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SUMMARY

In this thesis, we focus on modeling the traffic congestion in the city of Atlanta. We are

trying to predict future congestion events on the main highways in Atlanta. We present a

novel framework for modeling traffic congestion events over road networks based on mutu-

ally exciting Spatio-temporal point process models. We use multi-modal data by combin-

ing traffic sensor networks data with police reports, which contain two types of triggering

mechanisms for congestion events. To capture the non-homogeneous temporal dependence

of the event on the past, we introduce a novel attention-based approach for the point process

model. To incorporate the directional spatial dependence induced by the road network, we

adapt the “tail-up” model from the spatial statistics context. We demonstrate the superior

performance of our approach compared to the state-of-the-art for both synthetic and real

data.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Modeling urban traffic is critical to modern city transportation applications, such as route

guidance or road planning. In Atlanta, which has over half-million daily commuters, re-

ducing congestion is a top priority. The city spends lots of money on strategies to mitigate

the peak traffic flows, including staggered shifts and toll lanes. Therefore, predicting traffic

congestion ahead of time is urgent and crucial. However, the complex spatial-temporal dy-

namics of traffic flow and the influence of real-time random incidents make it challenging

and intricate. As a result, understanding and predicting congestion events can help cities to

plan traffic more efficiently and plan for future urban development.

Traffic sensors distributed along highways are widely deployed for monitoring the real-

time traffic condition: They are key technology which enables to capture the change and

congestion in the traffic network. However, such sensors are limited to collect macro-

information of vehicles passing by, i.e., counting, average speed, rather than tracking in-

dividual cars due to privacy and technological limitations. These data are widely used

in traditional traffic modeling, while few of them considers and model traffic congestion

events. An essential feature of traffic congestion modeling is the capability to capture the

triggering effects. For instance, when traffic congestion happens, it will propagate along

the highway and affect the traffic in another place overtime. Also, the influence of police

intervention, which is unpredictable and emergent, can be considered into the framework

as well as such incidents will also trigger traffic congestion.

We aim to capture both traffic congestion and police intervention, as well as their trig-

gering effect. Self-exciting point processes are a popular model for modeling such a trig-

gering effect, which has been successfully used in many different applications. A Hawkes

process models the dependence between events using mutually dependent point processes,
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Figure 1.1: An overview of Atlanta traffic dataset. Left shows the distribution of traffic
congestions for each traffic sensor. The size of blue bubble represents the total number of
traffic congestion events of a specific traffic sensor. Right shows the distribution of traffic
incidents reported by 911 calls. Black dots represent the locations of traffic incidents.
Bottom An event series in a single day. The height of the red bar indicates the length of the
processing time

whose intensities depend on historical events.

There are two main reasons for the knowledge gap between existing point process mod-

els and our application in traffic congestion event modeling: (1) Most existing models as-

sume that the influence function decays monotonically over time and space and introduce

parametric models for the influence function. For instance, this approach is used in methods

based on the popular Recurrent Neural Networks (RNNs) [1, 2, 3, 4, 5, 6, 7], which have

achieved various successes in modeling complex temporal dependence: e.g., [1] assumes

that the influence of an event decreases or increases exponentially over time. However, in

traffic modeling settings, the influence of past events may not decay monotonically over
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time or space. For example, suppose that a bad car accident occurs on the highway. The

police will be called to the scene and may need to wait for a specialized unit, like a crane,

to come to move the wreckage. This could take several hours. Meanwhile, the whole

highway would be shut down, and the influence of the event would not decay at all. (2)

We need to consider the specific spatial correlation structure induced by road networks in

our modeling. Most Hawkes process models focus on temporal modeling or discretizing

space and treat it as a multi-dimensional Hawkes process. However, it is critical to em-

bed the special spatial correlation induced by the road networks in the model. Indeed, the

spatial dependence is highly directional and what happens “up-stream” will influence what

happens“down-stream”, and the sensors along the same road (in the same direction) will

have higher correlations.

We aim at filling this gap by presenting a novel spatio-temporal attention-based point

process (APP) for traffic congestion event modeling. Specifically, we model the influence

of the police intervention for 911-call incidents as an exogenous excitation and use the

attention mechanism to capture the dynamics of the endogenous self-excitation between

traffic congestions. The attention mechanism [8, 9] is originally proposed to capture the

non-linear dependence between words in Natural Language Processing. To capture the

complex non-homogeneous influence of historical events on the future, we go beyond the

assumption that the influence of the historical event fades over time, and leverage the at-

tention mechanism to develop a flexible framework that “focuses” on past events with high

importance score on the current event. We introduce an adaptive score function to measure

the importance between past events and the current event, which extends the conventional

dot-product score [9] used in other attention models and is highly interpretable. To tackle

the directional spatial correlation induced by road networks, we also adopt the idea of “tail-

up” model (developed for spatial statistics for Gaussian processes) to our point process

setting. Finally, to achieve constant memory in the face of streaming data, we introduce

an online algorithm to implement the attention component efficiently for our APP model,

3



where only the most informative events in the past are retained for computation. Using

experiments based on real data, we show that our proposed method outperforms the state-

of-the-art both in maximizing the likelihood function of a point process compared with

previous approaches and in prediction accuracy on a real-data traffic data set from Atlanta.

