
EFFICIENT COMPUTING FOR THREE-DIMENSIONAL
QUANTITATIVE PHASE IMAGING

A Dissertation
Presented to

The Academic Faculty

by

Ji Ye Chun

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
August 2021

COPYRIGHT © 2021 BY JI YE CHUN

EFFICIENT COMPUTING FOR THREE-DIMENSIONAL
QUANTITATIVE PHASE IMAGING

Approved by:

Dr. Thomas K. Gaylord, Advisor
School of Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Shyh-Chiang Shen
School of Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Christopher J. Rozell
School of Electrical and Computer Engineering
Georgia Institute of Technology

Date Approved: July 28, 2021

iii

ACKNOWLEDGEMENTS

The completion of this thesis would not have been possible without the support and

guidance of many people along the way. First, I would like to express my sincere gratitude

to my advisor, Dr. Thomas K. Gaylord, for his guidance and advice throughout my

undergraduate and graduate career at Georgia Tech. His patience, passion for teaching, and

endless research endeavor deserve great appreciation. I would like to thank my thesis

committee members, Dr. Shyh-Chiang Shen and Dr. Christopher J. Rozell, for their time

and advice on my thesis. I would also like to thank the staff at the school of electrical and

computer engineering, including my academic advisor, Tasha M. Torrence, for their hard

work and dedication to the excellent ECE programs.

I would like to thank Dr. Micah H. Jenkins, who did a pioneer work for this

research, and Dr. Yijun Bao, who helped me shape my understanding of previous research.

I want to thank Joshua Long, with whom I had great pleasure working together. I am also

grateful to my fellow graduate student, Pranav P. Kulkarni, for his support and

encouragement during times of struggle in research.

Finally, I would like to thank my family. My parents have raised me to dream big

and sacrificed a lot for me to pursue my dreams. I cannot thank them enough for that. I

would also like to thank my American family, Bill and Jan Toner, for their generous

support and love. I am fortunate to have them in my life. I am also grateful to have an

adorable canine companion, Lucky Charm, who kept me physically and mentally healthy

during the quarantine in 2020. Lucky reminds me to smile and cherish every moment in

life.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS ... ix

LIST OF SYMBOLS .. xii

SUMMARY ... xv

CHAPTER 1. INTRODUCTION... 1
1.1 Motivation and Impact 1
1.2 Thesis Objective and Overview 2

CHAPTER 2. BACKGROUND ... 4
2.1 Quantitative Phase Imaging 4
2.2 Tomographic Deconvolution Phase Microscopy (TDPM) 8
2.3 Iterative Tomographic Deconvolution Phase Microscopy (ITDPM) 10
2.4 Computer Implementation for Image Processing 12

2.4.1 Advancement in Computer Architecture and Computation Methods 12
2.4.2 High-Performance Computing for Image Processing 15

CHAPTER 3. SPEEDUP OF 3D TDPM VIA PARALLEL COMPUTING
FACILITATED BY UNIFIED MEMORY .. 17
3.1 Introduction 17
3.2 CPU vs. GPU 19

3.2.1 Arithmetic Operation: Fast Fourier Transform 21
3.2.2 Data Transfer and Unified Memory 23
3.2.3 Memory Operation: Array Shift 25

3.3 OpenMP Tasking and GPU Streaming with Unified Memory (TSUM) 29
3.4 Results and Discussion 35
3.5 Summary 36

CHAPTER 4. ADMM APPROACH FOR EFFICIENT ITERATIVE
TOMOGRAPHIC DECONVOLUTION RECONSTRUCTION 38
4.1 Introduction 38
4.2 ADMM-TDPM Algorithm 39
4.3 Simulation, Objects, and Evaluation 47
4.4 Results and Discussion 49
4.5 Summary 55

CHAPTER 5. FUTURE WORK .. 57
5.1 Real-time TDPM with TSUM 57

 v

5.2 Real-time imaging with ADMM-TDPM 58
5.3 Real-time imaging with ADMM-TDPM-TSUM 59

APPENDIX A. TDPM 3D MATLAB 1.0 USER MANUAL 60
A.1 Introduction 60
A.2 Flowcharts of TDPM 3D 61

A.2.1 TDPM_3D_measure_complete.m 61
A.2.2 TDPM_3D_simulate_complete.m 62

A.3 Main Files 63
A.3.1 Main Script File TDPM_3D_measure_complete.m 63
A.3.2 Main Script File TDPM_3D_simulate_complete.m 67
A.3.3 Major Function File Idata_3D_from_measure.m 70
A.3.4 Major Function File TDPM_from_Idata_3D.m 73

A.4 Test Run 79
A.5 List of TDPM 3D Files 84

A.5.1 .m (script) 84
A.5.2 .m (function) 85
A.5.3 .mat 88

APPENDIX B. TDPM 3D TSUM 1.0 DOCUMENATION 93
B.1 Introduction 93
B.2 Classes and Structs 93

B.2.1 class cuMat 93
B.2.2 class TDPM3D 95
B.2.3 struct GPUTimer in cuMat.cuh 98

B.3 Global Functions 99
B.4 Data Naming Convention 114
B.5 How to Compile and Run 116

APPENDIX C. HARDWARE SPECIFICATIONS .. 117
C.1 CPUs 117
C.2 GPUs 117

APPENDIX D. DERIVATION OF 𝒗𝒗 ... 119

REFERENCES .. 120

 vi

LIST OF TABLES

Table 3.1 CPU comparison. 20

Table 3.2 GPU comparison. 21

Table 3.3 3D TDPM RID reconstruction elapsed times. 34

Table 4.1 Results for the bead object. 50

Table 4.2 Results for the mixture of objects. 50

Table 4.3 Results for the modified Shepp-Logan phantom. 50

 vii

LIST OF FIGURES

Figure 2.1 Comparison of GPU and CPU architectures. ALU: arithmetic-
logic unit; DRAM: dynamic random-access memory

14

Figure 3.1 An example diagram of a System on a Chip (SoC) with Unified
Physical Memory (UPM).

18

Figure 3.2 FFT elapsed time comparison of the FFTW library in C/C++ (non-
parallel), parallelized FFTW using OpenMP (OpenMP), the
MATLAB fft function (MATLAB), the MATLAB GPU fft
function using gpuArray (gpuArray), and the cuFFT library
(cuFFT). Elapsed time is plotted on a logarithmic scale.

22

Figure 3.3 FFT elapsed time comparison of the MATLAB GPU fft function
using gpuArray excluding data transfer (gpuArray w/o memcpy),
gpuArray including data transfer (gpuArray w/ memcpy), the
cuFFT library excluding data transfer (cuFFT w/o memcpy),
cuFFT including data transfer (cuFFT w/ memcpy), and the cuFFT
on NVIDIA Jetson AGX Xavier using unified memory (Jetson
UM). The MATLAB GPU fft function and the cuFFT library
were ran on a NVIDIA Titan RTX GPU. Elapsed time is plotted
on a logarithmic scale.

24

Figure 3.4 Array shift speedup of MATLAB gpuArray() on Titan RTX
(gpuArray), C/C++/CUDA on Titan RTX (C/C++/CUDA), and
C/C++/CUDA on Volta GPU of Jetson with UM (Jetson UM) over
MATLAB on Intel Xeon (MATLAB).

26

Figure 3.5 Array shift speedup of MATLAB gpuArray() on Titan RTX
including data transfer (gpuArray w/ memcpy), C/C++/CUDA on
Titan RTX including data transfer (C/C++/CUDA w/ memcpy),
and C/C++/CUDA on Volta GPU of Jetson with UM (Jetson UM)
over MATLAB on Intel Xeon.

27

Figure 3.6 Speedups of the parallelized array shift using OpenMP on Carmel
CPU (denoted by Jetson OpenMP) and the cuShift() function
on Volta GPU (denoted by Jetson UM (GPU)) over the non-
parallel array shift on Carmel CPU (denoted by Jetson CPU).

28

Figure 3.7 The parallelized computations of tomographic angles in 3D TDPM
with the OpenMP tasking construct and CUDA streaming
facilitated by UPM (TSUM).

30

 viii

Figure 3.8 A sample code of TSUM in 3D TDPM. 31

Figure 3.9 3D TDPM RID reconstruction speedups the MATLAB GPU
version on Titan RTX (MATLAB GPU), the optimized MATLAB
GPU version on Titan RTX (Optimized MATLAB GPU), and the
C/C++/CUDA version on Jetson AGX Xavier (TSUM) relative to
the MATLAB CPU version on Intel Xeon (MATLAB).

33

Figure 3.10 Speedup trendlines. The actual speedups are represented in solid
lines. the 5th order polynomial trendlines are drawn to predict the
speedups for larger intensity datasets.

34

Figure 4.1 Flowchart for the ADMM-TDPM algorithm. 48

Figure 4.2 Recovered refractive index for the bead object. 51

Figure 4.3 Recovered refractive index for the mixture of objects. 52

Figure 4.4 Recovered refractive index for the modified Shepp-Logan
phantom.

53

Figure 5.1 3D TDPM pipeline for real-time imaging. 58

Figure 5.2 3D ITDPM pipeline for real-time imaging. 58

Figure A.1 Flowchart of TDPM_3D_measure_complete.m 61

Figure A.2 Flowchart of TDPM_3D_simulate_complete.m 62

Figure A.3 An example of the folders storing the measured images 80

Figure A.4 The RID cross sections of the capillary, gel, and microspheres
(downs=2)

82

Figure A.5 The RID cross sections of the capillary and gel (downs=2) 82

Figure A.6 The RID cross sections of microspheres (downs=2) 83

 ix

LIST OF ABBREVIATIONS

2D Two-Dimensional

3D Three-Dimensional

ACML AMD Core Math Library

ADMM Alternating Direction Method of Multipliers

ALU Arithmetic Logic Unit

AOFT Absorption Optical Transfer Function

API Application Programming Interface

BLAS Basic Linear Algebra Subprograms

CPU Central Processing Unit

CT Computed Tomography

CUDA Compute Unified Device Architecture

DDR Double Data Rate

DFT Discrete Fourier Transform

DHM Digital Holographic Microscopy

DIC Differential Interference Contrast

DRAM Dynamic Random Access Memory

FBG Fiber Bragg Grating

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West

FPGA Field-Programmable Gate Array

FPM Fourier Ptychographic Microscopy

GDDR Graphics Double Data Rate

 x

GHz Gigahertz

GPU Graphic Processing Unit

HDF Hierarchical Data Format

iGPU Integrated Graphic Processing Unit

ITDPM Iterative Tomographic Deconvolution Phase Microscopy

KB Kilobyte

LAPACK Linear Algebra PACKage

LCPM Liquid Crystal Phase Modulator

LPDDR Low-Power Double Data Rate

LPFG Long-period Fiber Grating

MB Megabyte

MiB Mebibyte

MHz Megahertz

MKL Intel Math Kernel Library

MPI Massage Passing Interface

MRI Magnetic Resonance Imaging

NA Numerical Aperture

NMRSE Normalized Root-Mean-Square Error

ODT Optical Diffraction Tomography

OpenCL Open Computing Language

OpenMP Open Multi-Processing

OPT Optical Projection Tomography

OTF Optical Transfer Function

PCF Photonic-Crystal Fiber

PCM Phase Contrast Microscopy

 xi

PMF Polarization-Maintaining Fiber

POTF Phase Optical Transfer Function

PSF Point Spread Function

QPI Quantitative Phase Imaging

RAM Random Access Memory

RBC Red Blood Cell

RI Refractive Index

RID Refractive Index Distribution

SLIM Spatial Light Interference Microscopy

SM Streaming Multiprocessor

SMF Single-Mode Fiber

SoC A System on a Chip

SPMD Single Program, Multiple Data

 SSBPM Split-step Beam Propagation Method

TDPM Tomographic Deconvolution Phase Microscopy

TIE Transport-of-Intensity Equation

TSUM OpenMP Tasking and CUDA Streaming with Unified Memory

TV Total Variation

UM Unified Memory

UPM Unified Physical Memory

UVM Unified Virtual Memory

WOTF Weak Object Transfer Function

 xii

LIST OF SYMBOLS

𝐴𝐴(𝒓𝒓) Imaginary part of scattering potential (spatial absorption function, (µm-2)

A(𝝆𝝆) Fourier transform of imaginary part of scattering potential (µm)

𝐴𝐴 Linear imaging operator representing a convolution with PSF

𝛼𝛼 Regularization parameter (unit depends on application)

𝐵𝐵 Background intensity (µm-2)

𝛾𝛾 Update parameter (dimensionless)

𝐷𝐷𝑟𝑟 Discrete derivative operator

𝛿𝛿(∙) Dirac delta function

𝜀𝜀 A small number (unit depends on application)

𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 Absolute tolerance (dimensionless)

𝜖𝜖𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑 Dual feasibility tolerance (dimensionless)

𝜖𝜖𝑝𝑝𝑟𝑟𝑝𝑝 Primal feasibility tolerance (dimensionless)

𝜖𝜖𝑟𝑟𝑟𝑟𝑑𝑑 Relative tolerance (dimensionless)

𝐻𝐻 Optical transfer function (dimensionless)

𝐻𝐻𝐴𝐴(𝝆𝝆) Absorption optical transfer function (dimensionless)

ℎ𝑃𝑃(𝒓𝒓) Phase point spread function (dimensionless)

𝐻𝐻𝑃𝑃(𝝆𝝆) Phase optical transfer function (dimensionless)

𝐻𝐻𝑃𝑃∗(𝝆𝝆) Phase optical transfer function conjugate (dimensionless)

ℎ(𝒓𝒓) Point spread function (µm-3)

ℎ𝐴𝐴(𝒓𝒓) Absorption point spread function (µm-3)

𝜃𝜃𝑐𝑐 Maximal half-angle of light exiting condenser lens (radian)

𝜃𝜃𝑗𝑗 Object rotation angle (radian)

 xiii

Θ Rotation operator (dimensionless)

𝐼𝐼(𝒓𝒓) 3D Intensity (µm-2)

𝑖𝑖 Imaginary unit √−1

𝜄𝜄𝐶𝐶 Indicator function (dimensionless)

𝐽𝐽(𝑣𝑣) Regularization function for ITDPM (dimensionless)

j Index

𝑘𝑘𝑜𝑜 Freespace wavevector magnitude (µm-1)

𝐿𝐿𝜌𝜌 Augmented Lagrangian (µm-2)

𝝀𝝀 Wavelength (𝜇𝜇𝜇𝜇)

𝜆𝜆 Regularization parameter for ADMM (dimensionless)

𝑀𝑀 Mask (dimensionless)

𝜇𝜇 Angle number

𝑁𝑁 Number of angles

𝑁𝑁𝐴𝐴𝑐𝑐 Numerical aperture of condenser lens (dimensionless)

𝑁𝑁𝐴𝐴𝑜𝑜 Numerical aperture of objective lens (dimensionless)

𝑛𝑛 Refractive index (dimensionless)

𝑛𝑛𝑜𝑜 Background refractive index (dimensionless)

𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑 Ideal refractive index (dimensionless)

𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑐 Recovered refractive index (dimensionless)

𝑃𝑃𝐵𝐵 Background phase (dimensionless)

𝝆𝝆 = (𝜌𝜌𝑥𝑥,𝜌𝜌𝑦𝑦,𝜌𝜌𝑧𝑧) Spatial frequency (µm-1)

𝜌𝜌 Penalty parameter (dimensionless)

𝒓𝒓 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 3D spatial coordinate (µm)

||𝑟𝑟||2 Primal residual

 xiv

||𝑠𝑠||2 Dual residual

𝜏𝜏 The maximum difference allowed in magnitude

𝑉𝑉(𝝆𝝆) Fourier transform of scattering potential (µm)

𝑣𝑣(𝒓𝒓) Scattering potential (µm-2)

x Spatial coordinate perpendicular to optical axis (z) and rotational axis (y)
(µm)

𝜓𝜓(𝑣𝑣, I) Cost function (µm-1)

y Spatial coordinate defining rotational axis (µm)

𝑧𝑧 Spatial coordinate defining the optical axis (µm)

|| ∙ ||2 ℓ2 norm

|| ∙ ||2,1 ℓ2 norm followed by ℓ1 norm

|| ∙ ||𝑇𝑇𝑇𝑇 Total Variation regularization which is the ℓ1 norm of the magnitude of
discrete gradient computed at each voxel

∇ Gradient operator

|∇𝑣𝑣| Gradient magnitude of ∇𝑣𝑣 (µm-3)

(∙)𝑇𝑇 Transpose

⊙ Point-wise multiplication operator

∗ Convolution

(∙)∗ Complex conjugate

 xv

SUMMARY

 Quantitative Phase Imaging (QPI) is a powerful imaging technique for measuring

refractive index distribution of transparent objects such as biological cell and optical fibers.

The quantitative, label-free approach of QPI provides preeminent advantages in biomedical

application and the characterization of optical fibers. Tomographic Deconvolution Phase

Microscopy (TDPM) is a promising 3D QPI method that combines diffraction tomography,

deconvolution, and through-focal scanning with object rotation to achieve isotropic spatial

resolution.

 This thesis presents significant improvements in the implementation of TDPM.

OpenMP Tasking and CUDA Streaming with Unified Memory (TSUM) leverage CPU

multithreading and GPU computing on a System on a Chip (SoC) with unified memory to

achieve up to 1.74x speedup over the original 3D TDPM. Furthermore, an efficient iterative

algorithm, Alternating Direction Method of Multipliers (ADMM), is applied to 3D TDPM

to reconstruct phase objects that are shift-variant in three spatial dimensions. ADMM-

TDPM achieves speedups of 5x in image acquisition time and greater than 10x in image

processing time with accompanying higher accuracy compared to TDPM.

 1

CHAPTER 1. INTRODUCTION

1.1 Motivation and Impact

 Quantitative Phase Imaging (QPI) is a powerful scientific imaging technique that

measures the optical path length and the Refractive Index (RI) distribution of transparent

objects such as biological cells and optical fibers. Three-Dimensional (3D) QPI has vast

potential in biomedical applications as it is non-invasive and provides quantitative data [1-

13]. QPI does not require invasive cutting or harmful contrast agents such as fluorescence

protein or dyes that could perturb the natural state of biological cells and tissues. Also, QPI

can provide quantitative measurements of morphological, chemical, and mechanical

parameters of biological cells and tissues. QPI has been used to study morphological

profiles [14-19], intracellular mass transport [20-22], and cytoskeletal/organelle

interactions [23]. Cell homeostasis has been investigated with QPI. The nonlinear elasticity

of Red Blood Cell membranes (RBCs) caused by osmotic pressure has been measured with

QPI [24]. 3D red blood coagulation structure has been reconstructed with QPI [18]. QPI

can be used to study the therapeutic effects of drugs on biological cells [25-28]. Drug-

induced deformability of human red blood cells has been investigated with 3D QPI [12].

 QPI has also been used in clinical diagnostics, such as in cancer screening [29-38],

infection detection [39, 40], and psychological disorder diagnosis [41, 42]. QPI has been

proven to be an adequate tool to investigate cancer cells [43, 44]. Circulating tumor cells

that are present in the blood of cancer patients have been studied with QPI to diagnose

ovarian cancer [45]. Also, in neuroscience, QPI has been used to map the dry mass density

of the neuronal network, investigate neuronal mass transport and growth over time [46],

 2

and detect neuronal death [47]. Furthermore, the activities of neuronal membrane proteins

that transport ion and water have been monitored with QPI [48].

 More recently, QPI has been combined with artificial intelligence to automate cell

detection [49, 50] and the diagnosis of diseases [51-54]. With deep learning and QPI, T

cell activation has been studied [55], and automatic RBC segmentation has been performed

[56]. By combining QPI, machine learning, and an augmented reality device, automatic

classification and visualization of cells have been realized [57].

 Another application of QPI is optical fiber characterization. QPI has been used to

measure RI and residual stress profiles of optical fibers. The Fiber Bragg Grating (FBG),

in particular, is widely used in telecommunications and sensing. In telecommunications,

FBGs are used as band-rejection filters in wavelength-selective devices [58]. Wavelength

multiplexing/demultiplexing have been realized with FBGs [58-60]. FBGs are used as

sensors for measuring temperature [61, 62], strain [63, 64], pressure [65], and 3D

positioning [66] in various applications. In recent years, medical devices with FBG-based

haptic sensors have been fabricated for minimally invasive diagnosis and surgery [67-73]

and neural interfaces [74]. Scientists and researchers have been developing and fabricating

various types of FBGs for different purposes [75]. The characterization of FBGs is a crucial

step in the design of high-performance FBGs. QPI can be a useful tool for profiling the

physical RI of FBGs in the fabrication step [76].

1.2 Thesis Objective and Overview

 The objective of the research presented in this thesis is to improve the performance

of a 3D QPI technique, Tomographic Deconvolution Phase Microscopy (TDPM) [77], by

 3

leveraging the latest technologies and implementing an iterative algorithm. TDPM, which

will be discussed in detail in Chapter 2, has drawbacks in that it requires a long image

acquisition time and extensive computation power with large memory. In this thesis, the

disadvantages of TDPM are overcome by two methods: 1) OpenMP Tasking and CUDA

Streaming with Unified Memory (TSUM) and 2) Alternating Direction Method of

Multipliers TDPM (ADMM-TDPM). TSUM combines CPU and GPU parallel computing

with unified memory that eliminates data transfer overhead to speed up the computation of

tomographic angles in 3D TDPM. ADMM-TDPM, coupled with the Augmented

Lagrangian, is an efficient iterative algorithm that optimizes the image fidelity by using

total variation regularization with non-negativity and known zeros constraints. ADMM-

TDPM shortens its image acquisition time by 5x and achieves a speedup greater than 10x

in processing time while simultaneously improving its accuracy.

In Chapter 2, QPI, 3D TDPM, and Iterative TDPM (ITDPM) are defined and

described in detail. Chapter 2 also discusses how advances in computer architectures and

computation methods has impacted image processing. In Chapter 3, the advantages and

disadvantages of CPU and GPU parallel computing are compared. The most frequently

used arithmetic operation in TDPM, Fast Fourier Transform (FFT), and memory operation,

array shift, are tested as benchmarks on various combinations of hardware and Application

Programming Interfaces (APIs). In addition, the capability of TSUM for 3D TDPM RI

reconstruction is demonstrated. In Chapter 4, ADMM-TDPM is developed and

reconstructs a series of representative 3D objects. Both TSUM and ADMM-TDPM have

great potentials to realize real-time imaging. The possible approaches to real-time imaging

are described as future work in Ch. 5.

 4

CHAPTER 2. BACKGROUND

2.1 Quantitative Phase Imaging

 Transparent objects, also known as phase objects, like biological cells and optical

fibers can be imaged through either intrinsic (endogenous) or extrinsic (exogenous)

contrast. Imaging the intrinsic contrast of a phase object is challenging under conventional

illumination because the object scatters and absorbs light weakly. One remarkable solution

to this challenge is fluorescence microscopy in which cells are labeled with fluorescent

proteins or dyes that produce extrinsic contrast. Despite its influence in biomedicine,

however, fluorescence microscopy has the limitations of photobleaching, phototoxicity,

and potential interference of fluorescent proteins with the properties of the cells.

 In the 1930s, Zernike developed Phase Contrast Microscopy (PCM) to image the

phase object with its intrinsic contrast. PCM enhances the contrast of interference patterns

of scattered and unscattered reference light by shifting the phase of the reference light by

90° [78]. Based on PCM, several variant methods, such as differential interference contrast

(DIC) microscopy and Hoffmann modulation contrast microscopy, have been developed.

However, PCM suffers from optical an artifact known as the halo effect, which causes

bright spots at the edge of the object and directional shadows. Also, PCM and its variant

methods provide a nonlinear measure of the intensity, which cannot be inverted to provide

quantitative phase data.

 QPI has been developed to overcome these limitations. 2D QPI methods measure

the optical path length of a phase object which is integrated along the direction of light.

 5

Interference-based QPI is one of the most widely researched and developed 2D QPI

methods. Digital Holographic Microscopy (DHM), also known as off-axis holography, is

a well-known interference-based QPI. Conventional DHM captures an interference pattern

(hologram) between a sample beam and an off-axis reference beam separated by an angle

using a Mach-Zehnder interferometer [79]. Phase can be recovered from the hologram by

numerically calculating the Fresnel diffraction patterns [80]. Unlike PCM, DHM provides

the quantitative distribution of the optical path length across the object, which contains

refractive index and morphologic information about the sample. The drawbacks of DHM

are that it is sensitive to speckle noise, and recovering the phase distribution is

computationally expensive. Spatial Light Interference Microscopy (SLIM) combines the

phase-shifting principle of PCM using a reflective Liquid Crystal Phase Modulator

(LCPM) and white light illumination [81]. LCPM shifts the phase in increments of 90°,

and four images corresponding to each phase shift are captured. The intensities from the

four images are combined to retrieve the phase using autocorrelation. The spatial

uniformity associated with white light and the short coherence length of the illumination

light allow speckle-free imaging with only sub-nanometer spatial background noise.

 Another 2D QPI method is scanning-based. Fourier Ptychographic Microscopy

(FPM) combines light-field imaging and ptychography with iterative scanning [82, 83].

FPM captures multiple perspective low-resolution images of a sample illuminated by plane

waves at a number of different angles using a low-NA objective. FPM randomly initializes

a high-resolution image. Fourier transformation (circular low-pass filters) is applied at a

region in the low-resolution image that corresponds to a particular angle of illumination.

The regions of the high-resolution image in Fourier space are replaced with the Fourier

 6

transform of the same regions that have the square root of the intensity in the corresponding

low-resolution image. Applying the low-pass filter and replacing the regions of the high-

resolution image are repeated several times to reconstruct the high-resolution image. The

advantage of FPM is that it offers wide-field images with simple, inexpensive hardware.

However, the iterative phase recovery is computationally expensive and can be time-

consuming.

 Defocus-based methods utilize Abbe’s theory that an image itself is the interference

phenomenon instead of creating interference patterns using optical systems. For defocus

methods, a number of intensity images of the sample are captured in and out of focus using

a standard bright-field microscope. The phase can be reconstructed by either iterative

algorithms or deterministic methods that linearizes the relation between the phase and the

defocused images. The Transport-of-Intensity Equation (TIE) [84-86] is a popular

linearizing method. Streibl first proved that the phase gradient of the phase object was

equal to the logarithmic intensity derivative. Using this relationship, phase can be retrieved

from the intensities of defocused images. TIE assumes the propagation of light to be

paraxial and requires a sufficient degree of spatial coherence. The major advantage of

defocus methods is that they can be implemented with a standard bright field microscope

with partially coherent illumination [87].

 3D QPI methods reconstruct the refractive index distribution by combining 2D QPI

with optical tomography and/or deconvolution. Tomography is the most popular

conventional approach to 3D QPI. The phase of the object can be measured using a 2D QPI

method over a range of angles. Tomography requires rotation of either the object relative

to the imaging system [88] or the illumination beam relative to the object and the optical

 7

axis of the imaging system [89, 90]. Beam rotation can be faster than object rotation, but it

cannot cover the entire range of angles due to the limited Numerical Aperture (NA) of the

system. This limitation causes missing spatial frequencies, which is called the missing cone

problem [91]. Object rotation can achieve isotropic spatial resolution, but it is slow and

prone to misalignment and disturbance to the object during rotation.

 After the phase is measured at different angles, either Optical Projection

Tomography (OPT) [92] based on filtered backprojection or optical diffraction tomography

(ODT) [93] based on filtered backpropagation can be used to reconstruct the RI of the

object from the phase information. OPT is simpler and faster but less accurate than ODT

because it does not consider the effects of diffraction and boundary refraction occurring

when the object features are in the same order as the illumination wavelength. Although it

produces more accurate results by accounting for the diffraction effects, ODT requires

spatially and temporally coherent illumination as well as assumptions that the object has

weak absorption and small RI contrast.

