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SUMMARY

Consider a multi-server queueing system with tandem stations, finite intermediate buff-
ers, and an infinite supply of jobs in front of the first station. Our goal is to maximize
the long-run average throughput of the system by dynamically assigning the servers to the
stations.

For the first part of this thesis, we analyze a form of server coordination named task
assignment where each job is decomposed into subtasks assigned to one or more servers,
and the job is finished when all its subtasks are completed. We identify the optimal task
assignment policy of a queueing station when the servers are either static, flexible, or col-
laborative. Next, we compare task assignment approaches with other forms of server as-
signment, namely teamwork and non-collaboration, and obtain conditions for when and
how to choose a server coordination approach under different service rates. In particular,
task assignment is best when the servers are highly specialized; otherwise, teamwork or
non-collaboration are preferable depending on whether the synergy level among the servers
is high or not. Then, we provide numerical results that quantify our previous comparison.
Finally, we analyze server coordination for longer lines, where there are precedence re-
lationships between some of the tasks. We show that for static task assignment, internal
buffers at the stations are preferable to intermediate buffers between the stations, and we
present numerical results that suggest our comparisons for one station systems generalize
to longer lines.

The second part of this thesis studies server allocation when the servers can work in
teams and the team service rates can be arbitrary. Our objective is to improve the per-
formance of the system by dynamically assigning servers to teams and teams to stations.
We first establish sufficient criteria for eliminating inferior teams, and then we identify the
optimal policy among the remaining teams for the two-station case. Next, we investigate

the special cases with structured team service rates and with teams of specialists. Finally,
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we provide heuristic policies for longer lines with teams of specialists when the servers are
generalists, and numerical results that suggest that our heuristic policies are near-optimal.
In the final part of this dissertation, we consider the scenario where a job might be bro-
ken and wasted when being processed by a server. Servers are flexible but non-collaborative,
so that a job can be processed by at most one server at any time. We identify the dynamic
server assignment policy that maximizes the long-run average throughput of the system
with two stations and two servers. We find that the optimal policy is either a single or a
double threshold policy on the number of jobs in the buffer, where the thresholds depend on
the service rates and defect probabilities of the two servers. For larger systems, we provide
a partial characterization of the optimal policy. In particular, we show that the optimal pol-
icy may involve server idling, and if there exists a distinct dominant server at each station,
then it is optimal to always assign the servers to the stations where they are dominant. Fi-
nally, we propose heuristic server assignment policies motivated by experimentation with
three-station lines and analysis of systems with infinite buffers. Numerical results suggest

that our heuristics yield near-optimal performance for systems with more than two stations.

X1V



CHAPTER 1
INTRODUCTION AND BACKGROUND

Optimal control through dynamic resource allocation is commonly seen in production sys-
tems and in service systems (such as call centers, ridesharing systems, and healthcare
systems). Given a real-world problem, we strive to model the system so as to make it
solvable or analyzable with reasonable and realistic assumptions; and develop optimal or
near-optimal control policies that are applicable in practice. More specifically, this thesis
revolves around the dynamic allocation of cross-trained workforce in manufacturing and
service systems, with the objective of maximizing the long-run average throughput of the
system.

Cross-trained (flexible) servers are widely discussed as a useful tool to improve the
performance of production and service systems [29]. Yet much remains to be done to
advance the use of server flexibility. In a multi-server queueing system with tandem stations
and finite intermediate buffers, our goal in this thesis is to improve the performance of the
system by dynamically assign the servers to stations under scenarios which are practical
in real life but seldom discussed in the literature. We refer to objects that are either being
processed or being served as jobs. In particular, this work considers the following three
cases: (1) a job can be decomposed into multiple subtasks with or without precedence
relationship; (2) a job needs to be served by a group of servers as a team; (3) A job might
be broken and wasted when being processed by a server. Assume that there is an infinite
supply of jobs in front of the first station and infinite storage space after the last station.
Servers are cross-trained and allowed to switch between stations with negligible time and
cost. Unless specified otherwise, we assume the service requirements are independently
and exponentially distributed. The system operates under manufacturing blocking, that is,

a completed job is blocked from moving to the downstream buffer when that buffer is full.



In the first part of this dissertation, we consider a form of server coordination named
task assignment. Consider a multi-server queueing system with tandem stations, and sup-
pose that we need to determine how to deploy the servers at each station. The standard
approach would be to let the servers assigned to each station work in parallel without col-
laboration. However, if a job can be decomposed into multiple subtasks and there are no
precedence relationships among the subtasks, then it is possible we could improve the long-
run average throughput of the system via other forms of server coordination. One form of
server coordination involves assigning each subtask to one or more servers, and a job is
completed when all of its subtasks are completed. We refer to this as task assignment,
or as the maximum model since the service time of a job at a queueing station equals the
maximum of the times it takes to complete the subtasks. We consider three types of task as-
signments based on their server flexibility and collaboration levels. Another form of server
coordination is teamwork, where servers work together as a team with a combined service
rate. We also consider the non-collaboration approach, where the servers work in parallel
and will complete all the subtasks of a job by themselves.

First, we identify the optimal server assignment policy when the servers are either static,
flexible, or collaborative. Next, we compare task assignment approaches with other forms
of server assignment, namely teamwork and non-collaboration, and provide guidelines for
on whether and to what extent we can improve the performance of the system via these
server coordination methods. In particular, task assignment is best when the servers are
highly specialized; otherwise, teamwork or non-collaboration are preferable depending on
whether the synergy level among the servers is high or not. Moreover, we further investigate
these methods when the servers are generalists or specialists, and provide the corresponding
numerical results. Finally, we analyze server coordination for longer lines, where there
are precedence relationships between some of the tasks. We obtain that for static task
assignment, it is always better to allocate the available buffers within stations as internal

buffers rather than after stations as intermediate buffers (however, this result does not hold



for flexible or collaborative task assignment). Finally, our numerical results for the two-
station case suggest that our one-station results can be generalized to longer lines.

Next, we shift our attention to server allocation in terms of teams. Most existing papers
assumed a fixed synergy level whenever the servers collaborate. However, there are many
situations when jobs need to be served by a group of servers as a team (e.g.a surgery),
but the efficiencies of server collaboration between the team members are diversified. For
example, the collaboration between servers A and B in a team could be efficient while the
collaboration between servers A and C is inefficient. Thus, we do not restrict ourselves
to some specific relationship between the team service rates and other factors, such as the
individual service rates of team members, or the synergy between the servers of a team. To
be more reasonable and include all possible types of server collaborations, we focus on the
service rate of the team instead of the individual service rates of the servers at each station.
First, we select the team assignments that are on the Pareto boundary and irreplaceable
as the optimal assignment set. Then, we specify the optimal policy among the teams in
the optimal assignment set for two stations case. Next, we apply our optimal policies to
two special cases. In the first case, the team service rate is proportional to the sum of the
service rates of team members. This kind of server collaboration has been analyzed in the
past [6, 11, 13]. We validate our results by checking if the optimal policy we obtained
is consistent with previous work under this special case. In the second case, we assume
that there are different types of servers with different specialties, and the team formation is
constrained in that each team must consist of exactly one server of each type. The optimal
policy indicates that, for teams of specialized servers where the servers are generalists, we
use a permanent set of teams that are formed based on their ability. Based on this result,
we develop near-optimal heuristic policies that are validated by our numerical results for
longer lines for teams of specialized servers when they are generalists .

The final part of this thesis studies the optimal server allocation in presence of defects.

We consider a Markovian tandem line with an equal number of stations and flexible but



non-collaborative servers. At any time, each server can work on at most one job, and a job
can be processed by at most one server. Most of the existing papers that study queueing
systems with flexible servers assumed that the servers are reliable with zero defect prob-
abilities. To the best of our knowledge, this is the first paper that considers the dynamic
scheduling of servers when they are flexible and error-prone. For systems with two stations
and two servers, we formulate the system as a Markov decision process and characterize
the optimal policy with respect to which server has the higher effectiveness overall. More
specifically, we prove that the optimal server assignment policy is either a single or a dou-
ble threshold policy on the number of jobs in the buffer, where the thresholds depend on
the service rates and defect probabilities of the two servers. For larger systems, we pro-
vide a partial characterization of the optimal policy. First, we verify that the optimal policy
may involve server idling (except for the server assigned to the first station); next, when
a distinct server is the fastest and most reliable at each station, the optimal policy always
assigns the server to the station where they are dominant. Finally, we propose heuristic
server assignment policies motivated by experimentation with three-station lines and anal-
ysis of systems with infinite buffers. Numerical results suggest that our heuristics yield
near-optimal performance for systems with more than two stations.

The rest of this dissertation is organized as follows. In Chapter 2, we provide an
overview of the literature on queueing systems with flexible servers and/or error-prone
servers. In Chapter 3, we investigate when and how to choose different forms of server co-
ordination methods when a job can be decomposed into multiple subtasks with or without
precedence relationship. In Chapter 4, we consider the optimal server assignment problem
in terms of teams. In Chapter 5, we study the optimal scheduling of queueing systems with
flexible, non-collaborative and error-prone servers. In Chapter 6, we summarize the main
contributions of this thesis and present our future research directions. Finally, we provide

supplementary materials for Chapters 3 and 5 in Appendices A and B, respectively.



CHAPTER 2
LITERATURE REVIEW

In Chapter 2, we provide an overview of the literature on queueing systems with flexible
servers and/or error-prone servers. First, we review systems the flexible servers in Section
2.1. In Section 2.2, we focus on the literature on queueing systems with failure-prone or

CITOr-prone Servers.

2.1 Flexible Servers

There is a significant amount of literature on queues with flexible servers. For a comprehen-
sive review of the literature in this area, see Hopp and Van Oyen [29], and Qin, Nembhard,

and Barnes [42].

2.1.1 Non-collaborative Servers

Several papers considered server allocation when the servers are non-collaborative. For
example, Van Oyen, Gel, and Hopp [47] investigated the case when servers are work-
ing in parallel, and proved that the “pick-and-run” policy they proposed is not optimal.
Isik, Andradottir, and Ayhan [31] have studied server allocation in tandem queues with
equal number of stations and servers when the servers are flexible and non-collaborative,
and provided the optimal policy for two stations along with heuristic policies that were
near-optimal for larger systems. Ahn, Duenyas, and Lewis [1] analyzed systems with two
stations in tandem and two flexible servers when the individual service rates only depend
on the station, and they considered the scenarios when the servers are collaborative with
additive service rates (i.e., « = 1), and when servers are non-collaborative. Argon and
Andradottir [15] considered systems with jobs that are divided into subtasks that would be

processed in tandem and discussed how to improve the system throughput by partial pool-



ing of the servers, stations, and subtasks of a job. Yarmand and Down [49, 50] investigated
server allocation for tandem queues with zero buffers and homogeneous servers at each sta-
tion. [49] proposed an allocation method that assigns servers to stations based on the mean
service times and the current number of servers assigned to each station, and they validated
their algorithm by simulation. [50] considered a mixture of dedicated and flexible servers,
and studied server allocation policy for flexible servers that maximizes the throughput of
the system. They concluded that the optimal policy for systems with two stations and one
flexible server performs a hand-off (switch the job between flexible and dedicated server
when the dedicated server is starved or blocked), clears blocking, and admits new jobs
when there is no blocking. Pandelis and Van Oyen [38] analyzed a tandem queueing sys-
tem with partially cross-trained servers, and they identified structural properties of worker

allocation policies that maximize the throughput of the system.

2.1.2 Collaborative Servers

There is a significant amount of literature on optimal server allocation when the servers
are flexible and collaborative with combined service rates that are additive. Thus the
servers neither gain nor lose efficiency when they collaborate. Van Oyen, Gel, and Hopp
[47] introduced the teamwork approach with identical servers (which they referred to as
the “expedite policy”) that maximizes the long-run average throughput and minimizes the
work-in-process (WIP) of the system. Andradéttir, Ayhan, and Down [7] considered the
dynamic scheduling policy when the servers are flexible only when their assigned stations
are blocked or starved, while Andradéttir and Ayhan [6] and Kirkizlar, Andradoéttir, and
Ayhan [33] discussed the case when the servers are flexible all the time. Specifically, [6]
focused on the system with the number of servers more than the number of stations (i.e.
overstaffed), and [33] focused on the understaffed queueing system.

Other papers discussed server collaboration with non-additive combined service rates.

Andradottir, Ayhan, and Down [11] discussed the case when servers are synergistic (i.e.,



a > 1) with a common synergy factor « for each station. Wang, Andradottir, and Ayhan
[48] further analyzed the case when servers are synergistic with different synergy factors
for different stations. Moreover, Andradéttir, Ayhan, and Down [13] investigated the case
when the server collaboration is inefficient (i.e., & < 1). Ahn and Lewis [4] considered
the problem of routing the arrivals and allocating the servers in a parallel queueing system
with two types of customers and collaborative servers that can be either superadditive or

subadditive.

2.1.3 Teams of Specialized Servers

Our work focuses on a continuous-time Markovian queueing system with preemptive ser-
vice. Perron [40] investigated the discrete time-based server scheduling problem with
teams of specialized servers and non-preemptive service, and provided experimental re-
sults suggest that the problem is not solvable without decomposition and decomposing is
hard and error prone.

In this thesis, we consider on one type of jobs with a fixed requirement of team for-
mation, and study the best team formation among heterogeneous servers. Some papers
addressed multi-class jobs with different team formation requirements with homogeneous
servers when offering service as a certain type of specialists. Courcoubetis and Reiman [21]
studied a parallel queueing system with /V identical servers and two types of jobs which
they referred to as ordinary jobs and locking jobs. Ordinary jobs need one server to be pro-
cessed, while locking jobs need all N servers to work together. They verified that to max-
imize the long run average reward of the system, they should prioritize the ordinary jobs
until the number of locking jobs reaches some threshold. Gurvich and Van Mieghem[27]
studied the capacity management problem of a network with teams of specialized servers
and multi-class jobs. They showed that highest priority must be given to the tasks that
require the most collaboration (i.e., largest number of specialized servers in the team), and

a mismatch between the priority level and the collaboration level can lead to inevitable ca-



pacity loss. Lodree, Altay, and Cook [36] considered dynamic allocation of medical staff
to casualties with random server arrivals and heterogeneous team requirements. They mod-
eled this system as a discrete-time finite horizon stochastic dynamic programming problem

and developed efficient heuristic policies for computational study.

2.1.4 Task assignment

There is limited work on the task assignment server coordination structure. Buzacott [19]
studied task assignment for a single-stage queue where each job is split into parallel sub-
tasks and the next job cannot begin until all the subtasks of the previous job are completed.
He showed that, in terms of the mean total number of jobs in the system, this kind of server
coordination is not superior to a series system with buffers between the two servers when
utilization of servers is sufficiently high. However, in [19], the servers are static and iden-
tical, and there are no internal buffers after each subtask, which is restrictive. In our paper,
we allow flexible and collaborative servers with general service rates and finite internal
buffers of arbitrary size. Tsai and Argon [16, 46] also discussed the task assignment ap-
proach (which they called a “splitting system’) for a single station with multiple subtasks
and finite internal buffers. In [46], the servers are collaborative in that they can work to-
gether on the same subtasks with additive combined service rates. They proved that their
splitting system is equivalent to a system with two tandem stations, and identify the op-
timal policy that maximizes the long-run average throughput by analyzing this equivalent
system. In [16], they considered flexible servers with switching costs when servers transit
among subtasks and holding costs for the jobs in the system, and provided a partial charac-
terization of the policy that minimizes the long-run average costs. In our paper, we include
the cases when servers are either static, flexible, or collaborative and find the policy that
maximizes the long-run average throughput of the system directly. Thus, we both consider
more general servers and use a different method to find the optimal policy compared to

[16, 46]. In summary, the previous studies [16, 19, 46] focus on systems with one station



and a specific type of servers. We consider different types of servers depending on their
flexibility and collaboration levels, which is more general and practical. We also compare
task assignment approaches with each other and with other forms of server coordination to

identify the best server coordination approach.

2.2 Error-prone Servers

Some existing papers addressed server breakdowns, so that the service process is inter-
rupted. For a thorough review of literature of queues with interruptions, see Krishnamoor-
thy, Pramod, and Chakravarthy [35]. Andradéttir, Ayhan, and Down [9, 10] considered the
dynamic assignment of servers to maximize the long-run average throughput of queueing
networks with failure-prone servers and stations. Specifically, [9] investigated the system
with infinite buffers, while [10] analyzed the system with tandem stations and finite in-
termediate buffers. Ozkan and Kharoufeh [37] studied routing problem of a Markovian
queueing system with one reliable server and one faster but failure-prone server, with an
objective of minimizing the long-run average number of customers in the system. They
proved that it is always optimal to route customers to the faster server when it is available
if the system is stable, and there exists an optimal threshold policy that depends on the
queue length and the state of the faster server for the slower server. However, these server
breakdowns do not cause any damage to the products but only postpone the service process.

Other works considered server breakdown with customer abandonment. Economou and
Kapodistria [23] investigated a single server queue with server breakdown such that the
current customer leaves the system, and the remaining customers become impatient as long
as the server is down. Towsley and Tripathi [45] analyzed queueing systems with disasters
such that the occurrence of disasters forces all customers to leave the system and causes
the main server to fail. Yechiali [51] also considered this kind of system disaster while
the new arrivals during server breakdown become impatient. All these papers analyzed

various service measures of the system including system size distribution and the sojourn



time distribution of the systems.

Some papers considered the planning and control of rework in production systems, see
Flapper, Fransoo, Broekmeulen, and Inderfurth [26] for a review of the literature in this
area. Specifically, Teunter and Flapper [44] considered the lot sizing problem for a pro-
duction line with non-defective, reworkable defective, and non-reworkable defective items
produced in lots, so that after producing a fixed number (/V) of lots, they will switch to
rework on the reworkable defective items until they are all fixed. They assumed that their
products were perishable, and there were set-up times and costs attached to switching be-
tween producing new items and reworking of the defective items. They derived the average
profit for any fixed NV and then determined the optimal N numerically. However, they as-
sumed a fixed defect probability of a production and focused on the lot sizing problem that
maximizes the profit and only provided numerical examples of the optimal policy. Elshafei,
Khan, and Duffuaa [24] also considered a dynamic programming model with products that
are classified as non-defective, reworkable defective, and non-reworkable defective by an
inspector. They proposed a dynamic programming algorithm that minimizes the total in-
spection cost, where the total cost includes the cost of false rejection of good items, the cost
due to false acceptance of defective items which are either reworkable or non-reworkable,
the cost of inspection, and the cost of rework. However, they focused on using inspec-
tion to eliminate the defective items, while we focus on identifying how servers should be

assigned to tasks in the presence of defects.
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CHAPTER 3
SERVER COORDINATION IN QUEUEING SYSTEMS: WHEN AND HOW?

In this chapter, we first consider a one-station system, and generalize to longer lines later.
For simplicity, we assume that there are two servers at each station and that the task at each
station is decomposed into two subtasks. We will discuss task assignment approaches with
non-negative and finite internal buffer sizes. For one-station systems, let 0 < B; < oo
denote the internal buffers after subtask i for : = 1, 2. We assume that the network operates
under the manufacturing blocking mechanism, that is, a job that finishes its service at a
subtask when the internal buffer after that subtask is full stays at the subtask and blocks
other jobs from entering service there. Since a job will leave the system right after both of
its subtasks are completed, only one of the two internal buffers can have jobs waiting inside
at any given time. The service requirements for different subtasks and different jobs are
independent; denote the service requirement for subtask 7 as .S;. Unless specified otherwise,
we assume that .S; follows an exponential distribution with rate &; for ¢ = 1, 2. The service
rate of server ¢ working on subtask j is y;; for ¢, j = 1, 2. Assume there are infinitely many
jobs waiting in front of the station and infinite room for completed jobs after the station.
Without loss of generality, let {; = 1 for i = 1,2. Assume that ), p;; > 0,Vj = 1,2
(otherwise, the throughput of the system is zero), and » ;Hig > 0,Vi = 1,2 (otherwise,
the problem reduces to having only one server). See Figure 3.1 for the flow plot of the task

assignment system with one station and two servers.
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Figure 3.1: Task Assignment System with One Station

We investigate three types of task assignment based on their server flexibility and col-
laboration levels. In all three task assignment approaches, each serveri € {1, 2} is assigned
to a task j;, where {j1, jo} = {1, 2}, at all times when there is work to be done at both sub-
tasks. However, the task assignment approaches differ in the assignment of servers when
there is no work to be done at one of the subtasks (due to blocking). In static task assign-
ment, each server i € {1,2} is at all times assigned to task j;. In flexible task assignment,
each server can be reassigned to the other subtask (replacing the server originally assigned
there) when their assigned subtask is blocked. In collaborative task assignment, the servers
can either stay, switch, or work as a team when one subtask is blocked. We investigate
the performance of these different task assignment approaches and compare them with
teamwork and non-collaboration. We assume that when the servers work as a team, their
combined service rate is proportional to the sum of their service rates with a non-negative
coefficient o in both of the collaborative task assignment and teamwork approaches. Note
that when o > 1, the servers are synergistic in that their combined service rate is larger
than the sum of their own service rates. When « < 1, their collaboration is inefficient.

The outline of this paper is as follows. In Sections 3.1, 3.2, and 3.3, we investigate the
static, flexible, and collaborative task assignment approaches, respectively. Within each
section, we first obtain the optimal task assignment policy with general internal buffer
sizes, and then discuss two special cases, namely zero buffers and asymptotically infinite
buffers. In Section 3.4, we introduce three other server coordination approaches, namely

teamwork with or without task partitioning and non-collaboration, and compare these three

12



methods. And in Section 3.5, we provide a comparison of collaborative task assignment,
teamwork with or without task partition, and non-collaboration, and determine when and
how to choose from these methods based on different server flexibility levels. The proofs of
several of our results are provided in Appendices A.1, A.2, and A.3, and the comparisons
that are not discussed in Section 3.5 are given in Appendix A.4. We also discuss two special
cases, namely when servers are generalists, and when servers are specialists. In Section
3.6, we investigate server coordination for longer lines, where we identify desirable buffer
allocation choices and provide numerical results for two stations in tandem. In Section 3.7,
we summarize our findings and conclude the paper. Supplementary explanations of both

teamwork approaches are given in Appendix A.S.

3.1 Static Task Assignment

In this section, we consider a single queueing station with two servers. We assume that
each job involves two subtasks and that each server specializes in a fixed subtask, so the
servers are static and will be idle after finishing their current subtask and before starting
the next subtask if their internal buffer is full. In Section 3.1.1, we obtain the optimal static
task assignment approach with general internal buffer sizes. In Sections 3.1.2 and 3.1.3, we
discuss the special cases when the internal buffers are zero and when the sum of the buffer

sizes goes to infinity, respectively.

3.1.1  Optimal Policy

In this section, since the server assignment is static, there are two feasible assignments:

(1) Server ¢ is assigned to subtask ¢ for ¢ = 1, 2, with the corresponding throughput

Bi1+B2+1 | Bi+By+1—k
s Mi11Ho2 Zkzo M1 o9
12 — Bi1+B2+2 |k  Bi+Ba+2—k
k=0 H11 92

(3.1)

(11) Server 1 is assigned to subtask 2 and server 2 is assigned to task 1, with corresponding
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throughput
Bi+B2+1 | Bi+Ba+1—k
s Heife > ko Ha1H12
21 — Bi1+B2+2 |k , Bi1+B2+2—k
k=0 Ha1H12

Denote these two static assignments as Aj,, A3;; under A7}, i is the assignment of server 1

and j is the assignment of server 2.

Observe that the sums in the expressions for 77, and 775, could be rewritten using the

formula for geometric sums. For instance,

Bj+Bg+2  Bj+Bg+2
Bi1+Bs+1 Hag —Has

k , Bi1+Ba+1—-k __ H11—H22
E M1 22 =
k=0

(By + By + 2)pZ B2t if gy = g

if iy # poo,

However, throughout this paper, we keep sums in our expressions for two reasons: (i) to
reduce the number of cases we need to consider, especially when there are multiple distinct
sums in one expression (e.g., equation (3.7)); (i) to avoid minus signs so that it is easier to
identify the sign of the expression (e.g., equation (A.4)).

It is clear that the throughputs 77, 75, of the static task assignment approaches are
non-decreasing in the buffer sizes B, and B;. Moreover, the internal buffer allocation does
not affect the results. Thus, two static maximum models with different internal buffer sizes
would have the same throughput as long as the sums of the two internal buffers, B; + B,
are equal. However, this property is the result of the birth-and-death structure of the system
with two subtasks. In general, when there are more than two subtasks, the buffer allocation
will affect the throughput of static task assignment. To illustrate, consider three subtasks,

three servers. The service rate of subtask ¢ is j;, and the internal buffer size of subtask i is

B; fori =1,2,3. Assume i1 = 2, uo = g = 1. Then,

1. If By = 1, B, = B3 = 0, the long-run average throughput is -2 ;

127°
2. If B; = 0, By = 1, By = 0, the long-run average throughput is 33 < =

We need to compare the two throughputs 77, and 7%, to identify the optimal assignment
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for this model. Without loss of generality, assume that we number the servers so that

p11 > p21. Then we have:

Proposition 3.1.1. Suppose that (111 > ps1. Then,
(i) If oo = 0, Assignment A3, is optimal.
(ii) If 12 X po1 = 0, Assignment A3, is optimal.

(iii) If p;; > 0 forv,j = 1,2, then there exists a unique |15,

€ (0, pu12] such that Assign-

ment A3, is optimal if piae > 115y, Assignment A5, is optimal if poe < 15,. Moreover,

(a) If p11 > o1, then (i1 and s, are the only positive roots of

$Bl+B2+3A1 - J]AQ + Ag = O, (32)

where

Bi1+B2>+1

Ay = (11 — piar) Z sy s PR gy g TP,

B1+Ba+2

B1+B2+3 B1+Ba+2— k
Ay = E M21M

B1+B2>+1

B1+B2+3 k+1 Bi1+Bo+2— k:
Az = iy E Ha1 12

(b) If p11 = po1, then 5o = [i12.

Proof. Since 17 > p21 and pq1+ 21 > 0, we have 11 > 0. Moreover, since fig1 + oo > 0

and 112 + oo > 0, it follows that 5o = 0 implies that 15 and w9 are both positive, and

W12 X oy = 0 implies that pos > 0. And since the servers are static, zero service rate at

one subtask leads to zero throughput. Thus, our results (i) and (i1) are trivial.
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For (iii),

oIy, NnﬁBgJr3 ZBI+B2+1(31 +By+2 - k)NB21+BQ+1 kﬂlﬁ

o B1+B2+2 B1+Ba+2—k
Opin ( k=0 M11M22 )2

> 0.

Thus, 77, is increasing with respect to j90. Moreover, 90 — 0 = 17, — 0. By the
symmetry of p9o and p1; in 775, we can obtain that 77, is increasing with respect to fi11.
Similarly, we can obtain that 7% is increasing with respect to both of 119, and yi15.

If we treat pi9o as variable and i1, fo1, 12 > 0 as given, let f(ug) = 17, — T3;.
Then f(pa0) is increasing with respect to pieo since Ty, does not depend on fi55. Moreover,
f(0) = =T, < 0, and f(u12) = T3, — T%,, where T3, is the throughput of A3, with 119
replaced by pu11. Since p117 > o1 and 75 1s increasing with respect to fio1, Tfl > T5, and
f(p12) > 0. Thus, there exist only one value of 3, € (0, pt12] such that f(u3,) = 0, and
when pig9 > pdy, f(uo2) > 0, and hence T3, > Ts); when pgs < p3,, f(p2e) < 0, and

hence T7, < T3,. Now we know that f(z) = 0 has one positive root x5, where

B +B +1 _
f(x) Nllxz 1 2 Bl+B2+1 k _TS

B1+Bz+2 k QjBl+B2+2 k 2L

k=0 M1y
Note that for n > 0,

n

E n—k
(v = ) D ™ = (@ — ). (33)
k=0

Therefore, by multiplying f(z) with (z — py1) and reorganizing the equation f(x)(z —
w11) = 0, we obtain equation (3.2). And the fact that (2) corresponds to (z — p11) f(z) adds
one more positive root, 1.e., (11, to equation (3.2). Thus, 11 and p3, are the only positive
roots of equation (3.2).

When (111 = po1, by the symmetric structure of 77, and 775, we know that 77, = 75,
when pi90 = py2. That is, when p11 = p91, f(p12) = 0. Since f(x) = 0 has only one

positive root, we have u5, = (9. [
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Since 5, < p12, Proposition 3.1.1 implies that when servers have different specialty
on the subtasks (i.e., pt17 > o1 and pos > pi12), we should assign them to the subtask
that they are better at. When one server is better at both subtasks than the other one (i.e.,
i1 > pop and pe > pigg), we will assign server 1 to subtask 1 as long as the service rate

of server 2 at subtask 2 is not too small.

3.1.2  Special Case 1: No Buffers

In this section, we consider the special case with no buffers and p;; > 0, for 7,5 = 1,2.
(If p1;; = 0 for some 4,5 € {1,2}, then the server allocation policy that assigns server i
to station 5 would have zero throughput, and the optimal policy is trivial.) When B; =
By = 0, we can simplify the expressions of the long-run average throughput of the system
as follows. For assignment Af,, the corresponding throughput is

1

T 1 1
111 22 p11+p22

S
T12_

and for assignment A3, the throughput is

1
1 1 1

121 12 B p21+p12

R
T21_

Moreover, we can compute the precise value of y5, as

_+__

—1+/1+4/M )
oy = / X 1, with M = A Y N —
2 M1 M1z o1 + 1o

Note that since we label the servers so that 117 > o1, we have /’% > 1 and % >

M1l *
i Thus M > 0 and p35 > 0.

Example 3.1.1. Consider the following three special cases of the service rates of subtask
1: (a) p11 = 2, po1 = 1; (D) p1 = poy = 1; (¢) puy = 1, puoy = 2 (we include this case for

symmetry even though it violates our convention that 111 > [i21). Figure 3.2 shows how the
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optimal assignment depends on (112 and [ia9. For all three cases, Assignment A3, is optimal

above the depicted line.

S
As A12 l

12
K,

Ha
Ha
Ha

s
15 15 A

s 2
: : Aor
as A o
0 o
o o5 1 15 2 25 s ss 4 o o5 1 15 2 e

P12 Faz Faz

(@ p11=2,pu21 =1 (b) p11 =1, 21 =1 ©pi1 =1 pus =2

Figure 3.2: Optimal static task assignment with different service rates.

3.1.3  Special Case 2: Asymptotically Infinite Buffers

In this section, we consider the case when By + By — oo. Then,
1. In assignment A3, 7%, — min{ 1, fao}
2. In assignment A3, 75, — min{ o1, f12}-

Thus, when the sum of the buffer sizes goes to infinity, choose assignment A7, when
min{ 11, a2} > min{ sy, p12}; otherwise, choose assignment A5;. And the throughput

of the best static task assignment with asymptotically infinite buffers is:

T° = maX{min{Mlb Mzz}; min{,ugl, /~L12}}-

Intuitively, when the sum of the buffers goes to infinity, the throughput of the system is
determined by the bottleneck subtask, that is, for any server assignment, the throughput
is determined by the slower server. Thus, we will choose the assignment with the larger

minimal service rate among both subtasks.

18



3.2 Flexible Task Assignment

In this section, we discuss the flexible task assignment approach. When servers are flexible,
the server assignment involves two stages. When both servers are working, each server is
assigned to a subtask based on a primary assignment; and when one of the subtasks is
blocked, the servers may be reassigned according to a secondary assignment.

Similar to the structure of Section 3.1, in Section 3.2.1, we obtain the optimal flexible
task assignment approach with general buffer sizes. In Sections 3.2.2 and 3.2.3, we discuss
the special cases when the internal buffers are zero and when the sum of the buffer sizes

goes to infinity, respectively.

3.2.1 Optimal Policy

For the primary assignment, we have two choices just like in static task assignment. And
when one of the subtasks is blocked, for the secondary assignment we can either let the
blocked server be idle or reassign this server to replace the other server and work on the
unfinished subtask until it is completed.

Note that our queueing system can be modeled as a birth-and-death process, and the
secondary assignment only applies to the states on the boundaries. And if we can increase
the transition rates of leaving the states on the boundaries, we reduce the time the process
spends in these boundary states without making any changes to the rest of the system,
and thus will increase the throughput of this birth-and-death process. Hence, to improve
the throughput by using flexible servers, we will only apply the secondary assignment
when we can increase the service rate by replacing the current server. Specifically, if our
primary assignment involves assigning server ¢ to subtask ¢ for = = 1,2, we can improve
the throughput by secondary assignment only if j119 > fi92 Or pg1 > pq;. Similarly, if
our primary assignment involves assigning server ¢ to subtask 3 — ¢ for ¢ = 1,2, we can

improve the throughput by secondary assignment only if p199 > 412 Or 111 > pio1. Also, the
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optimal flexible task assignment will involve at most one flexible server for the secondary
assignment; otherwise we can improve the throughput by changing the primary assignment.
When neither server is reassigned in the secondary assignment, flexible task assignment is
equivalent to static task assignment.

Let A{; be the flexible task assignment that assigns server 1 to subtask i and server 2
to subtask j for 7,5 = 1,2 when the two servers are static and no secondary assignment
is needed. Let Afjf be the flexible task assignment when exactly one server is flexible for
the secondary assignment, where for i, j, k € {1, 2}, i is the primary assignment of server
1, j is the primary assignment of server 2, and k is the flexible server for the secondary
assignment. For simplicity, we only consider the case when 17 > pi91; we can obtain the
results of the other case by relabeling the servers. In this case, Agl, A;{ , and Ag{ can only
be optimal if 1o > oo (otherwise, it is better to change the primary assignment). By
our previous analysis, since fi17 > 21, Ag and Ag{ cannot be optimal. Moreover, when

subtask 2 is blocked, we will assign server 1 to subtask 1 to obtain a larger service rate on

the boundary; thus Agl is not optimal. Then there are three available assignment policies.

A{zz Server 1 is assigned to subtask 1 and server 2 is assigned to subtask 2 for the primary
assignment; when some subtask’s buffer is full, the corresponding server will be idle.

The corresponding throughput Tf; = 717}, 1s given in equation (3.1).

A}g : Server 1 is assigned to subtask 1 and server 2 is assigned to subtask 2 for the primary
assignment; if subtask 1 runs out of buffer space earlier, server 1 will replace server
2 to finish subtask 2; if subtask 2 runs out of buffer space earlier, server 2 will be

idle. The corresponding throughput is

B1+B2+1 f  Bi+By+1—k
TY _ P12 D_pmg F11H22
12 — Bi1+B2+1 [  Bi+Bo+1-k B1+Ba+2°
12 Zkzo H11 22 +

A;{ : Server 1 is assigned to subtask 2 and server 2 is assigned to subtask 1 for the primary

assignment; if subtask 2 is blocked earlier, server 1 will replace server 2 to finish
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subtask 1; if subtask 1 is blocked earlier, server 2 will be idle. The corresponding

throughput is
B1+B>+1 |k Bi+Bs+1—k
T _ Hi1ft12 Zk Moty
21 — Bl+BQ+1 Bi+Bo+1—k Bl—l—Bg—l-Q.
H11 Z 21,“12 + g

Observe that the throughputs of flexible task assignment are non-decreasing in the buffer
sizes B; and B,. Moreover, the internal buffer allocation does not affect the results. Thus,
two flexible task assignment models with different buffer sizes have the same throughput
as long as the sums of the two buffers, B, + Bs, are equal. Similar to static task assignment,
this property only holds under our two-subtasks assumption.

The following proposition compares these policies when 17 > 9. The proof is

provided in Appendix A.1. It uses the notation f o g if f is a positive multiple of g.

Proposition 3.2.1. Suppose that (111 > pio1. Then
(i) If pioo > pi12, Assignment A{Q is optimal;

(ii) If oo < 1o, there exists a unique s, € [0, o] such that Assignment A}§ is optimal

when (155 < fiag < [L12; Assignment A;{ is optimal when 0 < gy < [159. Moreover,

a. If pi1 > po1 > 0, then iy and 5, are the only positive roots of
gBF B A As 4+ Ag =0, (3.4)

where
B1+B2+1

Bi1+B2+1-k B1+B>+2
Ay = (pa1 — par) E 15y f15 + pgy ;

Bi1+B>+1
Bl+32+2 Bi+Batl—k
As = Z N21N

B1+B2
Bi1+B2+2 k+1 Bl+B2+1 k
Ag = py7 § Hay
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b. If 11 > per = 0, then ps, = 0.

c. If 1y = po1 > 0, then piy = [i12.

Note that, when pi92 = 0 (which implies that pi15, po1 > 0), A{Q yields zero throughput
since it assigns server 2 to subtask 2 all the time, and the throughput of Ag can be sim-

plified as T112f = ﬁ% By multiplying both the numerator and denominator of Tllzf by

prBett b BB R and comparing with Ty, it is obvious that T < Ty, Thus,

when 1150 = 0, A}/ is optimal. When 1,5 = 0, A7, is optimal since both A}} and A}/ yield
zero throughputs. Finally, when p9; = 0, then A}g is optimal for pi2 < p12 and A{Q is
optimal for g9 > fi19.

For the primary assignment, similar to the case of the static task assignment, if the
servers have different specialty on the subtasks, we will assign them to the subtask that
they are better at. On the other hand, if one server dominates the other one at both subtasks,
we will use the better server as the flexible server, and assign the better server primarily to

subtask 1 as long as the service rate of the dominated server at subtask 2 is not too low.

3.2.2 Special Case 1: No Buffers

In this section, we consider the special case with zero buffers. When By = By = 0, 110 >

0, we can compute the precise value of p3, as

ﬁa if H21 > O;

*
— 12 K21 H11
Koo

O, if M21 = 0.

. . . 1 1 .
Since f117 > o1 implies that o > o it follows that 15, > 0.

Example 3.2.1. Consider the following three special cases of the service rates of subtask
1: (a) pi1 = 2,91 = 1; (D) p1y = por = 1; (¢) iy = 1, o1 = 2 (we include this case

for symmetry even though it violates our convention that (111 > ji91). Figure 3.3 shows
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how the optimal assignment changes with respect to the service rates [i12, [l22 Of subtask
2. When p11 = 2, o1 = 1, Assignment A{Q is optimal when iy is large; Ag is optimal
when o5 is moderate; and Aé{ is optimal when 155 is small. When j111 = oy = 1, the
optimal flexible task assignment is equivalent to the optimal static task assignment. And

when 1117 = 1, o1 = 2, the results are symmetric to case (a).

f 2f
A12 A12
25

Fa
H2
H22

12

/‘12 ”12 /‘12

@ p11=2,p21 =1 (b) p11 =1, 01 =1 ©) p11 =1, oy =2

Figure 3.3: Optimal flexible task assignment with different service rates.

