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SUMMARY

Consider a multi-server queueing system with tandem stations, finite intermediate buff-

ers, and an infinite supply of jobs in front of the first station. Our goal is to maximize

the long-run average throughput of the system by dynamically assigning the servers to the

stations.

For the first part of this thesis, we analyze a form of server coordination named task

assignment where each job is decomposed into subtasks assigned to one or more servers,

and the job is finished when all its subtasks are completed. We identify the optimal task

assignment policy of a queueing station when the servers are either static, flexible, or col-

laborative. Next, we compare task assignment approaches with other forms of server as-

signment, namely teamwork and non-collaboration, and obtain conditions for when and

how to choose a server coordination approach under different service rates. In particular,

task assignment is best when the servers are highly specialized; otherwise, teamwork or

non-collaboration are preferable depending on whether the synergy level among the servers

is high or not. Then, we provide numerical results that quantify our previous comparison.

Finally, we analyze server coordination for longer lines, where there are precedence re-

lationships between some of the tasks. We show that for static task assignment, internal

buffers at the stations are preferable to intermediate buffers between the stations, and we

present numerical results that suggest our comparisons for one station systems generalize

to longer lines.

The second part of this thesis studies server allocation when the servers can work in

teams and the team service rates can be arbitrary. Our objective is to improve the per-

formance of the system by dynamically assigning servers to teams and teams to stations.

We first establish sufficient criteria for eliminating inferior teams, and then we identify the

optimal policy among the remaining teams for the two-station case. Next, we investigate

the special cases with structured team service rates and with teams of specialists. Finally,

xiii



we provide heuristic policies for longer lines with teams of specialists when the servers are

generalists, and numerical results that suggest that our heuristic policies are near-optimal.

In the final part of this dissertation, we consider the scenario where a job might be bro-

ken and wasted when being processed by a server. Servers are flexible but non-collaborative,

so that a job can be processed by at most one server at any time. We identify the dynamic

server assignment policy that maximizes the long-run average throughput of the system

with two stations and two servers. We find that the optimal policy is either a single or a

double threshold policy on the number of jobs in the buffer, where the thresholds depend on

the service rates and defect probabilities of the two servers. For larger systems, we provide

a partial characterization of the optimal policy. In particular, we show that the optimal pol-

icy may involve server idling, and if there exists a distinct dominant server at each station,

then it is optimal to always assign the servers to the stations where they are dominant. Fi-

nally, we propose heuristic server assignment policies motivated by experimentation with

three-station lines and analysis of systems with infinite buffers. Numerical results suggest

that our heuristics yield near-optimal performance for systems with more than two stations.

xiv



CHAPTER 1

INTRODUCTION AND BACKGROUND

Optimal control through dynamic resource allocation is commonly seen in production sys-

tems and in service systems (such as call centers, ridesharing systems, and healthcare

systems). Given a real-world problem, we strive to model the system so as to make it

solvable or analyzable with reasonable and realistic assumptions; and develop optimal or

near-optimal control policies that are applicable in practice. More specifically, this thesis

revolves around the dynamic allocation of cross-trained workforce in manufacturing and

service systems, with the objective of maximizing the long-run average throughput of the

system.

Cross-trained (flexible) servers are widely discussed as a useful tool to improve the

performance of production and service systems [29]. Yet much remains to be done to

advance the use of server flexibility. In a multi-server queueing system with tandem stations

and finite intermediate buffers, our goal in this thesis is to improve the performance of the

system by dynamically assign the servers to stations under scenarios which are practical

in real life but seldom discussed in the literature. We refer to objects that are either being

processed or being served as jobs. In particular, this work considers the following three

cases: (1) a job can be decomposed into multiple subtasks with or without precedence

relationship; (2) a job needs to be served by a group of servers as a team; (3) A job might

be broken and wasted when being processed by a server. Assume that there is an infinite

supply of jobs in front of the first station and infinite storage space after the last station.

Servers are cross-trained and allowed to switch between stations with negligible time and

cost. Unless specified otherwise, we assume the service requirements are independently

and exponentially distributed. The system operates under manufacturing blocking, that is,

a completed job is blocked from moving to the downstream buffer when that buffer is full.
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In the first part of this dissertation, we consider a form of server coordination named

task assignment. Consider a multi-server queueing system with tandem stations, and sup-

pose that we need to determine how to deploy the servers at each station. The standard

approach would be to let the servers assigned to each station work in parallel without col-

laboration. However, if a job can be decomposed into multiple subtasks and there are no

precedence relationships among the subtasks, then it is possible we could improve the long-

run average throughput of the system via other forms of server coordination. One form of

server coordination involves assigning each subtask to one or more servers, and a job is

completed when all of its subtasks are completed. We refer to this as task assignment,

or as the maximum model since the service time of a job at a queueing station equals the

maximum of the times it takes to complete the subtasks. We consider three types of task as-

signments based on their server flexibility and collaboration levels. Another form of server

coordination is teamwork, where servers work together as a team with a combined service

rate. We also consider the non-collaboration approach, where the servers work in parallel

and will complete all the subtasks of a job by themselves.

First, we identify the optimal server assignment policy when the servers are either static,

flexible, or collaborative. Next, we compare task assignment approaches with other forms

of server assignment, namely teamwork and non-collaboration, and provide guidelines for

on whether and to what extent we can improve the performance of the system via these

server coordination methods. In particular, task assignment is best when the servers are

highly specialized; otherwise, teamwork or non-collaboration are preferable depending on

whether the synergy level among the servers is high or not. Moreover, we further investigate

these methods when the servers are generalists or specialists, and provide the corresponding

numerical results. Finally, we analyze server coordination for longer lines, where there

are precedence relationships between some of the tasks. We obtain that for static task

assignment, it is always better to allocate the available buffers within stations as internal

buffers rather than after stations as intermediate buffers (however, this result does not hold

2



for flexible or collaborative task assignment). Finally, our numerical results for the two-

station case suggest that our one-station results can be generalized to longer lines.

Next, we shift our attention to server allocation in terms of teams. Most existing papers

assumed a fixed synergy level whenever the servers collaborate. However, there are many

situations when jobs need to be served by a group of servers as a team (e.g.a surgery),

but the efficiencies of server collaboration between the team members are diversified. For

example, the collaboration between servers A and B in a team could be efficient while the

collaboration between servers A and C is inefficient. Thus, we do not restrict ourselves

to some specific relationship between the team service rates and other factors, such as the

individual service rates of team members, or the synergy between the servers of a team. To

be more reasonable and include all possible types of server collaborations, we focus on the

service rate of the team instead of the individual service rates of the servers at each station.

First, we select the team assignments that are on the Pareto boundary and irreplaceable

as the optimal assignment set. Then, we specify the optimal policy among the teams in

the optimal assignment set for two stations case. Next, we apply our optimal policies to

two special cases. In the first case, the team service rate is proportional to the sum of the

service rates of team members. This kind of server collaboration has been analyzed in the

past [6, 11, 13]. We validate our results by checking if the optimal policy we obtained

is consistent with previous work under this special case. In the second case, we assume

that there are different types of servers with different specialties, and the team formation is

constrained in that each team must consist of exactly one server of each type. The optimal

policy indicates that, for teams of specialized servers where the servers are generalists, we

use a permanent set of teams that are formed based on their ability. Based on this result,

we develop near-optimal heuristic policies that are validated by our numerical results for

longer lines for teams of specialized servers when they are generalists .

The final part of this thesis studies the optimal server allocation in presence of defects.

We consider a Markovian tandem line with an equal number of stations and flexible but

3



non-collaborative servers. At any time, each server can work on at most one job, and a job

can be processed by at most one server. Most of the existing papers that study queueing

systems with flexible servers assumed that the servers are reliable with zero defect prob-

abilities. To the best of our knowledge, this is the first paper that considers the dynamic

scheduling of servers when they are flexible and error-prone. For systems with two stations

and two servers, we formulate the system as a Markov decision process and characterize

the optimal policy with respect to which server has the higher effectiveness overall. More

specifically, we prove that the optimal server assignment policy is either a single or a dou-

ble threshold policy on the number of jobs in the buffer, where the thresholds depend on

the service rates and defect probabilities of the two servers. For larger systems, we pro-

vide a partial characterization of the optimal policy. First, we verify that the optimal policy

may involve server idling (except for the server assigned to the first station); next, when

a distinct server is the fastest and most reliable at each station, the optimal policy always

assigns the server to the station where they are dominant. Finally, we propose heuristic

server assignment policies motivated by experimentation with three-station lines and anal-

ysis of systems with infinite buffers. Numerical results suggest that our heuristics yield

near-optimal performance for systems with more than two stations.

The rest of this dissertation is organized as follows. In Chapter 2, we provide an

overview of the literature on queueing systems with flexible servers and/or error-prone

servers. In Chapter 3, we investigate when and how to choose different forms of server co-

ordination methods when a job can be decomposed into multiple subtasks with or without

precedence relationship. In Chapter 4, we consider the optimal server assignment problem

in terms of teams. In Chapter 5, we study the optimal scheduling of queueing systems with

flexible, non-collaborative and error-prone servers. In Chapter 6, we summarize the main

contributions of this thesis and present our future research directions. Finally, we provide

supplementary materials for Chapters 3 and 5 in Appendices A and B, respectively.
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CHAPTER 2

LITERATURE REVIEW

In Chapter 2, we provide an overview of the literature on queueing systems with flexible

servers and/or error-prone servers. First, we review systems the flexible servers in Section

2.1. In Section 2.2, we focus on the literature on queueing systems with failure-prone or

error-prone servers.

2.1 Flexible Servers

There is a significant amount of literature on queues with flexible servers. For a comprehen-

sive review of the literature in this area, see Hopp and Van Oyen [29], and Qin, Nembhard,

and Barnes [42].

2.1.1 Non-collaborative Servers

Several papers considered server allocation when the servers are non-collaborative. For

example, Van Oyen, Gel, and Hopp [47] investigated the case when servers are work-

ing in parallel, and proved that the “pick-and-run” policy they proposed is not optimal.

Işık, Andradóttir, and Ayhan [31] have studied server allocation in tandem queues with

equal number of stations and servers when the servers are flexible and non-collaborative,

and provided the optimal policy for two stations along with heuristic policies that were

near-optimal for larger systems. Ahn, Duenyas, and Lewis [1] analyzed systems with two

stations in tandem and two flexible servers when the individual service rates only depend

on the station, and they considered the scenarios when the servers are collaborative with

additive service rates (i.e., α = 1), and when servers are non-collaborative. Argon and

Andradóttir [15] considered systems with jobs that are divided into subtasks that would be

processed in tandem and discussed how to improve the system throughput by partial pool-
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ing of the servers, stations, and subtasks of a job. Yarmand and Down [49, 50] investigated

server allocation for tandem queues with zero buffers and homogeneous servers at each sta-

tion. [49] proposed an allocation method that assigns servers to stations based on the mean

service times and the current number of servers assigned to each station, and they validated

their algorithm by simulation. [50] considered a mixture of dedicated and flexible servers,

and studied server allocation policy for flexible servers that maximizes the throughput of

the system. They concluded that the optimal policy for systems with two stations and one

flexible server performs a hand-off (switch the job between flexible and dedicated server

when the dedicated server is starved or blocked), clears blocking, and admits new jobs

when there is no blocking. Pandelis and Van Oyen [38] analyzed a tandem queueing sys-

tem with partially cross-trained servers, and they identified structural properties of worker

allocation policies that maximize the throughput of the system.

2.1.2 Collaborative Servers

There is a significant amount of literature on optimal server allocation when the servers

are flexible and collaborative with combined service rates that are additive. Thus the

servers neither gain nor lose efficiency when they collaborate. Van Oyen, Gel, and Hopp

[47] introduced the teamwork approach with identical servers (which they referred to as

the “expedite policy”) that maximizes the long-run average throughput and minimizes the

work-in-process (WIP) of the system. Andradóttir, Ayhan, and Down [7] considered the

dynamic scheduling policy when the servers are flexible only when their assigned stations

are blocked or starved, while Andradóttir and Ayhan [6] and Kırkızlar, Andradóttir, and

Ayhan [33] discussed the case when the servers are flexible all the time. Specifically, [6]

focused on the system with the number of servers more than the number of stations (i.e.

overstaffed), and [33] focused on the understaffed queueing system.

Other papers discussed server collaboration with non-additive combined service rates.

Andradóttir, Ayhan, and Down [11] discussed the case when servers are synergistic (i.e.,
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α > 1) with a common synergy factor α for each station. Wang, Andradóttir, and Ayhan

[48] further analyzed the case when servers are synergistic with different synergy factors

for different stations. Moreover, Andradóttir, Ayhan, and Down [13] investigated the case

when the server collaboration is inefficient (i.e., α < 1). Ahn and Lewis [4] considered

the problem of routing the arrivals and allocating the servers in a parallel queueing system

with two types of customers and collaborative servers that can be either superadditive or

subadditive.

2.1.3 Teams of Specialized Servers

Our work focuses on a continuous-time Markovian queueing system with preemptive ser-

vice. Perron [40] investigated the discrete time-based server scheduling problem with

teams of specialized servers and non-preemptive service, and provided experimental re-

sults suggest that the problem is not solvable without decomposition and decomposing is

hard and error prone.

In this thesis, we consider on one type of jobs with a fixed requirement of team for-

mation, and study the best team formation among heterogeneous servers. Some papers

addressed multi-class jobs with different team formation requirements with homogeneous

servers when offering service as a certain type of specialists. Courcoubetis and Reiman [21]

studied a parallel queueing system with N identical servers and two types of jobs which

they referred to as ordinary jobs and locking jobs. Ordinary jobs need one server to be pro-

cessed, while locking jobs need all N servers to work together. They verified that to max-

imize the long run average reward of the system, they should prioritize the ordinary jobs

until the number of locking jobs reaches some threshold. Gurvich and Van Mieghem[27]

studied the capacity management problem of a network with teams of specialized servers

and multi-class jobs. They showed that highest priority must be given to the tasks that

require the most collaboration (i.e., largest number of specialized servers in the team), and

a mismatch between the priority level and the collaboration level can lead to inevitable ca-

7



pacity loss. Lodree, Altay, and Cook [36] considered dynamic allocation of medical staff

to casualties with random server arrivals and heterogeneous team requirements. They mod-

eled this system as a discrete-time finite horizon stochastic dynamic programming problem

and developed efficient heuristic policies for computational study.

2.1.4 Task assignment

There is limited work on the task assignment server coordination structure. Buzacott [19]

studied task assignment for a single-stage queue where each job is split into parallel sub-

tasks and the next job cannot begin until all the subtasks of the previous job are completed.

He showed that, in terms of the mean total number of jobs in the system, this kind of server

coordination is not superior to a series system with buffers between the two servers when

utilization of servers is sufficiently high. However, in [19], the servers are static and iden-

tical, and there are no internal buffers after each subtask, which is restrictive. In our paper,

we allow flexible and collaborative servers with general service rates and finite internal

buffers of arbitrary size. Tsai and Argon [16, 46] also discussed the task assignment ap-

proach (which they called a “splitting system”) for a single station with multiple subtasks

and finite internal buffers. In [46], the servers are collaborative in that they can work to-

gether on the same subtasks with additive combined service rates. They proved that their

splitting system is equivalent to a system with two tandem stations, and identify the op-

timal policy that maximizes the long-run average throughput by analyzing this equivalent

system. In [16], they considered flexible servers with switching costs when servers transit

among subtasks and holding costs for the jobs in the system, and provided a partial charac-

terization of the policy that minimizes the long-run average costs. In our paper, we include

the cases when servers are either static, flexible, or collaborative and find the policy that

maximizes the long-run average throughput of the system directly. Thus, we both consider

more general servers and use a different method to find the optimal policy compared to

[16, 46]. In summary, the previous studies [16, 19, 46] focus on systems with one station

8



and a specific type of servers. We consider different types of servers depending on their

flexibility and collaboration levels, which is more general and practical. We also compare

task assignment approaches with each other and with other forms of server coordination to

identify the best server coordination approach.

2.2 Error-prone Servers

Some existing papers addressed server breakdowns, so that the service process is inter-

rupted. For a thorough review of literature of queues with interruptions, see Krishnamoor-

thy, Pramod, and Chakravarthy [35]. Andradóttir, Ayhan, and Down [9, 10] considered the

dynamic assignment of servers to maximize the long-run average throughput of queueing

networks with failure-prone servers and stations. Specifically, [9] investigated the system

with infinite buffers, while [10] analyzed the system with tandem stations and finite in-

termediate buffers. Özkan and Kharoufeh [37] studied routing problem of a Markovian

queueing system with one reliable server and one faster but failure-prone server, with an

objective of minimizing the long-run average number of customers in the system. They

proved that it is always optimal to route customers to the faster server when it is available

if the system is stable, and there exists an optimal threshold policy that depends on the

queue length and the state of the faster server for the slower server. However, these server

breakdowns do not cause any damage to the products but only postpone the service process.

Other works considered server breakdown with customer abandonment. Economou and

Kapodistria [23] investigated a single server queue with server breakdown such that the

current customer leaves the system, and the remaining customers become impatient as long

as the server is down. Towsley and Tripathi [45] analyzed queueing systems with disasters

such that the occurrence of disasters forces all customers to leave the system and causes

the main server to fail. Yechiali [51] also considered this kind of system disaster while

the new arrivals during server breakdown become impatient. All these papers analyzed

various service measures of the system including system size distribution and the sojourn
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time distribution of the systems.

Some papers considered the planning and control of rework in production systems, see

Flapper, Fransoo, Broekmeulen, and Inderfurth [26] for a review of the literature in this

area. Specifically, Teunter and Flapper [44] considered the lot sizing problem for a pro-

duction line with non-defective, reworkable defective, and non-reworkable defective items

produced in lots, so that after producing a fixed number (N ) of lots, they will switch to

rework on the reworkable defective items until they are all fixed. They assumed that their

products were perishable, and there were set-up times and costs attached to switching be-

tween producing new items and reworking of the defective items. They derived the average

profit for any fixed N and then determined the optimal N numerically. However, they as-

sumed a fixed defect probability of a production and focused on the lot sizing problem that

maximizes the profit and only provided numerical examples of the optimal policy. Elshafei,

Khan, and Duffuaa [24] also considered a dynamic programming model with products that

are classified as non-defective, reworkable defective, and non-reworkable defective by an

inspector. They proposed a dynamic programming algorithm that minimizes the total in-

spection cost, where the total cost includes the cost of false rejection of good items, the cost

due to false acceptance of defective items which are either reworkable or non-reworkable,

the cost of inspection, and the cost of rework. However, they focused on using inspec-

tion to eliminate the defective items, while we focus on identifying how servers should be

assigned to tasks in the presence of defects.
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CHAPTER 3

SERVER COORDINATION IN QUEUEING SYSTEMS: WHEN AND HOW?

In this chapter, we first consider a one-station system, and generalize to longer lines later.

For simplicity, we assume that there are two servers at each station and that the task at each

station is decomposed into two subtasks. We will discuss task assignment approaches with

non-negative and finite internal buffer sizes. For one-station systems, let 0 ≤ Bi < ∞

denote the internal buffers after subtask i for i = 1, 2. We assume that the network operates

under the manufacturing blocking mechanism, that is, a job that finishes its service at a

subtask when the internal buffer after that subtask is full stays at the subtask and blocks

other jobs from entering service there. Since a job will leave the system right after both of

its subtasks are completed, only one of the two internal buffers can have jobs waiting inside

at any given time. The service requirements for different subtasks and different jobs are

independent; denote the service requirement for subtask i as Si. Unless specified otherwise,

we assume that Si follows an exponential distribution with rate ξi for i = 1, 2. The service

rate of server i working on subtask j is µij for i, j = 1, 2. Assume there are infinitely many

jobs waiting in front of the station and infinite room for completed jobs after the station.

Without loss of generality, let ξi = 1 for i = 1, 2. Assume that
∑

i µij > 0,∀j = 1, 2

(otherwise, the throughput of the system is zero), and
∑

j µij > 0,∀i = 1, 2 (otherwise,

the problem reduces to having only one server). See Figure 3.1 for the flow plot of the task

assignment system with one station and two servers.
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Figure 3.1: Task Assignment System with One Station

We investigate three types of task assignment based on their server flexibility and col-

laboration levels. In all three task assignment approaches, each server i ∈ {1, 2} is assigned

to a task ji, where {j1, j2} = {1, 2}, at all times when there is work to be done at both sub-

tasks. However, the task assignment approaches differ in the assignment of servers when

there is no work to be done at one of the subtasks (due to blocking). In static task assign-

ment, each server i ∈ {1, 2} is at all times assigned to task ji. In flexible task assignment,

each server can be reassigned to the other subtask (replacing the server originally assigned

there) when their assigned subtask is blocked. In collaborative task assignment, the servers

can either stay, switch, or work as a team when one subtask is blocked. We investigate

the performance of these different task assignment approaches and compare them with

teamwork and non-collaboration. We assume that when the servers work as a team, their

combined service rate is proportional to the sum of their service rates with a non-negative

coefficient α in both of the collaborative task assignment and teamwork approaches. Note

that when α > 1, the servers are synergistic in that their combined service rate is larger

than the sum of their own service rates. When α < 1, their collaboration is inefficient.

The outline of this paper is as follows. In Sections 3.1, 3.2, and 3.3, we investigate the

static, flexible, and collaborative task assignment approaches, respectively. Within each

section, we first obtain the optimal task assignment policy with general internal buffer

sizes, and then discuss two special cases, namely zero buffers and asymptotically infinite

buffers. In Section 3.4, we introduce three other server coordination approaches, namely

teamwork with or without task partitioning and non-collaboration, and compare these three
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methods. And in Section 3.5, we provide a comparison of collaborative task assignment,

teamwork with or without task partition, and non-collaboration, and determine when and

how to choose from these methods based on different server flexibility levels. The proofs of

several of our results are provided in Appendices A.1, A.2, and A.3, and the comparisons

that are not discussed in Section 3.5 are given in Appendix A.4. We also discuss two special

cases, namely when servers are generalists, and when servers are specialists. In Section

3.6, we investigate server coordination for longer lines, where we identify desirable buffer

allocation choices and provide numerical results for two stations in tandem. In Section 3.7,

we summarize our findings and conclude the paper. Supplementary explanations of both

teamwork approaches are given in Appendix A.5.

3.1 Static Task Assignment

In this section, we consider a single queueing station with two servers. We assume that

each job involves two subtasks and that each server specializes in a fixed subtask, so the

servers are static and will be idle after finishing their current subtask and before starting

the next subtask if their internal buffer is full. In Section 3.1.1, we obtain the optimal static

task assignment approach with general internal buffer sizes. In Sections 3.1.2 and 3.1.3, we

discuss the special cases when the internal buffers are zero and when the sum of the buffer

sizes goes to infinity, respectively.

3.1.1 Optimal Policy

In this section, since the server assignment is static, there are two feasible assignments:

(i) Server i is assigned to subtask i for i = 1, 2, with the corresponding throughput

T s12 =
µ11µ22

∑B1+B2+1
k=0 µk11µ

B1+B2+1−k
22∑B1+B2+2

k=0 µk11µ
B1+B2+2−k
22

. (3.1)

(ii) Server 1 is assigned to subtask 2 and server 2 is assigned to task 1, with corresponding
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throughput

T s21 =
µ21µ12

∑B1+B2+1
k=0 µk21µ

B1+B2+1−k
12∑B1+B2+2

k=0 µk21µ
B1+B2+2−k
12

.

Denote these two static assignments as As12, As21; under Asij , i is the assignment of server 1

and j is the assignment of server 2.

Observe that the sums in the expressions for T s12 and T s21 could be rewritten using the

formula for geometric sums. For instance,

B1+B2+1∑
k=0

µk11µ
B1+B2+1−k
22 =


µ
B1+B2+2
11 −µB1+B2+2

22

µ11−µ22 if µ11 6= µ22,

(B1 +B2 + 2)µB1+B2+1
11 if µ11 = µ22.

However, throughout this paper, we keep sums in our expressions for two reasons: (i) to

reduce the number of cases we need to consider, especially when there are multiple distinct

sums in one expression (e.g., equation (3.7)); (ii) to avoid minus signs so that it is easier to

identify the sign of the expression (e.g., equation (A.4)).

It is clear that the throughputs T s12, T s21 of the static task assignment approaches are

non-decreasing in the buffer sizes B1 and B2. Moreover, the internal buffer allocation does

not affect the results. Thus, two static maximum models with different internal buffer sizes

would have the same throughput as long as the sums of the two internal buffers, B1 + B2,

are equal. However, this property is the result of the birth-and-death structure of the system

with two subtasks. In general, when there are more than two subtasks, the buffer allocation

will affect the throughput of static task assignment. To illustrate, consider three subtasks,

three servers. The service rate of subtask i is µi, and the internal buffer size of subtask i is

Bi for i = 1, 2, 3. Assume µ1 = 2, µ2 = µ3 = 1. Then,

1. If B1 = 1, B2 = B3 = 0, the long-run average throughput is 72
127

;

2. If B1 = 0, B2 = 1, B3 = 0, the long-run average throughput is 144
329

< 72
127

.

We need to compare the two throughputs T s12 and T s21 to identify the optimal assignment
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for this model. Without loss of generality, assume that we number the servers so that

µ11 ≥ µ21. Then we have:

Proposition 3.1.1. Suppose that µ11 ≥ µ21. Then,

(i) If µ22 = 0, Assignment As21 is optimal.

(ii) If µ12 × µ21 = 0, Assignment As12 is optimal.

(iii) If µij > 0 for i, j = 1, 2, then there exists a unique µ∗22 ∈ (0, µ12] such that Assign-

ment As12 is optimal if µ22 ≥ µ∗22, Assignment As21 is optimal if µ22 < µ∗22. Moreover,

(a) If µ11 > µ21, then µ11 and µ∗22 are the only positive roots of

xB1+B2+3A1 − xA2 + A3 = 0, (3.2)

where

A1 = (µ11 − µ21)

B1+B2+1∑
k=0

µk21µ
B1+B2+2−k
12 + µ11µ

B1+B2+2
21 ,

A2 = µB1+B2+3
11

B1+B2+2∑
k=0

µk21µ
B1+B2+2−k
12 ,

A3 = µB1+B2+3
11

B1+B2+1∑
k=0

µk+1
21 µB1+B2+2−k

12 .

(b) If µ11 = µ21, then µ∗22 = µ12.

Proof. Since µ11 ≥ µ21 and µ11+µ21 > 0, we have µ11 > 0. Moreover, since µ21+µ22 > 0

and µ12 + µ22 > 0, it follows that µ22 = 0 implies that µ12 and µ21 are both positive, and

µ12 × µ21 = 0 implies that µ22 > 0. And since the servers are static, zero service rate at

one subtask leads to zero throughput. Thus, our results (i) and (ii) are trivial.
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For (iii),

∂T s12

∂µ22

=
µB1+B2+3

11

∑B1+B2+1
k=0 (B1 +B2 + 2− k)µB1+B2+1−k

22 µk11

(
∑B1+B2+2

k=0 µk11µ
B1+B2+2−k
22 )2

> 0.

Thus, T s12 is increasing with respect to µ22. Moreover, µ22 → 0 ⇒ T s12 → 0. By the

symmetry of µ22 and µ11 in T s12, we can obtain that T s12 is increasing with respect to µ11.

Similarly, we can obtain that T s21 is increasing with respect to both of µ21 and µ12.

If we treat µ22 as variable and µ11, µ21, µ12 > 0 as given, let f(µ22) = T s12 − T s21.

Then f(µ22) is increasing with respect to µ22 since T s21 does not depend on µ22. Moreover,

f(0) = −T s21 < 0, and f(µ12) = T̃ s21 − T s21, where T̃ s21 is the throughput of As21 with µ21

replaced by µ11. Since µ11 ≥ µ21 and T s21 is increasing with respect to µ21, T̃ s21 ≥ T s21 and

f(µ12) ≥ 0. Thus, there exist only one value of µ∗22 ∈ (0, µ12] such that f(µ∗22) = 0, and

when µ22 ≥ µ∗22, f(µ22) ≥ 0, and hence T s12 ≥ T s21; when µ22 < µ∗22, f(µ22) < 0, and

hence T s12 < T s21. Now we know that f(x) = 0 has one positive root µ∗22, where

f(x) =
µ11x

∑B1+B2+1
k=0 µk11x

B1+B2+1−k∑B1+B2+2
k=0 µk11x

B1+B2+2−k
− T s21.

Note that for n ≥ 0,

(x− µ11)
n∑
k=0

µk11x
n−k = (xn+1 − µn+1

11 ). (3.3)

Therefore, by multiplying f(x) with (x − µ11) and reorganizing the equation f(x)(x −

µ11) = 0, we obtain equation (3.2). And the fact that (2) corresponds to (x−µ11)f(x) adds

one more positive root, i.e., µ11, to equation (3.2). Thus, µ11 and µ∗22 are the only positive

roots of equation (3.2).

When µ11 = µ21, by the symmetric structure of T s12 and T s21 we know that T s12 = T s21

when µ22 = µ12. That is, when µ11 = µ21, f(µ12) = 0. Since f(x) = 0 has only one

positive root, we have µ∗22 = µ12.
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Since µ∗22 ≤ µ12, Proposition 3.1.1 implies that when servers have different specialty

on the subtasks (i.e., µ11 ≥ µ21 and µ22 ≥ µ12), we should assign them to the subtask

that they are better at. When one server is better at both subtasks than the other one (i.e.,

µ11 ≥ µ21 and µ12 ≥ µ22), we will assign server 1 to subtask 1 as long as the service rate

of server 2 at subtask 2 is not too small.

3.1.2 Special Case 1: No Buffers

In this section, we consider the special case with no buffers and µij > 0, for i, j = 1, 2.

(If µij = 0 for some i, j ∈ {1, 2}, then the server allocation policy that assigns server i

to station j would have zero throughput, and the optimal policy is trivial.) When B1 =

B2 = 0, we can simplify the expressions of the long-run average throughput of the system

as follows. For assignment As12, the corresponding throughput is

T s12 =
1

1
µ11

+ 1
µ22
− 1

µ11+µ22

;

and for assignment As21, the throughput is

T s21 =
1

1
µ21

+ 1
µ12
− 1

µ21+µ12

.

Moreover, we can compute the precise value of µ∗22 as

µ∗22 =
−1 +

√
1 + 4/M

2
× µ11,with M =

µ11

µ21

+
µ11

µ12

− µ11

µ21 + µ12

− 1.

Note that since we label the servers so that µ11 ≥ µ21, we have µ11
µ21
≥ 1 and µ11

µ12
>

µ11
µ21+µ12

. Thus M > 0 and µ∗22 > 0.

Example 3.1.1. Consider the following three special cases of the service rates of subtask

1: (a) µ11 = 2, µ21 = 1; (b) µ11 = µ21 = 1; (c) µ11 = 1, µ21 = 2 (we include this case for

symmetry even though it violates our convention that µ11 ≥ µ21). Figure 3.2 shows how the
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optimal assignment depends on µ12 and µ22. For all three cases, Assignment As12 is optimal

above the depicted line.

(a) µ11 = 2, µ21 = 1 (b) µ11 = 1, µ21 = 1 (c) µ11 = 1, µ21 = 2

Figure 3.2: Optimal static task assignment with different service rates.

3.1.3 Special Case 2: Asymptotically Infinite Buffers

In this section, we consider the case when B1 +B2 →∞. Then,

1. In assignment As12, T s12 → min{µ11, µ22}.

2. In assignment As21, T s21 → min{µ21, µ12}.

Thus, when the sum of the buffer sizes goes to infinity, choose assignment As12 when

min{µ11, µ22} ≥ min{µ21, µ12}; otherwise, choose assignment As21. And the throughput

of the best static task assignment with asymptotically infinite buffers is:

T s = max{min{µ11, µ22},min{µ21, µ12}}.

Intuitively, when the sum of the buffers goes to infinity, the throughput of the system is

determined by the bottleneck subtask, that is, for any server assignment, the throughput

is determined by the slower server. Thus, we will choose the assignment with the larger

minimal service rate among both subtasks.
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3.2 Flexible Task Assignment

In this section, we discuss the flexible task assignment approach. When servers are flexible,

the server assignment involves two stages. When both servers are working, each server is

assigned to a subtask based on a primary assignment; and when one of the subtasks is

blocked, the servers may be reassigned according to a secondary assignment.

Similar to the structure of Section 3.1, in Section 3.2.1, we obtain the optimal flexible

task assignment approach with general buffer sizes. In Sections 3.2.2 and 3.2.3, we discuss

the special cases when the internal buffers are zero and when the sum of the buffer sizes

goes to infinity, respectively.

3.2.1 Optimal Policy

For the primary assignment, we have two choices just like in static task assignment. And

when one of the subtasks is blocked, for the secondary assignment we can either let the

blocked server be idle or reassign this server to replace the other server and work on the

unfinished subtask until it is completed.

Note that our queueing system can be modeled as a birth-and-death process, and the

secondary assignment only applies to the states on the boundaries. And if we can increase

the transition rates of leaving the states on the boundaries, we reduce the time the process

spends in these boundary states without making any changes to the rest of the system,

and thus will increase the throughput of this birth-and-death process. Hence, to improve

the throughput by using flexible servers, we will only apply the secondary assignment

when we can increase the service rate by replacing the current server. Specifically, if our

primary assignment involves assigning server i to subtask i for i = 1, 2, we can improve

the throughput by secondary assignment only if µ12 > µ22 or µ21 > µ11. Similarly, if

our primary assignment involves assigning server i to subtask 3 − i for i = 1, 2, we can

improve the throughput by secondary assignment only if µ22 > µ12 or µ11 > µ21. Also, the
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optimal flexible task assignment will involve at most one flexible server for the secondary

assignment; otherwise we can improve the throughput by changing the primary assignment.

When neither server is reassigned in the secondary assignment, flexible task assignment is

equivalent to static task assignment.

Let Afij be the flexible task assignment that assigns server 1 to subtask i and server 2

to subtask j for i, j = 1, 2 when the two servers are static and no secondary assignment

is needed. Let Akfij be the flexible task assignment when exactly one server is flexible for

the secondary assignment, where for i, j, k ∈ {1, 2}, i is the primary assignment of server

1, j is the primary assignment of server 2, and k is the flexible server for the secondary

assignment. For simplicity, we only consider the case when µ11 ≥ µ21; we can obtain the

results of the other case by relabeling the servers. In this case, Af21, A1f
21 , and A2f

21 can only

be optimal if µ12 ≥ µ22 (otherwise, it is better to change the primary assignment). By

our previous analysis, since µ11 ≥ µ21, A2f
12 and A2f

21 cannot be optimal. Moreover, when

subtask 2 is blocked, we will assign server 1 to subtask 1 to obtain a larger service rate on

the boundary; thus Af21 is not optimal. Then there are three available assignment policies.

Af12: Server 1 is assigned to subtask 1 and server 2 is assigned to subtask 2 for the primary

assignment; when some subtask’s buffer is full, the corresponding server will be idle.

The corresponding throughput T f12 = T s12 is given in equation (3.1).

A1f
12 : Server 1 is assigned to subtask 1 and server 2 is assigned to subtask 2 for the primary

assignment; if subtask 1 runs out of buffer space earlier, server 1 will replace server

2 to finish subtask 2; if subtask 2 runs out of buffer space earlier, server 2 will be

idle. The corresponding throughput is

T 1f
12 =

µ11µ12

∑B1+B2+1
k=0 µk11µ

B1+B2+1−k
22

µ12

∑B1+B2+1
k=0 µk11µ

B1+B2+1−k
22 + µB1+B2+2

11

.

A1f
21 : Server 1 is assigned to subtask 2 and server 2 is assigned to subtask 1 for the primary

assignment; if subtask 2 is blocked earlier, server 1 will replace server 2 to finish
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subtask 1; if subtask 1 is blocked earlier, server 2 will be idle. The corresponding

throughput is

T 1f
21 =

µ11µ12

∑B1+B2+1
k=0 µk21µ

B1+B2+1−k
12

µ11

∑B1+B2+1
k=0 µk21µ

B1+B2+1−k
12 + µB1+B2+2

12

.

Observe that the throughputs of flexible task assignment are non-decreasing in the buffer

sizes B1 and B2. Moreover, the internal buffer allocation does not affect the results. Thus,

two flexible task assignment models with different buffer sizes have the same throughput

as long as the sums of the two buffers,B1 +B2, are equal. Similar to static task assignment,

this property only holds under our two-subtasks assumption.

The following proposition compares these policies when µ11 ≥ µ21. The proof is

provided in Appendix A.1. It uses the notation f ∝ g if f is a positive multiple of g.

Proposition 3.2.1. Suppose that µ11 ≥ µ21. Then

(i) If µ22 ≥ µ12, Assignment Af12 is optimal;

(ii) If µ22 < µ12, there exists a unique µ∗22 ∈ [0, µ12] such that Assignment A1f
12 is optimal

when µ∗22 ≤ µ22 < µ12; Assignment A1f
21 is optimal when 0 ≤ µ22 < µ∗22. Moreover,

a. If µ11 > µ21 > 0, then µ11 and µ∗22 are the only positive roots of

xB1+B2+2A4 − xA5 + A6 = 0, (3.4)

where

A4 = (µ11 − µ21)

B1+B2+1∑
k=0

µk21µ
B1+B2+1−k
12 + µB1+B2+2

21 ,

A5 = µB1+B2+2
11

B1+B2+1∑
k=0

µk21µ
B1+B2+1−k
12 ,

A6 = µB1+B2+2
11

B1+B2∑
k=0

µk+1
21 µB1+B2+1−k

12 .
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b. If µ11 > µ21 = 0, then µ∗22 = 0.

c. If µ11 = µ21 > 0, then µ∗22 = µ12.

Note that, when µ22 = 0 (which implies that µ12, µ21 > 0), Af12 yields zero throughput

since it assigns server 2 to subtask 2 all the time, and the throughput of A1f
12 can be sim-

plified as T 1f
12 = µ11µ12

µ11+µ12
. By multiplying both the numerator and denominator of T 1f

12 by∑B1+B2+1
k=0 µk21µ

B1+B2+1−k
12 and comparing with T 1f

21 , it is obvious that T 1f
12 < T 1f

21 . Thus,

when µ22 = 0, A1f
21 is optimal. When µ12 = 0, Af12 is optimal since both A1f

12 and A1f
21 yield

zero throughputs. Finally, when µ21 = 0, then A1f
12 is optimal for µ22 < µ12 and Af12 is

optimal for µ22 ≥ µ12.

For the primary assignment, similar to the case of the static task assignment, if the

servers have different specialty on the subtasks, we will assign them to the subtask that

they are better at. On the other hand, if one server dominates the other one at both subtasks,

we will use the better server as the flexible server, and assign the better server primarily to

subtask 1 as long as the service rate of the dominated server at subtask 2 is not too low.

3.2.2 Special Case 1: No Buffers

In this section, we consider the special case with zero buffers. When B1 = B2 = 0, µ12 >

0, we can compute the precise value of µ∗22 as

µ∗22 =


1

1
µ12

+ 1
µ21
− 1
µ11

, if µ21 > 0;

0, if µ21 = 0.

Since µ11 ≥ µ21 implies that 1
µ21
≥ 1

µ11
, it follows that µ∗22 ≥ 0.

Example 3.2.1. Consider the following three special cases of the service rates of subtask

1: (a) µ11 = 2, µ21 = 1; (b) µ11 = µ21 = 1; (c) µ11 = 1, µ21 = 2 (we include this case

for symmetry even though it violates our convention that µ11 ≥ µ21). Figure 3.3 shows
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how the optimal assignment changes with respect to the service rates µ12, µ22 of subtask

2. When µ11 = 2, µ21 = 1, Assignment Af12 is optimal when µ22 is large; A1f
12 is optimal

when µ22 is moderate; and A1f
21 is optimal when µ22 is small. When µ11 = µ21 = 1, the

optimal flexible task assignment is equivalent to the optimal static task assignment. And

when µ11 = 1, µ21 = 2, the results are symmetric to case (a).

(a) µ11 = 2, µ21 = 1 (b) µ11 = 1, µ21 = 1 (c) µ11 = 1, µ21 = 2

Figure 3.3: Optimal flexible task assignment with different service rates.

3.2.3 Special Case 2: Asymptotically Infinite Buffers

In this section, we consider the case when B1 +B2 →∞. Then,

1. In assignment Af12, if µ11 ≤ µ22, T f12 → µ11; and if µ11 > µ22, T f12 → µ22.

2. In assignment A1f
12 , if µ11 ≤ µ22, T 1f

12 → µ11; and if µ11 > µ22, T 1f
12 →

µ11µ12
µ11+µ12−µ22 .

3. In assignment A1f
21 , if µ21 ≤ µ12, T 1f

21 →
µ11µ12

µ11+µ12−µ21 ; and if µ21 > µ12, T 1f
21 → µ12.

Under the assumption that µ11 ≥ µ21, this yields the following results by algebra:

1. If µ12 ≥ µ21, µ11 ≤ µ22, then T f12 = T 1f
12 ≥ T 1f

21 ;

2. If µ12 ≥ µ21, µ11 > µ22,

(a) when µ22 ≥ µ12, then T f12 ≥ T 1f
12 ≥ T 1f

21 ;
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(b) when µ21 ≤ µ22 < µ12, then T 1f
12 > T f12, T

1f
12 ≥ T 1f

21 ;

(c) when µ22 < µ21, then T 1f
21 > T 1f

12 > T f12;

3. If µ12 < µ21, µ11 ≤ µ22, then T f12 = T 1f
12 > T 1f

21 ;

4. If µ12 < µ21, µ11 > µ22,

(a) when µ22 ≥ µ12, then T f12 ≥ T 1f
12 ≥ T 1f

21 ;

(b) when µ22 < µ12, then T 1f
21 > T 1f

12 > T f12.

By summarizing the above result, we can obtain that

1. If µ12 ≥ µ21, choose assignment Af12 when µ22 ≥ µ12, assignment A1f
12 when µ21 ≤

µ22 < µ12, and assignment A1f
21 when µ22 < µ21;

2. If µ12 < µ21, choose assignment Af12 when µ22 ≥ µ12, and choose assignment A1f
21

when µ22 < µ12.

Comparing this result with Proposition 3.2.1 shows that when B1 + B2 → ∞, µ∗22 →

min{µ12, µ21}. Note that assignmentA1f
21 is better if and only if µ22 = min{µ11, µ21, µ12, µ22}.

Thus, when server 1 is better at subtask 1, we will assign server 1 to subtask 1 and server

2 to subtask 2 for the primary assignment as long as the service rate of server 2 at subtask

2 is not lower than the service rate of the slower subtask under the other possible primary

assignment. Thus, as B1 +B2 →∞, static and flexible task assignment both use the same

primary assignment of servers.

3.3 Collaborative Task Assignment

In this section, we discuss collaborative task assignment. Similar to flexible task assign-

ment, in this model, each server’s assignment involves two stages. In particular, each server

is assigned to a subtask based on a primary assignment, and when one of the subtasks is

blocked, the servers are both flexible and collaborative, that is, we can assign either one
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server or two collaborating servers to the working subtask for the secondary assignment.

When the servers work together on a subtask, their combined service rate is proportional to

the sum of their service rates with synergy factor α > 0.

In Sections 3.1 and 3.2, we assume that µ11 ≥ µ21 (without loss of generality) and

fully characterize the optimal server assignment policy for general buffer sizes and static

or flexible servers, respectively. By contrast, in this section, we do not identify the optimal

task assignment approach for all service rates and general buffer sizes because the intro-

duction of collaboration largely increases the number of possible assignments. Specifically,

there are 18 possible collaborative task assignments since there are two choices for the pri-

mary assignment and three choices (assign server 1, 2, or both) for each subtask for the

secondary assignment. Moreover, there are still 12 possible assignments to analyze even

under the assumption that µ11 ≥ µ21. Instead, our arguments in Section 3.2.1 imply that in

any optimal policy, we will assign the server or servers with the highest individual or com-

bined service rate for the secondary assignment when one of the subtasks is blocked. And

once we have determined the secondary assignment, there are only two possible primary

assignments to choose from. Thus, to avoid a tedious description of the optimal approach,

we fix the service rates for the secondary assignment first and discuss the primary assign-

ment of the servers as a function of their secondary assignment. Moreover, in this section

we do not assume that µ11 ≥ µ21 (because we will adopt a different convention for labeling

the servers).

In Section 3.3.1, we provide the optimal primary assignment given the secondary as-

signment for the collaborative task assignment approach with general internal buffer sizes.

In Sections 3.3.2 and 3.3.3, we fully characterize the optimal policy for the special cases

when the internal buffers are zero and when the sum of the buffer sizes goes to infinity,

respectively.
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3.3.1 Optimal Policy

We introduce some notation to better illustrate the results in the following sections. Let

Σ1 = µ11 +µ21,Σ2 = µ12 +µ22; then the combined service rate of servers working together

at subtask i is αΣi for i = 1, 2. Let µ11 = β1Σ1, µ21 = (1 − β1)Σ1, µ12 = β2Σ2, µ22 =

(1− β2)Σ2; then βj ∈ [0, 1] is the fraction of server 1 of the total service rate on subtask j,

for j = 1, 2. Moreover, let xj be the service rate of the boundary state when subtask 3−j is

blocked, for j = 1, 2. Then, xj = max{µ1j, µ2j, αΣj} in any optimal policy. Note that we

will let the servers collaborate at subtask j if and only if αΣj ≥ max{µ1j, µ2j}, i.e., when

α ≥ max{βj, 1− βj}, for j = 1, 2. And if α < min{max{β1, 1− β1},max{β2, 1− β2}},

then the servers will never work together, and the problem is equivalent to flexible task

assignment.

