed and the stakeholder is selecting between Acquiring Sys-

tem 1, Acquiring System 2, and Developing System 3 the stakeholder should never

choose to Develop System 3.
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• If System 2 is developed and the stakeholder is selecting between Acquiring Sys-

tem 1, Acquiring System 2, and Developing System 3 the stakeholder should select

Acquiring System 1 if they are risk adverse.

• If System 2 is developed and the stakeholder is selecting between Acquiring Sys-

tem 1, Acquiring System 2, and Developing System 3 the stakeholder should select

Acquiring System 2 if they are more risk tolerant.

Acquire, Develop, and/or Allocate Case

Optimal strategies applied to the actions spaces analyzed in Experiment 1b Case 2 produce

the following guidance:

• When Stakeholder 1 is allocating three System 1 only, allocate all available System

1 to Mission 1.

• When Stakeholder 1 is allocating four System 1 only, allocate all available System 1

to Mission 1.

• When Stakeholder 2 is allocating five System 1 and Developing System 2 or Acquir-

ing System 1 the optimal selection varies based on state.

• When Stakeholder 3 is selecting allocations of System 9, the preferred action is ran-

dom.

The methodology produces the following guidance to Stakeholders:

• When Stakeholder 1 is allocating three System 1 only,

– never allocate all System 1 to Mission 2

– unadvised to allocate more than one System 1 to Mission 2

– allocating all System 1 to Mission 1 to is high risk and high reward

– allocating a single System 1 to Mission 2 and two to Mission 1 is lower risk
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• When Stakeholder 1 is allocating four System 1 only,

– never allocate all System 1 to Mission 2

– unadvised to allocate more than two System 1 to Mission 2

– allocating all System 1 to Mission 1 to is high risk and high reward

– allocating a single System 1 to Mission 2 and three to Mission 1 is lower risk

• When Stakeholder 1 is allocating five System 1, Acquire System 1 or Develop Sys-

tem 2,

– unadvised to allocate nearly all System 1 to Mission 2

– allocating nearly all System 1 to Mission 1 to is high risk and high reward

– allocating a some System 1 to Mission 2 and more to Mission 1 is lower risk

• When Stakeholder 2 is allocating five System 5, Acquire System 7 or (Acquire Sys-

tem 5 and Develop System 6)

– unadvised to allocate nearly all System 1 to Mission 2

– allocating nearly all System 1 to Mission 1 to is high risk and high reward

– allocating a some System 1 to Mission 2 and more to Mission 1 is lower risk

– the time horizon provided does not allow the impacts of acquisition and devel-

opment

• When Stakeholder 3 is selecting allocations of System 9 there is no preference as a

function of risk-tolerance due to the equal contribution of Mission 1 and Mission 2

to Stakeholder 3 utility.

7.3.2 Experiment Set 3b: Full Complexity Problem

The full complexity test problem is designed to evaluate Hypothesis 3 while fully exercis-

ing and benchmarking the methodology. The Truth Model setup which characterizes the
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experiment is described in Section 6.3.2. Each step of the methodology is executed against

the described setup and addressed in order below.

Step 1: Generating the Meta-Model

The first step of the methodology is generating the meta-model for evaluation. The Truth

model must be sampled and the meta-model constructed. One thousand MC samples of the

Truth Model were made to construct the meta-model. With a 20 time step maximum, the

sampling resulted in 21, 000 discrete state-action-reward-state (s−a−r−s) samples across

time steps. The unique number of states and actions found as a function of MC samples is

depicted in Figure 7.126.

Note that the number of states has not yet plateaued while the number of action has

begun to plateau. Previous sampling has worked to ensure that the total number of states

and action samples has asymptotically reached a constant value and remain constant for

additional sampling. Repeated samples for each s−a−r−s can be ensured by not stopping

sampling until well after a steady state number of unique states and actions is produced.

Additionally, the total sample size of each identified s − a − r − s could be specified and

overall MC sampling continued until it is met. This would ensure that every state-action

pair has a sufficient representation statistically. The cost is a significant oversampling of

early states and actions. The alternative is to evaluate the sampled states by time and ensure

that sampling at states of interest are of a sufficient number. Figure 7.127 represents the

number of unique samples by time step. Sufficient sampling for a given time step by state

can be ensured as long as the number of unique state samples is significantly less than

the number of total samples. Any time steps with the number of unique states close to the

number of samples shows a time step that is under sampled. These time steps that are under

sampled contribute to earlier time step metrics but will not provide sufficient information

for future time steps. For the Experiment 3b, any time step greater than 3 will be regarded

as supporting states of earlier time steps only.
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Figure 7.126: Experiment 3b: Monte Carlo Truth Model Sample Metrics

The sampling resulted in a full structure as depicted in Figure 7.128. Each node repre-

sents a single unique state and each edge represents a transition between states. The actions

and rewards are not depicted as part of the structure diagram. A compression ratio of 35%

was used to compress states at each time step with a bias for a minimum number of states

per time step. The resulting structure is depicted in Figure 7.129. The total number of

Actions is 1, 026. The total number of unique full states is 18, 427. The total number of

unique meta-model states is 6, 505. The final component of sampling the meta-model is

the resulting reward that the stakeholder received for each action made. The raw data for

reward versus time for each MC sample is depicted in Figure 7.130. Not the difficulty in

identifying patters and bifurcation points due to the large amount of uncertainty. The re-

ward can also be viewed as a distribution as a function of time. The PDF as a function of

time step yield a little more nuanced look at stakeholder reward but provide little more dis-

cernible information. A significant amount of information can be derived from evaluating

the meta-model.
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Figure 7.127: Experiment 3b: Time Step based Unique State Sample Metrics

Figure 7.128: Experiment 3b: Full Structure
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Figure 7.129: Experiment 3b: Meta-Model Structure

Figure 7.130: Experiment 3b: Stakeholder 3 Reward versus Time
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Step 2: Evaluating the Meta-Model

The meta-model depicted in Section 7.3.2 was used to produce both risk-based policy and

state-action metrics. Five risk-tolerance levels (−1,−0.5, 0, .5, 1) were used to produce

risk-based policies. A time horizon of 20 steps was used for each risk-tolerance level and

state in the meta-model. More that 60, 000, 000 of s−a− r− s samples of the meta-model

were gathered for each of the five risk-tolerance based policy. For each of 6, 000+ unique

states, 500 samples consisting of 20 time steps were run.

Five risk-based policies were generated and used to develop RTSPs, entropy measure-

ments, and Return maps. Three meta-model states and their corresponding full model states

were identified as States of Interest (SOI). The meta-model SOIs collected for further eval-

uation meet a threshold of requirements of being a decision point (available actions greater

than one) and having sufficient MC samples. The selected MDP states are highlighted in

Figure 7.129. Similarly, the full MDP states are a subset of the full meta-model SOIs that

continue to carry multiple actions after the decompression. The full state space SOIs are

highlighted in Figure 7.128.

Three specific use cases have been selected for evaluation and investigation. The first

use case is the most significant for Stakeholder 1, Germany. The first use case is the initial

state for Germany (State 1). The initial state is when Germany is presented with the largest

selection of potential actions and most complex future outcome. The second use case

examines a future decision point branching from a specific initial state action selection,

State 987. The third analyzes a specific time step as a whole. A single meta-model state

is examined (meta-model State 626) that encompasses a decision space in the full MDP

model.

Germany is faced with a large number of development decisions at the initial time step.

The allocation options are constrained by the availability of a single system attributable to

a single mission. The full action space at the initial state is captured in Table 7.7.

Germany has the option to begin to invest in the new NGF. It will have the ability to
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Table 7.7: Experiment 3b: Initial State Available Actions
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be allocated to any of the three desired missions. The resulting performance is less certain

but anticipated to be higher than alternative options. Germany can invest in a communica-

tions upgrade for legacy systems with developing the Cloud Combat focused on integrating

legacy platforms. Germany can refresh existing Tornado platforms at a reduced cost and

shorter schedule. The draw back is the expected system performance. Germany can also

invest in the development of Tornado ECR to help increase the SEAD/DEAD capabilities

needed for traditional adversaries. Lastly, Germany can invest in F/A-18 or F-18G plat-

forms. There is a short turn around given historic development and the F/A-18 is nuclear

capable. Similar to the Tornado ECR variant, the F-18G variant helps with the traditional

adversary via SEAD/DEAD mission supporting capabilities. It is unclear given Germany’s

mission preferences, the projected system performance, the projected system timelines, and

adversary decisions what is the best path forward for Germany.