3.2.3 Special Case 2: Asymptotically Infinite Buffers

In this section, we consider the case when B; + By — oo. Then,
1. In assignment A{Q, if H11 < M2, T1f2 — U115 and if H11 > U922, T1f2 — U22.
. 1f 1f . : 1f H114412
2. In assignment A3, if py1 < oo, Ty9 — p11; and if pgq > oo, Ty — —HHE2—

mi1tpi2—p22

3. In assignment A%, if fia1 < piya, Toi — ﬁ; and if fio1 > pro, To — p1a.
Under the assumption that f11; > 01, this yields the following results by algebra:
1. If 119 > pion, pan < pioo, then T, = Ty > Tof';

2. If paa > por, pan > fioo,

(a) when i35 > puy, then T, > Tl > T);
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(b) when p191 < gy < pira, then T > T, T > Ty

(c) when p99 < pi91, then T211f > T112f > Tlfz;
3. 0If gy < < ligy, then T, = T > T
. 12 < fo1, H11 S Mo2, then 1y 12 21 >

4. If pyo < pio1, 11 > oo,
(a) when g9 > 119, then T1f2 > T112f > T211f§

(b) when 195 < fi12, then To{ > T} > T,
By summarizing the above result, we can obtain that

1. If pt12 > po1, choose assignment A{Q when 59 > 112, assignment Ag when 97 <

foo < [412, and assignment A;{ when pi9o < pio1;

2. If pyo < po1, choose assignment A{Q when 190 > 1112, and choose assignment A;{

when fi90 < fiq2.

Comparing this result with Proposition 3.2.1 shows that when B; + By — oo, i3, —
min{ft19, 121 }. Note that assignment Aé{ is better if and only if 9o = min{ 1, o1, f12, f22}-
Thus, when server 1 is better at subtask 1, we will assign server 1 to subtask 1 and server
2 to subtask 2 for the primary assignment as long as the service rate of server 2 at subtask
2 is not lower than the service rate of the slower subtask under the other possible primary
assignment. Thus, as By + By — o0, static and flexible task assignment both use the same

primary assignment of servers.

3.3 Collaborative Task Assignment

In this section, we discuss collaborative task assignment. Similar to flexible task assign-
ment, in this model, each server’s assignment involves two stages. In particular, each server
is assigned to a subtask based on a primary assignment, and when one of the subtasks is

blocked, the servers are both flexible and collaborative, that is, we can assign either one
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server or two collaborating servers to the working subtask for the secondary assignment.
When the servers work together on a subtask, their combined service rate is proportional to
the sum of their service rates with synergy factor o > 0.

In Sections 3.1 and 3.2, we assume that p11; > po; (without loss of generality) and
fully characterize the optimal server assignment policy for general buffer sizes and static
or flexible servers, respectively. By contrast, in this section, we do not identify the optimal
task assignment approach for all service rates and general buffer sizes because the intro-
duction of collaboration largely increases the number of possible assignments. Specifically,
there are 18 possible collaborative task assignments since there are two choices for the pri-
mary assignment and three choices (assign server 1, 2, or both) for each subtask for the
secondary assignment. Moreover, there are still 12 possible assignments to analyze even
under the assumption that 1117 > p21. Instead, our arguments in Section 3.2.1 imply that in
any optimal policy, we will assign the server or servers with the highest individual or com-
bined service rate for the secondary assignment when one of the subtasks is blocked. And
once we have determined the secondary assignment, there are only two possible primary
assignments to choose from. Thus, to avoid a tedious description of the optimal approach,
we fix the service rates for the secondary assignment first and discuss the primary assign-
ment of the servers as a function of their secondary assignment. Moreover, in this section
we do not assume that 117 > 91 (because we will adopt a different convention for labeling
the servers).

In Section 3.3.1, we provide the optimal primary assignment given the secondary as-
signment for the collaborative task assignment approach with general internal buffer sizes.
In Sections 3.3.2 and 3.3.3, we fully characterize the optimal policy for the special cases

when the internal buffers are zero and when the sum of the buffer sizes goes to infinity,

respectively.
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3.3.1 Optimal Policy

We introduce some notation to better illustrate the results in the following sections. Let
Y1 = p11+ 21, 2o = 12+ fi22; then the combined service rate of servers working together
at subtask 7 is aX; for i = 1,2. Let py1 = B121, por = (1 — B1)%1, 12 = PoXia, log =
(1 — f32)X,; then f5; € [0, 1] is the fraction of server 1 of the total service rate on subtask j,
for 7 = 1, 2. Moreover, let x; be the service rate of the boundary state when subtask 3 — j is
blocked, for j = 1,2. Then, z; = max{p;, jt2;, ®¥; } in any optimal policy. Note that we
will let the servers collaborate at subtask j if and only if a3; > max{(;, p2;}, i.e., when
a > max{f;,1— p;}, for j = 1,2. Andif o < min{max{f;,1 — 51}, max{fs,1 — fa}},
then the servers will never work together, and the problem is equivalent to flexible task
assignment.

We have two available assignment policies, one for each primary assignment:

AS,: Assign server i € {1,2} to subtask ¢ for the primary assignment. The corresponding

throughput is:
BI+B2+1 Bi1+Bs+1—k
TC — L1T2 Z 11:“22
12— Bl+BQ BH—Bg Bi+Ba+1 Bi+Bay+1"
T1T2 Yty M b ap + Tapigy

AS,: Assign server 1 to subtask 2, and server 2 to subtask 1 for the primary assignment.

The corresponding throughput is:

BI+BQ+1 Bi+Ba+1—k
L1L2 Z 21,“12

B1+B2 B1+Bz Bi1+B>+1 Bi+Ba+1"°
T1T2 Dty M5 “ ) + oy

[C—
T21_

As in Sections 3.1 and 3.2, in this model, the buffer allocation does not affect the results.
Thus, the throughputs of two collaborative task assignment models with different buffer
sizes have the same throughput as long as the sums B; + B of the two buffers are equal.

As in Sections 3.1 and 3.2, this property only holds for our two subtasks assumption.
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Remark 3.3.1. The difference of 1Y, with buffer size By + By and T, with buffer size
B1+By—1 is positively proportional to x1 j1oa+x 2411 —T122. Thus, T, is non-decreasing in
the buffer sizes By and Bs if and only if x1 199 + 22111 — x129 > 0. Similarly, we can obtain
that T, is non-decreasing in the buffer sizes By and By if and only if 1 jt10+T2fto1 — 2179 >
0. Moreover, when [3, = [, both inequalities can be simplified as max{«, 1,1 — 1} < 1,
and thus both 17, and T%, are non-decreasing in the buffer sizes B, and B if and only if

a<l1.

Remark 3.3.1 shows that unlike the static and flexible task assignment approaches,
when the servers are collaborative, the long-run average throughputs are no longer always
non-decreasing with respect to the sum of the buffers. Intuitively, when servers are not
collaborative, blocking would cause a server to idle, and thus reduce the total service rate
of the system. And a larger sum of the buffer sizes would reduce the occurrence of block-
ing, and therefore increase the long-run average throughput of the system. However, when
the servers are collaborative with a moderate or high synergy level, we can not only avoid
server idling but also take advantage of efficient server collaboration when one of the sub-
tasks is blocked. Thus, the throughput of collaborative task assignment is increasing with
respect to the sum of the buffers only if the server collaboration is not efficient (i.e., z1, o
are small relative to the rates of the servers at their primary assignments). When collabo-
ration is efficient (i.e., « is large), it is desirable to take advantage of collaboration to the
extent possible, which occurs when B, B are small.

Next, we choose the assignment with the larger throughput. For ease of exposition, let

B1+DB2

Cr = Z Hivpzs k2u12u31+32 ’; (35)
B1+DB2

Co = Z M12M81+B2 kZMnﬂBﬁBQ 7, (3.6)
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Note that

Bi1+B2 k
C,—Cy = Z (H21ppaz) P HP27F Z(Mnum)j [(Mn,um)k_j - (#12#22)k_q.
k=0 =0

Therefore, Cl Z CQ when M11 21 2 12 M422.

The following proposition compares 77, and 77;.

Proposition 3.3.1. Assignment AS, is no worse than AS, if and only if

$1$2[(M11 - M21)01 + (Mzz - ,u12)02] > (,un,ulz - M21M22)($101 - 417202)-

Proof. Note that

Tlcz — T201 0.8 1’11’2[11 + ZL’lLQ + $2L3,

where
B1+Ba+1 B1+B>
Bi1+Ba+1-k i Bi+Ba2—j
E Nnﬂz E 1 141
7=0
B1+Ba+1 Bi1+Bs
Bi+Ba+1—k i Bi1+B> J
E M21M1 E Ry
7=0
Bi1+B>+1 B1+B>+1
B1+Ba+1 Bi+Ba+1-k B1+B2+1 B1+Ba+1-k,
Ly = gy E #11# E M21M ;
B1+BQ+1 Bl+BQ+1

Bi1+B>+1 B1+Bo+1-k Bl+32+1 Bi1+Ba+1— k
L3 = iy E M11N E M21N

Next, we treat L,, C, C5 as functions of By + By = n and prove that L = (11 — pio1)C1 +

(22 — p12)Co by induction. Note that (3.5) and (3.6) yield

n—1 k n
n) = Z T Z fiabi ” + piy Z [12hs;
k=0 j=0 j=0

= pa1p22C1(n — 1) + pgy ZM{QNSij
=0
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n—1 k k
o k  n—k j  n—j n n , n—j
= E Highbay E 1Mo ™ + Hio E H11 M2
=0 =0 =0

= i Coln — 1) + iy > ity (3.12)
=0

When B, + By = 0, then C(0) = C(0) = 1, and

L1(0) = (pa1 + pa2) — (p21 + pa2) = (par — p21)C1(0) + (p22 — p112)C2(0).

Suppose now that L1(B; + By) = (11 — f121)C1(B1 + Ba) 4 (22 — p12)Co(By + Bs) for
By+ By, =0,1,....n— 1. Then, for B + By = n, (3.8), (3.11), and (3.12) yield

Ly(n) = parpiaa La(n — 1) + pi™ Z 1o+ piapas Z YT

n i n—j n k  n—k
- L012+1 E le1/¢22 7 — Mg 21 E Mo llaq
j= k=0

= 2122 [(,Ull — p21)Cr(n — 1) + (a2 — p12)Ca(n — 1)}

+ (pan = o) Y oty + (pa2 — o)ty Y 1ty
j=0 Jj=0

= (11 — p21)Cr(n) + (p22 — p112)Ca(n).

Thus, Ly = (p11 — p21)Ch1 + (a2 — p12)Co.

Note that we can also present the recursive formulas for C';(n) and Cy(n) as follows:

Z p s Z M12ﬂ21 T4+ Haatizy + Z T o

= ,Ulllu2101(n - 1) + Z(Mnulz)k(umuzz)n%- (3.13)
k=0
k—1

Co Z Nmﬂgl g Z M11M22 T+ [ gy + Z [1aka1 lelﬂgfk
k=1 7=0 k=1
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n

= ,u12,u2202(n - 1) + Z(Mnﬂu)k(ﬂmum)n_k- (3.14)
k=0

Similarly, using (3.9), (3.10), (3.13) and (3.14), we can obtain the following equations by

induction.

Lo(n) = — (11 ptr2 — po1pro2) Ch(n); (3.15)

LB(n) = (M11M12 - M21M22)CQ(7”L)- (3.16)

When B; + By = 0, (3.15) and (3.16) hold obviously. Suppose now that (3.15) and (3.16)
hold for B; + Bs = 0,1,...,n — 1. Then, for By + By = n, equations (4.3),(3.13), and
(3.14) yield

Lz(n) = M11M21L2(n - 1) + (M21M22)n+1 - (,u11/~012)mrl

n

= —(M11M12 - M21M22)M11M2101 (n - 1) - (M11M12 - ,u21,u22) (M11/~012)k(/~021u22)n_k
k=0

= —(,un,um - #21#22)01(n);

L3(n) = paapoeLy(n — 1) + (M11M12)n+1 — (M21#22)n+1

n

= (M11M12 - M21M22)M12M2202(n - 1) + (M11M12 - M21/l22) (M11M12)k(ﬂ21u22)n_k
k=0

= (Nn,uu - ﬂ21#22)02(n)-

The result follows. O
The next proposition shows the optimal server assignment policy for two special cases.

Proposition 3.3.2. (a) When 11 > fio1, oo > [12, Assignment A, is no worse than

C
A21.

(b) When o = 1, Assignment AS, is no worse than AS, if and only if 51 > Ps.
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Proof. For (a), note that x1 > 111, T2 > pig. When pi11 > pio1, po2 > pi12,

Ta(p11 — po1)r1C1 > poa(pinr — p21)r1Cr > (piapinr — pazpier)x1CYh,

21 (a2 — p12)2Co > a1 (fla2 — pr12)raCo > (21 plos — pia1ptr2)2Co.

Adding up the above two inequalities, we obtain (3.7), which means that inequality (3.7)
always holds when 117 > pto1, fto2 > pt12. Thus, in this case, 17, > T5;.

For (b), if « = 1, then z; = X1, z9 = X9, and inequality (3.7) can be simplified as

(C120 + Co%) (81 — B2) 2 0.

Thus the result follows. O]

Part (a) of Proposition 3.3.2 shows that when the servers specialize in different subtasks,
the primary assignment is assign the servers to the subtasks they are specialized. For part
(b), note that 8 > [y < py1pia2 > po1pt12. Thus, if the synergy level is 1, i.e., the server
collaboration is additive, then we let the servers collaborate for the secondary assignment,

and use the primary assignment with the higher product of service rates.

3.3.2  Special Case 1: No Buffers

When By = By = 0, then 'y = C5 = 1 and we can simplify inequality (3.7) as follows:

Corollary 3.3.1. Assignment A{, is no worse than A$, if and only if

1o (11 + fog — por — pa2) > (21 — x2) (11 fta2 — Ho1fiea). (3.17)
Denote
=3

as the fraction of the total service capacity at subtask 2 over the total service capacity at

subtask 1. Without loss of generality, label the servers so that 5; > 5. Then 81 > 0,5, < 1
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(otherwise the problem reduces to having only one server). Consider the following three

cases: (1) By > o > 53 (2) B = 5 > 23 (3) & > 1 > Bo. The second case is equivalent

to f111 > flo1, Moo > 412, and the optimal policy is provided in Proposition 3.3.2. For cases

(1) and (3), we have that 5; # % # (5. Let

_ 26 -1
my = 252_17
(28 =1)(1 = B1)Br
T2k - D)(1- BBy
(Br+Be—1)(1—7) .
N ) A
Gy = (B + B2 —1)B )
(260 = D[Br + (1 = Bo)v]
Gy = (Bi+ B2 —1)(1 = B2)y

(282 = DB+ (1= Bo)o]

Note that, when 3; > (B > %,Ogmg <1<m < oo;when% > (1> [, 0 <my <
1 < my < oo. Propositions 3.3.3 and 3.3.4 present the results of the comparisons of Af,

and A$, in cases (1) and (3), respectively. The proof of Proposition 3.3.3 is provided in

Appendix A.2.1.

Proposition 3.3.3. When 3, > (3, > 1,
(a) If v < ma, AS, is optimal if and only if « > max{G1, G1}.
(b) If ma < v < my, A, is always optimal.
(c) If v > my, AY, is optimal if and only if a < G.

When [y, By > % then pi11 > po1, ft12 > jioo, and hence server 1 is no worse than
server 2 at both subtasks. And 3; > [, suggests that server 1 is relatively better at subtask
1 than at subtask 2 (relative to server 2). Intuitively, when the synergy level « is high, we
might want to take advantage of the high efficiency of the servers when they collaborate
by pushing the system to the boundary states where only one subtask is available to work

on. Thus, when +y is large (small), and hence there is more total capacity at subtask 2 (1),

32



we will assign the relatively faster server, i.e., server 1, to the subtask with larger total
capacity, i.e., subtask 2 (1), when the synergy level is high. Otherwise, when the synergy
level is small, we will assign the relatively faster server to the subtask with the smaller total
capacity to balance the speed of the two subtasks. Finally, when v is moderate, so the total
service capacities at the two stations are similar, then it is better to assign the faster server

to the task the server is relatively better at whenever possible.
Proposition 3.3.4. When § > 8, > [,

(a) If v < my, AS, is optimal if and only if o < G;.

(b) If my <y < my, A, is always optimal.

(c) If v > mo, AS, is optimal if and only if « > max{G;, G3}.

The interpretation and proof of Proposition 3.3.4 are very similar to that of Proposition
3.3.3 except that server 2 is now better than server 1 at both subtasks and server 2 is rela-
tively better at subtask 2 than at subtask 1 (relative to server 1). Thus we omit the proof for

brevity.

Example 3.3.1. Figure 3.4 shows the optimal primary assignment of the servers for three
cases when o = 1: (a) p1y = 2, pto1 = 1, (b) pr11 = pro1 = 1, (¢) pi1 = 1, pio1 = 2. For all
three cases, Assignment AS, is optimal if and only if the service rate of server 2 at subtask

2 is above the corresponding line; otherwise Assignment A$, is optimal.
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Figure 3.4: Optimal collaborative task assignment for different service rates when o = 1.

3.3.3 Special Case 2: Asymptotically Infinite Buffers

In this section, consider the case when B; + By — oo. Then,

: : Tipos . :
1. In assignment A§2, if H11 < o2, Tlcz — m, and if H11 > o2, TfQ —

Top11
Totp11—p22 "

: c : [ T1p12 . 1 ¢
2. In assignment A§,, if o1 < g, T5; — o —— and if po; > o, T3 —

To21
Totp21—p12”

The following propositions provide the optimal collaborative task assignment policy when

the sum of the buffers goes to infinity. Again, we label the servers so that 5; > [, and

consider three cases: (1) 1 > 2 > 1;(2) f1 > 5 > (2; (3) 5 > 1 > fo. Case (2) follows
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from Proposition 3.3.2. For cases (1) and (3), we have (5, # % £ (. Let

Bt fa—1
“i= o1
_ Pl = Po+B1) = Bi(l— B+ Ba) . b
G = VB2 — P ’lfV%ﬁQ’
e _52[51—7(1_52)]_
6 — 251_1 )
it B—1
G7_ 2/62—1 )
YA =B)(A =B+ By) — (1= B1)(1 = Ba+ B1) . 1-051
Go = =B = (1= 6 ey
Gy = (1 —51)[51 —7(1 —52)].

(252 - 1)7

Note that, when (5, > (35, we have 0 < }:g; <1< % < o0. Propositions 3.3.5 and 3.3.6

present the results of the comparisons of A, and A$, in cases (1) and (3), respectively. The

proof of Proposition 3.3.5 is provided in Appendix A.2.2.

Proposition 3.3.5. When 3, > (o > 1

2

1 Ify < 1:22 AS, is optimal if and only if o« > min{G4, max{Gs5, Gs} }.

2. If igé <7< % AS, is always optimal.

3. Ify > % AS, is optimal if and only if « < max{Gs, G7}.
Proposition 3.3.6. When § > 1 > [,

1. If v < %, AS, is optimal if and only if « < max{Gy, Gg}.

1

B2’

IA
|E

2. 1f tg; <7y AS, is always optimal.

3. Ify > %, AS, is optimal if and only if o« > min{G7, max{Gsg, G} }.
The interpretation and proof of Proposition 3.3.6 are very similar to that of Proposition
3.3.5 except that server 2 is now better than server 1 at both subtasks and server 2 is rela-

tively better at subtask 2 than at subtask 1 (relative to server 1). Thus we omit the proof for

brevity.
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We observe that the optimal policies for asymptotically infinite buffers have similar

structure as in the zero buffer case, and hence have the same intuitions as in the previous

(&)

section. However, they have more complex thresholds than the zero buffer case because &

has multiple possible limits when the sum of the buffers goes to infinity depending on how

Bl and &2 compare with 1.
H22 H21

3.4 Other Forms of Server Coordination

In this section, we analyze the other two forms of server coordination mentioned in Section
5.1, namely teamwork and non-collaboration. Note that all of the results in this section
hold without the assumption of exponentially distributed service requirement. Thus, the
results in this section can be applied to a generalized system with independent and identi-
cally distributed service requirements. In Section 3.4.1, we investigate teamwork with or
without task partitioning; in Section 3.4.2, we analyze the non-collaboration approach; and

in Section 3.4.3, we compare the long-run average throughputs of these methods.

3.4.1 Teamwork

In this section, we analyze the teamwork server coordination approach. The service re-
quirement of each job is S; + S, and the service rate of server ¢ at the combined task
is

I S
Hil M2

for 7 = 1, 2. Thus, the corresponding throughput of teamwork is proportional to the sum of

these service rates, namely

We also consider teamwork with task partitioning, in which the server team will first

complete subtask 1 with a combined service rate of o>, and then complete subtask 2 with
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a combined service rate of Xy, and repeat the process in this order. The throughput of

teamwork with task partitioning is

T =

1 1
H11+H21 Hi12+p22

The next result compares teamwork with or without task partitioning.

Proposition 3.4.1. The throughput of teamwork with task partitioning is never smaller than

that of teamwork (without task partitioning).

Proof. Simple algebra yields that 7% > T if and only if (p11102 — ft12/121)? > 0. Thus
T > T* always holds. O

Note that T = T if p111 109 = pr12/101, which holds if servers are identical or if service
rates depend only on either the subtask or the station or if the servers are generalists, which
means that the service rate of server ¢ at subtask j is of the form p;7;. Thus the difference
between teamwork with and without task partitioning arises from server specialization.
Teamwork with task partitioning takes advantage of the server specialization (and thus
avoids extremely low service rates) by combining the service rates at each subtask first.
Thus even when servers are not generalists, they do not spend excessive time at subtasks
where they have relatively low service rates. Thus teamwork with task partitioning does a

better job of neutralizing the servers’ weaknesses and leads to higher throughput.

3.4.2 Non-collaboration

In this section, we consider a non-collaborative approach in which servers are working in
parallel and each server will complete all subtasks of a job. The throughput of this parallel

model is

Note that non-collaboration processes multiple jobs in parallel at the same time, while
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task assignment and teamwork with or without task partitioning process only one job at
a time. Thus non-collaboration has more work in process (WIP) than the other server

coordination approaches.

3.4.3 Comparison of Non-collaboration and Teamwork

Note that non-collaboration is a special case of teamwork with & = 1 for one-station

systems. Thus, we have the following proposition:

Proposition 3.4.2. Teamwork (without task partitioning) is no worse than non-collaboration

if and only if a > 1.

By comparing the long-run average throughputs of teamwork with task partitioning and

non-collaboration, we have the following result:

Proposition 3.4.3. Teamwork (with task partitioning) is no worse than non-collaboration
if and only if

2+ Yo v E
- 2122 hg

«

h, (3.18)
where
hi = papro1 X0 + fagfieadin,

ho = (p11 + pa2) (p21 + poz2).

Note that, h can be reorganized as follows:

_ Br(1 = B1)ET 4 Bo(1 = o) X5 + (B + B2 — B — 53) 515,
B1(1 = B1)ET + (1 — B2)X5 + (61 + B2 — 261 52) 18,

h (3.19)

It follows that h < 1, and the equality holds if and only if 5 = (s < 1192 = f1ofio) <
T? =T,

Intuitively, servers are working separately in non-collaboration, so when the server col-
laboration is not too inefficient (« is not too small), teamwork with or without task par-

titioning would be better since it takes the advantage of server collaboration. Moreover,
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teamwork with task partitioning can outperform non-collaboration even when collabora-
tion is somewhat inefficient (when i < o < 1) because it takes better advantage of server
specialization. However, if the relative advantage of server 1 over server 2 at both sub-
tasks are equal (i.e., 31 = [(3), the benefit of server specialization for teamwork with task
partitioning no longer exists, and the comparison of teamwork with task partitioning and

non-collaboration depends solely on whether the server collaboration is efficient or not.

3.5 Best Server Coordination Methods

In this section, we compare the server coordination methods we discussed in the previous
sections, and determine how we should choose from these approaches for one queueing
station.

Recall that we separate the task assignment approaches based on server flexibility and
collaboration levels, namely static, flexible but not collaborative, and flexible and collab-
orative. Moreover, servers need to be flexible and collaborative for teamwork with and
without task partitioning and flexible for non-collaboration. Table 3.1 summarize the re-
quirements on server flexibility and collaboration for the six server coordination methods
we consider. A check-mark v* indicates that the method requires the specified server flexi-

bility and collaboration levels.

Table 3.1: Applicability of server coordination approaches

Approach Flexible Servers | Collaborative Servers
static task assignment
flexible task assignment
collaborative task assignment
teamwork without task partitioning
teamwork with task partitioning
non-collaboration

ASSENESENEN
SSESEN

As Table 3.1 shows, if the servers are static, only static task assignment is applicable;

if the servers are flexible but not collaborative, only static and flexible task assignment and
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non-collaboration are applicable; and if the servers are flexible and collaborative, all six
server coordination methods are applicable.

We have proved that in one-station systems, teamwork with task partitioning is never
worse than teamwork without task partitioning. As these approaches are applicable in the
same settings, we will only consider teamwork with task partitioning in this section. More-
over, static and flexible task assignment are special cases of collaborative task assignment.
Thus, we will compare collaborative task assignment with teamwork with task partition-
ing and non-collaboration in Section 3.5.1 to identify the best possible server coordination
approach. In Section 3.5.2, we compare flexible task assignment and non-collaboration to
identify the best server coordination method when the servers are flexible but not collabora-
tive. The comparison of static and flexible task assignment with other server coordination
methods can be found in Appendices A.4.1 and A.4.2, respectively. Finally, in Sections
3.5.3 and 3.5.4, we consider two special cases, namely when the servers are generalists and

when the servers are specialists, respectively.

3.5.1 Best Server Coordination Methods for Flexible and Collaborative Servers

In this section, we consider the case when servers are not only flexible, but also can work
together with a combined service rate equal to the sum of individual service rates times
the synergy factor &« > (0. We start by comparing teamwork with task partitioning and

collaborative task assignment.

Proposition 3.5.1. Teamwork with task partitioning is no worse than collaborative task

assignment if and only if « > 1 + |1 — Pal.

Proof. First, we prove that when v < max{(1, 1—f, B2, 1 — [ }, teamwork with task parti-
tioning is worse than collaborative task assignment. Recall that x; = max{11, o1, a¥1 },

o = maxq{ g, 22, @Xs}, and thus ady < z1, aXs < xe. When o < max{f;,1 —
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b1, B2, 1 — (B2}, at least one of the inequalities @3y < x; and aXs < x5 is strict. Thus,

Ttp _ 1 < 1 _ T1X2
1 1 I 1 .
a¥y + aXo 1 + T2 Tyt Ty
Moreover,
o B1+B2
142 c k  Bi+Bo—k
— Ty o< (2122 — 1192 — T2fi11) E f1 Mz ; (3.20)
X1+ T2 o
o B1+B3
142 c k , B1+Ba2—k
— Ty o (2172 — 1pt12 — Tapiar) E Porpy (3.21)
T1+ T2 o

Since o < max{f,1 — (1, B2, 1 — B2}, at least one of the following four cases hold: (1)
r1 = 11, (2) x1 = po1, (3) x2 = p12, or (4) x5 = p9o. Thus, at least one of equations

(3.20) and (3.21) is non-positive, and hence

T1X2
T + i)

" < < max{T},, Ts }.

We conclude that teamwork with task partitioning is worse than collaborative task assign-
ment.
Next, when o > max{f, 1 — 1, B2, 1 — B2}, we have 21 = a¥; and 25 = aX,. Then,

equations equations (3.20) and (3.21) yield

Bl+BQ
T — Ty o< (a¥1 X — Byper — Yopiar) Z ey BatBah
k=0
Bi1+B2
Ttp — TQCI X (aZlEg — 21LL12 — E2M21) Z Mglug1+32*k‘
k=0

Therefore,
o2 4+ Lofinn

T? - TS, >0 a> —1_
12 = o SN B2 + B,
z D
TV T8 > 06 a> 1f12 + 2'u21:1—51+52-
2130
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It follows that

T% > max{T5%, 75} & a > 1+ |p — Bsl.

Hence, teamwork with task partitioning is no worse than collaborative task assignment if

and only if « > 1+ |3; — [al. O

Note that 1 + |5y — 52| > 1 and a larger value of |$; — [3»] indicates a higher spe-
cialization level of the servers. Therefore, Proposition 3.5.1 indicates that teamwork with
task partitioning is preferable to collaborative task assignment if the server collaboration is
efficient (i.e., &« > 1) and the servers are not heavily specialized.

Next, we compare non-collaboration and collaborative task assignment. The proof of

Proposition 3.5.2 is provided in Appendix A.3.1.

Proposition 3.5.2. Let

D, = [Mﬁl+32+2(ﬂ21 + f122) + M%+B2+2(M11 + f112)

B1+B2—1
+ (1122 — pro1fir2) fran pioo Z ’u/lfllub2321+32717k]

k=0
12

B1+Ba+1 B1+Ba+1 )
hl(ﬂn 1+ Hay $2)

X

Hao1 (p11 + paz) + pis (21 + po2)

B1+B2—1
+ (o112 — f11fia2) o1 f12 Z ’uglM%JrBzflfk]

k=0

D, = B1+B>+2 Bi1+B>+2
2 pr—

T1T2
X

Bi1+B>+1 B1+Bs+1 )
hl(ﬂzl 1+ My x2)

where x1 = max{p1, fo1, @31}, 22 = max{ e, o, @3a}. Then, collaborative task

assignment is no worse than non-collaboration if and only if

max{ Dy, Dy} > 1.

Observe that max{D;, D} > 0, and Dy, D5 can be either greater or less than 1. For
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instance, when B1 = B, = 0,a = %, if p11 = oo = 3, oy = p12 = 1, then collaborative
task assignment is better; if j117 = oo = oy = 12 = 1, then non-collaboration is better.
Intuitively, when the servers are highly specialized at different subtasks, we prefer task
assignment even when server collaboration is not efficient since it takes advantage of the
high server specialization level. However, if the servers are not highly specialized, we
prefer non-collaboration since it avoids blocking.

Moreover, let D;(«), Dy(a) be the values of Dy, Do as functions of «. Then both
D, («) and Dy () are non-decreasing in «v, and when « is sufficiently large, both D;(«) and
Dy («v) will be linear in «.. Thus, lim,,_,o, D;(«) — oo for i = 1, 2. Therefore, Proposition
3.5.2 implies that collaborative task assignment is better than non-collaboration when « is
large enough since only collaborative task assignment takes advantage of efficient server
collaboration.

The following proposition concludes the comparisons in this section. Its proof is pro-

vided in Appendix A.3.2.
Proposition 3.5.3. Let oy = min{max{/,1 — (1}, max{fs, 1 — fa}}, then

1. when o < 1+ |1 — [,

(a) if max{D (), D2(a)} < 1, there exists a unique o* € (o, h| such that

max{D;(a*), Dy(a*)} = 1, and
i. when o < o*, non-collaboration is optimal;

ii. whenao* <a<1+|6 — 0

, collaborative task assignment is optimal;

(b) if max{D (), D2(ag)} > 1, collaborative task assignment is optimal;

2. when o > 1+ |5y — Bal,

teamwork with task partitioning is optimal.

Intuitively, the value of max{D; (), D2(c)} provides information on server specialty
level. As we can see from our previous example, max{D;(ap), D2(ap)} > 1 when the

servers are highly specialized, and max{D; (), D2(c)} < 1 when the servers are not
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highly specialized. Thus, Proposition 3.5.3 indicates that when servers are not highly spe-
cialized, we prefer non-collaboration when the synergy level is low since it avoids ineffi-
cient server collaboration and blocking; we prefer collaborative task assignment when the
synergy level is moderate since it takes the advantages of both server synergy and specialty
(as long as the servers are not identical); and we prefer teamwork when the synergy level is
high since it takes full advantage of efficient server collaboration. On the other hand, when
the servers are highly specialized, we prefer collaborative task assignment when the syn-
ergy level is not high since it takes full advantage of server specialty and avoids assigning
the servers to the subtasks they are not specialized in; and we prefer teamwork when the

synergy level is high since it takes full advantage of efficient server collaboration.

3.5.2 Best Server Coordination Methods for Flexible and Non-collaborative Servers

In this section, we compare the two methods that are applicable when the servers are flexi-
ble but not collaborative, namely flexible task assignment and non-collaboration (static task
assignment is also applicable, but it is a special case of flexible task assignment). Without
loss of generality, label the servers such that 11; > ps;. Then the following proposition

describes the optimal assignment of flexible but not collaborative servers.

Proposition 3.5.4. Label the servers such that j111 > ji01. Let

Bi1+B>+1 |  Bi+Bo+1-k
hotr1 froo Zk K190

Bl+Bz+2 B1+Ba+2—k 7
hy #11#22
B1+B2+1 g  Bi+Ba+1l—k
haptr1 12 Zk M1 og
Bl+BQ B1+Ba— Bi+B2+2
ha ( 1171 2 "uaipae + + pizp

Bl+B2+1 k B1+Ba+1-k
hopti1 12 Z o110

D3 =

D, =
4 B1+Bz+1)

D5 = h B1+BQ Bl+Bz
i

151113 Eiaging + papl PB4 By

Flexible task assignment is no worse than non-collaboration if and only if
maX{Dg, D4, D5} Z 1.
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Proof. When p11 > 91, there are three available flexible task assignment policies, namely
Al,. AlJ AY. Thus, for flexible task assignment to be no worse than non-collaboration, the
throughput of the optimal flexible task assignment needs to be no lower than the throughput
f ol

of non-collaboration, i.e., max{75,, T3 ,T211f } > T™c. Reorganizing this inequality yields

the desired result. We omit the details for reasons of brevity. [

Note that D3, Dy, D5 can be either greater or less than 1. For example, when B; =
By = 0,1f p11 = 1o = 2,00 = 1, oy = %, then flexible task assignment is better;
if pin = pe = 2,00 = 1, oy = %, then non-collaboration is better. Intuitively, when
one server has an extremely low service rate at some station compared to the other server,
flexible task assignment is better since it can avoid this low service rate; otherwise, non-

collaboration is better since it avoids blocking.

3.5.3 Special Case: Generalists

In this section, we consider the special case when the servers are generalists. Recall that
servers are called generalists if p;; = p;7y; for any 4, j, where p; can be regarded as the
ability of server i, and y; represents the difficulty of subtask j. When the servers are
generalists, fi111ft20 = po1/412, and thus §; = [5. The following proposition provides the
best server coordination method for one-station systems when 3; = [, and servers are
flexible and collaborative (so that all six server coordination methods are applicable). Its

proof can be found in Appendix A.3.3.
Proposition 3.5.5. When 3, = (,,

(1) The long-run average throughputs of teamwork with task partitioning and teamwork

without task partitioning are equal;
(2) If o > 1, teamwork is optimal; if o < 1, non-collaboration is optimal;

(3) If a = 1, collaborative task assignment, teamwork with or without task partitioning,
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and non-collaboration are equivalent, and are no worse than static and flexible task

assignment.

Intuitively, when the servers are generalists, a server’s rate at any subtask is proportional
to his individual ability that is unaffected by the subtask. That is, if one server is better
at some subtask than the other server, he will also be better at the other subtask. Thus,
there is no advantage to assign the servers to different subtasks (i.e., task assignment).
When the synergy level is higher than 1, we want to take advantage of this efficient server
collaboration, and thus we prefer teamwork; and when the synergy level is less than 1, we
let the servers work in parallel (i.e., non-collaboration), since they do not have specialties
at different subtasks and the faster server will not be blocked by the slower server. When
the synergy level is 1, the combined service rate is additive, and there is no loss or gain
from either server collaboration or server speciality. Thus, collaborative task assignment,
teamwork with or without task partitioning, and non-collaboration are equivalent in this
case.

In order to quantify the comparisons of the six server coordination methods, we provide
numerical results. Specifically, we compute the throughputs of the different approaches we
have discussed with different values of the synergy factor o and service rates with the
servers being generalists. We choose four sets of service rates, namely the cases where (i)
servers are identical and the task difficulties at both subtasks are the same (1 = o, 71 =
v9), (ii) servers are identical but the task difficulties are not the same (11 = p2, 71 # J2),
(ii1) one server is faster than the other at both subtasks while both subtasks have the same
difficulty (41 # p2, 71 = 72), and (vi) the server abilities and task difficulties are different
for different servers and subtasks (i1 # 2,71 # Y2). We also choose five values for «,
including cases when server collaboration is synergistic, additive, and inefficient. Recall
that B; is the internal buffer size of subtask ¢ for © = 1,2, and that the buffer allocation
does not affect the throughput as long as the sum B; + B; remains unchanged. Thus, we

choose three values of B 4+ B; representing small, medium, and large buffer sizes. The
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results are given in Table 5.5, where S, F, C stand for static, flexible, collaborative task
assignment, respectively, T for teamwork, and NC for non-collaboration. Since in this
case, the throughputs of the two teamwork methods are equal, we do not include a separate

column for teamwork with task partitioning in Table 5.5.

Table 3.2: Throughputs of server coordination methods with generalists (the highest
throughputs in each row are in bold).

service rates Bi+By=0 By + By, =10 By + By — o
(0% H11 M21 H12 U22 S F C S F C S F C T NC
151 1 1 1 1 (067 067 120|092 092 1.03|1.00 1.00 1.00|1.50 1.00
1.5 2 2 1 1 {086 086 1.64|1.00 1.00 1.50|1.00 1.00 1.50|2.00 1.33
1.5 2 1 2 1 108 120 1.80|1.00 133 1.64|1.00 1.33 1.64|2.25 1.50
151 1 2 2 4 133 1.60 250 |1.85 192 240|200 2.00 240 | 3.00 2.00
121 1 1 1 1 [0.67 067 1.09|092 092 1.01|1.00 1.00 1.00|1.20 1.00
1.2 2 2 1 1 {08 086 147|100 1.00 1.41]1.00 1.00 1.41|1.60 1.33
1.2 2 1 2 1 {08 120 1.64|1.00 133 157|100 133 157|180 1.50
121 1 2 2 4 1133 1.60 222|185 192 218|200 2.00 2.18|2.40 2.00
1.0 1 1 1 1 1067 0.67 1.00 092 092 1.00|1.00 1.00 1.00 | 1.00 1.00
1.0 2 2 1 1 {08 086 133|100 1.00 1.33|1.00 1.00 133|133 1.33
1.0 2 1 2 1 {086 120 150|100 133 1.50|1.00 1.33 1.50 | 1.50 1.50
1.0 1 2 2 4 1133 1.60 2.00|1.85 192 2.00|2.00 2.00 2.00 | 2.00 2.00
08| 1 1 1 1 [0.67 067 089|092 092 098 |1.00 1.00 1.00| 0.80 1.00
08| 2 2 1 1 {08 086 1.17|1.00 1.00 1.23|1.00 1.00 1.23|1.07 1.33
08| 2 1 2 1 {08 120 133|100 133 1.41]1.00 133 141|120 1.50
08| 1 2 2 4 1133 1.60 178 |1.85 192 1.96|2.00 2.00 2.00 | 1.60 2.00
05| 1 1 1 1 |0.67 0.67 0.67092 092 092|1.00 1.00 1.00 | 0.50 1.00
05 2 2 1 1 108 0.86 086|100 1.00 1.00|1.00 1.00 1.00|0.67 1.33
05| 2 1 2 1 {08 120 1.20|1.00 133 1.33]1.00 133 1.33|0.75 1.50
05| 1 2 2 4 1133 1.60 160|185 192 1.92|2.00 2.00 2.00| 1.00 2.00

Observe that the results in Table 5.5 are consistent with our results in Proposition 3.5.5.
That is, when « > 1, teamwork is the best; when v < 1, non-collaboration is the best; and
when a = 1, collaborative task assignment is the best. In addition, Table 5.5 yields the
following new observations about static, flexible and collaborative task assignment with

generalist servers:

1. When the servers are identical (cases (i) and (ii)), static task assignment is equivalent
to flexible task assignment. When servers are not identical (cases (iii) and (iv)), by
comparing the static and flexible task assignment, we conclude that server flexibility

increases the throughput of the task assignment approach significantly (from 20% to
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40% in our examples), especially when the buffer sizes are small.

