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SUMMARY

Statistical inference of high-dimensional data is crucial for science and engineering.

Such high-dimensional data are often structured. For example, they can be data from a

certain manifold or from a large network. Motivated by the problems that arise in recom-

mendation systems, power systems and social media etc., this dissertation aims to provide

statistical modeling for such problems and perform statistical inferences. This dissertation

focus on two problems. (i) statistical modeling for smooth manifold and inferences for the

corresponding characteristic rank; (ii) detection of change-points for sequential data in a

network.

In chapter 2, we study the problem of matrix completion. From a geometric perspec-

tive, we address the following questions: (i) what is the minimum achievable rank in the

minimum rank matrix completion (MRMC) problem? (ii) Under what conditions, there

will be a locally unique solution for MRMC problem? We also provide a statistical model

for low rank matrix approximation problems. With such a model, we present a statistical

test of the rank. With numerical experiments, we verify our theoretical results and show

the performance of the proposed test procedure.

In chapter 3, we generalize the results in chapter 2. We develop a general theory for test-

ing the goodness-of-fit of non-linear models. The observation noise is additive Gaussian.

Our main result shows that the “residual” of the model fit (by solving a non-linear least-

square problem) follows a (possibly non-central) χ2 distribution. The natural use of our

result is to select the order of a model via a sequential test procedure by choosing between

two nested models. We demonstrate the applications of this general theory in the settings of

real and complex matrix completion from incomplete and noisy observations, signal source

identification, and determining the number of hidden nodes in neural networks.

In chapter 4, we develop an online change-point detection procedure for power system’s

cascading failure using multi-dimensional measurements over the networks. We incorpo-

xiii



rate the cascading failure’s characteristic into the detection procedure and model multiple

changes caused by cascading failures using a diffusion process over networks. The model

captures the property that the risk of component failing increases as more components

around it fail. Our change-point detection procedure using the generalized likelihood ra-

tio statistics assuming unknown post-change parameters of the measurements and the true

failure time (change-points) at each node. We also provide a fast algorithm to perform the

change-points detection. Numerical experiments show that our proposed method demon-

strates good performance and can scale up to large systems.

In chapter 5, we proposed a change-point detection procedure by scan score statistics

in a multivariate Hawkes network. Our scan score statistics are computationally efficient

since we don’t need to compute the estimates of the post-change parameters, which is of

importance for online detection. We present the theoretical results of our proposed proce-

dure, including the analysis of the false alarm rate (FAR) and average run length (ARL) of

the procedure under null hypothesis. We use simulation studies to testify our theoretical

results and compare our method with an existing change-point detection procedure with

generalized likelihood ratio statistics. We also apply our proposed procedure in real-world

data such as memetracker and the stock market, which shows promising results in detecting

an abrupt change in the network.

xiv



CHAPTER 1

INTRODUCTION

Statistical inference of high-dimensional data is crucial for science and engineering. Such

high-dimensional data are often structured. For example, they can be data from a certain

manifold or from a large network. Motivated by the problems that arise in recommendation

systems, power systems and social media etc., this dissertation aims to provide statistical

modeling for such problems and perform statistical inferences. This dissertation focus on

two topics. (i) statistical modeling for smooth manifold and inferences for the correspond-

ing characteristic rank; (ii) detection of change-points for sequential data in a network.

A typical problem of first topic is matrix completion problem. Matrix completion

(e.g.,[1, 2, 3]) is a fundamental problem in signal processing and machine learning, which

studies the recovery of a low-rank matrix from an observation of a subset of its entries. It

has attracted a lot attention from researchers and practitioners and there are various moti-

vating real-world applications including recommender systems and the Netflix challenge

(see a recent overview in [4]). A popular approach for matrix completion is to find a matrix

of minimal rank satisfying the observation constraints. Due to the non-convexity of the

rank function, popular approaches are convex relaxation (see, e.g., [5]) and nuclear norm

minimization. There is a rich literature, both in establishing performance bounds, devel-

oping efficient algorithms and providing performance guarantees. In chapter 2, we study

the problem of matrix completion. From a geometric perspective, we address the following

questions: (i) what is the minimum achievable rank in the minimum rank matrix comple-

tion (MRMC) problem? (ii) Under what conditions, there will be a locally unique solution

for MRMC problem? We also provide a statistical model for low rank matrix approxima-

tion problems. With such a model, we present a statistical test of the rank. With numerical

experiments, we verify our theoretical results and show the performance of the proposed

1



test procedure.

To extend the problem in chapter 2 to a more general setting, we are interested in model

selection for non-linear models. Although much has been done for model selection in linear

models, it is unclear how to select models given noisy observations in the non-linear setting,

especially when there are underlying manifold structures. Such problems arise very often in

machine learning and signal processing applications. For instance, how to select the rank of

a low-rank matrix, decide the number of hidden nodes in neural networks, and determine

the number of signal sources when observing their mixture. In chapter 3, we develop a

general theory for testing the goodness-of-fit of non-linear models. The observation noise

is additive Gaussian. Our main result shows that the “residual” of the model fit (by solving

a non-linear least-square problem) follows a (possibly non-central) χ2 distribution. The

natural use of our result is to select the order of a model via a sequential test procedure

by choosing between two nested models. We demonstrate the applications of this general

theory in the settings of real and complex matrix completion from incomplete and noisy

observations, signal source identification, and determining the number of hidden nodes in

neural networks.

As for the second topic, detection of the change-points for the sequential data is also an

important problem. A change-point in such data is the critical time point where the distri-

bution of the data changes. The change-points often represent a transition of the state. For

example, in a power system, the change-points may represent the power outage [6]. In river

systems, they may represent potential water contaminant hazards [7]. In public health, they

may represent contagious outbreaks [8]. Therefore, the goal of change-points detection is

to raise alarm of the change-points as soon as possible given the control of false alarm rate.

In chapter 4, we develop an online change-point detection procedure for power system’s

cascading failure using multi-dimensional measurements over the networks. We incorpo-

rate the cascading failure’s characteristic into the detection procedure and model multiple

changes caused by cascading failures using a diffusion process over networks. The model
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captures the property that the risk of component failing increases as more components

around it fail. Our change-point detection procedure using the generalized likelihood ra-

tio statistics assuming unknown post-change parameters of the measurements and the true

failure time (change-points) at each node. We also provide a fast algorithm to perform the

change-points detection. Numerical experiments show that our proposed method demon-

strates good performance and can scale up to large systems.

One type of sequential data is event data. For event data, the time intervals between

two observations have different length. Examples of event data can be extreme events in

stock markets, the seismic signals, the activities in social media, etc. Therefore, to detect

the change-points of high dimensional event data is also an important topic with widely

applications. In chapter 5, we proposed a change-point detection procedure by scan score

statistics in a multivariate Hawkes network. Our scan score statistics are computationally

efficient since we don’t need to compute the estimates of the post-change parameters, which

is of importance for online detection. We present the theoretical results of our proposed pro-

cedure, including the analysis of the false alarm rate (FAR) and average run length (ARL)

of the procedure under null hypothesis. We use simulation studies to testify our theoretical

results and compare our method with an existing change-point detection procedure with

generalized likelihood ratio statistics. We also apply our proposed procedure in real-world

data such as memetracker and the stock market, which shows promising results in detecting

an abrupt change in the network.
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CHAPTER 2

RANK SELECTION IN MATRIX COMPLETION PROBLEM

2.1 Introduction

In this chapter, we consider the solution of the Minimum Rank Matrix Completion (MRMC)

formulation, which leads to a non-convex optimization problem. We address the following

questions: (i) Given observed entries arranged according to a (deterministic) pattern, by

solving the MRMC problem, what is the minimum achievable rank? (ii) Under what con-

ditions, there will be a unique matrix that is a solution to the MRMC problem? We give a

sufficient condition (which we call the well-posedness condition) for the local uniqueness

of MRMC solutions, and illustrate how such condition can be verified. We also show that

such well-posedness condition in a sense is generic.

We also propose a sequential statistical testing procedure to determine the ‘true’ rank

from noisy observed entries. Such statistical approach can be useful for many existing

low-rank matrix completion algorithms, which require a pre-specification of the matrix

rank, such as the alternating minimization approach to solving the non-convex problem by

representing the low-rank matrix as a product of two low-rank matrix factors (see, e.g., [9,

4, 10]).

This chapter is organized as follows. In the next section, we . In Section 2.2 we

present the considered setting, some basic definitions and the problem set-up, including

the MRMC, LRMA, and convex relaxation formulations. Section 2.3 contains the main

theoretical results. A statistical test of rank is presented in Section 2.4. In Section 2.5 we

present numerical results related to the developed theory. Finally Section 2.6 concludes

this chapter. All proofs are in the Appendix.

We use conventional notations. For a ∈ R we denote by dae the least integer that is
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greater than or equal to a. ByA⊗B we denote the Kronecker product of matrices (vectors)

A and B, and by vec(A) column vector obtained by stacking columns of matrix A. We use

the following matrix identity for matrices A,B,C of appropriate order

vec(ABC) = (C> ⊗ A)vec(B). (2.1)

By Sp we denote the linear space of p × p symmetric matrices and by writing X � 0 we

mean that matrix X ∈ Sp is positive semidefinite. By σi(Y ) we denote the i-th largest

singular value of matrix Y ∈ Rn1×n2 . By Ip we denote the identity matrix of dimension p.

2.2 Matrix completion and problem set-up

Consider the problem of recovering an n1 × n2 data matrix of low rank when observing

a small number m of its entries, which are denoted as Mij , (i, j) ∈ Ω. We assume that

n1 ≥ 2 and n2 ≥ 2. Here Ω ⊂ {1, ..., n1} × {1, ..., n2} is an index set of cardinality

m. The low-rank matrix completion problem, or matrix completion problem, aims to infer

the missing entries, based on the available observations Mij , (i, j) ∈ Ω, by using a matrix

whose rank is as small as possible.

Low-rank matrix completion problem is usually studied under a missing-at-random

model, under which the necessary and sufficient conditions for perfect recovery of the

true matrix are known [11, 12, 13, 14, 15, 16]. Study of deterministic sampling pattern

is relatively rare. This includes the finitely rank-r completability problem in [17], which

shows the conditions for the deterministic sampling pattern such that there exists at most

finitely many rank-r matrices that agrees with its observed entries. In this chapter, we

study a related but different problem, i.e., when will the matrix have a unique way to be

completed, given a fixed sampling pattern. This is a fundamental problem related to the

identifiability of a low-rank matrix given an observation pattern Ω.

5



2.2.1 Definitions

Let us introduce some necessary definitions. Denote by M the n1 × n2 matrix with

the specified entries Mij , (i, j) ∈ Ω, and all other entries equal zero. Consider Ωc :=

{1, ..., n1} × {1, ..., n2} \ Ω, the complement of the index set Ω, and define

VΩ :=
{
Y ∈ Rn1×n2 : Yij = 0, (i, j) ∈ Ωc

}
.

This linear space represents the set of matrices that are filled with zeros at the locations of

the unobserved entries. Similarly define

VΩc :=
{
Y ∈ Rn1×n2 : Yij = 0, (i, j) ∈ Ω

}
.

By PΩ we denote the projection onto the space VΩ, i.e., [PΩ(Y )]ij = Yij for (i, j) ∈ Ω and

[PΩ(Y )]ij = 0 for (i, j) ∈ Ωc. By this construction, {M + X : X ∈ VΩc} is the affine

space of all matrices that satisfy the observation constraints. Note that M ∈ VΩ and the

dimension of the linear space VΩ is dim(VΩ) = m, while dim(VΩc) = n1n2 −m.

We say that a property holds for almost every (a.e.) Mij , or almost surely, if the set of

matrices Y ∈ VΩ for which this property does not hold has Lebesgue measure zero in the

space VΩ.