The resulting Risk-Tolerance Sensitivity Profile (RTSP) for the initial state for Germany

is captured in Figure 7.131. All previously described actions are represented. Action 38

and Action 41 peak near ξ = −1 and therefore correspond to ‘worst decisions’. Action 38

is to invest in developing the F-18G and Action 41 is to invest in the development of the

F/A-18. Action 53 and Action 47 peak near ξ = 0 and represent ‘low risk decisions’ rela-

tive to alternative actions. Action 48, investment in refreshing existing Tornado platforms,

represents the ‘high risk’ option of those initially available based on the peak near ξ = 1.

The final action, development of the Tornado ECR variant, results in a dominated solution

for all of ξ.

Examination of the State 1 Return map (Figure 7.132) helps gain more insight in addi-

tion to the State 1 RTSP. The graph represents the change in Return mean and variance as a

function of ξ for each available action. For State 1, the Return map clearly shows very little

change in relative mean and variance in Return for each state based on the ξ value. Each

action mean and variance remains near the same. There is not crossing of mean-variance

lines between difference available actions. There is no significant relative shift as the risk-
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Figure 7.131: Experiment 3b: Initial State RTSP

tolerance level is varied. Action 38 and 41 remain near the low mean and high risk position

at the bottom right. Actions 53 and 57 remain in the low risk position in the center left. Ac-

tion 48 is in the high risk position in the upper right. and Action 122 is fully dominated by

all other actions indicated by its position between the maximum risk and worst positions.

These observations are consistent and supportive of the RTSP results above.

The last plot of interest for State 1 is the entropy plot (Figure 7.133). Similar to the

RTSP, the future Return entropy of each action at State 1 is plotted as a function of risk-

tolerance level (ξ). Two observations can be made about the entropy sensitivity. First, the

near constant entropy values for each state as the risk-tolerance is varied. The second is

the grouping of actions in a low and high entropy bin. The correlation between the high

Return variance actions and the high entropy actions. These two observations align to the

consistency seen in the Return map above.

The second SOI selected for examination is State 987 and represents a state that occurs

after an initial decision to develop the F/A-18 is made. The state occurs after the develop-
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Figure 7.132: Experiment 3b: Initial State Mean-Variance Map

Figure 7.133: Experiment 3b: Initial State Entropy

294



Table 7.8: Experiment 3b: State 987 Available Actions
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ment is complete and, with freed budget, more decision opportunities are present. In this

State there are four available actions which are depicted in Table 7.8.

Two actions were also available in the initial state, Action 53 and Action 57. Both

actions involve the development of a new system and allocation of available Tornado plat-

forms. Action 53 represents the development of the Cloud Combat with legacy platforms

and Action 57 represents the development of the NGF. Developing only a single platform

and not acquiring new air wings (e.g. the newly developed F/A-18) would result in poten-

tial available resources in the near future. Alternatively, Germany could not only develop

the legacy focused Cloud Combat or NGF but could also acquire an F/A-18 platform just

developed. This action could restrict future resources and sets a fixed path for a reasonable

time forward.

The RTSP for State 987 is captured in Figure 7.134. The result initially appears less

complex than the initial state. Action 53 can be categorized in the ‘worst’ category as
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Figure 7.134: Experiment 3b: State 987 RTSP

it peaks at low ξ and decreases to near zero at high ξ. Action 53 is the Cloud Combat

investment. Action 55 falls into the ‘high risk’ category for a low to high influence trend

as ξ is varied from −1 to 1. Action 55 corresponds to the development of legacy Cloud

Combat and the acquisition of an F/A-18. Action 58, development of the NGF and F/A-18

acquisition, shows signs of being dominated by other available actions with a near constant

and erratic response as ξ is varied. Action 57, investing in NGF only, can be categorized as

‘low risk’ due to the shape of the response and peak near ξ = 0.

The Return map for State 987, Figure 7.135, captures a more complex interaction as

ξ is varied than what was seen in State 1. The black markers with a centered white dot

represent the ξ = −1 points. The black markers with a centered white ‘x’ represent the

ξ = 1 points. Each dot in between represents discrete ξ steps in between.

State 987 has a number of crossing paths where State 1 had none. The relative action

Return mean and variance was not sensitive to the changes in ξ. There exists more noise in

State 987 results due to the number of available future samples than exists in State 1. Given
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Figure 7.135: Experiment 3b: State 987 Mean-Variance Map

the lower level of sampling, there are still trends and sensitivities that can be evaluated.

State 987 shows a much higher sensitivity to the risk-tolerance of the German stakeholder.

A clear trend can be seen with Action 53 (develop legacy Cloud Combat). The action stays

in a worst case location relative to the other action positions for each ξ. Similarly, Action

55 (develop legacy Combat Cloud and acquire F/A-18s) has a high risk relative to the other

actions for all of ξ. These two observations support the RTSP result of the first action being

a worst case scenario and the second being the highest risk. The most erratic options in the

Return map is Action 58 (develop NGF and acquire F/A-18s). The inconsistency aligns to

the non-dominated attribution derived from the RTSP. The least risk option, Action 57, can

be observed to be consistently near the minimum variance point as ξ is varied.

The observations on the Return map support the conclusions drawn from the RTSP

for State 987. The last metric is the entropy of each action (Figure 7.136). The observed

entropy follows the trends seen in the Return variance of the Return map in general. All

actions reduce in overall entropy near the minimum risk point where ξ equals zero except
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Figure 7.136: Experiment 3b: State 987 Entropy

for the fully dominated action (Action 58).

The last selected state was chosen from the meta-model and not from the reconstituted

states. The meta-model selection allows the analysis of a decision space before it is applied

back to the full problem. When applied back to the full problem, the relative impact of

specific actions can be lost as they are dis-aggregated. The selected state is meta-model

State 626. There are five available actions in the state (Table 7.9). Actions 53 and 57 have

been previously introduced. Two new actions exist, Action 131 (develop NGF and acquire

F-18G) and Action 198 (develop legacy Cloud Combat and acquire F-18G). All full states

represented by this composition state (State 626) have actions that are a subset of those

presented in the table. All the states represent results when the F-18G was developed first

during the initial state. The option here, similar to state 987, is whether to continue to invest

in the F-18G (moving to acquisition) or not.

The RTSP is captured in Figure 7.137 shows the relative weight of each action using

the risk-based derived policies. A few clear trends are present. First, the actions with and
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Table 7.9: Experiment 3b: Composite State 626 Available Actions
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without the acquisition of F-18Gs can be made. Action 57 (develop NGF alone) and Action

53 (develop legacy Cloud Combat alone) both appear to be nearly all ways dominated by

the other actions, meaning those that also acquire F-18Gs. This is apparent in the lack of

trend relative to the risk-tolerance level for both of the actions. Action 198 appears to be

the worst action to select and Action 131 appears to be the most risky though not nearly

as relatively risking as previous actions evaluated. The lack of significantly higher risk is

derived from the deviation of Action 131 from the others as ξ approaches 1.

The Return map for meta-model State 626 is shown in Figure 7.138. The map shows

a near constant domination of Action 53 as it remains on the right hand side of the plot.

Action 57 shows a similar patter except at high risk-tolerance levels where Action 131

remains dominant. Action 131 consistently dominates the other actions with less of a

margin at high ξ.

The entropy graph for State 626 also presents additional useful information (Figure
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Figure 7.137: Experiment 3b: Composite State 626 RTSP

Figure 7.138: Experiment 3b: Composite State 626 Mean-Variance Map
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Figure 7.139: Experiment 3b: Composite State 626 Entropy

7.139). Here, the entropy diverges from some expectations given the RTSP and the Return

map. Action 53 (develop legacy Cloud Combat alone) proves to be the most volatile for all

ξ represented by the consistently higher entropy. This shows the most variation in future

outcome and shows that this selection restricts the future less than others. It should be noted

that this is done with no necessary gain in mean out come as represented by the action’s

dominated state derived from the RTSP and the Return map. Action 57 is the other higher

volatility state though only at lower ξ. This gain aligns to a less restricted future. Both

actions allow resources to be decided to be used at future states where deciding to acquire

a given system (e.g. F-18G) would restrict future outcomes. Again, it should be noted that

the mean Return is negatively impacted by Action 131 and positively impact by action 198.

The increase and decrease in mean Return given the lower volatility shows the impact of

the F-18G acquisition.
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Step 3: Generate Stakeholder Insights

The final step of the methodology process is to derive insights to provide to the stakeholder

of interest. For experiment 3, the stakeholder of interest is Germany with all other stake-

holders, and their decisions, acting as context for analyzing Germany’s decision space.