The main contributions are as follows: (1) To the best of our knowledge, our APP

model is the first attempt to combine traffic sensor count data with police reports for traffic

event modeling; (2) In terms of methodology, our APP model includes a novel attention-

based mechanism to capture a non-homogeneous spatio-temporal dependence of the event

on the past; (3) the APP model includes a novel approach to capture the directional spatial

dependence by adapting similar idea used for the “tail-up” model which was used to model

spatial correlation for hydrology systems such as rivers and streams; and (4) experimental

results demonstrate the benefits of the APP model both on synthetic and real case studies.

Related work. Most of the previous works [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] on

traffic modeling focus on predicting speed, volume, density and travel time, which have

achieved remarkable success in this field. Other works [20, 21, 22] target at modeling

traffic congestion based on the speed, density of vehicle stream, which gives good math-

ematical descriptions for traffic flow. However, dynamic traffic event modeling is a new

approach and still in nascent stage. Existing work in discrete event modeling using point

processes, such as [23, 24, 25, 26], often make strong assumptions and specify a parametric

form of the intensity functions. Such methods enjoy good interpretability and are efficient.

However, parametric models are not expressive enough to capture the event dynamics in

some applications.

Recent interest has focused on improving the expressive power of point process models.

There are have been attempts on RNNs based point process models [1, 2, 5, 7], which use

RNNs to memorize the influence of historical events. However, the conditional intensity

is assumed to be some specific functional forms. There are other attempts [3, 6] in us-

ing RNNs to model event dependence without specifying the conditional intensity function
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explicitly. These works only use RNN as a generative model where the conditional func-

tion is not available. They focus on studying different learning strategies since maximum

likelihood estimation is not applicable here.

Another recent work [27] has aimed at looking for a more general way to model point

processes, where no parametric form is assumed. It uses a neural network to parameterize

the hazard function, where the conditional intensity can be further derived by taking the

derivative of the hazard function. This approach is highly flexible and easy to compute

since no numerical integral calculation is involved. However, the model is only specified

using a neural network, which reduces interpretability. In addition, this model only works

for temporal events.

A recent work [28] also uses attention to model the historical information in point pro-

cesses. However, their proposal differs from our APP model because it is still a parametric

form and assumes a decaying exponential assumption on the conditional intensity function,

which may not capture distant events although they are important. We do not make such as-

sumptions in our APP model and can capture important events as long as their “importance

score” is high. Moreover, [28] focuses on temporal point processes while we also consider

spatio-temporal point processes; they use the conventional dot-product score function to

measure the similarity of two events while we introduce the more flexible score function

based on neural networks which are learned from data. Another related work [18] uses two

individual attention structure where the temporal and spatial dependences are captured via

two attention structures.
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CHAPTER 2

METHODOLOGY

In this section, we propose an attention-based point process model2.1 to predict the ap-

pearance of traffic congestion and consider the reported 911-call incidents as exogenous

excitation.

2.1 Spatio-temporal Point Process

A spatio-temporal point process (STPP) is a random collection of points, where each

point represents the time and location of an event.[29] In our case, traffic congestion

{x1, . . . , xNx(T )} is treated as a set of events, where Nx(T ) represents the total number

of events happen in time horizon [0, T ) and in the location space K. Let Ht = Xt denote

the collection of events taking place before time t, where Xt = {xi}xi<t. This congestion

STPP model is characterized via the conditional intensity function λ(t, k|Ht), which is

the conditional probability of observing a traffic congestion (t, k) ∈ [0, T ) × K given the

historyHt.

λ(t, k|Ht) = E[Nk(t, t+ dt)|Ht]/dt (2.1)

where Nk(t, t+ dt) is the counting measure of events on sensor k in [t, t+ dt]

2.2 Police Intervention

The police intervention, which in forms of 911-call incidents, will impose additional pres-

sure to the road system. Usually, such pressure will spread via the highway from where

the incident occurred. The volume of this exogenous intensity is related with the spatial

correlation between two locations u, v, denoted as αt(u, v), which is time-variant as the

urban traffic intensity is changing over time. We will discuss an estimation of this spatial
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correlation in next section

Now we consider a set of 911-call incidents Y = {yj}, where yj = tj, rj, zj denotes

time, location and duration of one incident respectively. When the time of a congestion

(t, k) is in the middle of a 911-call incident, i.e. t ∈ [tj, tj + zj), we add an exogenous

excitation to the original intensity function.