We have two available assignment policies, one for each primary assignment:

Ac12: Assign server i ∈ {1, 2} to subtask i for the primary assignment. The corresponding

throughput is:

T c12 =
x1x2

∑B1+B2+1
k=0 µk11µ

B1+B2+1−k
22

x1x2

∑B1+B2

k=0 µk11µ
B1+B2−k
22 + x1µ

B1+B2+1
11 + x2µ

B1+B2+1
22

.

Ac21: Assign server 1 to subtask 2, and server 2 to subtask 1 for the primary assignment.

The corresponding throughput is:

T c21 =
x1x2

∑B1+B2+1
k=0 µk21µ

B1+B2+1−k
12

x1x2

∑B1+B2

k=0 µk21µ
B1+B2−k
12 + x1µ

B1+B2+1
21 + x2µ

B1+B2+1
12

.

As in Sections 3.1 and 3.2, in this model, the buffer allocation does not affect the results.

Thus, the throughputs of two collaborative task assignment models with different buffer

sizes have the same throughput as long as the sums B1 + B2 of the two buffers are equal.

As in Sections 3.1 and 3.2, this property only holds for our two subtasks assumption.
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Remark 3.3.1. The difference of T c12 with buffer size B1 + B2 and T c12 with buffer size

B1+B2−1 is positively proportional to x1µ22+x2µ11−x1x2. Thus, T c12 is non-decreasing in

the buffer sizesB1 andB2 if and only if x1µ22 +x2µ11−x1x2 ≥ 0. Similarly, we can obtain

that T c21 is non-decreasing in the buffer sizesB1 andB2 if and only if x1µ12+x2µ21−x1x2 ≥

0. Moreover, when β1 = β2, both inequalities can be simplified as max{α, β1, 1−β1} ≤ 1,

and thus both T c12 and T c21 are non-decreasing in the buffer sizes B1 and B2 if and only if

α ≤ 1.

Remark 3.3.1 shows that unlike the static and flexible task assignment approaches,

when the servers are collaborative, the long-run average throughputs are no longer always

non-decreasing with respect to the sum of the buffers. Intuitively, when servers are not

collaborative, blocking would cause a server to idle, and thus reduce the total service rate

of the system. And a larger sum of the buffer sizes would reduce the occurrence of block-

ing, and therefore increase the long-run average throughput of the system. However, when

the servers are collaborative with a moderate or high synergy level, we can not only avoid

server idling but also take advantage of efficient server collaboration when one of the sub-

tasks is blocked. Thus, the throughput of collaborative task assignment is increasing with

respect to the sum of the buffers only if the server collaboration is not efficient (i.e., x1, x2

are small relative to the rates of the servers at their primary assignments). When collabo-

ration is efficient (i.e., α is large), it is desirable to take advantage of collaboration to the

extent possible, which occurs when B1, B2 are small.

Next, we choose the assignment with the larger throughput. For ease of exposition, let

C1 ≡
B1+B2∑
k=0

µk11µ
B1+B2−k
22

k∑
j=0

µj12µ
B1+B2−j
21 ; (3.5)

C2 ≡
B1+B2∑
k=0

µk12µ
B1+B2−k
21

k∑
j=0

µj11µ
B1+B2−j
22 . (3.6)
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Note that

C1 − C2 =

B1+B2∑
k=0

(µ21µ22)B1+B2−k
k∑
j=0

(µ11µ12)j
[
(µ11µ21)k−j − (µ12µ22)k−j

]
.

Therefore, C1 ≥ C2 when µ11µ21 ≥ µ12µ22.

The following proposition compares T c12 and T c21.

Proposition 3.3.1. Assignment Ac12 is no worse than Ac21 if and only if

x1x2[(µ11 − µ21)C1 + (µ22 − µ12)C2] ≥ (µ11µ12 − µ21µ22)(x1C1 − x2C2). (3.7)

Proof. Note that

T c12 − T c21 ∝ x1x2L1 + x1L2 + x2L3,

where

L1 =

B1+B2+1∑
k=0

µk11µ
B1+B2+1−k
22

B1+B2∑
j=0

µj21µ
B1+B2−j
12

−
B1+B2+1∑

k=0

µk21µ
B1+B2+1−k
12

B1+B2∑
j=0

µj11µ
B1+B2−j
22 ; (3.8)

L2 = µB1+B2+1
21

B1+B2+1∑
k=0

µk11µ
B1+B2+1−k
22 − µB1+B2+1

11

B1+B2+1∑
k=0

µk21µ
B1+B2+1−k
12 ; (3.9)

L3 = µB1+B2+1
12

B1+B2+1∑
k=0

µk11µ
B1+B2+1−k
22 − µB1+B2+1

22

B1+B2+1∑
k=0

µk21µ
B1+B2+1−k
12 . (3.10)

Next, we treat L1, C1, C2 as functions ofB1 +B2 = n and prove that L1 = (µ11−µ21)C1 +

(µ22 − µ12)C2 by induction. Note that (3.5) and (3.6) yield

C1(n) =
n−1∑
k=0

µk11µ
n−k
22

k∑
j=0

µj12µ
n−j
21 + µn11

n∑
j=0

µj12µ
n−j
21

= µ21µ22C1(n− 1) + µn11

n∑
j=0

µj12µ
n−j
21 ; (3.11)
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C2(n) =
n−1∑
k=0

µk12µ
n−k
21

k∑
j=0

µj11µ
n−j
22 + µn12

k∑
j=0

µn11µ
n−j
22

= µ21µ22C2(n− 1) + µn12

n∑
j=0

µj11µ
n−j
22 . (3.12)

When B1 +B2 = 0, then C1(0) = C2(0) = 1, and

L1(0) = (µ11 + µ22)− (µ21 + µ12) = (µ11 − µ21)C1(0) + (µ22 − µ12)C2(0).

Suppose now that L1(B1 +B2) = (µ11− µ21)C1(B1 +B2) + (µ22− µ12)C2(B1 +B2) for

B1 +B2 = 0, 1, . . . , n− 1. Then, for B1 +B2 = n, (3.8), (3.11), and (3.12) yield

L1(n) = µ21µ22L1(n− 1) + µn+1
11

n∑
j=0

µj21µ
n−j
12 + µn12µ22

n∑
k=0

µk11µ
n−k
22

− µn+1
12

n∑
j=0

µj11µ
n−j
22 − µn11µ21

n∑
k=0

µk12µ
n−k
21

= µ21µ22

[
(µ11 − µ21)C1(n− 1) + (µ22 − µ12)C2(n− 1)

]
+ (µ11 − µ21)µn11

n∑
j=0

µj12µ
n−j
21 + (µ22 − µ12)µn12

n∑
j=0

µj11µ
n−j
22

= (µ11 − µ21)C1(n) + (µ22 − µ12)C2(n).

Thus, L1 = (µ11 − µ21)C1 + (µ22 − µ12)C2.

Note that we can also present the recursive formulas for C1(n) and C2(n) as follows:

C1(n) =
n∑
k=1

µk11µ
n−k
22

k−1∑
j=0

µj12µ
n−j
21 + µn22µ

n
21 +

n∑
k=1

µk11µ
n−k
22 µk12µ

n−k
21

= µ11µ21C1(n− 1) +
n∑
k=0

(µ11µ12)k(µ21µ22)n−k. (3.13)

C2(n) =
n∑
k=1

µk12µ
n−k
21

k−1∑
j=0

µj11µ
n−j
22 + µn21µ

n
22 +

n∑
k=1

µk12µ
n−k
21 µk11µ

n−k
22
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= µ12µ22C2(n− 1) +
n∑
k=0

(µ11µ12)k(µ21µ22)n−k. (3.14)

Similarly, using (3.9), (3.10), (3.13) and (3.14), we can obtain the following equations by

induction.

L2(n) = −(µ11µ12 − µ21µ22)C1(n); (3.15)

L3(n) = (µ11µ12 − µ21µ22)C2(n). (3.16)

When B1 + B2 = 0, (3.15) and (3.16) hold obviously. Suppose now that (3.15) and (3.16)

hold for B1 + B2 = 0, 1, . . . , n − 1. Then, for B1 + B2 = n, equations (4.3),(3.13), and

(3.14) yield

L2(n) = µ11µ21L2(n− 1) + (µ21µ22)n+1 − (µ11µ12)n+1

= −(µ11µ12 − µ21µ22)µ11µ21C1(n− 1)− (µ11µ12 − µ21µ22)
n∑
k=0

(µ11µ12)k(µ21µ22)n−k

= −(µ11µ12 − µ21µ22)C1(n);

L3(n) = µ12µ22L3(n− 1) + (µ11µ12)n+1 − (µ21µ22)n+1

= (µ11µ12 − µ21µ22)µ12µ22C2(n− 1) + (µ11µ12 − µ21µ22)
n∑
k=0

(µ11µ12)k(µ21µ22)n−k

= (µ11µ12 − µ21µ22)C2(n).

The result follows.

The next proposition shows the optimal server assignment policy for two special cases.

Proposition 3.3.2. (a) When µ11 ≥ µ21, µ22 ≥ µ12, Assignment Ac12 is no worse than

Ac21.

(b) When α = 1, Assignment Ac12 is no worse than Ac21 if and only if β1 ≥ β2.
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Proof. For (a), note that x1 ≥ µ11, x2 ≥ µ22. When µ11 ≥ µ21, µ22 ≥ µ12,

x2(µ11 − µ21)x1C1 ≥ µ22(µ11 − µ21)x1C1 ≥ (µ12µ11 − µ22µ21)x1C1,

x1(µ22 − µ12)x2C2 ≥ µ11(µ22 − µ12)x2C2 ≥ (µ21µ22 − µ11µ12)x2C2.

Adding up the above two inequalities, we obtain (3.7), which means that inequality (3.7)

always holds when µ11 ≥ µ21, µ22 ≥ µ12. Thus, in this case, T c12 ≥ T c21.

For (b), if α = 1, then x1 = Σ1, x2 = Σ2, and inequality (3.7) can be simplified as

(C1Σ1 + C2Σ2)(β1 − β2) ≥ 0.

Thus the result follows.

Part (a) of Proposition 3.3.2 shows that when the servers specialize in different subtasks,

the primary assignment is assign the servers to the subtasks they are specialized. For part

(b), note that β1 ≥ β2 ⇔ µ11µ22 ≥ µ21µ12. Thus, if the synergy level is 1, i.e., the server

collaboration is additive, then we let the servers collaborate for the secondary assignment,

and use the primary assignment with the higher product of service rates.

3.3.2 Special Case 1: No Buffers

When B1 = B2 = 0, then C1 = C2 = 1 and we can simplify inequality (3.7) as follows:

Corollary 3.3.1. Assignment Ac12 is no worse than Ac21 if and only if

x1x2(µ11 + µ22 − µ21 − µ12) ≥ (x1 − x2)(µ11µ12 − µ21µ22). (3.17)

Denote

γ =
Σ2

Σ1

as the fraction of the total service capacity at subtask 2 over the total service capacity at

subtask 1. Without loss of generality, label the servers so that β1 ≥ β2. Then β1 > 0, β2 < 1
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(otherwise the problem reduces to having only one server). Consider the following three

cases: (1) β1 ≥ β2 >
1
2
; (2) β1 ≥ 1

2
≥ β2; (3) 1

2
> β1 ≥ β2. The second case is equivalent

to µ11 ≥ µ21, µ22 ≥ µ12, and the optimal policy is provided in Proposition 3.3.2. For cases

(1) and (3), we have that β1 6= 1
2
6= β2. Let

m1 =
2β1 − 1

2β2 − 1
;

m2 =
(2β2 − 1)(1− β1)β1

(2β1 − 1)(1− β2)β2

;

G1 =
(β1 + β2 − 1)(1− γ)

(2β1 − 1)− (2β2 − 1)γ
, if γ 6= m1;

G2 =
(β1 + β2 − 1)β1

(2β1 − 1)[β1 + (1− β2)γ]
;

G3 =
(β1 + β2 − 1)(1− β2)γ

(2β2 − 1)[β1 + (1− β2)γ]
.

Note that, when β1 ≥ β2 >
1
2
, 0 ≤ m2 ≤ 1 ≤ m1 < ∞; when 1

2
> β1 ≥ β2, 0 < m1 ≤

1 ≤ m2 ≤ ∞. Propositions 3.3.3 and 3.3.4 present the results of the comparisons of Ac12

and Ac21 in cases (1) and (3), respectively. The proof of Proposition 3.3.3 is provided in

Appendix A.2.1.

Proposition 3.3.3. When β1 ≥ β2 >
1
2
,

(a) If γ < m2, Ac12 is optimal if and only if α ≥ max{G1, G2}.

(b) If m2 ≤ γ ≤ m1, Ac12 is always optimal.

(c) If γ > m1, Ac12 is optimal if and only if α ≤ G1.

When β1, β2 > 1
2
, then µ11 ≥ µ21, µ12 ≥ µ22, and hence server 1 is no worse than

server 2 at both subtasks. And β1 ≥ β2 suggests that server 1 is relatively better at subtask

1 than at subtask 2 (relative to server 2). Intuitively, when the synergy level α is high, we

might want to take advantage of the high efficiency of the servers when they collaborate

by pushing the system to the boundary states where only one subtask is available to work

on. Thus, when γ is large (small), and hence there is more total capacity at subtask 2 (1),
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we will assign the relatively faster server, i.e., server 1, to the subtask with larger total

capacity, i.e., subtask 2 (1), when the synergy level is high. Otherwise, when the synergy

level is small, we will assign the relatively faster server to the subtask with the smaller total

capacity to balance the speed of the two subtasks. Finally, when γ is moderate, so the total

service capacities at the two stations are similar, then it is better to assign the faster server

to the task the server is relatively better at whenever possible.

Proposition 3.3.4. When 1
2
> β1 ≥ β2,

(a) If γ < m1, Ac12 is optimal if and only if α ≤ G1.

(b) If m1 ≤ γ ≤ m2, Ac12 is always optimal.

(c) If γ > m2, Ac12 is optimal if and only if α ≥ max{G1, G3}.

The interpretation and proof of Proposition 3.3.4 are very similar to that of Proposition

3.3.3 except that server 2 is now better than server 1 at both subtasks and server 2 is rela-

tively better at subtask 2 than at subtask 1 (relative to server 1). Thus we omit the proof for

brevity.

Example 3.3.1. Figure 3.4 shows the optimal primary assignment of the servers for three

cases when α = 1: (a) µ11 = 2, µ21 = 1; (b) µ11 = µ21 = 1; (c) µ11 = 1, µ21 = 2. For all

three cases, Assignment Ac12 is optimal if and only if the service rate of server 2 at subtask

2 is above the corresponding line; otherwise Assignment Ac21 is optimal.
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(a) µ11 = 2, µ21 = 1 (b) µ11 = 1, µ21 = 1 (c) µ11 = 1, µ21 = 2

Figure 3.4: Optimal collaborative task assignment for different service rates when α = 1.

3.3.3 Special Case 2: Asymptotically Infinite Buffers

In this section, consider the case when B1 +B2 →∞. Then,

1. In assignment Ac12, if µ11 ≤ µ22, T c12 →
x1µ22

x1+µ22−µ11 ; and if µ11 > µ22, T c12 →
x2µ11

x2+µ11−µ22 .

2. In assignment Ac21, if µ21 ≤ µ12, T c21 →
x1µ12

x1+µ12−µ21 ; and if µ21 > µ12, T c21 →
x2µ21

x2+µ21−µ12 .

The following propositions provide the optimal collaborative task assignment policy when

the sum of the buffers goes to infinity. Again, we label the servers so that β1 ≥ β2, and

consider three cases: (1) β1 ≥ β2 >
1
2
; (2) β1 ≥ 1

2
≥ β2; (3) 1

2
> β1 ≥ β2. Case (2) follows
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from Proposition 3.3.2. For cases (1) and (3), we have β1 6= 1
2
6= β2. Let

G4 =
β1 + β2 − 1

2β1 − 1
;

G5 =
γβ2(1− β2 + β1)− β1(1− β1 + β2)

γβ2 − β1

, if γ 6= β1

β2

;

G6 =
β2[β1 − γ(1− β2)]

2β1 − 1
;

G7 =
β1 + β2 − 1

2β2 − 1
;

G8 =
γ(1− β2)(1− β1 + β2)− (1− β1)(1− β2 + β1)

γ(1− β2)− (1− β1)
, if γ 6= 1− β1

1− β2

;

G9 =
(1− β1)[β1 − γ(1− β2)]

(2β2 − 1)γ
.

Note that, when β1 ≥ β2, we have 0 ≤ 1−β1
1−β2 ≤ 1 ≤ β1

β2
≤ ∞. Propositions 3.3.5 and 3.3.6

present the results of the comparisons ofAc12 and Ac21 in cases (1) and (3), respectively. The

proof of Proposition 3.3.5 is provided in Appendix A.2.2.

Proposition 3.3.5. When β1 ≥ β2 >
1
2
,

1. If γ < 1−β1
1−β2 , Ac12 is optimal if and only if α ≥ min{G4,max{G5, G6}}.

2. If 1−β1
1−β2 ≤ γ ≤ β1

β2
, Ac12 is always optimal.

3. If γ > β1
β2

, Ac12 is optimal if and only if α ≤ max{G5, G7}.

Proposition 3.3.6. When 1
2
> β1 ≥ β2,

1. If γ < 1−β1
1−β2 , Ac12 is optimal if and only if α ≤ max{G4, G8}.

2. If 1−β1
1−β2 ≤ γ ≤ β1

β2
, Ac12 is always optimal.

3. If γ ≥ β1
β2

, Ac12 is optimal if and only if α ≥ min{G7,max{G8, G9}}.

The interpretation and proof of Proposition 3.3.6 are very similar to that of Proposition

3.3.5 except that server 2 is now better than server 1 at both subtasks and server 2 is rela-

tively better at subtask 2 than at subtask 1 (relative to server 1). Thus we omit the proof for

brevity.
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We observe that the optimal policies for asymptotically infinite buffers have similar

structure as in the zero buffer case, and hence have the same intuitions as in the previous

section. However, they have more complex thresholds than the zero buffer case because C1

C2

has multiple possible limits when the sum of the buffers goes to infinity depending on how

µ11
µ22

and µ12
µ21

compare with 1.

3.4 Other Forms of Server Coordination

In this section, we analyze the other two forms of server coordination mentioned in Section

5.1, namely teamwork and non-collaboration. Note that all of the results in this section

hold without the assumption of exponentially distributed service requirement. Thus, the

results in this section can be applied to a generalized system with independent and identi-

cally distributed service requirements. In Section 3.4.1, we investigate teamwork with or

without task partitioning; in Section 3.4.2, we analyze the non-collaboration approach; and

in Section 3.4.3, we compare the long-run average throughputs of these methods.

3.4.1 Teamwork

In this section, we analyze the teamwork server coordination approach. The service re-

quirement of each job is S1 + S2, and the service rate of server i at the combined task

is
1

1
µi1

+ 1
µi2

for i = 1, 2. Thus, the corresponding throughput of teamwork is proportional to the sum of

these service rates, namely

T t =
α

1
µ11

+ 1
µ12

+
α

1
µ21

+ 1
µ22

.

We also consider teamwork with task partitioning, in which the server team will first

complete subtask 1 with a combined service rate of αΣ1, and then complete subtask 2 with
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a combined service rate of αΣ2, and repeat the process in this order. The throughput of

teamwork with task partitioning is

T tp =
α

1
µ11+µ21

+ 1
µ12+µ22

.

The next result compares teamwork with or without task partitioning.

Proposition 3.4.1. The throughput of teamwork with task partitioning is never smaller than

that of teamwork (without task partitioning).

Proof. Simple algebra yields that T tp ≥ T t if and only if (µ11µ22 − µ12µ21)2 ≥ 0. Thus

T tp ≥ T t always holds.

Note that T tp = T t if µ11µ22 = µ12µ21, which holds if servers are identical or if service

rates depend only on either the subtask or the station or if the servers are generalists, which

means that the service rate of server i at subtask j is of the form µiγj . Thus the difference

between teamwork with and without task partitioning arises from server specialization.

Teamwork with task partitioning takes advantage of the server specialization (and thus

avoids extremely low service rates) by combining the service rates at each subtask first.

Thus even when servers are not generalists, they do not spend excessive time at subtasks

where they have relatively low service rates. Thus teamwork with task partitioning does a

better job of neutralizing the servers’ weaknesses and leads to higher throughput.

3.4.2 Non-collaboration

In this section, we consider a non-collaborative approach in which servers are working in

parallel and each server will complete all subtasks of a job. The throughput of this parallel

model is

T nc =
1

1
µ11

+ 1
µ12

+
1

1
µ21

+ 1
µ22

.

Note that non-collaboration processes multiple jobs in parallel at the same time, while

37



task assignment and teamwork with or without task partitioning process only one job at

a time. Thus non-collaboration has more work in process (WIP) than the other server

coordination approaches.

3.4.3 Comparison of Non-collaboration and Teamwork

Note that non-collaboration is a special case of teamwork with α = 1 for one-station

systems. Thus, we have the following proposition:

Proposition 3.4.2. Teamwork (without task partitioning) is no worse than non-collaboration

if and only if α ≥ 1.

By comparing the long-run average throughputs of teamwork with task partitioning and

non-collaboration, we have the following result:

Proposition 3.4.3. Teamwork (with task partitioning) is no worse than non-collaboration

if and only if

α ≥ Σ1 + Σ2

Σ1Σ2

× h1

h2

≡ h, (3.18)

where

h1 = µ11µ21Σ2 + µ12µ22Σ1,

h2 = (µ11 + µ12)(µ21 + µ22).

Note that, h can be reorganized as follows:

h =
β1(1− β1)Σ2

1 + β2(1− β2)Σ2
2 + (β1 + β2 − β2

1 − β2
2)Σ1Σ2

β1(1− β1)Σ2
1 + β2(1− β2)Σ2

2 + (β1 + β2 − 2β1β2)Σ1Σ2

. (3.19)

It follows that h ≤ 1, and the equality holds if and only if β1 = β2 ⇔ µ11µ22 = µ12µ21 ⇔

T tp = T t.

Intuitively, servers are working separately in non-collaboration, so when the server col-

laboration is not too inefficient (α is not too small), teamwork with or without task par-

titioning would be better since it takes the advantage of server collaboration. Moreover,
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teamwork with task partitioning can outperform non-collaboration even when collabora-

tion is somewhat inefficient (when h < α < 1) because it takes better advantage of server

specialization. However, if the relative advantage of server 1 over server 2 at both sub-

tasks are equal (i.e., β1 = β2), the benefit of server specialization for teamwork with task

partitioning no longer exists, and the comparison of teamwork with task partitioning and

non-collaboration depends solely on whether the server collaboration is efficient or not.

3.5 Best Server Coordination Methods

In this section, we compare the server coordination methods we discussed in the previous

sections, and determine how we should choose from these approaches for one queueing

station.

Recall that we separate the task assignment approaches based on server flexibility and

collaboration levels, namely static, flexible but not collaborative, and flexible and collab-

orative. Moreover, servers need to be flexible and collaborative for teamwork with and

without task partitioning and flexible for non-collaboration. Table 3.1 summarize the re-

quirements on server flexibility and collaboration for the six server coordination methods

we consider. A check-mark X indicates that the method requires the specified server flexi-

bility and collaboration levels.

Table 3.1: Applicability of server coordination approaches

Approach Flexible Servers Collaborative Servers
static task assignment

flexible task assignment X
collaborative task assignment X X

teamwork without task partitioning X X
teamwork with task partitioning X X

non-collaboration X

As Table 3.1 shows, if the servers are static, only static task assignment is applicable;

if the servers are flexible but not collaborative, only static and flexible task assignment and
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non-collaboration are applicable; and if the servers are flexible and collaborative, all six

server coordination methods are applicable.

We have proved that in one-station systems, teamwork with task partitioning is never

worse than teamwork without task partitioning. As these approaches are applicable in the

same settings, we will only consider teamwork with task partitioning in this section. More-

over, static and flexible task assignment are special cases of collaborative task assignment.

Thus, we will compare collaborative task assignment with teamwork with task partition-

ing and non-collaboration in Section 3.5.1 to identify the best possible server coordination

approach. In Section 3.5.2, we compare flexible task assignment and non-collaboration to

identify the best server coordination method when the servers are flexible but not collabora-

tive. The comparison of static and flexible task assignment with other server coordination

methods can be found in Appendices A.4.1 and A.4.2, respectively. Finally, in Sections

3.5.3 and 3.5.4, we consider two special cases, namely when the servers are generalists and

when the servers are specialists, respectively.

3.5.1 Best Server Coordination Methods for Flexible and Collaborative Servers

In this section, we consider the case when servers are not only flexible, but also can work

together with a combined service rate equal to the sum of individual service rates times

the synergy factor α > 0. We start by comparing teamwork with task partitioning and

collaborative task assignment.

Proposition 3.5.1. Teamwork with task partitioning is no worse than collaborative task

assignment if and only if α ≥ 1 + |β1 − β2|.

Proof. First, we prove that when α < max{β1, 1−β1, β2, 1−β2}, teamwork with task parti-

tioning is worse than collaborative task assignment. Recall that x1 = max{µ11, µ21, αΣ1},

x2 = max{µ12, µ22, αΣ2}, and thus αΣ1 ≤ x1, αΣ2 ≤ x2. When α < max{β1, 1 −
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β1, β2, 1− β2}, at least one of the inequalities αΣ1 ≤ x1 and αΣ2 ≤ x2 is strict. Thus,

T tp =
1

1
αΣ1

+ 1
αΣ2

<
1

1
x1

+ 1
x2

=
x1x2

x1 + x2

.

Moreover,

x1x2

x1 + x2

− T c12 ∝ (x1x2 − x1µ22 − x2µ11)

B1+B2∑
k=0

µk11µ
B1+B2−k
22 , (3.20)

x1x2

x1 + x2

− T c21 ∝ (x1x2 − x1µ12 − x2µ21)

B1+B2∑
k=0

µk21µ
B1+B2−k
12 . (3.21)

Since α < max{β1, 1 − β1, β2, 1 − β2}, at least one of the following four cases hold: (1)

x1 = µ11, (2) x1 = µ21, (3) x2 = µ12, or (4) x2 = µ22. Thus, at least one of equations

(3.20) and (3.21) is non-positive, and hence

T tp <
x1x2

x1 + x2

≤ max{T c12, T
c
21}.

We conclude that teamwork with task partitioning is worse than collaborative task assign-

ment.

Next, when α ≥ max{β1, 1− β1, β2, 1− β2}, we have x1 = αΣ1 and x2 = αΣ2. Then,

equations equations (3.20) and (3.21) yield

T tp − T c12 ∝ (αΣ1Σ2 − Σ1µ22 − Σ2µ11)

B1+B2∑
k=0

µk11µ
B1+B2−k
22 ,

T tp − T c21 ∝ (αΣ1Σ2 − Σ1µ12 − Σ2µ21)

B1+B2∑
k=0

µk21µ
B1+B2−k
12 .

Therefore,

T tp − T c12 ≥ 0⇔ α ≥ Σ1µ22 + Σ2µ11

Σ1Σ2

= 1− β2 + β1,

T tp − T c21 ≥ 0⇔ α ≥ Σ1µ12 + Σ2µ21

Σ1Σ2

= 1− β1 + β2.
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It follows that

T tp ≥ max{T c12, T
c
21} ⇔ α ≥ 1 + |β1 − β2|.

Hence, teamwork with task partitioning is no worse than collaborative task assignment if

and only if α ≥ 1 + |β1 − β2|.

Note that 1 + |β1 − β2| ≥ 1 and a larger value of |β1 − β2| indicates a higher spe-

cialization level of the servers. Therefore, Proposition 3.5.1 indicates that teamwork with

task partitioning is preferable to collaborative task assignment if the server collaboration is

efficient (i.e., α > 1) and the servers are not heavily specialized.

Next, we compare non-collaboration and collaborative task assignment. The proof of

Proposition 3.5.2 is provided in Appendix A.3.1.

Proposition 3.5.2. Let

D1 ≡
[
µB1+B2+2

11 (µ21 + µ22) + µB1+B2+2
22 (µ11 + µ12)

+ (µ11µ22 − µ21µ12)µ11µ22

B1+B2−1∑
k=0

µk11µ
B1+B2−1−k
22

]
× x1x2

h1(µB1+B2+1
11 x1 + µB1+B2+1

22 x2)
,

D2 ≡
[
µB1+B2+2

21 (µ11 + µ12) + µB1+B2+2
12 (µ21 + µ22)

+ (µ21µ12 − µ11µ22)µ21µ12

B1+B2−1∑
k=0

µk21µ
B1+B2−1−k
12

]
× x1x2

h1(µB1+B2+1
21 x1 + µB1+B2+1

12 x2)
,

where x1 = max{µ11, µ21, αΣ1}, x2 = max{µ12, µ22, αΣ2}. Then, collaborative task

assignment is no worse than non-collaboration if and only if

max{D1, D2} ≥ 1.

Observe that max{D1, D2} > 0, and D1, D2 can be either greater or less than 1. For
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instance, when B1 = B2 = 0, α = 1
2
, if µ11 = µ22 = 3, µ21 = µ12 = 1, then collaborative

task assignment is better; if µ11 = µ22 = µ21 = µ12 = 1, then non-collaboration is better.

Intuitively, when the servers are highly specialized at different subtasks, we prefer task

assignment even when server collaboration is not efficient since it takes advantage of the

high server specialization level. However, if the servers are not highly specialized, we

prefer non-collaboration since it avoids blocking.

Moreover, let D1(α), D2(α) be the values of D1, D2 as functions of α. Then both

D1(α) andD2(α) are non-decreasing in α, and when α is sufficiently large, bothD1(α) and

D2(α) will be linear in α. Thus, limα→∞Di(α)→∞ for i = 1, 2. Therefore, Proposition

3.5.2 implies that collaborative task assignment is better than non-collaboration when α is

large enough since only collaborative task assignment takes advantage of efficient server

collaboration.

The following proposition concludes the comparisons in this section. Its proof is pro-

vided in Appendix A.3.2.

Proposition 3.5.3. Let α0 = min{max{β1, 1− β1},max{β2, 1− β2}}, then

1. when α < 1 + |β1 − β2|,

(a) if max{D1(α0), D2(α0)} < 1, there exists a unique α∗ ∈ (α0, h] such that

max{D1(α∗), D2(α∗)} = 1, and

i. when α < α∗, non-collaboration is optimal;

ii. when α∗ ≤ α < 1 + |β1 − β2|, collaborative task assignment is optimal;

(b) if max{D1(α0), D2(α0)} ≥ 1, collaborative task assignment is optimal;

2. when α ≥ 1 + |β1 − β2|, teamwork with task partitioning is optimal.

Intuitively, the value of max{D1(α0), D2(α0)} provides information on server specialty

level. As we can see from our previous example, max{D1(α0), D2(α0)} > 1 when the

servers are highly specialized, and max{D1(α0), D2(α0)} ≤ 1 when the servers are not
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highly specialized. Thus, Proposition 3.5.3 indicates that when servers are not highly spe-

cialized, we prefer non-collaboration when the synergy level is low since it avoids ineffi-

cient server collaboration and blocking; we prefer collaborative task assignment when the

synergy level is moderate since it takes the advantages of both server synergy and specialty

(as long as the servers are not identical); and we prefer teamwork when the synergy level is

high since it takes full advantage of efficient server collaboration. On the other hand, when

the servers are highly specialized, we prefer collaborative task assignment when the syn-

ergy level is not high since it takes full advantage of server specialty and avoids assigning

the servers to the subtasks they are not specialized in; and we prefer teamwork when the

synergy level is high since it takes full advantage of efficient server collaboration.

3.5.2 Best Server Coordination Methods for Flexible and Non-collaborative Servers

In this section, we compare the two methods that are applicable when the servers are flexi-

ble but not collaborative, namely flexible task assignment and non-collaboration (static task

assignment is also applicable, but it is a special case of flexible task assignment). Without

loss of generality, label the servers such that µ11 ≥ µ21. Then the following proposition

describes the optimal assignment of flexible but not collaborative servers.

Proposition 3.5.4. Label the servers such that µ11 ≥ µ21. Let

D3 ≡
h2µ11µ22

∑B1+B2+1
k=0 µk11µ

B1+B2+1−k
22

h1

∑B1+B2+2
k=0 µk11µ

B1+B2+2−k
22

;

D4 ≡
h2µ11µ12

∑B1+B2+1
k=0 µk11µ

B1+B2+1−k
22

h1

(∑B1+B2

k=0 µk11µ
B1+B2−k
22 µ11µ12 + µB1+B2+2

11 + µ12µ
B1+B2+1
22

) ;

D5 ≡
h2µ11µ12

∑B1+B2+1
k=0 µk21µ

B1+B2+1−k
12

h1

(∑B1+B2

k=0 µk21µ
B1+B2−k
12 µ11µ12 + µ11µ

B1+B2+1
21 + µB1+B2+2

12

) .
Flexible task assignment is no worse than non-collaboration if and only if

max{D3, D4, D5} ≥ 1.
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Proof. When µ11 ≥ µ21, there are three available flexible task assignment policies, namely

Af12, A
1f
12 , A

1f
21 . Thus, for flexible task assignment to be no worse than non-collaboration, the

throughput of the optimal flexible task assignment needs to be no lower than the throughput

of non-collaboration, i.e., max{T f12, T
1f
12 , T

1f
21 } ≥ T nc. Reorganizing this inequality yields

the desired result. We omit the details for reasons of brevity.

Note that D3, D4, D5 can be either greater or less than 1. For example, when B1 =

B2 = 0, if µ11 = µ12 = 2, µ22 = 1, µ21 = 1
8
, then flexible task assignment is better;

if µ11 = µ12 = 2, µ22 = 1, µ21 = 1
2
, then non-collaboration is better. Intuitively, when

one server has an extremely low service rate at some station compared to the other server,

flexible task assignment is better since it can avoid this low service rate; otherwise, non-

collaboration is better since it avoids blocking.

3.5.3 Special Case: Generalists

In this section, we consider the special case when the servers are generalists. Recall that

servers are called generalists if µij = µiγj for any i, j, where µi can be regarded as the

ability of server i, and γj represents the difficulty of subtask j. When the servers are

generalists, µ11µ22 = µ21µ12, and thus β1 = β2. The following proposition provides the

best server coordination method for one-station systems when β1 = β2 and servers are

flexible and collaborative (so that all six server coordination methods are applicable). Its

proof can be found in Appendix A.3.3.

Proposition 3.5.5. When β1 = β2,

(1) The long-run average throughputs of teamwork with task partitioning and teamwork

without task partitioning are equal;

(2) If α > 1, teamwork is optimal; if α < 1, non-collaboration is optimal;

(3) If α = 1, collaborative task assignment, teamwork with or without task partitioning,
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and non-collaboration are equivalent, and are no worse than static and flexible task

assignment.

Intuitively, when the servers are generalists, a server’s rate at any subtask is proportional

to his individual ability that is unaffected by the subtask. That is, if one server is better

at some subtask than the other server, he will also be better at the other subtask. Thus,

there is no advantage to assign the servers to different subtasks (i.e., task assignment).

When the synergy level is higher than 1, we want to take advantage of this efficient server

collaboration, and thus we prefer teamwork; and when the synergy level is less than 1, we

let the servers work in parallel (i.e., non-collaboration), since they do not have specialties

at different subtasks and the faster server will not be blocked by the slower server. When

the synergy level is 1, the combined service rate is additive, and there is no loss or gain

from either server collaboration or server speciality. Thus, collaborative task assignment,

teamwork with or without task partitioning, and non-collaboration are equivalent in this

case.

In order to quantify the comparisons of the six server coordination methods, we provide

numerical results. Specifically, we compute the throughputs of the different approaches we

have discussed with different values of the synergy factor α and service rates with the

servers being generalists. We choose four sets of service rates, namely the cases where (i)

servers are identical and the task difficulties at both subtasks are the same (µ1 = µ2, γ1 =

γ2), (ii) servers are identical but the task difficulties are not the same (µ1 = µ2, γ1 6= γ2),

(iii) one server is faster than the other at both subtasks while both subtasks have the same

difficulty (µ1 6= µ2, γ1 = γ2), and (vi) the server abilities and task difficulties are different

for different servers and subtasks (µ1 6= µ2, γ1 6= γ2). We also choose five values for α,

including cases when server collaboration is synergistic, additive, and inefficient. Recall

that Bi is the internal buffer size of subtask i for i = 1, 2, and that the buffer allocation

does not affect the throughput as long as the sum B1 + B2 remains unchanged. Thus, we

choose three values of B1 + B2 representing small, medium, and large buffer sizes. The
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results are given in Table 5.5, where S, F, C stand for static, flexible, collaborative task

assignment, respectively, T for teamwork, and NC for non-collaboration. Since in this

case, the throughputs of the two teamwork methods are equal, we do not include a separate

column for teamwork with task partitioning in Table 5.5.

Table 3.2: Throughputs of server coordination methods with generalists (the highest
throughputs in each row are in bold).

service rates B1 +B2 = 0 B1 +B2 = 10 B1 +B2 →∞
α µ11 µ21 µ12 µ22 S F C S F C S F C T NC

1.5 1 1 1 1 0.67 0.67 1.20 0.92 0.92 1.03 1.00 1.00 1.00 1.50 1.00
1.5 2 2 1 1 0.86 0.86 1.64 1.00 1.00 1.50 1.00 1.00 1.50 2.00 1.33
1.5 2 1 2 1 0.86 1.20 1.80 1.00 1.33 1.64 1.00 1.33 1.64 2.25 1.50
1.5 1 2 2 4 1.33 1.60 2.50 1.85 1.92 2.40 2.00 2.00 2.40 3.00 2.00
1.2 1 1 1 1 0.67 0.67 1.09 0.92 0.92 1.01 1.00 1.00 1.00 1.20 1.00
1.2 2 2 1 1 0.86 0.86 1.47 1.00 1.00 1.41 1.00 1.00 1.41 1.60 1.33
1.2 2 1 2 1 0.86 1.20 1.64 1.00 1.33 1.57 1.00 1.33 1.57 1.80 1.50
1.2 1 2 2 4 1.33 1.60 2.22 1.85 1.92 2.18 2.00 2.00 2.18 2.40 2.00
1.0 1 1 1 1 0.67 0.67 1.00 0.92 0.92 1.00 1.00 1.00 1.00 1.00 1.00
1.0 2 2 1 1 0.86 0.86 1.33 1.00 1.00 1.33 1.00 1.00 1.33 1.33 1.33
1.0 2 1 2 1 0.86 1.20 1.50 1.00 1.33 1.50 1.00 1.33 1.50 1.50 1.50
1.0 1 2 2 4 1.33 1.60 2.00 1.85 1.92 2.00 2.00 2.00 2.00 2.00 2.00
0.8 1 1 1 1 0.67 0.67 0.89 0.92 0.92 0.98 1.00 1.00 1.00 0.80 1.00
0.8 2 2 1 1 0.86 0.86 1.17 1.00 1.00 1.23 1.00 1.00 1.23 1.07 1.33
0.8 2 1 2 1 0.86 1.20 1.33 1.00 1.33 1.41 1.00 1.33 1.41 1.20 1.50
0.8 1 2 2 4 1.33 1.60 1.78 1.85 1.92 1.96 2.00 2.00 2.00 1.60 2.00
0.5 1 1 1 1 0.67 0.67 0.67 0.92 0.92 0.92 1.00 1.00 1.00 0.50 1.00
0.5 2 2 1 1 0.86 0.86 0.86 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.33
0.5 2 1 2 1 0.86 1.20 1.20 1.00 1.33 1.33 1.00 1.33 1.33 0.75 1.50
0.5 1 2 2 4 1.33 1.60 1.60 1.85 1.92 1.92 2.00 2.00 2.00 1.00 2.00

Observe that the results in Table 5.5 are consistent with our results in Proposition 3.5.5.

That is, when α ≥ 1, teamwork is the best; when α ≤ 1, non-collaboration is the best; and

when α = 1, collaborative task assignment is the best. In addition, Table 5.5 yields the

following new observations about static, flexible and collaborative task assignment with

generalist servers:

1. When the servers are identical (cases (i) and (ii)), static task assignment is equivalent

to flexible task assignment. When servers are not identical (cases (iii) and (iv)), by

comparing the static and flexible task assignment, we conclude that server flexibility

increases the throughput of the task assignment approach significantly (from 20% to
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40% in our examples), especially when the buffer sizes are small.

2. We know that the long-run average throughputs of the static and flexible task assign-

ment approaches are increasing with respect to the buffer sizes. Table 5.5 shows that

the convergence speeds for both task assignment approaches are fast. Specifically,

for cases (ii) and (iii), the throughputs of static and flexible task assignments already

reach the maximum values (as when B1 + B2 → ∞) when B1 + B2 = 10; and

for cases (i) and (iv), letting B1 + B2 = 10 increases the throughputs of static and

flexible task assignments by 20% to 39% relative toB1 +B2 = 0, and yields through-

puts that are very close to their upper bounds (with deviation less than 8% relative to

B1 +B2 →∞).

3. Allowing collaboration increases the throughput of the task assignment approach

when server collaboration is not too inefficient (i.e., when α is not too small) as long

as the combined service rate exceeds the maximum of individual service rates (e.g.,

α = 0.8). And this improvement can be large, and increases with the synergy level.

Specifically, the throughputs of collaborative task assignment are over 10% higher

than for flexible task assignment, even when the synergy level is less than 1 (i.e.,

α = 0.8) when the buffers are zero. However, this improvement decreases as the

sum of the buffer sizes increases (because blocking is less frequent for larger buffer

sizes).

4. The throughput of collaborative task assignment is non-decreasing with respect to the

buffer sizes when α ≤ 1, and non-increasing when α > 1. This result is consistent

with Remark 3.3.1, since larger internal buffers lead to less collaboration of the two

servers. And the convergence speed with respect to B1 + B2 is fast. In particular,

for cases (ii), (iii), and the α ≥ 1 cases of (iv), the throughput of collaborative task

assignment already reaches the maximum (minimum) value (as whenB1+B2 →∞)

when B1 + B2 = 10; and for the other cases, the throughput of collaborative task
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assignment is very close to its extreme value when B1 + B2 = 10 (with deviation

less than 8% relative to B1 +B2 →∞).

5. When α ≤ 1 and B1 + B2 → ∞, all three task assignment approaches are the

best for cases (i) and (iv). Indeed, when the synergy level of server collaboration is

low, the advantage of server collaboration through secondary assignment vanishes.

Therefore, we prefer more balanced service rates at different subtasks for the primary

assignment to avoid blocking. That is, for all three task assignment approaches, we

will assign server i to subtask 3− i for i = 1, 2 for the optimal primary assignments

of case (iv). Then, the service rates of all subtasks are equal in cases (i) and (iv) when

both subtasks are working, which reduces the occurrence of blocking. When the sum

of the buffer sizes goes to infinity, the possibility of blocking is further reduced, and

servers will work individually at the same rate and remain static almost all of the

time. Thus, the three task assignment approaches all yield the same throughputs as

non-collaboration as B1 +B2 →∞.

3.5.4 Special Case: Specialists

We have discussed the special case when servers are generalists in Section 3.5.3. In this

section, we want to consider another special case, namely when servers are specialists.

Servers are called specialists if they have higher service rates at different subtasks. In this

section, the servers are labeled so that µ11 ≥ µ21, µ12 ≤ µ22.

Note that by Propositions 3.1.1 and 3.2.1, when µ11 ≥ µ21, µ12 ≤ µ22, then As12 =

Af12 are the optimal static and flexible task assignment approaches. Specifically, we will

assign server i to subtask i for i = 1, 2 all the time in both the static and the flexible task

assignments.

We now compare our six server coordination approaches with specialist servers via

numerical results. We choose four sets of service rates with the specialization level of

servers at different subtasks from low to high, and use the case with identical service rates
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as a benchmark in our comparison. And we also choose five values for α, including cases

where server collaboration is synergistic, additive, and inefficient. The results are given in

Table 5.6. The notation and abbreviations are as defined in Section 3.5.3. And we have an

extra column for teamwork with task partitioning (TP) since it is no longer equivalent to

teamwork without task partitioning (as in the previous section).