Specific rules sets can be developed based on the Step 2 analysis in the previous section.

The most important insights come to the initial decision space Germany is faced with and

the main purpose of the exercise.

Germany is initially faced with the decision of how to replace their aging Tornado air

wings and how to expand current air based capabilities. There is a next generation devel-

opment path that involves many stakeholders (developing the NGF and the initial iterations

of the Cloud Combat). This growth path would entail working with other stakeholders and

developing new systems for insertion into the existing SoS. There is a path to refresh the

current fleet with new technology and invest in expanding the Tornado platforms role (de-

velop Tornado Refresh and develop Tornado ECR). This refresh path has less technology

and system development. The refresh path also is a fully solo development. There is a

path of acquiring higher TRL platforms (F/A-18 development and F-18G development).

The higher TRL plat form involves acquiring existing developed systems and is reliant on

an external partner country, the United States. The descriptions of the varying initial state

decisions are present in the representative truth model. The cost sharing, cost uncertainty,

performance, and schedule uncertainty are captured for the joint development of the low

TRL solutions (NGF and Cloud Combat). The higher reliability of performance with some

schedule savings is captured for the refresh path. Lastly, the short timeline of acquiring

previously developed systems and the relatively high certainty of their performance are

captured. This provides qualitative context to overlay the results produced when the meta-

model was evaluated and metrics were produced.

The first item of note is that developing EW platforms to support the SEAD/DEAD

mission first aligns to a worst decision scenario. With out the support of more centrally act-
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ing assets (NGF, refreshed Tornado, or F/A-18) the resulting SoS will produce a very risky

and low performing outcome. The second observation deals with which base platform that

Germany should initially invest in. The subset of all options are to develop the Next Gen

Fighter (NGF), refresh the existing Tornado platforms, or acquire F/A-18s from the United

States. Of these options, the analysis indicates that acquiring the F/A-18 aligns to a worst

decision, developing the NGF aligns to a low-risk tolerance, and refreshing the Tornado

aircraft aligns to a high-risk tolerance. The recommendation would be to never invest in

the acquisition of the F/A-18s and select your current action based on your risk-tolerance

profile. The Tornado refresh may be advantageous if adversaries take more time to develop

new systems and less performance is needed to combat a near peer threat. The Tornado

refresh outcome takes the full brunt of adversary uncertainty. The development of the NGF

may take longer but ultimately produces a more dependable outcome in the face of simi-

lar uncertainties. The F/A-18 acquisition may close a short term gap but ultimately leaves

less resources to develop long term solutions. The opportunity to refresh current Tornado

platforms will pass by as they are retired and no resource are available. The NGF will not

see IOC until after the time horizon considered due to resource constraints applied to the

short term F/A-18 solution. The last opportunity for investment by Germany is to begin the

development of the Cloud Combat solution with the integration of legacy platforms. The

full impact of follow programs (e.g. extending Cloud Combat to future platforms) is not

impact in the time horizon evaluated. Legacy platforms will exist throughout time horizon

considered and the SoS performance sees an immediate impact of it’s development. The

Cloud Combat, though maybe considered a support capability, should be considered as part

of a low-risk portfolio going forward.

The second state based information is derived from the analysis fro State 987. This state

represents a successor state to the initial state that is present after the development of the

F/A-18 is selected as the initial action. The quick acquisition time of the existing platform

allows for a very near term decision to emerge within a few years. Note that there is not
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an opportunity for Tornado refresh and there is no opportunity to develop EW capabilities.

The action space encompasses two decisions for Germany:

1. Acquire a fleet of F/A-18s or cancel the program after development

2. Develop the NGF or develop the legacy platform based Cloud Combat

Looking at each of the two decisions independently can be done by looking at the

policies without the effect of the other decision variable. The acquisition of the F/A-18 fleet

emerges as the higher risk option with the cancellation decision emerging as the worst-to-

lower-risk option. This decision dominates the sensitivity to risk. The decision between

NGF and Cloud Combat development is eclipsed by the decision to acquire the F/A-18

platform or not. This decision domination is scene in the less response when the policy is

controlled for the F/A-18 decision. Due to the decision to invest in the long term programs

being identified later than the initial state, the time horizon of the investment results is

beyond the planning horizon used. The results of the time horizon cut off is a shift for

decisions with out a Return toward the worst decision category and those with a Return

toward the higher-risk category. This decision space is close to the point of seeing impacts

of the time horizon cut-off.

If the decisions are viewed in combination then additional trends can be derived. Devel-

oping the NGF and acquiring the F/A-18 results in outcomes that are sub-optimal compared

to others for all risk tolerances. An investment in Cloud Combat alone yields a future with

a well integrated legacy SoS but does not address the changing threat environment directly

with new capabilities and is the worst option to select. The acquisition of F/A-18 platforms

and the development of the Cloud Combat closes the mission need in the time horizon con-

sidered, including the nuclear delivery mission) but does come with higher risk. The lowest

risk path forward is to cancel the F/A-18 acquisition and develop the NGF. This path allows

future resources to remain available and looks to develop the NGF.

To examine this decision space relative to predecessors can provide context as well. To
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have reached the state of being able to acquire F/A-18 platforms, the development decision

would have been made in the initial state. That initial state decision is considered a poor

initial decision. If Germany were to select the F/A-18 acquisition today then more infor-

mation would be know when they actually reach the second decision point of whether to

continue and acquire the platform or cancel the program. The epistemic uncertainty would

have faded as the future became reality. The actual results state would one of the many

single draws of future outcome made in creating the analysis. To examine this viewpoint,

the Truth Model could be initialized at the second decision point and a full examination

made giving varying initial conditions.

The final analysis conducted was the evaluation of a decision space encompassing the

decisions to:

1. Acquire a fleet of F-18Gs or cancel the program after development

2. Develop the NGF or develop the legacy platform based Cloud Combat

Once again, a non-recommended decisions was made at the initial state to develop F-

18Gs. This could be made to help cover the need to counter enemy air defense and support

existing platforms across the mission space. Acquiring F-18G platforms and developing

the legacy Cloud Combat capability decision results in great long term support but little

acting platforms to execute the needed missions and does not directly support the nuclear

delivery mission in the future. Just investing in the Cloud Combat capability results in net

outcomes that all other decisions surpass, providing only some support and no new acting

capabilities. Developing both the F-18G and the NGF has some merit but comes with

increased risk relative to only developing the NGF. Developing only the NGF allows for

non-committed future resources to go toward other potential long term solutions.

The results reviewed in this section are subject to the assumptions made during the

definition of the problem via the construction of the Truth Model. It is possible to return to

the problem definition and play what-if games utilizing the methodology presented here.
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Above, specific states and decision-spaces were analyzed from the full state space and

the compressed state space to produce specific rule sets. These rules sets are derived from

the composite of varying risk-based policies. A demonstration of the overall impact of a

selected policy can also be measured by rerunning the policy back through the meta-model

or full Truth Sim. The results of the replay through either model demonstrate the relative

outcomes if different rule sets are followed. For the full example problem the policies

were used to re-sample the MDP using the derived policies for three varying risk-tolerance

levels (ξ = 1, ξ = 0, ξ = −1). The resulting reward versus time set for each are captured

in Figure 7.140a, Figure 7.140b, and Figure 7.140c. Each individual plot appears chaotic

and without specific trends. The comparison of the final reward states near the ending time

steps provides the relative impact of the risk-based policies. As ξ is increased, the mean

of the reward cloud at high time steps begins to shift higher and higher, corresponding to

the anticipated higher mean result. The spread of values around the mean at higher time

steps if lower for the ξ = 0 case and higher for the ξ = −1 and ξ = 1 case. Little else

quantitative information can be directly inferred from the comparison of the reward versus

time plots.

The Reward versus time plots display relative significant trends between the result

from using each policy. Six additional comparisons sliced by time and risk-tolerance level

demonstrate the difference in mean and variance of reward for each of the representative

policies. Each comparison of policy return is done with a Probability Density Function

(PDF) and Cumulative Distribution Function (CDF) of all Returns seen as a function of

time step. One distribution is represented in blue and the other in green. On the PDF plots,

the mean at each time step is represented by a vertical line matching the corresponding

color. The three sigma limits are marked with a vertical dashed line above and below the

mean marker in the corresponding color. This allows the direct comparison of mean and

variation as a function of time step for the results of two different risk-tolerance levels (ξ).