µ1(t, k|Y) =
∑
yj∈Y

1{t ∈ [tj, tj + zj)} · Cαt(rj, rk) (2.2)

where 1{F} is the indicator function, i.e., it will take the value of 1 is F is true and 0

otherwise. The C is a constant to capture the influence of spatial correlation αt(rj, rk).

2.3 Attention-based Point Process

The attention-based point process is used to model the nonlinear dependency between the

current and past event with the attention mechanism [30, 31]. Usually, point process mod-
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els assume the monotone dependency between events. We model the intensity with an

attention neural network so that the dependency on history can be more flexible. Specif-

ically, the endogenous term in the intensity function λ′(t, k|Ht) is based on the attention

network. Moreover, we also introduce ’multi-head’ mechanisms [31], which captures the

representation in different subspace of event sequence.

As shown in Figure2.2, we assume xn := (tn, sn) represent the data point of cur-

rent congestion happening at time t and located at s. The past congestion events are

denoted as zi := (ti, si) ∈ Xtn . We introduce multiple heads in the model shown as

hm−1(xn), hm(xn), . . . in Figure 2.2. For each head, we use score vl(xn, zi) to evaluate the

similarity between one past event and current event, which determines how much attention

we should pay on this past event. We will discuss the score function in detail in the next

section. To ensure the same weight for each event to analyze, we normalized the score for

each h(xn), denoted as wl(xn, zi) ∈ [0, 1].

wl(xn, zi) =
vl(xn, zi)∑

zj∈Xt
vl(xn, zj)

(2.3)

Then we are able to obtain the attention for each head on event xn by multiplying the

score with corresponding embedded past event vector φl(zi) and adding them up. Formally,

it can be written as

hm(xn) =
∑
zi∈Xt

wl(xn, zi)φl(zi) (2.4)

where φl(zi) is the embedded value of past event zi, which is defined as φl(z) := zTW .

Here W ∈ R×p is a weight matrix, where d is the dimension of event z and p is a higher

dimension. To obtain the final attention, We concatenate the attentions from each head into

the final attention vector h(x) ∈ RMp, where M is the number of heads used in the model.

h(x) = concat[h1(x), h2(x), . . . , hM(x)] (2.5)
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A nonlinear transformation from attention to the target endogenous intensity λ′(t, k|Ht)

is deployed by a neural network with the weight matrix W ∈ RMp.

λ′(x|Ht) = softplus(h(x)TW + b) (2.6)

where the function softplus(x) = log(1 + ex) ensures the strictly positive output and the

non-linearity of the model.

Now, we combine the result from 2.1, 2.2, 2.3 and obtain the final expression of the

attention-based spatial temporal point process model.

λ(t, k|Ht) = µ0(t, k)︸ ︷︷ ︸
background intensity

+ µ1(t, k|Y)︸ ︷︷ ︸
exogenous intensity

+ λ′(t, k|Ht)︸ ︷︷ ︸
endogenous intensity

(2.7)
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2.4 Score Function

The score function determines how likely the current event be triggered by another event in

the history. In most of attention models, dot-product is used in the score function, which is

the Euclidean distance of two events in an embedded space. However, the spatial influence

of past event might not follow the rule of dot product especially in the setting of traffic.

The effect of events spread along the traffic road with directions and will vary over time.

Therefore, we adopt the spatial correlation αt(sn, si) at time t, which will be discussed in
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the next section.

As shown in Figure 2.3, the score vm(xn, xi) for the m-th attention head can be ex-

pressed as:

vm(xn, xi) = ψθm(tn − ti, αtn(sn, si)) (2.8)

where ψθm is a multi-layer neural network parameters by a set of parameters denoted as

θm. The input of the neural network is the time difference tn− ti and the spatial correlation

αtn(sn, si). The output is a non-negative score which can be interpreted as a weighted

spatial-temporal distance. As variant initialization, the output of each head in multi-head

structure will be different. Therefore, such structure can capture more information and

obtain a higher non-linearity.
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2.5 Tail-up Spatial Model in Score Function

We adopt the tail-up spatial model [32, 33, 34] to capture the spatial correlation between

two locations u, v ∈ K at time t denoted as αt(u, v). Tail-up model utilizes moving average

[32] to construct the spatial correlation on the stream network, which is always used in the

analysis on the river system[35, 36, 37]. There are three advantages of tail-up model against

other ones: (1) the tail-up model using stream distance rather than euclidean distance,

which defined as the shortest distance between two locations along the roads. This ensures

the influence of a traffic congestion only spread to the flow connected segments. (2) The

model assumes the statistical independence between the unconnected segments. (3) Proper

weighting let the sum of output variance of traffic flow from an intersection is equal to

the inputs, which ensures the stationary of the stream system. A traffic congestion event

may only cause congestion on the spots upstream. Therefore, if there is traffic come from

location u to v, we denote u is flow-connected to v.

