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SUMMARY

This dissertation aims to advance responsible machine learning through multi-

agent simulation (MAS). I introduce and demonstrate an open source, multi-domain

discrete event simulation framework and use it to: (1) improve state-of-the-art privacy-

preserving federated learning and (2) construct a novel method for normatively-

aligned learning from synthetic negative examples.

Due to their complexity and capacity, the training of modern machine learning

(ML) models can require vast user-collected data sets. The current formulation of

federated learning arose in 2016 after repeated exposure of sensitive user informa-

tion from centralized data stores where mobile and wearable training data was ag-

gregated. Privacy-preserving federated learning (PPFL) soon added stochastic and

cryptographic layers to protect against additional vectors of data exposure. Recent

state of the art protocols have combined differential privacy (DP) and secure multi-

party computation (MPC) to keep client training data set parameters private from

an “honest but curious” server which is legitimately involved in the learning process,

but attempting to infer information it should not have.

Investigation of PPFL can be cost prohibitive if each iteration of a proposed

experimental protocol is distributed to virtual computational nodes geolocated around

the world. It can also be inaccurate when locally simulated without concern for client

parallelism, accurate timekeeping, or computation and communication loads. In this

work, a recent PPFL protocol is instantiated as a single-threaded MAS to show that

its model accuracy, deployed parallel running time, and resistance to inference of client

model parameters can be inexpensively evaluated. The protocol is then extended

using oblivious distributed differential privacy to a new state of the art secure against

attacks of collusion among all except one participant, with an empirical demonstration

that the new protocol improves privacy with no loss of accuracy to the final model.

xvi



State of the art reinforcement learning (RL) is also increasingly complex and hard

to interpret, such that a sequence of individually innocuous actions may produce an

unexpectedly harmful result. Safe RL seeks to avoid these results through techniques

like reward variance reduction, error state prediction, or constrained exploration of the

state-action space. Development of the field has been heavily influenced by robotics

and finance, and thus it is primarily concerned with physical failures like a helicopter

crash or a robot-human workplace collision, or monetary failures like the depletion

of an investment account. The related field of Normative RL is concerned with

obeying the behavioral expectations of a broad human population, like respecting

personal space or not sneaking up behind people. Because normative behavior often

implicates safety, for example the assumption that an autonomous navigation robot

will not walk through a human to reach its goal more quickly, there is significant

overlap between the two areas.

There are problem domains not easily addressed by current approaches in safe

or normative RL, where the undesired behavior is subtle, violates legal or ethical

rather than physical or monetary constraints, and may be composed of individually-

normative actions. In this work, I consider an intelligent stock trading agent that

maximizes profit but may inadvertently learn “spoofing”, a form of illegal market

manipulation that can be difficult to detect. Using a financial market based on

MAS, I safely coerce a variety of spoofing behaviors, learn to distinguish them from

other profit-driven strategies, and carefully analyze the empirical results. I then

demonstrate how this spoofing recognizer can be used as a normative guide to train

an intelligent trading agent that will generate positive returns while avoiding spoofing

behaviors, even if their adoption would increase short-term profits. I believe this

contribution to normative RL, of deriving an method for normative alignment from

synthetic non-normative action sequences, should generalize to many other problem

domains.

xvii



CHAPTER 1

INTRODUCTION

This dissertation introduces a multi-agent simulation framework for multi-domain

empirical investigation of approaches in responsible machine learning with specific

concern for end user data privacy and normative alignment. Using these key research

areas as exemplars, I aim to persuade the reader of the central thesis of this document:

Multi-agent simulation is an effective tool to solve problems in

responsible machine learning.

In this first chapter, I situate the work and lay out its primary motivations, in-

cluding the need for responsible machine learning, better end-user data privacy, and

normatively aligned algorithms, and why multi-agent simulation is an appropriate

solution to these problems. In subsequent chapters, I provide evidence in support of

my thesis by answering some specific research questions:

1. How can multi-agent simulation (MAS) be used to safely avoid learning unde-

sirable behaviors?

(a) Can MAS be used to safely learn a recognizer for a complex, vaguely

defined, illegal behavior composed of individually-acceptable actions?

(b) Given such a recognizer, can MAS help a reinforcement learning (RL)

agent successfully perform a task without violating the relevant law?

2. How can MAS be used to improve the privacy of user-derived training data

under a federated learning protocol?

(a) Can MAS reduce the cost to empirically evaluate a proposed protocol’s

speed and model accuracy?

1



(b) Can MAS help to empirically quantify the privacy gains of an improved

protocol?

These research questions are addressed in Chapters 2-6. The final chapter draws

some overarching conclusions and suggests future work in the area.

1.1 Responsibility and Algorithmic Bias

In the last decade, machine learning (ML) algorithms have been applied to complex

problems with a level of success that makes them attractive to government and in-

dustry practitioners. Post hoc analysis of some such systems has raised questions

concerning the responsible use of ML, particularly with regard to unintended algo-

rithmic bias against protected groups of interest.

One area of concern is the use of ML in judicial system pre-trial release decisions.

In May 2016, Angwin et al. published an investigative report for ProPublica on the

ML-based COMPAS (Correctional Offender Management Profiling for Alternative

Sanctions) recidivism risk predictor in which they found it to be biased against black

offenders. [1] The assertion of bias was based on confusion matrix analysis with

recidivism as the positive class. The researchers found that the algorithm produced a

significantly higher false positive rate (FPR) for black offenders than white (45% vs

23%), and significantly higher false negative rate (FNR) for white offenders than black

(47% to 28%). [2] In a more in-depth statistical analysis, Alexandra Chouldechova of

CMU found the imbalance between FPR and FNR by race persists regardless of the

risk score threshold selected for classification and when controlling for covariates. [3]

Another potential problem concerns unequal access to the features of ML-based

systems. In 2018, Buolamwini et al. tested commercial systems from Microsoft,

Face++, and IBM that predict perceived binary gender from a head shot. Deter-

mining that existing facial analysis benchmarks were not well distributed across skin

tone and gender, the researchers first created a more balanced benchmark. Using

2



a regional subset of this data to control for lighting and image quality, they found

all three systems to have a significantly higher classification error rate on darker-

skinned female faces (24%, 36%, and 33% for each system respectively) compared

with lighter-skinned and/or male faces (at most 6%). [4]

Responsible ML is a nascent field. Research effort to date has focused largely on

issues of algorithmic bias and fairness such as the examples above. In these domains,

answers can seem straightforward, however in 2018, Verma et al. produced a survey

of fairness definitions and measures that illustrates a major challenge to the area:

there is no agreement as to what fairness, or a lack of bias, means. [5] Common

approaches to fairness include:

• Anti-classification or “fairness through unawareness”, under which protected

attributes may not be used as input features. For example, a loan approval

classifier may not use race or gender as a feature.

• Classification parity, under which some calculation of the confusion matrix

(e.g. false negative rate) must be equal across protected groups. For example,

equal proportions of men and women must be incorrectly denied credit.

• Conditional statistical parity, under which outcomes must be condition-

ally independent of protected attributes given relevant unprotected attributes.

For example, men and women with similar age, income, married status, and

payment history must be equally likely to receive credit.

While standardization on a definition may be possible, it is likely that no definition

will satisfy everyone, as Corbett-Davies et al. have shown that all of the above

approaches have statistical limitations and can, in fact, harm the protected groups

they are trying to protect. [6] For example, in the earlier COMPAS case, if women are

statistically less likely to reoffend, disallowing gender as an input feature will cause

more women to be denied pretrial release.
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The study of algorithmic bias has brought attention to the need that we consider

the potentially disparate outcomes that arise from the use of our models and systems,

but avoiding biased decision making should be the beginning, not the end, of our

commitment to responsible ML. From the safety of robotic systems, to the privacy of

user training data, to the ability of autonomous systems to obey the law, any kind

of unintentionally-harmful outcome is worthy of attention and mitigation. The next

two sections make the case for the two focus areas of this dissertation.

1.2 Responsibility and Training Data Privacy

Modern machine learning based applications rely on large data sets passively collected

from their users. Detailed traffic estimation requires frequent sampling of mobile de-

vice location and velocity. Smart touchscreen keyboards leverage a massive corpus of

prior text entry and correction. Customer retention algorithms use all data available

to a company when determining if a special offer should be extended.

The storage, handling, and use of such private customer information is topic of

growing concern. The traditional response has been to centralize to a secure data

warehouse and concentrate resources on its protection. The data must still be acces-

sible to learning algorithms or employees, however, and a large trove of potentially

valuable information in one place makes a tempting target. Unsurprisingly, data

breaches from centralized corporate data stores have become increasingly common,

resulting in a White House consumer privacy report recommending data minimization

as early as 2012. [7] In a 2015 effort to estimate the risks and costs of data breaches,

Sen et al. aggregated government and institutional sources on the frequency, nature,

and severity of such events. [8] At that time, they found that in the United States the

organizational cost per incident was $5.9 million, the direct annual cost of identity

theft to individuals was $16 billion, and 74% of data breaches exposed personally

identifiable information. By way of example, two 2017 breaches gained popular me-
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dia attention, when Equifax exposed the names, home addresses, and social security

numbers of 148 million Americans [9] and the ai.type virtual keyboard app exposed

the names, email addresses, and contacts of 31 million Android phone users. [10]

1.2.1 Federated Learning

In response to concerns over centralized data transmission and storage, McMahan

et al. constructed a new paradigm of federated learning in 2017, in which user data

is not centralized. [11] Instead, an iterative convergence process is undertaken in

which local models are trained on each user device as updates to the current global

model, and only trained model parameters are ever transmitted. Leaving user data

on its device of origin reduces the risk of a data breach: one user’s data can still be

compromised by physically taking their phone, but there is no single place to acquire

everyone’s data at once.

There are still demonstrated privacy risks associated with federated learning. In

the “white box” case, in which an adversary has access to a complete trained model,

Nasr et al. demonstrate effective membership inference attacks, exploiting the privacy

vulnerabilities of stochastic gradient descent to answer the question: Was that record

used to train this model? [12] Even for the more challenging “black box” case, in which

an adversary can only query the model as through an API, Shokri et al. demonstrate

similar (albeit less effective) attacks. [13] Consider a medical condition like clear

cell renal carcinoma, a rare form of kidney cancer. While some negative training

examples will be included in such a model, a posterior estimate that an individual

has the disease, conditioned on the knowledge that their medical record was used in

training, would be significantly higher than a prior assumption based on the general

population.

The privacy risks associated with federated learning can be mitigated by vari-

ous means. Differential privacy, in which individual records are distorted with ran-
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dom noise, offers a bounded trade-off between privacy and statistical accuracy. [14]

Multi-party computation (MPC), in which parties cooperate to perform a calculation

without revealing their true inputs, can assure privacy without any loss of accuracy

to the output, subject to certain assumptions. [15] Both techniques have been used

in the construction of privacy-preserving federated learning (PPFL), for example by

Bonawitz et al. [16] The introduction to Chapter 3 gives a comprehensive overview

of these ideas for those new to the area.

At the implementation level, most empirical studies of PPFL have followed one of

two evaluation approaches. In the first approach each participating party is assigned

to a separate Amazon Web Services (AWS) instance as in Hardy et al. [17] At 2021

pricing, AWS Elastic Cloud Computing (EC2) instances can cost as much as $1.25

per hour. If instances are geographically distributed, this approach accounts for

communication (but not necessarily computation) load, but when large scale PPFL

studies include 5,000 parties or more, it can significantly burden project budgets.

To avoid these costs, the second approach relies on local simulation, which is taken

to mean nested iteration in which each party’s state is accessible as a set of object-

oriented attributes as in Smith et al. [18] This approach is both faster and cheaper, but

typically ignores communication load. If computation load is considered, it is reported

as total runtime for the simulation, either with all parties acting serially or in perfect

parallel. A recent survey of the field by its founders (Kairouz, McMahan, and others)

acknowledges these challenges and notes that “the development of open software

frameworks for federated learning research has the potential to greatly accelerate

research progress”. [19] One important aim of this work is to fulfill this need, as

presented in the cryptographic adaptation of ABIDES in Chapter 3.
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1. Alice sends Bob: (KA, x0, x1), where ∀i ∈ {0, 1} : xi ← PRG()

2. Bob selects b ∈ {0, 1} and generates k ← PRG()

3. Bob sends Alice: v = xb + {k}KA (∗1)

4. Alice recovers the two possible values of k (∗2)
k0 = {v − x0}K−1

A
k1 = {v − x1}K−1

A

5. Alice sends Bob two encoded messages:
m′0 = m0 + k0 m′1 = m1 + k1

6. Bob recovers mb = m′b − k (∗3)

(∗1) Decryption
{
xb + {k}KA

}
K−1

A

will fail, because {k}KA
was modified after

encryption.
(∗2) Exactly one of k0 or k1 equals k, but Alice cannot know which one.
(∗3) Bob can recover mb but not m1−b, because kb = k but k1−b 6= k.

Therefore m′b − k = mb + kb − k = mb, but m′1−b − k = m1−b + k1−b − k 6= m1−b.

Figure 1.1: A typical one-out-of-two oblivious transfer algorithm. Note that KA and
K−1
A respectively denote Alice’s public and private keys, {M}KA denotes processing

message M with key KA (i.e. encrypting/decrypting), and X ← PRG() denotes
drawing a large value X from an appropriate pseudo-random generator.

1.2.2 One-Out-of-Two Oblivious Transfer

Another aim is improve privacy under federated learning scenarios in the particular

case where all other parties collude to expose the private information of a single honest

party. This is achieved starting with a recent state of the art PPFL protocol that

incorporates both MPC and differential privacy to secure against outside observation

or unwanted inferences by the server that coordinates the learning process. A novel

mechanism is added based on one-out-of-two (or 1-2) oblivious transfer, a powerful

technique from the field of public key cryptography. [20]

As depicted in Figure 1.1, using the customary cryptographic party stand-ins,

Alice and Bob, 1-2 oblivious transfer allows a party (Party A) to offer two pieces of

information (messages) to a second party (Party B), with the intention that Party

B may select exactly one message to decode. The transfer is called one-out-of-two
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because it is not possible for Party B to successfully decode the non-selected message,

and is called oblivious because it is not possible for Party A to determine which

message was selected. The improved privacy protocol using 1-2 oblivious transfer is

presented in Chapter 4.

1.3 Responsibility and Safe Autonomous Behavior

Unintended outcomes in deployed ML-based systems have already had negative con-

sequences, including problems stemming from algorithmic bias as discussed in Sec-

tion 1.1. As deployed systems transition away from having a human decision maker

(a judge or credit analyst) in the loop, to more autonomous direct action, the poten-

tial range of unintentional negative outcomes will increase. Autonomous agents with

physical presence have an obvious capacity for accidental harm, such as a construc-

tion robot crushing a human worker or inflicting expensive damage to itself. But even

virtual autonomous agents may wreak havoc by downloading illegal content from the

internet or engaging in unlawful financial transactions, all without the knowledge or

intent of the owner, or even the creator.

1.3.1 Reinforcement Learning

In contrast with instantaneous classification or regression predictions, for example

“Does this image contain a cat?” or “What is the quality rating of this wine?”, an

interesting subset of ML problems require an agent to make a sequence of decisions

over time. These decisions may involve uncertainty about the environment or the

future. The environment may contain significant positive outcomes that are hard

to find, or are “hidden” behind smaller negative outcomes. There may be no-win

situations that cannot be anticipated and from which there is no way to avoid a

severe negative outcome. This class of problem is typically constructed as a Markov

decision process (MDP).
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An MDP can be thought of as a state machine in which the transitions are gov-

erned by a probability distribution conditioned on the action attempted by an agent.

[21] After each action, the agent may be assigned a numeric reward r, and it will

attempt to maximize these rewards over the long term. For example, in a simple

computer game, taking the action “swing sword” from the environmental state “in

combat with monster” may lead to either the “struck monster” state [Pr(0.5), r = +1]

or “missed monster” state [Pr(0.5), r = 0], while the action “run away” may lead to

either the “out of combat” state [Pr(0.7), r = +2] or “in combat with monster” state

[Pr(0.3), r = 0]. Classical solutions to MDP involve dynamic programming (DP)

approaches like value iteration or policy iteration, in which the agent is supplied

all information concerning states, actions, transition probabilities, and rewards in

advance, and solves some variation of the Bellman equation:

V π∗(s) = maxa{R(s, a) + γs′P (s′|s, a)V π∗(s′)} (1.1)

to produce a reward-maximizing policy which maps every state to its optimal action.

[22] Only then does the agent begin to interact with the environment by following

this optimal policy.

Reinforcement learning (RL) is the name given to a collection of approaches that

solve MDPs when the problem definition must be discovered through experimentation

with the environment. [23] RL techniques can be broadly divided into model-based

and model-free. Model-based approaches to RL employ some experimental method

to approximate the transition probabilities and rewards, then use DP methods to

compute the optimal policy. Model-free approaches do not attempt to obtain a com-

plete definition of the problem and environment, but instead directly learn the overall

utility of taking a certain action from a particular state.

Perhaps the most common approach to model-free RL is Q-learning, under which
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the agent requires minimal information: at each time step, it must be given a unique

identifier for the current state of the environment and for each action that it might

take. [24] It is not necessary that the agent understand what the states or actions

represent, only that the identifiers be consistent. The agent will explore its world by

sequentially receiving an environmental state, selecting an action, then receiving a

reward and an updated environmental state. It must use this information to learn

the optimal action a for each state s by optimizing the Q-function:

Qπ(s, a) = Rs(a) + γ
∑
s′
Prss′ [π(s)]V π(s′) (1.2)

which represents the sum of immediate and discounted expected future rewards that

will result from doing a while in s and then continuing to follow policy π. Rs is the

reward function for state s, γ is the stepwise discount for future rewards, Prss′ [π(s)]

is the probability of a transition from state s to new state s′ under policy π, and V

represents the utility or value of reaching a given state.

A full discussion of the many fundamental challenges in RL is beyond the scope

of this overview, but I present several for consideration. The temporal credit assign-

ment problem, first explored by Marvin Minsky in 1963: given a sequential problem

with delayed rewards (e.g. winning a game of chess), how can a learning system

know which actions contributed to the eventual reward and which did not? [25] The

exploration-exploitation dilemma, as surveyed by Sebastian Thrun in 1995: given that

an RL agent is meant to maximize its long-run rewards, how should it divide time

between obtaining the rewards of which it is aware or exploring the environment in

search of potentially better rewards? [26] Problems of the environment including

non-stationarity, partial observability, and the curse of dimensionality: how can an

agent learn when its world changes too quickly, cannot be effectively measured or

understood, or requires granular enough state information that it is impossible to
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fully explore? [27] In this dissertation, I focus on a different problem: how to best

ensure that an RL agent’s learned policy does not accidentally incorporate unwanted

behavior?

1.3.2 Safe Reinforcement Learning

There are effective techniques to guide the behavior of autonomous agents away from

negative outcomes to certain kinds of problems, many of which are outlined in Garcia’s

“Safe Reinforcement Learning” survey. [28] Hutter has considered ergodic MDPs,

for which he gives the definition: “An MDP µ is called ergodic if there exists a

policy under which every state is visited infinitely often with probability 1.” [29] This

implies the principle of recoverability as introduced by Ryabko et al., requiring that the

environment contain no “traps” from which it is no longer possible to achieve the best

value. [30] Other authors consider risk-sensitive optimization criteria. Gosavi employs

variance-penalized control, which applies a negative reward modification proportional

to the long-run reward variance of a policy. [31] Giebel et al. limit outcomes to a set of

feasible policies under which the probability of reaching an error state is thresholded

by a configurable parameter. [32]

Such techniques are appropriate and effective for embodied agents subject pri-

marily to the laws of physics, or even to virtual agents concerned with avoidance

of immediately measurable consequences. For example, action rejection is sufficient

to avoid a helicopter agent crashing or a bipedal robot agent falling over: disallow

helicopter actions that would exceed limits on a combination of relative altitude, tra-

jectory, and speed; or disallow bipedal robot actions that would move its center of

gravity past a tipping point. For an investment agent, a penalty proportional to the

variance of (monetary) returns or a requirement to keep the probability of bankruptcy

below a threshold, are perfectly sufficient. There are, however, task components that

would thwart these safety-focused approaches:
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• Failure modes are imprecisely defined or objectively similar to target behavior.

• Failure modes are impossible to detect or penalize during training.

• The acceptability of individual actions is difficult to evaluate.

• There are negative outcomes not directly related to primary task failure.

An example of a failure mode that fits all of these criteria would be the algorithmic

violation of a law. Many laws reference a guilty state of mind, require subtle inter-

pretation, and result in penalties (which should be incorporated to the rewards) only

years later. My work on normative autonomous stock trading in Chapters 5 and 6

concerns exactly this challenging scenario.

1.3.3 Spoofing in Financial Markets

The Commodity Exchange Act (CEA), as modified by the Dodd-Frank Wall Street

Reform and Consumer Protection Act (Dodd-Frank), makes it unlawful to engage in

order “spoofing”, which it defines as “bidding or offering with the intent to cancel the

bid or offer before execution”. [33] In their guidance on the topic, the Commodity

Futures Trading Commission (CFTC) lists some reasons a party might engage in

spoofing, such as: overloading a price quotation system, delaying another party’s

trade executions, creating the false appearance of supply or demand, or creating

artificial price movements upward or downward. [34]

In 2012, Lee et al. presented evidence of widespread spoofing with a price manip-

ulation motive based on a custom data set provided by the Korea Exchange (KRX).

[35] A plurality of the manipulation was traced to day traders seeking quick round-trip

profits from unnatural price distortions, with the remainder serving to improve the

entry or exit price of a longer-term investment strategy. According to a 2015 member

survey from the CFA Institute, an international organization certifying Chartered Fi-

nancial Analysts, market fraud and market trading practices account for a significant
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proportion of surveyed members’ “most serious ethical issue facing local market”:

49% in China, 36% in Japan, and 38% each in the UK and US. [36]

The given legal definition of spoofing relies on the intent of a market actor. Fortu-

nately, exploration of the “intent” of a black box learning algorithm which produces

unexpected behavior is moot for the immediate question, because interpretive guid-

ance from the CFTC clarifies that, while “reckless disregard” can be considered a

violation of other sections of the CEA, “reckless trading, practices, or conduct will

not constitute a ‘spoofing’ violation”. [34] It thus appears that, while training an

autonomous trading agent to spoof by design is probably a violation, a “recklessly”

unconstrained profit-maximizing agent (that learns spoofing behavior) is probably

not. However, the Dodd-Frank Act grants the CFTC regulatory authority to pro-

hibit spoofing “and any other trading practice that is disruptive of fair and equitable

trading”, with the clear implication that spoofing is considered disruptive of fair and

equitable trading, or in other words, non-normative. [37]

Market manipulation is not only of academic interest. As summarized in a 2012

survey by Putniņš, it has been demonstrated in both theoretical and empirical eco-

nomics literature to be profitable, implying harm to other traders from whom the

excess profits must be extracted. [38] Spoofing in particular has become increas-

ingly practical with the decimalization of stock prices and the automation of stock

exchanges through computing technology, resulting in a recent spate of enforcement

actions. For example, in the year 2020 alone, the CFTC filed and resolved 16 spoofing

cases. [39] The largest settlement, that against J.P. Morgan Chase, included total

monetary relief of $920 million, suggesting that this is a keen area of interest for fi-

nancial regulators today. [40] However, there are significant obstacles to the study or

detection of spoofing in financial markets, in particular the sparsity and anonymity

of available data. One aim of this work is to improve spoofing detection through

the generation of a large synthetic data set suitable for use in a spoofing behavior
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classifier.