Three cases are examined:

306



(a) Experiment 3b: Re-Sampled ξ = −1 Policy Based Reward versus Time

(b) Experiment 3b: Re-Sampled ξ = 0 Policy Based Reward versus Time

(c) Experiment 3b: Re-Sampled ξ = 1 Policy Based Reward versus Time

Figure 7.140: Experiment 3b: Re-Sampled Policy Based Reward versus Time
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• Case 1: ξ = −1 vs. ξ = 0 (Figure 7.141 and Figure 7.142)

• Case 2: ξ = 0 vs. ξ = 1 (Figure 7.143 and Figure 7.144)

• Case 3: ξ = −1 vs. ξ = 1 (Figure 7.145 and Figure 7.146).

The first case compares the worst risk-tolerance value risk-based policy results to the

lowest-risk risk-tolerance value risk-based policy results. The PDF and CDF plots compare

the distribution of reward across each time set step. Near the initial state, time step t = 0,

there is little difference between the two Reward profiles. The reward profiles begin to

diverge as the time steps increase and as decisions are made using the different risk-based

policies. The mean of the worst case decreases as time steps increase (mean shown by the

solid blue vertical line at each time step) while the low-risk case remains higher (Figure

7.141). The variance of each distribution is visually represented by the 3σ values depicted

in the corresponding vertical dashed lines. The relative variance of the worst distribution at

later time steps is much greater than the variation of the low-risk distribution. The CDF of

the same data provides a slightly different view point (Figure 7.142). A significant trans-

lation difference demonstrates the better mean performance of the low-risk policy and the

shorter rise time represents the lower variance of the low-risk outcomes. These observa-

tions demonstrate that the the worst case having a lower mean outcome and higher variance

in outcome than the lowest risk policy.

The second case compares the lowest-risk risk-tolerance value risk-based policy results

to the highest-risk risk-tolerance value risk-based policy results. A similar trend to the first

case can be observed . The PDF comparing the reward outcomes (Figure 7.143) shows

the lower mean of the lowest-risk policy outcomes and the higher mean of the highest-risk

policy outcomes. Additionally, the variance trend is visible via the 3σ markers. As the time

steps increase, the variance grows more substantially for the highest-risk policy reward

profile than it does for the lowest-risk policy reward profile. The Reward CDF comparison

(Figure 7.144) shows a similar relative mean and variance trend seen in case one between
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the worst policy and lowest-risk policy but in this case between the lowest-risk policy and

the highest-risk policy.

The third case compares the reward profiles generated by using the worst case policy to

the highest-risk policy. The first two cases compared each extreme to a common baseline

seen in the lowest-risk policy. The third case compares the two extreme cases. A clear

much more significant divergence in mean Reward is evident as the time steps increase

(Figure 7.145). This divergence represents the impact of worst versus highest-risk poli-

cies on potential future outcomes. The divergence is clearly depicted by the relative shift

between the two distributions shown in the CDF comparison (Figure 7.146).

Benchmark

The standard approach today to solving the applied problem is to determine the optimal

policy and use it to provide input to decision makers. This results in a less stable and in-

formative solution on which to base decisions. The optimal policy was determined using

Q-learning and policy-value iterations as described in Section 6.3.2. The data presented

here was selected for comparison to the Experiment 3b results. The policy convergence re-

sults are used to explore the stability and the resulting policies are compared corresponding

to the risk-based policies to demonstrate the difference in derived information.

State 1 policy convergence is presented in Figure 7.147. The convergence to a steady

state can be observed over the course of the iterations. A note can be made on the lack of

variation and contrast in the resulting policy. There is little individual contrast between the

optimum and the sub-optimum action solutions. Each action is very near an equal policy

of 16.67%. The policy is ultimately derived from the value of each state-action sample.

Action rewards that have a high variance can create variances in the final policy based

on the sampling used. These variances in the final policy can be great enough to provide

variation in optimum actions selection from policy evaluation to policy evaluation. Actions

that are close in Q-value, represented by the final policy values, can result in a flip or switch
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Figure 7.141: Experiment 3b: ξ = −1 (blue) vs. ξ = 0 (green) Policy Based Reward PDF
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Figure 7.142: Experiment 3b: ξ = −1 (blue) vs. ξ = 0 (green) Policy Based Reward CDF
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Figure 7.143: Experiment 3b: ξ = 0 (blue) vs. ξ = 1 (green) Policy Based Reward PDF
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Figure 7.144: Experiment 3b: ξ = 0 (blue) vs. ξ = 1 (green) Policy Based Reward CDF
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Figure 7.145: Experiment 3b: ξ = −1 (blue) vs. ξ = 1 (green) Policy Based Reward PDF

314



Figure 7.146: Experiment 3b: ξ = −1 (blue) vs. ξ = 1 (green) Policy Based Reward CDF
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of the optimum action.

For the policy evaluation shown in Figure 7.147, the optimal policy can be identified as

the highest exploration based policy. The optimum action for State 1 is the highest value

at the final iteration, Action 48. The optimum State 1 action corresponds to the most risky

option identified previously. The optimal solution yields the recommendation to choose to

refresh the Tornado platforms that Germany currently has. There is one additional insight

available than just the optimum selection. There is a relative scoring. The relative score

roughly matches the mean Return order as expected. The mean Return of each action from

taken Figure 7.132 can be compared to the preferred order based on the exploratory policy

shown in the optimum policy convergence plot. Both methods rely on similar long term

Return (not just Reward). The optimal policy derives it’s solution from the mean of the

Return. The direct order similarity between the optimal action preferred order and the

mean Return of each action demonstrates the reliance.

The risk-based policy method expands the evaluation based on a second dimension.

The first dimension is the mean Return and the second dimension is the Return variances.

Optimum policy methods do not take into account the Return variance of actions. The

risk-based policy method includes the use of a foundation to calculate all derived infor-

mation previously presented. This inclusion allows for the more nuanced and informative

information to be derived from the risk-based policy algorithm, RTSPs, and mean-variance

maps.

The second state explored above was State 987. The corresponding policy convergence

for the optimal policy solution for State 987 is shown in Figure 7.148. Note that unlike

State 1, previous analysis State 987 has a higher degree of chance as the risk-tolerance

level is varied. This is depicted in the corresponding risk-based policy mean-variance map

presented in Figure 7.135. The optimal policy method identifies Action 55 as the optimal

action for State 987. Action 55 desires to both develop the Combat Cloud for legacy plat-

forms and acquire the newly developed F/A-18. The selected action corresponds to one of
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Figure 7.147: Experiment 3b: State 1 Optimal Policy Iterations

the riskier options presented in the risk-based analysis.

The decisions space explored through meta-model State 626 also has a corresponding

optimal policy. The convergence graph is shown in Figure 7.149. Note that Action 131 just

barely passes Action 57 for optimal action selection. This slight differences corresponds to

a sensitivity to variance in outcome. If sampling is changed, there could easily be a switch

in optimal action selection. Both actions correspond to higher risk selections outlined in

previous analysis. This further demonstrates the lack of information gathered relative to

the risk-based approach, the tendency of the to select the highest risk options, and the

sensitivity in optimal action selection in the face of high variation in outcome.
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Figure 7.148: Experiment 3b: State 987 Optimal Policy Iterations

Figure 7.149: Experiment 3b: Meta-Model State 626 Optimal Policy Iterations
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CHAPTER 8

CONCLUSIONS

Today, no single system is design without addressing impacts of the larger System of Sys-

tem it integrates with. This dissertation set forth to address an identified need to assist

stakeholders who are faced with strategic planning in complex and uncertain environments.

This dissertation worked to address the associated complexity and uncertainty where rou-

tine design methods and decision support methods have lacked focus.

8.1 Summary of Methodology Application

The methodology developed as part of this work is designed to be used by an analyst

conducting evaluations of future scenarios to help provide immediate decision evaluation

and future decision evaluation. Provided here is a summary of the necessary inputs, the

expected outputs, and application opportunities.

8.1.1 Required Inputs

Through out this work, the concept of an existing Truth Model was used to define both

the primary input needs to the methodology and to help bound the simulation test bed

used to exercise the methodology. The functions of the test bed was to emulate a full and

complete Truth Model. The functions and design of the test bed are described in Appendix

refAppendixB. The development of the functions of the described Truth Model (Section

5.2) and the test bed represent the functions that need to be provided in order for an analyst

to use the methodology.

The main function of the Truth Model is to provide the development of the decision

space. There must be a heuristic or evolving mechanism that can produce a decision space

for each stakeholder and play out a selected action. An example can be found in a Agent
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Based Modeling where heuristics can be used to develop and select decisions. The heuris-

tics can include technology road maps, system development progression, and resource con-

straints.

