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SUMMARY 

 Quantitative Phase Imaging (QPI) is a powerful imaging technique for measuring 

refractive index distribution of transparent objects such as biological cell and optical fibers. 

The quantitative, label-free approach of QPI provides preeminent advantages in biomedical 

application and the characterization of optical fibers. Tomographic Deconvolution Phase 

Microscopy (TDPM) is a promising 3D QPI method that combines diffraction tomography, 

deconvolution, and through-focal scanning with object rotation to achieve isotropic spatial 

resolution.  

 This thesis presents significant improvements in the implementation of TDPM. 

OpenMP Tasking and CUDA Streaming with Unified Memory (TSUM) leverage CPU 

multithreading and GPU computing on a System on a Chip (SoC) with unified memory to 

achieve up to 1.74x speedup over the original 3D TDPM. Furthermore, an efficient iterative 

algorithm, Alternating Direction Method of Multipliers (ADMM), is applied to 3D TDPM 

to reconstruct phase objects that are shift-variant in three spatial dimensions. ADMM-

TDPM achieves speedups of 5x in image acquisition time and greater than 10x in image 

processing time with accompanying higher accuracy compared to TDPM. 
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CHAPTER 1. INTRODUCTION 

1.1  Motivation and Impact 

 Quantitative Phase Imaging (QPI) is a powerful scientific imaging technique that 

measures the optical path length and the Refractive Index (RI) distribution of transparent 

objects such as biological cells and optical fibers. Three-Dimensional (3D) QPI has vast 

potential in biomedical applications as it is non-invasive and provides quantitative data [1-

13]. QPI does not require invasive cutting or harmful contrast agents such as fluorescence 

protein or dyes that could perturb the natural state of biological cells and tissues. Also, QPI 

can provide quantitative measurements of morphological, chemical, and mechanical 

parameters of biological cells and tissues. QPI has been used to study morphological 

profiles [14-19], intracellular mass transport [20-22], and cytoskeletal/organelle 

interactions [23]. Cell homeostasis has been investigated with QPI. The nonlinear elasticity 

of Red Blood Cell membranes (RBCs) caused by osmotic pressure has been measured with 

QPI [24]. 3D red blood coagulation structure has been reconstructed with QPI [18]. QPI 

can be used to study the therapeutic effects of drugs on biological cells [25-28]. Drug-

induced deformability of human red blood cells has been investigated with 3D QPI [12]. 

 QPI has also been used in clinical diagnostics, such as in cancer screening [29-38], 

infection detection [39, 40], and psychological disorder diagnosis [41, 42]. QPI has been 

proven to be an adequate tool to investigate cancer cells [43, 44]. Circulating tumor cells 

that are present in the blood of cancer patients have been studied with QPI to diagnose 

ovarian cancer [45]. Also, in neuroscience, QPI has been used to map the dry mass density 

of the neuronal network, investigate neuronal mass transport and growth over time [46], 
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and detect neuronal death [47]. Furthermore, the activities of neuronal membrane proteins 

that transport ion and water have been monitored with QPI [48].  

 More recently, QPI has been combined with artificial intelligence to automate cell 

detection [49, 50] and the diagnosis of diseases [51-54]. With deep learning and QPI, T 

cell activation has been studied [55], and automatic RBC segmentation has been performed 

[56]. By combining QPI, machine learning, and an augmented reality device, automatic 

classification and visualization of cells have been realized [57].  

 Another application of QPI is optical fiber characterization. QPI has been used to 

measure RI and residual stress profiles of optical fibers. The Fiber Bragg Grating (FBG), 

in particular, is widely used in telecommunications and sensing. In telecommunications, 

FBGs are used as band-rejection filters in wavelength-selective devices [58]. Wavelength 

multiplexing/demultiplexing have been realized with FBGs [58-60]. FBGs are used as 

sensors for measuring temperature [61, 62], strain [63, 64], pressure [65], and 3D 

positioning [66] in various applications. In recent years, medical devices with FBG-based 

haptic sensors have been fabricated for minimally invasive diagnosis and surgery [67-73] 

and neural interfaces [74]. Scientists and researchers have been developing and fabricating 

various types of FBGs for different purposes [75]. The characterization of FBGs is a crucial 

step in the design of high-performance FBGs. QPI can be a useful tool for profiling the 

physical RI of FBGs in the fabrication step [76].    

1.2    Thesis Objective and Overview 

 The objective of the research presented in this thesis is to improve the performance 

of a 3D QPI technique, Tomographic Deconvolution Phase Microscopy (TDPM) [77], by 
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leveraging the latest technologies and implementing an iterative algorithm. TDPM, which 

will be discussed in detail in Chapter 2, has drawbacks in that it requires a long image 

acquisition time and extensive computation power with large memory. In this thesis, the 

disadvantages of TDPM are overcome by two methods: 1) OpenMP Tasking and CUDA 

Streaming with Unified Memory (TSUM) and 2) Alternating Direction Method of 

Multipliers TDPM (ADMM-TDPM). TSUM combines CPU and GPU parallel computing 

with unified memory that eliminates data transfer overhead to speed up the computation of 

tomographic angles in 3D TDPM. ADMM-TDPM, coupled with the Augmented 

Lagrangian, is an efficient iterative algorithm that optimizes the image fidelity by using 

total variation regularization with non-negativity and known zeros constraints. ADMM-

TDPM shortens its image acquisition time by 5x and achieves a speedup greater than 10x 

in processing time while simultaneously improving its accuracy. 

In Chapter 2, QPI, 3D TDPM, and Iterative TDPM (ITDPM) are defined and 

described in detail. Chapter 2 also discusses how advances in computer architectures and 

computation methods has impacted image processing. In Chapter 3, the advantages and 

disadvantages of CPU and GPU parallel computing are compared. The most frequently 

used arithmetic operation in TDPM, Fast Fourier Transform (FFT), and memory operation, 

array shift, are tested as benchmarks on various combinations of hardware and Application 

Programming Interfaces (APIs). In addition, the capability of TSUM for 3D TDPM RI 

reconstruction is demonstrated. In Chapter 4, ADMM-TDPM is developed and 

reconstructs a series of representative 3D objects. Both TSUM and ADMM-TDPM have 

great potentials to realize real-time imaging. The possible approaches to real-time imaging 

are described as future work in Ch. 5.  
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CHAPTER 2. BACKGROUND 

2.1    Quantitative Phase Imaging 

 Transparent objects, also known as phase objects, like biological cells and optical 

fibers can be imaged through either intrinsic (endogenous) or extrinsic (exogenous) 

contrast. Imaging the intrinsic contrast of a phase object is challenging under conventional 

illumination because the object scatters and absorbs light weakly. One remarkable solution 

to this challenge is fluorescence microscopy in which cells are labeled with fluorescent 

proteins or dyes that produce extrinsic contrast. Despite its influence in biomedicine, 

however, fluorescence microscopy has the limitations of photobleaching, phototoxicity, 

and potential interference of fluorescent proteins with the properties of the cells. 

 In the 1930s, Zernike developed Phase Contrast Microscopy (PCM) to image the 

phase object with its intrinsic contrast. PCM enhances the contrast of interference patterns 

of scattered and unscattered reference light by shifting the phase of the reference light by 

90° [78]. Based on PCM, several variant methods, such as differential interference contrast 

(DIC) microscopy and Hoffmann modulation contrast microscopy, have been developed. 

However, PCM suffers from optical an artifact known as the halo effect, which causes 

bright spots at the edge of the object and directional shadows. Also, PCM and its variant 

methods provide a nonlinear measure of the intensity, which cannot be inverted to provide 

quantitative phase data.  

 QPI has been developed to overcome these limitations. 2D QPI methods measure 

the optical path length of a phase object which is integrated along the direction of light. 
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Interference-based QPI is one of the most widely researched and developed 2D QPI 

methods. Digital Holographic Microscopy (DHM), also known as off-axis holography, is 

a well-known interference-based QPI. Conventional DHM captures an interference pattern 

(hologram) between a sample beam and an off-axis reference beam separated by an angle 

using a Mach-Zehnder interferometer [79]. Phase can be recovered from the hologram by 

numerically calculating the Fresnel diffraction patterns [80]. Unlike PCM, DHM provides 

the quantitative distribution of the optical path length across the object, which contains 

refractive index and morphologic information about the sample. The drawbacks of DHM 

are that it is sensitive to speckle noise, and recovering the phase distribution is 

computationally expensive. Spatial Light Interference Microscopy (SLIM) combines the 

phase-shifting principle of PCM using a reflective Liquid Crystal Phase Modulator 

(LCPM) and white light illumination [81]. LCPM shifts the phase in increments of 90°, 

and four images corresponding to each phase shift are captured. The intensities from the 

four images are combined to retrieve the phase using autocorrelation. The spatial 

uniformity associated with white light and the short coherence length of the illumination 

light allow speckle-free imaging with only sub-nanometer spatial background noise.  

 Another 2D QPI method is scanning-based. Fourier Ptychographic Microscopy 

(FPM) combines light-field imaging and ptychography with iterative scanning [82, 83]. 

FPM captures multiple perspective low-resolution images of a sample illuminated by plane 

waves at a number of different angles using a low-NA objective. FPM randomly initializes 

a high-resolution image. Fourier transformation (circular low-pass filters) is applied at a 

region in the low-resolution image that corresponds to a particular angle of illumination. 

The regions of the high-resolution image in Fourier space are replaced with the Fourier 
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transform of the same regions that have the square root of the intensity in the corresponding 

low-resolution image. Applying the low-pass filter and replacing the regions of the high-

resolution image are repeated several times to reconstruct the high-resolution image. The 

advantage of FPM is that it offers wide-field images with simple, inexpensive hardware. 

However, the iterative phase recovery is computationally expensive and can be time-

consuming. 

 Defocus-based methods utilize Abbe’s theory that an image itself is the interference 

phenomenon instead of creating interference patterns using optical systems. For defocus 

methods, a number of intensity images of the sample are captured in and out of focus using 

a standard bright-field microscope. The phase can be reconstructed by either iterative 

algorithms or deterministic methods that linearizes the relation between the phase and the 

defocused images. The Transport-of-Intensity Equation (TIE) [84-86] is a popular 

linearizing method. Streibl first proved that the phase gradient of the phase object was 

equal to the logarithmic intensity derivative. Using this relationship, phase can be retrieved 

from the intensities of defocused images. TIE assumes the propagation of light to be 

paraxial and requires a sufficient degree of spatial coherence. The major advantage of 

defocus methods is that they can be implemented with a standard bright field microscope 

with partially coherent illumination [87]. 

 3D QPI methods reconstruct the refractive index distribution by combining 2D QPI 

with optical tomography and/or deconvolution. Tomography is the most popular 

conventional approach to 3D QPI. The phase of the object can be measured using a 2D QPI 

method over a range of angles. Tomography requires rotation of either the object relative 

to the imaging system [88] or the illumination beam relative to the object and the optical 
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axis of the imaging system [89, 90]. Beam rotation can be faster than object rotation, but it 

cannot cover the entire range of angles due to the limited Numerical Aperture (NA) of the 

system. This limitation causes missing spatial frequencies, which is called the missing cone 

problem [91]. Object rotation can achieve isotropic spatial resolution, but it is slow and 

prone to misalignment and disturbance to the object during rotation.  

 After the phase is measured at different angles, either Optical Projection 

Tomography (OPT) [92] based on filtered backprojection or optical diffraction tomography 

(ODT) [93] based on filtered backpropagation can be used to reconstruct the RI of the 

object from the phase information. OPT is simpler and faster but less accurate than ODT 

because it does not consider the effects of diffraction and boundary refraction occurring 

when the object features are in the same order as the illumination wavelength. Although it 

produces more accurate results by accounting for the diffraction effects, ODT requires 

spatially and temporally coherent illumination as well as assumptions that the object has 

weak absorption and small RI contrast. 

 Deconvolution is another 3D QPI method that is based on through-focal scanning 

[94, 95]. A series of through-focal images can be obtained by sweeping the focal plane 

through the object along the optical axis of the system. Sweeping can be done with a 

piezoelectric objective scanner or electrically tunable lens [94, 96]. From the intensity of 

the object in the series of through-focal images, either iterative algorithms or linearized 

deconvolution model and Optical Transfer Function (OTF) inversion can be used to 

reconstruct the 3D RI distribution. Deconvolution can be implemented with a standard 

commercial microscope with partially coherent illumination. However, deconvolution also 
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suffers from the missing cone problem along the optical axis, which becomes a significant 

challenge when the object has complex RI distribution.   

2.2 Tomographic Deconvolution Phase Microscopy (TDPM) 

 Tomographic Deconvolution Phase Microscopy (TDPM) combines diffraction 

tomography, 3D linearized deconvolution, and object rotation to achieve isotropic spatial 

resolution using a standard commercial microscope [77]. TDPM employs 3D Weak Object 

Transfer Function (WOTF) from the first-order diffraction tomography. The object can be 

represented by scattering potential 

 𝑣𝑣(𝒓𝒓) ≜ 𝑘𝑘02[𝑛𝑛(𝒓𝒓)2 − 𝑛𝑛02] (2.1) 

where 𝑘𝑘0 = 2𝜋𝜋/𝜆𝜆 is the free-space wave vector magnitude for the wavelength 𝜆𝜆,  𝑛𝑛 is the 

RI of the object, 𝑛𝑛0 is the background RI, and 𝒓𝒓 is the 3D spatial coordinate. It can be also 

expressed as  

 𝑣𝑣(𝒓𝒓) = 𝑃𝑃(𝒓𝒓) + 𝑖𝑖𝐴𝐴(𝒓𝒓) (2.2) 

where 𝑃𝑃(𝒓𝒓) is the real part related to phase, and 𝐴𝐴(𝒓𝒓) is the imaginary part related to 

absorption. If the scattering potential is weak and RI contrast is small enough, the first-

Born approximation can be used to approximate the scattered wave function by a plane 

wave. The 3D intensity distribution 𝐼𝐼(𝒓𝒓) can be expressed as a convolution of the scattering 

potential with the point-spread functions (PSFs) 

 𝐼𝐼(𝒓𝒓) = 𝐵𝐵 + 𝐴𝐴(𝒓𝒓) ∗ ℎ𝐴𝐴(𝒓𝒓) + 𝑃𝑃(𝒓𝒓) ∗ ℎ𝑃𝑃(𝒓𝒓) (2.3) 
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where ℎ𝐴𝐴(𝒓𝒓) and ℎ𝑃𝑃(𝒓𝒓) are the PSFs for the absorption and phase part, respectively, and 𝐵𝐵 

is the uniform background intensity. The Fourier transform of the intensity spectrum can 

be written as 

 𝐼𝐼(𝝆𝝆) = 𝐵𝐵𝛿𝛿(𝝆𝝆) + 𝐴𝐴(𝝆𝝆)𝐻𝐻𝐴𝐴(𝝆𝝆) + 𝑃𝑃(𝝆𝝆)𝐻𝐻𝑃𝑃(𝝆𝝆) (2.4) 

where 𝝆𝝆 is the 3D spatial frequency, 𝛿𝛿(𝝆𝝆) is the Dirac delta function, 𝐻𝐻𝐴𝐴(𝝆𝝆) is Absorption 

Optical Transfer Function (AOTF), 𝐻𝐻𝑃𝑃(𝝆𝝆) is Phase Optical Transfer Function (POTF), and 

𝐴𝐴(𝝆𝝆) and 𝑃𝑃(𝝆𝝆) are the 3D Fourier transforms of 𝐴𝐴(𝒓𝒓) and  𝑃𝑃(𝒓𝒓), respectively. The 

background intensity can be removed by subtracting the average intensity. If phase objects 

are assumed to have negligible absorption, the intensity spectrum can be simplified as  

 𝐼𝐼(𝝆𝝆) = 𝑃𝑃(𝝆𝝆)𝐻𝐻𝑃𝑃(𝝆𝝆). (2.5) 

       The intensity of the object is measured 𝑁𝑁 times at evenly spaced angles between 0 

and 180 degrees where 𝑁𝑁 ≥ 𝜋𝜋/𝜃𝜃𝑐𝑐. The marginal illumination angle 𝜃𝜃𝑐𝑐 is defined as 𝜃𝜃𝑐𝑐 =

𝑠𝑠𝑖𝑖𝑛𝑛−1(𝑁𝑁𝐴𝐴𝑐𝑐
𝑛𝑛0

)   where 𝑁𝑁𝐴𝐴𝑐𝑐 is the NA of the condenser lens. Using a formal least-squares 

approach, the phase part of scattering potential in frequency domain can be solved as 

 

𝑉𝑉(𝝆𝝆) =
∑ �

𝐼𝐼𝜃𝜃𝑗𝑗
𝐵𝐵 �𝐻𝐻𝑃𝑃

∗(𝝆𝝆)𝑁𝑁−1
𝑗𝑗=0

∑ �𝐻𝐻𝑃𝑃𝑗𝑗(𝝆𝝆)�
2

𝑁𝑁−1
𝑗𝑗=0 + 𝛼𝛼

 (2.6) 

where 𝑗𝑗 is an index associated with object rotation angle 𝜃𝜃𝑗𝑗 = 𝑗𝑗∆𝜃𝜃, 𝐼𝐼𝜃𝜃𝑗𝑗/𝐵𝐵 are the zero-mean 

normalized 3D intensity spectra, 𝐻𝐻𝑃𝑃∗(𝝆𝝆) is POTF conjugate, and 𝛼𝛼 is a regularization 

parameter.  
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 In TDPM, two different processing steps for high and low spatial frequencies are 

used to ensure sufficient low-frequency resolution without aliasing. Figures 4 and 5 in [77] 

show the block diagrams of TDPM RI recovery for high spatial frequencies and low spatial 

frequencies respectively. The high-frequency algorithm includes background intensity 

normalization and subtraction, x- and z-slice registration, filtering with the POTF 

conjugate, rotation via bilinear interpolation as in Eq. (2.6). The small POTF in the 

denominator could cause a noise magnification problem. Thus, the transfer function should 

be regularized by either a hard cutoff or Wiener filtering. Finally, the scattering potential 

is converted to RI by:  

 
𝑛𝑛(𝒓𝒓) = �𝑇𝑇(𝒓𝒓)−𝑃𝑃𝐵𝐵

𝑘𝑘02
+ 𝑛𝑛02                                                                 (2.7) 

where 𝑘𝑘0 is the freespace wavevector magnitude for the illuminating light and 𝑃𝑃𝐵𝐵 is the 

background phase. 

 TDPM is less susceptible to noise as it utilizes partially coherent illumination, 

compared to other QPI methods that use coherent illumination and suffer from speckle 

noise. TDPM is inexpensive as it can be implemented on a standard microscope platform 

with minimal modification. However, TDPM requires a relatively long image acquisition 

time as a series of defocused images should be collected at a large number of angles to 

avoid the missing cone problem. Typically, TDPM collects 3D images at 15 angles. 

Processing 3D images from the 15 angles requires large memory space and expensive 

computational power to reconstruct high-resolution RI distributions. 

2.3     Iterative Tomographic Deconvolution Phase Microscopy (ITDPM) 
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 Iterative TDPM reconstructs the 3D RI distribution with an edge-preserving 

iterative regularization algorithm to reduce the image acquisition time and overcome the 

missing cone problem [97]. Instead of using direct deconvolution in the frequency domain, 

ITDPM reduces the number of illumination angles by estimating the expected image 

intensities as close to the measured images as possible and optimizing the estimation 

iteratively using gradient descent. Mathematically, the problem at hand can be represented 

as 

 𝑣𝑣(𝒓𝒓) = argmin
𝑣𝑣(𝒓𝒓)

�|ℎ(𝑟𝑟) ∗ 𝑣𝑣(𝒓𝒓) −  𝐼𝐼(𝒓𝒓)|�
2
2

,                                                                 (2.8) 

where �|𝑓𝑓(𝒓𝒓)|�
2
 is the ℓ2 norm of 𝑓𝑓(𝒓𝒓), and ℎ(𝒓𝒓) is the PSF. For simplicity, the convolution 

of h can be represented with a linear operator 𝐴𝐴 (a detailed derivation is in [97]), and the 

convolution in the frequency domain becomes  

 𝐴𝐴𝑣𝑣 = 𝐹𝐹−1𝐻𝐻𝐹𝐹𝑣𝑣,                                                                 (2.9) 

where F is the Fourier transform, 𝐹𝐹−1 is the inverse Fourier transform, and H is the 

pointwise multiplication by the POTF. The minimization should be satisfied for the average 

value over all angles. Also, ITDPM considers the piecewise smoothness constraint that is 

described by a minimization of a regularization function 𝐽𝐽(𝑣𝑣) =  ∫𝜓𝜓(|∇𝑣𝑣|)𝑑𝑑𝑟𝑟, where |∇𝑣𝑣| 

is the gradient magnitude of 𝑣𝑣(𝒓𝒓), and 𝜓𝜓(|∇𝑣𝑣|) = �|∇𝑣𝑣|2 + 𝜀𝜀2. 𝜀𝜀 is a small number for 

preventing division by zero. The cost function including the edge-preserving regularization 

term becomes 
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 Ψ(𝑣𝑣, 𝐼𝐼) = 1
2𝑁𝑁
∑ �|𝐴𝐴Θ𝑚𝑚𝑣𝑣𝑚𝑚 − 𝐼𝐼𝑚𝑚|�

2
2

𝑚𝑚 + 𝛼𝛼𝐽𝐽(𝑣𝑣),                                                                 (2.10) 

where N is the number of angles, m is an angle number, Θ is a rotation operator and 𝛼𝛼 is a 

regularization parameter.   

