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SUMMARY 

 

 

 

Laser Powder Bed Fusion (L-PBF) is a technique within additive manufacturing 

which uses a high power density laser to build parts from fused powdered metal alloy. This 

technology is well equipped to produce complex parts with otherwise impossible features 

such as hidden voids or lattice structures. Alongside capability, reliability and quality are 

key characteristics considered when choosing a manufacturing method, and these are 

gaining attention as this method becomes more prevalent in industry. One main indicator 

of a stable L-PBF process is consistent melt pool geometry, the properties of which are 

likely to determine the quality of the part produced. As computing power and sensing 

technologies become more advanced, this melt pool geometry could be studied in real time. 

Therefore, the loop could be closed on process monitoring in order to achieve optimal 

quality. This work addresses that challenge by capitalizing on machine learning techniques 

to reduce the latency between sending process commands and receiving process validation.  

This thesis presents a novel application of a k-nearest neighbor (k-NN) model to 

identify key parameters within melt pool imagery and predict significant process 

parameters. The k-NN model was trained on data provided by the National Institute of 

Standards and Technology (NIST). This approach was used to accurately infer the energy 

density of unseen layers within the same part. The algorithm was subsequently tested with 

unique scan strategies and found to reasonably estimate the process parameters of different 

parts. A 5-fold cross validation found the algorithm to be consistently predicting the class 

of 95.42% of the in-situ melt pool images. 
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CHAPTER 1: INTRODUCTION 

 

 

Research in automating the process level of manufacturing operations has been 

conducted, in both academia and industry, over the past few decades. This work is 

motivated by a strong belief that research in this area will provide increased productivity, 

improved part quality, reduced costs, and relaxed machine design constraints. The basis 

for this belief is two-fold. First, manufacturing process automation can be applied to both 

large batch production environments and small batch jobs. Second, process automation can 

autonomously tune machine parameters (velocity, power, scan strategy, etc.) on-line and 

off-line to substantially increase the machine’s performance in terms of part tolerances and 

surface finish, operation cycle time, etc.  

Process automation holds the promise of bridging the gap between product design 

and process planning, while reaching beyond the capability of a human operator. The 

success of manufacturing process automation hinges primarily on the effectiveness of the 

process monitoring and control systems. Particularly for metal additive manufacturing 

(AM), successful process control with precision measurement science will not only extend 

the capabilities for this technology, but also introduce reliability to advanced 

manufacturing methods which have not yet been widely incorporated into production 

environments. The most widely used metal AM technique in the commercial industries is 

Laser-Powder Bed Fusion (L-PBF), a method for melting thin layers of metal powder with 
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a high-powered laser, recoating the build area with powder, and repeating this process until 

a dense part is completed.  

A promising future is in store for L-PBF AM. However, widespread adoption of L-

PBF with metallic parts hinges on solving a main challenge: the requirement that the final 

product should meet engineering quality standards. This includes increasing the 

predictability of melt pool geometry, since the melt pool has a strong impact on the final 

mechanical properties. Modeling advances on this front typically rely on physics-based 

simulation, which are available commercially, but most require a deep understanding of 

the process involved, as well as full access to the input parameters and machine 

specifications [16]. An attractive alternative to answering this challenge is through machine 

learning and predictive simulation. This alternative solves the problem as a “black box,” 

and only follows the patterns of the inputs and outputs, without focusing on the underlying 

physics. Such an approach requires a high volume of data to study from and subsequently 

validate its performance, which is prohibitive in niche areas where extensive research is 

not being published. The physics-based models however only require enough data to 

evaluate accuracy, but the aforementioned basic research becomes the largest hurdle that 

requires time and resources to surpass [38-40]. This work focuses on improving 

accessibility of quality assurance to lower budget commercial applications, and the cost for 

physics based modelling may be prohibitive for the end user in that situation. Therefore, 

the inexpensive machine learning approach which utilizes open source algorithms is the 

path explored in this thesis to better understand its novel application to predicting machine 

parameters using in-situ monitoring. 
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1.1 Motivation 

The shape of a melt pool is significantly affected by laser power and scan velocity, 

and melt pool formation has been shown in recent studies to determine material properties. 

An understanding of the fundamental science behind these relationships is currently being 

developed in the literature. However, an intermediate process such as melt pool formation 

is challenging to model because it includes several complex physical phenomena including 

thermal conduction, fluid dynamics, and phase changes of materials [9,16].  Machine 

Learning (ML) provides a different path to correlate the process parameters and results 

without the need for advanced modeling, and it has been shown to be effective in additive 

manufacturing applications [19].  

 

1.2 Problem Statement 

The objective of this work is to identify key features in monitoring the melt pool of 

L-PBF AM systems, and to use those features in a supervised machine learning algorithm 

to predict key input process parameters. An understanding of how melt pool images can 

predict AM machine commands or scan strategy to explore near closed loop control or 

anomaly detection is not well presented in the literature. To complement the current work 

being done to predict melt pool geometry from velocity and/or power, k-nearest neighbor 

(k-NN) models were trained and evaluated for interlayer prediction and transferability to 

other parts. Models were trained on data and images from the National Institute of 

Standards and Technology (NIST) and their Additive Manufacturing Metrology Testbed 

(AMMT) [1]. 
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1.3 Structure 

 The following chapters are structured as follows. Chapter 2 will begin with a 

background of additive manufacturing while specifically focusing on laser powder bed 

fusion. A brief introduction to machine learning will also be presented, and the intersection 

of these two subjects will be discussed as it currently is addressed in the literature. Chapter 

3 will include the methodology used in developing the training and testing matrices from 

the experimental dataset presented in [1]. The pre-processing of the in-situ monitoring 

images will be reviewed as well as the flow of information into the k-NN classification 

algorithm. In Chapter 4, the results of interlayer and transferability analysis will be 

presented. The k-fold validation will also be included with some inferences about the 

results. A further discussion is held in Chapter 5 regarding the challenges faced along with 

the assumptions made. Chapter 6 delivers the conclusions made and postulates future 

possibilities for improvement in this area.  
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CHAPTER 2: BACKGROUND 

 

Additive manufacturing (AM), instead of the traditional subtractive technologies, 

is a process of adding material to make near-net shape parts directly from 3D models [8]. 

This technology has been rapidly developed for many applications requiring advanced 

manufacturing in sectors such as aerospace. AM is comprised of techniques involving a 

range of materials and capabilities spanning a wide distribution of machine cost.  

 

2.1 Laser Powder Bed Fusion 

Powder bed fusion, one of the seven AM techniques defined by ASTM F2792, uses 

a thermal energy source such as a high-powered laser to melt metal powder to the base 

plate or previous layers [36]. A standard machine set-up is displayed in Figure 1 below.  

 
 

Figure 1: The powder bed fusion process [35] 
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Most metal additive manufacturing in commercial applications today falls under 

powder bed fusion. This technique is particularly well suited for applications which require 

better precision and accuracy but can spare more time per build. Powder bed fusion is the 

parent technology of electron-beam melting (EBM) and laser-powder bed fusion (L-PBF). 

The main difference between the two technologies is the thermal energy source used to 

heat the metal powder to melting temperature. This work focuses on L-PBF, which is 

typically the more cost-effective of the two, and is the most widely used metal additive 

process in the field [37].  

The process of L-PBF is executed as follows: First, the build area is filled with a 

layer of metal powder and the material is evenly distributed with a recoating system. A 

galvanometer scanner orients the energy source, such as a laser, and transfers thermal 

energy to the top layer of material through a predetermined scan strategy to add a layer 

typically 30-50 microns in thickness to the part. The build platform is then lowered by this 

thickness without removing the excess metal powder, and more powder is dispensed to 

recoat the build area for the next layer. The laser is oriented with great precision in the XY 

plane, has a focus diameter of less than five thousandths, and with a layer thickness less 

than half of a sheet of paper’s, features can be built with high fidelity [35]. This process 

typically takes place in an environment filled with nitrogen, argon, or another inert gas to 

keep the solidified layers from oxidizing after they have been melted. Once the final layer 

has been fused to the part, the part will need to be removed from the build area and from 

its encapsulation of packed metal powder.  