2.2.2 Minimum Rank Matrix Completion (MRMC)

Since the true rank is unknown, a natural approach is to find the minimum rank matrix that

is consistent with the observations. This goal can be written as the following optimization

problem referred to as the Minimum Rank Matrix Completion (MRMC),

min
Y ∈Rn1×n2

rank(Y ) subject to Yij = Mij, (i, j) ∈ Ω. (2.2)

In general, the rank minimization problem is non-convex and NP-hard to solve. How-
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ever, this problem is fundamental to various efficient heuristics derived from here. Largely,

there are two categories of approximation heuristics: (i) approximate the rank function

with some surrogate function such as the nuclear norm function, (ii) or solve a sequence of

rank-constrained problems such as the matrix factorization based method, which we will

discuss below. Approach (ii) requires to specify the target rank of the recovered matrix

beforehand, which we will present a novel statistical test next.

2.2.3 Low Rank Matrix Approximation (LRMA)

Consider the problem

min
Y ∈Rn1×n2 , X∈VΩc

F (M +X, Y ) s.t. rank(Y ) = r, (2.3)

where M ∈ VΩ is the given data matrix, and F (A,B) is a discrepancy between matrices

A,B ∈ Rn1×n2 . For example, let F (A,B) := ‖A − B‖2
F with ‖Y ‖2

F = tr(Y >Y ) =∑
i,j Y

2
ij , being the Frobenius norm. Define the set of n1 × n2 matrices of rank r

Mr :=
{
Y ∈ Rn1×n2 : rank(Y ) = r

}
(2.4)

Then (Equation 2.3) becomes the least squares problem

min
Y ∈Mr

∑
(i,j)∈Ω

(Mij − Yij)2 . (2.5)

The least squares approach although is natural, is not the only one possible. For exam-

ple, in the statistical approach to Factor Analysis the discrepancy function is based on the

Maximum Likelihood method and is more involved (e.g., [18]).
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2.3 Main theoretical results

To gain insights into the identifiability issue of matrix completion, we aim to answer the

following two related questions: (i) what is achievable minimum rank (the optimal value

of problem Equation 2.2), and (ii) whether the minimum rank matrix, i.e., the optimal

solutions to Equation 2.2, is unique given a problem set-up. These result will also help

to gain insights in the tradeoff in the theoretical properties of other matrix completion

formulations, including LRMA and SDP formulations, compared with the original MRMC

formulation.

We show that given m = |Ω| observations of an n1× n2 matrix: (i) if the minimal rank

r∗ is less than R(n1, n2,m) := (n1 +n2)/2− [(n1 +n2)2/4−m]1/2, then the corresponding

solution is unstable: an arbitrary small perturbation of the observed values can make this

rank unattainable; (ii) if r∗ > R(n1, n2,m), then almost surely the solution is not (even

locally) unique (cf., [19]). This indicates that except in rare occasions, the MRMC prob-

lem cannot have both properties of possessing unique and stable solutions. Consequently,

LRMA approaches (also used in [4, 20]) could be a better alternative to the MRMC formu-

lation.

2.3.1 Rank reducibility

We denote by r∗ the optimal value of problem (Equation 2.2). That is, r∗ is the minimal

rank of an n1 × n2 matrix with prescribed elements Mij , (i, j) ∈ Ω. Clearly, r∗ depends

on the index set Ω and values Mij . A natural question is what values of r∗ can be attained.

Recall that Equation 2.2 is a non-convex problem and may have multiple solutions.

In a certain generic sense it is possible to give a lower bound for the minimal rank r∗.

Let us consider intersection of a set of low-rank matrices and the affine space of matrices

satisfying the observation constraints. Define the (affine) mapping AM : VΩc → Rn1×n2 as

AM(X) := M +X, X ∈ VΩc .
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As it has been pointed out before, the imageAM(VΩc) = M+VΩc of mappingAM defines

the space of feasible points of the MRMC problem (Equation 2.2). It is well known that

Mr is a smooth, C∞, manifold with

dim(Mr) = r(n1 + n2 − r). (2.6)

It is said that the mapping AM intersects Mr transverally if for every X ∈ VΩc either

AM(X) 6∈ Mr, or AM(X) ∈Mr and the following condition holds

VΩc + TMr(Y ) = Rn1×n2 , (2.7)

where Y := AM(X) and TMr(Y ) denotes the tangent space to Mr at Y ∈ Mr (we

will give explicit formulas for the tangent space TMr(Y ) in equations (Equation 2.14) and

(Equation 2.15) below.)

By using a classical result of differential geometry, it is possible to show that for almost

every (a.e.) Mij , (i, j) ∈ Ω, the mapping AM intersects Mr transverally (this holds for

every r) (see [19] for a discussion of this result). Transversality condition (Equation 2.7)

means that the linear spaces VΩc and TMr(Y ) together span the whole space Rn1×n2 . Of

course this cannot happen if the sum of their dimensions is less than the dimension of

Rn1×n2 . Therefore transversality condition (Equation 2.7) implies the following dimen-

sionality condition

dim(VΩc) + dim(TMr(Y )) ≥ dim(Rn1×n2). (2.8)

In turn the above condition (Equation 2.8) can be written as

r(n1 + n2 − r) ≥ m, (2.9)
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or equivalently r ≥ R(n1, n2,mm), where

R(n1, n2,m) := (n1 + n2)/2−
√

(n1 + n2)2/4−m. (2.10)

That is, if r < R(n1, n2,m), then the transversality condition (Equation 2.7) cannot hold

and hence for a.e. Mij it follows that rank(M +X) 6= r for all X ∈ VΩc .

Now ifAM intersectsMr transverally atAM(X) ∈Mr (i.e., condition (Equation 2.7)

holds), then the intersectionAM(VΩc)∩Mr forms a smooth manifold near the point Y :=

AM(X). When r > R(n1, n2,m), this manifold has dimension greater than zero and

hence the corresponding rank r solution is not (locally) unique. This leads to the following

(for a formal discussion of these results we can refer to [19]).

Theorem 2.3.1 (Generic lower bound and non-uniqueness of solutions). For any index set

Ω of cardinality m and almost every Mij , (i, j) ∈ Ω, the following holds: (i) for every

feasible point Y of problem (Equation 2.2) it follows that

rank(Y ) ≥ R(n1, n2,m), (2.11)

(ii) if r∗ > R(n1, n2,m), then problem (Equation 2.2) has multiple (more than one) optimal

solutions.

It follows from part (i) of Theorem 2.3.1 that r∗ ≥ R(n1, n2,m) for a.e. Mij . Generi-

cally (i.e., almost surely) the following lower bound for the minimal rank r∗ holds

r∗ ≥ R(n1, n2,m), (2.12)

and (Equation 2.2) may have unique optimal solution only when r∗ = R(n1, n2,m). Of

course such equality could happen only if R(n1, n2,m) is an integer number. As Example

2.3.1 below shows, for any integer r∗ ≤ d
√
m e satisfying (Equation 2.12), there exists an

index set Ω such that the corresponding MRMC problem attains the minimal rank r∗ for
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a.e. Mij . In particular this shows that the lower bound (Equation 2.12) is tight. When we

have a square matrix n1 = n2 = n, it follows that

R(n, n,m) = n−
√
n2 −m. (2.13)

For n1 = n2 = n and small m/n2 we can approximate

R(n, n,m) = n
(

1−
√

1−m/n2
)
≈ m/(2n).

For example, for n1 = n2 = 1000 and m = 20000 we have R(n, n,m) = 10.05, and hence

the bound (Equation 2.12) becomes r∗ ≥ 11. The nuclear norm minimization guarantees

to recover a solution of rank r ≤ 199 [21].

Example 2.3.1 (Tightness of the lower bound for r∗). For r < min{n1, n2} consider data

matrix M of the following form M =
(
M1 0
M2 M3

)
. Here, the three sub-matrices M1, M2, M3,

of the respective order r× r, (n1 − r)× r and (n1 − r)× (n2 − r), represent the observed

entry values. Cardinality m of the corresponding index set Ω is r(n1 + n2 − r), i.e., here

r = R(n1, n2,m). Suppose that the r × r matrix M1 is nonsingular, i.e., its rows are

linearly independent. Then any row of matrix M2 can be represented as a (unique) linear

combination of rows of matrix M1. It follows that the corresponding MRMC problem

has (unique) solution of rank r∗ = r. In other words, the rank of the completed matrix

will be equal to r (the rank of the sub-matrix M1) and there will be a unique matrix that

achieves this rank. Now suppose that some of the entries of the matrices M2 and M3 are

not observed, and hence cardinality of the respective index set Ω is less than r(n1 +n2−r),

and thus r > R(n1, n2,m). In that case the respective minimal rank still is r, provided

matrix M1 is nonsingular, although the corresponding optimal solutions are not unique. In

particular, if M =
(
M1 0
0 0

)
, i.e., only the entries of matrix M1 are observed, then m = r2

and the minimum rank is r.
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2.3.2 Uniqueness of solutions of the MRMC problem

Following Theorem Theorem 2.3.1, for a given matrix M ∈ VΩ and the corresponding

minimal rank r∗ ≤ R(n1, n2,m), the question is whether the corresponding solution Y ∗

of rank r∗ is unique. Although, the set of such matrices M is “thin” (in the sense that

it has Lebesgue measure zero), this question of uniqueness is important, in particular for

the statistical inference of rank (discussed in Section Section 2.4). Available results, based

on the so-called Restricted Isometry Property (RIP) for low-rank matrix recovery from

linear observations and based on the coherence property for low-rank matrix completion,

assert that for certain probabilistic (Gaussian) models such uniqueness holds with high

probability. However for a given matrix M ∈ VΩ it could be difficult to verify whether

the solution is unique (some sufficient conditions for such uniqueness are given in [17,

Theorem 2], we will comment on this below.)

Let us consider the following concept of local uniqueness of solutions.

Definition 2.3.1. We say that an n1 × n2 matrix Ȳ is a locally unique solution of problem

(Equation 2.2) if PΩ(Ȳ ) = M and there is a neighborhood V ⊂ Rn1×n2 of Ȳ such that

rank(Y ) 6= rank(Ȳ ) for any Y ∈ V , PΩ(Y ) = M and Y 6= Ȳ .

Note that rank is a lower semicontinuous function of matrix, i.e., if {Yk} is a sequence of

matrices converging to matrix Y , then lim infk→∞ rank(Yk) ≥ rank(Y ). Therefore local

uniqueness of Ȳ actually implies existence of the neighborhood V such that rank(Y ) >

rank(Ȳ ) for all Y ∈ V , Y 6= Ȳ , i.e., that at least locally problem (Equation 2.2) does

not have optimal solutions different from Ȳ . The Definition 2.3.1 is closely related to the

finitely rank-r completability condition introduced in [17], which assumes that the MRMC

problem has a finite number of rank r solutions. Of course if problem (Equation 2.2) has

a non locally unique solution of rank r, then the finitely rank-r completability condition

cannot hold.

We now introduce some constructions associated with the manifoldMr of matrices of
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rank r. There are several equivalent forms how the tangent space to the manifoldMr at

Y ∈Mr can be represented. Let Y = VW> for some matrices V ∈ Rn1×r andW ∈ Rn2×r

of rank r. Then

TMr(Y ) =
{

(dV )W> + V (dW )> : dV ∈ Rn1×r, dW ∈ Rn2×r
}
. (2.14)

In an equivalent form this tangent space can be written as

TMr(Y ) =
{
H ∈ Rn1×n2 : FHG = 0

}
, (2.15)

where F is an (n1 − r) × n1 matrix of rank n1 − r such that FY = 0 (referred to as a

left side complement of Y ) and G is an n2 × (n2 − r) matrix of rank n2 − r such that

Y G = 0 (referred to as a right side complement of Y ). We also use the linear space of

matrices orthogonal (normal) toMr at Y ∈Mr, denoted byNMr(Y ). By (Equation 2.14)

it follows that

NMr(Y ) =
{
Z ∈ Rn1×n2 : Z>Y = 0 and Y Z> = 0

}
. (2.16)

Definition 2.3.2 (Well-posedness condition). We say that a matrix Ȳ ∈Mr is well-posed,

for problem (Equation 2.2), if PΩ(Ȳ ) = M and the following condition holds

VΩc ∩ TMr(Ȳ ) = {0}. (2.17)

Condition (Equation 2.17) (illustrated in Figure 2.1) is a natural condition having a

simple geometrical interpretation. Intuitively, it means that the null space of the observation

operator does not have any non-trivial matrix that lies in the tangent space of low-rank

matrix manifold. Hence, there cannot be any local deviations from the optimal solution

that still satisfy the measurement constraints. This motivates us to introduce the well-
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posedness condition that guarantees a matrix to be locally unique solution. Note that this is

different from the so-called Null Space Property (NSP) (see, e.g.,[22]). Although both the

well-posedness and NSP have a similar geometrical flavor, the NSP is aimed at ensuring

uniqueness of solution of a convex problem, while the MRMC is essentially a nonconvex

construction. For instance, NSP can be used to guarantee uniqueness of solutions of the

optimization problem minx∈Rn ‖x‖1 subject toAx = b, which can be formulated as a linear

programming problem.