The traffic at location u ∈ K can be viewed as a white-noise random process Zu. Thus,

the random variable of the other observable location can be developed as the integration of

moving average function of this white noise process along the road network [33].

Zu = µu +

∫
∨u
g(r − u)

√
w(r)

w(u)
dB(r) (2.9)

where, µu is the mean process at location u, ∨u denotes the upstream of location u.

w(r) = wl which denotes the weight on segment l and r ∈ l. The weights of segments

are pre-calculated to ensure the stationary of variance [36]. In the traffic case, the weights

can be estimated by the average volume of vehicles on each road segment. Moving av-

erage function g(·) should be square-integrable and defined on R [38]. B(r) is a Brown-

ian process processing towards the end of traffic network. The spatial correlation α(u, v)

is obtained via the covariance between the moving average random variables Zu, Zv by
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cov(Zu, Zv) = E(ZuZv)− E(Zu)E(Zv).

α(u, v) =

∫
∨u∩∨v

g(s− u)g(s− v)
w(s)√
w(u)w(v)

ds (2.10)

Denote ∆(r) as the stream distance between spots u and v. We can deploy assumptions

on the integration term C(∆(r)) =
∫
R g(r)g(r − ∆(r))dr. By choosing a proper moving

average function, we can re-parametrize the integration C(·). We use exponential tail-up

model here [33].

C(∆(r)) = βexp(−∆(r)/σ) (2.11)

where, β, σ are parameters of the model. Let d(u, v) be the stream distance between loca-

tion u, v, the above covariance can be simplified as,

α(u, v) =


C(d(u, v))

√
w(u)
w(v)

u, v flow-connected

0 u, v flow-unconnected
(2.12)

2.6 Online Attention Model for streaming data

For streaming data, the attention calculation may have increasingly computational com-

plexity as the growth of the number of past events. Here, we propose an adaptive online

attention algorithm to address this issue, where only a fixed number of ’important’ history

events are taken into the calculation. We only consider the events with a higher average

scores, which indicates a higher similarity to the current event. In both simulation and real

data experiment, we show that this is a good estimation to the original attention algorithm

as a small part of events could impose dominant influence on their future events. This

online estimation can make the APP model more efficient without too much expense of

accuracy.

The procedure for collecting such ’important’ events can be demonstrated as following:

Firstly, for the j-th past event xj , we calculate the set of its scores against all future events
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xn as Cj,m := {wm(xj, xn)}tj<tn for attention head m. Then, the average score for event xj

can be computed by µj,m = (
∑

s∈Cj,m s)/|Cj,m|, where |A| denotes the number of elements

in set A. We define the set of events to be used in the online procedure An,m recursively.

Denote η as the max number of event to retain in the process.


An,m = Xtn+1, ∀n ≤ η

An,m = An−1,m ∪ argmax
zj :tj<tn

(µj,m) ∩ argmin
xj :tj<tn

(µj,m), ∀n > η
(2.13)

To perform the online attention, we use the event set An,m in place of Xtn .

2.7 Learning and Inference

Hence, the model is fully defined with a set of unknown parameters {W, b, γ, β, σ, {θm,Wm}Mm=1}.

We fit the model by maximum likelihood, which can be solved by the stochastic gra-

dient descent. The close form of likelihood can be written from the conditional inten-

sity in 2.7. Suppose there a total of n samples before the time horizon T denoted as

x = {(ti, si)}Nx(T )
i=1 . Let F ∗(t, k) = P{tn+1 < t, k|Ht} be the conditional probability

that the next congestion event(tn+1, k) happens before t given the history of the previous

events and let f ∗(t, k) be the corresponding density probability. We use λ∗(t, k) denotes

the conditional intensity function λ(t, k|H) for convenience, which is defined as λ∗(t, k) =

f ∗(t, k)/(1− F ∗(t, k)). By definition, we can show that λ∗(t, k) = dlog(1− F ∗(t, k))/dt.

Therefore,
∫ t
tn
λ∗(τ, k)dτ = −log(1 − F ∗(t, k)). If the (n + 1)-th event does not exist at

the time of tn, F ∗ (t, k) = 0. Thus, F ∗ (t, k) = 1− exp{−
∫ t
tn
λ∗(τ, k)dτ} and

f ∗(t, k) = λ∗(t, k) · exp{−
∫ t

tn

λ∗(τ, k)dτ} (2.14)
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Then the log-likelihood of observing the sequence x is:

`(x) =

Nx(T )∑
i=1

logλ∗(ti, si)−
∑
k∈K

∫ T

0

λ∗(t, k)dt (2.15)

The second integration term cannot be computed analytically. Thus, We use numerical

integration as an estimation here. Given a sequence of events {xi}i=1,...,n, we can estimate

the next events (t̂n+1, ŝn+1) by calculating the expectation of conditional probability in

2.14:  t̂n+1

ŝn+1

 =


∫ T
tn
τ
∑

k∈K f
∗(τ, k)dτ

argmax
k∈K

∫ T
tn
f ∗(τ, k)dτ

 (2.16)
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CHAPTER 3

EXPERIMENT RESULTS

In this section, we conduct experiments on four synthetic datasets and three public real

datasets to illustrate the effectiveness of our model in capturing the temporal patterns. Then,

we use the model on the Atlanta traffic dataset to test its performance on the real spatio-

temporal case. We evaluate our model with/without online attention(APP/OAPP) and other

baseline methods by comparing their log-likelihood and visually show their conditional

intensity function in both temporal and spatial scenarios. There are five baseline models

that we test as following.