Numerous layers are fused together to create a part with near 100% density through 

a three-step process: thermal energy absorption, melt pool formation, and solidification 
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[10]. This work focuses on the second step of this process, melt pool evolution, which is 

significantly influenced by process parameters such as energy density and laser scan 

strategy [5, 26]. Several physical phenomena are at play as well during this process, 

including fluid mechanics, heat transfer and phase transformations. Figure 2 below 

illustrates a physics-based modelling approach to understanding the complex interactions 

happening throughout this fusion process. 

 

 

 

Figure 2: Example path of a laser in powder bed fusion [16] 
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2.2 Influence of Melt Pool Geometry 

Within the process of Laser-Powder Bed Fusion, the characteristics of the melt pool 

have been shown to influence the part’s microstructure and the resultant material properties 

[30]. The melt pool geometry, as is directly influenced by energy density, can be controlled 

to improve part quality as well [2, 4]. This could be partly due to the fact that energy density 

(J/mm^3) has been shown to be correlated to part density, as seen below in Figure 3. The 

effects of energy density parameters, scan speed and laser power, on material properties 

have been studied by many in the literature [42-46].  

 

 
 

Figure 3: Energy density vs. part density in selective laser sintering (SLS) [45] 

 

The underlying effects from reduced energy density manifest primarily as an 

increased level of porosity in the part, which in turn weakens the mechanical properties of 

the affected area by introducing stress concentrators during manufacturing in the form of 

external pores, voids, and micro-cracks [57]. Parts with 100% relative density on the other 
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hand have been experimentally proven to mimic the material properties of wrought 

materials, if not surpass them. It has been shown that poor energy density may cause this 

because of incomplete fusion or trapped gases within the part [16]. At higher energy 

densities, the pores identified were typically smaller in size and were found to be more 

regular and even in their spherical shape. Porosity increases are essentially being linked to 

improperly formed melt pools, which emphasizes the importance of this aspect for PBF 

[6]. With energy density controlling melt pool geometry, and melt pool geometry heavily 

influencing porosity and subsequently the strength of the material, the melt pool acts as an 

intermediate step in the efforts to predetermine the properties of the resultant part.  

In order to intelligently control melt pool geometry, a well-defined relationship 

between process parameters and melt pool dimensions will need to be established. Figure 

4 below illustrates the typical geometric boundaries that a melt pool shape is defined by, 

including length, width, depth, and hatch space h.  

 
 

Figure 4: Melt pool geometry in L-PBF [31,32] 
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 Figure 5 below displays some experimental data presented by Guo where energy 

densities were kept constant for three different sets of experiments focused on the 

relationship between melt pool dimensions and the individual parameters which make up 

energy density. The increasing range on the vertical axes indicate the correlation between 

energy density and melt pool volume overall, but within each energy density tier there is 

another linear relationship between melt pool dimension and the process parameters. These 

two correlations compound upon one another, forcing the models of this problem into the 

nonlinear optimization space.  

 

 

 

 
 

Figure 5: Change in melt pool size within constant input energy densities (IED) [58] 
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Despite increases among energy density and melt pool volume being correlated, it 

is difficult to linearly predict when the process is open to influence from uncontrollable or 

unexpected factors [33]. Even if the surrounding environment is controlled, there is a 

possibility of variation in melt pool size as a build progresses, and defects can grow to 

cause build failure if the signs of a defect are not caught early. Open loop control would 

likely be inadequate when quality and/or complexity is highly valued. As computing power 

becomes cheaper, including closed loop control in additive processes is becoming more 

accessible, and algorithms need to be developed to address this issue.  

 

2.3  In-situ Process Monitoring 

The necessity of high feature resolution has encouraged more interest in the 

development of sensor technologies to monitor laser-powder bed fusion, and defect 

avoidance has become critically important. The National Institute for Standards and 

Technology (NIST) has outlined measurement science needs for metal additive 

manufacturing, and these include qualification and certification of the parts and processes 

that make up powder bed fusion, the part’s mechanical properties, and the observation of 

machine performance [34]. Closed-loop control in metal AM has subsequently been 

identified as an important focus for the scope of measurement science work, as robust 

process control in-situ can reduce outcome variability and increase the quality of parts 

produced by these means.   

 Closed-loop control has been investigated before in a similar context for the process 

of directed energy deposition (DED) by monitoring the infrared (IR) radiation emitted by 

the melt-pool [56]. The results of this study were encouraging, as the microstructure 
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became more homogeneous with the addition of a PID controller connected to the laser 

power responding to changes in temperature. Below in Figure 6 is an example of the visual 

effects closed loop control can have on metal additive manufacturing.  

 
 

Figure 6: Built cubes without (Top) and with (Bottom) feedback control 

 

2.4  Machine Learning  

 Machine learning algorithms have been introduced as a revolutionary addition to 

additive manufacturing, as they increase the probability of success in high-value and 

complex parts [10,14]. ML algorithms are oriented around prediction and interpolation 

within a large dataset where it is advantageous to discover patterns. Some algorithms, 

called unsupervised learning methods, do not even require labels for their data points as 

they simply search for natural subsets of data. If the expected data classification or response 

vector is available, then a supervised learning algorithm is preferred. 
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ML algorithms can be used in a monitoring and control context due to the low 

processing power needed to predict new values. As an additional benefit, ML models 

typically improve over time as the pattern boundaries automatically shift to optimally 

incorporate new data. Therefore, these algorithms are suitable for interpreting parameters 

in processes where the environment and part geometry may vary over time. With respect 

to AM, machine learning is already used to recognize issues and predict the quality of parts 

[20, 22]. 

 

2.4.1  k-Nearest Neighbor (k-NNs)  

The k-nearest neighbor algorithm is a supervised classification algorithm that seeks 

to make predictions on a sample data point by determining the k nearest points by 

Euclidean distance. The most frequent class label among the k nearest neighbors is applied 

to the sample data point. In Figure 7, a k-NN algorithm of k equal to 5 is shown. The data 

point denoted by 𝑋𝑢 is assigned the class label of the red circles due to majority vote.  

 

 
 

Figure 7: A k-NN algorithm with 3 class labels and k = 5 
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2.4.2 k-Fold Cross Validation 

 Cross validation of an ML algorithm is helpful to minimize bias and assess the 

effectiveness of a model such as k-NNs. For this process, a known dataset is split into 

several bins of data, and the number of bins is represented by the variable k. The number 

of folds (equal to the number of bins) indicates how many iterations the algorithm will be 

trained and tested on a unique dataset formed by iteratively choosing the test dataset i, 

which contains only one bin of data, across the number of folds. This process is used in 

practice to evaluate a model using k permutations of the same known dataset. The number 

of permutations can increase as the size of the dataset increases. Figure 8 below illustrates 

the typical k-fold validation process with 5 folds.  

 

 

 

Figure 8: A standard k-fold validation procedure where k = 5. [59] 
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CHAPTER 3: METHODOLOGY 

 

  

The goal of this work is to develop a prediction method for the process parameters 

of laser powder bed fusion systems in additive manufacturing. The significant process 

parameters that affect melt pool geometry, scan velocity and laser power, are more 

accurately represented in their effects by looking at energy density. It can approximated 

with the following: 

Equation 1:  

𝐸𝐷 ~ 
𝑃

𝑉
 

Instead of predicting multiple dependent variables, this method rather delivers an 

estimation of the largest influence on melt pool size and requires less computing power. 