 ITDPM uses gradient descent which is a simple optimization algorithm but 

converges slowly. Thus, ITDPM reduces the image acquisition time, but it also increases 

the computation time. With the piecewise smoothness constraint, the current ITDPM 

approach can only be implementable for 2D objects as it assumes the object to be shift-

invariant in one direction. ITDPM cannot be applied for shift-variant objects like FBGs 

and biological cells. 

2.4     Computer Implementation for Image Processing 

2.4.1 Advancement in Computer Architecture and Computation Methods 

 The development of transistors and integrated circuit technology enabled the 

development of single-core microprocessor which drastically improved computing 

performance from the 1970s until the early 2000s. However, the growth in single-core 

microprocessor performance has stagnated as Dennard scaling [98] reached its limit. 

Dennard scaling explains how the reduction of circuit size shortens the circuit delay time 

while maintaining its power density and how cooling becomes a major problem in a highly 

miniaturized circuit. Also, Moore’s Law [99], which states that the number of transistors 

on a chip doubles every 18 months, no longer holds true as engineers face the challenges 

in decreasing the size of transistors close to the size of a few atoms. These challenges led 
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researchers to switch the focus from high-performance single-core processors to multicore 

processors. Moreover, these challenges have encouraged researchers to develop domain-

specific processors that perform well on one specific computation rather than general-

purpose processors. 

 The main advantage of multicore processors is that it allows programmers to 

control tread-level parallelism. Generally, parallelism can be classified into the following 

four types: bit-level parallelism, instruction-level parallelism, thread-level parallelism, and 

inter-program-level parallelism. Bit-level parallelism and instruction-level parallelism are 

exploited by hardware architects, and programmers can choose the appropriate hardware 

for their application. Inter-program-level parallelism occurs in an operating system, such 

as scheduling tasks and managing memory. Thread level parallelism can be controlled by 

programmers in their software. Thread-level parallelism on multicore processors is most 

widely applied for computationally intensive applications and data-intensive applications. 

However, writing effective thread-level parallel programs requires a high level of 

programming skill and effort. Many programmers and scientists struggle to improve the 

performance of parallel programs due to the challenges in controlling concurrency, 

managing data distribution, managing communication among processors, and balancing 

the computational load. Many libraries have been developed in various languages to 

facilitate the challenges of parallel computing. For example, OpenMP (Open Multi-

Processing) is a widely used programming platform that allows parallelism on a multicore 

processor. Message Passing Interface (MPI) is another programming platform that allows 

parallelism on a heterogeneous distributed system such as a high-performance computer or 

supercomputer.  
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Figure 2.1— Comparison of GPU and CPU architectures. ALU: arithmetic-logic unit; 
DRAM: dynamic random-access memory 

 The Graphics Processing Units (GPUs) are specifically designed to compute the 

arrays of floating-points efficiently for real-time rendering. GPUs achieve high throughput 

by dividing a data pipeline in space, whereas Central Processing Units (CPUs) divide the 

pipeline in time [100]. Multithreading is much more efficient on GPUs than on CPUs; 

therefore, GPUs have much higher throughput than CPUs. However, GPU parallel 

computing still has a few disadvantages. GPU parallel computing’s major challenges are 

in coordinating the scheduling of computation on the system processor (usually CPU) and 

GPU and the efficient data transfer between the system (host) memory and GPU (device) 

memory. Compute Unified Device Architecture (CUDA) is a parallel computing platform 

and programming language developed by NVIDIA to improve the productivity of GPU 

programming. OpenCL is another GPU programming language that is vendor-independent. 

 MATLAB is a powerful programming language and computing platform widely 

used by scientists and engineers. MATLAB’s most computational functions are written in 

C/C++ and Fortran. MATLAB’s basic linear algebra functions are highly optimized for a 
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specific processor with Intel Math Kernel Library (MKL) or AMD Core Math Library 

(ACML). MATLAB offers a parallel computing toolbox that can be used with multicore 

processors and GPUs. Although it is an easy and productive programming language, 

MATLAB does not provide programmers full control over parallelism and cannot achieve 

the best optimization and performance possible for a specific application. 

 An embedded system is a low-cost, low-power, high-throughput computer system 

that has a dedicated function. A typical embedded system includes a microprocessor, 

memory, and input/output modules, but it can be specially designed to accommodate a 

specific application.  

2.4.2 High-Performance Computing for Image Processing 

 Imaging modalities have been benefited from the developments in computer 

architecture and computational technologies. GPU parallel computing has been used to 

accelerate Computed Tomography (CT) [101-103], Magnetic Resonance Imaging (MRI) 

[104-106], diffuse optical tomography [107], and ultrasound imaging [108, 109]. Various 

QPI methods have also been implemented on GPUs. For example, the phase unwrapping 

for diffraction phase microscopy on GPU has achieved the speedup of 41x over the CPU 

implementation [110]. Real-time 3D visualization using optical diffraction tomography on 

GPU has been demonstrated with 17x speedup [111]. The TIE has been solved on GPU in 

real-time [112]. In addition, for the common image operations such as fast Fourier 

transform and convolution, GPU outperforms CPU [113]. GPU-based 3D deconvolution 

for confocal microscopy also has been presented to achieve ~100x speedup [114].  
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 Small embedded systems have been implemented for image processing in smart 

cameras in recent years. These smart cameras have capabilities from simple photo editing 

to object detection, face identification, and surveillance. Real-time video processing, such 

as gesture recognition, has been possible as the embedded systems become more powerful 

[115]. A highly optimized embedded system for 3D image processing has been developed 

to outperform the GPU and multicore CPU [116]. Furthermore, field-programmable gate 

arrays (FPGAs) have been utilized for medical image processing [117-119]. QPI of 

biological cell and classification has been implemented on eight FPGAs to achieve ~228x 

speedup compared against a single-core CPU and ~32x speedup over GPU [118]. The study 

has also proved that FPGAs have superior power efficiency compared to CPU or GPU. 
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CHAPTER 3. SPEEDUP OF 3D TDPM VIA PARALLEL 

COMPUTING FACILITATED BY UNIFIED MEMORY 

3.1 Introduction 

The original TDPM RID reconstruction program is written in MATLAB to run on a 

CPU. MATLAB is an easy, convenient, productive programming language that provides 

numerous mathematical functions. Most of MATLAB’s computational functions are 

written in C/C++ and Fortran. MATLAB uses Basic Linear Algebra Subprograms (BLAS) 

and the Linear Algebra PACKage (LAPACK) included in highly optimized libraries for a 

specific CPU such as the Intel Math Kernel Library (MKL) and the AMD Core Math 

Library (ACML) [120]. MATLAB also offers a CPU/GPU parallel computing toolbox 

[121] that allows programmers to parallelize and accelerate their programs. However, as it 

is a high-level language, MATLAB does not provide programmers full control over 

parallelism and optimization. This is a major weakness of MATLAB because optimizing 

the use of hardware to a specific application can achieve a noticeable speedup. Moreover, 

MATLAB has unsupported and limited functions on GPU.  

 Parallel programming also has challenges, such as parallel overhead and 

programming complexity. Parallel overhead includes thread start-up/termination time, 

synchronization time, and overheads by compilers, libraries, etc. Parallel overhead can be 

reduced with better microarchitecture, compiler, and algorithms, but it cannot be entirely 

avoided. Furthermore, parallel programming is significantly more complex, time-

consuming, and challenging than sequential programming. It requires a good 
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understanding of computer architecture and parallel Application Programming Interfaces 

(APIs) as well as customization for specific applications to take full advantage of 

parallelism. OpenMP [122] is a widely used parallel computing API that allows 

multithreading. OpenMP offers numerous constructs for users to control parallelization 

directly. OpenMP can be a powerful tool and is relatively easy to program for a simple 

parallelization. However, it still requires learning the various functionalities and 

understanding of the hardware to achieve the best performance improvement. 

 

Figure 3.1 – An example diagram of a System on a Chip (SoC) with Unified Physical 
Memory (UPM). 

In addition to the challenges of parallel computing, data transfer overhead is a major 

drawback of GPU computing. Most systems have CPU and GPU on separate chips, and 

each has its own memory (Fig 2.1). This physical separation requires data transfer between 

two memories, and the larger the data size, the larger the overhead. A solution to data 

transfer overhead is manufacturing CPU and integrated GPU (iGPU) on one chip along 
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with a memory that both CPU and iGPU can access, and this unified architecture is often 

called a System on a Chip (SoC) [123]. Figure 3.1 illustrates a simplified diagram of SoC. 

The memory in SoC is called Unified Memory (UM). UM is also referred to as physical 

SoC memory, unified shared memory, central memory, system shared memory, or global 

shared memory. NVIDIA’s Jetson AGX Xavier is an embedded system that has unified 

architecture, Tegra SoC [124]. Jetson AGX Xavier is specially designed for autonomous 

machines and AI. AGX Xavier’s unified memory allows both CPU and iGPU to access the 

memory and doesn’t require data transfers. Also, AGX Xavier is low-cost and power-

efficient compared to an average personal computer and a GPU. 

In 2014, NVIDIA introduced UM as a virtual coherent memory that allows CPU and 

GPU to share the same memory address [125-127]. In this thesis, to avoid confusion, UM 

indicating a virtual memory is referred to as Unified Virtual Memory (UVM), UM 

indicating a physical memory is referred to as Unified Physical Memory (UPM), and UM 

refers to the method of using UVM facilitated by UPM. The UPM on Jetson AGX Xavier 

can be managed with CUDA UVM. Several studies have evaluated the performance of UM 

on the Tegra SoCs, TK1 [128-130], TK2 [131], and TX1 [132], which are predecessors of 

AGX Xavier. In this chapter, the challenges in CPU and GPU parallel computing are 

addressed, and the capability of UM on Jetson AGX Xavier for 3D TDPMM is 

demonstrated.  

3.2 CPU vs. GPU 

The performance of a program can vary greatly from one device to another. CPU and 

GPU have their strengths and weaknesses and are suitable for different applications. To 
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properly customize the use of CPU and GPU for TDPM, several different hardware and 

APIs have been tested with the most frequently used functions, the fast Fourier transform 

(FFT) and array shift. The CPU used in this study is Intel Xeon Silver 4110 with a base 

frequency of 2.10 GHz and 11 MB L3 cache, accompanied by 64 GB RAM (Table 3.1). 

The GPU is NVIDIA Titan RTX with 24 GB memory (Table 3.2). Also, the overhead of 

data transfer between the CPU and the GPU has been evaluated and compared with UM 

on Jetson AGX Xavier. AGX Xavier has a Carmel CPU with 8 cores and 4MiB L3 cache, 

a Volta iGPU, and 32 GB UM. Titan RTX is a superior GPU with more Streaming 

Multiprocessors (SM) and CUDA cores that can perform more operations in parallel than 

Volta. Furthermore, Titan RTX has larger caches, a higher memory clock rate of 7.001 

GHz, and a 384-bit wide memory interface compared to the 2.133 GHz memory clock rate 

and 256-bit wide memory buses of Volta. More details about the CPUs and GPUs used in 

this study is in Appendix C. 

Table 3.1 – CPU comparison.  

  Intel Xeon Silver 4110   

CPU  

NVIDIA Carmel CPU 

Instruction Set Architecture x86-64 ARMx8 
# of Cores 8 8 

# of Threads 16 8 
Base Frequency 2.100 GHz 2.265 GHz 
Max Frequency 3.000 GHz - 

Cache 
L1: 256 KB (data) 

L2: 8 MB 
L3: 11 MB 

L1: 64 KB (data) 
L2: 2 MiB 
L3: 4 MiB 

Memory 64 GB DDR4 32 GB LPDDR4x (UPM) 
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Table 3.2 – GPU comparison. 

  NVIDIA Titan RTX GPU NVIDIA Volta GPU 

Streaming Multiprocessors 
(SM) 72 8 

CUDA Cores 4608 512 
Tensor Cores 576 64 

Base Frequency 1.350 GHz 1.377 GHz 
Memory Frequency 7.001 GHz 2.133 GHz 
Memory Bus Width 384-bit 256-bit 

Cache L1: 64 KB per SM 
L2: 6144 KB 

L1: 128 KB per SM 
L2: 512 KB 

Memory 24 GB GDDR6  32 GB LPDDR4x (UPM) 

 

3.2.1 Arithmetic Operation: Fast Fourier Transform 

The most frequently used function in 3D TDPM is the Fast Fourier Transfer (FFT), 

and FFT is a good benchmark function to test various architectures as it requires a lot of 

multiplications and additions. The following combinations of hardware and APIs are tested 

to evaluate speeds of 1D FFT on CPU and GPU: 1) the FFTW library in C/C++ on CPU 

(denoted by Non-parallel), 2) the parallelized FFTW library with OpenMP (denoted by 

OpenMP), 3) the MATLAB fft() function on Intel Xeon (denoted by MATLAB), 4) the 

MATLAB fft() function on Titan RTX using gpuArray() (denoted by gpuArray), and 

5) the cuFFT library in C/C++/CUDA on Titan RTX (denoted by cuFFT). The FFTW 

library computes the Discrete Fourier Transform (DFT). Both the MATLAB fft function 

and the cuFFT library are based on the FFTW library. MATLAB 2020b is used for the 

methods, MATLAB and gpuArray. The CUDA driver version 10.2 is used for Titan RTX.  
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The data, sized from 22 to 220 with random values between 0 and 1, have been 

generated with the rand() function in the stdlib.h library, and the same data have been 

used for all five methods. The elapsed time was measured with tic-toc in MATLAB for 

the MATLAB versions, and the C/C++/CUDA versions are measured with the chrono 

library. The elapsed times measured do not include the data transfer time between the host 

(CPU) memory and the device (GPU) memory. For the OpenMP method, twelve threads 

are used with static scheduling. 

 

Figure 3.2 – FFT elapsed time comparison of the FFTW library in C/C++ (non-
parallel), parallelized FFTW using OpenMP (OpenMP), the MATLAB fft() 
function (MATLAB), the MATLAB GPU fft() function using gpuArray() 
(gpuArray), and the cuFFT library (cuFFT). Elapsed time is plotted on a logarithmic 
scale.  



 23 

Figure 3.2 shows that the cuFFT library in C/C++/CUDA on GPU is significantly 

faster for the large data than the other four methods. The FFTW library on CPU (Non-

parallel) is the slowest for extensive data. The performance of the parallelized FFTW 

library using OpenMP improved as the data size increased. However, the MATLAB fft() 

function on GPU with gpuArray() performs slightly better than the CPU methods as the 

data size increases. 

3.2.2 Data Transfer and Unified Memory 

In MATLAB, transferring data between host memory and device memory can be 

performed by gpuArray() and gather(). In CUDA, cudaMemcpy() can be used,  and 

memory copy type can be specified to indicate which way the data are copied. The 

following five combinations of hardware and APIs are compared to evaluate data transfer 

overhead: 1) the MATLAB fft function on Titan RTX with gpuArray excluding data 

transfer (gpuArray w/o memcpy), 2) the MATLAB fft function on Titan RTX with 

gpuArray including data transfer (gpuArray w/ memcpy), 3) the cuFFT library in 

C/C++/CUDA on Titan RTX excluding data transfer (cuFFT w/o memcpy), 4) the cuFFT 

library in C/C++/CUDA on Titan RTX excluding data transfer (cuFFT w memcpy), and 5) 

the cuFFT library in C/C++/CUDA on Jetson AGX Xavier with UM (Jetson UM). The 

data, sized from 22 to 225 with random values between 0 and 1, have been generated with 

the rand() function in the stdlib.h library, and the same data have been used for all five 

methods. The elapsed time was measured with tic-toc in MATLAB for the MATLAB 

versions, the chrono library for cuFFT on Titan RTX, and cudaEventRecord() for 

Jetson UM. 
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For Jetson AGX Xavier, the data can be allocated on its UPM with 

cudaMallocManaged(). Although it saves data transfer time, UM has coherency 

maintenance overhead from managing cached memory on both CPU and iGPU [133]. The 

overhead can be reduced with a prefetching hint by attaching the data memory to CPU or 

iGPU using cudaStreamAttachMemAsync(). 

 

Figure 3.3 – FFT elapsed time comparison of the MATLAB GPU fft function using 
gpuArray excluding data transfer (gpuArray w/o memcpy), gpuArray including 
data transfer (gpuArray w/ memcpy), the cuFFT library excluding data transfer 
(cuFFT w/o memcpy), cuFFT including data transfer (cuFFT w/ memcpy), and the 
cuFFT on NVIDIA Jetson AGX Xavier using unified memory (Jetson UM). The 
MATLAB GPU fft function and the cuFFT library were ran on a NVIDIA Titan 
RTX GPU. Elapsed time is plotted on a logarithmic scale.  

The results clearly show data transfer overhead exponentially increases as the data 

size increases (Fig 3.3). The method cuFFT w/o memcpy performs better than Jetson UM 
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as coherency management overhead slows down the performance on Jetson UM. 

Nevertheless, Jetson UM is clearly faster as data transfer is always required for the Titan 

RTX, and the elapsed times including data transfer should be compared with the Jetson 

UM. The results show that a program should be optimized to transfer data less frequently 

when using a GPU with separated memory like Titan RTX. For an iGPU with UM, data 

transfer optimization is not necessary, but one should be aware of concurrency maintenance 

overhead which can increase if the data is frequently used from both iGPU and CPU. 

3.2.3 Memory Operation: Array Shift 

 The FFT data are often used with its zero-frequency component in the center of the 

array. Shifting the array requires memory operations which typically take more clock 

cycles than arithmetic operations. Memory speed is a major determinant of memory 

operation performance. High memory frequency and large bus width are preferable for 

applications with many memory operations. Moreover, CPUs and GPUs with large caches 

are advantageous as they can have fewer cache misses and memory accesses. However, if 

caches are too large, cache access typically slows down; thus, one should consider the 

optimal cache size for a specific application. 

In this section, the array shift performances of four methods are evaluated. In 

MATLAB, the fftshift() or ifftshift() function, which calls circshift(), can 

be used to shift an array.  The fftshift() function is performed on Intel Xeon (denoted 

by MALTAB) and Titan RTX with gpuArray() (denoted by gpuArray). Also, a custom 

array shift function, cuShift(), is programmed in C/C++/CUDA to run on Titan RTX 

(denoted by C/C++/CUDA) and Volta of Jetson AGX Xavier (Jetson UM). The 
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cuShift() launches a GPU kernel that shifts the elements of an array by indexing in 

parallel. The 3D single-precision floating-point data with sizes 323, 643, 1283, 2563, and 

5123 are generated with the rand() function in the stdlib.h library. The elapsed time was 

measured with tic-toc in MATLAB for the methods, MATLAB and gpuArray, and the 

methods, C/C++/CUDA and Jetson UM, are measured with the chrono library.  

 

Figure 3.4 – Array shift speedup of MATLAB gpuArray() on Titan RTX 
(gpuArray), C/C++/CUDA on Titan RTX (C/C++/CUDA), and C/C++/CUDA on 
Volta GPU of Jetson with UM (Jetson UM) over MATLAB on Intel Xeon (MATLAB). 

 Figure 3.4 shows the speedups of array shift on Titan RTX (gpuArray and 

C/C++/CUDA) over on Intel Xeon (MATLAB) excluding data transfer time. The 

cuShift() function on Titan RTX (C/C++/CUDA) is 24.6x faster than the fftshift() 

function (MATLAB) for the data of size 5123. On the other hand, the cuShift() function 

on Volta of AGX Xavier performs poorly with an average of 0.32x slowdown over 



 27 

MATLAB. AGX Xavier’s low memory clock rate seems to limit the memory operation 

performance. However, Jetson UM performs better than gpuArray and C/C++/CUDA 

when the data transfer time is included (Fig. 3.5). 

 It is important to note that having the data pre-loaded on caches before starting an 

operation can improve the performance significantly. In this experiment, the input data are 

generated, and the output data are pre-allocated in memory right before a timer starts; thus, 

some data are on caches when the array shift functions are called. The algorithm of the 

MATLAB circshift() function is proprietary, so it is difficult to analyze the results. 

However, the superior performance of MATLAB fftshift() (or circshift()) 

function could be explained with the large caches of Intel Xeon.   