!ℳ# $%
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ℳ&

$% + ()*

Figure 2.1: Illustration of the well-posedness condition.

Now we can give sufficient conditions for local uniqueness:

Theorem 2.3.2 (Sufficient conditions for local uniqueness). Matrix Ȳ ∈ Mr is a locally

unique solution of problem (Equation 2.2) if Ȳ is well-posed for (Equation 2.2).

2.3.3 Verifiable form of well-posedness condition

Below we present an equivalent form of the well-posedness condition that can be veri-

fied algebraically. By Theorem Theorem 2.3.2 we have that if matrix Ȳ ∈ Mr is well-

posed, then Ȳ is a locally unique solution of problem (Equation 2.2). Note that condi-

tion (Equation 2.17) implies that dim(VΩc) + dim(TMr(Ȳ )) ≤ n1n2. That is, condition

(Equation 2.17) implies that r(n1 + n2 − r) ≤ m or equivalently r ≤ R(n1, n2,m). By

Theorem Theorem 2.3.1 we have that if r∗ > R(n1, n2,m), then the corresponding optimal

solution cannot be locally unique almost surely. Note that since the space VΩ is orthogo-

nal to the space VΩc , by duality arguments condition (Equation 2.17) is equivalent to the
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following condition

VΩ +NMr(Ȳ ) = Rn1×n2 . (2.18)

By using formula (Equation 2.15) it is also possible to write condition (Equation 2.17)

in the following form

{X ∈ VΩc : FXG = 0} = {0}, (2.19)

where F is a left side complement of Ȳ and G is a right side complement of Ȳ . Recall

that vec(FXG) = (G> ⊗ F )vec(X). Column vector of matrix G> ⊗ F corresponding to

component xij of vector vec(X), is g>j ⊗ fi, where fi is the i-th column of matrix F and

gj is the j-th row of matrix G. Condition (Equation 2.19) means that the column vectors

g>j ⊗ fi, (i, j) ∈ Ωc, are linearly independent. It could be noted that the left and right side

complements are not unique. That is, the left side complement can be changed toQF for an

arbitrary (n1−r)× (n1−r) nonsingular matrixQ, and similarly the right side complement

can be changed to GR for an arbitrary (n2 − r)× (n2 − r) nonsingular matrix R. We have

that (GR)> ⊗ (QF ) = (R> ⊗ Q)(G> ⊗ F ). Therefore the condition for vectors g>j ⊗ fi,

(i, j) ∈ Ωc, to be linearly independent does not depend on a particular choice of the left

and right side complements.

We obtain the following verifiable condition for checking the well-posedness of a given

solution:

Theorem 2.3.3 (Equivalent condition of well-posedness). Matrix Ȳ ∈Mr satisfies condi-

tion (Equation 2.17) if and only if for any left side complement F and right side complement

G of Ȳ , the column vectors g>j ⊗ fi, (i, j) ∈ Ωc, are linearly independent.

A consequence of Theorem 2.3.3 is that if Ȳ ∈ Mr is well-posed, then necessarily

(n1 − r)(n2 − r) ≥ |Ωc|, since vectors g>j ⊗ fi have dimension (n1 − r)(n2 − r). Since

|Ωc| = n1n2 −m, this is equivalent to r(n1 + n2 − r) ≤ m. That is, the well-posedness

cannot happen if r > R(n1, n2,m). This of course is not surprising in view of discussion

of subsection 2.3.1.
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Theorem 2.3.3 also implies the following necessary condition for well-posedness of

Ȳ ∈ Mr in terms of the pattern of the index set Ω, which is related to the completability

condition in [17] that each row and each column has at least r observations. If matrix

Ȳ ∈Mr is well-posed for problem (Equation 2.2), then at each row and each column of Ȳ

there are at least r elements of the index set Ω. Indeed, suppose that in row i ∈ {1, ..., n1}

there are less than r elements of Ω. This means that the set σi := {j : (i, j) ∈ Ωc} has

cardinality greater than n2− r. Let F be a left side complement of Ȳ and G be a right side

complement of Ȳ . Since rows gj of G are of dimension 1 × (n2 − r), we have then that

vectors gj , j ∈ σi, are linearly dependent, i.e.,
∑

j∈σi λjgj = 0 for some λj , not all of them

zero. Then ∑
j∈σi λj(g

>
j ⊗ fi) =

(∑
j∈σi λjgj

)> ⊗ fi = 0. (2.20)

This contradicts the condition for vectors g>j ⊗ fi, (i, j) ∈ Ωc, to be linearly independent.

Similar arguments can be applied to the columns of matrix Ȳ . This necessary condition for

well-posedness is not surprising since if there is a row with less than r elements of Ω, then

this row in not uniquely defined in the corresponding rank r solution (cf., [17]). However,

although necessary, the condition for the index set Ω to have at each row and each column

at least r elements is not sufficient to ensure well-posedness as shown by Theorem 2.3.5

below. Note that by definition the matrices F and G are of full rank.

2.3.4 Generic nature of the well-posedness

In a certain sense the well-posedness condition is generic, as we explain below. Denote by

Fr ⊂ Rn1×r and Gr ⊂ Rn2×r the respective sets of matrices of rank r. Consider the set

Θ := Fr×Gr×VΩc viewed as a subset of Rn1r+n2r+n1n2−m, and mapping F : Θ→ Rn1×n2

defined as

F(θ) := VW> +X, θ = (V,W,X) ∈ Θ.
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Note that the sets Gr and Fr are open and connected, and hence the set Θ is open and

connected, and the components of mapping F(·) are polynomial functions.

Let ∆(θ) be the Jacobian of mapping F. That is, ∆(θ) is (n1r+n2r+n1n2−m)×(n1n2)

matrix of partial derivatives of F(θ) taken with respect to a specified order of the compo-

nents of the corresponding matrices. Let us consider the following concept associated with

rank r and index set Ω (cf., [23]).

Definition 2.3.3. We refer to

% := max
θ∈Θ

{
rank

(
∆(θ)

)}
(2.21)

as the characteristic rank of mapping F and say that θ ∈ Θ is a regular point of F if

rank
(
∆(θ)

)
= %. We say that (V,W ) ∈ Fr × Gr is regular if θ = (V,W,X) is regular for

some X ∈ VΩc .

Since F(V,W, ·) is linear, the Jacobian ∆(V,W,X) is the same for all X ∈ VΩc , i.e.,

∆(V,W,X) = ∆(V,W,X ′) for any X,X ′ ∈ VΩc and (V,W ) ∈ Fr × Gr. Hence if a point

θ = (V,W,X) is regular for some X ∈ VΩc , then (V,W,X ′) is regular for any X ′ ∈ VΩc .

Therefore regularity actually is a property of points (V,W ) ∈ Fr × Gr.

Consider θ = (V,W,X) ∈ Θ and Y = VW>. We have that rank
(
∆(θ)

)
= dim

(
V(θ)

)
,

where V(θ) denotes the image of the differential of F(θ). Since the differential dF(θ) =

(dV )W> + V (dW )> + dX and because of (Equation 2.14), the linear space V(θ) is equal

to TMr(Y ) + VΩc . It follows that % ≤ f(r,m), where

f(r,m) := dim
(
TMr(Y )

)
+ dim

(
VΩc

)
= r(n1 + n2 − r) + n1n2 −m.

(2.22)

It also follows that rank
(
∆(θ)

)
= f(r,m) iff condition (Equation 2.17) holds at Y . In other

words we have the following result.
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Proposition 2.3.1. Rank of ∆(θ) attains the maximal value f(r,m) if and only if the corre-

sponding matrix Y = VW> is well posed.

Furthermore we have the following.

Theorem 2.3.4. The following holds: (i) Almost every point (V,W ) ∈ Fr × Gr is regular.

(ii) The set of regular points forms an open subset of Fr × Gr. (iii) For any regular point

(V,W ) ∈ Fr × Gr, the corresponding matrix Y = VW> satisfies the well-posedness

condition (Equation 2.17) if and only if the characteristic rank % is equal to f(r,m). (iv)

If % < f(r,m) and a point (V̄ , W̄ ) ∈ Fr × Gr is regular, then for any Y ∈ Mr in a

neighborhood of Ȳ = V̄ W̄> there exists X ∈ VΩc such that Y = Ȳ +X .

The significance of Theorem 2.3.4 is that this shows that for given rank r and index set

Ω, either % = f(r,m) in which case a.e. Y ∈ Mr satisfies the well-posedness condition

(Equation 2.17), or % < f(r,m) in which case condition (Equation 2.17) does not hold for

all Y ∈Mr and generically rank r solutions are not locally unique.

We have that a necessary condition for % = f(r,m) is that each row and each column

of the considered matrix has at least r observed entries. Another necessary condition is

for the index set to be irreducible (see Theorem 2.3.5). Whether these two conditions

are sufficient for % = f(r,m) to hold remains an open question. Numerical experiments,

reported in Section Section 2.5, indicate that in a certain probabilistic sense chances of

occurring not well posed solution are negligible when r is slightly less than R(n1, n2,m).

2.3.5 Global uniqueness of solutions for special cases

In some rather special cases it is possible to give verifiable conditions for global uniqueness

of minimum rank solutions. The following conditions are straightforward extensions of

well known conditions in Factor Analysis (cf., [24, Theorem 5.1] ).

Assumption 2.3.1. Suppose that: (i) for a given index (k, l) ∈ Ωc, there exist index sets

I1 ⊂ {1, ..., n1} \ {k} and I2 ⊂ {1, ..., n2} \ {l} such that |I1| = |I2| = r, I1 × I2 ⊂ Ω,
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and {k}× I2 ⊂ Ω and {l}× I1 ⊂ Ω, (ii) the r× r submatrix of M corresponding to rows

i ∈ I1 and columns j ∈ I2 is nonsingular.

For example, for r = 1 part (i) of the above assumption means existence of indexes

k′ 6= k and l′ 6= l such that (k′, l), (k, l′), (k′, l′) ∈ Ω.

Proposition 2.3.2. Suppose that Assumption 2.3.1 holds for an index (k, l) ∈ Ωc. Then the

minimum rank r∗ ≥ r, and for any matrix Y ∈ Mr such that PΩ(Y ) = M it follows that

Ykl = Ȳkl.

Clearly part (ii) of Assumption 2.3.1 implies that r∗ ≥ r. The other result of the above

proposition follows by observing that the (r+1)×(r+1) submatrix of Y corresponding to

rows {k} ∪ I1 and columns {l} ∪ I2 has rank r and hence zero determinant, and applying

Shur complement for the element Ykl. Note that provided the part (i) holds, part (ii) is

generic in the sense that it holds for a.e. Mij .

If Assumption 2.3.1 holds for every (k, l) ∈ Ωc, then the uniqueness of the solution Ȳ

follows. This is closely related to [17, Theorem 2], but is not the same. It is assumed in [17]

that every column ofM has r+1 observed entries. For example, consider 2×2 matrix with

3 observed entries, M12 = M21 = M22 = 1. The only unobserved entry, corresponding to

the index (1, 1), satisfies Assumption 2.3.1 and rank one matrix, with all entries equal 1, is

the unique solution of the MRMC problem. On the other hand the first column of matrix

M has only one observed entry.