. We know that the long-run average throughputs of the static and flexible task assign-
ment approaches are increasing with respect to the buffer sizes. Table 5.5 shows that
the convergence speeds for both task assignment approaches are fast. Specifically,
for cases (i1) and (iii), the throughputs of static and flexible task assignments already
reach the maximum values (as when By + By — oo0) when B; + By = 10; and
for cases (i) and (iv), letting B; + By = 10 increases the throughputs of static and
flexible task assignments by 20% to 39% relative to B; + By = 0, and yields through-
puts that are very close to their upper bounds (with deviation less than 8% relative to

By + By — 00).

. Allowing collaboration increases the throughput of the task assignment approach
when server collaboration is not too inefficient (i.e., when « is not too small) as long
as the combined service rate exceeds the maximum of individual service rates (e.g.,
a = 0.8). And this improvement can be large, and increases with the synergy level.
Specifically, the throughputs of collaborative task assignment are over 10% higher
than for flexible task assignment, even when the synergy level is less than 1 (i.e.,
a = 0.8) when the buffers are zero. However, this improvement decreases as the
sum of the buffer sizes increases (because blocking is less frequent for larger buffer

sizes).

. The throughput of collaborative task assignment is non-decreasing with respect to the
buffer sizes when @ < 1, and non-increasing when o > 1. This result is consistent
with Remark 3.3.1, since larger internal buffers lead to less collaboration of the two
servers. And the convergence speed with respect to By + B, is fast. In particular,
for cases (ii), (iii), and the o > 1 cases of (iv), the throughput of collaborative task
assignment already reaches the maximum (minimum) value (as when B; 4 By — 00)

when B; + B, = 10; and for the other cases, the throughput of collaborative task
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assignment is very close to its extreme value when B; + By = 10 (with deviation

less than 8% relative to B; + By — 00).

5. When a < 1 and B; + By — o0, all three task assignment approaches are the
best for cases (i) and (iv). Indeed, when the synergy level of server collaboration is
low, the advantage of server collaboration through secondary assignment vanishes.
Therefore, we prefer more balanced service rates at different subtasks for the primary
assignment to avoid blocking. That is, for all three task assignment approaches, we
will assign server ¢ to subtask 3 — ¢ for ¢ = 1, 2 for the optimal primary assignments
of case (iv). Then, the service rates of all subtasks are equal in cases (i) and (iv) when
both subtasks are working, which reduces the occurrence of blocking. When the sum
of the buffer sizes goes to infinity, the possibility of blocking is further reduced, and
servers will work individually at the same rate and remain static almost all of the
time. Thus, the three task assignment approaches all yield the same throughputs as

non-collaboration as B; + By, — 00.

3.5.4 Special Case: Specialists

We have discussed the special case when servers are generalists in Section 3.5.3. In this
section, we want to consider another special case, namely when servers are specialists.
Servers are called specialists if they have higher service rates at different subtasks. In this
section, the servers are labeled so that j111 > o1, 12 < piga.

Note that by Propositions 3.1.1 and 3.2.1, when g7 > po1, 112 < 9o, then Aj, =
A{2 are the optimal static and flexible task assignment approaches. Specifically, we will
assign server ¢ to subtask ¢ for ¢+ = 1,2 all the time in both the static and the flexible task
assignments.

We now compare our six server coordination approaches with specialist servers via
numerical results. We choose four sets of service rates with the specialization level of

servers at different subtasks from low to high, and use the case with identical service rates
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as a benchmark in our comparison. And we also choose five values for «, including cases

where server collaboration is synergistic, additive, and inefficient. The results are given in

Table 5.6. The notation and abbreviations are as defined in Section 3.5.3. And we have an

extra column for teamwork with task partitioning (TP) since it is no longer equivalent to

teamwork without task partitioning (as in the previous section).

Table 3.3: Throughputs of server coordination methods with specialists (the highest
throughputs in each row are in bold, and we put the best task assignment methods for
the finite buffers cases, i.e., when By + By = 0, and By + By = 10, in italics if they beat
teamwork with and without task partitioning and non-collaboration).

service rates B+ By=0 B1+ By,=10 Bi+ By > >
« M1 M21 12 M22 S F C S F C S F C TP T NC
1.5 1 1 1 1 1067 067 120092 092 1.03|1.00 1.00 1.00|150 1.50 1.00
1.5 2 1 1 2 | 1.33 1.33 212|185 1.85 2.02 200 200 2.00]|225 200 1.33
1.5 3 1 1 3 1200 200 3.00 (277 277 3.003.00 3.00 3.003.00 225 1.50
1.5 4 1 1 4 | 2,67 267 387|369 3.69 398|4.00 4.00 4.00 | 3.75 240 1.60
1.2 1 1 1 1 1067 067 109092 092 1.01]1.00 100 1.00|1.20 120 1.00
1.2 2 1 1 2 | 1.33 133 1.89 185 1.85 1.98]2.00 2.00 2.00| 1.80 1.60 1.33
12] 3 1 1 3 1200 200 267|277 277 2.94(3.00 3.00 3.00 240 180 1.50
12| 4 1 1 4 | 2,67 2.67 343]3.69 3.69 389|4.00 4.00 4.00 | 3.00 192 1.60
1.0 1 1 1 1 | 067 067 1.00 092 092 1.00|1.00 1.00 1.00 | 1.00 1.00 1.00
1.0 2 1 1 2 | 133 133 171|185 185 1.95]2.00 200 200|150 133 1.33
1.0 3 1 1 3 1200 200 240|277 277 288 3.00 3.00 3.00 2.00 150 1.50
10| 4 1 1 4 | 2,67 267 308|369 3.69 381|400 4.00 4.00 | 250 1.60 1.60
0.8 1 1 1 1 067 067 089092 092 098 |1.00 1.00 1.00 | 0.80 0.80 1.00
08| 2 1 1 2 [ 133 133 150|185 1.85 1.89|2.00 2.00 200|120 1.07 1.33
08| 3 1 1 3 1200 200 209|277 277 280 )3.00 3.00 3.00 | 1.60 1.20 1.50
08| 4 1 1 4 | 267 267 2.67|3.69 3.69 369|400 4.00 4.00 | 2.00 128 1.60
05] 1 1 1 1 067 067 067092 092 092 ]1.00 1.00 1.00 | 0.50 0.50 1.00
05| 2 1 1 2 | 1.33 133 133|185 185 185|200 2.00 200|075 0.67 133
05] 3 1 1 3 1200 200 200|277 277 2.77(3.00 3.00 3.00 | 1.00 0.75 1.50
05| 4 1 1 4 | 267 267 2.67|3.69 369 369|400 4.00 4.00 | 1.25 0.80 1.60

We have the following conclusions from Table 5.6:

1. Collaborative task assignment is the best except when server synergy is high, server

specialization is low, and buffer sizes are small. Intuitively, when servers are spe-
cialists, we would like to take advantage of their specialty by assigning them to the
subtasks they are better at unless the server synergy level is high enough to outweigh

their specialization.

2. Teamwork with task partitioning is the best when the synergy level is high and the
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specialization level is low.

. Server collaboration improves the long-run average throughput of task assignment
when the collaboration is not too inefficient (i.e., when o > 0.8 and thus o > | ; Hij >
max;{yu;;} fori = 1,2.), and this improvement gets larger as the synergy level gets
higher. However, unlike in the generalists case, this improvement vanishes as the
sum of the buffers goes to infinity. Intuitively, when the service rate at both subtasks
are the same for the primary assignment and the sum of the buffer sizes is large, the
probability of any of the subtasks getting blocked is small, and thus the differences
among the static, flexible, and collaborative task assignment are small. Furthermore,
the throughputs of all three task assignment approaches do not depend on the synergy
level when the sum of the buffers goes to infinity. The intuition is similar to that
of cases (i) and (iv) when the servers are generalists as the possibility of blocking

vanishes with large buffers and balanced service rates.

. The throughput of collaborative task assignment is decreasing with respect to the
buffer sizes when the synergy level is high and the specialty level of servers is not
large, which coincides with the cases when teamwork with task partitioning is the
best among all methods. Otherwise, the throughput of collaborative task assignment
is non-decreasing with respect to the buffer sizes even when server collaboration is
efficient. Intuitively, a moderate and balanced service rate at both subtasks for the
primary assignment is preferable to a single high service rate at one subtask for the
secondary assignment for collaborative task assignment. When o« = 1.5, and the
specialty level % = 3, the throughput of collaborative task assignment is a constant
with respect to the buffer sizes. This result is consistent with Remark 3.3.1 since in
this case, we have z; = x5 = 06, and thus x99 + Top111 — 129 = 0. Moreover, the
convergence speed is fast (with deviation less than 8% for B; + B, = 10 relative to

By + By — o0) especially when the synergy level is not too low.
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5. Similar to the generalists case, the throughputs of static and flexible task assignment
increase quickly with respect to the sum of the internal buffer sizes. Specifically, by
increasing the sum of the buffers from O to 10, we increase the throughputs of static
and flexible task assignment approaches significantly (around 35%); and when B; +
By = 10, the long-run average throughputs of the three task assignment approaches
are already close to the asymptotically-infinite-buffer throughputs (with deviations

less than 10%).

6. The advantage of teamwork with task partitioning over teamwork without task parti-
tioning increases as the specialty level increases. Specifically, when the specialty
level % equals 2, 3, 4, the throughputs of teamwork with task partitioning are
12.5%, 33.3%, 56.3% higher than for teamwork without task partitioning, respec-

tively.

7. Non-collaboration can be as good or better than static and flexible task assignments
when the specialty level is low and buffer sizes are small, and better than teamwork

with or without task partitioning when the specialty and synergy levels are low.

3.6 Server Coordination in Longer Lines

When there are no precedence relationships among tasks, then all tasks can be completed
at a single station. This is the model considered so far in this paper. In this section, we will
study systems where there are precedence relationships among certain tasks. Specifically,
in this section, we consider a system of M/ > 2 tandem stations with two subtasks and two
servers at each station. Denote S, as the service requirement of subtask j at station £, and
assume that E'[S;;] = 1forj =1,2,k =1,..., M. The service rate of server ¢ working on
subtask 7 at station k is p;;, for¢,j = 1,2,k = 1,..., M. We allow internal buffers after
each subtask and intermediate buffers between stations. Let B, be the internal buffers of

the jth subtask at station k for j = 1,2,k = 1,..., M, and By, be the intermediate buffers
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between station k and k+ 1 fork = 1,..., M — 1 (a job will occupy an entire intermediate
buffer space as long as processing of at least one of its subtasks has not commenced at the
next station).

First, we describe the task assignment approaches in longer lines. As soon as both
subtasks of a job at station k € {1,..., M} are completed, the job is ready to be assembled
(and split again for the service at the next station if £ < M). However, the job will not enter
service at the next station until at least one of the subtasks of its previous job at the next
station is completed. Note that, if £ = M or k < M and the intermediate buffer between
stations k and k + 1 is not full, then at most one of the internal buffers at station & can have
jobs in it (since otherwise, the two completed subtasks of a job will be combined and leave
station £ immediately). Assume that when £ < M and the intermediate buffer is full, the
completed two subtasks of a job at station k (if such a job exists) will stay at station % until
the intermediate buffer has room for the job.

When there are multiple stations, the three task assignment approaches can no longer
be modeled as birth-and-death processes. As a result, it is more difficult to identify the
optimal task assignment approaches for longer lines. Hence, we will focus on numerical
results in this section.

In Section 3.6.1, we discuss buffer allocation for longer lines, and show that for the
static task assignment approach, we can focus on the case when there are no intermediate
buffers between stations. Moreover, when there are multiple stations in tandem with infinite
intermediate buffers, stations will not be blocked by downstream stations. Then, the long-
run average throughput of the system boils down to analyzing stations on their own, and
is determined by the bottleneck station with the minimum individual station throughput.
Since we have analyzed the best server coordination approaches for one-station systems
in the previous sections, the optimal server coordination method can be obtained sponta-
neously. The difficulty in generalizing the one-station results in Sections 3.1 through 3.5

to longer lines arises due to the blocking of the stations. Therefore, we will focus on the
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most extreme case with no intermediate or internal buffers, which leads to the highest risk
of blocking. In Section 3.6.2, we provide numerical results for the server coordination

methods for two tandem stations with no buffers.

3.6.1 Buffer Allocation for Static Task Assignment in Longer Lines

In this section, we investigate the buffer allocation for longer lines with static servers when
there exist both internal buffers within stations and intermediate buffers between stations.
The following proposition and corollary show that we can focus on the case with no inter-

mediate buffers between stations when the servers are static.

Proposition 3.6.1. Consider a system with M tandem stations, two servers at each station,
and service requirements with general distributions. Assume that the servers are static.
If there exists some station ko € {1,..., M — 1} such that By, > 0, then the maximum
long-run average throughput of this system is no more than the maximum throughput of
another system with By, — 1 intermediate buffers after station ko, B; i, + 1 internal buffers

for subtask j € {1,2} at station ko, and the same number of buffers for the other stations.

The following lemma (part (i) of Lemma 1 of Argon and Andradéttir [15]) will be

useful in the proof of Proposition 3.6.1. We present it without proof.

Lemma 3.6.1. Let a;, b; be any real numbers fori = 1, ... ,n, where n is a positive integer.

Then, max;—1_n,{a;} —max;—y  ,{b;} > min;—y _,{a; —b;}.

Proof of Proposition 3.6.1. Consider two processes with the same initial system state. Sup-
pose Bl is the intermediate buffer after station k¥ € {1,..., M — 1} in process [ € {1,2},
Bi . is the internal buffer of the jth subtask at station k in process [ for [, 5 € {1,2},k €
{1,...,M}. Then, for j = 1,2, Bf = By,B;, = Bj;, k € {1,...,M — 1} \ {ko},
B]%M = BJ{M, B, >0,B; =B, —1, BJ%,CO = le',ko + 1. That is, process 2 has one less
intermediate buffer after station k¢ and one more internal buffer for both subtasks at station

ko than process 1. Assume that the jobs are labeled according to the order in which they
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depart from the system. Therefore, if the system is not empty at time zero, then the job
with a subtask closest to the end of the line is labeled as job 1. Let D}, () be the departure
time of job ¢ > 1 from subtask j € {1,2} at station k € {1,..., M} in process | € {1,2}
(so that job ¢ will be in the internal buffer of subtask j at station £, or in the intermediate
buffer between stations £ and k£ + 1, or at station £ + 1, or out of the system if k£ = M right
after time D’ ,(7)). Let C}(i) be the completion time of both subtasks of job i > 1 from

station k € {1,..., M} in process [ € {1,2}, i.e.,
Cllc<l) = maX{Di,k@% Dlzk(z)}

Also, let X!, (i) be the service time of job i > 0 at subtask j € {1,2} at station k €
{1,..., M} in process | € {1,2}. We use the same server assignment at each subtask of
each station for job i > 1 in both processes; hence X/, (i) = X7, (i) for j € {1,2},k €
{1,..., M}, and we suppress the superscripts in X[, (7),X7 (7).

First, we give recursive formulas that the departure times Dé, (1) must satisfy. Assume
that D}, (i) = X (i) = 0if k ¢ {1,...,M},5,1 ¢ {1,2}, ori < 0. Then, the departure
time of subtask j of a job ¢ at station £ = 1,..., M — 1 depends on the following four

cases:

1. If there are no jobs in subtask j at station k£ when job ¢ departs from both subtasks at
station k — 1, and job ¢ is not blocked by the time of its service completion at subtask

j at station k, then D!, (i) = C{_, (i) + X (4).

2. If job ¢ has waited to be served at subtask j of station k until the service completion
of its previous job, and the internal buffer after subtask j is not blocked upon its own

service completion at subtask 7, then D', (i) = D' (i — 1) + X 4 ().

3. If the internal buffer after subtask j is blocked at the time of the service completion,
this job will leave subtask 7 upon a new service completion at subtask 3 — j of

this station. Since in this case the internal buffer after subtask 3 — j is empty, the
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next departure at that subtask should be job ¢ — Bjk Thus, in this case, Dék(@) =

Dé—j,k(i - B;k;)

4. If both the internal buffer after subtask 7 at station & and the intermediate buffer after
station £ are full at the time of the service completion, job ¢ will leave subtask j upon

a new service completion (i.e., of job i — B! — B;-,k — 1) at station k + 1. In this case,

D;k(z) - Cllc—i—l(i - B}, — B;‘,k —1).

Note that for £ = M, Dé, 17 (7) only depends on the first three cases since the fourth case
does not apply to the last station. Moreover, if job ¢ is being served in subtask j at station
k at time zero, then DY, (i) = 0 for j/ = 1,2,k < k, and the first two cases become
D} (i) = X (1), where X 1, (4) stands for the remaining service time of job i at subtask j
at station k.

Then for all k € {1,..., M}, we have that, fori > 1,1,j = 1,2,
Dék(@) = max{C’,i_l(i)%—Xj,k(i), Dé’,k(i_l)‘FXj,k(i)a Dé—j,k(i_le',k)7 O/lf—l-l(i_Bllc_Bé',k_l)}'
As C (i) = max{D} , (i), D}, (i)} form = k — 1,k 4 1, we have

Dj (i) = max{ D} _(0) + Xj(), Doy (i) + X (i), D (i = 1) + X;(0),

Dé—j,k(i - B;’,k)v Dll,k-i—l(i - Bilﬁ - B;‘,k —1), Dl2,k+1<i - Bllc - B;‘,k' -1}

Note that By + Bj, = B + Bj, forany k = 1,...,M —1,j = 1,2, Bj,, = B}, for
j=12
Let A;jx(i) = Dj (i) — D?,(i). Then by Lemma 3.6.1 and the inequalities above, for

J

je{,2i>1Lk={1,...,.M — 1} \ {ko},

Aji(i) = min{Ay (i), Ag o1 (2), Aj(i — 1), As_j k(i — Bjy),

Ay (i = By = Bj = 1), Ao g1 (i = By — Bj, — 1)}
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For k = kg, we have

Aj,ko (Z> > min{ALko—l(i)v AQ,ko—l(i)v Aj,k‘o (Z - 1)7 Défj,ko (l - B},ko) - Dgfj,ko (Z - B]l,ko

Al,kO"Fl(i - B;O - B},ko - 1)7 AQ,kO"Fl(i - B;O - B},ko - 1)}
> min{ALko—l(i)7 AQ,ko—l(i)v Aj,ko (Z - 1)7 A?)—j,ko (2 - B},ko - 1)7

A17k0+1(i - BIZCO - B‘]l,ko - 1)7 A27k0+1(i - B;O - B‘]l,ko - 1)}

Finally, for k = M,
Aj7M(Z.) Z min{ALM_l(i), A27M_1(Z.), Aj,M(Z. — ].), Ag_j,M(’L. — le,M)}

Note that Aj (i) = O when j ¢ {1,2},k ¢ {1,...,M}, ori < 0. It is easy to see
Aji(i) > 0forall j € {1,2},k = 1,...,M and i > 1 by induction. Thus, D} (i) >
Di 1 (@) for j = 1,2, and the departure time of job ¢ from station M in process 1 is later
than in process 2, for Vi > 1. It follows that process 2 has no smaller long-run average

throughput than process 1. [

Note that, we can generalize Proposition 3.6.1 to arbitrary number of subtasks at each
station. For instance, if there are J subtasks at some station k, then the departure times

Dé-’ . (1) still depend on the four cases we discussed earlier, but the completion time becomes

.....

{D} i (i = Bj)}-

The following corollary follows from Proposition 3.6.1.

Corollary 3.6.1. For the static task assignment approach, if By > 0, wherek € {1,..., M —
1}, then the maximum long-run average throughput of this system is no more than the max-
imum throughput of another system with no intermediate buffer between stations k and
k + 1, B, + By, internal buffers for subtask j € {1,2} at station k, and the same number

of buffers for the other stations.
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Note that Proposition 3.6.1 and Corollary 3.6.1 do not hold if the servers are flexible or
collaborative. The following example shows that intermediate buffers can be preferable to

internal buffers when the servers are flexible or collaborative.

Example 3.6.1. Consider two systems, each with two stations in tandem and two servers
at each station. System A has one internal buffer for each subtask at station 1, and no
buffers anywhere else; system B has one intermediate buffer between stations 1 and 2,
and no buffers anywhere else. Suppose that the service requirement S, is exponentially

distributed for ¥j, k € {1,2}.

(i) When the servers are flexible and non-collaborative, if the service rates are 1111 =
Hi21 = 2, flo11 = Mao1 = fi12 = Mo12 = [122 = [o22 = 1, then the optimal flexible
task assignment of system A yields a throughput of 0.6425, and the optimal flexible

task assignment of system B yields a throughput of 0.6437.

(ii) When the servers are flexible and collaborative, if the service rates are ji;;, = 1
fori,j, k € {1,2}, and the synergy level is « = 1, the optimal collaborative task
assignment of system A yields a throughput of 0.8023, and the optimal collaborative

task assignment of system B yields a throughput of 0.8214.
In both cases, system B yields a higher throughput than system A.

Intuitively, allocating the buffers within a station as internal buffers rather than outside
of the station as intermediate buffers reduces blocking. When the servers are static, server
assignments are identical for both the primary and secondary assignments, and less block-
ing yields higher efficiency of the system. However, when the servers are flexible and one
server dominates the other server at a station (like in station 1 of Example 3.6.1(i)), or when
the servers are flexible and collaborative (like in Example 3.6.1(ii)), we get greater bene-
fit from the high service rates of the secondary assignment when there is blocking at that

station. Therefore, when the servers are flexible and not equally well trained, or collabo-
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rative with synergy level that is not too low, we may prefer intermediate buffers to internal

buffers.

3.6.2 Numerical Results for Two Tandem Stations

In this section, we will provide numerical results for the system with two tandem stations,
two subtasks and servers at each station, and no internal or intermediate buffers between
the stations (B, = B;; = 0 for j,k € {1,2}). Assume that the service requirement .S,
is exponentially distributed for Vj, k € {1,2}. For teamwork without task partitioning,
the two servers work together on a combined job with a combined service rate at each sta-
tion; while for teamwork with task partitioning, the two servers work together on the two
subtasks of a job in tandem at each station (see Appendix A.5 for details on the random
service times under teamwork with or without task partitioning). For non-collaboration,
since the two servers work in parallel at each station, we need to determine the priority
scheme for the arrivals from the previous station. For simplicity, we assume that when both
servers at station 1 are blocked and a server becomes available at station 2, we will serve
the job from server 1 at station 1 first; when both servers are starved at station 2 and a job
is completed at station 1, the incoming job will go to server 1 at station 2. Note that unlike
static task assignment, there is no advantage in having internal buffers relative to inter-
mediate buffers for the teamwork with or without task partitioning and non-collaboration
approaches. Moreover, non-collaboration is no longer a special case of teamwork without
task partitioning when o« = 1. See Figure 3.5 for the flow plot of the server coordination
methods with two stations and two servers at each station.

Since the systems under consideration can all be modeled as continuous-time Markov
chains, we compute the long-run average throughput of all the server coordination methods
we discussed earlier for this two-station case by solving the balance equations. Similar to
Sections 3.5.3 and 3.5.4, we consider two types of servers, namely generalists and special-

ists. We consider the same sets of service rates at each station as in Sections 3.5.3 and
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(a) Task assignment (b) Teamwork without task partitioning

| 00>
N~ DN\ WaVay
gclo> Rl <eTo>
(c) Non-collaboration (d) Teamwork with task partitioning

Figure 3.5: Server coordination approaches for two stations with no buffers

3.5.4, and the numerical results are shown in Tables 3.4 and 5.11, respectively.

Table 3.4: Throughputs of server coordination methods for two stations and generalists
(the highest throughputs in each row are in bold).

Q| f11r 211 Mi21 M221 Mii2 M2120 122 222 S F C TP T NC

1.5 1 1 1 1 1 1 1 1 10480 0480 0.870 1.091 1.091 0.789
1.5 2 2 1 1 2 2 1 1 0.606 0.606 1.181 1.373 1.455 1.046
1.5 2 1 2 1 2 1 2 1 0.606 0.870 1.304 1.636 1.636 1.185
1.5 1 2 2 4 1 2 2 4 10960 1.145 1.809 2.059 2.182 1.543
1.2 1 1 1 1 1 1 1 1 10480 0480 0.793 0.873 0.873 0.789
1.2 2 2 1 1 2 2 1 1 0.606 0.606 1.060 1.098 1.164 1.046
1.2 2 1 2 1 2 1 2 1 0.606 0.870 1.189 1.309 1.309 1.185
1.2 1 2 2 4 1 2 2 4 10960 1.145 1.605 1.648 1.745 1.543
1.0 1 1 1 1 1 1 1 1 10480 0480 0.727 0.727 0.727 0.789
1.0 2 2 1 1 2 2 1 1 0.606 0.606 0.960 0.915 0970 1.046
1.0 2 1 2 1 2 1 2 1 0.606 0.870 1.091 1.091 1.091 1.185
1.0 1 2 2 4 1 2 2 4 10960 1.145 1440 1.373 1455 1.543
08 1 1 1 1 1 1 1 1 10480 0480 0.646 0.582 0.582 0.789
08| 2 2 1 1 2 2 1 1 0.606 0.606 0.839 0.732 0.776 1.046
08| 2 1 2 1 2 1 2 1 0.606 0.870 0.969 0.873 0.873 1.185
08 1 2 2 4 1 2 2 4 10960 1.145 1.277 1.098 1.164 1.543
05 1 1 1 1 1 1 1 1 10480 0.480 0.480 0.364 0.364 0.789
05 2 2 1 1 2 2 1 1 0.606 0.606 0.606 0.458 0.485 1.046
05 2 1 2 1 2 1 2 1 0.606 0.870 0.870 0.545 0.545 1.185
05 1 2 2 4 1 2 2 4 10960 1.145 1.145 0.686 0.727 1.543

Comparing the results for one station when By = By = 0 (in Tables 5.5, 5.6) and for

two stations (in Tables 3.4, 5.11), we can see that:

1. When the servers are generalists,
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Table 3.5: Throughputs of server coordination methods for two stations and specialists
(the highest throughputs in each row are in bold).

Q) M1 M211 Mi21 M221 Mii2 M2120 Hi22 222 S F C TP T NC
1.5 1 1 1 1 1 1 1 1 10480 0480 0.870 1.091 1.091 0.789
1.5 2 1 1 2 2 1 1 2 10960 0960 1.540 1.636 1.455 1.046
1.5 3 1 1 3 3 1 1 3 1.440 1440 2.182 2.182 1.636 1.168
1.5 4 1 1 4 4 1 1 4 1.920 1920 2.815 2.727 1.745 1.239
1.2 1 1 1 1 1 1 1 1 10480 0480 0.793 0.873 0.873 0.789
1.2 2 1 1 2 2 1 1 2 10960 0960 1.378 1.309 1.164 1.046
1.2 3 1 1 3 3 1 1 3 1.440 1.440 1.937 1.746 1.309 1.168
1.2 4 1 1 4 4 1 1 4 1.920 1920 2.489 2.182 1.396 1.239
1.0 1 1 1 1 1 1 1 1 10480 0480 0.727 0.727 0.727 0.789
1.0 2 1 1 2 2 1 1 2 10960 0960 1.244 1.091 0970 1.046
1.0 3 1 1 3 3 1 1 3 1.440 1440 1.739 1455 1.091 1.168
1.0 4 1 1 4 4 1 1 4 1.920 1.920 2.227 1.818 1.164 1.239
08 1 1 1 1 1 1 1 1 10480 0480 0.646 0.582 0.582 0.789
08| 2 1 1 2 2 1 1 2 10960 0960 1.085 0.873 0.776 1.046
08| 3 1 1 3 3 1 1 3 1440 1.440 1.505 1.164 0.873 1.168
08| 4 1 1 4 4 1 1 4 11920 1.920 1920 1.455 00931 1.239
05 1 1 1 1 1 1 1 1 10480 0.480 0.480 0.364 0.364 0.789
05 2 1 1 2 2 1 1 2 10960 0960 0.960 0.546 0.485 1.046
0.5 3 1 1 3 3 1 1 3 1.440 1.440 1.440 0.727 0.545 1.168
05| 4 1 1 4 4 1 1 4 11920 1.920 1.920 0.909 0.582 1.239

(a) Teamwork without task partitioning is no longer always equivalent to teamwork

with task partitioning. In fact, it is strictly better than teamwork with task par-
titioning when the subtasks are of different difficulties (i.e., cases (ii) and (iv)).
Intuitively, there is no blocking for the one-station system since there is infi-
nite space at the end of the line. However, for systems with multiple stations
and finite (zero in this example) intermediate buffers between stations, blocking
becomes a serious issue for the throughput. Different task difficulties yield un-
balanced service rates at the subtasks, and increase the possibility of blocking
for teamwork with task partitioning. Meanwhile, teamwork without task parti-
tioning neutralizes this effect by combining the tasks together. Moreover, when
the servers are generalists, teamwork with task partitioning loses its advantage
of server specialty. In fact, the variance of teamwork without task partitioning
is lower than that of teamwork with task partitioning in this case, as we show

in Appendix A.5. Thus, unlike our results for one-station systems, teamwork
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without task partitioning is now no worse than teamwork with task partitioning

with generalist servers for the two-station systems we consider.

(b) When server synergy is high (i.e., « > 1.2), teamwork without task partitioning
is the best method; when server synergy level is moderate and low (i.e., a <
1) non-collaboration is the best. These results are consistent with our one-
station results except that when server collaboration is additive (i.e., &« = 1),
non-collaboration is strictly better than teamwork for two-station systems while

these two methods perform the same in one-station systems.

(c) When o = 1, for one-station system, collaborative task assignment, team-
work, and non-collaboration are equivalent; but for two-station systems, non-
collaboration is strictly better than the other two methods since the probability
of blocking is highly increased with multiple stations and zero internal and in-
termediate buffers while non-collaboration has more WIP and thus less chance

of blocking.

(d) When the servers are identical (i.e., cases (i), (i1)), static task assignment is
still equivalent to flexible task assignment. And when servers are not identical,
server flexibility again increases the throughput significantly (from 20% to 40%,

as in one-station systems).
2. When the servers are specialists,

(a) Teamwork with task partitioning is the best when the synergy level is high and
the specialty level is not high; non-collaboration is the best when both the spe-
cialty level and the synergy level are small; otherwise, the server specialization
is not small and collaborative task assignment is best. These results are consis-

tent with our results for the one-station system when the buffers are zero.

(b) Flexible task assignment is still equivalent to static task assignment.
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3. Collaborative task assignment is better than static and flexible task assignment as

long as the synergy level is not too small (i.e., a > 0.8).

4. The throughputs of all server coordination methods for two-station systems are lower
than for the corresponding one-station systems since more stations with no buffers

increases the probability of blocking and reduces the throughputs.

5. For two-station systems, non-collaboration is now strictly better than teamwork with-
out task partitioning when o = 1. Intuitively, non-collaboration has more WIP than
teamwork. This additional WIP does not improve throughput for one-station systems
since there is no blocking; however, for systems with multiple stations and zero in-
termediate buffers, this additional WIP is crucial to the long-run average throughput.
Thus, the performance of non-collaboration for two-station systems is better than for

one-station systems relative to other server coordination methods.

In conclusion, the numerical results for two stations suggest that our comparison of
different server coordination methods for one station case provided in Sections 3.5.3 and
3.5.4 generalize to longer lines in most cases. By combining the results for one- and two-

station systems, we have the following conclusions:

1. When the servers are generalists,

(a) if a < 1, we prefer non-collaboration;

(b) if a > 1, we prefer teamwork without task partitioning.
2. When the servers are specialists,
(a) if the specialty levels of the servers are high, we prefer collaborative task as-
signment;
(b) if the specialty levels of the servers are moderate or low, and

1. the synergy level is high, we prefer teamwork with task partitioning;

ii. the synergy level is moderate or low, we prefer non-collaboration.
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3.7 Conclusions

For a queueing system with servers that are either static, flexible, or collaborative, we con-
sidered different server coordination methods when each job can be decomposed into multi-
ple subtasks and there are no precedence relationships among the subtasks within each sta-
tion. The objective is to maximize the long-run average throughput of the system. We first
characterized the optimal static, flexible, and collaborative task assignment approaches,
and further analyzed the optimal policies for two special cases, namely when buffers are
zero and when the sum of the buffers goes to infinity. Then, we investigated three other
server coordination methods, namely teamwork with or without task partitioning and non-
collaboration, compared them to task assignment approaches, and determined when and
how to choose a server coordination methods under different circumstances. Moreover, we
further investigated these methods when the servers are generalists or specialists, and pro-
vided corresponding numerical results. Then, we analyzed server coordination for longer
lines. We proved that for static task assignment, it is always better to allocate the available
buffers within stations as internal buffers rather than after stations as intermediate buffers
(however, this result does not hold for flexible or collaborative task assignment). Finally,
we provided numerical results for the two-station case that suggested our one-station results
can be generalized to longer lines.

Based on our theoretical and numerical analyses, we obtained the following additional

insights:

1. Teamwork with task partitioning is no worse than teamwork without task partition-
ing when the servers are specialists, and it is no better than teamwork without task

partitioning when the servers are generalists.

2. For one-station systems, non-collaboration has the same throughput as teamwork
without task partitioning when the synergy level is one. However, this property no

longer holds for longer lines with finite intermediate buffers.
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3. When the servers are generalists, we prefer non-collaboration, and then teamwork

without task partitioning as the synergy level among servers goes from low to high.

4. When the servers are specialists, we prefer collaborative task assignment if the servers
are highly specialized, otherwise, we prefer teamwork with task partitioning if the

synergy level is high, non-collaboration if the synergy level is moderate or low.
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CHAPTER 4
DYNAMIC CONTROL OF SERVICE SYSTEMS WITH TEAMS

Consider a tandem queueing network with N > 1 stations and M > 1 servers. There are
infinitely many jobs awaiting in front of the first station, and each job will be processed by
stations 1,2, ..., N before leaving the system. There is a finite buffer of size 0 < B; < 0o
between stations j and j + 1, for j = 1,2,..., N — 1, and infinitely large storage space
after station N. Let 7" be the set of all possible team assignments and -;; be the service
rate of team ¢ at station j, where i € T,j € {1,2,..., N}. Moreover, we assume that
IT| < o0, vij > O0foralli € T,5 € {1,2,..., N}, and restrict our attention to teams
such that Z;VZI vi; > 0,Vi € T (otherwise, this team assignment is trivial and should be
eliminated from 7'). Furthermore, without loss of generality, assume that ) .. v;; > 0 for
any j € {1,2,..., N} (otherwise, the throughput of the system is zero).

Our objective is to determine the dynamic server assignment policy that maximizes the
long-run average throughput of this queueing system. We first establish sufficient criteria
for eliminating inferior teams, and then we identify the optimal policy among the remain-
ing teams for two stations case. Next, we apply our optimal policies to two special cases.
In the first case, the team service rate is proportional to the sum of the service rates of team
members with factor & > 0. In the second case, we assume that there are K different types
of servers with different specialties and the team formation is constrained in that each team
must consist of exactly one server of each type. For example, during a surgery, a team of
medical staff helps the surgeon during the operation which may include an anesthesiolo-
gist, an operating room nurse, etc. We provide the optimal team assignment for systems
with two stations for both cases. We put more effort on the second case. Finally, we ex-
plore heuristics for longer systems with constrained team formations when the servers are

generalists.
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The outline of this chapter is as follows. In Section 4.1, we formulate the team-
assignment problem considered in this chapter, and provide a preliminary criterion to elim-
inate teams that are not on the Pareto boundary. In Section 4.2, we provide a secondary
criterion to further eliminate inferior teams, and also provide the team assignment policy
that maximizes the long-run average throughput of the systems with two stations. More-
over, we briefly discuss the optimal policy for this model when the servers are static. In
Section 4.3, we first present a numerical example that illustrates the optimal policy obtained
in Section 4.2, and then investigate the special case with proportional team service rates,
and finally, we explore the optimal policy for systems with constrained team formations.
In Section 4.4.1, we study heuristic policies that appear to yield near-optimal performance
with teams of specialized servers when the servers are generalists for systems with more

than two tandem stations. Section 4.5 concludes the chapter.

4.1 Problem Formulation and Team Selection

In this section, we first present a detailed description of our model, and then provide a
primary criterion to select the teams we consider in the optimal policy. Let II be the set of
server assignment policies under consideration. Under policy 7 € II, the network state at
time ¢ € [0,00) is X7 (¢), where the jth component of X7 (¢) is the number of jobs in the
system that have completed service at station j but have not yet completed service at station
j+lforje1,2,...,N—1. Then {X™(¢) : t > 0} is a continuous time Markov chain. The
state space of {X7(t) : t > 0}is S C {(s1,82,...,5nv-1) : 5; € {0,1,...,B; +2},Vj €
1,2,..., N — 1}. The action sets are given by the possible server allocations. Thus, for
s € S, the action set A; C T'. Let w(s) be a projection from the state space to the action set
(i.e., team assignment), 7 : S — T'. For all = € II, let D7 (t) be the number of departures

from the last station under policy 7 by time ¢ with initial state s € S, and let

S

gs = lim sup M 4.1)

t—o00
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be the long-run average throughput corresponding to server allocation policy 7 starting

from state s € S. Our objective is to solve the following optimization problem.
maxg.,Vs € S. 4.2)
well

Let {¢™(x,2’)} be the transition rates of { X™(¢)}, then there exists a finite uniformization
constant ¢ < >, >, 7i; < oo such that {¢™(z,2")} satisfy >,/ g iz, ¢ (x,2") < g for
all z € S,m € II. Thus, {X™(¢)} is uniformizable. Let {Y™(k)} be the corresponding
discrete-time Markov chain, so that {Y™(k)} has state space S and transition probabilities
p(x,2') = q"(x,2) /qif 2’ # xand p™ (2, 2) = 1 = > /g, 0" (x,2") /g forallz € S.
Using a similar argument as in Section 3 of Andradéttir, Ayhan and Down [7], we can show
that the original optimization problem in (5.2) can be translated into an equivalent discrete-
time Markov decision problem. Thus, maximizing the long-run average throughput of the
original queueing system is equivalent to maximizing the long-run average departure rate
for the associated embedded discrete-time Markov chain.

A policy 7* € Il is called optimal if
g" > gt forallm € [land s € S.

Note that since ) .. v;; > 0 forany j € {1,2,..., N}, the Markov decision process is
communicating and there exists a 7* such that g™ is the same for all s € S. Let g* denote
this common value. Since T' < oo, the state space and the buffers are finite, by Theorem
9.1.8 in [41], there exists a deterministic stationary optimal policy. Therefore, from now
on, we assume that the class II of server assignment policies under consideration consists
of all Markovian stationary deterministic policies corresponding to the state space S of
the stochastic processes { X™(¢)}. Let IT* be the set of all optimal stationary deterministic
policies.

Note that, if the servers are flexible and are trained to work at all the stations, they
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could be assigned to any one of the N stations. That is, |T’| could be up to N, which will
get extremely large as NV and M grow. To reduce the number of team assignments under

consideration, we introduce the following concept and theorem.