Table 3.3: Throughputs of server coordination methods with specialists (the highest
throughputs in each row are in bold, and we put the best task assignment methods for
the finite buffers cases, i.e., when B1 + B2 = 0, and B1 + B2 = 10, in italics if they beat
teamwork with and without task partitioning and non-collaboration).

service rates B1 +B2 = 0 B1 +B2 = 10 B1 +B2 →∞
α µ11 µ21 µ12 µ22 S F C S F C S F C TP T NC

1.5 1 1 1 1 0.67 0.67 1.20 0.92 0.92 1.03 1.00 1.00 1.00 1.50 1.50 1.00
1.5 2 1 1 2 1.33 1.33 2.12 1.85 1.85 2.02 2.00 2.00 2.00 2.25 2.00 1.33
1.5 3 1 1 3 2.00 2.00 3.00 2.77 2.77 3.00 3.00 3.00 3.00 3.00 2.25 1.50
1.5 4 1 1 4 2.67 2.67 3.87 3.69 3.69 3.98 4.00 4.00 4.00 3.75 2.40 1.60
1.2 1 1 1 1 0.67 0.67 1.09 0.92 0.92 1.01 1.00 1.00 1.00 1.20 1.20 1.00
1.2 2 1 1 2 1.33 1.33 1.89 1.85 1.85 1.98 2.00 2.00 2.00 1.80 1.60 1.33
1.2 3 1 1 3 2.00 2.00 2.67 2.77 2.77 2.94 3.00 3.00 3.00 2.40 1.80 1.50
1.2 4 1 1 4 2.67 2.67 3.43 3.69 3.69 3.89 4.00 4.00 4.00 3.00 1.92 1.60
1.0 1 1 1 1 0.67 0.67 1.00 0.92 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 2 1 1 2 1.33 1.33 1.71 1.85 1.85 1.95 2.00 2.00 2.00 1.50 1.33 1.33
1.0 3 1 1 3 2.00 2.00 2.40 2.77 2.77 2.88 3.00 3.00 3.00 2.00 1.50 1.50
1.0 4 1 1 4 2.67 2.67 3.08 3.69 3.69 3.81 4.00 4.00 4.00 2.50 1.60 1.60
0.8 1 1 1 1 0.67 0.67 0.89 0.92 0.92 0.98 1.00 1.00 1.00 0.80 0.80 1.00
0.8 2 1 1 2 1.33 1.33 1.50 1.85 1.85 1.89 2.00 2.00 2.00 1.20 1.07 1.33
0.8 3 1 1 3 2.00 2.00 2.09 2.77 2.77 2.80 3.00 3.00 3.00 1.60 1.20 1.50
0.8 4 1 1 4 2.67 2.67 2.67 3.69 3.69 3.69 4.00 4.00 4.00 2.00 1.28 1.60
0.5 1 1 1 1 0.67 0.67 0.67 0.92 0.92 0.92 1.00 1.00 1.00 0.50 0.50 1.00
0.5 2 1 1 2 1.33 1.33 1.33 1.85 1.85 1.85 2.00 2.00 2.00 0.75 0.67 1.33
0.5 3 1 1 3 2.00 2.00 2.00 2.77 2.77 2.77 3.00 3.00 3.00 1.00 0.75 1.50
0.5 4 1 1 4 2.67 2.67 2.67 3.69 3.69 3.69 4.00 4.00 4.00 1.25 0.80 1.60

We have the following conclusions from Table 5.6:

1. Collaborative task assignment is the best except when server synergy is high, server

specialization is low, and buffer sizes are small. Intuitively, when servers are spe-

cialists, we would like to take advantage of their specialty by assigning them to the

subtasks they are better at unless the server synergy level is high enough to outweigh

their specialization.

2. Teamwork with task partitioning is the best when the synergy level is high and the
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specialization level is low.

3. Server collaboration improves the long-run average throughput of task assignment

when the collaboration is not too inefficient (i.e., when α ≥ 0.8 and thus α
∑

j µij ≥

maxj{µij} for i = 1, 2.), and this improvement gets larger as the synergy level gets

higher. However, unlike in the generalists case, this improvement vanishes as the

sum of the buffers goes to infinity. Intuitively, when the service rate at both subtasks

are the same for the primary assignment and the sum of the buffer sizes is large, the

probability of any of the subtasks getting blocked is small, and thus the differences

among the static, flexible, and collaborative task assignment are small. Furthermore,

the throughputs of all three task assignment approaches do not depend on the synergy

level when the sum of the buffers goes to infinity. The intuition is similar to that

of cases (i) and (iv) when the servers are generalists as the possibility of blocking

vanishes with large buffers and balanced service rates.

4. The throughput of collaborative task assignment is decreasing with respect to the

buffer sizes when the synergy level is high and the specialty level of servers is not

large, which coincides with the cases when teamwork with task partitioning is the

best among all methods. Otherwise, the throughput of collaborative task assignment

is non-decreasing with respect to the buffer sizes even when server collaboration is

efficient. Intuitively, a moderate and balanced service rate at both subtasks for the

primary assignment is preferable to a single high service rate at one subtask for the

secondary assignment for collaborative task assignment. When α = 1.5, and the

specialty level µ11
µ21

= 3, the throughput of collaborative task assignment is a constant

with respect to the buffer sizes. This result is consistent with Remark 3.3.1 since in

this case, we have x1 = x2 = 6, and thus x1µ22 + x2µ11 − x1x2 = 0. Moreover, the

convergence speed is fast (with deviation less than 8% for B1 + B2 = 10 relative to

B1 +B2 →∞) especially when the synergy level is not too low.
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5. Similar to the generalists case, the throughputs of static and flexible task assignment

increase quickly with respect to the sum of the internal buffer sizes. Specifically, by

increasing the sum of the buffers from 0 to 10, we increase the throughputs of static

and flexible task assignment approaches significantly (around 35%); and when B1 +

B2 = 10, the long-run average throughputs of the three task assignment approaches

are already close to the asymptotically-infinite-buffer throughputs (with deviations

less than 10%).

6. The advantage of teamwork with task partitioning over teamwork without task parti-

tioning increases as the specialty level increases. Specifically, when the specialty

level µ11
µ21

equals 2, 3, 4, the throughputs of teamwork with task partitioning are

12.5%, 33.3%, 56.3% higher than for teamwork without task partitioning, respec-

tively.

7. Non-collaboration can be as good or better than static and flexible task assignments

when the specialty level is low and buffer sizes are small, and better than teamwork

with or without task partitioning when the specialty and synergy levels are low.

3.6 Server Coordination in Longer Lines

When there are no precedence relationships among tasks, then all tasks can be completed

at a single station. This is the model considered so far in this paper. In this section, we will

study systems where there are precedence relationships among certain tasks. Specifically,

in this section, we consider a system of M ≥ 2 tandem stations with two subtasks and two

servers at each station. Denote Sjk as the service requirement of subtask j at station k, and

assume that E[Sjk] = 1 for j = 1, 2, k = 1, . . . ,M . The service rate of server i working on

subtask j at station k is µijk for i, j = 1, 2, k = 1, . . . ,M . We allow internal buffers after

each subtask and intermediate buffers between stations. Let Bj,k be the internal buffers of

the jth subtask at station k for j = 1, 2, k = 1, . . . ,M , and Bk be the intermediate buffers
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between station k and k+ 1 for k = 1, . . . ,M − 1 (a job will occupy an entire intermediate

buffer space as long as processing of at least one of its subtasks has not commenced at the

next station).

First, we describe the task assignment approaches in longer lines. As soon as both

subtasks of a job at station k ∈ {1, . . . ,M} are completed, the job is ready to be assembled

(and split again for the service at the next station if k < M ). However, the job will not enter

service at the next station until at least one of the subtasks of its previous job at the next

station is completed. Note that, if k = M or k < M and the intermediate buffer between

stations k and k+ 1 is not full, then at most one of the internal buffers at station k can have

jobs in it (since otherwise, the two completed subtasks of a job will be combined and leave

station k immediately). Assume that when k < M and the intermediate buffer is full, the

completed two subtasks of a job at station k (if such a job exists) will stay at station k until

the intermediate buffer has room for the job.

When there are multiple stations, the three task assignment approaches can no longer

be modeled as birth-and-death processes. As a result, it is more difficult to identify the

optimal task assignment approaches for longer lines. Hence, we will focus on numerical

results in this section.

In Section 3.6.1, we discuss buffer allocation for longer lines, and show that for the

static task assignment approach, we can focus on the case when there are no intermediate

buffers between stations. Moreover, when there are multiple stations in tandem with infinite

intermediate buffers, stations will not be blocked by downstream stations. Then, the long-

run average throughput of the system boils down to analyzing stations on their own, and

is determined by the bottleneck station with the minimum individual station throughput.

Since we have analyzed the best server coordination approaches for one-station systems

in the previous sections, the optimal server coordination method can be obtained sponta-

neously. The difficulty in generalizing the one-station results in Sections 3.1 through 3.5

to longer lines arises due to the blocking of the stations. Therefore, we will focus on the
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most extreme case with no intermediate or internal buffers, which leads to the highest risk

of blocking. In Section 3.6.2, we provide numerical results for the server coordination

methods for two tandem stations with no buffers.

3.6.1 Buffer Allocation for Static Task Assignment in Longer Lines

In this section, we investigate the buffer allocation for longer lines with static servers when

there exist both internal buffers within stations and intermediate buffers between stations.

The following proposition and corollary show that we can focus on the case with no inter-

mediate buffers between stations when the servers are static.

Proposition 3.6.1. Consider a system with M tandem stations, two servers at each station,

and service requirements with general distributions. Assume that the servers are static.

If there exists some station k0 ∈ {1, . . . ,M − 1} such that Bk0 > 0, then the maximum

long-run average throughput of this system is no more than the maximum throughput of

another system with Bk0 − 1 intermediate buffers after station k0, Bj,k0 + 1 internal buffers

for subtask j ∈ {1, 2} at station k0, and the same number of buffers for the other stations.

The following lemma (part (i) of Lemma 1 of Argon and Andradóttir [15]) will be

useful in the proof of Proposition 3.6.1. We present it without proof.

Lemma 3.6.1. Let ai, bi be any real numbers for i = 1, . . . , n, where n is a positive integer.

Then, maxi=1,...,n{ai} −maxi=1,...,n{bi} ≥ mini=1,...,n{ai − bi}.

Proof of Proposition 3.6.1. Consider two processes with the same initial system state. Sup-

pose Bl
k is the intermediate buffer after station k ∈ {1, . . . ,M − 1} in process l ∈ {1, 2},

Bl
j,k is the internal buffer of the jth subtask at station k in process l for l, j ∈ {1, 2}, k ∈

{1, . . . ,M}. Then, for j = 1, 2, B2
k = B1

k, B
2
j,k = B1

j,k, k ∈ {1, . . . ,M − 1} \ {k0},

B2
j,M = B1

j,M , B1
k0
> 0, B2

k0
= B1

k0
− 1, B2

j,k0
= B1

j,k0
+ 1. That is, process 2 has one less

intermediate buffer after station k0 and one more internal buffer for both subtasks at station

k0 than process 1. Assume that the jobs are labeled according to the order in which they
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depart from the system. Therefore, if the system is not empty at time zero, then the job

with a subtask closest to the end of the line is labeled as job 1. Let Dl
j,k(i) be the departure

time of job i ≥ 1 from subtask j ∈ {1, 2} at station k ∈ {1, . . . ,M} in process l ∈ {1, 2}

(so that job i will be in the internal buffer of subtask j at station k, or in the intermediate

buffer between stations k and k+ 1, or at station k+ 1, or out of the system if k = M right

after time Dl
j,k(i)). Let C l

k(i) be the completion time of both subtasks of job i ≥ 1 from

station k ∈ {1, . . . ,M} in process l ∈ {1, 2}, i.e.,

C l
k(i) = max{Dl

1,k(i), D
l
2,k(i)}.

Also, let X l
j,k(i) be the service time of job i > 0 at subtask j ∈ {1, 2} at station k ∈

{1, . . . ,M} in process l ∈ {1, 2}. We use the same server assignment at each subtask of

each station for job i ≥ 1 in both processes; hence X1
j,k(i) = X2

j,k(i) for j ∈ {1, 2}, k ∈

{1, . . . ,M}, and we suppress the superscripts in X1
j,k(i),X2

j,k(i).

First, we give recursive formulas that the departure times Dl
j,k(i) must satisfy. Assume

that Dl
j,k(i) = Xj,k(i) = 0 if k /∈ {1, . . . ,M}, j, l /∈ {1, 2}, or i ≤ 0. Then, the departure

time of subtask j of a job i at station k = 1, . . . ,M − 1 depends on the following four

cases:

1. If there are no jobs in subtask j at station k when job i departs from both subtasks at

station k−1, and job i is not blocked by the time of its service completion at subtask

j at station k, then Dl
j,k(i) = C l

k−1(i) +Xj,k(i).

2. If job i has waited to be served at subtask j of station k until the service completion

of its previous job, and the internal buffer after subtask j is not blocked upon its own

service completion at subtask j, then Dl
j,k(i) = Dl

j,k(i− 1) +Xj,k(i).

3. If the internal buffer after subtask j is blocked at the time of the service completion,

this job will leave subtask j upon a new service completion at subtask 3 − j of

this station. Since in this case the internal buffer after subtask 3 − j is empty, the
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next departure at that subtask should be job i − Bl
j,k. Thus, in this case, Dl

j,k(i) =

Dl
3−j,k(i−Bl

j,k).

4. If both the internal buffer after subtask j at station k and the intermediate buffer after

station k are full at the time of the service completion, job i will leave subtask j upon

a new service completion (i.e., of job i−Bl
k−Bl

j,k− 1) at station k+ 1. In this case,

Dl
j,k(i) = C l

k+1(i−Bl
k −Bl

j,k − 1).

Note that for k = M , Dl
j,M(i) only depends on the first three cases since the fourth case

does not apply to the last station. Moreover, if job i is being served in subtask j at station

k at time zero, then Dl
j′,k′(i) = 0 for j′ = 1, 2, k′ < k, and the first two cases become

Dl
j,k(i) = Xj,k(i), where Xj,k(i) stands for the remaining service time of job i at subtask j

at station k.

Then for all k ∈ {1, . . . ,M}, we have that, for i ≥ 1, l, j = 1, 2,

Dl
j,k(i) = max{C l

k−1(i)+Xj,k(i), D
l
j,k(i−1)+Xj,k(i), D

l
3−j,k(i−Bl

j,k), C
l
k+1(i−Bl

k−Bl
j,k−1)}.

As C l
m(i) = max{Dl

1,m(i), Dl
2,m(i)} for m = k − 1, k + 1, we have

Dl
j,k(i) = max{Dl

1,k−1(i) +Xj,k(i), D
l
2,k−1(i) +Xj,k(i), D

l
j,k(i− 1) +Xj,k(i),

Dl
3−j,k(i−Bl

j,k), D
l
1,k+1(i−Bl

k −Bl
j,k − 1), Dl

2,k+1(i−Bl
k −Bl

j,k − 1)}.

Note that B1
k + B1

j,k = B2
k + B2

j,k for any k = 1, . . . ,M − 1, j = 1, 2, B1
j,M = B2

j,M for

j = 1, 2.

Let ∆j,k(i) = D1
j,k(i) −D2

j,k(i). Then by Lemma 3.6.1 and the inequalities above, for

j ∈ {1, 2}, i ≥ 1, k = {1, . . . ,M − 1} \ {k0},

∆j,k(i) ≥ min{∆1,k−1(i),∆2,k−1(i),∆j,k(i− 1),∆3−j,k(i−B1
j,k),

∆1,k+1(i−B1
k −B1

j,k − 1),∆2,k+1(i−B1
k −B1

j,k − 1)}.
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For k = k0, we have

∆j,k0(i) ≥ min{∆1,k0−1(i),∆2,k0−1(i),∆j,k0(i− 1), D1
3−j,k0(i−B

1
j,k0

)−D2
3−j,k0(i−B

1
j,k0
− 1),

∆1,k0+1(i−B1
k0
−B1

j,k0
− 1),∆2,k0+1(i−B1

k0
−B1

j,k0
− 1)}

≥ min{∆1,k0−1(i),∆2,k0−1(i),∆j,k0(i− 1),∆3−j,k0(i−B1
j,k0
− 1),

∆1,k0+1(i−Bl
k0
−B1

j,k0
− 1),∆2,k0+1(i−B1

k0
−B1

j,k0
− 1)}.

Finally, for k = M ,

∆j,M(i) ≥ min{∆1,M−1(i),∆2,M−1(i),∆j,M(i− 1),∆3−j,M(i−B1
j,M)}.

Note that ∆j,k(i) = 0 when j /∈ {1, 2}, k /∈ {1, . . . ,M}, or i ≤ 0. It is easy to see

∆j,k(i) ≥ 0 for all j ∈ {1, 2}, k = 1, . . . ,M and i ≥ 1 by induction. Thus, D1
j,M(i) ≥

D2
j,M(i) for j = 1, 2, and the departure time of job i from station M in process 1 is later

than in process 2, for ∀i ≥ 1. It follows that process 2 has no smaller long-run average

throughput than process 1.

Note that, we can generalize Proposition 3.6.1 to arbitrary number of subtasks at each

station. For instance, if there are J subtasks at some station k, then the departure times

Dl
j,k(i) still depend on the four cases we discussed earlier, but the completion time becomes

C l
k(i) = max{Dl

1,k(i), . . . , D
l
J,k(i)}, and case 3 will be revised asDl

j,k(i) = maxj′∈{1,...,J}\{j}

{Dl
j′,k(i−Bl

j,k)}.

The following corollary follows from Proposition 3.6.1.

Corollary 3.6.1. For the static task assignment approach, ifBk > 0, where k ∈ {1, . . . ,M−

1}, then the maximum long-run average throughput of this system is no more than the max-

imum throughput of another system with no intermediate buffer between stations k and

k + 1, Bj,k + Bk internal buffers for subtask j ∈ {1, 2} at station k, and the same number

of buffers for the other stations.
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Note that Proposition 3.6.1 and Corollary 3.6.1 do not hold if the servers are flexible or

collaborative. The following example shows that intermediate buffers can be preferable to

internal buffers when the servers are flexible or collaborative.

Example 3.6.1. Consider two systems, each with two stations in tandem and two servers

at each station. System A has one internal buffer for each subtask at station 1, and no

buffers anywhere else; system B has one intermediate buffer between stations 1 and 2,

and no buffers anywhere else. Suppose that the service requirement Sjk is exponentially

distributed for ∀j, k ∈ {1, 2}.

(i) When the servers are flexible and non-collaborative, if the service rates are µ111 =

µ121 = 2, µ211 = µ221 = µ112 = µ212 = µ122 = µ222 = 1, then the optimal flexible

task assignment of system A yields a throughput of 0.6425, and the optimal flexible

task assignment of system B yields a throughput of 0.6437.

(ii) When the servers are flexible and collaborative, if the service rates are µijk = 1

for i, j, k ∈ {1, 2}, and the synergy level is α = 1, the optimal collaborative task

assignment of system A yields a throughput of 0.8023, and the optimal collaborative

task assignment of system B yields a throughput of 0.8214.

In both cases, system B yields a higher throughput than system A.

Intuitively, allocating the buffers within a station as internal buffers rather than outside

of the station as intermediate buffers reduces blocking. When the servers are static, server

assignments are identical for both the primary and secondary assignments, and less block-

ing yields higher efficiency of the system. However, when the servers are flexible and one

server dominates the other server at a station (like in station 1 of Example 3.6.1(i)), or when

the servers are flexible and collaborative (like in Example 3.6.1(ii)), we get greater bene-

fit from the high service rates of the secondary assignment when there is blocking at that

station. Therefore, when the servers are flexible and not equally well trained, or collabo-
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rative with synergy level that is not too low, we may prefer intermediate buffers to internal

buffers.

3.6.2 Numerical Results for Two Tandem Stations

In this section, we will provide numerical results for the system with two tandem stations,

two subtasks and servers at each station, and no internal or intermediate buffers between

the stations (B1 = Bj,k = 0 for j, k ∈ {1, 2}). Assume that the service requirement Sjk

is exponentially distributed for ∀j, k ∈ {1, 2}. For teamwork without task partitioning,

the two servers work together on a combined job with a combined service rate at each sta-

tion; while for teamwork with task partitioning, the two servers work together on the two

subtasks of a job in tandem at each station (see Appendix A.5 for details on the random

service times under teamwork with or without task partitioning). For non-collaboration,

since the two servers work in parallel at each station, we need to determine the priority

scheme for the arrivals from the previous station. For simplicity, we assume that when both

servers at station 1 are blocked and a server becomes available at station 2, we will serve

the job from server 1 at station 1 first; when both servers are starved at station 2 and a job

is completed at station 1, the incoming job will go to server 1 at station 2. Note that unlike

static task assignment, there is no advantage in having internal buffers relative to inter-

mediate buffers for the teamwork with or without task partitioning and non-collaboration

approaches. Moreover, non-collaboration is no longer a special case of teamwork without

task partitioning when α = 1. See Figure 3.5 for the flow plot of the server coordination

methods with two stations and two servers at each station.

Since the systems under consideration can all be modeled as continuous-time Markov

chains, we compute the long-run average throughput of all the server coordination methods

we discussed earlier for this two-station case by solving the balance equations. Similar to

Sections 3.5.3 and 3.5.4, we consider two types of servers, namely generalists and special-

ists. We consider the same sets of service rates at each station as in Sections 3.5.3 and
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(a) Task assignment (b) Teamwork without task partitioning

(c) Non-collaboration (d) Teamwork with task partitioning

Figure 3.5: Server coordination approaches for two stations with no buffers

3.5.4, and the numerical results are shown in Tables 3.4 and 5.11, respectively.

Table 3.4: Throughputs of server coordination methods for two stations and generalists
(the highest throughputs in each row are in bold).

α µ111 µ211 µ121 µ221 µ112 µ212 µ122 µ222 S F C TP T NC
1.5 1 1 1 1 1 1 1 1 0.480 0.480 0.870 1.091 1.091 0.789
1.5 2 2 1 1 2 2 1 1 0.606 0.606 1.181 1.373 1.455 1.046
1.5 2 1 2 1 2 1 2 1 0.606 0.870 1.304 1.636 1.636 1.185
1.5 1 2 2 4 1 2 2 4 0.960 1.145 1.809 2.059 2.182 1.543
1.2 1 1 1 1 1 1 1 1 0.480 0.480 0.793 0.873 0.873 0.789
1.2 2 2 1 1 2 2 1 1 0.606 0.606 1.060 1.098 1.164 1.046
1.2 2 1 2 1 2 1 2 1 0.606 0.870 1.189 1.309 1.309 1.185
1.2 1 2 2 4 1 2 2 4 0.960 1.145 1.605 1.648 1.745 1.543
1.0 1 1 1 1 1 1 1 1 0.480 0.480 0.727 0.727 0.727 0.789
1.0 2 2 1 1 2 2 1 1 0.606 0.606 0.960 0.915 0.970 1.046
1.0 2 1 2 1 2 1 2 1 0.606 0.870 1.091 1.091 1.091 1.185
1.0 1 2 2 4 1 2 2 4 0.960 1.145 1.440 1.373 1.455 1.543
0.8 1 1 1 1 1 1 1 1 0.480 0.480 0.646 0.582 0.582 0.789
0.8 2 2 1 1 2 2 1 1 0.606 0.606 0.839 0.732 0.776 1.046
0.8 2 1 2 1 2 1 2 1 0.606 0.870 0.969 0.873 0.873 1.185
0.8 1 2 2 4 1 2 2 4 0.960 1.145 1.277 1.098 1.164 1.543
0.5 1 1 1 1 1 1 1 1 0.480 0.480 0.480 0.364 0.364 0.789
0.5 2 2 1 1 2 2 1 1 0.606 0.606 0.606 0.458 0.485 1.046
0.5 2 1 2 1 2 1 2 1 0.606 0.870 0.870 0.545 0.545 1.185
0.5 1 2 2 4 1 2 2 4 0.960 1.145 1.145 0.686 0.727 1.543

Comparing the results for one station when B1 = B2 = 0 (in Tables 5.5, 5.6) and for

two stations (in Tables 3.4, 5.11), we can see that:

1. When the servers are generalists,
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Table 3.5: Throughputs of server coordination methods for two stations and specialists
(the highest throughputs in each row are in bold).

α µ111 µ211 µ121 µ221 µ112 µ212 µ122 µ222 S F C TP T NC
1.5 1 1 1 1 1 1 1 1 0.480 0.480 0.870 1.091 1.091 0.789
1.5 2 1 1 2 2 1 1 2 0.960 0.960 1.540 1.636 1.455 1.046
1.5 3 1 1 3 3 1 1 3 1.440 1.440 2.182 2.182 1.636 1.168
1.5 4 1 1 4 4 1 1 4 1.920 1.920 2.815 2.727 1.745 1.239
1.2 1 1 1 1 1 1 1 1 0.480 0.480 0.793 0.873 0.873 0.789
1.2 2 1 1 2 2 1 1 2 0.960 0.960 1.378 1.309 1.164 1.046
1.2 3 1 1 3 3 1 1 3 1.440 1.440 1.937 1.746 1.309 1.168
1.2 4 1 1 4 4 1 1 4 1.920 1.920 2.489 2.182 1.396 1.239
1.0 1 1 1 1 1 1 1 1 0.480 0.480 0.727 0.727 0.727 0.789
1.0 2 1 1 2 2 1 1 2 0.960 0.960 1.244 1.091 0.970 1.046
1.0 3 1 1 3 3 1 1 3 1.440 1.440 1.739 1.455 1.091 1.168
1.0 4 1 1 4 4 1 1 4 1.920 1.920 2.227 1.818 1.164 1.239
0.8 1 1 1 1 1 1 1 1 0.480 0.480 0.646 0.582 0.582 0.789
0.8 2 1 1 2 2 1 1 2 0.960 0.960 1.085 0.873 0.776 1.046
0.8 3 1 1 3 3 1 1 3 1.440 1.440 1.505 1.164 0.873 1.168
0.8 4 1 1 4 4 1 1 4 1.920 1.920 1.920 1.455 0.931 1.239
0.5 1 1 1 1 1 1 1 1 0.480 0.480 0.480 0.364 0.364 0.789
0.5 2 1 1 2 2 1 1 2 0.960 0.960 0.960 0.546 0.485 1.046
0.5 3 1 1 3 3 1 1 3 1.440 1.440 1.440 0.727 0.545 1.168
0.5 4 1 1 4 4 1 1 4 1.920 1.920 1.920 0.909 0.582 1.239

(a) Teamwork without task partitioning is no longer always equivalent to teamwork

with task partitioning. In fact, it is strictly better than teamwork with task par-

titioning when the subtasks are of different difficulties (i.e., cases (ii) and (iv)).

Intuitively, there is no blocking for the one-station system since there is infi-

nite space at the end of the line. However, for systems with multiple stations

and finite (zero in this example) intermediate buffers between stations, blocking

becomes a serious issue for the throughput. Different task difficulties yield un-

balanced service rates at the subtasks, and increase the possibility of blocking

for teamwork with task partitioning. Meanwhile, teamwork without task parti-

tioning neutralizes this effect by combining the tasks together. Moreover, when

the servers are generalists, teamwork with task partitioning loses its advantage

of server specialty. In fact, the variance of teamwork without task partitioning

is lower than that of teamwork with task partitioning in this case, as we show

in Appendix A.5. Thus, unlike our results for one-station systems, teamwork
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without task partitioning is now no worse than teamwork with task partitioning

with generalist servers for the two-station systems we consider.

(b) When server synergy is high (i.e., α ≥ 1.2), teamwork without task partitioning

is the best method; when server synergy level is moderate and low (i.e., α ≤

1) non-collaboration is the best. These results are consistent with our one-

station results except that when server collaboration is additive (i.e., α = 1),

non-collaboration is strictly better than teamwork for two-station systems while

these two methods perform the same in one-station systems.

(c) When α = 1, for one-station system, collaborative task assignment, team-

work, and non-collaboration are equivalent; but for two-station systems, non-

collaboration is strictly better than the other two methods since the probability

of blocking is highly increased with multiple stations and zero internal and in-

termediate buffers while non-collaboration has more WIP and thus less chance

of blocking.

(d) When the servers are identical (i.e., cases (i), (ii)), static task assignment is

still equivalent to flexible task assignment. And when servers are not identical,

server flexibility again increases the throughput significantly (from 20% to 40%,

as in one-station systems).

2. When the servers are specialists,

(a) Teamwork with task partitioning is the best when the synergy level is high and

the specialty level is not high; non-collaboration is the best when both the spe-

cialty level and the synergy level are small; otherwise, the server specialization

is not small and collaborative task assignment is best. These results are consis-

tent with our results for the one-station system when the buffers are zero.

(b) Flexible task assignment is still equivalent to static task assignment.
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3. Collaborative task assignment is better than static and flexible task assignment as

long as the synergy level is not too small (i.e., α ≥ 0.8).

4. The throughputs of all server coordination methods for two-station systems are lower

than for the corresponding one-station systems since more stations with no buffers

increases the probability of blocking and reduces the throughputs.

5. For two-station systems, non-collaboration is now strictly better than teamwork with-

out task partitioning when α = 1. Intuitively, non-collaboration has more WIP than

teamwork. This additional WIP does not improve throughput for one-station systems

since there is no blocking; however, for systems with multiple stations and zero in-

termediate buffers, this additional WIP is crucial to the long-run average throughput.

Thus, the performance of non-collaboration for two-station systems is better than for

one-station systems relative to other server coordination methods.

In conclusion, the numerical results for two stations suggest that our comparison of

different server coordination methods for one station case provided in Sections 3.5.3 and

3.5.4 generalize to longer lines in most cases. By combining the results for one- and two-

station systems, we have the following conclusions:

1. When the servers are generalists,

(a) if α ≤ 1, we prefer non-collaboration;

(b) if α > 1, we prefer teamwork without task partitioning.

2. When the servers are specialists,

(a) if the specialty levels of the servers are high, we prefer collaborative task as-

signment;

(b) if the specialty levels of the servers are moderate or low, and

i. the synergy level is high, we prefer teamwork with task partitioning;

ii. the synergy level is moderate or low, we prefer non-collaboration.

63



3.7 Conclusions

For a queueing system with servers that are either static, flexible, or collaborative, we con-

sidered different server coordination methods when each job can be decomposed into multi-

ple subtasks and there are no precedence relationships among the subtasks within each sta-

tion. The objective is to maximize the long-run average throughput of the system. We first

characterized the optimal static, flexible, and collaborative task assignment approaches,

and further analyzed the optimal policies for two special cases, namely when buffers are

zero and when the sum of the buffers goes to infinity. Then, we investigated three other

server coordination methods, namely teamwork with or without task partitioning and non-

collaboration, compared them to task assignment approaches, and determined when and

how to choose a server coordination methods under different circumstances. Moreover, we

further investigated these methods when the servers are generalists or specialists, and pro-

vided corresponding numerical results. Then, we analyzed server coordination for longer

lines. We proved that for static task assignment, it is always better to allocate the available

buffers within stations as internal buffers rather than after stations as intermediate buffers

(however, this result does not hold for flexible or collaborative task assignment). Finally,

we provided numerical results for the two-station case that suggested our one-station results

can be generalized to longer lines.

Based on our theoretical and numerical analyses, we obtained the following additional

insights:

1. Teamwork with task partitioning is no worse than teamwork without task partition-

ing when the servers are specialists, and it is no better than teamwork without task

partitioning when the servers are generalists.

2. For one-station systems, non-collaboration has the same throughput as teamwork

without task partitioning when the synergy level is one. However, this property no

longer holds for longer lines with finite intermediate buffers.
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3. When the servers are generalists, we prefer non-collaboration, and then teamwork

without task partitioning as the synergy level among servers goes from low to high.

4. When the servers are specialists, we prefer collaborative task assignment if the servers

are highly specialized, otherwise, we prefer teamwork with task partitioning if the

synergy level is high, non-collaboration if the synergy level is moderate or low.
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CHAPTER 4

DYNAMIC CONTROL OF SERVICE SYSTEMS WITH TEAMS

Consider a tandem queueing network with N ≥ 1 stations and M ≥ 1 servers. There are

infinitely many jobs awaiting in front of the first station, and each job will be processed by

stations 1, 2, . . . , N before leaving the system. There is a finite buffer of size 0 ≤ Bj <∞

between stations j and j + 1, for j = 1, 2, . . . , N − 1, and infinitely large storage space

after station N . Let T be the set of all possible team assignments and γij be the service

rate of team i at station j, where i ∈ T ,j ∈ {1, 2, . . . , N}. Moreover, we assume that

|T | < ∞, γij ≥ 0 for all i ∈ T, j ∈ {1, 2, . . . , N}, and restrict our attention to teams

such that
∑N

j=1 γij > 0,∀i ∈ T (otherwise, this team assignment is trivial and should be

eliminated from T ). Furthermore, without loss of generality, assume that
∑

i∈T γij > 0 for

any j ∈ {1, 2, . . . , N} (otherwise, the throughput of the system is zero).

Our objective is to determine the dynamic server assignment policy that maximizes the

long-run average throughput of this queueing system. We first establish sufficient criteria

for eliminating inferior teams, and then we identify the optimal policy among the remain-

ing teams for two stations case. Next, we apply our optimal policies to two special cases.

In the first case, the team service rate is proportional to the sum of the service rates of team

members with factor α > 0. In the second case, we assume that there are K different types

of servers with different specialties and the team formation is constrained in that each team

must consist of exactly one server of each type. For example, during a surgery, a team of

medical staff helps the surgeon during the operation which may include an anesthesiolo-

gist, an operating room nurse, etc. We provide the optimal team assignment for systems

with two stations for both cases. We put more effort on the second case. Finally, we ex-

plore heuristics for longer systems with constrained team formations when the servers are

generalists.
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The outline of this chapter is as follows. In Section 4.1, we formulate the team-

assignment problem considered in this chapter, and provide a preliminary criterion to elim-

inate teams that are not on the Pareto boundary. In Section 4.2, we provide a secondary

criterion to further eliminate inferior teams, and also provide the team assignment policy

that maximizes the long-run average throughput of the systems with two stations. More-

over, we briefly discuss the optimal policy for this model when the servers are static. In

Section 4.3, we first present a numerical example that illustrates the optimal policy obtained

in Section 4.2, and then investigate the special case with proportional team service rates,

and finally, we explore the optimal policy for systems with constrained team formations.

In Section 4.4.1, we study heuristic policies that appear to yield near-optimal performance

with teams of specialized servers when the servers are generalists for systems with more

than two tandem stations. Section 4.5 concludes the chapter.

4.1 Problem Formulation and Team Selection

In this section, we first present a detailed description of our model, and then provide a

primary criterion to select the teams we consider in the optimal policy. Let Π be the set of

server assignment policies under consideration. Under policy π ∈ Π, the network state at

time t ∈ [0,∞) is Xπ(t), where the jth component of Xπ(t) is the number of jobs in the

system that have completed service at station j but have not yet completed service at station

j+1 for j ∈ 1, 2, . . . , N−1. Then {Xπ(t) : t ≥ 0} is a continuous time Markov chain. The

state space of {Xπ(t) : t ≥ 0} is S ⊆ {(s1, s2, . . . , sN−1) : sj ∈ {0, 1, . . . , Bj + 2},∀j ∈

1, 2, . . . , N − 1}. The action sets are given by the possible server allocations. Thus, for

s ∈ S, the action set As ⊆ T . Let π(s) be a projection from the state space to the action set

(i.e., team assignment), π : S → T . For all π ∈ Π, let Dπ
s (t) be the number of departures

from the last station under policy π by time t with initial state s ∈ S, and let

gπs = lim sup
t→∞

E[Dπ
s (t)]

t
(4.1)
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be the long-run average throughput corresponding to server allocation policy π starting

from state s ∈ S. Our objective is to solve the following optimization problem.

max
π∈Π

gπs ,∀s ∈ S. (4.2)

Let {qπ(x, x′)} be the transition rates of {Xπ(t)}, then there exists a finite uniformization

constant q ≤
∑

i

∑
j γi,j < ∞ such that {qπ(x, x′)} satisfy

∑
x′∈S,x′ 6=x q

π(x, x′) ≤ q for

all x ∈ S, π ∈ Π. Thus, {Xπ(t)} is uniformizable. Let {Y π(k)} be the corresponding

discrete-time Markov chain, so that {Y π(k)} has state space S and transition probabilities

pπ(x, x′) = qπ(x, x′)/q if x′ 6= x and pπ(x, x) = 1−
∑

x′∈S,x′ 6=x q
π(x, x′)/q for all x ∈ S.

Using a similar argument as in Section 3 of Andradóttir, Ayhan and Down [7], we can show

that the original optimization problem in (5.2) can be translated into an equivalent discrete-

time Markov decision problem. Thus, maximizing the long-run average throughput of the

original queueing system is equivalent to maximizing the long-run average departure rate

for the associated embedded discrete-time Markov chain.

A policy π∗ ∈ Π is called optimal if

gπ
∗

s ≥ gπs for all π ∈ Π and s ∈ S.

Note that since
∑

i∈T γij > 0 for any j ∈ {1, 2, . . . , N}, the Markov decision process is

communicating and there exists a π∗ such that gπ∗s is the same for all s ∈ S. Let g∗ denote

this common value. Since T < ∞, the state space and the buffers are finite, by Theorem

9.1.8 in [41], there exists a deterministic stationary optimal policy. Therefore, from now

on, we assume that the class Π of server assignment policies under consideration consists

of all Markovian stationary deterministic policies corresponding to the state space S of

the stochastic processes {Xπ(t)}. Let Π∗ be the set of all optimal stationary deterministic

policies.

Note that, if the servers are flexible and are trained to work at all the stations, they
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could be assigned to any one of the N stations. That is, |T | could be up to NM , which will

get extremely large as N and M grow. To reduce the number of team assignments under

consideration, we introduce the following concept and theorem.

Definition 4.1.1. (Revised Pareto Boundary) Team assignment i ∈ T is on the revised

Pareto boundary of T if there is no team assignment k 6= i, k ∈ T , such that γk,1 >

γi,1, . . . , γk,N > γi,N .

Note that, the set of team assignments on the revised Pareto boundary is nonempty.

Indeed, if i′ = arg maxi∈T γij > 0 for some station j, and i′ is unique, then i′ is on the

revised Pareto boundary by definition; and if such i′ is not unique for j, at least one of such

i′ should be on the revised Pareto boundary by definition.

Theorem 4.1.1. Any policy π that uses a team assignment that is not on the revised Pareto

boundary in any recurrent state under that policy is not optimal.

Proof. Suppose team assignment i ∈ T is not on the revised Pareto boundary. Then ∃k ∈

T , and α1, . . . , αN > 1, s.t. γk,1 = α1γi,1, . . . , γk,N = αNγi,N . Without loss of generality,

assume that α1 ≥ α2 ≥ . . . ≥ αN > 1.

Suppose we use team assignment i in some recurrent state s0 under policy π ∈ Π.

Step 1: We first prove the result when α1 = α2 = . . . = αN > 1. Consider policy π′

such that π′(s) = π(s) for ∀s 6= s0, and π′(s0) = k. Then if we replace policy π by π′, we

increase service rates at all stations by the same proportion α1. So, we can reduce the time

spent in state s0 without making any changes to all the other states. Hence, throughput of

policy π′ is higher than π and policy π cannot be optimal.

Step 2: Next we show the result when α1 ≥ α2 ≥ . . . ≥ αN > 1 and at least one of the

inequalities is strict. For any team assignment t ∈ T , let t−j be the team assignment that

assigns the servers to stations according to team assignment t, but let the servers at stations

1, . . . , j be idle, where j ∈ {1, . . . , N − 1}. Then, t−j ∈ T , for j ∈ {1, . . . , N − 1}.
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Consider policy π′′ such that π′′(s) = π(s) for ∀s 6= s0, and π′′(s0) = k with probability

p1 = αN
α1

; π′′(s0) = k−(j−1) with probability pj = αN( 1
αj
− 1

αj−1
) for j = 2, . . . , N . That is,

assign the server according to team assignment k for policy π′′, but let the servers at the jth

station idle with probability
∑N

r=j+1 pr =
∑N

r=j+1 αN( 1
αr
− 1

αr−1
) = αN( 1

αj+1
− 1

αj
+ · · ·+

1
αN
− 1

αN−1
) = αN( 1

αN
− 1

αj
) = 1− αN

αj
. Then in state s0, the expected service rate of station

1 is γk,1 ∗ p1 = γi,1α1
αN
α1

= αNγi,1; and the expected service rate of station j = 2, . . . , N is

γk,j(1−
∑N

r=j+1 pr) = αjγi,j
αN
αj

= γi,jαN . Thus, if we replace policy π by π′′, the average

service rates of all stations in state s0 increased by the same proportion and the service rates

remain unchanged in other states. Therefore, π′′ yields a higher throughput than π, and π

cannot be optimal.

Note that, the Pareto boundary by convention is slightly different from our revised

Pareto boundary, and we provide the definition of teams on Pareto boundary as follows.

Definition 4.1.2. (Pareto Boundary) Team assignment i ∈ T is on the Pareto Boundary of

T if there is no team assignment k 6= i, k ∈ T , such that γk,1 ≥ γi,1, . . . , γk,N ≥ γi,N , and

at least one of these inequalities is strict.

Remark 4.1.1. Note that, the Pareto boundary set defined in Definition 4.1.2 is a smaller

set than the revised Pareto boundary set defined in Definition 4.1.1. Indeed, if i, k ∈ T such

that γk,1 = γi,1, . . . , γk,N−1 = γi,N−1, γk,N > γi,N , then it is possible for both i, k to be on

the revised Pareto boundary, but i is definitely not on the Pareto boundary.

We refer to a team assignment as replaceable if we can find a stationary deterministic

policy that does not use this team assignment but can still achieve at least the same through-

put of the policies using this team assignment in any recurrent state. By Theorem 4.1.1,

any team assignment that is not on the revised Pareto boundary is replaceable. Moreover,

the following proposition shows that any team assignment that is on the revised Pareto

Boundary but not on the Pareto Boundary is also replaceable.

Proposition 4.1.1. Any team assignment that is not on the Pareto Boundary is replaceable.
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Proof. We only need to check the team assignments that are on the revised Pareto Boundary

but not on the Pareto Boundary. If team assignment i is on the revised Pareto Boundary but

not on the Pareto Boundary, then there exists a team k on the Pareto Boundary such that

γk,n = γi,n for n ∈ Q, where Q ⊂ {1, 2, . . . , N} and γk,n > γi,n for n ∈ {1, 2, . . . , N}\Q.

We consider the case when |Q| = N − 1 via a sample path argument, and the other cases

can be solved by induction.

Assume that γk,j > γi,j , for some j ∈ {1, 2, . . . , N}, and γk,n = γi,n for n ∈

{1, 2, . . . , N}\{j}. Consider two processes with the same initial system. We use common

random numbers to generate the service times at each station for both processes at the be-

ginning of each time epoch (that is, the service time is proportional to the service rate with

a common factor for both processes at each station). Recall that Xπ(t) indicates the state

of the system at time t under policy π. Let Dπ(t) be the number of departures from the last

station under policy π by time t. Suppose that Process 1 uses a policy π ∈ Π that uses team

assignment i in some state s̃ ∈ S. Let τ0 be the first time that Process 1 enters state s̃, and

τ1 be the first time after time τ0 that Process 1 departs from state s̃. Suppose that Process 2

uses a policy π̃ such that it uses the same team assignment as π until time τ0, and uses team

assignment k right after τ0. The next event among these two processes is either a service

completion at station n 6= j (in both processes) at τ1 (since the same service rates yield the

same service times for any station n 6= j), or a service completion at station j in Process 2,

denote the time of this event as τ2. Note that, < τ1 since process 2 has a higher service rate

at station j than process 2. For the first case, the two processes are still in the same state

by time τ1. Suppose Process 2 uses the same team assignment as Process 1 thereafter, then

there is no difference in the reward for both processes, and Dπ̃(t) = Dπ(t) for t ≥ 0. For

the second case, we have

X π̃(τ+
2 ) = Xπ(τ+

2 ) + ej1{j < N} − ej−11{j > 1}.
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Note that, when j = N , Dπ̃(τ+
2 ) = Dπ(τ+

2 ) + 1; when j ∈ {1, . . . , N1}, Dπ̃(τ+
2 ) =

Dπ(τ+
2 ). Thus, Dπ̃(t) ≥ Dπ(t) for t ∈ [0, τ2]. From τ2 onwards, π̃ uses the same team

assignment as π until one of the following events occurs:

1. For j < N ,

(i) Whenever station j is starved in Process 1, let π̃ idle the server at station j in

Process 2 until the occurrence of the next event, and let π̃ use the same team

assignment as π until either (i) or (ii) happens.

(ii) If station j is blocked in Process 2 but still working in Process 1 and the next

event is a service completion at station j in Process 1, then the two processes

couple by the beginning of the next event, and let π̃ use the same team assign-

ment as π thereafter, we have Dπ̃(t) = Dπ(t) for t ≥ 0.

2. For j = N ,

(i) Whenever station j − 1 is blocked in Process 1 but not blocked in Process 2, let π̃

idle the server at station j− 1 in Process 2 until the occurrence of the next event, and

let π̃ uses the same team assignment as π until either (i) or (ii) happens.

(ii) If station j is starved in Process 2 but still working in Process 1 and the next event is

a service completion at station j in Process 1, then the two processes couples by the

beginning of the next event, and let π̃ uses the same team assignment as π thereafter,

we have Dπ̃(t) ≥ Dπ(t) for t ≥ 0.

Since in each case, Dπ̃(t) ≥ Dπ(t) for t ≥ 0, the long-run average throughput under π̃ is

no less than under π. Repeating this process, we can replace team assignment i by k and

obtain a policy π̃∗ ∈ Π that never uses i but yields a throughput no less than policy that

uses i. Thus, team assignment i is replaceable.