Remark 2.3.1. The following example was constructed in Wilson and Worcester [25], of

two 6× 6 symmetric matrices of rank 3 with the same off-diagonal and different diagonal

elements. If we define the index set as Ω := {(i, j) : i 6= j, i, j = 1, ..., 6}, then this can

be viewed as an example of two different locally unique solutions of rank 3. Note that here

m = 30 and R(6, 6, 30) = 6−
√

6. That is R(6, 6, 30) > 3 and generically (almost surely)

rank cannot be reduced below r = 4. We will discuss this example further in Section

Section 2.5.
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2.3.6 Identifiable Ω

Our results can also be used to determine whether observation patterns Ω is identifiable.

First note that uniqueness of the minimum rank solution is invariant with respect to per-

mutations of rows and columns of matrix M . This motivates to introduce the following

definition.

Definition 2.3.4. We say that the index set Ω is reducible if by permutations of rows and

columns, the set Ω can be represented as the union Ω′ ∪ Ω′′ of two disjoined sets Ω′ ⊂

{1, ..., k} × {1, ..., l} and Ω′′ ⊂ {k + 1, ..., n1} × {l + 1, ..., n2} for some 1 ≤ k < n1 and

1 ≤ l < n2. Otherwise we say that Ω is irreducible.

Reducibility of the index set Ω means that by permutations of rows and columns, matrix

M can be represented in the block diagonal form

M =

 M ′ 0

0 M ′′

 , (2.23)

where matrices M ′ and M ′′ are of order k × l and (n1 − k) × (n2 − l), respectively, with

observed entries M ′
ij , (i, j) ∈ Ω′, and M ′′

ij , (i, j) ∈ Ω′′. Some entries of matrices M ′ and

M ′′ can also be zero if the corresponding entries of matrix M are zeros.

Theorem 2.3.5 (Reducible index set). If the index set Ω is reducible, then any minimum

rank solution Ȳ is not locally (and hence globally) unique.

As it was shown in Theorem Theorem 2.3.2, if Ȳ is not locally unique, then it cannot

be well-posed. Therefore if the index set Ω is reducible, then any minimum rank solution

is not well-posed. Of course even if Ω is reducible, it still can happen that in each row and

column there are at least r elements of the index set Ω. That is, the condition of having

r elements of the index set Ω in each row and column is not sufficient to ensure the well-

posedness property.
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Remark 2.3.2. Reducibility/irreducibility of the index set Ω can be verified in the following

way. Consider the undirected graph G = (V,E) with the set of vertices V := Ω, and edges

between two vertices (i, j), (i′, j′) ∈ Ω if and only if i = i′ or j = j′. Then Ω is irreducible

if and only if G has only one connected component. A connected component of G is a

subgraph in which any two vertices are connected to each other by paths, and which is

connected to no additional vertices in the supergraph G. There are algorithms of running

time O(|V | + |E|) which can find every vertex that is reachable from a given vertex of G,

and hence to determine a connected component of G, e.g., the well known breadth-first

search algorithm [26, Section 22.2]. Note that the number of vertices in G is m = |Ω|,

which could be much smaller than n1n2.

2.3.7 Uniqueness of rank one solutions

In this section we discuss uniqueness of rank one solutions of the MRMC problem

(Equation 2.2). We show that in case of the minimum rank one, irreducibility of Ω is

sufficient for the global uniqueness. We assume that all Mij 6= 0, (i, j) ∈ Ω, and that every

row and every column of the matrix M has at least one element Mij . Let Ȳ be a solution

of rank one of problem (Equation 2.2), i.e., there are nonzero column vectors v and w such

that Ȳ = vw> with PΩ(Ȳ ) = M .

Recall that permutations of the components of vector v corresponds to permutations of

the rows of the respective rank one matrix, and permutations of the components of vector w

corresponds to permutations of the columns of the respective rank one matrix. It was shown

in Theorem Theorem 2.3.5 that if the index set Ω is reducible, then solution Ȳ cannot be

locally unique. In case of rank one solution the converse of that also holds.

Theorem 2.3.6 (Global uniqueness for rank one solution). Suppose that Ω is irreducible,

Mij 6= 0 for all (i, j) ∈ Ω, and every row and every column of the matrix M has at least

one element Mij , (i, j) ∈ Ω. Then any rank one solution is globally unique.

It could be mentioned that even for r = 1 the irreducibility is a weaker condition than
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part (i) of Assumption 2.3.1 applied to every (k, l) ∈ Ωc. For example, let n1 = n2 = n ≥ 3

and Ω = {(i, j) : i ≥ j, i, j = 1, ..., n} \ {(n, 1)}. This set Ω irreducible. However for the

index (1, n), Assumption 2.3.1(i) does not hold.

2.3.8 LRMA and its properties

We discuss below the LRMA approach (Equation 2.5). Compared with the formulation of

exact low rank recovery, the LRMA is more realistic in the presence of noise. By Theo-

rem Theorem 2.3.1 we have that if the minimal rank r∗ is less than R(n1, n2,m), then the

corresponding solution is unstable in the sense that an arbitrary small perturbation of the ob-

served valuesMij can make this rank unattainable. On the other hand if r∗ > R(n1, n2,m),

then almost surely the solution is not (even locally) unique. This indicates that except in

rare occasions, problem (Equation 2.2) of exact rank minimization cannot have both prop-

erties of possessing unique and stable solutions. Consequently, what makes sense is to try

to solve the minimum rank problem approximately.

Proposition 2.3.3 (Necessary condition for LRMA). The following are necessary condi-

tions for Y ∈Mr to be an optimal solution of problem (Equation 2.5)

(PΩ(Y )−M)>Y = 0 and Y (PΩ(Y )−M)> = 0. (2.24)

Remark 2.3.3. We can view the least squares problem (Equation 2.5) from the following

point of view. Consider function

φ(Y,Θ) := 1
2tr[(PΩ(Y )−Θ)>(PΩ(Y )−Θ)], (2.25)
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with Θ ∈ VΩ viewed as a parameter. Define

f(Y ) := 1
2

∑
(i,j)∈Ω

(Yij −Mij)
2

= 1
2tr[(PΩ(Y )−M)>(PΩ(Y )−M)],

(2.26)

Hence, the problem (Equation 2.5) consists of minimization of f(Y ) subject to Y ∈ Mr.

Note that for Θ = M we have f(·) = φ(·,M), where f(·) is defined in (Equation 2.26).

Let Ȳ ∈Mr be such that φ(Ȳ ,Θ0) = 0 for some Θ0 ∈ VΩ, i.e., PΩ(Ȳ ) = Θ0. A sufficient

condition for Ȳ to be a locally unique solution of problem (Equation 2.2), at M = Θ0, is

tr
[
PΩ(H)>PΩ(H)

]
> 0, ∀H ∈ TMr(Ȳ ) \ {0}. (2.27)

The above condition means that if H ∈ TMr(Ȳ ) and H 6= 0, then PΩ(H) 6= 0. In other

words this means that the kernel

Ker(PΩ) := {H ∈ TMr(Ȳ ) : PΩ(H) = 0}

is {0}. Since PΩ(H) = 0 for any H ∈ VΩc , it follows that: condition (Equation 2.27) is

equivalent to the sufficient condition (Equation 2.17) of Theorem 2.3.2. That is, condition

(Equation 2.27) means that matrix Ȳ is well-posed for problem (Equation 2.2).

Assuming that condition (Equation 2.27) (or equivalently condition (Equation 2.17))

holds, by applying the Implicit Function Theorem to the first order optimality conditions

of the least squares problem (Equation 2.5) we have the following result.

Proposition 2.3.4. Let Ȳ ∈Mr be such that PΩ(Ȳ ) = Θ0 for some Θ0 ∈ VΩ and suppose

that the well posedness condition (Equation 2.17) holds. Then there exist neighborhoods

V and W of Ȳ and Θ0, respectively, such that for any M ∈ W ∩ VΩ there exists unique

Y ∈ V ∩Mr satisfying the optimality conditions (Equation 2.24).

The above proposition implies the following. Suppose that we run a numerical pro-
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cedure which identifies a matrix Ȳ ∈ Mr satisfying the (necessary) first order opti-

mality conditions (Equation 2.24). Then if PΩ(Ȳ ) is sufficiently close to M (i.e., the fit∑
(i,j)∈Ω (Yij −Mij)

2 is sufficiently small) and condition (Equation 2.17) holds at Ȳ , then

we can say that f(Y ) > f(Ȳ ) for all Y 6= Ȳ in a neighborhood of Ȳ . That is, Ȳ solves

the least squares problem at least locally. Unfortunately it is not clear how to quantify the

“sufficiently close” condition, and this does not guarantee global optimality of Ȳ unless Ȳ

is the unique minimum rank solution.

2.4 Statistical test for rank selection

In this section, we propose a statistical test procedure for value of the “true” minimal rank,

when the entries of the data matrix M are observed with noise. Such statistical approach

can be useful for many existing low-rank matrix completion algorithms, which require

a pre-specification of the matrix rank, such as the alternating minimization approach to

solving the non-convex problem by representing the low-rank matrix as a product of two

low-rank matrix factors (see, e.g., [4]).

Consider this for the LRMA formulation. By the above discussion, it will be natural to

take some value of r less than R(n1, n2,m), since otherwise we will not even have locally

unique solution. Can the fit of Y ∈ Mr to X +M , and hence the choice of r, be tested in

some statistical sense?

To proceed we assume the following model with noisy and possibly biased observations

of a subset of matrix entries. There is a (population) value Y ∗ of n1 × n2 matrix of rank

r < R(n1, n2,m) and Mij are viewed as observed (estimated) values of Y ∗ij , (i, j) ∈ Ω,

based on a sample of size N . The observed values are modeled as

Mij = Y ∗ij +N−1/2∆ij + εij, (i, j) ∈ Ω, (2.28)

where Y ∗ ∈ Mr and ∆ij are some (deterministic) numbers. The random errors εij are
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assumed to be independent of each other and such that N1/2εij converge in distribution to

normal with mean zero and variance σ2
ij , (i, j) ∈ Ω. The additional terms N−1/2∆ij in

(Equation 2.28) represent a possible deviation of population values from the “true” model

and are often referred to as the population drift or a sequence of local alternatives (we can

refer to [27] for a historical overview of invention of the local alternatives setting). This is

a reasonably realistic model motivated by many real applications.

Definition 2.4.1. We say that the model is globally identifiable (at Y ∗) if Ȳ ∈ Rn1×n2 of

rank(Ȳ ) ≤ r and PΩ(Ȳ ) = PΩ(Y ∗) imply that Ȳ = Y ∗, i.e., Y ∗ is the unique solution

of the respective matrix completion problem. Similarly it is said that the model is locally

identifiable if this holds for all such Ȳ in a neighborhood of Y ∗, i.e., Y ∗ is a locally unique

solution.

Consider the following weighted least squares problem (a generalization of (Equa-

tion 2.5)):

min
Y ∈Mr

∑
(i,j)∈Ω

wij (Mij − Yij)2 , (2.29)

for some weights wij > 0, (i, j) ∈ Ω. (Of course, if wij = 1, (i, j) ∈ Ω, then problem

(Equation 2.29) coincides with the least squares problem (Equation 2.5).) We have the

following standard result about consistency of the least squares estimates.

Proposition 2.4.1. Suppose that the model is globally identifiable at Y ∗ ∈Mr and values

Mij , (i, j) ∈ Ω, converge in probability to the respective values Y ∗ij as the sample size

N tends to infinity. Then an optimal solution Ŷ of problem (Equation 2.29) converges in

probability to Y ∗ as N →∞.

Consider the following weighted least squares test statistic

TN(r) := N min
Y ∈Mr

∑
(i,j)∈Ω

wij (Mij − Yij)2 , (2.30)
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where wij := 1/σ̂2
ij with σ̂2

ij being consistent estimates of σ2
ij (i.e., σ̂2

ij converge in prob-

ability to σ2
ij as N → ∞). Recall that the respective condition of form (Equation 2.17),

or equivalently (Equation 2.27), is sufficient for local identifiability of Y ∗. The follow-

ing asymptotic results can be compared with similar results in the analysis of covariance

structures (cf., [28]).