 Deconvolution is another 3D QPI method that is based on through-focal scanning

[94, 95]. A series of through-focal images can be obtained by sweeping the focal plane

through the object along the optical axis of the system. Sweeping can be done with a

piezoelectric objective scanner or electrically tunable lens [94, 96]. From the intensity of

the object in the series of through-focal images, either iterative algorithms or linearized

deconvolution model and Optical Transfer Function (OTF) inversion can be used to

reconstruct the 3D RI distribution. Deconvolution can be implemented with a standard

commercial microscope with partially coherent illumination. However, deconvolution also

 8

suffers from the missing cone problem along the optical axis, which becomes a significant

challenge when the object has complex RI distribution.

2.2 Tomographic Deconvolution Phase Microscopy (TDPM)

 Tomographic Deconvolution Phase Microscopy (TDPM) combines diffraction

tomography, 3D linearized deconvolution, and object rotation to achieve isotropic spatial

resolution using a standard commercial microscope [77]. TDPM employs 3D Weak Object

Transfer Function (WOTF) from the first-order diffraction tomography. The object can be

represented by scattering potential

 𝑣𝑣(𝒓𝒓) ≜ 𝑘𝑘02[𝑛𝑛(𝒓𝒓)2 − 𝑛𝑛02] (2.1)

where 𝑘𝑘0 = 2𝜋𝜋/𝜆𝜆 is the free-space wave vector magnitude for the wavelength 𝜆𝜆, 𝑛𝑛 is the

RI of the object, 𝑛𝑛0 is the background RI, and 𝒓𝒓 is the 3D spatial coordinate. It can be also

expressed as

 𝑣𝑣(𝒓𝒓) = 𝑃𝑃(𝒓𝒓) + 𝑖𝑖𝐴𝐴(𝒓𝒓) (2.2)

where 𝑃𝑃(𝒓𝒓) is the real part related to phase, and 𝐴𝐴(𝒓𝒓) is the imaginary part related to

absorption. If the scattering potential is weak and RI contrast is small enough, the first-

Born approximation can be used to approximate the scattered wave function by a plane

wave. The 3D intensity distribution 𝐼𝐼(𝒓𝒓) can be expressed as a convolution of the scattering

potential with the point-spread functions (PSFs)

 𝐼𝐼(𝒓𝒓) = 𝐵𝐵 + 𝐴𝐴(𝒓𝒓) ∗ ℎ𝐴𝐴(𝒓𝒓) + 𝑃𝑃(𝒓𝒓) ∗ ℎ𝑃𝑃(𝒓𝒓) (2.3)

 9

where ℎ𝐴𝐴(𝒓𝒓) and ℎ𝑃𝑃(𝒓𝒓) are the PSFs for the absorption and phase part, respectively, and 𝐵𝐵

is the uniform background intensity. The Fourier transform of the intensity spectrum can

be written as

 𝐼𝐼(𝝆𝝆) = 𝐵𝐵𝛿𝛿(𝝆𝝆) + 𝐴𝐴(𝝆𝝆)𝐻𝐻𝐴𝐴(𝝆𝝆) + 𝑃𝑃(𝝆𝝆)𝐻𝐻𝑃𝑃(𝝆𝝆) (2.4)

where 𝝆𝝆 is the 3D spatial frequency, 𝛿𝛿(𝝆𝝆) is the Dirac delta function, 𝐻𝐻𝐴𝐴(𝝆𝝆) is Absorption

Optical Transfer Function (AOTF), 𝐻𝐻𝑃𝑃(𝝆𝝆) is Phase Optical Transfer Function (POTF), and

𝐴𝐴(𝝆𝝆) and 𝑃𝑃(𝝆𝝆) are the 3D Fourier transforms of 𝐴𝐴(𝒓𝒓) and 𝑃𝑃(𝒓𝒓), respectively. The

background intensity can be removed by subtracting the average intensity. If phase objects

are assumed to have negligible absorption, the intensity spectrum can be simplified as

 𝐼𝐼(𝝆𝝆) = 𝑃𝑃(𝝆𝝆)𝐻𝐻𝑃𝑃(𝝆𝝆). (2.5)

 The intensity of the object is measured 𝑁𝑁 times at evenly spaced angles between 0

and 180 degrees where 𝑁𝑁 ≥ 𝜋𝜋/𝜃𝜃𝑐𝑐. The marginal illumination angle 𝜃𝜃𝑐𝑐 is defined as 𝜃𝜃𝑐𝑐 =

𝑠𝑠𝑖𝑖𝑛𝑛−1(𝑁𝑁𝐴𝐴𝑐𝑐
𝑛𝑛0

) where 𝑁𝑁𝐴𝐴𝑐𝑐 is the NA of the condenser lens. Using a formal least-squares

approach, the phase part of scattering potential in frequency domain can be solved as

𝑉𝑉(𝝆𝝆) =
∑ �

𝐼𝐼𝜃𝜃𝑗𝑗
𝐵𝐵 �𝐻𝐻𝑃𝑃

∗(𝝆𝝆)𝑁𝑁−1
𝑗𝑗=0

∑ �𝐻𝐻𝑃𝑃𝑗𝑗(𝝆𝝆)�
2

𝑁𝑁−1
𝑗𝑗=0 + 𝛼𝛼

 (2.6)

where 𝑗𝑗 is an index associated with object rotation angle 𝜃𝜃𝑗𝑗 = 𝑗𝑗∆𝜃𝜃, 𝐼𝐼𝜃𝜃𝑗𝑗/𝐵𝐵 are the zero-mean

normalized 3D intensity spectra, 𝐻𝐻𝑃𝑃∗(𝝆𝝆) is POTF conjugate, and 𝛼𝛼 is a regularization

parameter.

 10

 In TDPM, two different processing steps for high and low spatial frequencies are

used to ensure sufficient low-frequency resolution without aliasing. Figures 4 and 5 in [77]

show the block diagrams of TDPM RI recovery for high spatial frequencies and low spatial

frequencies respectively. The high-frequency algorithm includes background intensity

normalization and subtraction, x- and z-slice registration, filtering with the POTF

conjugate, rotation via bilinear interpolation as in Eq. (2.6). The small POTF in the

denominator could cause a noise magnification problem. Thus, the transfer function should

be regularized by either a hard cutoff or Wiener filtering. Finally, the scattering potential

is converted to RI by:

𝑛𝑛(𝒓𝒓) = �𝑇𝑇(𝒓𝒓)−𝑃𝑃𝐵𝐵

𝑘𝑘02
+ 𝑛𝑛02 (2.7)

where 𝑘𝑘0 is the freespace wavevector magnitude for the illuminating light and 𝑃𝑃𝐵𝐵 is the

background phase.

 TDPM is less susceptible to noise as it utilizes partially coherent illumination,

compared to other QPI methods that use coherent illumination and suffer from speckle

noise. TDPM is inexpensive as it can be implemented on a standard microscope platform

with minimal modification. However, TDPM requires a relatively long image acquisition

time as a series of defocused images should be collected at a large number of angles to

avoid the missing cone problem. Typically, TDPM collects 3D images at 15 angles.

Processing 3D images from the 15 angles requires large memory space and expensive

computational power to reconstruct high-resolution RI distributions.

2.3 Iterative Tomographic Deconvolution Phase Microscopy (ITDPM)

 11

 Iterative TDPM reconstructs the 3D RI distribution with an edge-preserving

iterative regularization algorithm to reduce the image acquisition time and overcome the

missing cone problem [97]. Instead of using direct deconvolution in the frequency domain,

ITDPM reduces the number of illumination angles by estimating the expected image

intensities as close to the measured images as possible and optimizing the estimation

iteratively using gradient descent. Mathematically, the problem at hand can be represented

as

 𝑣𝑣(𝒓𝒓) = argmin
𝑣𝑣(𝒓𝒓)

�|ℎ(𝑟𝑟) ∗ 𝑣𝑣(𝒓𝒓) − 𝐼𝐼(𝒓𝒓)|�
2
2

, (2.8)

where �|𝑓𝑓(𝒓𝒓)|�
2
 is the ℓ2 norm of 𝑓𝑓(𝒓𝒓), and ℎ(𝒓𝒓) is the PSF. For simplicity, the convolution

of h can be represented with a linear operator 𝐴𝐴 (a detailed derivation is in [97]), and the

convolution in the frequency domain becomes

 𝐴𝐴𝑣𝑣 = 𝐹𝐹−1𝐻𝐻𝐹𝐹𝑣𝑣, (2.9)

where F is the Fourier transform, 𝐹𝐹−1 is the inverse Fourier transform, and H is the

pointwise multiplication by the POTF. The minimization should be satisfied for the average

value over all angles. Also, ITDPM considers the piecewise smoothness constraint that is

described by a minimization of a regularization function 𝐽𝐽(𝑣𝑣) = ∫𝜓𝜓(|∇𝑣𝑣|)𝑑𝑑𝑟𝑟, where |∇𝑣𝑣|

is the gradient magnitude of 𝑣𝑣(𝒓𝒓), and 𝜓𝜓(|∇𝑣𝑣|) = �|∇𝑣𝑣|2 + 𝜀𝜀2. 𝜀𝜀 is a small number for

preventing division by zero. The cost function including the edge-preserving regularization

term becomes

 12

 Ψ(𝑣𝑣, 𝐼𝐼) = 1
2𝑁𝑁
∑ �|𝐴𝐴Θ𝑚𝑚𝑣𝑣𝑚𝑚 − 𝐼𝐼𝑚𝑚|�

2
2

𝑚𝑚 + 𝛼𝛼𝐽𝐽(𝑣𝑣), (2.10)

where N is the number of angles, m is an angle number, Θ is a rotation operator and 𝛼𝛼 is a

regularization parameter.

 ITDPM uses gradient descent which is a simple optimization algorithm but

converges slowly. Thus, ITDPM reduces the image acquisition time, but it also increases

the computation time. With the piecewise smoothness constraint, the current ITDPM

approach can only be implementable for 2D objects as it assumes the object to be shift-

invariant in one direction. ITDPM cannot be applied for shift-variant objects like FBGs

and biological cells.

2.4 Computer Implementation for Image Processing

2.4.1 Advancement in Computer Architecture and Computation Methods

 The development of transistors and integrated circuit technology enabled the

development of single-core microprocessor which drastically improved computing

performance from the 1970s until the early 2000s. However, the growth in single-core

microprocessor performance has stagnated as Dennard scaling [98] reached its limit.

Dennard scaling explains how the reduction of circuit size shortens the circuit delay time

while maintaining its power density and how cooling becomes a major problem in a highly

miniaturized circuit. Also, Moore’s Law [99], which states that the number of transistors

on a chip doubles every 18 months, no longer holds true as engineers face the challenges

in decreasing the size of transistors close to the size of a few atoms. These challenges led

 13

researchers to switch the focus from high-performance single-core processors to multicore

processors. Moreover, these challenges have encouraged researchers to develop domain-

specific processors that perform well on one specific computation rather than general-

purpose processors.

 The main advantage of multicore processors is that it allows programmers to

control tread-level parallelism. Generally, parallelism can be classified into the following

four types: bit-level parallelism, instruction-level parallelism, thread-level parallelism, and

inter-program-level parallelism. Bit-level parallelism and instruction-level parallelism are

exploited by hardware architects, and programmers can choose the appropriate hardware

for their application. Inter-program-level parallelism occurs in an operating system, such

as scheduling tasks and managing memory. Thread level parallelism can be controlled by

programmers in their software. Thread-level parallelism on multicore processors is most

widely applied for computationally intensive applications and data-intensive applications.

However, writing effective thread-level parallel programs requires a high level of

programming skill and effort. Many programmers and scientists struggle to improve the

performance of parallel programs due to the challenges in controlling concurrency,

managing data distribution, managing communication among processors, and balancing

the computational load. Many libraries have been developed in various languages to

facilitate the challenges of parallel computing. For example, OpenMP (Open Multi-

Processing) is a widely used programming platform that allows parallelism on a multicore

processor. Message Passing Interface (MPI) is another programming platform that allows

parallelism on a heterogeneous distributed system such as a high-performance computer or

supercomputer.

 14

Figure 2.1— Comparison of GPU and CPU architectures. ALU: arithmetic-logic unit;
DRAM: dynamic random-access memory

 The Graphics Processing Units (GPUs) are specifically designed to compute the

arrays of floating-points efficiently for real-time rendering. GPUs achieve high throughput

by dividing a data pipeline in space, whereas Central Processing Units (CPUs) divide the

pipeline in time [100]. Multithreading is much more efficient on GPUs than on CPUs;

therefore, GPUs have much higher throughput than CPUs. However, GPU parallel

computing still has a few disadvantages. GPU parallel computing’s major challenges are

in coordinating the scheduling of computation on the system processor (usually CPU) and

GPU and the efficient data transfer between the system (host) memory and GPU (device)

memory. Compute Unified Device Architecture (CUDA) is a parallel computing platform

and programming language developed by NVIDIA to improve the productivity of GPU

programming. OpenCL is another GPU programming language that is vendor-independent.

 MATLAB is a powerful programming language and computing platform widely

used by scientists and engineers. MATLAB’s most computational functions are written in

C/C++ and Fortran. MATLAB’s basic linear algebra functions are highly optimized for a

 15

specific processor with Intel Math Kernel Library (MKL) or AMD Core Math Library

(ACML). MATLAB offers a parallel computing toolbox that can be used with multicore

processors and GPUs. Although it is an easy and productive programming language,

MATLAB does not provide programmers full control over parallelism and cannot achieve

the best optimization and performance possible for a specific application.

 An embedded system is a low-cost, low-power, high-throughput computer system

that has a dedicated function. A typical embedded system includes a microprocessor,

memory, and input/output modules, but it can be specially designed to accommodate a

specific application.

2.4.2 High-Performance Computing for Image Processing

 Imaging modalities have been benefited from the developments in computer

architecture and computational technologies. GPU parallel computing has been used to

accelerate Computed Tomography (CT) [101-103], Magnetic Resonance Imaging (MRI)

[104-106], diffuse optical tomography [107], and ultrasound imaging [108, 109]. Various

QPI methods have also been implemented on GPUs. For example, the phase unwrapping

for diffraction phase microscopy on GPU has achieved the speedup of 41x over the CPU

implementation [110]. Real-time 3D visualization using optical diffraction tomography on

GPU has been demonstrated with 17x speedup [111]. The TIE has been solved on GPU in

real-time [112]. In addition, for the common image operations such as fast Fourier

transform and convolution, GPU outperforms CPU [113]. GPU-based 3D deconvolution

for confocal microscopy also has been presented to achieve ~100x speedup [114].

 16

 Small embedded systems have been implemented for image processing in smart

cameras in recent years. These smart cameras have capabilities from simple photo editing

to object detection, face identification, and surveillance. Real-time video processing, such

as gesture recognition, has been possible as the embedded systems become more powerful

[115]. A highly optimized embedded system for 3D image processing has been developed

to outperform the GPU and multicore CPU [116]. Furthermore, field-programmable gate

arrays (FPGAs) have been utilized for medical image processing [117-119]. QPI of

biological cell and classification has been implemented on eight FPGAs to achieve ~228x

speedup compared against a single-core CPU and ~32x speedup over GPU [118]. The study

has also proved that FPGAs have superior power efficiency compared to CPU or GPU.

 17

CHAPTER 3. SPEEDUP OF 3D TDPM VIA PARALLEL

COMPUTING FACILITATED BY UNIFIED MEMORY

3.1 Introduction

The original TDPM RID reconstruction program is written in MATLAB to run on a

CPU. MATLAB is an easy, convenient, productive programming language that provides

numerous mathematical functions. Most of MATLAB’s computational functions are

written in C/C++ and Fortran. MATLAB uses Basic Linear Algebra Subprograms (BLAS)

and the Linear Algebra PACKage (LAPACK) included in highly optimized libraries for a

specific CPU such as the Intel Math Kernel Library (MKL) and the AMD Core Math

Library (ACML) [120]. MATLAB also offers a CPU/GPU parallel computing toolbox

[121] that allows programmers to parallelize and accelerate their programs. However, as it

is a high-level language, MATLAB does not provide programmers full control over

parallelism and optimization. This is a major weakness of MATLAB because optimizing

the use of hardware to a specific application can achieve a noticeable speedup. Moreover,

MATLAB has unsupported and limited functions on GPU.

 Parallel programming also has challenges, such as parallel overhead and

programming complexity. Parallel overhead includes thread start-up/termination time,

synchronization time, and overheads by compilers, libraries, etc. Parallel overhead can be

reduced with better microarchitecture, compiler, and algorithms, but it cannot be entirely

avoided. Furthermore, parallel programming is significantly more complex, time-

consuming, and challenging than sequential programming. It requires a good

 18

understanding of computer architecture and parallel Application Programming Interfaces

(APIs) as well as customization for specific applications to take full advantage of

parallelism. OpenMP [122] is a widely used parallel computing API that allows

multithreading. OpenMP offers numerous constructs for users to control parallelization

directly. OpenMP can be a powerful tool and is relatively easy to program for a simple

parallelization. However, it still requires learning the various functionalities and

understanding of the hardware to achieve the best performance improvement.

Figure 3.1 – An example diagram of a System on a Chip (SoC) with Unified Physical
Memory (UPM).

In addition to the challenges of parallel computing, data transfer overhead is a major

drawback of GPU computing. Most systems have CPU and GPU on separate chips, and

each has its own memory (Fig 2.1). This physical separation requires data transfer between

two memories, and the larger the data size, the larger the overhead. A solution to data

transfer overhead is manufacturing CPU and integrated GPU (iGPU) on one chip along

 19

with a memory that both CPU and iGPU can access, and this unified architecture is often

called a System on a Chip (SoC) [123]. Figure 3.1 illustrates a simplified diagram of SoC.

The memory in SoC is called Unified Memory (UM). UM is also referred to as physical

SoC memory, unified shared memory, central memory, system shared memory, or global

shared memory. NVIDIA’s Jetson AGX Xavier is an embedded system that has unified

architecture, Tegra SoC [124]. Jetson AGX Xavier is specially designed for autonomous

machines and AI. AGX Xavier’s unified memory allows both CPU and iGPU to access the

memory and doesn’t require data transfers. Also, AGX Xavier is low-cost and power-

efficient compared to an average personal computer and a GPU.

In 2014, NVIDIA introduced UM as a virtual coherent memory that allows CPU and

GPU to share the same memory address [125-127]. In this thesis, to avoid confusion, UM

indicating a virtual memory is referred to as Unified Virtual Memory (UVM), UM

indicating a physical memory is referred to as Unified Physical Memory (UPM), and UM

refers to the method of using UVM facilitated by UPM. The UPM on Jetson AGX Xavier

can be managed with CUDA UVM. Several studies have evaluated the performance of UM

on the Tegra SoCs, TK1 [128-130], TK2 [131], and TX1 [132], which are predecessors of

AGX Xavier. In this chapter, the challenges in CPU and GPU parallel computing are

addressed, and the capability of UM on Jetson AGX Xavier for 3D TDPMM is

demonstrated.

3.2 CPU vs. GPU

The performance of a program can vary greatly from one device to another. CPU and

GPU have their strengths and weaknesses and are suitable for different applications. To

 20

properly customize the use of CPU and GPU for TDPM, several different hardware and

APIs have been tested with the most frequently used functions, the fast Fourier transform

(FFT) and array shift. The CPU used in this study is Intel Xeon Silver 4110 with a base

frequency of 2.10 GHz and 11 MB L3 cache, accompanied by 64 GB RAM (Table 3.1).

The GPU is NVIDIA Titan RTX with 24 GB memory (Table 3.2). Also, the overhead of

data transfer between the CPU and the GPU has been evaluated and compared with UM

on Jetson AGX Xavier. AGX Xavier has a Carmel CPU with 8 cores and 4MiB L3 cache,

a Volta iGPU, and 32 GB UM. Titan RTX is a superior GPU with more Streaming

Multiprocessors (SM) and CUDA cores that can perform more operations in parallel than

Volta. Furthermore, Titan RTX has larger caches, a higher memory clock rate of 7.001

GHz, and a 384-bit wide memory interface compared to the 2.133 GHz memory clock rate

and 256-bit wide memory buses of Volta. More details about the CPUs and GPUs used in

this study is in Appendix C.

Table 3.1 – CPU comparison.

 Intel Xeon Silver 4110

CPU

NVIDIA Carmel CPU

Instruction Set Architecture x86-64 ARMx8
of Cores 8 8

of Threads 16 8
Base Frequency 2.100 GHz 2.265 GHz
Max Frequency 3.000 GHz -

Cache
L1: 256 KB (data)

L2: 8 MB
L3: 11 MB

L1: 64 KB (data)
L2: 2 MiB
L3: 4 MiB

Memory 64 GB DDR4 32 GB LPDDR4x (UPM)

 21

Table 3.2 – GPU comparison.

 NVIDIA Titan RTX GPU NVIDIA Volta GPU

Streaming Multiprocessors
(SM) 72 8

CUDA Cores 4608 512
Tensor Cores 576 64

Base Frequency 1.350 GHz 1.377 GHz
Memory Frequency 7.001 GHz 2.133 GHz
Memory Bus Width 384-bit 256-bit

Cache L1: 64 KB per SM
L2: 6144 KB

L1: 128 KB per SM
L2: 512 KB

Memory 24 GB GDDR6 32 GB LPDDR4x (UPM)

3.2.1 Arithmetic Operation: Fast Fourier Transform

The most frequently used function in 3D TDPM is the Fast Fourier Transfer (FFT),

and FFT is a good benchmark function to test various architectures as it requires a lot of

multiplications and additions. The following combinations of hardware and APIs are tested

to evaluate speeds of 1D FFT on CPU and GPU: 1) the FFTW library in C/C++ on CPU

(denoted by Non-parallel), 2) the parallelized FFTW library with OpenMP (denoted by

OpenMP), 3) the MATLAB fft() function on Intel Xeon (denoted by MATLAB), 4) the

MATLAB fft() function on Titan RTX using gpuArray() (denoted by gpuArray), and

5) the cuFFT library in C/C++/CUDA on Titan RTX (denoted by cuFFT). The FFTW

library computes the Discrete Fourier Transform (DFT). Both the MATLAB fft function

and the cuFFT library are based on the FFTW library. MATLAB 2020b is used for the

methods, MATLAB and gpuArray. The CUDA driver version 10.2 is used for Titan RTX.

 22

The data, sized from 22 to 220 with random values between 0 and 1, have been

generated with the rand() function in the stdlib.h library, and the same data have been

used for all five methods. The elapsed time was measured with tic-toc in MATLAB for

the MATLAB versions, and the C/C++/CUDA versions are measured with the chrono

library. The elapsed times measured do not include the data transfer time between the host

(CPU) memory and the device (GPU) memory. For the OpenMP method, twelve threads

are used with static scheduling.

Figure 3.2 – FFT elapsed time comparison of the FFTW library in C/C++ (non-
parallel), parallelized FFTW using OpenMP (OpenMP), the MATLAB fft()
function (MATLAB), the MATLAB GPU fft() function using gpuArray()
(gpuArray), and the cuFFT library (cuFFT). Elapsed time is plotted on a logarithmic
scale.

 23

Figure 3.2 shows that the cuFFT library in C/C++/CUDA on GPU is significantly

faster for the large data than the other four methods. The FFTW library on CPU (Non-

parallel) is the slowest for extensive data. The performance of the parallelized FFTW

library using OpenMP improved as the data size increased. However, the MATLAB fft()

function on GPU with gpuArray() performs slightly better than the CPU methods as the

data size increases.

3.2.2 Data Transfer and Unified Memory

In MATLAB, transferring data between host memory and device memory can be

performed by gpuArray() and gather(). In CUDA, cudaMemcpy() can be used, and

memory copy type can be specified to indicate which way the data are copied. The

following five combinations of hardware and APIs are compared to evaluate data transfer

overhead: 1) the MATLAB fft function on Titan RTX with gpuArray excluding data

transfer (gpuArray w/o memcpy), 2) the MATLAB fft function on Titan RTX with

gpuArray including data transfer (gpuArray w/ memcpy), 3) the cuFFT library in

C/C++/CUDA on Titan RTX excluding data transfer (cuFFT w/o memcpy), 4) the cuFFT

library in C/C++/CUDA on Titan RTX excluding data transfer (cuFFT w memcpy), and 5)

the cuFFT library in C/C++/CUDA on Jetson AGX Xavier with UM (Jetson UM). The

data, sized from 22 to 225 with random values between 0 and 1, have been generated with

the rand() function in the stdlib.h library, and the same data have been used for all five

methods. The elapsed time was measured with tic-toc in MATLAB for the MATLAB

versions, the chrono library for cuFFT on Titan RTX, and cudaEventRecord() for

Jetson UM.

 24

For Jetson AGX Xavier, the data can be allocated on its UPM with

cudaMallocManaged(). Although it saves data transfer time, UM has coherency

maintenance overhead from managing cached memory on both CPU and iGPU [133]. The

overhead can be reduced with a prefetching hint by attaching the data memory to CPU or

iGPU using cudaStreamAttachMemAsync().

Figure 3.3 – FFT elapsed time comparison of the MATLAB GPU fft function using
gpuArray excluding data transfer (gpuArray w/o memcpy), gpuArray including
data transfer (gpuArray w/ memcpy), the cuFFT library excluding data transfer
(cuFFT w/o memcpy), cuFFT including data transfer (cuFFT w/ memcpy), and the
cuFFT on NVIDIA Jetson AGX Xavier using unified memory (Jetson UM). The
MATLAB GPU fft function and the cuFFT library were ran on a NVIDIA Titan
RTX GPU. Elapsed time is plotted on a logarithmic scale.

The results clearly show data transfer overhead exponentially increases as the data

size increases (Fig 3.3). The method cuFFT w/o memcpy performs better than Jetson UM

 25

as coherency management overhead slows down the performance on Jetson UM.

Nevertheless, Jetson UM is clearly faster as data transfer is always required for the Titan

RTX, and the elapsed times including data transfer should be compared with the Jetson

UM. The results show that a program should be optimized to transfer data less frequently

when using a GPU with separated memory like Titan RTX. For an iGPU with UM, data

transfer optimization is not necessary, but one should be aware of concurrency maintenance

overhead which can increase if the data is frequently used from both iGPU and CPU.

3.2.3 Memory Operation: Array Shift

 The FFT data are often used with its zero-frequency component in the center of the

array. Shifting the array requires memory operations which typically take more clock

cycles than arithmetic operations. Memory speed is a major determinant of memory

operation performance. High memory frequency and large bus width are preferable for

applications with many memory operations. Moreover, CPUs and GPUs with large caches

are advantageous as they can have fewer cache misses and memory accesses. However, if

caches are too large, cache access typically slows down; thus, one should consider the

optimal cache size for a specific application.

In this section, the array shift performances of four methods are evaluated. In

MATLAB, the fftshift() or ifftshift() function, which calls circshift(), can

be used to shift an array. The fftshift() function is performed on Intel Xeon (denoted

by MALTAB) and Titan RTX with gpuArray() (denoted by gpuArray). Also, a custom

array shift function, cuShift(), is programmed in C/C++/CUDA to run on Titan RTX

(denoted by C/C++/CUDA) and Volta of Jetson AGX Xavier (Jetson UM). The

 26

cuShift() launches a GPU kernel that shifts the elements of an array by indexing in

parallel. The 3D single-precision floating-point data with sizes 323, 643, 1283, 2563, and

5123 are generated with the rand() function in the stdlib.h library. The elapsed time was

measured with tic-toc in MATLAB for the methods, MATLAB and gpuArray, and the

methods, C/C++/CUDA and Jetson UM, are measured with the chrono library.