 

Figure 3.5 – Array shift speedup of MATLAB gpuArray() on Titan RTX including 
data transfer (gpuArray w/ memcpy), C/C++/CUDA on Titan RTX including data 
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transfer (C/C++/CUDA w/ memcpy), and C/C++/CUDA on Volta GPU of Jetson with 
UM (Jetson UM) over MATLAB on Intel Xeon. 

 The cuShift() function on Volta is also compared with a sequential CPU version 

and a parallel CPU version using OpenMP on the Carmel CPU of AGX Xavier. The 

sequential CPU version still utilizes UM, but shifting operations are performed by indexing 

sequentially in for loops. In the parallel CPU version, the three for loops, that iterate the 

indexes of three dimensions, are collapsed into one large iteration space using the 

collapse(3) clause with the for construct of OpenMP.  Figure 3.6 shows that 

cuShift() on Volta is faster (a 3.4x speedup) than both sequential and parallel CPU 

versions on Carmel for the data of size 5123. 

 

Figure 3.6 – Speedups of the parallelized array shift using OpenMP on Carmel CPU 
(denoted by Jetson OpenMP) and the cuShift() function on Volta GPU (denoted by 
Jetson UM (GPU)) over the non-parallel array shift on Carmel CPU (denoted by 
Jetson CPU). 
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3.3 OpenMP Tasking and GPU Streaming with Unified Memory (TSUM) 

In 3D TDPM, the computation of each tomographic angle can be parallelized with a 

single program, multiple data (SPMD) paradigm. The operations for each tomographic 

angle include loading 3D intensity data, performing FFT as well as shifting, rotating, 

padding and masking arrays. Memory operations such as loading the intensity data and 

shifting are typically faster on CPUs, whereas arithmetic operations of arrays are faster on 

GPUs. Several studies have implemented OpenMP and CUDA together to parallelize 

programs on a CPU and GPU/s and achieve greater speedups over a single device [134-

136]. In this study, OpenMP tasking and CUDA streaming is used to enable SPMD 

parallelism on both CPU and iGPU with UPM.  

Tasks in OpenMP refer to the instances of executable code and data environment to 

be executed by specified threads [122]. Using the OpenMP task construct, we can 

parallelize each tomographic angle for TDPM to be run on each CPU thread. For GPU 

operations, CUDA streams [137] can be utilized. A CUDA stream is a sequence of 

operations to be run on GPUs. A CPU thread issues operations in the streams, and the GPU 

schedules the operations from the streams to be run when GPU threads are available. The 

operations in the different streams can be computed in parallel provided the threads and 

data are available. Figure 3.7 demonstrates the flow of operations and data of OpenMP 

Tasking and CUDA Streaming with Unified Memory (TSUM) for the computations of 

tomographic angles in 3D TDPM.  

In parallel computing, a race condition often causes a bottleneck that limits 

performance improvement. Race conditions occur when a thread needs to wait for output 
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data from another thread or two or more threads perform memory operations for the same 

data. A simple way to avoid data race conditions is to create copies of the data so each 

thread can have its own data. The computations of tomographic angles in TDPM require 

several input data. In TSUM, before tasks are employed, copies of the input data are 

created, and the output data from each task are pre-allocated at separate locations to avoid 

the CPU and GPU threads competing for the same memory location.  

 

Figure 3.7 – The parallelized computations of tomographic angles in 3D TDPM with 
the OpenMP tasking construct and CUDA streaming facilitated by UPM (TSUM). 
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Figure 3.8 – A sample code of TSUM in 3D TDPM. 

Figure 3.8 shows a sample code of TSUM for computing tomographic angles in 3D 

TDPM. AGX Xavier has eight available threads, and TSUM creates seven tasks (7-

TSUM). The first task processes the first three angles, and each of the other tasks processes 

two angles. The first angle at 0∘ does not require rotations of intensity data, thus it is 

processed faster than the other angles. In each task, a CUDA stream is created, and the 

input and output data are attached to the stream using cudaStreamAttachMemAsync(). 

The data managed by UVM and attached to the stream can be accessed from both iGPU 

and CPU. Within a task, more than one stream can be created, and attached data can be 

shared by the streams within the task. At the end of each operation on GPU, the streams 
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should be synchronized with cudaStreamSychronize(). At the end of each angle 

computation, OpenMP implicitly synchronizes the CPU threads and memory. 

The outputs of each task are scattering potentials of each angle. After the streams are 

destroyed, the tasks are terminated, the summation of scattering potentials is performed on 

GPU threads. After the completion of tomographic angle computation, two OpenMP tasks 

and CUDA streams (2-TSUM) are used for high and low frequency filtering. The filtered 

outputs are summed and converted to RID. 

The performance of 7-TSUM on Jetson AGX Xavier (denoted by TSUM) was 

compared with the original MATLAB version on Intel Xeon (denoted by MATLAB), a 

MATLAB GPU version on Titan RTX (denoted by MATLAB GPU), and an optimized 

MATLAB GPU version on Titan RTX (denoted by Optimized MATLAB GPU). Revising 

a MATLAB program to run on a GPU can be done by simply using gpuArray(), and this 

is how the MATLAB GPU version was created. The optimized MATLAB GPU version, 

on the other hand, was further optimized for GPU. Unnecessary data transfers and memory 

operations such as fftshift() were removed. Also, the order of operations has been 

optimized to avoid cache misses as much as possible. These optimizations have been 

applied to TSUM as well.  

3D TDPM was simulated with the four methods for the four different size intensity 

datasets (64x64x32, 128x128x64, 256x256x128, and 512x512x256). The intensity datasets 

were created using the modified split-step beam propagation method as in [77] with a 

simulated object, 3D Shepp-Logan phantom [138]. The intensity datasets were saved as 

.mat files and loaded by the load() function in MATLAB. In C/C++/CUDA, the datasets 
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were stored in .h5 files and loaded by the HDF5 library (Hierarchical Data Format version 

5) [139]. The MALTAB’s default data type, double-precision (8 byte), was used for the 

MATLAB versions, whereas single-precision (4 byte) was used for TSUM. The elapsed 

time was measured with tic-toc in MATLAB for the MATLAB versions and 

cudaEventRecord() for TSUM. Each method was executed five times, and the average 

elapsed time was recorded. 

 

 

Figure 3.9 – 3D TDPM RID reconstruction speedups the MATLAB GPU version on 
Titan RTX (MATLAB GPU), the optimized MATLAB GPU version on Titan RTX 
(Optimized MATLAB GPU), and the C/C++/CUDA version on Jetson AGX Xavier 
(TSUM) relative to the MATLAB CPU version on Intel Xeon (MATLAB). 
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Table 3.3 – 3D TDPM RID reconstruction elapsed times in seconds. 

 MATLAB MATLAB 
GPU 

MATLAB 
GPU 

Optimized 
Jetson 

64x64x32 1.5615 4.5341 4.0520 6.3616 

128x128x64 8.9953 14.826 11.691 14.915 

256x256x128 80.861 82.193 69.559 87.744 

512x512x256 1267.1 837.84 763.24 729.64 

 

 

Figure 3.10 – Speedup trendlines. The actual speedups are represented in solid lines. 
the 5th order polynomial trendlines are drawn to predict the speedups for larger 
intensity datasets.  
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3.4 Results and Discussion 

The results, presented in Fig 3.9 and Table 3.3, show that the MATLAB CPU 

version performs better for the small data (64x64x32 and 128x128x64). However, as the 

data size increases, the methods on GPU are faster than the CPU version. Moreover, TSUM 

performs the best with a 1.74x speedup over MATLAB for the intensity data of size 

512x512x256.  

In Fig. 3.10, the speedups are represented in solid lines over the size data, and the 5th 

order polynomial trendlines of the speedups drawn in dotted lines. The trendline of TSUM 

has steeper positive slopes at larger data sizes than the other MATLAB GPU methods. 

However, it is important to note, that the speedup values depend on the elapsed time of the 

MATLAB CPU version. The elapsed time of the MATLAB CPU version is expected 

increase exponentially as the data size increases, and the trendline might not be the best 

prediction of the speedups. Nonetheless, it is clear that TSUM can perform better than the 

other methods.   

The simulation demonstrates the capability of TSUM, but TSUM on AGX Xavier 

currently has several limitations. As it is a relatively new technology, UM are not supported 

by most APIs or have limited functionalities. Typically, the OpenMP shared-memory 

model can be used to share data among threads for traditional architecture, but it is not 

supported for UM. The OpenMP 5.0 and later versions offers unified memory management 

(unified_shared_memory) [122], but it is not supported on AGX Xavier yet. Due to 

this limitation, the data managed by UVM should be copied explicitly for each task in the 

program. Although creating the copies prevents race conditions, the copies of data can be 
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too large and overflow the available memory. In this case, only a few angles that the 

physical memory allows should be computed in parallel, and the rest of the angles should 

be scheduled for later. For the 512x512x256 intensity data, 7-TSUM occupies about 25GB 

of memory on AGX Xavier. Another shortcoming of AGX Xavier is that its Carmel CPU 

has a relatively small cache compared to the Intel Xeon silver 4110 CPU, which causes a 

great number of cache misses and memory accesses. These limitations will soon be 

overcome as more powerful SoCs and APIs for UM are developed.  

3.5 Summary 

In this chapter, the CPU and GPU parallel computing were compared, and the 

capability of TSUM for 3D TDPM was demonstrated. The most frequently used arithmetic 

operation, FFT, and memory operation, array shift, are tested as benchmarks on various 

combinations of hardware and APIs. The programs written in C/C++/CUDA to run on 

Titan RTX performed the best for both FFT and array shift. However, data transfer 

overhead negated its high performance. When the data transfer time is included, AGX 

Xavier with UM was significantly faster for FFT, and the Intel Xeon CPU was faster for 

memory operations.  

In addition, 3D TDPM was simulated with 7-TSUM on Jetson AGX Xavier and 

compared in terms of speed with the MATLAB versions on Intel Xeon and Titan RTX for 

the various sizes of data. The methods on GPU performed better than the original 3D 

TDPM MATLAB as the data size increased. 7-TSUM performed the best with a 1.74x 

speedup over the original 3D TDPM, even though Titan RTX and its memory are far 

superior to the Volta of AGX Xavier and its UPM. This result shows the power of UPM. 
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With the development of hardware and software utilizing UM, TSUM has an even greater 

potential to further improve the performance of 3D TDPM and realize the goal of real-time 

imaging.   
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CHAPTER 4. ADMM APPROACH FOR EFFICIENT 

ITERATIVE TOMOGRAPHIC DECONVOLUTION 

RECONSTRUCTION  

4.1 Introduction 

Iterative Tomographic Deconvolution Phase Microscopy (ITDPM) [97], as 

introduced in Chapter 2.2, has been successful in reducing the image acquisition time and 

overcoming the missing cone problem without a large compromise in accuracy. However, 

ITDPM increases the computation time as its optimization method, gradient descent, 

converges slowly. Furthermore, ITDPM is only applicable to 2D objects as it assumes the 

object to be shift-invariant in one direction and thus cannot be applied to shift-variant 

objects like Fiber Bragg Gratings (FBGs), Long-Period Fiber Gratings (LPFGs), and 

biological cells.  

The missing cone problem is a common issue in image reconstruction and has been 

computationally addressed with iterative algorithms [140-145] such as non-convex edge-

preserving with half-quadratic optimization [146, 147], total variation [89, 148-151], 

maximum-likelihood expectation- maximization [152], multigrid algorithm [153], 

compressive sensing [154], and neural networks [155-157]. 

For 3D images, the gradient descent approach becomes even more challenging. The 

joint optimization of multiple image characteristics becomes unworkably slow.  However, 

it has been recognized that invoking Alternating Direction Method of Multipliers (ADMM) 

can allow the separate optimization of the image parameters. This has been done 
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successfully, for example, by Chan et al. [158] in the deblurring of video images. These 

researchers treated a time series of 2D video images as a 3D image.  They separately 

optimized 1) the data fidelity and 2) the total variation regularization to produce high 

quality video. In another successful application of ADMM, Ikoma et al. [159] treated low-

photon-count 3D fluorescence images. In Ikoma’s work, there is separate optimization of 

1) the data fidelity by minimizing the Poisson noise, 2) the Hessian-Schatten norm, and 3) 

the indicator function given by the non-negative orthant.   

In this chapter, ADMM is applied to TDPM to shorten its image acquisition and 

processing times while improving its accuracy. The resulting through-focal scanned 

images are processed using ADMM together with the Augmented Lagrangian Method to 

optimize separately 1) the data fidelity by minimizing Gaussian noise, 2) the scattering 

potential through total variation regularization, and 3) the indicator function consisting of 

non-negativity and known zeros in the image.  The convergence of the ADMM in 

minimizing the Augmented Lagrangian Method is significantly improved by introducing a 

heuristic "varying penalty parameter" following the procedure described by Boyd [160, 

161].  ADMM-TDPM can reconstruct phase objects that are shift-variant in three spatial 

dimensions. ADMM-TDPM achieves speedups of 5x in image acquisition time and greater 

than 10x in image processing time with simultaneously higher accuracy compared to 

TDPM.  These results have been submitted for publication to Applied Optics [162]. 

4.2  ADMM-TDPM Algorithm 

Alternating Direction Method of Multipliers (ADMM) is an algorithm for solving 

convex minimization problems of the following form [160]: 
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 min
𝑥𝑥,𝑧𝑧

𝑓𝑓(𝑥𝑥)  +  𝑔𝑔(𝑧𝑧) 

s. t.   𝐴𝐴𝑥𝑥 +  𝐵𝐵𝑧𝑧 = 𝐶𝐶 
(4.1) 

ADMM can be used to minimize an objective function 𝐹𝐹(𝑥𝑥)  =  𝑓𝑓(𝑥𝑥)  +  𝑔𝑔(𝑥𝑥) where 

minimization of 𝐹𝐹 has no closed-form solution. This minimization is performed separately 

on 𝑓𝑓 and 𝑔𝑔 by introducing an equality constraint and variable 𝑧𝑧. This is often the case for 

a data-fidelity function 𝑓𝑓 and regularization function 𝑔𝑔. This approach is similar to other 

operator splitting methods such as split-Bregman iterations, as utilized in [163] and half-

quadratic splitting as in [146]. 

Using the image rotation objective from [97], we can formulate a convex 

minimization problem using total variation (TV) regularization with a constraint for non-

negativity and known zeros in the solution. The following equation describes this problem 

for 𝑁𝑁 angles. The quantity 𝐼𝐼𝑚𝑚 is the intensity stack measured at angle 𝜇𝜇, 𝑣𝑣 is the scattering 

potential, Θ𝑚𝑚 𝑖𝑖s a rotation operator for an angle 𝜇𝜇, and 𝐴𝐴−𝑚𝑚 is the convolution by the PSF, 

rotated by angle −𝜇𝜇. 𝑀𝑀 is a mask that is 1 where there are known zeros and 0 otherwise, 

and ⊙ is a point-wise multiplication. That is, 

 min
𝑣𝑣

1
2𝑁𝑁

�||𝐴𝐴−𝑚𝑚𝑣𝑣 − Θ𝑚𝑚𝐼𝐼𝑚𝑚||22 + 𝛼𝛼||𝑣𝑣||𝑇𝑇𝑇𝑇
𝑚𝑚

 

s. t.   𝑣𝑣 ≥ 0, 

                   𝑣𝑣 ⊙𝑀𝑀 = 0 

(4.2) 

The first term of the objective function is the data fidelity term, which ensures that the 

recovered scattering potential matches the data given the presence Gaussian noise. The 

second term is total variation regularization, which is the ℓ1 norm of the magnitude of the 
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discrete gradient computed at each voxel. The quantities 𝐷𝐷𝑥𝑥, 𝐷𝐷𝑦𝑦, and 𝐷𝐷𝑧𝑧 are discrete 

derivative operators in the 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-directions. Thus,  

 ||𝑣𝑣||𝑇𝑇𝑇𝑇 =��(𝐷𝐷𝑥𝑥𝑣𝑣)𝑝𝑝2+ (𝐷𝐷𝑦𝑦𝑣𝑣)𝑝𝑝2 + (𝐷𝐷𝑧𝑧𝑣𝑣)𝑝𝑝2�
1/2

𝑝𝑝

 (4.3) 

For more details, see the discussion of the 𝑇𝑇𝑉𝑉/ℓ2 problem in [158]. When used in 

regularization, total variation constrains the magnitude of the gradient to be small while 

allowing for large jumps (sharp edges) to exist in the solution. This encourages the method 

to select a solution with a sparse gradient. The goal of including the regularization term is 

to help solve the missing-cone problem and recover the scattering potential using fewer 

tomographic angles, which can significantly improve acquisition time for TDPM. In 

contrast, TDPM in [77] uses ℓ2 regularization on the scattering potential, resulting in a 

smooth solution that does not preserve edges and requires a greater number of angles to 

achieve good accuracy. 

While total variation regularization has advantages, it is not smooth, and an 

objective using total variation as regularization with a quadratic data fidelity term has no 

closed-form solution. In order to minimize this objective efficiently, we used ADMM. To 

use ADMM on this problem, we restructured our objective to match the format of Eq. (4.1). 

First, the constraints can be replaced with an indicator function, 𝜄𝜄𝐶𝐶(𝑣𝑣), since ADMM only 

allows a matrix equality constraint: 

 𝜄𝜄𝐶𝐶(𝑣𝑣) =  �∞    𝑣𝑣 ≥ 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑣𝑣 ⊙𝑀𝑀 = 0
0               𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒            (4.4) 
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Including 𝜄𝜄𝐶𝐶 as part of the objective results in the same minimum value as the original 

objective. Any violation of the constraints results in the objective being infinite. Second, 

we must introduce equality constraints to split the quadratic, total variation, and indicator 

function terms. This allows us to take advantage of the operator splitting in ADMM. The 

resulting minimization problem is:  

 min
𝑣𝑣,𝑧𝑧1,𝑧𝑧2

  
1

2𝑁𝑁
�||𝐴𝐴−𝑚𝑚𝑣𝑣 − Θ−𝑚𝑚𝐼𝐼𝑚𝑚||22 + 𝛼𝛼||𝑧𝑧1||2,1 + 𝜄𝜄𝐶𝐶(𝑧𝑧2)
𝑚𝑚

 

     s. t.    𝐷𝐷𝑣𝑣 = 𝑧𝑧1   𝐷𝐷 = �𝐷𝐷𝑥𝑥𝑇𝑇𝐷𝐷𝑦𝑦𝑇𝑇𝐷𝐷𝑧𝑧𝑇𝑇�
𝑇𝑇

, 

                                                      𝑣𝑣 =  𝑧𝑧2 

(4.5) 

where || ∙ ||2,1 is the ℓ2 norm computed across the 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-dimensions followed by 

the ℓ1 norm for the entire vector as in Eq. (4.3). The scaled augmented Lagrangian, for 

penalty parameter 𝜌𝜌, can be written as: 

 𝐿𝐿𝜌𝜌(𝑣𝑣, 𝑧𝑧1, 𝑧𝑧2, 𝜇𝜇1, 𝜇𝜇2) =
1

2𝑁𝑁
�‖𝐴𝐴−𝑚𝑚𝑣𝑣 − Θ−𝑚𝑚𝐼𝐼𝑚𝑚‖22 + 𝛼𝛼‖𝑧𝑧1‖2,1
𝑚𝑚

 

                                                       + 𝜄𝜄𝐶𝐶(𝑧𝑧2) +
𝜌𝜌
2
‖𝐷𝐷𝑣𝑣 − 𝑧𝑧1 + 𝜇𝜇1‖22 

                                                + 𝜌𝜌
2
�|𝑣𝑣 − 𝑧𝑧2 + 𝜇𝜇2|�

2
2
− 𝜌𝜌

2
||𝜇𝜇1||22 −  𝜌𝜌

2
||𝜇𝜇2||22 

(4.6) 

where 𝑧𝑧1 = �𝑧𝑧1,𝑥𝑥
𝑇𝑇 𝑧𝑧1,𝑦𝑦

𝑇𝑇 𝑧𝑧1,𝑧𝑧
𝑇𝑇 �

𝑇𝑇
, and 𝜇𝜇1 = �𝜇𝜇1,𝑥𝑥

𝑇𝑇 𝜇𝜇1,𝑦𝑦
𝑇𝑇 𝜇𝜇1,𝑧𝑧

𝑇𝑇 �
𝑇𝑇
 can be separated into corresponding 

𝑥𝑥,𝑦𝑦, and 𝑧𝑧 components. ADMM-TDPM is thus  

 𝑣𝑣𝑘𝑘+1 = argmin
𝑣𝑣

𝐿𝐿𝜌𝜌(𝑣𝑣, 𝑧𝑧1𝑘𝑘, 𝑧𝑧2𝑘𝑘, 𝜇𝜇1𝑘𝑘,𝜇𝜇2𝑘𝑘) (4.7) 