The faster method is desirable in this application for low-cost additive manufacturing 

prediction.  

 

3.1 Data Interpretation 

 

The data studied consists of input command files, in-situ process monitoring data, 

and metadata provided by the National Institute of Standards and Technology who 

performed a build with the Additive Manufacturing Metrology Testbed (AMMT) [1]. 

Figure 9 below illustrates the AMMT system schematic. Twelve parts, identical in shape, 

were built out of IN625 on the same build platform which consisted of hot rolled and 
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annealed wrought nickel alloy. The standard tessellation language (STL) file, as illustrated 

below in Figure 10, represents the near rectangular prism that was built for this dataset.  

 

 

 

 

 

Figure 9: AMMT system setup [24] 
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Figure 10: Graphical representation of studied part in STL format 

 

 None of the twelve parts varied in geometry, but rather they each had a unique scan 

strategy, and some of the differences can be observed in the snapshot below, Figure 11. 

The first category of information within the dataset provided by NIST, the build command 

data, can be used to highlight these differences, and there were two types of such data 

provided: AM G-Code and XYPT commands, where XY indicates the cartesian position 

(in mm) in the current layer, P represents power (in Watts) of the laser, and T represents 

the binary indication of capturing melt pool images. In this work, the XYPT commands 

were used because of the interest in directly comparing programmed position and power to 

the second category of information, the in-situ measurement data. This second category of 

information has two subcategories: co-axial melt pool images and grayscale layer images. 

From these, the melt pool images were more important to this work because their capture 

could be directly placed in the context of the location and power of the scanning laser.  
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Figure 11: Unique scan strategies of the twelve parts [1] 

 

 The melt pool camera captured thousands of images per layer, and altogether this 

build required 250 layers each 20 μm thick, with a laser spot diameter of 85 μm. The images 

in this subcategory, all 120 pixels X 120 pixels, focused on a single part out of the twelve 

built during any layer. For example, during layer 2, the in-situ melt pool camera was only 

triggered when building part 2, and similarly, images from layers 1, 13, 25, 37, etc. (~20 

equally distributed layers in total) were only attributed to part 1. Collecting a training set 

of images for studying a certain part was then approached by filtering out the other layers.  

 

3.2  Data Preprocessing 

 

The XYPT commands and melt pool images were studied layer by layer and, within 

each layer, frames 1-n were individually considered for viability in the training set. First, 

the grey image was binarized based on the ISO 50 method, where any pixel with greater 

intensity than 50% of the maximum intensity would be counted as a true value and all else 
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were considered to be a Boolean 0 or false. Once binarized, there were several conditions 

which had to be met in order for an image to be included: The shape made up of Boolean 

1 values must have one and only one centroid, and it must also be larger than 40 pixels 

squared in area. That said, if a secondary shape in the image is recognized and it is smaller 

than the required area, that shape was removed and the primary shape was not considered 

invalid. These cases are represented by Figure 12 below.  

 
 

Figure 12: Image viability – (a) Images with two objects not considered (b) Typical melt 

pool image studied (c) Small, low intensity melt pools were removed 

 

 Once an image was classified as viable, features of the image were extracted to 

increase the speed and efficiency of a k-NN algorithm, including descriptive statistics of 

the melt pool area, dimensions of the melt pool shape, and centroid locations. Two centroid 

locations were found in each typical melt pool image, that of the shape greater than the ISO 

50 threshold, and the centroid of the melt pool tail. The tail is defined in this work as the 

collection of pixels that lie between the ISO 50 and a similarly obtained 35% threshold. In 

order to extract this information, the original image was again binarized with these new 

limits, but no size requirements were imposed on the tail section. The process of 

binarization and isolation of the necessary features is illustrated below in Figure 13.  
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Figure 13: Process of image feature extraction – (a) original gray image with Matlab 

estimated orientation (b) binarized image of pixels > ISO 50 (c) binarized image to isolate 

melt pool tail (d) new estimated orientation superimposed upon original gray image 

 

The original gray image was initially characterized by Matlab’s regionprops 

function in the Image Processing Toolbox, because most of the melt pool images 

represented an elliptical shape. The centroid of the binarized shape and the regionprops 

estimation of the elliptical axes are superimposed on the original gray image in Figure 

13(a). The same major axis estimation is carried over to the binary image in Figure 13(b). 

In Figure 13(c), the binary image of the isolated tail is shown, and a separate centroid is 

calculated from the new shape. In Figure 13(d), the culmination of these efforts is 

displayed, as the line of best fit through both centroids is taken to be the correct major axis 

orientation, while the original major and minor axis lengths are kept. These modified 
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orientations give the k-NN algorithm better context and could allow for path planning 

prediction in future work. However, the in-situ monitoring camera was not aligned with 

the coordinate system of the substrate, and thus the orientations found using this method 

must once again be manipulated with a transformation matrix to be reconciled with the 

build command data.  

Some of these independent variables can be combined or manipulated to give the 

model more relevant information, defined here as derived variables, such as Coefficient of 

Variance, which is calculated with the equation: 

Equation 2: 

𝐶𝑂𝑉 = 𝜎/𝐼 ̅

Figure 14 below illustrates the flow of information from the datasets to the k-NN 

classification algorithm to predict the process parameters velocity, power or energy 

density.   
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Figure 14: Flow chart of information throughout prediction process 

 

The ground truth in relation to these images lies in the XYPT commands, as each 

image correlates to a trigger indicator in the “T” column of this build command data. These 

process parameters provided by this data give the algorithm its class names, represented by 

velocity, power or energy density around the time each image was captured. Even though 
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this work mainly studied energy density prediction, the same algorithm and training matrix 

could be used to predict velocity or power as well.  

 

3.3  Training/Testing Split 

This algorithm was validated through the evaluation of interlayer prediction within 

a certain part, as well as through the use of k-fold cross validation. The prediction of 

process parameters within a certain part required a testing set and a training set split which 

gives the model enough data to train with, while adequately representing the error of the 

result with a large enough testing set. A typical split has a maximum of 90% of the dataset 

reserved for training, if the dataset is small. As there were typically 50,000 melt pool 

images available for each part, a slightly larger testing set of 25% was used, leaving 75% 

of the data to train the k-NN.  

The use of k-fold cross validation can reduce bias and evaluate the stability of an 

ML algorithm. The k parameter in this context specifies the number of bins into which the 

dataset is divided. Once the dataset is divided, one bin is chosen to be the testing set, while 

the other bins are combined to become the training set. Once the model has been tested and 

evaluated, the performance is recorded and the model is replaced with the next. Bin i out 

of parameter k is chosen as the new testing set and this process is repeated until k models 

have been trained, tested and evaluated. The model was also tested for transferability across 

the different parts, as the future work in this area would ideally use transfer learning to 

predict process parameters of any part printed using L-PBF. A different path was taken for 

each part, and their general descriptions can be seen below in Table 1. 
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Table 1: Scan strategy descriptions 

 

Part # Scan Strategy 

1 Standard 

2 Island  

3 Concentric island 

4 Island with alternate starting quadrant 

5 Island with higher vertical shell laser power 

6 Concentric island with higher vertical shell laser power 

7 Island with fewer vertical shells 

8 Island with fewer vertical shells and alternate starting quadrant 

9 Concentric island with alternating power 

10 Concentric island with alternating island and concentric island interleaved 

11 Interleaved island 

12 Interleaved concentric island 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

 

 The results of the trained k-NN on the process command and monitoring data are 

presented in this section. The dataset was divided up based on part number (1-12), and then 

further divided for the training/test split. With an established data set per part of ~30,000 

images, the relevant features were derived and saved into the training matrix with 15 

columns of independent variables and 1 column of class labels. The matrix was then 

normalized to reduce bias which might drive the algorithm towards the prediction of an 

infill class label.  