Figure 3.4 – Array shift speedup of MATLAB gpuArray() on Titan RTX
(gpuArray), C/C++/CUDA on Titan RTX (C/C++/CUDA), and C/C++/CUDA on
Volta GPU of Jetson with UM (Jetson UM) over MATLAB on Intel Xeon (MATLAB).

 Figure 3.4 shows the speedups of array shift on Titan RTX (gpuArray and

C/C++/CUDA) over on Intel Xeon (MATLAB) excluding data transfer time. The

cuShift() function on Titan RTX (C/C++/CUDA) is 24.6x faster than the fftshift()

function (MATLAB) for the data of size 5123. On the other hand, the cuShift() function

on Volta of AGX Xavier performs poorly with an average of 0.32x slowdown over

 27

MATLAB. AGX Xavier’s low memory clock rate seems to limit the memory operation

performance. However, Jetson UM performs better than gpuArray and C/C++/CUDA

when the data transfer time is included (Fig. 3.5).

 It is important to note that having the data pre-loaded on caches before starting an

operation can improve the performance significantly. In this experiment, the input data are

generated, and the output data are pre-allocated in memory right before a timer starts; thus,

some data are on caches when the array shift functions are called. The algorithm of the

MATLAB circshift() function is proprietary, so it is difficult to analyze the results.

However, the superior performance of MATLAB fftshift() (or circshift())

function could be explained with the large caches of Intel Xeon.

Figure 3.5 – Array shift speedup of MATLAB gpuArray() on Titan RTX including
data transfer (gpuArray w/ memcpy), C/C++/CUDA on Titan RTX including data

 28

transfer (C/C++/CUDA w/ memcpy), and C/C++/CUDA on Volta GPU of Jetson with
UM (Jetson UM) over MATLAB on Intel Xeon.

 The cuShift() function on Volta is also compared with a sequential CPU version

and a parallel CPU version using OpenMP on the Carmel CPU of AGX Xavier. The

sequential CPU version still utilizes UM, but shifting operations are performed by indexing

sequentially in for loops. In the parallel CPU version, the three for loops, that iterate the

indexes of three dimensions, are collapsed into one large iteration space using the

collapse(3) clause with the for construct of OpenMP. Figure 3.6 shows that

cuShift() on Volta is faster (a 3.4x speedup) than both sequential and parallel CPU

versions on Carmel for the data of size 5123.

Figure 3.6 – Speedups of the parallelized array shift using OpenMP on Carmel CPU
(denoted by Jetson OpenMP) and the cuShift() function on Volta GPU (denoted by
Jetson UM (GPU)) over the non-parallel array shift on Carmel CPU (denoted by
Jetson CPU).

 29

3.3 OpenMP Tasking and GPU Streaming with Unified Memory (TSUM)

In 3D TDPM, the computation of each tomographic angle can be parallelized with a

single program, multiple data (SPMD) paradigm. The operations for each tomographic

angle include loading 3D intensity data, performing FFT as well as shifting, rotating,

padding and masking arrays. Memory operations such as loading the intensity data and

shifting are typically faster on CPUs, whereas arithmetic operations of arrays are faster on

GPUs. Several studies have implemented OpenMP and CUDA together to parallelize

programs on a CPU and GPU/s and achieve greater speedups over a single device [134-

136]. In this study, OpenMP tasking and CUDA streaming is used to enable SPMD

parallelism on both CPU and iGPU with UPM.

Tasks in OpenMP refer to the instances of executable code and data environment to

be executed by specified threads [122]. Using the OpenMP task construct, we can

parallelize each tomographic angle for TDPM to be run on each CPU thread. For GPU

operations, CUDA streams [137] can be utilized. A CUDA stream is a sequence of

operations to be run on GPUs. A CPU thread issues operations in the streams, and the GPU

schedules the operations from the streams to be run when GPU threads are available. The

operations in the different streams can be computed in parallel provided the threads and

data are available. Figure 3.7 demonstrates the flow of operations and data of OpenMP

Tasking and CUDA Streaming with Unified Memory (TSUM) for the computations of

tomographic angles in 3D TDPM.

In parallel computing, a race condition often causes a bottleneck that limits

performance improvement. Race conditions occur when a thread needs to wait for output

 30

data from another thread or two or more threads perform memory operations for the same

data. A simple way to avoid data race conditions is to create copies of the data so each

thread can have its own data. The computations of tomographic angles in TDPM require

several input data. In TSUM, before tasks are employed, copies of the input data are

created, and the output data from each task are pre-allocated at separate locations to avoid

the CPU and GPU threads competing for the same memory location.

Figure 3.7 – The parallelized computations of tomographic angles in 3D TDPM with
the OpenMP tasking construct and CUDA streaming facilitated by UPM (TSUM).

 31

Figure 3.8 – A sample code of TSUM in 3D TDPM.

Figure 3.8 shows a sample code of TSUM for computing tomographic angles in 3D

TDPM. AGX Xavier has eight available threads, and TSUM creates seven tasks (7-

TSUM). The first task processes the first three angles, and each of the other tasks processes

two angles. The first angle at 0∘ does not require rotations of intensity data, thus it is

processed faster than the other angles. In each task, a CUDA stream is created, and the

input and output data are attached to the stream using cudaStreamAttachMemAsync().

The data managed by UVM and attached to the stream can be accessed from both iGPU

and CPU. Within a task, more than one stream can be created, and attached data can be

shared by the streams within the task. At the end of each operation on GPU, the streams

 32

should be synchronized with cudaStreamSychronize(). At the end of each angle

computation, OpenMP implicitly synchronizes the CPU threads and memory.

The outputs of each task are scattering potentials of each angle. After the streams are

destroyed, the tasks are terminated, the summation of scattering potentials is performed on

GPU threads. After the completion of tomographic angle computation, two OpenMP tasks

and CUDA streams (2-TSUM) are used for high and low frequency filtering. The filtered

outputs are summed and converted to RID.

The performance of 7-TSUM on Jetson AGX Xavier (denoted by TSUM) was

compared with the original MATLAB version on Intel Xeon (denoted by MATLAB), a

MATLAB GPU version on Titan RTX (denoted by MATLAB GPU), and an optimized

MATLAB GPU version on Titan RTX (denoted by Optimized MATLAB GPU). Revising

a MATLAB program to run on a GPU can be done by simply using gpuArray(), and this

is how the MATLAB GPU version was created. The optimized MATLAB GPU version,

on the other hand, was further optimized for GPU. Unnecessary data transfers and memory

operations such as fftshift() were removed. Also, the order of operations has been

optimized to avoid cache misses as much as possible. These optimizations have been

applied to TSUM as well.

3D TDPM was simulated with the four methods for the four different size intensity

datasets (64x64x32, 128x128x64, 256x256x128, and 512x512x256). The intensity datasets

were created using the modified split-step beam propagation method as in [77] with a

simulated object, 3D Shepp-Logan phantom [138]. The intensity datasets were saved as

.mat files and loaded by the load() function in MATLAB. In C/C++/CUDA, the datasets

 33

were stored in .h5 files and loaded by the HDF5 library (Hierarchical Data Format version

5) [139]. The MALTAB’s default data type, double-precision (8 byte), was used for the

MATLAB versions, whereas single-precision (4 byte) was used for TSUM. The elapsed

time was measured with tic-toc in MATLAB for the MATLAB versions and

cudaEventRecord() for TSUM. Each method was executed five times, and the average

elapsed time was recorded.

Figure 3.9 – 3D TDPM RID reconstruction speedups the MATLAB GPU version on
Titan RTX (MATLAB GPU), the optimized MATLAB GPU version on Titan RTX
(Optimized MATLAB GPU), and the C/C++/CUDA version on Jetson AGX Xavier
(TSUM) relative to the MATLAB CPU version on Intel Xeon (MATLAB).

 34

Table 3.3 – 3D TDPM RID reconstruction elapsed times in seconds.

 MATLAB MATLAB
GPU

MATLAB
GPU

Optimized
Jetson

64x64x32 1.5615 4.5341 4.0520 6.3616

128x128x64 8.9953 14.826 11.691 14.915

256x256x128 80.861 82.193 69.559 87.744

512x512x256 1267.1 837.84 763.24 729.64

Figure 3.10 – Speedup trendlines. The actual speedups are represented in solid lines.
the 5th order polynomial trendlines are drawn to predict the speedups for larger
intensity datasets.

 35

3.4 Results and Discussion

The results, presented in Fig 3.9 and Table 3.3, show that the MATLAB CPU

version performs better for the small data (64x64x32 and 128x128x64). However, as the

data size increases, the methods on GPU are faster than the CPU version. Moreover, TSUM

performs the best with a 1.74x speedup over MATLAB for the intensity data of size

512x512x256.

In Fig. 3.10, the speedups are represented in solid lines over the size data, and the 5th

order polynomial trendlines of the speedups drawn in dotted lines. The trendline of TSUM

has steeper positive slopes at larger data sizes than the other MATLAB GPU methods.

However, it is important to note, that the speedup values depend on the elapsed time of the

MATLAB CPU version. The elapsed time of the MATLAB CPU version is expected

increase exponentially as the data size increases, and the trendline might not be the best

prediction of the speedups. Nonetheless, it is clear that TSUM can perform better than the

other methods.

The simulation demonstrates the capability of TSUM, but TSUM on AGX Xavier

currently has several limitations. As it is a relatively new technology, UM are not supported

by most APIs or have limited functionalities. Typically, the OpenMP shared-memory

model can be used to share data among threads for traditional architecture, but it is not

supported for UM. The OpenMP 5.0 and later versions offers unified memory management

(unified_shared_memory) [122], but it is not supported on AGX Xavier yet. Due to

this limitation, the data managed by UVM should be copied explicitly for each task in the

program. Although creating the copies prevents race conditions, the copies of data can be

 36

too large and overflow the available memory. In this case, only a few angles that the

physical memory allows should be computed in parallel, and the rest of the angles should

be scheduled for later. For the 512x512x256 intensity data, 7-TSUM occupies about 25GB

of memory on AGX Xavier. Another shortcoming of AGX Xavier is that its Carmel CPU

has a relatively small cache compared to the Intel Xeon silver 4110 CPU, which causes a

great number of cache misses and memory accesses. These limitations will soon be

overcome as more powerful SoCs and APIs for UM are developed.

3.5 Summary

In this chapter, the CPU and GPU parallel computing were compared, and the

capability of TSUM for 3D TDPM was demonstrated. The most frequently used arithmetic

operation, FFT, and memory operation, array shift, are tested as benchmarks on various

combinations of hardware and APIs. The programs written in C/C++/CUDA to run on

Titan RTX performed the best for both FFT and array shift. However, data transfer

overhead negated its high performance. When the data transfer time is included, AGX

Xavier with UM was significantly faster for FFT, and the Intel Xeon CPU was faster for

memory operations.

In addition, 3D TDPM was simulated with 7-TSUM on Jetson AGX Xavier and

compared in terms of speed with the MATLAB versions on Intel Xeon and Titan RTX for

the various sizes of data. The methods on GPU performed better than the original 3D

TDPM MATLAB as the data size increased. 7-TSUM performed the best with a 1.74x

speedup over the original 3D TDPM, even though Titan RTX and its memory are far

superior to the Volta of AGX Xavier and its UPM. This result shows the power of UPM.

 37

With the development of hardware and software utilizing UM, TSUM has an even greater

potential to further improve the performance of 3D TDPM and realize the goal of real-time

imaging.

 38

CHAPTER 4. ADMM APPROACH FOR EFFICIENT

ITERATIVE TOMOGRAPHIC DECONVOLUTION

RECONSTRUCTION

4.1 Introduction

Iterative Tomographic Deconvolution Phase Microscopy (ITDPM) [97], as

introduced in Chapter 2.2, has been successful in reducing the image acquisition time and

overcoming the missing cone problem without a large compromise in accuracy. However,

ITDPM increases the computation time as its optimization method, gradient descent,

converges slowly. Furthermore, ITDPM is only applicable to 2D objects as it assumes the

object to be shift-invariant in one direction and thus cannot be applied to shift-variant

objects like Fiber Bragg Gratings (FBGs), Long-Period Fiber Gratings (LPFGs), and

biological cells.

The missing cone problem is a common issue in image reconstruction and has been

computationally addressed with iterative algorithms [140-145] such as non-convex edge-

preserving with half-quadratic optimization [146, 147], total variation [89, 148-151],

maximum-likelihood expectation- maximization [152], multigrid algorithm [153],

compressive sensing [154], and neural networks [155-157].

For 3D images, the gradient descent approach becomes even more challenging. The

joint optimization of multiple image characteristics becomes unworkably slow. However,

it has been recognized that invoking Alternating Direction Method of Multipliers (ADMM)

can allow the separate optimization of the image parameters. This has been done

 39

successfully, for example, by Chan et al. [158] in the deblurring of video images. These

researchers treated a time series of 2D video images as a 3D image. They separately

optimized 1) the data fidelity and 2) the total variation regularization to produce high

quality video. In another successful application of ADMM, Ikoma et al. [159] treated low-

photon-count 3D fluorescence images. In Ikoma’s work, there is separate optimization of

1) the data fidelity by minimizing the Poisson noise, 2) the Hessian-Schatten norm, and 3)

the indicator function given by the non-negative orthant.

In this chapter, ADMM is applied to TDPM to shorten its image acquisition and

processing times while improving its accuracy. The resulting through-focal scanned

images are processed using ADMM together with the Augmented Lagrangian Method to

optimize separately 1) the data fidelity by minimizing Gaussian noise, 2) the scattering

potential through total variation regularization, and 3) the indicator function consisting of

non-negativity and known zeros in the image. The convergence of the ADMM in

minimizing the Augmented Lagrangian Method is significantly improved by introducing a

heuristic "varying penalty parameter" following the procedure described by Boyd [160,

161]. ADMM-TDPM can reconstruct phase objects that are shift-variant in three spatial

dimensions. ADMM-TDPM achieves speedups of 5x in image acquisition time and greater

than 10x in image processing time with simultaneously higher accuracy compared to

TDPM. These results have been submitted for publication to Applied Optics [162].

4.2 ADMM-TDPM Algorithm

Alternating Direction Method of Multipliers (ADMM) is an algorithm for solving

convex minimization problems of the following form [160]:

 40

 min
𝑥𝑥,𝑧𝑧

𝑓𝑓(𝑥𝑥)  +  𝑔𝑔(𝑧𝑧)

s. t. 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑧𝑧 = 𝐶𝐶
(4.1)

ADMM can be used to minimize an objective function 𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥) where

minimization of 𝐹𝐹 has no closed-form solution. This minimization is performed separately

on 𝑓𝑓 and 𝑔𝑔 by introducing an equality constraint and variable 𝑧𝑧. This is often the case for

a data-fidelity function 𝑓𝑓 and regularization function 𝑔𝑔. This approach is similar to other

operator splitting methods such as split-Bregman iterations, as utilized in [163] and half-

quadratic splitting as in [146].

Using the image rotation objective from [97], we can formulate a convex

minimization problem using total variation (TV) regularization with a constraint for non-

negativity and known zeros in the solution. The following equation describes this problem

for 𝑁𝑁 angles. The quantity 𝐼𝐼𝑚𝑚 is the intensity stack measured at angle 𝜇𝜇, 𝑣𝑣 is the scattering

potential, Θ𝑚𝑚 𝑖𝑖s a rotation operator for an angle 𝜇𝜇, and 𝐴𝐴−𝑚𝑚 is the convolution by the PSF,

rotated by angle −𝜇𝜇. 𝑀𝑀 is a mask that is 1 where there are known zeros and 0 otherwise,

and ⊙ is a point-wise multiplication. That is,

 min
𝑣𝑣

1
2𝑁𝑁

�||𝐴𝐴−𝑚𝑚𝑣𝑣 − Θ𝑚𝑚𝐼𝐼𝑚𝑚||22 + 𝛼𝛼||𝑣𝑣||𝑇𝑇𝑇𝑇
𝑚𝑚

s. t. 𝑣𝑣 ≥ 0,

 𝑣𝑣 ⊙𝑀𝑀 = 0

(4.2)

The first term of the objective function is the data fidelity term, which ensures that the

recovered scattering potential matches the data given the presence Gaussian noise. The

second term is total variation regularization, which is the ℓ1 norm of the magnitude of the

 41

discrete gradient computed at each voxel. The quantities 𝐷𝐷𝑥𝑥, 𝐷𝐷𝑦𝑦, and 𝐷𝐷𝑧𝑧 are discrete

derivative operators in the 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-directions. Thus,

 ||𝑣𝑣||𝑇𝑇𝑇𝑇 =��(𝐷𝐷𝑥𝑥𝑣𝑣)𝑝𝑝2+ (𝐷𝐷𝑦𝑦𝑣𝑣)𝑝𝑝2 + (𝐷𝐷𝑧𝑧𝑣𝑣)𝑝𝑝2�
1/2

𝑝𝑝

 (4.3)

For more details, see the discussion of the 𝑇𝑇𝑉𝑉/ℓ2 problem in [158]. When used in

regularization, total variation constrains the magnitude of the gradient to be small while

allowing for large jumps (sharp edges) to exist in the solution. This encourages the method

to select a solution with a sparse gradient. The goal of including the regularization term is

to help solve the missing-cone problem and recover the scattering potential using fewer

tomographic angles, which can significantly improve acquisition time for TDPM. In

contrast, TDPM in [77] uses ℓ2 regularization on the scattering potential, resulting in a

smooth solution that does not preserve edges and requires a greater number of angles to

achieve good accuracy.

While total variation regularization has advantages, it is not smooth, and an

objective using total variation as regularization with a quadratic data fidelity term has no

closed-form solution. In order to minimize this objective efficiently, we used ADMM. To

use ADMM on this problem, we restructured our objective to match the format of Eq. (4.1).

First, the constraints can be replaced with an indicator function, 𝜄𝜄𝐶𝐶(𝑣𝑣), since ADMM only

allows a matrix equality constraint:

 𝜄𝜄𝐶𝐶(𝑣𝑣) = �∞ 𝑣𝑣 ≥ 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑣𝑣 ⊙𝑀𝑀 = 0
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 (4.4)

 42

Including 𝜄𝜄𝐶𝐶 as part of the objective results in the same minimum value as the original

objective. Any violation of the constraints results in the objective being infinite. Second,

we must introduce equality constraints to split the quadratic, total variation, and indicator

function terms. This allows us to take advantage of the operator splitting in ADMM. The

resulting minimization problem is:

 min
𝑣𝑣,𝑧𝑧1,𝑧𝑧2

1

2𝑁𝑁
�||𝐴𝐴−𝑚𝑚𝑣𝑣 − Θ−𝑚𝑚𝐼𝐼𝑚𝑚||22 + 𝛼𝛼||𝑧𝑧1||2,1 + 𝜄𝜄𝐶𝐶(𝑧𝑧2)
𝑚𝑚

 s. t. 𝐷𝐷𝑣𝑣 = 𝑧𝑧1 𝐷𝐷 = �𝐷𝐷𝑥𝑥𝑇𝑇𝐷𝐷𝑦𝑦𝑇𝑇𝐷𝐷𝑧𝑧𝑇𝑇�
𝑇𝑇

,

 𝑣𝑣 = 𝑧𝑧2

(4.5)

where || ∙ ||2,1 is the ℓ2 norm computed across the 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-dimensions followed by

the ℓ1 norm for the entire vector as in Eq. (4.3). The scaled augmented Lagrangian, for

penalty parameter 𝜌𝜌, can be written as:

 𝐿𝐿𝜌𝜌(𝑣𝑣, 𝑧𝑧1, 𝑧𝑧2, 𝜇𝜇1, 𝜇𝜇2) =
1

2𝑁𝑁
�‖𝐴𝐴−𝑚𝑚𝑣𝑣 − Θ−𝑚𝑚𝐼𝐼𝑚𝑚‖22 + 𝛼𝛼‖𝑧𝑧1‖2,1
𝑚𝑚

 + 𝜄𝜄𝐶𝐶(𝑧𝑧2) +
𝜌𝜌
2
‖𝐷𝐷𝑣𝑣 − 𝑧𝑧1 + 𝜇𝜇1‖22

 + 𝜌𝜌
2
�|𝑣𝑣 − 𝑧𝑧2 + 𝜇𝜇2|�

2
2
− 𝜌𝜌

2
||𝜇𝜇1||22 − 𝜌𝜌

2
||𝜇𝜇2||22

(4.6)

where 𝑧𝑧1 = �𝑧𝑧1,𝑥𝑥
𝑇𝑇 𝑧𝑧1,𝑦𝑦

𝑇𝑇 𝑧𝑧1,𝑧𝑧
𝑇𝑇 �

𝑇𝑇
, and 𝜇𝜇1 = �𝜇𝜇1,𝑥𝑥

𝑇𝑇 𝜇𝜇1,𝑦𝑦
𝑇𝑇 𝜇𝜇1,𝑧𝑧

𝑇𝑇 �
𝑇𝑇
 can be separated into corresponding

𝑥𝑥,𝑦𝑦, and 𝑧𝑧 components. ADMM-TDPM is thus

 𝑣𝑣𝑘𝑘+1 = argmin
𝑣𝑣

𝐿𝐿𝜌𝜌(𝑣𝑣, 𝑧𝑧1𝑘𝑘, 𝑧𝑧2𝑘𝑘, 𝜇𝜇1𝑘𝑘,𝜇𝜇2𝑘𝑘) (4.7)

 𝑧𝑧1𝑘𝑘+1 = argmin
𝑧𝑧1

𝐿𝐿𝜌𝜌�𝑣𝑣𝑘𝑘+1, 𝑧𝑧1, 𝑧𝑧2𝑘𝑘, 𝜇𝜇1𝑘𝑘,𝜇𝜇2𝑘𝑘� (4.8)

 43

 𝑧𝑧2𝑘𝑘+1 = argmin
𝑧𝑧2

𝐿𝐿𝜌𝜌�𝑣𝑣𝑘𝑘+1, 𝑧𝑧1𝑘𝑘+1, 𝑧𝑧2, 𝜇𝜇1𝑘𝑘, 𝜇𝜇2𝑘𝑘�
(4.9)

 𝜇𝜇1𝑘𝑘+1 = 𝜇𝜇1𝑘𝑘 + 𝐷𝐷𝑣𝑣 − 𝑧𝑧1 (4.10)

 𝜇𝜇2𝑘𝑘+1 = 𝜇𝜇2𝑘𝑘 + 𝑣𝑣 − 𝑧𝑧2 (4.11)

To solve the minimization in Eq. (4.7), we can take the gradient with respect to

𝑣𝑣 and set it to zero. This minimization has a closed-form solution since it is quadratic. For

a full derivation see Appendix C. We can use three fast Fourier transforms to solve the

minimization quickly because 𝐴𝐴,𝐷𝐷𝑥𝑥,𝐷𝐷𝑦𝑦,𝐷𝐷𝑧𝑧 and the identity matrix are all block circulant

matrices:

 �̂�𝛢𝑇𝑇𝛪𝛪 ←
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

 (4.12)

 |ℱ��̂�𝛢�|2 ←
1
𝑁𝑁
� |ℱ{𝐴𝐴−𝑚𝑚}|2
𝑚𝑚

(4.13)

 |ℱ{𝐷𝐷}|2 ← |ℱ{𝐷𝐷𝑥𝑥}|2 + |ℱ�𝐷𝐷𝑦𝑦�|2𝑧𝑧 + |ℱ{𝐷𝐷𝑧𝑧}|2
(4.14)

 𝑣𝑣𝑘𝑘+1 ← ℱ−1 �
ℱ{�̂�𝛢𝑇𝑇𝛪𝛪 + 𝜌𝜌𝐷𝐷𝑇𝑇�𝑧𝑧1𝑘𝑘 − 𝜇𝜇1𝑘𝑘� + 𝜌𝜌(𝑧𝑧2𝑘𝑘 − 𝜇𝜇2𝑘𝑘)}

|ℱ��̂�𝛢�|2 + 𝜌𝜌(|ℱ{𝐷𝐷}|2 + 1)
� (4.15)

The quantities �̂�𝛢𝑇𝑇𝛪𝛪, |ℱ��̂�𝛢�|2, and |ℱ{𝐷𝐷}|2 do not depend on any variables being

optimized, so they need to be computed only once prior to the iteration. Additionally, the

entire denominator can be precomputed provided ρ does not change. Additionally, we

implemented the 𝐷𝐷𝑇𝑇operator by taking the sum of 𝐷𝐷𝑥𝑥𝑇𝑇𝑣𝑣, 𝐷𝐷𝑦𝑦𝑇𝑇𝑣𝑣, and 𝐷𝐷𝑧𝑧𝑇𝑇𝑣𝑣. The operators 𝐷𝐷𝑥𝑥𝑇𝑇,

 44

𝐷𝐷𝑦𝑦𝑇𝑇, 𝐷𝐷𝑧𝑧𝑇𝑇 , in turn, were implemented using a circular convolution with a difference kernel,

[0, -1, 1], in the 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-directions.

The minimization step in Eq. (4.8) is identical to the one presented in [158], except

with a different scaling for the scaled version of ADMM. That is,

 𝑢𝑢𝑥𝑥 ← 𝐷𝐷𝑥𝑥𝑣𝑣𝑘𝑘+1 + 𝜇𝜇1,𝑥𝑥 (4.16)

 𝑢𝑢𝑦𝑦 ← 𝐷𝐷𝑦𝑦𝑣𝑣𝑘𝑘+1 + 𝜇𝜇1,𝑦𝑦 (4.17)

 𝑢𝑢𝑧𝑧 ← 𝐷𝐷𝑧𝑧𝑣𝑣𝑘𝑘+1 + 𝜇𝜇1,𝑧𝑧 (4.18)

 𝑢𝑢 ← [𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2 + 𝑢𝑢𝑧𝑧2]1/2 (4.19)

 𝑧𝑧1,𝑥𝑥
𝑘𝑘+1 ← max {0,𝑢𝑢 −

𝜆𝜆
𝜌𝜌

 } ∙
𝑢𝑢𝑥𝑥
𝑢𝑢

 (4.20)

 𝑧𝑧1,𝑦𝑦
𝑘𝑘+1 ← max {0,𝑢𝑢 −

𝜆𝜆
𝜌𝜌

 } ∙
𝑢𝑢𝑦𝑦
𝑢𝑢

 (4.21)

 𝑧𝑧1,𝑧𝑧
𝑘𝑘+1 ← max {0, 𝑢𝑢 −

𝜆𝜆
𝜌𝜌

 } ∙
𝑢𝑢𝑧𝑧
𝑢𝑢

 (4.22)

We implemented the 𝐷𝐷𝑥𝑥𝑇𝑇, 𝐷𝐷𝑦𝑦𝑇𝑇, and 𝐷𝐷𝑧𝑧𝑇𝑇 operators by performing a circular convolution in the

spatial domain with a difference kernel, [1, -1], in the 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-directions.