 𝑧𝑧1𝑘𝑘+1 = argmin
𝑧𝑧1

𝐿𝐿𝜌𝜌�𝑣𝑣𝑘𝑘+1, 𝑧𝑧1, 𝑧𝑧2𝑘𝑘, 𝜇𝜇1𝑘𝑘,𝜇𝜇2𝑘𝑘� (4.8) 
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 𝑧𝑧2𝑘𝑘+1 = argmin
𝑧𝑧2

𝐿𝐿𝜌𝜌�𝑣𝑣𝑘𝑘+1, 𝑧𝑧1𝑘𝑘+1, 𝑧𝑧2, 𝜇𝜇1𝑘𝑘, 𝜇𝜇2𝑘𝑘� 
(4.9) 

 

 𝜇𝜇1𝑘𝑘+1 = 𝜇𝜇1𝑘𝑘 + 𝐷𝐷𝑣𝑣 − 𝑧𝑧1 (4.10) 

 𝜇𝜇2𝑘𝑘+1 = 𝜇𝜇2𝑘𝑘 + 𝑣𝑣 − 𝑧𝑧2 (4.11) 

To solve the minimization in Eq. (4.7), we can take the gradient with respect to 

𝑣𝑣 and set it to zero. This minimization has a closed-form solution since it is quadratic. For 

a full derivation see Appendix C. We can use three fast Fourier transforms to solve the 

minimization quickly because 𝐴𝐴,𝐷𝐷𝑥𝑥,𝐷𝐷𝑦𝑦,𝐷𝐷𝑧𝑧 and the identity matrix are all block circulant 

matrices: 

 �̂�𝛢𝑇𝑇𝛪𝛪 ←
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

 (4.12) 

 |ℱ��̂�𝛢�|2 ←
1
𝑁𝑁
� |ℱ{𝐴𝐴−𝑚𝑚}|2
𝑚𝑚

 
(4.13) 

 

 |ℱ{𝐷𝐷}|2 ← |ℱ{𝐷𝐷𝑥𝑥}|2 + |ℱ�𝐷𝐷𝑦𝑦�|2𝑧𝑧 + |ℱ{𝐷𝐷𝑧𝑧}|2 
(4.14) 

 

 𝑣𝑣𝑘𝑘+1 ← ℱ−1 �
ℱ{�̂�𝛢𝑇𝑇𝛪𝛪 + 𝜌𝜌𝐷𝐷𝑇𝑇�𝑧𝑧1𝑘𝑘 − 𝜇𝜇1𝑘𝑘� + 𝜌𝜌(𝑧𝑧2𝑘𝑘 − 𝜇𝜇2𝑘𝑘)}

|ℱ��̂�𝛢�|2 + 𝜌𝜌(|ℱ{𝐷𝐷}|2 + 1)
� (4.15) 

The quantities �̂�𝛢𝑇𝑇𝛪𝛪, |ℱ��̂�𝛢�|2, and |ℱ{𝐷𝐷}|2 do not depend on any variables being 

optimized, so they need to be computed only once prior to the iteration. Additionally, the 

entire denominator can be precomputed provided ρ does not change. Additionally, we 

implemented the 𝐷𝐷𝑇𝑇operator by taking the sum of 𝐷𝐷𝑥𝑥𝑇𝑇𝑣𝑣, 𝐷𝐷𝑦𝑦𝑇𝑇𝑣𝑣, and 𝐷𝐷𝑧𝑧𝑇𝑇𝑣𝑣. The operators 𝐷𝐷𝑥𝑥𝑇𝑇, 
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𝐷𝐷𝑦𝑦𝑇𝑇, 𝐷𝐷𝑧𝑧𝑇𝑇 , in turn, were implemented using a circular convolution with a difference kernel, 

[0, -1, 1], in the 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-directions. 

The minimization step in Eq. (4.8) is identical to the one presented in [158], except 

with a different scaling for the scaled version of ADMM. That is, 

 𝑢𝑢𝑥𝑥 ← 𝐷𝐷𝑥𝑥𝑣𝑣𝑘𝑘+1 + 𝜇𝜇1,𝑥𝑥 (4.16) 

 𝑢𝑢𝑦𝑦 ← 𝐷𝐷𝑦𝑦𝑣𝑣𝑘𝑘+1 + 𝜇𝜇1,𝑦𝑦 (4.17) 

 𝑢𝑢𝑧𝑧 ← 𝐷𝐷𝑧𝑧𝑣𝑣𝑘𝑘+1 + 𝜇𝜇1,𝑧𝑧 (4.18) 

           𝑢𝑢 ← [𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2 + 𝑢𝑢𝑧𝑧2]1/2 (4.19) 

       𝑧𝑧1,𝑥𝑥
𝑘𝑘+1 ← max {0,𝑢𝑢 −

𝜆𝜆
𝜌𝜌

 } ∙
𝑢𝑢𝑥𝑥
𝑢𝑢

 (4.20) 

       𝑧𝑧1,𝑦𝑦
𝑘𝑘+1 ← max {0,𝑢𝑢 −

𝜆𝜆
𝜌𝜌

 } ∙
𝑢𝑢𝑦𝑦
𝑢𝑢

 (4.21) 

      𝑧𝑧1,𝑧𝑧
𝑘𝑘+1 ← max {0, 𝑢𝑢 −

𝜆𝜆
𝜌𝜌

 } ∙
𝑢𝑢𝑧𝑧
𝑢𝑢

 (4.22) 

We implemented the 𝐷𝐷𝑥𝑥𝑇𝑇, 𝐷𝐷𝑦𝑦𝑇𝑇, and 𝐷𝐷𝑧𝑧𝑇𝑇 operators by performing a circular convolution in the 

spatial domain with a difference kernel, [1, -1], in the 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-directions. 

The minimization in Eq. (4.9), after discarding terms not involving 𝑧𝑧2, is the 𝑧𝑧2 that 

minimizes the following objective function:  

The solution is the value closest to 𝑣𝑣 + 𝜇𝜇2 that satisfies the constraints from the indicator 

function. To satisfy the non-negativity constraint, we take the maximum between 𝑣𝑣 +  𝜇𝜇2 

 min
𝑧𝑧2

   𝜄𝜄𝐶𝐶(𝑧𝑧2) +
𝜌𝜌
2

||𝑣𝑣 − 𝑧𝑧2 − 𝜇𝜇2||22 (4.23) 



 45 

and 0. To satisfy the known zeroes constraint, we set every voxel that is known to be 0 

(where 𝑀𝑀𝑝𝑝 = 1) to 0. That is, 

           𝑧𝑧2𝑘𝑘+1 ← max {0, 𝑣𝑣𝑘𝑘+1 + 𝜇𝜇2𝑘𝑘 } (4.24) 

 (𝑧𝑧2𝑘𝑘+1)𝑝𝑝 ← 0    where 𝑀𝑀𝑝𝑝 = 1 (4.25) 

In order to determine if the algorithm has converged, we used the ℓ2  norm of the 

primal and dual residuals, ||𝑟𝑟||2 and ||𝑠𝑠||2 as suggested in [160]. Thus, 

 ||𝑟𝑟𝑘𝑘+1||2 ← [||𝜌𝜌𝑘𝑘(𝐷𝐷𝑣𝑣𝑘𝑘+1 − 𝑧𝑧1𝑘𝑘+1)||22 + ||𝜌𝜌𝑘𝑘(𝑣𝑣𝑘𝑘+1 − 𝑧𝑧2𝑘𝑘+1)||22]1/2 (4.26) 

 ||𝑠𝑠𝑘𝑘+1||2 ← ||𝜌𝜌𝑘𝑘(𝐷𝐷𝑇𝑇�𝑧𝑧1𝑘𝑘 − 𝑧𝑧1𝑘𝑘+1� + 𝑧𝑧2𝑘𝑘 − 𝑧𝑧2𝑘𝑘+1)||2 (4.27) 

The algorithm has converged when both||𝑟𝑟||2 < 𝜖𝜖𝑝𝑝𝑟𝑟𝑝𝑝 and ||𝑠𝑠||2 < 𝜖𝜖𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑. 𝜖𝜖𝑝𝑝𝑟𝑟𝑝𝑝 and 𝜖𝜖𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑 

are computed as  

 
𝜖𝜖𝑝𝑝𝑟𝑟𝑝𝑝 ← 𝑝𝑝1/2𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 

+ 𝜖𝜖𝑟𝑟𝑟𝑟𝑑𝑑𝜇𝜇𝑎𝑎𝑥𝑥�[||𝑣𝑣𝑘𝑘+1||22 + ||𝐷𝐷𝑣𝑣𝑘𝑘+1||22]1/2, [||𝑧𝑧1𝑘𝑘+1||22 + ||𝑧𝑧2𝑘𝑘+1||22]1/2 � 
(4.28) 

 𝜖𝜖𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑 ← 𝑛𝑛1/2𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜖𝜖𝑟𝑟𝑟𝑟𝑑𝑑||𝐷𝐷𝑇𝑇𝜇𝜇1𝑘𝑘+1 − 𝜇𝜇2𝑘𝑘+1||2, (4.29) 

where 𝑝𝑝 is the number of elements in 𝑧𝑧1 and 𝑧𝑧2, n is the number of elements in 𝑣𝑣, 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 is 

an absolute tolerance, and 𝜖𝜖𝑟𝑟𝑟𝑟𝑑𝑑 is the relative tolerance. 

The quantities ||𝑟𝑟||2 and ||𝑠𝑠||2 are used to dynamically update the penalty 

parameter, 𝜌𝜌, if the difference between the primal and dual residuals becomes large. A 

larger value for the penalty parameter, 𝜌𝜌, causes a violation of the constraints to cost more 
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in the objective function. A smaller value for 𝜌𝜌 has the opposite effect. This dynamic 

updating can speed up convergence.  

If the primal residual is much larger than the dual residual, ||𝑟𝑟𝑘𝑘+1||2 > 𝜏𝜏||𝑠𝑠𝑘𝑘+1||2, 

then: 

 𝜌𝜌𝑘𝑘+1 ← 𝛾𝛾𝜌𝜌𝑘𝑘  (4.30) 

 𝜇𝜇1𝑘𝑘+1 ←
1
𝛾𝛾
𝜇𝜇1𝑘𝑘+1 (4.31) 

 𝜇𝜇2𝑘𝑘+1 ←
1
𝛾𝛾
𝜇𝜇2𝑘𝑘+1 (4.32) 

where 𝜏𝜏 is the maximum allowed difference in magnitude and 𝛾𝛾 is the update parameter. If 

the dual residual is much larger than the primal residual, ||𝑠𝑠𝑘𝑘+1||2 > 𝜏𝜏||𝑟𝑟𝑘𝑘+1||2, then: 

 𝜌𝜌𝑘𝑘+1 ←
1
𝛾𝛾
𝜌𝜌𝑘𝑘 (4.33) 

 𝜇𝜇1𝑘𝑘+1 ← 𝛾𝛾𝜇𝜇1𝑘𝑘+1 (4.34) 

 𝜇𝜇2𝑘𝑘+1 ← 𝛾𝛾𝜇𝜇2𝑘𝑘+1 (4.35) 

otherwise, the value for 𝜌𝜌 remains the same, 𝜌𝜌𝑘𝑘+1 ← 𝜌𝜌𝑘𝑘. 

 The full algorithm is represented by the flowchart in Fig. 4.1. In addition to the 

steps of ADMM, we subtracted the background from the intensity images. Additionally, 

we scaled ℱ{𝐴𝐴} before any computation by dividing it by the absolute value of its 

maximum element. After the termination of the algorithm, we divided 𝑣𝑣 by the same value 

to recover the proper scale. This scaling was performed to prevent issues due to very large 
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and very small floating-point numbers. Additionally, we apply the constraints from Eqs. 

(4.24) and (4.25) to ensure that the 𝑣𝑣 returned is subject to the constraints. 

4.3  Simulation, Objects, and Evaluation 

 In order to validate the algorithm, we simulated intensity stacks using the modified 

split-step beam propagation method (SSBPM) as in  [97] and [77]. We compared the results 

to the TDPM method in [77]. We simulated 512x512x256 intensity stacks from 15 different 

tomographic angles, equally spaced from 0° to 180°. The objective numerical aperture, 

𝑁𝑁𝐴𝐴𝑜𝑜, was 0.75, and the condenser numerical aperture, 𝑁𝑁𝐴𝐴𝑐𝑐, was 0.375. The wavelength of 

light was 546 nm, and the refractive index of the oil, 𝑛𝑛𝑐𝑐, was 1.458. For evaluating ADMM-

TDPM, only three angles, 0°, 60°, and 120°, were used, while 15 angles from 0° to 180° 

with increments of 12° were used for TDPM. 

We simulated three different objects: a bead, a mixture of objects, and a modified 

Shepp-Logan phantom. The bead had a maximum refractive index difference with respect 

to the oil was 0.04, similarly to the bead used in [164]. The gel in the mixture of objects 

has a 0.01 refractive index difference between the gel and oil. The beads in the gel have a 

0.01, 0.02, 0.03, 0.04, and 0.05 difference between the refractive index of each bead and 

the gel and are off-center from the axis of rotation. The modified Shepp-Logan phantom 

has a maximum refractive index difference with respect to the oil of 0.004. We created the 

modified Shepp-Logan phantom using the phantom3d function from MATLAB's file 

exchange [138].  
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Figure 4.1 – Flowchart for the ADMM-TDPM algorithm. 
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Similarly to [97], the normalized root-mean-square error (NRMSE) is used to 

evaluate the performance of the ADMM-TDPM algorithm. We computed the NRMSE as 

the difference of the recovered refractive index from 𝑛𝑛0, Δ𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑐 = 𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑐 − 𝑛𝑛0 and the 

difference of the ideal refractive index from 𝑛𝑛0, Δ𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑 = 𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑 − 𝑛𝑛0 over each voxel, 

denoted by the index 𝑗𝑗. 

 
𝑁𝑁𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁(Δ𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑐 ,Δ𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑) = �

∑ �(Δ𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑐)𝑗𝑗 − (Δ𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑)𝑗𝑗�
2

𝑝𝑝

∑ (Δ𝑛𝑛𝑝𝑝𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑)𝑗𝑗2𝑝𝑝
�

1/2

 (4.36) 

Additionally, we report the number of iterations and total time in seconds for each 

algorithm in Tables 4.1, 4.2, and 4.3. The running time includes loading the intensity data 

from storage. The number of iterations for TDPM is denoted by a "-" since TDPM is non-

iterative. Each algorithm was implemented using MATLAB R2021a on a CPU with an 

AMD Ryzen 5 5600x processor and 32 GB of RAM. 

4.4  Results and Discussion 

The results for the bead, the mixture of objects, and the phantom are shown in 

Tables 4.1, 4.2, and 4.3, respectively. Figures for the cross sections for each axis in each 

direction for each object and algorithm are shown in Figs. 4.2, 4.3, and 4.4. 

TDPM from [77] was simulated using 15 angles for two difference choices of 

regularization parameter, 𝛼𝛼. Choosing 𝛼𝛼 = 10−2 corresponds to not enough regularization, 

as can be seen in the artifacts produced in the reconstructions in Figs. 4.3 and 4.4. Choosing 

𝛼𝛼 = 10−1, on the other hand, removes the reconstruction artifacts but results the in an 

attenuated refractive index and halo artifacts. 
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Table 4.1 – Results for the bead object. 

Method Iteration NRMSE Elapsed 
Times(s) 

TDPM, 𝛼𝛼 = 10−1 - 0.4053 573.6 
TDPM, 𝛼𝛼 = 10−2 - 0.3612 557.2 

ADMM-TDPM, 𝛾𝛾 = 1 600 0.3237 1863 
ADMM-TDPM, 𝛾𝛾 = 2 551 0.3273 1722 

ADMM-TDPM constrained, 𝛾𝛾 = 1 500 0.3098 3573 
ADMM-TDPM constrained, 𝛾𝛾 = 2 198 0.3111 644.8 

 

Table 4.2 – Results for the mixture of objects. 

Method Iteration NRMSE Elapsed 
Times(s) 

TDPM, 𝛼𝛼 = 10−1 - 0.5362 572.5 

TDPM, 𝛼𝛼 = 10−2 - 0.5192 564.1 

ADMM-TDPM, 𝛾𝛾 = 1 600 0.7146 1935 

ADMM-TDPM, 𝛾𝛾 = 2 18 0.7274 89.16 

ADMM-TDPM constrained, 𝛾𝛾 = 1 600 0.3059 1973 

ADMM-TDPM constrained, 𝛾𝛾 = 2 41 0.3129 169.5 

 

Table 4.3 – Results for the modified Shepp-Logan phantom. 

Method Iteration NRMSE Elapsed 
Times(s) 

TDPM, 𝛼𝛼 = 10−1 - 0.5806 565.8 

TDPM, 𝛼𝛼 = 10−2 - 0.6476 556.3 

ADMM-TDPM, 𝛾𝛾 = 1 382 0.7191 1222 

ADMM-TDPM, 𝛾𝛾 = 2 14 0.7738 82.37 

ADMM-TDPM constrained, 𝛾𝛾 = 1 320 0.1982 1070 

ADMM-TDPM constrained, 𝛾𝛾 = 2 46 0.203 185.7 
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Figure 4.2 – Recovered refractive index for the bead object. 



 52 

 

Figure 4.3 – Recovered refractive index for the mixture of objects. 
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Figure 4.4 – Recovered refractive index for the modified Shepp-Logan phantom. 
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ADMM-TDPM was simulated with acceleration and constraints. For acceleration, 

we chose to run the algorithm with and without the update to the penalty parameter, ρ. We 

also ran it, accelerated and unaccelerated, with and without the constraints. We found the 

regularization parameter 𝛼𝛼 for each object by searching for it in a smaller problem, 

128x128x64. The regularization parameters found for the bead, the mixture of objects, and 

phantom were 𝛼𝛼 = 0.03171, 𝛼𝛼 = 0.002177, and 𝛼𝛼 = 0.001397, respectively. The parameter 

found for the bead is higher because the total variation is minimal for the image, with the 

only gradient being on the surface of the bead. The other hyperparameters used for 

ADMM-TDPM were 𝜌𝜌0= 0.6667, 𝜏𝜏= 5, 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎 = 10−5, and 𝜖𝜖𝑟𝑟𝑟𝑟𝑑𝑑 = 10−3. Using M, the data 

were masked to be zero outside a cylinder within which the objects were located. We 

evaluated the algorithm using two different values of 𝛾𝛾. Selecting of 𝛾𝛾 = 1 corresponds to 

no acceleration. Selecting 𝛾𝛾 = 2 corresponds to scaling 𝜌𝜌 by two if the primal and dual 

residuals are not sufficiently close together, as in Eqs. (4.26) to (4.29). We limited the 

maximum number of iterations to 600. This limit was reached for the bead object 

reconstructed with ADMM-TDPM with 𝛾𝛾 = 1 (Table 4.1) and for the mixture of objects 

reconstructed with  𝛾𝛾 = 1 (Table 4.2).  The limit was also reached for ADMM-TDPM 

constrained with 𝛾𝛾 = 1 (Table 4.2).   

ADMM-TDPM with constraints outperformed TDPM using only three angles. 

TDPM with 15 angles and 𝜆𝜆 = 10−1 had an NRMSE of 0.4053, 0.5362, and 0.5806 for the 

bead, the mixture of objects, and the phantom. ADMM-TDPM constrained with three 

angles and 𝛾𝛾 = 2 had an NRMSE of 0.3111, 0.3129, and 0.203 for the three objects. While 

using the acceleration resulted in a slightly higher NRMSE, it also resulted in speedups of 

5.54x, 11.64x, and 5.78x for the bead, the mixture of objects, and phantom for the 
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constrained version of ADMM-TDPM. This speedup is significant and suggests that the 

acceleration should be used despite the slight increase in error. ADMM-TDPM 

unconstrained with three angles and 𝛾𝛾 =  2 had an NRMSE of 0.3273, 0.7274, and 0.7738, 

which shows that including the non-negativity and known zero constraints significantly 

improve the recovered image. 

Even though ADMM-TDPM is iterative, the algorithm was faster than TDPM for 

the mixture of objects and phantom for the accelerated version. This is because loading the 

data for angles from storage and computing �̂�𝛢𝑇𝑇𝛪𝛪 grows linearly as angles are added. Since 

ADMM-TDPM only used three angles, this step of the algorithm is much faster. The 

algorithm took longer than the bead because the regularization parameter was larger, which 

makes the objective less like a quadratic and more difficult to minimize.  

In Figs. 4.2 and 4.4 the x-z cross section is notably worse for the bead and phantom 

objects when using ADMM-TDPM. This is because the 𝑦𝑦-direction is the axis of rotation.  