After reduction, a typical training matrix had a length of 4,000 rows, which was a 

significant reduction (87%) from the identified training data set. This training matrix was 

input into the testing program, and each new image found in the applicable bounds was 

assigned an estimate of energy density. A testing matrix could be then saved from those 

estimates, and error was generated by finding the percent difference between the predicted 

class label and actual energy density value.  

 

4.1  Feature Extraction Results 

The first step in this process, extracting features from the images, played a crucial 

role in building this low-bandwidth training matrix. The histograms of the training matrix 

variables, including the features of the image data and their respective class names, are 

displayed below in Figure 15. The distribution of independent variables, including normal, 

bimodal, or skewed distributions, provided context for the relationship between these 

variables and their respective class names.  
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Figure 15: Elements of the training matrix: (a) Average image intensity (b) Standard 

deviation of image intensity (c) Median image intensity (d) Major axis length (e) Minor 

axis length (f) Centroid X position (g) Centroid Y position (h) Image processing toolbox’s 

regionprops estimate of orientation (i) Melt pool area (j) Tail centroid X position (k) Tail 

centroid Y position (l) Aspect ratio (m) Distance between centroid and tail (n) Coefficient 

of variance (o) Estimated orientation (p) Energy density class labels 
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4.2  Inflection Points and Transitions 

The transition points between scan strategies in the various parts were studied to 

understand the viability of this dataset for the interpolation of process parameters, and to 

also understand the potential sources of error in the results. Below in Figure 16, the ideal 

response for the prediction algorithm to study is represented over a 0.1 second period in 

the build. This transition from 100 to 195 Watts instigated an immediate directly 

proportional response from the resultant melt pool area, as its average area in square pixels 

increased from 112 to 238. It is also important to note that scan velocity did not 

significantly vary over these periods during the build, and therefore the energy density 

scaled with laser power. 

 
 

Figure 16: Typical Delineation Between Power Settings and Melt Pool Areas over Time 

for Part 2 
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Part #2 however employs a simple serpentine island scan strategy which is more 

predictable than others such as the alternating power concentric island strategy used by 

Part #9. Shown in Figure 17 below, the standard laser power transition for this part is more 

difficult to observe from studying the melt pool area. The difference in bias between the 

two sections is only 50 pixels squared, a 60% decrease from the typical shift in part 2. This 

increases the difficulty of prediction, but melt pool area is not the only indication of a 

change in energy density. This emphasizes the advantage of using a machine learning 

algorithm, as the relationship between the process parameters and aspects of the images 

are complicated by additional physical factors. For example, the physics of thermal energy 

retention could be influencing the lack of melt pool area response, as the powder bed 

absorbs the extra thermal energy when the laser does not cycle on and off, such as in part 

#2.  

 

Figure 17: Typical Delineation Between Power Settings and Melt Pool Areas over Time 

for Part 9 
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 Patterns such as changes in melt pool size with shifts in power can be noted for 

future prediction, and they will be the features which influence the weighting scheme in 

ML algorithms such as the k-NN approach. Since this work is focused on completing the 

control loop by estimating process parameters, the overlap in the spans in melt pool area 

make it tough for the algorithm to be perfectly accurate, but it does indicate a general trend 

which should match up with the programmed laser power and scan velocity. This lack of 

precision is also exacerbated by phenomena occurring at the edge cases where the 

parameters do not match up with the in-situ monitoring data at all. 

In Figure 18 below, the unique pattern of drastic increases in melt pool area can be 

seen over the course of 0.07 seconds during the build of part #9. This pattern occurs 

regularly for parts with concentric island scan strategies as the laser moves in a spiral 

motion towards the center of each island. The cause for this spike in melt pool area without 

changing energy density could fall on the increase in thermal energy being retained when 

the Euclidean distance between the current melt pools and recently melted powder 

continues to be small. This concentration of thermal energy does indicate an increase in 

energy density within the part at this point, but it is no longer monotonically related based 

on process parameters. Therefore, this type of behavior has been classified in this work as 

atypical, and the algorithm does not attempt to predict such occurrences in the future.  
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Figure 18: Atypical Delineation Between Power Settings and Melt Pool Areas over Time 

for Part 9 

 

4.3  k-NN Layer Comparison Results  

The simplest scan strategies represented by part numbers 1 and 2 were the first 

studied for validation of the model. Table 2 displays the results of a k-NN (k = 5) employed 

on parts with a split between training and test sets at around layer 188. From the table, it is 

clear that training on a subset data from a given part provides an effective model for 

classifying other data from that same part. This initial check evaluates the viability of 

predicting other layers’ energy density values within the same part.  
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Table 2: Layer comparison 

 

Training Part : Layer Count Testing Part : Layer Count Mean Error (%) ± σ  

1 – Standard : 2-188 1 – Standard : 189-250 1.83 ± 19.9 

2 - Island: 2-188 2 – Island : 189-250 5.60 ± 29.4 

 

4.4  k-NN Part Comparison Results  

 Examples of the various scan strategies can be seen below in Figure 19. The 

standard scan strategy is a vertical serpentine pattern with a constant hatch spacing h, and 

the laser scans from one side of the part across the entire depth to the other side. In contrast, 

the island technique divides the part into smaller identical “islands,” typically 4, and there 

the laser would only scan halfway across the depth and then move hatch spacing h 

orthogonal to the nominal scanning direction before scanning back to the edge. The 

serpentine strategy is replaced in part 3 by the “concentric” style which begins near an edge 

of the part and moves inward with a centering spiral pattern. Different variations of these 

basic strategies and their permutations make up the remaining 9 parts.  
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Figure 19: Examples of different scan strategies: (a) Standard/serpentine with hatching 

space h (b) Serpentine with larger hatching space (c) Off-axis serpentine (d) Concentric 

(e) Serpentine Island (f) Concentric Island [23] 

 

 Using parts 1-3 as the pool for training sets, the variations from similar parts were 

studied for transferability of the k-NN model. First, the interchangeability between the 

training set parts was tested, and the experiment was organized with enough permutations 

so that each subsequent part tested could be related back to any of the training parts. The 

scan strategies at the core of each pair of parts compared were built upon the same 

foundation, as parts 2 and 4 both use serpentine island techniques, but part 4 starts with a 

different island or quadrant.  

The training/testing pairs and their respective errors are presented below in Table 

3. For each row in the table, the k-NN model was trained on the training part number 

indicated in column 1 and all applicable layers in the total of 250. The strategy used for 

that parts manufacture is copied from Table 1 alongside part number for reference. In 

column 2, a similar format follows, as the k-NN model was tested on each applicable layer 

within that part’s dataset. The model’s predictions were evaluated against the XYPT 
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command data, and the mean number of misclassifications as well as the standard deviation 

is presented in column 3.  