The minimization in Eq. (4.9), after discarding terms not involving 𝑧𝑧2, is the 𝑧𝑧2 that

minimizes the following objective function:

The solution is the value closest to 𝑣𝑣 + 𝜇𝜇2 that satisfies the constraints from the indicator

function. To satisfy the non-negativity constraint, we take the maximum between 𝑣𝑣 + 𝜇𝜇2

 min
𝑧𝑧2

 𝜄𝜄𝐶𝐶(𝑧𝑧2) +
𝜌𝜌
2

||𝑣𝑣 − 𝑧𝑧2 − 𝜇𝜇2||22 (4.23)

 45

and 0. To satisfy the known zeroes constraint, we set every voxel that is known to be 0

(where 𝑀𝑀𝑝𝑝 = 1) to 0. That is,

 𝑧𝑧2𝑘𝑘+1 ← max {0, 𝑣𝑣𝑘𝑘+1 + 𝜇𝜇2𝑘𝑘 } (4.24)

 (𝑧𝑧2𝑘𝑘+1)𝑝𝑝 ← 0 where 𝑀𝑀𝑝𝑝 = 1 (4.25)

In order to determine if the algorithm has converged, we used the ℓ2 norm of the

primal and dual residuals, ||𝑟𝑟||2 and ||𝑠𝑠||2 as suggested in [160]. Thus,

 ||𝑟𝑟𝑘𝑘+1||2 ← [||𝜌𝜌𝑘𝑘(𝐷𝐷𝑣𝑣𝑘𝑘+1 − 𝑧𝑧1𝑘𝑘+1)||22 + ||𝜌𝜌𝑘𝑘(𝑣𝑣𝑘𝑘+1 − 𝑧𝑧2𝑘𝑘+1)||22]1/2 (4.26)

 ||𝑠𝑠𝑘𝑘+1||2 ← ||𝜌𝜌𝑘𝑘(𝐷𝐷𝑇𝑇�𝑧𝑧1𝑘𝑘 − 𝑧𝑧1𝑘𝑘+1� + 𝑧𝑧2𝑘𝑘 − 𝑧𝑧2𝑘𝑘+1)||2 (4.27)

The algorithm has converged when both||𝑟𝑟||2 < 𝜖𝜖𝑝𝑝𝑟𝑟𝑝𝑝 and ||𝑠𝑠||2 < 𝜖𝜖𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑. 𝜖𝜖𝑝𝑝𝑟𝑟𝑝𝑝 and 𝜖𝜖𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑

are computed as

𝜖𝜖𝑝𝑝𝑟𝑟𝑝𝑝 ← 𝑝𝑝1/2𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎

+ 𝜖𝜖𝑟𝑟𝑟𝑟𝑑𝑑𝜇𝜇𝑎𝑎𝑥𝑥�[||𝑣𝑣𝑘𝑘+1||22 + ||𝐷𝐷𝑣𝑣𝑘𝑘+1||22]1/2, [||𝑧𝑧1𝑘𝑘+1||22 + ||𝑧𝑧2𝑘𝑘+1||22]1/2 �
(4.28)

 𝜖𝜖𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑 ← 𝑛𝑛1/2𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜖𝜖𝑟𝑟𝑟𝑟𝑑𝑑||𝐷𝐷𝑇𝑇𝜇𝜇1𝑘𝑘+1 − 𝜇𝜇2𝑘𝑘+1||2, (4.29)

where 𝑝𝑝 is the number of elements in 𝑧𝑧1 and 𝑧𝑧2, n is the number of elements in 𝑣𝑣, 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 is

an absolute tolerance, and 𝜖𝜖𝑟𝑟𝑟𝑟𝑑𝑑 is the relative tolerance.

The quantities ||𝑟𝑟||2 and ||𝑠𝑠||2 are used to dynamically update the penalty

parameter, 𝜌𝜌, if the difference between the primal and dual residuals becomes large. A

larger value for the penalty parameter, 𝜌𝜌, causes a violation of the constraints to cost more

 46

in the objective function. A smaller value for 𝜌𝜌 has the opposite effect. This dynamic

updating can speed up convergence.

If the primal residual is much larger than the dual residual, ||𝑟𝑟𝑘𝑘+1||2 > 𝜏𝜏||𝑠𝑠𝑘𝑘+1||2,

then:

 𝜌𝜌𝑘𝑘+1 ← 𝛾𝛾𝜌𝜌𝑘𝑘 (4.30)

 𝜇𝜇1𝑘𝑘+1 ←
1
𝛾𝛾
𝜇𝜇1𝑘𝑘+1 (4.31)

 𝜇𝜇2𝑘𝑘+1 ←
1
𝛾𝛾
𝜇𝜇2𝑘𝑘+1 (4.32)

where 𝜏𝜏 is the maximum allowed difference in magnitude and 𝛾𝛾 is the update parameter. If

the dual residual is much larger than the primal residual, ||𝑠𝑠𝑘𝑘+1||2 > 𝜏𝜏||𝑟𝑟𝑘𝑘+1||2, then:

 𝜌𝜌𝑘𝑘+1 ←
1
𝛾𝛾
𝜌𝜌𝑘𝑘 (4.33)

 𝜇𝜇1𝑘𝑘+1 ← 𝛾𝛾𝜇𝜇1𝑘𝑘+1 (4.34)

 𝜇𝜇2𝑘𝑘+1 ← 𝛾𝛾𝜇𝜇2𝑘𝑘+1 (4.35)

otherwise, the value for 𝜌𝜌 remains the same, 𝜌𝜌𝑘𝑘+1 ← 𝜌𝜌𝑘𝑘.

 The full algorithm is represented by the flowchart in Fig. 4.1. In addition to the

steps of ADMM, we subtracted the background from the intensity images. Additionally,

we scaled ℱ{𝐴𝐴} before any computation by dividing it by the absolute value of its

maximum element. After the termination of the algorithm, we divided 𝑣𝑣 by the same value

to recover the proper scale. This scaling was performed to prevent issues due to very large

 47

and very small floating-point numbers. Additionally, we apply the constraints from Eqs.

(4.24) and (4.25) to ensure that the 𝑣𝑣 returned is subject to the constraints.

4.3 Simulation, Objects, and Evaluation

 In order to validate the algorithm, we simulated intensity stacks using the modified

split-step beam propagation method (SSBPM) as in [97] and [77]. We compared the results

to the TDPM method in [77]. We simulated 512x512x256 intensity stacks from 15 different

tomographic angles, equally spaced from 0° to 180°. The objective numerical aperture,

𝑁𝑁𝐴𝐴𝑜𝑜, was 0.75, and the condenser numerical aperture, 𝑁𝑁𝐴𝐴𝑐𝑐, was 0.375. The wavelength of

light was 546 nm, and the refractive index of the oil, 𝑛𝑛𝑐𝑐, was 1.458. For evaluating ADMM-

TDPM, only three angles, 0°, 60°, and 120°, were used, while 15 angles from 0° to 180°

with increments of 12° were used for TDPM.

We simulated three different objects: a bead, a mixture of objects, and a modified

Shepp-Logan phantom. The bead had a maximum refractive index difference with respect

to the oil was 0.04, similarly to the bead used in [164]. The gel in the mixture of objects

has a 0.01 refractive index difference between the gel and oil. The beads in the gel have a

0.01, 0.02, 0.03, 0.04, and 0.05 difference between the refractive index of each bead and

the gel and are off-center from the axis of rotation. The modified Shepp-Logan phantom

has a maximum refractive index difference with respect to the oil of 0.004. We created the

modified Shepp-Logan phantom using the phantom3d function from MATLAB's file

exchange [138].

 48

Figure 4.1 – Flowchart for the ADMM-TDPM algorithm.

 49

Similarly to [97], the normalized root-mean-square error (NRMSE) is used to

evaluate the performance of the ADMM-TDPM algorithm. We computed the NRMSE as

the difference of the recovered refractive index from 𝑛𝑛0, Δ𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑐 = 𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑐 − 𝑛𝑛0 and the

difference of the ideal refractive index from 𝑛𝑛0, Δ𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑 = 𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑 − 𝑛𝑛0 over each voxel,

denoted by the index 𝑗𝑗.

𝑁𝑁𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁(Δ𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑐 ,Δ𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑) = �

∑ �(Δ𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑐)𝑗𝑗 − (Δ𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑)𝑗𝑗�
2

𝑝𝑝

∑ (Δ𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑)𝑗𝑗2𝑝𝑝
�

1/2

 (4.36)

Additionally, we report the number of iterations and total time in seconds for each

algorithm in Tables 4.1, 4.2, and 4.3. The running time includes loading the intensity data

from storage. The number of iterations for TDPM is denoted by a "-" since TDPM is non-

iterative. Each algorithm was implemented using MATLAB R2021a on a CPU with an

AMD Ryzen 5 5600x processor and 32 GB of RAM.

4.4 Results and Discussion

The results for the bead, the mixture of objects, and the phantom are shown in

Tables 4.1, 4.2, and 4.3, respectively. Figures for the cross sections for each axis in each

direction for each object and algorithm are shown in Figs. 4.2, 4.3, and 4.4.

TDPM from [77] was simulated using 15 angles for two difference choices of

regularization parameter, 𝛼𝛼. Choosing 𝛼𝛼 = 10−2 corresponds to not enough regularization,

as can be seen in the artifacts produced in the reconstructions in Figs. 4.3 and 4.4. Choosing

𝛼𝛼 = 10−1, on the other hand, removes the reconstruction artifacts but results the in an

attenuated refractive index and halo artifacts.

 50

Table 4.1 – Results for the bead object.

Method Iteration NRMSE Elapsed
Times(s)

TDPM, 𝛼𝛼 = 10−1 - 0.4053 573.6
TDPM, 𝛼𝛼 = 10−2 - 0.3612 557.2

ADMM-TDPM, 𝛾𝛾 = 1 600 0.3237 1863
ADMM-TDPM, 𝛾𝛾 = 2 551 0.3273 1722

ADMM-TDPM constrained, 𝛾𝛾 = 1 500 0.3098 3573
ADMM-TDPM constrained, 𝛾𝛾 = 2 198 0.3111 644.8

Table 4.2 – Results for the mixture of objects.

Method Iteration NRMSE Elapsed
Times(s)

TDPM, 𝛼𝛼 = 10−1 - 0.5362 572.5

TDPM, 𝛼𝛼 = 10−2 - 0.5192 564.1

ADMM-TDPM, 𝛾𝛾 = 1 600 0.7146 1935

ADMM-TDPM, 𝛾𝛾 = 2 18 0.7274 89.16

ADMM-TDPM constrained, 𝛾𝛾 = 1 600 0.3059 1973

ADMM-TDPM constrained, 𝛾𝛾 = 2 41 0.3129 169.5

Table 4.3 – Results for the modified Shepp-Logan phantom.

Method Iteration NRMSE Elapsed
Times(s)

TDPM, 𝛼𝛼 = 10−1 - 0.5806 565.8

TDPM, 𝛼𝛼 = 10−2 - 0.6476 556.3

ADMM-TDPM, 𝛾𝛾 = 1 382 0.7191 1222

ADMM-TDPM, 𝛾𝛾 = 2 14 0.7738 82.37

ADMM-TDPM constrained, 𝛾𝛾 = 1 320 0.1982 1070

ADMM-TDPM constrained, 𝛾𝛾 = 2 46 0.203 185.7

 51

Figure 4.2 – Recovered refractive index for the bead object.

 52

Figure 4.3 – Recovered refractive index for the mixture of objects.

 53

Figure 4.4 – Recovered refractive index for the modified Shepp-Logan phantom.

 54

ADMM-TDPM was simulated with acceleration and constraints. For acceleration,

we chose to run the algorithm with and without the update to the penalty parameter, ρ. We

also ran it, accelerated and unaccelerated, with and without the constraints. We found the

regularization parameter 𝛼𝛼 for each object by searching for it in a smaller problem,

128x128x64. The regularization parameters found for the bead, the mixture of objects, and

phantom were 𝛼𝛼 = 0.03171, 𝛼𝛼 = 0.002177, and 𝛼𝛼 = 0.001397, respectively. The parameter

found for the bead is higher because the total variation is minimal for the image, with the

only gradient being on the surface of the bead. The other hyperparameters used for

ADMM-TDPM were 𝜌𝜌0= 0.6667, 𝜏𝜏= 5, 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 = 10−5, and 𝜖𝜖𝑟𝑟𝑟𝑟𝑑𝑑 = 10−3. Using M, the data

were masked to be zero outside a cylinder within which the objects were located. We

evaluated the algorithm using two different values of 𝛾𝛾. Selecting of 𝛾𝛾 = 1 corresponds to

no acceleration. Selecting 𝛾𝛾 = 2 corresponds to scaling 𝜌𝜌 by two if the primal and dual

residuals are not sufficiently close together, as in Eqs. (4.26) to (4.29). We limited the

maximum number of iterations to 600. This limit was reached for the bead object

reconstructed with ADMM-TDPM with 𝛾𝛾 = 1 (Table 4.1) and for the mixture of objects

reconstructed with 𝛾𝛾 = 1 (Table 4.2). The limit was also reached for ADMM-TDPM

constrained with 𝛾𝛾 = 1 (Table 4.2).

ADMM-TDPM with constraints outperformed TDPM using only three angles.

TDPM with 15 angles and 𝜆𝜆 = 10−1 had an NRMSE of 0.4053, 0.5362, and 0.5806 for the

bead, the mixture of objects, and the phantom. ADMM-TDPM constrained with three

angles and 𝛾𝛾 = 2 had an NRMSE of 0.3111, 0.3129, and 0.203 for the three objects. While

using the acceleration resulted in a slightly higher NRMSE, it also resulted in speedups of

5.54x, 11.64x, and 5.78x for the bead, the mixture of objects, and phantom for the

 55

constrained version of ADMM-TDPM. This speedup is significant and suggests that the

acceleration should be used despite the slight increase in error. ADMM-TDPM

unconstrained with three angles and 𝛾𝛾 = 2 had an NRMSE of 0.3273, 0.7274, and 0.7738,

which shows that including the non-negativity and known zero constraints significantly

improve the recovered image.

Even though ADMM-TDPM is iterative, the algorithm was faster than TDPM for

the mixture of objects and phantom for the accelerated version. This is because loading the

data for angles from storage and computing �̂�𝛢𝑇𝑇𝛪𝛪 grows linearly as angles are added. Since

ADMM-TDPM only used three angles, this step of the algorithm is much faster. The

algorithm took longer than the bead because the regularization parameter was larger, which

makes the objective less like a quadratic and more difficult to minimize.

In Figs. 4.2 and 4.4 the x-z cross section is notably worse for the bead and phantom

objects when using ADMM-TDPM. This is because the 𝑦𝑦-direction is the axis of rotation.

4.5 Summary

ADMM-TDPM with the Augmented Lagrangian Method has been applied to

reconstruct 3D microscopic phase images. The optimizations of the data fidelity by

minimizing Gaussian noise and the scattering potential through total variation

regularization with the constraints of non-negativity and known zeros have been performed

to reconstruct 3D RI distributions from the intensity images of three angles. The simulation

results of reconstructing the mixture of 3D objects and the 3D modified Shepp-Logan

phantom demonstrate that ADMM-TDPM can be applied to shift-variant objects such as

FBGs and biological cells. ADMM-TDPM with the non-negativity and known-zeros

 56

constraints achieves significantly faster convergence and smaller error than the original

TDPM with 15 angles. ADMM-TDPM has the potential to realize high-resolution real-

time 3D imaging with short image acquisition time and fast processing. These results have

been submitted for publication to Applied Optics [162]

 57

CHAPTER 5. FUTURE WORK

5.1 Real-time TDPM with TSUM

As mentioned in Ch. 3, TSUM has great potential to realize real-time quantitative

phase imaging once superior SoCs and APIs for UM are developed. Meanwhile, TSUM

can be applied to 3D TDPM with measured data. Unlike simulated data, measured data

requires registration steps to align each 2D image in the 3D through-focal images. The

registration is done using cross-correlation of two boundary images in the z-direction

(along the illumination axis) and symmetry in the x-direction (perpendicular to the

rotational axis). In the original MATLAB version of 3D TDPM, the registration is

processed sequentially. TSUM can process the registration of each tomographic angle in

parallel and accelerate the processing of measured data.

3D TDPM imaging can be divide into three steps: image acquisition, processing, and

plotting. The original version of 3D TDPM performs these three steps sequentially. It

collects intensity images at 15 different angles from a microscope, computes RID, and plots

the results. As indicated in Fig. 5.1, pipelining the three steps could achieve up to a 3x

speedup. For example, the intensity data at the first angle are collected, and computing the

scattering potential for the first angle can start as soon as the data collection is finished.

The intensity data at the second angle are collected while the scattering potential for the

first angle is being computed. Converting the scattering potential to RID and rendering it

can follow the processing at each angle, but it may improve the performance if it waits

until scattering potentials from all angles are computed. Once all 15 angles are computed,

a complete RID can be rendered. Moreover, the pipeline can continue to update the RID.

 58

Time-variant objects, like live biological cells, can potentially be continuously investigated

using the pipelined TDPM.

Figure 5.1 – 3D TDPM pipeline for real-time imaging.

5.2 Real-time imaging with ADMM-TDPM

 ADMM-TDPM can be implemented for measured experimental data. The

simulation results in Ch. 4 show ADMM-TDPM can achieve higher accuracy with three

angles than the original TDPM can with 15 angles. Pipelining can also be applied to

ADMM-TDPM for continuous imaging as shown in Fig 5.2. It can collect the first set of

three angles (e.g., 0°, 60°, and 120°), compute RID with ADMM, and render the output.

While RID are computed for the first three angles, the next set of three angles (e.g., 12°,

72°, and 132°) can be collected. Once the RIDs of both sets of angles are computed, the

two outputs may be combined and rendered.

Figure 5.2 – 3D ITDPM pipeline for real-time imaging.

 59

5.3 Real-time imaging with ADMM-TDPM-TSUM

 ADMM-TDPM could be accelerated using a GPU. As ADMM-TDPM is an

iterative method, an input of an iteration depends on the output of the previous iteration.

Thus, the iteration loop cannot be parallelized, and a considerable speedup is not expected

from GPU computing. However, arrays that do not have dependencies in each iteration can

be computed in parallel. TSUM can be applied to these independent array computations in

each iteration. For example, updating the Lagrange multipliers, 𝑧𝑧1, 𝑧𝑧1, 𝜇𝜇1, and 𝜇𝜇2, as well

as computing of primal and dual residuals can be parallelized. Utilizing a UPM eliminates

the data transfer overhead; thus, the speedup can be significant when the arrays are large.

 60

APPENDIX A. TDPM 3D MATLAB 1.0 USER MANUAL

A.1 Introduction

 The purpose of this manual is to provide instructions on the use of the 3D

tomographic deconvolution phase microscopy (TDPM) MATLAB program developed by

Micah Jenkins and Yijun Bao to reconstruct the 3D refractive-index distributions (RIDs)

of optical fibers or capillaries. Flowcharts in A.2 represents the sequence of algorithms in

the two main script files, TDPM_3D_measure_complete.m and

TDPM_3D_simulate_complete.m. A.3 offers detailed explanations on parameters and

algorithms in TDPM_3D_measure_complete.m, TDPM_3D_simulate_complete.m, and

the two main functions, Idata_3D_from_measure.m and TDPM_from_Idata_3D.m. This

manual mainly focuses on capillaries containing microspheres. However, the instructions

can also be a guide for optical fibers with different parameter settings. For a first-time user,

A.4 offers the steps to run the main script file, TDPM_3D_measure_complete.m, to recover

the RIDs of microspheres in a microcapillary. The algorithms follow the RI recovery

methods in Micah Jenkins’ paper [77] with a few modifications. More details can be found

Chapter 2.1 and in Jenkins’, Bao’s, and Noah’s theses [165-167].

 61

A.2 Flowcharts of TDPM 3D

A.2.1 TDPM_3D_measure_complete.m

Figure A.1 – Flowchart of TDPM_3D_measure_complete.m

TDPM_3D_measure_complete.m

Return: RID is saved in a RIDs folder.

Display: Three RID figures in the zx, zy, and yx planes

Input:
Through-focal images over 180°

Idata_3D_from_measure.m

Input parameters: dir_images, dir_Idata, downs, islazy,
ifRegister, Regy, PSF_3D, z2x, ref, M

Return: Idata_3D is saved in a folder assigned to dir_Idata.

1. Background intensity normalization and subtraction

2. x-direction registration

3. z-direction registration

TDPM_from_Idata_3D.m

Input parameters: idatapsf_3d, dir_Idata, Idata_type, downs,
Leng_obj, noil, NAo, NAc, SAMPLING_RATE, lambda, regul,
islazy, method_regul, period, shift_z, Object

Return: RID

1. Filtering

2. Rotation via bilinear

3. interpolation

 62

A.2.2 TDPM_3D_simulate_complete.m

Figure A.2 – Flowchart of TDPM_3D_simulate_complete.m

TDPM_3D_simulate_complete.m

Return: RID is saved in a RIDs folder.

Display: Three ideal RID cross sections and three recovered RID cross sections in the
zx, zy, and yx planes

Idata_3D_from_measure.m

Input parameters: dir_images, dir_Idata, downs, islazy,
ifRegister, Regy, PSF_3D, z2x, ref, M

Return: Idata 3D is saved in a folder assigned to dir Idata.

1. Background intensity normalization and subtraction
2. x-direction registration
3. z-direction registration

TDPM_from_Idata_3D.m

Input parameters: idatapsf_3d, dir_Idata, Idata_type, downs,
Leng_obj, noil, NAo, NAc, SAMPLING_RATE, lambda, regul,
islazy, method_regul, period, shift_z, Object

 ⨁

Return: RID

High frequency

1. Filtering
2. Rotation via bilinear

interpolation
3. High-pass filtering

Low frequency

1. 2D phase retrieval
2. Ram-Lak filtering
3. Rotation via bilinear

interpolation
4. Low-pass filtering

create_object.m

Input parameters: Obj, Lengr, Lengy
Return: object is saved in Objects folder.

RI synthesis

 63

A.3 Main Files

A.3.1 Main Script File TDPM_3D_measure_complete.m

 TDPM_3D_measure_complete.m processes the entire 3D TDPM recovery,

including reading measured 3D intensities, calculating or loading 3D PSF, and TDPM

recovery.

• (Line 3 – 66) Parameter settings (heading)

o run_Idata_3D = true to generate Idata_3D or false to load existing Idata_3D

o Object = Type of object

 ‘SMF’, ‘PMF’, ‘PCF’, ‘LPFG’, ‘FBG’ are for various fibers.

 ‘mix’ contains capillary, gel, and microsphere.

 ‘gel’ contains capillary and gel.

 ‘spheres’ contains microspheres.

o noil = Refractive index of immersion oil

o NAo = The numerical aperture of an objective lens

o NAc = The numerical aperture of a condenser lens

o NAci = The inner numerical aperture of a condenser lens for annular source

o M = Magnification of the objective lens

o SAMPLING_RATE = Effective pixel size of a camera

o lambda = Wavelength of a light source

o downs = Downsampling ratio

o Leng = Length of the object

o regul = Regularization parameter

 64

o psf_type = A type of PSF (point spread function; inverse Fourier transform of

POTF, phase optical transfer function)

 ‘analytical’ is from a rotation of 2D POTD calculated analytically.

 ‘SSBPM_Gaus’ is from 3D SSBPM with Gaussian source.

o source_type = Type of source function

 ‘disk’ is for disk source.

 ‘annular’ is for annular source.

 ‘Gaus’ is for Gaussian source.

o Method_regul = regularization method

 ‘Wiener’ uses Wiener filter and provides spatially smoother results.

 ‘hard’ uses a hard cutoff and provides more accurate results for acceptable

frequency.

 ‘mix’ uses Wiener filter for low-frequency part and the hard cutoff for high-

frequency part. It should be chosen only for FBG.

o shift_z = Manual shift of the z direction in pixels

o z2x = Ratio between Delta_z and Delta_x where Delta_z is the distance between

the neighboring through-focal images, and Delta_x is the pixel size of camera.

z2x = 1 is used for FBG, and z2x = M/10 is used for other objects.

o dir_Idata = Directory of a folder to store intensity data

o islazy = Use of rotation angles

 ‘lazy’ uses a single angle (the first angle) of data, assuming images are the

same for every rotation angle. It can be used for a single-mode fiber or an

empty capillary.

 65

 ‘full’ uses different data for every rotation angle.

o forder_measure = Directory of a folder to store 3D intensity

o ifRegister = Registration method

 ‘RegC’ uses cross-correlation with two boundary images (for fiber

measurements).

 ‘RegC4’ uses cross-correlation with two boundary images and 2x2 least

squares fitting (for fiber measurements).

 ‘RegCall’ uses cross-correlation with a full image.

 ‘RegCall3’ uses 3D cross-correlation with an entire 3D image.

 ‘RegCS’ uses cross-correlation with two boundary images in the z-direction

and symmetry in the x-direction (The current best method for cell

measurement).

 ‘RegCS4’ uses cross-correlation with two boundary images and 2x2 least

squares fitting in the z-direction and symmetry in the x-direction.

 ‘RegCSall’ uses cross-correlation with a full image in the z-direction and

symmetry in the x-direction.

 ‘RegSSIM3’ uses 3D SSIM.

 ‘RegS’ uses the symmetry of intensity times height (I x h) for the z-direction

and intensity for the x-direction.

 ‘noReg’ uses no registration.

o Regy = true if the y-direction is registered, or false

o (Line 55 - 66) Initialization of parameters

 If the object is ‘mix’, ‘gel’, or ‘spheres’, reference intensity (ref) is ‘capillary’

 66

• (Line 67 – 157) Load or Calculate PSF_3D (heading)

- If the type of PSF (psf_type) is ‘SSBPM_Gaus’, pre-calculated 3D PSF data is

loaded according to the magnification of objective lens (M) and the chosen

downsampling rate (downs).

- If the type of PSF (psf_type) is ‘analytical’, build_2DOTF_analytical_disk,

build_2DOTF_analytical_annular, or build_2DOTF_analytical_Gaus is called

according to source_type to build 2D PSF (PSF_2D) and 2D POTF (POTF_2D)

in the xz plane. calulate_3d_psf_rotate function calculates 3D PSF (PSF 3D) by

rotating POTF_2D along the z-axis. The aliased pattern in PSF_3D is removed.

• (Line 158 – 205) Calculate 3D intensity (heading)

- The directory of measurement images (dir_images) should be specified under the

chosen object. If the object is ‘gel’, rotation is not required. If the object is ‘mix’,

the directory should be specified under the correct NAc and noil.

- If run_Idata_3D = true in the parameter setting, Idata_3D_from_measure

function is called.

• (Line 206 – 218) TDPM recovery (heading)

- TDPM_from_Idata_3D is called to calculate 3D refractive index distribution

(RID).

- If the downsampling rate is 1, the size of RID is likely to be larger than 2GB, and

the format of RID is required to be v7.3 by MATLAB. (Line 219 – 256) Plot the

recovered RID cross sections in 3 View angles (heading).

 67

- Refractive index distributions in the zx, zy, and yx planes are plotted.

A.3.2 Main Script File TDPM_3D_simulate_complete.m

TDPM_3D_simulate_complete.m simulates 3D TDPM, including simulating 3D

intensities, calculating or loading 3D PSF, and TDPM recovery.

• (Line 3 – 34) Parameter setting (heading)

o Run_idata_3D = true to generate Idata_3D or false to load existing Idata_3D

o noil = Refractive index of immersion oil

o NAo = The numerical aperture of an objective lens

o NAc = The numerical aperture of a condenser lens

o NAci = The inner numerical aperture of a condenser lens for annular source

o M = Magnification of the objective lens

o SAMPLING_RATE = Effective pixel size of a camera

o lambda = Wavelength of a light source

o Obj = type of simulation object

 ‘mix’ contains capillary, gel, and microsphere.

 ‘gel’ contains capillary and gel.