Theorem 4.1.1 and Proposition 4.1.1 imply that we can only consider the team assign-

ments on the Pareto boundary when seeking for an optimal policy. The following section
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characterizes the optimal policy for a two station system.

4.2 Optimal Policy for Two Stations

In this section, we provide the optimal policy for the two-station case, i.e., N = 2. For

simplicity, let B1 = B. Then the corresponding state space is S = {0, 1, . . . , B + 2}. And

the system can be regarded as a birth-death process. We’ve already restricted our choice to

team assignments on the Pareto boundary, but not all of them will be used in the optimal

policy. In Section 4.2.1, we further remove the team assignments that are dominated or

replaceable by other team assignments and obtain an optimal assignment set. In Section

4.2.2, we show how to find an optimal policy within this optimal assignment set.

4.2.1 Removing the Dominated and Replaceable Team Assignments

We first introduce the definition of the dominated team assignments that we will never use

in any of the optimal policies as follows.

Definition 4.2.1. (Dominated Team Assignment) Team assignment i ∈ T is a dominated

team assignment, if γi,j > 0 for j = 1, 2 and there exist two other assignments k, l such

that

(i) γk,1 ≥ γi,1 ≥ γl,1,

(ii) γk,2 ≤ γi,2 ≤ γl,2,

(iii) (γi,1 − γl,1)(γi,2 − γk,2) < (γk,1 − γi,1)(γl,2 − γi,2).

Note that constraints (i) and (ii) indicate that the service rates of team assignment i is

in between team assignments k, l at both stations, the left hand side of constraint (iii) can

be interpreted as the advantage of using i instead of k, l at both stations, and the right hand

side of constraint (iii) is the advantage of using k, l instead of i at both stations. Intuitively,

we define i be dominated by k and l if the gain of using team i is less than the loss of not
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using k and l, since as shown in the following theorem, we can achieve a higher long-run

average throughput by using k, l instead of i.

Theorem 4.2.1. Any policy π that forms an irreducible Markov chain and uses a dominated

team assignment in any state under policy π is not optimal.

Proof. Let {Z(t) : t > 0} be a birth-death process with state space {0, . . . , B + 2}. Let

µs,1 and µs,2 denote the birth and death rates in state s ∈ S. Suppose that {Z(t) : t > 0}

forms an irreducible Markov chain. Then the long-run average throughput is:

g =
Θ1

Θ2

:=
µ01 + µ01

µ11
µ12

+ . . .+ µ01
µ11...µB+1,1

µ12...µB+1,2

1 + µ01
µ12

+ . . .+
µ01...µB+1,1

µ12...µB+2,2

.

If for some state s0 ∈ {1, . . . , B + 1}, µs0,1 → µs0,1 + ∆1 ≥ 0, µs0,2 → µs0,2 − ∆2 ≥ 0,

then the corresponding long-run average throughput is:

g′ =
(µs0,2 −∆2)C1 + (µs0,1 + ∆1)C2

(µs0,2 −∆2)C3 + C4 + (µs0,1 + ∆1)C5

=
Θ1 −∆2C1 + ∆1C2

Θ2 −∆2C3 + ∆1C5

,

where

C1 = µ01 + µ01
µ11

µ12

+ . . .+ µ01
µ11 . . . µs0−1,1

µ12 . . . µs0−1,2

,

C2 = µ01
µ11 . . . µs0−1,1

µ12 . . . µs0−1,2

(1 +
µs0+1,1

µs0+1,2

+ . . .+
µs0+1,1 . . . µB+1,1

µs0+1,2 . . . µB+1,2

),

C3 = 1 +
µ01

µ12

+ . . .+
µ01 . . . µs0−2,1

µ12 . . . µs0−1,2

,

C4 =
µ01 . . . µs0−1,1

µ12 . . . µs0−1,2

,

and

C5 =
µ01 . . . µs0−1,1

µ12 . . . µs0−1,2

(
1

µs0+1,2

+ . . .+
µs0+1,1 . . . µB+1,1

µs0+1,2 . . . µB+2,2

).

Comparing the difference of these two throughputs, we have:

g′ − g =
(C2C3 − C1C5)(∆1µs0,2 + ∆2µs0,1) + ∆1C2C4 −∆2C1C4

Θ2(Θ2 −∆2C3 + ∆1C5)
. (4.3)
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Now suppose we use a dominated team assignment i in state s0 ∈ S under an optimal

policy π ∈ Π which forms an irreducible Markov chain, then the corresponding throughput

gπ is constant. Then there exist two other assignments k, l ∈ T such that γk,1 ≥ γi,1 ≥

γl,1, γk,2 ≤ γi,2 ≤ γl,2,. Assume γk,1−γi,1 = δ1, γi,1−γl,1 = δ2, γl,2−γi,2 = δ3, γi,2−γk,2 =

δ4. From definition 4.2.1 (iii), we have 0 ≤ δ2δ4 < δ1δ3. Consider policies π′, π′′ ∈ Π such

that π′(s) = π(s), π′′(s) = π(s) for ∀s 6= s0, and π′(s0) = k, π′′(s0) = l. Then the Markov

chains generated by π′ and π′′ have a single set of recurrent states within {0, . . . , B + 2},

and have constant throughputs. Denote the corresponding throughputs as gπ′ and gπ
′′ ,

respectively.

If γi,1 = 0, then s0 = B + 2 (otherwise π would have two recurrent classes and can not

be optimal). Moreover, when γi,1 = 0, then γl,1 = 0, 0 < γi,2 ≤ γl,2. Since s0 = B+2 is on

the boundary of the birth-death process, by using policy π′′ instead of π, we can reduce the

time we spend in that state and increase the reward (i.e., service rate at station 2) without

changing anything else. Thus, gπ < gπ
′′ , π is not optimal. Similarly, we can obtain this

result when γi,2 = 0.

Next, consider the case when γi,1, γi,2 > 0. If we substitute µs,j with the service rate at

station j ∈ {1, 2} in state s ∈ S under policy π, then µs0,j = γi,j for j ∈ {1, 2}, and gπ is

given in equation (4.3). Moreover, we can obtain the following equations (A.1) and (4.5)

by plugging in ∆1 = δ1,∆2 = δ4 and ∆1 = −δ2,∆2 = −δ3 to equation (4.3), respectively.

gπ
′ − gπ =

(C2C3 − C1C5)(δ1γi,2 + δ4γi,1) + δ1C2C4 − δ4C1C4

Θ2(Θ2 − δ4C3 + δ1C5)
, (4.4)

and

gπ
′′ − gπ =

(C2C3 − C1C5)(−δ2γi,2 − δ3γi,1)− δ2C2C4 + δ3C1C4

Θ2(Θ2 + δ3C3 − δ2C5)
. (4.5)

Note that the denominators of equations (A.1) and (4.5) are positive. Moreover, δ1δ3 > 0,

so δ1γi,2 + δ4γi,1 > 0, and δ2γi,2 + δ3γi,1 > 0. Consider the following positive linear
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combination of gπ′ − gπ and gπ′′ − gπ:

(gπ
′ − gπ)λ1 + (gπ

′′ − gπ)λ2 =
C4(C1γi,2 + C2γi,1)(δ1δ3 − δ2δ4)

(δ1γi,2 + δ4γi,1)(δ2γi,2 + δ3γi,1)
, (4.6)

where

λ1 =
Θ2(Θ2 − δ4C3 + δ1C5)

(δ1γi,2 + δ4γi,1)
> 0,

λ2 =
Θ2(Θ2 + δ3C3 − δ2C5)

(δ2γi,2 + δ3γi,1)
> 0.

Since δ2δ4 < δ1δ3,

(gπ
′ − gπ)λ1 + (gπ

′′ − gπ)λ2 > 0.

Thus, at least one of gπ′ − gπ and gπ′′ − gπ must be positive. That is, at least one of gπ′ and

gπ
′′ should be greater than gπ, and policy π cannot be optimal.

Theorem 4.2.1 implies that dominated team assignments are replaceable. The following

proposition shows that, when the inequality in (iii) of Definition 4.2.1 becomes equality,

even though the team assignment is no longer dominated, it is replaceable.

Proposition 4.2.1. Team assignment i is replaceable if there exist two other assignments

k, l such that

1. γk,1 ≥ γi,1 ≥ γl,1,

2. γk,2 ≤ γi,2 ≤ γl,2,

3. (γi,1 − γl,1)(γi,2 − γk,2) = (γk,1 − γi,1)(γl,2 − γi,2)

Proof. Suppose there such exist i, k, l ∈ T . Considering the same notations as in the proof

of Theorem 4.2.1, but now we have δ2δ4 = δ1δ3. If δ1 = δ4 = 0 or δ2 = δ3 = 0, then

team assignment i is equivalent to one or both of team assignments k, l, the result is trivial.

Otherwise, δ1γi,2 + δ4γi,1 > 0, and δ2γi,2 + δ3γi,1 > 0. By equation (4.6),

(gπ
′ − gπ)λ1 + (gπ

′′ − gπ)λ2 = 0.
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Thus, at least one of gπ′ − gπ and gπ′′ − gπ must be non-negative. That is, at least one of π′

and π′′ is as good as π and team assignment i is replaceable.

4.2.2 Optimal policy

After our preliminary selection in the previous section, we remove the team assignments

that are not on the Pareto boundary or dominated by some other team assignments. The

next definition provides the set of potential optimal policies.

Definition 4.2.2. (Optimal Assignment Set) A set of team assignments T ∗ ⊆ T is called the

optimal assignment set, if all the assignments in T ∗ are not replaceable.

By Theorems 4.1.1 and 4.2.1, we can find an optimal policy among team assignments

in the optimal assignment set, but so far it is not clear when and how we should use these

assignments. To present our optimal policy in a concise way, we first renumber the assign-

ments in T ∗.

Proposition 4.2.2. Let |T ∗| = Nt. We can then number the assignments in T ∗ such that

if γ1,1 ≥ γ2,1 ≥ . . . ≥ γNt,1, then γ1,2 ≤ γ2,2 ≤ . . . ≤ γNt,2, and γNt−1,1−γNt,1
γNt,2−γNt−1,2

> . . . >

γ2,1−γ3,1
γ3,2−γ2,2 >

γ1,1−γ2,1
γ2,2−γ1,2 .

Proof. By definition, if two different assignments i, k ∈ T ∗, then they are on the Pareto

boundary, and thus if γi,1 ≥ γk,1, we must have γi,2 ≤ γk,2. Otherwise team i would

have higher service rates than team k at both stations and thus k is not on the Pareto

boundary. So, we can obtain γ1,2 ≤ γ2,2 ≤ . . . ≤ γN,2 in this manner. By definition,

if team assignments i, k, l are irreplaceable, and γk,1 ≥ γi,1 ≥ γl,1, γk,2 ≤ γi,2 ≤ γl,2, then
γi,1−γl,1
γl,2−γi,2

>
γk,1−γi,1
γi,2−γk,2

. And thus we can obtainγNt−1,1−γNt,1
γNt,2−γNt−1,2

> . . . > γ2,1−γ3,1
γ3,2−γ2,2 >

γ1,1−γ2,1
γ2,2−γ1,2 in

this manner.

Now we are ready to present the optimal policy as follows.
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Theorem 4.2.2. (Optimal Policy) When |T ∗| = Nt, and the team assignments in T ∗ have

been reordered as in Proposition 4.2.2, then for any optimal policy π∗ ∈ Π∗, there exist

i∗0, . . . , i
∗
B+2 with 1 = i∗B+2 ≤ i∗B+1 ≤ . . . ≤ i∗0 = Nt such that π∗(s) = Nt + 1− i∗s for all

s ∈ S.

Proof. WhenNt = 1, the problem is trivial. WhenNt > 1, consider the following problem

P :

Suppose in our current tandem queueing network, instead of M servers with Nt pos-

sible optimal team assignments, we now have Nt + 1 servers. Assume the service rate of

server i ∈ {1, . . . , Nt + 1} at station j ∈ {1, 2} is µij , and when they work together, their

service rates are additive. The goal is again dynamically assign the servers to the stations

to maximize the long-run average throughput of the system.

Let µ11 = γNt,1, µk,1 = γNt+1−k,1 − γNt+2−k,1 for k = 2, . . . , Nt, µNt+1,1 = 0, µ12 =

0, µk,2 = γNt+2−k,2 − γNt+1−k,2 for k = 2, . . . , Nt, and µNt+1,2 = γ12. Then by the

definition of T ∗, we have µij ≥ 0, for any i ∈ {1, . . . , Nt+1}, j ∈ {1, 2}, and µ12
µ11

< µ22
µ21

<

. . . <
µNt+1,2

µNt+1,1
.

Let ΠP be the set of all stationary deterministic policies of Problem P, and Π∗P be the

set of optimal policies of Problem P.

Assume that the optimal long-run average throughput of Problem P is g∗P , and the

optimal long-run average throughput of the original problem is g∗O. Note that, for k ∈

{1, . . . , Nt},
∑k

i=1 µi,1 = γNt+1−k,1,
∑Nt+1

i=k+1 µi,2 = γNt+1−k,2, that is, all the Nt team as-

signments in T ∗ correspond to feasible assignments in Problem P . So g∗O ≤ g∗P , and the

optimal long-run average throughput of the original problem is bounded by g∗P .

Next, we will show that we can reach this upper bound g∗P . According to Theorem 4

of Hasenbein and Kim [28], for any optimal policy π∗P ∈ Π∗P of Problem P , there exist

thresholds i0, . . . , iB+2 with 0 = iB+2 < iB+1 ≤ . . . ≤ i1 < i0 = Nt + 1 such that, in

state s ∈ S, the optimal policy is to assign servers 1, . . . , is to Station 1, and the rest of the

servers to Station 2. We can observe that, in this optimal policy π∗P :
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• When the system is in state s ∈ S \ {0, B + 2}, 1 ≤ is ≤ Nt, the combined service

rate of Station 1 is
∑is

i=1 µi,1 = γNt+1−is,1, and the combined service rate of Station 2

is
∑Nt+1

i=is+1 µi,2 = γNt+1−is,2, which is equivalent to using team assignmentNt+1−is

in T ∗;

• When the system is in state s = 0, the combined service rate of Station 1 is
∑is

i=1 µi,1 =∑Nt+1
i=1 µi,1 = γ1,1, the combined service rate of Station 2 is 0, which is equivalent to

using team assignment 1 in T ∗ since there is no work to do at Station 2;

• When the system is in state s = B + 2, the combined service rate at Station 1 is 0,

the combined service rate at Station 2 is
∑Nt+1

i=is+1 µi,2 =
∑Nt+1

i=1 µi,2 = γNt,2, which

is equivalent to using team assignment Nt in T ∗ since Station 1 is blocked.

Thus, we can attain g∗P in the original problem using the following policy π∗. Let i∗0 =

Nt, i
∗
s = is for s ∈ S \ {0, B + 2}, i∗B+2 = 1, and set π∗(s) = Nt + 1 − i∗s for all s ∈ S.

Then, π∗ is optimal.

The following corollary follows immediately from Theorem 4.2.2.

Corollary 4.2.1. For any optimal policy π∗, there exist s∗1, . . . , s
∗
Nt−1 with 0 ≤ s∗1 ≤ . . . ≤

s∗Nt−1 ≤ B + 2 such that

π∗(s) =



1 if 0 ≤ s ≤ s∗1,

2 if s∗1 < s ≤ s∗2,

...
...

Nt if s∗Nt−1 < s ≤ B + 2.

for all s ∈ S.

Note that, the theorem does not provide a methodology in how to determine the thresh-

olds, but it significantly reduces the number of policies need to be evaluated from NB+2
t
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to
(
B+Nt
Nt−1

)
. This also explains why we provide conditions in reducing the size of Nt in the

previous two sections. The following example illustrates how to use our method to find out

the optimal policy.

Example 4.2.1. Assume the buffer size B = 1. Then, S = {0, 1, 2, 3}. Suppose now

we have 20 team assignments with service rates of ith team at station j ∈ {1, 2}, γi,j ,

for i ∈ {1, . . . , 20} and γi,j is independently and randomly generated from {1, 2, . . . , 10}.

Specifically, the service rates of these team assignments are shown in the following scatter

plot.

Figure 4.1: Service rates of 20 team assignments

First, we remove the team assignments that are not on Pareto boundary or dominated

by others and obtain T ∗. There are 4 team assignments in T ∗ and the corresponding service

rates are (γ1,1, γ1,2) = (10, 2), (γ2,1, γ2,2) = (9, 6), (γ3,1, γ3,2) = (7, 7), and (γ4,1, γ4,2) =

(4, 8). Then we can find the optimal policy using Theorem 4.2.2. In Table 1, we evaluate

the 10 possible policies and mark the optimal throughput with *. The optimal police is:

π∗(s) =



1 if s = 0,

2 if s = 1,

3 if s = 2,

4 if s = 3.
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Table 4.1: Throughputs of model in Example 4.2.1.

team assignment throughput

s = 0 s = 1 s = 2 s = 3

1 1 1 4 4.9799

1 1 2 4 5.6942

1 1 3 4 5.6722

1 1 4 4 5.5285

1 2 2 4 5.9530

1 2 3 4 5.9838*

1 2 4 4 5.9316

1 3 3 4 5.8741

1 3 4 4 5.8091

1 4 4 4 5.4902

From this example we can see that, using our method, we can first largely reduce the

number of team assignments from 20 to 4, and then we reduce the number of total possible

assignment policies of these 4 teams from 64(= 43) to 10 by applying Theorem 4.2.2 and

find out the optimal policy efficiently.

Note that, if |T ∗| = 1, i.e., i∗ is the only assignment left, then it is optimal to always

choose this team assignment in all states. In the next section, we discuss the case when

|T ∗| = 1 is satisfied.

4.2.3 Permanent Team Assignment

In this section, we obtain the conditions when permanent team assignment is optimal, that

is, when it is optimal for the servers to be static. If we use team assignment t ∈ T at all
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times, then the corresponding throughput of this permanent assignment is:

gts =
γt,1γt,2

∑B+1
k=0 (γt,1)k(γt,2)B+1−k∑B+2

k=0 (γt,1)k(γt,2)B+2−k
.

Theorem 4.2.3. A permanent team assignment is optimal if and only if there exists team i

such that γi,1 ≥ γj,1, γi,2 ≥ γj,2 for all j ∈ T , j 6= i, and the policy π∗ such that π∗(s) = i

for all s ∈ S is optimal.

Proof. If such team assignment i exist, then T ∗ = {i} since i is the only team assignment

on the Pareto boundary. Then |T ∗| = 1 and π∗ is optimal.

If such team i does not exist, let j = argmin
k∈T

γk,1 and l = argmin
k∈T

γk,2, then j 6= l. Any

optimal policy π∗ has π∗(0) = j, π∗(B + 2) = l. Thus, any permanent team assignment

cannot be optimal.

Intuitively, when there exists a team assignment that has higher service rates at all

stations than all the other team assignments, then it is optimal to use that team assignment

at all times. And if such team assignment does not exist, it would be better to let the servers

to be flexible to take full advantage of the specialty of different team assignments.

4.3 Systems with Proportional Rates

In this section, we want to explore the optimal policy for cases with some special structures.

In Section 4.3.1, we consider a special case when the combined service rates of a team is

proportional to the sum of their service rates with coefficient α, and provide the optimal

policy when α = 1. We also discuss the property of the optimal policy when α 6= 1. In

Section 5.3.1, we explore the optimal policy when there are constraints on team formation.
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4.3.1 Proportional Team Service Rates

In this section, we consider the case when the combined service rate of a group of servers

is proportional to the sum of their service rates (with coefficient α). Suppose the service

rate of server i ∈ I = {1, 2, . . . ,M} at station j ∈ {1, 2} is µij , and we label the servers

such that µ12
µ11
≤ µ22

µ21
≤ . . . ≤ µM,2

µM,1
. Define the set of possible team assignments as T =

{(t1, . . . , tM) : ti ∈ {0, 1, 2},∀i ∈ I}, where ti = 0 if the ith server is idled, and ti = j

if the ith server is assigned to station j, for j = 1, 2. We obtain the following theorem by

applying our optimal policy.

Theorem 4.3.1. When α = 1 (i.e., the service rates are additive), there exist thresholds

i0, . . . , iB+2 with 0 = iB+2 < iB+1 ≤ . . . ≤ i1 < i0 = M such that, in state s ∈ S,

the optimal policy is to assign servers 1, . . . , is to station 1, and the remaining servers to

station 2.

Proof. First, we prove that

T ∗ ⊆ {t0 = (1, . . . , 1, 1), t1 = (1, . . . , 1, 2), . . . , tM−1 = (1, 2, . . . , 2), tM = (2, 2, . . . , 2)}.

That is, for any t = (t1, . . . , tM) ∈ T ∗, if ti = 1 for some i ∈ I , then tk = 1 for 1 ≤ k ≤ i;

if ti = 2 for some i ∈ I , then tk = 2 for i ≤ k ≤M . We prove by contradiction.

Suppose there exists a team assignment t ∈ T such that k < i and tk = 2, ti = 1. Then

the team service rates of t at station j is γt,j =
∑M

l=1 µl,j1{tl = j} for j = 1, 2. If γt,j > 0

for j = 1, 2, we consider two other team assignments t′ and t′′. In particular, t′k = 1, and

t′l = tl for l ∈ I \ {k}; t′′i = 2, and t′′l = tl for l ∈ I \ {i}. Then, we obtain that

γt′,1 = γt,1 + µk,1, γt′,2 = γt,2 − µk,2;

γt′′,1 = γt,1 − µi,1, γt′′,2 = γt,2 + µi,2.
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Thus, γt′,1 ≥ γt,1 ≥ γt′′,1, γt′,2 ≤ γt,2 ≤ γt′′,2, and µk,2
µk,1
≤ µi,2

µi,1
implies that

(γt,1 − γt′′,1)(γt,2 − γt′,2) = µi,1µk,2 ≤ µk,1µi,2 = (γt′,1 − γt,1)(γt′′,2 − γt,2).

By Theorem 4.2.1 and Proposition 4.2.1, t is replaceable, and thus t /∈ T ∗.

If γt,1 = 0, since ti = 1, we have µi,1 = 0, and µi,2 > 0 (otherwise server i should be

removed from the set of servers). Then γt′′,1 = γt,1 − µi,1 = γt,1, γt′′,2 = γt,2 + µi,2 > γt,2.

Thus, team assignment t is not on the Pareto boundary, and t /∈ T ∗. Similarly, we can

obtain that t /∈ T ∗ if γt,2 = 0.

Now we have proved that T ∗ = {t0, . . . , tM}, and γtm,1 =
∑M−m

l=1 µl,1, γtm,2 =∑M
l=M+1−m µl,2, for m = 0, 1, . . . ,M . It is easy to check that with the current order,

the team assignments in T ∗ satisfy the three conditions in Proposition 4.2.2 and thus we

can obtain the desired result by applying Theorem 4.2.2.

Note that, although the optimal policy when α = 1 is given in Theorem 4 of Hasenbein

and Kim [28], the result can be easily obtained using our method.

The following proposition provides the optimal assignment set T ∗ when M = 2. We

introduce some notation to better illustrate the results. Let Σ1 = µ11 +µ21,Σ2 = µ12 +µ22;

then the combined service rate of servers working together at subtask i is αΣi for i = 1, 2.

Let µ11 = β1Σ1, µ21 = (1 − β1)Σ1, µ12 = β2Σ2, µ22 = (1 − β2)Σ2, then βj ∈ [0, 1] is the

fraction of server 1 of the total service rate on subtask j, for j = 1, 2. Moreover, let

m1 =
β1 + β2 − 1

2β2 − 1
, when β2 6=

1

2
.

m2 =
β1 + β2 − 1

2β1 − 1
, when β1 6=

1

2
.

Moreover, our assumption of µ12
µ11
≤ µ22

µ21
can be reorganized as β1 ≥ β2.

Proposition 4.3.1. When β1 ≥ β2,

1. If α ≥ 1 + β1 − β2, then T ∗ = {(1, 1), (2, 2)}.
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2. If α < 1 + β1 − β2, then

(a) if β1 ≥ β2 >
1
2
, 2β1 − 2β2

1 − 1 + β2 ≥ 0,

T ∗ =



{(1, 1), (1, 2), (2, 2)} if m2 ≤ α < 1 + β1 − β2,

{(1, 1), (1, 2), (2, 1), (2, 2)} if β1 ≤ α < m2,

{(1, 2), (2, 1), (2, 2)} if β2 ≤ α < β1,

{(1, 2), (2, 1)} if 0 < α < β2.

(b) if β1 ≥ β2 >
1
2
, 2β1 − 2β2

1 − 1 + β2 < 0,

T ∗ =



{(1, 1), (1, 2), (2, 2)} if β1 ≤ α < 1 + β1 − β2,

{(1, 2), (2, 2)} if m2 ≤ α < β1,

{(1, 2), (2, 1), (2, 2)} if β2 ≤ α < m2,

{(1, 2), (2, 1)} if 0 < α < β2.

(c) if β1 ≥ 1
2
≥ β2, β1 + β2 ≥ 1,

T ∗ =


{(1, 1), (1, 2), (2, 2)} if β1 ≤ α < 1 + β1 − β2,

{(1, 2), (2, 2)} if 1− β2 ≤ α < β1,

{(1, 2)} if 0 < α < 1− β2.

(d) if β1 ≥ 1
2
≥ β2, β1 + β2 < 1,

T ∗ =


{(1, 1), (1, 2), (2, 2)} if 1− β2 ≤ α < 1 + β1 − β2,

{(1, 1), (1, 2)} if β1 ≤ α < 1− β2,

{(1, 2)} if 0 < α < β1.
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(e) if 1
2
> β1 ≥ β2, 2β2 − 2β2

2 − β1 ≥ 0,

T ∗ =



{(1, 1), (1, 2), (2, 2)} if m1 ≤ α < 1 + β1 − β2,

{(1, 1), (1, 2), (2, 1), (2, 2)} if 1− β2 ≤ α < m1,

{(1, 1), (1, 2), (2, 1)} if 1− β1 ≤ α < 1− β2,

{(1, 2), (2, 1)} if 0 < α < 1− β1.

(f) if 1
2
> β1 ≥ β2, 2β2 − 2β2

2 − β1 < 0,

T ∗ =



{(1, 1), (1, 2), (2, 2)} if 1− β2 ≤ α < 1 + β1 − β2,

{(1, 1), (1, 2)} if m1 ≤ α < 1− β2,

{(1, 1), (1, 2), (2, 1)} if 1− β1 ≤ α < m1,

{(1, 2), (2, 1)} if 0 < α < 1− β1.

Proof. From Proposition 4.1.1 and Theorem 4.2.1, we can obtain that

1. (1, 1) ∈ T ∗ if and only if α > max{β1, 1− β1}.

2. (2, 2) ∈ T ∗ if and only if α > max{β2, 1− β2}.

3. (1, 2) ∈ T ∗ if at least one of the following cases holds:

(a) β1 ≥ β2 >
1
2
, α < min{m1, 1 + β1 − β2};

(b) β1 ≥ 1
2
≥ β2, α < 1 + β1 − β2;

(c) 1
2
> β1 ≥ β2, α < min{m2, 1 + β1 − β2}.

4. (2, 1) ∈ T ∗ if at least one of the following cases holds:

(a) β1 ≥ β2 >
1
2
, α < min{m2, 1− β1 + β2};

(b) β1 ≥ 1
2
≥ β2, α < 1− β1 + β2;
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(c) 1
2
> β1 ≥ β2, α < min{m1, 1− β1 + β2}.

By comparing the values of these thresholds shown in the inequalities above, and reorga-

nizing the above conditions, we can get the desired results.

Note that, once we determine T ∗, the optimal policy follows from Theorem 4.2.2.

Remark 4.3.1. Proposition 4.3.1 coincides with Theorem 2.1 of Andradóttir, Ayhan, and

Down [11] and Theorems 3.1-3.4, 4.1-4.2, and 4.4 of Andradóttir, Ayhan, and Down [13].

In particular, our results provide more specific information of team selection than Theorems

4.2 and 4.4 of Andradóttir, Ayhan, and Down [13] since we have two extra thresholds m1,

m2. For instance, when β1 ≥ β2 > 1
2

and β1 ≤ α ≤ 1, Theorems 4.4 of [13] claims

that T ∗ = {(1, 1), (1, 2), (2, 1), (2, 2)}; while we eliminate team assignment (2, 1) from T ∗

when either 2β1 − 2β2
1 − 1 + β2 ≥ 0,m2 ≤ α < 1 + β1 − β2 or 2β1 − 2β2

1 − 1 + β2 < 0

and further reduce the number of team assignments in T ∗.

Next, we consider the case when the servers are generalists. In particular, assume the

service rate of server i at station j ∈ {1, 2} is µij = µiγj , and the servers have proportional

combined service rates with coefficient α. Then Proposition 4.3.1 can be simplified as

follows.

Proposition 4.3.2. When µij = µiγj , then β1 = β2, and

1. If β1 = β2 6= 1
2
, then

T ∗ =


{(1, 1), (2, 2)} if 1 ≤ α,

{(1, 1), (1, 2), (2, 1), (2, 2)} if max{β1, 1− β1} ≤ α < 1,

{(1, 2), (2, 1)} if 0 < α < max{β1, 1− β1}.
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2. If β1 = β2 = 1
2
, then

T ∗ =


{(1, 1), (2, 2)} if 1 ≤ α,

{(1, 1), (1, 2), (2, 2)} if 1
2
≤ α < 1,

{(1, 2)} if 0 < α < 1
2
.

Proof. When µij = µiγj , we have m1 = m2 = 1, β1 = β2 > 0, and

2β1 − 2β2
1 − 1 + β2 = (2β1 − 1)(1− β1) > 0 when β1 = β2 >

1

2
,

2β2 − 2β2
2 − β1 = β2(1− 2β2) > 0 when

1

2
> β1 = β2.

And we can obtain the desired results by plugging in the above equalities and inequalities.

Note that, Proposition 4.3.2 coincide with Theorem 2.1 of Andradóttir, Ayhan, and

Down [11].

4.3.2 Teams of Specialized Servers

In this section, we consider the case when there are constraints on team formation. Suppose

now we have K types of servers with different specialties, and we need exactly one server

of each type to work as a team at each station.

Specifically, consider N stations, then we need N servers of each type. Let µkij be the

service rate of ith server of type k working at station j, where i, j ∈ {1, . . . , N}, k ∈

{1, . . . , K}. Assume that µkij > 0 for any i, k, j. A team’s service rate is proportional to

the sum of the service rates of its team members with coefficient α. Our objective is to find

out the optimal team assignments that maximize the long-run throughput of this system.

In this section, we focus on the case N = 2. First, we can label servers such that

µk11 ≥ µk21 for all k without loss of generality. We present the server allocation by a
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K−dimensional vector A = (a1, . . . , aK), where ak denotes the station that the first

server of type k is assigned to. Let Si(A) be the team service rate at station i ∈ {1, 2}

of server allocation A, that is, S1(A) = α
∑K

k=1((2− ak)µk11 + (ak − 1)µk21) and S2(A) =

α
∑K

k=1((ak − 1)µk12 + (2− ak)µk22).

Theorem 4.3.2. If µk
′

12 < µk
′

22 for some type k′, we will always assign the first server of type

k′ to station 1, and second server of type k′ to station 2 in any optimal policy.

Proof. If on the contrary, we use team assignment Ai = (ai,1, . . . , ai,K) in some policy π

at state s ∈ S with ai,k′ = 2, then we can find another assignment Aj such that aj,k = ai,k

for ∀k 6= k′, and aj,k′ = 1. Then S1(Aj)−S1(Ai) = α(µk
′

11−µk
′

21) ≥ 0, S2(Aj)−S2(Ai) =

α(µk
′

22−µk
′

12) > 0, and we can increase the service rates at both stations by using assignment

Aj instead of Ai. Thus, this policy π can not be optimal, and the proof is complete.

Theorem 4.3.2 shows the optimal server assignment for server of type k such that µk11 ≥

µk21 and µk12 < µk22. Indeed, if the two servers of type k are better at different stations, we

will always assign the server to the station where they work faster to obtain larger team

service rates at both stations.

Now, we need to find the optimal assignment for the servers of type k such that µk12 ≥

µk22. Without loss of generality, assume that µk12 ≥ µk22 for k = 1, 2, . . . , K0. That is, for

the first K0 types of servers, one server (by our assumption, i.e. the first server) dominates

the other one at both stations. Let dk =
µk11−µk21
µk12−µk22

, then we can reorder the types of servers

such that d1 ≤ d2 ≤ . . . ≤ dK0 . Denote A0 = (1, . . . , 1), A1 = (2, 1, . . . , 1), A2 =

(2, 2, 1, . . . , 1), . . . , AK0 = (2, . . . , 2, 1, . . . , 1), that is, for i ∈ {0, . . . , K0}, in assignment

Ai, aik = 2, for k = 1, . . . , i; aik = 1 for k > i. Then the optimal policy is given in the

following theorem.

Theorem 4.3.3. For any optimal policy π∗, there exist s∗1, . . . , s
∗
K0

with 1 ≤ s∗1 ≤ . . . ≤
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s∗K0
≤ B + 1 such that

π∗(s) =



A0 if 0 ≤ s ≤ s∗1,

A1 if s∗1 < s ≤ s∗2,

...
...

AK0−1 if s∗K0−1 < s ≤ s∗K0
,

AK0 if s∗K0
< s ≤ B + 2.

for all s ∈ S.

Proof. It is trivial when K0 = 0. When K0 > 0, first note that, by Theorem 4.3.2, for

any assignment A = (a1, . . . , aK) used in any optimal policy, it must satisfy ak = 1 for

k = K0 +1, . . . , K. Denote the set of all such team assignments as T 0. For any assignment

A ∈ T 0, A 6= A0, and A 6= AK0 , there exists type 1 ≤ k1, k2 ≤ K0 such that ak1 = 2,

and ak2 = 1. Then, we can find assignments A1, A2 ∈ T 0 such that a1
k = a2

k = ak for

k 6= k1, k2, a1
k1

= a1
k2

= 1, a2
k1

= a2
k2

= 2. Note that, by Theorem 4.2.1, A is dominated by

A1 and A2 if dk2 < dk1 , which leads to k2 < k1. Thus, T ∗ ⊆ {A0, . . . , AK0}. The rest of

the proof follows from Theorem 4.2.2.

Intuitively, dk can be regarded as the ratio of loss at station 1 and gain at station 2 if

we switch the two servers of type k when the first server is at station 1 and the second

server is at station 2, initially. Note that, the first server of any type k works faster than

the second server. Furthermore, when the number of jobs in the buffer is small, we want

to obtain higher throughput by pushing more jobs into the system, and so we assign the

server with higher service rate at station 1 (i.e., the first server) for each type to station

1. As the number of jobs waiting in the buffer (to be served) at station 2 increases, we

want to obtain higher throughput by pushing more jobs out of the system. Thus, we will

switch the assignment of server 1 and server 2 of a selected type, gradually. Each time
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when we reach the threshold of switching the servers, we switch the type with smallest dk

so that we will relatively increase the service rate at station 2 as much as we can while

decreasing the service rate at station 1 as little as possible. And when the number of jobs

in the intermediate buffer is so large that station 1 is almost blocked, we will assign all first

servers to station 2 to achieve the highest service rate at that station.

Remark 4.3.2.

1. Since the servers always work as a team of K > 1, and their individual service rates

are positive, the service rate at each station is always the combined service rate of a team,

which equals to the sum of individual service rates of the team members times α. Thus, the

value of α does not affect the choice of optimal policy.

2. When the servers are generalists, i.e., µkij = µki γj , then σ1 = σ2 = . . . = σK = γ1
γ2

,

and T ∗ = {A0, AK}, where A0 = (1, 1, . . . , 1) is to assign the first server of each type

to station 1, and AK = (2, 2, . . . , 2) is to assign the first server of each type to station 2.

Then, for any optimal policy π∗ ∈ Π∗, there exists 1 ≤ s∗ ≤ B + 1 such that π∗(s) = A0

for 0 ≤ s ≤ s∗, and π∗(s) = AK for s∗ < s ≤ B + 2.

In the rest of this section, we illustrate our results in Theorems 4.3.2, 4.3.3 by consid-

ering two special cases, namely, when K = 2 and K = 3.

Suppose now we have four servers of two types: {a1, a2, b1, b2}, so that we need two

different types of servers at each station. Then there are 4 possible team assignments:

T = {A0, A
1
1, A

2
1, A2}, where A0 = (1, 1), A1

1 = (1, 2), A2
1 = (2, 1), and A2 = (2, 2).

Specifically, in team A0, {a1, b1} work together at station 1; in team A1
1, {a1, b2} work

together at station 1; in team A2
1, {a2, b1} work together at station 1; in team A2, {a2, b2}

work together at station 1. Without loss of generality, assume that µa11 ≥ µa21, µ
b
11 ≥ µb21,

then Corollary 4.3.1 provides the optimal policy of this system.

Corollary 4.3.1.

(1) If µa12 ≤ µa22, µ
b
12 ≤ µb22, then T ∗ = {A0}.
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(2) If µa12 ≤ µa22, µ
b
12 > µb22, then T ∗ = {A0, A

1
1}.

(3) If µa12 > µa22, µ
b
12 ≤ µb22, then T ∗ = {A0, A

2
1}.

(4) If µa12 > µa22, µ
b
12 > µb22, denote da =

µa11−µa21
µa12−µa22

, db =
µb11−µb21
µb12−µb22

, then:

a. If da < db, then T ∗ = {A0, A
2
1, A2};

b. If da > db, then T ∗ = {A0, A
1
1, A2};

c. If da = db, then T ∗ = {A0, A2}.

In conclusion, when T ∗ = {A0}, it is optimal to use team assignmentA0 in all states. When

T ∗ = {A0, A
k}, Ak ∈ {A1

1, A
2
1, A2}, there exists 1 ≤ sk ≤ B + 1, such that if π∗(s) = A0

for 0 ≤ s ≤ sk, and π∗(s) = Ak for sk < s ≤ B + 2, then π∗ is an optimal policy. When

T ∗ = {A0, A
k
1, A2}, k = 1, 2, there exists 1 ≤ sk1 ≤ sk2 ≤ B + 1 such that, if π∗(s) = A0

for 0 ≤ s ≤ sk1, π∗(s) = Ak1 for sk1 < s ≤ sk2, and π∗(s) = A2 for sk2 < s ≤ B + 2 then π∗

is an optimal policy.

Now, consider the case K = 3. Then we have six servers of three types: {a1, a2, b1, b2,

c1, c2}, and there are eight possible team assignments in T : A0 = (1, 1, 1), A1
1 = (2, 1, 1),

A2
1 = (1, 2, 1), A3

1 = (1, 1, 2), A1
2 = (2, 2, 1), A2

2 = (2, 1, 2), A3
2 = (1, 2, 2), A3 = (2, 2, 2).

Table 5.6 shows the detailed server assignments. Without loss of generality, assume that

µa11 ≤ µa21, µ
b
11 ≤ µb21, µ

c
11 ≤ µc21. Also, we can re-index the type such that da ≤ db ≤ dc.

Then Corollary 4.3.2 provides the optimal policy for this system.
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Table 4.2: Team Assignments for Three Types of Servers.

Team Number Servers Work at Station 1 Servers Work at Station 2

A0 (a1, b1, c1) (a2, b2, c2)

A1
1 (a2, b1, c1) (a1, b2, c2)

A2
1 (a1, b2, c1) (a2, b1, c2)

A3
1 (a1, b1, c2) (a2, b2, c1)

A1
2 (a2, b2, c1) (a1, b1, c2)

A2
2 (a2, b1, c2) (a1, b2, c1)

A3
2 (a1, b2, c2) (a2, b1, c1)

A3 (a2, b2, c2) (a1, b1, c1)

Corollary 4.3.2.

(1) If µa12 ≤ µa22, µ
b
12 ≤ µb22, µ

c
12 ≤ µc22, then T ∗ = {A0}.

(2) If µa12 > µa22, µ
b
12 ≤ µb22, µ

c
12 ≤ µc22, then T ∗ = {A0, A

1
1}.

(3) If µa12 ≤ µa22, µ
b
12 > µb22, µ

c
12 ≤ µc22, then T ∗ = {A0, A

2
1}.

(4) If µa12 ≤ µa22, µ
b
12 ≤ µb22, µ

c
12 > µc22, then T ∗ = {A0, A

3
1}.

(5) If µa12 > µa22, µ
b
12 > µb22, µ

c
12 ≤ µc22, then if da < db, T ∗ = {A0, A

1
1, A

1
2}; if da = db,

T ∗ = {A0, A
1
2}.

(6) If µa12 > µa22, µ
b
12 ≤ µb22, µ

c
12 > µc22, then if da < dc, T ∗ = {A0, A

1
1, A

2
2}; if da = dc,

T ∗ = {A0, A
2
2}.

(7) If µa12 ≤ µa22, µ
b
12 > µb22, µ

c
12 > µc22, then if db < dc, T ∗ = {A0, A

2
1, A

3
2}; if db = dc,

T ∗ = {A0, A
3
2}.

(8) If µa12 > µa22, µ
b
12 > µb22, µ

c
12 > µc22, then:

a. If da = db = dc, then T ∗ = {A0, A3};

b. If da = db < dc, then T ∗ = {A0, A
1
2, A3};
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c. If da < db = dc, then T ∗ = {A0, A
1
1, A3}.

d. If da < db < dc, then T ∗ = {A0, A
1
1, A

1
2, A3}

When T ∗ = {A0}, it is optimal to use team assignment A0 in any recurrent state. When

T ∗ = {A0, A
k}, Ak ∈ T \ {A0}, there exists 1 ≤ sk ≤ B + 1, such that if π∗(s) = A0 for

0 ≤ s ≤ sk, and π∗(s) = Ak for sk < s ≤ B + 2, then π∗ is an optimal policy. When

T ∗ = {A0, A
i, Aj}, Ai, Aj ∈ T \ {A0}, there exists 1 ≤ s1

ij ≤ s2
ij ≤ B + 1 such that, if

π∗(s) = A0 for 0 ≤ s ≤ s1
ij , π

∗(s) = Ai for s1
ij < s ≤ s2

ij , and π∗(s) = Aj for s2
ij < s ≤

B + 2, then π∗ is an optimal policy. When T ∗ = {A0, A
i
1, A

j
2, A3}, i, j ∈ {1, 2, 3}, there

exists 1 ≤ ŝ1
ij ≤ ŝ2

ij ≤ ŝ3
ij ≤ B + 1 such that, if π∗(s) = A0 for 0 ≤ s ≤ ŝ1

ij , π
∗(s) = Ai1

for ŝ1
ij < s ≤ ŝ2

ij , π
∗(s) = Aj2 for ŝ2

ij < s ≤ ŝ3
ij , and π∗(s) = A3 for ŝ3

ij < s ≤ B + 2 then

π∗ is an optimal policy.

4.4 Longer Lines

In this section, we investigate the systems with teams of specialized servers for longer

lines. In particular, we focus on the case when the servers are generalists. Consider

N ≥ 3 tandem stations with finite intermediate buffers and K types of servers. For sim-

plicity, let µki γj be the service rate of ith server of type k working at station j, where

i, j ∈ {1, . . . , N}, k ∈ {1, . . . , K}. Indeed, µki could be regarded as the specialty of ith

server of type k while γj might represent the difficulty of the task attached to station j.

First, we generalize the definition of dominated team assignment for longer lines.

Definition 4.4.1. (Dominated Team Assignment) Team assignment i ∈ T is a dominated

team assignment, if there exists p ∈ (0, 1) and assignments j, l such that pγj,k+(1−p)γl,k >

γi,k for k = 1, . . . ,M .

Note that, if such p exists, then we can obtain higher throughput by using team assign-

ment j, l instead of i. Thus i is dominated and any policy uses i is not optimal.
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By our experience from previous research, the optimal policies for larger systems with

general service rates would be much more complex than the two stations case. Therefore,

for the rest of this section, we will propose heuristic policies for longer lines and evaluate

their performance via simulation.

4.4.1 Heuristics for Longer Lines

In this section, we present the heuristic policy for longer lines with teams of specialized

servers where the servers are generalists. To get more insights for our design of the heuristic

policy, we first investigate the optimal policies for some special cases. Then, we will

propose the heuristic policy for longer lines by learning from the structures of the optimal

policies of these examples.

Consider the most basic case with K = 2, N = 3, and zero intermediate buffers

between the stations. Denote the servers as {a1, a2, a3, b1, b2, b3}. Let s = (s1, s2) be the

state of the system, where sj is the number of jobs that have been processed at stations

preceding and including station j, but not at stations succeeding station j, for j ∈ {1, 2}.

Then, the state space is

S = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2)}.

The following examples show the impact of different task difficulties among stations to

the optimal policy of the system. In particular, Examples 4.4.1, 4.4.2, and 4.4.3 provide the

optimal policies for generalists with task difficulties of stations that are balanced, biased

towards upstream, and biased towards downstream, respectively.