Suppose that a responsible practitioner of financial machine learning undertakes

to create an RL-based stock trading agent with an input space consisting of various

features derived from technical stock market data such as price and volume, along with

sufficient internal state (such as current holdings) to render the problem Markovian.

The output space will be flexibly designed to permit placing or cancelling orders to

buy or sell stock at various offsets to the best available pricing at the time. The

practitioner hopes that, given the nature and power of model-free RL, the agent will

discover an optimal, or at the least very profitable, trading strategy. It is entirely

plausible that such a model, unconstrained, will discover that the optimally profitable

solution is through a disruptive price manipulation technique such as spoofing. If the

practitioner anticipates this negative potential outcome, and desires to affirmatively

avoid it, how could that be achieved? This will require the agent to both identify its

emerging non-normative spoofing behavior and to accept potentially lower financial

gains by eschewing it. I develop a suitable spoofing classifier using synthetic data in

Chapter 5 and use it as normative guidance to construct a non-spoofing RL trading

agent in Chapter 6.

1.4 Responsibility and Agent-Based Simulation

In their classic textbook Artificial Intelligence: A Modern Approach, Stuart Russell

and Peter Norvig define an agent as “anything that can be viewed as perceiving its

environment through sensors and acting upon that environment through actuators.”

[41] They suggest, but do not require, that an agent should be autonomous rather

than rely solely on the prior knowledge of its designer. Michael Wooldridge, in his

textbook An Introduction to Multi-Agent Systems, adds the requirement that an agent

be “capable of autonomous action in [its] environment in order to meet its design

objectives”. [42] I have adopted the term autonomous agents to emphasize my focus on
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agents whose behavior is informed by their own observations and learning processes,

and whose actions are not directly moderated by a human supervisor.

An agent-based model (ABM) is one formed by a collection of autonomous agents

that interact with their environment, including other agents, through a set of internal

rules to achieve their objectives. [43] An agent-based simulation (ABS) is typically

used when mathematical solution or real-world study of an ABM are impractical

or impossible, and instead a computer representation is executed to obtain empiri-

cal observations through some experimental process. [44] Agent-based modeling and

simulation has advanced research in many domains [45, 46], including the social sci-

ences [47], computational economics [48], and marketing. [49] A multi-agent system

is simply one “composed of multiple, interacting agents” [50], and like ABM there is

no inherent requirement that it be a multi-agent simulation (MAS).

The use of the above terms is fluid. Siebers et al. consider ABS to be one of sev-

eral approaches to MAS, in which an investigator “describes the decision processes of

simulated actors at the micro-level”, contrasted with top-down or purely mathemat-

ical approaches. [51] Niazi et al. consider the terms to be roughly interchangeable

net of domain, with engineering and computer science tending to refer to MAS, while

other sciences and economics refer to ABM. [52] Still other fields refer to the same

general approach as individual-based models or generative social science. The work

here is entirely in simulation, and I use the terms MAS and ABS interchangeably to

indicate a computer simulation of multiple interacting intelligent agents in a dynamic

environment.

1.4.1 Financial Market Simulation

In an influential early work, Daniel Friedman considered the strengths and weak-

nesses of three major approaches to one of my major application areas: empirical

financial market research. [53] He concluded that field studies are clearly relevant,
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but do not provide experimental access to all relevant information; laboratory stud-

ies improve control and observation, but are of necessity small and expensive; while

computer simulations feature perfect control and observation. However, he notes

a significant shortcoming, that a “trader’s strategies are not endogenously chosen,

but rather must be specified exogenously”. I find Friedman’s analysis relevant across

empirical domains and mitigate his criticism through the introduction of intelligent

agents, such that participant behaviors are endogenously learned.

There is a rich history of financial market simulation in the economics literature.

Contemporaneously with Friedman’s analysis, Gode and Sunder in 1993 introduced

the Zero Intelligence (ZI) agent which stochastically generates bids and offers from

an IID uniform distribution covering the entire pricing spectrum, and found that

even this trivial agent could reproduce the allocative efficiency of a real continuous

double auction (CDA) like the stock market. [54] From this, they conclude that it is

the structure of the market, rather than the behavior or rationality of the individual

participants, which produces some of its key properties. In 1997, Cliff and Bruten

added to these agents an individual desired profit margin, and the ability to alter that

margin in response to the most recently placed order. [55] They call the resulting

agent Zero Intelligence Plus (ZIP) and find that, unlike original ZI, it consistently

produces a market equilibrium close to levels both expected in theory and observed in

laboratory market experiments with human traders. Additional capabilities have been

added to trading agents in numerous following works to more closely approximate

various features observed in real markets, including the maximization of expected

profit surplus by estimating the likelihood of successful order transaction based on

a limited memory of order history, [56] and the addition of a strategic threshold

parameter which permits agents that normally require a minimum expected profit to

accept lower values when profit is guaranteed. [57]

A key contribution of this dissertation is the construction of a novel, open-source
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Agent-Based Interactive Discrete Event Simulation (ABIDES) framework in Python

3. ABIDES is used for all of the empirical work presented herein, but having been

previously published, it also forms the basis of other published research, a selection

of which is listed here. Vyetrenko et al. curated a large collection of known stylized

facts about the stock market to serve as realism benchmarks and established base-

line metrics for how well various ABIDES configurations reproduce those facts. [58]

They found that current ABIDES configurations accurately reproduce some stylized

facts, like aggregation normality and volatility clustering, but not others, like intraday

volume patterns and interarrival times, and suggested future realism enhancements.

Balch et al. leveraged ABIDES to evaluate whether historical prices or stochastic

processes can better model the impact of large trades on the stock market, finding

that stochastic processes produce an “impact curve” closer to real observations. [59]

Mahfouz et al. used ABIDES as a platform for opponent modeling, in which each

agent explicitly models the policies of other agents and uses these models to inform

its own actions. [60] In this work, they primarily attempt to assign opponents to

strategy clusters and evaluate the accuracy of the approach. Karpe et al. implement

double deep Q-learning (DDQL) within ABIDES and take a multi-agent reinforce-

ment learning (MARL) approach to the optimal execution problem, in which a trader

(presumed to be acting on behalf of a client) must liquidate a specified set of inven-

tory by a given deadline at the best overall price. [61] The architecture and features

of the ABIDES framework are presented in Chapter 2.

1.4.2 Multi-Agent Simulation for Responsible Machine Learning

An underlying theme of this dissertation is the idea that agent-based simulation

(ABS), and particularly multi-agent simulation (MAS), can solve many of the chal-

lenges faced by machine learning practitioners. Experiments in MAS allow direct ob-

servation of important latent factors, such as the intent of an actor. Stochastic MAS
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provides a natural form of data augmentation, which can improve model performance

for important edge cases with sparse training coverage, such as near collisions in avi-

ation. Developing, training, and evaluating a learning agent in MAS can ameliorate

potential serious harms certain agents might inflict during the training process, such

as driving on a sidewalk or crashing a financial market. For all these reasons I believe

that, when included as part of mechanism design and model development, MAS can

reduce the likelihood that our ML-based systems display unexpected non-normative

behaviors after deployment. MAS can also encourage adoption of private and se-

cure learning techniques by making them cost effective in expensive domains such as

distributed computing at scale, where the alternative may be to rent thousands or

millions of geographically distributed computing nodes. I aim to position MAS as

a training cornerstone for autonomous agents in precisely these cases where a suffi-

ciently normative and general model cannot or should not be learned through direct

interaction. For current purposes, this is my interpretation of responsible machine

learning and the overarching motivation for the remainder of the work.
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CHAPTER 2

ABIDES: TOWARDS HIGH-FIDELITY MULTI-AGENT MARKET

SIMULATION

In this chapter I introduce ABIDES, an open source agent-based interactive discrete

event simulator. ABIDES is designed as a flexible, multi-domain, multi-agent simula-

tion (MAS) framework. The initial version of ABIDES was developed to be “batteries

included” for agent-based research in market applications because this domain fea-

tures: well-defined mechanisms but complex and unpredictable emergent behaviors; a

relative scarcity of literature, particularly with learning agents; and a lack of publicly

available high-fidelity market simulation environments. In this context, ABIDES en-

ables the simulation of tens of thousands of custom trading agents interacting, through

a realistic network model, with an exchange agent to facilitate transactions.

I discuss the motivation and design of the simulator, illustrate its use and con-

figuration with sample code, and present results that demonstrate its abilities to:

reconstruct noisy historical trading days (e.g. for data augmentation), conduct event

studies on the impact of large transactions, and examine complex phenomena like

high-frequency trading. The market simulation and agents presented in this chapter

form the basis of my normative “learning not to spoof” efforts in Chapters 5 and 6.

ABIDES is extended with new agents and features to a second domain, the simulation

of privacy-preserving federated learning protocols, in Chapters 3 and 4.

2.1 Background

ABIDES (Agent-Based Interactive Discrete Event Simulation) is intended to facilitate

the creation, deployment, and study of strategic agents in a highly configurable mar-

ket environment. As discussed in Section 1.4.1, we were inspired by Daniel Freidman’s
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Figure 2.1: Simulation allows agent-identifiable data which is lost in the flow of real-
world orders.

view that simulation of markets provides a powerful tool to analyze individual partic-

ipant behavior as well as overall market outcomes that emerge from the interaction of

the individual agents [62]. Freidman conducted a review of empirical approaches to

the analysis of continuous double auction (CDA) markets such as NASDAQ and the

New York Stock Exchange, concluding that computer simulation provided important

benefits to experimental control and observation, but with the critical weakness that

a designer must specify each participant’s strategy in detail.

Accordingly, simulation provides an attractive platform for research in equity trad-

ing questions. With ABIDES, we aim to address Freidman’s primary concern regard-

ing computerized market simulations – that strategies must be exogenously specified

– by enabling powerful learning agents to participate in a realistically structured

market via a common framework. We believe this is necessary to properly investi-

gate the behavior and impact of intelligent agents interacting in a complex market

environment. ABIDES is a curated, collaborative open-source project that provides

researchers with tools that support the rapid prototyping and evaluation of complex

market agents. With it, we hope to further empower researchers of financial markets

to undertake studies which would be difficult or impossible in the field, due to the
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absence of fine-grained data identifiable to individual traders (see Figure 2.1), a lack

of knowledge concerning participant motivation, and an inability to explore historical

counterfactuals.

2.1.1 Discrete Event Simulation

Modern financial markets allow transactions to be concluded at an exchange anytime

the market is open. Simulations of these systems rely on representations of entities

within the simulated environment to estimate the state of the system at times after

initialization. When constructing a simulation, a fundamental decision is therefore

the handling of time. It can be considered continuous, as in the Black Scholes options

pricing model which relies on geometric Brownian motion; in this case the system

state can be estimated at any arbitrary time by solving a differential equation. [63,

64] Or it can be considered discrete, such that system state can change only at the

edges of discrete time slices. In the discrete case, there are then two specific ap-

proaches to chronological advancement: fixed time and next event. [65] In the first of

these, each agent is polled for potential action at every time in a series of fixed incre-

ments which can be neither subdivided nor skipped. This works well for simulations

modeling physics or computer games such as StarCraft II, in which there is a natural

“refresh rate”. [66] In systems where many time units will contain no state changes,

however, it is advantageous to immediately advance to the next scheduled event with-

out simulating the intervening time. This is called discrete event simulation (DES),

and it permits efficient handling of agent actions that are sparsely distributed through

time. As an example, our financial simulations include high-frequency traders who

may act every few microseconds; because their arrival order to the market is critical,

we must therefore use nanosecond resolution for the overall simulation. However,

there would be no sense in polling retail agents, who act a few times per day, at each

nanosecond. This combination of flexibility and efficiency is the reason we adopt DES
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as our temporal approach to simulation.

Discrete event simulations often use random variables as models. For example,

a Poisson distribution might be used to determine the periods between arrival times

(inter-arrival time) of phone calls at a call center. Discrete-event models are therefore

better suited than continuous-time models when underlying parameters must vary

over time. A discrete event simulation system also is fast and efficient because the time

between state changes can be ignored and skipped over. Further, DES are amenable

to computational parallelization that further speeds up execution. [67, 68]. While

ABIDES is currently not parallelized nor distributed at the agent level, its software

design follows principles of distributed simulation. For example, “agents” in ABIDES

are mapped to logical processes and ABIDES progresses in time by scheduling events

for these agents.

2.1.2 Agent-based Economics

Several emerging simulation applications, like the modeling of the stock market, call

for an agent-based view. An agent-based model (ABM) is a model that is formed

by a set of autonomous agents that interact with their environment (including other

agents) through a set of internal rules to achieve their objectives. Agent-based mod-

eling and simulation (ABMS) is useful, usable, and already used in a variety of ap-

plication domains [69]. ABMS helps research and investigation in social sciences [47],

computational economics [48], and marketing [49]. Many agent-based simulators have

been developed (e.g., Swarm [70] and Mason [71]). ABIDES entities, mapped to log-

ical processes, are indeed agents. Consequently, ABIDES provides both performance

and efficiency leveraging from the design of PDES, and flexibility and familiarity of

an of an agent based interface leveraging the growing literature in ABM.

Agent-based financial market simulation has been shown to be an effective ap-

proach when agents can learn and adapt to different investment strategies [72]. In
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the financial literature there are simulators that use learning behaviors with differing

perspectives of past data [73]. Financial market approaches are either synchronous

or asynchronous. Levy et al [74] propose a synchronous approach, but we believe

that asynchronous approaches are more flexible and scalable. This view is shared

by Jacobs et al [73, 75], who proposed a framework called JLMSim. JLMSim is a

discrete event simulator that incorporates trading rules (albeit simple strategies) and

reproduces the changes in the market by executing buy and sell orders from the order

book. In ABIDES we represent individual investors as agents, which is similar to

the approaches of Levy et al [74] and Jacobs et al [73]. JLMSim is implemented in

C++ and runs at a few thousands events per second on a 2.4 GHz PC. ABIDES is

implemented in Python (which offers MATLAB-like functionality) and can run over

10K events per second on a similar 2.4GHz processor. Unlike ABIDES, JLMSim does

not provide interfaces to implement complex trading strategies or learning agents,

and is currently not available as open source software.

The success of agent-based economics has led to the development of a number

of other simulation platforms such as those on which J. Wang et al. have reported

their results. [76] X. Wang and Wellman have used their own simulation platform

to study spoofing agents in a market environment populated by zero intelligence

(ZI) and heuristic belief learning (HBL) traders [77]. Their approach analyzes the

results from an empirical game-theoretic view [78]. ABIDES is a fresh implementation

incorporating lessons learned from prior platforms.

2.2 Important Questions About Markets That Simulation Can Help Us

Address

ABIDES can support a number of different kinds of investigations into market be-

havior that are not easily conducted using historical data or live experiments.

• The benefits of co-location: In the past 20 years hedge funds and other
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market participants have invested in the deployment of computing resources

at major exchanges [79]. This so-called “co-location” enables quicker access to

market information than if the trading server were located further away. It

is not feasible to investigate the value of the advantage co-location provides

with available historical data, because it does not include information about

the geographic location, network latency, or network reliability of each actor.

With a platform that does not require formal arms-length messaging using a

realistic network model, we cannot simulate the effects of these factors even if

they are known. ABIDES provides a network model and mandatory messaging

protocol that enables detailed experiments in this area: Creating a population

of agents with a realistic and known distribution of network latency, jitter, and

reliability; conducting trials in which one agent, pursuing a low-latency order

book imbalance strategy, is incrementally shifted from a co-location facility

out to a great distance; and evaluating the impact of this shift on all agents’

profitability while otherwise pursuing the same strategies.

• The impact of large orders on price: The very act of placing orders in a

market may affect the price. For instance, if there is significant selling pressure

evidenced by a large volume of sell orders, it is generally expected that the price

will go down. The extent to which the price moves because of an order is referred

to as market impact. Market participants of course want to minimize such

impact, because the market usually moves contrary to their profit incentives.

In a market field study, it is not feasible to perform controlled A/B tests. One

cannot place a market buy at the NYSE for one million shares of IBM at

10 AM on Oct 22, 2018, and then also not place that order, and compare the

difference. Without the “control”, any observed result from the large order could

be attributable to some other factor. A key feature of ABIDES is the ability to

re-simulate the same historical market day with known, limited changes while
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holding all other factors constant, thus enabling the desired experimental control

population.

• Cost-benefit analysis of AI: In a simulation without a model for computa-

tional time delays that directly impact time-to-market for the resulting orders,

we cannot readily study the trade-off between simpler, faster predictors and

slower, more powerful predictors. ABIDES introduces a flexible, integrated

model for computation delay that permits the “speed” of each agent’s thought

process to be represented, and to have that representation affect the timing of

all of outbound messages as well as the next time at which the agent can be

roused for participation. These computation delays can be specified, or can

be measured and applied in real time during simulation, such that an agent

is delayed according to the actual runtime of each computation. Thus heavier

thinkers will take longer to deliver a resulting order to the exchange and will be

unable to act as frequently.

• Explanation of behavior: When analyzing historical market data, we can-

not know the motivation behind individual trader actions, but intent is a key

component of many market regulations. For example, “spoofing” (placing limit

orders one does not intend to fulfill) is not permitted in U.S. markets. It is also

extremely difficult to detect or study, because an identical pattern of placing and

canceling orders may be lawful or unlawful depending on the trader’s intentions.

Similarly, with the shift away from knowledge-based AI toward “black box” ML

models, explaining the actions of intelligent agents has become more challeng-

ing. ABIDES provides a platform that features high-resolution time-synced

event logging and visualization for: trading agent state, portfolio, strategy, and

orders; exchange agent order books, order handling, and order execution; and

any extrinsic price-time series used to guide value-conscious strategies. Combin-
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Figure 2.2: Class relations within the ABIDES simulation framework.

ing the precision logs with a quality simulation architecture which requires all

inquiries and impulses to pass as messages through a central Kernel for schedul-

ing and tracking, such that each agent’s decisions, intentions, communications,

and results for every action are fully visible, we produce the full scope of in-

formation needed for explanatory reconstructions. We hope to use this ability

to dive deeply into the why of trading policies learned by agents or observed in

real markets.

2.3 ABIDES Architecture

The ABIDES framework includes a customizable configuration system, a simulation

kernel, and a rich hierarchy of agent functionality, partially illustrated in Figure 2.2.

2.3.1 Functions and Features of the ABIDES Kernel

ABIDES is built around a discrete event-based kernel [80] which is required in all

simulations. All agent messages must pass through the kernel’s event queue. The

kernel supports simulation of geography, computation time, and network latency.
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It also acts as enforcer of simulation physics, maintaining the current simulation

time, tracking a separate “current time” for each agent, and ensuring there is no

inappropriate time travel. Some key features of the ABIDES kernel include:

• Historical date simulation All simulation occurs on a configurable histor-

ical date. This permits “real” historical information to be seamlessly injected

into the simulation at appropriate times when required for a particular exper-

iment. ABIDES can currently be configured to run a market replay with a

liquidity injection agent placing orders from historical data, a historical agent-

based simulation in which background agents can receive noisy observations of

historic transactions, or an ahistoric agent-based simulation in which funda-

mental stock values follow a mean-reverting or other mathematical process.

• Nanosecond resolution: Because we seek to emulate real markets, we sim-

ulate time at the same resolution as an example exchange: the NASDAQ. All

simulation times are represented as timestamp objects with nanosecond resolu-

tion. This allows a mixture of agents to participate in the simulation on very

different time scales with minimal developer overhead. In the unlikely case that

multiple events occur in the same nanosecond, they are handled in order of

event object creation.

• Global Virtual Time (GVT): GVT is the latest simulated time for which all

messages are guaranteed to have been processed. The kernel tracks GVT as the

simulation progresses. Since the simulation is single-threaded (although agents

act in simulated parallel), it is not possible for any agent to affect the past.

GVT may thus simply advance to the delivery timestamp of each dequeued

message in chronological order and remain monotonically non-decreasing. It is

usually the case that GVT advances much more quickly than wall clock time,

but for very complex scenarios, it may not. The GVT value is not available to
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the agents.

• Current time per agent: The kernel tracks a “current time” per individual

participating agent which is incremented upon return from any activation of

that agent. In situations where the current time for the agent is “in the future”

(i.e., larger than GVT), the kernel will delay delivery of messages or wakeup

calls to this agent until GVT catches up.

• Computation delay: The kernel stores a computation delay per agent which

is added to the agent’s “current time” after each activity. The delay is also

added to the sent time and delivery time of any outbound message from an

agent to account for the agent’s computation effort. Agents may alter this

computation delay to account for different sorts of computation events, or the

simulation can be configured to measure and use the real computation time of

each agent action.

• Configurable network latency: The kernel maintains a pairwise agent la-

tency matrix and a realistic cubic network jitter model which are applied to all

messages between agents. This permits simulation of network conditions and

agent location, including co-location.

• Deterministic but random execution: The kernel accepts a single, global

pseudo-random number generator (PRNG) seed at initialization. This PRNG

is then used to generate seeds for an individual PRNG object per agent, which

must rely solely on that object for stochastic methods. Since our system is

currently single-threaded, this allows the entire simulation to be guaranteed

identical when the same seed is initialized within the same experimental config-

uration. This would not ordinarily permit the desired A/B testing, because the

“agent of change” might consume an additional pseudo-random number from

the sequence and thus change the stochastic source for all subsequent agents.
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Because of our careful use of the primary PRNG only to generate subsidiary

PRNGs per agent, the “agent of change” in an ABIDES A/B experiment will

not alter the set of pseudo-random numbers given to any other agent through-

out the simulation, even if it uses more or fewer such inputs for its changed

activity. In this way, changes in the behavior of other agents will be caused by

a changed simulation environment (e.g. stock prices) and not simple stochastic

perturbation.

During a simulation, the kernel follows a typical series of life cycle phases: kernel

initialization, kernel start, event queue processing, kernel stop, and kernel termi-

nation. All except the event queue processing phase consist entirely of sending a

corresponding event notification to all agents.

While processing the event queue, the kernel extracts the next scheduled event in

chronological order and advances the global virtual time (GVT) to match it. Recall

that each agent has an individual “current” time representing the conclusion of its

most recent activity. If the target agent is still in the future with respect to GVT,

the event is rescheduled for the target agent’s current time, placed back into the

priority queue, and the kernel moves to the next chronological event. Otherwise, the

target agent’s current time is advanced to the GVT and the event is dispatched to

the agent. When the agent’s event handling method returns, the agent’s current time

is advanced by its computation delay.

Agents may request several critical functions from the kernel: To send a message

to another agent; To schedule a wakeup call for some future time; And to learn the

simulation identifier of another agent of a specific type (for example, a stock ex-

change). Messages will be sent as of the sender’s current time, plus its computation

delay, plus an optional additional delay upon request. Message receipt will be sched-

uled based on the send time plus network latency and jitter. Agents may learn the

numeric identifier of other agents, but may never receive a reference to another agent
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(as this could allow bypassing the kernel in the future).

2.3.2 The Agent Class

All participants in a simulation must inherit from a base agent class, which implements

a number of required methods that allow participation in the full life cycle of the

simulation.

The simulation lifecycle methods for kernel initialization, kernel start, kernel stop,

and kernel termination must be supported by all simulation agents and will be called

exactly one time per agent by the kernel. The order in which agents are activated

in each life cycle phase is arbitrary. The basic agent class provides sensible default

behavior for each phase.