 ‘spheres’ contains microspheres.

 ‘squares’, ‘squares2’, ‘diamond’, and ‘diamonds’ are different patterns.

o shift_z = manual shift in the z-direction in pixels

o lengr = length of the object in the x- and z-direction

o lengy = length of the object in the y- direction

o islazy = Use of rotation angles

 68

 ‘lazy’ uses a single angle (the first angle) of data, assuming images are the

same for every rotation angle. It can be used for an empty capillary.

 ‘full’ uses different data for every rotation angle

o regul = Regularization parameter

o Method_regul = regularization method

 ‘Wiener’ uses Wiener filter and provides spatially smoother results.

 ‘hard’ uses a hard cutoff and provides more accurate results for acceptable

frequency.

 ‘mix’ uses Wiener filter for low-frequency part and the hard cutoff for high-

frequency part. It should be chosen only for FBG.

o psf_type = A type of PSF (point spread function; inverse Fourier transform of

POTF, phase optical transfer function)

 ‘analytical’ is from a rotation of 2D POTD calculated analytically.

 ‘SSBPM_Gaus’ is from 3D SSBPM with Gaussian source.

o source_type = Type of source function

 ‘disk’ is for disk source.

 ‘annular’ is for annular source.

 ‘Gaus’ is for Gaussian source.

• (Line 35 - 55) Simulate the intensity images (heading)

- Create_object function is called to generate a chosen object, Obj.

- If run_Idata_3D = true, and intensity data does not exist in the intensities folder,

SSBPM_simulate_3D is called to generate Idata_3D.

 69

• (Line 57 – 111) load PSF_3D (heading)

- If the type of PSF (psf_type) is ‘analytical’, build_2DOTF_analytical_disk,

build_2DOTF_analytical_annular, or build_2DOTF_analytical_Gaus is called

according to source_type to build 2D PSF (PSF_2D) and 2D POTF (POTF_2D)

in the xz plane. calulate_3d_psf_rotate function calculates 3D PSF (PSF 3D) by

rotating POTF_2D along the z-axis.

- If the type of PSF (psf_type) is ‘SSBPM_Gaus’, either pre-calculated 3D PSF

data is loaded or POTF_3D_in_TDPM_SSBPM function is called to generate a

new PSF_3D.

• (Line 112 – 124) TDPM recovery (heading)

- TDPM_from_Idata_3D is called to calculate 3D refractive index distribution

(RID).

- RI of oil (noil) is subtracted from RID.

• (Line 125 – 130) Calculate errors (heading)

- Normalized root-mean-square error (NRMSE) between the ideal RID and the

recovered RID is calculated.

• (Line 131 – 164) Plot the ideal RID cross sections in 3 view angles (heading)

- Three figures of the ideal RID (object_center) in the zx, zy, and yx planes are

displayed.

• (Line 165 – 197) Plot the recovered RID cross sections in 3 view angles (heading)

- Three figures of the recovered RID (RID_small) in the zx, zy, and yx planes are

displayed.

 70

A.3.3 Major Function File Idata_3D_from_measure.m

Function Idata_3D_from_measure(dir_images, dir_Idata, downs, islazy, ifRegister, Regy,

 PSF_3D, z2x, ref, M)

-- Idata_3D_from_measure.m calculates 3D images for different angles from the

measurement capillary data.

-- The objective lens is set to be 50x, the pixel size of the camera (Delta_x) to be

196nm, and the measured object is a capillary.

-- The function takes the following parameters:

- dir_image (directory of the folder storing the measured data containing

‘image’ folder)

- dir_Idata (directory of the folder to store the calculated 3D intensity data)

- downs (downsampling rate)

- islazy (’lazy’ or ‘full’, use of rotation angles)

- ifRegister (registration method)

- Regy (true if the y-direction is registered, or false)

- PSF_3D (3D PSF)

- z2x (Delta_z/Delta_x, 1 for FBG measurement and M/10 for other objects)

- ref (‘fiber’ or ‘capillary’, the reference object used for registration)

- M (Magnification of the objective lens)

• (Line 31 – 98) Set parameters (heading)

 71

- The current parameters can be kept the same unless a change is made on

purpose.

o name = Name of image files

o fmt = Format of the images

o method = Downsampling method

o thetaf = Measured angles (zero to 168 degree with the increment of 12

decrees)

o thetaB = Background angles (180 degree)

o Ltheta = Total number of angles

o stack = Total number of images in the z-direction (-73:73)

o Lxo = Total pixel of images taken from the camera in the x-direction

o Lyo = Total pixel of images taken from the camera in the y-direction

o Lzo = Number of images in the z-direction (147)

o cor1 = The y position of the first registration point

o cor2 = The y position of the second registration point

o (line 90 – 97) radius = The radius of fiber or capillary in the unit of pixels

 The actual inner radius is divided by the camera resolution

(SAMPLING_RATE).

 The actual inner radius should be changed if a different capillary is used.

• (Line 99 – 117) Initialization (heading)

- Arrays for intensity data and vectors used for registration are initialized.

 72

• (Line 118 – 137) Calculate the modulation transfer function (MTF) of the camera

(heading)

o ff = Fill factor of the camera

o MTF = Modulation transfer function (See further explanations in [166])

• (Line 138 – 176) Load reference intensity for registration (heading)

- A pre-generated .mat file is loaded for the reference intensity for different

objects and the magnification of the objective lens.

- Currently, compareall_cap_simu_50x_NAx0.375.mat is used for the capillary,

and it contains three variables, compareall, compared, and compareu.

- A new reference intensity should be generated for a different magnification or

a different object using TDPM_2D_simulate_complete.m and

create_compareall.m in TDPM 2D folder.

• (Line 177 – 194) Background processing (heading)

- Background images are processed from ‘image_180_73a’ and

‘image_180_73b’ to ‘image_180_0a’ and stored in Idata_measBG.

• (Line 195 – 1344) Processing for different angles (heading)

- The measured images at different angles are stored in Idata_meas.

- A specified registration method is used. Currently, ‘RegCS’ works the best for

the capillary measurement.

 73

o (Line 567 – 709) ‘RegCS’ uses cross-correlation in the z-direction and

symmetry in the x-direction to register.

 For the x-direction registration

- Averaged xz cross-sections are selected and resized at y = cor1 and y =

cor2.

- The xz cross-sections are cross-correlated with their flipped upside-

down images to find the maximum points and the symmetry axis.

 For the z-direction registration

- Assuming the capillary is not tilted in the z-direction, averaged xz

cross-section is selected and resized.

- The best z-direction matches are found using the max cross-correlation

between the xz cross-section and the upper and lower edges from the

simulated reference intensity (compareu and compared).

 Lateral and longitudinal positioning

- lat_adjust and long_adjust are the numbers of pixels to be shifted in

the x-direction and the z-direction respectively.

- The images are upsampled by 10 to increase the accuracy of shifting.

- The images are shifted circularly, but the newly entered columns or

rows are assumed to be the same as their nearest neighbor.

o The output data is saved in the folder named intensities.

A.3.4 Major Function File TDPM_from_Idata_3D.m

 74

function [RID] = TDPM_from_Idata_3D(idatapsf_3d, dir_Idata, Idata_type, downs,

 Leng_obj, noil, NAo, NAc, SAMPLING_RATE, lambda, regul, islazy,

 method_regul, period, shift_z, Object)

-- TDPM_from_Idata_3D.m calculates 3D refractive index distributions (RID) from

the intensity data obtained from Idata_3D_from_measure.m.

-- For the measured data, the high spatial frequency recovery method is used for all

spatial frequencies. The function divides images into high- and low-frequency regions, but

the low-frequency region is null.

-- The function takes the following arguments:

- idatapsf_3d (3D PSF calculated in TDPM_3D_measure_complete.m)

- dir_Idata (directory of the folder storing the intensity data calculated from

Idata_3D_from_measure.m)

- Idata_type (‘measure’ or ‘simulate’ to indicate how to get Idata_3D)

- downs (downsampling ratio)

- Leng_obj (the length of the object)

- noil (refractive index of immersion oil)

- NAo (the numerical aperture of an objective lens)

- NAc (the numerical aperture of a condenser lens)

- SAMPLING_RATE (the effective pixel size of the camera)

- lambda (wavelength of a light source)

- regul (regularization parameter)

- islazy (Use of rotation angles, ‘full’ or ‘lazy’)

 75

- method_regul (regularization method, ‘Wiener’, ‘hard’, or ‘mix’)

- period (the period of grating, only used for FBG)

- shift_z (manual shift of the z-direction in pixels)

- Object (type of object)

• (Line 30 – 108) Set parameters (heading)

- The current parameters can be kept the same unless a change is made on

purpose or to debug.

o doesplot = Whether to plot the six cross sections (Set it to be true when

debugging)

o doesclear = Whether to clear large matrices (Set it to be false when

debugging)

o LPF = A constant to eliminate frequencies that are too close to the boundary

o scale = Unit conversion from meter to micrometer

o thetaf = measured angles

o Ltheta = Total number of angles

o SAMPLING_RATE = Camera resolution

o (line 70 - 74) radius = The radius of fiber or capillary in the unit of pixels

 The actual inner radius is divided by the camera resolution

(SAMPLING_RATE).

 The actual inner radius should be changed if a different capillary is used.

• (Line 109 – 187) Initialization (heading)

 76

- The regions of fiber or capillary and immersion liquid are defined.

o mask_out = The region where only oil exists

o rhori = Spatial frequency

o ring_i = The region where low frequency recovery method is used (unit:

spatial frequency)

 The low-frequency method is used inside ring_i, whereas the high-

frequency method is used outside ring_i.

 However, for measurement, ring_i is null.

o mask_obj = The region where the spatial frequency is lower than the

maximum spatial frequency allowed by the microscope

o mask_obj_small = The region where the spatial frequency is lower than the

maximum spatial frequency allowed by the camera

• (Line 188-211) Low frequency algorithm preparation (heading)

o tf1 = 2D POTF

o deni = Inverse of sum of tf1

• (Line 212 – 341) High frequency algorithm preparation (heading)

o idataphf_3df = 3D POTF

o ifatapsf_3dc = Auto correlation of 3D POTF

o acall = Sum of all auto correlations

o acallf = Fourier transform of acall

 A regularization method (method_regul) is applied to acallf.

 77

 If method_regul = ‘hard’, it sets small POTFs to be zero.

 If method_regul = ‘Wiener’, acallf_max*regul (α in [77]) is added to

acallf.

 If method_regul = ‘mix’, Wiener filtering is applied to low frequency

part, and hard cutoff is applied to high frequency part. ‘Mix’ is only used

for FBG.

o comp = Inverse of sum of regularized 3D POTFs

o acallf_useful = 3D POTFs for the region where acallf is not close to zero

• (Line 342 – 554) Processing for different angles (heading)

- If islazy = ‘full’, the following steps occur at every angle. If islazy = ‘lazy’,

the following steps occur once at a single angle.

- The intensity data (Idata_3D) from Idata_3D_from_measure.m is loaded and

scaled.

- Idata_3D is manually shifted in the z-direction circularly if necessary.

o High-frequency recovery

 Idata_rec1 = Fourier transform of Idata_3D for high frequency

 Idata_rec1_ex = Idata_rec1 padded in the z-direction with repeating

boundary values to prevent cropping of the image after rotations

 Idata_3D_filt1 = Idata_rec1_ex rotated by bilinear interpolation

o Low-frequency recovery

 Idata_rec2 = Fourier transform of Idata_3D for low frequency

 78

 Idata_rec2_ex = Idata_rec2 padded in the z-direction with repeating

boundary values to prevent cropping of the image after rotations

 Idata_3D_filt2 = Idata_rec2_ex rotated by bilinear interpolation

• (Line 555 – 709) Combination to final result and plot figures (heading)

- Refractive index distribution is synthesized.

o Idata_3D_filt1f = Fourier transform of Idata_3D_filt1.

o Vtemp1 = the scattering potential of high frequency region before filtering

o Vtemp1i = the scattering potential of high frequency region, outside ring_i

o Idata_3D_filt2f = Fourier transform of Idata_3D_filt2.

o Vtemp2 = the scattering potential for the low frequency region before

filtering

o Vtemp2i = the scattering potential for the low frequency region, inside ring_i.

(Null for the measured data)

o Vtemp = the sum of scattering potentials of all regions and frequencies.

o RID = 3D refractive index distribution that is converted from Vtemp.

- If doesplot = true, six zx cross sections of different variables are displayed.

 figure 91 = Vtemp1

 figure 92 = Vtemp2

 figure 93 = Vtemp1i

 figure 94 = Vtemp2i (Null for the measured data)

 figure 95 = RID - noil

 79

 figure 96 = acallf_usefull (A black pixel in the plot indicates that the

value of acallf is zero or close to zero. The recovery at this black region

may not be reliable and could cause errors.)

A.4 Test Run

Instructions to run TDPM_3D_measure_complete.m for microspheres in a capillary

Note: Boldface indicates variable name.

 Single quotes around name indicate a string.

1. First, the measured images from LabVIEW should be stored in folders with the

correct names.

a) One folder (e.g., 4.8.19_NAc0.375_n1.458 in Figure A.3) should contain a folder

named ‘images’ which holds the measured images of the capillary with gel and

microspheres at the angles from zero to 168 degrees. The images should be from

image_0_0a to image_168_73b followed by background images (immersion

liquid only) named from image_180_0a to image_180_73a and image_180_73b.

(a => above, b => below, 0 => in focus)

b) Another folder should be named with the refractive index of immersion liquid and

a string, ‘No_Spheres_KL’ (e.g., RI_1.458_No_Spheres_KL in Figure A.3).

It should contain a folder named ‘images’ which holds the images of the capillary

with gel only at zero degree named from image_0_0a to image_0_73b and

 80

background images (immersion liquid only) named from image_180_0a to

image_180_73a and image_180_73b.

Figure A.3 — An example of the folders storing the measured images

2. TDPM 3D MATLAB code 1.0 is in the Optics O: drive. go to ‘O:\JYChun\QPI

MATLAB Code 1.0\’. Copy the folder named ‘TDPM 3D’ to the local disk. TDPM

files in the O: drive should not be modified.

Be sure to have five folders named Intensities, Objects, picture, PSFs, and RIDs in the

TDPM 3D folder with TDPM_3D_measure_complete.m. Create them if they are

missing.

3. Open TDPM_3D_measure_complete.m. in TDPM 3D.

4. The parameters should be specified correctly.

a) Set run_Idata_3D = true. (Line 4) If Idata_3D has already been generated and

does not need changes, then run_Idata_3D can be set to be false to save the

computation time. If Idata_3D has already been generated but needs changes, then

run_Idata_3D must be set to be true.

 81

b) Choose the object to be ‘mix’. (Line 5)

c) Specify the refractive index of immersion oil, noil. (Line 10)

d) Specify the numerical aperture of an objective lens, NAo. (Line 11)

e) Specify the numerical aperture of a condenser lens, NAc. (Line 12)

f) Specify the magnification of the objective lens, M. (Line 14)

g) Choose downsampling rate, downs. (Line 17) 2 or 4 are recommended.

h) Specify the directory of the top folder, folder_measure, storing the measured

images. (Line 37) This is the top folder containing the two folders created in step

1.

- e.g. folder_measure = 'C:\measurement\';

i) Choose a registration method, ifRegister, to be ‘RegCS’. (Line 40)

j) Other parameters should remain unchanged unless the experimental setup has

been altered on purpose.

k) Specify the directory of the folder storing the measured images under the correct

cases of object (‘mix’) and NAc (Line 158 – 204) This is the folder created in

step 1a.

- e.g. dir_images = [folder_measure,'4.8.19_NAc0.375_n1.458'];

5. Run TDPM_3D_measure_complete.m.

- The outputs are three refractive index distributions of the capillary, gel, and

microspheres in the zx, zy, and yx planes (Figure A.4).

 82

Figure A.4 – The RID cross sections of the capillary, gel, and microspheres (downs=2)

6. Change the object to be ‘gel’ (Line 5) and run TDPM_3D_measure_complete.m.

- The outputs are three refractive index distributions of the capillary and gel in the

zx, zy, and yx planes (Figure A.5).

Figure A.5 – The RID cross sections of the capillary and gel (downs=2)

7. Open Idata_3D_diff_gel.m.

a) Specify the parameters the same as in TDPM_3D_measure_complete.m. (Line 3 –

11)

b) Run Idata_3D_diff_gel.m.

 83

c) It calculates the 3D intensity difference between the measurements of the

capillary with and without microspheres. The outputs are not displayed.

8. Change the object to be ‘spheres’ in TDPM_3D_measure_complete.m (Line 5) and

run TDPM_3D_measure_complete.m.

- The outputs are the three refractive index distributions of microspheres in the zx,

zy, and yx planes (Figure A.6).

Figure A.6 – The RID cross sections of microspheres (downs=2)

 Common errors are caused by a missing file or an incorrect folder directory or name.

Be sure to have the required folders in the correct locations.

 84

A.5 List of TDPM 3D Files

A.5.1 .m (script)

do_something.m

 Run some temporary code, such as plotting.

do_many.m:

 Run some code using various parameters. I often use a series of loops to run a

function with different parameters. If necessary, the scripts can also be converted to

functions.

TDPM_3D_simulate_complete.m

 Do the entire 3D TDPM simulation process, including simulating 3D intensities,

calculating or loading 3D PSF, and TDPM recovery.

TDPM_3D_measure_complete.m

 Do the entire 3D TDPM recovery process, including reading measured 3D

intensities, calculating or loading 3D PSF, and TDPM recovery.

Idata_3D_diff_gel.m

 Calculate 3D intensity difference between measurement of capillary with and

without microspheres. For convenience, TDPM_3D_measure_complete can be the last

sentence of this script to run TDPM recovery in one script.

Idata_3D_diff_simu.m

 85

 Calculate 3D intensity difference between simulation of capillary with and without

microspheres. For convenience, TDPM_3D_measure_complete can be the last sentence of

this script to run TDPM recovery in one script.

Plotting figures:

Check_Idata_3D.m

 Show intensity cross section in each angle slice by slice using imshow3D.

view_slice.m

 Show 3D RID (can be replaced by intensity) slice by slice using imshow3D.

compare_PSFs_downs.m

 Compare PSFs from different downsampling strategies.

A.5.2 .m (function)

create_object.m

 Create objects with different parameters, and then store the object in “Objects”

folder.

SSBPM_simulate_3D.m

 Simulate Idata_3D using a 3D refractive index distribution. Idata_3D is then stored

in “Intensity” folder, and input into TDPM_from_Idata_3D.m for the next TDPM

recovery.

 86

Idata_3D_from_measure.m

 Calculate Idata_3D, which contains the measured cross-sectional intensity data

versus fiber rotation angle, using measured images. Idata_3D is then installed in “Intensity”

folder, and input into TDPM_from_Idata_3D.m for the next TDPM recovery.

ifRegister has multiple choices. Currently the most accurate result is from ‘RegCS’, but

currently fiber registration only allows ‘RegC’ and ‘RegC4’.

TDPM_from_Idata_3D.m

 Recover refractive index distribution using Idata_3D stored in a folder. The input

Idata_3D can be got from Idata_3D_TDPM_measure.m using measured images, or from

TDPM_simulate_phantom_3D.m from simulated images.

Downsampling:

downsample2_xy.m

 Downsample an image in the xy-plane.

downsample2_xz.m

 Downsample an image in the xz-plane.

downsample3.m

 Downsample an image in 3D.

upsample3.m

 Upsample a 3D PSF using interp3.

 87

calculating 3D PSF:

rotate223.m

 Rotate a 2d object axially to a 3d object using interp1. Notice that only the POTF

can be rotated. PSF cannot be rotated.

calculate_3d_psf.m

 calculate 3D PSF from 2D PSF or POTF by rotating 2D POTF. Downsampling is

allowed.

POTF_3D_in_TDPM_SSBPM.m:

 Performs a simulation on a central point scatterer to generate the 3D intensity

(PSF_3D), and also may account for spherical aberration away from focus. Based on

SSBPM described by Eq. (23) and (24) in Jenkins_2015b. If the point RI is replaced by an

object, this function can be used to simulate TDPM.

build_2DOTF_analytical_disk.m

build_2DOTF_analytical_annular.m

build_2DOTF_analytical_Gaus.m

 Builds the 3D phase or absorption optical transfer function (3D POTF or AOTF) in

the kx-kz plane for a 2D result. Based on implementing analytical equations. A disk /

annular / Gaussian source is used. They are copied from 2D QPI folder.

POTF_2D_in_TDPM_SSBPM.m:

 88

 Performs a simulation on a central line scatterer to generate the cross-sectional

intensity (idatapsf). Copied from TDPM_2D folder.

Others:

ssim.m

ssim_wang.m

 Computing SSIM of two images. ssim is the version introduced in MATLAB

R2014a and is currently used. ssim_wang is an older version and is not currently used.

A.5.3 .mat

 Grouped by formats. Some terms may be missing, which usually means default

values.

Registration references:

compareu.mat:

compared.mat:

compareall_50X_NAc0.5.mat:

 2D intensity array based on SSBPM simulations of fiber edges that are used for

edge detection for registration. compareu is the upper part of the fiber edge. compared is

the lower part of the fiber edge. compareall is the entire xz cross section. Previous three

mats are based on 40X objective and NAc=0.375. compareall_capillary is based on 50X

objective and NAc=0.5.

 89

compareall_cap_simu_50X_NAc0.375.mat:

 2D intensity array based on SSBPM simulations of capillary edges that are used for

edge detection for registration. It is based on 50X objective and NAc=0.375.

compareall_cap_exp_50X_NAc0.375.mat:

 2D intensity array based on experimental measurement of capillary edges that are

used for edge detection for registration. It is based on 50X objective and NAc=0.375.

Sources:

source_Gaussion.mat:

 Gaussian fitted source distribution S(ρ’). source_Gaussion.mat is centered.

source_Gaus_NAc(NAc).mat

 Gaussian fitted source distribution with NAc. Both the fitted image and the fitted

numbers are stored.

Objects to be simulated (in Objects folder):

(Object)_(Lengr)x(Lengy).mat

 Simulated objects with size Lengr x Lengy x Lengr.

PSFs or POTFs calculated or simulated (in PSFs folder):

 By default, SAMPLING_RATE=245e-9, NAc=0.375, NAo=0.75, lambda=546e-

9.

 90

PSF_2D_SSBPM_Guas_correct_scale.mat (avoid)

 PSF and POTF simulated from SSBPM used for 2D TDPM. The source type is

fitted Gaussian.

PSF_3D_256.mat (avoid)

 PSF calculated by rotating and downsampling 2D POTF (rotate223_full_downs.m

and PSF_2D_SSBPM_Guas_correct_scale.mat). This is used for experimental recovery

when downsampling ratio is 4.

PSF_3D_256_simu_downs1.mat

PSF_3D_256_simu_downs4.mat (avoid)

 PSF calculated by SSBPM simulation. Different downsampling ratios are used.

downs=1 is used for simulation only, because it retains the camera resolution. downs=4 is

used for experimental recovery, because it retains the physical length of the object.

PSF_3D_SSBPM_Gaus_downs(downs).mat

 PSF calculated from SSBPM simulation with Gaussian source. It is used in

experimental recovery.

PSF_3D_(Source_type)_(Leng)_ NAc_(NAc)_n(noil)_downs(downs).mat

PSF_3D_(Source_type)_(Leng)_

NAc_(NAc)_n(noil)_dx(SAMPLING_RATE)_downs(downs).mat

 91

 Computed PSF from rotating analytical 3D POTF with parameters in name.

PSF_3D_(Source_type)_SSBPM_(Leng)_dx(SAMPLING_RATE)_n(noil)

_lambda(lambda)_NAo(NAo)_NAc(NAc).mat

PSF_3D_(Source_type)_SSBPM_(Leng)_n(noil)_downs(downs)_dx(SAMPLING_R

ATE) _lambda(lambda)_NAo(NAo)_NAc(NAc).mat

PSF_3D_(Source_type)_SSBPM_(Leng)_n(noil)_dx(SAMPLING_RATE)

_lambda(lambda)_NAo(NAo)_NAc(NAc)_downs(downs).mat

 Simulated PSF from SSBPM with parameters in name.

Simulated defocused images (in Intensity folder):

[folders] (Object)_(Lengr)x(Lengy)_n(noil)

[folders] (Object)_shift(zshift)_(Lengr)x(Lengy)_n(noil)

 Simulated 3D intensity images

[folders] (Object)_(Leng)_NAc(NAc)_n(noil)

[folders] (Object)_(Leng)_NAc(NAc)_n(noil)_(isRegister)

 Experimental 3D intensity images

 Object: ’SMF’, ‘PMF’, ‘PCF’ are various fibers; ‘mix’ is microspheres in capillary;

‘gel’ is capillary without microspheres; ‘spheres’ is the difference between ‘mix’ and ‘gel’,

equivalent to only microspheres.

Recovered refractive index (in RIDs folder):

 92

PMF144.mat

SMF144.mat

PCF144.mat

 These stores the experimental refractive index and for different fibers, recovered

by TDPM.

RID_(Object)_shift(zshift)_(Lengr)x(Lengy)_n(noil).mat

 Recovered refractive index of (Object) from simulation.

RID_(Object)_(Leng)_NAc(NAc)_n(noil)_(psftype)_shift(zshift).mat

 Recovered refractive index of (Object) from experiment.

 93

APPENDIX B. TDPM 3D TSUM 1.0 DOCUMENATION

B.1 Introduction

 TDPM3D_TSUM is a 3D tomographic deconvolution phase microscopy (TDPM)

program developed in C/C++/CUDA to run specifically on NVIDIA Jetson AGX Xavier

utilizing OpenMP Tasking and CUDA Streaming on Unified Memory. TDPM3D_TSUM

leverages OpenMP multithreading, CUDA unified virtual memory, and Jetson AGX

Xavier unified physical memory to accelerate the reconstruction of 3D refractive index

from microscopic quantitative phase images. See Chapter 3 for details.

 TDPM3D_TSUM has two major classes, cuMat and TDPM3D, and they are

described in B.2 in details. The global functions of TDPM3D_TSUM and their descriptions

are in B.3. TDPM3D_TSUM loads simulation objects, point spread functions, intensity

data from storage. The data are stored in the HDF5 data format and required to follow a

specific naming convention, which is explained in B.4. Compiling and running

TDPM3D_TSUM is simple with a makefile. A short instruction on how to run

TDPM3D_TSUM is in B.5.

B.2 Classes and Structs

B.2.1 class cuMat

 The cuMat class is a data structure for 1D, 2D, and 3D data that is managed by

CUDA unified virtual memory. The cuMat data can be real numbers or complex numbers.

 94

The cuMat data are floats and stored as a vector in column-major order followed by row

and depth.