Example 4.4.1. If µa1 = 3, µa2 = 2, µa3 = 1, µb1 = 3, µb2 = 2, µb3 = 1, γ1 = γ2 = γ3 = 1,

then the optimal policy is as follows:

1. When s = (0, 0), assign (a1, b1) to station 1;

2. When s = (2, 0), assign (a1, b1) to station 2;
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3. When s = (1, 2), assign (a1, b1) to station 3;

4. When s = (1, 0), assign (a2, b2) to station 1 and (a1, b1) to station 2;

5. When s = (0, 1), assign (a1, b1) to station 1 and (a2, b2) to station 3;

6. When s = (2, 1), the assignment is arbitrary as long as we assign a1, a2, b1, b2 to

stations 2,3 under the type constraint;

7. When s = (0, 2), assign (a2, b2) to station 1 and (a1, b1) to station 3;

8. When s = (1, 1), assign (a3, b3) to station 1, and the rest of the assignments are

arbitrary.

Example 4.4.2. If µa1 = 3, µa2 = 2, µa3 = 1, µb1 = 3, µb2 = 2, µb3 = 1, γ1 = 3, γ2 = 2, γ3 = 1,

then the optimal policy is as follows:

1. When s = (0, 0), assign (a1, b1) to station 1;

2. When s = (2, 0), assign (a1, b1) to station 2;

3. When s = (1, 2), assign (a1, b1) to station 3;

4. When s = (1, 0), assign (a2, b2) to station 1 and (a1, b1) to station 2;

5. When s = (0, 1), assign (a1, b1) to station 1 and (a2, b2) to station 3;

6. When s = (2, 1), assign (a2, b2) to station 2 and (a1, b1) to station 3;

7. When s = (0, 2), assign (a2, b2) to station 1 and (a1, b1) to station 3;

8. When s = (1, 1), assign (a3, b3) to station 1, (a2, b2) to station 2, and (a1, b1) to

station 3.

Example 4.4.3. If µa1 = 3, µa2 = 2, µa3 = 1, µb1 = 3, µb2 = 2, µb3 = 1, γ1 = 1, γ2 = 2, γ3 = 3,

then the optimal policy is as follows:
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1. When s = (0, 0), assign (a1, b1) to station 1;

2. When s = (2, 0), assign (a1, b1) to station 2;

3. When s = (1, 2), assign (a1, b1) to station 3;

4. When s = (1, 0), assign (a1, b1) to station 1 and (a2, b2) to station 2;

5. When s = (0, 1), assign (a1, b1) to station 1 and (a2, b2) to station 3;

6. When s = (2, 1), assign (a1, b1) to station 2 and (a2, b2) to station 3;

7. When s = (0, 2), assign (a1, b1) to station 1 and (a2, b2) to station 3;

8. When s = (1, 1), assign (a1, b1) to station 1, (a2, b2) to station 2, and (a3, b3) to

station 3.

From Examples 4.4.1, 4.4.2, and 4.4.3, we can observe that:

1. We always use the following three teams of servers: (a1, b1), (a2, b2), and (a3, b3) in

all optimal policies of our numerical results. This observation is consistent with our

result in Remark 4.3.2.2 for two-station systems.

2. When one of the three stations is starved or blocked, we will always let the slowest

team (a3, b3) idle; when two of the three stations are starved or blocked, we will let

the two slower teams, (a2, b2) and (a3, b3), be idle. That is, when some of the stations

are starved or blocked, we will always let the slower teams be idle.

3. When s = (0, 1), we will always assign the fastest team (i.e., (a1, b1)) to station 1.

Intuitively, we want the proportion of time that all three stations are working to be

as large as possible to avoid starving or blocking, i.e., we want to push the system to

s = (1, 1). Therefore, we assign the fastest team to station 1 to push more jobs into

the system and avoid starving at station 2 when s = (0, 1).
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4. For any state s ∈ S \ {(0, 1)}, we always assign the fastest remaining team to the

working and unassigned station with the highest difficulty. Intuitively, in order to

maximize the long-run average throughput of the tandem system, we want to avoid

having a bottleneck station or at least increase the service rate of the bottleneck sta-

tion as much as possible. Therefore, we assign the faster team to the slower station

to balance the service rate at each station. Moreover, if we assign (a1, b1) to station

3 and (a2, b2) to station 1 when s = (0, 1), and assign teams according to the opti-

mal policy for the other states for Example 4.4.2, we will have a long-run average

throughput of 4.6974, which is 0.2% less than the optimal throughput 4.7085. Thus,

we can achieve a near-optimal throughput by always assigning the fastest team to the

slowest station.

Combining our observations above with our previous results, we propose the following

heuristic server assignment policies for the general case:

First, label the servers of type k such that µk1 ≥ µk2 ≥ . . . ≥ µkN for k = 1, . . . , K.

1. We will use N permanent teams that are formed based on their ability. We will use

the following teams: the best server of each type, the second best server of each

type,..., the worst server of each type. That is, the ith team consists of the ith server

of each type for i = 1, . . . , N .

2. When some of the stations are starved or blocked, we will always let the servers with

lower service rates idle. That is, if n0 stations are working at time t, we will let teams

1, . . . , n0 work and n0 + 1, . . . , N idle.

In order to assign these teams to the working stations, our basic idea is to balance the

system by assigning the fastest remaining team to the slowest remaining station. Also,

to fully utilize our teams, we want to avoid stations from blocking and starving. Thus,

based on different assignments when there are blocked or starved stations in the system,

we consider two different plans.
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In the first plan, we prioritize eliminating blocking over starving. Specifically, we as-

sign the teams according to the following rules in the order given below:

1. If there are blocked stations in the line, then assign the fastest teams to the stations

immediately following the blocked stations (starting from the end of the line).

2. Next, starting from the end of the line, if the buffer size after some working station

is greater than or equal to 2, and the buffer is already full, we regard this station

as almost blocked station. If the station immediately following this almost blocked

station is unassigned, we assign the fastest remaining team to this station.

3. Next, starting from the beginning of the line, if there is some starved station in the

line, and the station immediately preceding the starved station is unassigned, we

assign the fastest remaining team to this station.

4. Next, starting from the beginning of the line, if the buffer size before some working

station is greater and equal to 2, and the buffer is empty, we regard this station as

almost starved station. And if the station immediately preceding this almost starved

station is unassigned, we assign the fastest remaining team to this station.

5. For all stations that do not have assigned servers, assign the fastest remaining team

to the slowest remaining station. In case of ties, that is, if ∃i, j s.t. γi = γj , assign

the faster team closer to the end of line as in ”bucket brigades” (see Bartholdi and

Eisenstein [18]).

Note that, if some station is both blocked and starved, we will mark the station as blocked

station; if some station is both almost blocked and almost starved, we will mark the station

as almost blocked station.

In the second plan, we prioritize eliminating starving over blocking. More specifically,

we will switch the order of the rules in the first plan as 3 → 4 → 1 → 2 → 5. That is, we

assign the fastest teams to deal with the starved and the almost starved stations first, and
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then we assign the remaining fastest teams to deal with the blocked and the almost blocked

stations.

4.4.2 Numerical Results

To investigate the validity of our heuristic policies and compare two different plans, in

this section, we provide numerical results. We compute the optimality gap (in percentage)

between our heuristics and the optimal results (i.e. the deviation of our heuristic from the

optimal policy with respect to the long-run average throughput of the system). In addition,

we compare our results to the optimality gap between the optimal dynamic policy and

optimal static policy. The optimal static policy has been discussed in Section 4.2.3, which

is the assignment that maximizes the long-run average throughput of the system when the

servers are static and server assignments are permanent.

First, we present numerical results of the system with two types of servers {a, b}, dif-

ferent number of stations, different buffers, and randomly generated service rates to inves-

tigate the effectiveness of our heuristics. All tables display 95% confidence intervals, and

the numbers are in percentage.

In Table 4.3, we provide the numerical results for three stations case. Specifically, to

model systems with small buffers, medium buffers, and large buffers, we consider systems

with common buffers for 1,5 or 10, and systems with buffers B1 = 1, B2 = 10, and

B1 = 10, B2 = 1. We have µai , µ
b
i , γj drawn independently from a uniform distribution

with range [0.5,2.5] for all i, j ∈ {1, 2, 3}. We performed 5000 iterations for each pair of

buffer sizes, and the results are shown in Table 4.3. Note that, for three stations systems,

the two different plans are the same. More specifically, consider the following cases that

include all the situations that might cause differences between these two plans in three

stations line: (i) If some station is starved, and another station is blocked, then there is only

one station working under the circumstance, and the assignment is obviously the same for

both plans; (ii) if station 3 is starved or almost starved, and station 1 is blocked or almost
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blocked, we will assign the fastest team to station 2 in both plans. Thus, the two heuristic

policies are the same in three stations case, and we only provide one heuristic results for

both plans in Table 4.3.

Table 4.3: Numerical Results for Three Stations.

Buffer Sizes % Optimality Gap

B1 B2 Opt. Static Heuristic

0 0 14.94± 0.18 0.47± 0.02

5 0 11.15± 0.18 1.88± 0.05

0 5 11.21± 0.18 1.49± 0.03

5 5 7.23± 0.16 2.09± 0.04

10 5 6.81± 0.15 2.36± 0.05

5 10 6.54± 0.15 2.31± 0.05

10 10 5.69± 0.14 2.48± 0.05

Average 9.14± 0.07 1.87± 0.02

Table 4.4 shows the numerical results for four stations systems. We consider systems

with buffers 0,2, and 4. Again, µai , µ
b
i , γj are drawn independently from a uniform distribu-

tion with range [0.5,2.5] for all i, j ∈ {1, 2, 3, 4}. We performed 1000 iterations for each

pair of buffer sizes.
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Table 4.4: Numerical Results for Four Stations.

Buffer Sizes % Optimality Gap

B1 B2 B3 Opt. Static Heuristic 1 Heuristic 2

0 0 0 17.15± 0.40 1.47± 0.05 1.52± 0.06

2 0 0 14.99± 0.41 2.51± 0.08 2.33± 0.07

0 2 0 15.67± 0.40 2.66± 0.07 2.85± 0.08

0 0 2 15.13± 0.41 1.42± 0.05 1.49± 0.07

2 2 2 11.57± 0.39 2.69± 0.09 2.70± 0.09

0 4 4 11.26± 0.40 2.72± 0.07 3.01± 0.10

4 0 4 11.18± 0.40 2.36± 0.12 2.35± 0.12

4 4 0 12.06± 0.41 3.86± 0.12 3.71± 0.10

4 4 4 8.60± 0.38 3.05± 0.11 3.12± 0.11

Average 13.11± 0.14 2.52± 0.03 2.56± 0.03

Table 4.5 shows the numerical results for five stations systems. We consider systems

with buffers 0,1,and 2. Again, µai , µ
b
i , γj are drawn independently from a uniform distri-

bution with range [0.5,2.5] for all i, j ∈ {1, . . . , 5}. We performed 200 iterations for each

combination of buffer sizes.
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Table 4.5: Numerical Results for Five Stations.

Buffer Sizes % Optimality Gap

B1 B2 B3 B4 Opt. Static Heuristic 1 Heuristic 2

0 0 0 0 19.36± 0.85 2.40± 0.15 2.71± 0.18

1 0 0 0 18.30± 0.86 3.02± 0.21 2.91± 0.22

0 1 0 0 17.71± 0.86 3.11± 0.19 3.44± 0.19

0 0 1 0 18.37± 0.85 2.92± 0.20 3.38± 0.21

0 0 0 1 18.65± 0.86 2.06± 0.19 2.23± 0.20

1 1 1 1 14.30± 0.89 3.22± 0.18 3.28± 0.18

Average 17.66± 0.40 2.82± 0.08 3.05± 0.09

From the results of Table 4.3-4.5, we can derive the following conclusions:

1. In all situations, the performance of our heuristic policies are significantly better than

the optimal static policy. Hence, our heuristic policies improve the throughput of the

system by assigning teams dynamically.

2. The optimality gap between our heuristic policies and optimal dynamic policy is

always less than 4%, which means that our heuristic policies yield near-optimal per-

formance.

3. Heuristic plan 2 performs better than heuristic plan 1 when there are more buffers

at the head of the line, but for all the other cases, for example, when the buffers are

balanced between stations or there are more buffers distributed towards the end of

the line, heuristic plan 1 works better.

4. We don’t have a clear pattern of the relationship between the total buffers and the

optimality gaps. Our heuristics perform better for more balanced systems than un-

balanced ones even if the total buffer size of the balanced system is larger than that

of the unbalanced system.
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4.5 Conclusions

We have studied Markovian queueing systems with N tandem stations, finite intermediate

buffers, and flexible servers with collaboration. For such queueing systems, we established

sufficient criteria for eliminating inferior teams, and then identified the optimal team assign-

ment policy among the remaining teams (i.e. optimal assignment set) for the two-station

case. We showed that if we label the remaining teams according to their service rate at

station 1 from high to low, then the optimal policy has monotone thresholds so that it uses

the first team assignment (the team with highest service rate at station 1) when the buffer is

empty, and transit to the second, third,. . . , last team assignment as the number of jobs in the

buffer increases. Then, we applied our optimal policy to two special cases, namely propor-

tional team service rates and teams of specialized servers. For teams of specialized servers,

when the servers are generalists, the optimal policy set containsN permanent teams that are

formed based on their ability. In particular, theN teams are the best server of each type, the

second best server of each type,. . . , the worst server of each type. Based on this result for

two stations systems and examples for three stations systems, we proposed heuristic policy

with teams of specialized servers where the servers are generalists for longer lines, and ob-

tained numerical results that suggested that our heuristics yield near-optimal performance

for systems with more than two stations.
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CHAPTER 5

OPTIMAL CONTROL OF QUEUEING SYSTEMS WITH DEFECTS

5.1 Introduction

In this chapter, we consider a Markovian system of N tandem stations, finite buffers be-

tween the stations, and N servers. Assume there is an infinite supply of raw materials

in front of the first station and infinite storage space after the last station. Since in many

systems, collaboration is infeasible or undesirable, we focus on non-collaborative servers

that are not able to work on the same job and assume that there can be at most one job

undergoing processing at each station. For example, limitations of workspace and tools

can prevent multiple servers from working simultaneously at the same station. However,

the servers are flexible, which means that they are cross-trained and allowed to switch be-

tween stations with negligible travel time. When a job is being processed at a station, it

might incur a defect and be wasted. Let 0 ≤ Bj < ∞, j ∈ {1, 2, . . . , N − 1}, be the

buffer size between station j and j + 1, and µi,j, pi,j, i, j ∈ {1, 2, . . . , N}, be the ser-

vice rate and defect probability of server i working at station j, respectively. Assume that∑N
j=1 µi,j(1 − pi,j) > 0 for i ∈ {1, 2, . . . , N} (otherwise the problem reduces to having

N−1 servers) and
∑N

i=1 µi,j(1−pi,j) > 0 for j ∈ {1, 2, . . . , N} (otherwise the throughput

is zero under any policy). Moreover, assume that if a job is processed by multiple servers

in turn at the same station, its defect probability is determined by the (last) server who

finishes processing this job at the station. For simplicity, let µ̂i,j = µi,j(1 − pi,j) be the

successful service rate for i, j ∈ {1, 2, . . . , N}. Then µ̂i,j is the rate of obtaining a service

completion with no defects by server i at station j. The service requirement for each job is

independently and exponentially distributed at each station, and without loss of generality,

we assume the mean service requirement of each job at each station is one. The system
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operates under manufacturing blocking. Our objective is to determine the dynamic server

allocation policy that maximizes the long-run average throughput.

This system without defects (i.e., when pi,j = 0 for i, j ∈ {1, 2, . . . , N}) has been

analyzed by Işık, Andradóttir, and Ayhan [31]. For systems with two stations and two

servers, they provided the server allocation policy that maximizes the long-run average

throughput. For systems of arbitrary size, they presented optimal policy for the special

case when each server is specialized at different station and proposed heuristic policies that

appear to be near-optimal for the general case. However, in practice, it is common to have

positive defect probabilities when servers process jobs. Thus, we include this factor into

consideration. We will see that the introduction of defect probabilities changes the structure

of the optimal policy. To the best of our knowledge, this is the first paper that considers the

dynamic scheduling of servers when they are flexible and error-prone.

In the presence of positive defect probabilities, it is not only important to finish jobs

quickly (by assigning a faster server), but to also have a successful service completion (by

assigning a more reliable server). Thus, if the fastest server and the most reliable server at

a station are not the same server, there is a trade-off between speed and more reliability.

Hence, the optimal policy for systems with defects is more complex than the the optimal

policy for systems without defects. In this chapter, we completely characterize the optimal

policy for two stations and two servers. Specifically, if we label the servers such that

µ̂11 ≥ µ̂21 (which is without loss of generality), then we show that the optimal policy takes

two forms depending on whether (1) µ̂11µ12 ≥ µ̂21µ22 or (2) µ̂11µ12 < µ̂21µ22. When

µ̂11µ12 ≥ µ̂21µ22, the optimal policy has a single threshold and it is best to assign server

i to station i for i = 1, 2 if the number of jobs in the intermediate buffer is less than that

threshold; and otherwise, we will assign server i to station 3−i for i = 1, 2. However, when

µ̂11µ12 < µ̂21µ22, the optimal policy has two thresholds and server i should be assigned to

station i for i = 1, 2 if the buffer is empty (the smaller threshold) or if the number of jobs

in the buffer exceeds the larger threshold; otherwise, we will assign server i to station 3− i
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for i = 1, 2. In addition to identifying the optimal policy for two stations and two servers,

we propose several heuristic policies for larger systems and provide numerical results that

suggest that our heuristics appear to be near-optimal.

The outline of this chapter is as follows. In Section 5.2, we provide a description of

our problem and the notation we use throughout this chapter. In Section 5.3, we present

preliminary results on the properties of the optimal policy. In Section 5.4, we identify the

policy that maximizes the long-run average throughput for two stations and two servers. In

Section 5.5, we provide heuristic policies for larger systems and provide numerical results

that suggest that the performance of our heuristics is near-optimal. In Section 5.6, we

summarize our findings and conclude the chapter. Finally, the proofs of some of our results

are provided in Appendix B.

5.2 Formulation

In this section, we present a detailed description of our model. Let Π be the set of server

assignment policies under consideration. For all π ∈ Π, let Dπ(t) be the number of suc-

cessful departures (with no defects) from the last station under policy π by time t, and let

T π = lim sup
t→∞

E[Dπ(t)]

t
(5.1)

be the long-run average throughput corresponding to server allocation policy π. We want

to solve the optimization problem

max
π∈Π

T π. (5.2)

For all π ∈ Π and t ≥ 0, let Xπ(t) = (X1(t), . . . , XN−1(t)), Xj(t) ∈ {0, 1, . . . , Bj + 2},

where Xj(t) is the number of jobs in the system that have completed service with no de-

fects at station j but have not yet completed service at station j + 1 at time t under policy

π. Denote the set of all possible states as S. From now on, we assume that the class Π of

server assignment policies under consideration consists of all Markovian stationary deter-
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ministic policies corresponding to the state space S of the stochastic processes {Xπ(t)}.

Let aσ1σ2...σN be an action that indicates the allocation of the servers, where σi = 0 if server

i is idled, and σi = j if server i is assigned to station j, for i, j ∈ {1, 2, . . . , N}. Let

Ax = A = {aσ1σ2...σN : σi ∈ {0, 1, . . . , N}, σi 6= σk for i 6= k with σiσk > 0}

denote the set of available actions in state x ∈ S.

It is clear that {Xπ(t) : t ≥ 0} is a continuous-time Markov chain. Let {qπ(x, x′)} be

the transition rates of {Xπ(t)}, and let µπj (x), pπj (x) be the service rate and defect proba-

bility at station j ∈ {1, 2, . . . , N} in state x ∈ S under policy π ∈ Π, respectively. Then,

for x ∈ S,

qπ(x, x′) =



µπ1 (x)(1− pπ1 (x)) if x′ = x+ e1, x
′ ∈ S

µπj (x)(1− pπj (x)) if x′ = x− ej−1 + ej, x
′ ∈ S, 2 ≤ j ≤ N − 1,

µπj (x)pπj (x) if x′ = x− ej−1, x− ej−1 + ej ∈ S, 2 ≤ j ≤ N − 1,

µπN(x) if x′ = x− eN−1, x
′ ∈ S

0 otherwise,
(5.3)

where {ej : j = 1, . . . , N − 1} is the standard basis for (N − 1)-dimensional space.

There exists a finite uniformization constant q ≤
∑

i maxj µi,j < ∞ such that {qπ(x, x′)}

satisfy
∑

x′∈S,x′ 6=x q
π(x, x′) ≤ q for all x ∈ S, π ∈ Π. Thus, {Xπ(t)} is uniformizable.

Let {Y π(k)} be the corresponding discrete-time Markov chain, so that {Y π(k)} has state

space S and transition probabilities pπ(x, x′) = qπ(x, x′)/q if x′ 6= x and pπ(x, x) =

1 −
∑

x′∈S,x′ 6=x q
π(x, x′)/q for all x ∈ S. Using a similar argument as in [7], we can

show that the original optimization problem in (5.2) can be translated into an equivalent
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discrete-time Markov decision problem. Specifically, for x = (s1, . . . , sN−1) ∈ S,

Rπ(x) =


µπN(x)(1− pπN(x)) if sN−1 > 0,

0 otherwise,
(5.4)

is the departure rate (with no defects) from state x under policy π for all x ∈ S, and

π ∈ Π. Then the optimization problem (5.2) has the same solution as the Markovian

decision problem

max
π∈Π

lim
K→∞

E
{ 1

K

K∑
k=1

Rπ(Y π(k − 1))
}
. (5.5)

Thus, maximizing the long-run average throughput of the original queueing system is

equivalent to maximize the long-run average successful departure rate for the associated

embedded discrete-time Markov chain.

5.3 Preliminary Results

In this section, we discuss the structure of the optimal policy for systems with N stations

and N servers, where N is arbitrary.

We have discussed the trade-off between service rate and defect probability in Section

5.1. However, if there exists a server that is both more reliable and faster than all other

servers at each station, and these servers are distinct, then we identify the optimal server

allocation as follows:

Theorem 5.3.1. Suppose there exists a permutation of the servers i1, . . . , iN such that

µijj = max1≤i≤N µij, pijj = min1≤i≤N pij for all j ∈ {1, 2, . . . , N}. Then the policy that

always assigns server ij to station j for j ∈ {1, 2, . . . , N} is optimal.

Without loss of generality, assume that ij = j for j ∈ {1, 2, . . . , N}. Let π∗ be the

policy that always assigns server j to station j for j ∈ {1, 2, . . . , N}. For any policy π ∈ Π

and π 6= π∗, we consider an artificial system under policy π but with servers of modified
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service rates. Specifically, in this artificial system, at any state s ∈ S, the service rate at

station j ∈ {1, . . . , N} is altered to µjj (the same as under π∗ in the real system), while

the defect probability of the server at station j remains the same as under π in the real

system. Denote T̃ π as the long-run average throughput of this artificial system under π.

We will prove Theorem 5.3.1 in two steps: Lemma 5.3.1 will show that the throughput of

the artificial system under π with modified service rates is no worse than the throughput of

the real system under π, and Lemma 5.3.2 will show that the throughput of the real system

under π∗ is no worse than the artificial system under π. Then, π∗ is no worse than π for any

π ∈ Π in the real system, and π∗ is optimal. The proofs of Lemma 5.3.1 and Lemma 5.3.2

are provided in the Appendix.

Lemma 5.3.1. T̃ π ≥ T π.

Lemma 5.3.2. T π∗ ≥ T̃ π.

Remark 5.3.1. Lemma 5.3.1 holds as long as the service requirements at each station are

independently and identically distributed. Thus, if the defect probability only depends on

the station, i.e., pi,j = pj for all i, j ∈ {1, . . . , N}. Then, Theorem 5.3.1 holds for a more

general system where the service requirements are independent and identically distributed

random variables (but not necessarily exponentially distributed).

For the result in Theorem 5.3.1 to hold in sample path sense, we need to prove that the

ith successful departure (with no defects) from the artificial system under policy π with

modified service rates should be no earlier than under policy π∗ for all i ≥ 1 and π ∈ Π.

However, the following example demonstrates that this inequality may fail if the service

requirements are not exponential.

Example 5.3.1. Consider a system with N = 2 and B1 = 0. Suppose the two servers are

identical except that server 1 is more reliable than server 2 at station 1 (i.e., p11 < p21).

Let policy π1 be the policy that always assigns server i to station i for i = 1, 2; and π2 be

the policy that assigns server i to station 3 − i for i = 1, 2. Then, if Theorem 5.3.1 holds
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in sample path sense, all successful departures from the system under policy π1 should be

earlier than under policy π2.

Consider two sample paths ω1, ω2, where we use policy πi in sample path ωi for i = 1, 2.

Thus, ω1 has lower defect probability at station 1 than ω2. Let Sj(i) be the service time of

the ith job that arriving to station j, for j = 1, 2, i ≥ 1. Suppose that both sample paths

share the same service times as follows: S1(i) = 1 for all i ≥ 1, S2(1) = 3, S2(i) = 1

for all i ≥ 2. Let Ikj (i) ∈ {0, 1} be the status of the ith job at station j upon its service

completion under policy πk for i ≥ 1, j, k = 1, 2, where 0 and 1 refer to defective and

successful service completion, respectively. Then, p11 < p21 implies that I1
j (i) ≥ I2

j (i) for

j = 1, 2, i ≥ 1. Suppose (I1
1 (i) : 1 ≤ i ≤ 5) = (1, 1, 0, 1, 1), (I2

1 (i) : 1 ≤ i ≤ 5) =

(1, 0, 0, 1, 1), (I1
2 (i) : 1 ≤ i ≤ 3) = (I2

2 (i) : 1 ≤ i ≤ 3) = (0, 0, 1). Then, Table 5.1

shows the comparison of the time flow of the first five departures from station 1 and first

three departures from station 2 in sample paths ω1, ω2. We number the jobs by their order

of entering station 1 in both sample paths. From Table 5.1, we observe that the time of

the first successful departure from the system under policy π1 is at time 7, while the first

successful departure from the system under policy π2 is at 6. Thus, Theorem 5.3.1 does not

hold in sample path sense.
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Table 5.1: Departure times from station 1 and 2 in sample paths ω1, ω2 (successful depar-
tures are in bold).

departure time in ω1 from departure time in ω2 from

job # station 1 station 2 station 1 station 2

1 1 4 1 4

2 4 5 2 X

3 5 X 3 X

4 6 7 4 5

5 7 \ 5 6

X-the job is defective and wasted at station 1.

\- not discussed in this example.

Note that, since there are infinitely many jobs in front of the first station, having a

defective service completion at station 1 would not alter the state of the system. Therefore,

if we assign server i to station 1 with successful service rate µ̂i,1, it is equivalent to having a

‘dummy’ server with service rate µ̂i,1 and zero defect probability at station 1. And using this

ideal, we can obtain the following two propositions of the properties of server assignment

at station 1. First, the following proposition shows that when the system is empty, the best

server allocation is to assign the server with largest successful service rate to station 1.

Proposition 5.3.1. When the system is empty, i.e., s = (0, . . . , 0), it is optimal to assign

the server such that µ̂i,1 is maximized to station 1.

Proof. For π ∈ Π, {Xπ(t)} is a semi-Markov process. And each time it enters a state

s ∈ S, it remains there for a random amount of time with rate qπ(s) =
∑

s′∈S,s′ 6=s q
π(s, s′).

If we let Xπ
n denote the state of the process after the nth transition, then {Xπ

n , n ≥ 0} is a

Markov chain with transition probability vπ(s, s′) = qπ(s,s′)
qπ(s)

, for s, s′ ∈ S, s′ 6= s. Let ηπ(s)

be the stationary probability of s ∈ S for {Xπ
n}. That is, ηπ(s) is the unique nonnegative
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solution of ∑
s∈S

ηπ(s) = 1,

ηπ(s) =
∑
s′∈S

ηπ(s′)vπ(s′, s),∀s ∈ S.

Then, the long-run proportion of time that process {Xπ(t)} spends in state s ∈ S is:

τπ(s) =
ηπ(s)/qπ(s)∑

s′∈S η
π(s′)/qπ(s′)

.

When the system is empty, i.e., s0 = (0, . . . , 0), vπ(s0, s
′) = 1 if s′ = (1, 0, . . . , 0); and

vπ(s0, s
′) = 0, otherwise, for ∀π ∈ Π. Thus, the change of assignment in state s0 does not

impact the value of τπ(s) for any s ∈ S. Moreover,

τπ(s0) =
η(s0)/qπ(s0)

η(s0)/qπ(s0) +
∑

s′∈S,s′ 6=s0 η
π(s′)/qπ(s′)

,

τπ(s) =
ηπ(s)/qπ(s)

η(s0)/qπ(s0) +
∑

s′∈S,s′ 6=s0 η
π(s′)/qπ(s′)

, s ∈ S,

where qπ(s0) is the successful service rate at station 1 in state s0 under policy π ∈ Π.

Thus, by increasing qπ(s0), we can reduce the time that the process is in state s0 (i.e.,

τπ(s0)) and increase the time the process is in all the other states without changing any-

thing else. Since in state s0 = (0, . . . , 0), there is no departure from the system, we in-

crease the long-run average throughput of the system by increasing the time that the pro-

cess spends in the states where there are departures without changing the departure rates.

Since maxπ∈Π q
π(s0) = max1≤i≤N µ̂i,1, it is optimal to assign the server that maximizes

µ̂i,1 when in state s0 = (0, . . . , 0).

Next, the following proposition shows that, it suffices to consider policies that never

idles station 1 when station 1 is not blocked.

Proposition 5.3.2. There exists an optimal policy that never idles the server at station 1.

Proof. We prove this proposition via sample path arguments. Note that, idling station 1 is
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equivalent to assigning a ’dummy’ server i0 with zero service rates and zero defect proba-

bility to station 1 (i.e., µi0,1 = 0, pi0,1 = 0). And by our previous analysis, assigning server

i to station 1 with successful service rate µ̂i,1 is equivalent to having a ’dummy’ server i1

with service rate µ̂i,1 and zero defect probability at station 1 (i.e., µi1,1 = µ̂i,1, pi1,1 = 0).

Consider the case an optimal policy π idles the server at station 1 in some state s ∈ S,

without loss of generality, assume that server i is idled. Suppose policy π0 is same as π

except that it uses server i0 at station 1 when π idles station 1, and π′ is the same as π except

that it uses the idling server i at station 1 when π idles station 1. Consider two processes on

the same probability space, each starting from the same initial state s. Suppose that Process

1 uses policy π0 that assigns server i0 to station 1, and Process 2 uses policy π1 that has

the same server assignment as in π0 except that it assigns server i1 to station 1. Then, by

Lemma 5.3.1, policy π1 is at least as good as policy π0. Since π0 is equivalent to π, and π1

is equivalent to π′, we have policy π′ at least as good as policy π.

By Proposition 5.3.2, we obtain that, when N = 2, the action set can be reduced to

As = {a10, a20, a12, a21} for ∀s ∈ S.

5.4 Optimal Policy for Two Stations

In this section, we consider the case with two stations and two servers, and fully charac-

terize the optimal policy. Let (δ)∞ denote the Markovian stationary deterministic policy

corresponding to decision rule δ. For simplicity, when N = 2, let B1 = B. Then, the state

space is S = {0, . . . , B + 2}. Let

r =
1− p12

1− p22

be the ratio of the success probability of servers 1 and 2 at station 2. This notation is helpful

in describing the optimal policy. When there are two stations in tandem, our queueing

system can be modeled as a birth-and-death process, with the birth rate in state s equal to

the service completion rate with no defects (successful service rate) at station 1 in state s,
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and the death rate in state s equal to the service rate at station 2 in state s.

Without loss of generality, we can label the servers such that µ̂11 ≥ µ̂21, that is, server

1 has a higher successful service rate at station 1 than server 2. By Proposition 5.3.1, we

should assign server 1 to station 1 when only station 1 is working (i.e., s = 0). However,

when station 2 is working, the presence of defect probabilities make the structure of the

optimal policy more complex than the one without defects since there is a trade-off between

the speed and the reliability of the service. Specifically, if defect probabilities are zero

(i.e., no defects), µ11 ≥ µ21, µ12 ≤ µ22, i.e., the two servers have their own specialty,

then by Proposition 3 of [31], the optimal policy is always to assign server i to station i

for i = 1, 2. Thus, when the defect probabilities are positive, one might conjecture that

µ̂11 ≥ µ̂21, µ̂12 ≤ µ̂22 is sufficient for the same policy to be optimal. The next example

shows that this is not always the case.

Example 5.4.1. Consider the case when B = 1, then S = {0, 1, 2, 3}, As = {a10, a20, a12,

a21}, ∀s ∈ S. Suppose µ̂11 = 1.2, µ̂21 = 1, µ12 = 1, µ22 = 1.5, p22 = 0.7. Then, the

following three cases with different values of p12 satisfy µ̂11 ≥ µ̂21, µ̂12 ≤ µ̂22 = 1.05, but

the corresponding optimal policies are not the same as (δ)∞, where δ(s) = a12, for s ∈ S.

1. If p12 = 0.5, then (δ∗1)∞ is optimal, where δ∗1(0) = a12, δ
∗
1(1) = δ∗1(2) = δ∗1(3) = a21;

2. If p12 = 0.6, then (δ∗2)∞ is optimal, where δ∗2(0) = a12, δ
∗
2(1) = δ∗2(2) = a21, δ

∗
2(3) =

a12;

3. If p12 = 0.63, then (δ∗3)∞ is optimal, where δ∗3(0) = a12, δ
∗
3(1) = a21, δ

∗
3(2) =

δ∗3(3) = a12.

Moreover, (δ∗2)∞, (δ∗3)∞ are not included in any of the optimal policies characterized by

[31].

We refer to µ̂i1µi2 as the overall efficiency of server i for i = 1, 2. Then, if µ̂11 ≥ µ̂21,

we find that the optimal server allocation policy exhibits two different patterns depending
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on which server has a higher overall efficiency. That is, the optimal policy can be described

by the following two cases: (1) µ̂11µ12 ≥ µ̂21µ22; (2) µ̂11µ12 < µ̂21µ22. In Sections 5.4.1

and 5.4.2, we completely characterize the optimal policy for cases (1) and (2), respectively.

In Section 5.4.3, we provide special cases when the optimal policy can be simplified.

5.4.1 Optimal Policy When µ̂11 ≥ µ̂21, µ̂11µ12 ≥ µ̂21µ22

In this section, we analyze the case when µ̂11 ≥ µ̂21, and µ̂11µ12 ≥ µ̂21µ22. Define δk1 for

k ∈ S such that

δk1(s) =


a12 0 ≤ s ≤ k,

a21 k < s ≤ B + 2.

Note that (δk1)∞ is a non-idling threshold policy that assigns server i to station i in states

{0, . . . , k}, and server i to station 3− i in states {k+ 1, . . . , B + 2} for i = 1, 2. Then, the

corresponding long-run average throughput under policy (δk1)∞ is

T (δk1 )∞ =
Θ1(k)

Θ2(k)
, (5.6)

where

Θ1(k) = µ̂22µ
B+2−k
12

k−1∑
j=0

µ̂j+1
11 µk−1−j

22 + µ̂12µ̂
k+1
11

B+1−k∑
j=0

µ̂j21µ
B+1−k−j
12 ,

Θ2(k) = µB+2−k
12

k∑
j=0

µ̂j11µ
k−j
22 + µ̂k+1

11

B+1−k∑
j=0

µ̂j21µ
B+1−k−j
12 .
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For k ∈ S \ {0}, let

c1(k) = µ22

[
µk−1

22

(
µB+3−k

12 + µ̂11

B+1−k∑
j=0

µ̂j21µ
B+2−k−j
12

)
+ µ̂B+2−k

21

k−1∑
j=0

µ̂j+1
11 µk−1−j

22

]
,

c2(k) = µ12

(
µk22

B+1−k∑
j=0

µ̂j21µ
B+2−k−j
12 + µ̂B+2−k

21

k∑
j=0

µ̂j11µ
k−j
22

)
,

C(k) =
c1(k)

c2(k)
,

f1(k) = (1− p22)c1(k)− (1− p12)c2(k).

Then f1(k) is positively proportional to T (δk1 )∞ − T (δk−1
1 )∞ , and f1(k) ≥ 0 if and only if

r ≤ C(k).

We now present a lemma and a corollary that describe some useful properties of f1.

Lemma 5.4.1. When µ̂11µ12 ≥ µ̂21µ22, for ∀k ∈ S \ {0}, if f1(k) ≥ 0, then f1(i) ≥ 0 for

1 ≤ i ≤ k; if f1(k) ≤ 0, then f1(j) ≤ 0 for k ≤ j ≤ B + 2.

Proof. Recall that r = 1−p12
1−p22 , and f1(k) ≥ 0 if and only if r ≤ C(k). Note that, for

k ∈ 1, . . . B + 1,

C(k + 1)− C(k) =
µ̂B+1−k

21 µk−1
22

c2(k)c2(k + 1)
(µ̂21µ22 − µ̂11µ12)Θ2(k)

≤ 0.

That is, C(k) is non-increasing in k when µ̂11µ12 ≥ µ̂21µ22. Then

f1(k) ≥ 0⇒ r ≤ C(k)⇒ r ≤ C(k − 1)⇒ f1(k − 1) ≥ 0.

Thus if f1(k) ≥ 0, f1(i) ≥ 0 for 0 ≤ i ≤ k. We can prove the other half of the lemma by a

similar argument.

For ease of our analysis, define f1(0) = 0, f1(B + 3) = 0. The following corollary

follows from Lemma 5.4.1.

117



Corollary 5.4.1. If µ̂11µ12 ≥ µ̂21µ22, then the set

S∗1 = {s ∈ S : f1(s) ≥ 0, f1(s+ 1) ≤ 0}

is non-empty. Moreover, if there are multiple elements in S∗1 , then they are consecutive

states.

Note that, if we denote C(0) =∞, C(B + 3) = −∞, we can rewrite set S∗1 as follows:

S∗1 = {s ∈ S : C(s+ 1) ≤ r ≤ C(s)}. (5.7)

Moreover, S∗1 is a singleton if f1(s) 6= 0, for ∀s ∈ S \ {0}, or equivalently, r 6= C(s),

for ∀s ∈ S \ {0}. However, the converse is not true since if µ22 = 0, c1(k) = 0 for any

k ∈ S \ {0}, which implies that S∗1 = {0}.

Lemma 5.4.1 shows that T (δk1 )∞ exhibits three possible behaviors with respect to k: if

f1(B + 2) ≥ 0, then T (δk1 )∞ is non-decreasing; if f1(1) ≤ 0, then T (δk1 )∞ is non-increasing;

otherwise, T (δk1 )∞ is first non-decreasing and then non-increasing (however, this does not

imply that T (δk1 )∞ is concave). Thus, the values of k such that T (δk1 )∞ is maximized would

either be on the boundaries or be the turning point (or consecutive turning points). And if

|S∗1 | = 1, i.e., S∗1 is a singleton, then T (δk1 )∞ has a unique optimum (maximum) point; if

|S∗1 | > 1, then there are consecutive optimum points of T (δk1 )∞ with respect to k.

Theorem 5.4.1. When µ̂11 ≥ µ̂21 and µ̂11µ12 ≥ µ̂21µ22, then (δs
∗

1 )∞ is optimal, where

s∗ ∈ S∗1 . Furthermore, it is the unique optimal policy in the class of Markovian stationary

deterministic policies if µ̂11 > µ̂21 > 0, f1(s∗) > 0, and f1(s∗ + 1) < 0.

Proof. It follows from our assumption on the service rates that µ11 > 0, µ12 > 0, and at

least one of µ21, µ22 is nonzero. Since the number of possible states and actions are both

finite, by Theorem 9.1.8 of Puterman [41], there exists an optimal Markovian stationary

deterministic policy.
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Under our assumptions on the service rates and defect probabilities, the policy de-

scribed in Theorem 5.4.1 implies that we have a communicating Markov decision process.

Therefore, we use the Policy Iteration algorithm for communicating models to show that

the policy we defined in this theorem is optimal. Choose the initial decision rule δ0 = δs
∗

1 .

Let rδ0 and Pδ0 denote the corresponding reward vector and probability transition matrix,

respectively. Without loss of generality, the uniformization constant can be taken as 1.

Then

r(s, δ0(s)) =


0 for s = 0,

µ̂22 for 1 ≤ s ≤ s∗,

µ̂12 for s∗ < s ≤ B + 2.

p(s′|s, δ0(s)) =



µ̂11 for 0 ≤ s ≤ s∗, s′ = s+ 1,

µ̂21 for s∗ < s ≤ B + 1, s′ = s+ 1,

µ22 for 1 ≤ s ≤ s∗, s′ = s− 1,

µ12 for s∗ < s ≤ B + 2, s′ = s− 1,

1− µ̂11 for s = s′ = 0,

1− (µ̂11 + µ22) for 1 ≤ s ≤ min{s∗, B + 1}, s = s′,

1− (µ̂21 + µ12) for s∗ < s ≤ B + 1, s = s′,

1− µ12 for s = s′ = B + 2, s∗ ≤ B + 1

1− µ22 for s = s′ = B + 2, s∗ = B + 2

0 otherwise.

Since the policy yields a unichain structure, we can solve the following equation to find a

scalar g0 and a vector h0:

rδ0 − g0e+ (Pδ0 − I)h0 = 0, (5.8)
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such that h0(0) = 0, where e is the unit vector and I is the identity matrix. Then, g0 =

T (δs
∗

1 )∞ as we defined in Eq.(5.6).

For s ≤ s∗ + 1,

h0(s) =
g0

µ̂s11

s−1∑
j=0

(j + 1)µ̂j11µ
s−1−j
22 − µ̂22

µ̂s−1
11

s−2∑
j=0

(j + 1)µ̂j11µ
s−2−j
22 ,

and for s∗ + 2 ≤ s ≤ B + 2,

h0(s) = h0(s∗ + 1) +
(g0 − µ̂12)

µ̂s−s
∗−1

21

s−s∗−2∑
j=0

(j + 1)µ̂j21µ
s−s∗−2−j
12

+
µ12

µ̂s−s
∗−1

21

s−s∗−2∑
j=0

µ̂j21µ
s−s∗−2−j
12

( g0

µ̂s
∗+1

11

s∗∑
j=0

µ̂j11µ
s∗−j
22 − µ̂22

µ̂s
∗

11

s∗−1∑
j=0

µ̂j11µ
s∗−1−j
22

)
.

For the next step of the policy iteration algorithm, we choose

δ1(s) ∈ arg max
a∈As

{
r(s, a) +

∑
j∈S

p(j|s, a)h0(j)

}
,∀s ∈ S. (5.9)

We now show that δ0(s) = δ1(s) for all s ∈ S. In other words, the following inequality

holds for all s ∈ S, a ∈ As \ {δ0(s)}:

ε(s, a) = r(s, a) +
∑
j∈S

p(j|s, a)h0(j)− (r(s, δ0(s)) +
∑
j∈S

p(j|s, δ0(s))h0(j)) ≤ 0. (5.10)

For s ∈ {0, 1, . . . , s∗}, since δ0(s) = a12, we will specify ε(s, a) for actions {a10, a20, a21}.

When s = 0, action ai0 is equivalent to ai,3−i, for i = 1, 2 since station 2 is starved. Thus,

we only need to specify ε(s, a) for a21.

ε(0, a21) =
1

µ̂11

(µ̂21 − µ̂11)g0 ≤ 0. (5.11)

When µ̂11 > µ̂21, inequality (5.11) is strict.
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For s = 1, . . . , s∗ and action a10,

ε(s, a10) =
1

Θ2(s∗)
µ̂s
∗+1−s

11

s−1∑
j=0

µ̂j11µ
s−1−j
22 (µ̂12κ1 − µ̂22κ2),

where

κ1 = µ22

B+1−s∗∑
j=0

µ̂j21µ
B+1−s∗−j
12 ,

κ2 = µ̂11

B+1−s∗∑
j=0

µ̂j21µ
B+1−s∗−j
12 + µB+2−s∗

12 .

From equation (5.7), r = 1−p12
1−p22 ≤ C(s∗) = c1(s∗)

c2(s∗)
, then µ̂22

c1(s∗)
µ22
≥ µ̂12

c2(s∗)
µ12

, and

ε(s, a10) ≤ µ̂22

Θ2(s∗)c2(s∗)
µ̂s
∗+1−s

11

s−1∑
j=0

µ̂j11µ
s−1−j
22

(µ12

µ22

c1(s∗)κ1 − c2(s∗)κ2

)
= − µ̂22

c2(s∗)
µ12µ̂

s∗+1−s
11 µ̂B+2−s∗

21

s−1∑
j=0

µ̂j11µ
s−1−j
22

≤ 0.