Proposition 2.4.2 (Asymptotic properties of test statistic). Consider the noisy observation

model (Equation 2.28). Suppose that the model is globally identifiable at Y ∗ ∈ Mr and

Y ∗ is well-posed for problem (Equation 2.2). Then as N → ∞, the test statistic TN(r)

converges in distribution to noncentral χ2 distribution with degrees of freedom dfr = m−

r(n1 + n2 − r) and the noncentrality parameter

δr = min
H∈TMr (Y ∗)

∑
(i,j)∈Ω

σ−2
ij (∆ij −Hij)

2 . (2.31)

Note that the optimal (minimal) value of the weighted least squares problem (Equation 2.29)

can be approximated by

min
H∈TMr (Y ∗)

∑
(i,j)∈Ω

wij (Eij −Hij)
2 +RN , (2.32)

withEij := N−1/2∆ij+εij and the error termRN = o (‖M − PΩ(Y ∗)‖2) being of stochas-

tic orderRN = op(N
−1). Hence, the noncentrality parameter, given in (Equation 2.31), can

be approximated as

δr ≈ N min
Y ∈Mr

∑
(i,j)∈Ω

wij
(
Y ∗ij +N−1/2∆ij − Yij

)2
. (2.33)

That is, the noncentrality parameter is approximately equal to N times the fit to the “true”

model of the alternative population values Y ∗ij + N−1/2∆ij under small perturbations of

order O(N−1/2).
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Remark 2.4.1. The above asymptotic results are formulated in terms of the “sample size

N” suggesting that the observed values are estimated from some data. That is, the given

values M̄ij , (i, j) ∈ Ω, are obtained by averaging i.i.d. data pointsM `
ij , ` = 1, ..., N . In that

case asymptotic normality of N1/2εij can be justified by application of the Central Limit

Theorem, and the corresponding variances σ2
ij can be estimated from the data in the usual

way σ̂2
ij = (N − 1)−1

∑N
`=1(M `

ij − M̄ij)
2. This model allows to formulate mathematically

precise convergence results. One can take a more pragmatic point of view that when there

is a “small” random noise in the observed values, the respective test statistics properly

normalized with respect to magnitude of that noise have approximately a noncentral chi

square distribution.

The asymptotics of the test statistic TN(r) depends on r and also on the cardinalitym of

the index set Ω. Suppose now that more observations become available at additional entries

of the matrix. That is we are testing now the model with a larger index set Ω′, of cardinality

m′, such that Ω ⊂ Ω′. In order to emphasize that the test statistic also depends on the

corresponding index set we add the index set in the respective notations. Note that if Y ∗ is

a solution of rank r for both sets Ω and Ω′ and the model is globally (locally) identifiable at

Y ∗ for the set Ω, then the model is globally (locally) identifiable at Y ∗ for the set Ω′. Note

also that if the regularity condition (Equation 2.17) holds at Y ∗ for the smaller model (i.e.

for Ω), then it holds at Y ∗ for the larger model (i.e. for Ω′). The following result can be

proved in the same way as Theorem Proposition 2.4.2 (cf., [28]).

Proposition 2.4.3. Consider index sets Ω ⊂ Ω′ of cardinality m = |Ω| and m′ = |Ω′|, and

the noisy observation model (Equation 2.28). Suppose that the model is globally identifi-

able at Y ∗ ∈ Mr and condition (Equation 2.17) holds at Y ∗ for the smaller model (and

hence for both models). Then the statistic TN(r,Ω′) − TN(r,Ω) converges in distribution

to noncentral χ2 with dfr,Ω′ − dfr,Ω = m′ − m degrees of freedom and the noncentrality

parameter δr,Ω′−δr,Ω, and TN(r,Ω′)−TN(r,Ω) is asymptotically independent of TN(r,Ω).

For given index set Ω and observed (estimated) values Mij , (i, j) ∈ Ω, the statistic
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TN(r) can be used for testing the (null) hypothesis that the “true” rank is r. That is the null

hypothesis is rejected if TN(r) is large enough on the scale of the χ2 distribution with the

respective dfr degrees of freedom. It is often observed in practice that such tests reject the

null hypothesis even when the fit is reasonable. In that respect the role of values ∆ij in the

model is to suggest that the “true” model is true only approximately, and the corresponding

noncentrality parameter δr gives an indication of the deviation from the exact rank r model.

It is a common practice to perform such tests sequentially for increasing values of r, with

all deficiencies of such sequential testing.

Such testing procedure assumes that the sample size N is given and the corresponding

variances σ2
ij can be consistently estimated. When the observed values are obtained by

averaging N data points, this is available in the straightforward way (see Remark 2.4.1).

Otherwise setting N = 1 and assuming that all σ2
ij = σ2, (i, j) ∈ Ω, are equal to each

other, we need to specify range of σ2. We will discuss this further in Section Section 2.5.

Remark 2.4.2. It is also possible to give asymptotic distribution of solutions of problem

(Equation 2.29). Suppose now that the assumptions of Proposition 2.4.2 hold with all ∆ij

in equation (Equation 2.28) being zeros. Let ŶN be a solution of problem (Equation 2.29),

i.e.,

ŶN ∈ arg min
Y ∈Mr

∑
(i,j)∈Ω

wij

(
Y ∗ij + εij︸ ︷︷ ︸

Mij

−Yij
)2

. (2.34)

Consider operator A : VΩ → TMr(Y
∗) defined as

A(W ) := arg min
H∈TMr (Y ∗)

∑
(i,j)∈Ω

σ−2
ij (Wij −Hij)

2 , (2.35)

for W ∈ VΩ. Because of the assumption of well posedness (which is equivalent to

(Equation 2.27)) the minimizer in (Equation 2.35) is unique and hence A(W ) is well de-

fined. Then

ŶN = A(M) + op(N
−1/2). (2.36)
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Note that the operator A is linear.

We have that Y ∗ ∈ TMr(Y
∗) and henceA(PΩ(Y ∗)) = Y ∗. ThusA(M) = Y ∗+A(E),

where E ∈ Rn1×n2 is such that Eij = εij for (i, j) ∈ Ω, and Eij = 0 otherwise. Since

N1/2εij , (i, j) ∈ Ω, converge in distribution to normal with mean zero and variance σ2
ij

and independent of each over, it follows that N1/2(ŶN − Y ∗) converges in distribution to

the random matrix A(Z), where Z ∈ VΩ is a random matrix with entries Zij ∼ N (0, σ2
ij),

(i, j) ∈ Ω, having normal distribution and independent of each over. Note that sinceA(·) is

a linear operator,A(Z) has a multivariate normal distribution with zero means. SinceA(Z)

belongs to the linear subspace TMr(Y
∗) of Rn1×n2 , the multivariate normal distribution of

A(Z) is degenerate.

2.5 Numerical Examples

We present some numerical experiments to illustrate our theory1. In this section, without

further notification, the nuclear norm minimization is solved by TFOCS [29] in Matlab and

LRMA problem is solved by “SoftImpute” [30] (regularization parameter equals to 0) in

R.

2.5.1 An example of 6×6 matrix considered in [25]

As pointed in Remark 2.3.1, Wilson and Worcester showed in [25] using analysis that there

are two different locally unique solutions of rank r∗ = 3 for a 6× 6 matrix with the index

1More discussions can be found in a supplementary material at
https://www2.isye.gatech.edu/∼yxie77/Experiment.pdf.
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set Ω corresponding to its off-diagonal elements. The matrix M in that example is given by

M =



0 0.56 0.16 0.48 0.24 0.64

0.56 0 0.20 0.66 0.51 0.86

0.16 0.20 0 0.18 0.07 0.23

0.48 0.66 0.18 0 0.3 0.72

0.24 0.51 0.07 0.30 0 0.41

0.64 0.86 0.23 0.72 0.41 0


.

It can be verified that there are two rank 3 solutions by filling the diagonal entries by

(0.64, 0.85, 0.06, 0.56, 0.50, 0.93), and (0.42, 0.90, 0.06, 0.55, 0.39, 1.00), respectively.

This simple test case where we know the ground truth can illustrate the problem. Both

the nuclear norm minimization and LRMA fail to recover any of these two local solutions

above. The soft-thresholded SVD converges to a completely incorrect solution with off-

diagonals far off from those of M , and the nuclear norm minimization produces a rank 4

solution by filling out the diagonal entries by (0.44, 0.76, 0.05, 0.53, 0.19, 0.96). Note that

here both optimal solutions satisfy the well-posedness condition, and yet these numerical

procedures can not recover either one of them. It is not clear how typical this example, of

different locally optimal solutions, is. Recall that generally the nuclear norm minimization

problem possesses unique optimal solution. However, it is not clear how well it approxi-

mates the “true” minimal rank solution when there is observation noise.

2.5.2 Probability of well-posedness

We show the probability of satisfying the well-posedness condition by generating random

cases. For each rank r∗, we generate an 40 × r∗ orthonormal matrix V , an 50 × r∗ or-

thonormal matrix W , and an r∗ × r∗ diagonal matrix D. Set Y ∗ = V DW>. For each

instance, we randomly generate the observation pattern Ω such that each entry is observed

with probability p. We check the well-posedness condition according to Theorem The-
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Figure 2.2: Probability that well-posedness is satisfied; random instances for different rank
and sampling probability. For each sampling probability and rank, we generate Y ∗ and Ω.
Then, we check the well-posedness condition and compute the probability. Blue curve is
the estimated generic bound for the corresponding sampling probability.

orem 2.3.3 and using the verifiable algebraic condition. Then we repeat the above pro-

cedure 100 times and compute the percentage of cases that satisfy the well-posedness

condition. Figure 2.2 shows the resulted proportion. We also plotted the generic bound

R̂(n1, n2, p) = (n1 +n2)/2− ((n1 +n2)2/4−n1n2p)
1/2. Figure 2.2 shows that the proba-

bility that a matrix satisfies the well-posedness condition is not small, when the true rank is

less than the generic lower bound. Moreover, the probability converge to 1 quickly, when

the rank is 2 or 3 less than the generic bound. This demonstrates that the R̂(n1, n2, p) is a

sharp bound.

2.5.3 Comparison of LRMA and nuclear norm minimization

In this section, we compare the performance of LRMA and matrix completion using stan-

dard nuclear norm minimization, when the well-posedness condition is satisfied and when

it is violated, respectively. The results show that the well-posedness condition is indeed

necessary for good recovery performance. Moreover, our examples show that LRMA per-

forms more stable than nuclear norm minimization in these cases.

We generate Y ∗, an n1×n2 matrix of rank r∗, by uniformly generated an n1×r∗ matrix
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V , an n2×r∗ matrixW and an r∗×r∗ diagonal matrixD and setting Y ∗ = Ṽ DW̃>, where

Ṽ and W̃ are orthonormalization of V , W , respectively. We again sample Ω uniformly

random with probability p, where |Ω| = m. Observation matrix M is generated by Mij =

Y ∗ij + εij, (i, j) ∈ Ω, where εij ∼ N(0, σ2N−1). Algorithms stop when either relative

change in the Frobenius norm between two successive estimates, ‖Y (t+1)−Y t‖F/‖Y (t)‖F ,

is less than some tolerance, denoted as tol or the number of iterations exceeds the maximum

it.

Element-wise error for three cases

We first consider three individual instances, when the well-posedness condition is satisfied

and violated, respectively:

(1) In Figure 2.3 the well-posedness condition is satisfied. The element-wise reconstruc-

tion error for LRMA is much smaller than that of the nuclear norm minimization. In this

experiment, n1 = 40, n2 = 50, r∗ = 10, m = 1000, σ = 5, N = 50 and Ω is sampled until

the well-posedness condition is satisfied. The parameters are tol = 10−20 and it = 50000.