Two simulation activation methods, for receipt of messages and wakeup calls, must

also be supported by all simulation agents. These are called repeatedly by the kernel

in order of increasing delivery timestamp of queued messages and wakeup calls. The

basic agent class handles these methods by simply updating its internal current time

and displaying an informative message.

While not required by the simulation kernel, the basic agent class also provides

functionality for fine resolution timestamped activity logging and serialization to disk.

2.3.3 The Exchange Agent Class

The provided exchange agent inherits from the basic agent class and represents a stock

exchange such as NASDAQ. The functionality of the message protocols supported by

this agent is loosely based on NASDAQ’s published ITCH and OUCH protocols. [81,

82] The exchange is initialized with market opening and closing times, which it will

enforce. These are not required to match the simulation start and stop times. The

exchange agent is not privileged in any way; it must participate in the simulation just

as any other agent.
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Figure 2.3: Example simulation of IBM stock for 2019-06-28.

The exchange agent understands how to respond to these types of messages that

are specific to the operation of a financial market:

• Market Open Time: Returns the timestamp at which the exchange will begin

processing order-related messages.

• Market Close Time: Returns the timestamp at which the exchange will stop

processing order-related messages.

• Query Last Trade: Returns the last trade price for a requested symbol. Until

the first trade of the day, the exchange reports the oracle open price (historical or

generated data) as the “last trade price”. The exchange does not yet implement

the opening cross auction.

• Query Spread / Depth: Returns a list of the N best bid and best ask prices

for a requested symbol and the aggregate volume available at each price point.

With a requested depth of one, this is equivalent to querying “the spread”.

• Limit Order: Forwards the attached limit order to the requested symbol’s

order book for matching or acceptance. Agents currently simulate market orders

using a limit order with an arbitrarily high or low limit price.
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• Cancel Order: Forwards the attached order to the requested symbol’s order

book to attempt cancellation.

Outside of market hours, the exchange will only honor messages relating to market

hour inquiries and final trade prices (after the close). The exchange sends a “market

closed” message to any agent which contacts it with disallowed messages outside of

market hours.

The exchange agent demonstrates one use of the inbuilt Kernel logging facility,

recording either the full order stream or snapshots of its order books at a requested

frequency, enabling extremely detailed visualization and analysis of the order book at

any time during simulation. For example, Figure 2.3 shows a “market replay” style

simulation of IBM stock on June 28, 2019, in which autonomous trading agents can

also participate and affect the market.

2.3.4 The Order Book

Within an Exchange Agent, an order book tracks all open orders, plus the last trade

price, for a single stock symbol. All order book activity is logged through the exchange

agent. The order book implements the following functionality:

• Order Matching Attempts to match the incoming order against the appro-

priate side of the order book. The best price match is selected. In the case of

multiple orders at the same price, the oldest order is selected.

• Partial Execution Either the incoming order or the matched limit order may

be partially executed. When the matched limit order is partially executed, the

order is left in the book with its quantity reduced. When the incoming order is

partially executed, its quantity is reduced and a new round of matching begins.

Participants receive one “order executed” message, sent via the exchange, per

partial execution noting the fill price of each. When the incoming order is
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executed in multiple parts, the average price per share is recorded as the last

trade price for the symbol.

• Order Acceptance When the incoming limit order has remaining quantity

after all possible matches have been executed, it will be added to the order

book for later fulfillment, and an “order accepted” message will be sent via the

exchange.

• Order Cancellation The order book locates the requested order by unique

order id, removes any remaining unfilled quantity from the order book, and

sends an “order cancelled“ message via the exchange.

One might reasonably expect the order book in a market simulation to include a

model for slippage. We assert that our platform produces realistic slippage naturally,

without the need for such a model. Orders directed to the exchange suffer dynamic

computation and network delays, during which time other orders are being executed.

2.3.5 The Trading Agent Class

The provided trading agent inherits from the basic agent class and represents the base

class for a financial trading agent. It implements a number of additional features upon

which subclassed strategy agents may rely:

• Portfolio The base trading agent maintains an equity portfolio including a cash

position. It automatically updates this portfolio in response to “order executed”

messages.

• Open Orders The trading agent keeps a list of unfilled orders that is automati-

cally updated upon receipt of “order executed” and “order cancelled” messages,

and when new orders are originated.

33



• Last Known Symbol Info The trading agent tracks known information about

all symbols in its awareness, including the most recent trade prices, daily close

prices (after the close), and order book spread or depth. These are automatically

updated when receiving related messages.

• Market Status Upon initially waking at simulation start, the trading agent

automatically locates an exchange agent, requests market open and close times,

and schedules a second wakeup call for the time of market open. It also main-

tains and provides a simple “market closed” flag for the benefit of subclassing

agents.

• Mark to Market The trading agent understands how to mark its portfolio

to market at any time, using its most current knowledge of equity pricing. It

automatically marks to market at the end of the day.

• Messages The trading agent knows how to originate all of the messages the

exchange understands, and to usefully interpret and store all of the possible

responses from the exchange.

• Logging The trading agent logs all significant activity: when it places orders;

receives notification of order acceptance, execution, or cancellation; when its

holdings change for any reason; or when it marks to market at the end of the

day.

2.4 ABIDES Implementation

The ABIDES simulator is implemented using Python, currently 3.7, and the data

analytical libraries NumPy [83], and Pandas [84]. It makes use of a virtual environ-

ment to provide platform independence and provides a straightforward deployment.

It is seamlessly built to facilitate quick reconfiguration of varying agent populations,

market conditions, exchange rules, and agent hyperparameters.
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Basic execution of the simulation can be as simple as: python abides.py -c

config, where config is the name of an experimental configuration file. Additional

command line parameters are forwarded to the configuration code for processing, so

each experimental configuration can add its own required parameters to a standard

interface. Complex experimental configuration can be performed directly within the

config file since it is simply Python code, however the inclusion of command line

arguments is beneficial for coarse grain parallelization of multiple experiments of the

same type, but with varied simulation parameters.

A typical configuration file will specify a historical date to simulate and a simula-

tion start and stop time as nanosecond-precision timestamps. It will then initialize a

population of agents for the experiment, configuring each as desired. For example, an

experiment could involve 1,000 background agents (perhaps Zero Intelligence agents

or Heuristic Belief Learning agents), 100 high-frequency trading agents, and one agent

designed to create a market price impact by placing a very large order, with various

initialization parameters to control their behavior. Each agent will at least be given a

unique identifier and name. The configuration file will also construct a latency matrix

(pairwise between all agents at nanosecond precision) and cubic network jitter model

which will be applied to all inter-agent communications. If a “data oracle”, a utility

with access to a data source outside the simulation, is required for the experiment,

the configuration file will initialize one. Finally a simulation kernel will be initialized

and run, passing it the agent population, oracle, and other simulation parameters.

In its current form, ABIDES completes simulation of 1,000 typical “ping pong”

agents that each send a single message to all other agents, and then respond to all

incoming messages (for a total of approximately two million messages) in 3 minutes

18 seconds including all setup, overhead, and teardown, at a kernel processing rate of

10,230 events per second. Because the simulation is single-threaded, as many trials

can be run simultaneously as available memory and processing cores permit with
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relatively little performance degradation. For example, running two of the above ping

pong experiments simultaneously on the same computer increases the total runtime

by only four seconds. Similarly, a simulation of 1,000 Zero Intelligence (ZI) agents

participating in a full day of trading at a NASDAQ-like exchange, with a mean

market inter-arrival time of approximately one second, is completed in an average of

36 seconds total runtime. All simulation runtime data was collected on a notebook

computer with a 2.4 GHz Intel Core i5 processor and 16 GB RAM.

Note that there is nothing finance-specific about the bootstrapper, configuration

template, simulation kernel, or the basic agent class. All are appropriate for use in

any discrete event simulation.

2.4.1 Momentum Trading Agent

To highlight the simplicity of creating a functional trading agent in our simulated en-

vironment, we present the code for a basic momentum trader. It wakes each minute

during the day, queries the last trade price, projects a future price using linear re-

gression over a configurable last N data points, and places a market order based on

this projection. Following is the complete source, excluding import statements:
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class MomentumAgent ( TradingAgent ):

def __init__ (self , id , name , symbol , startingCash ,
lookback ):

super (). __init__ (id , name , startingCash )

self. symbol = symbol
self. lookback = lookback
self.state = " AWAITING_WAKEUP "

self. trades = []

def wakeup (self , currentTime ):
can_trade = super (). wakeup ( currentTime )

if not can_trade : return

self. getLastTrade (self. symbol )
self.state = " AWAITING_LAST_TRADE "

def receiveMessage (self , currentTime , msg ):
super (). receiveMessage ( currentTime , msg)

if self.state == " AWAITING_LAST_TRADE " and \
msg.type == " QUERY_LAST_TRADE ":

last = self. last_trade [self. symbol ]
self. trades = (self. trades + [last ])[: self. lookback ]

if len(self. trades ) >= self. lookback :
m, b = np. polyfit (range (len(self. trades )),

self.trades , 1)
pred = self. lookback * m + b

holdings = self. getHoldings (self. symbol )

if pred > last:
self. placeLimitOrder (self.symbol , 100- holdings ,

True , self. MKT_BUY )
else:

self. placeLimitOrder (self.symbol , 100+ holdings ,
False , self. MKT_SELL )

self. setWakeup ( currentTime + pd. Timedelta ("1m"))
self.state = " AWAITING_WAKEUP "
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2.4.2 Noisy Background Agents

One long-term goal is to produce realistic but possibly noisy re-simulations of particu-

lar days in history to play out various “what if” scenarios. The idea is to populate the

simulation with a large number of trading agents that provide a realistic environment

into which experimental agents can be injected.

Our initial effort towards this goal involves the introduction of a data oracle with

access to fine-resolution historical trade information, and the creation of a set of

“background” agents which are able to request a noisy observation of the most recent

historical trade as of the agent’s current simulated time. The approach is meant to

reproduce the behavior of a trader whose beliefs regarding the fundamental value of

a stock are informed by interpretations of news and other incoming information. It

was inspired by the concept of a stock’s “fundamental value” as used in the work of

Wang and Wellman. [77] Our approach is similar, but it uses historical data as a

baseline rather than a mean-reverting stochastic process.

As background agents, we have implemented two common baseline agents from the

continuous double auction literature. The Zero Intelligence (ZI) trader [54] submits

random bids and offers to the market, usually drawn from some stochastic distri-

bution around a central value belief for the underlying instrument. The Heuristic

Belief Learning (HBL) agent [85] maintains a Bayesian belief distribution for likeli-

hood of successful order transaction by offered price, and uses this to place orders

which maximize expected surplus. HBL is based on the earlier GD agent [56], named

for its authors Gjerstad and Dickhaut. We implement HBL as described by Wang

and Wellman. [77] Each background agent trades only a single symbol on a single

exchange.

Figure 2.4 compares the behavior of 100 background agents interacting in ABIDES

with the actual intra-day price on two separate days in history. Ideally, we will

see a price history that closely resembles the day in history, with similar statistical
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(a) IBM: September 30, 2008 (b) MSFT: June 24, 2016

Figure 2.4: Simulated trades versus historical trades on two days.

properties.

2.5 Study: Market Impact

One area in which we believe simulation can add significant value to the current state

of knowledge in finance is more accurate models of the market impact of large trades.

Each order placed at the exchange potentially “moves the market” due to the nature of

the market microstructure within the order book: arriving orders can add liquidity at

a better price, altering the spread; or can match existing orders and remove liquidity

from the market. See Figure 2.5 for an example of mechanical market impact.

Models that rely on historical data encounter limitations stemming from the in-

ability to repeat history while introducing an experimental change and allowing sub-

sequent events to be altered by that change. Models can attempt to compare “similar”

days in history, but no two market days are ever the same.

If one could instead create a multi-agent simulation of a particular date in history

such that a near approximation of historical trades emerged in the absence of any sig-

nificant change, but the trading agents would realistically react to any such changes,

a more accurate understanding of large trade impact could be attained. Here we
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Figure 2.5: Example of mechanical market impact.

present a preliminary investigation of this idea.

We begin each simulation with a population of background agents and at least

one exchange agent. For this experiment, we add a single experimental impact agent,

which simply places a single large market order at a predetermined time of day. The

experimental parameter for the agent is its “greed”; that is, the proportion of available

order book liquidity near the spread it consumes at the time of trade. For example,

a long impact agent with greed = 0.1 will place a market buy order for 10% of the

shares on offer.

Our experiment includes 100 background agents and one exchange agent handling

an order book for a set of symbols including IBM. In Figure 2.6, the blue line rep-

resents each trade made by our population of background agents in the absence of

an impact trader. The orange line shows each trade made by the simulated trading

agents given the introduction of a single impact agent with varying “greed”, acting one

time with one trade at 10:00 AM on September 30, 2008. Both series are smoothed

to improve visibility of the differences.

The impact trader has a clear effect on the market, despite the background agents’
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(a) MARKET BUY 1232 IBM (b) MARKET BUY 2874 IBM

(c) MARKET BUY 5338 IBM (d) MARKET BUY 7801 IBM

Figure 2.6: Market impact of trades on the same date at 10:00 AM.

central tendency to arbitrage the price toward historical levels, and the impact grows

larger proportionally with its market bid size. The change is particularly noticeable

in the cyclical peaks of the auction. Due to the price elevation it caused, the impact

trader’s total profit increased with the size of its bid from an average of $2,633 with

greed = 0.3 to $12,502 with greed = 1.9. However its profit per share declined from

$2.14 to $1.60. We found a correlation between profit per share and trade size of

r = −0.31 across sixty experimental trials.

It is useful to consider these market impacts in aggregate across multiple ex-

perimental examples. ABIDES makes it easy to produce study plots from logged

simulation data. Figure 2.7 shows a time-aligned event study of many impact trades
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(a) Impact agent with greed 0.5 (b) Impact agent with greed 0.1

Figure 2.7: Market impact event studies.

at different times, on different days, to illustrate the range of likely price effects after

the time of impact.

2.6 Study: High-Frequency Trading

A major aim of ABIDES is to provide the ability to conduct experiments that require

information, like trader identity and location, that is not available in public stock

market data. We illustrate that capability in a second empirical study.

There is a pervasive assumption that low-latency access to an exchange is a key

factor in the profitability of many high-frequency trading strategies. This belief is

evidenced by the “arms race” undertaken by certain financial firms to co-locate with

exchange servers. To the best of our knowledge, this assumption has not been empir-

ically tested for a continuous double auction market with a single exchange similar

to the New York Stock Exchange. In this study, we investigate the relationship be-

tween latency of access to order book information and profitability of trading agents

exploiting that information, as well as the impact on similar agents.

Lawrence Harris described three types of stylized traders relevant to market mi-

crostructure trading: liquidity traders that make short-term predictions based on
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observed quotes, informed traders that place orders aggressively to monetize their

knowledge advantage, and value-motivated traders that place less aggressive orders

to be filled only if the price reaches their notion of a fair value. [86] Our study

includes simulated versions of these stylized strategies: ZI agents with a minimum

profit requirement as value-motivated traders, directional ZI agents that always bet

on fundamental reversion to the mean as informed traders, and order book imbalance

(OBI) agents as liquidity traders.

It is important to note that liquidity traders have no opinion about the “correct”

value of a stock. They participate in anticipation of profit by observing the order

flows in the market for clues that suggest short-term price movement arising from the

market microstructure itself. In keeping with the spirit of liquidity trading, our OBI

agents are unable to observe the exogenous price-time series (fundamental) used by

the background traders. Instead, they track what proportion of total liquidity near

the spread is on the buy side of the limit order book:

I =
∑
b∈B Vb∑
o∈O Vo

(2.1)

where B is the set of visible bid orders, O is the set of all visible orders, and V

represents the share volume of a particular order. For example, when the indicator

I = 0.5, liquidity is equally distributed between the two sides of the book, and when

I = 0.6 there is 50% more bid than ask liquidity. The agent enters a directional trade

when I > 0.5 + H or I < 0.5 − H, where H is a configurable entry threshold, and

exits the directional trade based on a trailing stop at configurable distance D applied

to the same indicator (not the midpoint stock price). The order book depth (level)

L at which to consider liquidity provision to be a positively-correlated signal is also

a configurable parameter.

Our experimental HFT market is populated with 1,000 background traders, split
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(a) Preliminary exploration: profit vs abso-
lute latency of liquidity (OBI) traders. Note
the anomaly at zero profit.

(b) Experiment 1: profit of experimental
trader vs log scale latency. Blue line: con-
trol trader.

Figure 2.8: High-frequency trading empirical results: Preliminary exploration and
Experiment 1.

evenly between the value-motivated and informed trader types described in Approach.

For those agents requiring an exogenous price-time series, we employ a sparse mean-

reverting fundamental as described in Byrd [87]. This mathematical series is a con-

tinuous form of the discrete mean reverting process described in Wah et al [57] with

the addition of a second variance process which is applied at lower frequency but

greater magnitude to represent infrequent “news shocks” that can change a trader’s

belief about the proper valuation of the stock.

As shown in Figure 2.8a, in a preliminary experiment of several hundred market

days using the described background population and ten OBI traders having random

latency and no particular control, we find a strong inverse Pearson correlation of

r = −0.775 between the absolute latency of OBI traders and their profit at market

close. This matches our intuition that lower latency should lead to higher profit for

this strategy. However, there is an interesting gap in the plot at low latency values,

with a cluster of positive profit agents and a cluster of negative profit agents, and

virtually no agents with profit close to zero. A desire to understand this gap motivated

the design of our two subsequent experiments.
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2.6.1 Experiment 1: Absolute Latency with Control

The background agents are geographically situated around the United States relative

to the location of the New York Stock Exchange. The minimum communication la-

tency of each individual background agent is drawn from a uniform distribution of

21µs (roughly the other side of Manhattan) to 13ms (around Seattle, Washington).

There are ten OBI liquidity traders. One, serving as the control, is always placed

at the minimum latency permitted to background agents. Eight are randomly dis-

tributed in the same range as the background agents. The final liquidity trader is

considered the experimental agent for Experiment 1: its geographic location (latency)

is systematically varied to measure its impact on the returns of all liquidity traders.

All OBI liquidity traders use an entry threshold of H = 0.17, a trailing stop distance

of D = 0.085, and a book depth significance parameter of L = 10.

The experiment includes 600 market simulations, each representing a full market

day from 9:30 AM to 4:00 PM at nanosecond resolution. Each of twenty random

market days (i.e. different exogenous price-time fundamental series) are repeated

with the experimental agent varied among thirty positions, ranging from exchange

colocation (approx. 333ns) to Seattle, Washington (approx. 13ms). Using these

6,000 full-day observations, we show in Figure 2.8b a box-plot representation of the

relationship between log-scale latency in nanoseconds and final profit for the single

experimental liquidity trader at each tested location. The mean profit per tested

latency is marked with a tick, the box extents mark one standard deviation, and the

whiskers mark two standard deviations. Recall that a control liquidity trader (blue

line) is always placed at the minimum permitted latency outside of co-location in an

effort to explain the zero profit gap in the preliminary experiment.

Let X be the experimental liquidity trader with latency LX and profit PX , and

C be the control liquidity trader with fixed latency fixed latency LC and profit PC .

We now note two new observations. First, ∀LX < LC : PX ⊥ LX . That is, once the
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absolute latency of the experimental trader is lower than that of the control trader, its

latency does not affect its profit. Second, as soon as LX > LC there is an immediate

transfer from PX to PC .

These results together suggest that latency rank among the competing liquidity

agents is more significant to profit outcomes than absolute latency values. This could

explain the gap in the preliminary plot: Depending on whether some other agent was

even closer to the exchange, a given low latency trader might see very different results.

However, we cannot support this claim based solely on Experiment 1, because the

location of the other liquidity traders (non-experimental, non-control) on each market

day is not considered.

2.6.2 Experiment 2: Latency Rank

The same agent population from Experiment 1 is randomly geolocated with latency

ranging from exchange colocation (333ns) to Seattle, Washington (13ms), with the

intent to examine latency rank independent of absolute latency. We again produce

6,000 observations of OBI latency and profit, this time for 600 different simulated

market days. The experiment is otherwise similar to Experiment 1.

For this experiment, absolute latency and profit were recorded for all agents.

Latency rank was also recorded among the experimental agents. For example, the

liquidity trader closest to the exchange on a given day would be latency rank 1, the

second closest rank 2, and so on. In Figure 2.9a, we present a box-and-whisker plot of

aggregated profit by latency rank among the OBI liquidity agents. Over the course of

a simulated trading day, the liquidity trader closest to the exchange receives mean and

std marked-to-market profit of $2,681.04 and $1,389.37. The second closest liquidity

trader receives mean and std profit of $-3,297.30 and $1,661.30, and the liquidity

trader furthest from the exchange received mean and std profit of $-24,473.64 and

$-6,449.97. This clearly supports the notion that latency rank is a key factor driving
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(a) Profit of multiple trials with liquidity
traders distributed randomly, identified by
latency rank order within each trial.

(b) Profit of multiple trials with liquid-
ity traders distributed randomly showing
ranked and absolute latency.

Figure 2.9: High-frequency trading empirical results: Experiment 2. Randomly situ-
ated agents reported by latency rank, with lower rank traders closer to the exchange.

the allocation of profit within this trading strategy population.

A potential confounding factor arises from absolute latency. If the lowest ranked

OBI agent were also always close to the exchange, absolute latency would present

a competing explanation for the profit differential. In Figure 2.9b, we plot end of

day profit against log-scale nanosecond latency, with the addition of a zero profit

line. Each point represents one liquidity trader’s result for one simulated market

day, and each point is color-coded according to that trader’s latency rank for that

simulated market day, with red being rank 1, blue being rank 2, and so on. Ranks 6-

10 are aggregated into a single black grouping. Because this plot shows both absolute

latency and latency rank together, we can clearly see that the nearest liquidity trader

(red) on a given market day does well even when situated very far from the exchange,

and liquidity agents in ranks 2 and 3 perform poorly even when relatively near the

exchange.

Taking Figures 2.9a and 2.9b together, we can summarize that: The liquidity

trader closest to the exchange rarely loses money, and the second closest liquidity

trader rarely makes money, regardless of their absolute distance from the exchange.

Our initial concern regarding the preliminary experiment’s zero-profit gap proved
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correct. While there was a strong inverse correlation between absolute latency and

profit, the excess profit of some liquidity traders is better explained by latency rank.

In particular, the liquidity strategy is only consistently profitable for the single agent

nearest the exchange. Thus it appears the HFT “arms race” among firms competing

to be slightly closer to the exchange is indeed rational. It would not be possible

to reach this conclusion using public market data due to the lack of trader identity,

strategy, or location, but we can do so in the context of ABIDES.

2.7 Conclusion

In this chapter, I presented the design and implementation of ABIDES, a high-fidelity

equity market simulator that provides an environment within which complex research

questions regarding trading agents and market behavior can be investigated. I demon-

strated how previous intra-day transaction histories are noisily reproduced by a pop-

ulation of interacting background trading agents communicating with an exchange

agent. These background agents are designed to provide a realistic market envi-

ronment into which experimental agents can be injected. I also explored ABIDES’

potential through two small empirical studies: The first illustrates how large market

orders create a cascading impact that affects prices over a significant period of time;

the second validates the intuition that high-frequency traders nearer to the exchange

will take profit from similar traders even slightly more distant.