Table 3: Part comparison 

 

Training Part – Strategy 

Layers 1-250 

Testing Part - Strategy 

Layers 1-250 
Mean Error (%) ± σ  

1 – Standard 2 – Island 1.51 ± 28.7 

2 – Island 3 – Concentric Island 3.59 ± 38.9 

1 – Standard 3 – Concentric Island 4.49 ± 39.8 

2 – Island 4 – Alt. Start Island 3.18 ± 20.5 

2 – Island 5 – High Power Island 17.7 ± 42.4 

3 – Concentric Island 6 – High Power Con. Island 35.3 ± 46.4 

3 – Concentric Island 9 – Alt. Power Con. Island 22.4 ± 48.6 

 

 The transferability of the model between various scan strategy differences was 

studied to produce the above data, as each part (1-12) has consistent geometry. The training 

part pool, parts 1-3, was initially investigated to establish a baseline set of results for the 

three simplest scan strategies that were used. For three unique paths to compare, three 

permutations of the train/test split were established and executed to achieve connections 

between each baseline part from another. An average misclassification rate of 3.2% was 

reached with the combinations in the first three rows of Table 3, and this reduced error was 

only matched in the future comparisons with parts 2 and 4. As more dissimilar parts or 

more complex scan strategies were compared, the error was observed to significantly 

increase in probability. As mentioned, training part 4 on a test matrix generated by part 2 

produced similar error to that of the baseline part pool due to the only difference originating 
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from the alternating starting quadrants. Otherwise, the features which the model could learn 

from were discovered in the testing part data as well, which resulted in fewer 

misclassifications. Inversely, the proportion of features possibly mapping from parts 3 to 

6 decreases due to the exponential increase in thermal absorption and subsequently thermal 

energy density with a concentrically focused scan strategy. The inflection points mentioned 

in the above section are critical here in the part comparison, as the introduction of more 

variability in the strategy as in part 9 for example will reduce the possibility for the model 

to project trends from the simpler scan strategy. The overall higher error with pairs [2,5], 

[3,6], and [3,9] seems to be consistent with more of these fluctuations in laser power.   

 Below, Tables 4-10 illustrate the context behind the error presented in Table 3, as 

each predicted energy density is recorded in relation to the actual energy density. In order 

to better observe the general trend for the success of the algorithm, the range of energy 

density class labels was categorized into three main groups: Category 1 (Energy Density 

less than 0.25 J/mm^3), Category 2 (Energy Density greater than 0.25 J/mm^3 but less than 

0.45 J/mm^3), and Category 3 (Energy Density greater than 0.45 J/mm^3).  

Table 4: Results of training of part 1 and testing on part 2 

 

 Predicted Category 

1 2 3 

 

Actual 

Category 

1 1833 289 141 

2 769 27538 3073 

3 141 2138 2995 
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Table 5: Results of training on part 2 and testing on part 3 

 

 Predicted Category 

1 2 3 

 

Actual 

Category 

1 2723 36 102 

2 2726 15961 5192 

3 746 2259 45620 

 

Table 6: Results of training on part 1 and testing on part 3 

 

 Predicted Category 

1 2 3 

 

Actual 

Category 

1 2385 179 270 

2 2494 27735 9636 

3 1762 8284 33436 

 

Table 7: Results of training on part 2 and testing on part 4 

 

 Predicted Category 

1 2 3 

 

Actual 

Category 

1 2104 84 50 

2 723 27229 3733 

3 178 1354 4001 
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Table 8: Results of training on part 2 and testing on part 5 

 

 Predicted Category 

1 2 3 

 

Actual 

Category 

1 2289 166 238 

2 1728 27754 11541 

3 722 2686 24141 

 

Table 9: Results of training on part 3 and testing on part 6 

 

 Predicted Category 

1 2 3 

 

Actual 

Category 

1 2523 154 219 

2 1574 33857 19711 

3 825 7095 35678 

 

Table 10: Results of training on part 3 and testing on part 9 

 

 Predicted Category 

1 2 3 

Actual 

Category 

1 2641 102 152 

2 2146 26074 24233 

3 944 5037 34628 
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 From the above results, it was observed that the algorithm performed consistently 

well when the XYPT commands indicated category 1 energy density, as the algorithm 

predominately estimated the first category with 91% ± 3.2% accuracy. In contrast, actual 

category 2 resulted in an average ratio of correct predictions near 68% with a standard 

deviation of 27%. The majority of melt pools fell into this category, and it is reasonable to 

assume this category would have the largest error with the edge cases introduced and large 

variation in melt pools which resulted in similar average features distributed normally. 

Finally, category 3 was estimated correctly 75% of the time while having a 16% standard 

deviation. For the purposes of quick validation in a closed loop AM system, perfect 

prediction of values is not necessary as this algorithm serves more as a sanity check to the 

system. More time-consuming analysis can be done after the build is completed if 

necessary, and future work could even reconcile ML predictions with physics-based 

simulations. This comparison demonstrates a capability for the k-NN algorithm to 

accurately transfer between similar parts with a mean error ~3% and a standard deviation 

similar to that of same part comparison.  

 

4.4  Time Usage Analysis 

 The average time needed to complete each image prediction and layer analysis is 

shown below in Tables 11 & 12. Mean time per image or layer represents the average time 

across just the testing matrices, including the time required to parse through the data and 

construct those matrices. Sources of error were explored, and the relationship between error 

and average time required was studied.  
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Table 11: Image processing time comparison 

 

Training Part – Strategy 

Layers 1-250 

Testing Part - Strategy 

Layers 1-250 

Mean 

Time/Image 

(ms) ± σ 

1 – Standard 2 – Island 11.9 ± 3.0 

2 – Island 3 – Concentric Island 13.4 ± 4.0 

1 – Standard 3 – Concentric Island 12.1 ± 2.5 

2 – Island 4 – Alt. Start Island 12.6 ± 3.2 

2 – Island 5 – High Power Island 13.2 ± 3.0 

3 – Concentric Island 6 – High Power Con. Island 19.6 ± 3.0 

3 – Concentric Island 9 – Alt. Power Con. Island 19.5 ± 3.0 

 

Table 12: Layer time comparison 

 

Training Part – Strategy 

Layers 1-250 

Testing Part - Strategy 

Layers 1-250 

Mean 

Time/Layer (s) 

± σ 

1 – Standard 2 – Island 39.8 ± 1.80 

2 – Island 3 – Concentric Island 84.3 ± 13.7 

1 – Standard 3 – Concentric Island 76.7 ± 11.9 

2 – Island 4 – Alt. Start Island 41.0 ± 2.09 

2 – Island 5 – High Power Island 58.0 ± 13.6 

3 – Concentric Island 6 – High Power Con. Island 121.7 ± 18.5 

3 – Concentric Island 9 – Alt. Power Con. Island 116.1 ± 15.0 
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From these results, it was observed that testing the algorithm which was trained on 

serpentine scan strategies generally required less time, an average of 64 seconds per layer 

and 12.5 seconds per image. In contrast, the concentric island scan strategies encourage 

higher computation times, as training on part 3 resulted in an average increase of 6.3 

milliseconds per image, which translated to a jump in processing time of 54 seconds to 118 

seconds needed to evaluate each layer. These trends held true in the layer wise comparison 

as training on a serpentine island part (1 or 2) and testing on part 3 resulted in a mean 

increase of 16 seconds from the standard training results. The effect concentric scan 

strategies had on the computation time could be attributed to the irregularity that these 

techniques introduce with respect to the energy density build up surrounding the center of 

the inward spiral path. If the algorithm failed to correctly predict the energy density 

classification, no change in the analysis time per image could be observed on average. The 

computing time was also observed to be higher during trials where scan strategy greatly 

differed, which is expected if the model is having difficulty placing new values which are 

far from the established class labels. The kurtosis, defined in the equation below, of the 

distribution from each time study was also calculated to uncover possible context behind 

these variations, and those results can be seen below in Table 13. 