Definition 4.1.1. (Revised Pareto Boundary) Team assignment © € T is on the revised

Pareto boundary of T if there is no team assignment k # i,k € T, such that vy, >

Yids- s Ve,N > Vi,N-

Note that, the set of team assignments on the revised Pareto boundary is nonempty.
Indeed, if i’ = argmax;er y;; > 0 for some station j, and ¢’ is unique, then ¢’ is on the
revised Pareto boundary by definition; and if such ¢’ is not unique for 7, at least one of such

i’ should be on the revised Pareto boundary by definition.

Theorem 4.1.1. Any policy 7 that uses a team assignment that is not on the revised Pareto

boundary in any recurrent state under that policy is not optimal.

Proof. Suppose team assignment ¢ € 7" is not on the revised Pareto boundary. Then 3k €
T,and aq,...,an > 1,8t Y1 = a1%i1,- -, VN = anvi,n. Without loss of generality,
assume that oy > as > ... > ay > 1.

Suppose we use team assignment ¢ in some recurrent state s, under policy 7w € II.

Step 1: We first prove the result when a; = as = ... = ay > 1. Consider policy 7’
such that 7'(s) = 7 (s) for Vs # sg, and 7’(sg) = k. Then if we replace policy 7 by 7', we
increase service rates at all stations by the same proportion ;. So, we can reduce the time
spent in state sy without making any changes to all the other states. Hence, throughput of
policy 7’ is higher than 7 and policy 7 cannot be optimal.

Step 2: Next we show the result when oy > s > ... > an > 1 and at least one of the
inequalities is strict. For any team assignment ¢ € T, let {_; be the team assignment that
assigns the servers to stations according to team assignment ¢, but let the servers at stations

1,...,7beidle, where j € {1,...,N —1}. Then,t_; € T,forj € {1,...,N — 1}
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Consider policy 7 such that 7”(s) = 7 (s) for Vs # s¢, and 7”(s¢) = k with probability

—L)forj=2,...,N. Thatis,

1
o o1

P = (ZY—JIV; 7" (s0) = k_(j—1) with probability p; = an(

assign the server according to team assignment & for policy 7”, but let the servers at the jth

Qp Qpr—1

station idle with probability Ziv:jﬂ pr = Zivzjﬂ an (2 L) =an(z— =+ +
J

Qj41
L L )=ay(-—<L)=1-2 Thenin state sy, the expected service rate of station
an anN_1 an a; Q;
. o ) . N .
lisygxp1 = %Jala—flv = an;,1; and the expected service rate of station j = 2,..., N is

Yiej (1 — Zivzjﬂ Pr) = ;752 = 7; jan. Thus, if we replace policy 7 by 7", the average
J

service rates of all stations in state s, increased by the same proportion and the service rates

remain unchanged in other states. Therefore, 7" yields a higher throughput than 7, and 7

cannot be optimal. O

Note that, the Pareto boundary by convention is slightly different from our revised

Pareto boundary, and we provide the definition of teams on Pareto boundary as follows.

Definition 4.1.2. (Pareto Boundary) Team assignment i € 'T' is on the Pareto Boundary of
T if there is no team assignment k # i,k € T, such that v1 > i1, ..., YN = ViN, and

at least one of these inequalities is strict.

Remark 4.1.1. Note that, the Pareto boundary set defined in Definition 4.1.2 is a smaller
set than the revised Pareto boundary set defined in Definition 4.1.1. Indeed, if i, k € T such
that Y1 = Vi1, -, Ye,N—1 = Vi.N—1, Y&, N > 7Vi,N, then it is possible for both i, k to be on

the revised Pareto boundary, but 1 is definitely not on the Pareto boundary.

We refer to a team assignment as replaceable if we can find a stationary deterministic
policy that does not use this team assignment but can still achieve at least the same through-
put of the policies using this team assignment in any recurrent state. By Theorem 4.1.1,
any team assignment that is not on the revised Pareto boundary is replaceable. Moreover,
the following proposition shows that any team assignment that is on the revised Pareto

Boundary but not on the Pareto Boundary is also replaceable.

Proposition 4.1.1. Any team assignment that is not on the Pareto Boundary is replaceable.

70



Proof. We only need to check the team assignments that are on the revised Pareto Boundary
but not on the Pareto Boundary. If team assignment ¢ is on the revised Pareto Boundary but
not on the Pareto Boundary, then there exists a team & on the Pareto Boundary such that
Yen = Vin forn € Q, where Q C {1,2,..., N} and vy, > Vi, forn € {1,2,... ,N}\ Q.
We consider the case when |()] = N — 1 via a sample path argument, and the other cases
can be solved by induction.

Assume that 7y, ; > 7, ;, for some j € {1,2,...,N}, and v, = 7, for n €
{1,2,...,N}\ {j}. Consider two processes with the same initial system. We use common
random numbers to generate the service times at each station for both processes at the be-
ginning of each time epoch (that is, the service time is proportional to the service rate with
a common factor for both processes at each station). Recall that X™(¢) indicates the state
of the system at time ¢ under policy 7. Let D™ (¢) be the number of departures from the last
station under policy 7 by time ¢. Suppose that Process 1 uses a policy 7 € II that uses team
assignment ¢ in some state 5§ € S. Let 7 be the first time that Process 1 enters state S, and
71 be the first time after time 7, that Process 1 departs from state s. Suppose that Process 2
uses a policy 7 such that it uses the same team assignment as 7 until time 7, and uses team
assignment k right after 7o. The next event among these two processes is either a service
completion at station n. # j (in both processes) at 7; (since the same service rates yield the
same service times for any station n # j), or a service completion at station j in Process 2,
denote the time of this event as 7». Note that, < 7y since process 2 has a higher service rate
at station j than process 2. For the first case, the two processes are still in the same state
by time 7;. Suppose Process 2 uses the same team assignment as Process 1 thereafter, then
there is no difference in the reward for both processes, and D™ (t) = D™(t) for t > 0. For

the second case, we have

X)) = X™() + e;1{j < N} —e;11{j > 1}.
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Note that, when j = N, D*(7)") = D™(7)") + 1; when j € {1,...,Ni}, D™(r)}) =
D™(7;}). Thus, D™(t) > D™(t) for t € [0, 7). From 75 onwards, 7 uses the same team

assignment as 7 until one of the following events occurs:

1. Forj < N,

(i) Whenever station j is starved in Process 1, let 7 idle the server at station j in
Process 2 until the occurrence of the next event, and let 7 use the same team

assignment as 7 until either (i) or (i1) happens.

(i1) If station j is blocked in Process 2 but still working in Process 1 and the next
event is a service completion at station j in Process 1, then the two processes
couple by the beginning of the next event, and let 7 use the same team assign-

ment as 7 thereafter, we have D™ (t) = D™ (t) for t > 0.
2. Forj =N,

(1) Whenever station 7 — 1 is blocked in Process 1 but not blocked in Process 2, let 7
idle the server at station 7 — 1 in Process 2 until the occurrence of the next event, and

let 7 uses the same team assignment as 7 until either (i) or (ii) happens.

(i1) If station j is starved in Process 2 but still working in Process 1 and the next event is
a service completion at station j in Process 1, then the two processes couples by the
beginning of the next event, and let 7 uses the same team assignment as 7 thereafter,

we have D™(t) > D™(t) for t > 0.

Since in each case, D¥ (t) > D7(t) for t > 0, the long-run average throughput under 7 is
no less than under 7. Repeating this process, we can replace team assignment ¢ by k£ and
obtain a policy 7, € II that never uses ¢ but yields a throughput no less than policy that

uses ¢. Thus, team assignment ¢ is replaceable. [

Theorem 4.1.1 and Proposition 4.1.1 imply that we can only consider the team assign-

ments on the Pareto boundary when seeking for an optimal policy. The following section
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characterizes the optimal policy for a two station system.

4.2 Optimal Policy for Two Stations

In this section, we provide the optimal policy for the two-station case, i.e., N = 2. For
simplicity, let B; = B. Then the corresponding state space is S = {0,1,..., B + 2}. And
the system can be regarded as a birth-death process. We’ve already restricted our choice to
team assignments on the Pareto boundary, but not all of them will be used in the optimal
policy. In Section 4.2.1, we further remove the team assignments that are dominated or
replaceable by other team assignments and obtain an optimal assignment set. In Section

4.2.2, we show how to find an optimal policy within this optimal assignment set.

4.2.1 Removing the Dominated and Replaceable Team Assignments

We first introduce the definition of the dominated team assignments that we will never use

in any of the optimal policies as follows.

Definition 4.2.1. (Dominated Team Assignment) Team assignment © € 'T' is a dominated
team assignment, if v; ; > 0 for j = 1,2 and there exist two other assignments k., such

that
(i) Vi1 = Yig = V1,
(ii) Ye2 < Vi < V2,

(iii) (vip — 1) (Va2 — Ve2) < (Ve — 7i,1) (2 — Vi2)-

Note that constraints (i) and (i1) indicate that the service rates of team assignment i is
in between team assignments &, [ at both stations, the left hand side of constraint (iii) can
be interpreted as the advantage of using ¢ instead of k, [ at both stations, and the right hand
side of constraint (iii) is the advantage of using k, [ instead of ¢ at both stations. Intuitively,

we define ¢ be dominated by & and [ if the gain of using team ¢ is less than the loss of not
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using k and [, since as shown in the following theorem, we can achieve a higher long-run

average throughput by using k, [ instead of :.

Theorem 4.2.1. Any policy 7 that forms an irreducible Markov chain and uses a dominated

team assignment in any state under policy 7 is not optimal.

Proof. Let {Z(t) : t > 0} be a birth-death process with state space {0,..., B + 2}. Let
s and ps o denote the birth and death rates in state s € S. Suppose that {Z(¢) : ¢ > 0}

forms an irreducible Markov chain. Then the long-run average throughput is:

©, Mot ottt 4 A pugy BEREELL

Hi12 H12---B+1,2

S = S [ Ty T R

H12 H12.--HB+2,2

If for some state so € {1,..., B + 1}, psg1 = fsg1 + A1 > 0, figy2 — fsg2 — Do > 0,

then the corresponding long-run average throughput is:

g = (10,2 — D2)O1 + (pse,1 + A1) Co _ 01 — AyCh + A0y
(fsg2 — Da)C5 + Cy + (psy1 + A1)C5 Oy — Ao + ALC5’

where
Ci = o1 Jr,u(n& + ... +M01M,
H12 12 .- Hsg—1,2
Cy = Mmull e Msg—1,1 (1 i Mso+1,1 T Hso+1,1 -+ - UB+1,1 )7
12 .- Hsy—1,2 Hsg+1,2 Hso+1,2 - - - UB+1,2
Cy=14180 4 Kot Meom2d
H12 12 fsg—1,2
C, = Ho1 - - -/Lsofl,l’
12 - Hsy—1,2
and
o g — 1 s o
Cs = Ho1 Mg 1,1( NI Hsg+1,1 UB+1,1 ‘
H12 - lsg—1,2 Hsp+1,2 Hso+1,2 - - - UB+2,2

Comparing the difference of these two throughputs, we have:

/ (C2C5 — C1C5) (At frsg2 + Dapisy1) + A1CoCy — Ay CLCy

o 43
y—49 0:(05 — NyCy + ALCh) 4.3)
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Now suppose we use a dominated team assignment ¢ in state sq € S under an optimal
policy m € II which forms an irreducible Markov chain, then the corresponding throughput

g” is constant. Then there exist two other assignments k,! € 7" such that vy, > 71 >

Vs Ve < Vio < Y2, Assume Yi 1 —Yi1 = 01, Vi1 — V1 = 02, Vi2—Vi2 = 03, YVi2— Vk2 =
4. From definition 4.2.1 (iii), we have 0 < 0204 < d103. Consider policies 7', 7" € II such
that 7' (s) = m(s), " (s) = m(s) for Vs # s, and 7'(sg) = k, 7" (so) = [. Then the Markov
chains generated by 7’ and 7" have a single set of recurrent states within {0, ..., B + 2},
and have constant throughputs. Denote the corresponding throughputs as ¢™ and g™ ,
respectively.

If 7,1 = 0, then 5o = B + 2 (otherwise m would have two recurrent classes and can not
be optimal). Moreover, when ~; ; = 0, theny;; = 0,0 < ;2 < ;2. Since so = B+2ison
the boundary of the birth-death process, by using policy 7" instead of 7w, we can reduce the
time we spend in that state and increase the reward (i.e., service rate at station 2) without
changing anything else. Thus, g™ < g™ , 7 is not optimal. Similarly, we can obtain this
result when v; o = 0.

Next, consider the case when 7; 1,72 > 0. If we substitute yi, ; with the service rate at
station j € {1,2} in state s € S under policy 7, then p,, ; = 7;; for j € {1,2}, and g is
given in equation (4.3). Moreover, we can obtain the following equations (A.1) and (4.5)
by plugging in Ay = §;, Ay = d, and A = —dy, Ay = —J3 to equation (4.3), respectively.

/ (C2C5 — C1C5)(617i,2 + 047i1) + 61C2Cy — 94C1Cy

= , 4.4
9 =9 020 — 6,5 + 6,C5) 44

and
o = (CoC5 — C1C5) (=022 — 637i1) — 02C2Cy + 65C1Cy
O5(O3 + 93C5 — 02C5) ’

g —g = 4.5)

Note that the denominators of equations (A.1) and (4.5) are positive. Moreover, 6103 > 0,

SO 0172 + 0471 > 0, and 02y 2 + 03,1 > 0. Consider the following positive linear
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combination of ¢™ — ¢ and ¢" — ¢”:

oy Ca(Cryiz + Cyvi1) (6103 — 6204)
—4g ))\2 - )
(017i2 + 047i1) (62vi2 + 637vi1)

’

(6" — g )\ + (g™ (4.6)

where
©2(03 — 0,C5 + 6,C5)
A = > 0,
! (017i2 + 64%in)
)\2 _ @2(@2 + 5303 — 5205) -0

(02i2 + 037i1)
Since 52(54 < (5163,

/

(6" — g )M+ (g7 — )X > 0.

Thus, at least one of g™ — ¢ and g™ — g™ must be positive. That is, at least one of g™ and

g™ should be greater than ¢™, and policy 7 cannot be optimal. [

Theorem 4.2.1 implies that dominated team assignments are replaceable. The following
proposition shows that, when the inequality in (ii7) of Definition 4.2.1 becomes equality,

even though the team assignment is no longer dominated, it is replaceable.

Proposition 4.2.1. Team assignment i is replaceable if there exist two other assignments

k.l such that
Lo Y1 2 %1 = s
2. Y2 < V2 < Y2,

3. (%,1 - %,1)(%‘,2 - %72) = (%,1 - %,1)(%,2 - %,2)
Proof. Suppose there such exist ¢, k, [ € T'. Considering the same notations as in the proof
of Theorem 4.2.1, but now we have 20, = 0:03. If 61 = 04 = 0 or dy = 3 = 0, then
team assignment ¢ is equivalent to one or both of team assignments £, [, the result is trivial.

Otherwise, 01,2 + 0471 > 0, and d27; 2 + d37;1 > 0. By equation (4.6),

/

(6" — g™ )\ + (g7 — g™ ) A = 0.
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Thus, at least one of ¢ — g™ and g™ — g™ must be non-negative. That is, at least one of 7’

and 7" is as good as 7 and team assignment ¢ is replaceable. O

4.2.2 Optimal policy

After our preliminary selection in the previous section, we remove the team assignments
that are not on the Pareto boundary or dominated by some other team assignments. The

next definition provides the set of potential optimal policies.

Definition 4.2.2. (Optimal Assignment Set) A set of team assignments T C 'T' is called the

optimal assignment set, if all the assignments in ™ are not replaceable.

By Theorems 4.1.1 and 4.2.1, we can find an optimal policy among team assignments
in the optimal assignment set, but so far it is not clear when and how we should use these
assignments. To present our optimal policy in a concise way, we first renumber the assign-

ments in 7.

Proposition 4.2.2. Let |T*| = N,. We can then number the assignments in T* such that

d YN —1,1 = VNy,1
YN¢, 2~ YNg—1,2

ifyin 2 Y21 2 ... 2 YN then y12 < o0 < o0 < YN, 2, an . >

Y2,1—73,1 V1,1—72,1
¥3,2—72,2 v2,2—71,2°

Proof. By definition, if two different assignments ¢,k € T, then they are on the Pareto
boundary, and thus if v;; > 71, we must have 7,2 < 742. Otherwise team ¢ would
have higher service rates than team & at both stations and thus £ is not on the Pareto
boundary. So, we can obtain ;5 < 739 < ... < 7y in this manner. By definition,

if team assignments ¢, k, [ are irreplaceable, and v, 1 > vi1 > Vi1, Ve2 < Vi2 < 71,2, then

JlTML o, TRATTLL C Apd thus we can obtain =t Nel s J207080 o JLITH2L Gy
Vi,2—"Yi,2 Vi,2=Vk,2 YNy, 2~ VN —1,2 Y3,2—72,2 v2,2—71,2
this manner. L]

Now we are ready to present the optimal policy as follows.
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Theorem 4.2.2. (Optimal Policy) When |T*| = N,, and the team assignments in T* have
been reordered as in Proposition 4.2.2, then for any optimal policy m* € 11*, there exist
igy s i Withl =ih. o <ipy < ... <iy = Ny such that 7 (s) = Ny + 1 — i, for all

ses.

Proof. When N, = 1, the problem is trivial. When NV, > 1, consider the following problem
P:

Suppose in our current tandem queueing network, instead of M servers with N; pos-
sible optimal team assignments, we now have N, + 1 servers. Assume the service rate of
server i € {1,..., N, + 1} at station j € {1, 2} is p;;, and when they work together, their
service rates are additive. The goal is again dynamically assign the servers to the stations
to maximize the long-run average throughput of the system.

Let pi11 = YN, 1, ki = YNo+1—k1 — YNt2—k1 for k=2, . Ny, un, 410 = 0, pig =
0, b2 = YNi42-k2 — YN,+1-k2 for kb = 2,... Ny, and ppn,412 = 712. Then by the

definition of 7, we have y1;; > 0, forany i € {1,...,N;+1},j € {1,2}, and Z—ﬁ < % <

KNy 41,2
HNy+1,1°

Let IIp be the set of all stationary deterministic policies of Problem P, and II; be the
set of optimal policies of Problem P.

Assume that the optimal long-run average throughput of Problem P is gp, and the
optimal long-run average throughput of the original problem is g,. Note that, for £ €
{1,..., N¢}, Zle il = YNy+1—k 15 vazt,:il [i2 = YN,+1—k2, that is, all the N, team as-
signments in 7™ correspond to feasible assignments in Problem P. So g5 < ¢p, and the
optimal long-run average throughput of the original problem is bounded by gJ.

Next, we will show that we can reach this upper bound g5. According to Theorem 4
of Hasenbein and Kim [28], for any optimal policy 7} € II} of Problem P, there exist
thresholds g, ... 110 With 0 = ip s < ipy1 < ... < 11 < 19 = N; + 1 such that, in
state s € .S, the optimal policy is to assign servers 1,. .., 7, to Station 1, and the rest of the

servers to Station 2. We can observe that, in this optimal policy 75:
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e When the system is in state s € S\ {0, B + 2}, 1 < i, < N, the combined service
rate of Station 1 is Zz; 1 Mig1 = YN,+1-i,,1, and the combined service rate of Station 2
is vaztj _1H [i2 = YN,+1—i,,2, Which is equivalent to using team assignment N, +1 —

in7T%;

e When the system is in state s = (, the combined service rate of Station 1 is 225:1 i1 =
Zf\i;’ ! i1 = 71,1, the combined service rate of Station 2 is 0, which is equivalent to

using team assignment 1 in 7™ since there is no work to do at Station 2;

e When the system is in state s = B + 2, the combined service rate at Station 1 is 0,
the combined service rate at Station 2 is Zf\ﬁz -1H fio = ZZN:T ! Wi2 = 7YN,.2, Which

is equivalent to using team assignment /N, in 7™ since Station 1 is blocked.

Thus, we can attain g} in the original problem using the following policy 7*. Let i =
Ny, it =i,fors € S\ {0,B +2},i5,, =1, and set 7*(s) = N, + 1 — i} forall s € S.

Then, 7* is optimal. L]
The following corollary follows immediately from Theorem 4.2.2.
Corollary 4.2.1. For any optimal policy 7", there exist sy, ..., sy, _y with() < s] < ... <

Sn,—1 < B+ 2 such that

1 if0<s< st

2 ifs] <s<ss,

Nt l:fS?Vt71<S§B+2.

forall s € S.

Note that, the theorem does not provide a methodology in how to determine the thresh-

olds, but it significantly reduces the number of policies need to be evaluated from N2
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to (B+Nt

Noo1 ) This also explains why we provide conditions in reducing the size of NV, in the

previous two sections. The following example illustrates how to use our method to find out

the optimal policy.

Example 4.2.1. Assume the buffer size B = 1. Then, S = {0,1,2,3}. Suppose now
we have 20 team assignments with service rates of ith team at station j € {1,2}, v ;,
fori e {1,...,20} and v, ; is independently and randomly generated from {1,2, ..., 10}.
Specifically, the service rates of these team assignments are shown in the following scatter
plot.

service rates

Figure 4.1: Service rates of 20 team assignments

First, we remove the team assignments that are not on Pareto boundary or dominated
by others and obtain 'T™*. There are 4 team assignments in T and the corresponding service
rates are (71,1771,2) = (10, 2)» (’72,1,72,2) = (9,6), (’73,1773,2) = (7, 7), and (74,17’74,2) =
(4,8). Then we can find the optimal policy using Theorem 4.2.2. In Table 1, we evaluate

the 10 possible policies and mark the optimal throughput with *. The optimal police is:

1 ifs=0,
2 ifs=1,
T (s) =
3 ifs=2,
4 ifs=3.
\
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Table 4.1: Throughputs of model in Example 4.2.1.

team assignment throughput

1 1 1 4 4.9799
1 1 2 4 5.6942
1 1 3 4 5.6722
1 1 4 4 5.5285
1 2 2 4 5.9530
1 2 3 4 5.9838%*
1 2 4 4 5.9316
1 3 3 4 5.8741
1 3 4 4 5.8091
1 4 4 4 5.4902

From this example we can see that, using our method, we can first largely reduce the
number of team assignments from 20 to 4, and then we reduce the number of total possible
assignment policies of these 4 teams from 64(= 43) to 10 by applying Theorem 4.2.2 and
find out the optimal policy efficiently.

Note that, if |7*| = 1, i.e., ¢* is the only assignment left, then it is optimal to always
choose this team assignment in all states. In the next section, we discuss the case when

|T*| = 1 is satisfied.

4.2.3 Permanent Team Assignment

In this section, we obtain the conditions when permanent team assignment is optimal, that

is, when it is optimal for the servers to be static. If we use team assignment ¢t € 7T at all
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times, then the corresponding throughput of this permanent assignment is:

B+1-k

B+1
¢ _ 172 Zkio (W’t,l)k(%,z)
’ 25:02(’%,1)16(%,2)3”7’“
Theorem 4.2.3. A permanent team assignment is optimal if and only if there exists team 1
such that v;1 > vj1,%2 > Vje forall j € T, j # i, and the policy 7 such that 7*(s) = i

forall s € S is optimal.

Proof. If such team assignment ¢ exist, then 7% = {i} since ¢ is the only team assignment
on the Pareto boundary. Then |77| = 1 and 7* is optimal.

If such team 7 does not exist, let j = ar’;grginym and [ = arkgn%in%g, then j # [. Any
optimal policy 7* has 7%(0) = j, 7*(B + 2)e = [. Thus, any peremanent team assignment

cannot be optimal.

]

Intuitively, when there exists a team assignment that has higher service rates at all
stations than all the other team assignments, then it is optimal to use that team assignment
at all times. And if such team assignment does not exist, it would be better to let the servers

to be flexible to take full advantage of the specialty of different team assignments.

4.3 Systems with Proportional Rates

In this section, we want to explore the optimal policy for cases with some special structures.
In Section 4.3.1, we consider a special case when the combined service rates of a team is
proportional to the sum of their service rates with coefficient «, and provide the optimal
policy when o = 1. We also discuss the property of the optimal policy when o # 1. In

Section 5.3.1, we explore the optimal policy when there are constraints on team formation.
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4.3.1 Proportional Team Service Rates

In this section, we consider the case when the combined service rate of a group of servers
is proportional to the sum of their service rates (with coefficient ). Suppose the service

rate of server ¢ € I = {1,2,..., M} at station j € {1,2} is p;;, and we label the servers

such that % < Z—if < ... < % Define the set of possible team assignments as 7' =

{(t1,...,tar) : t; € {0,1,2},Vi € I}, where t; = 0 if the ith server is idled, and ¢; = j
if the 7th server is assigned to station j, for j = 1, 2. We obtain the following theorem by

applying our optimal policy.

Theorem 4.3.1. When o = 1 (i.e., the service rates are additive), there exist thresholds

10, .. ,iB+2 with 0 = ’iB+2 < Z‘B—i—l < ... <4 < 19 = M such that, in state s € S,
the optimal policy is to assign servers 1,... i to station 1, and the remaining servers to
station 2.

Proof. First, we prove that
T Cc{®=(1,...,1,1),t' =(1,...,1,2),... M =(1,2,...,2),t" = (2,2,...,2)}.

That is, for any t = (t1,...,ty) € T*,ift; = 1 forsome i € I, thent, = 1for1 < k < ;
if t; = 2 for some ¢ € I, then t;, = 2 fori < k < M. We prove by contradiction.

Suppose there exists a team assignment ¢ € 7" such that £ < ¢ and ¢, = 2,¢; = 1. Then
the team service rates of ¢ at station j is v,; = .1y g 1{t; = j} for j = 1,2. If 7,; > 0
for j = 1,2, we consider two other team assignments ¢’ and ¢”. In particular, ¢} = 1, and

=t forl e I'\{k};t! =2,and ¢/ =t,for [ € I\ {i}. Then, we obtain that

Y1 = Ye1 + Mk, V2 = Vi2 — k23

Y1 = Vel — Mi1s Y2 = Ye2 T M2
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Thus, v 1 > Y1 = Y1, Yo < Y2 < Y2, and % < % implies that

(%,1 - %",1)(%,2 - %',2) = ik < k1o = (%/,1 - %,1)(%”,2 - %,2)'

By Theorem 4.2.1 and Proposition 4.2.1, ¢ is replaceable, and thus ¢ ¢ T*.

If v,1 = 0, since t; = 1, we have p;; = 0, and p; 2 > 0 (otherwise server ¢ should be
removed from the set of servers). Then v/ 1 = V11 — i1 = Vi1, Ver2 = Ve2 + i > Ve o
Thus, team assignment ¢ is not on the Pareto boundary, and ¢ ¢ T*. Similarly, we can
obtain that t ¢ 7™ if 7, o = 0.

Now we have proved that 7* = {t°, ... t™}, and vm; = Zfi;m Hi1s Yema =
le‘iMH_m fr2, form = 0,1,..., M. It is easy to check that with the current order,
the team assignments in 7™ satisfy the three conditions in Proposition 4.2.2 and thus we

can obtain the desired result by applying Theorem 4.2.2. 0

Note that, although the optimal policy when a@ = 1 is given in Theorem 4 of Hasenbein
and Kim [28], the result can be easily obtained using our method.

The following proposition provides the optimal assignment set 7 when M = 2. We
introduce some notation to better illustrate the results. Let X1 = 11 + o1, 2o = fi12 + 4225
then the combined service rate of servers working together at subtask ¢ is a>3; for: = 1, 2.
Let p11 = 5131, po1 = (1 — B1)24, pt1a = 22, 1o = (1 — [2) X, then 3; € [0, 1] is the

fraction of server 1 of the total service rate on subtask 7, for j = 1, 2. Moreover, let

+ Py —1 1
1:%7 when 3, # .

2
B+ B2 —1 1
mo 5 1 7W6nﬁ17é2

Moreover, our assumption of /’ﬁ < Z—zf can be reorganized as 5, > (.

Proposition 4.3.1. When 5, > (.,
1. Ifa>1+p1— By thenT* = {(1,1),(2,2)}.
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2. If a <1+ By — o, then

(a) if By > o> 5,201 — 28 — 1+ 2 >0,

/

{(1,1),(1,2),(2,2)} ifms <o <1+ P — P,
e {(1,1),(1,2),(2,1),(2,2)}  if by < v <y,

{(1,2),(2,1),(2,2)} if B2 < o < B,

{(1,2),(2,1)} if0 <a < p.

\

(b) if Br > Bo> 5,261 —28F — 1+ 2 <,

{(171)7<172)7(272)} ifpr <a <1+ p— P,

{(172)7(272)} ifm2§a<6la
T = ¢

{(172)7 (27 1)7 (2?2)} lfﬁ2 < a < mo,

{(172)7(271)} l:f0<(1/<,62.

\

(c) if Bp >4 > Ba B1+ P2 > 1,

(

{(171)7<172)7(272)} lfﬂl SO‘< 1+51_B27
"= {(172)7(272)} ifl— 05 <a<p,

{(1,2)} if0<a<1-4,

\

(d) if 1 > 5> P, B+ B2 <1,

(

{(171)’(172)7(272)} ifl—0F<a<l+p— B
{<171)7(172)} lfﬁl §@< 1_527
{(1v2)} l'f0<(1/<51.

T*

\
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(e) if 3> 1> P, 20, — 203 — 1 >0,

/

{(1,1),(1,2),(2,2)} ifm <a<1+p —f,
— {(1,1),(1,2),(2,1),(2,2)}  ifl=fo<a<m,

{(1,1),(1,2),(2,1)} fl—p <a<l-7p,,

{(1,2),(2,1)} if0<a<1-8.

\

(f) if%>51252,252—25§—ﬂ1<0,

/

{<1a1)7(172)7(2’2)} fl=0<a<l+p—py,

T {(171)’(172)} ifml Sa< 1_627

{(1L,1),(1,2), (2,1} #fl=Fi<a<m,

{(1,2),(2,1)} ifo<a<1-p.

\

Proof. From Proposition 4.1.1 and Theorem 4.2.1, we can obtain that
1. (1,1) € T* if and only if & > max{f;,1 — f1 }.
2. (2,2) € T* if and only if & > max{f,1 — fa}.
3. (1,2) € T if at least one of the following cases holds:
(@) b1 > B2 > 5,a <min{my, 1+ b1 — fa};

(b) f1 >35> fo, 0 <1+ Py — B
(©) 5> b1 > Bo,a <min{ms, 1 + 1 — Bo}.
4. (2,1) € T* if at least one of the following cases holds:
(@) B1 > fy > 5, a <min{my, 1 — f1 + Ba};
(b) f1 >35> fo, 0 <1— P+ B
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(©) 5> b1 > P2, a <min{my,1— B + fa}.

By comparing the values of these thresholds shown in the inequalities above, and reorga-

nizing the above conditions, we can get the desired results. [
Note that, once we determine 7™, the optimal policy follows from Theorem 4.2.2.

Remark 4.3.1. Proposition 4.3.1 coincides with Theorem 2.1 of Andradottir, Ayhan, and
Down [11] and Theorems 3.1-3.4, 4.1-4.2, and 4.4 of Andradottir, Ayhan, and Down [13].
In particular, our results provide more specific information of team selection than Theorems
4.2 and 4.4 of Andradottir, Ayhan, and Down [13] since we have two extra thresholds ma,
mo. For instance, when (31 > (o > % and 5y < «a < 1, Theorems 4.4 of [13] claims
that T* = {(1,1),(1,2),(2,1),(2,2)}; while we eliminate team assignment (2, 1) from T*
when either 28) — 232 — 1+ By > 0,mo < a <1+ — Boor2B; — 282 — 1+ 3, <0

and further reduce the number of team assignments in T™.

Next, we consider the case when the servers are generalists. In particular, assume the
service rate of server i at station j € {1, 2} is p;; = p;7y;, and the servers have proportional
combined service rates with coefficient «. Then Proposition 4.3.1 can be simplified as

follows.
Proposition 4.3.2. When p1,; = ji;7y;, then 3y = (35, and

1 If By = B2 # 5, then

(

{(17 1)7 (272>} ifl < a,
T

{(1,1),(1,2),(2,1),(2,2)} if max{f,1 =} <a<]l,

{(1,2),(2,1)} if0 < a<max{f,1 -/}

\
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2. If By = Bo = %, then

(

{(1,1),(2,2)} ifl1<a,
= {(17 1)7 (172)’ (272)} lf% S a < 1’

{(1,2)} if0<o<s.

Proof. When j1;; = p1;v;, we have m; = mgo =1, 81 = B2 > 0, and
1
Qﬁl —2612—1+ﬁ2 = (2ﬁ1 —1)(1—ﬁ1) > Owhenﬁl :62 > 5,
1
262 — 2622 — /61 = 52(1 — 252) > (0 when 5 > 51 = 52.

And we can obtain the desired results by plugging in the above equalities and inequalities.

]

Note that, Proposition 4.3.2 coincide with Theorem 2.1 of Andradéttir, Ayhan, and

Down [11].

4.3.2 Teams of Specialized Servers

In this section, we consider the case when there are constraints on team formation. Suppose
now we have K types of servers with different specialties, and we need exactly one server
of each type to work as a team at each station.

Specifically, consider NV stations, then we need N servers of each type. Let ,u,’fj be the
service rate of ith server of type k& working at station j, where 7,5 € {1,...,N},k €
{1,..., K}. Assume that ufj > 0 for any ¢, k, 7. A team’s service rate is proportional to
the sum of the service rates of its team members with coefficient . Our objective is to find
out the optimal team assignments that maximize the long-run throughput of this system.

In this section, we focus on the case N = 2. First, we can label servers such that

pk > ph, for all k& without loss of generality. We present the server allocation by a
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K —dimensional vector A = (ai,...,ax), where a; denotes the station that the first
server of type k is assigned to. Let S;(A) be the team service rate at station i € {1,2}
of server allocation A, that is, Sy (A) = a3 0 ((2 — ap)pky + (ax — 1)pk,) and Sy(A) =

a 25:1((% - 1>le2 +(2 - ak)ﬂgz)-

Theorem 4.3.2. If ¥, < 1k, for some type k', we will always assign the first server of type

k' to station 1, and second server of type k' to station 2 in any optimal policy.

Proof. If on the contrary, we use team assignment A; = (a;1,...,a; x) in some policy 7
at state s € .S with a; ,» = 2, then we can find another assignment A; such that a;;, = a;
for Vk 7é k‘/, and Ak = 1. Then Sl(AJ) - Sl (Az) = Oé(p/f/l — Mg/l) Z 0, SQ(A]) — SQ(AZ) =
ok, — k) > 0, and we can increase the service rates at both stations by using assignment

A; instead of A;. Thus, this policy 7 can not be optimal, and the proof is complete. O

Theorem 4.3.2 shows the optimal server assignment for server of type k such that z%, >
ph, and pk, < uk,. Indeed, if the two servers of type k are better at different stations, we
will always assign the server to the station where they work faster to obtain larger team
service rates at both stations.

Now, we need to find the optimal assignment for the servers of type k such that p%, >
15,. Without loss of generality, assume that u¥, > pb, for k = 1,2,..., Ky. That is, for
the first K types of servers, one server (by our assumption, i.e. the first server) dominates

k _ , k
the other one at both stations. Let dj, = “12="21 then we can reorder the types of servers

Hi2—Ha2

such that d; < dy < ... < dg,. Denote Ay = (1,...,1),A; = (2,1,...,1), Ay =
(2,2,1,...,1),..., Ag, = (2,...,2,1,...,1), that is, for i € {0, ..., Ky}, in assignment
A, aye = 2, fork = 1,...,1; ag = 1 for £ > 1. Then the optimal policy is given in the

following theorem.

Theorem 4.3.3. For any optimal policy 7%, there exist s7, ..., s, with1l < s7 < ... <
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Sk, < B+ 1 such that

Ay if0 <s <sj,

Ay ifs] < s <sj,

; * *
AK()—I lfSKo—l < S S SK()7

Ak, ifsj, <s< B+2.

forall s € S.

Proof. 1t is trivial when Ky = 0. When K, > 0, first note that, by Theorem 4.3.2, for
any assignment A = (aq,...,ax) used in any optimal policy, it must satisfy a;, = 1 for
k= Ky+1,..., K. Denote the set of all such team assignments as 7°. For any assignment
AeT  A+# Ay and A # Ag,, there exists type 1 < ki, ky < Kj such that a;,, = 2,
and ay, = 1. Then, we can find assignments A', A% € T such that a;, = a} = aj for
k # ki, kg, a), = ay, = 1, a;, = aj, = 2. Note that, by Theorem 4.2.1, A is dominated by
A" and A? if d, < dy,, which leads to ky < ky. Thus, T* C {Ay, ..., Ak, }. The rest of

the proof follows from Theorem 4.2.2. [

Intuitively, d; can be regarded as the ratio of loss at station 1 and gain at station 2 if
we switch the two servers of type k when the first server is at station 1 and the second
server is at station 2, initially. Note that, the first server of any type k& works faster than
the second server. Furthermore, when the number of jobs in the buffer is small, we want
to obtain higher throughput by pushing more jobs into the system, and so we assign the
server with higher service rate at station 1 (i.e., the first server) for each type to station
1. As the number of jobs waiting in the buffer (to be served) at station 2 increases, we
want to obtain higher throughput by pushing more jobs out of the system. Thus, we will

switch the assignment of server 1 and server 2 of a selected type, gradually. Each time
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when we reach the threshold of switching the servers, we switch the type with smallest dj
so that we will relatively increase the service rate at station 2 as much as we can while
decreasing the service rate at station 1 as little as possible. And when the number of jobs
in the intermediate buffer is so large that station 1 is almost blocked, we will assign all first

servers to station 2 to achieve the highest service rate at that station.

Remark 4.3.2.

1. Since the servers always work as a team of K > 1, and their individual service rates
are positive, the service rate at each station is always the combined service rate of a team,
which equals to the sum of individual service rates of the team members times o. Thus, the
value of o does not affect the choice of optimal policy.

JL

2. When the servers are generalists, i.e., ij = ,uf%-, then 0y = 09 = ... = O = o

and T* = {Ao, Ak}, where Ay = (1,1,...,1) is to assign the first server of each type
to station 1, and Ax = (2,2, ...,2) is to assign the first server of each type to station 2.
Then, for any optimal policy m* € T1*, there exists 1 < s* < B+ 1 such that 7*(s) = Ay

for0 < s <s* and*(s) = Ak for s* < s < B+ 2.

In the rest of this section, we illustrate our results in Theorems 4.3.2, 4.3.3 by consid-
ering two special cases, namely, when KX’ = 2 and K = 3.

Suppose now we have four servers of two types: {a1, as, b1, bo}, so that we need two
different types of servers at each station. Then there are 4 possible team assignments:
T = {Ap, A}, A2, Ay}, where Ay = (1,1),A] = (1,2),A? = (2,1), and Ay = (2,2).
Specifically, in team Ay, {ay, b} work together at station 1; in team A1, {ay, by} work
together at station 1; in team A%, {ay, b; } work together at station 1; in team A, {as, by}
work together at station 1. Without loss of generality, assume that p2, > ug,, ub, > b,

then Corollary 4.3.1 provides the optimal policy of this system.