Additionally, evaluating the results of each decision is just as important. The capability

to evaluate mission level metrics and overall stakeholder utility is needed to provide the

necessary state-action rewards. At the most basic, a transfer function between the current

stakeholder allocations and individual stakeholder utility is needed. The transfer function

would traditionally be an engagement or mission level analysis produced using frameworks

such as FLAMES, AFSIM, STORM, BRAWLER, etc.

The last input of significant note is defining all sources of uncertainty. The methodology

relies on the analyst to develop stochastic inputs or models that represent low level uncer-

tainty. An example of this for technology and system definition can be found in the Section

3.2 where uncertainty is used in technology planning. The application of the methodology

relies on the bottoms up definition of individual uncertainty elements. For example, a pro-

gram office for an acquisition can provide estimates and uncertainties on holding a CDR

date or a initial delivery date. A system performance analysis team can provide uncertainty

related to system performance. The uncertainties can be defined at a low level and more

easily justified than they can be directly justified at a macro level. This methodology relies

on the this bottoms up approach to address the uncertainty at a macro level.

8.1.2 Expected Outputs

This methodology produces insights that can be used to develop a risk-based playbook for

a stakeholder. There are two basic types of insights that are provided. State-based risk-

tolerance-dependent rules and action-based risk-tolerance-dependent rules. Both sets of

outputs are generated as a function of stakeholder risk-tolerance. This risk-tolerance de-

pendency allows actions to be categorized and provided to a stakeholder as actions never to

be taken, actions that should be selected for a low-risk-moderate-reward outcome, actions
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that should be selected for a high-risk-high-reward, and actions that are always Pareto sub-

optimal where there is always a better choice independent of stakeholder risk-tolerance.

State based rule sets provide ‘if in State X , decisions y should be considered given ξ

stakeholder risk-tolerance’ style rules. Action based rule sets provide ‘if a stakeholder sees

decision space Y and the state has aspects x, decisions y should be considered given ξ

stakeholder risk-tolerance’ style rules. Each type of resulting output rule set is explored in

Section 7.3.

8.1.3 Application Opportunities

An analyst is seen as the final end user of this methodology. The analysts goal is, no mat-

ter the application, to provide insights to a System of Systems stakeholder facing decision

making under high uncertainty. The methodology is designed to look across multiple Sys-

tem of Systems. In this work, a single SoS is often represented as an allocation of assets to

a specified mission. The ability to judge development, acquisition, and allocation decision

across multiple SoS enables an analyst to evaluate the impact of these decisions in a broad

sense. Trade-offs can be made between decisions despite a high degree of uncertainty.

The example used as the full complexity and demonstration problem represents con-

ducting a broad AoA for future fighter investment in the context of the System of Systems

the fighter will be integrated with. Similarly, the methodology can be applied at any critical

decision period for single or multiple acquisition decisions. The methodology can also be

used for long term strategic planning. The previous example primarily looked at the initial

decision state. All future states can additionally be evaluated and conditional rules created

and applied. This enables the generation of a rule book. A rule book can provide not just

immediate guidance but ongoing guidance over time. The evaluation can be re-examined

as future possibilities are culled with time.
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8.2 Hypothesis Resolution

Each hypothesis asserted in Chapter 4 was tested with experiment sets described in Chapter

6 based on the developed methodology depicted in Chapter 5. The goal of each experiment

set is to test the validity of the corresponding hypothesis using the developed methodology.

The results of each experiment are presented and described in Chapter 7. The results and

their analysis confirm that, under specified ground rules and assumptions, the hypothesis

hold true. The validity of each hypothesis is explored below.

8.2.1 Hypothesis 1: Policy Generation

Hypothesis 1 asserts that the use of the risk-based policy methods on a representative MDP

will allow Pareto efficient decisions to be identified. Experiment Set 1 was constructed

to test Hypothesis 1. Experiment Set 1 was broken into two separate sets based on the

complexity of the set up. Experiment Set 1a used repeated decisions with an abstracted

state-space. The simplified set up allowed only the isolation very specific actions and their

results to be evaluated. Experiment Set 1a demonstrated that Pareto efficient actions can

be identified and separated from inefficient actions using the Risk-Tolerance Sensitivity

Profiles (RTSP).

The second experiment set, Experiment Set 1b, was built on running a representative

Truth Model setup. Cases were run across a spectrum from fully intuitive to those requiring

more retrospection to evaluate. Each case added complexity to the decision space:

• Experiment 1b Case 1: Acquisition Only

• Experiment 1b Case 2: Acquiring Develop Systems and Developing New Systems

• Experiment 1b Case 3: Acquiring, Developing, and Allocation of Systems

The results demonstrated the continued Pareto efficient action identification based on

long-term stakeholder utility. The variation between short term and long term utility was
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specifically explored along with the sensitivity to variations in system capability. The abil-

ity for the risk-based policy algorithm to produce relevant RTSPs was demonstrated across

each case of increasing complexity. Each RTSP allowed more than just the Pareto efficient

and inefficient actions to be identified. The profiles allowed the Pareto efficient actions

to be categorized into those that produced the ‘worst’, the ‘low risk’, and the ‘high risk’

results for a given stakeholder.

Hypothesis 1 was tested using Step 2 of the methodology and it was demonstrated that

under ideal (Experiment Set 1a) and realistic (Experiment Set 1b) conditions to be true.

8.2.2 Hypothesis 2: State Compression

Hypothesis 2 asserts that the state space can be compressed to produce a lower order MDP,

or meta-model, and that the meta-model risk-based policy solution will not dilute the result-

ing RTSPs. Additionally, the computation time would decrease while the resulting RTSPs

would not drop in relevant fidelity. Experiment Set 2 was designed to demonstrate the va-

lidity of Hypothesis 2 using Step 1 and Step 2 of the methodology. The full Truth Model

experiment cases developed to test the risk-based policy generation algorithm (Experiment

Set 1b) were used to evaluate the state space compression feasibility.

Experiment Set 2 results and analysis demonstrated that the RTSP can be considered

valid down to a state compression ratio of near 25% for well sampled states. For the same

conditions, the policy computation time was reduced by 70%-80% under higher complexity

cases and even more for less complex cases. Experiment Set 2 showed that Hypothesis 2

held using the methodology Step 1 for specified compression ratios.

8.2.3 Hypothesis 3: Derived Information

The final hypothesis of this work asserts that the information gathered from using the out-

puts of the risk-based policy algorithm, the RTSPs, allow more information to be gathered

above and beyond what is produced using optimal policy methods. The optimal policy
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methods represent the current state of the art approach to solving architecture evolution

problems. Proving Hypothesis 3 results in proving the methodology developed has pro-

duced utility above and beyond current approaches.

Experiment Set 3 was broken into two sub-sets: Experiment Set 3a and Experiment Set

3b. Experiment Set 3a explores the information gathered from evaluating the increasingly

complex Truth-Model-based scenarios of Experiment Set 1b and Experiment Set 2. The

experiment allowed the intuitive and digestible problems to be evaluated for information

and compared against optimal policy solutions.

Experiment Set 3b represents the full complexity test case. This test case was not

evaluated in Experiment 1b due to the computational requirements to solve it. The full

complexity test case was then not available for state compression analysis in Experiment

Set 2. The full complexity problem required the full methodology to be applied in order to

fully test the hypothesis using a stressing case.

Additionally, the full complexity test problem was based on a representative operational

case (FCAS SoS development). The operational case was selected to demonstrate the util-

ity of the methodology and provide context for it’s application to real world problems.

Experiment Set 3 assists in demonstrating the final utility of the methodology beyond just

testing Hypothesis 3. The methodology is compared to an optimal policy method demon-

strating the additional utility of using the risk-based evaluation approach. The application

also gives direct context for the application of the methodology above and beyond the test

scenarios used in Experiment Set 1 and Experiment Set 2.

8.3 Reflection on Research Objective

The goal of the research conducted for this dissertation was to develop a new methodology

that will instantiate the evolution of a System of Systems specifically with regard to the de-

cision making of the stakeholders accounting for the influence of the external environment,

the morphing of the requirements, and the availability of resources over the lifetime of a
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SoS to enable robust individual stakeholder decision making.

The methodology described in Chapter 5 represents the culmination of this body of re-

search. The methodology represents the resolution of the Research Objective. The method-

ology itself is new. It is based on a novel risk-based policy algorithm and applied state space

reduction methods.