4.5  Summary 

ADMM-TDPM with the Augmented Lagrangian Method has been applied to 

reconstruct 3D microscopic phase images. The optimizations of the data fidelity by 

minimizing Gaussian noise and the scattering potential through total variation 

regularization with the constraints of non-negativity and known zeros have been performed 

to reconstruct 3D RI distributions from the intensity images of three angles. The simulation 

results of reconstructing the mixture of 3D objects and the 3D modified Shepp-Logan 

phantom demonstrate that ADMM-TDPM can be applied to shift-variant objects such as 

FBGs and biological cells. ADMM-TDPM with the non-negativity and known-zeros 
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constraints achieves significantly faster convergence and smaller error than the original 

TDPM with 15 angles. ADMM-TDPM has the potential to realize high-resolution real-

time 3D imaging with short image acquisition time and fast processing. These results have 

been submitted for publication to Applied Optics [162]  
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CHAPTER 5. FUTURE WORK 

5.1 Real-time TDPM with TSUM 

As mentioned in Ch. 3, TSUM has great potential to realize real-time quantitative 

phase imaging once superior SoCs and APIs for UM are developed. Meanwhile, TSUM 

can be applied to 3D TDPM with measured data. Unlike simulated data, measured data 

requires registration steps to align each 2D image in the 3D through-focal images. The 

registration is done using cross-correlation of two boundary images in the z-direction 

(along the illumination axis) and symmetry in the x-direction (perpendicular to the 

rotational axis). In the original MATLAB version of 3D TDPM, the registration is 

processed sequentially. TSUM can process the registration of each tomographic angle in 

parallel and accelerate the processing of measured data. 

3D TDPM imaging can be divide into three steps: image acquisition, processing, and 

plotting. The original version of 3D TDPM performs these three steps sequentially. It 

collects intensity images at 15 different angles from a microscope, computes RID, and plots 

the results. As indicated in Fig. 5.1, pipelining the three steps could achieve up to a 3x 

speedup.  For example, the intensity data at the first angle are collected, and computing the 

scattering potential for the first angle can start as soon as the data collection is finished. 

The intensity data at the second angle are collected while the scattering potential for the 

first angle is being computed. Converting the scattering potential to RID and rendering it 

can follow the processing at each angle, but it may improve the performance if it waits 

until scattering potentials from all angles are computed. Once all 15 angles are computed, 

a complete RID can be rendered. Moreover, the pipeline can continue to update the RID.  
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Time-variant objects, like live biological cells, can potentially be continuously investigated 

using the pipelined TDPM.   

 

Figure 5.1 – 3D TDPM pipeline for real-time imaging. 

5.2   Real-time imaging with ADMM-TDPM 

  ADMM-TDPM can be implemented for measured experimental data. The 

simulation results in Ch. 4 show ADMM-TDPM can achieve higher accuracy with three 

angles than the original TDPM can with 15 angles. Pipelining can also be applied to 

ADMM-TDPM for continuous imaging as shown in Fig 5.2. It can collect the first set of 

three angles (e.g., 0°, 60°, and 120°), compute RID with ADMM, and render the output. 

While RID are computed for the first three angles, the next set of three angles (e.g., 12°, 

72°, and 132°) can be collected. Once the RIDs of both sets of angles are computed, the 

two outputs may be combined and rendered.   

 

Figure 5.2 – 3D ITDPM pipeline for real-time imaging. 
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5.3  Real-time imaging with ADMM-TDPM-TSUM 

 ADMM-TDPM could be accelerated using a GPU. As ADMM-TDPM is an 

iterative method, an input of an iteration depends on the output of the previous iteration. 

Thus, the iteration loop cannot be parallelized, and a considerable speedup is not expected 

from GPU computing. However, arrays that do not have dependencies in each iteration can 

be computed in parallel. TSUM can be applied to these independent array computations in 

each iteration. For example, updating the Lagrange multipliers, 𝑧𝑧1, 𝑧𝑧1,  𝜇𝜇1, and 𝜇𝜇2, as well 

as computing of primal and dual residuals can be parallelized. Utilizing a UPM eliminates 

the data transfer overhead; thus, the speedup can be significant when the arrays are large.   
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APPENDIX A.  TDPM 3D MATLAB 1.0 USER MANUAL 

A.1 Introduction 

 The purpose of this manual is to provide instructions on the use of the 3D 

tomographic deconvolution phase microscopy (TDPM) MATLAB program developed by 

Micah Jenkins and Yijun Bao to reconstruct the 3D refractive-index distributions (RIDs) 

of optical fibers or capillaries. Flowcharts in A.2 represents the sequence of algorithms in 

the two main script files, TDPM_3D_measure_complete.m and 

TDPM_3D_simulate_complete.m. A.3 offers detailed explanations on parameters and 

algorithms in TDPM_3D_measure_complete.m, TDPM_3D_simulate_complete.m, and 

the two main functions, Idata_3D_from_measure.m and TDPM_from_Idata_3D.m. This 

manual mainly focuses on capillaries containing microspheres. However, the instructions 

can also be a guide for optical fibers with different parameter settings. For a first-time user, 

A.4 offers the steps to run the main script file, TDPM_3D_measure_complete.m, to recover 

the RIDs of microspheres in a microcapillary.  The algorithms follow the RI recovery 

methods in Micah Jenkins’ paper [77] with a few modifications. More details can be found 

Chapter 2.1 and in Jenkins’, Bao’s, and Noah’s theses [165-167]. 
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A.2 Flowcharts of TDPM 3D 

A.2.1 TDPM_3D_measure_complete.m 

 

 

Figure A.1 – Flowchart of TDPM_3D_measure_complete.m 

TDPM_3D_measure_complete.m 

 

 

 

 

 

 

 

 

 

 
Return: RID is saved in a RIDs folder.  

Display: Three RID figures in the zx, zy, and yx planes 

Input: 
Through-focal images over 180° 

Idata_3D_from_measure.m 

Input parameters: dir_images, dir_Idata, downs, islazy, 
ifRegister, Regy, PSF_3D, z2x, ref, M 
 
 
 

 

Return: Idata_3D is saved in a folder assigned to dir_Idata. 

 

 

1. Background intensity normalization and subtraction 

2. x-direction registration 

3. z-direction registration 

TDPM_from_Idata_3D.m 

Input parameters: idatapsf_3d, dir_Idata, Idata_type, downs, 
Leng_obj, noil, NAo, NAc, SAMPLING_RATE, lambda, regul, 
islazy, method_regul, period, shift_z, Object 
 
 
 
 

 

Return: RID  

1. Filtering 

2. Rotation via bilinear 

3. interpolation 
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A.2.2 TDPM_3D_simulate_complete.m   

Figure A.2 – Flowchart of TDPM_3D_simulate_complete.m  

TDPM_3D_simulate_complete.m 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Return: RID is saved in a RIDs folder.  

Display: Three ideal RID cross sections and three recovered RID cross sections in the 
zx, zy, and yx planes 

Idata_3D_from_measure.m 

Input parameters: dir_images, dir_Idata, downs, islazy, 
ifRegister, Regy, PSF_3D, z2x, ref, M 
 

 

 

Return: Idata 3D is saved in a folder assigned to dir Idata. 

1. Background intensity normalization and subtraction 
2. x-direction registration 
3. z-direction registration 

TDPM_from_Idata_3D.m 

Input parameters: idatapsf_3d, dir_Idata, Idata_type, downs, 
Leng_obj, noil, NAo, NAc, SAMPLING_RATE, lambda, regul, 
islazy, method_regul, period, shift_z, Object 

 

 

 
   

 

 

   ⨁ 
 

 

Return:  RID  

High frequency 

1. Filtering 
2. Rotation via bilinear 

interpolation 
3. High-pass filtering 

 

Low frequency 

1. 2D phase retrieval 
2. Ram-Lak filtering 
3. Rotation via bilinear 

interpolation 
4. Low-pass filtering 

 

create_object.m 

Input parameters: Obj, Lengr, Lengy 
Return: object is saved in Objects folder. 

RI synthesis 
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A.3 Main Files 

A.3.1 Main Script File TDPM_3D_measure_complete.m 

 TDPM_3D_measure_complete.m processes the entire 3D TDPM recovery, 

including reading measured 3D intensities, calculating or loading 3D PSF, and TDPM 

recovery. 

• (Line 3 – 66) Parameter settings (heading) 

o run_Idata_3D = true to generate Idata_3D or false to load existing Idata_3D 

o Object = Type of object 

 ‘SMF’, ‘PMF’, ‘PCF’, ‘LPFG’, ‘FBG’ are for various fibers. 

 ‘mix’ contains capillary, gel, and microsphere. 

 ‘gel’ contains capillary and gel. 

 ‘spheres’ contains microspheres. 

o noil = Refractive index of immersion oil 

o NAo = The numerical aperture of an objective lens 

o NAc = The numerical aperture of a condenser lens 

o NAci = The inner numerical aperture of a condenser lens for annular source 

o M = Magnification of the objective lens 

o SAMPLING_RATE = Effective pixel size of a camera 

o lambda = Wavelength of a light source 

o downs = Downsampling ratio  

o Leng = Length of the object 

o regul = Regularization parameter 
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o psf_type = A type of PSF (point spread function; inverse Fourier transform of 

POTF, phase optical transfer function) 

 ‘analytical’ is from a rotation of 2D POTD calculated analytically. 

 ‘SSBPM_Gaus’ is from 3D SSBPM with Gaussian source. 

o source_type = Type of source function 

 ‘disk’ is for disk source. 

 ‘annular’ is for annular source. 

 ‘Gaus’ is for Gaussian source. 

o Method_regul = regularization method 

 ‘Wiener’ uses Wiener filter and provides spatially smoother results. 

 ‘hard’ uses a hard cutoff and provides more accurate results for acceptable 

frequency. 

 ‘mix’ uses Wiener filter for low-frequency part and the hard cutoff for high-

frequency part. It should be chosen only for FBG. 

o shift_z = Manual shift of the z direction in pixels 

o z2x = Ratio between Delta_z and Delta_x where Delta_z is the distance between 

the neighboring through-focal images, and Delta_x is the pixel size of camera. 

z2x = 1 is used for FBG, and z2x = M/10 is used for other objects. 

o dir_Idata = Directory of a folder to store intensity data 

o islazy = Use of rotation angles 

 ‘lazy’ uses a single angle (the first angle) of data, assuming images are the 

same for every rotation angle. It can be used for a single-mode fiber or an 

empty capillary. 
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 ‘full’ uses different data for every rotation angle. 

o forder_measure = Directory of a folder to store 3D intensity 

o ifRegister = Registration method 

 ‘RegC’ uses cross-correlation with two boundary images (for fiber 

measurements). 

 ‘RegC4’ uses cross-correlation with two boundary images and 2x2 least 

squares fitting (for fiber measurements). 

 ‘RegCall’ uses cross-correlation with a full image. 

 ‘RegCall3’ uses 3D cross-correlation with an entire 3D image. 

 ‘RegCS’ uses cross-correlation with two boundary images in the z-direction 

and symmetry in the x-direction (The current best method for cell 

measurement). 

 ‘RegCS4’ uses cross-correlation with two boundary images and 2x2 least 

squares fitting in the z-direction and symmetry in the x-direction. 

 ‘RegCSall’ uses cross-correlation with a full image in the z-direction and 

symmetry in the x-direction. 

 ‘RegSSIM3’ uses 3D SSIM.  

 ‘RegS’ uses the symmetry of intensity times height (I x h) for the z-direction 

and intensity for the x-direction. 

 ‘noReg’ uses no registration. 

o Regy = true if the y-direction is registered, or false 

o (Line 55 - 66) Initialization of parameters 

 If the object is ‘mix’, ‘gel’, or ‘spheres’, reference intensity (ref) is ‘capillary’ 
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• (Line 67 – 157) Load or Calculate PSF_3D (heading) 

- If the type of PSF (psf_type) is ‘SSBPM_Gaus’, pre-calculated 3D PSF data is 

loaded according to the magnification of objective lens (M) and the chosen 

downsampling rate (downs). 

- If the type of PSF (psf_type) is ‘analytical’, build_2DOTF_analytical_disk, 

build_2DOTF_analytical_annular, or build_2DOTF_analytical_Gaus is called 

according to source_type to build 2D PSF (PSF_2D) and 2D POTF (POTF_2D) 

in the xz plane. calulate_3d_psf_rotate function calculates 3D PSF (PSF 3D) by 

rotating POTF_2D along the z-axis. The aliased pattern in PSF_3D is removed. 

 

• (Line 158 – 205) Calculate 3D intensity (heading) 

- The directory of measurement images (dir_images) should be specified under the 

chosen object. If the object is ‘gel’, rotation is not required. If the object is ‘mix’, 

the directory should be specified under the correct NAc and noil.  

- If run_Idata_3D = true in the parameter setting, Idata_3D_from_measure 

function is called. 

• (Line 206 – 218) TDPM recovery (heading) 

- TDPM_from_Idata_3D is called to calculate 3D refractive index distribution 

(RID). 

-  If the downsampling rate is 1, the size of RID is likely to be larger than 2GB, and 

the format of RID is required to be v7.3 by MATLAB. (Line 219 – 256) Plot the 

recovered RID cross sections in 3 View angles (heading). 
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- Refractive index distributions in the zx, zy, and yx planes are plotted. 

 

A.3.2 Main Script File TDPM_3D_simulate_complete.m 

TDPM_3D_simulate_complete.m simulates 3D TDPM, including simulating 3D 

intensities, calculating or loading 3D PSF, and TDPM recovery. 

• (Line 3 – 34) Parameter setting (heading) 

o Run_idata_3D = true to generate Idata_3D or false to load existing Idata_3D 

o noil = Refractive index of immersion oil 

o NAo = The numerical aperture of an objective lens 

o NAc = The numerical aperture of a condenser lens 

o NAci = The inner numerical aperture of a condenser lens for annular source 

o M = Magnification of the objective lens 

o SAMPLING_RATE = Effective pixel size of a camera 

o lambda = Wavelength of a light source 

o Obj = type of simulation object 

 ‘mix’ contains capillary, gel, and microsphere. 

 ‘gel’ contains capillary and gel. 

 ‘spheres’ contains microspheres. 

 ‘squares’, ‘squares2’, ‘diamond’, and ‘diamonds’ are different patterns. 

o shift_z = manual shift in the z-direction in pixels 

o lengr = length of the object in the x- and z-direction  

o lengy = length of the object in the y- direction 

o islazy = Use of rotation angles 
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 ‘lazy’ uses a single angle (the first angle) of data, assuming images are the 

same for every rotation angle. It can be used for an empty capillary. 

 ‘full’ uses different data for every rotation angle 

o regul = Regularization parameter 

o Method_regul = regularization method 

 ‘Wiener’ uses Wiener filter and provides spatially smoother results. 

 ‘hard’ uses a hard cutoff and provides more accurate results for acceptable 

frequency. 

 ‘mix’ uses Wiener filter for low-frequency part and the hard cutoff for high-

frequency part. It should be chosen only for FBG. 

o psf_type = A type of PSF (point spread function; inverse Fourier transform of 

POTF, phase optical transfer function) 

 ‘analytical’ is from a rotation of 2D POTD calculated analytically. 

 ‘SSBPM_Gaus’ is from 3D SSBPM with Gaussian source. 

o source_type = Type of source function 

 ‘disk’ is for disk source. 

 ‘annular’ is for annular source. 

 ‘Gaus’ is for Gaussian source. 

 

• (Line 35 - 55) Simulate the intensity images (heading) 

- Create_object function is called to generate a chosen object, Obj.  

- If run_Idata_3D = true, and intensity data does not exist in the intensities folder, 

SSBPM_simulate_3D is called to generate Idata_3D. 
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• (Line 57 – 111) load PSF_3D (heading) 

- If the type of PSF (psf_type) is ‘analytical’, build_2DOTF_analytical_disk, 

build_2DOTF_analytical_annular, or build_2DOTF_analytical_Gaus is called 

according to source_type to build 2D PSF (PSF_2D) and 2D POTF (POTF_2D) 

in the xz plane. calulate_3d_psf_rotate function calculates 3D PSF (PSF 3D) by 

rotating POTF_2D along the z-axis.  

- If the type of PSF (psf_type) is ‘SSBPM_Gaus’, either pre-calculated 3D PSF 

data is loaded or POTF_3D_in_TDPM_SSBPM function is called to generate a 

new PSF_3D. 

• (Line 112 – 124) TDPM recovery (heading) 

- TDPM_from_Idata_3D is called to calculate 3D refractive index distribution 

(RID). 

- RI of oil (noil) is subtracted from RID. 

• (Line 125 – 130) Calculate errors (heading) 

- Normalized root-mean-square error (NRMSE) between the ideal RID and the 

recovered RID is calculated.  

• (Line 131 – 164) Plot the ideal RID cross sections in 3 view angles (heading) 

- Three figures of the ideal RID (object_center) in the zx, zy, and yx planes are 

displayed. 

• (Line 165 – 197) Plot the recovered RID cross sections in 3 view angles (heading) 

- Three figures of the recovered RID (RID_small) in the zx, zy, and yx planes are 

displayed. 
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A.3.3 Major Function File Idata_3D_from_measure.m 

Function Idata_3D_from_measure(dir_images, dir_Idata, downs, islazy, ifRegister, Regy, 

 PSF_3D, z2x, ref, M) 

-- Idata_3D_from_measure.m calculates 3D images for different angles from the 

measurement capillary data.  

-- The objective lens is set to be 50x, the pixel size of the camera (Delta_x) to be 

196nm, and the measured object is a capillary.  

-- The function takes the following parameters: 

- dir_image (directory of the folder storing the measured data containing 

‘image’ folder) 

- dir_Idata (directory of the folder to store the calculated 3D intensity data) 

- downs (downsampling rate) 

- islazy (’lazy’ or ‘full’, use of rotation angles) 

- ifRegister (registration method) 

- Regy (true if the y-direction is registered, or false) 

- PSF_3D (3D PSF) 

- z2x (Delta_z/Delta_x, 1 for FBG measurement and M/10 for other objects) 

- ref (‘fiber’ or ‘capillary’, the reference object used for registration) 

- M (Magnification of the objective lens) 

 

• (Line 31 – 98) Set parameters (heading) 



 71 

- The current parameters can be kept the same unless a change is made on 

purpose.   

o name = Name of image files 

o fmt = Format of the images 

o method = Downsampling method 

o thetaf = Measured angles (zero to 168 degree with the increment of 12 

decrees) 

o thetaB = Background angles (180 degree) 

o Ltheta = Total number of angles 

o stack = Total number of images in the z-direction (-73:73) 

o Lxo = Total pixel of images taken from the camera in the x-direction 

o Lyo = Total pixel of images taken from the camera in the y-direction 

o Lzo = Number of images in the z-direction (147) 

o cor1 = The y position of the first registration point 

o cor2 = The y position of the second registration point 

o (line 90 – 97) radius = The radius of fiber or capillary in the unit of pixels 

 The actual inner radius is divided by the camera resolution 

(SAMPLING_RATE). 

 The actual inner radius should be changed if a different capillary is used. 

 

• (Line 99 – 117) Initialization (heading) 

- Arrays for intensity data and vectors used for registration are initialized. 
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• (Line 118 – 137) Calculate the modulation transfer function (MTF) of the camera 

(heading) 

o ff = Fill factor of the camera 

o MTF = Modulation transfer function (See further explanations in [166]) 

 

• (Line 138 – 176) Load reference intensity for registration (heading) 

- A pre-generated .mat file is loaded for the reference intensity for different 

objects and the magnification of the objective lens.  

- Currently, compareall_cap_simu_50x_NAx0.375.mat is used for the capillary, 

and it contains three variables, compareall, compared, and compareu. 

- A new reference intensity should be generated for a different magnification or 

a different object using TDPM_2D_simulate_complete.m and 

create_compareall.m in TDPM 2D folder. 

 

• (Line 177 – 194) Background processing (heading) 

- Background images are processed from ‘image_180_73a’ and 

‘image_180_73b’ to ‘image_180_0a’ and stored in Idata_measBG. 

 

• (Line 195 – 1344) Processing for different angles (heading) 

- The measured images at different angles are stored in Idata_meas. 

- A specified registration method is used. Currently, ‘RegCS’ works the best for 

the capillary measurement.  
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o (Line 567 – 709) ‘RegCS’ uses cross-correlation in the z-direction and 

symmetry in the x-direction to register.  

 For the x-direction registration 

- Averaged xz cross-sections are selected and resized at y = cor1 and y = 

cor2.  

- The xz cross-sections are cross-correlated with their flipped upside-

down images to find the maximum points and the symmetry axis.  

 For the z-direction registration 

- Assuming the capillary is not tilted in the z-direction, averaged xz 

cross-section is selected and resized. 

- The best z-direction matches are found using the max cross-correlation 

between the xz cross-section and the upper and lower edges from the 

simulated reference intensity (compareu and compared). 

 Lateral and longitudinal positioning 

- lat_adjust and long_adjust are the numbers of pixels to be shifted in 

the x-direction and the z-direction respectively. 

- The images are upsampled by 10 to increase the accuracy of shifting. 

- The images are shifted circularly, but the newly entered columns or 

rows are assumed to be the same as their nearest neighbor.  

o The output data is saved in the folder named intensities. 