Corollary 4.3.1.
(1) If 1Sy < p59, 1Yy < i3y, then T* = {Ag}.
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(2) If ufy < Sy, 135 > Mo, then T = {Ag, Aj}.
(3) If ufy > 115, 1Yy < s, then T = {Ag, AT}

a _ ,,a b _ b
(4) If 1Sy > i3y, 1185 > 115y, denote d, = “11=121 (= P21 ypep

Bia—H5y’ Hig—Ha2

a. Ifd, < dy, then T* = {Ag, A%, Ay };
b. Ifda > dy, then T = {A(), A%, AQ},’
c. If d, = dy, then T* = { Ay, As}.

In conclusion, when T* = { A}, it is optimal to use team assignment Ay in all states. When
T* = {Ag, AF}, Ak € {A} A2 Ay}, there exists 1 < s* < B + 1, such that if 7*(s) = Ay
for 0 < s < sk, and 7*(s) = AF for s* < s < B + 2, then 7* is an optimal policy. When
T* = {Ay, Ak, Ay} k = 1,2, there exists 1 < s¥ < s5 < B + 1 such that, if 7*(s) = Ay
for0 < s < sh, 7*(s) = Af for st < s < sk, and 7*(s) = Ay for sk < s < B + 2 then 7*

is an optimal policy.

Now, consider the case i = 3. Then we have six servers of three types: {a1, az, by, bs,
c1, Co }, and there are eight possible team assignments in 7: Ay = (1,1,1), Al = (2,1,1),
A= (1,2,1), A2 = (1,1,2), AL = (2,2,1), A2 = (2,1,2), A3 = (1,2,2), A3 = (2,2,2).
Table 5.6 shows the detailed server assignments. Without loss of generality, assume that
psy < pdy,pby < pby,ug, < ps,. Also, we can re-index the type such that d, < dj, < d..

Then Corollary 4.3.2 provides the optimal policy for this system.
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Table 4.2: Team Assignments for Three Types of Servers.

Team Number Servers Work at Station 1  Servers Work at Station 2

A (ay,b1,¢1) (ag, by, 2)
Al (ag,b1,c1) (ay,ba, )
A2 (ay,ba,¢1) (ag, by, )
A3 (a1, by, c2) (ag,be,c1)
Al (ag,bs, 1) (a1,b1,c9)
A2 (az, b1, co) (a1,by,¢1)
A3 (a1, ba, c2) (ag, b1, 1)
As (ag, by, 2) (ay,b1,¢1)

Corollary 4.3.2.
(1) If 1Sy < 150, 1Yy < a9, 5y < iS5, then T* = {Ag}.
(2) If 1ty > 1S, 135 < Ho, 15y < Sy, then T* = {Ag, A7}
(3) If 1y < 13, 115 > o, 5o < piSo, then T = {Ag, AT}.
(4) If 1Sy < 1Sy, 1y < by, 15y > 15y, then T* = {Ag, AT}

(5) If 1y > 1Sy, by > by, 1§y < pisy, then if d, < dp, T* = {Ao, A}, A3} if do = d,
T* = {AO,A%}

(6) If iy > p3p, f3n < Koy, 15y > piSy, then if dy < do, T = {Ag, A}, A3} if do = d,
T* = {A, A%}.

(7) If 1y < pilo, 1y > by, Sy > 1S, then if dy < d., T* = {Ao, A}, A3}, if dy = d,,
T = {AO,Ag}.

(8) If iy > 1o, Wiy > 5o, 15a > Ko, then:
a. Ifd, = dy = d,, then T* = { Ay, A3},
b. If d, = dy < d,, then T* = { Ay, AL, A3};
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c. Ifd, < dy =d,, then T* = {Ag, A}, A3}.
d. Ifda < db < dc: then T* = {Ao,A%,A%,Ag}

When T* = {Ao}, it is optimal to use team assignment A, in any recurrent state. When
T* = {Ag, A}, Ak € T\ { Ao}, there exists 1 < s* < B + 1, such that if 7*(s) = Ag for
0 < s < s and 7 (s) = A* for s* < s < B + 2, then 7 is an optimal policy. When
T* = {Ag, A AT} AN AT € T\ {Ao}, there exists 1 < s;; < s7; < B + 1 such that, if
m*(s) = Ao for 0 < s < s, m(s) = A’ for s}; < s < 575, and w*(s) = A for s7; < s <
B + 2, then * is an optimal policy. When T* = { Ay, At, A}, As},i,j € {1,2,3}, there
exists 1 < 8}, < 57, < 8% < B+ 1 such that, if 7*(s) = Ao for 0 < s < 8, 7(s) = Aj
forsl < s <8, 1 (s) = A for 82, < s < 8, and " (s) = As for 3%, < s < B+ 2 then

7* is an optimal policy.

4.4 Longer Lines

In this section, we investigate the systems with teams of specialized servers for longer
lines. In particular, we focus on the case when the servers are generalists. Consider
N > 3 tandem stations with finite intermediate buffers and K types of servers. For sim-
plicity, let zf+; be the service rate of ith server of type k working at station j, where
i,j € {1,...,N},k € {1,..., K}. Indeed, i} could be regarded as the specialty of ith
server of type k while -; might represent the difficulty of the task attached to station j.

First, we generalize the definition of dominated team assignment for longer lines.

Definition 4.4.1. (Dominated Team Assignment) Team assignment © € T' is a dominated
team assignment, if there exists p € (0, 1) and assignments j, | such that py; x+(1—p)yx >

vixfork=1,... M.

Note that, if such p exists, then we can obtain higher throughput by using team assign-

ment j, [ instead of 7. Thus ¢ is dominated and any policy uses ¢ is not optimal.
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By our experience from previous research, the optimal policies for larger systems with
general service rates would be much more complex than the two stations case. Therefore,
for the rest of this section, we will propose heuristic policies for longer lines and evaluate

their performance via simulation.

4.4.1 Heuristics for Longer Lines

In this section, we present the heuristic policy for longer lines with teams of specialized
servers where the servers are generalists. To get more insights for our design of the heuristic
policy, we first investigate the optimal policies for some special cases. Then, we will
propose the heuristic policy for longer lines by learning from the structures of the optimal
policies of these examples.

Consider the most basic case with X = 2, N = 3, and zero intermediate buffers
between the stations. Denote the servers as {ay, as, as, by, b, bs}. Let s = (s!, s?) be the
state of the system, where s’ is the number of jobs that have been processed at stations
preceding and including station j, but not at stations succeeding station j, for j € {1,2}.

Then, the state space is

S ={(0,0),(1,0),(2,0),(0,1),(1,1),(2,1),(0,2),(1,2)}.

The following examples show the impact of different task difficulties among stations to
the optimal policy of the system. In particular, Examples 4.4.1, 4.4.2, and 4.4.3 provide the
optimal policies for generalists with task difficulties of stations that are balanced, biased

towards upstream, and biased towards downstream, respectively.

Example 4.4.1. If i = 3,05 = 2,08 = 1,pb = 3,0 = 2,48 = 1L,yy =92 = 33 = 1,

then the optimal policy is as follows:
1. When s = (0,0), assign (ay,b,) to station 1;
2. When s = (2,0), assign (aq, by) to station 2;
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3. When s = (1,2), assign (ay, by) to station 3;
4. When s = (1,0), assign (as, by) to station 1 and (a1, by) to station 2;
5. When s = (0, 1), assign (ay, by) to station 1 and (aq, bs) to station 3;

6. When s = (2,1), the assignment is arbitrary as long as we assign a, as, by, by to

stations 2,3 under the type constraint;
7. When s = (0,2), assign (as, bs) to station 1 and (ay, by) to station 3;

8. When s = (1,1), assign (as,bs) to station 1, and the rest of the assignments are

arbitrary.

Example4.4.2. If u§ =3, 5 =2, ¢ = 1,1l =3, 45 =2, 4 = 1,71 =3, 2 = 2,13 = 1,

then the optimal policy is as follows:
1. When s = (0,0), assign (a1, by) to station 1;
2. When s = (2,0), assign (ay, by ) to station 2;
3. When s = (1,2), assign (ay, by) to station 3;
4. When s = (1,0), assign (as, by) to station 1 and (a1, by) to station 2;
5. When s = (0, 1), assign (a1, by) to station 1 and (as, bs) to station 3;
6. When s = (2, 1), assign (az, bs) to station 2 and (ay, by) to station 3;
7. When s = (0, 2), assign (a, by) to station 1 and (ay, by) to station 3;

8. When s = (1,1), assign (a3, b3) to station 1, (as,by) to station 2, and (a1, b;) to

station 3.

Example4.4.3. If u¢ =3, 8 =2, ud = L,pub =3, u5 =2, 45 = 1,71 = 1,92 = 2,73 = 3,

then the optimal policy is as follows:
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1. When s = (0,0), assign (ay,by) to station 1;
2. When s = (2,0), assign (aq, by) to station 2;
3. When s = (1,2), assign (aq, by) to station 3;
4. When s = (1,0), assign (a1, by) to station 1 and (az, bs) to station 2;
5. When s = (0, 1), assign (ay, by) to station 1 and (aq, bs) to station 3;
6. When s = (2,1), assign (a1, by) to station 2 and (as, by) to station 3;
7. When s = (0,2), assign (a1, by) to station 1 and (as, be) to station 3;

8. When s = (1,1), assign (a1,b;) to station 1, (ay,bs) to station 2, and (ag,bs) to

station 3.
From Examples 4.4.1, 4.4.2, and 4.4.3, we can observe that:

1. We always use the following three teams of servers: (a1, b1), (a9, bs), and (ag, bs) in
all optimal policies of our numerical results. This observation is consistent with our

result in Remark 4.3.2.2 for two-station systems.

2. When one of the three stations is starved or blocked, we will always let the slowest
team (as, b3) idle; when two of the three stations are starved or blocked, we will let
the two slower teams, (as, b2) and (ag, bs), be idle. That is, when some of the stations

are starved or blocked, we will always let the slower teams be idle.

3. When s = (0, 1), we will always assign the fastest team (i.e., (a1, by)) to station 1.
Intuitively, we want the proportion of time that all three stations are working to be
as large as possible to avoid starving or blocking, i.e., we want to push the system to
s = (1, 1). Therefore, we assign the fastest team to station 1 to push more jobs into

the system and avoid starving at station 2 when s = (0, 1).
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4. For any state s € S\ {(0,1)}, we always assign the fastest remaining team to the
working and unassigned station with the highest difficulty. Intuitively, in order to
maximize the long-run average throughput of the tandem system, we want to avoid
having a bottleneck station or at least increase the service rate of the bottleneck sta-
tion as much as possible. Therefore, we assign the faster team to the slower station
to balance the service rate at each station. Moreover, if we assign (a1, by) to station
3 and (ag, by) to station 1 when s = (0, 1), and assign teams according to the opti-
mal policy for the other states for Example 4.4.2, we will have a long-run average
throughput of 4.6974, which is 0.2% less than the optimal throughput 4.7085. Thus,
we can achieve a near-optimal throughput by always assigning the fastest team to the

slowest station.

Combining our observations above with our previous results, we propose the following
heuristic server assignment policies for the general case:

First, label the servers of type k such that p¥ > b > ... > pk fork =1,... K.

1. We will use N permanent teams that are formed based on their ability. We will use
the following teams: the best server of each type, the second best server of each
type,..., the worst server of each type. That is, the ith team consists of the ith server

of each type for: =1,..., V.

2. When some of the stations are starved or blocked, we will always let the servers with
lower service rates idle. That is, if n( stations are working at time ¢, we will let teams

1,...,ngwork and ng + 1,..., N idle.

In order to assign these teams to the working stations, our basic idea is to balance the
system by assigning the fastest remaining team to the slowest remaining station. Also,
to fully utilize our teams, we want to avoid stations from blocking and starving. Thus,
based on different assignments when there are blocked or starved stations in the system,

we consider two different plans.
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In the first plan, we prioritize eliminating blocking over starving. Specifically, we as-

sign the teams according to the following rules in the order given below:

1. If there are blocked stations in the line, then assign the fastest teams to the stations

immediately following the blocked stations (starting from the end of the line).

2. Next, starting from the end of the line, if the buffer size after some working station
is greater than or equal to 2, and the buffer is already full, we regard this station
as almost blocked station. If the station immediately following this almost blocked

station is unassigned, we assign the fastest remaining team to this station.

3. Next, starting from the beginning of the line, if there is some starved station in the
line, and the station immediately preceding the starved station is unassigned, we

assign the fastest remaining team to this station.

4. Next, starting from the beginning of the line, if the buffer size before some working
station is greater and equal to 2, and the buffer is empty, we regard this station as
almost starved station. And if the station immediately preceding this almost starved

station is unassigned, we assign the fastest remaining team to this station.

5. For all stations that do not have assigned servers, assign the fastest remaining team
to the slowest remaining station. In case of ties, that is, if 3¢, j s.t. ; = ~;, assign
the faster team closer to the end of line as in ”bucket brigades” (see Bartholdi and

Eisenstein [18]).

Note that, if some station is both blocked and starved, we will mark the station as blocked
station; if some station is both almost blocked and almost starved, we will mark the station
as almost blocked station.

In the second plan, we prioritize eliminating starving over blocking. More specifically,
we will switch the order of the rules in the first plan as 3 —+ 4 — 1 — 2 — 5. That is, we

assign the fastest teams to deal with the starved and the almost starved stations first, and
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then we assign the remaining fastest teams to deal with the blocked and the almost blocked

stations.

4.4.2 Numerical Results

To investigate the validity of our heuristic policies and compare two different plans, in
this section, we provide numerical results. We compute the optimality gap (in percentage)
between our heuristics and the optimal results (i.e. the deviation of our heuristic from the
optimal policy with respect to the long-run average throughput of the system). In addition,
we compare our results to the optimality gap between the optimal dynamic policy and
optimal static policy. The optimal static policy has been discussed in Section 4.2.3, which
is the assignment that maximizes the long-run average throughput of the system when the
servers are static and server assignments are permanent.

First, we present numerical results of the system with two types of servers {a, b}, dif-
ferent number of stations, different buffers, and randomly generated service rates to inves-
tigate the effectiveness of our heuristics. All tables display 95% confidence intervals, and
the numbers are in percentage.

In Table 4.3, we provide the numerical results for three stations case. Specifically, to
model systems with small buffers, medium buffers, and large buffers, we consider systems
with common buffers for 1,5 or 10, and systems with buffers B; = 1, B, = 10, and
By = 10, B, = 1. We have u¢, u?,~; drawn independently from a uniform distribution
with range [0.5,2.5] for all 4, j € {1,2,3}. We performed 5000 iterations for each pair of
buffer sizes, and the results are shown in Table 4.3. Note that, for three stations systems,
the two different plans are the same. More specifically, consider the following cases that
include all the situations that might cause differences between these two plans in three
stations line: () If some station is starved, and another station is blocked, then there is only
one station working under the circumstance, and the assignment is obviously the same for

both plans; (i7) if station 3 is starved or almost starved, and station 1 is blocked or almost
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blocked, we will assign the fastest team to station 2 in both plans. Thus, the two heuristic
policies are the same in three stations case, and we only provide one heuristic results for

both plans in Table 4.3.

Table 4.3: Numerical Results for Three Stations.

Buffer Sizes 9% Optimality Gap

B B, Opt. Static Heuristic

0 0 1494 £0.18 0.47£0.02
5 0 11.15+=0.18 1.88 £0.05
0 5 1121 +£0.18 1.49+£0.03
5 5 7.23£0.16 2.09+0.04
10 5 6.81 £0.15 2.36£0.05

5 10 6.54 +£0.15 2.31 £0.05
10 10 0.69£0.14 248+£0.05

Average 9.14+0.07 1.87+0.02

Table 4.4 shows the numerical results for four stations systems. We consider systems
with buffers 0,2, and 4. Again, u?, 110, ~; are drawn independently from a uniform distribu-
tion with range [0.5,2.5] for all 4,5 € {1,2,3,4}. We performed 1000 iterations for each

pair of buffer sizes.
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Table 4.4: Numerical Results for Four Stations.

Buffer Sizes 9% Optimality Gap

By By, Bs Opt Static  Heuristic 1  Heuristic 2

(e)
(an)

17.15£ 040 1.47£0.05 1.52=£0.06
1499+ 041 251£0.08 2.33£0.07
15.67£0.40 2.66 £0.07 2.85+0.08
15.13£041 142+£0.05 1.49=£0.07
11.57£0.39 2.69=£0.09 2.70£0.09
11.26 £0.40 2.72£0.07 3.01 £0.10
11.18£0.40 236 £0.12 2.35£0.12
12.06 £ 041 3.86 £0.12 3.71 £0.10

~ B~ , O O O O N O
~ H~ O H~, O O o O
~ O H~ B~ O D O O

8.60£0.38 3.05+0.11 3.12+£0.11

Average 13.11+£0.14 2.52+£0.03 2.56 £0.03

Table 4.5 shows the numerical results for five stations systems. We consider systems
with buffers 0,1,and 2. Again, pf, uﬁ?, «y; are drawn independently from a uniform distri-
bution with range [0.5,2.5] for all ¢, 7 € {1,...,5}. We performed 200 iterations for each

combination of buffer sizes.
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Table 4.5: Numerical Results for Five Stations.

Buffer Sizes % Optimality Gap

By B, Bs B, Opt Static Heuristicl Heuristic 2
0O 0 0 O 1936=£085 240=£0.15 2.71+0.18
I 0 0 0 1830£0.86 3.024+0.21 2.91+0.22
o 1 0 0 17.714£0.86 3.11+0.19 3.44+0.19
0O 0 1 0 1837£085 292£0.20 3.38£0.21
0O 0 0 1 1865£086 2.06+0.19 2.2340.20
1 1 1 I 1430+£0.89 3.22+0.18 3.2840.18
Average 17.66 £0.40 2.82+0.08 3.0540.09

From the results of Table 4.3-4.5, we can derive the following conclusions:

1. Inall situations, the performance of our heuristic policies are significantly better than
the optimal static policy. Hence, our heuristic policies improve the throughput of the

system by assigning teams dynamically.

2. The optimality gap between our heuristic policies and optimal dynamic policy is
always less than 4%, which means that our heuristic policies yield near-optimal per-

formance.

3. Heuristic plan 2 performs better than heuristic plan 1 when there are more buffers
at the head of the line, but for all the other cases, for example, when the buffers are
balanced between stations or there are more buffers distributed towards the end of

the line, heuristic plan 1 works better.

4. We don’t have a clear pattern of the relationship between the total buffers and the
optimality gaps. Our heuristics perform better for more balanced systems than un-
balanced ones even if the total buffer size of the balanced system is larger than that

of the unbalanced system.
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4.5 Conclusions

We have studied Markovian queueing systems with N tandem stations, finite intermediate
buffers, and flexible servers with collaboration. For such queueing systems, we established
sufficient criteria for eliminating inferior teams, and then identified the optimal team assign-
ment policy among the remaining teams (i.e. optimal assignment set) for the two-station
case. We showed that if we label the remaining teams according to their service rate at
station 1 from high to low, then the optimal policy has monotone thresholds so that it uses
the first team assignment (the team with highest service rate at station 1) when the buffer is
empty, and transit to the second, third,. .., last team assignment as the number of jobs in the
buffer increases. Then, we applied our optimal policy to two special cases, namely propor-
tional team service rates and teams of specialized servers. For teams of specialized servers,
when the servers are generalists, the optimal policy set contains /V permanent teams that are
formed based on their ability. In particular, the NV teams are the best server of each type, the
second best server of each type,. .., the worst server of each type. Based on this result for
two stations systems and examples for three stations systems, we proposed heuristic policy
with teams of specialized servers where the servers are generalists for longer lines, and ob-
tained numerical results that suggested that our heuristics yield near-optimal performance

for systems with more than two stations.
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CHAPTER §
OPTIMAL CONTROL OF QUEUEING SYSTEMS WITH DEFECTS

5.1 Introduction

In this chapter, we consider a Markovian system of /N tandem stations, finite buffers be-
tween the stations, and N servers. Assume there is an infinite supply of raw materials
in front of the first station and infinite storage space after the last station. Since in many
systems, collaboration is infeasible or undesirable, we focus on non-collaborative servers
that are not able to work on the same job and assume that there can be at most one job
undergoing processing at each station. For example, limitations of workspace and tools
can prevent multiple servers from working simultaneously at the same station. However,
the servers are flexible, which means that they are cross-trained and allowed to switch be-
tween stations with negligible travel time. When a job is being processed at a station, it
might incur a defect and be wasted. Let 0 < B; < o0,j € {1,2,...,N — 1}, be the
buffer size between station j and j + 1, and 1, ;,p;;,%,7 € {1,2,..., N}, be the ser-
vice rate and defect probability of server ¢+ working at station j, respectively. Assume that
Zj.vzl pij(1 —pij) > 0fori € {1,2,..., N} (otherwise the problem reduces to having
N —1servers)and SN | i ;(1—pi;) > 0forj € {1,2,..., N} (otherwise the throughput
is zero under any policy). Moreover, assume that if a job is processed by multiple servers
in turn at the same station, its defect probability is determined by the (last) server who
finishes processing this job at the station. For simplicity, let /i; ; = p; (1 — p; ;) be the
successful service rate for 7, j € {1,2,..., N}. Then fi; ; is the rate of obtaining a service
completion with no defects by server ¢ at station j. The service requirement for each job is
independently and exponentially distributed at each station, and without loss of generality,

we assume the mean service requirement of each job at each station is one. The system
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operates under manufacturing blocking. Our objective is to determine the dynamic server
allocation policy that maximizes the long-run average throughput.

This system without defects (i.e., when p,; = 0 for i,5 € {1,2,...,N}) has been
analyzed by Isik, Andradottir, and Ayhan [31]. For systems with two stations and two
servers, they provided the server allocation policy that maximizes the long-run average
throughput. For systems of arbitrary size, they presented optimal policy for the special
case when each server is specialized at different station and proposed heuristic policies that
appear to be near-optimal for the general case. However, in practice, it is common to have
positive defect probabilities when servers process jobs. Thus, we include this factor into
consideration. We will see that the introduction of defect probabilities changes the structure
of the optimal policy. To the best of our knowledge, this is the first paper that considers the
dynamic scheduling of servers when they are flexible and error-prone.

In the presence of positive defect probabilities, it is not only important to finish jobs
quickly (by assigning a faster server), but to also have a successful service completion (by
assigning a more reliable server). Thus, if the fastest server and the most reliable server at
a station are not the same server, there is a trade-off between speed and more reliability.
Hence, the optimal policy for systems with defects is more complex than the the optimal
policy for systems without defects. In this chapter, we completely characterize the optimal
policy for two stations and two servers. Specifically, if we label the servers such that
fi11 > fi21 (which is without loss of generality), then we show that the optimal policy takes
two forms depending on whether (1) jiy1p112 > floipioe OF (2) jiriptia < floifieo. When
112 > flo1fio2, the optimal policy has a single threshold and it is best to assign server
1 to station ¢ for ¢ = 1, 2 if the number of jobs in the intermediate buffer is less than that
threshold; and otherwise, we will assign server ¢ to station 3—1 for 7 = 1, 2. However, when
112 < flo1 a2, the optimal policy has two thresholds and server ¢ should be assigned to
station ¢ for ¢ = 1, 2 if the buffer is empty (the smaller threshold) or if the number of jobs

in the buffer exceeds the larger threshold; otherwise, we will assign server ¢ to station 3 — ¢
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for 7 = 1, 2. In addition to identifying the optimal policy for two stations and two servers,
we propose several heuristic policies for larger systems and provide numerical results that
suggest that our heuristics appear to be near-optimal.

The outline of this chapter is as follows. In Section 5.2, we provide a description of
our problem and the notation we use throughout this chapter. In Section 5.3, we present
preliminary results on the properties of the optimal policy. In Section 5.4, we identify the
policy that maximizes the long-run average throughput for two stations and two servers. In
Section 5.5, we provide heuristic policies for larger systems and provide numerical results
that suggest that the performance of our heuristics is near-optimal. In Section 5.6, we
summarize our findings and conclude the chapter. Finally, the proofs of some of our results

are provided in Appendix B.

5.2 Formulation

In this section, we present a detailed description of our model. Let II be the set of server
assignment policies under consideration. For all 7 € TII, let D™(¢) be the number of suc-

cessful departures (with no defects) from the last station under policy 7 by time ¢, and let

T™ = lim sup M 5.1

t—o00 t
be the long-run average throughput corresponding to server allocation policy . We want
to solve the optimization problem

max ™. 5.2)

mell
Forallm € ITand ¢t > 0, let X7 (¢t) = (X1(t),..., Xn-1(t)), X;(t) € {0,1,...,B; + 2},
where X(¢) is the number of jobs in the system that have completed service with no de-
fects at station ;7 but have not yet completed service at station 7 + 1 at time ¢ under policy
7. Denote the set of all possible states as .S. From now on, we assume that the class II of

server assignment policies under consideration consists of all Markovian stationary deter-
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ministic policies corresponding to the state space S of the stochastic processes {X™(¢)}.
Let as,0,..-, be an action that indicates the allocation of the servers, where o; = 0 if server

i is idled, and o; = j if server 7 is assigned to station j, fori,j € {1,2,..., N}. Let

Ay, = A={as,09.0n :0i €{0,1,..., N}, 0; # 0 fori # k with ;0 > 0}

denote the set of available actions in state z € S.
It is clear that {X™(¢) : ¢ > 0} is a continuous-time Markov chain. Let {¢"(z,z)} be
the transition rates of { X" (¢)}, and let u7 (), pJ () be the service rate and defect proba-

bility at station j € {1,2,..., N} in state z € S under policy m € II, respectively. Then,

forxz € S,
)
pi(z)(1—pf(x)) ifa' =x+e,2’ €S
pi(r)(1—pj(r)) ifa'=x—e;1+e;,2°€82<j< N1,
q"(z,2") = w3 (2)pf () ife' =x—ej_1,x—ej_1+e€85,2<j<N-1,
pi () ife' =0—ey_1,2/ €8
0 otherwise,

(5.3)
where {e; : j = 1,...,N — 1} is the standard basis for (N — 1)-dimensional space.
There exists a finite uniformization constant ¢ < > . max; 1, ; < oo such that {¢"(z,2’)}
satisty > vcg iz, ¢ (7,2") < gforallz € S;m € II. Thus, {X™(¢)} is uniformizable.
Let {Y™(k)} be the corresponding discrete-time Markov chain, so that {Y™(k)} has state
space S and transition probabilities p™(x,z') = ¢"(x,2')/q if 2’ # x and p™(z,x) =
1= esare " (x,2')/q for all x € S. Using a similar argument as in [7], we can

show that the original optimization problem in (5.2) can be translated into an equivalent
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discrete-time Markov decision problem. Specifically, for z = (sy,...,sy_1) € 5,

pi (@) (1 —pR(x)) if syt >0,
R (z) = (5.4)

0 otherwise,

is the departure rate (with no defects) from state = under policy 7 for all x € S, and
m € II. Then the optimization problem (5.2) has the same solution as the Markovian

decision problem

K
ma i, P OG- D) 3
Thus, maximizing the long-run average throughput of the original queueing system is
equivalent to maximize the long-run average successful departure rate for the associated

embedded discrete-time Markov chain.

5.3 Preliminary Results

In this section, we discuss the structure of the optimal policy for systems with N stations
and N servers, where N is arbitrary.

We have discussed the trade-off between service rate and defect probability in Section
5.1. However, if there exists a server that is both more reliable and faster than all other
servers at each station, and these servers are distinct, then we identify the optimal server

allocation as follows:

Theorem 5.3.1. Suppose there exists a permutation of the servers iy,...,iyx such that
[i;; = MaX1<i<N ij, Pij = Mili<i<n pyj forall j € {1,2,...,N}. Then the policy that

always assigns server i; to station j for j € {1,2,..., N} is optimal.

Without loss of generality, assume that i; = j for j € {1,2,..., N}. Let 7" be the
policy that always assigns server j to station j for j € {1,2,..., N}. For any policy 7 € II

and ™ # 7*, we consider an artificial system under policy 7 but with servers of modified
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service rates. Specifically, in this artificial system, at any state s € S, the service rate at
station j € {1,..., N} is altered to y;; (the same as under 7* in the real system), while
the defect probability of the server at station j remains the same as under 7 in the real
system. Denote T™ as the long-run average throughput of this artificial system under 7.
We will prove Theorem 5.3.1 in two steps: Lemma 5.3.1 will show that the throughput of
the artificial system under m with modified service rates is no worse than the throughput of
the real system under 7, and Lemma 5.3.2 will show that the throughput of the real system
under 7* is no worse than the artificial system under 7. Then, 7* is no worse than 7 for any
7 € Il in the real system, and 7* is optimal. The proofs of Lemma 5.3.1 and Lemma 5.3.2

are provided in the Appendix.
Lemma 5.3.1. 77 > TT.
Lemma 5.32. T > 1TT.

Remark 5.3.1. Lemma 5.3.1 holds as long as the service requirements at each station are
independently and identically distributed. Thus, if the defect probability only depends on
the station, i.e., p; j; = p; forall 1,5 € {1,..., N}. Then, Theorem 5.3.1 holds for a more
general system where the service requirements are independent and identically distributed

random variables (but not necessarily exponentially distributed).

For the result in Theorem 5.3.1 to hold in sample path sense, we need to prove that the
1th successful departure (with no defects) from the artificial system under policy 7 with
modified service rates should be no earlier than under policy 7* for all 7« > 1 and 7 € II.
However, the following example demonstrates that this inequality may fail if the service

requirements are not exponential.

Example 5.3.1. Consider a system with N = 2 and B, = 0. Suppose the two servers are
identical except that server 1 is more reliable than server 2 at station 1 (i.e., p11 < p21).
Let policy m be the policy that always assigns server 1 to station i for i = 1,2; and 75 be

the policy that assigns server i to station 3 — 1 for v = 1,2. Then, if Theorem 5.3.1 holds
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in sample path sense, all successful departures from the system under policy 7 should be
earlier than under policy .

Consider two sample paths w1, wo, where we use policy m; in sample path w; fori = 1, 2.
Thus, wy has lower defect probability at station 1 than w,. Let S;(i) be the service time of
the ith job that arriving to station j, for 7 = 1,2,1 > 1. Suppose that both sample paths
share the same service times as follows: S1(i) = 1 for alli > 1, Sa(1) = 3,55(i) = 1
forall v > 2. Let I]k(l) € {0,1} be the status of the ith job at station j upon its service
completion under policy m for i > 1,5,k = 1,2, where 0 and 1 refer to defective and
successful service completion, respectively. Then, p11 < pa1 implies that 1 ]1 (1) > 1 ]2(2) for
Jj=1,2,i > 1. Suppose (I{(i) : 1 < i <5) = (1,1,0,1,1), ([3(@) : 1 < i < 5) =
(1,0,0,1,1), (I3(z) : 1 <i <3) = ([2(1) : 1 <i < 3) = (0,0,1). Then, Table 5.1
shows the comparison of the time flow of the first five departures from station 1 and first
three departures from station 2 in sample paths wy,ws. We number the jobs by their order
of entering station 1 in both sample paths. From Table 5.1, we observe that the time of
the first successful departure from the system under policy i is at time 7, while the first
successful departure from the system under policy 7, is at 6. Thus, Theorem 5.3.1 does not

hold in sample path sense.
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Table 5.1: Departure times from station 1 and 2 in sample paths wy, w- (successful depar-
tures are in bold).

departure time in w; from departure time in wy from
job # | station 1 station 2 station 1 station 2
1 1 4 1 4
2 4 5 2 X
3 5 X 3 X
4 6 7 4 5
5 7 \ 5 6

X-the job is defective and wasted at station 1.

\- not discussed in this example.

Note that, since there are infinitely many jobs in front of the first station, having a
defective service completion at station 1 would not alter the state of the system. Therefore,
if we assign server ¢ to station 1 with successful service rate i, 1, it is equivalent to having a
‘dummy’ server with service rate ji; ; and zero defect probability at station 1. And using this
ideal, we can obtain the following two propositions of the properties of server assignment
at station 1. First, the following proposition shows that when the system is empty, the best

server allocation is to assign the server with largest successful service rate to station 1.

Proposition 5.3.1. When the system is empty, i.e., s = (0,...,0), it is optimal to assign

the server such that [i; 1 is maximized to station 1.

Proof. For m € II, {X™(t)} is a semi-Markov process. And each time it enters a state
s € S, it remains there for a random amount of time with rate ¢"(s) = > g v, 4" (5, 8').

If we let X denote the state of the process after the nth transition, then { X7, n > 0} is a

Markov chain with transition probability v™ (s, s') = %, fors,s’ € S,s" # s. Letn™(s)

be the stationary probability of s € S for { X }. That is, 77 (s) is the unique nonnegative
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solution of

d on(s) =1,

seS

n"(s) = Z 0" (s (s, s),Vs € S.

s'es

Then, the long-run proportion of time that process { X™(¢)} spends in state s € .S is:

n"(s)/q"(s)
Dowes T (8)/q™(s)

T7(s) =

When the system is empty, i.e., so = (0,...,0), v™(so,s") = 1if s = (1,0,...,0); and
v™(sg,8") = 0, otherwise, for Vrr € II. Thus, the change of assignment in state sy does not

impact the value of 77 (s) for any s € S. Moreover,

n(s0)/q" (s0)

$0)/47(50) + X gres,srso N (8) /a7 (")
n"(s)/q" (s)

$0)/47(50) + X ges,srzso ()47 (")

™ (s0) = n(

s €S,

=

where ¢™(sg) is the successful service rate at station 1 in state sy under policy 7 € II.
Thus, by increasing ¢™(sy), we can reduce the time that the process is in state sq (i.e.,
T™(sp)) and increase the time the process is in all the other states without changing any-
thing else. Since in state s = (0,...,0), there is no departure from the system, we in-
crease the long-run average throughput of the system by increasing the time that the pro-
cess spends in the states where there are departures without changing the departure rates.
Since max e ¢"(So) = maxi<;<n fii1, it is optimal to assign the server that maximizes

f1;1 when in state so = (0,...,0). O

Next, the following proposition shows that, it suffices to consider policies that never

idles station 1 when station 1 is not blocked.
Proposition 5.3.2. There exists an optimal policy that never idles the server at station 1.

Proof. We prove this proposition via sample path arguments. Note that, idling station 1 is
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equivalent to assigning a ’dummy’ server ¢, with zero service rates and zero defect proba-
bility to station 1 (i.e., p;,.1 = 0, p;,,1 = 0). And by our previous analysis, assigning server
¢ to station 1 with successful service rate fi; ; is equivalent to having a "dummy’ server i;
with service rate /i; ; and zero defect probability at station 1 (i.e., i, 1 = fii1, i1 = 0).
Consider the case an optimal policy 7 idles the server at station 1 in some state s € S,
without loss of generality, assume that server ¢ is idled. Suppose policy 7 is same as 7
except that it uses server i, at station 1 when 7 idles station 1, and 7’ is the same as 7 except
that it uses the idling server ¢ at station 1 when 7 idles station 1. Consider two processes on
the same probability space, each starting from the same initial state s. Suppose that Process
1 uses policy 7 that assigns server 7, to station 1, and Process 2 uses policy 7, that has
the same server assignment as in 7y except that it assigns server 4; to station 1. Then, by
Lemma 5.3.1, policy 7 is at least as good as policy 7. Since 7 is equivalent to 7, and 7

is equivalent to 7/, we have policy 7’ at least as good as policy 7. [

By Proposition 5.3.2, we obtain that, when N = 2, the action set can be reduced to

AS = {alo,ago,(llg,agl} for Vs € S.

5.4 Optimal Policy for Two Stations

In this section, we consider the case with two stations and two servers, and fully charac-
terize the optimal policy. Let (4)* denote the Markovian stationary deterministic policy
corresponding to decision rule §. For simplicity, when N = 2, let B; = B. Then, the state

space is S = {0,..., B + 2}. Let
1 —pio
r = ——
1 —poo
be the ratio of the success probability of servers 1 and 2 at station 2. This notation is helpful
in describing the optimal policy. When there are two stations in tandem, our queueing

system can be modeled as a birth-and-death process, with the birth rate in state s equal to

the service completion rate with no defects (successful service rate) at station 1 in state s,
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and the death rate in state s equal to the service rate at station 2 in state s.

Without loss of generality, we can label the servers such that fi1; > [is, that is, server
1 has a higher successful service rate at station 1 than server 2. By Proposition 5.3.1, we
should assign server 1 to station 1 when only station 1 is working (i.e., s = 0). However,
when station 2 is working, the presence of defect probabilities make the structure of the
optimal policy more complex than the one without defects since there is a trade-off between
the speed and the reliability of the service. Specifically, if defect probabilities are zero
(i.e., no defects), 11 > p21, 12 < Ho9, 1.€., the two servers have their own specialty,
then by Proposition 3 of [31], the optimal policy is always to assign server ¢ to station %
for © = 1,2. Thus, when the defect probabilities are positive, one might conjecture that

1 > fio1, fli2 < fieo 1s sufficient for the same policy to be optimal. The next example

shows that this is not always the case.

Example 5.4.1. Consider the case when B = 1, then S = {0,1, 2,3}, A, = {aq9, as, a2,
asn '}, Vs € S. Suppose fiy1 = 1.2, 101 = 1,19 = 1, u92 = 1.5, pas = 0.7. Then, the
following three cases with different values of p1o satisfy fi11 > flo1, flio < jloo = 1.05, but

the corresponding optimal policies are not the same as (), where 6(s) = ay, for s € S.
1. If p1a = 0.5, then (67)*° is optimal, where 67(0) = aj2,0;7(1) = 67(2) = 07(3) = aa;

2. If p12 = 0.6, then (65)> is optimal, where 65(0) = a2, 05(1) = 05(2) = a91,05(3) =

Q12

3. If p1a = 0.63, then (%) is optimal, where 65(0) = aj2,05(1) = a2,05(2) =
(5;(3) = 192.

Moreover, (65)>°,(85)°° are not included in any of the optimal policies characterized by

[31].

We refer to fi;1 142 as the overall efficiency of server i for i = 1,2. Then, if ji;; > fis1,

we find that the optimal server allocation policy exhibits two different patterns depending
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on which server has a higher overall efficiency. That is, the optimal policy can be described
by the following two cases: (1) fi11p12 > fio1ft22; (2) fir1 12 < fio1ft22. In Sections 5.4.1
and 5.4.2, we completely characterize the optimal policy for cases (1) and (2), respectively.

In Section 5.4.3, we provide special cases when the optimal policy can be simplified.

5.4.1 Optlmal Pohcy ‘When ﬂll Z [1,21, ﬂll,ulg Z ﬂglﬂQQ

In this section, we analyze the case when ji17 > [io1, and fi11ft12 > fio1 t22. Define 5’f for

k € S such that

Note that (6¥)° is a non-idling threshold policy that assigns server i to station i in states
{0,...,k}, and server i to station 3 — ¢ in states {k + 1,..., B+ 2} fori = 1, 2. Then, the

corresponding long-run average throughput under policy (6F)> is

w  O1(k)
TODT = L (5.6)
O (k)
where
B+1-k
©:(k) = M22N12 kZAJnHNIzg +N12/~L11 Z M21 119;1 - 2
B+1—k

_ ik . B+1—k—
©2(k) :Mgﬁ kZM]nNQz Hﬁrl Z ,“21/v‘12Jr 7.
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For k € S\ {0}, let

B+1—k
j  B42—k— 1 k
6ﬂm=wmbm (5% iy Y s j+uf”k§:MTumlﬂ,
7=0
B+1—k

2—k— i k—j
i3 Z M21 12+ ]"‘Mz%” kZMuMzQJ),

N

( = K12

fi(k) = (1 = pas)er(k) — (1 — pia)ca(k).