ABIDES makes complementary contributions to existing simulations by enabling

experimental focus on the “market physics” of the real world including:

• Support for continuous double-auction trading at the same nanosecond time

resolution as real markets such as NASDAQ;

• Ability to simulate specific dates in market history with gated access to histor-

ical data;
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• Variable electronic network latency, a realistic cubic network jitter model, and

agent computation delays;

• Requirement that all agents intercommunicate solely by means of standardized

message protocols;

• Easy implementation of complex agents through a full-featured hierarchy of

base agent classes.

These features enable an expanded range of experimental studies. I believe ABIDES is

also the first full-featured, modern market simulator to be shared with the community

as an open source project. With its robust and realistic simulation environment,

I hope that ABIDES will allow responsible practitioners to better anticipate the

potential consequences of deploying complex, intelligent trading agents.

In the next chapter, I will further extend ABIDES’ capabilities to a new domain:

the simulation of a geographically-distributed collection of agents collaborating under

a privacy-preserving federated learning protocol.
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CHAPTER 3

DIFFERENTIALLY PRIVATE SECURE MULTI-PARTY

COMPUTATION FOR FEDERATED LEARNING IN FINANCIAL

APPLICATIONS

In this chapter, we adapt the open-source ABIDES simulation framework presented in

Chapter 2 to the domain of federated learning, an approach to distributed computing

that enables a population of clients, working with a trusted server, to collaboratively

learn a shared machine learning model while keeping each client’s data within its

own local systems. A high-level introduction to federated learning can be found

Section 1.2.1. Here, we first present a more detailed overview of federated learning,

differential privacy, and secure multi-party computation suitable for the informed

generalist, and then a more mathematical view of the underlying techniques. We

discuss our approach to privacy-preserving federated learning (PPFL) in detail and

present timing, accuracy, and privacy results for a set of extensive experiments in

simulation.

3.1 Overview

Modern financial firms routinely need to conduct analysis of large data sets stored

across multiple servers or devices. A typical response is to combine those data sets into

a single central database, but this approach introduces a number of privacy challenges:

The institution may not have appropriate authority or permission to transfer locally

stored information, the owner of the data may not want it shared, and centralization

of the data may worsen the potential consequences of a data breach.

For example, the mobile app ai.type collected personal data from its users’ phones

and uploaded this information to a central database. Security researchers gained
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access to the database and obtained the names, email addresses, passwords, and

other sensitive information of 31 million users of the Android version of the app.

Such incidents highlight the risks and challenges associated with centralized data

solutions. [10]

In this section, we motivate our approach while providing an extensive non-

technical overview of the underlying techniques.

3.1.1 Federated Learning

One approach to mitigate the mentioned privacy concerns is to analyze the multiple

data sets separately and share only the resulting insights from each analysis. This

approach is realized in a recently-introduced technique called federated analysis. [16]

Federated learning, already adopted by large companies like Google, allows users to

share insights (perhaps the parameters of a trained model) from the data on their

laptops or mobile devices without ever sharing the data itself, typically as follows:

1. Users train a local model on their individual data.

2. Each user sends their model weights to a trusted server.

3. The server computes an average-weight shared model.

4. The shared model is returned to all of the users.

5. Users retrain a local model starting from the shared model.

For instance, email providers could use federated learning to reduce the amount

of spam their customers receive. Instead of each provider using its own spam filter

trained from its customers’ reported spam email, the providers could combine their

models to create a shared spam-detection mechanism, without sharing their individ-

ual customers’ reported spam emails. For a survey of recent advances in federated

learning, see Kairouz et al. [19]
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It is still possible, however, for a malicious party to potentially compromise the

privacy of the individual users by inferring details of a training data set from the

trained model’s weights or parameters [13, 12]. It is important to protect sensitive

user information while still providing highly accurate inferences.

3.1.2 Differential Privacy

Simply anonymizing data is no longer enough to guarantee the privacy of individuals

whose information has been collected, due to the increasing prevalence of database

reconstruction attacks and re-identification from correlated data sets.

Differential privacy [14, 88] can help prevent such reverse engineering by adding

noise to the input data set, to intermediate calculations, or to the outputs. For

example, in Step 2 of the Federated Learning process above, each client can add

randomly-generated values to its model weights before transmission. Then, even if

the data is reverse engineered, it is not the exact data of any user.

More formally, differential privacy is a mathematical concept that guarantees sta-

tistical indistinguishability for individual inputs by perturbing values. The use of

differentially-private machine learning algorithms in centralized settings is widely

discussed in the literature, and the technique has been adopted by major compa-

nies; for example, Apple uses it in web search auto-completion. The application of

differential privacy adds a layer of randomness so that adversaries with additional

information still have uncertainty over the original value. There is an obvious trade-

off: adding randomness to the collected data preserves user privacy at the cost of

accuracy. Proper application of differential privacy ensures that meaningful insights

can still be derived from the aggregated data.
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3.1.3 Secure Multi-Party Computation

Achieving a desired level of differential privacy can require adding a great deal of

accuracy-reducing noise into the mix. An alternative method which guarantees pri-

vacy without compromising accuracy is secure multi-party computation (MPC) [89].

Using MPC, multiple parties collaborate to compute a common function of interest

without revealing their private inputs to other parties. An MPC protocol is considered

secure if the parties learn only the final result, and no other information.

For example, a group of employees might want to compute their average salary

without any employee revealing their individual salary to any other employee. This

task can be completed using MPC, such that the only information revealed is the

result of the computation (i.e. the average salary). If each pair of employees holds

a large, arbitrary, shared number, such that one employee will add it to their salary

and the other will subtract it, then the result of the computation will not change, but

no one will know any employee’s real salary.

The same idea can be applied to federated learning by having the parties use

a secure weighted average protocol, under which each client encrypts their model

weights, but the server can still calculate the weighted average on the encrypted

data.

3.1.4 Secure Federated Learning

Considering all of the above, we arrive at the idea of secure federated learning, in

which clients encrypt the model weights sent in Step 2 of Federated Learning. As-

suming the encryption scheme is chosen appropriately, the server will still be able to

perform the necessary calculation on the encrypted data, but will not be able to dis-

cover the original weights for any user. A recent line of investigation has constructed

secure federated learning using techniques from MPC. [16, 90]

MPC protects the computation inputs from exposure to the server, but the exact
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final result is revealed to all parties by design. Unfortunately, for some types of

computation, the final result can be used to reveal information about the inputs. For

example, in the case of employees computing their average salary, once the result

is known, if all but one of the employees work together, they can easily determine

the salary of the final employee given the output (average salary). A secure learning

approach based only on MPC may not be ideal for these cases.

By applying differential privacy on top of MPC, we can construct a federated

learning system that protects from even this type of extreme collusion attack. If each

client adds noise to its model weights before sending, the final calculation will still

be accurate within known bounds, but we will eliminate the possible leakage of any

inputs from the output. In a solution which used only differential privacy, the server

would know the “noisy” private weights of each user. In the solution which combines

MPC and differential privacy, the noisy weights sent to the server are also encrypted

such that the server can calculate the result, but cannot infer anything about even

the noisy weights of any particular user. The system is thus now fully private.

3.1.5 Differentially Private Secure Multi-Party Computation for Federated Learning

A protocol such as the one presented here, which combines federated learning, differ-

ential privacy, and secure multi-party computation, should be of particular interest in

the finance space. These firms operate under substantial regulation with respect to

the use, protection, and disclosure of client information. Data sharing, even within a

firm, is thus often difficult to achieve, with negative impacts in the ability to harness

new techniques in artificial intelligence (AI) to improve key performance indicators

at the firm, such as accurate estimation of loan failure rates, reduction of financial

market transaction costs, or optimization of product pricing.

This combination approach can improve internal data protections while still en-

abling the application of powerful AI to the company’s data. Now each client, server,
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or device’s data can be kept securely in its originating silo, where local model training

can safely occur, and the trained models can be shared and combined in an encrypted

and differentially private manner. The data silos can thus each contribute to the over-

all organization learning an accurate, useful, and directly applicable model without

increasing the exposure risk of any client’s data. And while no firm wants to give

away a competitive advantage, the protocol can also improve models through secure

inter-firm collaboration to lower market execution costs or more accurately price the

risk component of a loan product, benefiting all participants.

We demonstrate our approach to differentially private secure multi-party aggre-

gation for federated learning by application to a well-known credit card fraud data

set [91], and show that client populations of varying size can collaboratively build a

fraud detection model without sharing or revealing their local data. We note that

Jayaraman et al [90] approached the same problem with heavier cryptography tools,

on a data set that is not finance related, and without an end-to-end simulation of the

protocol.

The key contributions of this paper are to introduce the finance community to

recent advances in secure federated learning, to provide a complete open-source plat-

form on which such protocols can be developed, and to demonstrate a protocol that

enables secure learning of a shared fraud detection model in at most 30 protocol

iterations on an extremely class-imbalanced real world data set.

3.2 Background and Related Work

In this section, we provide a formal description of the important components under-

lying our approach.
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3.2.1 Secure Multiparty Computation

Consider n parties P1, . . . , Pn that hold private inputs x1, . . . , xn and wish to compute

some arbitrary function (y1, . . . , yn) = f(x1, . . . , xn), where the output of Pi is yi.

Secure Multi-Party Computation (MPC) enables the parties to compute the function

using an interactive protocol, where each party Pi learns exactly yi, and nothing

else. Seminal results established in the 1980s [89] show that any computation can be

emulated by a secure protocol.

It is important that the security of the protocol be preserved even in the presence

of adversarial behavior. For example, several leading banks might collaborate to learn

an improved model to minimize the transaction costs associated with fulfilling client

orders in a financial market. The privacy of each honest bank’s individual client

orders should be preserved even if other banks collude by pooling their information,

revealing their encryption offsets, or deviating from the specified protocol.

In this work, we focus on a semi-honest adversary who follows the protocol speci-

fication, but may attempt to learn honest parties’ private information from the mes-

sages it receives, or to collude with other parties to learn private information. This

is the same level of security contemplated in prior works in our setting.

3.2.2 Differential Privacy

Differential privacy states that if there are two databases that differ by only one

element, they are statistically indistinguishable from each other. In particular, if an

observer cannot tell whether the element is in the dataset or not, she will not be able

to determine anything else about the element either.
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Definition 1. (ε-differential privacy [92]) For any two neighboring datasets D1 ∼

D2 that differ by one element, a randomized mechanism A: D → O preserves ε-

differential privacy (ε-DP) when there exists ε > 0 such that,

Pr [A(D1) ∈ T ] ≤ eε Pr [A(D2) ∈ T ] (3.1)

holds for every subset T ⊆ O, where D is a dataset, T is the response set, and O

depicts the set of all outcomes.

The value ε is used to determine how strict the privacy is. A smaller ε gives

better privacy but worse accuracy. Depending on the application ε should be chosen

to strike a balance between accuracy and privacy.

Definition 2. (Global Sensitivity [92]) For a real-valued query function q : D → R,

where D denotes the set of all possible datasets, the global sensitivity of q, denoted

by ∆, is defined as

∆ = max
D1∼D2

|q(D1)− q(D2)|, (3.2)

for all D1 ∈ D and D2 ∈ D .

The sensitivity is defined as the maximum effect of any single input of the function

on the output, and should be concealed to preserve privacy.

Laplacian Mechanism

One of the most well-known techniques in differential privacy is the Laplacian mecha-

nism, which uses random noise X drawn from the symmetric Laplacian distribution.

The zero-mean Laplacian distribution has a symmetric probability density function

f(x) with a scale parameter λ defined as:

f(x) = 1
2λe

− |x|
λ . (3.3)
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Given the global sensitivity, ∆, of the query function q, and the privacy parameter ε,

the Laplacian mechanism A uses random noise X drawn from the Laplacian distri-

bution with scale λ = ∆
ε
. The Laplacian mechanism preserves ε-differential privacy

[14].

3.2.3 Training Local Logistic Regression Classifiers

Logistic regression is a machine learning algorithm used to solve the problem of binary

linear classification.

Assume one of n parties is called Pi and has a local data set consisting of instances

x(i) = (x(i)
1 , x

(i)
2 , ...., x

(i)
m ), where m is the number of features, and their corresponding

labels y(i).

Party Pi uses its training examples (x(i), y(i)) to learn a logistic classifier with

weights wi. The weights are obtained by solving the following optimization problem:

wi = arg min
w

1
ti

ti∑
k=1

log(1 + e−y
(i)
k
f(x(i)

k
)), (3.4)

where f(x(i)
k ) = wTx

(i)
k and ti is the number of training examples of Pi.

In order to minimize the loss function, we make use of gradient descent, an

iterative optimization algorithm, calculating the optimal w iteratively as wj+1 ←

wj − α∇L(wj), where α is the learning rate, j is the iteration, w0 = 0, and ∇L

is the gradient of the loss function. Our local logistic regression is a vector-based

re-implementation of Jayaraman et al. [90]

3.2.4 Differentially Private Federated Logistic Regression using Output Perturbation

by adding Laplace noise

Privacy-preserving federated learning allows a large number of parties to learn a

model while keeping their local training data private. Parties first train local models
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on their local data and coordinate with a server to obtain a global model. Given n

parties, let wi, for i ∈ 1 to n, represent the local model estimator after minimizing

the objective function.

Then W = 1
n

∑n
i=1wi + η, where η is the differentially private noise added to the

cumulative model.

According to Jayaraman et al [90], for 1-Lipschitz the global sensitivity for a

multi-party setting is 2
n∗k∗α , where k is the size of the smallest dataset amongst the

n parties, and α is the regularization parameter. Hence, η = Laplace( 2
n∗k∗α∗ε), where

ε is the privacy loss parameter.

In our protocol, each client will add noise to the weights of the trained local model.

3.3 Approach

We illustrate the application of federated learning with differential privacy and se-

cure multi-party computation to a problem of collective interest in finance, that of

accurately identifying fraudulent credit card transactions. This application typifies

the case where multiple firms would individually and collectively profit from working

together to eliminate the common problem of fraudulent purchases, as the occurrence

of fraud benefits none of the lawful parties in the processing chain.

The current limitation to this type of cooperation is data sharing. The involved

companies would not wish to share their local training data, that is their entire

history of fraudulent and non-fraudulent transactions, including potentially sensitive

customer and merchant information, and in many cases would be legally prohibited

from doing so. A secure federated learning protocol could satisfy the firms and their

regulators that data exposure risks have been sufficiently minimized to permit this

mutually beneficial collaboration. Here we describe the key aspects of our approach.

As described in the Overview, federated learning is an iterative algorithm that

follows a simple, repetitive process. The server chooses some users to produce an
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P1(w1) P2(w2)

P3(w3)

A

(w̄1 + w̄2 + w̄3)/3

r12 = r21

r13 = r31 r32 = r23

w̄1
w̄3 w̄2

Figure 3.1: Secure 3-party weighted average protocol where w̄1 = w1 + r12 + r13, w̄2 =
w2 − r21 + r23, w̄3 = w3 − r31 − r32.

updated model. Those users train a model on their individual data, then send the

model updates to the server. The server aggregates the updates to construct a new

global model and shares it with all users.

In this paper, we consider logistic regression as the local learning method, and

each client update includes the weights of that logistic regression. The server receives

the weights from all clients at each iteration and computes the new global model using

the average of the client updates for each weight. Recall also from the Overview the

literature demonstrating that the server can infer some private client data from the

trained model weights, which is clearly undesirable.

3.3.1 Eliminating weight leakage

In order to hide each client’s model weights from the server, we use the technique of

secure multi-party computation (MPC), in which the clients work together to send

their individual updates to the server in an encrypted manner. In particular, our

secure weighted average protocol running across n clients is based on the protocol of

Bonawitz et al [16].

Informally, this can be thought of as each pair of clients sharing a common source
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of randomness known only to that pair. When communicating weights to the server,

one client within each pair will add, and the other will subtract, the (same) next value

in the shared randomness. In this way, the averaged model produced by the server

will be identical to a model produced without MPC, but each weight arriving from

each client has n− 1 large random numbers added to or subtracted from it, removing

the server’s ability to accurately reconstruct any client’s actual model weights. We

describe the process formally in Section 3.3.3.

Our protocol includes the ability to reuse the common randomness for each iter-

ation of logistic regression, so the clients will only require pairwise communication

once via the server, at the start of the protocol. In subsequent iterations, each client

only has to communicate with the server. A 3-party example is given in Figure 3.1.

Note that the weights are encrypted via the use of the common randomness r. The

values w̄ reveal nothing about the weights w.

3.3.2 Eliminating weighted average leakage

Using our protocol, all information about every client’s weights is completely hidden

from the server. However, the shared learned model can still expose some information

about individual client weights and subsequently a client’s local data set.

Imagine a scenario in which n−1 out of the n clients collude or the server chooses

n − 1 adversarial parties. The shared computation result is simply the per-weight

average of each client’s encrypted weights. The n − 1 colluding clients of course

know their correct individual weights, but they also know all of the encryption added

to the weights, because each component of the non-colluding client’s encryption oc-

curred with a colluding counterparty who knows the values added or subtracted. The

colluding clients, working together, can thus recover the exact model weights of the

“honest” client.

We would like to avoid client data exposure even in the face of such collusion. To
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Protocol 1 Privacy-Preserving Federated Logistic Regression Protocol ΠPPFL

The protocol ΠPPFL runs with parties P1, . . . , Pn and a server S. It proceeds as follows:
Inputs: For i ∈ [n], party Pi holds input dataset Di.
Public Parameters: (G, g, q) generated by G(1λ) and modulo p.
ΠPPFL.Setup(1λ):

Round 1: Each party Pi for i ∈ [n] proceeds as follows:

• Choose n secrets ai,1, . . . , ai,n uniformly and independently at random from
Zq and compute (pki,1, . . . , pki,n) = (gai,1 mod p, . . . , gai,n mod p).

• Generate a Laplace random variable ηi from Laplace( 2
n∗len(DSi)∗α∗ε).

• Each party Pi sends pki,j to the Server who forwards pki,j to party Pj.

Round 2: Each party Pj for j ∈ [n] proceeds as follows:

• Upon receiving all values (pk1,j, . . . , pkn,j), compute the shared common
keys ri,j for all i ∈ [n] as follows:
(a) Using the secret aj,i compute ci,j = cj,i = (pki,j)aj,i = (gai,j)aj,i mod p.
(b) Let c1,j, . . . , cn,j be the set of all common keys. Use a key-derivation

function and set ri,j = rj,i = H(ci,j)

Given the above setup, we can compute the federated logistic regression model:
ΠPPFL.WeightedAverage(Di, {ri,j}j∈[n]):

Round 1: Each party Pi proceeds as follows:

• Compute the weights Wi, using Equation (1), of the local logistic classifier
obtained by implementing regularized logistic regression on input Di.
The next steps are repeated per weight. Without loss of generality we
describe the algorithm for a single weight, denoted by wi.

• Compute and send yi to the server.

yi := wi +
n∑

j=i+1
ri,j −

i−1∑
k=1

rk,i + ηi mod p .

Round 2: The server sends W =
(∑n

i=1 yi mod p
)
/n to all parties.

ΠPPFL.Output(1λ,W ): Each party Pi upon receiving W runs the next iteration of
the logistic regression repeating ΠPPFL.WeightedAverage(1λ).
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this end, we can apply differential privacy within the MPC protocol. In addition to

the pairwise encryption, each client will also independently generate and add random

“noise” to each of its model weights. Now, even if n− 1 clients collude, they will only

be able to recover the differentially private “noisy” weights of the honest client, instead

of the exact weights. The privacy loss parameter in differential privacy is typically

called ε (epsilon) and is inversely proportional to the amount of noise added. Thus

there is a trade-off: lower values of epsilon (more “noise”) better prevent inference of

private data during a collusion attack, but eventually interfere with accurate learning

of the shared model.

3.3.3 Secure Weighted Average Protocol

In this section we formally describe our weighted average protocol ΠPPFL, depicted in

Section 3.3.1 Protocol 1, for secure logistic regression performed by a set of clients

(P1, . . . , Pn) and a server S. All operations are performed modulo some bound p.

During setup, every pair of parties Pi and Pj will share some common randomness

ri,j = rj,i. In the online weighted average phase, client Pi sends its weights masked

with these common random strings, adding all ri,j for j > i and subtracting all ri,k

for k < i. That is, Pi sends to server S the following message for its data xi:

w̄i := (wi +
n∑

j=i+1
rij −

i−1∑
k=1

rki) mod p (3.5)

To establish common randomness, each pair of client parties run the Diffie-Hellman

Key agreement protocol [93] communicating via the server. The cryptographic prim-

itives used in Protocol 1 include:

• An algorithm G(1λ), where λ is the security parameter, that outputs a repre-

sentation of a cyclic group G of order q (with ||q|| = λ) for which the discrete

logarithm problem is believed to be hard. Recall that a group G is cyclic if there
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exists a generator g such that {g0, g1, . . . , gq−1} = G. Moreover, the discrete

logarithm problem is believed to be hard if for every probabilistic polynomial

time adversary A, there exists a negligible function negl(·) such that:

Pr
x←Zq

[A(G, g, q, gx) = x] = negl(λ)

In other words, it is hard to guess x given gx for particular groups G.

• A key derivation function H : G→ {0, 1}λ. It is assumed that if h is distributed

uniformly in G, then H(h) is distributed uniformly in {0, 1}λ.

• A pseudorandom generator with double expansion, i.e., G : {0, 1}λ → {0, 1}2λ.

It is assumed that for every distinguisher D there exists a negligible function

negl(·) such that:

∣∣∣∣∣ Pr
s←{0,1}λ

[D(G(s)) = 1]− Pr
r←{0,1}2λ

[D(r) = 1]
∣∣∣∣∣ = negl(λ)

Protocol 1 is described for a single iteration of the logistic regression. To perform

the next iteration the algorithm ΠPPFL.Setup is not repeated. Instead, the parties can

use the common keys ri,j to generate different common keys for the next iteration.

More specifically, in the first iteration of the logistic regression we use a pseudorandom

generator (r′i,j, s) = G(ri,j) and update the common randomness ri,j := r′i,j. For the

next iteration, we run G(s) to obtain a new r′i,j and the seed for the next iteration and

so on. Thus the parties need to run the exchange once at the onset of the training.

Our secure weighted average protocol is based on the protocol of Bonawitz et al [16]

and its security follows in the same way.
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3.4 Experiments

In order to evaluate our method, we implement it in ABIDES, the agent-based in-

teractive discrete event simulation framework described in Chapter 2. Many prior

works on federated learning calculate the running time of their protocol ignoring the

communication time to the server, but with ABIDES we are able to simulate the

latency of the distributed clients’ communication.

3.4.1 Experimental Dataset and Method

To evaluate the performance of the protocol on real-world data, we selected the Kaggle

Credit Card Fraud (2013) dataset [91], which provides transformed features that

represent the first 26 principal components of unknown original features. Two original

features are provided without transformation: the elapsed time from the start time

of the dataset and the amount of the transaction. We used the Amount column

without transformation, but excluded the Time column because our learning method

does not attempt to identify temporal clusters or patterns. We also added a constant

intercept feature to permit greater flexibility in the regression. The dataset provides

a categorical y variable identifying whether the transaction was judged fraudulent

(True) or not (False). Of the 284,807 records, only 492 (less than 0.2%) are labelled

fraudulent, representing an extremely unbalanced dataset.