 

A.3.4 Major Function File TDPM_from_Idata_3D.m 
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function [RID] = TDPM_from_Idata_3D(idatapsf_3d, dir_Idata, Idata_type, downs, 

 Leng_obj, noil, NAo, NAc, SAMPLING_RATE, lambda, regul, islazy, 

 method_regul, period, shift_z, Object) 

-- TDPM_from_Idata_3D.m calculates 3D refractive index distributions (RID) from 

the intensity data obtained from Idata_3D_from_measure.m. 

-- For the measured data, the high spatial frequency recovery method is used for all 

spatial frequencies. The function divides images into high- and low-frequency regions, but 

the low-frequency region is null. 

-- The function takes the following arguments: 

- idatapsf_3d (3D PSF calculated in TDPM_3D_measure_complete.m) 

- dir_Idata (directory of the folder storing the intensity data calculated from 

Idata_3D_from_measure.m) 

- Idata_type (‘measure’ or ‘simulate’ to indicate how to get Idata_3D) 

- downs (downsampling ratio) 

- Leng_obj (the length of the object) 

- noil (refractive index of immersion oil) 

- NAo (the numerical aperture of an objective lens) 

- NAc (the numerical aperture of a condenser lens) 

- SAMPLING_RATE (the effective pixel size of the camera) 

- lambda (wavelength of a light source) 

- regul (regularization parameter) 

- islazy (Use of rotation angles, ‘full’ or ‘lazy’) 
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- method_regul (regularization method, ‘Wiener’, ‘hard’, or ‘mix’) 

- period (the period of grating, only used for FBG) 

- shift_z (manual shift of the z-direction in pixels) 

- Object (type of object) 

 

• (Line 30 – 108) Set parameters (heading) 

- The current parameters can be kept the same unless a change is made on 

purpose or to debug.   

o doesplot = Whether to plot the six cross sections (Set it to be true when 

debugging) 

o doesclear = Whether to clear large matrices (Set it to be false when 

debugging) 

o LPF = A constant to eliminate frequencies that are too close to the boundary 

o scale = Unit conversion from meter to micrometer 

o thetaf = measured angles 

o Ltheta = Total number of angles 

o SAMPLING_RATE = Camera resolution 

o (line 70 - 74) radius = The radius of fiber or capillary in the unit of pixels 

 The actual inner radius is divided by the camera resolution 

(SAMPLING_RATE). 

 The actual inner radius should be changed if a different capillary is used. 

 

• (Line 109 – 187) Initialization (heading) 
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- The regions of fiber or capillary and immersion liquid are defined. 

o mask_out = The region where only oil exists 

o rhori = Spatial frequency 

o ring_i = The region where low frequency recovery method is used (unit: 

spatial frequency) 

 The low-frequency method is used inside ring_i, whereas the high- 

frequency method is used outside ring_i.  

 However, for measurement, ring_i is null. 

o mask_obj = The region where the spatial frequency is lower than the 

maximum spatial frequency allowed by the microscope 

o mask_obj_small = The region where the spatial frequency is lower than the 

maximum spatial frequency allowed by the camera 

 

• (Line 188-211) Low frequency algorithm preparation (heading) 

o tf1 = 2D POTF 

o deni = Inverse of sum of tf1 

 

• (Line 212 – 341) High frequency algorithm preparation (heading) 

o idataphf_3df = 3D POTF 

o ifatapsf_3dc = Auto correlation of 3D POTF 

o acall = Sum of all auto correlations 

o acallf = Fourier transform of acall 

 A regularization method (method_regul) is applied to acallf. 
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 If method_regul = ‘hard’, it sets small POTFs to be zero. 

 If method_regul = ‘Wiener’, acallf_max*regul (α in [77]) is added to 

acallf. 

 If method_regul = ‘mix’, Wiener filtering is applied to low frequency 

part, and hard cutoff is applied to high frequency part. ‘Mix’ is only used 

for FBG. 

o comp = Inverse of sum of regularized 3D POTFs  

o acallf_useful = 3D POTFs for the region where acallf is not close to zero 

 

• (Line 342 – 554) Processing for different angles (heading) 

- If islazy = ‘full’, the following steps occur at every angle. If islazy = ‘lazy’, 

the following steps occur once at a single angle. 

- The intensity data (Idata_3D) from Idata_3D_from_measure.m is loaded and 

scaled. 

- Idata_3D is manually shifted in the z-direction circularly if necessary. 

o High-frequency recovery  

 Idata_rec1 = Fourier transform of Idata_3D for high frequency 

 Idata_rec1_ex = Idata_rec1 padded in the z-direction with repeating 

boundary values to prevent cropping of the image after rotations 

 Idata_3D_filt1 = Idata_rec1_ex rotated by bilinear interpolation 

o Low-frequency recovery  

 Idata_rec2 = Fourier transform of Idata_3D for low frequency 
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 Idata_rec2_ex = Idata_rec2 padded in the z-direction with repeating 

boundary values to prevent cropping of the image after rotations 

 Idata_3D_filt2 = Idata_rec2_ex rotated by bilinear interpolation 

• (Line 555 – 709) Combination to final result and plot figures (heading) 

- Refractive index distribution is synthesized.  

o Idata_3D_filt1f = Fourier transform of Idata_3D_filt1. 

o Vtemp1 = the scattering potential of high frequency region before filtering 

o Vtemp1i = the scattering potential of high frequency region, outside ring_i 

o Idata_3D_filt2f = Fourier transform of Idata_3D_filt2. 

o Vtemp2 = the scattering potential for the low frequency region before 

filtering 

o Vtemp2i = the scattering potential for the low frequency region, inside ring_i. 

(Null for the measured data) 

o Vtemp = the sum of scattering potentials of all regions and frequencies. 

o RID = 3D refractive index distribution that is converted from Vtemp. 

- If doesplot = true, six zx cross sections of different variables are displayed. 

 figure 91 = Vtemp1 

 figure 92 = Vtemp2  

 figure 93 = Vtemp1i 

 figure 94 = Vtemp2i (Null for the measured data) 

 figure 95 = RID - noil 
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 figure 96 = acallf_usefull (A black pixel in the plot indicates that the 

value of acallf is zero or close to zero. The recovery at this black region 

may not be reliable and could cause errors.)  

 

A.4 Test Run 

Instructions to run TDPM_3D_measure_complete.m for microspheres in a capillary 

Note:   Boldface indicates variable name. 

 Single quotes around name indicate a string. 

 

1. First, the measured images from LabVIEW should be stored in folders with the 

correct names. 

a) One folder (e.g., 4.8.19_NAc0.375_n1.458 in Figure A.3) should contain a folder 

named ‘images’ which holds the measured images of the capillary with gel and 

microspheres at the angles from zero to 168 degrees. The images should be from 

image_0_0a to image_168_73b followed by background images (immersion 

liquid only) named from image_180_0a to image_180_73a and image_180_73b. 

(a => above, b => below, 0 => in focus) 

b) Another folder should be named with the refractive index of immersion liquid and 

a string, ‘No_Spheres_KL’ (e.g., RI_1.458_No_Spheres_KL in Figure A.3).  

It should contain a folder named ‘images’ which holds the images of the capillary 

with gel only at zero degree named from image_0_0a to image_0_73b and 
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background images (immersion liquid only) named from image_180_0a to 

image_180_73a and image_180_73b. 

 

 

Figure A.3 — An example of the folders storing the measured images 

 

2. TDPM 3D MATLAB code 1.0 is in the Optics O: drive. go to ‘O:\JYChun\QPI 

MATLAB Code 1.0\’. Copy the folder named ‘TDPM 3D’ to the local disk. TDPM 

files in the O: drive should not be modified.  

Be sure to have five folders named Intensities, Objects, picture, PSFs, and RIDs in the 

TDPM 3D folder with TDPM_3D_measure_complete.m. Create them if they are 

missing. 

 

3. Open TDPM_3D_measure_complete.m. in TDPM 3D. 

 

4. The parameters should be specified correctly.  

a) Set run_Idata_3D = true. (Line 4) If Idata_3D has already been generated and 

does not need changes, then run_Idata_3D can be set to be false to save the 

computation time. If Idata_3D has already been generated but needs changes, then 

run_Idata_3D must be set to be true.  
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b) Choose the object to be ‘mix’. (Line 5) 

c) Specify the refractive index of immersion oil, noil. (Line 10) 

d) Specify the numerical aperture of an objective lens, NAo. (Line 11) 

e) Specify the numerical aperture of a condenser lens, NAc. (Line 12) 

f) Specify the magnification of the objective lens, M. (Line 14) 

g) Choose downsampling rate, downs. (Line 17) 2 or 4 are recommended. 

h) Specify the directory of the top folder, folder_measure, storing the measured 

images. (Line 37) This is the top folder containing the two folders created in step 

1. 

- e.g. folder_measure = 'C:\measurement\'; 

i) Choose a registration method, ifRegister, to be ‘RegCS’. (Line 40) 

j) Other parameters should remain unchanged unless the experimental setup has 

been altered on purpose. 

k) Specify the directory of the folder storing the measured images under the correct 

cases of object (‘mix’) and NAc (Line 158 – 204) This is the folder created in 

step 1a. 

- e.g. dir_images = [folder_measure,'4.8.19_NAc0.375_n1.458']; 

 

5. Run TDPM_3D_measure_complete.m. 

- The outputs are three refractive index distributions of the capillary, gel, and 

microspheres in the zx, zy, and yx planes (Figure A.4). 
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Figure A.4 – The RID cross sections of the capillary, gel, and microspheres (downs=2) 

 

6. Change the object to be ‘gel’ (Line 5) and run TDPM_3D_measure_complete.m. 

- The outputs are three refractive index distributions of the capillary and gel in the 

zx, zy, and yx planes (Figure A.5). 

 

 

Figure A.5 – The RID cross sections of the capillary and gel (downs=2) 

 

7. Open Idata_3D_diff_gel.m. 

a) Specify the parameters the same as in TDPM_3D_measure_complete.m. (Line 3 – 

11) 

b) Run Idata_3D_diff_gel.m. 
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c) It calculates the 3D intensity difference between the measurements of the 

capillary with and without microspheres. The outputs are not displayed. 

 

8. Change the object to be ‘spheres’ in TDPM_3D_measure_complete.m (Line 5) and 

run TDPM_3D_measure_complete.m. 

- The outputs are the three refractive index distributions of microspheres in the zx, 

zy, and yx planes (Figure A.6). 

 

 

Figure A.6 – The RID cross sections of microspheres (downs=2) 

 

 

 Common errors are caused by a missing file or an incorrect folder directory or name. 

Be sure to have the required folders in the correct locations.  
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A.5 List of TDPM 3D Files 

A.5.1 .m (script) 

do_something.m 

 Run some temporary code, such as plotting. 

do_many.m: 

 Run some code using various parameters. I often use a series of loops to run a 

function with different parameters. If necessary, the scripts can also be converted to 

functions. 

 

TDPM_3D_simulate_complete.m 

 Do the entire 3D TDPM simulation process, including simulating 3D intensities, 

calculating or loading 3D PSF, and TDPM recovery. 

TDPM_3D_measure_complete.m 

 Do the entire 3D TDPM recovery process, including reading measured 3D 

intensities, calculating or loading 3D PSF, and TDPM recovery. 

 

Idata_3D_diff_gel.m 

 Calculate 3D intensity difference between measurement of capillary with and 

without microspheres. For convenience, TDPM_3D_measure_complete can be the last 

sentence of this script to run TDPM recovery in one script. 

Idata_3D_diff_simu.m 
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 Calculate 3D intensity difference between simulation of capillary with and without 

microspheres. For convenience, TDPM_3D_measure_complete can be the last sentence of 

this script to run TDPM recovery in one script. 

 

Plotting figures: 

Check_Idata_3D.m 

 Show intensity cross section in each angle slice by slice using imshow3D. 

view_slice.m 

 Show 3D RID (can be replaced by intensity) slice by slice using imshow3D. 

 

compare_PSFs_downs.m 

 Compare PSFs from different downsampling strategies. 

 

A.5.2 .m (function) 

create_object.m 

 Create objects with different parameters, and then store the object in “Objects” 

folder. 

 

SSBPM_simulate_3D.m 

 Simulate Idata_3D using a 3D refractive index distribution. Idata_3D is then stored 

in “Intensity”  folder, and input into TDPM_from_Idata_3D.m for the next TDPM 

recovery. 

 



 86 

Idata_3D_from_measure.m 

 Calculate Idata_3D, which contains the measured cross-sectional intensity data 

versus fiber rotation angle, using measured images. Idata_3D is then installed in “Intensity” 

folder, and input into TDPM_from_Idata_3D.m for the next TDPM recovery. 

ifRegister has multiple choices. Currently the most accurate result is from ‘RegCS’, but 

currently fiber registration only allows ‘RegC’ and ‘RegC4’. 

 

TDPM_from_Idata_3D.m 

 Recover refractive index distribution using Idata_3D stored in a folder. The input 

Idata_3D can be got from Idata_3D_TDPM_measure.m using measured images, or from 

TDPM_simulate_phantom_3D.m from simulated images. 

 

Downsampling: 

downsample2_xy.m 

 Downsample an image in the xy-plane. 

downsample2_xz.m 

 Downsample an image in the xz-plane. 

downsample3.m 

 Downsample an image in 3D. 

 

upsample3.m 

 Upsample a 3D PSF using interp3. 
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calculating 3D PSF:  

rotate223.m 

 Rotate a 2d object axially to a 3d object using interp1. Notice that only the POTF 

can be rotated. PSF cannot be rotated. 

 

calculate_3d_psf.m 

 calculate 3D PSF from 2D PSF or POTF by rotating 2D POTF. Downsampling is 

allowed. 

 

POTF_3D_in_TDPM_SSBPM.m:  

 Performs a simulation on a central point scatterer to generate the 3D intensity 

(PSF_3D), and also may account for spherical aberration away from focus. Based on 

SSBPM described by Eq. (23) and (24) in Jenkins_2015b. If the point RI is replaced by an 

object, this function can be used to simulate TDPM. 

 

build_2DOTF_analytical_disk.m 

build_2DOTF_analytical_annular.m 

build_2DOTF_analytical_Gaus.m 

 Builds the 3D phase or absorption optical transfer function (3D POTF or AOTF) in 

the kx-kz plane for a 2D result. Based on implementing analytical equations. A disk / 

annular / Gaussian source is used. They are copied from 2D QPI folder.  

 

POTF_2D_in_TDPM_SSBPM.m:  
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 Performs a simulation on a central line scatterer to generate the cross-sectional 

intensity (idatapsf). Copied from TDPM_2D folder.  

 

Others: 

ssim.m 

ssim_wang.m 

 Computing SSIM of two images. ssim is the version introduced in MATLAB 

R2014a and is currently used. ssim_wang is an older version and is not currently used. 

 

A.5.3 .mat 

 Grouped by formats. Some terms may be missing, which usually means default 

values. 

 

Registration references: 

compareu.mat:  

compared.mat:  

compareall_50X_NAc0.5.mat:  

 2D intensity array based on SSBPM simulations of fiber edges that are used for 

edge detection for registration. compareu is the upper part of the fiber edge. compared is 

the lower part of the fiber edge. compareall is the entire xz cross section. Previous three 

mats are based on 40X objective and NAc=0.375. compareall_capillary is based on 50X 

objective and NAc=0.5.  
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compareall_cap_simu_50X_NAc0.375.mat:  

 2D intensity array based on SSBPM simulations of capillary edges that are used for 

edge detection for registration. It is based on 50X objective and NAc=0.375. 

 

compareall_cap_exp_50X_NAc0.375.mat: 

 2D intensity array based on experimental measurement of capillary edges that are 

used for edge detection for registration. It is based on 50X objective and NAc=0.375. 

 

Sources: 

source_Gaussion.mat: 

 Gaussian fitted source distribution S(ρ’). source_Gaussion.mat is centered. 

 

source_Gaus_NAc(NAc).mat 

 Gaussian fitted source distribution with NAc. Both the fitted image and the fitted 

numbers are stored. 

 

Objects to be simulated (in Objects folder): 

(Object)_(Lengr)x(Lengy).mat 

 Simulated objects with size Lengr x Lengy x Lengr. 

 

PSFs or POTFs calculated or simulated (in PSFs folder): 

 By default, SAMPLING_RATE=245e-9, NAc=0.375, NAo=0.75, lambda=546e-

9. 
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PSF_2D_SSBPM_Guas_correct_scale.mat (avoid) 

 PSF and POTF simulated from SSBPM used for 2D TDPM. The source type is 

fitted Gaussian.  

 

PSF_3D_256.mat (avoid) 

 PSF calculated by rotating and downsampling 2D POTF (rotate223_full_downs.m 

and PSF_2D_SSBPM_Guas_correct_scale.mat). This is used for experimental recovery 

when downsampling ratio is 4. 

 

PSF_3D_256_simu_downs1.mat 

PSF_3D_256_simu_downs4.mat (avoid) 

 PSF calculated by SSBPM simulation. Different downsampling ratios are used. 

downs=1 is used for simulation only, because it retains the camera resolution. downs=4 is 

used for experimental recovery, because it retains the physical length of the object. 

 

PSF_3D_SSBPM_Gaus_downs(downs).mat 

 PSF calculated from SSBPM simulation with Gaussian source. It is used in 

experimental recovery.  

 

PSF_3D_(Source_type)_(Leng)_ NAc_(NAc)_n(noil)_downs(downs).mat 

PSF_3D_(Source_type)_(Leng)_ 

NAc_(NAc)_n(noil)_dx(SAMPLING_RATE)_downs(downs).mat 
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 Computed PSF from rotating analytical 3D POTF with parameters in name. 

 

PSF_3D_(Source_type)_SSBPM_(Leng)_dx(SAMPLING_RATE)_n(noil) 

_lambda(lambda)_NAo(NAo)_NAc(NAc).mat 

PSF_3D_(Source_type)_SSBPM_(Leng)_n(noil)_downs(downs)_dx(SAMPLING_R

ATE) _lambda(lambda)_NAo(NAo)_NAc(NAc).mat 

PSF_3D_(Source_type)_SSBPM_(Leng)_n(noil)_dx(SAMPLING_RATE) 

_lambda(lambda)_NAo(NAo)_NAc(NAc)_downs(downs).mat 

 Simulated PSF from SSBPM with parameters in name. 

 

Simulated defocused images (in Intensity folder): 

[folders] (Object)_(Lengr)x(Lengy)_n(noil) 

[folders] (Object)_shift(zshift)_(Lengr)x(Lengy)_n(noil) 

 Simulated 3D intensity images 

 

[folders] (Object)_(Leng)_NAc(NAc)_n(noil) 

[folders] (Object)_(Leng)_NAc(NAc)_n(noil)_(isRegister) 

 Experimental 3D intensity images 

 Object: ’SMF’, ‘PMF’, ‘PCF’ are various fibers; ‘mix’ is microspheres in capillary; 

‘gel’ is capillary without microspheres; ‘spheres’ is the difference between ‘mix’ and ‘gel’, 

equivalent to only microspheres.  

 

Recovered refractive index (in RIDs folder): 
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PMF144.mat 

SMF144.mat 

PCF144.mat 

 These stores the experimental refractive index and for different fibers, recovered 

by TDPM. 

 

RID_(Object)_shift(zshift)_(Lengr)x(Lengy)_n(noil).mat 

 Recovered refractive index of (Object) from simulation. 

 

RID_(Object)_(Leng)_NAc(NAc)_n(noil)_(psftype)_shift(zshift).mat 

 Recovered refractive index of (Object) from experiment. 
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APPENDIX B.  TDPM 3D TSUM 1.0 DOCUMENATION 

B.1  Introduction 

 TDPM3D_TSUM is a 3D tomographic deconvolution phase microscopy (TDPM) 

program developed in C/C++/CUDA to run specifically on NVIDIA Jetson AGX Xavier 

utilizing OpenMP Tasking and CUDA Streaming on Unified Memory. TDPM3D_TSUM 

leverages OpenMP multithreading, CUDA unified virtual memory, and Jetson AGX 

Xavier unified physical memory to accelerate the reconstruction of 3D refractive index 

from microscopic quantitative phase images. See Chapter 3 for details. 

 TDPM3D_TSUM has two major classes, cuMat and TDPM3D, and they are 

described in B.2 in details. The global functions of TDPM3D_TSUM and their descriptions 

are in B.3. TDPM3D_TSUM loads simulation objects, point spread functions, intensity 

data from storage. The data are stored in the HDF5 data format and required to follow a 

specific naming convention, which is explained in B.4. Compiling and running 

TDPM3D_TSUM is simple with a makefile. A short instruction on how to run 

TDPM3D_TSUM is in B.5.  

 

B.2 Classes and Structs 

B.2.1 class cuMat 

 The cuMat class is a data structure for 1D, 2D, and 3D data that is managed by 

CUDA unified virtual memory. The cuMat data can be real numbers or complex numbers. 
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The cuMat data are floats and stored as a vector in column-major order followed by row 

and depth.  