Then f;(k) is positively proportional to 701> — 76> and fi(k) > 0 if and only if
r < C(k).

We now present a lemma and a corollary that describe some useful properties of f;.

Lemma 5.4.1. When [iy1j112 > [io1fize, for Vk € S\ {0}, if fi(k) > 0, then f1(i) > 0 for
1<i<kif fi(k) <0, then f1(j) <0fork <j<B+2.

Proof. Recall that r = }iili’ and f1(k) > 0 if and only if r < C(k). Note that, for

kel,...B+1,

~B+1-k k-1

Ck+1)—-C(k) = %(ﬂmﬂm — [l11/412)O2(k)

<0.
That is, C'(k) is non-increasing in k when fiq1/12 > fi21/492. Then
filk)>0=r<Ck)=r<Ck-1)= fi(k—1)>0.
Thus if f1(k) >0, f1(i) > 0 for 0 < i < k. We can prove the other half of the lemma by a

similar argument. O

For ease of our analysis, define f;(0) = 0, f;(B + 3) = 0. The following corollary

follows from Lemma 5.4.1.
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Corollary 54.1. Ifﬂn/,tm > ﬂgllugg, then the set

St ={s€S:fils) >0, fils+1) <0}

is non-empty. Moreover, if there are multiple elements in S, then they are consecutive

States.

Note that, if we denote C'(0) = oo, C'(B + 3) = —oo, we can rewrite set S; as follows:

Si={seS:C(s+1)<r<C(s)}. (5.7)

Moreover, S is a singleton if fi(s) # 0, for Vs € S\ {0}, or equivalently, r # C(s),
for Vs € S\ {0}. However, the converse is not true since if p2 = 0, ¢1(k) = 0 for any
k € S\ {0}, which implies that ST = {0}.

Lemma 5.4.1 shows that 7)™ exhibits three possible behaviors with respect to k: if
fi(B+2) >0, then TED™ is non-decreasing; if f1(1) < 0, then TED™ is non-increasing;
otherwise, 71 is first non-decreasing and then non-increasing (however, this does not
imply that T©> is concave). Thus, the values of k such that 71 is maximized would
either be on the boundaries or be the turning point (or consecutive turning points). And if
S| = 1, i.e., S is a singleton, then 71 has a unique optimum (maximum) point; if

|ST| > 1, then there are consecutive optimum points of TOD> with respect to k.

Theorem 5.4.1. When fiy; > fio1 and finyji1o > fioifioo, then (85 )% is optimal, where
s* € S}. Furthermore, it is the unique optimal policy in the class of Markovian stationary

deterministic policies if [i11 > fior > 0, f1(s*) >0, and fi(s* + 1) < 0.

Proof. It follows from our assumption on the service rates that 117 > 0, 12 > 0, and at
least one of o1, f192 1S nonzero. Since the number of possible states and actions are both
finite, by Theorem 9.1.8 of Puterman [41], there exists an optimal Markovian stationary

deterministic policy.
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Under our assumptions on the service rates and defect probabilities, the policy de-
scribed in Theorem 5.4.1 implies that we have a communicating Markov decision process.
Therefore, we use the Policy Iteration algorithm for communicating models to show that
the policy we defined in this theorem is optimal. Choose the initial decision rule dy = 45 .
Let 5, and Ps, denote the corresponding reward vector and probability transition matrix,
respectively. Without loss of generality, the uniformization constant can be taken as 1.
Then
0 for s =0,

7(s,600(s)) = flog  forl < s < s*,

12 fors* < s < B+ 2.

11 for0 < s<s* s =s+1,
fl21 fors*<s<B+1,=s+1,
[122 forl <s<s* s =s5-—1,
fi12 fors*<s<B+2s=s—1,
1— fors =5 =0,

p(s]s, 60(s)) =
1 — (fu1 + po2) forl <s <min{s*,B+1},s=¢,

1 — (fig1 + p12) fors* < s< B+1,s=5¢,

1—/112 fOrSZS/:B—i—Z,S*SB—i—l
1 — oo fors=s =B+2,8=B+2
0 otherwise.

\

Since the policy yields a unichain structure, we can solve the following equation to find a

scalar go and a vector hy:

s, — goe + (Ps, — 1)ho = 0, (5.8)
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such that iy(0) = 0, where e is the unit vector and [ is the identity matrix. Then, gy =
T@)™ as we defined in Eq.(5.6).

For s < s* + 1,

s—1 ~ 5—2
9o s—1— 22 , 5—2—
ho(s) = = (J+ 1)#11#22 - 1 Z(] + 1)#11#22 -,
H11 =0 K11 =0

and for s* +2 < s < B+ 2,

~ s—s8*—2
* (gO - /’612) s—s*—2—
ho(s) = ho(s* +1) + T s 1 (j+ 1)#21#12
M2y =0
[ s—s*—2 g s* ﬂ s*—1
12 s—s*—2— 0 ~F  s*—j 22 ~ st —1—
P s—s 1 Z M21 12 ]( P Z/ﬂnﬂm T Z/ﬂn/ﬁm ])
Fu 55 P 55

For the next step of the policy iteration algorithm, we choose

a1 (s )Eargmax{r S, a +Zp |5, a)ho(J )},‘v’s e€s. (5.9)

(ZGAS
JjES

We now show that dg(s) = 01(s) for all s € S. In other words, the following inequality

holds for all s € S,a € Ag \ {do(s)}:

€(s,a) = r(s,a)—i—Zp(ﬂs,a)ho(j) (s,00(s —i—Zp (718, 00(s))ho(4)) < 0. (5.10)

JES JES

For s € {0,1,...,s"}, since dp(s) = aja, we will specify €(s, a) for actions {ay¢, asg, as }.
When s = 0, action a, is equivalent to a; 3—;, for 7 = 1,2 since station 2 is starved. Thus,

we only need to specify (s, a) for as;.

1 .
— (f1o1 — f111)g0 < 0. (5.11)
H11

E(O, CL21) =

When [i11 > fi21, inequality (5.11) is strict.
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Fors =1,...,s" and action aq,

1 As s o s—1=j/~ N
€(s,ai) = @2(3 +1 Zﬂﬁlml Mgk — flazkz),

where
B+1—s* .
K1 = [l22 Z [y
7=0
B+1-—s*
Ko = fl11 Z A T
From equation (5.7), r = 1‘2;; < (C(s*) = ;éi’ then figo Cl/f;:) > ,&12%, and
fi — u
22 ~s*+1—s ~j o s—1—j 12 * *
€(s, ag STM L1 —c1(87)k1 — Ca(S" ) Ko
( ) @2(5)02(8) 11 prs 11/22 ( ( ) ( ) )
1&22 ~5 s s* s—1—
= ——M12M11+1 fiz Zﬂuﬂm -
c2(s%) —0
<0.
Next, we specify €(s,a) for s = 1, ..., s* and action ay,
(5. a20) = = (juary — jizahs)
€(s,a9) = —— K3 — K4),
20 O (s%) Hi2R3 — Hazk4
where

B+1 s* s
B1— . ~js—j  astl
k3 = Nn E N21N12 N21 E fitay” — 317),

B+2—s* s—1
_ ast—s+l B+2—s* s—1—j
K4 = 1y E #21#12 E M11N22
s*—s—1
+ (a1 — fion) s E [ 105 .
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c1(s*)
H22

ca(s*)
Hi12

Similarly, from equation (5.7), fi22 > [i12 , and

€(s,a) < L[cl(s VK3 — @CQ(S*)/@J

Oa(s*)ci(s*) f12

H12 Lt 5 1—
= - um{us SH Zuu/f ’

B+1 s* s*—s—1
~B+2—s* ~7 s*—1—j

+ (fl1 — fi21) M12M22 Z Y S N Ha1f2 } }

J=0

<0.

*

Next, for action as; and s = 1,...,s%,

1 N .
€(s, as1) =  Oy(s%) f1(8%) + (i piaz — fion pan) Py T x|, (5.12)

where

B+1 s*
T, = [(ﬂll — f121)(1 = pa2) + pa2(p12 — p22 Z ,U21,U1 BH-s"—j A s (1 — paa).

When s* = B+2,T) =1—pg >0, €(s,as) <0forall s € S; when s* < B + 2,

by the analysis in Lemma 5.4.1, we have < C(1), and

Thus, €(s,as1) < 0fors=1,...,s* and the inequality is strict when f;(s*) > 0.
For s € {s* +1,..., B + 2}, since dy(s) = ag1, we will specify €(s,a) for actions

{alo, @20, alz}-

For action ajg and s € {s* +1,..., B + 2},

€(s,a10) = @25;) (fl12k5 — flazks),
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where

s* B+1-—s B+1—s*
_ ., s—s* ~3 o, 8" =] B+1-s—j A B+1 s*—j
ks = 12 E 1122 E N21N12 _Mn M21 12 )
B+1—s
_ s —1— ] ~3 , Btl—s—j B+2—s
Ko = g " E M11M22 Mll E Ha1 12 + Hig )
Jj=0
cals”) ~ o c2(sY)
From equation (5.7), fiz2 s = Hi2=, and

< Hut2 [Cl(S*)lig, — @02(5*)/16}

€(s, ar9) < Ba (571 (57)

H12
IEL s—s*—1
12 ~ ~B+ 5 *_1 N _gt—1—7j
= _—cl(s*) faiprasfiny M21 Z U11M22 o paaps fiz1 015 J)
§=0
<0.
Next, for action asp and s € {s* +1,..., B+ 2},
r . .
€(s,a) = O (5%) (flizk7 — flaaks),
where
s* B+1-—s B+4+1—s*
A —s* N B+1—s—j ~s* 41 B+1—s*—j
Ky = fla1 15" Zﬂnﬂzz Z N21N1 — [11 Z M21/~L12 )
j=0 j=0
s*—1 B+2 s
. s j —1- B+2—
Kg = [l11 i1y M11N§2 Z ,U21PJ12 .
=0 =

cals) ~ o c2(s9)
1 22 ,U, H12 and

From equation (5.7), ji22

Lcl s* KJ7—@CQ ") kg
0] S ey () Ty, 2
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N B+1 s*
H12 B s*—
= —mﬂm [(Mll - M21 M12N22 Z M21 12+1 7

s*—1 ss—l

~ s, s* s—s*—1—
NzB1+ HIIZN11N22 +H N2+3 Mg Z N21M ]]

<0.

Finally, for action a;s and s € {s* +1,..., B + 2},

§*—s—2

9 fi(s™ +1) = (fuipaz — fla1praz) piafigy 7 X T2]7 (5.13)
=0

where

s*

Ty = (a2 — fla2 Zﬂnﬂm T iy (L — o).

When s* = 0, Ty = ji12 > 0, €(s,a12) < O0fors € {1,..., B+ 2}; when s* > 0, by

the analysis in Lemma 5.4.1, we have r > C(B + 2), and
r>C(B+2)= Ty >0.

Thus, €(s,a12) < 0fors = s*+1,..., B+2, and the inequality is strict when f;(s*+1) <
0.

This proves that dy(s) = d1(s) for all s € S. Thus, by Theorem 9.5.1 of Puterman [41],
the policy described in this theorem is optimal.

To prove uniqueness among Markovian stationary deterministic policies, we use a sim-
ilar approach to Andradéttir and Ayhan [6]. Consider a decision rule ¢’ that differs from d

in at least one state s € S. Define

u = Py goe — goe =0,

U:T§/—|—(P5/—])hg—g0€:T§/+P5/h0—(T50—|—P50h0),
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where we have used equation (5.8). Note that inequality (5.10) holds for all s € S,a €
A\ {00(s)}, and is strict when /117 > fiz; > 0, f1(s*) > 0, and fi(s* + 1) < 0. Thus,

v(s) < Oforall s € S, and if fiy; > fiz; > 0, f1(s*) > 0, fi(s* + 1) < 0, we must have

v(s) <0, for Vs € S with §'(s) # dg(s). (5.14)

Let ¢’ denote the (possibly state dependent) throughput of the stationary policy (d').
Suppose that Py has n recurrent classes and partition Py such that Py, ..., P, correspond
to transitions within closed recurrent classes, ()1, ..., (Q, to transitions from transient to
recurrent states, and (),,,1 to transitions between transient states. Define Ag = ¢’ — goe,
and let P}, be the limiting matrix under decision rule ¢’. Partition ¢’, Ag, v, and P}, in a
manner that is consistent with this partition of Ps. Then, from Lemma 9.2.5 of Puterman
[41], we can obtain that

Ag; = Plv;, fori=1,... n. (5.15)

If both f1o1 and g9 are positive, Py, is irreducible; and if p109 = 0, 21 > 0, then s* = 0,
and J, = 69 also result in irreducible transition matrices. Hence, when jp; > 0, Py, is
irreducible. Since §'(s) # dg(s) for some state s € S, then ¢’'(s) # do(s) in at least one
state s € S that is recurrent under §’. However, equations (5.14) and (5.15) imply that
g'(s0) < go, so that the decision rule ¢’ can not be optimal. Therefore, when /117 > fio1,

fi(s*) > 0, f1(s* + 1) < 0, the optimal policy is unique. O

Intuitively, when [iqq 110 > fio1 /499, server 1 is overall more effective than server 2. To
increase the long-run average throughput of the system, when the number of jobs in the
system is small (i.e., s < s*), our priority is to push more jobs into the system and avoid
starving at station 2, thus we assign the overall more efficient server (i.e., server 1) to station
1; as the number of jobs in the system gets larger and the system becomes more crowded,
our priority changes to push more jobs out of the system and avoid blocking at station 1,

therefore we switch the assignment and assign the overall more efficient server to station 2.
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In Theorem 5.4.1, we provide conditions showing how the the service rates and defect
probabilities at station 1 impact the structure of the optimal policy. However, the effect of
the defect probabilities at station 2 is implicit in the value of s*. To better illustrate the
influence of defect probabilities at station 2 on the optimal policy, we obtain the following

corollary that follows from Theorem 5.4.1 and equation (5.7).

Corollary 5.4.2. When 111 > fi21 and ji11j412 > fio1i22, Table 5.2 shows the optimal policy

1-—p12

as a function of r = i

Table 5.2: Optimal policy in case (1) as a function of r.

Range of Optimal Policy | a1, Optimal in States | as; Optimal in States
r < C(B+2) (6B F2yee 0,1,...,B+2 )
C(B+2)<r<C(B+1) (6P Fh)ee 0,1,...,B+1 B+2
C2)<r<C(1) (61)> 0,1 2,...,B+2
c<r (69)> 0 1,....,B+2

Note that, a5 is always the optimal action in state 0 regardless of r as shown in Table
5.2, which coincides with Proposition 5.3.1 since server 1 has a higher successful service
rate at station 1 than server 2 (i.e., fi11 > fio1).

From Table 5.2 we observe that, the value of s* € S} lies in on the boundary of .S when
r 1s either small or high, and s* is non-increasing with respect to 7. Intuitively, when station
2 is working (i.e., s > 0), there is a trade-off between the faster server and the more reliable
server. We attach more importance to the defect probability than the service rate for station
2 since we do not want to waste our efforts at the first station. Therefore, when one server
is much more reliable than the other, that is, when r is either very high (i.e., r > C(1)) or
very small (i.e., r < C'(B +2)), we would always assign the more reliable server at station

2 to station 2. Otherwise, when r is moderate, as r increases, server 2 becomes relatively
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less reliable at station 2, thus a smaller value of s* increases the relative time of server 2
working at station 2 and yields a higher throughput (recall that s* is the threshold point at

which we switch our server assignment).

5.4.2  Optimal Policy When ji11 > fig1, fiy1pt1o < figiflon

In this section, we discuss the case when ji;; > jio1, and fi11p112 < fio1f1o2. The steps are

similar to Case (1). Define 05 for k € S such that

¢

a2 s=0,

55(5): ay 1<s<k

ala k<s<B+2.

\

Observe that the policy (d5)°° is a non-idling policy with two thresholds. First, by Proposi-
tion 5.3.1, we will always assign server 1 to station 1 when in state s under the assumption
fi11 > fiz1. Policy (6%5)> assigns server i to station 3 — i in states {1,...,k} and assigns
server i to station 7 in states {k + 1,..., B + 2} for i = 1,2. Then, the corresponding

long-run average throughput under policy (65) is

T > (5.16)
O4(k)
where
B+l—k ' . |
Ou(k) = jons (Jaaitsy Y iy ™ o Y sy ),
j=0 =0
B+1-k 4 4 k1 | |
Ou(k) = s D sy~ Y s )
i=0 =
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For k € S\ {0}, let

B+2—k
d1(k) = Mzz{ﬂ’fz_l[(ﬂn — fl21 +M12 Z M11MB+2 - + fi2 1111131+2 k]
7=0
k=2 4
F B Y ),
=0
B+3—k
da(k) = paz <N12 Z M11N22+3 t + o kZ/}%Tlﬂ]fQQ j>>
dy (k)
D(k) = ,
) da(k)

fa(k) = (1 = pra)da(k) — (1 — pa2)di (k).

Then f»(k) is positively proportional to 7(02)> — 762" and ¢(k) > 0 if and only if
r > D(k). Moreover, D(k) > 1 for Vk € S\ {0}.
Next, we provide a lemma and a corollary to describe the properties of f5(k) that would

be useful to interpret our results.

Lemma 5.4.2. When [iy1j112 < [io1pize, for Vk € S\ {0}, if fa(k) > 0, then f5(i) > 0 for
1 <i <k if fo(k) <0, then fo(j) < O0fork < j < B+2

Proof. For k € S\ {0},

~B+1-k , k-1

_ _ M1 M - A
D(k+1) — D(k) = dg(kj)dg(k}—l—l)(MQIMQQ fa1pi12)©4(k)

> 0.

That is, D(k) is non-decreasing in k when i1 412 < fio1fi22. Then

folk)>0=r>D(k)=r>Dk—1)= fo(k—1)>0.

Thus, if fo(k) > 0, fa(i) > 0 for 0 < i < k. We can prove the other half of the lemma by

a similar argument. O
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For ease of our analysis, define f»(0) = 0, fo(B + 3) = 0.

Corollary 5.4.3. Ifﬂll/im < ﬂgllugg, then the set

S; ={s€5: fals) 20, fo(s +1) <0}

is non-empty. Moreover, if there are multiple elements in S5, then they are consecutive

States.

Note that, if we denote D(0) = —oo, D(B + 3) = oo, we can rewrite set S; as follows:

Sy ={se€S:D(s) <r<D(s+1)} (5.17)

Moreover, S; is a singleton if f5(s) # 0, for Vs € S\ {0}, or equivalently, r # D(s), for
Vs e S\ {0}.
Observe that the structure of f, is similar to that of f;. Similarly, by Lemma 5.4.2,

)OO

the values of k such that 7)™ is maximized would either be on the boundaries or be the
turning point (or consecutive turning points). And if |S5| = 1, i.e., S5 has a single element,
then 7%)™ has a unique optimum (maximum) point; if |S3| > 1, then there are consecutive

optimum points of T02)> with respect to k.

Theorem 5.4.2. When [i11 > [io1 and [i11p12 < flogfioo, then (55*)00 is optimal, where

s* € S;. Furthermore, it is the unique optimal policy in the class of Markovian stationary

deterministic policies if [i11 > fi21, f2(s*) > 0, and fo(s* + 1) < 0.

Proof. The proof of Theorem 5.4.2 is similar to the proof of Theorem 5.4.1. First, ji;; >
121 implies that 117 > 0 and g1 > 0. Moreover, ji11 412 < fio1 foo implies that iy, p199 are
also positive. Since the number of possible states and actions are both finite, by Theorem
9.1.8 of Puterman [41], there exists an optimal Markovian stationary deterministic policy.
Under our assumptions on the service rates, the policy described in Theorem 5.4.2

implies a irreducible Markov chain. Therefore, we have a communicating Markov decision
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process. We again use the Policy Iteration algorithm for communicating models to show
that the policy we defined in this theorem is optimal. Choose the initial decision 5, = 43 ,
let 75, and Py denote the corresponding reward vector and probability transition matrix,
respectively. Then

0 for s =0,

r(s,04(s)) = flig  forl < s < s*,

flog  for s* < s < B+ 2;
\

11 fors =0,5 =1,

fl21 forl <s<s* s =s+1,

11 fors* <s<B+1,s=s+1,

{12 forl <s<s* s =s-—1,

[h22 fors* <s<B+2,¢=s5—1,
p(s'ls, 05(s)) = 1 — i1 fors =5 =0,

1 — (o1 + p12) forl <s<s*s=4,

1—(,&11—1-#22) fOI‘S*<S§B+1,S:8/,

1 — pge fors=s=B+2,s"<B+1,
1 — 1o fors=s =B+2,s=B+2,
0 otherwise.

\
Since the policy yields unichain structure, we can solve the following equation to find a
scalar g, and a vector hy:

TS — goe + (Ps; — Ihi =0, (5.18)

such that hg(O) = 0, where e is the unit vector and I is the identity matrix. Then, g =

130



T3 as we defined in equation (5.16).

For s < s* +1,

s—2 ~ -2
g/ ~ . ~ ] s s—1— M s—2—
ho(s) = - Ps 1 [Nll Z(] +1)M%1N12 - +ZN21 Hi2 ]] - 5T Z j+1) N21N12 7,
/“1’11/“1“21 j=0 2 j=0

andfors* +2<s< B+ 2,

~ s—s*—2
h/ - h/ * 1 (96 - :u22) u . 1 ~7 S—s*—2—j
o(8) = ho(s™ +1) + PSP (J + 1)jig, prg
H11 =0
M s—s*—2 g/ s*—1
22 s—s*—2— 1—
e Ss—s —1 Z Mll 22 ][A s* MllZNlez J+/~‘12)
119, =0
/Al s*—1
12 i st 1
T e Z [y 1o ' j}-
Ha1 55

For the next step of the policy iteration algorithm, we choose

41 (s )Eargmax{r(s a +Zp |s,a)hg (7 )},Vs €S. (5.19)

aEAs
JjeES

We now show that d)(s) = da(s) for all s € S. In other words, we will prove that the

following inequality holds for all s € S,a € A, \ {do(s)}:

¢(s,a) = r(s,a)+ S plils, alhh(5) — (r(s, 0(s)) + 3 pls. 55(s) () < 0. (5.20)

JjES JjeES

When s = 0, a0 and a; 3_; are equivalent, for ¢ = 1, 2 since station 2 is starved. Thus,

we only need to specify €(s, a) for ay;.

1. N
6/(07 421) = 6/(07 azo) = ﬂ—(ﬂzl - M11)96 <0, and
11

Note that the above inequality is strict when fio; > fi1;.

When s € {1,...,s*},04(s) = aa1, and we will specify € (s, a) for actions {a1, aso, a12}-
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Fors =1,...,s" and action aq,

s—1
1 i sel—isn .
€(s,a10) = m#nﬂzl Zﬂjzlﬂm T (fia2k — fl1aksy),
4 =0
where
B+1—s* '
= (fi11 — fig1 + p112) Z NnMBH v ~,
7=0
B+2—s*
\j  BA2—s*—j
Ky = Z N]11M22+ ..
j=0
From equation (5.17), r = % > D(s*) = Z;Ez;, then figo dL(;;) < [i12 dz(;*), and
i — 1
€(s,a1p) < DT 0 15 T (dy (5K — B2, (57K
(s,a10) < @4(3*)d2(s*)ﬂ11'u21 ;Nmﬂm ( 2(s") K] 1122 1(s%) 2)
fl22  .pig_

— _ s—1—j
da(s )M12M11 M21 Zﬂmu
<0.
Next, for s = 1,...,s* and action as,

. .
6/(37 azo) = m(lmfié - M12HZ),
where

B+1—s* s—2
| s j BHl—st—jn ~j o s=2-§ s
K3 = E 11 M2 (112 figiing ~ 7+ pia),
Jj=0

B+1 s* s—1
I~ Agt4 B+1 s*—j ~j s—1—j
Ky = M11N21 E N11 22 E Ha1 12
j=0
s*—1 s*—s5—1
B+2—s* j st —1—j j st —1—j
+ Hgy (fin1 [i51 17 — fl21 E [y ping 7).
Jj=0
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Similarly, from equation (5.17), fi22 #(22*) < ,&12%, and
€ (s, ag) < S R [@d2(3*)’fé - dl(S*)’{Z]

O4(5%)d1(s*) g

~

H12 B s* ~s*—s s—1—
== H22 {N11+3 Ha1 Zﬁbmﬂu -~

dl(S*)
B+1—s* s*—s—1
A~ A~ s*— B+1-—s* ~ s* s*—1—
+ (fi1 _M21)[M12 a2 Z M11M22Jr it Z N21N12 ] }
§=0
<0.
Next, for s = 1,...,s* and action a1,
/ 1 * ~ ~ . s*—=2—j 1
€(s,a12) = ) (s%) f2(87) + (fa1 a2 — fanfirz) N21M12 X T1]7 (5.21)
4 .
7=0
where
B+2—s* B+1-s*
i B s* B s*
T = fue Z fi71 My — — figa(firr — fio1 + f12) Z Mnﬂmﬂ .
j=0 7=0

When s* = B+ 2, 1] = 112 > 0, €(s,a12) < 0forall s € S; when s* < B + 2, by

the analysis in Lemma 5.4.2, we have r > D(1), and
r>D(1)=T)>0.

Thus, €'(s,a12) <0fors=1,...,s"
Fors € {s*+1,..., B+2},0)(s) = a2, we will specify €' (s, a) for actions { a9, azg, 21 }.

Fors € {s*+1,..., B + 2} and action ay,

1 . .
(s, a1) = m(ﬁmf’vé — flakg),

133



where

B+l —s s*—1 B+1—s*

~

=0

s*—1 B+2—s
_ o~ s—s* s*—1—j B+2 s—, ]
= H11f99 E M21N12 E Mn 22

da(s")

From equation (5.17), fioo 122

< fu2=

€(s,ay) < L(dQ(s*)ﬁg — &dl(s*)mg)

~ O4(s*)da(s*) 22
/l s*—2 s—s*
22 ~ s —2— ~j  s—s*—j
= — o T (1 E M21M12 7+ [yt i1 )
do(s*) — —
j= j=
< 0.

Next, for s € {s* 4+ 1,..., B+ 2} and action ay,

1 . .
6(37 a20)/ = m(ﬁm% - ,U12/<dé)a

where
B+1—s s*—1
! o~ s—s* B+1—s— j s* N Aj S*—l—j
Kz = H21fla9 E N11N22 (N12 + [ E Ha1 2 )
— o
B+1—s*
j  B4l—s*
—M11M21 Nu# 7
7=0
s*—1 B+1—s
oA s—s* ~F s — B+2—s j  B4l-—s—j
= fnpds” > ity (T o Y g )-
— par;
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From equation (5.17), MQQ

€ (s,a) < L(dg(s*)mé — &dl(s*)/ﬁg)

©4(5*)da(s*) fi22
s*—2
f22 87 —2—
= _d (s* )M12{ ,u12 ZN11M22 +N11 "o Z H21M1 ])
7=0
B+1 s
+ (i = Ao )y sy Z i gﬂ o ]}
<0.
Finally, for s € {s* + 1,..., B + 2} and action ay;,
1 s*—s—2 ‘
€'(s,a) O.(s") [fz(é‘* + 1) + (fnrpaz — flarfpioz) Mggﬂﬁ T % 15|, (5.22)
=0
where
s*—1 ' ‘ s*—1 -
Tl = fioa (finr Y s+ p5) — Azl Y sy
=0 =0

When s* = 0, T, = figg > 0, €/(s,a01) < 0fors € {1,..., B+ 2}; when s* > 0, by

the analysis in Lemma 5.4.2, we have r < D(B + 2), and

r<D(B+2) =T, >0.

Thus, €'(s,a91) < 0fors=s"+1,..., B+ 2.

This proves that d;(s) = 07(s) forall s € S. Thus, by Theorem 9.5.1 of Puterman [41],
the policy described in this theorem is optimal.

Note that, when i1 > fio1, f2(s*) > 0, fo(s* + 1) < 0, inequality (5.20) is strict for all
s € S,a € Ag\ {do(s)}. The proof of uniqueness is similar to the proof of uniqueness for

case (1), thus we omit for brevity. ]

When 117 > jig1, and fi11p12 < flo1fio2, We have 1o < p9o. Thus, server 1 is better

at station 1, server 2 is faster at station 2, and server 2 is more effective overall than server
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1. The intuition of Theorem 5.4.2 is similar to our analysis of Theorem 5.4.1. Briefly
speaking, when s = 0, only station 1 is working, we assign the server with higher successful
service rate at station 1 to station 1. When s > 0, we assign the server with higher overall
efficiency (i.e., server 2) to station 1 when the number of jobs in the system is small to
push more jobs into the system, and we switch the assignment when the number of jobs in
the system exceeds the threshold s* to push more jobs out of the system. Again, to better
understand the impact of the defect probabilities at station 2 on the value of s*, we obtain

the following corollary from Theorem 5.4.2 and equation (5.17).

Corollary 5.4.4. When 111 > [i21 and ji111412 < fio1i29, Table 5.3 shows the optimal policy

1—pio

as a function of the value of r = pos”

Table 5.3: Optimal policy in case (2) as a function of 7.

Range of Optimal Policy | a1, Optimal in States | a,; Optimal in States
r < D(1) (69)> 0,1,...,B+2 0
D(1) <r < D(2) (63)> 0,2,...,B+2 1
D(B+1) <r < D(B+2) (65 F1yee 0,B +2 1,....,B+1
D(B+2)<r (65 F2)ee 0 1,...,B+2

From Table 5.3 we observe that, the value of s* € S lies in on the boundary of S
when 7 is either small or high, and s* is non-decreasing with respect to r. The intuition
of Corollary 5.4.4 is similar to Corollary 5.4.2 except that now server 2 has higher overall

efficiency than server 1, so we omit the interpretation for concision.

5.4.3 Special Cases

In this section, we provide conditions under which the optimal policy has a simple form.

The following corollary shows that when servers 1 and 2 have higher successful service

136



rates at stations 1 and 2, respectively, and server 2 has lower defect probability at station
2, then we will always assign the server to the station where they have higher successful
service rates. This result is slightly more general than our conclusions in Theorem 5.3.1

when N = 2.

Corollary 5.4.5. When i1 > [io1, p12 > poo, and fiag > [i12, then it is optimal to always

assign server 1 to station 1 and server 2 to station 2.

Proof. We will show that the optimal policy is (67+%)> or (69)*°. Therefore, when i1, 115 >
fi21 ft22, by Corollary 5.4.1 and Theorem 5.4.1, we need to prove that S7 = {B + 2}; and
when fi11p12 < fio1 /422, by Corollary 5.4.3 and Theorem 5.4.2, we need to prove that
S; = {0}.

When [iq1/112 > fi21fta2, We can rewrite f1(B + 2) as
B+l ‘
Fi(B+2) = (pr2 — po)inopizy > + (fiaa — fi2) Z gy > 0.

=0

Thus, by Lemma 5.4.1 and Corollary 5.4.1, we have S} = { B + 2} as desired.

When ji11 4412 < flo1 fi22, SINCE P1o > Poo, WE can obtain that

ﬂ21ﬂ22 = ﬂ21M22(1 - p22) < ﬂ11M12(1 - p12) = ﬂ11ﬂ12,

and we can reorganize f(1) as

B+1

fo(1) = —(fia1 fraa— a1 fr12) Ay — (ﬂn—ﬂ21)ﬂ22+(p12—p22),u12u22] Zﬂhﬂgﬂﬂ < 0.
=0

Thus, by Lemma 5.4.2 and Corollary 5.4.3, we have S; = {0} as desired. O

Remark 5.4.1. By Corollary 5.4.5, when [i11 > [i21, ft12 < [lag, and p; 2 = po, it is optimal

to always assign server i to station i for 1 = 1, 2.

137



The following remark shows that when the overall efficiencies among two servers are

equal, the optimal policy is static.

Remark 5.4.2. When ﬂll Z ﬂgl, ﬂllﬂlQ = ﬂglﬂgg, we have fl(l) = fl(B+2) = —fg(l) =
— fa(B + 2). Thus,

(a) If f1(1) < 0, then 0 € S7,B + 2 € S5, and Theorems 5.4.1, 5.4.2 imply that

(69)%° = (62+2) is optimal, where 00 = (a2, as1, . . ., as);

(b) If fi(1) > 0, then B +2 € S{,0 € S5, and Theorems 5.4.1, 5.4.2 imply that

(69)%° = (68+2) is optimal, where 03 = (a2, ays, . . . , a12).

Note that

(1) >0er<C(1),

where
. . B+1 ~j  B41—j
(fi11 — fio1) ijo Ha1 M2 > 1
B+2 ~j Bt2—j =+
Z]‘:O K211

Cl)=1+

Moreover, when [i11 > fio1, fli1ft12 = [lo1ji22, We have 115 < oo, Then server 1 is better
at station 1 while server 2 is faster at station 2. Thus, we would always assign server 1
to station 1 and server 2 to station 2 unless server 2 is significantly less reliable at station
2 relative to server 1 (in which case, the ratio of successful service probability of server 1
and server 2 is high). And if server 2 is not reliable at station 2 compared to server 1 (i.e.,

when r > C(1) > 1), we would assign server 1 to station 2 when station 2 is not starved.

Next, we consider the case when servers are reliable, i.e., when p;; = 0 for4,j = 1, 2.
Our results coincide with [31] in this case.

[31] considered the case when p;; = 0 for 7, 7 = 1, 2, and presented the optimal policy
in two cases. First, they also labeled the servers such that j11; > j91, which is equivalent to
our assumption of fi;; > fio; when py; = po; = 0. When oy > pu10, they proved that it is
optimal to assign server 1 to station 1 and server 2 to station 2, which is equivalent to our

conclusions in Remark 5.4.1. When pi92 < 112, they showed that the optimal policy is in the
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form of Theorem 5.4.1, which also coincides with our conclusion since jiyqft1o > flog flo iN
this case, and our set of threshold S} in Corollary 5.4.1 coincides with their set of thresholds

as in Corollary 1 of [31].

5.5 Heuristic Policies for Longer Lines

In Section 5.4, we determined the optimal server assignment policy for tandem systems
with two stations and two servers. The form of the optimal policy is already complex for
the two stations system, and in our experience, the optimal policy for longer lines is likely
to be even more complicated. Thus, in this section, we investigate the properties of the
optimal policy and explore heuristic policies for systems with N > 3.

We refer a policy as non-idling if we always assign a server to each of the working
stations. Theorems 5.4.1 and 5.4.2 indicate that for systems with two stations, there always
exists a non-idling optimal policy. Moreover, by Proposition 1 of Isik, Andradéttir, and
Ayhan [31], there exists a non-idling optimal policy for systems with arbitrary size when
the defect probabilities are zero. It is a natural guess that there exists a non-idling optimal
policy for systems with arbitrary size and general defect probabilities. However, we will
show that this conjecture is wrong in the next section.

In Section 5.5.1, we discuss this non-idling property for larger systems, and identify
that the optimal policy may not be non-idling when N > 3. In Section 5.5.2, we introduce
the heuristic policies for longer lines, and evaluate their performance based on numerical
results for three stations. Finally, in Section 5.5.3, we provide numerical results for our

selected heuristics for systems with N =4 and N = 5.

5.5.1 Non-idling vs. Idling

In this section, we show that the optimal policy is not necessary non-idling for systems with
N > 3. This is in contrast to systems with N = 2 stations. Recall that Theorems 5.4.1

and 5.4.2 show that the optimal policy is non-idling when N = 2. Similarly, Proposition
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5.3.2 states that there exist optimal policy that never idles the first station. However, the
following example shows that when N = 3, there may not exist an optimal policy that is

non-idling.

Example 5.5.1. Consider the system with three stations, three servers, and B; = By = (.
Recall that 1, ;,p; ; are the service rate and defect probability of server i at station j for
1,7 = 1,2,3, respectively. Suppose the service rates and defect probabilities are as in
the following matrices, where the rows represent the server and the columns represent the

station. For instance, (11 2 = 1.2 is listed on row 1 and column 2 of p.

1.2 1.2 1.2 0.1 0.1 0.1
p=11 1 1 p=107 0.7 0.7
1 1 1 0.9 09 09

Then, the optimal policy would idle server 3 at station 3 in state s = (1,1) and obtain a
long-run average throughput of 0.3777, while the best non-idling policy has the same server
assignment as in the optimal policy except that it assigns server i to 4 — i for i = 1,2,3
in state s = (1,1) and achieves a throughput of 0.3656. In conclusion, the best non-idling

policy has a throughput about 3.2% lower than the throughput of the optimal policy.

Although from Example 5.5.1, we find that the best non-idling policy no longer guar-
antees a maximal throughput of larger systems, the difference between the throughputs of
the optimal policy and the best non-idling policy is not significant. Table 5.4 provides the
numerical results of the comparison of the best non-idling policy and the optimal policy.
More specifically, we compute the average throughputs of the best non-idling policy and
the optimal policy, and calculate the percentage of the deviation of the best non-idling pol-
icy from the optimal policy (optimality gap) for 10,000 iterations with N = 3, buffers
randomly picked from integers 0,1, ..., 10, p;; drawn independently from a uniform dis-

tribution with range (0, 1), and p;; drawn independently from a uniform distribution with
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ranges (0, 1), (0,0.5), (0,0.1), and (0, 0.01). We also display 95% confidence intervals for
the optimality gaps.

Table 5.4: Comparison of the Best Non-idling Policy and the Optimal Policy for Three
Stations.

L D Best Non-idle Optimal % Optimality Gap
U ,1) U(0,1) 0.1514 0.1533 1.22 +£0.05
U(,1) U(0,0.5) 0.2851 0.2862 0.41 £0.02
U(,1) U(0,0.1) 0.4458 0.4459 0.03 £ 0.00
U(0,1) U(0,0.01) 0.4882 0.4882 0.00 = 0.00

Average 0.3426 0.3434 0.42

From Table 5.4, we observe that the average deviations of the best non-idling policy
from the optimal policy for all ranges of defect probability are very small (less than 2%).
Thus, we can conclude that the best non-idling policy is near-optimal (if not already opti-
mal) for larger systems with NV > 3. Recall that, by Proposition 1 of Isik, Andradéttir, and
Ayhan [31], there exists a non-idling optimal policy when the servers are reliable (i.e., with
zero defect probabilities). And from Table 5.4 we notice that the average deviations of the
best non-idling policy from the optimal policy is decreasing (to zero) as the range and the
value of defect probability becomes smaller, which confirms Isik, Andradottir, and Ayhan’s

result in [31] numerically.

5.5.2 Heuristic Policies

In this section, we describe various heuristic server assignment policies and provide nu-
merical results that suggest some of our heuristics are near-optimal for N = 3. For brevity,
denote ¢; ; = 1 — p; ; as the success probability for server ¢ at station j, 7,5 € {1,..., N}
for the rest of this chapter.