Next, we specify ε(s, a) for s = 1, . . . , s∗ and action a20,

ε(s, a20) =
1

Θ2(s∗)
(µ̂12κ3 − µ̂22κ4),

where

κ3 = µ̂s
∗−s

11

B+1−s∗∑
j=0

µ̂j21µ
B+1−s∗−j
12 (µ̂21

s∑
j=0

µ̂j11µ
s−j
22 − µ̂s+1

11 ),

κ4 = µ̂s
∗−s+1

11

B+2−s∗∑
j=0

µ̂j21µ
B+2−s∗−j
12

s−1∑
j=0

µ̂j11µ
s−1−j
22

+ (µ̂11 − µ̂21)µB+2−s∗
12

s∗−s−1∑
j=0

µ̂j21µ
s∗−1−j
12 .
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Similarly, from equation (5.7), µ̂22
c1(s∗)
µ22
≥ µ̂12

c2(s∗)
µ12

, and

ε(s, a20) ≤ µ̂12

Θ2(s∗)c1(s∗)

[
c1(s∗)κ3 −

µ22

µ12

c2(s∗)κ4

]
= − µ̂12

c1(s∗)
µ22

{
µ̂s
∗−s+1

11 µ̂B+2−s∗
21

s−1∑
j=0

µ̂j11µ
s−1−j
22

+ (µ̂11 − µ̂21)
[
µ12µ

s∗−1
22

B+1−s∗∑
j=0

µ̂j21µ
B+1−s∗−j
12 + µ̂B+2−s∗

21

s∗−s−1∑
j=0

µ̂j21µ
s∗−1−j
12

]}
≤ 0.

Next, for action a21 and s = 1, . . . , s∗,

ε(s, a21) = − 1

Θ2(s∗)

[
f1(s∗) + (µ̂11µ12 − µ̂21µ22)

s∗−s−1∑
j=0

µ̂j11µ
s∗−1−j
22 ×Υ1

]
, (5.12)

where

Υ1 =
[
(µ̂11 − µ̂21)(1− p22) + µ12(p12 − p22)

] B+1−s∗∑
j=0

µ̂j21µ
B+1−s∗−j
12 + µ̂B+2−s∗

21 (1− p22).

When s∗ = B + 2, Υ1 = 1 − p22 ≥ 0, ε(s, a21) ≤ 0 for all s ∈ S; when s∗ < B + 2,

by the analysis in Lemma 5.4.1, we have r ≤ C(1), and

r ≤ C(1)⇒ Υ1 ≥ 0.

Thus, ε(s, a21) ≤ 0 for s = 1, . . . , s∗, and the inequality is strict when f1(s∗) > 0.

For s ∈ {s∗ + 1, . . . , B + 2}, since δ0(s) = a21, we will specify ε(s, a) for actions

{a10, a20, a12}.

For action a10 and s ∈ {s∗ + 1, . . . , B + 2},

ε(s, a10) =
µ̂11

Θ2(s∗)
(µ̂12κ5 − µ̂22κ6),
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where

κ5 = µs−s
∗

12

s∗∑
j=0

µ̂j11µ
s∗−j
22

B+1−s∑
j=0

µ̂j21µ
B+1−s−j
12 − µ̂s∗11

B+1−s∗∑
j=0

µ̂j21µ
B+1−s∗−j
12 ,

κ6 = µs−s
∗

12

s∗−1∑
j=0

µ̂j11µ
s∗−1−j
22

(
µ̂11

B+1−s∑
j=0

µ̂j21µ
B+1−s−j
12 + µB+2−s

12

)
.

From equation (5.7), µ̂22
c1(s∗)
µ22
≥ µ̂12

c2(s∗)
µ12

, and

ε(s, a10) ≤ µ̂11µ̂12

Θ2(s∗)c1(s∗)

[
c1(s∗)κ5 −

µ22

µ12

c2(s∗)κ6

]
= − µ̂12

c1(s∗)
µ̂11µ22µ̂

B+2−s
21

(
µ̂s−s

∗

21

s∗−1∑
j=0

µ̂j11µ
s∗−1−j
22 + µ12µ

s∗−1
22

s−s∗−1∑
j=0

µ̂j21µ
s−s∗−1−j
12

)
≤ 0.

Next, for action a20 and s ∈ {s∗ + 1, . . . , B + 2},

ε(s, a20) =
1

Θ2(s∗)
(µ̂12κ7 − µ̂22κ8),

where

κ7 = µ̂21µ
s−s∗
12

s∗∑
j=0

µ̂j11µ
s∗−j
22

B+1−s∑
j=0

µ̂j21µ
B+1−s−j
12 − µ̂s∗+1

11

B+1−s∗∑
j=0

µ̂j21µ
B+1−s∗−j
12 ,

κ8 = µ̂11µ
s−s∗
12

s∗−1∑
j=0

µ̂j11µ
s∗−1−j
22

B+2−s∑
j=0

µ̂j21µ
B+2−s−j
12 .

From equation (5.7), µ̂22
c1(s∗)
µ22
≥ µ̂12

c2(s∗)
µ12

, and

ε(s, a20) ≤ µ̂12

Θ2(s∗)c1(s∗)

[
c1(s∗)κ7 −

µ22

µ12

c2(s∗)κ8

]

123



= − µ̂12

c1(s∗)
µ22

[
(µ̂11 − µ̂21)µ12µ

s∗−1
22

B+1−s∗∑
j=0

µ̂j21µ
B+1−s∗−j
12

+ µ̂B+2−s∗
21 µ̂11

s∗−1∑
j=0

µ̂j11µ
s∗−1−j
22 + µ12µ̂

B+3−s
21 µs

∗−1
22

s−s∗−1∑
j=0

µ̂j21µ
s−s∗−1−j
12

]
≤ 0.

Finally, for action a12 and s ∈ {s∗ + 1, . . . , B + 2},

ε(s, a12) =
1

Θ2(s∗)

[
f1(s∗ + 1)− (µ̂11µ12 − µ̂21µ22)

s∗−s−2∑
j=0

µj12µ̂
B−s∗−j
21 ×Υ2

]
, (5.13)

where

Υ2 = (µ̂12 − µ̂22)
s∗∑
j=0

µ̂j11µ
s∗−j
22 + µs

∗+1
22 (1− p22).

When s∗ = 0, Υ2 = µ̂12 ≥ 0, ε(s, a12) ≤ 0 for s ∈ {1, . . . , B + 2}; when s∗ > 0, by

the analysis in Lemma 5.4.1, we have r ≥ C(B + 2), and

r ≥ C(B + 2)⇒ Υ2 ≥ 0.

Thus, ε(s, a12) ≤ 0 for s = s∗+1, . . . , B+2, and the inequality is strict when f1(s∗+1) <

0.

This proves that δ0(s) = δ1(s) for all s ∈ S. Thus, by Theorem 9.5.1 of Puterman [41],

the policy described in this theorem is optimal.

To prove uniqueness among Markovian stationary deterministic policies, we use a sim-

ilar approach to Andradóttir and Ayhan [6]. Consider a decision rule δ′ that differs from δ0

in at least one state s ∈ S. Define

u = Pδ′g0e− g0e = 0,

v = rδ′ + (Pδ′ − I)h0 − g0e = rδ′ + Pδ′h0 − (rδ0 + Pδ0h0),
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where we have used equation (5.8). Note that inequality (5.10) holds for all s ∈ S, a ∈

As \ {δ0(s)}, and is strict when µ̂11 > µ̂21 > 0, f1(s∗) > 0, and f1(s∗ + 1) < 0. Thus,

v(s) ≤ 0 for all s ∈ S, and if µ̂11 > µ̂21 > 0, f1(s∗) > 0, f1(s∗ + 1) < 0, we must have

v(s) < 0, for ∀s ∈ S with δ′(s) 6= δ0(s). (5.14)

Let g′ denote the (possibly state dependent) throughput of the stationary policy (δ′)∞.

Suppose that Pδ′ has n recurrent classes and partition Pδ′ such that P1, . . . , Pn correspond

to transitions within closed recurrent classes, Q1, . . . , Qn to transitions from transient to

recurrent states, and Qn+1 to transitions between transient states. Define ∆g = g′ − g0e,

and let P ∗δ′ be the limiting matrix under decision rule δ′. Partition g′, ∆g, v, and P ∗δ′ in a

manner that is consistent with this partition of Pδ′ . Then, from Lemma 9.2.5 of Puterman

[41], we can obtain that

∆gi = P ∗i vi, for i = 1, . . . , n. (5.15)

If both µ21 and µ22 are positive, Pδ0 is irreducible; and if µ22 = 0, µ21 > 0, then s∗ = 0,

and δ0 = δ0
1 also result in irreducible transition matrices. Hence, when µ21 > 0, Pδ0 is

irreducible. Since δ′(s) 6= δ0(s) for some state s ∈ S, then δ′(s) 6= δ0(s) in at least one

state s0 ∈ S that is recurrent under δ′. However, equations (5.14) and (5.15) imply that

g′(s0) < g0, so that the decision rule δ′ can not be optimal. Therefore, when µ̂11 > µ̂21,

f1(s∗) > 0, f1(s∗ + 1) < 0, the optimal policy is unique.

Intuitively, when µ̂11µ12 ≥ µ̂21µ22, server 1 is overall more effective than server 2. To

increase the long-run average throughput of the system, when the number of jobs in the

system is small (i.e., s ≤ s∗), our priority is to push more jobs into the system and avoid

starving at station 2, thus we assign the overall more efficient server (i.e., server 1) to station

1; as the number of jobs in the system gets larger and the system becomes more crowded,

our priority changes to push more jobs out of the system and avoid blocking at station 1,

therefore we switch the assignment and assign the overall more efficient server to station 2.
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In Theorem 5.4.1, we provide conditions showing how the the service rates and defect

probabilities at station 1 impact the structure of the optimal policy. However, the effect of

the defect probabilities at station 2 is implicit in the value of s∗. To better illustrate the

influence of defect probabilities at station 2 on the optimal policy, we obtain the following

corollary that follows from Theorem 5.4.1 and equation (5.7).

Corollary 5.4.2. When µ̂11 ≥ µ̂21 and µ̂11µ12 ≥ µ̂21µ22, Table 5.2 shows the optimal policy

as a function of r = 1−p12
1−p22 .

Table 5.2: Optimal policy in case (1) as a function of r.

Range of r Optimal Policy a12 Optimal in States a21 Optimal in States

r < C(B + 2) (δB+2
1 )∞ 0, 1, . . . , B + 2 ∅

C(B + 2) ≤ r < C(B + 1) (δB+1
1 )∞ 0, 1, . . . , B + 1 B + 2

...
...

...
...

C(2) ≤ r < C(1) (δ1
1)∞ 0, 1 2, . . . , B + 2

C(1) ≤ r (δ0
1)∞ 0 1, . . . , B + 2

Note that, a12 is always the optimal action in state 0 regardless of r as shown in Table

5.2, which coincides with Proposition 5.3.1 since server 1 has a higher successful service

rate at station 1 than server 2 (i.e., µ̂11 ≥ µ̂21).

From Table 5.2 we observe that, the value of s∗ ∈ S∗1 lies in on the boundary of S when

r is either small or high, and s∗ is non-increasing with respect to r. Intuitively, when station

2 is working (i.e., s > 0), there is a trade-off between the faster server and the more reliable

server. We attach more importance to the defect probability than the service rate for station

2 since we do not want to waste our efforts at the first station. Therefore, when one server

is much more reliable than the other, that is, when r is either very high (i.e., r ≥ C(1)) or

very small (i.e., r < C(B+ 2)), we would always assign the more reliable server at station

2 to station 2. Otherwise, when r is moderate, as r increases, server 2 becomes relatively
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less reliable at station 2, thus a smaller value of s∗ increases the relative time of server 2

working at station 2 and yields a higher throughput (recall that s∗ is the threshold point at

which we switch our server assignment).

5.4.2 Optimal Policy When µ̂11 ≥ µ̂21, µ̂11µ12 ≤ µ̂21µ22

In this section, we discuss the case when µ̂11 ≥ µ̂21, and µ̂11µ12 ≤ µ̂21µ22. The steps are

similar to Case (1). Define δk2 for k ∈ S such that

δk2(s) =


a12 s = 0,

a21 1 ≤ s ≤ k,

a12 k < s ≤ B + 2.

Observe that the policy (δk2)∞ is a non-idling policy with two thresholds. First, by Proposi-

tion 5.3.1, we will always assign server 1 to station 1 when in state s under the assumption

µ̂11 ≥ µ̂21. Policy (δk2)∞ assigns server i to station 3 − i in states {1, . . . , k} and assigns

server i to station i in states {k + 1, . . . , B + 2} for i = 1, 2. Then, the corresponding

long-run average throughput under policy (δk2)∞ is

T (δk2 )∞ =
Θ3(k)

Θ4(k)
, (5.16)

where

Θ3(k) = µ̂11

(
µ̂22µ̂

k
21

B+1−k∑
j=0

µ̂j11µ
B+1−k−j
22 + µ̂12µ

B+2−k
22

k−1∑
j=0

µ̂j21µ
k−1−j
12

)
,

Θ4(k) = µ̂11

(
µ̂k21

B+1−k∑
j=0

µ̂j11µ
B+1−k−j
22 + µB+2−k

22

k−1∑
j=0

µ̂j21µ
k−1−j
12

)
+ µk12µ

B+2−k
22 .
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For k ∈ S \ {0}, let

d1(k) = µ22

{
µk−1

12

[
(µ̂11 − µ̂21 + µ12)

B+2−k∑
j=0

µ̂j11µ
B+2−k−j
22 + µ̂21µ̂

B+2−k
11

]
+ µ̂B+3−k

11

k−2∑
j=0

µ̂j+1
21 µk−2−j

12

}
,

d2(k) = µ12

(
µk−1

12

B+3−k∑
j=0

µ̂j11µ
B+3−k−j
22 + µ̂B+3−k

11

k−2∑
j=0

µ̂j+1
21 µk−2−j

12

)
,

D(k) =
d1(k)

d2(k)
,

f2(k) = (1− p12)d2(k)− (1− p22)d1(k).

Then f2(k) is positively proportional to T (δk2 )∞ − T (δk−1
2 )∞ , and φ(k) ≥ 0 if and only if

r ≥ D(k). Moreover, D(k) ≥ 1 for ∀k ∈ S \ {0}.

Next, we provide a lemma and a corollary to describe the properties of f2(k) that would

be useful to interpret our results.

Lemma 5.4.2. When µ̂11µ12 ≤ µ̂21µ22, for ∀k ∈ S \ {0}, if f2(k) ≥ 0, then f2(i) ≥ 0 for

1 ≤ i ≤ k; if f2(k) ≤ 0, then f2(j) ≤ 0 for k ≤ j ≤ B + 2.

Proof. For k ∈ S \ {0},

D(k + 1)−D(k) =
µ̂B+1−k

11 µk−1
12

d2(k)d2(k + 1)
(µ̂21µ22 − µ̂11µ12)Θ4(k)

≥ 0.

That is, D(k) is non-decreasing in k when µ̂11µ12 ≤ µ̂21µ22. Then

f2(k) ≥ 0⇒ r ≥ D(k)⇒ r ≥ D(k − 1)⇒ f2(k − 1) ≥ 0.

Thus, if f2(k) ≥ 0, f2(i) ≥ 0 for 0 ≤ i ≤ k. We can prove the other half of the lemma by

a similar argument.
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For ease of our analysis, define f2(0) = 0, f2(B + 3) = 0.

Corollary 5.4.3. If µ̂11µ12 ≤ µ̂21µ22, then the set

S∗2 = {s ∈ S : f2(s) ≥ 0, f2(s+ 1) ≤ 0}

is non-empty. Moreover, if there are multiple elements in S∗2 , then they are consecutive

states.

Note that, if we denote D(0) = −∞, D(B+ 3) =∞, we can rewrite set S∗2 as follows:

S∗2 = {s ∈ S : D(s) ≤ r ≤ D(s+ 1)}. (5.17)

Moreover, S∗2 is a singleton if f2(s) 6= 0, for ∀s ∈ S \ {0}, or equivalently, r 6= D(s), for

∀s ∈ S \ {0}.

Observe that the structure of f2 is similar to that of f1. Similarly, by Lemma 5.4.2,

the values of k such that T (δk2 )∞ is maximized would either be on the boundaries or be the

turning point (or consecutive turning points). And if |S∗2 | = 1, i.e., S∗2 has a single element,

then T (δk2 )∞ has a unique optimum (maximum) point; if |S∗2 | > 1, then there are consecutive

optimum points of T (δk2 )∞ with respect to k.

Theorem 5.4.2. When µ̂11 ≥ µ̂21 and µ̂11µ12 ≤ µ̂21µ22, then (δs
∗

2 )∞ is optimal, where

s∗ ∈ S∗2 . Furthermore, it is the unique optimal policy in the class of Markovian stationary

deterministic policies if µ̂11 > µ̂21, f2(s∗) > 0, and f2(s∗ + 1) < 0.

Proof. The proof of Theorem 5.4.2 is similar to the proof of Theorem 5.4.1. First, µ̂11 ≥

µ̂21 implies that µ11 > 0 and µ12 > 0. Moreover, µ̂11µ12 ≤ µ̂21µ22 implies that µ21, µ22 are

also positive. Since the number of possible states and actions are both finite, by Theorem

9.1.8 of Puterman [41], there exists an optimal Markovian stationary deterministic policy.

Under our assumptions on the service rates, the policy described in Theorem 5.4.2

implies a irreducible Markov chain. Therefore, we have a communicating Markov decision
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process. We again use the Policy Iteration algorithm for communicating models to show

that the policy we defined in this theorem is optimal. Choose the initial decision δ′0 = δs
∗

2 ,

let rδ′0 and Pδ′0 denote the corresponding reward vector and probability transition matrix,

respectively. Then

r(s, δ′0(s)) =


0 for s = 0,

µ̂12 for 1 ≤ s ≤ s∗,

µ̂22 for s∗ < s ≤ B + 2;

p(s′|s, δ′0(s)) =



µ̂11 for s = 0, s′ = 1,

µ̂21 for 1 ≤ s ≤ s∗, s′ = s+ 1,

µ̂11 for s∗ < s ≤ B + 1, s′ = s+ 1,

µ12 for 1 ≤ s ≤ s∗, s′ = s− 1,

µ22 for s∗ < s ≤ B + 2, s′ = s− 1,

1− µ̂11 for s = s′ = 0,

1− (µ̂21 + µ12) for 1 ≤ s ≤ s∗, s = s′,

1− (µ̂11 + µ22) for s∗ < s ≤ B + 1, s = s′,

1− µ22 for s = s′ = B + 2, s∗ ≤ B + 1,

1− µ12 for s = s′ = B + 2, s∗ = B + 2,

0 otherwise.

Since the policy yields unichain structure, we can solve the following equation to find a

scalar g′0 and a vector h′0:

rδ′0 − g
′
0e+ (Pδ′0 − I)h′0 = 0, (5.18)

such that h′0(0) = 0, where e is the unit vector and I is the identity matrix. Then, g′0 =

130



T (δs
∗

2 )∞ as we defined in equation (5.16).

For s ≤ s∗ + 1,

h′0(s) =
g′0

µ̂11µ̂
s−1
21

[
µ̂11

s−2∑
j=0

(j+1)µ̂j21µ
s−2−j
12 +

s−1∑
j=0

µ̂j21µ
s−1−j
12

]
− µ̂12

µ̂s−1
21

s−2∑
j=0

(j+1)µ̂j21µ
s−2−j
12 ,

and for s∗ + 2 ≤ s ≤ B + 2,

h′0(s) = h′0(s∗ + 1) +
(g′0 − µ̂22)

µ̂s−s
∗−1

11

s−s∗−2∑
j=0

(j + 1)µ̂j11µ
s−s∗−2−j
22

+
µ22

µ̂s−s
∗−1

11

s−s∗−2∑
j=0

µ̂j11µ
s−s∗−2−j
22

[ g′0
µ̂11µ̂s

∗
21

(
µ̂11

s∗−1∑
j=0

µ̂j21µ
s∗−1−j
12 + µs

∗

12

)
− µ̂12

µ̂s
∗

21

s∗−1∑
j=0

µ̂j21µ
s∗−1−j
12

]
.

For the next step of the policy iteration algorithm, we choose

δ′1(s) ∈ arg max
a∈As

{
r(s, a) +

∑
j∈S

p(j|s, a)h′0(j)

}
,∀s ∈ S. (5.19)

We now show that δ′0(s) = δ2(s) for all s ∈ S. In other words, we will prove that the

following inequality holds for all s ∈ S, a ∈ As \ {δ0(s)}:

ε′(s, a) = r(s, a)+
∑
j∈S

p(j|s, a)h′0(j)−(r(s, δ′0(s))+
∑
j∈S

p(j|s, δ′0(s))h′0(j)) ≤ 0. (5.20)

When s = 0, ai0 and ai,3−i are equivalent, for i = 1, 2 since station 2 is starved. Thus,

we only need to specify ε(s, a) for a21.

ε′(0, a21) = ε′(0, a20) =
1

µ̂11

(µ̂21 − µ̂11)g′0 ≤ 0, and

Note that the above inequality is strict when µ̂21 > µ̂11.

When s ∈ {1, . . . , s∗}, δ′0(s) = a21, and we will specify ε′(s, a) for actions {a10, a20, a12}.
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For s = 1, . . . , s∗ and action a10,

ε′(s, a10) =
1

Θ4(s∗)
µ̂11µ̂

s∗−s
21

s−1∑
j=0

µ̂j21µ
s−1−j
12 (µ̂22κ

′
1 − µ̂12κ

′
2),

where

κ′1 = (µ̂11 − µ̂21 + µ12)
B+1−s∗∑
j=0

µ̂j11µ
B+1−s∗−j
22 ,

κ′2 =
B+2−s∗∑
j=0

µ̂j11µ
B+2−s∗−j
22 .

From equation (5.17), r = 1−p12
1−p22 ≥ D(s∗) = d1(s∗)

d2(s∗)
, then µ̂22

d1(s∗)
µ22
≤ µ̂12

d2(s∗)
µ12

, and

ε′(s, a10) ≤ µ̂22

Θ4(s∗)d2(s∗)
µ̂11µ̂

s∗−s
21

s−1∑
j=0

µ̂j21µ
s−1−j
12

(
d2(s∗)κ′1 −

µ12

µ22

d1(s∗)κ′2
)

= − µ̂22

d2(s∗)
µ12µ̂

B+3−s∗
11 µ̂s

∗−s
21

s−1∑
j=0

µ̂j21µ
s−1−j
12

≤ 0.

Next, for s = 1, . . . , s∗ and action a20,

ε′(s, a20) =
1

Θ4(s∗)
(µ̂22κ

′
3 − µ̂12κ

′
4),

where

κ′3 = µ̂s
∗+1−s

21

B+1−s∗∑
j=0

µ̂j11µ
B+1−s∗−j
22 (µ̂11µ12

s−2∑
j=0

µ̂j21µ
s−2−j
12 + µs12),

κ′4 = µ̂11µ̂
s∗+1−s
21

B+1−s∗∑
j=0

µ̂j11µ
B+1−s∗−j
22

s−1∑
j=0

µ̂j21µ
s−1−j
12

+ µB+2−s∗
22

(
µ̂11

s∗−1∑
j=0

µ̂j21µ
s∗−1−j
12 − µ̂21

s∗−s−1∑
j=0

µ̂j21µ
s∗−1−j
12

)
.
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Similarly, from equation (5.17), µ̂22
d1(s∗)
µ22
≤ µ̂12

d2(s∗)
µ12

, and

ε′(s, a20) ≤ µ̂12

Θ4(s∗)d1(s∗)

[µ22

µ12

d2(s∗)κ′3 − d1(s∗)κ′4
]

= − µ̂12

d1(s∗)
µ22

{
µ̂B+3−s∗

11 µ̂s
∗−s

21

s−1∑
j=0

µ̂j21µ
s−1−j
12

+ (µ̂11 − µ̂21)
[
µs
∗−1

12 µ22

B+1−s∗∑
j=0

µ̂j11µ
B+1−s∗−j
22 + µ̂B+2−s∗

11

s∗−s−1∑
j=0

µ̂j21µ
s∗−1−j
12

]}
≤ 0.

Next, for s = 1, . . . , s∗ and action a12,

ε′(s, a12) = − 1

Θ4(s∗)

[
f2(s∗) + (µ̂21µ22 − µ̂11µ12)

s∗−s−1∑
j=0

µ̂j21µ
s∗−2−j
12 ×Υ′1

]
, (5.21)

where

Υ′1 = µ̂12

B+2−s∗∑
j=0

µ̂j11µ
B+2−s∗−j
22 − µ̂22(µ̂11 − µ̂21 + µ12)

B+1−s∗∑
j=0

µ̂j11µ
B+1−s∗−j
22 .

When s∗ = B + 2, Υ′1 = µ̂12 ≥ 0, ε′(s, a12) ≤ 0 for all s ∈ S; when s∗ < B + 2, by

the analysis in Lemma 5.4.2, we have r ≥ D(1), and

r ≥ D(1)⇒ Υ′1 ≥ 0.

Thus, ε′(s, a12) ≤ 0 for s = 1, . . . , s∗.

For s ∈ {s∗+1, . . . , B+2}, δ′0(s) = a12, we will specify ε′(s, a) for actions {a10, a20, a21}.

For s ∈ {s∗ + 1, . . . , B + 2} and action a10,

ε′(s, a10) =
1

Θ4(s∗)
(µ̂22κ

′
5 − µ̂12κ

′
6),
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where

κ′5 = µ̂11µ
s−s∗
22

B+1−s∑
j=0

µ̂j11µ
B+1−s−j
22

(
µs
∗

12+µ̂11

s∗−1∑
j=0

µ̂j21µ
s∗−1−j
12

)
−µ̂11µ̂

s∗

21

B+1−s∗∑
j=0

µ̂j11µ
B+1−s∗−j
22 ,

κ′6 = µ̂11µ
s−s∗
22

s∗−1∑
j=0

µ̂j21µ
s∗−1−j
12

B+2−s∑
j=0

µ̂j11µ
B+2−s−j
22 .

From equation (5.17), µ̂22
d1(s∗)
µ22
≤ µ̂12

d2(s∗)
µ12

, and

ε(s, a10)′ ≤ µ̂22

Θ4(s∗)d2(s∗)

(
d2(s∗)κ′5 −

µ12

µ22

d1(s∗)κ′6
)

= − µ̂22

d2(s∗)
µ12µ̂

B+3−s
11 (µ̂s

∗−s
11 µ̂21

s∗−2∑
j=0

µ̂j21µ
s∗−2−j
12 + µs

∗−1
12

s−s∗∑
j=0

µ̂j11µ
s−s∗−j
22 )

≤ 0.

Next, for s ∈ {s∗ + 1, . . . , B + 2} and action a20,

ε(s, a20)′ =
1

Θ4(s∗)
(µ̂22κ

′
7 − µ̂12κ

′
8),

where

κ′7 = µ̂21µ
s−s∗
22

B+1−s∑
j=0

µ̂j11µ
B+1−s−j
22

(
µs
∗

12 + µ̂11

s∗−1∑
j=0

µ̂j21µ
s∗−1−j
12

)
− µ̂11µ̂

s∗

21

B+1−s∗∑
j=0

µ̂j11µ
B+1−s∗−j
22 ,

κ′8 = µ̂11µ
s−s∗
22

s∗−1∑
j=0

µ̂j21µ
s∗−1−j
12

(
µB+2−s

22 + µ̂21

B+1−s∑
j=0

µ̂j11µ
B+1−s−j
22

)
.
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From equation (5.17), µ̂22
d1(s∗)
µ22
≤ µ̂12

d2(s∗)
µ12

, and

ε′(s, a20) ≤ µ̂22

Θ4(s∗)d2(s∗)

(
d2(s∗)κ′7 −

µ12

µ22

d1(s∗)κ′8
)

= − µ̂22

d2(s∗)
µ12

{
µ̂B+3−s

11

(
µs
∗−1

12

s−s∗∑
j=0

µ̂j11µ
s−s∗−j
22 + µ̂s

∗−s
11 µ̂21

s∗−2∑
j=0

µ̂j21µ
s∗−2−j
12

)
+ (µ̂11 − µ̂21)µs

∗−1
12 µs+1−s∗

22

B+1−s∑
j=0

µ̂j11µ
B+1−s−j
22

}
≤ 0.

Finally, for s ∈ {s∗ + 1, . . . , B + 2} and action a21,

ε′(s, a21) =
1

Θ4(s∗)

[
f2(s∗ + 1) + (µ̂11µ12 − µ̂21µ22)

s∗−s−2∑
j=0

µj22µ̂
B−s∗−j
11 ×Υ′2

]
, (5.22)

where

Υ′2 = µ̂22

(
µ̂11

s∗−1∑
j=0

µ̂j21µ
s∗−1−j
12 + µs

∗

12

)
− µ̂12µ̂11

s∗−1∑
j=0

µ̂j21µ
s∗−1−j
12 .

When s∗ = 0, Υ′2 = µ̂22 ≥ 0, ε′(s, a21) ≤ 0 for s ∈ {1, . . . , B + 2}; when s∗ > 0, by

the analysis in Lemma 5.4.2, we have r ≤ D(B + 2), and

r ≤ D(B + 2)⇒ Υ′2 ≥ 0.

Thus, ε′(s, a21) ≤ 0 for s = s∗ + 1, . . . , B + 2.

This proves that δ′0(s) = δ′1(s) for all s ∈ S. Thus, by Theorem 9.5.1 of Puterman [41],

the policy described in this theorem is optimal.

Note that, when µ̂11 > µ̂21, f2(s∗) > 0, f2(s∗+ 1) < 0, inequality (5.20) is strict for all

s ∈ S, a ∈ As \ {δ0(s)}. The proof of uniqueness is similar to the proof of uniqueness for

case (1), thus we omit for brevity.

When µ̂11 ≥ µ̂21, and µ̂11µ12 ≤ µ̂21µ22, we have µ12 ≤ µ22. Thus, server 1 is better

at station 1, server 2 is faster at station 2, and server 2 is more effective overall than server
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1. The intuition of Theorem 5.4.2 is similar to our analysis of Theorem 5.4.1. Briefly

speaking, when s = 0, only station 1 is working, we assign the server with higher successful

service rate at station 1 to station 1. When s > 0, we assign the server with higher overall

efficiency (i.e., server 2) to station 1 when the number of jobs in the system is small to

push more jobs into the system, and we switch the assignment when the number of jobs in

the system exceeds the threshold s∗ to push more jobs out of the system. Again, to better

understand the impact of the defect probabilities at station 2 on the value of s∗, we obtain

the following corollary from Theorem 5.4.2 and equation (5.17).

Corollary 5.4.4. When µ̂11 ≥ µ̂21 and µ̂11µ12 ≤ µ̂21µ22, Table 5.3 shows the optimal policy

as a function of the value of r = 1−p12
1−p22 .

Table 5.3: Optimal policy in case (2) as a function of r.

Range of r Optimal Policy a12 Optimal in States a21 Optimal in States

r ≤ D(1) (δ0
2)∞ 0, 1, . . . , B + 2 ∅

D(1) < r ≤ D(2) (δ1
2)∞ 0, 2, . . . , B + 2 1

...
...

...
...

D(B + 1) < r ≤ D(B + 2) (δB+1
2 )∞ 0, B + 2 1, . . . , B + 1

D(B + 2) < r (δB+2
2 )∞ 0 1, . . . , B + 2

From Table 5.3 we observe that, the value of s∗ ∈ S∗2 lies in on the boundary of S

when r is either small or high, and s∗ is non-decreasing with respect to r. The intuition

of Corollary 5.4.4 is similar to Corollary 5.4.2 except that now server 2 has higher overall

efficiency than server 1, so we omit the interpretation for concision.

5.4.3 Special Cases

In this section, we provide conditions under which the optimal policy has a simple form.

The following corollary shows that when servers 1 and 2 have higher successful service
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rates at stations 1 and 2, respectively, and server 2 has lower defect probability at station

2, then we will always assign the server to the station where they have higher successful

service rates. This result is slightly more general than our conclusions in Theorem 5.3.1

when N = 2.

Corollary 5.4.5. When µ̂11 ≥ µ̂21, p12 ≥ p22, and µ̂22 ≥ µ̂12, then it is optimal to always

assign server 1 to station 1 and server 2 to station 2.

Proof. We will show that the optimal policy is (δB+2
1 )∞ or (δ0

2)∞. Therefore, when µ̂11µ12 ≥

µ̂21µ22, by Corollary 5.4.1 and Theorem 5.4.1, we need to prove that S∗1 = {B + 2}; and

when µ̂11µ12 < µ̂21µ22, by Corollary 5.4.3 and Theorem 5.4.2, we need to prove that

S∗2 = {0}.

When µ̂11µ12 ≥ µ̂21µ22, we can rewrite f1(B + 2) as

f1(B + 2) = (p12 − p22)µ12µ
B+2
22 + (µ̂22 − µ̂12)

B+1∑
j=0

µ̂j11µ
B+1−j
22 ≥ 0.

Thus, by Lemma 5.4.1 and Corollary 5.4.1, we have S∗1 = {B + 2} as desired.

When µ̂11µ12 < µ̂21µ22, since p12 ≥ p22, we can obtain that

µ̂21µ̂22 = µ̂21µ22(1− p22) < µ̂11µ12(1− p12) = µ̂11µ̂12,

and we can reorganize f2(1) as

f2(1) = −(µ̂21µ̂22−µ̂11µ̂12)µ̂B+1
11 −

[
(µ̂11−µ̂21)µ̂22+(p12−p22)µ12µ22

] B+1∑
j=0

µ̂j11µ
B+1−j
22 < 0.

Thus, by Lemma 5.4.2 and Corollary 5.4.3, we have S∗2 = {0} as desired.

Remark 5.4.1. By Corollary 5.4.5, when µ̂11 ≥ µ̂21, µ12 ≤ µ22, and pi,2 = p2, it is optimal

to always assign server i to station i for i = 1, 2.
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The following remark shows that when the overall efficiencies among two servers are

equal, the optimal policy is static.

Remark 5.4.2. When µ̂11 ≥ µ̂21, µ̂11µ12 = µ̂21µ22, we have f1(1) = f1(B+2) = −f2(1) =

−f2(B + 2). Thus,

(a) If f1(1) ≤ 0, then 0 ∈ S∗1 , B + 2 ∈ S∗2 , and Theorems 5.4.1, 5.4.2 imply that

(δ0
1)∞ = (δB+2

2 )∞ is optimal, where δ0
1 = (a12, a21, . . . , a21);

(b) If f1(1) ≥ 0, then B + 2 ∈ S∗1 , 0 ∈ S∗2 , and Theorems 5.4.1, 5.4.2 imply that

(δ0
2)∞ = (δB+2

1 )∞ is optimal, where δ0
2 = (a12, a12, . . . , a12).

Note that

f1(1) ≥ 0⇔ r ≤ C(1),

where

C(1) = 1 +
(µ̂11 − µ̂21)

∑B+1
j=0 µ̂

j
21µ

B+1−j
12∑B+2

j=0 µ̂
j
21µ

B+2−j
12

≥ 1.

Moreover, when µ̂11 ≥ µ̂21, µ̂11µ12 = µ̂21µ22, we have µ12 ≤ µ22. Then server 1 is better

at station 1 while server 2 is faster at station 2. Thus, we would always assign server 1

to station 1 and server 2 to station 2 unless server 2 is significantly less reliable at station

2 relative to server 1 (in which case, the ratio of successful service probability of server 1

and server 2 is high). And if server 2 is not reliable at station 2 compared to server 1 (i.e.,

when r > C(1) ≥ 1), we would assign server 1 to station 2 when station 2 is not starved.

Next, we consider the case when servers are reliable, i.e., when pij = 0 for i, j = 1, 2.

Our results coincide with [31] in this case.

[31] considered the case when pij = 0 for i, j = 1, 2, and presented the optimal policy

in two cases. First, they also labeled the servers such that µ11 ≥ µ21, which is equivalent to

our assumption of µ̂11 ≥ µ̂21 when p11 = p21 = 0. When µ22 ≥ µ12, they proved that it is

optimal to assign server 1 to station 1 and server 2 to station 2, which is equivalent to our

conclusions in Remark 5.4.1. When µ22 < µ12, they showed that the optimal policy is in the
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form of Theorem 5.4.1, which also coincides with our conclusion since µ̂11µ12 > µ̂21µ22 in

this case, and our set of threshold S∗1 in Corollary 5.4.1 coincides with their set of thresholds

as in Corollary 1 of [31].

5.5 Heuristic Policies for Longer Lines

In Section 5.4, we determined the optimal server assignment policy for tandem systems

with two stations and two servers. The form of the optimal policy is already complex for

the two stations system, and in our experience, the optimal policy for longer lines is likely

to be even more complicated. Thus, in this section, we investigate the properties of the

optimal policy and explore heuristic policies for systems with N ≥ 3.

We refer a policy as non-idling if we always assign a server to each of the working

stations. Theorems 5.4.1 and 5.4.2 indicate that for systems with two stations, there always

exists a non-idling optimal policy. Moreover, by Proposition 1 of Işık, Andradóttir, and

Ayhan [31], there exists a non-idling optimal policy for systems with arbitrary size when

the defect probabilities are zero. It is a natural guess that there exists a non-idling optimal

policy for systems with arbitrary size and general defect probabilities. However, we will

show that this conjecture is wrong in the next section.

In Section 5.5.1, we discuss this non-idling property for larger systems, and identify

that the optimal policy may not be non-idling when N ≥ 3. In Section 5.5.2, we introduce

the heuristic policies for longer lines, and evaluate their performance based on numerical

results for three stations. Finally, in Section 5.5.3, we provide numerical results for our

selected heuristics for systems with N = 4 and N = 5.

5.5.1 Non-idling vs. Idling

In this section, we show that the optimal policy is not necessary non-idling for systems with

N ≥ 3. This is in contrast to systems with N = 2 stations. Recall that Theorems 5.4.1

and 5.4.2 show that the optimal policy is non-idling when N = 2. Similarly, Proposition
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5.3.2 states that there exist optimal policy that never idles the first station. However, the

following example shows that when N = 3, there may not exist an optimal policy that is

non-idling.

Example 5.5.1. Consider the system with three stations, three servers, and B1 = B2 = 0.

Recall that µi,j, pi,j are the service rate and defect probability of server i at station j for

i, j = 1, 2, 3, respectively. Suppose the service rates and defect probabilities are as in

the following matrices, where the rows represent the server and the columns represent the

station. For instance, µ1,2 = 1.2 is listed on row 1 and column 2 of µ.

µ =


1.2 1.2 1.2

1 1 1

1 1 1

 p =


0.1 0.1 0.1

0.7 0.7 0.7

0.9 0.9 0.9


Then, the optimal policy would idle server 3 at station 3 in state s = (1, 1) and obtain a

long-run average throughput of 0.3777, while the best non-idling policy has the same server

assignment as in the optimal policy except that it assigns server i to 4 − i for i = 1, 2, 3

in state s = (1, 1) and achieves a throughput of 0.3656. In conclusion, the best non-idling

policy has a throughput about 3.2% lower than the throughput of the optimal policy.

Although from Example 5.5.1, we find that the best non-idling policy no longer guar-

antees a maximal throughput of larger systems, the difference between the throughputs of

the optimal policy and the best non-idling policy is not significant. Table 5.4 provides the

numerical results of the comparison of the best non-idling policy and the optimal policy.

More specifically, we compute the average throughputs of the best non-idling policy and

the optimal policy, and calculate the percentage of the deviation of the best non-idling pol-

icy from the optimal policy (optimality gap) for 10,000 iterations with N = 3, buffers

randomly picked from integers 0, 1, . . . , 10, µij drawn independently from a uniform dis-

tribution with range (0, 1), and pij drawn independently from a uniform distribution with
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ranges (0, 1), (0, 0.5), (0, 0.1), and (0, 0.01). We also display 95% confidence intervals for

the optimality gaps.

Table 5.4: Comparison of the Best Non-idling Policy and the Optimal Policy for Three
Stations.

µ p Best Non-idle Optimal % Optimality Gap

U(0, 1) U(0, 1) 0.1514 0.1533 1.22± 0.05

U(0, 1) U(0, 0.5) 0.2851 0.2862 0.41± 0.02

U(0, 1) U(0, 0.1) 0.4458 0.4459 0.03± 0.00

U(0, 1) U(0, 0.01) 0.4882 0.4882 0.00± 0.00

Average 0.3426 0.3434 0.42

From Table 5.4, we observe that the average deviations of the best non-idling policy

from the optimal policy for all ranges of defect probability are very small (less than 2%).

Thus, we can conclude that the best non-idling policy is near-optimal (if not already opti-

mal) for larger systems with N ≥ 3. Recall that, by Proposition 1 of Işık, Andradóttir, and

Ayhan [31], there exists a non-idling optimal policy when the servers are reliable (i.e., with

zero defect probabilities). And from Table 5.4 we notice that the average deviations of the

best non-idling policy from the optimal policy is decreasing (to zero) as the range and the

value of defect probability becomes smaller, which confirms Işık, Andradóttir, and Ayhan’s

result in [31] numerically.

5.5.2 Heuristic Policies

In this section, we describe various heuristic server assignment policies and provide nu-

merical results that suggest some of our heuristics are near-optimal for N = 3. For brevity,

denote qi,j = 1 − pi,j as the success probability for server i at station j, i, j ∈ {1, . . . , N}

for the rest of this chapter.

First, we investigate the optimal server allocation policy of systems with infinite buffers
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between the stations (i.e., B1 = · · · = BN−1 =∞). In this case, there is no blocking in the

system, and the long-run average throughput of the system is determined by the bottleneck

station. Moreover, the throughput of each station is determined by the minimum of the

arrival rate and the departure rate of the station, and the arrival rate of the next station is

the departure rate of jobs with no defects at the current station. Specifically, suppose µj, qj

are the service rate and success probability at station j. Then, the successful departure rate

of station 1 is µ1(1− p1) = µ1q1, which is also the arrival rate to station 2. Therefore, the

departure rate of station 2 is min{µ1q1, µ2}, and the successful departure rate of station 2 is

min{µ1q1, µ2}q2. Proceeding in a similar manner, we can obtain the successful departure

rate of station N , i.e., the long-run average throughput of the system, as

min{µ1q1 · · · qN , µ2q2 · · · qN , . . . , µNqN} = min
1≤j≤N

{µj
N∏
k=j

qk}.

Thus, the optimal stationary policy for the infinite buffers case is to assign server ij ∈

{1, . . . , N} to station j ∈ {1, . . . , N} such that {i1, . . . , iN} = {1, . . . , N} and

min
1≤j≤N

{µij ,j
N∏
k=j

qik,k} (5.23)

is maximized.

When the buffers are finite, we propose the following heuristic policy that is inspired

by the optimal stationary policy for the infinite buffers case, and we refer to this heuristic

as ‘Flow’.

• Flow: At any time t, let J ⊆ {1, . . . , N} be the set of working stations. Then assign

server ij ∈ {1, . . . , N} to station j ∈ J such that ∪j∈J{ij} = J and

min
j∈J
{µij ,j

∏
k≥j,k∈J

qik,k}

is maximized.
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Andradóttir, Ayhan, and Down [7] proved that for a Markovian queueing system with

two tandem stations and two collaborative servers with no defects and additive combined

service rates, it is optimal to assign the servers that maximize the product of the service

rate of each station unless the system is blocked or starved. Combining this idea with the

existence of the defect probability, and the fact that we would use the server with higher

successful service rate at station 1 when the system is empty (see Proposition 5.3.1), we

suggest the following heuristic policy (which we refer to as Πµq) that always maximizes

the product of successful service rates of all the working stations.

• Πµq: At any time t, let J ⊆ {1, . . . , N} be the set of working stations. Then assign

server ij ∈ {1, . . . , N} to station j ∈ J such that ∪j∈J{ij} = J and

∏
j∈J

µij ,jqij ,j

is maximized.

Note that, both Flow and Πµq agree with Proposition 5.3.1 and Theorem 5.3.1. How-

ever, Flow and Πµq are different from the optimal policy we characterized in Section 5.4

for two-station systems. Thus, we first check their performance for systems with N = 2.

We compute the percentage of the deviation of the heuristic policies Flow and Πµq from the

optimal policy (optimality gap) for 10,000 iterations with buffers randomly picked from in-

tegers 0, 1, . . . , 10, µij drawn independently from a uniform distribution with range (0, 1),

and pij drawn independently from a uniform distribution with range (0, 0.1). The average

optimality gaps of Flow and Πµq are 1.00% and 0.72%, respectively. Thus, Flow and Πµq

are near-optimal for two-station systems.

Before providing numerical results for systems with N = 3, we describe two auxiliary

heuristic policies of Πµq, namely Πµ and Πq, to help us compare the effects of the service

rate and the defect probability. Specifically, Πµ and Πq maximize the product of only

service rates and only success probabilities of all the working stations, respectively.
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• Πµ: At any time t, let J ⊆ {1, . . . , N} be the set of working stations. Then assign

server ij ∈ {1, . . . , N} to station j ∈ J such that ∪j∈J{ij} = J and

∏
j∈J

µij ,j

is maximized.

• Πq: At any time t, let J ⊆ {1, . . . , N} be the set of working stations. Then assign

server ij ∈ {1, . . . , N} to station j ∈ J such that ∪j∈J{ij} = J and

∏
j∈J

qij ,j

is maximized.

Now, we are ready to obtain the numerical results for systems with N = 3 stations.