The methodology uses a Truth Model to fully explore a multi-stakeholder decision

space and represent it as an MDP. The decision space can be fully characterized or rep-

resented using a reduced MDP, or meta-model. The sampling method, time based model

representation, and Return calculation methods enable the impact of time based metrics to

be captured. Capturing time based metrics allows the future impact of decisions to be ac-

counted for along with aspects changing in the temporal dimension. Such aspects include

changes in external environment, changes in mission preference, and changes in resources

over time.

The last aspect of the Research Objective addresses the idea of helping stakeholders

make decisions under high uncertainty. The use of RTSPs allows information to be gathered

on the relationship between the mean and variance of long-term stakeholder utility. The

additional information provided to stakeholder by using the RTSPs allows stakeholders to

see through the fog of uncertainty. It allows the quantification of relative risk and reward

for individual decisions while accounting for a large number of degrees of uncertainty.

The key algorithm used to produce RTSPs is the risk-based policy algorithm and is at the

heart of the methodology. The methodology ultimately enables to production of the needed

products and the final development of stakeholder recommendations based on the produced

products.

The methodology developed through the research presented in this body of work has

satisfied the original Research Objective. A number of contributions have been made to

the field of Aerospace Engineering and System of Systems Engineering. Additionally, a

number of future paths for continuation of this research have been identified.
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8.4 Revisiting the Motivation

The developed methodology was shown to meet the original Research Objective set forth

in the beginning of this work. The Research Objective was developed in response to the

described motivation. This work was motivated by the need to supply a decision maker

within the United States military a method to plan future investments and developments in a

high uncertain environment. An environment where other cooperative and non-cooperative

stakeholders will impact the desired outcome. An environment that requires balancing

many competing objectives.

The full complexity example problem demonstrates the ability to use the designed

methodology to address the needs of a single stakeholder. The selected stakeholder of

interest, Germany, was able to be provided a risk-based rule set under the uncertainty asso-

ciated with developmental timelines, predicted system performance, resource constraints,

multi-objective priorities, cooperative stakeholder decision making, and non-cooperative

stakeholder decision making. The methodology will help a single United States defense

stakeholder plan without relying on another level of unified and centralized control.

8.5 Summary of Contributions

This work has resulted in a number of contributions that culminate in impacts on the field of

System of Systems Engineering with specific impacts on strategic military force structure

planning. The highlighted impacts below are those that enabled the construction of the

methodology that addresses the over arching Research Objective and provides advances

toward fully addressing the motivating problem.

Risk-Based Policy Algorithm The risk-based policy algorithm was created to directly

address the need to evaluate the future uncertainty and it’s impact on the value of making

as specific decision. The concept of portfolio risk and reward from the field of Investment

Science was selected and merged with Reinforcement Learning (RL) practices to produce
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the risk-based policy algorithm.

The future variance in outcome for a stakeholder represents the future risk and the mean

outcome represents the reward. A Pareto frontier of action portfolios is established using

the risk-reward of a stakeholder for a specified decision point. During the evaluation of a

decision point a risk-tolerance is selected which yields a single action portfolio selection.

The RL practice of policy evaluation and iterations are used to develop a policy based

on the risk-tolerance and action portfolio selection. The algorithm iterates over all states

and updates the selected action portfolio (or policy) at each iteration. The result is a action

portfolio characterization across all future states for the given stakeholder.

This algorithm is at the heart of the uncertainty analysis present in this work. It fully

enables the development of the RTSP concept. This novel algorithm ultimately allows a

cloud of uncertainty to be evaluated in concrete, quantified, and absolution terms.

Risk-Tolerance Sensitivity Analysis The impact of the risk-tolerance sensitivity analy-

sis builds on the contributions of the risk-based policy algorithm. The analysis method turns

the novel risk-based policy algorithm into a decision evaluation tool. No current method is

equipped to analyze the resulting policy space generated by the algorithm. The RTSP based

analysis enables a broad characterization of individual decision points of stakeholder.

The RTSP analysis enables a stakeholder to fully characterize the impact of uncertainty

via the risk-tolerance variable. It enables the direct identification of Pareto efficient deci-

sions (both positive and negative) relative to long-term reward. Stakeholder can then reject

non-efficient and non-productive decisions. The remaining selectable actions result in a

low-risk to high-risk decision frontier. The analysis method provides stakeholders with the

capability to make risk-based decisions under extreme complexity and extreme uncertainty.

Decision Space Analysis The impact of the decision space analysis builds on the contri-

butions of the risk-tolerance sensitivity analysis. The analysis of RTSPs addresses a single

stakeholder decision point. The decision space analysis identifies similar decision points
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and assists in the development of rules for decision spaces. Decision spaces are charac-

terized by the available actions a stakeholder can take at varying states. In other words, a

decision space has constant actions but variable states.

Rules based on the available actions can be directly developed but other results are

available as well. RTSPs can be grouped by similarity with variation between groups cor-

relate to state information. This yields conditional action profiles based on the state seen

by the stakeholder.

The development of blanket decision space recommendations and conditional decision

space recommendations based on the risk-tolerance of a stakeholder provides the basis of

the development of a stakeholder risk-based playbook.

Evaluation of Complex and High-Uncertainty Decision Spaces The most significant

contribution of this work is the final products delivered to stakeholders which is dependent

on the previously highlighted contributions as well as the full developed methodology. The

final products are insightful observations for strategic decision makers of directed System

of Systems (e.g. military SoS) accounting for a highly complex future (multi-stakeholder

and multi-objective) and a highly uncertain future. The hierarchical composition of analysis

(risk-based policy development → RTSP analysis → decision space evaluation) is what

enables the final contribution and the final utility of this work.

8.6 Future Work

The methodology presented in the dissertation is a solid foundation for SoS stakeholder

decision making under a large amount of uncertainty considering multiple stakeholders

and multiple objectives. Given the foundation set by this work, there are a number of areas

for future work to explore, building upon the work presented in this dissertation.

Increased Scalability There are three areas to explore to directly increase the scalability

of the methodology presented in this work. The first is to reduce the complexity of the
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problem representation. Second is to reduce the state space used for evaluation. Third is to

reduce the action space used for evaluation.

The methodology presented in this work used a direct sample of a Truth Model which

was assumed to only yield Monte Carlo samples (such as a time based simulation) and

relied on storing the full sample sets nearing the creation of a full MDP. Potential options

exist to reduce the sampling and representation burden. First is to develop and use a Truth

Model that allows arbitrary state sampling and off-policy action evaluation. The added fea-

tures open the door to Reinforcement Learning techniques that were not directly considered

in this work due to applicability. Off-policy action evaluation would allow for more infor-

mation to be gathered from the truth model for any given sampling. The assumption of a

time-based simulation as the Truth Model and MC sampling leads to unbalanced sampling

(over sampling near the initial state and sparse sampling near leaf states). Arbitrary state

sampling would allow for even sampling across time steps.

Online and direct development of the meta-model should be considered in the future.

A large amount of information is both stored and required to be processed to develop and

evaluate the meta-model. Partial online records of sampling statistics were used. A di-

rect online, episode by episode creation of the relevant metrics should be explored further.

In doing so, the maintenance of the mean and variance metrics should be taken into ac-

count. In addition to online evaluation, direct function development should be explored.

Direct function approximation can be used to continue to reduce the memory and process-

ing necessary for the current method. This can include Constitutional Neural Networks

for state-space reduction, Deep Neural Networks for value functions, Recurrent Neural

Network (RNN) for time-based evaluations.

Action space decomposition and reduction can also be explored further. Action spaces

are held constant in the methodology from the full sampled action space to the meta-model

action space. Action space decoupling (similar to the typical state space factorization ex-

plored in Chapter 4) can be applied to reduce the overall action space. This method would
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essentially create multiple action spaces present at each state. An example of two poten-

tially decoupled action spaces for the problem addressed in this work would be allocation

of systems and the creation of systems.

Expanding State and Action Metrics This work concentrated on the exploration of

stakeholder risk and reward based metrics (e.g. RTSP). Two concepts were presented to

evaluate the decision outcome volatility and the decision opportunity cost of stakeholder.

Full evaluation and development of the additional decision evaluation metrics can be fur-

ther explored. There exist other qualitative decision metrics that can be quantified and

integrated into the existing methodology.

Meta-Methodology Analysis The final step to process or function development is to

develop interfaces and enable use as a black box. The idea of encapsulation enables more

simple and easier development of complex systems. Methodologies can be encapsulated

just as processes and functions can be. This methodology can be selected and used in a

larger body of work.