Long-Short Term Memory(LSTM) is a specialized recurrent neural network to deal with

sequential data modeling. The historical events are feed as a high-dimensional embedding

and then we can generate the hidden states. Given the last hidden state, we can generate

the next event.

Recurrent Marked Temporal Point Process (RMTPP) [39] utilizes the following struc-

tured conditional intensity function λ∗. Formally, it is defined as λ∗(t) = exp(vThj +

w(t− tj) + b), where hj represent the j-th hidden space treated as the historical influence

up to the j-th event. w(t− tj) denotes the time influence on the intensity function. v, w, b

are trainable parameters.

Neural Hawkes Process(NHP)[40] defines the conditional intensity function λ∗ with a

continuous-time long-short term memory structure, denoted as λ∗ = f(wTht), where the

hidden state of time t represents the historical influence. Here, w is trainable parameter and

f(·) is a softmax function to ensure the output is always positive.

Self-Attentive Hawkes Process(SAHP)[41] also uses attention neural network to modeling

point process. The conditional intensity function λ∗ is defined as λ∗(t) = softmax(µ +

αexp(w(t − tj))), where µ, α, w are computed via a nonlinear layer of neural network
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µ = softplus(hWµ), α = tanh(hWα), w = softplus(hWw). Here, h is the historical

embedding compute from an attention neural network via computing the scores between

history and current event.

Hawkes Process (HP) [42] is the original and the state of art method on modeling the

temporal point process. The conditional intensity function is defined as λ∗(t) = µ +

α
∑

tj<t
βexp(−β(t − tj)), where the parameters µ, α, β are trainable. We can derive the

log-likelihood formula via this definition and train the model by maximizing the likelihood.

In the experiment, we use 3-layer neural network for the structure in 2.4 and utilize 3

attention heads. Each dataset are split with 80% training set and 20% for testing. First, we

estimate the unknown parameters in the model by maximizing log-likelihood via training

samples. Here, we employ Adam optimizer to minimizing the negative log-likelihood,

which is defined in the equation 2.15. We use a learning rate with initial value 10−3 and

decreasing exponentially every epoch. The batch size in the experiment is 64. For the

testing part, we plug in the parameters and evaluate both conditional intensity and log-

likelihood of testing data. Plus, for online learning model (OAPP), the max number of

events to be retained is 10. i.e. η = 10 in the equation 2.13.

3.1 Synthetic Data

To evaluate the performance of our model in evaluating the conditional intensity function,

we first conduct the simulation on time series analysis. In the experiment, the ground

truth of intensity function is given and the events are generated via thinning algorithm.

To adapt our APP model to time series modeling, we only consider the temporal distance

when calculating the score function in the attention network. Therefore, the equation 2.8 is

modified to vm(xn, xi) = ψθm(tn − ti).

We perform the simulation on four dataset listed in figure 3.1 and 3.2, including Hawkes

Process, Self-correcting process and two non-homogeneous process. (1) Hawkes Process:

the intensity function is given by λ∗(t) = µ + α
∑

tj<t
βexp(−β(t − tj)), where µ = 10,
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Table 3.1: Average maximum log-likelihood on synthetic data.

Data set SAHP NHP RMTPP APP OAPP

Hawkes 20.8 20.0 19.7 21.2 21.1
self-correction 3.5 5.4 6.9 7.1 7.1
non-homo 1 432.4 445.6 443.1 442.3 457.0
non-homo 2 364.3 410.1 405.1 428.3 420.1

α = 1 and β = 1 are used in our experiment;(2) Self-correcting process: The conditional

intensity function is given by λ∗(t) = exp(µt −∑
t<tj

α), which means the conditional

probility is increasing exponentially and will drop once a correction event happens. In the

experiment, we use µ = 10, α = 1; (3) non-homogeneous Poisson 1: THe intensity funci-

ton is given by λ∗(t) = c ·Φ(t− 0.5) ·U [0, 1], where c = 100 is the total number of events

observed and Φ(t) is the PDF of a standard normal distribution;(4) non-homogeneous

Poisson 2: The intensity function has two peaks which is a composition of two normal

distributions centered at different t. Formally, the intensity function can be written as

λ∗(t) = c1 · Φ(6(t − 0.35)) · U [0, 1] + c2 · Φ(6(t − 0.75)) · U [0, 1], where c1 = 50 and

c2 = 50 which indicates the number of events generated from each distribution. For every

simulated conditional intensity function, we generate the set of training sequence with a

size of 5000, where the data point only contains the time information. i.e. the time when

the event occurs.