Equation 3: 

𝐾𝑢𝑟𝑡[𝑋] = 𝐸 [(
𝑋 − 𝜇

𝜎
)

4

] =
𝐸[(𝑋 − 𝜇)4]

(𝐸[(𝑋 − 𝜇)2])2
 =  

𝜇4

𝜎4
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Table 13: Time distribution kurtosis comparison 

 

Training Part – Strategy 

Layers 1-250 

Testing Part - Strategy 

Layers 1-250 

Layer 

Kurtosis 

Image 

Kurtosis 

1 – Standard 2 – Island 2.083 80.06 

2 – Island 3 – Concentric Island 2.120 465.2 

1 – Standard 3 – Concentric Island 2.170 216.8 

2 – Island 4 – Alt. Start Island 2.04 188.5 

2 – Island 5 – High Power Island 12.35 320.8 

3 – Concentric Island 6 – High Power Con. Island 1.735 65.66 

3 – Concentric Island 9 – Alt. Power Con. Island 1.877 58.32 

   

 The kurtosis results presented above describe a different relationship between scan 

strategy and the shape of the time distribution. Compared to a standard normal distribution 

which has a kurtosis of 3, an average kurtosis of 198 for the required time to process each 

image indicates a heavily tailed distribution. The kurtosis across both the layer and image 

time distributions was significantly lower for the last two transferability studies where the 

algorithm was trained on a concentric island scan strategy, which surprisingly shows that 

these studies more closely resembled a normal distribution despite requiring much more 

time to compute on average. Also, the second row of Table 13 below the header presents 

the highest kurtosis for image time distributions which might be interpreted as the reason 

the mean time per image for that transferability study was calculated to be the highest out 

of all studies not trained on concentric island strategies.  
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4.5 k-NN k-Fold Cross Validation Results 

The cross validation of the k-NN algorithm was computed to evaluate the interlayer 

comparison within part 2, which was chosen for its relevance to the most parts within the 

set while being simple enough to represent a baseline for other comparisons to follow. The 

computation time required for this result was significant, and as such prohibited exhaustive 

testing across the training set.  

5-fold Cross Validation Error of k-NN interlayer comparison with 90/10 split = 4.58 ± 29.7% 

The scatter plot of the error averaged across the 5 folds is shown below in Figure 

20. The descriptive statistics presented above describe the average error and standard 

deviation of this scatter plot. No clear source of error has been interpreted from this plot, 

as the error does not follow the contours of the vertical shells, the intersection between the 

islands or any other feature of the part’s geometry. 
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Figure 20: Error scatter plot for prediction of part 2 with k-fold validation 

 

4.6 Assumptions 

A critical assumption was made to estimate velocity around the point of the image 

capture. It was assumed that the XYPT data accurately represented the discrete position of 

the laser, and travelled distance could be interpreted from the surrounding cluster of points 

by plotting a line of best fit through those XY positions, and assuming the length of the 

best fit line segment to be average distance through the path of the laser. That average 

distance was divided by the average time represented by the number of passed time 

intervals multiplied by the time step of 10 μs. This provided the energy density equation 

with the average velocity component, and the power of the laser was evaluated 

instantaneously by using the index of the image capture.  
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4.7 Challenges Faced 

 

 A large portion of the training matrix initially skewed the weighting of the k-NN 

algorithm, as the infill section of the scan strategy represented the majority of points in the 

matrix. The resultant error was calculated to be ~10% for interlayer prediction, but the bias 

presented in k-fold cross validation was high, as a typical standard deviation rose above 

100% from the mean. The training matrix was normalized by removing the excess infill 

data points, and the matrix subsequently shrank by an order of magnitude. With most of 

the melt pool images unusable for the purposes of this work, the misclassifications made 

by the k-NN remained to be significant. Due to the low number of class labels, any mistake 

resulted automatically in high error and the standard deviation reflects the effects of this 

type of error.  
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CHAPTER 5: CONCLUSION 

 

  

 In this thesis, a novel application of k-NN modeling to predict process parameters 

in laser powder bed fusion has been presented. The k-NN was trained on in-situ monitoring 

images and build command data from the Additive Manufacturing Metrology Testbed at 

NIST which contains 12 parts of identical geometry but unique scan strategies. The model 

was initially validated by studying interlayer prediction within the same part, with average 

error ranging from 1.83% to 5.60%. This performance is an improvement upon other image 

classification models using k-NN algorithms [27, 28].  

 This approach was modified to also study transferability between parts of differing 

scan strategies, as training matrices were used to predict the energy density of images taken 

of a different part. A higher mean error was expected with this experiment, and as such this 

deviation ranged from 1.51% to 35.3%. This average error increased as the parts became 

more dissimilar, and especially as the process parameters of the test parts began to fall 

outside of the bounds of the identified classes.  

Finally, a k-fold cross validation was performed to evaluate the consistency of this 

modelling application. An average error of 4.58% across the 5 folds was calculated, and a 

scatter plot of the error with respect to position showed no clear evidence of bias. This 

work demonstrated the capability of ML algorithms in predicting the process parameters 

within additive manufacturing applications, and that these approaches are especially robust 

when changes to scan strategy are minimal. It also plays an important role in demonstrating 

the possibility of using ML to predict these relationships instead of physics-based 

modeling, which is a common approach to solving this problem. Opening up the 

possibilities for closed-loop control in the metal additive manufacturing field allows for 
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more choice and competition which encourages more widespread adoption of laser-powder 

bed fusion, satisfying an overarching goal of this work. Without more basic research 

needed, the ML approach can improve greatly over time as more data becomes available 

from the application of this advanced manufacturing technique, and that combined with the 

open-source nature of these algorithms implies a promising future in store for low-cost 

quality assurance of powder bed fusion.  

5.1 Contributions 

 The prediction of process parameters which significantly contribute to melt pool 

geometry had not been previously studied in this application, and the robustness of 

prediction across scan strategies has performed just as well if not better than other k-NN 

image classifiers. Data preprocessing was used to give the training set context, and to 

reduce the amount of information required for the k-NN to model. Fifteen parameters 

described each image, which decreased computing time and allowed for more images to 

be included in the training/testing matrix split.  

5.2  Future Work     

 An ML algorithm especially lends itself to in-situ process validation when the 

learning of the model can be transferred to new scan strategies, because of the inherent 

variation while building AM parts. This would require a similar experiment to the one 

presented by NIST [1], with an addition of training the k-NN in real time during the 

manufacturing process. The presented low-density approach to training the model would 

decrease the computing time required, but may still need improvements in efficiency to 

function properly under those conditions. Next steps should include the introduction of 
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variable geometries to increase the robustness of the ML and subsequently make this more 

applicable to closing the loop.  
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APPENDIX: k-NN Train/Test Code 

 

 

%Train 

%for fold = 1:5 

%    fprintf('----------    Fold = %u    ----------\n',fold) 

    trainMatrix = []; 

%    final_layer = 100+fold*25; 

    final_layer = 188; 

    layer = 2:final_layer; 

    for layer = layer 

        fprintf('----------    Layer = %u    ----------\n',layer) 

        imgfolder = 'E:\NIST Data\In-situ Meas Data\In-situ Meas Data\Melt Pool Camera'; 

        imgbaseFileName = sprintf('MIA_L%04u',layer); 

        imgfullFileName = fullfile(imgfolder, imgbaseFileName); 

        a=dir([imgfullFileName '/*.bmp']); 

        k = size(a,1); 

 

        commandfolder = 'E:\NIST Data\Build Command Data\Build Command Data\XYPT 

Commands'; 

        commandbaseFileName=sprintf('T500_3D_Scan_Strategies_fused_layer%04u.csv',layer); 

        commandfullFileName = fullfile(commandfolder, commandbaseFileName); 

        if ~exist(commandfullFileName, 'file') 

          % Didn't find it there.  Check the search path for it. 

          commandfullFileName = commandbaseFileName; % No path this time. 

          if ~exist(commandfullFileName, 'file') 

            % Still didn't find it.  Alert user. 

            errorMessage = sprintf('Error: %s does not exist.', commandfullFileName); 

            uiwait(warndlg(errorMessage)); 

            return; 

          end 

        end 

 

        A = dlmread(commandfullFileName,','); 

        X = A(:,1); 

        Y = A(:,2); 

        P = A(:,3); 