Private member variable

cudaEvent_t cudaStat

Public member variables

int rows
int cols
int depth
int size
int dim

float2* data
Pointer for complex numbers allocated with cudaMallocManaged

float* rdata
Pointer for real numbers allocated with cudaMallocManaged

bool isComplex

Public function members

constructor cuMat()
Default constructor: Initiates variables to zero, null pointers, and
isComplex to true

destructor ~cuMat()
Calls destroy()

constructor cuMat(int rows, bool isComplex, cudaStream_t stream = NULL)
Creates a 1D cuMat object

constructor cuMat(int rows, int col, bool isComplex, cudaStream_t stream =
NULL)
Creates a 2D cuMat object

constructor cuMat(int rows, int cols, int depth, bool isComplex, cudaStream_t
stream = NULL)
Creates a 3D cuMat object

 95

constructor cuMat(const cuMat& src, bool copyData, cudaStream_t stream =
NULL)
Copy constructor: copies src. If (copy Data == false), it allocates
memory, but does not copy data/rdata. If (copyData == true), it allocates
memory and copies (deep copy) the data/rdata of src.

cuMat& operator= (const cuMat& other)
= operator overload: copies the input argument, other, including the
data/rdata memory address.

void cuMalloc(cuMat& dst, cudaStream_t stream = NULL)
Allocates data/rdata using cudaMallocManaged. If (stream != NULL),
it allocates data/rdata and attaches to a specific stream. If (stream ==
NULL), it allocates data/rdata to global to be accessed by any stream.

unsigned int get_rows(const cuMat& src)
Returns rows

unsigned int get_cols(const cuMat& src)
Returns cols

unsigned int get_depth(const cuMat& src)
Returns depth

unsigned int get_size(const cuMat& src)
Returns size

unsigned int get_dim(const cuMat& src)
Returns dim

void C2R()
Converts a complex array to a real array by removing imaginary part.

void R2C()
Converts a real array to a complex array by setting imaginary part
equal to zero.

void print(std::string printOption)
Prints cuMat on terminal/console.
If (printOption == ‘all’), it prints all elements. If (printOption ==
‘preview’), it prints the first column of data/rdata.

void zeros(int rows, int cols, int depth, bool isComplex, cudaStream_t
stream = NULL)
Sets data/rdata values to be zeros.

void destroy()
calls cudaFree() to free data/rdata memory.

B.2.2 class TDPM3D

 96

Public member variables

float noil
Refractive index of immersion oil
Default value is 1.458.

float NAo
Numerical aperture of objective lens
Default value is 0.75.

float NAc
Numerical aperture of condenser lens
Default value is 0.375.

float Naci
Numerical aperture of inner condenser lens for annular source
Default value is 0.

int M
Magnification of objective lens
Default value is 50.

float SMAPLING_RATE
Effective pixel size of camera
Default value is 196e-9.

int downs
Downsampling rate
Default value is 1.

float lambda
Wavelength
Default value is 546e-9.

enum class Option_Obj{ phantom, mix, gel, spheres, SMF, PMF, PCF,
LPFG, FBG }
• phantom: 3D phantom
• mix: mix contains capillary, gel, and microspheres
• gel: gel contains capillary and gel
• spheres: spheres contain only microspheres, which means

the difference between 'mix' and 'spheres'
• SMF: single mode fiber
• PMF: Polarization-maintaining fiber
• PCF: Photonic crystal fiber
• LPFG: Long-period fiber grating
• FBG: Fiber Bragg grating

int shift_z

 97

Number of pixels to be manually shifted in the z-direction
Default value is 0.

int Leng
Length in the x- and z-direction
Default value is 32.

int Lengr
Length in the x- and z-direction
Default value is the same as Leng.

int Lengy
Length in the y-direction
Default value is two times Leng.

enum class Option_islazy{ full, lazy }
• full: all rotation angles are used.
• lazy: a single angle is used.

 regul
Regularization parameter
Default value is 0.01.

float period
Default value is 0.

enum class Option_method_regul{ Wiener, hard, mix }
The regularization method
• Wiener: Wiener filter. It has spatially smoother results
• hard: Hard cutoff. It has more accurate results for acceptable

frequency
• mix: Wiener filter for low frequency part and hard cutoff

for high frequency part. It is used only for FBG.
enum class Option_psf_type{ analytical, SSBPM_disk }

A type of point spread functions (PSF)
• analytical: PSF is calculated analytically from rotation of 2D

POTF using a disk, annular, or Gaussian source
• SSBPM_disk: PSF is calculated with 3D SSBPM using a

disk source
enum class Option_source_type{ disk, annular, Gaus }

A type of source functions
• disk: a disk source
• annular: a annular source
• Gaus: a Gaussian source

enum class Option_Idata_type{ simulate, measure }
A type of intensity data

 98

• simulate: Intensity data are generated
• measure: Intensity data are from measurements and loaded

from storage
Option_Obj Obj

Default option is phantom.
Option_islazy islazy

Default option is full.
Option_method_regul method_regul

Default option is Wiener.
Option_psf_type psf_type

Default option is analytical.
Option_source_type source_type

Default option is disk.
Optioin_Idata_type Idata_type

Default option is simulate.
std::string IdataDir

Directory for intensity data
See B.4 for naming convention.

std::string Idata_dataset_name
Intensity dataset name in H5 files
See B.4 for naming convention.

cuMat PSF3D
3D point spread function

cuMat RID
Reconstructed 3D refractive index distribution

Public function members

constructor TDPM3D()
Default constructor: Initialize the member variables with
default values.

destructor ~TDPM3D()
Destructor

B.2.3 struct GPUTimer in cuMat.cuh

 99

Private member variables

cudaEvent_t start_
cudaEvent_t stop_

Public member variable

float time

Public function members

constructor GPUTimer()
Creates cuda events.

destructor ~GPUTimer()
Destroys cuda events.

void start()
Records the start time.

void stop()
Records the end time and print out elapsed time.

B.3 Global Functions

Global functions in cuMat.cu

void gpuAssert(cudaError_t code, const char #file, int line, bool abort)
Asserts that there is no cudaError. If there is an error, exits.
It is called by a macro function,
cuErrorCheck(ans) { gpuAssert((ans), __FILE__, __LINE__); }

__global__ void warmup_kernel()
Performs simple addition on GPU.

void warmupGPU()
Launch a small kernel to warm up GPU.

 100

void cuSynchronize(cudaStream_t stream)
Calls cudaDeviceSynchronize or cudaStreamSynchronize which
waits for operations on device or stream finish.

void cuCopy2to3(const cuMat& src, cuMat& dst, int index)
Copies 2D data to 3D data
Arguments
• src: cuMat object with 2D data to be copied
• dst: cuMat object with pre-allocated 3D data
• index: index where copy starts in dst

void meshgrid(int xStart, int xEnd, int yStart, int yEnd, cuMat& X,
cuMat& Y)
Creates 2D grids that are the same as MATLAB meshgrid output
for 2D. It is memory operations and runs on CPU.
Arguments:
• xStart: starting value in x-axis (row)
• xEnd: ending value in x-axis (row)
• yStart: starting value in y-axis (column)
• yEnd: ending value in y-axis (column)
• X: cuMat object with 2D data
• Y: cuMat object with 2D data

void ndgrid(int xStart, int xEnd, int yStart, int yEnd, int zStart, int zEnd,
cuMat& X, cuMat& Y, cuMat& Z)
Creates 3D grids that are the same as MATLAB ndgrid output for
3D. It is memory operations and runs on CPU. Note: meshgrid and
ndgrid has different output formats.
Arguments:
• xStart: starting value in x-axis (row)
• xEnd: ending value in x-axis (row)
• yStart: starting value in y-axis (column)
• yEnd: ending value in y-axis (column)
• yStart: starting value in y-axis (depth)
• yEnd: ending value in y-axis (depth)
• X: cuMat object with 3D data
• Y: cuMat object with 3D data
• Z: cuMat object with 3D data

__global__ void cuAdd_kernelC(float2* src1, float2* src2, float2* dst, int n)
Computes the addition of two complex arrays on GPU.

__global__ void cuAdd_kernelR(float* src1, float* src2, float* dst, int n)
Computes the additions= of two real arrays on GPU.

 101

void cuAdd(cuMat& src1, cuMat& src2, cuMat& dst, cudaStream_t
stream = NULL)
Launches a kernel to compute the addition of two arrays (dst = src1
+ src2). src1, src2, and dst should have the same size and type.
Arguments:
• src1: input cuMat object
• src2: input cuMat object
• dst: output cuMat object
• stream: CUDA stream. Default value is null.

__global__ void cuAdd3_kernelC(float2* src1, float2* src2, float2* src3, float2*
dst, int n)
Computes the additions of three complex arrays on GPU.

__global__ void cuAdd3_kernelR(float* src1, float* src2, float* src3, float* dst, int
n);
Computes the additions of three real arrays on GPU.

void cuAdd3(cuMat& src1, cuMat& src2, cuMat& src3, cuMat& dst,
cudaStream_t stream = NULL)
Launches a kernel to compute the addition of three arrays (dst =
src1 + src2 + src3). src1, src2, src3, and dst should have the same
size and type.
Arguments:
• src1: input cuMat object
• src2: input cuMat object
• src3: input cuMat object
• dst: output cuMat object
• stream: CUDA stream. Default value is null.

__global__ void cuAddAS_kernelC(float2* src, float a, float2* dst, int n)
Computes the additions of a complex array and a complex number
on GPU.

__global__ void cuAddAS_kernelR(float* src, float a, float* dst, int n)
Computes the additions of a real array and a real number on GPU.

void cuAddAS(cuMat& src, float a, cuMat& dst, cudaStream_t stream =
NULL)
Launches a kernel to compute the addition of an array and a float
(dst = src + a). a is added to each element of src. src and dst should
have the same size and type.
Arguments:
• src: input cuMat object
• a: a real or complex number

 102

• dst: output cuMat object
• stream: CUDA stream. Default value is null.

__global__ void cuSubtract_kernelC(float2* src1, float2* src2, float2* dst, int n)
Computes the subtraction of two complex arrays on GPU.

__global__ void cuSubtract_kernelR(float* src1, float* src2, float* dst, int n)
Computes the subtraction of two real arrays on GPU.

void cuSubtract(cuMat& src1, cuMat& src2, cuMat& dst,
cudaStream_t stream = NULL)
Launches a kernel to compute the subtraction of two arrays (dst =
src1 - src2). src1, src2, and dst should have the same size and type.
The order of input matters.
Arguments:
• src1: the first input cuMat object
• src2: the second input cuMat object
• dst: output cuMat object
• stream: CUDA stream. Default value is null.

__global__ void cuSubtractAS_kernelC(float2* src, float a, float2* dst, int n)
Computes the subtraction of a complex number from a complex
array on GPU.

__global__ void cuSubtractAS_kernelR(float* src, float a, float* dst, int n)
Computes the subtraction of a real number from a real array on
GPU.

void cuSubtractAS(cuMat& src, float a, cuMat& dst, cudaStream_t
stream = NULL)
Launches a kernel to compute the subtraction of a single number
from an array (dst = src - a). a is subtracted from each element of
src. src and dst should have the same size and type.
Arguments:
• src: input cuMat object
• a: a real or complex number
• dst: output cuMat object
• stream: CUDA stream. Default value is null.

__global__ void cuSubtractSA_kernelC(float a, float2* src1, float2* dst, int n)
Computes the subtraction of a complex array from a complex
number on GPU.

__global__ void cuSubtractSA_kernelR(float a, float* src1, float* dst, int n)
Computes the subtraction of a real array from a real number on
GPU.

 103

void cuSubtractSA(float a, cuMat& src, cuMat& dst, cudaStream_t
stream = NULL)
Launches a kernel to compute the subtraction of an array from a
single number (dst = a - src). Each element of src is subtracted from
a. src and dst should have the same size and type.
Arguments:
• a: a real or complex number
• src: input cuMat object
• dst: output cuMat object
stream: CUDA stream. Default value is null.

__global__ void cuMultiplyAS_kernelC(float2* src, float a, float2* dst, int n)
Computes the multiplication of a complex array and a real number
on GPU.

__global__ void cuMultiplyAS_kernelR(float* src, float a, float* dst, int n)
Computes the multiplication of a real array and a real number on
GPU.

void cuMultiplyAS(cuMat& src, float a, cuMat& dst, cudaStream_t
stream = NULL)
Launches a kernel to compute the multiplication of an array and a
real number (dst = a*src). Each element of src is multiplied by a.
src and dst should have the same size and type.
Arguments:
• src: input cuMat object
• a: a real number
• dst: output cuMat object
• stream: CUDA stream. Default value is null.

__global__ void cuMultiplyEE_kernelC(float2* src1, float2* src2, float2* dst, int
n)
Computes the element-wise multiplication of two complex arrays
on GPU.

__global__ void cuMultiplyEE_kernelCR(float2* src1, float* src2, float2* dst, int
n)
Computes the element-wise multiplication of a complex array and a
real array on GPU.

__global__ void cuMultiplyEE_kernelR(float* src1, float* src2, float* dst, int n)
Computes the element-wise multiplication of two real arrays on
GPU.

void cuMultiplyEE(cuMat& src1, cuMat& src2, cuMat& dst,
cudaStream_t stream = NULL)

 104

Launches a kernel to compute the multiplication of two arrays (dst
= src1.*src2). Each element of src is multiplied by a. src and dst
should have the same size and type.
Arguments:
• src1: input cuMat object
• src2: input cuMat object
• dst: output cuMat object
• stream: CUDA stream. Default value is null.

__global__ void cuMultiplyEEE_kernelC(float2* src1, float2* src2, float2* src3,
float2* dst, int n)
Computes the element-wise multiplication of three complex arrays
on GPU.

__global__ void cuMultiplyEEE_kernelR(float* src1, float* src2, float* src3,
float* dst, int n)
Computes the element-wise multiplication of three real arrays on
GPU.

__global__ void cuMultiplyEEE_kernelCRRC(float2* src1, float* src2, float*
src3, float2* dst, int n)
Computes the element-wise multiplication of one complex array
and two real arrays on GPU and outputs a complex array.

__global__ void cuMultiplyEEE_kernelRRRC(float* src1, float* src2, float* src3,
float2* dst, int n)
Computes the element-wise multiplication of real complex arrays
on GPU and outputs a complex array.

void cuMultiplyEEE(cuMat& src1, cuMat& src2, cuMat& src3,
cuMat& dst, cudaStream_t stream = NULL)
Launches a kernel to compute the multiplication of three arrays (dst
= src1.*src2.*src3). Each element of src is multiplied by a. src and
dst should have the same size.
Arguments:
• src1: input cuMat object
• src2: input cuMat object
• src3: input cuMat object
• dst: output cuMat object
• stream: CUDA stream. Default value is null.

void cuMultiplyMM(cublasHandle_t handle,
 cublasOperation_t transa, cublasOperation_t transb,
 const float2 alpha,
 cuMat& src1,
 cuMat& src2,

 105

 const float2 beta,
 cuMat& dst)
Calls the cuBLAS cublasCgemm3m function to perform the 2D
matrix-matrix multiplication of two arrays (dst[m,n] =
α(src1[m,k])*(src2[m,n]) + β(dst[m,n])). for (dst = src1*src2),
alpha should be float2(1,0) and beta should be float2(0,0). See
[168] for more details.
Arguments:
• handle: handle to the cuBLAS library context
• transa: operation for A, op(src1)

o If (transa == CUBLAS_OP_N), op(src1) = src1
o If (transa == CUBLAS_OP_T), op(src1) = 𝑠𝑠𝑟𝑟𝑠𝑠1𝑇𝑇

(transpose)
o If (transa == CUBLAS_OP_C), op(src1) = 𝑠𝑠𝑟𝑟𝑠𝑠1𝐻𝐻

(Hermitian)
• transb: operation for src2, op(src2). It has the same options as

transa.
• alpha: scalar for multiplication
• src1: input cuMat object
• src2: input cuMat object
• beta: scalar for multiplication
• dst: in/output cuMat object

 cuDivideAS_kernelC(float2* src, float a, float2* dst, int n)
Computes the division of a complex array by a real number on
GPU.

__global__ void cuDivideAS_kernelR(float* src, float a, float* dst, int n)
Computes the division of a real array by a real number on GPU.

void cuDivideAS(cuMat& src, float a, cuMat& dst, cudaStream_t
stream = NULL)
Launches a kernel to compute the division of an array by a real
number (dst = src1/a). Each element of src is divided by a. src and
dst should have the same size and type.
Arguments:
• src: input cuMat object
• a: a real number
• dst: output cuMat object
• stream: CUDA stream. Default value is null.

__global__ void cuAbs_kernelC(float2* src, float2* dst, int n)

 106

Computes absolute values of a complex array on GPU and outputs
a complex array with the imaginary parts equal to zeros.

__global__ void cuAbs_kernelCR(float2* src, float* dst, int n)
Computes absolute values of a complex array on GPU and outputs
a real array.

__global__ void cuAbs_kernelR(float* src, float* dst, int n)
Computes absolute values of a real array on GPU.

void cuAbs(cuMat& src, cuMat& dst, bool C2R, cudaStream_t stream =
NULL)
Launches a kernel to compute absolute values of an array.
Arguments:
• src: input cuMat object
• dst: output cuMat object
• C2R: whether to convert dst to real array

o If (C2R == true) and dst is a complex array, dst is converted
to real.

• stream: CUDA stream. Default value is null.
__global__ void cuPow_kernelC(float2* src, const int exp, float2* dst, int n)

Raises a complex array to the power exponent on GPU and outputs
a complex array

__global__ void cuPow_kernelR(float* src, const int exp, float* dst, int n)
Raises a real array to the power exponent on GPU and outputs a
real array

__global__ void cuPow_kernelCR(float2* src, const int exp, float* dst, int n)
Raises a complex array to the power exponent on GPU and outputs
a real array

void cuPow(cuMat& src, cuMat& dst, const int exp, cudaStream_t
stream = NULL)
Launches a kernel to raise each element in an input array to the
power exponent, exp, (dst = src^(exp)). src and dst should have the
same size.
Arguments:
• src: input cuMat object
• dst: output cuMat object
• exp: exponent. It can be 2 or 3.
• stream: CUDA stream. Default value is null.

__global__ void cuSqrt_kernelC(float2* src, float2* dst, int n)
compute the square root of each element in a complex array on
GPU.

 107

__global__ void cuSqrt_kernelR(float* src, float* dst, int n)
Computes the square root of each element in a real array onGPU.

void cuSqrt(cuMat& src, cuMat& dst, cudaStream_t stream = NULL)
Launches a kernel to compute square root of each element in an
input array (dst = sqrt(src)). src and dst should have the same size
and type.
Arguments:
• src: input cuMat object
• dst: output cuMat object
• stream: CUDA stream. Default value is null.

__global__ void cuInverseE_kernelC(float2* src, float2* dst, int n)
Computes the inverse of each element in a complex array on GPU

__global__ void cuInverseE_kernelR(float* src, float* dst, int n)
Computes the inverse of each element in a real array on GPU

void cuInverseE(cuMat& src, cuMat& dst, cudaStream_t stream =
NULL)
Launches a kernel to compute the inverse of each element in an
input array (dst = 1/src). src and dst should have the same size and
type.
Arguments:
• src: input cuMat object
• dst: output cuMat object
• stream: CUDA stream. Default value is null

void cuReal(cuMat& src)
Sets the imaginary parts to be zeros.
Argument:
• src: in/output cuMat complex array
To convert to a real array, use C2R().

void cuImag(cuMat& src)
Sets the real parts to be zeros.
Argument:
• src: in/output cuMat complex array
To convert to a complex array, use R2C().

void cuConj(cuMat& src, cuMat& dst)
Computes the complex conjugate of each element in a complex
array.
Arguments:
• src: input cuMat array
• dst: output cuMat array

 108

template
<unsigned int

blockSize>
__global__ void

cuMax_kernel(float *g_idata, float *g_odata, unsigned int n)
Finds the maximum value in a real array using reduction on GPU.
When called, GPU block size should be specified as a template
input, and shared memory size should be specified in a kernel
launch.

void cuMax(cuMat& src, float* max, cudaStream_t stream = NULL)
Launches a kernel to find the maximum value in a real array using
reduction.
Arguments:
• src: input cuMat object with real data
• max: the maximum value to be stored
• stream: CUDA stream. Default value is null.

__global__ void cuSumAlongDepth_kernelC(float2* src, float2* dst, const
unsigned int row, const unsigned int col, const unsigned int depth)
Sums a complex array along the depth (z-direction) on GPU.

__global__ void cuSumAlongDepth_kernelR(float* src, float* dst, const unsigned
int row, const unsigned int col, const unsigned int depth)
Sums a real array along the depth (z-direction) on GPU.

__global__ void cuSumAlongDepthReduce_kernel(float2* src, float2* dst, const
unsigned int row, const unsigned int col, const unsigned int depth)
Sums a complex array along the depth (z-direction) using reduction
on GPU.

void cuSum3to2(cuMat& src, cuMat& dst, int dim, cudaStream_t
stream = NULL)
Launches a kernel to sum an array along the dimension, dim.
Arguments:
• src: input cuMat object with 3D data
• dst: output cuMat object with 2D data
• dim: the dimension which src is summed up along

o 1 = row (currently, not available)
o 2 = column (currently, not available)
o 3 = depth

• stream: CUDA stream. Default value is null.
__global__ void cuSumAlongDepth_and_cuMultiplyEE_kernelR(float* src1,

float* src2, float* dst, const unsigned int row, const unsigned int
col, const unsigned int depth)
Sums a real array along the depth (z-direction) and computes the
element-wise multiplication of the sums and another real array on
GPU.

 109

__global__ void cuSumAlongDepth_and_cuMultiplyEE_kernelRRC(float* src1,
float* src2, float2* dst, const unsigned int row, const unsigned int
col, const unsigned int depth)
Sums a real array along the depth (z-direction) and computes the
element-wise multiplication of the sums and another real array on
GPU and outputs a complex array (the imaginary parts are zeros).

__global__ void cuSumAlongDepth_and_cuMultiplyEE_kernelCRC(float2*
src1, float* src2, float2* dst, const unsigned int row, const unsigned
int col, const unsigned int depth)
Sums a complex array along the depth (z-direction) and computes
the element-wise multiplication of the sums and a real array on
GPU and outputs a complex array.

void cuSum3to2_and_cuMultiplyEE(cuMat& src1, cuMat& src2,
cuMat& dst, int dim, cudaStream_t stream = NULL)
Launches a kernel to sum an array along the dimension, dim, and
compute the element-wise multiplication of the sums and another
array.
Arguments:
• src1: input cuMat object with 3D data, which is summed up to

2D
• src2: input cuMat object with 2D data
• dim: the dimension which src1 is summed up along

o 1 = row (currently, not available)
o 2 = column (currently, not available)
o 3 = depth

• stream: CUDA stream. Default value is null.
template

<unsigned int
blockSize>

__global__ void

cuSumAll_kernelC(float2 *g_idata, float2 *g_odata, unsigned int
n)
Sums all elements in a complex array using reduction on GPU.
When called, GPU block size should be specified as a template
input, and shared memory size should be specified in a kernel
launch.

template
<unsigned int

blockSize>
__global__ void

cuSumAll_kernelR(float *g_idata, float *g_odata, unsigned int n)
Sums all elements in a real array using reduction on GPU. When
called, GPU block size should be specified as a template input, and
shared memory size should be specified in a kernel launch.

unsigned int nextPow2(unsigned int x)
Returns the next number that is power of two.

void getNumBlocksAndThreads(int n, int maxBlocks, int maxThreads,
int &blocks, int &threads)

 110

Finds appropriate block size and thread size for the device.
void cuSumAll(cuMat& src, float2* sum, cudaStream_t stream =

NULL)
Launches a kernel to sum all elements in an array using reduction.
Arguments:
• src: input cuMat object with real or complex data
• sum: output sum. It is a complex number. If src has the real

array, the imaginary part of sum it zero.
• stream: CUDA stream. Default value is null.

void cuMean(cuMat& src, float* mean, int dim, cudaStream_t stream =
NULL)
Computes a mean value of an array along the dimension, dim.
Currently, only computing a mean over all elements in src is
available.
• src: input cuMat object
• mean: the output mean of src along dim
• dim: dimension to operate along

o 0: returns a mean over all elements
• stream: CUDA stream. Default value is null.

void cufft(cuMat& src, cuMat& dst, char direction, cudaStream_t
stream = NULL)
Performs fast Fourier transform with the cuFFT API [169].
Arguments:
• src: input cuMat object with complex data
• dst: output cuMat object with complex data
• direction:

o ‘F’: forward FFT
o ‘I’: inverse FFT

• stream: CUDA stream. Default value is null.
__global__ void cuShift2D_kernelC(float2* src, float2* dst, const unsigned int

row, const unsigned col)
Shifts a complex array to have zero-frequency in the center of the
array.

__global__ void cuShift2D_kernelCR(float2* src, float* dst, const unsigned int
row, const unsigned col)
Shifts a 2D complex array to have zero-frequency in the center of a
real array. The imaginary part of the input array is lost.

__global__ void cuShift2D_kernelRC(float* src, float2* dst, const unsigned int
row, const unsigned col)

 111

Shifts a 2D real array to have zero-frequency in the center of a
complex array. The imaginary part of the output array is zero.

__global__ void cuShift2D_kernelR(float* src, float* dst, const unsigned int row,
const unsigned col, const unsigned int depth)
Shifts a 2D real array to have zero-frequency in the center of the
array.

__global__ void cuShift3D_kernelC(float2* src, float2* dst, const unsigned int
row, const unsigned col, const unsigned int depth)
Shifts a 3D complex array to have zero-frequency in the center of
the array.

__global__ void cuShift3D_kernelCR(float2* src, float* dst, const unsigned int
row, const unsigned col, const unsigned int depth)
Shifts a 3D complex array to have zero-frequency in the center of a
real array. The imaginary part of the input array is lost.

__global__ void cuShift3D_kernelRC(float* src, float2* dst, const unsigned int
row, const unsigned col, const unsigned int depth)
Shifts a 3D real array to have zero-frequency in the center of a
complex array. The imaginary part of the output array is zero.

__global__ void cuShift3D_kernelR(float* src, float* dst, const unsigned int row,
const unsigned col, const unsigned int depth)
Shifts a 3D real array to have zero-frequency in the center of the
array.

void cuShift(cuMat& src, cuMat& dst, cudaStream_t stream = NULL)
Shifts an array to have zero-frequency in the center of the array on
GPU. src and dst must have different memory addresses. src and
dst should have the same size, but can have different types.
Currently, only the array with even length in each dimension is
accepted, so it can be used to shift the array back.
Arguments:
• src: input cuMat object

dst: output cuMat object

stream: CUDA stream. Default value is null.
void shift(cuMat& src, cuMat& dst)

Shifts an array to have zero-frequency in the center of the array on
CPU. src and dst must have different memory addresses. src and dst
should have the same size, but can have different types. Currently,
only the array with even length in each dimension is accepted.
Arguments:
• src: input cuMat object

 112

• dst: output cuMat object
void squeeze(cuMat& src, cuMat& dst, int dim, int plane)

Removes a dimension of a 3D array.
Arguments:
• src: input cuMat object with 3D data
• dst: output cuMat object with 2D data
• dim: dimension to be removed

o 1: row (x)
o 2: column (y)
o 3: depth (z)

• plane: plane which remains. plane can be a number in [0, length
of row], [0, length of column], or [0, length of depth].

e.i. squeeze(A, B, 2, 10) is the same as B = squeeze(A(:,10,:)) in
MATLAB.

void cuRotate(cuMat& src, cuMat& dst, int angle)
Rotates an array by an angle in a counterclockwise with bilinear
interpolation and crops the array to the same size as the input.
Arguments:
• src: input cuMat object
• dst: output cuMat object
• angle: rotation angle in degree

void reshape(cuMat& src, cuMat& dst, int shape[3])
Reshapes an array to a new shape. As data is stored as a vector, it
simply redefines the lengths of each dimension.
Arguments:
• src: input cuMat object
• dst: output cuMat object
• shape: array of length, 3. [row, column, depth]

Global functions in TDPM3D.cuh

int readH5Data(const H5std_string filename, const H5std_string
dataset_name, cuMat& dst)
Reads a HDF5 data file. See [139] for more details. See B.3 for
data naming.
Arguments:
• filename: name of the .h5 file

 113

• dataset_name: name of dataset in the .h5 file
• dst: output cuMat object with preallocated memory for data

void loadIdata(cuMat& Idata, std::string IdataDir, std::string
Idata_dataset_name, const int angle)
Loads intensity data stored in .h5 files. See B.3 for data naming.
Arguments:
• Idata: cuMat object with preallocated memory for data
• IdataDir: .h5 file name for intensity data including directory
• Idata_dataset_name: dataset name in the .h5 file
• angle: rotation angle in degree

__global__ void create_mask_out(float* fxri, float* fzri, float radius, float*
mask_out, int n)
Creates mask_out on GPU.

__global__ void create_rhori(float* fxri, float* fyri, float* fzri, float ax, float ay,
float az, float* rhori, int n)
Creates rhori on GPU.