Private member variable 

cudaEvent_t cudaStat 
 
 

Public member variables 

int rows 
int cols 
int depth 
int size 
int dim 

float2* data 
Pointer for complex numbers allocated with cudaMallocManaged 

float* rdata 
Pointer for real numbers allocated with cudaMallocManaged 

bool isComplex 
 
 

Public function members 

constructor cuMat() 
Default constructor: Initiates variables to zero, null pointers, and 
isComplex to true 

destructor ~cuMat() 
Calls destroy() 

constructor cuMat(int rows, bool isComplex, cudaStream_t stream = NULL) 
Creates a 1D cuMat object 

constructor cuMat(int rows, int col, bool isComplex, cudaStream_t stream = 
NULL) 
Creates a 2D cuMat object 

constructor cuMat(int rows, int cols, int depth, bool isComplex, cudaStream_t 
stream = NULL) 
Creates a 3D cuMat object 
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constructor cuMat(const cuMat& src, bool copyData, cudaStream_t stream = 
NULL)  
Copy constructor: copies src. If (copy Data == false), it allocates 
memory, but does not copy data/rdata. If (copyData == true), it allocates 
memory and copies (deep copy) the data/rdata of src.  

cuMat& operator= (const cuMat& other) 
= operator overload: copies the input argument, other, including the 
data/rdata memory address. 

void cuMalloc(cuMat& dst, cudaStream_t stream = NULL) 
Allocates data/rdata using cudaMallocManaged. If (stream != NULL), 
it allocates data/rdata and attaches to a specific stream. If (stream == 
NULL), it allocates data/rdata to global to be accessed by any stream. 

unsigned int get_rows(const cuMat& src) 
Returns rows 

unsigned int get_cols(const cuMat& src) 
Returns cols 

unsigned int get_depth(const cuMat& src) 
Returns depth 

unsigned int get_size(const cuMat& src) 
Returns size 

unsigned int get_dim(const cuMat& src) 
Returns dim 

void C2R()  
Converts a complex array to a real array by removing imaginary part. 

void R2C() 
Converts a real array to a complex array by setting imaginary part 
equal to zero. 

void print(std::string printOption) 
Prints cuMat on terminal/console. 
If (printOption == ‘all’), it prints all elements. If (printOption == 
‘preview’), it prints the first column of data/rdata. 

void zeros(int rows, int cols, int depth, bool isComplex, cudaStream_t 
stream = NULL) 
Sets data/rdata values to be zeros. 

void destroy() 
calls cudaFree() to free data/rdata memory. 

 

B.2.2 class TDPM3D 
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Public member variables 

float noil 
Refractive index of immersion oil 
Default value is 1.458. 

float NAo 
Numerical aperture of objective lens 
Default value is 0.75. 

float NAc 
Numerical aperture of condenser lens 
Default value is 0.375. 

float Naci 
Numerical aperture of inner condenser lens for annular source 
Default value is 0. 

int M 
Magnification of objective lens 
Default value is 50. 

float SMAPLING_RATE 
Effective pixel size of camera 
Default value is 196e-9. 

int downs 
Downsampling rate 
Default value is 1. 

float lambda 
Wavelength 
Default value is 546e-9. 

enum class Option_Obj{ phantom, mix, gel, spheres, SMF, PMF, PCF, 
LPFG, FBG } 
• phantom: 3D phantom 
• mix: mix contains capillary, gel, and microspheres 
• gel: gel contains capillary and gel 
• spheres: spheres contain only microspheres, which means 

the difference between 'mix' and 'spheres' 
• SMF: single mode fiber 
• PMF: Polarization-maintaining fiber 
• PCF: Photonic crystal fiber 
• LPFG: Long-period fiber grating 
• FBG: Fiber Bragg grating 

int shift_z 
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Number of pixels to be manually shifted in the z-direction 
Default value is 0. 

int Leng 
Length in the x- and z-direction 
Default value is 32. 

int Lengr 
Length in the x- and z-direction 
Default value is the same as Leng. 

int Lengy 
Length in the y-direction 
Default value is two times Leng. 

enum class Option_islazy{ full, lazy } 
• full: all rotation angles are used. 
• lazy: a single angle is used. 

 regul 
Regularization parameter 
Default value is 0.01. 

float period 
Default value is 0. 

enum class Option_method_regul{ Wiener, hard, mix } 
The regularization method 
• Wiener: Wiener filter. It has spatially smoother results 
• hard: Hard cutoff. It has more accurate results for acceptable 

frequency 
• mix: Wiener filter for low frequency part and hard cutoff 

for high frequency part. It is used only for FBG. 
enum class Option_psf_type{ analytical, SSBPM_disk } 

A type of point spread functions (PSF) 
• analytical: PSF is calculated analytically from rotation of 2D 

POTF using a disk, annular, or Gaussian source 
• SSBPM_disk: PSF is calculated with 3D SSBPM using a 

disk source 
enum class Option_source_type{ disk, annular, Gaus } 

A type of source functions 
• disk: a disk source 
• annular: a annular source 
• Gaus: a Gaussian source 

enum class Option_Idata_type{ simulate, measure } 
A type of intensity data 
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• simulate: Intensity data are generated 
• measure: Intensity data are from measurements and loaded 

from storage 
Option_Obj Obj 

Default option is phantom. 
Option_islazy islazy 

Default option is full. 
Option_method_regul method_regul 

Default option is Wiener. 
Option_psf_type psf_type 

Default option is analytical. 
Option_source_type source_type 

Default option is disk. 
Optioin_Idata_type Idata_type 

Default option is simulate. 
std::string IdataDir 

Directory for intensity data 
See B.4 for naming convention. 

std::string Idata_dataset_name 
Intensity dataset name in H5 files 
See B.4 for naming convention. 

cuMat PSF3D 
3D point spread function 

cuMat RID 
Reconstructed 3D refractive index distribution 

 

Public function members 

constructor TDPM3D() 
Default constructor: Initialize the member variables with 
default values. 

destructor ~TDPM3D() 
Destructor 

 

B.2.3 struct GPUTimer in cuMat.cuh 
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Private member variables 

cudaEvent_t start_ 
cudaEvent_t stop_ 

 

Public member variable 

float time 

 

Public function members 

constructor GPUTimer() 
Creates cuda events. 

destructor ~GPUTimer() 
Destroys cuda events. 

void start() 
Records the start time. 

void stop() 
Records the end time and print out elapsed time. 

 

B.3 Global Functions 

Global functions in cuMat.cu 

void gpuAssert(cudaError_t code, const char #file, int line, bool abort) 
Asserts that there is no cudaError. If there is an error, exits. 
It is called by a macro function, 
cuErrorCheck(ans) { gpuAssert((ans), __FILE__, __LINE__); } 

__global__ void warmup_kernel() 
Performs simple addition on GPU.  

void warmupGPU() 
Launch a small kernel to warm up GPU.  
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void cuSynchronize(cudaStream_t stream) 
Calls cudaDeviceSynchronize or cudaStreamSynchronize which 
waits for operations on device or stream finish. 

void cuCopy2to3(const cuMat& src, cuMat& dst, int index) 
Copies 2D data to 3D data 
Arguments 
• src: cuMat object with 2D data to be copied 
• dst: cuMat object with pre-allocated 3D data 
• index: index where copy starts in dst 

void meshgrid(int xStart, int xEnd, int yStart, int yEnd, cuMat& X, 
cuMat& Y) 
Creates 2D grids that are the same as MATLAB meshgrid output 
for 2D. It is memory operations and runs on CPU. 
Arguments: 
• xStart: starting value in x-axis (row) 
• xEnd: ending value in x-axis (row) 
• yStart: starting value in y-axis (column) 
• yEnd: ending value in y-axis (column) 
• X: cuMat object with 2D data  
• Y: cuMat object with 2D data 

void ndgrid(int xStart, int xEnd, int yStart, int yEnd, int zStart, int zEnd, 
cuMat& X, cuMat& Y, cuMat& Z) 
Creates 3D grids that are the same as MATLAB ndgrid output for 
3D. It is memory operations and runs on CPU. Note: meshgrid and 
ndgrid has different output formats. 
Arguments: 
• xStart: starting value in x-axis (row) 
• xEnd: ending value in x-axis (row) 
• yStart: starting value in y-axis (column) 
• yEnd: ending value in y-axis (column) 
• yStart: starting value in y-axis (depth) 
• yEnd: ending value in y-axis (depth) 
• X: cuMat object with 3D data  
• Y: cuMat object with 3D data 
• Z: cuMat object with 3D data 

__global__ void cuAdd_kernelC(float2* src1, float2* src2, float2* dst, int n) 
Computes the addition of two complex arrays on GPU. 

__global__ void cuAdd_kernelR(float* src1, float* src2, float* dst, int n) 
Computes the additions= of two real arrays on GPU. 
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void cuAdd(cuMat& src1, cuMat& src2, cuMat& dst, cudaStream_t 
stream = NULL)  
Launches a kernel to compute the addition of two arrays (dst = src1 
+ src2). src1, src2, and dst should have the same size and type. 
Arguments: 
• src1: input cuMat object 
• src2: input cuMat object 
• dst: output cuMat object 
• stream: CUDA stream. Default value is null. 

__global__ void cuAdd3_kernelC(float2* src1, float2* src2, float2* src3, float2* 
dst, int n) 
Computes the additions of three complex arrays on GPU. 

__global__ void cuAdd3_kernelR(float* src1, float* src2, float* src3, float* dst, int 
n); 
Computes the additions of three real arrays on GPU. 

void cuAdd3(cuMat& src1, cuMat& src2, cuMat& src3, cuMat& dst, 
cudaStream_t stream = NULL) 
Launches a kernel to compute the addition of three arrays (dst = 
src1 + src2 + src3). src1, src2, src3, and dst should have the same 
size and type. 
Arguments: 
• src1: input cuMat object 
• src2: input cuMat object 
• src3: input cuMat object 
• dst: output cuMat object 
• stream: CUDA stream. Default value is null. 

__global__ void cuAddAS_kernelC(float2* src, float a, float2* dst, int n) 
Computes the additions of a complex array and a complex number 
on GPU. 

__global__ void cuAddAS_kernelR(float* src, float a, float* dst, int n) 
Computes the additions of a real array and a real number on GPU. 

void cuAddAS(cuMat& src, float a, cuMat& dst, cudaStream_t stream = 
NULL) 
Launches a kernel to compute the addition of an array and a float 
(dst = src + a). a is added to each element  of src. src and dst should 
have the same size and type. 
Arguments: 
• src: input cuMat object 
• a: a real or complex number 
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• dst: output cuMat object 
• stream: CUDA stream. Default value is null. 

__global__ void cuSubtract_kernelC(float2* src1, float2* src2, float2* dst, int n) 
Computes the subtraction of two complex arrays on GPU. 

__global__ void cuSubtract_kernelR(float* src1, float* src2, float* dst, int n) 
Computes the subtraction of two real arrays on GPU. 

void cuSubtract(cuMat& src1, cuMat& src2, cuMat& dst, 
cudaStream_t stream = NULL) 
Launches a kernel to compute the subtraction of two arrays (dst = 
src1 - src2). src1, src2, and dst should have the same size and type. 
The order of input matters. 
Arguments: 
• src1: the first input cuMat object 
• src2: the second input cuMat object 
• dst: output cuMat object 
• stream: CUDA stream. Default value is null. 

__global__ void cuSubtractAS_kernelC(float2* src, float a, float2* dst, int n) 
Computes the subtraction of a complex number from a complex 
array on GPU. 

__global__ void cuSubtractAS_kernelR(float* src, float a, float* dst, int n) 
Computes the subtraction of a real number from a real array on 
GPU. 

void cuSubtractAS(cuMat& src, float a, cuMat& dst, cudaStream_t 
stream = NULL) 
Launches a kernel to compute the subtraction of a single number 
from an array (dst = src - a). a is subtracted from each element of 
src. src and dst should have the same size and type. 
Arguments: 
• src: input cuMat object 
• a: a real or complex number 
• dst: output cuMat object 
• stream: CUDA stream. Default value is null. 

__global__ void cuSubtractSA_kernelC(float a, float2* src1, float2* dst, int n) 
Computes the subtraction of a complex array from a complex 
number on GPU. 

__global__ void cuSubtractSA_kernelR(float a, float* src1, float* dst, int n) 
Computes the subtraction of a real array from a real number on 
GPU. 
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void cuSubtractSA(float a, cuMat& src, cuMat& dst, cudaStream_t 
stream = NULL) 
Launches a kernel to compute the subtraction of an array from a 
single number (dst = a - src). Each element of src is subtracted from 
a. src and dst should have the same size and type. 
Arguments: 
• a: a real or complex number 
• src: input cuMat object 
• dst: output cuMat object 
stream: CUDA stream. Default value is null. 

__global__ void cuMultiplyAS_kernelC(float2* src, float a, float2* dst, int n) 
Computes the multiplication of a complex array and a real number 
on GPU. 

__global__ void cuMultiplyAS_kernelR(float* src, float a, float* dst, int n) 
Computes the multiplication of a real array and a real number on 
GPU. 

void cuMultiplyAS(cuMat& src, float a, cuMat& dst, cudaStream_t 
stream = NULL) 
Launches a kernel to compute the multiplication of an array and a 
real number (dst = a*src). Each element of src is multiplied by a. 
src and dst should have the same size and type. 
Arguments: 
• src: input cuMat object 
• a: a real number 
• dst: output cuMat object 
• stream: CUDA stream. Default value is null. 

__global__ void cuMultiplyEE_kernelC(float2* src1, float2* src2, float2* dst, int 
n) 
Computes the element-wise multiplication of two complex arrays 
on GPU. 

__global__ void cuMultiplyEE_kernelCR(float2* src1, float* src2, float2* dst, int 
n) 
Computes the element-wise multiplication of a complex array and a 
real array on GPU. 

__global__ void cuMultiplyEE_kernelR(float* src1, float* src2, float* dst, int n) 
Computes the element-wise multiplication of two real arrays on 
GPU. 

void cuMultiplyEE(cuMat& src1, cuMat& src2, cuMat& dst, 
cudaStream_t stream = NULL) 
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Launches a kernel to compute the multiplication of two arrays (dst 
= src1.*src2). Each element of src is multiplied by a. src and dst 
should have the same size and type. 
Arguments: 
• src1: input cuMat object 
• src2: input cuMat object 
• dst: output cuMat object 
• stream: CUDA stream. Default value is null. 

__global__ void cuMultiplyEEE_kernelC(float2* src1, float2* src2, float2* src3, 
float2* dst, int n) 
Computes the element-wise multiplication of three complex arrays 
on GPU. 

__global__ void cuMultiplyEEE_kernelR(float* src1, float* src2, float* src3, 
float* dst, int n) 
Computes the element-wise multiplication of three real arrays on 
GPU. 

__global__ void cuMultiplyEEE_kernelCRRC(float2* src1, float* src2, float* 
src3, float2* dst, int n) 
Computes the element-wise multiplication of one complex array 
and two real arrays on GPU and outputs a complex array. 

__global__ void cuMultiplyEEE_kernelRRRC(float* src1, float* src2, float* src3, 
float2* dst, int n) 
Computes the element-wise multiplication of real complex arrays 
on GPU and outputs a complex array. 

void cuMultiplyEEE(cuMat& src1, cuMat& src2, cuMat& src3, 
cuMat& dst, cudaStream_t stream = NULL) 
Launches a kernel to compute the multiplication of three arrays (dst 
= src1.*src2.*src3). Each element of src is multiplied by a. src and 
dst should have the same size. 
Arguments: 
• src1: input cuMat object 
• src2: input cuMat object 
• src3: input cuMat object 
• dst: output cuMat object 
• stream: CUDA stream. Default value is null. 

void cuMultiplyMM(cublasHandle_t handle, 
             cublasOperation_t transa, cublasOperation_t transb, 
             const float2 alpha, 
             cuMat& src1, 
             cuMat& src2, 
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             const float2 beta, 
             cuMat& dst) 
Calls the cuBLAS cublasCgemm3m function to perform the 2D 
matrix-matrix multiplication of two arrays (dst[m,n] = 
α(src1[m,k])*(src2[m,n]) + β(dst[m,n])). for (dst = src1*src2), 
alpha should be float2(1,0) and beta should be float2(0,0).  See 
[168] for more details. 
Arguments: 
• handle: handle to the cuBLAS library context 
• transa: operation for A, op(src1) 

o If (transa == CUBLAS_OP_N), op(src1) = src1 
o If (transa == CUBLAS_OP_T), op(src1) = 𝑠𝑠𝑟𝑟𝑠𝑠1𝑇𝑇 

(transpose) 
o If (transa == CUBLAS_OP_C), op(src1) = 𝑠𝑠𝑟𝑟𝑠𝑠1𝐻𝐻 

(Hermitian) 
• transb: operation for src2, op(src2). It has the same options as 

transa. 
• alpha: scalar for multiplication 
• src1: input cuMat object 
• src2: input cuMat object 
• beta: scalar for multiplication 
• dst: in/output cuMat object 

 cuDivideAS_kernelC(float2* src, float a, float2* dst, int n) 
Computes the division of a complex array by a real number on 
GPU. 

__global__ void cuDivideAS_kernelR(float* src, float a, float* dst, int n) 
Computes the division of a real array by a real number on GPU. 

void cuDivideAS(cuMat& src, float a, cuMat& dst, cudaStream_t 
stream = NULL) 
Launches a kernel to compute the division of an array by a real 
number (dst = src1/a). Each element of src is divided by a. src and 
dst should have the same size and type. 
Arguments: 
• src: input cuMat object 
• a: a real number 
• dst: output cuMat object 
• stream: CUDA stream. Default value is null. 

__global__ void cuAbs_kernelC(float2* src, float2* dst, int n) 
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Computes absolute values of a complex array on GPU and outputs 
a complex array with the imaginary parts equal to zeros. 

__global__ void cuAbs_kernelCR(float2* src, float* dst, int n) 
Computes absolute values of a complex array on GPU and outputs 
a real array. 

__global__ void cuAbs_kernelR(float* src, float* dst, int n) 
Computes absolute values of a real array on GPU. 

void cuAbs(cuMat& src, cuMat& dst, bool C2R, cudaStream_t stream = 
NULL) 
Launches a kernel to compute absolute values of an array. 
Arguments: 
• src: input cuMat object 
• dst: output cuMat object 
• C2R: whether to convert dst to real array 

o If (C2R == true) and dst is a complex array, dst is converted 
to real. 

• stream: CUDA stream. Default value is null. 
__global__ void cuPow_kernelC(float2* src, const int exp, float2* dst, int n) 

Raises a complex array to the power exponent on GPU and outputs 
a complex array 

__global__ void cuPow_kernelR(float* src, const int exp, float* dst, int n) 
Raises a real array to the power exponent on GPU and outputs a 
real array 

__global__ void cuPow_kernelCR(float2* src, const int exp, float* dst, int n) 
Raises a complex array to the power exponent on GPU and outputs 
a real array 

void cuPow(cuMat& src, cuMat& dst, const int exp, cudaStream_t 
stream = NULL) 
Launches a kernel to raise each element in an input array to the 
power exponent, exp, (dst = src^(exp)). src and dst should have the 
same size. 
Arguments: 
• src: input cuMat object 
• dst: output cuMat object 
• exp: exponent. It can be 2 or 3. 
• stream: CUDA stream. Default value is null. 

__global__ void cuSqrt_kernelC(float2* src, float2* dst, int n) 
compute the square root of each element in a complex array on 
GPU. 
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__global__ void cuSqrt_kernelR(float* src, float* dst, int n) 
Computes the square root of each element in a real array onGPU. 

void cuSqrt(cuMat& src, cuMat& dst, cudaStream_t stream = NULL) 
Launches a kernel to compute square root of each element in an 
input array (dst = sqrt(src)). src and dst should have the same size 
and type. 
Arguments: 
• src: input cuMat object 
• dst: output cuMat object 
• stream: CUDA stream. Default value is null. 

__global__ void cuInverseE_kernelC(float2* src, float2* dst, int n) 
Computes the inverse of each element in a complex array on GPU 

__global__ void cuInverseE_kernelR(float* src, float* dst, int n) 
Computes the inverse of each element in a real array on GPU 

void cuInverseE(cuMat& src, cuMat& dst, cudaStream_t stream = 
NULL) 
Launches a kernel to compute the inverse of each element in an 
input array (dst = 1/src). src and dst should have the same size and 
type. 
Arguments: 
• src: input cuMat object 
• dst: output cuMat object 
• stream: CUDA stream. Default value is null 

void cuReal(cuMat& src) 
Sets the imaginary parts to be zeros.  
Argument: 
• src: in/output cuMat complex array  
To convert to a real array, use C2R(). 

void cuImag(cuMat& src) 
Sets the real parts to be zeros.  
Argument: 
• src: in/output cuMat complex array  
To convert to a complex array, use R2C(). 

void cuConj(cuMat& src, cuMat& dst) 
Computes the complex conjugate of each element in a complex 
array. 
Arguments: 
• src: input cuMat array 
• dst: output cuMat array 
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template 
<unsigned int 

blockSize> 
__global__ void  

cuMax_kernel(float *g_idata, float *g_odata, unsigned int n) 
Finds the maximum value in a real array using reduction on GPU. 
When called, GPU block size should be specified as a template 
input, and shared memory size should be specified in a kernel 
launch. 

void cuMax(cuMat& src, float* max, cudaStream_t stream = NULL) 
Launches a kernel to find the maximum value in a real array using 
reduction. 
Arguments: 
• src: input cuMat object with real data 
• max: the maximum value to be stored 
• stream: CUDA stream. Default value is null. 