        T = A(:,4); 

        a = find(T==2); 

        %Initialize Variables 

        data = zeros(k,7); 

        tail = zeros(k,3); 

 

        for k = 1:k 

            if X(a(k)-121)>-30 || Y(a(k)-121)<10 

                continue 

            end 

            imagefullFileName = fullfile(imgfullFileName, sprintf('frame0%04u.bmp',k)); 

            grayImage = imread(imagefullFileName); 

            [rows, columns, numberOfColorBands] = size(grayImage); 

            if numberOfColorBands > 1 

                fprintf('This image is RGB.  I will change it to gray scale.\n'); 
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                grayImage = grayImage(:, :, 2); 

            end 

            binaryImage = grayImage > 90; 

            binaryImage = bwareaopen(binaryImage, 40); 

            binaryImage = imfill(binaryImage, 'holes'); 

            props = regionprops(binaryImage, 'Area', 'MajorAxisLength', 

'MinorAxisLength', 'Centroid', 'Orientation'); 

            allAreas = [props.Area]; 

            majorAxisLength = cat(1,props.MajorAxisLength); 

            minorAxisLength = cat(1,props.MinorAxisLength); 

            centroid = [props.Centroid]; 

            orientation = [props.Orientation]; 

            if isempty(centroid) 

                data(k,:) = [k, 0, 0, 0, 0, 0, 0]; 

                aspect_ratio =[]; 

            else 

                try 

                    data(k,:) = [k , majorAxisLength , minorAxisLength , centroid , 

orientation, allAreas]; 

                    aspect_ratio = majorAxisLength/minorAxisLength; 

                catch 

                    data(k,:) = [k, 0, 0, 0, 0, 0, 0]; 

                    aspect_ratio = 0; 

                end 

            end % End if statement 

 

            IntenseImage = grayImage(find(binaryImage==1)); 

            IntenseImage = IntenseImage(:); 

            try 

                meanImg = mean(IntenseImage); 

                stdevImg = std(double(IntenseImage)); 

                medImg = median(IntenseImage); 

                COV = stdevImg/meanImg; 

            catch 

                meanImg = []; 

                stdevImg = []; 

                medImg = []; 

                COV = 0; 

            end 

 

            binaryImage = grayImage > 50 & grayImage < 90; 

 

            if any(any(binaryImage))==0 

                tail(k,:) = [k, 0, 0]; 

                tail_centroid = []; 

            else 

                [r, c] = find(binaryImage == 1); 

                tail_centroid = [mean(c), mean(r)]; 

                tail(k,:) = [k ,tail_centroid]; 

            end 

            if isempty(tail_centroid) || isempty(centroid) || size(centroid,2)>2 || 

size(tail_centroid,2)>2 

                orientation = 0; 

            else 
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                dist = sqrt((tail_centroid(2)-centroid(2))^2+(tail_centroid(1)-

centroid(1))^2); 

                projected(1) = centroid(1)+dist*cosd(orientation); 

                projected(2) = centroid(2)+dist*sind(orientation); 

                dist2 = sqrt((projected(2)-tail_centroid(2))^2+(projected(1)-

tail_centroid(1))^2); 

                projected2(1) = centroid(1)-dist*cosd(orientation); 

                projected2(2) = centroid(2)-dist*sind(orientation); 

                dist3 = sqrt((projected2(2)-tail_centroid(2))^2+(projected2(1)-

tail_centroid(1))^2); 

                if dist2 > dist3 

                    CorrectOrientation = atan2d(centroid(2)-tail_centroid(2),centroid(1)-

tail_centroid(1)); 

                    dist = dist3; 

                else 

                    CorrectOrientation = atan2d(centroid(2)-tail_centroid(2),centroid(1)-

tail_centroid(1)); 

                    dist = dist2; 

                end 

 

                orientation = CorrectOrientation; 

                orientation = 83.4+orientation; 

            end % End if statement 

 

            newline = []; 

            try 

                %data(k,:) = [k , majorAxisLength , minorAxisLength , centroid , 

orientation, allAreas]; 

                %tail(k,:) = [k ,tail_centroid]; tail_centroid = [mean(c), mean(r)]; 

                newline = [meanImg,stdevImg,double(medImg),data(k,2:end), ... 

                    tail(k,2:end),aspect_ratio,dist,COV,orientation]; 

    % 

    %             label = predict(Mdl,newline); 

    %             newline(end) = label; 

 

                loc = a(k)-121; 

                spread = -5:5; 

                locs = loc + spread'.*ones(11,1); 

                x = X(loc); 

                x_smooth = X(locs); 

                y = Y(loc); 

                y_smooth = Y(locs); 

                x_smooth = [ones(length(x_smooth),1) x_smooth]; 

                b = x_smooth\y_smooth; 

                yCalc = b'*x_smooth'; 

                yCalc = yCalc'; 

                dist = sqrt((yCalc(end)-yCalc(1))^2+(x_smooth(end,2)-x_smooth(1,2))^2); 

                t = 100*10^-6; 

                v_avg = dist./t; 

                p = P(loc); 

 

                point = p./v_avg; 

                if point > 1.5 || point < 0.01 

                    continue 
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                end 

                newline = [newline point]; 

                trainMatrix = [trainMatrix ; newline]; 

            catch 

                continue 

            end 

        end 

    end % End layer level for loop 

     b = find(abs(trainMatrix(:,end)-0.25)<0.05); 

     c = find(abs(trainMatrix(:,end)-0.1)<0.05); 

     d = randperm(length(b),length(c)); 

     b(d) = []; 

     trainMatrix(b,:)=[]; 

     e = find(trainMatrix(:,end)>1); 

     trainMatrix(e,:) = []; 

    %dlmwrite('E:\NIST Data\Results\TrainMatrix2.txt',trainMatrix) 

    X = double(trainMatrix(:,1:end-1)); 

    Y = round(double(trainMatrix(:,end)),3); 

    Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1); 

    %Mdl = fitcsvm(X,Y); 

    %net = feedforwardnet(10) 

    % net.numinputs = 12; 

    % net.inputConnect = logical(int32(randi([0,1],[2,12]))); 

    % net = configure(net,X'); 

    %net = train(net,X',Y') 

    %view(net) 

    %newline = newline(1:end-1); 

    %label = net(newline') 

    %label = predict(Mdl,double(newline)); 

    subplot(4,4,1) 

    histogram(trainMatrix(:,1)) 

    title('(a)') 

    xticks([120 160 200]) 

    xticklabels({'120' '160' '200'}) 

    set(gca,'fontsize',16); 

    subplot(4,4,2) 

    histogram(trainMatrix(:,2)) 

    title('(b)') 

    set(gca,'fontsize',16); 

    subplot(4,4,3) 

    histogram(trainMatrix(:,3)) 

    title('(c)') 

    set(gca,'fontsize',16); 

    subplot(4,4,4) 

    histogram(trainMatrix(:,4)) 

    title('(d)') 

    set(gca,'fontsize',16); 

    subplot(4,4,5) 

    histogram(trainMatrix(:,5)) 

    title('(e)') 

    set(gca,'fontsize',16); 

    subplot(4,4,6) 
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    histogram(trainMatrix(:,6)) 

    title('(f)') 

    set(gca,'fontsize',16); 

    subplot(4,4,7) 

    histogram(trainMatrix(:,7)) 

    title('(g)') 

    set(gca,'fontsize',16); 

    subplot(4,4,8) 

    histogram(trainMatrix(:,8)) 

    title('(h)') 

    set(gca,'fontsize',16); 

    subplot(4,4,9) 

    histogram(trainMatrix(:,9)) 

    title('(i)') 

    set(gca,'fontsize',16); 

    subplot(4,4,10) 

    histogram(trainMatrix(:,10)) 

    title('(j)') 

    set(gca,'fontsize',16); 

    subplot(4,4,11) 

    histogram(trainMatrix(:,11)) 

    title('(k)') 

    set(gca,'fontsize',16); 

    subplot(4,4,12) 

    histogram(trainMatrix(:,12)) 

    title('(l)') 

    set(gca,'fontsize',16); 

    subplot(4,4,13) 

    histogram(trainMatrix(:,13)) 

    title('(m)') 

    set(gca,'fontsize',16); 

    subplot(4,4,14) 

    histogram(trainMatrix(:,14)) 

    title('(n)') 

    set(gca,'fontsize',16); 

    subplot(4,4,15) 

    histogram(trainMatrix(:,15)) 

    title('(o)') 

    set(gca,'fontsize',16); 

    subplot(4,4,16) 

    histogram(trainMatrix(:,16)) 

    title('(p)') 

    set(gca,'fontsize',16); 