First, we investigate the optimal server allocation policy of systems with infinite buffers
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between the stations (i.e., B; = - -+ = By_1 = o0). In this case, there is no blocking in the
system, and the long-run average throughput of the system is determined by the bottleneck
station. Moreover, the throughput of each station is determined by the minimum of the
arrival rate and the departure rate of the station, and the arrival rate of the next station is
the departure rate of jobs with no defects at the current station. Specifically, suppose 5, q;
are the service rate and success probability at station j. Then, the successful departure rate
of station 1 is p1(1 — py) = u1¢1, which is also the arrival rate to station 2. Therefore, the
departure rate of station 2 is min{ ¢y, f12 }, and the successful departure rate of station 2 is
min{ 1q1, f2 }go. Proceeding in a similar manner, we can obtain the successful departure
rate of station [V, i.e., the long-run average throughput of the system, as

N
min{uiqr -+ qn, H2g2 AN, -+ INGN = 1£r;i<nN{uj HQk}
<j< e

Thus, the optimal stationary policy for the infinite buffers case is to assign server i; €

{1,..., N} tostation j € {1,..., N} suchthat {iy,...,iy} ={1,..., N} and

1<j<N

N
min {1 ; H%kk} (5.23)
k=

is maximized.
When the buffers are finite, we propose the following heuristic policy that is inspired
by the optimal stationary policy for the infinite buffers case, and we refer to this heuristic

as ‘Flow’.

e Flow: Atany time ¢, let J C {1,..., N} be the set of working stations. Then assign

server i; € {1,..., N} to station j € J such that U;c;{i;} = J and

min{y;, ; I s}

E>j. ke

is maximized.
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Andradottir, Ayhan, and Down [7] proved that for a Markovian queueing system with
two tandem stations and two collaborative servers with no defects and additive combined
service rates, it is optimal to assign the servers that maximize the product of the service
rate of each station unless the system is blocked or starved. Combining this idea with the
existence of the defect probability, and the fact that we would use the server with higher
successful service rate at station 1 when the system is empty (see Proposition 5.3.1), we
suggest the following heuristic policy (which we refer to as [1uq) that always maximizes

the product of successful service rates of all the working stations.

e Ilug: Atany time ¢, let J C {1,..., N} be the set of working stations. Then assign

server i; € {1,..., N} to station j € J such that U,c;{¢;} = J and

H Hi;idi;,5

jeJ
is maximized.

Note that, both Flow and I1uq agree with Proposition 5.3.1 and Theorem 5.3.1. How-
ever, Flow and ITuq are different from the optimal policy we characterized in Section 5.4
for two-station systems. Thus, we first check their performance for systems with N = 2.
We compute the percentage of the deviation of the heuristic policies Flow and I1jq from the
optimal policy (optimality gap) for 10,000 iterations with buffers randomly picked from in-
tegers 0, 1, ..., 10, y;; drawn independently from a uniform distribution with range (0, 1),
and p;; drawn independently from a uniform distribution with range (0, 0.1). The average
optimality gaps of Flow and I1uq are 1.00% and 0.72%, respectively. Thus, Flow and I1uq
are near-optimal for two-station systems.

Before providing numerical results for systems with N = 3, we describe two auxiliary
heuristic policies of I1xq, namely 1Ix and Ilg, to help us compare the effects of the service
rate and the defect probability. Specifically, Iy and II¢ maximize the product of only

service rates and only success probabilities of all the working stations, respectively.
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e Ilu: Atany time ¢, let J C {1,..., N} be the set of working stations. Then assign

server i; € {1,..., N} to station j € .J such that U;c;{i;} = J and

H Hi; g

jeJ
1s maximized.

e Ilg: Atany time ¢, let J C {1,..., N} be the set of working stations. Then assign

server i; € {1,..., N} to station j € J such that U;c,{i;} = J and

H di;.j

jeJ
1s maximized.

Now, we are ready to obtain the numerical results for systems with NV = 3 stations.
We will compare heuristic policies Flow, I1uq, I1u, and I1q with two benchmark policies,
namely the best stationary policy and the arbitrary stationary policy. We present numerical
results for systems with three stations and randomly generated buffer sizes, service rates,
and defect probabilities to investigate the performance of our heuristics. Specifically, we
consider buffers randomly picked from integers 0,1, ..., 10, while y;; is drawn indepen-
dently from a uniform distribution with ranges (0, 1) and (0, 10), and p;; is drawn indepen-
dently from a uniform distribution with ranges (0, 1), (0,0.5), (0,0.1), and (0,0.01). We
did 10,000 iterations for each of several pairs of different ranges of the service rates and
defect probabilities, and compute the percentage of the deviation of the heuristic policy
from the optimal policy. The results are shown in Table 5.5. Note that, in this section, the

numbers in all tables are in percentages, and all tables display 95% confidence intervals.
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Table 5.5: % Optimality Gap of Flow, 11uq, I1u, I1q and Static Policies for Three Stations
(the minimum optimality gap in each row is shown in bold).

I D Flow Ipg Iu IIg Arb. Static Opt. Static
U(0,1) U(0,1) 812+0.23 13.69+0.34 53.02+0.64 30.27+0.58 73.05+0.58 25.53 +0.48
U(,10) U(0,1) 8.124+0.23 13.69+0.34 53.02+0.64 30.27+£0.58 73.05+0.58 25.53+0.48
U@©,1) U(0,0.5) 4.26+0.11 6.95+0.16 13.44+0.25 41.00+£0.60 56.77 £0.58 13.99 £+ 0.30
U(0,10) U(0,0.5) 4.26+0.11 6.95+0.16 13.44+0.25 41.00+0.60 56.77+0.58 13.99 4 0.30
U(,1) U(0,0.1) 2.114+0.07 233+£0.06 2494+0.06 4855+0.58 52.77+0.61 10.23+£0.29
U(0,10) U(0,0.1) 211+0.07 2.33+0.06 249+0.06 48554+0.58 52.77+0.61 10.23+0.29
U(,1) U(0,0.01) 1.99+0.07 1.99+0.06 1.99+0.06 50.09+0.57 52.54+0.61 9.95+0.29
U(0,10) U(0,0.01) 1.99+0.07 1.99+0.06 1.99+0.06 50.09+0.57 52.54+0.61 9.95+0.29

Average 412 6.24 17.74 42.48 58.78 14.93

From Table 5.5, we derive the following conclusions:

1.

Flow performs strictly better than other policies for all cases except that when the
defect probabilities are very small, [Ixqg and IIp are as good as Flow with respect
to the mean of optimality gaps. Moreover, Flow is near-optimal since its deviation
from the optimal policy is always under 10% even when the defect probabilities are

unrealistically large (i.e., when p ~ U(0, 1)).

ITug 1s always better than both Ilg and I1u, since IIjg contains the information of
both the service rates and the defect probabilities, while IIg and IIx only consider

one of them.

. When defect probabilities are large, IIg performs better than IIx, and when defect

probabilities are small, [Tz performs better than I1g. Thus, we may focus on the de-
fect probabilities when they are large, and focus on the service rates when the defect
probabilities are small. When both ;o and p are drawn from uniform distributions
with the same magnitude and range (i.e., U(0, 1)), IIg performs much better than

ITje. Thus, the defect probability is more influential than the service rate.
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4. The optimality gap for all the policies except for I1q decreases as the magnitude and

range of possible defect probabilities decrease.

5. The magnitude change of ;+ does not impact the numerical results for all the policies
we considered here. This is because we generate the scenarios (buffer size, service
rates, and success probabilities) using common random numbers and hence choosing
w from U (0, 10) is equivalent to choosing 4 from U (0, 1) and increasing the time unit
by a factor of 10. From now on, we will only present the results for ;2 chosen from

U(o,1).

6. The performance of dynamic policies Flow and Iljg are significantly better than
the best static policy in all the cases, the performance of IIx is better than the best
static policy when the defect probabilities are not large, and the performance of Ilg

is always worse than the best static policy.

7. The average performance of all dynamic policies are always strictly better than an ar-
bitrary static policy. However, ignoring either the service rates or the defect probabil-
ities (as in I1g and IIx) may result in an optimality gap as large as one corresponding

to an arbitrary static policy.

8. The optimality gap of the best static policy is around 3.5 times that of Flow when
the defect probability follows U(0, 1), around 4.9 times that of Flow when the de-
fect probability follows U(0,0.1), and around 5 times that of Flow when the defect
probability follows U(0,0.01). And we observe the same pattern for I1;.q. Thus, the
relative performance of dynamic policies Flow and I1uq over static policies are better

when defect probability is small.

Note that, [1g performs better than Flow when the defect probability follows U (0, 0.01)
in terms of the variance of the optimality gaps, and Flow is the best when the defect prob-

abilities are higher with larger range. Moreover, it is clear from equation (5.23) that the
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defect probability at later stations in the system has higher effect on our decision in Flow.
For example, the success probability at station 3, i.e., g;, 3 appears in every term of the set
we choose from, while the success probability at station 1, i.e., g;, 1 appears only in the
first term. However, in I1uq, we put equal weight on the defect probability at all stations.
Intuitively, the further downstream a job is in the system, the more efforts we have put on
it, and the closer the job is to be completed. Thus, we want to have more reliable servers
at stations closer to the end of the system to reduce the loss of our efforts and increase the
probability of having a successful completed job. We now propose new heuristic policies
based on this idea.

To further emphasize the defect probabilities in latter stations, we combine the two best

heuristic policies, Flow and I1uq, as follows:

e [IFlow: At any time ¢, let J C {1,..., N} be the set of working stations. Then

assign server i; € {1,..., N} to station j € .J such that U;c;{i;} = J and

J
H Hiji95; 5

jed
1S maximized.

In addition to I1F'low, we also propose another new heuristic policy I1F'low* that combines
[Tpeq and ITFlow so that it put more weight on the defect probabilities in latter stations than

ITiq, and less weight on the defect probabilities in latter stations than I1Flow.

o [IFlow*: Atany timet¢,let J C {1,..., N} be the set of working stations, let .J; be a
subset of J such that, j € J; if station j > 2 is working and station 7 — 1 is blocked.
Denote .J, = J \ J;. Then assign server i; € {1,..., N} to station j € J such that
Ujes{i;} = J and

H Hijii; .5 H /Mj,jqzjj,j

jea1 JEJ2

is maximized.
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Table 5.6 shows the numerical results of Flow, I1ug, I1Flow, and I1Flow*. The choice
of parameters are the same as in Table 5.5 except that we no longer present the results for

u chosen from U (0, 10).

Table 5.6: % Optimality Gap of Flow, I1uq, I1Flow, and I1Flow* for Three Stations (the
minimum optimality gap in each row is shown in bold).

1 P Flow Mpg [IFlow [IFlow*
U(0,1) U(0,1) 8.12+0.23 13.69+0.34 6.514+0.19 5.61+0.15
U0,1) U(0,0.5) 4264011 6.954+0.16 4.344+0.11 3.83-0.09
U ,1) U(0,0.1) 2.114+0.07 2.33+£0.06 225+0.06 2.22+0.06
U(,1) U(0,0.01) 1.994+0.07 1.99+0.06 1.99+0.06 1.99+0.06

Average 4.12 6.24 3.77 341

From Table 5.6, we can derive the following conclusions:

1. IIFlow* performs best when the magnitude and range of defect probability are larger,
i.e., when the defect probabilities follow U (0, 1) and U (0, 0.5). Its average deviation
from the optimal policy is always under 6%. It is also the best heuristic policy on

average.

2. Flow performs strictly better than others when the magnitude of defect probability is

moderate, i.e., when the defect probabilities follow U (0, 0.1).

3. When the magnitude of defect probability is small, i.e., when the defect probabilities
follow U(0,0.01), all heuristics shown in Table 5.6 perform equally good with their

average deviations from the optimal policy all under 2%.
4. IIFlow* always performs no worse than [1F'low and [Tugq.

In conclusion, Flow and I1Flow* are the two better heuristic policies. From this point on,

we will focus on Flow and I1F'low™.

148



Remark 5.5.1. We have also tried other revised versions of 11Flow, but they are not as
good as I1Flow*, so we omit the numerical results for them. For example, we have tried a
revised version of I1F'low* such that we put station j in set J, if either its preceding station
j — Lis blocked or its subsequent station j + 1 is starved. However, the optimality gap for

this heuristic is worse than that of I1Flow*.

Since the idea of Flow is from infinite buffer systems, intuitively, the performance of
Flow is related to the buffer size. Specifically, one would expect that the larger the buffer
sizes are, the better the performance of Flow is. Hence, we obtain the numerical results
for Flow and IIFlow* with different choices of buffer sizes. We choose buffers from
{0,5,10} with both balanced and unbalanced buffer allocation. We did 10,000 runs for
each pair of buffer sizes with the service rates randomly generated from a uniform distri-
bution on (0, 1), and defect probabilities randomly generated from a uniform distribution
on (0,0.5),(0,0.1), and (0,0.01). We did not consider defect probabilities in the range of
(0, 1) as defect probabilities above 50% seem impractical. The results are shown in Tables

5.7,5.8, and 5.9, respectively.
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Table 5.7: % Optimality Gaps of Flow and I1 F'low* with Different Buffers for N = 3,p ~

U(0,0.5) (the minimum optimality gap in each row is shown in bold).

B B, Flow IIFlow* Arb. Static Opt. Static
0 0 299£0.08 1.99+£0.07 54.84+0.56 14.67+0.29
5 0 3.694+0.10 3.324+0.09 5587+0.57 14.32+0.31
0 5 527£0.11 4.13+£0.09 5597+0.56 15.31+£0.30
10 0 4.03£0.11 3.81+£0.10 56.14+0.58 14.44+0.31
0 10 5934+0.12 4.77+0.10 56.19+0.56 15.57=£0.30
5 5 431£0.11 4.09+£0.10 56.55+0.58 13.90+£0.30
10 5 436+0.11 436+0.11 56.74+0.58 13.81£0.30
5 10 4.62£0.11 4.49+£0.11 56.73+0.58 14.02+£0.30
10 10 4.50+0.12 458=+0.11 56.85+0.58 13.80£0.31
Average 4.41 3.95 56.21 14.43

Table 5.8: % Optimality Gaps of Flow and I1F'low* with Different Buffers for N = 3,p ~

U(0,0.1) (the minimum optimality gap in each row is shown in bold).

By B,

Flow

[IFlow*

Arb. Static

Opt. Static

5 10
10 10

0.81 £ 0.03
1.94 £ 0.06
2.12 £0.06
2.32£0.07
2.61£0.07
214 +£0.07
2.31+0.07
2.34 +£0.07
2.39+0.07

0.39 £ 0.02
1.61 =0.05
1.90 £0.05
2.00 £0.06
241 +£0.06
2.42 £ 0.06
2.74£0.07
2.78 £0.07
2.98 £0.07

50.46 £ 0.59
51.76 £+ 0.60
51.57 £ 0.60
51.98 +0.60
51.77 £+ 0.60
52.98 £0.61
53.27 £ 0.61
53.22 £0.61
53.49 £0.61

10.74 £ 0.27
10.72 £0.29
10.72 £ 0.28
10.80 £ 0.29
10.83 = 0.29
10.34 £ 0.30
10.42 £0.30
10.42 £ 0.30
10.41 £ 0.30

Average

211

2.14

52.28

10.60
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Table 5.9: % Optimality Gaps of Flow and I1F'low* with Different Buffers for N = 3,p ~

U(0,0.01) (the minimum optimality gap in each row is shown in bold).

B B, Flow IIFlow* Arb. Static Opt. Static
0 0 079£0.03 0.27+£0.02 50.33£0.59 10.54+£0.27
5 0 1924+£0.06 1.504+0.05 51.484+0.60 10.44+£0.29
0 5 1.86+0.06 148+0.05 51.47+0.60 10.38=£0.29
10 0 2284+0.07 1.86+0.06 51.65+0.60 10.47+£0.29
0 10 2.224£0.07 1.86+0.06 51.62+0.60 10.39+£0.29
5 5 206£0.07 217+0.06 52.83+0.61 10.10=£0.30
10 5 2224+0.07 246+0.07 53.09+0.62 10.17=£0.30
5 10 2.214+£0.07 247+0.07 53.09+0.62 10.16 £0.30
10 10 2.27+£0.07 2.66+0.07 53.32+0.62 10.16£0.31
Average 1.98 1.86 52.10 10.31

From Tables 5.7, 5.8, and 5.9 we can observe that:

1. The optimality gaps of both heuristic policies Flow, IIFlow* and both benchmark

policies are increasing as the range of defect probability increases.

2. IIFlow* performs better when the buffer sizes are not large, Flow performs better
when the buffer sizes are large, and this threshold of the buffer sizes becomes smaller
when the range of defect probability drops from U (0, 0.5) to U(0,0.1), and when the

buffer allocation is more skewed.

3. When the sum of the buffers are the same, the performances of both Flow and
[TFlow* get better as the buffer allocation is skewed to the left if the defect prob-
abilities are of range U (0, 0.5); if the defect probabilities are of ranges U (0, 0.1) and
U(0,0.01), as the buffer allocation becomes more balanced, the performance of Flow

gets better while the performance of I[1Flow™* gets worse.
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4. The deviation of I1Flow™* from the optimal policy becomes larger as the buffer size

increases.

5. Flow performs the best on average when the range of defect probability is moderate
(i.e., when p ~ U(0,0.1)); otherwise, IIFlow* performs the best on average. The
performances of both Flow and II1Flow* are near-optimal with optimality gap less

than 5% in all the cases.

Based on the previous numerical results, the conditions for either of II1F'low* or Flow
be the best policy is determined by multiple factors including the buffer size, buffer al-
location, service rates and defect probabilities. And the underneath pattern of how these
factors impact the performance of our heuristics is hard to quantify. To further decrease the
optimality gap of our heuristic from the optimal policy, we simply choose the better policy
among I1F'low™ and Flow, and refer to this new heuristic policy as BoT. By definition, BoT
is always no worse than both of I[1Flow™* and Flow, and is plausible to be the best heuristic
policy among all the policies we have discussed in this section.

In order to check the performance of BoT, we calculate the optimality gaps of BoT
using the same parameters chosen and generated as in Table 5.6. For direct comparison,

the results of Flow, I1Flow*, and BoT are shown in Table 5.10.

Table 5.10: % Optimality Gap of Flow, I1Flow*, and BoT for Three Stations (the mini-
mum optimality gap in each row is shown in bold).

I P Flow [MFlow* BoT
U ,1) U(0,1) 8124+0.23 5.61+0.15 4.29+0.13
U,1) U(0,0.5) 4.26+0.11 3.83+£0.09 2.76 £0.07
U©,1) U(0,0.1) 2.1140.07 2.22+0.06 1.59+0.04
U(,1) U(0,0.01) 1.99+0.07 1.99+0.06 1.45+0.04

Average 4.12 3.41 2.52

From Table 5.10, we observe that BoT significantly improves the performance of Flow
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and TTFlow*, and maintains optimality gaps less than 5% for all the cases. Combining
the numerical results of Table 5.6 and Table 5.10, BoT is the best heuristic policy for all
cases we discussed for systems with three stations. Thus, we can conclude that heuristic
policy BoT performs near-optimal when N = 3. Note that, although BoT performs the
best among all the heuristics, it is harder to apply than the other two near-optimal heuristics
Flow and 11 Flow*.

In the next section, we will further validate the performance of Flow, [1Flow*, and BoT

for systems with N > 4.

5.5.3 Numerical Results for Systems with More Than Three Stations

In this section, we focus on the two best “pure” heuristic policies Flow, and IIFlow*, and
one “mixed” heuristic policy BoT. We will provide the numerical results of these heuristics
for systems with four and five stations.

Tables 5.11 and 5.12 show numerical results for the heuristics Flow, I1Flow*, and BoT
with two benchmarks, i.e., the best stationary and the arbitrary stationary policies for four
stations and five stations, respectively. Similar to the three stations cases, we consider
Hij, pi; drawn independently from a uniform distribution as indicated in the tables. Due
to the computational difficulties of finding the optimal policy as the size of the system
increases, buffers are now randomly picked from integers O to 5 for systems with N = 4,
and O to 1 for systems with N = 5. We did 10,000 iterations with common random number
generator for systems with N = 4 and N = 5, and compute the percentage of the deviation

of the heuristic policies and the benchmark policies from the optimal policy.
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Table 5.11: % Optimality Gaps of Flow, [1Flow*, and BoT for Four Stations (the minimum
optimality gap in each column is shown in bold).

L P Flow [MFlow* BoT Arb. Static Opt. Static
Uu©,1) U(0,1) 10.67+£020 7.79+0.14 6.22+0.12 86.86+0.37 31.71+0.44
U(,1) U(0,0.5) 6.69+0.11 5224+0.09 4.12+0.07 69.78 +0.45 17.51+0.26
U(,1) U(0,0.1) 262+0.05 226+0.04 1.73+0.03 63.24+0.52 10.52+0.23
U(,1) U(0,0.01) 23840.05 1.71+£0.04 1.36+0.03 62.86+0.53 9.91+0.24

Average 5.59 4.25 3.36 70.69 17.41

Table 5.12: % Optimality Gaps of Flow, I1F'low*, and BoT for Five Stations (the minimum
optimality gap in each column is shown in bold).

L P Flow [MFlow* BoT Arb. Static Opt. Static
Uu©,1) U(,1) 12.52+0.19 885+0.13 7.48+0.11 9341+0.22 35.27+0.39
U(,1) U(0,0.5) 842+0.11 5.76+0.08 4.96+0.07 77.04+0.35 19.85+0.23
U(,1) U(0,0.1) 257+0.03 1.584+0.03 1.40+0.02 67.85+0.45 9.99+0.16
U(,1) U(0,0.01) 2.0240.03 0.80+0.02 0.74+0.02 67.33+0.46 891+0.17

Average 6.38 4.25 3.65 76.41 18.51

Comparing the numerical results in Tables 5.11 and 5.12 with the numerical results for

three stations system (Tables 5.5 and 5.6), we observe that:

1. The optimality gaps for all heuristic policies increase as the number of stations in-
creases when the range of defect probability are wide (i.e., U(0, 1) and U(0,0.5)).
Intuitively, all our heuristic policies are non-idling. However, the optimal policy may
idle the server with high defect probabilities (as seen in Example 5.5.1), and we sus-
pect that the gaps between the best non-idling policy and the optimal policy increase
as the range of defect probability becomes wider and the size of the system becomes
larger. Thus, the increasing optimality gaps for our heuristic policies may be a result
of an increasing gap between the best non-idling policy and the optimal policy as the

size of the system increases.
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2. BoT performs the best in all the cases, and its average deviation from the optimal
policy is under 7.5%. Moreover, BoT maintains the smallest variance on the average
optimality gap among all the policies as the number of stations increases, which

indicates the stability of its performance.

3. For four and five stations systems, the average performance of [I1Flow™ is better
than Flow in all the cases, while for three stations system, [IF'low* is worse than
Flow when the magnitude of the defect probability is moderate (i.e., when it follows
U(0,0.1)). Comparing to three stations systems, we have more stations in tandem
and consider smaller range of the buffer sizes for the numerical results of four and
five stations, and both of these two changes would lead to a higher probability of
having blocked stations. Recall that Flow is optimal when there is no blocking, so
this worse performance of Flow when N = 4 than N = 3 may be caused by more

stations and smaller range of buffer size choices.

In conclusion, for longer lines, BoT is the best “mixed” heuristic policy, and I1F'low™ is the

best “pure” heuristic policy on average.

5.6 Conclusions

In practice, it is common to have defective jobs when they are being processed by the
servers, and the defect probabilities depend on the proficiency of the server. However,
most of the existing papers that study queueing systems with flexible servers assumed that
the defect probabilities are zero. Other existing papers address defects but assume that
part of the defective jobs can be fixed, and focus on the planning and control of rework
in a production system. We investigated the optimal server allocation problem with flexi-
ble and error-prone servers. In particular, for a queueing system with N tandem stations,
infinite supply in front of the first station, finite intermediate buffers, and N flexible but

non-collaborative servers, we considered the server allocation policy that maximizes the
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long-run average throughput of the system in the presence of defects.

For Markovian systems with two stations and two servers, we characterized the optimal
policy with respect to which server has the higher effectiveness overall. Specifically, we
proved that when the system is empty, we should assign the server with higher successful
service rate at station 1 to station 1; but when station 2 is working, we would assign the
server that is more effective overall to station 1 when the number of jobs in the buffer is
small, and assign this server to station 2 when the buffers are crowded.

For larger Markovian systems, we provided a partial characterization of the optimal
policy through sample path analysis, and proved that when a distinct server is the fastest
and most reliable at each station, the optimal policy always assign the server to the station
where they are fastest and most reliable. Furthermore, we showed that the server at the first
station should never be idled. Next, we analyzed the best static server assignment when the
buffers are infinite, and developed heuristic policies based on the previous work. Using the
insights gained from the numerical results of the heuristic policies under variate scenarios
for three stations systems, we revised our heuristic policies and proposed new heuristic
policies that integrated the advantages of the original heuristic policies. As a result, we
finalized two “pure” and one “mixed” heuristic policies that are easy to implement and
performed to be near-optimal for three stations systems. And the numerical results for
systems with four and five stations further validate the near-optimal performances of these

three heuristic policies.
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CHAPTER 6
SUMMARY AND FUTURE RESEARCH

6.1 Summary

This dissertation focused on the optimal control of manufacturing and service systems
through dynamic allocation of cross-trained servers. For a multi-server tandem queue-
ing system with finite intermediate buffers and infinite supply in front of the first station,
we explored the server assignment policy that maximizes the long-run average throughput
of the system. The specific systems that we discussed are commonly seen in practice but
not widely discussed in the literature.

In Chapter 3, we analyzed the server allocation problem when each job can be decom-
posed into multiple subtasks and there are no precedence relationships among the subtasks
within each station. We first characterized the optimal static, flexible, and collaborative task
assignment approaches, and further inspected the optimal policies for two special cases,
namely when buffers are zero and when the sum of the buffers goes to infinity. Compar-
ing the task assignment approaches with three other server coordination methods, namely
teamwork with or without task partitioning and non-collaboration, we concluded that task
assignment is preferable when the servers are highly specialized; otherwise, teamwork or
non-collaboration are preferable depending on whether the synergy level among the servers
is high or not. To better capture the properties of these server coordination methods, we
further investigated two cases when the servers are generalists or specialists. The numerical
results showed that, when the servers are generalists, we prefer non-collaboration, and then
teamwork without task partitioning as the synergy level among servers goes from low to
high; and when the servers are specialists, we prefer collaborative task assignment if the

servers are highly specialized, otherwise, we prefer teamwork with task partitioning if the
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synergy level is high, non-collaboration if the synergy level is moderate or low.

In Chapter 4, we studied server allocation problem in terms of teams when the servers
are flexible and collaborative. Unlike most of the existing papers that assumed a fixed
synergy level when the servers collaborate, we focused on the service rate of the teams
without providing a specific formation of the team service rates with respect to any other
factors. We exhibited sufficient criteria for eliminating teams that are not on the Pareto
boundary or be dominated by other teams, then we present the optimal policy among the
remaining teams, which we referred to as the optimal assignment set, for systems with two
stations. We verified that the optimal policy has monotone thresholds on the number of
jobs in the buffer for teams in the optimal assignment set. Then we validated our optimal
policy by applying it to two special cases: proportional team service rates and teams of
specialized servers. Motivated by the optimal policy of systems with two stations, we
proposed heuristic policy for larger systems with teams of specialized servers when they
servers are generalists. The numerical results suggested that our heuristic policy performed
near-optimal.

In Chapter 5, we address the fact that jobs may incur damage and be wasted when
being processed by the servers. However, most existing papers ignore the possibility of
defects when studying queueing systems with flexible servers. As far as we are aware, this
is the first work to consider the server allocation problem in the presence of defects. For
Markovian systems with two stations and two servers, we demonstrated that the optimal
policy is either a single or a double threshold policy on the number of jobs in the buffer.
Specifically, we proved that when the system is empty, we should assign the server with
higher successful service rate at station 1 to station 1; but when station 2 is working, we
would assign the server that is more effective overall to station 1 when the number of jobs
in the buffer is small, and assign this server to station 2 when the buffers are crowded. A
partial characterization of the optimal policy is given for longer lines. We proved that when

a distinct server is the fastest and most reliable at each station, the optimal policy always
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assigns the server to the station where they are fastest and most reliable. Furthermore,
we would never idle the server assigned to station 1, but we might idle the servers at other
working stations for systems with more than two stations. We also presented and compared

several heuristic policies that are easy to implement and performed well for larger systems.

6.2 Future Research Directions

In this section, we present potential extensions of the problems we studied in this disserta-
tion.

For the problem in Chapter 3, we mainly focus on task assignment approaches when a
job can be decomposed into two subtasks at each station. However, as is given in the com-
ments prior to Proposition 3.1.1, some of our results may no longer hold when the number
of subtasks exceeds two. Therefore, we expect to explore more about task assignment ap-
proaches when a job can be decomposed into more than two subtasks with no precedence
relationships.

Another future research direction we propose here is based on our findings in Chapter
4. For teams of specialized servers where the servers are generalists, we suspect that the
optimal policy always uses permanent teams that are formed based on their ability. More
specifically, for systems with N tandem stations and /N servers of each type, we will use
the following NV teams: the best server of each type, the second best server of each type,...,
the worst server of each type. We have proved this result for systems with two stations
(as is given in Remark 4.3.2.2), and the numerical results for three stations systems (as in
Examples 4.4.1, 4.4.2, and 4.4.3) also support this conjecture. Thus, we plan to prove this
result for systems with arbitrary number of stations.

For the systems in the presence of defects in Chapter 5, we focus on maximizing the
long-run average throughput of the system. However, in production systems, when the cost
of raw materials is not trivial, it is natural to include a penalty cost of wasted raw materials

(jobs). Therefore, our first research direction is to consider the cost minimization problem
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of these systems with variable costs, such as a penalty cost for defects.

Another promising extension related to the problem in Chapter 5 is motivated by our
results in Section 5.5.1. For systems with more than two stations, the optimal policy may
involve server idling. More specifically, as is shown in Example 5.5.1, when a server is
very unreliable at every station, the optimal policy may always let the server idle. Thus, it
is meaningless to hire this server in the first place. For this reason, we suspect that there
exists a threshold on the defect probability over which we will choose not to hire a server,
and we are interested in finding or characterizing this threshold in our future research.

The future research directions we proposed so far are closely related to the problems we
discussed in this thesis. For a broader research agenda, we strive to continue our research
on variant scenarios in the field of optimal allocation of servers to optimize system perfor-
mance. Towards this end, we consider a problem motivated by issues in healthcare settings.
In the emergency departments, the health conditions of the patients may deteriorate while
waiting to be treated or when being treated. We start by considering a single server queue-
ing system with multiple classes of customers that can change type (e.g., due to deteriora-
tion in health condition) or abandon the system (e.g., due to death or recovery) before his
treatment is completed. Optimal control of queueing systems with customer abandonments
have been discussed in the literature. For instance, Down, Koole, and Lewis [22] studied
the dynamic server control of a single-server system with abandonments. Optimal control
of queueing systems with customers that can change status is scarcely discussed (see Cao
and Xie [20] and Zayas-Cabdn and Ahn [52]). Moreover, neither of [20] or [52] completely
characterized the optimal server assignment policy even for systems with two types of jobs.
Both of these papers provided partial description of the optimal policy, and [52] proposed
conjecture of the optimal policy for cases that are not solved in their paper. To the best
of our knowledge, no existing paper has fully solved the optimal server allocation policy
for a single-server system with customers that can change type and abandon the system.

Therefore, this is one potential research direction that we intend to explore.
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APPENDIX A
APPENDICES FOR CHAPTER 3

In the appendices, we provide supplementary materials for Chapter 3. In Appendix A.1, we

provide the proof of Proposition 3.2.1. In Appendix A.2, we provide proofs for results in

Section 3.3. In Appendix A.3, we provide proofs of results in Section 3.5. In Appendix A .4,

we present the comparisons of server coordination methods that are not included in Section

3.5. In Appendix A.5, we provide model descriptions for the two teamwork approaches.

A.1 Proof of Proposition 3.2.1

Let

h

= H22 — HU12;
Bi+Ba+1 Bi+Ba+1
B1+Ba+2—k j B1+Bo+1—j B1+B2+2
§ #11# <N11 E [31H412 + 112
B1+Ba+1 Bl+B2+2
Bi1+Bo+2—k J B1+Ba+2— ]
E M21M E K11 o2 (A.1)
Jj=0
B1+Ba+1 B1+B>
B1+Ba+1-k j+1 Bi+DBa+1—j
E M21M1 E 11 Moo
B1+B> B1+B2+1

k+1 B1+Bg+1 k ) B1+Bz+1 ]
- Z Ho1 Z ,u11

Then, fi oc T{y — T1, fo o< Tfy — Ty, and f5 o Ty — Ty .

If we treat B, + B as variable and the service rates as given, then we prove by induction
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that f2(B1 + BQ) = L(Bl + BQ), where

B1+B>
L(Bi + By) = (11 — pia1) Z g g : ZM11MBI+B2+2 7
Bi+By+1 B (A.2)
+ (pa2 — ft12) Z it Bt Bati- k M312M2311+Bz+1 J
=0
Note that,
n—1
L(n) = (i — pimn (Zﬂlglﬂ% k ZN11M2+2 iyt ZMHMHJ’_Q J>
k=0 ] 0
n n+1
(o — o) (D0 wb '“Zumu”“ T+ "+2Zuuu”+1 )
k=0 J 0
n+1
= pa oo L(n — 1) + (pnn — pan ) s ZMHM (H22 — pa2) iy Zumu”H 7,
(A.3)

When Bl + B2 = 0,

f2(0) = (i35 + pa1piaz) a1 (pa1 + pn2) + pile] — (13 + paapin) (H5s + pa1piaz + p13)

= (11 — pior) paapiyy + (pa2 — pa2) pinn (111 (p21 + p12) + pozpian ]

= L(0).

Suppose now that fo(By + Bs) = L(By + Bs) for By + B, = 0,1,...,n — 1. Then, for
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By + By = n, (A.1) yields

n+1 n+1 n+1 n+2

Zunu"“ k(ﬂllzulzn”“ 4 ””) Zu’fé* L= kZMuu”” 7

(Mu P2 + Z T k) [#21 (11 Z Pty + i) + (i + s — le)u?;l]
=0
n+1

(u?z” + Z gy ’“) (uiﬁ” - Z 1 ])
k=0

n+1

= pior fiz fo(n — 1) + iy pra (Mu > ot M"+2>
7=0
n+2
n n+2— n
+ (pa1 4 paz — pan) iy ZMHM A Zﬂuﬂ S — i Zﬂlglﬂzfl :

n+1

= ,U21,U22L(n - 1) (Nll - /~L21 /v‘12 Z N11Nn+2 Tt ,U22 - /~L12 /v‘?fr2 Z leﬂnﬂ 7

= L(n),

where we have used (A.3). Thus, f, = L(B; + Bs), and from now on, we use equation
(A.2) as the expression for f5.

When pi90 > 110, we have f; > 0, fo > 0, which implies that Tf; > Tfo,Tf; > T;lf,
and hence assignment A{Z is optimal.

When 199 < pi12, 111 = po1 > 0, we have fo < 0, and f3 can be simplified as follows:

Bi1+Bs
B1+Ba+2 B1+Ba+1-k B1+Ba+1-k
J3 = Ha E N21(N22 — H1s ) <0.
k=0

Thus, Tlf2 < Tzllf , T112f < T211f , and hence assignment Aé{ 1s optimal, which corresponds to

Mg = fl12.

When ji90 < pt19, 111 > po1 = 0, then f; < 0, which implies that Tf; <T 112f . Moreover,
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when 157 = 0, f5 can be simplified as follows:

B1+DB2
BH-BQ-H j+1 Bi+Ba+1—j
fs= Z M1 Hag > 0.

Therefore, Tl1 T21 , and assignment Ag is optimal (i.e., 155 = 0).
Finally, when pigo < pi1o, i1 > p121 > 0, we have f; < 0 and hence T3, < T}
Therefore, we only need to compare T112f and T211f (i.e., determine the sign of f3). If we

treat j190 as variable and fu;1, f412, 421 as given, then

B1+B>
af3<u22> o . B1+Ba—j
T oum Z (By + By + 1 — j) iy 1135 X

j=0
Bi1+B2>+1
Z M21MJ1921+B2+1 k(lm . _I_MBl+BQ+2> <0 (Ad)

That is, f3(f92) is increasing with respect to 190. Moreover,

Bi1+Bs
_ Bi1+B2+1 k+1, B1+Ba+1-k
f3(0) = — 1} E Ho1 M1 <0,
B1+B>+1 B1+B>
B1+Ba+1-k j+1 Bi+Bo+1—j
f3(M12) E leﬂl E 11 Ha2
Bi1+B> B1+BQ+1
k+1 Bl+B2+1 k j B1+B2+1 J
- Z Hay Z #11
B1+Ba+1 Bl+B2+1
_ B1+Ba+1-k j  B1+DB2+2—j B1+B2+2
= E M21N ( E Mu# — U9
Bi1+Ba+1 B1+Ba+1
B1+Ba+2— k Bl+BQ+2 1 B1+Bz+1 ]
E N21M ) § ,u11
B1+Ba+1
Bi1+B>+2 Bi1+B>+1-k
= [ E (Nu N21)N12 > 0.
k=1

Thus there exist a unique p5, € (0, 1112) such that f3(us,) = 0. Since f3(-) is increasing

with respect to 92, we have T112f > T211f if and only if poe > p3,. Replacing poe with
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x, multiplying both sides of the equation f3(z) = 0 with (x — p11), and using (4.3), we
can obtain equation (3.4). And the fact that we multiply the equation with (x — py;) adds
one more root (i.e., (t11) to equation (3.4). Thus, 1;; and 3, are the only positive roots of

equation (3.4). L]

A.2 Proofs for Section 3.3

We provide the proofs of Propositions 3.3.3 and 3.3.5 in Appendices A.2.1 and A.2.2,

respectively.

A.2.1 Proof of Proposition 3.3.3

When 5, > 3, > %, 71 = max{f, a}¥, vy = max{fs, a}Xy, and puy1p012 > poipioe. If
v = myq, i.e., 11 + fog = p21 + ft12, then Corollary 3.3.1 implies that Af, is optimal if and
only if

max{ S, a} < max{fs, a}y.

Note that since 3; > (35, we have m; > % > 1. Then,

max{fq, a}y > max{Ss, a}% = max{, a%} > max{f, a}.

Thus, when v = m4, Af, is always no worse than AS;.

If v # my,

1. If &« > (31, equation (3.17) would be
a[(261 1) = (28 = 1)7] > (L =) (B1 + B2 — 1).
Then, Af, is optimal if and only if either

aZGlafy<m17 (AS)
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or

a < Gy,y > my. (A.6)
2. If B1 > a > fs, equation (3.17) would be
(261 = D[B1 + (1 = Ba)v] > (B1 + B2 — 1) b1
Then A{, is optimal if and only if

a > Gs. (A.7)

3. If B; > P2 > «, equation (3.17) would be

(261 = 1)(1 = B2)Bary > (262 = 1)(1 = B1) .
Then A{, is optimal if and only if

v > my. (A.8)

However, the above results are not clear since we still need to compare G, G with 51, 5

to get complete and non-overlapping ranges of « for each of the assignments to be optimal.