We loaded the dataset once at the start of each complete simulation of the protocol

and performed a randomized train-test split (75% vs 25%). At each protocol iteration,

each client selected 1000 rows of training data at random as its “local” data for that

iteration. The holdout test data was the same for all clients, and no client was ever

permitted to train on it. The clients then implemented Protocol 1 as described in the

Approach section, attempting to collaboratively learn a credit card fraud detector,

despite each individual client having insufficient data (possibly even zero fraudulent
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Table 3.1: Total protocol time, mean server time per iteration, and mean time per
user per protocol iteration in milliseconds for 30 protocol iterations, within which
each client runs 250 iterations of local regression training.

User
Users Total Server DH Setup Training Encrypt

100 4148.9 16.897 6.721 86.152 2.231
200 6371.7 33.573 13.388 85.836 4.429
300 9575.1 50.893 20.156 85.469 6.558
400 12931.0 67.682 27.018 86.207 8.745
500 17008.6 85.432 33.944 86.305 10.874

transactions) to do so. Under Protocol 1, the collaboration is performed in such a

way as to not reveal any information about a client’s data, using differential privacy

within a secure multi-party computation.

3.4.2 Protocol Timing Results

The use of simulation to evaluate the protocol allowed us to construct an accurate

model of how long it would take to run such a protocol in the real world. To accom-

plish this, each simulation client timed each section of its own part of the protocol,

capturing the actual time taken to run the Diffie-Hellman setup (once), the encryp-

tion and privacy steps (every iteration), and the local model training step (every

iteration). The service agent captured the actual time taken to receive and store each

client’s encrypted model each iteration and to combine the models once per itera-

tion. Our simulation also handles variable communication latency, with each pair of

agents having a minimum latency plus a cubic “jitter” component that is randomly

generated per message.

In Table 3.1 we provide the timing results of the various steps of our protocol on

the credit card fraud dataset with all clients in different areas of New York City, as

well as the total (simulated) time required for all parties to complete the protocol

and produce a final shared model. Experiments were run for 30 iterations of Protocol
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Figure 3.2: Out of sample loss function by number of parties for different values of ε
privacy loss parameter.

1, within each of which each client runs 250 iterations of local regression training.

Each experiment was implemented in a single thread on a 24-core Intel Xeon X5650

at 2.6GHZ with 128GB RAM. Note that while the simulation is single-threaded, it

does track a separate current time for each agent, uses the agent’s current time

when sending or receiving messages, and ensures that agents are not permitted to

time travel or perform multiple activities in an overlapping manner. We assert that

these times should therefore be a reasonable estimation of what would occur in a

complete, distributed implementation of the protocol. The time required to perform

each simulation, which is not the estimated real-world protocol time, ranged from

5 minutes for 100 parties to 28 minutes for 500 parties. We were able to run many

simultaneous simulations (one per core) on the same system with only a slight increase

to overall simulation time.

3.4.3 Protocol Accuracy Results

A key concern with the demonstrated protocol is that, while the secure multi-party

computation (MPC) component introduces no accuracy loss to the collaborative train-
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Figure 3.3: Out of sample Matthews Correlation Coefficient by number of parties for
different values of ε privacy loss parameter.

ing effort, the differential privacy component does in inverse proportion to the ε pri-

vacy loss parameter. In Figure 3.2, we show the loss function value on the holdout

test data using the securely-learned shared model at the end of the final protocol it-

eration. Smaller selections of the privacy loss parameter ε result in more uncertainty

about a client’s local weights when other parties collude to reveal them, but permit

better loss minimization for the same number of parties and protocol iterations. For

instance with 200 clients the training loss and model accuracy worsen dramatically

once ε < 5e−5.

Matthews Correlation Coefficient: Because of the extreme class imbalance

in the credit card fraud dataset, simple predictive accuracy would be a poor choice of

measure. The proper classification for 99.8% of the examples is False (not fraudulent),

therefore a naive classifier that always returns False would achieve a misleading 99.8%

accuracy of prediction.

We instead assess our approach using the Matthews Correlation Coefficient (MCC).[94]

MCC assesses binary classification performance even in the face of unbalanced output

classes by accounting for the size of the true negative prediction set: Information not
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captured by precision, recall, and the F-score.[95] MCC is a contingency method of

calculating the Pearson product-moment correlation coefficient and therefore has the

same interpretation. [96, 97, 98] For example, the MCC of the aforementioned naive

classifier would be zero, indicating no correlation between the predicted and actual

values.

Let C(M,D) represent the confusion matrix between binary classification model

M and data D, and recall that for classification output variable y, True indicates

fraud and False indicates a non-fraudulent transaction. We can then define MCC

for this problem as:

MCC(M,D) = TP × TN − FP × FN√
(TP + FN)(TP + FP )(TN + FP )(TN + FN)

(3.6)

where matrix entries TP = C(True, True), FP = C(True, False), TN = C(False, False),

and FN = C(False, True).

In Figure 3.3 we show the MCC of our method’s predictions with the correct

values. Smaller selections of privacy loss parameter ε are better for privacy, but

directly harm the accuracy of the learned model, so we cannot simply improve privacy

by making ε arbitrarily small! We note that having more parties participate in the

computation does permit lower values of ε while still producing an accurate shared

model. For all evaluated client population sizes, models trained under Protocol 1

with ε ≥ 5e−4 had similar mean accuracy to models trained with unsecured (“in the

clear”) federated learning.

3.4.4 Adversarial Data Recovery

We now consider that the untrusted server, or a group of other clients, may attempt

to recover the unencrypted model weights of an honest client party.
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Snooping Server

First suppose that the server, acting alone, attempts to infer the unencrypted weights

of a particular client. For a single model weight, the value transmitted by the honest

party h to the server is:

T = Wh + Ph +Rh (3.7)

where Wh is the honest party’s original weight, Ph is the differentially private noise

added by the honest party, and Rh = ∑
c∈C ±Rhc for the set of all other clients C.

Recall that for each client pair (h, c), one of them will add Rhc and the other will

subtract it.

The server has a real problem! It does not know any of the pairwise client values

that compose Rh. With 100 participating clients, a single client’s Rh is a summation

of 99 values randomly generated from the range (0, 232). The value of Rh is thus at

least eight orders of magnitude greater than the range of Wh, leaving the server with

no information about the private weights at all.

Colluding Clients

Now suppose that all the clients except one collude to recover the single honest client’s

locally trained model weights, so they might then make some inference about that

client’s private data. Let the honest client be h and the set of n− 1 colluding clients

be C. For a single model weight, the final value contained in the shared model will

be a known multiple of:

F = Wh +WC + Ph + PC +R−R (3.8)

where Wh is the honest party’s original weight, Ph is the honest party’s differentially

private noise, WC = ∑
c∈CWc, PC = ∑

c∈C Pc, and R is the sum of all secure multi-
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Figure 3.4: Protocol execution time by number of parties, contrasting two MPC peer
group sizes.

party computation (MPC) values. Note that R is automatically removed when the

computation is performed, because for each client pair i and j, one client added Rij

and the other subtracted Rij from its transmitted values.

The conspirators precisely know terms WC and PC and can therefore recover the

honest party’s Wh + Ph. They cannot accurately infer the privacy noise Ph added

by the honest party. For example the smallest privacy loss parameter value that

does not prevent 100 clients from learning the shared model effectively is around

ε = 5e−5. Using this, the mean absolute values for the first weight are W0 = 0.62

and P0 = 0.38. Thus there is still considerable uncertainty around the exact weight

values of the honest party.

3.4.5 Peer Exchange Neighborhood

We have heretofore assumed that all N clients will partner with all other clients in

the secure multi-party computation (MPC) peer exchange. That is, each client will

modify their differentially private weights with N − 1 random large numbers, added

or subtracted. This is ideal from a privacy perspective, because it means N−1 clients
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Figure 3.5: Out of sample Matthews Correlation Coefficient by protocol iteration for
three values of ε privacy loss parameter, contrasting two MPC peer group sizes.

must collude to accurately remove the MPC encryption from one client’s transmitted

weights. However, for large client populations N , it imposes a growth factor of

O(N2) to the overall protocol effort for these pairwise exchanges. It may therefore be

acceptable to allow smaller “neighborhoods” (subgraphs) of MPC peer exchange. In

Figures 3.4 and 3.5, we provide the mean execution time by task category, and the

shared model accuracy, for peer exchange subgraphs of size N and log(N). Depending

on the selection of privacy loss parameter ε, the use of a smaller peer group for key

exchange provides a significant speed boost to certain elements of the protocol, but

at the expense of either privacy or accuracy.

3.5 Conclusion

In this chapter, we have presented a differentially private secure multi-party compu-

tation protocol for federated learning intended to be accessible to an audience with

some computation background, but without requiring prior knowledge of security,

encryption, privacy, or distributed learning.

We have demonstrated the techniques on a common financial data set containing

two days of anonymized credit card transactions, of which about 0.2% are labeled as
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fraudulent, and shown how these techniques permit multiple parties (e.g. financial

firms) to collaboratively learn a useful fraud detection model without sharing any

of their client data or transactions, and with added layers of protection that make

private data recovery difficult or impossible even with adversarial actors participating

in the system.

Finally, we have implemented the full protocol on a real-world financial data set

in an agent-based interactive discrete event simulation and conducted experiments

to evaluate the accuracy and expected running time of the protocol for various num-

bers of participating parties, various values of the ε privacy loss parameter, and a

multi-party computation neighborhood size of N vs log(N) peers. We hope that by

enhancing ABIDES as an open source federated learning framework, we can reduce

the cost and complexity of developing private learning implementations, and thereby

encourage their commercial adoption by responsible practitioners.

In the next chapter, we leverage ABIDES in the cryptographic domain to develop

a state-of-the-art improvement to PPFL, using a novel mechanism based on 1-2 obliv-

ious transfer to protect against an extreme edge case: collusion of all other parties to

reveal the sensitive data of a single “honest” party.
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CHAPTER 4

OBLIVIOUS DISTRIBUTED DIFFERENTIAL PRIVACY SECURE

AGAINST COLLUSION ATTACKS IN FEDERATED LEARNING

In this chapter, we use the extensions developed for ABIDES in Chapter 3 to protect

federated learning against collusion attacks in which parties collaborate to expose

an honest client’s model parameters. For the sake of brevity, we refer the reader to

Sections 1.2.1, 3.1 and 3.2 for comprehensive PPFL introduction and background,

and present only new information here.

We build on a recent line of research that combines differential privacy and MPC

to produce a secure federated learning protocol. [16, 90] These prior works pro-

vide strong protection against undesired inference by the server, but the collusion of

enough clients can reveal the noisy weights of an honest client. This poses a problem

because of the accuracy trade-off for differential privacy discussed in Chapter 3: the

amount of random noise that can be added is limited by the need for acceptable

model performance.

We propose a novel, efficient mechanism that protects against any attempt to

undermine differential privacy by collusion of n−1 out of n total clients. Unlike prior

works, we offer a protocol where the noise for each party is added in an oblivious

way. Obliviousness can be achieved by running the noise generation inside the MPC,

but such solutions are based on heavy cryptography machinery involving a significant

amount of public key operations or incur increased communication complexity. [90,

99] In this work we focus on the concretely efficient aggregation protocol of Bonawitz

et al which does not involve any public key operations in the learning phase. [16] We

therefore provide the first practical protection against n− 1 attacks by constructing

an efficient oblivious distributed differentially private secure aggregation protocol.
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4.1 Approach

Our approach combines secure multi-party aggregation with oblivious distributed

differential privacy to better secure federated learning against n−1 collusion attacks.

In this chapter, we again consider logistic regression as the local learning method, and

each client update includes the weights of that logistic regression. The server receives

the weights from all clients at each iteration and computes a new global model using

the average of the client updates for each weight. Recall from Section 1.2.1 the

literature demonstrating that private client data can be inferred from the trained

model weights, which is clearly undesirable. The general task, then, is to secure each

client’s locally trained model weights against discovery while still learning an accurate

shared model. We note that the collusion problem can be solved using generic MPC,

but such generic solutions are impractical due to computational inefficiency. Our

contribution is a practical and efficient solution to this problem using lightweight

cryptographic tools.

Please review Sections 3.3.1 and 3.3.2 for discussion of our basic approach to

eliminating per-weight and weighted average leakage during protocol execution.

We introduce a novel and efficient oblivious distributed differentially private mech-

anism. In prior works, each client picks its own local noise. By contrast, we offer a

protocol where the noise for each party is added in an oblivious way. More specif-

ically: For each weight, each client receives a tuple of encrypted noise terms from

each other client and adds only a subset of them. Thus, a party P does not know

the cleartext noise added to its weight and the other parties do not know which noise

term is chosen by P .

We now show that the information leakage on the honest client’s weights after the

collusion attack is smaller than previous approaches. Our task is to enable the parties

to calculate the sum of their inputs (i.e., W = ∑n
i=1wi), while ensuring privacy for
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Protocol 2 Privacy-Preserving Federated Logistic Regression Protocol ΠPPFL

The protocol ΠPPFL runs with parties P1, . . . , Pn and a server S. It proceeds as follows:
Inputs: For i ∈ [n], party Pi holds input dataset Di.
Public Parameters: (G, g, q) generated by G(1λ) and modulo p.
ΠPPFL.Setup(1λ):

Round 1: Each party Pi for i ∈ [n] proceeds as follows:

• Choose n secrets ai,1, . . . , ai,n uniformly and independently at random from Zq
and computes (pki,1, . . . , pki,n) = (gai,1 mod p, . . . , gai,n mod p).

• Generate random variables γbi,j and γ̄bi,j for b ∈ {0, 1} from the gamma
G(1/n, scale) distribution with scale = 2/(n ∗ len(Di) ∗ α ∗ ε).

• For all j ∈ [n]:
(a) Generate random masks si,j ∈ Zq.
(b) Compute masked noises η0

i,j = si,j + γ0
i,j − γ̄0

i,j and η1
i,j = si,j + γ1

i,j − γ̄1
i,j .

• Each party Pi sends pki,j and η0
i,j , η

1
i,j to S who permutes and randomizes them

and forwards to party Pj .

Round 2: (Diffie-Hellman key exchange) Each party Pj for j ∈ [n] proceeds as
follows:

• Upon receiving all values (pk1,j , . . . , pkn,j), compute the shared common keys
ri,j for all i ∈ [n] as follows:
(a) Using the secret aj,i compute ci,j = cj,i = (pki,j)aj,i = (gai,j )aj,i mod p.
(b) Let c1,j , . . . , cn,j be the set of all common keys. Use a key-derivation func-

tion and set ri,j = rj,i = H(ci,j)

ΠPPFL.WeightedAverage(Di, {ri,j}j∈[n]):

Round 1: Each party Pi proceeds as follows:

• Compute the weights wi, using Equation (1), of the local logistic classifier ob-
tained by implementing regularized logistic regression on input Di.
We describe the algorithm for a single weight, denoted by wi.

• Generate a random bit vector b = (b1, . . . , bn) and send yi to the server S:
yi := wi +∑n

j=i+1 ri,j −
∑i−1
k=1 rk,i +∑n

j=1 η
bj
j,i −

∑n
j=1 si,j mod p .

Round 2: The server sends W =
(∑n

i=1 yi mod p
)
/n to all parties.

ΠPPFL.Output(1λ,W ): Each party Pi upon receiving W repeats WeightedAverage for the
next weight or iteration of the logistic regression with locally updated common keys r.
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an honest party in the presence of a collusion attack given W . In prior works if n− 1

parties collude, they subtract their weights and noise terms from W and then the

final noise remaining in the transmitted weight of the honest party wh is a single

value chosen by the honest party. In our case, if n − 1 parties collaborate then the

final noise remaining in the transmitted weight of the honest party wh is n− 1 times

larger, because the corrupted parties cannot subtract their noise terms.

At a high level, in our scheme, each client sends two encrypted noisy terms (per-

muted and randomized by the server) per model weight to the other clients, but each

receiving client chooses only one of the two to add to each weight. Thus even if parties

collude they cannot subtract a significant number of noise terms since they do not

know which noise terms the honest client chose.

4.1.1 Network Topology & Threat Model

As is common in the federated learning setting, we opt for a star network topology,

where there is one central party that is connected to all other parties. This central

server can be distinct from the n original parties.

The protocols that we describe and compare against are secure in the semi-honest

model. A semi-honest adversary follows the protocol correctly but tries to learn as

much as possible about the inputs of the uncorrupted parties from the messages it

receives. Furthermore, if there are multiple semi-honest corruptions, we allow the

adversary to combine the views of the corrupted parties to potentially learn more

information.

For a protocol of n parties, we offer security against any n − 1 semi-honest cor-

ruptions or collusion of the server with n− 1 semi-honest corruptions.
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4.2 Secure Weighted Average Protocol

4.2.1 Our Protocol

In this section we formally describe our weighted average protocol ΠPPFL, depicted

in Protocol 2, for secure logistic regression performed by a set of clients (P1, . . . , Pn)

and a server S.

During setup, every pair of parties Pi and Pj will share some common randomness

ri,j = rj,i. In the online weighted average phase, client Pi sends its weights masked

with these common random strings, adding all ri,j for j > i and subtracting all

ri,k for k < i. That is, Pi sends to server S the following message for its data wi:

w̄i := (wi +∑n
j=i+1 rij −

∑i−1
k=1 rki) mod p.

To establish common randomness, each pair of parties run the Diffie-Hellman Key

exchange protocol [93] communicating via the server. The cryptographic primitives

used in Protocol 2 include:

• An algorithm G(1λ), where λ is the security parameter, that outputs a repre-

sentation of a cyclic group G of order q (with ||q|| = λ) for which the discrete

logarithm problem is believed to be hard (in other words, it is hard to guess x

given gx for particular groups G).

• A key derivation function H : G→ {0, 1}λ. It is assumed that if h is distributed

uniformly in G, then H(h) is distributed uniformly in {0, 1}λ.

• A pseudorandom generator with double expansion, i.e., PRG : {0, 1}λ →

{0, 1}2λ.

The protocol is given for a single iteration of federated logistic regression. To

handle the next iteration without the need to re-run the Diffie-Hellman key exchange

we follow the same approach as in [16]: in the first iteration we use a pseudorandom

generator (r′i,j, s) = PRG(ri,j) to both update the common randomness ri,j := r′i,j
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and obtain a new random seed s. For subsequent iterations, instead of executing

ΠPPFL.Setup, parties can run PRG(s) to obtain a new r′i,j and the seed for the next

iteration. Thus the parties need to run the exchange only once at the onset of the

training. We generate the Laplacian noise in a distributed way by the use of gamma

distributions G given that the Laplace distribution L can be constructed as the sum

of differences of i.i.d. gamma distributions. To run machine learning algorithms and

the DP mechanism which computes on rational values, we use field elements in a

finite field Zq to represent the fixed-point values. Concretely, for a fixed-point value x̄

with k bits in the integer part and f bits in the decimal part, we use the field element

x := 2f · x̄ mod q in Zq to represent it.

4.2.2 Security of our Protocol

We prove that our protocol protects the privacy of honest users in the semi-honest

setting given the topology in Section 4.1.1. Following the standard idea-real paradigm,

we will show that when executing the protocol with a set of parties U of size n with

threshold t < n, the joint view of the server S and any set of less than t users does

not leak any information about the other users’ inputs except what can be inferred

from the output of the computation.

The view of a party Pi consists of its internal state (including its input wi and

randomness) and all messages this party received from other parties. The messages

sent by this party do not need to be part of the view because they can be determined

using the other elements of its view. Given any subset C of corrupted parties out

of the n parties in U , let REALU ,t,kC (w1, . . . , wn) be a random variable representing

the combined views of all parties in C in the above protocol execution, where the

randomness is over the internal randomness of all parties. We are going to show

that there exists an efficient simulator that, for every choice of the honest clients’

inputs, outputs a simulation of the adversarial participants’ view of the protocol run
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whose distribution is computationally indistinguishable from the distribution of the

adversaries’ view of the real protocol run.

The following theorem shows that the joint view of any subset of less than t users

and the server can be simulated without knowing the secret input of any other users.

In other words, the adversary controlling less than t users cannot learn anything

other than the output of the computation. In our protocol we consider the leakage L

learned from the difference of the noise terms η0, η1. Note that this leakage does not

affect the error function given later in Definition 2.

Theorem 1 (Semi-Honest Security, against t clients). For security parameter λ, an n-

party protocol for an aggregation function f and all leakage L of size O(n) is L-secure

if there exists a PPT simulator SIM such that for all k, t,U where t < |U|, all corrupted

parties C ⊆ U and all wU , which denote all secret inputs of all users in all iterations

k, letting n = |U|, then the output of SIM is computationally indistinguishable from

the output of REALU ,t,k:

REALU ,t,kC (λ,wU , L) ≈c SIMU ,t,k(λ,wC, L)

Next we argue that the error term on the honest client’s inputs after the collusion

attack of t parties is larger than previous approaches. For this, we require the following

additional property. Consider the case of n− 1 collusion; we define collusion privacy

as follows:

Collusion-Privacy: An n-party protocol provides Collusion-Privacy, for an ag-

gregation function f and a probability distribution D, if any adversary, who controls

all parties except client Ph, learns no more than the honest party’s values wh + η

where η ← D and f(w1, . . . , wn).

In prior works if n− 1 parties collude then the final noise left in the weight of the

honest party wh is a single value from D. In our case, if n−1 parties collaborate then
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the final noise left in the weight of the honest party wh is n− 1 times larger than D

since the corrupted parties cannot subtract their exact noise terms.

To measure the error, we quantify the difference between f(D) and its perturbed

value f̂(D) which is the error introduced by the differential private mechanism of the

secure aggregation protocol.

Definition 3. (Error function) Let D ∈ D, f : D → R, and let δ = |f(D)−f̂(D)|
|f(D)|+1 (i.e.,

the value of the error). The error function is defined as µ = E(δ). The expectation

is taken on the randomness of f̂(D). The standard deviation of the error is σ =√
V ar(δ).

After the execution of Protocol 2, parties receive the noisy sum of their inputs,

i.e., W = ∑n
i=1wi, In prior non-oblivious works if n−1 parties collaborate and remove

their weights from w then the final noise added to the weight of the honest party wh

is a value from L(λ), and hence, the error is µ = 1
|W |+1E|L(λ)| = λ

|W |+1 .

In our oblivious case, if n− 1 parties collaborate then the final noise added to the

weight of the honest party wh is n− 1 times larger than L(λ), and hence, the error is

µ = 1
|W |+1E|

∑n−1
i=1 L(λ)| = (n−1)·λ

|W |+1 .

However, in practice even if the parties cannot subtract their exact noise terms

they can still try to subtract the average of the noise terms, or one of the two noise

terms, or use the leakage L to reduce the amount of error. In Section 4.3.4 and

Figure 4.3 we empirically show that such an attack is little better than the attack of

subtracting nothing.

Note that the output of the aggregation protocol, W + η, is generated such that η

follows exactly the same distribution in both non-oblivious and oblivious cases, but

the noise left after an n− 1 attack against the oblivious case is higher.
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4.3 Experiments

We implemented our novel protocol for secure federated learning with oblivious dis-

tributed differential privacy within ABIDES, as presented in Chapter 2 and adapted

to the domain of federated learning in Chapter 3. Following the same approach, we

simulated our oblivious protocol for 5,000 distributed clients and analyzed the timing,

accuracy, and privacy of the empirical results.