The methodology can be used as a black box to evaluate long term priorities, varied

future scenarios, and full sets of future system development timelines. The necessary inputs

of this methodology can be varied to evaluate more than just a single Truth Model setup

and a single stakeholder. Meta-methodology analysis may require additional scalability

considerations depending on the complexity of the problem under consideration.

Automatic Generation of Stakeholder Risk-Based Playbook The output of the method-

ology is the information which enables the development of rule sets to build a risk-based

stakeholder playbook. Future work can concentrate on automating the development of

the risk-based playbook. The automatic development should consider meta-methodology

analysis and options to increase the scalability as outlined above.
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APPENDIX A

DISSERTATION SUMMARY

Figure A.1: Dissertation Summary
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APPENDIX B

TRUTH MODEL DESCRIPTION

The Truth Model Description appendix describes the Truth Model set up used in the exper-

imental set ups described throughout Chapter 6. The purpose of the appendix is to provide

an overview of the Truth Model test bed used for experimentation. The specific set up for

each experiment is described in Chapter 6.

B.1 System to Metric Mapping

Often an individual system-to-metric mapping is done through multi-level Modeling, Sim-

ulation, and Analysis (MS&A). This work does not address the exploration or development

of methods to evaluate current SoS against specific mission level metrics. Chapter 3 out-

lines such methods. For the purposes of experimentation, the Truth Model uses a mapping

between the systems and the final metrics of interest for individual stakeholders.

Each stakeholder has a unique and personal prioritization of missions. Additionally,

each stakeholder has control of the development, acquisition, operation, and retirement of

specific systems. Systems owned by stakeholders comprise a SoS. The combined capability

of the systems will result in a mission outcome measured by a mission level metric.

Each mission is outlined through the traditional kill chain (Find, Fix, Target, Track,

Engage, and Assess or F2T2A). In Figure B.1, an example of a basic Integrated Air Defense

System (IADS) is used to show the mapping of SoS systems to a mission. For a given

snapshot in time, or a frozen SoS state (which may never exist), the type and number of

systems is specified (Equation B.1).
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Figure B.1: Example Assessment Mapping

nsys =



n1

n2

...

nm


(B.1)

where nm is the number of system m current available

Each system contributes to the ability to execute specific capabilities utilized to execute

a mission. This is represented by matrix Cm,k in Equation B.2.

Cm,k =



c1,1 c1,2 · · · c1,k

c2,1 c2,2 · · · c2,k
...

... . . . ...

cm,1 cm,2 · · · cm,k


(B.2)

where cm,k is the system m contribution to capability k

In this example the capabilities are defined by the kill chain. Ultimately, each of these
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capabilities contribute to an overall mission success (B.3). In this example, some stake-

holders may have a preference for the ‘monitoring’ mission while others in the ‘neutralize’

mission. Stakeholders may control systems that contribute to all missions but have a pref-

erence for one mission over another.

Vk,l =



v1,1 v1,2 · · · v1,l

v2,1 v2,2 · · · v2,l
...

... . . . ...

vk,1 vk,2 · · · vk,l


(B.3)

vk,l = system k contribution to mission l

For any given point in time the system level metrics can be calculated using Equation

B.4. There is an additional constraint on the utility based on the number of systems. The

utility can be scaled linearly or by non-linear means. Figure B.2 shows the relative impact

of each additional system from 0 systems to the max number of systems (normalized at 1).

q = nTsysCm,kVk,l (B.4)

where q is the vector of mission level metrics

The final metric for each mission is used to measure the ultimate over all utility (or

reward) for each stakeholder (or player) over the course of the game. A graphic depicting

the mapping relationships is depicted in Figure B.3.

B.2 System Life Cycle and Decision Points

The representation of the system life cycle determines the acquisition, refresh, and devel-

opment decision-space of stakeholders have. A generic system life cycle is modeled using

a finite state machine. A basic diagram of the generic state machine can be found in Fig-

ure B.4. Each system type moves through Asset States (depicted in blue). An asset type
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Figure B.2: System Performance Impact Curves

Figure B.3: Metric Mapping Overview
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Figure B.4: System Life-Cycle State Diagram

represents a class of asset, such as a Global Hawk. Each individual system, or Block 30

Aircraft 2, moves through the System States. The stakeholder(s) responsible for the Asset

Type have decision points that transition individual systems through the state machine.

The decision options open to stakeholders are:

Technology Refresh: Invest the NRE to insert new technology in the existing baseline.

New technology and the performance impacts will be added to the existing system

and the deployment time increased.

System Development: Development of a new system with fully associated NRE cost.

Block Acquisition: Manufacturing of a new block based on a previously developed sys-

tem.

Dispose of System: Retire system from use.
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Figure B.5: System Development Tree and Compatibility Example

B.3 Capturing Decision Uncertainty

Uncertainty comes in many forms as does quantifying the impacts of uncertainty. Uncer-

tainty that is related to decisions is captured throughout the model of the system life cycle

in several ways. In Figure B.4 the points of uncertainty are identified with a probability

distribution icon. Uncertainty that is related to the cost and time for development is cap-

tured using pre-defined probability distributions. For technology development, similar cost

and time distributions are attributed for each stage of TRL advancement to capture uncer-

tainty (Figure B.6). Additional uncertainty is accounted for in the final performance and

capability provided by individual systems at the block level. The two main types of un-

certainty captured are temporal and performance uncertainty. Resource (e.g. budget) and

requirement (e.g mission preference) are also represented.

B.4 Technology Development

Additional stakeholder decisions revolve around the development of key technologies to

be utilized during the development of a system type or a technology refresh of a current

system type. The action to develop, acquire, refresh, or dispose of systems represents a

tactical decision. The action to invest in technology is a strategic decision. Both decisions
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Figure B.6: System Development and Technology Insertion

have a delayed response with respect to observable mission metric changes. Between the

two, the impact of technology investment decisions is not realized for a longer period of

time and comes with much more outcome uncertainty than individual Asset Type decisions.

Technologies are used as enabling factors to calculate the capabilities of an system type.

Figure B.6 depicts the flow of technology into an Asset Type’s development or technology

refresh. Decisions are made by stakeholders to invest in and increase the TRL of technolo-

gies at a cost. Once reaching a TRL threshold, technologies are available to the stakeholder

for development or refresh of an Asset Type. The technologies can then be associated with

a given asset as shown is Figure B.7.
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Figure B.7: Technology and System Evolution Example
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APPENDIX C

ANNOTATED SELECT RISK-TOLERANCE SENSITIVITY PROFILES

Appendix C examines selected Risk-Tolerance Sensitivity Profiles in the context of the

supporting metrics. This allows a more thorough explanation of examples by connecting

inputs, intermediate metrics, and outputs of the RTSP generation process. The purpose is

to provide consolidated a tutorial on RTSP meaning and interpretation of RTSPs beyond

what is discussed in Chapter 5, Chapter 6, and Chapter 7. Selected information from each

of the chapters is combined and presented to provide a more consolidated look at individual

cases.

C.1 Repeated Action Examples: Equivalent Reward and Return

The first set of examples were selected from Experiment Set 1b Case 1 and represent the

simplest of cases. The input MDP is generated using a sequence of repeated equal deci-

sions at each time step. The repeated decisions result in repeated Reward outcomes. The

repetition causes the short term Reward and long term Return to become equivalent. This

allows the defined Reward mean and variance to be directly tied to the resulting RTSP.

The first example is depicted in Figure C.1. The left of the figure shows the relative

action Reward and the left shows the resulting RTSP for the initial state in the repeated

decision sequence. The Pareto frontier for the mean-variance of the action Reward space is

depicted on the left and highlights the higher risk action in red and lower risk action in blue.

With two actions there is never a specific low risk option. Moving along the Reward Pareto

frontier from the blue action to the red action is depicted on the right RTSP by moving

from the ξ = −1 to ξ = 1 along the x-axis. Near ξ = −1, Action 1 will make up most

of the weightings along the Reward Pareto frontier. This carries over, due to the repeated

decisions, to the RTSP as a preference at lower risk-tolerance levels. Symmetrically, Action
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Figure C.1: Annotated Two-Action Decision Space and RTSP

2 has a higher weighting on the Reward Pareto frontier as Action 1 is approached. This

weighting of Action 2 shows on the RTSP as a preference as ξ nears 1.

The second examples adds a single action with a mean in between the previous actions

(Figure C.2). The results from the first example are still scene with Action 1 (yellow) and

Action 3 (blue). The addition of the red intermediate action will begin to be weighted

heaviest near the minimum risk point (ξ 1). This manifests on the RTSP with a peak near a

zero risk-tolerance. This demonstrates the importance of understanding the trends and not

just a maximum at any given risk-tolerance value.