We will compare heuristic policies Flow, Πµq, Πµ, and Πq with two benchmark policies,

namely the best stationary policy and the arbitrary stationary policy. We present numerical

results for systems with three stations and randomly generated buffer sizes, service rates,

and defect probabilities to investigate the performance of our heuristics. Specifically, we

consider buffers randomly picked from integers 0, 1, . . . , 10, while µij is drawn indepen-

dently from a uniform distribution with ranges (0, 1) and (0, 10), and pij is drawn indepen-

dently from a uniform distribution with ranges (0, 1), (0, 0.5), (0, 0.1), and (0, 0.01). We

did 10,000 iterations for each of several pairs of different ranges of the service rates and

defect probabilities, and compute the percentage of the deviation of the heuristic policy

from the optimal policy. The results are shown in Table 5.5. Note that, in this section, the

numbers in all tables are in percentages, and all tables display 95% confidence intervals.
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Table 5.5: % Optimality Gap of Flow, Πµq, Πµ, Πq and Static Policies for Three Stations
(the minimum optimality gap in each row is shown in bold).

µ p Flow Πµq Πµ Πq Arb. Static Opt. Static

U(0, 1) U(0, 1) 8.12± 0.23 13.69± 0.34 53.02± 0.64 30.27± 0.58 73.05± 0.58 25.53± 0.48

U(0, 10) U(0, 1) 8.12± 0.23 13.69± 0.34 53.02± 0.64 30.27± 0.58 73.05± 0.58 25.53± 0.48

U(0, 1) U(0, 0.5) 4.26± 0.11 6.95± 0.16 13.44± 0.25 41.00± 0.60 56.77± 0.58 13.99± 0.30

U(0, 10) U(0, 0.5) 4.26± 0.11 6.95± 0.16 13.44± 0.25 41.00± 0.60 56.77± 0.58 13.99± 0.30

U(0, 1) U(0, 0.1) 2.11± 0.07 2.33± 0.06 2.49± 0.06 48.55± 0.58 52.77± 0.61 10.23± 0.29

U(0, 10) U(0, 0.1) 2.11± 0.07 2.33± 0.06 2.49± 0.06 48.55± 0.58 52.77± 0.61 10.23± 0.29

U(0, 1) U(0, 0.01) 1.99± 0.07 1.99± 0.06 1.99± 0.06 50.09± 0.57 52.54± 0.61 9.95± 0.29

U(0, 10) U(0, 0.01) 1.99± 0.07 1.99± 0.06 1.99± 0.06 50.09± 0.57 52.54± 0.61 9.95± 0.29

Average 4.12 6.24 17.74 42.48 58.78 14.93

From Table 5.5, we derive the following conclusions:

1. Flow performs strictly better than other policies for all cases except that when the

defect probabilities are very small, Πµq and Πµ are as good as Flow with respect

to the mean of optimality gaps. Moreover, Flow is near-optimal since its deviation

from the optimal policy is always under 10% even when the defect probabilities are

unrealistically large (i.e., when p ∼ U(0, 1)).

2. Πµq is always better than both Πq and Πµ, since Πµq contains the information of

both the service rates and the defect probabilities, while Πq and Πµ only consider

one of them.

3. When defect probabilities are large, Πq performs better than Πµ, and when defect

probabilities are small, Πµ performs better than Πq. Thus, we may focus on the de-

fect probabilities when they are large, and focus on the service rates when the defect

probabilities are small. When both µ and p are drawn from uniform distributions

with the same magnitude and range (i.e., U(0, 1)), Πq performs much better than

Πµ. Thus, the defect probability is more influential than the service rate.
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4. The optimality gap for all the policies except for Πq decreases as the magnitude and

range of possible defect probabilities decrease.

5. The magnitude change of µ does not impact the numerical results for all the policies

we considered here. This is because we generate the scenarios (buffer size, service

rates, and success probabilities) using common random numbers and hence choosing

µ from U(0, 10) is equivalent to choosing µ from U(0, 1) and increasing the time unit

by a factor of 10. From now on, we will only present the results for µ chosen from

U(0, 1).

6. The performance of dynamic policies Flow and Πµq are significantly better than

the best static policy in all the cases, the performance of Πµ is better than the best

static policy when the defect probabilities are not large, and the performance of Πq

is always worse than the best static policy.

7. The average performance of all dynamic policies are always strictly better than an ar-

bitrary static policy. However, ignoring either the service rates or the defect probabil-

ities (as in Πq and Πµ) may result in an optimality gap as large as one corresponding

to an arbitrary static policy.

8. The optimality gap of the best static policy is around 3.5 times that of Flow when

the defect probability follows U(0, 1), around 4.9 times that of Flow when the de-

fect probability follows U(0, 0.1), and around 5 times that of Flow when the defect

probability follows U(0, 0.01). And we observe the same pattern for Πµq. Thus, the

relative performance of dynamic policies Flow and Πµq over static policies are better

when defect probability is small.

Note that, Πµq performs better than Flow when the defect probability followsU(0, 0.01)

in terms of the variance of the optimality gaps, and Flow is the best when the defect prob-

abilities are higher with larger range. Moreover, it is clear from equation (5.23) that the
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defect probability at later stations in the system has higher effect on our decision in Flow.

For example, the success probability at station 3, i.e., qi3,3 appears in every term of the set

we choose from, while the success probability at station 1, i.e., qi1,1 appears only in the

first term. However, in Πµq, we put equal weight on the defect probability at all stations.

Intuitively, the further downstream a job is in the system, the more efforts we have put on

it, and the closer the job is to be completed. Thus, we want to have more reliable servers

at stations closer to the end of the system to reduce the loss of our efforts and increase the

probability of having a successful completed job. We now propose new heuristic policies

based on this idea.

To further emphasize the defect probabilities in latter stations, we combine the two best

heuristic policies, Flow and Πµq, as follows:

• ΠFlow: At any time t, let J ⊆ {1, . . . , N} be the set of working stations. Then

assign server ij ∈ {1, . . . , N} to station j ∈ J such that ∪j∈J{ij} = J and

∏
j∈J

µij ,jq
j
ij ,j

is maximized.

In addition to ΠFlow, we also propose another new heuristic policy ΠFlow∗ that combines

Πµq and ΠFlow so that it put more weight on the defect probabilities in latter stations than

Πµq, and less weight on the defect probabilities in latter stations than ΠFlow.

• ΠFlow∗: At any time t, let J ⊆ {1, . . . , N} be the set of working stations, let J1 be a

subset of J such that, j ∈ J1 if station j ≥ 2 is working and station j − 1 is blocked.

Denote J2 = J \ J1. Then assign server ij ∈ {1, . . . , N} to station j ∈ J such that

∪j∈J{ij} = J and ∏
j∈J1

µij ,jqij ,j
∏
j∈J2

µij ,jq
j
ij ,j

is maximized.
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Table 5.6 shows the numerical results of Flow, Πµq, ΠFlow, and ΠFlow∗. The choice

of parameters are the same as in Table 5.5 except that we no longer present the results for

µ chosen from U(0, 10).

Table 5.6: % Optimality Gap of Flow, Πµq, ΠFlow, and ΠFlow∗ for Three Stations (the
minimum optimality gap in each row is shown in bold).

µ p Flow Πµq ΠFlow ΠFlow∗

U(0, 1) U(0, 1) 8.12± 0.23 13.69± 0.34 6.51± 0.19 5.61± 0.15

U(0, 1) U(0, 0.5) 4.26± 0.11 6.95± 0.16 4.34± 0.11 3.83± 0.09

U(0, 1) U(0, 0.1) 2.11± 0.07 2.33± 0.06 2.25± 0.06 2.22± 0.06

U(0, 1) U(0, 0.01) 1.99± 0.07 1.99± 0.06 1.99± 0.06 1.99± 0.06

Average 4.12 6.24 3.77 3.41

From Table 5.6, we can derive the following conclusions:

1. ΠFlow∗ performs best when the magnitude and range of defect probability are larger,

i.e., when the defect probabilities follow U(0, 1) and U(0, 0.5). Its average deviation

from the optimal policy is always under 6%. It is also the best heuristic policy on

average.

2. Flow performs strictly better than others when the magnitude of defect probability is

moderate, i.e., when the defect probabilities follow U(0, 0.1).

3. When the magnitude of defect probability is small, i.e., when the defect probabilities

follow U(0, 0.01), all heuristics shown in Table 5.6 perform equally good with their

average deviations from the optimal policy all under 2%.

4. ΠFlow∗ always performs no worse than ΠFlow and Πµq.

In conclusion, Flow and ΠFlow∗ are the two better heuristic policies. From this point on,

we will focus on Flow and ΠFlow∗.
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Remark 5.5.1. We have also tried other revised versions of ΠFlow, but they are not as

good as ΠFlow∗, so we omit the numerical results for them. For example, we have tried a

revised version of ΠFlow∗ such that we put station j in set J1 if either its preceding station

j − 1 is blocked or its subsequent station j + 1 is starved. However, the optimality gap for

this heuristic is worse than that of ΠFlow∗.

Since the idea of Flow is from infinite buffer systems, intuitively, the performance of

Flow is related to the buffer size. Specifically, one would expect that the larger the buffer

sizes are, the better the performance of Flow is. Hence, we obtain the numerical results

for Flow and ΠFlow∗ with different choices of buffer sizes. We choose buffers from

{0, 5, 10} with both balanced and unbalanced buffer allocation. We did 10,000 runs for

each pair of buffer sizes with the service rates randomly generated from a uniform distri-

bution on (0, 1), and defect probabilities randomly generated from a uniform distribution

on (0, 0.5), (0, 0.1), and (0, 0.01). We did not consider defect probabilities in the range of

(0, 1) as defect probabilities above 50% seem impractical. The results are shown in Tables

5.7, 5.8, and 5.9, respectively.
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Table 5.7: % Optimality Gaps of Flow and ΠFlow∗ with Different Buffers for N = 3, p ∼
U(0, 0.5) (the minimum optimality gap in each row is shown in bold).

B1 B2 Flow ΠFlow∗ Arb. Static Opt. Static

0 0 2.99± 0.08 1.99± 0.07 54.84± 0.56 14.67± 0.29

5 0 3.69± 0.10 3.32± 0.09 55.87± 0.57 14.32± 0.31

0 5 5.27± 0.11 4.13± 0.09 55.97± 0.56 15.31± 0.30

10 0 4.03± 0.11 3.81± 0.10 56.14± 0.58 14.44± 0.31

0 10 5.93± 0.12 4.77± 0.10 56.19± 0.56 15.57± 0.30

5 5 4.31± 0.11 4.09± 0.10 56.55± 0.58 13.90± 0.30

10 5 4.36± 0.11 4.36± 0.11 56.74± 0.58 13.81± 0.30

5 10 4.62± 0.11 4.49± 0.11 56.73± 0.58 14.02± 0.30

10 10 4.50± 0.12 4.58± 0.11 56.85± 0.58 13.80± 0.31

Average 4.41 3.95 56.21 14.43

Table 5.8: % Optimality Gaps of Flow and ΠFlow∗ with Different Buffers for N = 3, p ∼
U(0, 0.1) (the minimum optimality gap in each row is shown in bold).

B1 B2 Flow ΠFlow∗ Arb. Static Opt. Static

0 0 0.81± 0.03 0.39± 0.02 50.46± 0.59 10.74± 0.27

5 0 1.94± 0.06 1.61± 0.05 51.76± 0.60 10.72± 0.29

0 5 2.12± 0.06 1.90± 0.05 51.57± 0.60 10.72± 0.28

10 0 2.32± 0.07 2.00± 0.06 51.98± 0.60 10.80± 0.29

0 10 2.61± 0.07 2.41± 0.06 51.77± 0.60 10.83± 0.29

5 5 2.14± 0.07 2.42± 0.06 52.98± 0.61 10.34± 0.30

10 5 2.31± 0.07 2.74± 0.07 53.27± 0.61 10.42± 0.30

5 10 2.34± 0.07 2.78± 0.07 53.22± 0.61 10.42± 0.30

10 10 2.39± 0.07 2.98± 0.07 53.49± 0.61 10.41± 0.30

Average 2.11 2.14 52.28 10.60
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Table 5.9: % Optimality Gaps of Flow and ΠFlow∗ with Different Buffers for N = 3, p ∼
U(0, 0.01) (the minimum optimality gap in each row is shown in bold).

B1 B2 Flow ΠFlow∗ Arb. Static Opt. Static

0 0 0.79± 0.03 0.27± 0.02 50.33± 0.59 10.54± 0.27

5 0 1.92± 0.06 1.50± 0.05 51.48± 0.60 10.44± 0.29

0 5 1.86± 0.06 1.48± 0.05 51.47± 0.60 10.38± 0.29

10 0 2.28± 0.07 1.86± 0.06 51.65± 0.60 10.47± 0.29

0 10 2.22± 0.07 1.86± 0.06 51.62± 0.60 10.39± 0.29

5 5 2.06± 0.07 2.17± 0.06 52.83± 0.61 10.10± 0.30

10 5 2.22± 0.07 2.46± 0.07 53.09± 0.62 10.17± 0.30

5 10 2.21± 0.07 2.47± 0.07 53.09± 0.62 10.16± 0.30

10 10 2.27± 0.07 2.66± 0.07 53.32± 0.62 10.16± 0.31

Average 1.98 1.86 52.10 10.31

From Tables 5.7, 5.8, and 5.9 we can observe that:

1. The optimality gaps of both heuristic policies Flow, ΠFlow∗ and both benchmark

policies are increasing as the range of defect probability increases.

2. ΠFlow∗ performs better when the buffer sizes are not large, Flow performs better

when the buffer sizes are large, and this threshold of the buffer sizes becomes smaller

when the range of defect probability drops from U(0, 0.5) to U(0, 0.1), and when the

buffer allocation is more skewed.

3. When the sum of the buffers are the same, the performances of both Flow and

ΠFlow∗ get better as the buffer allocation is skewed to the left if the defect prob-

abilities are of range U(0, 0.5); if the defect probabilities are of ranges U(0, 0.1) and

U(0, 0.01), as the buffer allocation becomes more balanced, the performance of Flow

gets better while the performance of ΠFlow∗ gets worse.
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4. The deviation of ΠFlow∗ from the optimal policy becomes larger as the buffer size

increases.

5. Flow performs the best on average when the range of defect probability is moderate

(i.e., when p ∼ U(0, 0.1)); otherwise, ΠFlow∗ performs the best on average. The

performances of both Flow and ΠFlow∗ are near-optimal with optimality gap less

than 5% in all the cases.

Based on the previous numerical results, the conditions for either of ΠFlow∗ or Flow

be the best policy is determined by multiple factors including the buffer size, buffer al-

location, service rates and defect probabilities. And the underneath pattern of how these

factors impact the performance of our heuristics is hard to quantify. To further decrease the

optimality gap of our heuristic from the optimal policy, we simply choose the better policy

among ΠFlow∗ and Flow, and refer to this new heuristic policy as BoT. By definition, BoT

is always no worse than both of ΠFlow∗ and Flow, and is plausible to be the best heuristic

policy among all the policies we have discussed in this section.

In order to check the performance of BoT, we calculate the optimality gaps of BoT

using the same parameters chosen and generated as in Table 5.6. For direct comparison,

the results of Flow, ΠFlow∗, and BoT are shown in Table 5.10.

Table 5.10: % Optimality Gap of Flow, ΠFlow∗, and BoT for Three Stations (the mini-
mum optimality gap in each row is shown in bold).

µ p Flow ΠFlow∗ BoT

U(0, 1) U(0, 1) 8.12± 0.23 5.61± 0.15 4.29± 0.13

U(0, 1) U(0, 0.5) 4.26± 0.11 3.83± 0.09 2.76± 0.07

U(0, 1) U(0, 0.1) 2.11± 0.07 2.22± 0.06 1.59± 0.04

U(0, 1) U(0, 0.01) 1.99± 0.07 1.99± 0.06 1.45± 0.04

Average 4.12 3.41 2.52

From Table 5.10, we observe that BoT significantly improves the performance of Flow
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and ΠFlow∗, and maintains optimality gaps less than 5% for all the cases. Combining

the numerical results of Table 5.6 and Table 5.10, BoT is the best heuristic policy for all

cases we discussed for systems with three stations. Thus, we can conclude that heuristic

policy BoT performs near-optimal when N = 3. Note that, although BoT performs the

best among all the heuristics, it is harder to apply than the other two near-optimal heuristics

Flow and ΠFlow∗.

In the next section, we will further validate the performance of Flow, ΠFlow∗, and BoT

for systems with N ≥ 4.

5.5.3 Numerical Results for Systems with More Than Three Stations

In this section, we focus on the two best “pure” heuristic policies Flow, and ΠFlow∗, and

one “mixed” heuristic policy BoT. We will provide the numerical results of these heuristics

for systems with four and five stations.

Tables 5.11 and 5.12 show numerical results for the heuristics Flow, ΠFlow∗, and BoT

with two benchmarks, i.e., the best stationary and the arbitrary stationary policies for four

stations and five stations, respectively. Similar to the three stations cases, we consider

µij, pij drawn independently from a uniform distribution as indicated in the tables. Due

to the computational difficulties of finding the optimal policy as the size of the system

increases, buffers are now randomly picked from integers 0 to 5 for systems with N = 4,

and 0 to 1 for systems with N = 5. We did 10,000 iterations with common random number

generator for systems with N = 4 and N = 5, and compute the percentage of the deviation

of the heuristic policies and the benchmark policies from the optimal policy.
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Table 5.11: % Optimality Gaps of Flow, ΠFlow∗, and BoT for Four Stations (the minimum
optimality gap in each column is shown in bold).

µ p Flow ΠFlow∗ BoT Arb. Static Opt. Static

U(0, 1) U(0, 1) 10.67± 0.20 7.79± 0.14 6.22± 0.12 86.86± 0.37 31.71± 0.44

U(0, 1) U(0, 0.5) 6.69± 0.11 5.22± 0.09 4.12± 0.07 69.78± 0.45 17.51± 0.26

U(0, 1) U(0, 0.1) 2.62± 0.05 2.26± 0.04 1.73± 0.03 63.24± 0.52 10.52± 0.23

U(0, 1) U(0, 0.01) 2.38± 0.05 1.71± 0.04 1.36± 0.03 62.86± 0.53 9.91± 0.24

Average 5.59 4.25 3.36 70.69 17.41

Table 5.12: % Optimality Gaps of Flow, ΠFlow∗, and BoT for Five Stations (the minimum
optimality gap in each column is shown in bold).

µ p Flow ΠFlow∗ BoT Arb. Static Opt. Static

U(0, 1) U(0, 1) 12.52± 0.19 8.85± 0.13 7.48± 0.11 93.41± 0.22 35.27± 0.39

U(0, 1) U(0, 0.5) 8.42± 0.11 5.76± 0.08 4.96± 0.07 77.04± 0.35 19.85± 0.23

U(0, 1) U(0, 0.1) 2.57± 0.03 1.58± 0.03 1.40± 0.02 67.85± 0.45 9.99± 0.16

U(0, 1) U(0, 0.01) 2.02± 0.03 0.80± 0.02 0.74± 0.02 67.33± 0.46 8.91± 0.17

Average 6.38 4.25 3.65 76.41 18.51

Comparing the numerical results in Tables 5.11 and 5.12 with the numerical results for

three stations system (Tables 5.5 and 5.6), we observe that:

1. The optimality gaps for all heuristic policies increase as the number of stations in-

creases when the range of defect probability are wide (i.e., U(0, 1) and U(0, 0.5)).

Intuitively, all our heuristic policies are non-idling. However, the optimal policy may

idle the server with high defect probabilities (as seen in Example 5.5.1), and we sus-

pect that the gaps between the best non-idling policy and the optimal policy increase

as the range of defect probability becomes wider and the size of the system becomes

larger. Thus, the increasing optimality gaps for our heuristic policies may be a result

of an increasing gap between the best non-idling policy and the optimal policy as the

size of the system increases.
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2. BoT performs the best in all the cases, and its average deviation from the optimal

policy is under 7.5%. Moreover, BoT maintains the smallest variance on the average

optimality gap among all the policies as the number of stations increases, which

indicates the stability of its performance.

3. For four and five stations systems, the average performance of ΠFlow∗ is better

than Flow in all the cases, while for three stations system, ΠFlow∗ is worse than

Flow when the magnitude of the defect probability is moderate (i.e., when it follows

U(0, 0.1)). Comparing to three stations systems, we have more stations in tandem

and consider smaller range of the buffer sizes for the numerical results of four and

five stations, and both of these two changes would lead to a higher probability of

having blocked stations. Recall that Flow is optimal when there is no blocking, so

this worse performance of Flow when N = 4 than N = 3 may be caused by more

stations and smaller range of buffer size choices.

In conclusion, for longer lines, BoT is the best “mixed” heuristic policy, and ΠFlow∗ is the

best “pure” heuristic policy on average.

5.6 Conclusions

In practice, it is common to have defective jobs when they are being processed by the

servers, and the defect probabilities depend on the proficiency of the server. However,

most of the existing papers that study queueing systems with flexible servers assumed that

the defect probabilities are zero. Other existing papers address defects but assume that

part of the defective jobs can be fixed, and focus on the planning and control of rework

in a production system. We investigated the optimal server allocation problem with flexi-

ble and error-prone servers. In particular, for a queueing system with N tandem stations,

infinite supply in front of the first station, finite intermediate buffers, and N flexible but

non-collaborative servers, we considered the server allocation policy that maximizes the
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long-run average throughput of the system in the presence of defects.

For Markovian systems with two stations and two servers, we characterized the optimal

policy with respect to which server has the higher effectiveness overall. Specifically, we

proved that when the system is empty, we should assign the server with higher successful

service rate at station 1 to station 1; but when station 2 is working, we would assign the

server that is more effective overall to station 1 when the number of jobs in the buffer is

small, and assign this server to station 2 when the buffers are crowded.

For larger Markovian systems, we provided a partial characterization of the optimal

policy through sample path analysis, and proved that when a distinct server is the fastest

and most reliable at each station, the optimal policy always assign the server to the station

where they are fastest and most reliable. Furthermore, we showed that the server at the first

station should never be idled. Next, we analyzed the best static server assignment when the

buffers are infinite, and developed heuristic policies based on the previous work. Using the

insights gained from the numerical results of the heuristic policies under variate scenarios

for three stations systems, we revised our heuristic policies and proposed new heuristic

policies that integrated the advantages of the original heuristic policies. As a result, we

finalized two “pure” and one “mixed” heuristic policies that are easy to implement and

performed to be near-optimal for three stations systems. And the numerical results for

systems with four and five stations further validate the near-optimal performances of these

three heuristic policies.
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CHAPTER 6

SUMMARY AND FUTURE RESEARCH

6.1 Summary

This dissertation focused on the optimal control of manufacturing and service systems

through dynamic allocation of cross-trained servers. For a multi-server tandem queue-

ing system with finite intermediate buffers and infinite supply in front of the first station,

we explored the server assignment policy that maximizes the long-run average throughput

of the system. The specific systems that we discussed are commonly seen in practice but

not widely discussed in the literature.

In Chapter 3, we analyzed the server allocation problem when each job can be decom-

posed into multiple subtasks and there are no precedence relationships among the subtasks

within each station. We first characterized the optimal static, flexible, and collaborative task

assignment approaches, and further inspected the optimal policies for two special cases,

namely when buffers are zero and when the sum of the buffers goes to infinity. Compar-

ing the task assignment approaches with three other server coordination methods, namely

teamwork with or without task partitioning and non-collaboration, we concluded that task

assignment is preferable when the servers are highly specialized; otherwise, teamwork or

non-collaboration are preferable depending on whether the synergy level among the servers

is high or not. To better capture the properties of these server coordination methods, we

further investigated two cases when the servers are generalists or specialists. The numerical

results showed that, when the servers are generalists, we prefer non-collaboration, and then

teamwork without task partitioning as the synergy level among servers goes from low to

high; and when the servers are specialists, we prefer collaborative task assignment if the

servers are highly specialized, otherwise, we prefer teamwork with task partitioning if the
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synergy level is high, non-collaboration if the synergy level is moderate or low.

In Chapter 4, we studied server allocation problem in terms of teams when the servers

are flexible and collaborative. Unlike most of the existing papers that assumed a fixed

synergy level when the servers collaborate, we focused on the service rate of the teams

without providing a specific formation of the team service rates with respect to any other

factors. We exhibited sufficient criteria for eliminating teams that are not on the Pareto

boundary or be dominated by other teams, then we present the optimal policy among the

remaining teams, which we referred to as the optimal assignment set, for systems with two

stations. We verified that the optimal policy has monotone thresholds on the number of

jobs in the buffer for teams in the optimal assignment set. Then we validated our optimal

policy by applying it to two special cases: proportional team service rates and teams of

specialized servers. Motivated by the optimal policy of systems with two stations, we

proposed heuristic policy for larger systems with teams of specialized servers when they

servers are generalists. The numerical results suggested that our heuristic policy performed

near-optimal.

In Chapter 5, we address the fact that jobs may incur damage and be wasted when

being processed by the servers. However, most existing papers ignore the possibility of

defects when studying queueing systems with flexible servers. As far as we are aware, this

is the first work to consider the server allocation problem in the presence of defects. For

Markovian systems with two stations and two servers, we demonstrated that the optimal

policy is either a single or a double threshold policy on the number of jobs in the buffer.

Specifically, we proved that when the system is empty, we should assign the server with

higher successful service rate at station 1 to station 1; but when station 2 is working, we

would assign the server that is more effective overall to station 1 when the number of jobs

in the buffer is small, and assign this server to station 2 when the buffers are crowded. A

partial characterization of the optimal policy is given for longer lines. We proved that when

a distinct server is the fastest and most reliable at each station, the optimal policy always
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assigns the server to the station where they are fastest and most reliable. Furthermore,

we would never idle the server assigned to station 1, but we might idle the servers at other

working stations for systems with more than two stations. We also presented and compared

several heuristic policies that are easy to implement and performed well for larger systems.

6.2 Future Research Directions

In this section, we present potential extensions of the problems we studied in this disserta-

tion.

For the problem in Chapter 3, we mainly focus on task assignment approaches when a

job can be decomposed into two subtasks at each station. However, as is given in the com-

ments prior to Proposition 3.1.1, some of our results may no longer hold when the number

of subtasks exceeds two. Therefore, we expect to explore more about task assignment ap-

proaches when a job can be decomposed into more than two subtasks with no precedence

relationships.

Another future research direction we propose here is based on our findings in Chapter

4. For teams of specialized servers where the servers are generalists, we suspect that the

optimal policy always uses permanent teams that are formed based on their ability. More

specifically, for systems with N tandem stations and N servers of each type, we will use

the following N teams: the best server of each type, the second best server of each type,...,

the worst server of each type. We have proved this result for systems with two stations

(as is given in Remark 4.3.2.2), and the numerical results for three stations systems (as in

Examples 4.4.1, 4.4.2, and 4.4.3) also support this conjecture. Thus, we plan to prove this

result for systems with arbitrary number of stations.

For the systems in the presence of defects in Chapter 5, we focus on maximizing the

long-run average throughput of the system. However, in production systems, when the cost

of raw materials is not trivial, it is natural to include a penalty cost of wasted raw materials

(jobs). Therefore, our first research direction is to consider the cost minimization problem
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of these systems with variable costs, such as a penalty cost for defects.

Another promising extension related to the problem in Chapter 5 is motivated by our

results in Section 5.5.1. For systems with more than two stations, the optimal policy may

involve server idling. More specifically, as is shown in Example 5.5.1, when a server is

very unreliable at every station, the optimal policy may always let the server idle. Thus, it

is meaningless to hire this server in the first place. For this reason, we suspect that there

exists a threshold on the defect probability over which we will choose not to hire a server,

and we are interested in finding or characterizing this threshold in our future research.

The future research directions we proposed so far are closely related to the problems we

discussed in this thesis. For a broader research agenda, we strive to continue our research

on variant scenarios in the field of optimal allocation of servers to optimize system perfor-

mance. Towards this end, we consider a problem motivated by issues in healthcare settings.

In the emergency departments, the health conditions of the patients may deteriorate while

waiting to be treated or when being treated. We start by considering a single server queue-

ing system with multiple classes of customers that can change type (e.g., due to deteriora-

tion in health condition) or abandon the system (e.g., due to death or recovery) before his

treatment is completed. Optimal control of queueing systems with customer abandonments

have been discussed in the literature. For instance, Down, Koole, and Lewis [22] studied

the dynamic server control of a single-server system with abandonments. Optimal control

of queueing systems with customers that can change status is scarcely discussed (see Cao

and Xie [20] and Zayas-Cabán and Ahn [52]). Moreover, neither of [20] or [52] completely

characterized the optimal server assignment policy even for systems with two types of jobs.

Both of these papers provided partial description of the optimal policy, and [52] proposed

conjecture of the optimal policy for cases that are not solved in their paper. To the best

of our knowledge, no existing paper has fully solved the optimal server allocation policy

for a single-server system with customers that can change type and abandon the system.

Therefore, this is one potential research direction that we intend to explore.
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APPENDIX A

APPENDICES FOR CHAPTER 3

In the appendices, we provide supplementary materials for Chapter 3. In Appendix A.1, we

provide the proof of Proposition 3.2.1. In Appendix A.2, we provide proofs for results in

Section 3.3. In Appendix A.3, we provide proofs of results in Section 3.5. In Appendix A.4,

we present the comparisons of server coordination methods that are not included in Section

3.5. In Appendix A.5, we provide model descriptions for the two teamwork approaches.

A.1 Proof of Proposition 3.2.1

Let

f1 = µ22 − µ12;

f2 =

B1+B2+1∑
k=0

µk11µ
B1+B2+2−k
22

(
µ11

B1+B2+1∑
j=0

µj21µ
B1+B2+1−j
12 + µB1+B2+2

12

)
−

B1+B2+1∑
k=0

µk21µ
B1+B2+2−k
12

B1+B2+2∑
j=0

µj11µ
B1+B2+2−j
22 ; (A.1)

f3 =

B1+B2+1∑
k=0

µk21µ
B1+B2+1−k
12

B1+B2∑
j=0

µj+1
11 µB1+B2+1−j

22

−
B1+B2∑
k=0

µk+1
21 µB1+B2+1−k

12

B1+B2+1∑
j=0

µj11µ
B1+B2+1−j
22 .

Then, f1 ∝ T f12 − T
1f
12 , f2 ∝ T f12 − T

1f
21 , and f3 ∝ T 1f

12 − T
1f
21 .

If we treatB1+B2 as variable and the service rates as given, then we prove by induction
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that f2(B1 +B2) = L(B1 +B2), where

L(B1 +B2) = (µ11 − µ21)

B1+B2∑
k=0

µk+1
12 µB1+B2−k

21

k∑
j=0

µj11µ
B1+B2+2−j
22

+ (µ22 − µ12)

B1+B2+1∑
k=0

µk+1
11 µB1+B2+1−k

22

k∑
j=0

µj12µ
B1+B2+1−j
21 .

(A.2)

Note that,

L(n) = (µ11 − µ21)
( n−1∑
k=0

µk+1
12 µn−k21

k∑
j=0

µj11µ
n+2−j
22 + µn+1

12

n∑
j=0

µj11µ
n+2−j
22

)
+ (µ22 − µ12)

( n∑
k=0

µk+1
11 µn+1−k

22

k∑
j=0

µj12µ
n+1−j
21 + µn+2

11

n+1∑
j=0

µj12µ
n+1−j
21

)
= µ21µ22L(n− 1) + (µ11 − µ21)µn+1

12

n∑
j=0

µj11µ
n+2−j
22 + (µ22 − µ12)µn+2

11

n+1∑
j=0

µj12µ
n+1−j
21 .

(A.3)

When B1 +B2 = 0,

f2(0) = (µ2
22 + µ11µ22)

[
µ11(µ21 + µ12) + µ2

12

]
− (µ2

12 + µ21µ12)
(
µ2

22 + µ11µ22 + µ2
11

)
= (µ11 − µ21)µ12µ

2
22 + (µ22 − µ12)µ11

[
µ11(µ21 + µ12) + µ22µ21

]
= L(0).

Suppose now that f2(B1 + B2) = L(B1 + B2) for B1 + B2 = 0, 1, . . . , n − 1. Then, for
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B1 +B2 = n, (A.1) yields

f2(n) =
n+1∑
k=0

µk11µ
n+2−k
22

(
µ11

n+1∑
j=0

µj12µ
n+1−j
21 + µn+2

12

)
−

n+1∑
k=0

µk+1
12 µn+1−k

21

n+2∑
j=0

µj11µ
n+2−j
22

=
(
µn+1

11 µ22 +
n∑
k=0

µk11µ
n+2−k
22

)[
µ21

(
µ11

n∑
j=0

µj12µ
n−j
21 + µn+1

12

)
+ (µ11 + µ12 − µ21)µn+1

12

]
−
(
µn+2

12 +
n∑
k=0

µk+1
12 µn+1−k

21

)(
µn+2

11 +
n+1∑
j=0

µj11µ
n+2−j
22

)
= µ21µ22f2(n− 1) + µn+1

11 µ22

(
µ11

n+1∑
j=0

µj12µ
n+1−j
21 + µn+2

12

)
+ (µ11 + µ12 − µ21)µn+1

12

n∑
k=0

µk11µ
n+2−k
22 − µn+2

12

n+2∑
j=0

µj11µ
n+2−j
22 − µn+2

11

n∑
k=0

µk+1
12 µn+1−k

21

= µ21µ22L(n− 1) + (µ11 − µ21)µn+1
12

n∑
j=0

µj11µ
n+2−j
22 + (µ22 − µ12)µn+2

11

n+1∑
j=0

µj12µ
n+1−j
21

= L(n),

where we have used (A.3). Thus, f2 = L(B1 + B2), and from now on, we use equation

(A.2) as the expression for f2.

When µ22 ≥ µ12, we have f1 ≥ 0, f2 ≥ 0, which implies that T f12 ≥ T 1f
12 , T

f
12 ≥ T 1f

21 ,

and hence assignment Af12 is optimal.

When µ22 < µ12, µ11 = µ21 > 0, we have f2 ≤ 0, and f3 can be simplified as follows:

f3 = µB1+B2+2
21

B1+B2∑
k=0

µk21(µB1+B2+1−k
22 − µB1+B2+1−k

12 ) ≤ 0.

Thus, T f12 ≤ T 1f
21 , T

1f
12 ≤ T 1f

21 , and hence assignment A1f
21 is optimal, which corresponds to

µ∗22 = µ12.

When µ22 < µ12, µ11 > µ21 = 0, then f1 < 0,which implies that T f12 < T 1f
12 . Moreover,
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when µ21 = 0, f3 can be simplified as follows:

f3 = µB1+B2+1
12

B1+B2∑
j=0

µj+1
11 µB1+B2+1−j

22 > 0.

Therefore, T 1f
12 > T 1f

21 , and assignment A1f
12 is optimal (i.e., µ∗22 = 0).

Finally, when µ22 < µ12, µ11 > µ21 > 0, we have f1 < 0 and hence T f12 < T 1f
12 .

Therefore, we only need to compare T 1f
12 and T 1f

21 (i.e., determine the sign of f3). If we

treat µ22 as variable and µ11, µ12, µ21 as given, then

∂f3(µ22)

∂µ22

=

B1+B2∑
j=0

(B1 +B2 + 1− j)µj11µ
B1+B2−j
22 ×

( B1+B2+1∑
k=0

µk21µ
B1+B2+1−k
12 (µ11 − µ21) + µB1+B2+2

21

)
> 0. (A.4)

That is, f3(µ22) is increasing with respect to µ22. Moreover,

f3(0) = −µB1+B2+1
11

B1+B2∑
k=0

µk+1
21 µB1+B2+1−k

12 < 0,

f3(µ12) =

B1+B2+1∑
k=0

µk21µ
B1+B2+1−k
12

B1+B2∑
j=0

µj+1
11 µB1+B2+1−j

12

−
B1+B2∑
k=0

µk+1
21 µB1+B2+1−k

12

B1+B2+1∑
j=0

µj11µ
B1+B2+1−j
12

=

B1+B2+1∑
k=0

µk21µ
B1+B2+1−k
12

( B1+B2+1∑
j=0

µj11µ
B1+B2+2−j
12 − µB1+B2+2

12

)
−
( B1+B2+1∑

k=0

µk21µ
B1+B2+2−k
12 − µB1+B2+2

12

) B1+B2+1∑
j=0

µj11µ
B1+B2+1−j
12

= µB1+B2+2
12

B1+B2+1∑
k=1

(µk11 − µk21)µB1+B2+1−k
12 > 0.

Thus there exist a unique µ∗22 ∈ (0, µ12) such that f3(µ∗22) = 0. Since f3(·) is increasing

with respect to µ22, we have T 1f
12 ≥ T 1f

21 if and only if µ22 ≥ µ∗22. Replacing µ22 with
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x, multiplying both sides of the equation f3(x) = 0 with (x − µ11), and using (4.3), we

can obtain equation (3.4). And the fact that we multiply the equation with (x − µ11) adds

one more root (i.e., µ11) to equation (3.4). Thus, µ11 and µ∗22 are the only positive roots of

equation (3.4).

A.2 Proofs for Section 3.3

We provide the proofs of Propositions 3.3.3 and 3.3.5 in Appendices A.2.1 and A.2.2,

respectively.

A.2.1 Proof of Proposition 3.3.3

When β1 ≥ β2 >
1
2
, x1 = max{β1, α}Σ1, x2 = max{β2, α}Σ2, and µ11µ12 > µ21µ22. If

γ = m1, i.e., µ11 + µ22 = µ21 + µ12, then Corollary 3.3.1 implies that Ac12 is optimal if and

only if

max{β1, α} ≤ max{β2, α}γ.

Note that since β1 ≥ β2, we have m1 ≥ β1
β2
≥ 1. Then,

max{β2, α}γ ≥ max{β2, α}
β1

β2

= max{β1, α
β1

β2

} ≥ max{β1, α}.

Thus, when γ = m1, Ac12 is always no worse than Ac21.

If γ 6= m1,

1. If α ≥ β1, equation (3.17) would be

α
[
(2β1 − 1)− (2β2 − 1)γ

]
≥ (1− γ)(β1 + β2 − 1).

Then, Ac12 is optimal if and only if either

α ≥ G1, γ < m1, (A.5)
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or

α ≤ G1, γ > m1. (A.6)

2. If β1 > α ≥ β2, equation (3.17) would be

α(2β1 − 1)[β1 + (1− β2)γ] ≥ (β1 + β2 − 1)β1.

Then Ac12 is optimal if and only if

α ≥ G2. (A.7)

3. If β1 > β2 > α, equation (3.17) would be

(2β1 − 1)(1− β2)β2γ ≥ (2β2 − 1)(1− β1)β1.

Then Ac12 is optimal if and only if

γ ≥ m2. (A.8)

However, the above results are not clear since we still need to compare G1, G2 with β1, β2

to get complete and non-overlapping ranges of α for each of the assignments to be optimal.

Let

m3 =
2β1(1− β1)− (1− β2)

(2β1 − 1)(1− β2)
.

Note that,

G1 − β1 ∝
[
(2β1 − 1)− (2β2 − 1)γ

][
(β1 + β2 − 1)(1− γ)− β1(2β1 − 1) + β1(2β2 − 1)γ

]
= (2β1 − 1)2(1− β2)(

2β1 − 1

2β2 − 1
− γ)

[2β1(1− β1)− (1− β2)

(2β1 − 1)(1− β2)
− γ
]

∝ (m1 − γ)(m3 − γ). (A.9)
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Thus, G1 ≥ β1 ⇔ (γ −m1)(γ −m3) ≥ 0. Similarly, we can obtain that

G2 − β1 ∝ m3 − γ, (A.10)

G2 − β2 ∝ m2 − γ. (A.11)

Moreover, when β1 ≥ β2 >
1
2
,m2−m3 ∝ β2(1−β2)−β1(1−β1) = (β1−β2)(β1+β2−1) ≥

0. Combining the above results, we can obtain that:

1. When γ > m1, since m1 ≥ m2 ≥ m3, (A.9) and (A.11) yield G1 > β1, G2 < β2.

(a) If α ≥ β1, by (A.6), Ac12 is optimal if and only if β1 ≤ α ≤ G1.

(b) If β1 > α ≥ β2, (A.7) holds since G2 < β2, and Ac12 is always optimal.

(c) If β2 > α, since (A.8) holds, Ac12 is always optimal.

Therefore, when γ > m1, Ac12 is optimal if and only if α ≤ G1.

2. When m2 ≤ γ < m1, then (A.9) and (A.11) yield G1 ≤ β1, G2 ≤ β2.

(a) If α ≥ β1, then (A.5) holds since α ≥ β1 ≥ G1, and Ac12 is always optimal.

(b) If β1 > α ≥ β2, (A.7) holds since G2 ≤ β2, and Ac12 is always optimal.

(c) If β2 > α, since (A.8) holds, Ac12 is always optimal.

Combining this with the previous analysis for γ = m1 yields that when m2 ≤ γ ≤

m1, Ac12 is always optimal.

3. When m3 ≤ γ < m2, then (A.9)-(A.11) yield G1 ≤ β1, β2 < G2 ≤ β1.

(a) If α ≥ β1, then (A.5) holds since α ≥ β1 ≥ G1, and Ac12 is always optimal.

(b) If β1 > α ≥ β2, by (A.7), Ac12 is optimal if and only if β1 > α ≥ G2.

(c) If β2 > α, since (A.8) does not hold, Ac12 is not optimal.

Therefore, when m3 ≤ γ < m2, Ac12 is optimal if and only if α ≥ G2.
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4. When γ < m3, then (A.9) and (A.10) yield G1 > β1, G2 > β1.

(a) If α ≥ β1, by (A.5), Ac12 is optimal if and only if α ≥ G1.

(b) If β1 > α ≥ β2, (A.7) does not hold sinceG2 > β1 > α, andAc12 is not optimal.

(c) If β2 > α, since (A.8) does not hold, Ac12 is not optimal.

Therefore, when γ < m3, Ac12 is optimal if and only if α ≥ G1.

Note that when β1 ≥ β2 >
1
2
,

G1 −G2 ∝
[
(2β1 − 1)− (2β2 − 1)γ

]
×{

(2β1 − 1)(1− γ)
[
β1 + (1− β2)γ

]
− β1(2β1 − 1) + β1(2β2 − 1)γ

}
=
[
(2β1 − 1)− (2β2 − 1)γ

]
γ
[
2β1(1− β1)− (1− β2)− (2β1 − 1)(1− β2)γ

]
∝(m1 − γ)(m3 − γ).

Thus G1 ≥ G2 ⇔ (γ −m1)(γ −m3) ≥ 0, and we can merge cases 3 and 4 and describe

the results as in the proposition.

A.2.2 Proof of Proposition 3.3.5

Recall that when β1 ≥ β2 >
1
2
, x1 = max{β1, α}Σ1, x2 = max{β2, α}Σ2, and

1− β1

β2

≤ 1− β1

1− β2

≤ 1 ≤ β1

β2

<
β1

1− β2

. (A.12)

Note that µ11 ≤ µ22 ⇔ γ ≥ β1
1−β2 , and µ21 ≤ µ12 ⇔ γ ≥ 1−β1

β2
. Moreover,

G4 − β2 ∝ (2β2 − 1)(1− β1) ≥ 0, (A.13)

G7 − β1 ∝ (2β1 − 1)(1− β2) > 0. (A.14)

Therefore,

169



(1) When γ < 1−β1
β2

, then µ22 < µ12 < µ21 < µ11, and hence

T c12 − T c21 =
x2µ11

x2 + µ11 − µ22

− x2µ21

x2 + µ21 − µ12

∝ (µ11 − µ21)x2 − µ11µ12 + µ21µ22

∝ (2β1 − 1) max{β2, α}+ 1− β1 − β2. (A.15)

(a) If α ≥ β2, then (A.15) yields that Ac12 is optimal if and only if α ≥ G4.

(b) If α < β2, then (A.15) can be simplified as (2β2 − 1)(β1 − 1) ≤ 0. Thus, Ac21

is optimal.

Since G4 ≥ β2 by (A.13), we have shown that when γ < 1−β1
β2

, Ac12 is optimal if and

only if α ≥ G4.

(2) When γ ≥ β1
1−β2 , then µ21 < µ11 ≤ µ22 < µ12, and hence

T c12 − T c21 =
x1µ22

x1 + µ22 − µ11

− x1µ12

x1 + µ12 − µ21

∝ (µ22 − µ12)x1 + µ11µ12 − µ21µ22

∝ −(2β2 − 1) max{β1, α}+ β1 + β2 − 1. (A.16)

(a) If α ≥ β1, then (A.16) yields that Ac12 is optimal if and only if α ≤ G7.

(b) If α < β1, then (A.16) can be simplified as (2β1 − 1)(1 − β2) > 0. Thus, Ac12

is always optimal.

Since G7 > β1 by (A.14), we have shown that when γ ≥ β1
1−β2 , Ac12 is optimal if and

only if α ≤ G7.

(3) When 1−β1
β2
≤ γ < β1

1−β2 , then µ21 ≤ µ12 and µ22 < µ11, and hence

T c12 − T c21 =
x2µ11

x2 + µ11 − µ22

− x1µ12

x1 + µ12 − µ21

∝ (µ11 − µ12)x1x2 + (µ12 − µ21)µ11x2 + (µ22 − µ11)µ12x1

∝ (β1 − β2γ) max{β1, α}max{β2, α}+
[
β2γ − (1− β1)

]
β1 max{β2, α}
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+
[
(1− β2)γ − β1

]
β2 max{β1, α}. (A.17)

When γ = β1
β2

, (A.17) can be simplified as follows.