4.3.1 Experimental Dataset and Method

We evaluated our protocol’s performance using the Adult Census Income dataset

[100], which provides 14 input features such as age, marital status, and occupation,

that can be used to predict a categorical output variable identifying whether (True)

or not (False) an individual earns over $50K USD per year. We used a preprocessed

version of the dataset from Jayaraman et al following the method of Chadhuri et

al which transformed each categorical variable into a series of binary features, then

normalized both features and examples, resulting in 104 features for consideration.

[90, 101] We added a constant intercept feature to permit greater flexibility in the

regression. Of the 45,222 records in our cleaned data set, there were 11,208 positive

examples (about 25%), representing a moderately unbalanced dataset.

The dataset was loaded only once per complete simulation of the protocol, after

which a randomized train-test split (75% vs 25%) was taken. Once per round of

federated learning, each client randomly selected 200 rows from the training data as

its “local” data. The holdout test data was the same for all clients, and no client

ever trained on it. The clients implemented our described protocol using oblivious

distributed differential privacy, such that no information about client data is revealed,

even during an extreme n− 1 collusion attack by all other parties.
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(a) Time spent per protocol component on
Graph 1.

(b) Total protocol execution time for
Graphs 1-3.

Figure 4.1: Timing results for our oblivious distributed differential privacy protocol.

(a) Performance of final shared model by ε
privacy loss parameter.

(b) Performance per protocol iteration by ε
and client count.

Figure 4.2: Out of sample performance (Matthews Correlation Coefficient) for our
oblivious distributed differential privacy protocol.

4.3.2 Protocol Timing Results

To accurately estimate the time complexity of the protocol, we evaluated it within the

ABIDES discrete event simulation environment. The simulation permits construction

of an arbitrary network graph with defined pairwise connectivity, minimum latency,

and parameters for randomly selected “jitter” with nanosecond resolution. It also

captures the real elapsed runtime of each client activity and appropriately delays

both sent messages and the earliest time at which a client may act again. Each

experiment was implemented on a 24-core Intel Xeon X5650 at 2.6GHZ with 128GB

RAM. The mean time required to run the protocol simulation on a single CPU core
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ranged from 32 seconds for 100 parties to 12 hours for 5,000 parties.

Figure 4.1a summarizes the time spent performing each section of our protocol on

the adult census income data set: Diffie-Hellman Setup one time per client, En-

cryption of the weights and local model, Training per client per protocol iteration,

and Server aggregation time per protocol iteration. Figure 4.1b shows the estimated

time required to run the full protocol (not the simulation) for three different network

graphs: Graph 1 places all participants around New York City, Graph 2 places the

server in New York City and clients around London, Graph 3 places the server in

New York City and clients all over the world. All experiments comprised 20 rounds

of secure federated learning, with each client running 50 iterations of local regression

training at each round. Latency is the most significant time component for small

participant networks, but as the population size grows, computation effort surpasses

it. Fortunately, the two largest components of computational time growth represent

work performed only once per client for the entire protocol, and work performed only

by the server, respectively.

In Table 4.1, we present categorized millisecond timing for Protocol 2. The table

outlines four categories:

• Server includes all data reception, storage, and aggregation tasks by the server

presented as mean time per protocol iteration.

• DH Setup includes the one-time Diffie-Hellman Key Exchange and noise gener-

ation presented as mean time per client party.

• Training includes the time spent performing logistic regression on local training

data presented as mean time per client per protocol iteration.

• Encryption includes the time spent applying encryption randomness, generating

the next encryption randomness, and applying privacy noise presented as mean

time per client per protocol iteration.
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Table 4.1: Categorized protocol time in milliseconds.

User
Users Server DH Setup Training Encrypt

200 20.3 193.0 7.5 2.9
400 42.7 404.0 7.7 5.6
600 61.4 631.6 7.4 8.3
800 81.5 832.1 7.4 11.1

1000 101.1 1,046.5 7.3 13.9
3000 303.8 3,185.0 7.5 41.3
5000 532.5 5,277.9 7.9 68.9

The total number of messages sent by the parties grows quadratically with n for

the one-time DH Setup phase, and linearly with n for each Encryption phase. No

messages are sent for the Training phase.

These timings were generated using network graph 1, which is the case that places

all parties including the server at random locations around New York City. We note,

however, that choice of network graph should not affect these component times, only

the communication latency for the full protocol running times shown previously.

4.3.3 Protocol Accuracy Results

The secure multi-party aggregation component of our protocol does not cause any loss

of accuracy, because in each round of federated learning, the MPC encryption elements

sum to zero in the final shared model. Differential privacy, whether in the context

of our new protocol or a prior approach, does introduce final model accuracy loss

inversely proportional to the ε privacy loss parameter. Smaller selections of ε result

in more uncertainty about a client’s local weights when other parties collude to reveal

them, but increasingly confound learning. For example, in our protocol experiments

with 200 clients, final model accuracy worsens dramatically once ε < 5e− 5.

Matthews Correlation Coefficient: Because of the significant (3:1) class im-

balance in the adult census income data set, simple predictive accuracy would be a
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Figure 4.3: Density plot of actual versus estimated honest party weight over 1,000
iterations of the n− 1 collusion attack.

poor choice of measure. We instead assess our approach using the Matthews Cor-

relation Coefficient (MCC) [94], a contingency method of calculating the Pearson

product-moment correlation coefficient (with the same interpretation), that is appro-

priate for imbalanced classification problems. [95, 96, 97, 98]

In Figure 4.2a we show the MCC of our protocol’s final shared model predictions

against the correct values for a range of ε. As expected, smaller ε harms the ac-

curacy of the learned model. Thus there is a dynamic lower bound, varying with

population size, on useful values of ε. For example when considering out of sample

MCC(n), with n being the client population size, in our experiments with ε = 1e−5:

MCC(100) = 0.005, MCC(200) = 0.254, and MCC(500) = 0.423. For all evaluated

client population sizes (50 to 5,000), models trained under Protocol 2 with ε ≥ 5e−4

had similar accuracy to unsecured federated learning. Figure 4.2b shows the impact ε

can have on each round of federated learning: with ε = 5e−4 or ε = 5e−7, population

size does not matter because either all sizes succeed at learning or none do; but with

ε = 5e− 6, varying client population sizes learn at vastly different rates.

In our simulated network environment, with 1000 clients implementing the de-

scribed protocol for federated logistic regression using privacy loss parameter ε =

5e − 4, we found an out of sample final iteration relative accuracy loss (MSE verus

learning in the clear) of 1.1e − 6 and an out of sample final iteration relative MCC

loss of 0.0018.
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4.3.4 Adversarial Data Recovery

Prior works like Bonawitz et al discuss attacks from a “snooping” server which at-

tempts to infer the unencrypted weights of a particular client. [16] The attacks fail

since the server does not have the common random values r.

Here we consider the security of the protocol against attacks from within the

participant population. The first attack is defended well by previous non-oblivious

protocols, but the second is not. Our oblivious protocol defends well from both

attacks.

Snooping Server

First suppose that the untrusted server, acting alone, attempts to infer the unen-

crypted weights of a particular client. For a single model weight M , the value trans-

mitted by the honest party h to the server is:

Mh = wh + Th +Rh (4.1)

where wh is the honest party’s original weight, Th is the total privacy noise added by

h, and Rh = ∑
c∈C ±rch for the set of all other clients C. Recall that for each client

pair (h, c), one of them will add Rch and the other will subtract it. In the case of the

server acting alone, we do not need to be concerned with the details of Th, because

the weights are already heavily encrypted against the server by MPC.

When the server tries to solve the problem of reconstructing wh from Mh, it

does not possess any of the pairwise client values rch that compose Rh. With just

100 participating clients, a single client’s Rh is a summation of 99 values randomly

generated (in our case) from the range (0, 232). The value of Rh is therefore orders

of magnitude greater than the range of wh, leaving the server with no meaningful

information about the honest client’s private model weights.
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As noted, this relatively simple case is handled well by the secure aggregation

protocol alone and successfully defended by prior works in our area. The next case is

not.

Collusion attack

We consider the n − 1 attack, in which all other clients conspire to recover the

unencrypted model weights of a single “honest” client. Let the honest client be h

and the set of n − 1 colluding clients be C. For a single model weight, let F =

wh + WC + Th + TC be the output of the aggregation protocol at the end of each

iteration, where wh is the honest party’s original weight, Th is the honest party’s

noise sum, WC = ∑
c∈C wc, TC = ∑

c∈C Tc. Note that the sum of the randomness r, s

is removed by design from the output when the computation is performed, so MPC

cannot defend against this type of attack.

Under prior non-oblivious protocols in which each party generates and adds its

own noise locally, the colluding parties know WC and TC and can therefore recover

the honest party’s noisy weights Wh + Th.

Under our oblivious protocol, the noise which cannot be subtracted in F has a

more dispersed distribution that cannot be much narrowed by the colluding parties

since h will have received from each colluding party c a choice of two difference of

gamma privacy noises γ̂0
ch and γ̂1

ch and c will not know which was selected by h.

Moreover, since the server permutes and randomizes the encrypted noise terms, TC

is also not precisely known to the colluding parties. For an extreme Sybil attack, the

server will have to run a secure shuffle protocol which we have not implemented in

this version.

We empirically illustrate the dramatic improvement in privacy against an n −

1 distributed attack by considering five cases. In each case, the colluding parties

attempt to recover Wh and always remove WC . In the Non-Oblivious case followed
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Figure 4.4: Distribution of difference between estimated and actual honest party
weight over 1,000 iterations of n− 1 collusion attack.

by prior works, the corrupted parties can accurately remove TC . In the other four

cases, Protocol 2 is attacked, and the corrupted parties must decide how to deal with

the unknown noise choices by other parties i: under Naive they do nothing additional

(i.e., they do not remove any noise terms); under Random each corrupted party c

removes either γ̂0
ci or γ̂1

ci at random; and under Diff and Mean each corrupted party

c removes the difference or mean of γ̂0
ci and γ̂1

ci respectively.

We consider the recovery attempt across 1,000 full iterations of Protocol 2 with

100 clients participating. At the end of every iteration, 99 clients share information

in an attempt to recover the unencrypted model weights of the one honest client.

Privacy loss parameter ε = 5e − 4 was selected because it did not cause significant

shared model accuracy loss for any tested number of parties.

Figure 4.3 shows a density plot of the honest party’s actual model weight versus

the collaborators’ estimate of that weight. Figure 4.4 summarizes the distribution of

the difference between estimated and actual weights for each attack scenario. The

n − 1 attack is successful (r2 = 0.894) against the prior non-oblivious protocol, but

not successful (r2 = 0.164 or worse) against our new oblivious protocol.

Additional Residual Noise: We have discussed a key aspect of our protocol’s
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security against an n− 1 collusion attack, that given final model output for a single

weight:

F = wh +WC + Th + TC (4.2)

where wh is the honest party’s original weight, Th is the honest party’s noise sum,

WC = ∑
c∈C wc, and TC = ∑

c∈C Tc, the conspirators C cannot accurately infer Th

because each conspirator c does not know whether h added γ̂0
ch or γ̂1

ch to its weight.

However, we only briefly touched on a second aspect of our protocol’s resistance

to the n − 1 attack. Not only can the conspirators not remove Th, they actually

cannot accurately remove the TC either. This is because Protocol 2 also encrypts the

oblivious distributed differential privacy noise choices. When h generates γ̂0
hc, it is a

composition:

γ̂0
hc = γ0

hc + shc (4.3)

where γ0
hc is the initial noise choice generated from a difference of gamma distributions

and shc is a large value. Honest party h adds the same shc to γ̂0
hc and γ̂1

hc. It later

subtracts shc from its own transmitted weights to avoid disturbing the calculation.

For the case where shc is generated based on additive secret sharing, the honest party

uses a different shc for its own transmitted weights and this attack does not apply

because the sum of all the s’s is zero.

Thus conspirator c knows γ̂0
hc and γ̂1

hc, and knows which one it selected. However

the encryption randomness shc has already been removed from the final shared output

weight, leaving only the unencrypted γ0
hc or γ1

hc. Conspirator c must therefore remove

only the appropriate γhc and not γ̂hc, but it cannot do this, because it does not know

what shc was.

We did not simulate this additional error in the current work. With n parties,

this will cause the collaborators C in our attack cases to be even more wrong since

they can only approximate the n−1 values of s’s chosen by the honest party for each
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weight of h, when c removes values based on encrypted γ̂hc instead of unencrypted

γhc.

Thus under our Protocol 2, for each collaborator c, the additional error (beyond

basic differential privacy noise) in the estimate of wh will compose two factors:

1. Not knowing whether h added γ̂0
ch or γ̂1

ch.

2. Being off by large encryption value shc when subtracting γ̂0
hc or γ̂1

hc.

We evaluated the first error in this work and left detailed analysis of the second

for future work, although it is already part of the additional security of our protocol.

4.3.5 Additional Data Set

To further validate the new approach for oblivious distributed differential privacy,

we also ran Protocol 2 and a previous non-oblivious protocol against the Kaggle

Credit Card Fraud data set [91] and evaluated the success of the same cases of n −

1 attacks. This data set provides transformed features that represent the first 26

principal components of unknown original features. Two original features are provided

without transformation: the elapsed time from the start time of the dataset and the

amount of the transaction. We used the Amount column without transformation,

but excluded the Time column because our learning method does not attempt to

identify temporal clusters or patterns. The dataset provides a categorical y variable

identifying whether the transaction was judged fraudulent (True) or not (False). Of

the 284,807 records, only 492 (less than 0.2%) are labelled fraudulent, representing

an extremely unbalanced dataset. The data set was otherwise handled in exactly the

same manner as the adult census data set.

In Figures 4.5 and 4.6, we show the result of 1,000 attempted n − 1 attacks

against an arbitrarily-selected honest party weight, using the credit card fraud data

set. Because of the randomness involved, the magnitude of difference varies across
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Figure 4.5: Actual (black) versus estimated (color) honest party weight over 1,000
iterations of n− 1 collusion attack.

Figure 4.6: Violin plot showing distribution of difference between estimated and
actual honest party weight.

the model weights.

4.4 Conclusion

In this chapter, we presented an efficient mechanism for oblivious distributed differ-

ential privacy that is the first to secure against n− 1 collusion attacks on the clients’

model parameters, and leveraged that mechanism to construct a secure federated

learning protocol. We also detailed the protocol and proved its security against a

semi-honest adversary. We have left the case where clients drop off during the pro-

tocol as future work. Our mechanism is therefore well suited to cross-silo federated

learning applications where clients are different organizations (e.g. medical or finan-

cial) or geodistributed datacenters, as opposed to mobile or IoT devices which can go
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offline.

To empirically evaluate the protocol in a practical setting, we again leveraged

ABIDES to simulate its performance with 5,000 parties on two common data sets,

and estimated its accuracy and running time for various client counts and values of

the ε privacy loss parameter. We also conducted an n− 1 attack and showed that it

is effective against prior non-oblivious protocols, but not against our new protocol.

In the next chapter, I extend the ABIDES financial market simulation with a new set

of spoofing strategies, use them to generate synthetic spoofing examples, and learn

to detect spoofing.
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CHAPTER 5

DETECTION OF ILLEGAL SPOOFING IN FINANCIAL MARKETS

As I discussed in the Introduction, a particular focus of my work with ABIDES

has been to enable studies of intelligent agent behavior that cannot or should not

be otherwise performed, for example due to unavailable data or illegal activities. I

believe simulation will play an important role in the future regulation of artificial

intelligence, and an important first step is the ability to reliably detect that an agent

has learned to violate some particular legal boundary.

In Section 1.3, I discussed the literature on financial market simulation, and shared

the relevant statute and guidance that controls spoofing in financial markets. In this

chapter, I construct an approach to automated spoofing detection. This is a difficult

problem for several reasons:

• Each individual action taken by a trading agent, for example buying stock or

canceling a previous order, is entirely normative; only in certain combinations

might a questionable behavior arise.

• Publicly-available stock market data (as shown in Figure 2.1) is anonymized;

identifying information is lost as orders flow through the financial system.

• Spoofing is not well-defined and is similar to necessary market making behaviors;

as discussed in Section 1.3.3, legal and regulatory behavior relies on intent,

requiring that automated detection focus on behaviors that “look like” spoofing.

To approach this complex area, I adapt the ABIDES simulation to generate synthetic

examples of potentially illegal spoofing behaviors and explore how best to distinguish

them from non-spoofing behaviors.
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5.1 Related Work

I am not the first investigator to consider the detection of spoofing in financial mar-

kets. In the 2014 work most closely aligned with my own, Cao et al. described two

forms of deceptive electronic price manipulation. [102] In the first, called spoofing

trading, an actor generates the illusion of increased demand over a relatively long

time horizon (perhaps 30 minutes) by maintaining a large order on the opposite side

of the order book. In the second, quote stuffing, there is a quick, aggressive effort

to generate the illusion of a bidding war (or actual price movement) by placing a

sequence of orders inside the bid-ask spread. The researchers smooth temporal order

data and transform it to relative price offsets, then investigate the use of K-Nearest

Neighbors and Support Vector Machines to detect potential spoofing sequences with

good results. Cao et al. rely on a similar transformation to mine and do inject syn-

thetic data, but where I use an agent-based model for the entire market, they use

historical data for four stocks, augmented by synthetic data constructed as random

perturbations around the mean historical behavior of real actors as disclosed through

regulatory actions. Without an agent-based model, other market participants obvi-

ously cannot “react” to the injected spoofing sequences.

Detection of spoofing has become an area of increasing worldwide academic inter-

est. Leangarun et al. investigated whether a feedforward neural network with access

to only Level 1 data (i.e. successful transactions) could identify market manipula-

tion. [103] They found that it could detect the more classic “pump and dump” style

of manipulation, but could not detect spoofing. Mendonça et al. obtained private

data from a Brazilian brokerage firm with a consistent (but anonymous) identifier

for each trader and used a decision tree constructed from expert domain knowledge

to demonstrate that likely spoofing behavior could be identified, recommending (as

I do) that “brokerage firms might prevent reoccurrences of this practice, showing
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greater diligence, which is important to promote ethics in the capital markets”. [104]

Li et al. applied a variety of classification methods to labeled daily and tick spoofing

data obtained from Chinese regulators after publicized enforcement actions. [105]

Surprisingly, they were able to use the daily data to reliably detect days during which

spoofing had occurred, but were not able to detect spoofing with the fine-resolution

tick data. This may be explained by a lack of transformation of the tick data or the

nature of the classifiers employed. Wang et al. used Generative Adversarial Networks

(GAN) to train both a spoofing agent which learns to avoid detection by disguising

its activity as market making, and a detector that attempts to defeat this evasion.

[106] The quite interesting converged result is that the spoofer can learn to evade

detection, but must eventually “hide” its behavior so well that it cannot profit from

it.

5.2 Spoofing and AI Regulation

Spoofing is a form of price manipulation through placement of false orders, intended

to deceive other investors (or their trading algorithms) into raising or lowering a stock

price in response to the appearance of false demand. The “spoofer” will profit from

this temporary and erroneous pricing in the usual ways: selling previously-acquired

stock above true market value, or perhaps purchasing desired stock below true market

value. A typical spoofing sequence follows:

1. Spoofer buys, or already owns, shares of ABC stock.

2. Over time, spoofer places limit orders to buy ABC stock for a little less than

the current market value. Because the orders do not represent the current best

price, they will not be transacted.

3. Other traders observe the order book, note the increasing demand to own the

stock, and predict the price will rise. They buy the stock, driving up the price.
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4. Spoofer updates the price of their false orders to keep them near the best price,

while ensuring they never become the best price.

5. When the price has risen sufficiently, spoofer sells their position in ABC stock

and cancels the false orders, allowing the price to fall as the false demand

evaporates.

Spoofing is distinguished from the better-known “pump and dump” scheme by its

mechanism. In a classic pump and dump, the manipulator affects stock prices through

actions outside the stock market: calling into a radio show, writing a newspaper

editorial, or tweeting about the stock. When spoofing, the manipulator acts inside

the stock market, placing and cancelling orders to give a technical impression of rising

demand.

The regulations surrounding spoofing, and some other forms of manipulation,

present a particular challenge for intelligent agents because they rely on the intent of

the actor. This is important because, for example, the cancellation of orders is both

legal and necessary when new information arrives, a client’s situation changes, or

one is undertaking a market maker role which requires the maintenance of positions

at certain relative price levels. It only becomes abusive when a market participant

already intends to cancel an order at the time it is originally placed. This raises an

interesting question beyond the scope of my current work:

What is the intent of a learning algorithm that displays behavior its cre-

ator did not expect?

The answer to this question will not likely come from the field of computer science,

but it is clear regardless that laws and regulations will have to adapt to the presence

of intelligent agents.

Here I propose a first step: training a learning algorithm to identify (this chapter)

and avoid (Chapter 6) action sequences that look like known spoofing behaviors,
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rather than referencing intent. If successful, this could offer a new direction for

regulators to explore: encouraging or requiring best practices that include the use of

such trained detectors to avoid behaviors that are measurably similar to spoofing or

other disruptive trading practices.

5.3 Simulation of Spoofing Behavior

The aggregated and anonymous nature of public market data complicates any study

of spoofing, because it is a sequential behavior rather than a singular action, and

using public data no two orders can be traced to the same actor. One could in theory

obtain known examples of the behavior by spoofing a real market and observing the

effects, but of course this is illegal, and conducting research in this manner would be

unethical.

Instead I experiment within the ABIDES simulation, starting with a population of

existing agents that pursue various greedy but legal strategies, and to that introduce

a new agent that profits from an illegal spoofing strategy. There are two high level

goals: the spoofing agent must be profitable, and must be identifiable using only its

publicly observable actions.

As a baseline population for this exercise, I instantiate: 500 Zero Intelligence (ZI)

agents, which were previously described; 500 Value agents, which arbitrage the current

market price against a private extrinsic valuation; and 10 Order Book Imbalance

(OBI) agents, which represent high-frequency liquidity traders predicting short term

price moves by studying the order book.

To this, I introduce a spoofing agent, following a strategy similar to that outlined

in the previous section. The spoofing agent observes the simulated market for a time

to understand current prices, then purchases some stock at a “fair” price:

E[pe] ≤ min
[aLw + aHw

2 , p′e
]

(5.1)
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Table 5.1: Effect of spoofing activity on agent profit. OBI* is the
high frequency agent nearest the exchange. It is expected to

outperform slower OBI traders.

Depth Quantity OBI OBI* Spoofer Value ZI
honest -1,811 2,158 283 -39 67

3 1000 -128,695 22,897 45,419 572 1,606
1500 -261,974 -13,720 85,339 983 3,587
2000 -261,608 -21,402 84,777 974 3,608
2500 -257,309 -19,480 83,491 947 3,557

4 1000 -126,323 24,520 47,253 598 1,531
1500 -266,288 -14,477 88,450 993 3,650
2000 -272,594 -17,817 89,629 1,007 3,756
2500 -270,460 -19,416 88,728 992 3,738

5 1000 -127,505 23,970 47,164 599 1,553
1500 -262,329 -14,210 87,024 973 3,601
2000 -267,877 -15,057 89,179 1,004 3,668
2500 -267,769 -15,494 88,985 1,011 3,661

6 1000 -119,003 23,125 45,236 553 1,451
1500 -261,368 -8,634 86,783 971 3,576
2000 -272,012 -17,184 91,477 1,022 3,724
2500 -273,144 -16,386 90,670 1,009 3,757

7 1000 -125,853 24,119 45,996 584 1,539
1500 -259,638 -11,992 86,288 973 3,549
2000 -283,719 -21,091 91,876 1,057 3,908
2500 -280,505 -19,628 91,125 1,041 3,865

8 1000 -127,719 24,664 45,271 571 1,588
1500 -270,863 -15,252 89,794 980 3,745
2000 -289,257 -21,261 92,789 1,093 3,971
2500 -286,847 -20,755 91,499 1,078 3,944
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where E[pe] is the expected entry price for its desired position, p′e is the prior entry

price, and aLw and aHw are respectively the lowest and highest observed best ask prices

during the warmup period. It then begins to stimulate demand by placing limit orders

to buy stock at a configurable quantity (number of shares) and depth (worse than

the best price). It cancels and repositions these orders to ensure they remain near

the best price but are never transacted. Once a configurable profit target has been

reached, the agent sells its stock, cancels the spoofing orders, and waits for the price

to settle down using a configurable “cooldown” period. It will then repeat the full

behavior again.