Figure 3.1 shows the results of average log-likelihood and variance versus training

epochs for each simulation dataset. The higher log-likelihood, the better performance of

the model. The red dash lines represent the log-likelihood of using APP model. For figure

3.1 we can see our APP model outperform the other baseline models. Moreover, OAPP

model only choose the most significant historical event to calculate the attention score,

which has very little loss in term of final log-likelihood compared with the APP model.

Figure3.2 shows the intensity function of each model, which is more intuitive and can

be compared with the baseline(the gray line) directly. For homogeneous cases such as
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Figure 3.1: The average log-likelihood of synthetic data versus the number of epochs.
For each data set, we maximize its log-likelihood to evaluate the performance of different
models.
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Figure 3.2: The conditional intensity function estimated from the synthetic data. The dash
line and triangle on the x-axis denotes the time when events happen. The gray line indicates
the ground truth generate by thinning algorithm.

Hawkes process and self-correcting process, our APP model can capture the amplitude and

the decaying rate precisely. As shown in previous section, our model do not provide the

exponential term in the intensity function, but we can capture the exponential shape decay

process such as Hawkes process. For non-homogeneous cases, APP model can output a

much smoother intensity curve compared with the baselines. Besides, the OAPP model

can capture the main shape of intensity curve in both homogeneous and non-homogeneous

cases.

3.2 Experiment on Real Temporal Dataset

We test our model on some public temporal point process datasets as well as on the Atlanta

traffic data set. As there is no accurate intensity function for a real data set, we compare

the log-likelihood of each model to figure out which one fit the real event sequence best.

Atlanta Traffic Data: Our Atlanta traffic dataset is a sequence of time and locations where
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a traffic congestion happens on two main highways at Atlanta. Here, we only consider

the temporal information. Stock Data: [43] Stock data includes the 11k stock trading

information. Citation Data: [44] Patent data includes the 100k citation sequences. Tweet

Data: [45] Tweet collect the tweet and retweet timestamp for 22k tweets. We test our APP

and OAPP model on these four real datasets and compare the result with baselines, shown

in Figure 3.3

As shown in figure 3.3, for all the dataset, the APP and OAPP have a higher log-

likelihood after convergence, which shows our model fits the real data set very well.
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Figure 3.3: The log-likelihood of APP and baseline models on the real dataset. The higher

log-likelihood, the better performance.

3.3 Spatial-Temporal Analysis on Traffic Dataset

In this section, we further consider the spatial temporal cases to illustrate the effective-

ness of our APP model. In Atlanta traffic dataset, the locations are categorized into 14

with latitudes and longitudes, which are the location of traffic sensors. In addition, we

conduct the tail-up spatial correlation model in this section. Therefore, our comparison

in this experiment part will not only on the baseline models but also on whether tail-up

spatial correlation model improve the performance of APP model. We first use Euclidean

distance in the score function denoted as (APP+Euclidean), which is compared with the

one with Tail-up model denoted as (APP+Tailup). In this section, we evaluate the model

with the final log-likelihood and the prediction accuracy. Our model is trying to predict the

future locations of events. Plus, we visualize the scores of APP model and the conditional
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Table 3.2: Average maximum log-likelihood and prediction accuracy using Atlanta traffic
dataset.

Models
max `

(time only)
max `

(time & space)
prediction
accuracy

LSTM N/A N/A 18.5%
HP 339.9 307.5 8.82%
RMTPP 339.2 490.1 22.0%
NHP 324.4 N/A N/A
SAHP 326.7 N/A N/A
APP + Euclidean 392.3 570.7 30.9%
APP + Tailup 458.5 636.2 37.6%
OAPP + Tailup 437.5 615.9 36.9%

intensity function to provide some intuitive illustration of the fitting results.

Figure 3.4 shows the average log-likelihood for each method over the number if train-

ing epochs. Our APP model (red dash line) outperforms the other baseline methods in

both temporal and spatial& temporal scenarios. Besides, by adding up space information

to the model, the log-likelihood improves a lot compared with the time-only experiments.

Also, we show that the APP+Tailup (red dash line in the right figure) has the bests perfor-

mance, which shows the effectiveness of the APP model and the tail-up spatial correlation

assumption to modeling the traffic congestion problem.

Besides, we also evaluate the conditional intensity of each traffic sensor using APP

model. There are 14 sensors in total along I-75 and I-85 in Atlanta, which are visualized

as heatmaps on figure 3.5. We select two representative days May 8th, 2018 and April

24th, 2018, which show different patterns of the temporal and spatial information of traffic

congestion. On May 8th, 2018, the conditional intensity shows two peaks at 7am and

16pm, which is the normal rush hour for a workday. In the heatmap, the sensors(rows)

are arranged by its location on the highway. i.e. the adjunct sensors are grouped together.