__global__ void create_mask_out_0(float* x, float*y, float radius, float*
mask_out_0, int n)
Creates mask_out_0 on GPU.

__global__ void create_mask_out_0_3D(float* fxri, float* fzri, float radius, float*
mask_out_0_3D, int n)
Creates 3D mask_out_0 on GPU.

__global__ void create_final_rhori(float* fxri, float* fzri, float scale, float* rhori,
int n)
Creates rhori on GPU.

__global__ void

compute_Vtemp1f(float2* Idata_3D_filt1f, float* ring_i, float*
comp, float2* Vtemp1f, int n)

 Computes high-frequency scattering potential in frequency domain
(Vtemp1f) on GPU.

__global__ void convert2RI(float* Vtemp, float div, float add, float* RID, int n)
Converts scattering potential (Vtemp) to refractive index
distribution (RID) on GPU.

void compute_Idata_3D_filts(cuMat& idatapsf_3df_unshifted_conj,
 cuMat& tfl_unshifted_conj,
 cuMat& mask_out_0,
 cuMat& deni_unshifted,
 cuMat& Idata_3D_filt1,
 cuMat& Idata_3D_filt2,
 int Leng,

 114

 std::string IdataDir,
 std::string Idata_dataset_name,
 int rotateDegree, int ndz, int edge,
 int mask_out_0_count,
 int startAngle, int endAngle)
Computes Idata_3D_filt1 and Idata_3D_filt2 from startAngle to
endAngle (inclusive) on GPU streams and CPU. startAngle and
endAngle are the index of thetaf which can be from 0 to 14.
endAngle should be a larger number than startAngle.

void TDPM_from_Idata_3D(TDPM3D& tdpm)
Recovers refractive index distribution (RID) from intensity data.

B.4 Data Naming Convention

 TDPM3D_TSUM loads simulation objects, point spread functions (PSF_3D),
intensity data (Idata_3D) that are formatted as HDF5 files. It is important to have correct
data names for HDF5 files to load them in TDPM3D_TSUM. See [139] to learn how
HDF5 file works. For TDPM3D_TSUM, the following naming rules are used.

Intensity Data Names:

 File name:

 Idata_3D_<object type>_<object size>_n<RI of immersion liquid>.h5

 Dataset name:

 /ang<angl

 Size:

 [2 2 1]*(length of object)

 Example:

 file name: "Idata_3D_phantom_128_n1.485.h5"

 Dataset name: "/ang0"

 115

 Size: [256 256 128]

PSF Data Names:

 File name:

 PSF_3D_<source type>_<size>_NAc_<numerical aperture of condenser>_n<RI of
immersion liquid>.h5

 Dataset name:

 /PSF<size>

 Size:

 [2 2 2]*(length of object) = [1 1 1]*size

 Example:

 File name: "HDF5 PSF_3D_disk_256_NAc_0.375_n1.458.h5"

 Dataset name: "/PSF256"

 size: [256 256 256]

Object Data Names:

 File name:

 <object type>_<length1>x<length2>.h5

 Dataset name:

 /<object type>

 Size:

 [1 2 1]*(length of object) = [length1 length2 length1]

 116

 Example:

 File name: "phantom_256x512.h5"

 Dataset name: "/phantom"

 size: [256 512 256]

B.5 How to Compile and Run

 TDPM3D_TSUM has a makefile which describes how to compile the program and

link source files and libraries.

To compile from terminal, simply type:

 $ make

The Make command will create object files and an executable file.

To run:

 $.\TDPM3D_TSUM <Length>

 For example, .\TDPM3D_TSUM 128 will simulate 128x128x64 intensity data.

To clean the object files and the executable file:

 $ make clean

 117

APPENDIX C. HARDWARE SPECIFICATIONS

C.1 CPUs

 Intel Xeon Silver 4110

CPU

NVIDIA Carmel CPU

Instruction Set Architecture x86-64 ARMx8
of Cores 8 8

of Threads 16 8
Base Frequency 2.100 GHz 2.265 GHz
Max Frequency 3.000 GHz -

Cache
L1: 256 KB (data)

L2: 8 MB
L3: 11 MB

L1: 64 KB (data)
L2: 2 MiB
L3: 4 MiB

Memory 64 GB DDR4 LPDDR4x 32 GB (UPM)

C.2 GPUs

 Titan RTX Jetson AGX Xavier

Architecture Turing Volta
CUDA Driver Version /

Runtime Version 10.2 / 10.2 10.2 / 10.2

CUDA Capability 7.5 7.2
Global Memory 24576 MB 31927 MB

CUDA Cores 72 Multiprocessors,
4608 CUDA Cores

8 Multiprocessors,
512 CUDA Cores

GPU Max Clock rate 1770 MHz 1377 MHz
Memory Clock rate 7001 MHz 1377 MHz
Memory Bus Width 384-bit 256-bit

L2 Cache 6291456 bytes 524288 bytes

Max Texture Dim (x,y,z)
1D=(131072),

2D=(131072, 65536),
3D=(16384, 16384, 16384)

1D=(131072),
2D=(131072, 65536),

3D=(16384, 16384, 16384)
Maximum Layered 1D Texture

Size, (num) layers 1D=(32768), 2048 layers 1D=(32768), 2048 layers

 118

Maximum Layered 2D Texture
Size, (num) layers

2D=(32768, 32768), 2048
layers

2D=(32768, 32768), 2048
layers

Total amount of constant
memory: 65536 bytes 65536 bytes

Total amount of shared
memory per block: 49152 bytes 49152 bytes

Total shared memory per
multiprocessor:

Total number of registers
available per block: 65536 65536

Warp size: 32 32
Maximum number of threads

per multiprocessor: 1024 2048
Maximum number of threads

per block: 1024 1024
Max dimension size of a thread

block (x,y,z): (1024, 1024, 64) (1024, 1024, 64)

Max dimension size of a grid
size (x,y,z):

(2147483647, 65535,
65535)

(2147483647, 65535,
65535)

Maximum memory pitch: 2147483647 bytes 2147483647 bytes
Texture alignment: 512 bytes 512 bytes

Concurrent copy and kernel
execution:

 Yes with 1 copy engine(s)

Run time limit on kernels: Yes No
Integrated GPU sharing Host

Memory: No Yes

Support host page-locked
memory mapping: Yes Yes

Alignment requirement for
Surfaces: Yes Yes

Device has ECC support: Disabled Disabled
CUDA Device Driver Mode

(TCC or WDDM):
WDDM (Windows Display

Driver Model)

Device supports Unified
Addressing (UVA): Yes Yes

Device supports Compute
Preemption: Yes Yes

Supports Cooperative Kernel
Launch: No Yes

Supports MultiDevice Co-op
Kernel Launch: No Yes

Device PCI Domain ID / Bus
ID / location ID: 0 / 23 / 0 0 / 0 / 0

 119

APPENDIX D. DERIVATION OF 𝑣𝑣

The gradient of 𝐿𝐿𝜌𝜌 with respect to 𝑣𝑣 is:

 ∇𝑣𝑣𝐿𝐿𝜌𝜌(𝑣𝑣, 𝑧𝑧1, 𝑧𝑧2, 𝜇𝜇1, 𝜇𝜇2) =
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 𝐴𝐴−𝑚𝑚𝑣𝑣 − 𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

 + 𝜌𝜌𝐷𝐷𝑇𝑇𝐷𝐷𝑣𝑣 + 𝜌𝜌𝐷𝐷𝑇𝑇(𝜇𝜇1 − 𝑧𝑧1)

 + 𝜌𝜌𝑣𝑣 − 𝜌𝜌(𝑧𝑧2 + 𝜇𝜇2)

(D.1)

To find the minimum, we set Eq. (C.1) equal to zero and solve for 𝑣𝑣:

 0 =
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 𝐴𝐴−𝑚𝑚𝑣𝑣 − 𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

+ 𝜌𝜌𝐷𝐷𝑇𝑇𝐷𝐷𝑣𝑣 + 𝜌𝜌𝐷𝐷𝑇𝑇(𝜇𝜇1 − 𝑧𝑧1) + 𝜌𝜌𝑣𝑣

− 𝜌𝜌(𝑧𝑧2 + 𝜇𝜇2)
(D.2)

 1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 𝐴𝐴−𝑚𝑚𝑣𝑣
𝑚𝑚

+ 𝜌𝜌𝐷𝐷𝑇𝑇𝐷𝐷𝑣𝑣 + 𝜌𝜌𝐷𝐷𝑇𝑇

=
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

+ 𝜌𝜌𝐷𝐷𝑇𝑇(𝑧𝑧1 − 𝜇𝜇1) + 𝜌𝜌(𝑧𝑧2 − 𝜇𝜇2)
(D.3)

�

1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 𝐴𝐴−𝑚𝑚
𝑚𝑚

+ 𝜌𝜌𝐷𝐷𝑇𝑇𝐷𝐷 + 𝜌𝜌𝐼𝐼� 𝑣𝑣

=
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

+ 𝜌𝜌𝐷𝐷𝑇𝑇(𝑧𝑧1 − 𝜇𝜇1) + 𝜌𝜌(𝑧𝑧2 − 𝜇𝜇2)
(D.4)

1
𝑁𝑁
∑ 𝐴𝐴−𝑚𝑚𝑇𝑇 𝐴𝐴−𝑚𝑚𝑚𝑚 , 𝜌𝜌𝐷𝐷𝑇𝑇𝐷𝐷, and 𝜌𝜌𝐼𝐼 are all block circulant matrices, so they are diagonalizable

by the discrete Fourier transform. Therefore, this minimization can be solved efficiently
using the fast Fourier transform:

 �̂�𝛢𝑇𝑇𝛪𝛪 ←
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

 (D.5)

 𝑣𝑣 ← ℱ−1 �
ℱ{�̂�𝛢𝑇𝑇𝛪𝛪 + 𝜌𝜌𝐷𝐷𝑇𝑇(𝑧𝑧1 − 𝜇𝜇1) + 𝜌𝜌(𝑧𝑧2 − 𝜇𝜇2)}

1
𝑁𝑁∑ |ℱ{𝐴𝐴−𝑚𝑚}|2 + 𝜌𝜌(|ℱ{𝐷𝐷}|2 + 1)𝑚𝑚

� (D.6)

 120

REFERENCES

[1] C. Allier, L. Hervé, O. Mandula, P. Blandin, Y. Usson, J. Savatier, S. Monneret,
and S. Morales, "Quantitative phase imaging of adherent mammalian cells: a
comparative study," Biomed. Opt. Express, vol. 10, pp. 2768-2783, Jun. 1, 2019.

[2] M. Baczewska, K. Eder, S. Ketelhut, B. Kemper, and M. Kujawinska, "Refractive
Index Changes of Cells and Cellular Compartments Upon Paraformaldehyde
Fixation Acquired by Tomographic Phase Microscopy," Cytom. Part A, p. 24229
(11 pp.), Sep. 22, 2020.

[3] A. Butola, D. Popova, A. Ahmad, V. Dubey, G. Acharya, P. Banet, P.
Senthilkumaran, B. S. Ahluwalia, and D. S. Mehta, "Classification of human
spermatozoa using quantitative phase imaging and machine learning," in Digital
Holography and 3D Imaging, 2019, p. Th4A.3.

[4] T. Cacace, V. Bianco, and P. Ferraro, "Quantitative phase imaging trends in
biomedical applications," Opt. Laser Eng., vol. 135, p. 106188 (9 pp.), Dec. 2020.

[5] V. L. Calin, M. Mihailescu, E. I. Scarlat, A. V. Baluta, D. Calin, E. Kovacs, T.
Savopol, and M. G. Moisescu, "Evaluation of the metastatic potential of
malignant cells by image processing of digital holographic microscopy data,"
Febs. Open Bio., vol. 7, pp. 1527-1538, Oct. 2017.

[6] G. Caprio, M. A. Ferrara, L. Miccio, F. Merola, P. Memmolo, P. Ferraro, and G.
Coppola, "Holographic imaging of unlabelled sperm cells for semen analysis: a
review," J. Biophotonics, vol. 8, pp. 779-789, Dec. 9, 2015.

[7] S. Cohen-Maslaton, I. Barnea, A. Taieb, and N. T. Shaked, "Cell and nucleus
refractive-index mapping by interferometric phase microscopy and rapid confocal
fluorescence microscopy," J. Biophotonics, p. e202000117 (11 pp.), May. 21,
2020.

[8] D. Gillies, W. Gamal, M. Canel, Y. Reinwald, Y. Yang, A. J. E. Haj, A. Serrels,
and P. O. Bagnaninchi, "Real-time and non-invasive quantitative phase imaging
of pancreatic ductal adenocarcinoma cell mechanical properties," Proc. SPIE, vol.
10880, p. 108800H (9 pp.), Feb. 21, 2019.

 121

[9] T. Go, H. Byeon, and S. J. Lee, "Label-free sensor for automatic identification of
erythrocytes using digital in-line holographic microscopy and machine learning,"
Biosens Bioelectron, vol. 103, pp. 12-18, Apr. 30, 2018.

[10] P. Guo, J. Huang, and M. A. Moses, "Characterization of dormant and active
human cancer cells by quantitative phase imaging," Cytom. Part A, vol. 91A, pp.
424-432, Mar. 17, 2017.

[11] T. Henser-Brownhill, R. J. Ju, N. K. Haass, S. J. Stehbens, C. Ballestrem, and T.
F. Cootes, "Estimation of cell cycle states of human melanoma cells with
quantitative phase imaging and deep learning," in IEEE 17th I. S. Biomed.
Imaging (ISBI), 2020, pp. 1617-1621.

[12] J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, "Melittin-induced alterations in
morphology and deformability of human red blood cells using quantitative phase
imaging techniques," Sci. Rep., vol. 7, p. 9306 (10 pp.), Aug. 24, 2017.

[13] J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G.
Lee, and Y. Park, "Label-free non-invasive quantitative measurement of lipid
contents in individual microalgal cells using refractive index tomography," Sci.
Rep., vol. 8, p. 6534 (10 pp.), Apr. 15, 2018.

[14] B. Kemper, L. Pohl, M. Kaiser, E. Dopker, J. Schnekenburger, and S. Ketelhut,
"Label-free detection of global morphology changes in confluent cell layers
utilizing quantitative phase imaging with digital holographic microscopy," Proc.
SPIE, vol. 11076, p. 30, Jul. 22, 2019.

[15] S.-A. Yang, J. Yoon, K. Kim, and Y. Park, "Measurements of morphological and
biophysical alterations in individual neuron cells associated with early neurotoxic
effects in Parkinson's disease," Cytom. Part A, vol. 91, pp. 510-518, Apr. 20,
2017.

[16] F. Charriere, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D.
Mitchell, P. Marquet, and B. Rappaz, "Living specimen tomography by digital
holographic microscopy: morphometry of testate amoeba," Opt. Express, vol. 14,
pp. 7005-7013, Aug. 7, 2006.

[17] Z. El-Schich, A. Molder, H. Tassidis, P. Harkonen, M. F. Miniotis, and A. G.
Wingren, "Induction of morphological changes in death-induced cancer cells
monitored by holographic microscopy," J. Struct. Biol., vol. 189, pp. 207-212,
Mar. 2015.

 122

[18] H. Funamizu and Y. Aizu, "Three-dimensional quantitative phase imaging of
blood coagulation structures by optical projection tomography in flow cytometry
using digital holographic microscopy," J. Biomed. Opt., vol. 24, p. 6, Mar. 2019.

[19] P. Girshovitz and N. T. Shaked, "Generalized cell morphological parameters
based on interferometric phase microscopy and their application to cell life cycle
characterization," Biomed. Opt. Express, vol. 3, pp. 1757-1773, Aug. 1, 2012.

[20] K. G. Phillips, S. L. Jacques, and O. J. T. McCarty, "Measurement of single cell
refractive index, dry mass, volume, and density using a transillumination
microscope," Phys. Rev. Lett., vol. 109, p. 118105 (5 pp.), Sep. 13, 2012.

[21] S. Ceballos, M. Kandel, S. Sridharan, H. Majeed, F. Monroy, and G. Popescu,
"Active intracellular transport in metastatic cells studied by spatial light
interference microscopy," J. Biomed. Opt., vol. 20, p. 111209, Nov. 2015.

[22] B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J.
Muething, H. Karch, and G. von Bally, "Label-free quantitative cell division
monitoring of endothelial cells by digital holographic microscopy," J. Biomed.
Opt., vol. 15, p. 036009 (6 pp.), May. 2010.

[23] P. A. Sandoz, C. Tremblay, F. G. van der Goot, and M. Frechin, "Image-based
analysis of living mammalian cells using label-free 3D refractive index maps
reveals new organelle dynamics and dry mass flux," PLoS. Biol., vol. 17, p. 22,
Dec. 19, 2019.

[24] Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G.
Popescu, "Measurement of the nonlinear elasticity of red blood cell membranes,"
Phys. Rev. E., vol. 83, p. 051925 (pp. 17), May. 27, 2011.

[25] D. Huang, K. A. Leslie, D. Guest, O. Yeshcheulova, I. J. Roy, M. Piva, G.
Moriceau, T. A. Zangle, R. S. Lo, M. A. Teitell, and J. Reed, "High-speed live-
cell interferometry: A new method for quantifying tumor drug resistance and
heterogeneity," Anal. Chem., vol. 90, pp. 3299-3306, Mar. 6, 2018.

[26] D. D. Nolte, R. An, J. Turek, and K. Jeong, "Tissue dynamics spectroscopy for
phenotypic profiling of drug effects in three-dimensional culture," Biomed. Opt.
Express, vol. 3, pp. 2825-2841, Nov. 1, 2012.

 123

[27] M. Mir, A. Bergamaschi, B. S. Katzenellenbogen, and G. Popescu, "Highly
Sensitive Quantitative Imaging for Monitoring Single Cancer Cell Growth
Kinetics and Drug Response," PLOS One, vol. 9, p. e89000, Feb. 18, 2014.

[28] T. Yao, R. Cao, W. Xiao, F. Pan, and X. Li, "An optical study of drug resistance
detection in endometrial cancer cells by dynamic and quantitative phase imaging,"
J. Biophotonics, vol. 10, p. e201800443, Feb. 15, 2019.

[29] Z. Wang, K. Tangella, A. Balla, and G. Popescu, "Tissue refractive index as
marker of disease," J. Biomed. Opt., vol. 16, p. 7, Nov, 2011.

[30] M. Takabayashi, H. Majeed, A. Kajdacsy-Balla, and G. Popescu, "Disorder
strength measured by quantitative phase imaging as intrinsic cancer marker in
fixed tissue biopsies," PLOS One, vol. 13, p. e0194320 (10 pp.), Mar. 21, 2018.

[31] W. Huaqin, L. Zhifang, L. Hui, and W. Shulian, "Quantitative phase imaging of
Breast cancer cell based on SLIM," in J. Phys., Conf. Ser., UK, 2016, p. 012003
(5 pp.).

[32] V. K. Lam, T. C. Nguyen, B. M. Chung, G. Nehmetallah, and C. B. Raub,
"Quantitative assessment of cancer cell morphology and motility using telecentric
digital holographic microscopy and machine learning," Cytom. Part A, vol. 93A,
pp. 334-345, Mar. 2018.

[33] D. Claus, A. M. Maiden, F. Zhang, F. G. R. Sweeney, M. J. Humphry, H.
Schluesener, and J. M. Rodenburg, "Quantitative phase contrast optimised
cancerous cell differentiation via ptychography," Opt. Express, vol. 20, pp. 9911-
9918, Apr. 23, 2012.

[34] H. Majeed, M. E. Kandel, K. Han, Z. Luo, V. Macias, K. Tangella, A. Balla, and
G. Popescu, "Breast cancer diagnosis using spatial light interference microscopy,"
J. Biomed. Opt., vol. 20, pp. 111210-1--111210-6, Nov. 2015.

[35] T. H. Nguyen, S. Sridharan, V. Macias, A. K. Balla, M. N. Do, and G. Popescu,
"Prostate cancer diagnosis using quantitative phase imaging and machine learning
algorithms," Proc. SPIE, vol. 9336, pp. 933619-1--933619-10, 2015.

[36] D. Roitshtain, L. Wolbromsky, E. Bal, H. Greenspan, L. L. Satterwhite, and N. T.
Shaked, "Quantitative phase microscopy spatial signatures of cancer cells,"
Cytom. Part A, vol. 91, pp. 482-493, Apr. 20, 2017.

 124

[37] W. J. Choi, "Quantitative Phase-Contrast Imaging for Distinction between
Different States of Human Breast Cancer Cells," J. Korean Phys. Soc., vol. 74,
pp. 574-578, Mar. 1, 2019.

[38] Z. El-Schich, A. Leida Mölder, and A. Gjörloff Wingren, "Quantitative phase
imaging for label-free analysis of cancer cells—focus on digital holographic
microscopy," Applied Sciences, vol. 8, p. 1027 (16 pp.), Jun. 23, 2018.

[39] Y. Park, D. Ryu, Y. S. Kim, K. Hong, and H.-S. Min, "Method and apparatus for
rapid diagnosis of hematologic malignancy using 3D quantitative phase imaging
and deep learning," United States Patent Application Publication no.
2020/0394794 A1, 2020.

[40] A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, "Automatic identification
of malaria-infected RBC with digital holographic microscopy using correlation
algorithms," IEEE Photonics J., vol. 4, pp. 1456-1464, Oct. 2012.

[41] P. Marquet, K. Rothenfusser, B. Rappaz, C. Depeursinge, P. Jourdain, and P.
Magistretti, "Quantitative phase-digital holographic microscopy: a new imaging
modality to identify original cellular biomarkers of diseases," SPIE BiOS, vol.
9718, May. 2, 2016.

[42] P. Marquet, C. Depeursinge, and P. J. Magistretti, "Review of quantitative phase-
digital holographic microscopy: promising novel imaging technique to resolve
neuronal network activity and identify cellular biomarkers of psychiatric
disorders," Neurophotonics, vol. 1, p. 020901, Sep. 22, 2014.

[43] B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W.
Domschke, and G. von Bally, "Investigation of living pancreas tumor cells by
digital holographic microscopy," J. Biomed. Opt., vol. 11, p. 034005 (8 pp.), May.
2006.

[44] Z. Wang, K. Tangella, A. Balla, and G. Popescu, "Tissue refractive index as
marker of disease," J. Biomed. Opt., vol. 16, Nov. 1, 2011.

[45] K. G. Phillips, C. R. Velasco, J. Li, A. Kolatkar, M. Luttgen, K. Bethel, B.
Duggan, P. Kuhn, and O. J. McCarty, "Optical quantification of cellular mass,
volume, and density of circulating tumor cells identified in an ovarian cancer
patient," Front. Oncol., vol. 2, p. 72 (8 pp.), Jul. 18, 2012.

 125

[46] C. Hu and G. Popescu, "Quantitative Phase Imaging (QPI) in Neuroscience,"
IEEE J. Sel. Top. Quant., vol. 25, pp. 1-9, Jan./Feb. 2019.

[47] P. Marquet, D. Boss, P. Jourdain, P. Magistretti, N. Pavillon, C. Depeursinge, and
Ieee, "Digital holographic microscopy applied to neurociences (Invited Paper)," in
11th Eur.-Am. Worksh. Info., 2012.

[48] P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P.
Marquet, and P. J. Magistretti, "Determination of transmembrane water fluxes in
neurons elicited by glutamate ionotropic receptors and by the cotransporters
KCC2 and NKCC1: a digital holographic microscopy study," J Neurosci, vol. 31,
pp. 11846-11854, Aug. 17, 2011.

[49] H. S. Park, M. Rinehart, K. A. Walzer, J.-T. A. Chi, and A. Wax, "Automated
detection of P. falciparum using machine learning algorithms with quantitative
phase images of unstained cells," PLOS One, vol. 11, p. 0163045 (19 pp.), Sep.
16, 2016.

[50] C. Trujillo and J. Garcia-Sucerquia, "Automatic detection and counting of phase
objects in raw holograms of digital holographic microscopy via deep learning,"
Opt. Laser Eng., vol. 120, pp. 13-20, Sep. 1, 2019.

[51] T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N.
Do, and G. Popescu, "Automatic Gleason grading of prostate cancer using
quantitative phase imaging and machine learning," J. Biomed. Opt., vol. 22, p.
036015 (12 pp.), Mar. 2017.

[52] I. Moon, K. Jaferzadeh, Y. Kim, and B. Javidi, "Noise-free quantitative phase
imaging in Gabor holography with conditional generative adversarial network,"
Opt. Express, vol. 28, pp. 26284-26301, Aug. 31, 2020.

[53] G. Kim, Y. Jo, H. Cho, H. S. Min, and Y. Park, "Learning-based screening of
hematologic disorders using quantitative phase imaging of individual red blood
cells," Biosens Bioelectron, vol. 123, pp. 69-76, Jan. 2019.

[54] C. L. Chen, A. Mahjoubfar, L.-c. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B.
Jalali, "Deep learning in label-free cell classification," Scientific Reports vol. 6, p.
21471, Mar. 15, 2016.

 126

[55] S. H. Karandikar, C. Zhang, A. Meirappan, I. Barman, C. Finck, P. K. Srivastava,
and R. Pandey, "Reagent-free and rapid assessment of T cell activation state using
diffraction phase microscopy and deep learning," Anal. Chem., vol. 91, pp. 3405-
3411, Mar. 2019.

[56] F. Yi, I. Moon, and B. Javidi, "Automated red blood cells extraction from
holographic images using fully convolutional neural networks," Biomed. Opt.
Express, vol. 8, pp. 4466-4479, Oct. 1, 2017.

[57] T. O'Connor, S. Rawat, A. Markman, and B. Javidi, "Automatic cell identification
and visualization using digital holographic microscopy with head mounted
augmented reality devices," Appl. Opt., vol. 57, pp. B197-B204, Mar. 1, 2018.

[58] S. Abad, M. Lopez-Amo, F. M. Araujo, L. A. Ferreira, and J. L. Santos, "Fiber
Bragg grating-based self-referencing technique for wavelength-multiplexed
intensity sensors," Opt. Lett., vol. 27, pp. 222-4, 2002.

[59] G. P. Agrawal and S. Radic, "Phase-shifted fiber Bragg gratings and their
application for wavelength demultiplexing," IEEE Photonics Technology Letters,
vol. 6, pp. 995-997, 1994.

[60] P. Orr and P. Niewczas, "High-Speed, Solid State, Interferometric Interrogator
and Multiplexer for Fiber Bragg Grating Sensors," J. Lightwave Technol., vol. 29,
pp. 3387-92, 2011.

[61] S.-L. Tsao, J. Wu, and B.-C. Yeh, "High-resolution neural temperature sensor
using fiber Bragg gratings," IEEE J. Quantum Electron., vol. 35, pp. 1590-1596,
1999.