5.4 Effect of Spoofing on Profitability

To test the efficacy of the spoofer, and its effect on other agents, I simulated a total

of 1,160 full market days with 49 agent configurations using the method of common

random numbers to reduce variance across configurations. Forty-eight configurations

included spoofing behavior: each pairwise combination of depth ∈ {3, 4, 5, 6, 7, 8} and

quantity ∈ {1000, 1500, 2000, 2500, 3000, 3500, 4000, 5000}. The final configuration

still included the spoofing agent, but configured in an “honest” mode that omits the

manipulative portion of its strategy. Each spoofing configuration was simulated for

20 market days; the non-spoofing configuration was simulated for 200 days. The

mean profit per class of agent is presented in Table 5.1. The effect of varying spoofer

quote depth and quote size on the profit distribution of each agent is presented in

Figures 5.1 and 5.2. From these, I note concretely that:

• The order book aware agents (OBI) are harmed by spoofing. OBI* is harmed

least. Harms increase with spoofing order quantity up to a limit. Quote depth

is irrelevant within the tested range.

• Value and ZI agents are indirectly helped by spoofing, presumably because the
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Figure 5.1: Boxplot showing effect of spoofer quote size on profitability of each agent
class. Includes all quote depths. Quote size h indicates “honest” spoofer.

Figure 5.2: Boxplot showing effect of spoofer quote depth on profitability of each
agent class. Includes all quote sizes. Quote size h indicates “honest” spoofer.

OBI agents had been exploiting them and now cannot.

• The spoofing strategy is clearly effective regardless of precise parameter selec-

tion, but lower quote sizes engender less response from the OBI agents, and

hence produce lower spoofing profits.

Spoofing order quantities over 2,500 do not affect profitability and are omitted

from this section. I hypothesize that the buy-sell ratios observed by the order book

imbalance agents reach all meaningful reaction thresholds at that level of spoofing.

The generated activity sequences for quantities over 2,500 are still used for spoofing

detection.

101



5.5 Spoofing Data Synthesis

To train a supervised learning algorithm, I will require many example sequences of

spoofing and non-spoofing behavior. Since I cannot obtain these from historical or

live data, I use the previously described market simulation configurations to produce

synthetic examples. With forty-eight different detailed spoofing approaches, I hope to

achieve generality of detection. Within each simulated market day, I independently

record for every order-related action:

• Initiating agent id,

• Initiating agent type,

• Simulated timestamp of the action,

• Action type (placing vs canceling a limit order),

• Order direction (buy vs sell),

• Limit price relative to current best bid or ask,

• Order quantity in shares,

• Is this action in support of a spoofing strategy,

where the recorded price is relative to the same side of the limit order book as the new

activity. That is, on a limit order to buy, a relative price of zero equals the current

best bid, positive prices indicate placement within the bid order book, and negative

prices represent crossing the spread. Actions taken by the spoofing agent in “honest”

mode are recorded as non-spoofing behavior.

After all simulations are completed, an action sequence is reconstructed for each

agent for each market day. These action sequences are divided into non-overlapping
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Table 5.2: Examples of spoofing and non-spoofing behavior. M+:
market buy, L+: limit buy under best bid, C: cancel one L+, M−:

market sell.

Possible spoofing sequence M+ L+ L+ L+ M− C C C
Impossible spoofing sequence L+ C M− L+ L+ M+ C C

subsequences of twenty actions each. Extra actions at the end of the day are dis-

carded. This subsequence length was selected to balance the likelihood of an agent

manifesting “spoofing” behavior within most windows against the desire to have many

different behavior examples. Four features are retained in the training examples: ac-

tion type, order direction, relative limit price, and order quantity. The remaining

information is discarded. Examples are labeled True when they arise from a spoofing

agent not in its “honest” mode, and False otherwise. I thus obtain 2,611,707 exam-

ples of sequenced agent behavior, of which 84,666 (approx. 3.2%) represent spoofing

behavior and 2,527,041 non-spoofing behavior. As described, each training example

has dimensionality (20, 4).

5.6 Spoofing Detection Strategy

I have an input training data set of size (2611707, 20, 4), with each labeled as spoof-

ing or non-spoofing behavior. The detection task will be challenging for two primary

reasons: the data set is highly imbalanced, because not spoofing is much more com-

mon than spoofing; and the temporal element of spoofing means that rearranging the

same action primitives can render a spoofing explanation likely or impossible. This

is illustrated in Table 5.2, where M+ indicates a market buy order, L+ indicates a

limit buy order priced below the best bid, C indicates canceling one L+ order, and

M− represents a market sell order.

This characteristic suggests an activity recognition problem and the need for a

learning method that assigns value to the temporal ordering of the data. Fortunately
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there is a rich body of research to draw from: Lara et al. describe the use of decision

trees, instance-based learners like k-Nearest Neighbors, artificial neural networks, or

ensembles of these [107]; and Wang et al. describe deep learning approaches includ-

ing convolutional neural networks (CNN), autoencoders, recurrent neural networks

(RNN), and hybrid models. [108]

Given the nature of the recognition problem, I selected Bidirectional Long Short-

Term Memory (Bi-LSTM), a neural network architecture designed to capture complex

temporal relationships in the training data, as the candidate most likely to succeed.

For comparison and completeness, however, I also evaluated five other neural network

architectures: standard LSTM, bidirectional and standard Gated Recurrent Units

(Bi-GRU, GRU), a CNN convolving over time, and a simple feed-forward neural

network (FFNN).

Before training, I preprocess the synthetic data. The training examples are shuf-

fled and divided into a training (80%) and holdout test (20%) set. The training

examples are further divided into a training (80%) and validation (20%) set. Each

set is required to maintain the overall class balance of labels. The action type and

order direction features are converted from boolean to 0-1 categorical with the usual

mapping. The price and quantity features are normalized to N(0, 1). To correct

for the class imbalance, the positive class is oversampled to be equal in size to the

negative class.

The candidate detection network contains a Bidirectional LSTM accepting input

shape (20, 4) with 64 hidden units and ReLu activation, connected to a dense layer

with sigmoid activation and a single output neuron. The comparison networks are

similarly structured. The network is trained with batch size 64 using the adam

optimizer and binary crossentropy loss function. Given the large synthetic data set, a

single training epoch proves sufficient for convergence. All detection experiments were

conducted on a 2.4 GHz Quad-Core Intel Core i5 with 16 GB 2133 MHz LPDDR3
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RAM. Training the network took approximately three minutes.

5.7 Spoofing Detection Results

Using the synthetic spoofing data and the given detection strategy, I empirically tested

every combination of the available features against each of the proposed network

architectures for a total of 15× 6 = 90 detection experiments. For each experiment,

I performed five-fold cross validation, training five separate detectors with different

held out data, for a total of 450 trials. Here I analyze the results from two different

perspectives: feature ablation and model selection.

5.7.1 Feature ablation

I evaluated the experimental results as a feature ablation study to determine which

combinations of inputs were most informative of spoofing behavior. In Table 5.3 I

report and interpret out-of-sample results for the Bi-LSTM architecture as a repre-

sentative model.

I note that accuracy is not particularly informative for an extremely imbalanced

data set like this one. Instead I focus on the raw confusion matrix, and measures

derived from it that are appropriate for imbalanced boolean classification problems:

• The number of true positive predictions.

• The number of false positive predictions, also called Type I Error.

– Innocent behavior flagged as spoofing.

• The number of true negative predictions.

• The number of false negative predictions, also called Type II Error.

– Spoofing behavior that was overlooked.
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Table 5.3: Feature ablation study of spoofing detection accuracy.
Candidate features: order (D)irection, relative (P)rice, order

(Q)uantity, action (T)ype.

Features TP FP TN FN Precision Recall MCC
D 16,914 3,411 501,997 18 0.832 0.999 0.909
P 9,877 294,816 210,592 7,055 0.019 0.583 0.000
Q 1,396 0 505,409 15,537 1.000 0.082 0.283
T 16,914 556 504,852 18 0.968 0.999 0.983

DP 16,913 3,247 502,161 20 0.839 0.999 0.912
DQ 16,912 3,699 501,709 20 0.824 0.999 0.903
DT 16,928 88 505,321 4 0.995 1.000 0.997
PQ 1,421 0 505,408 15,511 1.000 0.084 0.285
PT 16,914 567 504,841 18 0.968 0.999 0.983
QT 16,907 554 504,854 25 0.969 0.999 0.983

DPQ 16,909 3,250 502,158 23 0.839 0.999 0.912
DPT 16,930 104 505,304 2 0.994 1.000 0.997
DQT 16,929 77 505,331 3 0.995 1.000 0.998
PQT 16,916 563 504,846 16 0.968 0.999 0.983

DPQT 16,930 77 505,332 2 0.995 1.000 0.998

• The precision or ratio of true positives to all positive predictions.

– What portion of identified spoofing was actually spoofing?

• The recall or ratio of true positives to all positive examples.

– What portion of all spoofing behavior was detected?

• The Matthews Correlation Coefficient, a measure of binary classification

performance.

I rely on MCC as the primary measure of success, which has an interpretation

consistent with the familiar Pearson correlation coefficient: zero indicates no correla-

tion, -1 strong anti-correlation, and +1 strong correlation. Considering single feature

models: action type produces a model with predictions very strongly correlated to

ground truth (MCC 0.983); order direction is also very strongly correlated (MCC
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0.909); order quantity is weakly correlated (MCC 0.283); and relative price is un-

correlated (MCC 0.000). Unsurprisingly, combining the two best features (direction

and type) produces an even better model with MCC 0.997. Further adding quantity

results in marginal improvement at best (MCC 0.998), and adding price does not

improve the combined model. The ablation study would thus seem to indicate that

a model with type (place/cancel order) and direction (buy/sell) contains the most

useful information to detect spoofing action sequences.

5.7.2 Model selection

I also evaluated the six different model architectures presented in Section 5.6 to see

if there were significant differences in performance when using the most successful

combinations of features from the ablation study in the previous subsection. For this,

I tested order direction alone, action type alone, and these two features together. The

results are presented in Table 5.4.

The interpretation of the table columns is the same as given in Section 5.7.1.

There is little difference among the tested models. The fully-connected feed-forward

model is slightly less capable with single features. Perhaps most interestingly, a CNN

with temporal convolution consistently achieves the same performance as much more

complex architectures. This may be due to the length 20 windowing of the data,

incorporating time within each example behavior. Regardless, based on this result,

I conclude that given informative features like action type and order direction, most

any modern ML architecture is sufficient for the problem, and I should select a simple

model like temporally-convolved CNN.

5.8 Conclusion

I introduced many variations of a spoofing agent to a simulated agent-based stock

market to study the impact of spoofing on agent profit, and more significantly to
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Table 5.4: Architecture comparison of spoofing detection accuracy.
Candidate features: order (D)irection, relative (P)rice, order

(Q)uantity, action (T)ype.

Feat. Arch. TP FP TN FN Precision Recall MCC
D FFFC 16,900 550 504,858 32 0.969 0.998 0.983

CNN 16,907 423 504,985 25 0.976 0.999 0.987
GRU 16,919 499 504,909 13 0.971 0.999 0.985
LSTM 16,918 544 504,864 14 0.969 0.999 0.983
Bi-GRU 16,920 537 504,871 12 0.969 0.999 0.984
Bi-LSTM 16,914 556 504,852 18 0.968 0.999 0.983

T FFFC 16,908 3,447 501,961 25 0.831 0.999 0.908
CNN 16,913 3,165 502,243 19 0.842 0.999 0.914
GRU 16,900 3,171 502,237 32 0.842 0.998 0.914
LSTM 16,916 3,797 501,612 16 0.819 0.999 0.901
Bi-GRU 16,910 3,237 502,171 22 0.839 0.999 0.913
Bi-LSTM 16,914 3,411 501,997 18 0.832 0.999 0.909

DT FFFC 16,926 125 505,283 6 0.993 1.000 0.996
CNN 16,931 36 505,372 1 0.998 1.000 0.999
GRU 16,932 69 505,339 0 0.996 1.000 0.998
LSTM 16,928 97 505,311 4 0.994 1.000 0.997
Bi-GRU 16,932 32 505,376 0 0.998 1.000 0.999
Bi-LSTM 16,928 88 505,321 4 0.995 1.000 0.997

learn a spoofing detector. Based on Table 5.1 and Figure 5.1, it is clear the spoofing

strategy profits across a variety of parameter selections and primarily takes money

from the order book imbalance strategy. This is expected, as the OBI is a form of

high-frequency trading that explicitly predicts short-term price moves by studying

the volume balance of the order book – the exact feature the spoofer is manipulating.

I note with interest that the spoofing agent causes the OBI traders to lose money well

in excess of that captured by the spoofer. In their efforts to (legally) exploit the less

intelligent agents, the OBI are now placing bad bets that feed money to those agents.

On the question of spoofing detection, I can interpret the results of Table 5.3.

I used an oversampling technique to balance the training data set, so the detector

does not “know” that spoofing should be rare. It must consider it just as likely as
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non-spoofing behavior. So long as action type or order direction are available as

features, the detector exhibits near-perfect recall, indicating that very few incidents

of spoofing are not captured. When both are present, it also exhibits near-perfect

precision, indicating low incidence of falsely identified spoofing, which would increase

the workload of a human verifying suspect behavior. With a Matthews correlation

greater than 0.9 in every case where at least one of action type or order direction are

available, indicating very strong correlation between predictions and ground truth,

I assert that the problem of spoofing detection given a large set of synthetic data

from simulation is eminently tractable. The results of Chapter 6 will suggest the

detector is not yet sufficiently general, but this work still offers a new direction for the

regulation of AI in financial markets: the requirement that institutional participants

and intermediaries monitor identifiable activity streams, using an ensemble of all

available recognizers, in a best effort to identify and curtail non-normative trading

practices.

In this chapter, I explored the promise of financial market simulation more deeply

by synthesizing and then detecting activity sequences representing efforts to illegally

spoof a financial market. This is a problem of significant current relevance, with

$920 million in related fines in the year 2020 alone. I found that simulation is a safe,

effective way to generate synthetic examples of spoofing behavior, and that spoofing

can be accurately detected within action sequences of length twenty using four or

fewer simple features. In the next chapter, I use the learned detector to train a

normative trading agent that learns not to spoof the market in which it participates.
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CHAPTER 6

NORMATIVE REINFORCEMENT: LEARNING NOT TO SPOOF

In Chapter 5, I introduced a method for training a neural spoofing detector using

synthetic data from MAS of a stock market. In this chapter, I construct an RL-based

stock market trader that has sufficient capacity to discover and adopt a spoofing-

based strategy to boost its profitability, then leverage the detector as a normative

guide during training to discourage the agent from adopting such a strategy. With

this work, I hope to both illustrate a looming problem and provide a potential solution

combining financial regulation and industry best practices. I provided an introductory

overview to RL in Section 1.3.1, described background material related to Safe RL

in Section 1.3.2, and discussed the particulars of financial market spoofing and the

specific problem we are trying to solve in Section 1.3.3.

6.1 Related Work

In contrast with Safe RL (Section 1.3.2), which is concerned with the avoidance of

critical failure cases like bankruptcy or physical collision, the pursuit of normative

behavior in RL agents targets activity patterns humans will find acceptable and ap-

propriate to a situation. Soares et al. discuss what they call the value alignment

problem, which they define for an intelligent agent as learning and acting according

to the preferences of its operators. [109] Informally, we might think of this as adding

an implicit “without doing anything bad” to the end of any goal statement. Of course,

this is an oversimplification: “bad” actions might be value-aligned if undertaken to

avoid even worse outcomes.

What we might now call normative learning is substantially based on several foun-

dational areas. Perhaps the earliest is Stuart Russell’s 1998 introduction of inverse
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reinforcement learning, under which one observes an agent’s inputs, actions, and en-

vironment, and attempts to discern the agent’s reward function. [110] In 1999, Ng et

al. formalized a method for reward shaping intended to guide a learning algorithm

to discovering an optimal policy more quickly through modification of the reward

signal with additional feedback. [111] This concept was extended by Griffith et al. in

2013 to policy shaping, a form of interactive machine learning, where instead of ex-

ternal feedback numerically altering the reward signal, the agent attempts to directly

learn the feedback as a separate policy. [112] The internal and external policies are

combined as part of the decision-making process.

A significant line of work in normative learning has been undertaken in the field

of robotics, especially navigation. Okal et al. have taken a Bayesian approach to

socially normative navigation, training robotic agents to respect personal space, follow

the flow of pedestrian traffic, and avoid breaking up conversational groups. [113]

Coscia et al. extend the method using point-wise circular distributions based on prior

observations to make long-term path predictions for the bicycles and pedestrians in

the scene. [114] Shimosaka et al. considered the possibility of a normative driving

agent that uses expert and inexpert demonstration to both learn that it should slow

down at uncontrolled crossroads, and that inexperienced drivers may not do so. [115]

Triebel et al. present an airport passenger assistance robot which learns to navigate

a chaotic space, identify an appropriate spokesperson within a human group, and

approach the spokesperson with an appropriate speed and direction. [116]

Another consistent research trajectory in normative learning has been explored

in narrative intelligence. In 2015, Riedl. et al explored the idea of intelligent agents

learning human values by reading stories, in particular crowdsourced stories concern-

ing a specific environment and goal. [117] In addition to goal-oriented rewards, the

agent receives additional rewards or penalties based on the frequency with which its

activities appear in the corpus of human stories. Frazier et al. leverage the effectively
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pre-labeled children’s stories of Goofus & Gallant (GG), in which Gallant always does

the “right” thing and Goofus the “wrong” thing, to learn a value-aligned prior. [118]

This normative model is then successfully zero shot transferred to two new story data

sets, with further improvement after limited fine tuning. Nahian et al. empirically

evaluate methods of using the GG normative prior to induce a mixutre of normative

and goal-oriented behavior in a series of interactive fiction game worlds, finding that

an approach based on policy shaping and action reranking provides the most agent

flexibility in selecting normative actions even when this lowers environmental rewards.

[119] I explore both reward shaping and policy shaping (action reranking) as part of

the current effort to teach an RL agent to profitably trade the stock market while

avoiding a particular non-normative behavior: spoofing.

6.2 Approach

For this investigation, I assume a financial practitioner acting in good faith, wishing

to leverage RL (specifically Q-learning) in the construction of an automated stock

trading algorithm. The practitioner is aware, perhaps from Nick Bostrom’s paperclip

maximization thought experiment, that unconstrained objectives (e.g. “construct as

many paperclips as possible”) represent a risk to be thoughtfully managed, and wants

to avoid non-normative behaviors like spoofing. [120]

For each set of experiments, I construct a tabular Q-learning agent to interact

with a simulated multi-agent stock market in which other strategic traders are also

participating. The agent is long-only, meaning it cannot sell stock it does not own, and

is constrained to hold a set quantity of stock to avoid conflation of intelligent behavior

with mere leverage. The base reward function for the agent includes the realized

gain/loss in dollars when a stock position is closed, a small penalty for nonsensical

actions, and a small transaction cost for any request sent to the stock exchange. The

agent always observes the market for some warmup period before acting, during which
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it learns what might be a “reasonable” price for the stock relative to the lowest and

highest observed asking prices. The RL agents rely either on ε-greedy exploration,

in which ε ∈ [0, 1] controls the proportion of random vs expected-optimal actions

selected, or Boltzmann (softmax) exploration, in which actions are stochastically

selected from a Boltzmann distribution [121]:

P (a|s) = eQsa∑
j e

Qsj
(6.1)

I make extensive use of spoofing detector Θ as learned in Chapter 5. The average

activation level of Θ will be noted for each experimental agent, and in the normative

experiments, the output of Θ will be used to influence the agent’s actions. All price

and quantity inputs to Θ are scaled according to the detector training data. Because

Θ requires action sequences of length 20, and an agent may learn to trade less than

20 times per day, action sequences are carried forward across market days for the

same instance of an agent, and the first 20 total actions of an agent are assumed to

be normative.

The current state of the environment, including the agent, is represented as a set

of boolean conditions drawn from the following candidates:

• Holdings (H): is the agent in a long position?

• Holdings Advantage (HA): did the agent have entry advantage when the

current position was acquired?

• Entry Advantage (EA): is the estimated cost to enter a position less than the

observed reasonable price?

• Exit Advantage (XA): does the estimated return from exiting a position ex-

ceed the agent’s profit target?
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• Stop Loss (SL): does the estimated loss from exiting a position exceed the

agent’s maximum permitted loss?

• Open Orders (OP): does the agent have open, unfilled orders?

• Depth Orders (DP): has the market moved since the agent placed an unfilled

order?

When all candidates are included, the agent state space is therefore of size 27 = 128.

This state space is suitable only for a “ranging” market, but in simulation I can

guarantee this condition.

Each experimental agent is given an action space drawn from the following:

• Aggressive Entry (AG): Aggressively enter a long position by purchasing a

set quantity of stock at whatever price is immediately available.

• Passive Entry (PS): Passively enter a long position by offering to buy a set

quantity of stock at slightly below the current price.

• Exit (EX): Exit a long position by selling whatever quantity of stock is owned.

• Cancel (CN): Cancel all unfilled open orders.

• Update Passive Entry (UP): Refresh a passive entry attempt by cancelling

open orders and reissuing a passive entry order. This effectively combines action

CN with PS.

• Do Nothing (DN): Do nothing.

With the exception of this experimental RL trading agent, the market environment

and actors remain as described in Chapter 5. In the following sections, I build the

argument that normative learning is both necessary and effective for this problem

domain through a series of experiments within my simulated environment.
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6.3 Fixed Policies

To ensure the possibility of a meaningful result in subsequent experiments, I first

design a pair of fixed policies using the complete state-action space described in

Section 6.2: πs, which will attempt to profit by spoofing the simulated market, and

πh, which will attempt to profit without spoofing the simulated market. If both

policies are profitable, then there is proof by demonstration that the RL agent could

learn to profit either through spoofing or honest participation.

I construct honest policy πh(s)→ a as follows:

πh(s) =



AG if ¬ H ∧ EA ∧ ¬ OP

EX if H ∧ XA ∧ ¬ OP

CN if OP

DN otherwise

(6.2)

I construct spoofing policy πs(s)→ a as follows:

πs(s) =



AG if ¬ H ∧ EA ∧ ¬ OP

PS if H ∧ ¬ (XA ∨ SL) ∧ ¬ OP

EX if H ∧ (XA ∨ SL)

CN if ¬ H ∧ OP

UP if H ∧ ¬ (XA ∨ SL) ∧ DP

DN otherwise

(6.3)

As a baseline population for this experiment, I again instantiate 500 Zero Intel-

ligence (ZI) agents, 500 Value agents, and 10 Order Book Imbalance (OBI) agents,

all as described in Chapter 5. The exploitative high-frequency trader (OBI*) is po-

sitioned near the exchange at 21µs latency. The experimental fixed policy agent
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Table 6.1: Average profit across 100 full market days comparing
ad-hoc versus policy experimental agent in “honest” mode.