__global__ void cuSumAlongDepth_kernelC(float2* src, float2* dst, const 
unsigned int row, const unsigned int col, const unsigned int depth) 
Sums a complex array along the depth (z-direction) on GPU. 

__global__ void cuSumAlongDepth_kernelR(float* src, float* dst, const unsigned 
int row, const unsigned int col, const unsigned int depth) 
Sums a real array along the depth (z-direction) on GPU. 

__global__ void cuSumAlongDepthReduce_kernel(float2* src, float2* dst, const 
unsigned int row, const unsigned int col, const unsigned int depth) 
Sums a complex array along the depth (z-direction) using reduction 
on GPU. 

void cuSum3to2(cuMat& src, cuMat& dst, int dim, cudaStream_t 
stream = NULL) 
Launches a kernel to sum an array along the dimension, dim. 
Arguments: 
• src: input cuMat object with 3D data 
• dst: output cuMat object with 2D data 
• dim: the dimension which src is summed up along  

o 1 = row (currently, not available) 
o 2 = column (currently, not available) 
o 3 = depth 

• stream: CUDA stream. Default value is null. 
__global__ void cuSumAlongDepth_and_cuMultiplyEE_kernelR(float* src1, 

float* src2, float* dst, const unsigned int row, const unsigned int 
col, const unsigned int depth) 
Sums a real array along the depth (z-direction) and computes the 
element-wise multiplication of the sums and another real array on 
GPU. 
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__global__ void cuSumAlongDepth_and_cuMultiplyEE_kernelRRC(float* src1, 
float* src2, float2* dst, const unsigned int row, const unsigned int 
col, const unsigned int depth) 
Sums a real array along the depth (z-direction) and computes the 
element-wise multiplication of the sums and another real array on 
GPU and outputs a complex array (the imaginary parts are zeros). 

__global__ void cuSumAlongDepth_and_cuMultiplyEE_kernelCRC(float2* 
src1, float* src2, float2* dst, const unsigned int row, const unsigned 
int col, const unsigned int depth) 
Sums a complex array along the depth (z-direction) and computes 
the element-wise multiplication of the sums and a real array on 
GPU and outputs a complex array. 

void cuSum3to2_and_cuMultiplyEE(cuMat& src1, cuMat& src2, 
cuMat& dst, int dim, cudaStream_t stream = NULL) 
Launches a kernel to sum an array along the dimension, dim, and 
compute the element-wise multiplication of the sums and another 
array. 
Arguments: 
• src1: input cuMat object with 3D data, which is summed up to 

2D 
• src2: input cuMat object with 2D data 
• dim: the dimension which src1 is summed up along  

o 1 = row (currently, not available) 
o 2 = column (currently, not available) 
o 3 = depth 

• stream: CUDA stream. Default value is null. 
template 

<unsigned int 
blockSize> 

__global__ void 

cuSumAll_kernelC(float2 *g_idata, float2 *g_odata, unsigned int 
n) 
Sums all elements in a complex array using reduction on GPU. 
When called, GPU block size should be specified as a template 
input, and shared memory size should be specified in a kernel 
launch.  

template 
<unsigned int 

blockSize> 
__global__ void 

cuSumAll_kernelR(float *g_idata, float *g_odata, unsigned int n) 
Sums all elements in a real array using reduction on GPU. When 
called, GPU block size should be specified as a template input, and 
shared memory size should be specified in a kernel launch. 

unsigned int nextPow2(unsigned int x) 
Returns the next number that is power of two. 

void getNumBlocksAndThreads(int n, int maxBlocks, int maxThreads, 
int &blocks, int &threads) 
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Finds appropriate block size and thread size for the device. 
void cuSumAll(cuMat& src, float2* sum, cudaStream_t stream = 

NULL) 
Launches a kernel to sum all elements in an array using reduction.  
Arguments: 
• src: input cuMat object with real or complex data 
• sum: output sum. It is a complex number. If src has the real 

array, the imaginary part of sum it zero. 
• stream: CUDA stream. Default value is null. 

void cuMean(cuMat& src, float* mean, int dim, cudaStream_t stream = 
NULL) 
Computes a mean value of an array along the dimension, dim. 
Currently, only computing a mean over all elements in src is 
available.  
• src: input cuMat object 
• mean: the output mean of src along dim 
• dim: dimension to operate along 

o 0: returns a mean over all elements 
• stream: CUDA stream. Default value is null. 

void cufft(cuMat& src, cuMat& dst, char direction, cudaStream_t 
stream = NULL) 
Performs fast Fourier transform with the cuFFT API [169]. 
Arguments: 
• src: input cuMat object with complex data 
• dst: output cuMat object with complex data 
• direction:  

o ‘F’: forward FFT 
o ‘I’: inverse FFT 

• stream: CUDA stream. Default value is null. 
__global__ void cuShift2D_kernelC(float2* src, float2* dst, const unsigned int 

row, const unsigned col) 
Shifts a complex array to have zero-frequency in the center of the 
array. 

__global__ void cuShift2D_kernelCR(float2* src, float* dst, const unsigned int 
row, const unsigned col) 
Shifts a 2D complex array to have zero-frequency in the center of a 
real array. The imaginary part of the input array is lost. 

__global__ void cuShift2D_kernelRC(float* src, float2* dst, const unsigned int 
row, const unsigned col) 
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Shifts a 2D real array to have zero-frequency in the center of a 
complex array. The imaginary part of the output array is zero. 

__global__ void cuShift2D_kernelR(float* src, float* dst, const unsigned int row, 
const unsigned col, const unsigned int depth) 
Shifts a 2D real array to have zero-frequency in the center of the 
array. 

__global__ void cuShift3D_kernelC(float2* src, float2* dst, const unsigned int 
row, const unsigned col, const unsigned int depth) 
Shifts a 3D complex array to have zero-frequency in the center of 
the array. 

__global__ void cuShift3D_kernelCR(float2* src, float* dst, const unsigned int 
row, const unsigned col, const unsigned int depth) 
Shifts a 3D complex array to have zero-frequency in the center of a 
real array. The imaginary part of the input array is lost.  

__global__ void cuShift3D_kernelRC(float* src, float2* dst, const unsigned int 
row, const unsigned col, const unsigned int depth) 
Shifts a 3D real array to have zero-frequency in the center of a 
complex array. The imaginary part of the output array is zero. 

__global__ void cuShift3D_kernelR(float* src, float* dst, const unsigned int row, 
const unsigned col, const unsigned int depth) 
Shifts a 3D real array to have zero-frequency in the center of the 
array. 

void cuShift(cuMat& src, cuMat& dst, cudaStream_t stream = NULL) 
Shifts an array to have zero-frequency in the center of the array on 
GPU. src and dst must have different memory addresses. src and 
dst should have the same size, but can have different types. 
Currently, only the array with even length in each dimension is 
accepted, so it can be used to shift the array back. 
Arguments: 
• src: input cuMat object 

dst: output cuMat object 

stream: CUDA stream. Default value is null. 
void shift(cuMat& src, cuMat& dst) 

Shifts an array to have zero-frequency in the center of the array on 
CPU. src and dst must have different memory addresses. src and dst 
should have the same size, but can have different types.  Currently, 
only the array with even length in each dimension is accepted. 
Arguments: 
• src: input cuMat object 
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• dst: output cuMat object 
void squeeze(cuMat& src, cuMat& dst, int dim, int plane) 

Removes a dimension of a 3D array.  
Arguments: 
• src: input cuMat object with 3D data  
• dst: output cuMat object with 2D data 
• dim: dimension to be removed 

o 1: row (x) 
o 2: column (y) 
o 3: depth (z) 

• plane: plane which remains. plane can be a number in [0, length 
of row], [0, length of column], or [0, length of depth]. 

e.i. squeeze(A, B, 2, 10) is the same as B = squeeze(A(:,10,:)) in 
MATLAB. 

void cuRotate(cuMat& src, cuMat& dst, int angle) 
Rotates an array by an angle in a counterclockwise with bilinear 
interpolation and crops the array to the same size as the input. 
Arguments: 
• src: input cuMat object 
• dst: output cuMat object 
• angle: rotation angle in degree 

void reshape(cuMat& src, cuMat& dst, int shape[3]) 
Reshapes an array to a new shape. As data is stored as a vector, it 
simply redefines the lengths of each dimension.  
Arguments: 
• src: input cuMat object 
• dst: output cuMat object 
• shape: array of length, 3. [row, column, depth] 

 

Global functions in TDPM3D.cuh 

int readH5Data(const H5std_string filename, const H5std_string 
dataset_name, cuMat& dst) 
Reads a HDF5 data file. See [139] for more details. See B.3 for 
data naming.  
Arguments: 
• filename: name of the .h5 file 
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• dataset_name: name of dataset in the .h5 file 
• dst: output cuMat object with preallocated memory for data 

void loadIdata(cuMat& Idata, std::string IdataDir, std::string 
Idata_dataset_name, const int angle) 
Loads intensity data stored in .h5 files. See B.3 for data naming. 
Arguments: 
• Idata: cuMat object with preallocated memory for data 
• IdataDir: .h5 file name for intensity data including directory 
• Idata_dataset_name: dataset name in the .h5 file 
• angle: rotation angle in degree 

__global__ void create_mask_out(float* fxri, float* fzri, float radius, float* 
mask_out, int n) 
Creates mask_out on GPU. 

__global__ void create_rhori(float* fxri, float* fyri, float* fzri, float ax, float ay, 
float az, float* rhori, int n) 
Creates rhori on GPU. 

__global__ void create_mask_out_0(float* x, float*y, float radius, float* 
mask_out_0, int n) 
Creates mask_out_0 on GPU. 

__global__ void create_mask_out_0_3D(float* fxri, float* fzri, float radius, float* 
mask_out_0_3D, int n) 
Creates 3D mask_out_0 on GPU. 

__global__ void create_final_rhori(float* fxri, float* fzri, float scale, float* rhori, 
int n) 
Creates rhori on GPU. 

__global__ void  
 

compute_Vtemp1f(float2* Idata_3D_filt1f, float* ring_i, float* 
comp, float2* Vtemp1f, int n) 

 Computes high-frequency scattering potential in frequency domain 
(Vtemp1f) on GPU. 

__global__ void convert2RI(float* Vtemp, float div, float add, float* RID, int n) 
Converts scattering potential (Vtemp) to refractive index 
distribution (RID) on GPU. 

void compute_Idata_3D_filts(cuMat& idatapsf_3df_unshifted_conj,  
                       cuMat& tfl_unshifted_conj,  
                       cuMat& mask_out_0,  
                       cuMat& deni_unshifted,  
                       cuMat& Idata_3D_filt1,  
                       cuMat& Idata_3D_filt2,  
                       int Leng,  
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                       std::string IdataDir,  
                       std::string Idata_dataset_name, 
                       int rotateDegree, int ndz, int edge, 
                       int mask_out_0_count, 
                       int startAngle, int endAngle) 
Computes Idata_3D_filt1 and Idata_3D_filt2 from startAngle to 
endAngle (inclusive) on GPU streams and CPU. startAngle and 
endAngle are the index of thetaf which can be from 0 to 14. 
endAngle should be a larger number than startAngle. 

void TDPM_from_Idata_3D(TDPM3D& tdpm)  
Recovers refractive index distribution (RID) from intensity data. 

 

B.4 Data Naming Convention 

 TDPM3D_TSUM loads simulation objects, point spread functions (PSF_3D), 
intensity data (Idata_3D) that are formatted as HDF5 files. It is important to have correct 
data names for HDF5 files to load them in TDPM3D_TSUM. See [139] to learn how 
HDF5 file works. For TDPM3D_TSUM, the following naming rules are used. 

 

Intensity Data Names: 

    File name: 

        Idata_3D_<object type>_<object size>_n<RI of immersion liquid>.h5 

    Dataset name: 

        /ang<angl 

    Size: 

        [2 2 1]*(length of object) 

     

    Example: 

        file name:      "Idata_3D_phantom_128_n1.485.h5" 

        Dataset name:   "/ang0" 
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        Size:           [256 256 128] 

 

 

PSF Data Names: 

    File name: 

        PSF_3D_<source type>_<size>_NAc_<numerical aperture of condenser>_n<RI of 
immersion liquid>.h5 

    Dataset name: 

        /PSF<size> 

    Size: 

        [2 2 2]*(length of object) = [1 1 1]*size 

     

    Example: 

        File name:      "HDF5 PSF_3D_disk_256_NAc_0.375_n1.458.h5" 

        Dataset name:   "/PSF256" 

        size:           [256 256 256] 

 

 

Object Data Names: 

    File name: 

        <object type>_<length1>x<length2>.h5 

    Dataset name: 

        /<object type> 

    Size: 

        [1 2 1]*(length of object) = [length1 length2 length1] 
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    Example: 

        File name:      "phantom_256x512.h5" 

        Dataset name:   "/phantom" 

        size:           [256 512 256] 

 

B.5 How to Compile and Run 

 TDPM3D_TSUM has a makefile which describes how to compile the program and 

link source files and libraries.   

To compile from terminal, simply type: 

 $ make 

The Make command will create object files and an executable file. 

To run: 

 $ .\TDPM3D_TSUM <Length> 

 For example, .\TDPM3D_TSUM 128 will simulate 128x128x64 intensity data. 

To clean the object files and the executable file: 

 $ make clean 
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APPENDIX C.  HARDWARE SPECIFICATIONS 

C.1 CPUs 

  Intel Xeon Silver 4110   

CPU  

NVIDIA Carmel CPU 

Instruction Set Architecture x86-64 ARMx8 
# of Cores 8 8 

# of Threads 16 8 
Base Frequency 2.100 GHz 2.265 GHz 
Max Frequency 3.000 GHz - 

Cache 
L1: 256 KB (data) 

L2: 8 MB 
L3: 11 MB 

L1: 64 KB (data) 
L2: 2 MiB 
L3: 4 MiB 

Memory 64 GB DDR4 LPDDR4x 32 GB (UPM) 

 

C.2 GPUs 

  Titan RTX   Jetson AGX Xavier   

Architecture Turing Volta 
CUDA Driver Version / 

Runtime Version 10.2 / 10.2 10.2 / 10.2 

CUDA Capability 7.5 7.2 
Global Memory 24576 MB 31927 MB 

CUDA Cores 72 Multiprocessors,  
4608 CUDA Cores 

8 Multiprocessors,  
512 CUDA Cores 

GPU Max Clock rate 1770 MHz 1377 MHz 
Memory Clock rate 7001 MHz 1377 MHz 
Memory Bus Width 384-bit 256-bit 

L2 Cache 6291456 bytes 524288 bytes 

Max Texture Dim (x,y,z) 
1D=(131072), 

2D=(131072, 65536), 
3D=(16384, 16384, 16384) 

1D=(131072), 
2D=(131072, 65536), 

3D=(16384, 16384, 16384) 
Maximum Layered 1D Texture 

Size, (num) layers 1D=(32768), 2048 layers 1D=(32768), 2048 layers 



 118 

Maximum Layered 2D Texture 
Size, (num) layers 

2D=(32768, 32768), 2048 
layers 

2D=(32768, 32768), 2048 
layers 

Total amount of constant 
memory: 65536 bytes 65536 bytes 

Total amount of shared 
memory per block: 49152 bytes 49152 bytes 

Total shared memory per 
multiprocessor: 

  

Total number of registers 
available per block: 65536 65536 

Warp size: 32 32 
Maximum number of threads 

per multiprocessor: 1024  2048  
Maximum number of threads 

per block: 1024  1024  
Max dimension size of a thread 

block (x,y,z): (1024, 1024, 64) (1024, 1024, 64) 

Max dimension size of a grid 
size (x,y,z): 

(2147483647, 65535, 
65535) 

(2147483647, 65535, 
65535) 

Maximum memory pitch: 2147483647 bytes 2147483647 bytes 
Texture alignment: 512 bytes 512 bytes 

Concurrent copy and kernel 
execution: 

 Yes with 1 copy engine(s) 

Run time limit on kernels: Yes No 
Integrated GPU sharing Host 

Memory: No Yes 

Support host page-locked 
memory mapping: Yes Yes 

Alignment requirement for 
Surfaces: Yes Yes 

Device has ECC support: Disabled Disabled 
CUDA Device Driver Mode 

(TCC or WDDM): 
WDDM (Windows Display 

Driver Model) 
 

Device supports Unified 
Addressing (UVA): Yes Yes 

Device supports Compute 
Preemption: Yes Yes 

Supports Cooperative Kernel 
Launch: No Yes 

Supports MultiDevice Co-op 
Kernel Launch: No Yes 

Device PCI Domain ID / Bus 
ID / location ID: 0 / 23 / 0 0 / 0 / 0 
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APPENDIX D.  DERIVATION OF 𝑣𝑣 

The gradient of 𝐿𝐿𝜌𝜌 with respect to 𝑣𝑣 is: 

 ∇𝑣𝑣𝐿𝐿𝜌𝜌(𝑣𝑣, 𝑧𝑧1, 𝑧𝑧2, 𝜇𝜇1, 𝜇𝜇2) =
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 𝐴𝐴−𝑚𝑚𝑣𝑣 − 𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

 

                                + 𝜌𝜌𝐷𝐷𝑇𝑇𝐷𝐷𝑣𝑣 + 𝜌𝜌𝐷𝐷𝑇𝑇(𝜇𝜇1 − 𝑧𝑧1) 

                 + 𝜌𝜌𝑣𝑣 − 𝜌𝜌(𝑧𝑧2 + 𝜇𝜇2) 

(D.1) 

To find the minimum, we set Eq. (C.1) equal to zero and solve for 𝑣𝑣: 

 0 =
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 𝐴𝐴−𝑚𝑚𝑣𝑣 − 𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

+  𝜌𝜌𝐷𝐷𝑇𝑇𝐷𝐷𝑣𝑣 + 𝜌𝜌𝐷𝐷𝑇𝑇(𝜇𝜇1 − 𝑧𝑧1) + 𝜌𝜌𝑣𝑣

− 𝜌𝜌(𝑧𝑧2 + 𝜇𝜇2) 
(D.2) 

 1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 𝐴𝐴−𝑚𝑚𝑣𝑣
𝑚𝑚

+ 𝜌𝜌𝐷𝐷𝑇𝑇𝐷𝐷𝑣𝑣 + 𝜌𝜌𝐷𝐷𝑇𝑇

=
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

+  𝜌𝜌𝐷𝐷𝑇𝑇(𝑧𝑧1 − 𝜇𝜇1) + 𝜌𝜌(𝑧𝑧2 − 𝜇𝜇2) 
(D.3) 

 
�

1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 𝐴𝐴−𝑚𝑚
𝑚𝑚

+ 𝜌𝜌𝐷𝐷𝑇𝑇𝐷𝐷 + 𝜌𝜌𝐼𝐼� 𝑣𝑣

=
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

+  𝜌𝜌𝐷𝐷𝑇𝑇(𝑧𝑧1 − 𝜇𝜇1) + 𝜌𝜌(𝑧𝑧2 − 𝜇𝜇2) 
(D.4) 

   

1
𝑁𝑁
∑ 𝐴𝐴−𝑚𝑚𝑇𝑇 𝐴𝐴−𝑚𝑚𝑚𝑚 , 𝜌𝜌𝐷𝐷𝑇𝑇𝐷𝐷, and 𝜌𝜌𝐼𝐼 are all block circulant matrices, so they are diagonalizable 

by the discrete Fourier transform. Therefore, this minimization can be solved efficiently 
using the fast Fourier transform: 

 �̂�𝛢𝑇𝑇𝛪𝛪 ←
1
𝑁𝑁
�𝐴𝐴−𝑚𝑚𝑇𝑇 Θ−𝑚𝑚𝐼𝐼𝑚𝑚
𝑚𝑚

 (D.5) 

 𝑣𝑣 ← ℱ−1 �
ℱ{�̂�𝛢𝑇𝑇𝛪𝛪 + 𝜌𝜌𝐷𝐷𝑇𝑇(𝑧𝑧1 − 𝜇𝜇1) + 𝜌𝜌(𝑧𝑧2 − 𝜇𝜇2)}

1
𝑁𝑁∑ |ℱ{𝐴𝐴−𝑚𝑚}|2 + 𝜌𝜌(|ℱ{𝐷𝐷}|2 + 1)𝑚𝑚

� (D.6) 
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