The third example adds a fourth action which represents a mild Pareto inefficient action

(Figure C.3). The variance of the new action is set high relative to the previous three

(Action 4, purple). Similar to Action 2 and the RTSP peak near ξ = 0, Action 4 results

in a reduced preference near the same location. The reduced preference is due to a lower

weighting along the entirety of the Reward Pareto frontier. The fourth example (Figure

C.4) takes Action 4 to another extreme with a significantly increased variance making the

action significantly inefficient. The result is a near zero preference for all risk-tolerances in
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Figure C.2: Annotated Three-Action Decision Space and RTSP

the RTSP. The resulting policy impact can be viewed as noise within each calculated policy

across risk-tolerance levels.

The fifth and sixth examples step the complexity up one more level. Figure C.5 shows

the inputs and outputs for a seven action set-up built to represent a Pareto frontier. Moving

from Action 1 to Action 7 is moving from a ξ = −1 to a ξ = 1. As The risk-tolerance is

varied from low to high, the resulting peaks for each action correspond to moving along

the Reward Pareto frontier. Figure C.6 introduced inefficient actions to the original Pareto

frontier based actions shown in Figure C.5. The additional actions can be seen to be noise

below the Pareto efficient actions in the RTSP similar to what was scene in Figure C.4.

C.2 Multi-Step Return

An example with a similar set-up to Experiment 1b Case 2 was selected to demonstrate

multi-stage decision with temporal and performance uncertainty. Figure C.7 depicts the

setup on the left and the resulting initial state RTSP on the right. At any given state when

the stakeholder can make an action, the stakeholder can choose between acquiring one of
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Figure C.3: Annotated Three-Action with One Mild-Inefficient Action Decision Space and
RTSP

Figure C.4: Annotated Three-Action with One Significant-Inefficient Action Decision
Space and RTSP

345



Figure C.5: Annotated Seven Action Pareto Efficient Decision Space and RTSP

Figure C.6: Annotated Seven Action Pareto Efficient with Inefficient Actions Decision
Space and RTSP
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four systems. The systems performance is depicted by a set mean and variance designed

to vary similar to those seen in the first example problem set. The resulting RTSP follows

expectations built from the previous simpler examples.

The initial state can be analyzed as all future states are essentially repetitions of the first.

Once again, this allows an equation of short term Reward and long term Return. Action 1

is a ‘wait’ action that occurs when an acquisition is underway and no additional acquisition

action can be taken. The action is not available in the initial state or when an acquisition can

be made. Action 5 is preferred near the worst case (ξ −1) and Action 2 is preferred near the

high-risk case (ξ ≈ 1). This is in line with the low-mean low-variance of System 1 and the

high-mean high-variance of System 4. The two intermediate actions show an interesting

trend. There is a built in asymmetry from System 2 and System 3 performance. This

results in an asymmetrical Reward and therefor an asymmetrical Return. This asymmetry

is represented in the RTSP as well. Action 4, acquiring System 2, peaks just under and at

a ξ = 1 with Action 3, acquiring System 3, peaks above and more significantly between

ξ = 0 and ξ = 1. This demonstrates that Pareto efficient actions can be selected from a

more complex repeated action scenario with relative nuanced information.

C.3 Return versus Reward Examples

Two scenarios were selected similar to Experiment 1b Case 2 Scenario 2. The selected

examples show the difference between the impact of short term Reward and long term

Return. The setup is based on developing and acquiring systems in a sequential order with

each system being more or less risky based on design. The baseline scenario results are

shown in Figure C.8. The system performance setup results in a relative mean and variance

Return that is nearly constant for all risk-tolerance levels. The mean-variance plot on the

left shows the Return mean and variance as the risk tolerance is varied. There is little

relative motion. This results in an RTSP that is similar to what was observed in Figure C.1

in the simplest of scenarios.
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Figure C.7: Annotated Repeated Acquisition Only Decision Space and RTSP

Figure C.8: Annotated Baseline Acquire vs. Develop Decision Space and RTSP
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Figure C.9: Annotated Adjusted Acquire vs. Develop Decision Space and RTSP

In a second setup, the variance in return of System 2 is heavily increased. The results

are shown in Figure C.9. The Return mean-variance plot on the left shows the worst point

as a white circle in a black circle. The highest risk point as a black circle with an ‘x’. Note

that the long term Return of selecting to develop System 2 moves from a higher variance

lower mean position relative to acquiring system 1 to having a higher-variance and higher-

mean. This means that as the risk-tolerance is changed, the relative weightings along the

Pareto frontier of each action vary. When the risk-tolerance is low, system 2 development is

in the worst position. When risk-tolerance is high, system 2 development is in the highest

risk position. This is apparent in the RTSP on the right side of the figure. At a low and high

ξ, developing system 2 is preferred. There is a spot near ξ = 0 where acquiring system 1 is

preferred. The corresponding point in the Return mean-variance plot is when the returns of

both are near equal and the variance of developing system 2 is less than that of developing

system 1. This shows that some time in the future there is another decision point that has a

significant impact on the mean and variance outcome. The results are based on the impact

of using a worst, low-risk, or high-risk policy to make future decisions. These decisions

present themselves in the Return seen at State 1 and impact the resulting RTSP.
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Figure C.10: Annotated Complex RTSP Example

C.4 Higher Complexity RTSP

The final example was selected from Experiment 3b and has been divorced from the setup

to allow a direct interpretation to be evaluated. The RTSP is shown in Figure C.10.

There are four classes of actions that can be derived from the RTSP shown in Figure

C.10. There are the worst actions, the low-risk actions, the high risk-actions, and the always

dominated actions. Action 38 and 41 peak near a low risk-tolerance level and can be

categorized as the worst actions. These actions should never be taken since they are always

dominated. Actions 53 and 57 represent the low-risk options as they peak near a ξ = 1.

These actions should be considered when a stakeholder has a low tolerance for risk. Action

48 peaks near a high risk-tolerance and can be categorized as a high-risk action. Action

122 never peaks and has a random impact as a function of risk-tolerance. This indicates

the action falls in the non-efficient class. Note that the random increase near a high risk

tolerance pulls from the impact of Action 48. Despite this, the overall trend still results in

the high-risk and inefficient classifications given to Actions 48 and 122 respectively.
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APPENDIX D

FULL COMPLEXITY PROBLEM REFERENCES

Appendix D contains content that supports the description of the setup, results, and analysis

of the full complexity test problem. The full complexity test problem is used in Experiment

3b.

D.1 System Quantities versus Time

The follow plots are created based on the raw sampling of the Truth Model for Experiment

3b (Section 6.3.2). The plots support the characterization of the Truth Model sampling for

Experiment 3b which is depicted in Section 7.3.2.

Figure D.1: Sampled Tornado Air Wings Deployed versus Time

351



Figure D.2: Sampled Refreshed Tornado Air Wings Deployed versus Time

Figure D.3: Sampled Tornado ECR Air Wings Deployed versus Time
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Figure D.4: Sampled F/A-18 Air Wings Deployed versus Time

Figure D.5: Sampled F-18G Air Wings Deployed versus Time

353



Figure D.6: Sampled Mirage Air Wings Deployed versus Time

Figure D.7: Sampled Rafale Air Wings Deployed versus Time
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Figure D.8: Sampled Eurofighter Air Wings Deployed versus Time

Figure D.9: Sampled F/A-18 Air Wings Deployed versus Time
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Figure D.10: Sampled F/A-18 Update Air Wings Deployed versus Time

Figure D.11: Sampled Next Gen Fighter Air Wings Deployed versus Time
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Figure D.12: Sampled Remote Carrier Air Wings Deployed versus Time

Figure D.13: Sampled Conventional EW Radars Deployed versus Time
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Figure D.14: Sampled Conventional TTR Radars Deployed versus Time

Figure D.15: Sampled Conventional SAM Systems Deployed versus Time
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Figure D.16: Sampled Near Peer EW Radars Deployed versus Time

Figure D.17: Sampled Near Peer TTR Radars Deployed versus Time
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Figure D.18: Sampled Near Peer SAM Systems Deployed versus Time

Figure D.19: Sampled Near Peer Next Gen EW Radars Deployed versus Time
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Figure D.20: Sampled Near Peer Next Gen TTR Radars Deployed versus Time

Figure D.21: Sampled Near Peer Next Gen SAM Systems Deployed versus Time
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