Let
e — 261(1 = B1) — (1 = pa)
’ 268 = 1)(1 = By)

Note that,

Gi—Broc [(261—1) = (2B, = D] [(Br 4+ B2 = 1)(L =) — B1(2681 — 1) + B1(282 — 1)7]

- -G

oc (my — ) (m3 — 7). (A.9)
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Thus, G; > 1 < (v — my)(y — ms3) > 0. Similarly, we can obtain that

Gy — B1 o< mg — 7, (A.10)

GQ—ﬁQO(mg—’}/. (All)

Moreover, when 81 > B > 3, ma—my o fao(1—PFa)—B1(1=51) = (bi—Po) (Bri+P2—1) >

0. Combining the above results, we can obtain that:
1. When v > my, since my; > my > ms, (A.9) and (A.11) yield Gy > (1, Gs < (s.
(a) If « > f31, by (A.6), AS, is optimal if and only if 51 < a < Gy.
(b) If 51 > a > (5, (A.7) holds since G5 < [, and Af, is always optimal.
(c) If By > a, since (A.8) holds, AS, is always optimal.
Therefore, when v > my, A{, is optimal if and only if o < G.

2. When my < v < my, then (A.9) and (A.11) yield G; < 51, Gy < [s.

(a) If & > f3;, then (A.5) holds since « > ; > (4, and A¢, is always optimal.
(b) If 1 > a > Ps, (A.7) holds since G5 < (5, and Af, is always optimal.

(c) If By > a, since (A.8) holds, Af, is always optimal.

Combining this with the previous analysis for v = m yields that when my < v <

mq, Af, is always optimal.
3. When m3 < v < mo, then (A.9)-(A.11) yield G < B, P2 < Gy < .

(a) If « > f3;, then (A.5) holds since o« > ; > (1, and A¢, is always optimal.
(b) If 51 > a > (B3, by (A.7), A, is optimal if and only if ; > o > Gj.
(c) If By > a, since (A.8) does not hold, A{, is not optimal.

Therefore, when ms < v < ma, A, is optimal if and only if @ > GS.
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4. When v < mgs, then (A.9) and (A.10) yield G; > 1, G2 > fi.

(a) If « > 31, by (A.S5), A, is optimal if and only if « > G}.
(b) If 81 > a > Pa, (A.7) does not hold since G's > 1 > «, and A{, is not optimal.
(c) If By > a, since (A.8) does not hold, A{, is not optimal.

Therefore, when v < ms, A{, is optimal if and only if o > G7.

Note that when 3, > (5 > %,

— Gy x[(261 — 1) — (262 — 1)7] x
{28 = D= [8i+ (1= B21] - (28 = 1) + 528 — D
=[(261 — 1) — (262 — D)y]v[268:(1 = B1) — (1 = B2) — (281 — 1)(1 = B2)7]

oc(my — ) (mz — ).

Thus G; > Gy < (7 — my)(y —m3) > 0, and we can merge cases 3 and 4 and describe

the results as in the proposition. [

A.2.2  Proof of Proposition 3.3.5

Recall that when (3; > [ > % r1 = max{ [, a}3, xo = max{ Sy, a}¥s, and

1-— 1-—
ﬁlg 51§1§@< b (A.12)
Bo 1= Ba 1= p
Note that (17 < pigg & 7 > ﬁl sand pog < g &y > 1= 51 . Moreover,
Gy — Box (262 —1)(1 = 1) >0, (A.13)
— By o (26— 1)(1 — B2) > 0. (A.14)

Therefore,
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)

2)

3)

When y < 152, then j19y < ph1 < i1 < pi11, and hence

T2p11 L2[21
Tt — Ts, = — o (fin1 — fig1) 2 — +
12 27 o+ i — 1122 T+ fiar — fi1a (11 — po1)T2 — parfping + fio1 pao
x (261 — 1) max{fs, a} +1 — f1 — fa. (A.15)

(a) If a > [3,, then (A.15) yields that A{, is optimal if and only if « > G|.
(b) If & < f35, then (A.15) can be simplified as (25, — 1)(5; — 1) < 0. Thus, A$,

is optimal.

Since G4 > (5 by (A.13), we have shown that when v < %, A¢, is optimal if and

only if « > Gj.

When v > 1612, then w91 < p11 < pgs < 12, and hence
T1M22 L1112
Tc — TC == —_ — x + —
2 A+ Moz — 11 X1+ fi2 — for o (a2 = p12)T1 + puiftiz — farbize
X —(Qﬁg - 1) max{ﬁl, Oé} + ﬁl + 62 —1. (A16)

(a) If a > f31, then (A.16) yields that AS, is optimal if and only if o < G7.

(b) If & < /34, then (A.16) can be simplified as (25, — 1)(1 — 52) > 0. Thus, A$,

is always optimal.

Since G7; > (1 by (A.14), we have shown that when v > T 5,132’ A¢, is optimal if and

only if o < G.

When % <v< 153162’ then 191 < piq2 and puoo < pi11, and hence

Toft11 T1H12

TS, — TS = -
12 2 a + M1l — Moo X1+ 12 — Mot

X (f11 — p12)T1%2 + (12 — po1) 1@ + (foa — pia1) a2

o (81 — Pry) max{ Sy, a} max{fs,a} + [ﬁﬂ —(1— 51)]51 max{ [y, a}
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+ [(1 — Ba)y — 51}52 max{f, a}. (A.17)

When v = %, (A.17) can be simplified as follows.

(261 = 1) max{fy, 0} — (26 — 1)y max{fy. o}
=6 | max{(281 — 1), (261 — 1)a} — max{(26, — 1)1, (262 — 1))
> 6 min{(26) — 1) — (262 = 1By, (261 = 1o — (28, — )}
=611 — fo)min{1,20} > 0,

where we have used Lemma 3.6.1 to obtain the last inequality. Thus, when v = %

A$, is optimal.
When v # 5—;,

(1) If a > 1, then by (A.17), T, > T%, if and only if
a(fr — Bay) = Bi(1 — B+ B2) — Bo(1+ 1 — Ba)7-

Therefore, AS, is optimal if and only if either

v > &aOéSGE,, (A.18)
B
or
I3
v < —,a>Gs. (A.19)
Ba

(i) B; > a > s, equation (A.17) becomes

(261 — 1)Bra + [(1 — B2)y — 51]5152-

171



Then A{, is optimal if and only if

a > Gé. (A.20)

(ii1) If By > «, equation (A.17) becomes

5152[(1 — Ba)y — (1= 51)}-

Then A{, is optimal if and only if

(A.21)

The above results are not clear since we still need to compare G5, Gg with 51, 3o
to get complete and non-overlapping ranges of « for each of the assignments to be

optimal. Let

Bi(14 B2 —261)

my =

Bo(l—fa)
then

B
Gs — 1 (B_ - )(m4 - ’Y)a (A.22)

2
G — B1 o< my — 7, (A.23)

1 _
G — o T— g: — . (A.24)

Moreover, when 3; > B > % by (A.12) we have

my — 1 :§; X _(51 - 52)(251 - 1) <0,
my — L5 x 261(1 = B1) — (1 — fa).
Ba

Thus,
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(i) if 261 (1 = 1) > (1 = Ba), then 52 < my < =51

(i) if 26,(1 = 1) < (1 = Ba), then my < 1;3251-

Combining the above results with (A.12), we can obtain that when 1;—51 <y <1t >

and y # ’8—;, we have the following cases:

(3.2) When &' < v < 125 by (A.22) and (A.24), G5 > 1, G < fh.
i. If o > [y, by (A.18), A{, is optimal if and only if 5; < a < Gs.
ii. If 81 > o > [, (A.20) holds since Gg < (9, and AS, is always optimal.

iii. If B > a, since (A.21) holds, A, is always optimal.

Thus, when g—; << 1% , A, is optimal if and only if o < G.
(3.b) When ; L ’81 <7 < 1, by (A.22) and (A.24), G5 < 51, G < fo.
i. If « > [, then (A.19) holds since « > (1 > G5, and AS, is always
optimal.

ii. If 1 > a > s, (A.20) holds since Gi¢ < 35, and A{, is always optimal.

iii. If By > a, since (A.21) holds, A, is always optimal.

Combining this with the previous analysis for 7 = % yields that tg; <

v < % A, is always optimal.

(3.c1) When either 25;(1 — ;) < (1 — 33) an (1—7p1) >
(1 — B3) and my <7< ’81 thenby(AZZ) (A.24), G5 < Bl,ﬁg < Gg¢ < fy.

i. If & > 1, (A.19) holds since G5 < 31, and AS, is optimal.
ii. If 1 > a > fBs, by (A.20), A{, is optimal if and only if 5; > a > Ge.

iii. If By > a, since (A.21) does not hold, Af, is not optimal.

Thus, when either 26;(1 — ;) < (1 — (33) an (1-—

B1) > (1= Bz)and my <y < = gl, AS, is optimal if and only if o > Gg.
(3.c2) When 23;(1 — 1) > (1 — (32) and % < v < my, by (A.22) and (A.23),

Gs > b1, Gs > Bi.
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i. If a > 1, by (A.19), Af, is optimal if and only if o > G5.

ii. If 81 > a > [, (A.20) does not hold since Gg > f;, and Af, is not

optimal.
iii. If B > a, since (A.21) does not hold, Af, is not optimal.
Thus, when 25, (1 — 1) > (1 — f32) and % <7y < my, AS, is optimal if and

only if o > G5.
We now combine cases (3.c1) and (3.¢c2). Note that
Gs — Go o< (182 = B1) 12831 = B2) +1B2(283 — 2818 + o — 1)

+ 811 B)(1+ B —28)|
= (V62— B1) [vB2 — (1 = B1)] [vB2(1 — B2) — Br(1 + B2 — 261)]

By 1—p
o (v =) — )(y = ma). (A.25)
B2 B2
Thus, when % <7< }:gg G5 — G x my4 — 7. Moreover, when either 25, (1 — ;) <
(1 — B5) and % << 1:2; or261(1 —p1) > (1 —fs) and my < v < igé, we have

G¢ > Gjs; and when 2/5,(1 — ;) > (1 — (52) and % < v < my, we have Gg < Gs.

Therefore, we can combine cases (3.cl) and (3.c2) as:

(3.c) when 1;351 << %, AS, is optimal if and only if o > max{G5, Gg}.

We now combine cases (1) and (2) with cases (3.c) and (3.a), respectively. Similar to

the way we obtain (A.25), we have

Gi— G x ~(y = hr = 231 - ), (A.26)

X [

G4—G60C’}/—1_61, (A27)
Bs

C%—Gwc—(w—%)(v—1f152)</31—52>. (A.28)
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When ~y 1;3261 ,

< (5. On the other hand, when 1;_261 <7< 1=5
(A.26) and (A.27) yield G4 > G5, G4 > Gg. Thus, we can combine cases (1) and (3.c)
as described in the first case of the proposition. And by (A.28), when v > %, Gy >

Gr v <3 f ,16’2 , and we can merge cases (2) and (3.a) as described in the last case of the

proposition. L

A.3 Proofs for Section 3.5 with Collaborative Servers

We provide the proofs of Propositions 3.5.2, 3.5.3, and 3.5.5 in Appendices A.3.1, A.3.2,

and A.3.3, respectively.

A.3.1 Proof of Proposition 3.5.2

There are two available collaborative task assignment policies, AS,, AS,, depending on the
primary assignment. Thus, for collaborative task assignment to be no worse than non-
collaboration, the throughput of the optimal collaborative task assignment needs to be no

lower than the throughput of non-collaboration, i.e., max{T,, 75, } > T"°. Note that

B1+B2+1
Tlc2 T" o (,Ull + ,u12)(ﬂ21 —+ M22 T1To Z MHMB1+BQ+1 k
k=0
N [“11“12(M21 + fi22) + pio1pi2a (pa1 + Mlg)} X
B1+Bs

(xlxg Z b BBk g BBt | o MBl+B2+1)

Bi1+B2—1
= 9E1$2(u11 + /“2)(“21 +N22)(Mﬁ1+32+1 +MB1+BQ+1 TR, Z ,U11/LB1+BQ 1— k>
k=0
Bi+By—1
—$1$2M11M12(M21+M22)<Mf11+ ? + po2 Z pk Bt k)
k=0
B1+Ba2—1

— T1Tafip1 plo2(pa1 + f12) (Mz P Z kit B k)

Bi1+B>+1

_ hl (xll’l/l]_ +x IUB1+B2+1)
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= X122 [Mﬁ1+32+2(ﬂ21 + f22) + M%JFBQH(MU + p12)

Bi+Ba—1
+ (f11fio2 — o1 ftaz) a1 o2 Z u'flpffB?‘l‘k
k=0

Bi+By+1 Bi+Ba+1
—h ("Elﬂn1 Tt wapiyy 7 )

Similarly,

T3, —T" o z179 [NQB11+B2+2(M11 + pa2) + i TP (g1 + pgo)

Bi1+Bs—1
+ (po1ft12 — fea1fio2) o1 f12 Z b, Byt Be =k

k=0

Bi1+B>+1 Bi1+B2+1
—h (xlﬂm + Tafiyy )

The result follows. [

A.3.2  Proof of Proposition 3.5.3

When o > 1+ |8 — 52| > 1 > h (see equation (3.19)), teamwork with task partitioning
is no worse than non-collaboration by Proposition 3.4.3, and is no worse than collaborative
task assignment by Proposition 3.5.1.

When a < 1+ |81 — Psl, collaborative task assignment is better than teamwork, thus
we only need to compare collaborative task assignment and non-collaboration. Note that
when o < «, D;(a) = D;(«) are constant for i = 1,2. Moreover, D;(«) > D;(ayp)
always holds for i = 1,2. Thus, if max{D; (o), D2(ap)} > 1, then max{D;, Do} > 1,
and by Proposition 3.5.2, collaborative task assignment is optimal.

Note that D;(«) and Dy(«) are first constant and then strictly increasing in o with
lim, 0o D1 (@) = lim,_yoo Do(a) = 00. Moreover, when o« > max{3;, 1 — (1, B2, 1 — B2},
then x; = a¥i,z9 = aXs, and D;(«) and Dy(«v) are linearly increasing in «. Thus, if
max{D;(ap), Da()} < 1, we can find a unique o* such that max{D; (a*), Dy(a*)} = 1.

It then follows from Proposition 3.5.2 that if a* < 1 + |51 — /32], then non-collaboration is
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optimal for @ < o* and collaborative task assignment is best for o* < o < 1+ |5; — 5o
We conclude the proof by proving that max{D;(h), Do(h)} > 1, which implies that a* <
h < 1+[61 = Bal.

Since x; > aXi, 9 > aXs, and Di(«) and Ds(«) are non-decreasing in «, we can

obtain that:

Dy (h) > [Hﬁl+Bz+2(M21 + ) + pms TR gy + o)

Bi1+B>—-1
+ (1122 — pa1 ) fa1 floz Z M’flugﬁ-Bz—l—k
k=0
h¥ 2
. — = Du(h),

hl (IulBlﬁ-BQ-i-lE1 + M2B;+B2+122>

Dy(h) > [H£311+BQ+2(M11 + pa2) + i TR (gr 4 pao)

B1+B2>—1
+ (21112 — pa1 o) o1 flr2 Z Mglugﬁ-Bz—l—k

k=0
h>1¥,
X = DQl(h)
hl(luzBll-i-Bz-i-lEl +M1321+B2+1E2>

By equation (3.18), we can obtain that

)1 YA YHED VA 2+ By

hy Do (pa1 + pa2) (p21 + po2)
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Using this equation, we have

Dy(h) — 1 [Hﬁl+B2+2(M21 + poa) + MBl+BQ+2(M11 + ,u12)} (31 + X9)
B1+Ba—1

+ (fa1feoe — Ho1fta2) a1 foo Z ,MH,UBIJFBQ - k(21 + 39)
k=0

— (pa1 4 p2) (pr + paz) (pry P20y + pgy HPHIS,)
= it TP (o + po2) a1 (S0 4 B2) — (a1 + pa2) 1]

+ ST gy pag) [122(51 4 B2) — (po1 + p122) 2]
Bi+B2—1
+ (pa1 22 — porpnz) (X1 + ) Z P gy T

= (M11M22 - M21M12)><

Bi+B>—1
e P oy + praa) + pgy P (i + pa2) + (S0 + o) Z T ]

Similarly, we can obtain that

Doy(h) — 1 o< (p21ft12 — 11 ft22) X

B1+B>—1
pot T () gy T (o prae) + (B0 + Do) Z Mgflﬂgﬁ&_k].
k=0

Thus, at least one of Dy;(h) and Dy, (h) is no less than 1, which yields that max{ D1 (h), Dy(h)} >

1. This completes the proof. [

A.3.3 Proof of Proposition 3.5.5

For (1), the result follows from the proof of Proposition 3.4.1.

For (3), we know from (1) and Section 3.4.3 that teamwork with and without task
partitioning and non-collaboration are equivalent. The result now follows from the proof of
Proposition 3.5.1 and the fact that collaborative task assignment contains static and flexible

task assignment as special cases.
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For (2), note that, when 3; = 35, h = 1, and D1, D5 can be transformed as follows:

P VT Rt > I 2123 . (A.29)
1= SN Mﬁl+32+1$1 n M%+BQ+1x2a )
Do M2311+BQ+121+M1B21+BQ+122 T1%o
2= Y5, X Mil-‘-BQ-lel +u%+32+1m2'

Note that, the second part of D; is non-decreasing with respect to z1, 5.
When o > 1, we obtain the result directly from Propositions 3.4.2 and 3.5.1. When
a < 1, we have 21 < X, 19 < s Thus,

T1T2 Y129

<
Bi1+B2+1 Bi1+B2>+1 —  Bi+B2+1 Bi1+B2>+1 :
Hit T+ gy T2 Mg 21+ pog by

Combining this with equation (A.29) yield that, D; < 1 when o < 1. Similarly, we can
obtain Dy < 1. Thus, max{D;, Dy} < 1. By Propositions 3.5.1 and 3.5.2, when o < 1,

non-collaboration is optimal. [

A.4 Comparisons of Server Coordination Methods

We compare static and flexible task assignments with teamwork with task partitioning and

non-collaboration in Appendices A.4.1 and A.4.2, respectively.

A.4.1 Comparison of Static Task Assignment and Other Server Coordination Methods

In this section, we compare static task assignment with teamwork with task partitioning and
non-collaboration by calculating the differences of their throughputs. Some of the proofs
are omitted to conserve space.

First, we compare static task assignment and teamwork with task partitioning. Intu-
itively, servers work separately in static task assignment but always together in teamwork.
Thus we expect teamwork to be better when the server synergy « is high. The following

proposition verifies this intuition.
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Proposition A.4.1. Let

Bi1+B2+1 |  Bi+Bsy+1—k
_ hopor iz Zkzo Ha1 M2
6 pr—

B1+B2+2 k  Bi+Ba+2—k
hi ) elo Ha1fhio

Then, teamwork with task partitioning is no worse than static task assignment if and only
if
a > maX{Dg,DG} X h.

Since D3 x h, Dg x h can be either greater or less than 1, teamwork with task partitioning
can be either better or worse than static task assignment when o« = 1. To see this, suppose
that By = By = 0 and p11; = ko1, ftoo = kpqo for some & > 0. Then teamwork with task
partitioning is no worse than static task assignment if and only if % + Z—i > max{k —
1, % — 1}. Therefore, when k£ = 1, teamwork with task partitioning is better; when £ is
large or close to zero, static task assignment is better. This example shows that teamwork
with task partitioning is desirable when server collaboration is efficient (i.e., o large) and
the servers are not heavily specialized (% and % are moderate); otherwise, static task
assignment is more preferable.

Next, we compare non-collaboration and static task assignment.

Proposition A.4.2. Static task assignment is no worse than non-collaboration if and only
if
maX{Dg, D6} Z 1.

Note that D3, Dg can be either greater or less than 1. To see this, if By = By = 0,
w11 = kpor, ptoo = ko for some k € R, then static task assignment is better than non-
collaboration if #2L 4+ #12 < max{k? — k, & — L}. Thus, when k = 1, non-collaboration

12 21 k k
is better; when £ is large or close to zero, static task assignment is better. Again static task

assignment is preferable when the servers are heavily specialized.

The following proposition concludes our comparisons of static task assignment with
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teamwork with task partitioning and non-collaboration.

Proposition A.4.3. 1. When o < max{l, D3, Dg} x h,

(a) If max{Ds, D¢} < 1, non-collaboration is optimal;

(b) If max{Ds, D¢} > 1, static task assignment is optimal.

2. When o > max{1, D3, Dg} X h, teamwork with task partitioning is optimal.

Proof. First, remember that by Proposition 3.4.3, teamwork with task partitioning is no
worse than non-collaboration if and only if @ > h. And by Proposition A.4.1, team-
work with task partitioning is no worse than static task assignment if and only if o >
max{ D3, Dg} X h. Thus, when o > max{1, D3, Dg} X h, teamwork with task partitioning
is the best method.

When o < max{1, D3, Dg} x h, combining Propositions 3.4.3, A.4.1, and A.4.2 yield

the desired results. [

The intuition for Proposition A.4.3 is similar to that for the comparison of collabora-
tive task assignment and other server coordination methods in Section 3.5.1. The value
of max{Ds, Ds} provides information on server specialty. When the synergy level is not
high, non-collaboration is the best when servers are not highly specialized; otherwise static
task assignment is the best because it takes advantage of server specialty and avoids us-
ing servers with extremely low service rates at some subtask. When the synergy level is
high, teamwork with task partitioning is the best since it takes advantage of efficient server

collaboration.

A.4.2 Comparison of Flexible Task Assignment and Other Server Coordination Methods

In this section, we compare flexible task assignment with teamwork with task partitioning
and non-collaboration. Without loss of generality, assume ;7 > po;. The proofs are
omitted to conserve space.

First, we compare flexible task assignment and teamwork with task partitioning.
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Proposition A.4.4. If 1111 > po1, then teamwork with task partitioning is no worse than

flexible task assignment if and only if

a > maX{D37D4,D5} X h.

Note that D3 x h, D4y X h, D5 x h can be either greater or less than 1. Thus, when
a = 1, teamwork with task partitioning can be either better or worse than flexible task
assignment. For example, when By = By = 0, 1f p11 = 2,001 = p12 = 1, oy = %,
so that the service rate of server 2 at station 2 is significantly lower than the other service
rates, flexible task assignment is better since it can avoid this low service rate by working
separately. By contrast, if p11 = 2, o1 = pr12 = 1, o2 = % so that the gap between the
best and the worst service rates is not very large, then teamwork with task partitioning is
better since it takes advantage of additive combined service rates.

The comparison of flexible task assignment and non-collaboration has been addressed
in Proposition 3.5.4, so we do not repeat it here. The following proposition concludes our
comparisons of flexible task assignment with teamwork with task partitioning and non-
collaboration. The proof of the proposition is similar to Proposition A.4.3 and is omitted

to conserve space.
Proposition A.4.5. If we label the servers such that (111 > 21, then
1. When a < max{1, D3, Dy, D5} x h,
(a) If max{Ds, Dy, D5} < 1, non-collaboration is optimal;
(b) If max{Ds, Dy, D5} > 1, flexible task assignment is optimal.
2. When o > max{1, D3, Dy, D5} X h, teamwork with task partitioning is optimal.

Intuitively, servers only collaborate under teamwork with task partitioning. Thus when
the synergy level is high, we prefer teamwork with task partitioning since it takes advantage

of efficient server collaboration. When the synergy level is not high, although the exact

182



values of the thresholds are complex, the example that follows Proposition 3.5.4 suggests
that flexible task assignment is better when the servers are highly specialized, while non-

collaboration is better otherwise.

A.5 Teamwork Approaches

In this section, we provide model descriptions of teamwork with and without task parti-
tioning. Our analysis in this section focuses on a single station and can be applied to any
station in a system with multiple stations.

For teamwork without task partitioning, the servers work as a team on a combined task.
We start by determining the service rates of the two servers at the station. Recall that the
service requirement of subtask j is S; with £ [Sj] =1, for j = 1, 2. Therefore, the time it

takes server ¢ to finish both subtasks is

fori = 1, 2. Then, the service rate of server ¢ working on the combined task is the reciprocal

of the average service time:

1 1

E[S1] E[Ss] 1 17
i1 - Hi2 Hi1 + Hi2

for¢ = 1, 2. Thus, the combined average service rate of teamwork without task partitioning

for the combined task is

1 1
(=t =)

M1 E E + H22

Hence, the actual service time to finish the combined task of teamwork without task parti-

tioning approach is

S1+S
gt — E[§1+§2] _ S1+ .5y

- )
1 1 1 1
O‘<¢+L+L+L> 2O‘<L+L+L+L)
H11 K12 K21 122 K11 H12 H21 K22
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where we divide S; + S3 by E[S; + Ss] to ensure that the total service requirement for the

combined task has mean one. Observe that 7% = ﬁ, as desired.

For teamwork with task partitioning, recall that the combined service rate of the two

servers on subtask j is a(p1; + po;) for j = 1,2. Thus, the time it takes teamwork with

task partitioning to finish subtask 7 is

N
a(p; + N2j),

for 7 = 1,2. And the total service time of teamwork with task partitioning to finish both

subtasks is
Sy Sy

St — + .
a(pin + p21)  alpae + po2)

Observe that T = @, as desired.

Note that, when the servers are generalists, that is p;; = u;y; fori,j = 1,2, S* and S*

can be simplified as follows:

S1+ S
= O )G )
1 S S
S = a(pr + o) (7_11+7_z>

Thus, E[S*] = E[S'™] when the servers are generalists. Moreover, when 7; = 75 (i.e.,
the task difficulties of both subtasks are the same), then S* = S, and the two teamwork
approaches obtain the same results. Intuitively, when the servers are generalists, since the
servers always work together as a team in both teamwork approaches, the effect caused by
the individual server abilities (i.e., x;) is eliminated. Thus, when the task difficulties are the
same, the two teamwork approaches are equivalent.

By calculation, we can obtain that, if Var(S;) = o2, fori = 1,2, then

t tp__;i_l 0-2 3 1 —0'2i i
Var(S*) — Var(S™?) = ol + )2 72)[ i—+-—) 2(471 +472)].
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Thus, when ¢ = 02 = o2 (e.g., when 51,5, are exponentially distributed with rates
& = & = 1, then 0? = 03 = 1), we obtain
2

t tp\ __ g 1 1\2
Var(S*) — Var(S?) = “Maln T i)l (a - %) <0.

That is, when the servers are generalists and the service requirements of the two subtasks
have the same variance, then the variance of teamwork (without task partitioning) is never
larger than that of teamwork with task partitioning. Moreover, the variance of teamwork
is strictly lower than that of teamwork with task partitioning when the task difficulties are

different.
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APPENDIX B
APPENDIX FOR CHAPTER 5

Proof of Lemma 5.3.1. We label the jobs at each station such that at station 7, job ¢ is the
ith good job arriving at station j, for j € {1,...,N},i > 1. Forj € {1,...,N},i > 1,
let ¢;(i) be the service requirement of ith completed job at station j. And for 7 € II, j €
{1,...,N},i > 1,1et C7 (i) be the time of ith service completion at station j, D7 (i) be the
departure time of ith job from station j, K7 (i ) be the labels of the jobs that are completed
with no defects at station j, and G7(i) be the departure time of ith good job (with no
defects) at station j. Moreover, let p7, be the defect probability of the last server that
completes service of ith job at station j under policy 7 € II, for j € {1,...,N},i > 1.
Then pj; = pj; forj € {1,...,N},i > 1 by the definition of policy 7'. Let uJ, be

the average service rate of the ith job at station j under policy 7, so that "}E ) is the time

i

spent by ith job at station j under policy 7. Specifically, let mj, be the number of server

reassignments that occur during the time the ith job spends at station j when the policy 7

is employed, let ¢;(i,m),m € {1,...,mj, + 1} denote the service requirement fulfilled

between the (m — 1)th and mth server reassignments, and let u7,(m),m € {1,...,m7, +

1} denote the service rate of the server assigned to station j for the time between the
m7 +1

(m — 1)th and mth server reassignments. Then, ¢;(i) = ¢;(i,m) and ‘Z”(Z) =

7,1

L . . . . .
g ‘bﬂ(l’m). Since policy 7’ always uses the server with highest service rate at each

m=1 H;r,i (m
(4)

station, we can obtain that y7, < ,ujz and %W > u() forje{l,...,N},i > 1.
7,0

We prove this lemma by proving that DT (i) < D7(i), G;F' (i) < G7(i) for j €
{1,...,N},i > 1. Without loss of generality, assume the system is initially empty. For
any 7 € II, we generate the sample path of 7 according to the following algorithm. Note

that, 7; is tracking the number of successful departures from station j, and [; is tracking the
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total number of departures from station j, for j € {1,..., N}.

Algorithm 1: Sample Path Generator of 7 € II

Input: N, B;, p7,.uf,;, forj € {1,...,N},i > 1
1 Initialize: i; = [; = 0,forj = 1,...,N; j = 1; G7(i) = D} (i) = 0 for
j¢{l,...,N}i<0.
2 Check,
(DIf7 >2andl; +1 > i;_4, then back to the top of step 2.

(II) Otherwise, [; = [; + 1 and go to step 3.

3 Compute C7(l;) = max{GJ_,(l;) + (zZJﬁ(}i{),D;r(lj —-1)+ %}
Generate u;;, ~ U(0,1). J J
Check,

(D If wjy, > p7, . then

i =i, + 1,

K7 (i) = n,

D (1) = max{CT(L), Diyo i — By — D},
G7 (1) = Di(l;),

n = max{N, j + 1}, back to step 2.

(IT) Otherwise,

D7(l;) = C7(l;), back to step 2.

If u7, =yl = pyy for j € {1,...,N},i > 1, then policy 7 = 7/, and the lemma

is obvious. Otherwise, consider two sample paths w, w’, where we generate w and w’

according to Algorithm 1 using policy 7 and 7/, respectively. Since p;r; = pj,;, we have

K;T; = K7, forj € {1,...,N},i > 1. Let [} be the label of the job with the smallest

index at the smallest station such that Wi, < M- The existence of [ is guaranteed since

there exists j € {1,..., N},i > 1 such that Wi # ,uf; Let i; be the corresponding label

of successful departures from station j. Then, G}rl_l(l;) = G7_ (1Y), D;rl_l(l;) =

Note that, Algorithm 1 gives priority to the jobs at the later station, that is, it generates the

departure times of the jobs at the later station first as long as this job has departured from
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the previous station. Thus, D;ﬂrl(z; —B;—1)= DT

7417 — B;j—1). Then, since pif, < p;;

, we have CT'(I)) < C7(l}), and DT (I}) < D¥(I}),G7 (i) < G7(i}). Proceeding in this

manner, we can obtain D;r'(i) < Dj(i),and G5 (i) < G7 (i) forj € {1,...,N},i > 1. O

Proof of Lemma 5.3.2. Next, we prove 7* is better than 7’ by proving the number of jobs
waiting in front of each station under policy 7* is always higher than under policy 7. To
better illustrate the status of each station in the system, we reformulate the system as a
continuous-time Markov chain using a different definition as follows.

For all 7 € II, and t > 0, let Y™(¢t) = (Y(t),..., Y5y 1(t)), where YJi(t) €
{0,1,..., B;} denotes the number of jobs in the buffer between station j and j + 1 at
time ¢ under policy 7 for j = 1,..., N — 1, and Y3 ,(t) € {0, 1,2} denotes the status of
station j at time ¢ under the policy 7w for j = 1, ..., N, where 0, 1, and 2 refer to the starved
status, operating status, and blocked status, respectively. Then, Y™ (¢) is a continuous time
Markov chain with state space S'. Let 7 (s) and p7 (s) be the service rate and defect prob-
ability of the server at station j € {1,..., N} in state s € S’ under policy 7 € II. Then,
pr (s) = pT (s) = pjj, and pj; = pT (s) < pT (s), forj € {1,...,N},s € S'. We will
prove that Y™ (t) > Y™ (t), for t > 0.

Consider two sample paths w*, w’, where we use policy 7* and 7’ respectively. Since

™

i

(s) = ,u}r'(s) for all s € S’, and exponential distribution is memoryless, we can couple
the two sample paths by using common random numbers to generate the service times.
Specifically, let t,,, n > 0, be the time of the nth event (i.e. service completion at some
station with or without defects) that happens in any of the two sample paths. Let ¢, = 0.
For n > 0, let sT € S’ denote the state of the system at time ¢,, under policy 7, and let
I™ C {1,..., N} denote the set of working stations under policy 7 for 7 € {#’, 7*}, and
we generate new service times {5, ;} from exponential distribution with rate /i, ; for all
working station j € I™ U I7". Then, t,y; = t, +min{S,; : Vj € IF UI7}, and
the station with the smallest service time will have a service completion at ¢,,. ;. Moreover,

right before the time of the next event at some station j at time ¢, 1, we generate u,, j, from
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uniform distribution with range (0, 1) as the indicator of either the job is defective or not.
If jo € IT unjo > (<)Djo.jo- then at t,,, 1, there would be a successful (defective) service
completion at station jo in w*; if jo € 17, Uy, > (<)p§r0' (s7'), then at ¢,,.1, there would be
a successful (defective) service completion at station jj in w’. Since pj, ;, < p}’ol (s™), if the
service completion is defective under policy 7*, it must also be defective under policy 7.
We prove this lemma by induction. Since the system is initially empty, Y™ (0) =
Y™ (0) = {0,...,0}. Assume that Y™ (t) > Y™ (t) for t € [0,,), and the next event is

service completion at station j;. Then, under policy 7*, for 1 < j; < N,
1. When j; € I, and the completed job is not defective,

(a) if the buffer right after station jj is full, then Y™ (£,) = Y™ (t,—) + e2j,1;

(b) if the buffer right after station j; is not full, station j; + 1 is not starved, and
station j; — 1 is blocked, then Y™ (¢,) = Y™ (t,—) — eaj,—3 + €2,

(c) if station j; + 1 is starved, and station j; — 1 is blocked, then Y™ (tn) =
Y™ (tn—) — €aj,—3 + €25, 413

(d) if the buffer right after station j; is not full, station j; + 1 is not starved, sta-
tion j; — 1 is not blocked, and the buffer right before station j; is empty, then
Y™ (t,) = Y™ (t—) — 2,1 + €255

(e) if station j; + 1 is starved, station j; — 1 is not blocked, and the buffer right
before station j; is empty, then Y™ (,) = Y™ (t,—) — €2j,—1 + €24, 41

(f) if the buffer right after station j; is not full, station j; + 1 is not starved, station
jJ1 — 1 is not blocked, and the buffer right before station j; is not empty, then
Y™ (t,) = Y™ (th—) — eaj,—2 + €2,

(g) if station j7; + 1 is starved, station j; — 1 is not blocked, and the buffer right
before station j; is not empty, then Y™ (¢,) = Y™ (t,—) — €2j,—2 + €2, +1.

2. When 5, € I] ", and the completed job is defective,
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(a) if station j, — 1 is blocked, then Y™ (t,) = Y™ (t,—) — e9;, 3;

(b) if station j; — 1 is not blocked, and the buffer right before station j; is empty,

then Yﬂ* (tn) = Yﬂ-* (tn_) — €25,-1>

(c) if station j; — 1 is not blocked, and the buffer right before station j; is not empty,

then Yﬂ* (tn) = Yﬂ-* (tn_) — €25,-2.
3. When j; ¢ I™, then station j; is blocked, Y™ (¢,,) = Y™ (t,,—).

For j; = N, the result of Y™ (t,,) is the same as the three sub-cases under case 2.

For j; =1,whenl € I ", and the completed job is not defective,
1. if the buffer right after station 1 is full, Y™ (¢,) = Y™ (t,—) + ey;

2. if the buffer right after station 1 is not full, station 2 is not starved, Y™ (t,) =

Yﬂ* (tn—) + €9,
3. if station 2 is starved, Y™ (t,,) = Y™ (t,—) + es;

when station 1 is blocked, or the completed job is defective under 7*, then Y™ (t,,) =
Y™ (t,—). The possible transitions of Y™ (t) at t,, can be listed similar to the transitions
of Y™ (t) as the cases above, except that Y™ (t,,) might be unchanged because of station j;
being starved. By comparing the state of Y™ (¢) and Y™ (¢) after the transition at t,, for all
possible states of Y™ (¢) and Y™ (t) such that Y™ (t,,—) > Y™ (t,—), we can conclude that
Y™ (t) > Y™ (t)fort € [t,,t,.1). Thus, by induction, we can obtain that Y™ (t) > Y™ (t),
for t > 0. Since the service rates of all job at all stations are equal in 7* and 7/, 7* has

higher successful rate than 7’ at the last station, it follows that 7’ is better than 7. O]

Alternative Proof of Corollary 5.4.5. For simplicity, when N = 2, let B; = B. The ex-
istence of an optimal Markovian stationary deterministic policy has been discussed in the
proof of Theorem 5.4.1, we omit it for brevity. We again use Policy Iteration to show

this proposition. Note that, the optimal policy we prove here is a special case of §F with
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k = B + 2. Thus, we use the notations in the proof of Theorem 5.4.1 but simplify the

expressions by letting s* = B + 2. Choose the initial decision dy = 67*2, then

0 for s =0,
r(s,00(s)) =
flog  forl < s < B+ 2.
.
111 for0<s<B+1,s=s+1,
192 forl<s<B+2=s5—1,
1—,&11 fOTS:S/:[),

p(s']s, 00(s)) =
1— (i1 + po2) forl <s<B+1ls=¢,

1 — oo fors =5 =B+ 2,

0 otherwise.

\

Since the policy yields an irreducible Markov chain, we can solve the following equation
to find a scalar gy and a vector hy:

5O—goe+(P50—I)h0:0, (Bl)

such that ho(0) = 0, where e is the unit vector and I is the identity matrix.

Then,
B+1 - B
g fi2 D) A ©,(B+2)
0 — B N - .
21:02 lelﬂgﬁ ’ O2(B +2)
ForVs € S,
g s—1 /l s—2
0 s—1 22 . s—2—
ho(s) = = G+ Vi psy 7 = P Z(J + 1)y
H11 =0 11 =0
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For the next step of the policy iteration algorithm, we choose

d1(s) € argmax{r s, a) +Zp (J]s,a)ho(y )},‘v’s es. (B.2)

CLEAS
jeS

We now show that dy(s) = 01(s) for all s € S. In other words, the following inequality
holds for all s € S,a € Ag \ {do(s)}:

e(s,a) =r(s,a) + > _ pljls,a)ho(j) — (r(s,00(s)) + Y _ p(ils, do(s))ho(j)) < 0. (B.3)

jES jeS

For all s € S, dp(s) = ayz. Thus, for 0 < s < B + 2, we will specify €(s, a) for actions
{a10, a2, as }; for s = B + 2, we will specify €(s, a) for action ay;.

For s = 0, station 2 is starved and a;; = a;o for i = 1, 2, thus

L. .
€(0,a9) = €(0,a2) = —(fia1 — fl11)g0 < 0.
H11
6(0, CL10) =0.
Fors=1,...,B+1,
fias . . L
€(0,a1) = _m b= Zﬂnﬂzzl )
ﬂ B+1-—s
— 22 A B+1—j
€(0, az) = _@2(3 I 2 — fig1) Z N11N2 + €(0,a10) < 0.
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Fors=1,...,B+2,

B+1

1 ~j+1 B4l—
€(s,a9) = — m[ —fn2) Y i s
2 j=B+2—s
B+2—s ‘
+ (P12 — Pa2) a2 Z ,U11/~LBJr2 ’
§=0 (B.4)
B+1-s
+ (fla1 — fin)fioz Z gy J}
7=0

<0

This proves that dy(s) = d;(s) for all s € S. By Theorem 9.5.1 of Puterman [41], this

proves that the policy that always assign server j to station j for j € {1,2} is optimal. []
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