Depth Quantity Exper. OBI OBI* Value ZI
ad hoc honest 283 -1,811 2,158 -39 67
policy honest 517 -1,654 1,985 -30 55

Table 6.2: Average profit across 100 full market days comparing
experimental agent performance in “spoofing” mode while varying

passive order depth. Ad-hoc agent from Table 5.1 for reference.

Quantity Depth Exper. OBI OBI* Value ZI
ad hoc 2500 5 88,985 -267,769 -15,494 1,011 3,661
policy 2500 3 42,586 -140,664 -13,214 482 1,991

4 40,485 -141,528 -17,832 477 2,033
5 48,627 -158,853 -14,827 531 2,261
6 50,003 -165,913 -16,635 553 2,368
7 42,022 -139,738 -12,837 480 1,977

Table 6.3: Average profit across 100 full market days comparing
experimental agent performance in “spoofing” mode while varying
passive order quantity. Ad-hoc agent from Table 5.1 for reference.

Depth Quantity Exper. OBI OBI* Value ZI
ad hoc 5 2500 88,985 -267,769 -15,494 1,011 3,661
policy 5 750 6,019 -37,563 17,828 122 507

1000 19,377 -93,435 -2,937 425 1,224
1250 34,703 -112,876 -5,108 407 1,565
1500 43,216 -145,732 -13,354 479 2,084
2000 47,622 -154,682 -13,421 520 2,195
2500 48,627 -158,853 -14,827 531 2,261
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Figure 6.1: Boxplot showing effect of fixed policy agent quote size on profitability of
each agent class. Includes all quote depths. Quote size h indicates “honest” policy
agent.

Figure 6.2: Boxplot showing effect of fixed policy agent quote depth on profitability
of each agent class. Includes all quote sizes. Quote size h indicates “honest” policy
agent.

replaces the ad-hoc experimental trader at a co-location latency of 33ns. Note that

the ad-hoc cases also appear in Table 5.1.

Tables 6.1, 6.2 and 6.3 summarize the average daily profit of each strategy across

100 simulated full market days. The returns of policy πh(s) approximately double

those of the honest ad-hoc strategy, while the returns of the ad-hoc spoofing strategy

approximately double those of policy πs(s). The positive or negative impact on the

profitability of other agent classes proportionally follows. This is expected, as over the

short term, stock trading is a zero-sum game. While the ad-hoc versus fixed policy

outcomes differ by a scalar multiple from those presented in Section 5.4, they are of
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the same order of magnitude in each case, and always positive for the experimental

agent.

Figures 6.1 and 6.2 represent the box plot distribution of returns for each strategy

as the quote size and depth of the fixed policy agent are varied. The findings are very

similar to the ad-hoc agent from Chapter 5:

• Compared with policy πh(s), policy πs(s) harms the order-book aware OBI

strategy and helps the other strategies.

• Passive quote depth has no discernible effect on the performance of any strategy.

• Up to a limit of about 1500 shares, positive and negative strategy outcomes

scale proportionally with passive quote size.

• The exploitative OBI* agent is assisted by the spoofing behavior up to about

quote size 1250, but then overwhelmed by it.

I also find that the average Θ(a0 : a19) activation for fixed honest policy πh(s) = 0

(order of 1e− 23) and for fixed spoofing policy πs(s) = 0.842.

Having demonstrated consistent profit for both πh(s) and πs(s), I conclude that

it should be possible for a policy-based agent to learn to profit in this simulated

market without adopting a non-normative spoofing behavior, but that adopting such

a spoofing behavior would significantly enhance profitability.

6.4 Restricted Actions: Learning at a Disadvantage

I first attempt to enforce behavioral norms on the RL trading agent by restricting its

action space, thus directly constraining its capacity to adopt non-normative behaviors.

The restricted agent QR is given the complete state space described in Section 6.2 but

limited action space {AG, EX, DN}. Given a more comprehensive state space, non-

normative behaviors like insider trading would still be possible, but this state space
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Table 6.4: Average profit across 100 full market days comparing
restricted trained experimental agent approaches to exploration.

Exploration Exper. OBI OBI* Value ZI
ε-greedy 1.0 467 -1,761 2,112 -30 57
ε-greedy step 382 -1,787 2,118 -27 54
ε-greedy decay 482 -1,825 2,138 -30 58
Boltzmann r-raw -58 -1,791 2,117 -34 62
Boltzmann r-scaled 405 -1,776 2,123 -32 59

Figure 6.3: Boxplot showing effect of exploration method on profitability of each
agent class.

is limited to internal market information. I therefore hypothesize that QR should not

be able to learn technical non-normative behaviors like spoofing.

The agent population and configuration for this series of experiments follows the

previous section except that the experimental agent now adopts online Q-learning to

discover an optimal trading policy. I instantiate 10 differently-seeded agents in 10

separate simulation sequences. Each agent is permitted to train for 10 full market

days and then evaluated (without updates) for another 10 full market days. All

agents adopt either Boltzmann or ε-greedy exploration as described in Section 6.2.

For ε-greedy, we consider three approaches: a fully random (ε = 1), a scheduled step

decline per day, or a more typical geometric decay. For Boltzmann, I consider raw

and linearly scaled environmental rewards. At the first day of training, Q values are

initialized to 0.0001 for action DN and to zero for all other actions, giving the agent
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a slight initial bias to do nothing under Boltzmann exploration or in the 1 − ε case

for ε-greedy. In all cases, I apply a learning rate of α = max(0.1, 1
c(s,a)), where c is a

counter function.

In Table 6.4 and Figure 6.3 I report the average and distribution of profit across 100

market days for each trained agent configuration by exploration approach. Regardless

of exact strategy, the ε-greedy traders and the scaled-r Boltzmann trader find a

profitable policy in the mean, while the unscaled-r Boltzmann trader does not (quite).

The exploration method selected by the RL trader makes little difference to the

other agent classes. I note that the Boltzmann trader consistently converged in fewer

market days of training, presumably by quickly learning to reject unrewarding actions.

I postulate that the unscaled-r Boltzmann trader converged to a sub-optimal policy

because the selection of actions in proportion to large scale rewards caused it to prefer

any action that presented an early reward opportunity, without sufficient exploration

of alternatives. For future experiments, I will prefer a scaled-r Boltzmann approach

for its combination of fast convergence, near-optimal profit, and lack of significant

downward deviations.

I additionally experimented with an actor-critic style target table, with varying

update frequency, but found that it did not improve performance, and so do not

include detailed results. I suspect that the non-stationary nature of our environment

caused any artificial delay in utility estimation to be detrimental.

Finally, every action sequence produced by the experimental agents was evaluated

using trained spoofing detector Θ from Chapter 5. As expected, the activation re-

sponses are uniformly low (< 1e− 17), confirming the hypothesis that the restricted

agent lacked the capacity to spoof the simulated market. The restricted agent did

consistently learn to turn a profit in the simulated market: in its scaled-r Boltzmann

configuration, only 5% of market days ended in a loss, and the average loss on those

days was only $195. This confirms the hypothesis that a well-constructed RL trader
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can learn to profit in the simulated market without spoofing.

6.5 Normative Alignment: Learning Not to Spoof

In prior sections, I laid out several important preliminaries: I constructed both an

honest and spoofing policy that earn profits in the simulated market. I showed that

normative behavior can be profitable, but non-normative behavior is more profitable.

I successfully learned an honest policy, constrained through action space restrictions,

that performs similarly to the designed honest policy. Each policy has demonstrated

a reliable distribution of daily profit and has activated spoofing detector Θ to the

expected degree. I must now attempt to answer the question:

Can the experimental RL agent be given an unrestricted action space

without learning to spoof the simulated market?

For this series of experiments, I remove the action space restrictions on the ex-

perimental agent. I would expect this to present a problem similar to the evocative

example given in the ubiquitous Russell and Norvig textbook: “Maximize dirt col-

lected” is an acceptable goal for an intelligent vacuum until it gains the “dump dirt”

action, at which point the goal must be refined to ”maximize floor cleanliness” to

avoid an unwanted exploit. [41] I therefore also augment the training process with

two of the approaches described in Section 6.1: reward shaping and policy shaping

(with action reranking). I hypothesize that normatively-constrained trader QN will

use the additional flexibility of its action space to earn profit beyond restricted agent

QR, but with lower Θ scores than the fixed spoofing policy due to the inclusion of a

normative prior.

Both normative training scenarios require that trained spoofing detector Θ be

incorporated directly into the experimental agent. Ideally, I could evaluate individual

proposed or selected actions for normativity, but as established in Figure 5.2, all of
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the agent’s individual actions are normative, and it is only sequences of actions that

take on characteristics of non-normativity. In particular, Θ requires action sequences

of exactly length 20 to make an evaluation, and was trained on data arising from

the exchange agent. I therefore maintain a length 20 history only of those actions

that would be visible to the exchange: this means that one agent policy action may

translate to zero or many exchange-visible actions for determining normativity.

For the reward shaping approach, I stochastically select an action from the Boltz-

mann distribution as described in Section 6.2. When the agent is to receive an

immediate, positive reward for closing a profitable position, I pass the action history

through Θ to obtain an activation level: Θ(a0 : a19) ∈ [0, 1]. The activation level is

high for spoofing behavior, which I want to discourage, so I transform the reward:

r′ = r × [1−Θ(a0 : a19)] (6.4)

For the action reranking approach, I transform the Boltzmann-derived probability

vector prior to action selection. Each time the agent must act, I tentatively add each

potential action to the recent history and pass the “proposed” histories through Θ to

estimate the normativity of each action given the current history. I use this to update

the probability of selecting each action:

P (a|s) = eQsa·[1−Θ(a,a0:a18)]∑
j e

Qsj ·[1−Θ(j,a0:a18)] (6.5)

In Table 6.5 and Figure 6.4, I report the average and distribution of profit across

100 market days for each trained experimental agent configuration using passive depth

5 and quantity 2500, comparing the four normative approaches with three of the ear-

lier configurations for reference. The table also shows the average detector activation

for the agent in the “Norm.” column, and Figure 6.5 shows the activation distribution.

Examining Table 6.5 suggests that all four approaches to normative guidance
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Table 6.5: Average profit across 100 full market days comparing
trained experimental agent approaches to normative guidance:

action reranking or reward shaping with unscaled or linearly scaled
environmental rewards.

Config. Scaled? Norm. Exper. OBI OBI* Value ZI
Fixed Honest - 0.000 517 -1,654 1,985 -30 55

Fixed Spoofing - 0.842 48,627 -158,853 -14,827 531 2,261
Restricted Y 0.000 405 -1,776 2,123 -32 59
Reranking N 0.213 67,615 -376,759 -73,187 1,386 5,407
Reranking Y 0.043 21,871 -83,964 -12,070 227 1,263
Shaping N 0.492 93,863 -636,593 -171,145 2,734 8,880
Shaping Y 0.072 19,987 -86,130 -10,882 263 1,268

Figure 6.4: Boxplot showing effect of normative guidance method on profitability of
each agent class.

reduce the average activation of the spoofing detector, however one may rightly be

suspicious that both configurations with unscaled environmental rewards achieve not

only greater profit than the “honest” traders, but greater than the fixed spoofing

policy! The configurations with scaled environmental rewards are more reasonable,

at least being lower than the known spoofing strategy.

The distribution of profits shown in Figure 6.4 is more revealing. Both unscaled

approaches to normative guidance earn spoofing-level profits most of the time, with

occasional catastrophic failures for the reranking approach. Both scaled approaches

seem promising, rarely or never losing money, but also rarely exceeding expected

levels of profit from normative behavior.
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Figure 6.5: Boxplot showing effect of normative guidance method on normativity of
each agent class.

The scaled action reranking approach has by far the lowest overall detector acti-

vation at Θ = 0.043 and a tight distribution on the profit boxplot, demonstrating the

best overall ability to guide the experimental trading agent to normative behavior,

even at the expense of increased profit. However, the long upward shadow for scaled

action reranking profit in Figure 6.4 combined with the short upward shadow for

scaled action reranking Θ in Figure 6.5 suggests that some agents are evading their

normative guidance.

Extracting individual agents trained under the same approach but in different

stochastic market conditions illuminates the potential issue. Considering both profit

and detector activation, there are two clusters of scaled action reranking agents with

different characteristics:

C1 : p ∈ [−200, 800],Θ ∈ [0, 0.040]

C2 : p ∈ [67k, 109k],Θ ∈ [0, 0.133]

The larger cluster C1 has characteristics similar to known honest agents. The smaller

cluster C2 has profits similar to known spoofing agents, but with far lower Θ activation

levels. With a complex, continuous state-action space, I might assume the C2 agents
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have simply learned to cleverly trade without spoofing, but the seven boolean state

features in my current environment do not permit much freedom. It is more likely

that these agents have learned to evade the spoofing detector.

Detailed activity traces were captured during the simulation of all experimental

agents. At the time of each RL agent decision, a record is made of the boolean

state components, the selected action, the Θ activation and selection likelihood of

all actions, the immediate reward, and the estimated portfolio value change, if any.

Further analysis of these traces results in several interesting observations:

1. Profit for C1 and C2 agents are similar during training, suggesting that spe-

cific experiences separate development of the agent clusters, rather than overall

training success.

2. During training, C2 agents experience state combination {H 1, XA 1, OP 1}

twice as often as C1 agents, effectively receiving more opportunities to discover

that open orders drive higher rewards. They also stochastically select action

EX 50% more often in response, clearly learning to close their position when

this occurs.

3. During training, C1 agents enter a position with entry advantage (EA → EN)

more than twice as often as C2 agents. This may indicate that C1 agents are

experiencing better early buying opportunities.

4. During training, all agents select actions that register Θ = 1.0 about 67 times

per day, showing that the normative guidance does not completely prohibit

taking known non-normative actions. Every time this occurs in a trace, it is

because all actions have estimated Θ = 1.0.

5. During test evaluation, C2 agents close a profitable position while having an

open order at the market an average of 189 times per day, while C1 agents
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never do this. This confirms that C2 agents have almost certainly learned to

spoof (despite low Θ levels) and that C1 agents have not.

Taken together, these observations reveal promising avenues for future work.

Observations 2 and 3 suggest that eventual assignment to cluster C1 (apparently

honest) or C2 (apparently spoofing) may depend substantially on the stochastic mar-

ket properties experienced by the agent during its early training period. Agents that

experience frequent, early “fair” prices to buy in are more likely to end up in the

apparently honest cluster, compared with agents that do not. This can be addressed

with a less artificial state space for the RL trader. In particular, calculating entry

advantage on a rolling basis, or providing generally more granular features, could

allow more flexibility to find apparently honest strategies on market days when prices

rarely fall back to the midpoint of the warm-up period’s price range.

Observation 4 suggests a limitation with the current mechanism to evaluate nor-

mative trajectory through recent action history. These occurrences represent periods

where the agent’s recent history, exclusive of the proposed action, is so non-normative

that no single selected action can lower the detector activation, effectively removing

any normative guidance for that selection. To address this in future work, I can

attempt to apply both policy shaping and reward shaping together, so when a non-

normative action is selected despite action reranking, the shaped reward penalty can

lower the estimated Q value to discourage repetition of the behavior. It may also be

possible to make the normative guidance more responsive to the most recent actions,

or to adjust its threshold, so it will be less likely to rate all proposed actions as equally

non-normative.

Overall, cluster C1 (apparently honest) is roughly three times the size of cluster C2

(apparently spoofing). Given this, and the low Θ activations shown in Table 6.5 and

Figure 6.5, I interpret the current experimental results as: the normative guidance

works about 3 out of 4 times. While imperfect, I accept this as a promising start.
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6.6 Conclusion

I have introduced and tested honest and spoofing fixed policy trading agents, an hon-

est (action restricted) Q-learning trading agent, and an unrestricted Q-trading agent

with two forms of normative guidance. The fixed policy traders show similar perfor-

mance to the ad-hoc agents introduced in Chapter 5 both in terms of profitability

and normativity and, as expected, the action-restricted agent lacked the ability to

spoof the simulated market under any exploration regime.

As discussed in Section 6.5, the experiments with normative guidance produced

promising but mixed results: for most random simulation starts, the unrestricted

agent appeared not to pursue spoofing strategies and displayed profits and norm

values similar to the honest fixed policy and restricted agent. However, about one

quarter of the unrestricted agents earned far higher profit while still registering es-

sentially zero on the spoofing detector, and exploration of their action traces confirms

the development of apparent spoofing behaviors that evade normative guidance.

I consider this a successful result: In each case, the normative guidance prevented

development of behaviors that would trigger the spoofing detector. With respect to

the edge case failures, the previously unexplored research problem would appear to

be reduced to some combination of “build a better spoofing detector” and “allow an

apparently honest RL agent to better adapt to a wide variety of stochastic market

conditions”. Specific suggestions for the latter were presented in Section 6.5, while

the former can be approached in at least two ways: add variety to the designed

spoofing sequences for training data generation, or directly feed any apparent “stealth

spoofing” behaviors as additional training data to the detector.

Reflecting on Chapters 5 and 6 together, this work demonstrates that uninten-

tional legal and regulatory violations by intelligent algorithms are a serious concern

requiring industry and regulator attention. The spoofing detector presented here can
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be improved and included as one component of an ensemble alongside decision tree (or

random forest) models, hidden Markov models, and others, with new models added

to the ensemble as new non-normative behaviors are identified over time. Regulatory

agencies could recommend or mandate that firms with a brokerage or trading desk

deploy the ensemble as a best faith effort to detect and discourage market manipula-

tion at a position in the order flow where identifying information is still present. The

use of market simulation to understand how other traders may react to an agent’s

behavior can ease the development component models for the ensemble.

In this chapter, I developed a method to inject normative guidance information

to an RL trading agent in simulation and observed the effects on its behavior. In

the final chapter, I reflect on the overall scope of the dissertation, highlight some

contributions, and suggest additional avenues for future work.
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CHAPTER 7

CONCLUSIONS AND CONTRIBUTIONS

In this chapter I discuss how the presented work supports my thesis, consider the

contributions made in this dissertation, and propose several avenues of future work.

I began this multi-domain empirical investigation with the assertion that:

Multi-agent simulation is an effective tool to solve problems in

responsible machine learning.

I applied MAS to two primary problem domains within responsible ML: user

data privacy preservation and normative reinforcement learning. In Chapter 2, I

introduced a novel MAS for financial markets with important new capabilities and

used it to study the impact high-frequency trading agents may have on other market

participants. In Chapters 3 and 4, I extended ABIDES to the domain of federated

learning and presented a novel privacy-preserving protocol which prevents user data

from being exposed by semi-honest participant collusion during collaborative learning.

In Chapters 5 and 6, I used ABIDES to generate a corpus of spoofing examples, with

which a detector was trained to serve as normative guidance for an RL trading agent

that should not learn to spoof the stock market.

The application of MAS to responsible ML was not without challenges. When

simulating private federated learning, I encountered substantial cryptographic over-

head in both time and space complexity. This limited the maximum participant count

on several occasions, and was difficult to circumvent given the single-threaded nature

of my simulation. Despite this, MAS allowed the development, iteration, and realistic

evaluation of a novel privacy extension, that would otherwise require worldwide cloud

resources, on a single local CPU. The training of a spoofing detector presented an
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obvious problem: no real spoofing data was available, so the effort would be reliant

on the verisimilitude of simulated spoofing strategies for the efficacy of the detector.

Applying the detector as normative guidance via action reranking proved very slow,

as it involved a trading agent with potential action frequency 1µs querying a neural

network at least six times per required decision. Nevertheless, it was demonstrated

that both a normative and non-normative agent could profit in the simulated market,

and to show that an agent with the capacity to spoof could be discouraged from doing

so without artificially restricting actions that have normative application.

The success of each of those efforts, leading to the contributions summarized in

the next section, effectively validate the thesis.

7.1 Contributions

The work presented in this dissertation makes a number of concrete and novel con-

tributions to the research space of responsible machine learning.

• ABIDES, an open source multi-domain MAS with important new capabilities,

plus built-in agents and functionality, for complex electronic trading markets,

privacy-preserving federated learning (PPFL), and safe evaluation of the (non-)

normativity of learning agents.

• A method for inexpensive empirical analysis of PPFL in simulation, with the

ability to vary latency, participant count, privacy loss parameter ε, and partic-

ipant connectivity, and observe the effect on protocol accuracy, temporal load,

and privacy.

• An improved PPFL mechanism based on 1-2 oblivious transfer that protects

sensitive user data even when all other collaborative learning participants col-

lude to reveal the data.

130



• Construction and evaluation of a financial market spoofing detector from syn-

thetic behavior examples.

• An approach to reward shaping and policy shaping (action reranking) for com-

plex financial environments in which only sequences of actions may be judged

as non-normative, requiring novel use of forward-simulated action histories as

guidance input.

• Empirical analysis of a normative RL trading agent learning not to spoof a

financial market.

7.2 Future Work

In this concluding section, I describe promising extensions or new applications of the

work presented in this dissertation.

7.2.1 AI Market Regulation

Given the recent enforcement actions discussed in Sections 1.3.3 and 5.1 [35, 36, 39,

105], the necessity to regulate the use of automated trading agents in financial markets

has become clear. Current laws incorporating the intent of a trader or programmer

likely apply even to automated agents deliberately designed to contravene statute or

guidance, but it appears this is not the case for inadvertent abuse arising from a care-

lessly trained agent without proper constraints. The detection and normative trading

work in Chapters 5 and 6 can be reinforced with additional approaches to spoofing

and other prohibited activities, refined to more reliably inhibit non-normative be-

havior, and become the basis of “best practices” for the financial sector to follow

when training automated traders. Regulatory bodies like CFTC, FINRA, and SEC

can encourage adoption of such best practices through a safe harbor clause, offering

indemnity against accidental violation if accepted best practices have been followed.
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Because the presented detector uses only order information that would be visible to

the first upstream service provider, firms could also better monitor their clients for

prohibited activities.

7.2.2 Responsible Simulation of AI Attacks

As complex intelligent systems are given greater responsibility, we can expect con-

sequential failures to arise from attacks against, or employing, intelligent agents.

Understanding and mitigating these risks will be a high priority for academics and

industry practitioners in the medium term. The work presented in Chapter 4 can

be extended from attacks against federated learning to a range of other questions.

Can we use simulation as a form of data augmentation to guard against inappropri-

ate behavior during “black swan” events? Could a malign intelligent agent attack the

stock market by learning to place orders that maximize volatility or cause an outright

market crash? These and similar questions would be both interesting and possible to

explore using the developed ABIDES platform.

7.2.3 High Performance Computing for Secure ML Collaboration

The nascent field of federated learning [16, 19, 13, 12] is attracting increasing atten-

tion for both its promise to allow more accurate learned inferences from distributed

devices while maintaining user data privacy, and for the potential of safe cooperation

across departments, firms, or agencies to learn shared models for the common good.

With additional performance improvements, the presented work in accurate local sim-

ulation of federated learning protocols can boost privacy and research productivity

in this emerging area. In particular, the current privacy protocol comes at a cubic

computational cost per client, and the pure Python simulation could be much faster.

Theoretic and practical advances on either front can encourage better, more resilient

AI “in the wild” by lowering barriers to safe, efficient collaboration.
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