Figure 2.3: When the well-posedness condition is satisfied, the absolute errors at each
entries |Yij − Y ∗ij | for the LRMA (middle panel) and the nuclear norm minimization (right
panel). The left panel shows the sampling pattern Ω. Here the true matrix Y ∗ ∈ R40×50,
rank(Y ∗) = 10, |Ω| = 1000, εij ∼ N(0, 52/50) and the observation matrix Mij = Y ∗ij +
εij, (i, j) ∈ Ω.

(2) In Figure 2.4, the well-posedness condition is violated. As predicted by our theory, both

LRMA and nuclear perform worse, and the errors are especially large at index numbers 3,

32



6, 30, 46, 50, where the necessary condition for the well-posedness condition is violated.

Still, in this situation, the nuclear norm minimization has a larger total recover error than

LRMA. In this experiment, n1 = 70, n2 = 40, r∗ = 11, m = 1300, σ = 5, and N = 50.

We repeatedly sample Ω until the necessary condition for the well-posedness condition is

violated. The parameters tol = 10−16 and it = 50000.

Figure 2.4: When the well-posedness condition is violated, the absolute errors at each
entries |Yij − Y ∗ij | for the LRMA (middle panel) and the nuclear norm minimization (right
panel). The left panel shows the sampling pattern Ω. Here the true matrix Y ∗ ∈ R70×40,
rank(Y ∗) = 11, |Ω| = 1300, ε ∼ N(0, 52/50) and the observation matrix Mij = Y ∗ij +
εij, (i, j) ∈ Ω. The necessary condition for the well-posedness condition is violated (i.e.,
the numbers of observations are less than 11) at row with index numbers 3, 6, 30, 46, 50.

(3) In Figure 2.5, Ω is reducible and thus the well-posedness condition is violated. Consis-

tent with our theory, in this situation, both methods fail to recover the true matrix since the

necessary condition of local uniqueness is violated. In this experiment, n1 = 40, n2 = 50,

r∗ = 10, m = 1000, σ = 5, N = 50 and Ω = {(i, j) ∈ {1 · · · 20} × {1 · · · 20} ∪

{21 · · · 40} × {21 · · · 50}}. The parameters are tol = 10−20 and it = 50000.

Mean-square-error performance

In this section, we consider the mean-square-error performance, defined by

MSE =
1

n1n2K

K∑
k=1

∑
i,j

(Y ∗ij,k − Ŷij,k)2
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Figure 2.5: When Ω is reducible, the absolute errors at each entries |Yij−Y ∗ij | for the LRMA
(middle panel) and the nuclear norm minimization (right panel). The left panel shows the
sampling pattern Ω. Here the true matrix Y ∗ ∈ R40×50, rank(Y ∗) = 10, |Ω| = 1000,
εij ∼ N(0, 52

50
) and the observation matrix Mij = Y ∗ij + εij, (i, j) ∈ Ω. Ω is reducible. In

this case, only two diagonal block matrices M1 ∈ R20×20 and M2 ∈ R20×30 are observed.

where K is the total number of repetitions. Figure 2.6 shows the difference between the

mean square error of LRMA and the nuclear norm minimization. In this experiment,

n1 = 40, n2 = 50, σ = 5, and we generate 50 random instances to compute the average

error. The estimated R̂(n1, n2, p) is also drawn as the blue curve. Figure 2.6 shows that,

indeed, as predicted by our theory, when the true rank is lower than the generic lower bound,

the performance of LRMA is much better than that of the nuclear norm minimization.

10

11

12

13

14

15

3

4

5

6

7

8

9

0.25 0.50 0.75
sampling probability, p

ra
nk

−150000

−100000

−50000

0

30000
MSEls−MSEnn

Figure 2.6: Difference between the MSEs of LRMA and the nuclear norm minimization.
The blue curve is the generic bound for the corresponding sampling probability.
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2.5.4 Testing for true rank

Asymptotic distribution of test statistic

In Section Section 2.4 (see (Equation 2.28)), we show that the asymptotical distribution

of the test statistic for the “true” rank is χ2 distribution, which we will verify numerically

here. We generate the true matrix Y ∗, an n1×n2 matrix of rank r∗, by uniformly generated

an n1 × r∗ matrix V , an n2 × r∗ matrix W , and an r∗ × r∗ diagonal matrix D and setting

Y ∗ = Ṽ DW̃>, where Ṽ and W̃ are orthonormalization of V , W , respectively. We sample

Ω uniformly random, where |Ω| = m. The noisy and repeated observation matrices are

generated by M (k)
ij = Y ∗ij + ε

(k)
ij , (i, j) ∈ Ω, where ε(k)

ij ∼ N(0, σ2N−1). When computing

the test statistic T (k)
N (r) (Equation 2.30), the least square approximation problem is solved

by the soft-thresholded SVD solver. The algorithm stops when either relative change in the

Frobenius norm between two successive estimates is less than some tolerance, denoted as

tol, or the number of iterations reaches the maximum, denoted as it.

Figure 2.7 shows the Q-Q plot of {T (k)
N (r)}200

k=1 against the corresponding χ2 distribu-

tion. In this experiment, n1 = 40, n2 = 50, r∗ = 11, m = 1000, σ = 5, N = 400 and

Ω is sampled until the well-posedness condition is satisfied. The parameters tol = 10−20

and it = 50000. From the result, we can see TN(r) follows a central χ2 distribution with

a degree-of-freedom dfr = m− r(n1 + n2 − r) = 131, which is consistent with Theorem

Proposition 2.4.2.

Figure 2.8 shows the Q-Q plot of {T (k)
N (r,Ω′)− T (k)

N (r,Ω)}200
k=1 against the correspond-

ing χ2 distribution. In this experiment, n1 = 40, n2 = 50, r∗ = 11, m = 996, σ = 5,

N = 50, m′ = |Ω′| = 1001 and Ω is sampled until the well-posedness condition is satis-

fied. Note that Ω′ also satisfied well-posedness condition since Ω′C ⊂ ΩC . The parameters

tol = 10−20 and it = 50000. From the result, we can see TN(r,Ω′) − TN(r,Ω) follows a

central χ2 distribution with a degree-of-freedom dfr,Ω′ − dfr,Ω = m′ − m = 5, which is

consistent with Theorem Proposition 2.4.3.
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Figure 2.7: Q-Q plot of TN(r) against quantiles of χ2 distribution: Y ∗ ∈ R40×50,
rank(Y ∗) = 11, |Ω| = 1000, the observation matrix M is generated 200 times, M (k)

ij =

Y ∗ij + ε
(k)
ij , (i, j) ∈ Ω, where ε(k)

ij ∼ N(0, 52/400). For each M (k), T (k)
N (r) is computed

as equation Equation 2.30. By Theorem Proposition 2.4.2, {T (k)
N (r)} follows central χ2

distribution with the degree-of-freedom dfr = m− r(n1 + n2 − r) = 131.

Table 2.1: p-value for sequential rank test in simulation.

rank p-value rank p-value
1 0.00 7 0.00
2 0.00 8 0.00
3 0.00 9 0.94
4 0.00 10 0.69
5 0.00 11 0.41
6 0.00 12 0.00

Test for true rank

As discussed in Section 2.4, we can determine the true rank r∗ by sequential χ2 tests. That

is, for r ranging from 1 to dR(n1, n2,m)e, we solve the least square approximations and

compute TN(r). According to TN(r) we can determine which rank can be accepted for

a predefined significant level. Table Table 2.1 shows a result of sequential rank test on a

simulated data set. In this experiment, n1 = 40, n2 = 50, r∗ = 9, m = 1000, σ = 5,

N = 100, and Ω is sampled until well-posedness condition is satisfied. The true rank 9, is

the first one accepted for 0.05 significant level.

Figure 2.9 shows the comparison of rank selection between our sequential rank test, the
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Figure 2.8: Q-Q plot of TN(r,Ω′) − TN(r,Ω) against the quantiles of χ2 distribution:
Y ∗ ∈ R40×50, rank(Y ∗) = 11, |Ω′| = 1001, |Ω| = 996, where Ω ⊂ Ω′. The ob-
servation matrix M ′ and M are generated 200 times, By Theorem Proposition 2.4.3,
{T (k)

N (r,Ω′) − T
(k)
N (r,Ω)} follows central χ2 distribution with the degree-of-freedom

dfr,Ω′ − dfr,Ω = m′ −m = 5 .

nuclear norm minimization and the method suggested in [31] (we refer to it as ME method

in the following). Since the nuclear norm minimization and the ME method cannot give

the exact rank, we choose the rank by thresholding the percentage of the singular value of

the recovered matrix in this two methods, i.e. r̂ = argminr
∑r

i=1 λ(i)/
∑min(n1,n2)

i=1 λ(i) > b,

where b is a chosen threshold. In this experiment, n1 = 100, n2 = 1000, σ = 5, N = 50

and the sampling probability p = 0.3. For each true rank, we generate 100 instances of

(Y ∗,Ω,M), complete the rank selection with these three methods and compute the median

of the error of estimated rank of each method. For the sequential rank test, we choose the

first rank accepted with a 0.05 significant level. For the nuclear norm minimization and the

ME method, we choose the threshold that gives us the best results for these two methods.

It shows that selection by sequential χ2 test outperforms the other two methods.

2.6 Conclusion

In this chapter, we have examined the matrix completion from a geometric viewpoint and

established a sufficient condition for local uniqueness of solutions. Our characterization as-

sumes deterministic patterns and the results are general. We argue that the exact minimum
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Figure 2.9: Comparison of rank selection between sequential χ2 test, the nuclear norm
minimization and the ME method, when the sampling probability p=0.3. For each true
rank, we compute the median of rank error for 100 experiments. Y ∗(k) ∈ R100×1000,M (k)

ij =

Y
∗(k)
ij + ε

(k)
ij , (i, j) ∈ Ω, where ε(k)

ij ∼ N(0, 52/50). Threshold bnm = 0.25, bME = 0.13 for
the nuclear norm minimization and the ME method, respectively.

rank matrix completion (MRMC) leads to either unstable or non-unique solutions and thus

the alternative low-rank matrix approximation (LRMA) is a more reasonable approach. We

propose a statistical test for rank selection, based on observed entries, which can be useful

for practical matrix completion algorithms.

For small values of the “true” rank, when the respective dual of the “true” minimum

trace problem has more than one optimal solution, the asymptotic bias of the optimal value

of the approximating MT problem is of order O(N−1/2) [32]. On the other hand, under

the model (Equation 2.28) when the values Mij , (i, j) ∈ Ω, are computed by averaging

N data points having normal distribution (see Remark 2.4.1), the least squares approach

corresponds to the Maximum Likelihood method which is an asymptotically efficient esti-

mation procedure. This gives an insight into the relatively poor performance of the nuclear

norm approach, as compared with the least squares method, as reported in Section 2.5.
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CHAPTER 3

GOODNESS-OF-FIT TEST ON MANIFOLDS

3.1 Introduction

In this chapter, we develop a general theory for testing the goodness-of-fit of non-linear

models. In particular, we assume that the observations are noisy samples of a submanifold

(defined by a sufficiently smooth non-linear map). The observation noise is additive Gaus-

sian. Our main result shows that the “residual” of the model fit (by solving a non-linear

least-square problem) follows a (possibly non-central) χ2 distribution. The parameters of

the χ2 distribution are related to the model order and dimensions of the problem. A key

component of our analysis is the characteristic rank of the Jacobian matrix associated with

the non-linear map that defines the submanifold. A natural use of our result is to the select

order of a model via a sequential test procedure by choosing between two nested mod-

els. We are particularly interested in “nested” models, i.e., one can order the models by

their complexity. We demonstrate the applications of this general theory in the settings of

real and complex matrix completion from incomplete and noisy observations, signal source

identification, and determining the number of hidden nodes in neural networks.

The rest of the chpater is organized as follows. Section 3.2 presents the background

knowledge. Section 3.3 contains the main results: the test statistics for model selection

on manifolds. Section 3.4 gives several examples to demonstrate the use the general the-

ory in specific settings. Section 3.5 presents numerical experiments. Finally, Section 3.6

concludes the chapter with discussions on future directions.