Thus, the slight propagation of conditional intensity indicates the congestion events travel

along the road between sensors, which refers to a traffic congestion phenomenon ’phantom
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Figure 3.4: The average log-likelihood versus the number of training epochs with or with-
out considering the spatial information

traffic jam’ [46]. Due to the response time, when the front vehicles restart on the road, there

will be delay for the following vehicles to catch up. Thus, this will cause the propagation

of slowing down of traffic flow. Eventually, it will cause congestion even without traffic

accidents. Referring to the red vertical lines, when a 911-call incident happen on the traffic

network, there always be congestion events(blue dots). On contrast, we select another day,

April 24th, 2018, as an example of atypical conditional intensity function, when special

events affect the road system. Compared with what on May 8th, the intensity function on

April 24th are more flatten and doesn’t show clear peaks. As AJC news shown[47], there

was a record-break rain in that day, which cause a strong impact on the traffic system.

Score function: In the real data experiment, we retrieve the score function of APP model

shown as the right figure in Figure 3.6. In previous chapter, we describe the score func-

tion is computed via the distance between current event and historical events. Compared

with the score function of synthetic Hawkes process (left figure), the real data score has

community structure and shows higher non-linearity. The brighter the cell is, the lower the

score between current events (y-axis) against historical events (rows). Events in Hawkes

process has a monotonously decreasing influence on current event which decreases expo-

nentially with time. Correspondingly, there shows block structure in the traffic structure,
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(a) Tuesday, May 8th, 2018
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(b) Tuesday, April 24th, 2018

Figure 3.5: Heatmaps of the conditional intensities of 14 traffic sensors on two typical
days, where the rows represent a traffic sensor, each column represent a 5-minute time
slot. The color depth represent the level of intensity, the blue dots are the time of traffic
congestion events happen, and the red vertical line is the time of 911-call. These sensors are
categorized into three groups southbound, northbound and traffic connectors. The bottom
line charts shows the conditional intensities for different groups.
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Figure 3.6: Visualization of scores between pairwise events in the sequence, learning from
synthetic Hawkes process and real Atlanta traffic data

which indicates part of historical events has similar influence on the current traffic con-

gestion. Digging into the events, we find the sensors in the same bound of highways will

has similar scores. For instance, in the right figure 3.6, first 3 incidents happened on the

northbound of I-75, which had less effect on the last 6 event happened on I-85 southbound

and had less scores because they are flow unconnected.
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CHAPTER 4

DISCUSSION

In this chapter, we will discuss the disadvantages of the attention point process model.

Our model has high flexibility and capability to capture the dependency between historical

events and future events, which require a precise calculation on the score between events.

Thus, the calculation will be complicated so that we put forward the online version to

estimate the model. However, one of the disadvantages is it is hard to balance the compu-

tational complexity and accuracy. i.e., for different datasets, the set of threshold η always

vary from each other. Sampling and testing on the original dataset should be down every

time before online attention model to find a proper number of historical events. Moreover,

the attention structure itself is more complicated compared with the baseline models, so it

requires more feeding data and time to fit.
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CHAPTER 5

CONCLUSION

We develop a novel attention-based point process model for modeling the dynamics of

traffic congestion with consideration of the influence of 911-call incidents reported by the

police. The goal is to model traffic congestion events and the triggering effect while taking

advantage of the structure knowledge of the traffic network.

As demonstrated by our experiments, our method achieves the best performance in

maximizing the likelihood function of a point process compared with previous approaches

as well as prediction accuracy on the traffic dataset. Besides, by implementing various

kinds of point process models, we show that our model exceeds the others in terms of

robustness and flexibility. Furthermore, based on the structural information of dynamic

networks, our model can be generalized in such a the way that the prediction of the current

event of a particular type might depend more on some specific kinds of events by exploring

the structure of the score matrices. This gives us a a new method for implementing causality

inference in networks.
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APPENDIX A

ATLANTA TRAFFIC DATA

In this section, we introduce a unique large-scale traffic dataset, which consists of three

sub-datasets: (1) traffic congestion sub-dataset; (2) 911 call-for-service sub-dataset; and

(3) traffic network sub-dataset.

A.1 Traffic congestion

The traffic congestion data is a sub-dataset collected from Georgia Department of Trans-

portation (GDOT) [48], which records the real-time traffic condition on roads throughout

the state of Georgia. These traffic data are recorded by traffic sensors installed on main

traffic points in the highway system, where the data of each sensor is organized as a series

of numbers that indicate how many vehicles pass through the sensor every 5 minutes. The

dataset also provides lane information at the locations where the sensors are installed. The

number of lanes at the specific location of the highway allows us to estimate the maximum

number of vehicles that the highway is able to process. We assume that the maximum

number of vehicles that a highway can process is a linear function of the number of lanes.