(2β1 − 1)β1 max{β2, α} − (2β2 − 1)β1 max{β1, α}

=β1

[
max{(2β1 − 1)β2, (2β1 − 1)α} −max{(2β2 − 1)β1, (2β2 − 1)α}

]
≥β1 min{(2β1 − 1)β2 − (2β2 − 1)β1, (2β1 − 1)α− (2β2 − 1)α}

=β1(β1 − β2) min{1, 2α} ≥ 0,

where we have used Lemma 3.6.1 to obtain the last inequality. Thus, when γ = β1
β2

,

Ac12 is optimal.

When γ 6= β1
β2

,

(i) If α ≥ β1, then by (A.17), T c12 ≥ T c21 if and only if

α(β1 − β2γ) ≥ β1(1− β1 + β2)− β2(1 + β1 − β2)γ.

Therefore, Ac12 is optimal if and only if either

γ >
β1

β2

, α ≤ G5, (A.18)

or

γ <
β1

β2

, α ≥ G5. (A.19)

(ii) β1 > α ≥ β2, equation (A.17) becomes

(2β1 − 1)β1α +
[
(1− β2)γ − β1

]
β1β2.
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Then Ac12 is optimal if and only if

α ≥ G6. (A.20)

(iii) If β2 > α, equation (A.17) becomes

β1β2

[
(1− β2)γ − (1− β1)

]
.

Then Ac12 is optimal if and only if

γ ≥ 1− β1

1− β2

. (A.21)

The above results are not clear since we still need to compare G5, G6 with β1, β2

to get complete and non-overlapping ranges of α for each of the assignments to be

optimal. Let

m4 =
β1(1 + β2 − 2β1)

β2(1− β2)
;

then

G5 − β1 ∝ (
β1

β2

− γ)(m4 − γ), (A.22)

G6 − β1 ∝ m4 − γ, (A.23)

G6 − β2 ∝
1− β1

1− β2

− γ. (A.24)

Moreover, when β1 ≥ β2 >
1
2
, by (A.12) we have

m4 −
1− β1

1− β2

∝ −(β1 − β2)(2β1 − 1) ≤ 0,

m4 −
1− β1

β2

∝ 2β1(1− β1)− (1− β2).

Thus,
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(i) if 2β1(1− β1) > (1− β2), then 1−β1
β2

< m4 ≤ 1−β1
1−β2 ;

(ii) if 2β1(1− β1) ≤ (1− β2), then m4 ≤ 1−β1
β2

.

Combining the above results with (A.12), we can obtain that when 1−β1
β2
≤ γ < β1

1−β2

and γ 6= β1
β2

, we have the following cases:

(3.a) When β1
β2
< γ ≤ β1

1−β2 , by (A.22) and (A.24), G5 > β1, G6 < β2.

i. If α ≥ β1, by (A.18), Ac12 is optimal if and only if β1 ≤ α ≤ G5.

ii. If β1 > α ≥ β2, (A.20) holds since G6 < β2, and Ac12 is always optimal.

iii. If β2 > α, since (A.21) holds, Ac12 is always optimal.

Thus, when β1
β2
< γ ≤ β1

1−β2 , Ac12 is optimal if and only if α ≤ G5.

(3.b) When 1−β1
1−β2 ≤ γ < β1

β2
, by (A.22) and (A.24), G5 < β1, G6 ≤ β2.

i. If α ≥ β1, then (A.19) holds since α ≥ β1 > G5, and Ac12 is always

optimal.

ii. If β1 > α ≥ β2, (A.20) holds since G6 ≤ β2, and Ac12 is always optimal.

iii. If β2 > α, since (A.21) holds, Ac12 is always optimal.

Combining this with the previous analysis for γ = β1
β2

yields that when 1−β1
1−β2 ≤

γ ≤ β1
β2

, Ac12 is always optimal.

(3.c1) When either 2β1(1 − β1) ≤ (1 − β2) and 1−β1
β2
≤ γ < 1−β1

1−β2 , or 2β1(1 − β1) >

(1− β2) and m4 ≤ γ < 1−β1
1−β2 , then by (A.22)-(A.24), G5 ≤ β1, β2 < G6 ≤ β1.

i. If α ≥ β1, (A.19) holds since G5 ≤ β1, and Ac12 is optimal.

ii. If β1 > α ≥ β2, by (A.20), Ac12 is optimal if and only if β1 > α ≥ G6.

iii. If β2 > α, since (A.21) does not hold, Ac12 is not optimal.

Thus, when either 2β1(1 − β1) ≤ (1 − β2) and 1−β1
β2
≤ γ < 1−β1

1−β2 , or 2β1(1 −

β1) > (1− β2) and m4 ≤ γ < 1−β1
1−β2 , Ac12 is optimal if and only if α ≥ G6.

(3.c2) When 2β1(1 − β1) > (1 − β2) and 1−β1
β2
≤ γ < m4, by (A.22) and (A.23),

G5 > β1, G6 > β1.
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i. If α ≥ β1, by (A.19), Ac12 is optimal if and only if α ≥ G5.

ii. If β1 > α ≥ β2, (A.20) does not hold since G6 > β1, and Ac12 is not

optimal.

iii. If β2 > α, since (A.21) does not hold, Ac12 is not optimal.

Thus, when 2β1(1− β1) > (1− β2) and 1−β1
β2
≤ γ < m4, Ac12 is optimal if and

only if α ≥ G5.

We now combine cases (3.c1) and (3.c2). Note that

G5 −G6 ∝ (γβ2 − β1)
[
γ2β2

2(1− β2) + γβ2(2β2
1 − 2β1β2 + β2 − 1)

+ β1(1− β1)(1 + β2 − 2β1)
]

= (γβ2 − β1)
[
γβ2 − (1− β1)

][
γβ2(1− β2)− β1(1 + β2 − 2β1)

]
∝ (γ − β1

β2

)(γ − 1− β1

β2

)(γ −m4). (A.25)

Thus, when 1−β1
β2
≤ γ < 1−β1

1−β2 , G5 −G6 ∝ m4 − γ. Moreover, when either 2β1(1− β1) ≤

(1 − β2) and 1−β1
β2
≤ γ < 1−β1

1−β2 , or 2β1(1 − β1) > (1 − β2) and m4 ≤ γ < 1−β1
1−β2 , we have

G6 ≥ G5; and when 2β1(1 − β1) > (1 − β2) and 1−β1
β2
≤ γ < m4, we have G6 ≤ G5.

Therefore, we can combine cases (3.c1) and (3.c2) as:

(3.c) when 1−β1
β2
≤ γ < 1−β1

1−β2 , Ac12 is optimal if and only if α ≥ max{G5, G6}.

We now combine cases (1) and (2) with cases (3.c) and (3.a), respectively. Similar to

the way we obtain (A.25), we have

G4 −G5 ∝ −(γ − β1

β2

)(γ − 1− β1

β2

)(β1 − β2), (A.26)

G4 −G6 ∝ γ − 1− β1

β2

, (A.27)

G5 −G7 ∝ −(γ − β1

β2

)(γ − β1

1− β2

)(β1 − β2). (A.28)
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When γ < 1−β1
β2

, (A.26) yields G4 < G5. On the other hand, when 1−β1
β2
≤ γ < 1−β1

1−β2 ,

(A.26) and (A.27) yield G4 ≥ G5, G4 ≥ G6. Thus, we can combine cases (1) and (3.c)

as described in the first case of the proposition. And by (A.28), when γ > β1
β2

, G5 ≥

G7 ⇔ γ ≤ β1
1−β2 , and we can merge cases (2) and (3.a) as described in the last case of the

proposition.

A.3 Proofs for Section 3.5 with Collaborative Servers

We provide the proofs of Propositions 3.5.2, 3.5.3, and 3.5.5 in Appendices A.3.1, A.3.2,

and A.3.3, respectively.

A.3.1 Proof of Proposition 3.5.2

There are two available collaborative task assignment policies, Ac12, A
c
21, depending on the

primary assignment. Thus, for collaborative task assignment to be no worse than non-

collaboration, the throughput of the optimal collaborative task assignment needs to be no

lower than the throughput of non-collaboration, i.e., max{T c12, T
c
21} ≥ T nc. Note that

T c12 − T nc ∝ (µ11 + µ12)(µ21 + µ22)x1x2

B1+B2+1∑
k=0

µk11µ
B1+B2+1−k
22

−
[
µ11µ12(µ21 + µ22) + µ21µ22(µ11 + µ12)

]
×(

x1x2

B1+B2∑
k=0

µk11µ
B1+B2−k
22 + x1µ

B1+B2+1
11 + x2µ

B1+B2+1
22

)
= x1x2(µ11 + µ12)(µ21 + µ22)

(
µB1+B2+1

11 + µB1+B2+1
22 + µ11µ22

B1+B2−1∑
k=0

µk11µ
B1+B2−1−k
22

)
− x1x2µ11µ12(µ21 + µ22)

(
µB1+B2

11 + µ22

B1+B2−1∑
k=0

µk11µ
B1+B2−1−k
22

)
− x1x2µ21µ22(µ11 + µ12)

(
µB1+B2

22 + µ11

B1+B2−1∑
k=0

µk11µ
B1+B2−1−k
22

)
− h1

(
x1µ

B1+B2+1
11 + x2µ

B1+B2+1
22

)
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= x1x2

[
µB1+B2+2

11 (µ21 + µ22) + µB1+B2+2
22 (µ11 + µ12)

+ (µ11µ22 − µ21µ12)µ11µ22

B1+B2−1∑
k=0

µk11µ
B1+B2−1−k
22

]
− h1

(
x1µ

B1+B2+1
11 + x2µ

B1+B2+1
22

)
.

Similarly,

T c21 − T nc ∝ x1x2

[
µB1+B2+2

21 (µ11 + µ12) + µB1+B2+2
12 (µ21 + µ22)

+ (µ21µ12 − µ11µ22)µ21µ12

B1+B2−1∑
k=0

µk21µ
B1+B2−1−k
12

]
− h1

(
x1µ

B1+B2+1
21 + x2µ

B1+B2+1
12

)
.

The result follows.

A.3.2 Proof of Proposition 3.5.3

When α ≥ 1 + |β1 − β2| ≥ 1 ≥ h (see equation (3.19)), teamwork with task partitioning

is no worse than non-collaboration by Proposition 3.4.3, and is no worse than collaborative

task assignment by Proposition 3.5.1.

When α < 1 + |β1 − β2|, collaborative task assignment is better than teamwork, thus

we only need to compare collaborative task assignment and non-collaboration. Note that

when α ≤ α0, Di(α) = Di(α0) are constant for i = 1, 2. Moreover, Di(α) ≥ Di(α0)

always holds for i = 1, 2. Thus, if max{D1(α0), D2(α0)} ≥ 1, then max{D1, D2} ≥ 1,

and by Proposition 3.5.2, collaborative task assignment is optimal.

Note that D1(α) and D2(α) are first constant and then strictly increasing in α with

limα→∞D1(α) = limα→∞D2(α) =∞. Moreover, when α ≥ max{β1, 1−β1, β2, 1−β2},

then x1 = αΣ1, x2 = αΣ2, and D1(α) and D2(α) are linearly increasing in α. Thus, if

max{D1(α0), D2(α0)} < 1, we can find a unique α∗ such that max{D1(α∗), D2(α∗)} = 1.

It then follows from Proposition 3.5.2 that if α∗ ≤ 1 + |β1 − β2|, then non-collaboration is
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optimal for α < α∗ and collaborative task assignment is best for α∗ ≤ α < 1 + |β1 − β2|.

We conclude the proof by proving that max{D1(h), D2(h)} ≥ 1, which implies that α∗ ≤

h ≤ 1 + |β1 − β2|.

Since x1 ≥ αΣ1, x2 ≥ αΣ2, and D1(α) and D2(α) are non-decreasing in α, we can

obtain that:

D1(h) ≥
[
µB1+B2+2

11 (µ21 + µ22) + µB1+B2+2
22 (µ11 + µ12)

+ (µ11µ22 − µ21µ12)µ11µ22

B1+B2−1∑
k=0

µk11µ
B1+B2−1−k
22

]
× hΣ1Σ2

h1(µB1+B2+1
11 Σ1 + µB1+B2+1

22 Σ2)
≡ D1l(h),

D2(h) ≥
[
µB1+B2+2

21 (µ11 + µ12) + µB1+B2+2
12 (µ21 + µ22)

+ (µ21µ12 − µ11µ22)µ21µ12

B1+B2−1∑
k=0

µk21µ
B1+B2−1−k
12

]
× hΣ1Σ2

h1(µB1+B2+1
21 Σ1 + µB1+B2+1

12 Σ2)
≡ D2l(h).

By equation (3.18), we can obtain that

hΣ1Σ2

h1

=
Σ1 + Σ2

h2

=
Σ1 + Σ2

(µ11 + µ12)(µ21 + µ22)
.
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Using this equation, we have

D1l(h)− 1 ∝
[
µB1+B2+2

11 (µ21 + µ22) + µB1+B2+2
22 (µ11 + µ12)

]
(Σ1 + Σ2)

+ (µ11µ22 − µ21µ12)µ11µ22

B1+B2−1∑
k=0

µk11µ
B1+B2−1−k
22 (Σ1 + Σ2)

− (µ11 + µ12)(µ21 + µ22)(µB1+B2+1
11 Σ1 + µB1+B2+1

22 Σ2)

= µB1+B2+1
11 (µ21 + µ22)

[
µ11(Σ1 + Σ2)− (µ11 + µ12)Σ1

]
+ µB1+B2+1

22 (µ11 + µ12)
[
µ22(Σ1 + Σ2)− (µ21 + µ22)Σ2

]
+ (µ11µ22 − µ21µ12)(Σ1 + Σ2)

B1+B2−1∑
k=0

µk+1
11 µB1+B2−k

22

= (µ11µ22 − µ21µ12)×[
µB1+B2+1

11 (µ21 + µ22) + µB1+B2+1
22 (µ11 + µ12) + (Σ1 + Σ2)

B1+B2−1∑
k=0

µk+1
11 µB1+B2−k

22

]
.

Similarly, we can obtain that

D2l(h)− 1 ∝ (µ21µ12 − µ11µ22)×[
µB1+B2+1

21 (µ11 + µ12) + µB1+B2+1
12 (µ21 + µ22) + (Σ1 + Σ2)

B1+B2−1∑
k=0

µk+1
21 µB1+B2−k

12

]
.

Thus, at least one ofD1l(h) andD2l(h) is no less than 1, which yields that max{D1(h), D2(h)} ≥

1. This completes the proof.

A.3.3 Proof of Proposition 3.5.5

For (1), the result follows from the proof of Proposition 3.4.1.

For (3), we know from (1) and Section 3.4.3 that teamwork with and without task

partitioning and non-collaboration are equivalent. The result now follows from the proof of

Proposition 3.5.1 and the fact that collaborative task assignment contains static and flexible

task assignment as special cases.
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For (2), note that, when β1 = β2, h = 1, and D1, D2 can be transformed as follows:

D1 =
µB1+B2+1

11 Σ1 + µB1+B2+1
22 Σ2

Σ1Σ2

× x1x2

µB1+B2+1
11 x1 + µB1+B2+1

22 x2

; (A.29)

D2 =
µB1+B2+1

21 Σ1 + µB1+B2+1
12 Σ2

Σ1Σ2

× x1x2

µB1+B2+1
21 x1 + µB1+B2+1

12 x2

.

Note that, the second part of D1 is non-decreasing with respect to x1, x2.

When α > 1, we obtain the result directly from Propositions 3.4.2 and 3.5.1. When

α < 1, we have x1 ≤ Σ1, x2 ≤ Σ2. Thus,

x1x2

µB1+B2+1
11 x1 + µB1+B2+1

22 x2

≤ Σ1Σ2

µB1+B2+1
11 Σ1 + µB1+B2+1

22 Σ2

.

Combining this with equation (A.29) yield that, D1 ≤ 1 when α < 1. Similarly, we can

obtain D2 ≤ 1. Thus, max{D1, D2} ≤ 1. By Propositions 3.5.1 and 3.5.2, when α < 1,

non-collaboration is optimal.

A.4 Comparisons of Server Coordination Methods

We compare static and flexible task assignments with teamwork with task partitioning and

non-collaboration in Appendices A.4.1 and A.4.2, respectively.

A.4.1 Comparison of Static Task Assignment and Other Server Coordination Methods

In this section, we compare static task assignment with teamwork with task partitioning and

non-collaboration by calculating the differences of their throughputs. Some of the proofs

are omitted to conserve space.

First, we compare static task assignment and teamwork with task partitioning. Intu-

itively, servers work separately in static task assignment but always together in teamwork.

Thus we expect teamwork to be better when the server synergy α is high. The following

proposition verifies this intuition.
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Proposition A.4.1. Let

D6 ≡
h2µ21µ12

∑B1+B2+1
k=0 µk21µ

B1+B2+1−k
12

h1

∑B1+B2+2
k=0 µk21µ

B1+B2+2−k
12

.

Then, teamwork with task partitioning is no worse than static task assignment if and only

if

α ≥ max{D3, D6} × h.

SinceD3×h,D6×h can be either greater or less than 1, teamwork with task partitioning

can be either better or worse than static task assignment when α = 1. To see this, suppose

that B1 = B2 = 0 and µ11 = kµ21, µ22 = kµ12 for some k > 0. Then teamwork with task

partitioning is no worse than static task assignment if and only if µ21
µ12

+ µ12
µ21
≥ max{k −

1, 1
k
− 1}. Therefore, when k = 1, teamwork with task partitioning is better; when k is

large or close to zero, static task assignment is better. This example shows that teamwork

with task partitioning is desirable when server collaboration is efficient (i.e., α large) and

the servers are not heavily specialized (µ11
µ21

and µ22
µ12

are moderate); otherwise, static task

assignment is more preferable.

Next, we compare non-collaboration and static task assignment.

Proposition A.4.2. Static task assignment is no worse than non-collaboration if and only

if

max{D3, D6} ≥ 1.

Note that D3, D6 can be either greater or less than 1. To see this, if B1 = B2 = 0,

µ11 = kµ21, µ22 = kµ12 for some k ∈ R, then static task assignment is better than non-

collaboration if µ21
µ12

+ µ12
µ21
≤ max{k2 − k, 1

k2
− 1

k
}. Thus, when k = 1, non-collaboration

is better; when k is large or close to zero, static task assignment is better. Again static task

assignment is preferable when the servers are heavily specialized.

The following proposition concludes our comparisons of static task assignment with

180



teamwork with task partitioning and non-collaboration.

Proposition A.4.3. 1. When α < max{1, D3, D6} × h,

(a) If max{D3, D6} < 1, non-collaboration is optimal;

(b) If max{D3, D6} ≥ 1, static task assignment is optimal.

2. When α ≥ max{1, D3, D6} × h, teamwork with task partitioning is optimal.

Proof. First, remember that by Proposition 3.4.3, teamwork with task partitioning is no

worse than non-collaboration if and only if α ≥ h. And by Proposition A.4.1, team-

work with task partitioning is no worse than static task assignment if and only if α ≥

max{D3, D6}×h. Thus, when α ≥ max{1, D3, D6}×h, teamwork with task partitioning

is the best method.

When α < max{1, D3, D6} × h, combining Propositions 3.4.3, A.4.1, and A.4.2 yield

the desired results.

The intuition for Proposition A.4.3 is similar to that for the comparison of collabora-

tive task assignment and other server coordination methods in Section 3.5.1. The value

of max{D3, D6} provides information on server specialty. When the synergy level is not

high, non-collaboration is the best when servers are not highly specialized; otherwise static

task assignment is the best because it takes advantage of server specialty and avoids us-

ing servers with extremely low service rates at some subtask. When the synergy level is

high, teamwork with task partitioning is the best since it takes advantage of efficient server

collaboration.

A.4.2 Comparison of Flexible Task Assignment and Other Server Coordination Methods

In this section, we compare flexible task assignment with teamwork with task partitioning

and non-collaboration. Without loss of generality, assume µ11 ≥ µ21. The proofs are

omitted to conserve space.

First, we compare flexible task assignment and teamwork with task partitioning.
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Proposition A.4.4. If µ11 ≥ µ21, then teamwork with task partitioning is no worse than

flexible task assignment if and only if

α ≥ max{D3, D4, D5} × h.

Note that D3 × h,D4 × h,D5 × h can be either greater or less than 1. Thus, when

α = 1, teamwork with task partitioning can be either better or worse than flexible task

assignment. For example, when B1 = B2 = 0, if µ11 = 2, µ21 = µ12 = 1, µ22 = 1
16

,

so that the service rate of server 2 at station 2 is significantly lower than the other service

rates, flexible task assignment is better since it can avoid this low service rate by working

separately. By contrast, if µ11 = 2, µ21 = µ12 = 1, µ22 = 1
2
, so that the gap between the

best and the worst service rates is not very large, then teamwork with task partitioning is

better since it takes advantage of additive combined service rates.

The comparison of flexible task assignment and non-collaboration has been addressed

in Proposition 3.5.4, so we do not repeat it here. The following proposition concludes our

comparisons of flexible task assignment with teamwork with task partitioning and non-

collaboration. The proof of the proposition is similar to Proposition A.4.3 and is omitted

to conserve space.

Proposition A.4.5. If we label the servers such that µ11 ≥ µ21, then

1. When α < max{1, D3, D4, D5} × h,

(a) If max{D3, D4, D5} < 1, non-collaboration is optimal;

(b) If max{D3, D4, D5} ≥ 1, flexible task assignment is optimal.

2. When α ≥ max{1, D3, D4, D5} × h, teamwork with task partitioning is optimal.

Intuitively, servers only collaborate under teamwork with task partitioning. Thus when

the synergy level is high, we prefer teamwork with task partitioning since it takes advantage

of efficient server collaboration. When the synergy level is not high, although the exact
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values of the thresholds are complex, the example that follows Proposition 3.5.4 suggests

that flexible task assignment is better when the servers are highly specialized, while non-

collaboration is better otherwise.

A.5 Teamwork Approaches

In this section, we provide model descriptions of teamwork with and without task parti-

tioning. Our analysis in this section focuses on a single station and can be applied to any

station in a system with multiple stations.

For teamwork without task partitioning, the servers work as a team on a combined task.

We start by determining the service rates of the two servers at the station. Recall that the

service requirement of subtask j is Sj with E[Sj] = 1, for j = 1, 2. Therefore, the time it

takes server i to finish both subtasks is

S1

µi1
+
S2

µi2
,

for i = 1, 2. Then, the service rate of server iworking on the combined task is the reciprocal

of the average service time:

1
E[S1]
µi1

+ E[S2]
µi2

=
1

1
µi1

+ 1
µi2

,

for i = 1, 2. Thus, the combined average service rate of teamwork without task partitioning

for the combined task is

α
( 1

1
µ11

+ 1
µ12

+
1

1
µ21

+ 1
µ22

)
.

Hence, the actual service time to finish the combined task of teamwork without task parti-

tioning approach is

St =

S1+S2

E[S1+S2]

α
(

1
1
µ11

+ 1
µ12

+ 1
1
µ21

+ 1
µ22

) =
S1 + S2

2α
(

1
1
µ11

+ 1
µ12

+ 1
1
µ21

+ 1
µ22

) ,
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where we divide S1 + S2 by E[S1 + S2] to ensure that the total service requirement for the

combined task has mean one. Observe that T t = 1
E[St]

, as desired.

For teamwork with task partitioning, recall that the combined service rate of the two

servers on subtask j is α(µ1j + µ2j) for j = 1, 2. Thus, the time it takes teamwork with

task partitioning to finish subtask j is

Sj
α(µ1j + µ2j)

,

for j = 1, 2. And the total service time of teamwork with task partitioning to finish both

subtasks is

Stp =
S1

α(µ11 + µ21)
+

S2

α(µ12 + µ22)
.

Observe that T tp = 1
E[Stp]

, as desired.

Note that, when the servers are generalists, that is µij = µiγj for i, j = 1, 2, St and Stp

can be simplified as follows:

St =
1

α(µ1 + µ2)

(S1 + S2

2

)( 1

γ1

+
1

γ2

)
,

Stp =
1

α(µ1 + µ2)

(S1

γ1

+
S2

γ2

)
.

Thus, E[St] = E[Stp] when the servers are generalists. Moreover, when γ1 = γ2 (i.e.,

the task difficulties of both subtasks are the same), then St = Stp, and the two teamwork

approaches obtain the same results. Intuitively, when the servers are generalists, since the

servers always work together as a team in both teamwork approaches, the effect caused by

the individual server abilities (i.e., µi) is eliminated. Thus, when the task difficulties are the

same, the two teamwork approaches are equivalent.

By calculation, we can obtain that, if V ar(Si) = σ2
i , for i = 1, 2, then

V ar(St)− V ar(Stp) = − 1

[α(µ1 + µ2)]2
( 1

γ1

− 1

γ2

)[
σ2

1(
3

4γ1

+
1

4γ2

)− σ2
2(

1

4γ1

+
3

4γ2

)
]
.
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Thus, when σ2
1 = σ2

2 = σ2 (e.g., when S1, S2 are exponentially distributed with rates

ξ1 = ξ2 = 1, then σ2
1 = σ2

2 = 1), we obtain

V ar(St)− V ar(Stp) = − σ2

2[α(µ1 + µ2)]2

( 1

γ1

− 1

γ2

)2

≤ 0.

That is, when the servers are generalists and the service requirements of the two subtasks

have the same variance, then the variance of teamwork (without task partitioning) is never

larger than that of teamwork with task partitioning. Moreover, the variance of teamwork

is strictly lower than that of teamwork with task partitioning when the task difficulties are

different.
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APPENDIX B

APPENDIX FOR CHAPTER 5

Proof of Lemma 5.3.1. We label the jobs at each station such that at station j, job i is the

ith good job arriving at station j, for j ∈ {1, . . . , N}, i ≥ 1. For j ∈ {1, . . . , N}, i ≥ 1,

let φj(i) be the service requirement of ith completed job at station j. And for π ∈ Π, j ∈

{1, . . . , N}, i ≥ 1, let Cπ
j (i) be the time of ith service completion at station j, Dπ

j (i) be the

departure time of ith job from station j, Kπ
j (i) be the labels of the jobs that are completed

with no defects at station j, and Gπ
j (i) be the departure time of ith good job (with no

defects) at station j. Moreover, let pπj,i be the defect probability of the last server that

completes service of ith job at station j under policy π ∈ Π, for j ∈ {1, . . . , N}, i ≥ 1.

Then pπ
′
j,i = pπj,i for j ∈ {1, . . . , N}, i ≥ 1 by the definition of policy π′. Let µπj,i be

the average service rate of the ith job at station j under policy π, so that φj(i)

µπj,i
is the time

spent by ith job at station j under policy π. Specifically, let mπ
j,i be the number of server

reassignments that occur during the time the ith job spends at station j when the policy π

is employed, let φj(i,m),m ∈ {1, . . . ,mπ
j,i + 1} denote the service requirement fulfilled

between the (m− 1)th and mth server reassignments, and let µπj,i(m),m ∈ {1, . . . ,mπ
j,i +

1} denote the service rate of the server assigned to station j for the time between the

(m − 1)th and mth server reassignments. Then, φj(i) =
∑mπj,i+1

m=1 φj(i,m) and φj(i)

µπj,i
=∑mπj,i+1

m=1
φj(i,m)

µπj,i(m)
. Since policy π′ always uses the server with highest service rate at each

station, we can obtain that µπj,i ≤ µπ
′
j,i and φj(i)

µπj,i
≥ φj(i)

µπ
′
j,i

for j ∈ {1, . . . , N}, i ≥ 1.

We prove this lemma by proving that Dπ′
j (i) ≤ Dπ

j (i), Gπ′
j (i) ≤ Gπ

j (i) for j ∈

{1, . . . , N}, i ≥ 1. Without loss of generality, assume the system is initially empty. For

any π ∈ Π, we generate the sample path of π according to the following algorithm. Note

that, ij is tracking the number of successful departures from station j, and lj is tracking the
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total number of departures from station j, for j ∈ {1, . . . , N}.
Algorithm 1: Sample Path Generator of π ∈ Π

Input: N, Bj , pπj,i,µ
π
j,i, for j ∈ {1, . . . , N}, i ≥ 1

1 Initialize: ij = lj = 0, for j = 1, . . . , N ; j = 1; Gπ
j (i) = Dπ

j (i) = 0 for

j /∈ {1, . . . , N}, i ≤ 0.

2 Check,

(I) If j ≥ 2 and lj + 1 > ij−1, then back to the top of step 2.

(II) Otherwise, lj = lj + 1 and go to step 3.

3 Compute Cπ
j (lj) = max{Gπ

j−1(lj) +
φj(lj)

µπj,lj
, Dπ

j (lj − 1) +
φj(lj)

µπj,lj
}.

Generate uj,lj ∼ U(0, 1).

Check,

(I) If uj,lj > pπj,lj , then

ij = ij + 1,

Kπ
j (ij) = ln,

Dπ
j (lj) = max{Cπ

j (lj), D
π
j+1(ij −Bj − 1)},

Gπ
j (ij) = Dπ

j (lj),

n = max{N, j + 1}, back to step 2.

(II) Otherwise,

Dπ
j (lj) = Cπ

j (lj), back to step 2.

If µπj,i = µπ
′
j,i = µj,j for j ∈ {1, . . . , N}, i ≥ 1, then policy π = π′, and the lemma

is obvious. Otherwise, consider two sample paths ω, ω′, where we generate ω and ω′

according to Algorithm 1 using policy π and π′, respectively. Since pπ′j,i = pπj,i, we have

Kπ′
j,i = Kπ

j,i for j ∈ {1, . . . , N}, i ≥ 1. Let l′j be the label of the job with the smallest

index at the smallest station such that µπj,lj < µj,j . The existence of l′j is guaranteed since

there exists j ∈ {1, . . . , N}, i ≥ 1 such that µπj,i 6= µπ
′
j,i. Let i′j be the corresponding label

of successful departures from station j. Then, Gπ′
j−1(l′j) = Gπ

j−1(l′j), Dπ′
j−1(l′j) = Dπ

j−1(l′j).

Note that, Algorithm 1 gives priority to the jobs at the later station, that is, it generates the

departure times of the jobs at the later station first as long as this job has departured from
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the previous station. Thus, Dπ′
j+1(i′j−Bj−1) = Dπ

j+1(i′j−Bj−1). Then, since µπj,lj < µj,j

, we have Cπ′
j (l′j) < Cπ

j (l′j), and Dπ′
j (l′j) < Dπ

j (l′j), G
π′
j (i′j) ≤ Gπ

j (i′j). Proceeding in this

manner, we can obtainDπ′
j (i) ≤ Dπ

j (i), andGπ
j (i) ≤ Gπ

j (i) for j ∈ {1, . . . , N}, i ≥ 1.

Proof of Lemma 5.3.2. Next, we prove π∗ is better than π′ by proving the number of jobs

waiting in front of each station under policy π∗ is always higher than under policy π. To

better illustrate the status of each station in the system, we reformulate the system as a

continuous-time Markov chain using a different definition as follows.

For all π ∈ Π, and t ≥ 0, let Y π(t) = (Y π
1 (t), . . . , Y π

2N−1(t)), where Y π
2j(t) ∈

{0, 1, . . . , Bj} denotes the number of jobs in the buffer between station j and j + 1 at

time t under policy π for j = 1, . . . , N − 1, and Y π
2j−1(t) ∈ {0, 1, 2} denotes the status of

station j at time t under the policy π for j = 1, . . . , N , where 0, 1, and 2 refer to the starved

status, operating status, and blocked status, respectively. Then, Y π(t) is a continuous time

Markov chain with state space S ′. Let µπj (s) and pπj (s) be the service rate and defect prob-

ability of the server at station j ∈ {1, . . . , N} in state s ∈ S ′ under policy π ∈ Π. Then,

µπ
∗
j (s) = µπ

′
j (s) = µjj , and pjj = pπ

∗
j (s) ≤ pπ

′
j (s), for j ∈ {1, . . . , N}, s ∈ S ′. We will

prove that Y π∗(t) ≥ Y π′(t), for t ≥ 0.

Consider two sample paths ω∗, ω′, where we use policy π∗ and π′ respectively. Since

µπ
∗
j (s) = µπ

′
j (s) for all s ∈ S ′, and exponential distribution is memoryless, we can couple

the two sample paths by using common random numbers to generate the service times.

Specifically, let tn, n ≥ 0, be the time of the nth event (i.e. service completion at some

station with or without defects) that happens in any of the two sample paths. Let t0 = 0.

For n ≥ 0, let sπn ∈ S ′ denote the state of the system at time tn under policy π, and let

Iπn ⊆ {1, . . . , N} denote the set of working stations under policy π for π ∈ {π′, π∗}, and

we generate new service times {Sn,j} from exponential distribution with rate µj,j for all

working station j ∈ Iπ
′

n ∪ Iπ
∗

n . Then, tn+1 = tn + min{Sn,j : ∀j ∈ Iπ
′

n ∪ Iπ
∗

n , }, and

the station with the smallest service time will have a service completion at tn+1. Moreover,

right before the time of the next event at some station j0 at time tn+1, we generate un,j0 from
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uniform distribution with range (0, 1) as the indicator of either the job is defective or not.

If j0 ∈ Iπ
∗

n , un,j0 ≥ (<)pj0,j0 , then at tn+1, there would be a successful (defective) service

completion at station j0 in ω∗; if j0 ∈ Iπ
′

n , un,j0 ≥ (<)pπ
′
j0

(sπ
′
n ), then at tn+1, there would be

a successful (defective) service completion at station j0 in ω′. Since pj0,j0 ≤ pπ
′
j0

(sπ
′
n ), if the

service completion is defective under policy π∗, it must also be defective under policy π′.

We prove this lemma by induction. Since the system is initially empty, Y π∗(0) =

Y π′(0) = {0, . . . , 0}. Assume that Y π∗(t) ≥ Y π′(t) for t ∈ [0, tn), and the next event is

service completion at station j1. Then, under policy π∗, for 1 < j1 < N ,

1. When j1 ∈ Iπ
∗

n , and the completed job is not defective,

(a) if the buffer right after station j1 is full, then Y π∗(tn) = Y π∗(tn−) + e2j1−1;

(b) if the buffer right after station j1 is not full, station j1 + 1 is not starved, and

station j1 − 1 is blocked, then Y π∗(tn) = Y π∗(tn−)− e2j1−3 + e2j1;

(c) if station j1 + 1 is starved, and station j1 − 1 is blocked, then Y π∗(tn) =

Y π∗(tn−)− e2j1−3 + e2j1+1;

(d) if the buffer right after station j1 is not full, station j1 + 1 is not starved, sta-

tion j1 − 1 is not blocked, and the buffer right before station j1 is empty, then

Y π∗(tn) = Y π∗(tn−)− e2j1−1 + e2j1;

(e) if station j1 + 1 is starved, station j1 − 1 is not blocked, and the buffer right

before station j1 is empty, then Y π∗(tn) = Y π∗(tn−)− e2j1−1 + e2j1+1;

(f) if the buffer right after station j1 is not full, station j1 + 1 is not starved, station

j1 − 1 is not blocked, and the buffer right before station j1 is not empty, then

Y π∗(tn) = Y π∗(tn−)− e2j1−2 + e2j1;

(g) if station j1 + 1 is starved, station j1 − 1 is not blocked, and the buffer right

before station j1 is not empty, then Y π∗(tn) = Y π∗(tn−)− e2j1−2 + e2j1+1.

2. When j1 ∈ Iπ
∗

n , and the completed job is defective,
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(a) if station j1 − 1 is blocked, then Y π∗(tn) = Y π∗(tn−)− e2j1−3;

(b) if station j1 − 1 is not blocked, and the buffer right before station j1 is empty,

then Y π∗(tn) = Y π∗(tn−)− e2j1−1;

(c) if station j1−1 is not blocked, and the buffer right before station j1 is not empty,

then Y π∗(tn) = Y π∗(tn−)− e2j1−2.

3. When j1 /∈ Iπ
∗

n , then station j1 is blocked, Y π∗(tn) = Y π∗(tn−).

For j1 = N , the result of Y π∗(tn) is the same as the three sub-cases under case 2.

For j1 = 1, when 1 ∈ Iπ∗n , and the completed job is not defective,

1. if the buffer right after station 1 is full, Y π∗(tn) = Y π∗(tn−) + e1;

2. if the buffer right after station 1 is not full, station 2 is not starved, Y π∗(tn) =

Y π∗(tn−) + e2;

3. if station 2 is starved, Y π∗(tn) = Y π∗(tn−) + e3;

when station 1 is blocked, or the completed job is defective under π∗, then Y π∗(tn) =

Y π∗(tn−). The possible transitions of Y π′(t) at tn can be listed similar to the transitions

of Y π∗(t) as the cases above, except that Y π′(tn) might be unchanged because of station j1

being starved. By comparing the state of Y π′(t) and Y π∗(t) after the transition at tn for all

possible states of Y π′(t) and Y π∗(t) such that Y π∗(tn−) ≥ Y π′(tn−), we can conclude that

Y π∗(t) ≥ Y π′(t) for t ∈ [tn, tn+1). Thus, by induction, we can obtain that Y π∗(t) ≥ Y π′(t),

for t ≥ 0. Since the service rates of all job at all stations are equal in π∗ and π′, π∗ has

higher successful rate than π′ at the last station, it follows that π′ is better than π.

Alternative Proof of Corollary 5.4.5. For simplicity, when N = 2, let B1 = B. The ex-

istence of an optimal Markovian stationary deterministic policy has been discussed in the

proof of Theorem 5.4.1, we omit it for brevity. We again use Policy Iteration to show

this proposition. Note that, the optimal policy we prove here is a special case of δk1 with
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k = B + 2. Thus, we use the notations in the proof of Theorem 5.4.1 but simplify the

expressions by letting s∗ = B + 2. Choose the initial decision δ0 = δB+2
1 , then

r(s, δ0(s)) =


0 for s = 0,

µ̂22 for 1 ≤ s ≤ B + 2.

p(s′|s, δ0(s)) =



µ̂11 for 0 ≤ s ≤ B + 1, s′ = s+ 1,

µ22 for 1 ≤ s ≤ B + 2, s′ = s− 1,

1− µ̂11 for s = s′ = 0,

1− (µ̂11 + µ22) for 1 ≤ s ≤ B + 1, s = s′,

1− µ22 for s = s′ = B + 2,

0 otherwise.

Since the policy yields an irreducible Markov chain, we can solve the following equation

to find a scalar g0 and a vector h0:

rδ0 − g0e+ (Pδ0 − I)h0 = 0, (B.1)

such that h0(0) = 0, where e is the unit vector and I is the identity matrix.

Then,

g0 =
µ̂22

∑B+1
j=0 µ̂

j+1
11 µB+1−j

22∑B+2
j=0 µ̂

j
11µ

B+2−j
22

=
Θ1(B + 2)

Θ2(B + 2)
.

For ∀s ∈ S,

h0(s) =
g0

µ̂s11

s−1∑
j=0

(j + 1)µ̂j11µ
s−1−j
22 − µ̂22

µ̂s−1
11

s−2∑
j=0

(j + 1)µ̂j11µ
s−2−j
22 .
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For the next step of the policy iteration algorithm, we choose

δ1(s) ∈ arg max
a∈As

{
r(s, a) +

∑
j∈S

p(j|s, a)h0(j)

}
,∀s ∈ S. (B.2)

We now show that δ0(s) = δ1(s) for all s ∈ S. In other words, the following inequality

holds for all s ∈ S, a ∈ As \ {δ0(s)}:

ε(s, a) = r(s, a) +
∑
j∈S

p(j|s, a)h0(j)− (r(s, δ0(s)) +
∑
j∈S

p(j|s, δ0(s))h0(j)) ≤ 0. (B.3)

For all s ∈ S, δ0(s) = a12. Thus, for 0 ≤ s < B + 2, we will specify ε(s, a) for actions

{a10, a20, a21}; for s = B + 2, we will specify ε(s, a) for action a21.

For s = 0, station 2 is starved and ai1 = ai0 for i = 1, 2, thus

ε(0, a21) = ε(0, a20) =
1

µ̂11

(µ̂21 − µ̂11)g0 ≤ 0.

ε(0, a10) = 0.

For s = 1, . . . , B + 1,

ε(0, a10) = − µ̂22

Θ2(B + 2)
µ̂B+3−s

11

s−1∑
j=0

µ̂j11µ
s−1−j
22 ≤ 0.

ε(0, a20) = − µ̂22

Θ2(B + 2)
(µ̂11 − µ̂21)

B+1−s∑
j=0

µ̂j11µ
B+1−j
22 + ε(0, a10) ≤ 0.
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For s = 1, . . . , B + 2,

ε(s, a21) =− 1

Θ2(B + 2)

[
(µ̂22 − µ̂12)

B+1∑
j=B+2−s

µ̂j+1
11 µB+1−j

22

+ (p12 − p22)µ12

B+2−s∑
j=0

µ̂j11µ
B+2−j
22

+ (µ̂11 − µ̂21)µ̂22

B+1−s∑
j=0

µ̂j11µ
B+1−j
22

]
≤ 0

(B.4)

This proves that δ0(s) = δ1(s) for all s ∈ S. By Theorem 9.5.1 of Puterman [41], this

proves that the policy that always assign server j to station j for j ∈ {1, 2} is optimal.
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[15] N. T. Argon and S. Andradóttir, “Partial pooling in tandem lines with cooperation
and blocking,” Queueing Systems, vol. 52, no. 1, pp. 5–30, 2006.

[16] N. T. Argon and Y.-C. Tsai, “Dynamic control of a flexible server in an assembly-
type queue with setup costs,” Queueing Systems, vol. 70, no. 3, pp. 233–268, 2012.

[17] I. Atencia and P. Moreno, “The discrete-time geo/geo/1 queue with negative cus-
tomers and disasters,” Computers & Operations Research, vol. 31, no. 9, pp. 1537–
1548, 2004.

[18] J. J. Bartholdi III and D. D. Eisenstein, “A production line that balances itself,”
Operations Research, vol. 44, no. 1, pp. 21–34, 1996.

[19] J. A. Buzacott, “Commonalities in reengineered business processes: Models and is-
sues,” Manage. Sci., vol. 42, no. 5, pp. 768–782, 1996.

[20] P. Cao and J. Xie, “Optimal control of a multiclass queueing system when customers
can change types,” Queueing Systems, vol. 82, no. 3-4, pp. 285–313, 2016.

[21] C Courcoubetis and M. Reiman, “Optimal control of a queueing system with si-
multaneous service requirements,” IEEE transactions on automatic control, vol. 32,
no. 8, pp. 717–727, 1987.

[22] D. G. Down, G. Koole, and M. E. Lewis, “Dynamic control of a single-server system
with abandonments,” Queueing Systems, vol. 67, no. 1, pp. 63–90, 2011.

[23] A. Economou and S. Kapodistria, “Synchronized abandonments in a single server
unreliable queue,” European Journal of Operational Research, vol. 203, no. 1, pp. 143–
155, 2010.

[24] M Elshafei, M Khan, and S. Duffuaa, “Repeat inspection planning using dynamic
programming,” International journal of production research, vol. 44, no. 2, pp. 257–
270, 2006.

195



[25] T. M. Farrar, “Optimal use of an extra server in a two station tandem queueing net-
work,” IEEE Transactions on Automatic Control, vol. 38, no. 8, pp. 1296–1299,
1993.

[26] S. D. P. Flapper, J. C. Fransoo, R. A. Broekmeulen, and K. Inderfurth, “Planning
and control of rework in the process industries: A review,” Production Planning &
Control, vol. 13, no. 1, pp. 26–34, 2002.

[27] I. Gurvich and J. A. Van Mieghem, “Collaboration and multitasking in networks: Pri-
oritization and achievable capacity,” Management Science, vol. 64, no. 5, pp. 2390–
2406, 2018.

[28] J. J. Hasenbein and B. Kim, “Throughput maximization for two station tandem
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[37] E. Özkan and J. P. Kharoufeh, “Optimal control of a two-server queueing system
with failures,” Probability in the Engineering and Informational Sciences, vol. 28,
no. 4, pp. 489–527, 2014.

196



[38] D. G. Pandelis and M. P. Van Oyen, “Sample path optimal policies for serial lines
with flexible workers,” Journal of Applied Probability, vol. 49, no. 2, pp. 582–589,
2012.

[39] I. Papachristos and D. G. Pandelis, “Optimal dynamic allocation of collaborative
servers in two station tandem systems,” IEEE Transactions on Automatic Control,
vol. 64, no. 4, pp. 1640–1647, 2018.

[40] L. Perron, “Planning and scheduling teams of skilled workers,” Journal of Intelligent
Manufacturing, vol. 21, no. 1, pp. 155–164, 2010.

[41] M. L. Puterman, “Markov decision processes: Discrete stochastic dynamic program-
ming,” 1994.

[42] R. Qin, D. A. Nembhard, and W. L. Barnes II, “Workforce flexibility in operations
management,” Surveys in Operations Research and Management Science, vol. 20,
no. 1, pp. 19–33, 2015.
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