Our notations are conventional. By ‖x‖2 we denote the Euclidean norm of vector x ∈

Rm. By lin(A) we denote the linear space generated by columns of the matrix A and

by tr(A) the trace of the square matrix A. For a linear space L ⊂ Rm, we denote by
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L⊥ = {y ∈ Rm : y>x = 0, x ∈ L} its orthogonal space. All proofs are in the Appendix.

3.2 Background

In this section, we present the general theory, which, in particular, will help to develop

subsequent test statistics for determining model orders in Section Section 3.3.

Consider a nonempty set Θ ⊆ Rd and a mapping G : Θ→ Rm. We assume throughout

the chapter that the set Θ is open and connected. Here, d is the dimension of the parameter

space (also referred to as the intrinsic dimension), andm is the dimension of the observation

space. Consider a point ŷ ∈ Rm and the least squares problem:

min
θ∈Θ
‖ŷ −G(θ)‖2

2. (3.1)

Define the image of the mapping G,

M := {G(θ) : θ ∈ Θ}. (3.2)

Then problem (Equation 3.1) can be written as

min
x∈M
‖ŷ − x‖2

2. (3.3)

That is, in problem (Equation 3.3), we aim to find a point of the set M such that the Eu-

clidean distance is minimized. We deal with situations where the set M is a smooth mani-

fold; we will discuss this below. By saying that the manifold is smooth we mean that it is

at least C2 smooth.

We assume that the map G(·) is at least C2 smooth, i.e., G(·) = (g1(·), . . . , gm(·)) with

functions gi : Θ → R, i = 1, . . . ,m, being twice continuously differentiable. In some

cases we make the stronger assumption that G(·) is analytic, i.e., every gi(·), i = 1, . . . ,m,

is analytic. Recall that a function is analytic on an open subset of Rd, if it can be expanded
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in power series in a neighborhood of every point of this set. For instance, every polynomial

function is analytic.

With the mapping G(θ) is associated the m× d Jacobian matrix

J(θ) := ∂G(θ)/∂θ, (3.4)

whose components are formed by partial derivatives

[J(θ)]ij = ∂gi(θ)/∂θj, i = 1, . . . ,m, j = 1, . . . , d.

The differential of G(·) at a point θ ∈ Θ is the linear mapping dG(θ) : Rd → Rm given by

dG(θ)h = J(θ)h.

Remark 3.2.1. It is possible to deal with more general settings where the set Θ is a smooth

connected manifold (without boundaries) rather than an open set. In that case, the deriva-

tions below can be pushed through by considering the corresponding Jacobian matrices in

the local systems of coordinates of Θ.

Definition 3.2.1 (Characteristic rank). We refer to the maximal rank of the Jacobian matrix,

r := max
θ∈Θ
{rank(J(θ))}, (3.5)

as the characteristic rank of the mapping G(·).

The following Proposition 3.2.1 shows that, when G(·) is analytic, the characteristic

rank in a certain sense is generic. By saying that a property holds for almost every (a.e.)

θ ∈ Θ, we mean that there is a set Υ ⊂ Θ of Lebesgue measure zero such that the property

holds for all θ ∈ Θ \ Υ. Discussions of the following result can be found in [23]; we give

its proof in the Appendix.

Proposition 3.2.1. The following holds: (i) The set {θ ∈ Θ : rank(J(θ)) = r} is open. (ii)
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If the map G(·) is analytic, then for a.e. θ ∈ Θ the rank of the Jacobian matrix J(θ) is

equal to the characteristic rank r.

If rank(J(θ0)) = r for some θ0 ∈ Θ, then there is a neighborhood of θ0 such that

rank(J(θ)) = r for all θ in that neighborhood. It follows by the Constant Rank Theorem

(e.g., [33]) that there is a neighborhood V of θ0 such that the set G(V) forms a smooth

manifold of dimension r, in the space Rm, with the tangent space generated by the columns

of the Jacobian matrix J(θ). When the map G(·) is analytic, if we choose a point θ0 at

random, with respect to a continuous distribution on the set Θ, then rank(J(θ0)) = r

almost surely (with probability one).

Remark 3.2.2. Assuming that the mapping G(·) is C∞ smooth, we have by Sard’s theorem

[34] that the image M (of G) has Lebesgure measure zero in the observation space Rm if

and only if r < m.

Definition 3.2.2 (Regularity [23]). We say that a point θ0 ∈ Θ is regular if rank of the

Jacobian matrix J(θ0) is equal to the characteristic rank r and moreover there exist neigh-

borhoods V of θ0 andW of G(θ0) such that M ∩W = G(V).

The regularity of θ0 ensures that the local structure of M near x0 = G(θ0) is provided by

the mapping G(·) defined in a neighborhood of θ0. Hence, M is a smooth manifold of the

dimension of the characteristic rank r, in a neighborhood of x0. In particular, this implies

that if θ′ ∈ Θ is such that G(θ′) = G(θ0), then there are neighborhoods V ′ of θ′ and V0 of

θ0 such that G(V ′) = G(V0). A result deeper than the one of Proposition 3.2.1(ii) says that

when the coordinate mappings gi(·), i = 1, . . . ,m, are analytic (for instance polynomial)

and either the set Θ is bounded or G(θ)→∞ as θ →∞, then a.e. point θ0 ∈ Θ is regular

(e.g., [35, Section 3.4]).

We denote by TM(x) the tangent space to M at a point x ∈M, provided M is a smooth

manifold in a neighborhood of x. Let θ0 be a regular point of G(·) and x0 = G(θ0). Then

TM(x0) = lin(J(θ0)) and dimension of TM(x0) is equal to the rank r of J(θ0). Also,
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TM(x0) coincides with the image of the differential dG(θ0), i.e.,

TM(x0) =
{
dG(θ0)h : h ∈ Rd

}
. (3.6)

3.3 Test statistics on manifold

We view now the mapping G(θ) as a considered model of the parameter vector θ ∈ Θ,

and problem (Equation 3.1) as the least squares estimation (LSE) procedure with ŷ being a

given data point. More specifically, we assume the following model

ŷ = x0 +N−1/2γ + ε, (3.7)

where x0 ∈ M is viewed as the population (true) value, vector γ ∈ Rm is a deterministic

bias, and the error vector ε is random. When ŷ is estimated from a random sample, the

parameter N represents the sample size. In general, N can be viewed as a normalization

parameter allowing to formulate rigorous convergence results for N tending to infinity. We

assume that the components εi, i = 1, . . . ,m, of ε are independent of each other and such

that N1/2εi converges in distribution, as N → ∞, to normal distribution with mean zero

and variance σ2 > 0. The term N−1/2γ represents systematic deviations form the “true”

model and is referred to in statistics literature as the population drift (e.g.,[27]).

We consider the following least squares test statistic to determine the model

TN := Nσ̂−2 min
x∈M
‖ŷ − x‖2

2, (3.8)

where σ̂2 is a consistent estimate of σ2.

3.3.1 Test statistic on manifolds

We now consider the general case defined in (Equation 3.7). We will show that for the

problem defined on smooth manifolds, similar results in the form of RSS for linear models
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hold.

Remark 3.3.1. For any ŷ ∈ Rm, the generalized least-square problem (Equation 3.3) has

an optimal solution which may be not unique. If yk is a sequence converging to x0 ∈ M

and xk is an optimal solution of (Equation 3.3), then xk converges to x0 (e.g., [36, Theorem

7.23]). Under the model (Equation 3.7) we have that ŷ converges to x0 in probability as

N →∞. It follows that any minimizer x̂ in the right hand side of (Equation 3.8) converges

in probability to x0.

Suppose that M is a smooth manifold in a neighborhoodW of the point x0. If x̂ ∈ W

is an optimal solution of the least squares problem (Equation 3.8), then it follows that

ŷ − x̂ ∈ [TM(x̂)]⊥, (3.9)

where TM(x̂) is the respective tangent space (see (Equation 3.6)). The following result

shows that for ŷ sufficiently close to x0, the necessary optimality condition (Equation 3.9)

is also sufficient (cf., [32, Proposition III.4]).

Proposition 3.3.1. Suppose that M is a smooth manifold in a neighborhood of x0 ∈ M.

Then there exists a neighborhood W of x0 such that if ŷ ∈ W and a point x̂ ∈ W ∩M

satisfies condition (Equation 3.9), then x̂ is the unique globally optimal solution of the least

squares estimation problem (Equation 3.8).

Since the least-squares problem in (Equation 3.8) is non-convex, standard optimization

algorithms are at most guaranteed to converge to a stationary point satisfying first-order

optimality conditions of the form (Equation 3.9). The above proposition shows that if the

fit is “sufficiently good”, then, in fact, the computed stationary point is globally optimal.

Of course, this result is of a local nature, and it would be difficult to quantify what fit is

good enough. Nevertheless, this tries to explain an empirical observation that for good fits,

the problem of local optima does not happen too often.
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Under the model (Equation 3.7) we have the following asymptotic results, which are

counterparts of the properties when M is a linear space (cf., [23]).

Theorem 3.3.1 (Asymptotic distribution of test statistic). Suppose that M is a smooth

manifold, of dimension r, in a neighborhood of the point x0 ∈M. Let P be the orthogonal

projection matrix onto the tangent space TM(x0). Then the following holds as N →∞:

(i) With probability tending to one the least squares problem (Equation 3.8) has unique

optimal solution x̂,

(ii) The test statistic TN in (Equation 3.8) converges in distribution to the noncentral χ2

distribution with m − r degrees-of-freedom and the noncentrality parameter δ =

σ−2‖(Im − P )γ‖2
2.

(iii) The scaled estimatorN1/2(x̂−x0) converges in distribution to a multivariate normal

distribution with the mean vector Pγ and the covariance matrix σ2P .

(iv) The scaled error N1/2e converges in distribution to a multivariate normal distribu-

tion with the mean vector (Im − P )γ and the covariance matrix σ2(Im − P ), where

e = ŷ − x̂ is a vector of residuals.

3.3.2 Nested models

Consider now nested models, meaning the setting such that models can be naturally ordered

by their complexity. For instance, the linear regression problems, one can sequentially in-

crease or remove the variables being used in the model. Mathematically, this poses a natural

order for the parameter space. That is, let Θ′ ⊂ Θ be a smooth manifold of dimension d′,

and let

M′ := {G(θ) : θ ∈ Θ′}.

Let θ0 ∈ Θ′ be a regular point of the mapping G. Then M is a smooth manifold in a

neighborhood of the point x0 = G(θ0). Moreover, M′ forms a smooth submanifold in a
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neighborhood of the point x0 with the tangent space (compare with (Equation 3.6))

TM′(x0) = {dG(θ0)h : h ∈ TΘ′(θ0)} . (3.10)

Note that TM′(x0) ⊆ TM(x0) and it could happen that TM′(x0) = TM(x0) even when d′ < d.

Consider now the test statistic

T ′N := Nσ−2 min
x∈M′
‖ŷ − x‖2

2. (3.11)

We have the following results (cf., [28]).

Theorem 3.3.2. Suppose that M is a smooth manifold of dimension r and M′ ⊂ M is

a smooth manifold of dimension r′, in a neighborhood of the point x0 ∈ M′. Then the

following holds:

(i) T ′N converges in distribution to a noncentral χ2 random variable withm−r′ degrees-

of-freedom and the noncentrality parameter δ′ = σ−2‖(Im−P ′)γ‖2
2, where P ′ is the

orthogonal projection matrix onto the tangent space TM′(x0).

(ii) The difference statistic T ′N −TN converges in distribution to a noncentral χ2 random

variable with (m− r′)− (m− r) = r− r′ degrees-of-freedom and the noncentrality

parameter δ′ − δ.

(iii) The statistics T ′N − TN and TN are asymptotically independent.

3.3.3 Decomposable maps

Now we will make additional structural assumptions about the mapping that defines the

manifold of our problem. We will make sense of such structural decompositions in specific

applications in Section Section 3.4. Consider model defined by the following mapping

G(θ) := G(ξ) +A(ζ), (3.12)
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where Ξ ⊆ Rd is a nonempty open connected set, G : Ξ → Rm is a smooth mapping and

A : Rk → Rm is a linear mapping. Note that G(·) inherits smoothness properties of G(·).