[62] H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H.
Ahmad, "In-fiber gratings for simultaneous monitoring temperature and strain in
ultrahigh temperature," IEEE Photonics Technol. Lett., vol. 27, pp. 58-61, 2015.

[63] A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Fiber-grating based strain sensor
with phase sensitive detection," in First European Conference on Smart
Structures and Materials, 12-14 May 1992, Bristol, UK, 1992, pp. 61-7.

[64] M. Kanik, S. Orguc, G. Varnavides, J. Kim, T. Benavides, D. Gonzalez, T.
Akintilo, C. C. Tasan, A. P. Chandrakasan, Y. Fink, and P. Anikeeva, "Strain-

 127

programmable fiber-based artificial muscle," Science, vol. 365, pp. 145-150, Jul.
12, 2019.

[65] Y. Zhang, D. Feng, Z. Liu, Z. Guo, X. Dong, K. S. Chiang, and B. C. B. Chu,
"High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg
grating," IEEE Photonics Technol. Lett., vol. 13, pp. 618-619, 2001.

[66] A. Fender, E. J. Rigg, R. R. J. Maier, W. N. MacPherson, J. S. Barton, A. J.
Moore, J. D. C. Jones, D. Zhao, L. Zhang, I. Bennion, S. McCulloch, and B. J. S.
Jones, "Dynamic two-axis curvature measurement using multicore fiber Bragg
gratings interrogated by arrayed waveguide gratings," Appl. Opt., vol. 45, pp.
9041-9048, Dec. 20, 2006.

[67] R. Ahmadi, M. Packirisamy, J. Dargahi, and R. Cecere, "Discretely loaded beam-
type optical fiber tactile sensor for tissue manipulation and palpation in minimally
invasive robotic surgery," IEEE Sensors Journal, vol. 12, pp. 22-32, 2012.

[68] P. Puangmali, L. Hongbin, K. Althoefer, and L. D. Seneviratne, "Optical fiber
sensor for soft tissue investigation during minimally invasive surgery," in IEEE
Int. Conf. Robotics Automation, 2008, pp. 2934-2939.

[69] G. Rajan, D. Callaghan, Y. Semenova, and G. Farrell, "Miniature temperature
insensitive fiber optic sensors for minimally invasive surgical devices," Proc.
SPIE, vol. 7753, p. 77536Z (4 pp.), 2011.

[70] J. Peirs, J. Clijnen, D. Reynaerts, H. Van Brussel, P. Herijgers, B. Corteville, and
S. Boone, "A micro optical force sensor for force feedback during minimally
invasive robotic surgery," Sensor. Actuat. A-Phys., vol. A115, pp. 447-455, 2004.

[71] T. Li, C. Shi, and H. Ren, "A high-sensitivity tactile sensor array based on fiber
Bragg grating sensing for tissue palpation in minimally invasive surgery,"
IEEE/ASME Transactions on Mechatronics, vol. 23, pp. 2306-2315, Oct. 2018.

[72] C. Ledermann, H. Alagi, H. Woern, R. Schirren, and S. Reiser, "Biomimetic
tactile sensor based on Fiber Bragg Gratings for tumor detection — Prototype and
results," in 2014 IEEE International Symposium on Medical Measurements and
Applications (MeMeA), 2014, pp. 1-6.

 128

[73] A. A. Abushagur, N. Arsad, M. I. Reaz, and A. A. Bakar, "Advances in bio-tactile
sensors for minimally invasive surgery using the fibre Bragg grating force sensor
technique: a survey," Sensors (Basel), vol. 14, pp. 6633-65, Apr. 9, 2014.

[74] S. Park, G. Loke, Y. Fink, and P. Anikeeva, "Flexible fiber-based optoelectronics
for neural interfaces," Chem. Soc. Rev., vol. 48, pp. 1826-1852, Mar 2019.

[75] D. L. Presti, C. Massaroni, C. S. J. Leitão, M. D. F. Domingues, M. Sypabekova,
D. Barrera, I. Floris, L. Massari, C. M. Oddo, S. Sales, I. I. Iordachita, D. Tosi,
and E. Schena, "Fiber Bragg gratings for medical applications and future
challenges: a review," IEEE Access, vol. 8, pp. 156863-156888, 2020.

[76] G. M. Noah, Y. Bao, and T. K. Gaylord, "Cross-sectional refractive-index
variations in fiber Bragg gratings measured by quantitative phase imaging," Opt.
Lett., vol. 45, pp. 53-56, Jan. 2020.

[77] M. H. Jenkins and T. K. Gaylord, "Three-dimensional quantitative phase imaging
via tomographic deconvolution phase microscopy," Appl. Opt., vol. 54, pp. 9213-
9227, Oct. 27, 2015.

[78] F. Zernike, "Phase contrast, a new method for the microscopic observation of
transparent objects Part I," Physica Scripta, vol. 9, pp. 686-698, Jul. 1, 1942.

[79] P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C.
Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging
technique allowing quantitative visualization of living cells with subwavelength
axial accuracy," Opt. Lett., vol. 30, pp. 468-470, Mar. 1, 2005.

[80] E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and
quantitative phase-contrast microscopy by numerical reconstruction of Fresnel
off-axis holograms," Appl. Opt., vol. 38, pp. 6994-7001, Dec. 1, 1999.

[81] Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and
G. Popescu, "Spatial light interference microscopy (SLIM)," Opt. Express, vol.
19, pp. 1016-1026, Jan. 17, 2011.

[82] X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, "Quantitative phase imaging via
Fourier ptychographic microscopy," Opt. Lett., vol. 38, pp. 4845-4848, Nov. 15,
2013.

 129

[83] G. Zheng, R. Horstmeyer, and C. Yang, "Wide-field, high-resolution Fourier
ptychographic microscopy," Nat. Photon., vol. 7, pp. 739-745, Jul. 28, 2013.

[84] N. Streibl, "Phase imaging by the transport equation of intensity," Opt. Commun.,
vol. 49, pp. 6-10, Feb. 1, 1984.

[85] M. R. Teague, "Deterministic phase retrieval: a Green's function solution," J. Opt.
Soc. Am. A, vol. 73, pp. 1434-1441, Nov. 1, 1983.

[86] C. Zuo, J. Li, J. Sun, Y. Fan, J. Zhang, L. Lu, R. Zhang, B. Wang, L. Huang, and
Q. Chen, "Transport of intensity equation: a tutorial," Opt. Laser Eng., p. 106187
(89 pp.), Dec. 2020.

[87] D. Paganin and K. A. Nugent, "Noninterferometric phase imaging with partially
coherent light," Phys. Rev. Lett., vol. 80, pp. 2586-2589, Mar. 23, 1998.

[88] F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet,
and C. Depeursinge, "Cell refractive index tomography by digital holographic
microscopy," Opt. Lett., vol. 31, pp. 178-180, Jan. 15, 2006.

[89] W. Krauze, A. Kuś, and M. Kujawinska, "Limited-angle hybrid optical diffraction
tomography system with total-variation-minimization-based reconstruction," Opt.
Eng., vol. 54, pp. 054104-054104, May 2015.

[90] Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld,
"Optical diffraction tomography for high resolution live cell imaging," Opt.
Express, vol. 17, pp. 266-277, Jan. 5, 2009.

[91] F. Macias-Garza, K. R. Diller, and A. C. Bovik, "Missing cone of frequencies and
low-pass distortion in three-dimensional microscopic images," Opt. Eng., vol. 27,
pp. 461-465, Jun. 1988.

[92] F. Charrière, E. Cuche, P. Marquet, and C. Depeursinge, "Biological cell (pollen
grain) refractive index tomography with digital holographic microscopy," Proc.
SPIE, vol. 6090, pp. 609008-1--609008-8, Feb. 23, 2006.

[93] F. Charrière, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge,
"Sub-cellular quantitative optical diffraction tomography with digital holographic
microscopy," Proc. SPIE, vol. 6441, pp. 64410K-1--64410K-6, Feb. 19, 2007.

 130

[94] T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G.
Popescu, "White-light diffraction tomography of unlabelled live cells," Nat.
Photon., vol. 8, pp. 256-263, Mar. 1, 2014.

[95] P. Bon, S. Aknoun, S. Monneret, and B. Wattellier, "Enhanced 3D spatial
resolution in quantitative phase microscopy using spatially incoherent
illumination," Opt. Express, vol. 22, pp. 8654-8671, Apr. 7, 2014.

[96] C. Zuo, Q. Chen, W. Qu, and A. Asundi, "High-speed transport-of-intensity phase
microscopy with an electrically tunable lens," Opt. Express, vol. 21, pp. 24060-
24075, Oct. 7, 2013.

[97] Y. Bao and T. K. Gaylord, "Iterative optimization in tomographic deconvolution
phase microscopy," J. Opt. Soc. Am. A, vol. 35, pp. 652-660, Apr. 1, 2018.

[98] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, "Design of ion-implanted MOSFET's with very small physical
dimensions," IEEE J. Solid-State Ckt., vol. 9, pp. 256-268, Oct. 1974.

[99] G. E. Moore, "Cramming more components onto integrated circuits," Electronics,
vol. 38, pp. 114-117, Apr. 19, 1965.

[100] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
"GPU computing," Proc. IEEE, vol. 96, pp. 879-899, May 2008.

[101] A. Biguri, R. Lindroos, R. Bryll, H. Towsyfyan, H. Deyhle, I. E. k. Harrane, R.
Boardman, M. Mavrogordato, M. Dosanjh, S. Hancock, and T. Blumensath,
"Arbitrarily large tomography with iterative algorithms on multiple GPUs using
the TIGRE toolbox," J. Parallel Distr. Comput., vol. 146, pp. 52-63, Dec. 1,
2020.

[102] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, "Fast GPU-based CT
reconstruction using the Common Unified Device Architecture (CUDA)," in
IEEE Nuclear Science Symp. Conf. Record, 2007, pp. 4464-4466.

[103] X. Jia, H. Yan, L. Cerviño, M. Folkerts, and S. B. Jiang, "A GPU tool for
efficient, accurate, and realistic simulation of cone beam CT projections," Med.
Phys., vol. 39, pp. 7368-7378, Nov. 27, 2012.

 131

[104] O. Inam, M. Qureshi, H. Akram, H. Omer, and Z. Laraib, "Accelerating parallel
magnetic resonance image reconstruction on graphics processing units using
CUDA," in IEEE 2nd IEEE Int. Conf. Inf. Comput. Technol., ICICT, 2019, pp.
109-113.

[105] M. Sabbagh, M. Uecker, A. J. Powell, M. Leeser, and M. H. Moghari, "Cardiac
MRI compressed sensing image reconstruction with a graphics processing unit,"
in 10th Int. Sym. Med. Inform., 2016, pp. 1-5.

[106] Y. Zhuo, X. Wu, J. P. Haldar, W. Hwu, Z. Liang, and B. P. Sutton, "Accelerating
iterative field-compensated MR image reconstruction on GPUs," in IEEE Int.
Symp. Biomed. Imaging: Nano Macro, 2010, pp. 820-823.

[107] M. Doulgerakis-Kontoudis, A. Eggebrecht, S. Wojtkiewicz, J. Culver, and H.
Dehghani, "Toward real-time diffuse optical tomography: accelerating light
propagation modeling employing parallel computing on GPU and CPU," J.
Biomed. Opt., vol. 22, p. 125001, Dec. 1, 2017.

[108] Y. Dai, J. Tian, D. Dong, G. Yan, and H. Zheng, "Real-Time Visualized Freehand
3D Ultrasound Reconstruction Based on GPU," IEEE Trans. Inf. Technol.
Biomed., vol. 14, pp. 1338-1345, Nov. 2010.

[109] T. Reichl, J. Passenger, O. Acosta, and O. Salvado, "Ultrasound goes GPU: real-
time simulation using CUDA," Proc. SPIE, vol. 7261, p. 726116 (10 pp.), Mar.
13, 2009.

[110] H. Pham, H. F. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, "Off-axis
quantitative phase imaging processing using CUDA: toward real-time
applications," Biomed. Opt. Express, vol. 2, pp. 1781-1793, Jul. 1, 2011.

[111] K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, "Real-time visualization of 3-
D dynamic microscopic objects using optical diffraction tomography," Opt.
Express, vol. 21, pp. 32269-32278, Dec. 30, 2013.

[112] J. Frank, G. Wernicke, J. Matrisch, S. Wette, J. Beneke, and S. Altmeyer,
"Quantitative determination of the optical properties of phase objects by using a
real-time phase retrieval technique," Proc. SPIE, vol. 8082, p. 80820N (9 pp.),
May 26, 2011.

 132

[113] O. Fialka and M. Cadik, "FFT and Convolution Performance in Image Filtering
on GPU," in 10th IEEE Int. Conf. Inf. Vi., 2006, pp. 609-614.

[114] M. A. Bruce and M. J. Butte, "Real-time GPU-based 3D Deconvolution," Opt.
Express, vol. 21, pp. 4766-4773, Feb. 25, 2013.

[115] W. Wolf, B. Ozer, and T. Lv, "Smart cameras as embedded systems," Computer,
vol. 35, pp. 48-53, Sep. 2002.

[116] T. Hussain, "ViPS: A novel visual processing system architecture for medical
imaging," Biomed. Signal Process., vol. 38, pp. 293-301, Sep. 1 2017.

[117] A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. Yun, G. J. Tearney, and B. E.
Bouma, "Real-time FPGA processing for high-dpeed optical frequency domain
imaging," IEEE Trans. Med. Imaging, vol. 28, pp. 1468-1472, Mar. 24, 2009.

[118] J. Y. Xie, X. Y. Niu, A. K. S. Lau, K. K. Tsia, and H. K. H. So, "c," in Int. Conf.
Field Program. Technol., 2015, pp. 1-8.

[119] T. R. Savarimuthu, A. Kjaer-Nielsen, and A. S. Sorensen, "Real-time medical
video processing, enabled by hardware accelerated correlations," J. Real-Time
Image Process., vol. 6, pp. 187-197, Sep. 2011.

[120] C. Moler. (2000). MATLAB incorporates LAPACK. Available:
https://www.mathworks.com/company/newsletters/articles/matlab-incorporates-
lapack.html

[121] MathWorks. (2021). Parallel computing toolbox. Available:
https://www.mathworks.com/help/parallel-computing/

[122] OpenMP. (2018). OpenMP application programming interface. Available:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

[123] H. Jin and N. Manjikian, "Embedded memory in system-on-chip design:
Architecture and prototype implementation," in CCECE Proc. Toward a Caring
and Humane Technology, New York, 2003, pp. 141-146.

https://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
https://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
https://www.mathworks.com/help/parallel-computing/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

 133

[124] D. Franklin. (2018). NVIDIA Jetson AGX Xavier delivers 32 TeraOps for new era
of AI in robotics. Available: https://developer.nvidia.com/blog/nvidia-jetson-agx-
xavier-32-teraops-ai-robotics/

[125] M. Harris. (2013). Unified memory in CUDA 6. Available:
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/

[126] NVIDIA. (2014). NVIDIA CUDA Toolkit V6.0. Available:
http://developer.download.nvidia.com/compute/cuda/6_0/rel/docs/CUDA_Toolkit
_Release_Notes.pdf

[127] N. Sakharnykh. (2017). Unified memory on Pascal and Volta. Available:
https://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-
sakharnykh-unified-memory-on-pascal-and-volta.pdf

[128] W. Q. Li, G. H. Jin, X. W. Cui, and S. See, "An evaluation of unified memory
technology on NVIDIA GPUs," in 15th IEEE/ACM Int. Symp. on Cluster, Cloud
and Grid Computing, 2015, pp. 1092-1098.

[129] R. Cavicchioli, N. Capodieci, and M. Bertogna, "Memory interference
characterization between CPU cores and integrated GPUs in mixed-criticality
platforms," in 22nd IEEE Int. Conf. on Emerging Technologies and Factory
Automation (ETFA), 2017, pp. 1-10.

[130] Y. Ukidave, D. Kaeli, U. Gupta, and K. Keville, "Performance of the NVIDIA
Jetson TK1 in HPC," in IEEE Int. Conf. on Cluster Computing, 2015, pp. 533-
534.

[131] J. Choi, H. You, C. Kim, H. Y. Yeom, and Y. Kim, "Comparing unified, pinned,
and host/device memory allocations for memory-intensive workloads on Tegra
SoC," Concurr. Comp.-Pract. E., vol. 33, p. e6018 (10 pp.), Feb. 2021.

[132] R. Cavicchioli, N. Capodieci, and M. Bertogna, "Memory interference
characterization between CPU cores and integrated GPUs in mixed-criticality
platforms," in 22nd IEEE Int. C. Emerg., 2017, pp. 1-10.

[133] NVIDIA. (2020). CUDA for Tegra. Available:
https://docs.nvidia.com/cuda/archive/10.2/cuda-for-tegra-appnote/index.html

https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
http://developer.download.nvidia.com/compute/cuda/6_0/rel/docs/CUDA_Toolkit_Release_Notes.pdf
http://developer.download.nvidia.com/compute/cuda/6_0/rel/docs/CUDA_Toolkit_Release_Notes.pdf
https://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
https://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
https://docs.nvidia.com/cuda/archive/10.2/cuda-for-tegra-appnote/index.html

 134

[134] J. Guan, S. Yan, and J. M. Jin, "An openMP-CUDA implementation of multilevel
fast multipole algorithm for electromagnetic simulation on multi-GPU computing
systems," IEEE Transactions on Antennas and Propagation, vol. 61, pp. 3607-
3616, Jul. 2013.

[135] S. Rosenberger and G. Haase, "Pragma Based GPU Parallelizations for
Cardiovascular Simulations," in Int. Conf. on High Performance Computing &
Simulation, New York, 2018, pp. 1022-1027.

[136] F. J. Hernandez-Lopez, R. Legarda-Saenz, and C. Brito-Loeza, "Parallel
algorithm for fringe pattern demodulation," J. of Real-Time Image Process., p.
(11 pp.), Jun. 8, 2021.

[137] NVIDIA. (2019). CUDA C++ programming guide. Available:
https://docs.nvidia.com/cuda/archive/10.2/cuda-c-programming-guide/index.html

[138] M. Schabel, "3D Shepp-Logan phantom," ed. MATLAB Cent. File Exch., 2006.

[139] TheHDFGroup. (2006). HDF5. Available:
https://portal.hdfgroup.org/display/HDF5/HDF5

[140] J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, "Comparative
study of iterative reconstruction algorithms for missing cone problems in optical
diffraction tomography," Opt. Express, vol. 23, pp. 16933-16948, Jun. 29, 2015.

[141] J. Huang, H. Jin, Q. Ye, and G. Meng, "Iterative phase retrieval by combining
modulus constraints and angle relationships," Inverse Probl., vol. 35, p. 014002
(23 pp.), 2019.

[142] A. Doblas, C. Buitrago-Duque, A. Robinson, and J. Garcia-Sucerquia, "Phase-
shifting digital holographic microscopy with an iterative blind reconstruction
algorithm," Appl. Opt., vol. 58, pp. G311-G317, Dec. 1, 2019.

[143] K. Liu, H. Cheng, C. Zhang, C. Shen, F. Zhang, and S. Wei, "Iterative feedback
algorithm for phase retrieval based on transport of intensity equation," Proc.
SPIE, vol. 9817, pp. 98171F-1--98171F-5, Dec. 9, 2015.

https://docs.nvidia.com/cuda/archive/10.2/cuda-c-programming-guide/index.html
https://portal.hdfgroup.org/display/HDF5/HDF5

 135

[144] S. Fan, S. Smith-Dryden, J. Zhao, S. Gausmann, A. Schülzgen, G. Li, and B. E.
A. Saleh, "Optical fiber refractive index profiling by iterative optical diffraction
tomography," J. Lightwave Technol., vol. 36, pp. 5754-5763, Dec. 15, 2018.

[145] T. Latychevskaia, "Iterative phase retrieval for digital holography: tutorial," J.
Opt. Soc. Am. A, vol. 36, pp. D31-D40, Dec, 01 2019.

[146] A. H. Delaney and Y. Bresler, "Globally convergent edge-preserving regularized
reconstruction: an application to limited-angle tomography," IEEE Trans. Image
Process., vol. 7, pp. 204-221, Feb. 1998.

[147] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, "Deterministic
edge-preserving regularization in computed imaging," IEEE Trans. Image
Process., vol. 6, pp. 298-311, Feb. 1997.

[148] M. Guo, L. Chen, X. Shen, H. Iwai, Y. Chen, and H. Liu, "System model enabling
fast tomographic phase microscopy with total variation regularisation," Phys.
Med. Biol., vol. 60, pp. 9059-9077, 2015.

[149] M. Persson, D. Bone, and H. Elmqvist, "Total variation norm for three-
dimensional iterative reconstruction in limited view angle tomography," Phys.
Med. Biol., vol. 46, pp. 853-866, 2001.

[150] E. Y. Sidky and X. Pan, "Image reconstruction in circular cone-beam computed
tomography by constrained, total-variation minimization," Phys. Med. Biol., vol.
53, pp. 4777-4807, 2008.

[151] M. V. W. Zibetti, C. Lin, and G. T. Herman, "Total variation superiorized
conjugate gradient method for image reconstruction," Inverse Problems, vol. 34,
p. 034001 (28 pp.), Jan. 2018.

[152] R. Kasai, Y. Yamaguchi, T. Kojima, and T. Yoshinaga, "Hybrid algorithm of
maximum-likelihood expectation-maximization and multiplicative algebraic
reconstruction technique for iterative tomographic image reconstruction," Proc.
SPIE, vol. 11049, p. 110491F (4 pp.), Mar. 22, 2019.

[153] Y. Saad, Iterative Methods for Sparse Linear Systems: Second Edition: Society
for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6,
Philadelphia, PA 19104), 2003.

 136

[154] Z. Luo, J. Ma, P. Su, and L. Cao, "Digital holographic phase imaging based on
phase iteratively enhanced compressive sensing," Opt. Lett., vol. 44, pp. 1395-
1398, Mar. 15, 2019.

[155] K. C. Zhou, K. C. Zhou, R. Horstmeyer, and R. Horstmeyer, "Diffraction
tomography with a deep image prior," Opt. Express, vol. 28, pp. 12872-12896,
Apr. 27, 2020.

[156] U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M.
Unser, and D. Psaltis, "Learning approach to optical tomography," Optica, vol. 2,
pp. 517-522, Jun. 2015.

[157] A. Sinha, J. Lee, S. Li, and G. Barbastathis, "Lensless computational imaging
through deep learning," Optica, vol. 4, pp. 1117-1125, Sep. 20, 2017.

[158] S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen, "An
augmented Lagrangian method for total variation video restoration," IEEE Trans.
Image Process., vol. 20, pp. 3097-3111, Nov. 2011.

[159] H. Ikoma, M. Broxton, T. Kudo, and G. Wetzstein, "A convex 3D deconvolution
algorithm for low photon count fluorescence imaging," Sci. Rep., vol. 8, pp. 1-12,
Jul. 2018.

[160] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization
and statistical learning via the alternating direction method of multipliers,"
Foundations and Trends in Machine Learning, vol. 3, pp. 1-122, 2011.

[161] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cambridge
University Press, 2014.

[162] J. M. Long, J. Y. Chun, and T. K. Gaylord, "ADMM approach for efficient
iterative tomographic deconvolution reconstruction of 3D quantitative phase
images," Appl. Opt., vol. 60, 2021 (submitted).

[163] D. Ryu, D. Ryu, Y. Baek, H. Cho, G. Kim, Y. S. Kim, Y. Lee, Y. Kim, J. C. Ye,
H.-S. Min, and Y. Park, "DeepRegularizer: rapid resolution enhancement of
tomographic imaging using deep learning," IEEE Trans. Med. Imaging, vol. 40,
pp. 1508-1518, May 2021.

 137

[164] J. M. Soto, J. A. Rodrigo, and T. Alieva, "Label-free quantitative 3D tomographic
imaging for partially coherent light microscopy," Opt. Express, vol. 25, pp.
15699-15712, Jul. 10, 2017.

[165] M. H. Jenkins, "New Quantitative Phase Imaging Modalities on Standard
Microscope Platforms," Ph.D. Thesis, School of Electrical and Computer
Engineering, Georgia Institute of Technology, 2015.

[166] Y. Bao, "Theory, Development, and Application of Quantitative Phase Imaging
Modalities on Standard Microscope Platforms," Ph. D. Dissertation, Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 2019.

[167] G. M. Noah, "Quantitative Phase Imaging of Fiber Bragg Grating," M. S. thesis,
Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA, 2019.

[168] NVIDIA. (2021). cuBLAS. Available:
https://docs.nvidia.com/cuda/cublas/index.html

[169] NVIDIA. (2021). cuFFT. Available:
https://docs.nvidia.com/cuda/cufft/index.html

https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cufft/index.html

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	SUMMARY
	CHAPTER 1. INTRODUCTION
	1.1 Motivation and Impact
	1.2 Thesis Objective and Overview

	CHAPTER 2. BACKGROUND
	2.1 Quantitative Phase Imaging
	2.2 Tomographic Deconvolution Phase Microscopy (TDPM)
	2.3 Iterative Tomographic Deconvolution Phase Microscopy (ITDPM)
	2.4 Computer Implementation for Image Processing
	2.4.1 Advancement in Computer Architecture and Computation Methods
	2.4.2 High-Performance Computing for Image Processing

	CHAPTER 3. SPEEDUP OF 3D TDPM VIA PARALLEL COMPUTING FACILITATED BY UNIFIED MEMORY
	3.1 Introduction
	3.2 CPU vs. GPU
	3.2.1 Arithmetic Operation: Fast Fourier Transform
	3.2.2 Data Transfer and Unified Memory
	3.2.3 Memory Operation: Array Shift

	3.3 OpenMP Tasking and GPU Streaming with Unified Memory (TSUM)
	3.4 Results and Discussion
	3.5 Summary

	CHAPTER 4. ADMM APPROACH FOR EFFICIENT ITERATIVE TOMOGRAPHIC DECONVOLUTION RECONSTRUCTION
	4.1 Introduction
	4.2 ADMM-TDPM Algorithm
	4.3 Simulation, Objects, and Evaluation
	4.4 Results and Discussion
	4.5 Summary

	CHAPTER 5. FUTURE WORK
	5.1 Real-time TDPM with TSUM
	5.2 Real-time imaging with ADMM-TDPM
	5.3 Real-time imaging with ADMM-TDPM-TSUM

	APPENDIX A. TDPM 3D MATLAB 1.0 USER MANUAL
	A.1 Introduction
	A.2 Flowcharts of TDPM 3D
	A.2.1 TDPM_3D_measure_complete.m
	A.2.2 TDPM_3D_simulate_complete.m

	A.3 Main Files
	A.3.1 Main Script File TDPM_3D_measure_complete.m
	A.3.2 Main Script File TDPM_3D_simulate_complete.m
	A.3.3 Major Function File Idata_3D_from_measure.m
	A.3.4 Major Function File TDPM_from_Idata_3D.m

	A.4 Test Run
	A.5 List of TDPM 3D Files
	A.5.1 .m (script)
	A.5.2 .m (function)
	A.5.3 .mat

	APPENDIX B. TDPM 3D TSUM 1.0 DOCUMENATION
	B.1 Introduction
	B.2 Classes and Structs
	B.2.1 class cuMat
	B.2.2 class TDPM3D
	B.2.3 struct GPUTimer in cuMat.cuh

	B.3 Global Functions
	B.4 Data Naming Convention
	B.5 How to Compile and Run

	APPENDIX C. HARDWARE SPECIFICATIONS
	C.1 CPUs
	C.2 GPUs

	APPENDIX D. DERIVATION OF 𝑣
	REFERENCES