Here, we consider 14 traffic sensors installed on two major highways (I-75 and I-85)

in Atlanta shown in Figure A.1, indexed by K = {1, 2, . . . , K}, K = 14 and we denote

their geo-locations (latitude and longitude) on the traffic network by rk ∈ S ⊂ R2,∀k ∈ K,

where S is the location space of the traffic network, which will be discussed in Section A.3.

A traffic congestion event can be detected at certain time by a traffic sensor when the

real-time traffic count exceeds the maximum number of vehicles that are allowed to pass

through. Let {xi}Nx(T )
i=1 represents a sequence of traffic congestion events in a single day,

where Nx(T ) is the number of the congestion events generated in the one-day horizon

[0, T ). The i-th congestion event xi = (ti, si) is a data tuple consisting of the occurrence

28



time ti ∈ [0, T ), the sensor index si ∈ K. We extracted 18,618 traffic congestion events

for 174 days between April 2018 and December 2018 from the sub-dataset. The maximum

and minimum number of events in a single day is 168 and 19, respectively.

A.2 911 calls-for-service

As mentioned in introduction, traffic incidents may trigger unexpected congestion on the

traffic network. We collected another sub-dataset from 911 calls-for-service reports for the

traffic incidents provided by Atlanta Police Department (APD) [26, 49]. Such reports are

generated by mobile patrol operations in the city, which handle 911 calls twenty-four hours

a day. When a 911 call about a traffic incident comes in, a new incident record, including

the call time and occurrence location, will be created at the dispatch center. Typically, after

the new call arrives, the operator will assign an officer to handle the call. The unit arrives at

the scene and starts the investigation. Once the police complete the investigation and clean

the scene, the police report will be closed and record the clear time. The time interval that

takes police to process the call between the call time and the clear time is called processing

time. A 911 call with long processing time usually imposes a significant impact on the

traffic condition of the highway where the 911 call is initiated.

Let {yj}Ny

j=1 represent a sequence of traffic incidents reported by 911 calls in a single

day, where Ny is the total number of the recorded 911-call incidents in one day. The j-th

911-call incident yj = (tj, rj, zj) is a data tuple consisting of the call time tj ∈ [0, T ), the

occurrence location rj ∈ S on the traffic network, and the processing time zj ∈ R+ indi-

cating the length of time that the police takes to resolve the case. We select 19,805 such

911-call incidents that occurred on two major highways from the same period (between

April 2018 and December 2018) with processing time larger than 15 minutes. Recorded

911-call incidents span over ten different categories, ranging from speeding tickets to mas-

sive car pileups.
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Figure A.1: The traffic network for major highways in Atlanta. Left shows the spatial
distribution of traffic sensors, where green triangles represent locations of traffic sensors.
Traffic sensors on the highway are bi-directional, i.e., two directions of the same location
have separate traffic sensors to monitor the traffic condition. Right shows the traffic network
and where traffic sensors located on the network. Each line segment represents one specific
road segment and black dots represent the confluence of two roads.

A.3 Traffic network

Due to the nature of traffic flow, there are strong spatial dependence among the traffic data

collected at different locations on the network. The network topology and the direction

of the flow impose constraints on modeling such spatial correlations. For example, there

should not be correlation for data collected at two locations that do not share common

traffic flow. In Downtown Atlanta, there are two major highways I-75/85 through the core

of the city. Beginning at northwest/northeast of the city, two highways generally run due

south, meeting each other in the Midtown as shown in the left of Figure A.1. Between

I-75 and I-85, there are also two connectors that bridge two highways via single-direction

ramps.

We extracted the network information of I-75 / I-85 and their connectors in Atlanta

from OpenStreetMap [50], which is an editable map database and allows us to construct,

visualize, and analyze complex traffic networks. The traffic network of a city is represented
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by a set of road segments defined in the OpenStreetMap dataset as shown in the right of

Figure A.1. Let S ⊂ R2 represents the set of all geo-locations on the network. We index

road segments on the network by L = {1, . . . , L}, where the set of locations on each

segment is denoted as Sl ⊂ S,∀l ∈ L. For any location s ∈ S on the network, we define

the upstream portion ∨s ⊆ S of the network to include s itself and all locations upstream

from s. We define the downstream portion ∧s ⊆ S to include s itself and all locations

downstream from s. For two locations u, v ∈ S, the distance d(u, v) ∈ R+ is defined as the

stream distance along the highway if one of the two locations belongs to the downstream

of the other. We denote u→ v when v belongs to ∨u and the two points are said to be flow-

connected. When two points are flow-unconnected, neither u belongs to ∧v nor v belongs

to ∧u, and the relationship between u and v is denoted u 6→ v.
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