 

%     pause() 

    error = []; 

    xpos = []; 

    ypos = []; 

    vel = []; 

    pow = []; 

    start_layer = final_layer+1; 

    layer = start_layer:250; 

    for layer = layer 
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        fprintf('----------    Layer = %u    ----------\n',layer) 

        imgfolder = 'E:\NIST Data\In-situ Meas Data\In-situ Meas Data\Melt Pool Camera'; 

        imgbaseFileName = sprintf('MIA_L%04u',layer); 

        imgfullFileName = fullfile(imgfolder, imgbaseFileName); 

        a=dir([imgfullFileName '/*.bmp']); 

        k = size(a,1); 

 

        commandfolder = 'E:\NIST Data\Build Command Data\Build Command Data\XYPT 

Commands'; 

        commandbaseFileName=sprintf('T500_3D_Scan_Strategies_fused_layer%04u.csv',layer); 

        commandfullFileName = fullfile(commandfolder, commandbaseFileName); 

        if ~exist(commandfullFileName, 'file') 

          % Didn't find it there.  Check the search path for it. 

          commandfullFileName = commandbaseFileName; % No path this time. 

          if ~exist(commandfullFileName, 'file') 

            % Still didn't find it.  Alert user. 

            errorMessage = sprintf('Error: %s does not exist.', commandfullFileName); 

            uiwait(warndlg(errorMessage)); 

            return; 

          end 

        end 

 

        A = dlmread(commandfullFileName,','); 

        X = A(:,1); 

        Y = A(:,2); 

        P = A(:,3); 

        T = A(:,4); 

        a = find(T==2); 

        %Initialize Variables 

        data = zeros(k,7); 

        tail = zeros(k,3); 

 

        for k = 1:k 

            if X(a(k)-121)>25 || X(a(k)-121)<0 || Y(a(k)-121)>-10 

                continue 

            end 

            imagefullFileName = fullfile(imgfullFileName, sprintf('frame0%04u.bmp',k)); 

            grayImage = imread(imagefullFileName); 

            [rows, columns, numberOfColorBands] = size(grayImage); 

            if numberOfColorBands > 1 

                fprintf('This image is RGB.  I will change it to gray scale.\n'); 

                grayImage = grayImage(:, :, 2); 

            end 

            binaryImage = grayImage > 90; 

            binaryImage = bwareaopen(binaryImage, 40); 

            binaryImage = imfill(binaryImage, 'holes'); 

            props = regionprops(binaryImage, 'Area', 'MajorAxisLength', 

'MinorAxisLength', 'Centroid', 'Orientation'); 

            allAreas = [props.Area]; 

            majorAxisLength = cat(1,props.MajorAxisLength); 

            minorAxisLength = cat(1,props.MinorAxisLength); 

            centroid = [props.Centroid]; 

            orientation = [props.Orientation]; 

            if isempty(centroid) 
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                data(k,:) = [k, 0, 0, 0, 0, 0, 0]; 

                aspect_ratio =[]; 

            else 

                try 

                    data(k,:) = [k , majorAxisLength , minorAxisLength , centroid , 

orientation, allAreas]; 

                    aspect_ratio = majorAxisLength/minorAxisLength; 

                catch 

                    data(k,:) = [k, 0, 0, 0, 0, 0, 0]; 

                    aspect_ratio = 0; 

                end 

            end % End if statement 

 

            IntenseImage = grayImage(find(binaryImage==1)); 

            IntenseImage = IntenseImage(:); 

            try 

                meanImg = mean(IntenseImage); 

                stdevImg = std(double(IntenseImage)); 

                medImg = median(IntenseImage); 

                COV = stdevImg/meanImg; 

            catch 

                meanImg = []; 

                stdevImg = []; 

                medImg = []; 

                COV = 0; 

            end 

 

            binaryImage = grayImage > 50 & grayImage < 90; 

 

            if any(any(binaryImage))==0 

                tail(k,:) = [k, 0, 0]; 

                tail_centroid = []; 

            else 

                [r, c] = find(binaryImage == 1); 

                tail_centroid = [mean(c), mean(r)]; 

                tail(k,:) = [k ,tail_centroid]; 

            end 

            if isempty(tail_centroid) || isempty(centroid) || size(centroid,2)>2 || 

size(tail_centroid,2)>2 

                orientation = 0; 

            else 

                dist = sqrt((tail_centroid(2)-centroid(2))^2+(tail_centroid(1)-

centroid(1))^2); 

                projected(1) = centroid(1)+dist*cosd(orientation); 

                projected(2) = centroid(2)+dist*sind(orientation); 

                dist2 = sqrt((projected(2)-tail_centroid(2))^2+(projected(1)-

tail_centroid(1))^2); 

                projected2(1) = centroid(1)-dist*cosd(orientation); 

                projected2(2) = centroid(2)-dist*sind(orientation); 

                dist3 = sqrt((projected2(2)-tail_centroid(2))^2+(projected2(1)-

tail_centroid(1))^2); 

                if dist2 > dist3 

                    CorrectOrientation = atan2d(centroid(2)-tail_centroid(2),centroid(1)-

tail_centroid(1)); 
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                    dist = dist3; 

                else 

                    CorrectOrientation = atan2d(centroid(2)-tail_centroid(2),centroid(1)-

tail_centroid(1)); 

                    dist = dist2; 

                end 

 

                orientation = CorrectOrientation; 

                orientation = 83.4+orientation; 

            end % End if statement 

 

            newline = []; 

            try 

                newline = [meanImg,stdevImg,double(medImg),data(k,2:end), ... 

                    tail(k,2:end),aspect_ratio,dist,COV,orientation]; 

 

                label = predict(Mdl,newline); 

 

                loc = a(k)-121; 

                spread = -5:5; 

                locs = loc + spread'.*ones(11,1); 

                x = X(loc); 

                x_smooth = X(locs); 

                y = Y(loc); 

                y_smooth = Y(locs); 

                x_smooth = [ones(length(x_smooth),1) x_smooth]; 

                b = x_smooth\y_smooth; 

                yCalc = b'*x_smooth'; 

                yCalc = yCalc'; 

                dist = sqrt((yCalc(end)-yCalc(1))^2+(x_smooth(end,2)-x_smooth(1,2))^2); 

                t = 100*10^-6; 

                v_avg = dist./t; 

                p = P(loc); 

                if p == 0 

                    continue 

                end 

                point = p./v_avg; 

                newError = (point-label)./point; 

                if isnan(newError) || newError == 0 || newError == 1 || abs(newError)>100 

                else 

                    error = [error;(point-label)./point]; 

                    xpos = [xpos;x]; 

                    ypos = [ypos;y]; 

                    vel = [vel;v_avg]; 

                    pow = [pow;p]; 

                end 

            catch 

                continue 

            end 

        end 

    end 

    %end 
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