In particular, if G(·) is analytic, then the corresponding mapping G(·) is analytic.

The parameter vector here is θ = (ξ, ζ) and the parameter space Θ = Ξ × Rk. We

assume that A(ζ) = Aζ , where A is an m× k matrix of rank k. Denote by

M := {G(ξ) : ξ ∈ Ξ} and L := {A(ζ) : ζ ∈ Rk}

the images of the mappings G and A, respectively. Note that the linear space L has a

dimension k, and M =M+L is the image of the mapping G : Θ→ Rm. We denote by r

the characteristic rank of mapping G(·), and by ρ the characteristic rank of G(·), i.e.,

ρ := max
ξ∈Ξ

rank(J (ξ)), (3.13)

where J (ξ) = ∂G(ξ)/∂ξ is the Jacobian of G(·).

Consider the corresponding least squares problem (Equation 3.3), the model

(Equation 3.7) and the least squares test statistic TN , defined in (Equation 3.8), for the

mapping G(θ) of the form (Equation 3.12).

Remark 3.3.2. Note that the optimal value of least squares problem (Equation 3.3) is not

changed if the point ŷ is replaced by ŷ+ v for any v ∈ L. Therefore the corresponding test

statistic TN can be considered as a function of ŷ′ = PL⊥ ŷ, where PL⊥ = Im − PL is the

orthogonal projection onto the linear space orthogonal to L.

Recall that M =M+L. If M is a smooth manifold, of dimension r, in a neighborhood

of x0, then Theorems Theorem 3.3.1 and Theorem 3.3.2 can be applied. In particular, it

will follow that the test statistic TN converges in distribution to a noncentral χ2 with m− r

degrees-of-freedom and certain noncentrality parameter.
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Note that for θ = (ξ, ζ) ∈ Θ, the differential dG(θ) : Rd × Rk → Rm is given by

dG(θ)(h, z) = dG(ξ)h+ Az, h ∈ Rd, z ∈ Rk. (3.14)

This implies that the corresponding characteristic rank r ≤ ρ+ k.

Definition 3.3.1. We say that a point x ∈ M is well-posed ifM is a smooth manifold of

dimension ρ in a neighborhood of x and

TM(x) ∩ L = {0}. (3.15)

We say that the model is well-posed if

r = ρ+ k. (3.16)

For the matrix completion problem the well-posedness condition (at a point) was intro-

duced in [32]. Note that condition (Equation 3.15) means that

dim(TM(x) + L) = dim(TM(x)) + dim(L). (3.17)

Of course, a necessary condition for (Equation 3.17) to hold is that ρ + k ≤ m. Note

also that assuming the mapping G(·), and hence the mapping G(·), is analytic we have that

the image M = M + L has Lebesgue measure zero in the observation space Rm if and

only if r < m (see Remark 3.2.2).

Proposition 3.3.2. Suppose that the mapping G(·) is analytic. Then the following holds. If

there exists at least one well-posed point x ∈M, then the model is well-posed. Conversely

ifM is a smooth manifold of dimension ρ and the model is well-posed, then for a.e. ξ ∈ Ξ,

the corresponding point x = G(ξ) is well-posed.

Let us make the following observation. By the definition of M under the decomposition
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(Equation 3.12), we have that the point x0 ∈M can be represented as

x0 = x∗ + v0 for some x∗ ∈M, v0 ∈ L. (3.18)

Definition 3.3.2. We say that the model is identifiable at x∗ (at x0) if the representation

(Equation 3.18) is unique, i.e., if x0 = x′ + v′ with x′ ∈ M and v′ ∈ L, then x′ = x∗. We

say that the model is locally identifiable at x∗, if such uniqueness holds locally, i.e., there

is a neighborhoodW of x∗ such that if x0 = x′ + v′ with x′ ∈ M ∩W and v′ ∈ L, then

x′ = x∗.

The following result can be proved in the same way as [32, Theorem III.2].

Proposition 3.3.3. If a point x∗ ∈ M is well-posed, then the model is locally identifiable

at x∗.

To verify the (global) identifiability of a nonlinear model is difficult, and often is out

of reach. Of course, local identifiability is a necessary condition for global identifiability.

When G(·) is analytic, the well-posedness condition (Equation 3.16) can be verified nu-

merically; it is necessary and sufficient for the local identifiability in the generic sense of

Proposition 3.3.2. We argue that the well-posedness condition is a minimal property that

should be verified for a considered model.

3.4 Applications of general theory

In this section, we present several examples in signal processing and machine learning to

illustrate how to use the general theory, developed in the previous section, to determine the

“model order” in the specific setting.

Remark 3.4.1. For some well-structured manifolds, it is possible to give an explicit for-

mula for the characteristic rank. In more complicated settings, we can find the characteristic

rank numerically. That is, we compute the Jacobian matrix of the considered mapping at
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several randomly generated points of Θ, and subsequently compute its rank. By Propo-

sition 3.2.1, we can expect that this will give us the characteristic rank of the considered

mapping. This approach worked quite well in experiments reported in Sections subsec-

tion 3.4.2, subsection 3.4.3, and subsection 3.4.6 below.

3.4.1 Noisy matrix completion

We first show that the problem of selecting rank for noisy matrix completion can be ad-

dressed using our general theory. Part of the relevant discussion can be found in [32]; here,

we generate a conclusion using the framework of our general theory in this chapter.

Consider the noisy matrix completion problem (e.g., [3], [4],[2] and references there

in). Suppose we observe a subset of entries of a low-rank matrix with Gaussian noise and

aim to recover the matrix. A common approach to solve this problem, is to use a matrix

factorization by selecting a rank of the matrix using subjective choice or experiments and

cross-validation. However, it is not clear what would be a good statistical procedure to

determine the rank of the matrix.

Consider a mapping G(θ) of the form (Equation 3.12) with the following parameters.

Let ξ = (V,W ) with V ∈ Rn1×r and W ∈ Rn2×r, r ≤ min{n1, n2}, and let Ξ ⊂ Rn1×r ×

Rn2×r be the set of such ξ with both matrices V and W having full column rank r. Define

G(ξ) := VW> ∈ Rn1×n2 ,

and

L := {X ∈ Rn1×n2 : Xij = 0, (i, j) ∈ Ω},

for an index set Ω ⊂ {1, . . . , n1} × {1, . . . , n2}. ThenM =Mr forms the set of n1 × n2

matrices of rank r. Note that the set Ξ is an open connected subset of Rn1×r × Rn2×r, and

dim(L) = n1n2 − |Ω|,
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where |Ω| is the cardinality (number of elements) of the index set Ω. The parameter set

Θ = Ξ× Rn1n2−|Ω|.

Here the least squares problem of (Equation 3.8), associated with the test statistic TN ,

can be written as

min
X∈Mr

∑
(i,j)∈Ω

(Ŷij −Xij)
2, (3.19)

where Ŷij , (i, j) ∈ Ω, are observed values of the data matrix. Then the model (Equation 3.7)

can be written as

Ŷij = X∗ij +N−1/2Γij + εij, (i, j) ∈ Ω, (3.20)

where X∗ ∈ Mr. Note that here the test statistic TN is a function of the components Ŷij ,

(i, j) ∈ Ω, of the corresponding matrix Ŷ (compare with Remark 3.3.2 and (Equation 3.18)).

It is well known that the set Mr, of n1 × n2 matrices of rank r > 0, is a smooth

manifold of dimension r(n1+n2−r) in a neighborhood of its every point (excluding origin).

Therefore here every ξ ∈ Ξ is a regular point of the mapping G(·) with the characteristic

rank ρ = r(n1 + n2 − r). Thus for the characteristic rank r of the corresponding mapping

G(·) we have that

r ≤ r(n1 + n2 − r) + n1n2 − |Ω|, (3.21)

and that the model is well-posed if and only if the equality holds in (Equation 3.21).

Let us make the following assumption.

(A) The set M = Mr + L is a smooth manifold, of dimension r, in a neighborhood of

the point X .

Note that if Assumption (A) holds, then M is a smooth manifold of dimension r in a

neighborhood of X ′ = X + U for any U ∈ L. Therefore by the discussion of Section

Section 3.2, the above assumption (A) holds generically. By Theorem Theorem 3.3.1 we

have the following result as N tends to infinity (cf., [32]).
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Proposition 3.4.1. Suppose that Assumption (A) holds. Then the test statistic TN converges

in distribution to a noncentral χ2 with degrees-of-freedom n1n2 − r and the noncentrality

parameter

δ = σ−2 min
H∈TMr(X∗)

∑
(i,j)∈Ω

(Γij −Hij)
2. (3.22)

Moreover, applying Proposition 3.3.2, we can conclude the following under the as-

sumption:

(B) The point X∗ is well-posed and the model is identifiable at X∗.

Proposition 3.4.2. Suppose that Assumption (B) holds. Then: (i) the equality holds in

(Equation 3.21), (ii) the test statistic TN converges in distribution to noncentral χ2 with

degrees-of-freedom |Ω| − r(n1 + n2 − r) and the noncentrality parameter δ given in

(Equation 3.22), (iii) with probability tending to one, problem (Equation 3.19) has a unique

optimal solution {X̂ij}(i,j)∈Ω.

The difference test statistic can be applied to the following setting. Consider another

index set Ω′ ⊂ {1, . . . , n1} × {1, . . . , n2} of cardinality |Ω′| such that Ω ⊂ Ω′ and the

corresponding space

L′ := {X ∈ Rn1×n2 : Xij = 0, (i, j) ∈ Ω′}.

Clearly, L′ is a subspace of L, and the corresponding set

Θ′ = Ξ× Rn1n2−|Ω′|,

is a linear subspace of the set Θ. By Theorem Theorem 3.3.2 we have the following.

Proposition 3.4.3. Suppose that Assumption (A) holds and moreover M′ is a smooth mani-

fold, of dimension r′, in a neighborhood of X∗ ∈M′. Then the difference statistic T ′N −TN

converges in distribution to noncentral χ2 with degrees-of-freedom r − r′ and the noncen-
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trality parameter δ′ − δ. Moreover, the statistics T ′N − TN and TN are asymptotically

independent.

The above result can be used to compare the goodness-of-fit of two models.

Remark 3.4.2. An application of Theorem 3.3.2 and Proposition 3.4.3 allows to estimate

σ2 when the variance of the noise is unknown. Specifically, let’s assume N = 1, Γij =

0 and εij follows normal distribution with zero mean and variance σ2. Denote the set

of observation indices as Ω′. By leaving out some observation, we have a new set of

observation indices Ω such that Ω ⊂ Ω′. Then we can construct the estimate of σ2 as the

following:

T̃ ′N = min
X∈Mr

∑
(i,j)∈Ω′

(Ŷij −Xij)
2,

T̃N = min
X∈Mr

∑
(i,j)∈Ω

(Ŷij −Xij)
2,

σ̂2 =
T̃ ′N − T̃N
|Ω′| − |Ω|

.

By Theorem 3.3.2 and Proposition 3.4.3, we have σ−2(T̃ ′N − T̃N) follows a χ2 distribution

with degrees-of-freedom |Ω′| − |Ω| asymptotically for the true model. Therefore, σ̂2 is a

consistent estimator of σ2. This method can be generalized to the other applications in this

chapter and more discussion is provided in the Appendix.

3.4.2 Complex noisy matrix completion

In this section, we generalize the results to “complex matrix completion.” Here, the ob-

servations and underlying low-rank matrices are over the field C of complex numbers.

Consider the matrix completion problem (over complex numbers), where X ∈ Cn1×n2 ,

V ∈ Cn1×r, W ∈ Cn2×r:

min
V,W
‖X − VW>‖2

2 s.t. Xij = bij, (i, j) ∈ Ω. (3.23)
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This can be formulated in terms of a real numbers problem as follows. Write

V = V1 + iV2,

where i2 = −1, V1 ∈ Rn1×r, and V2 ∈ Rn1×r are the real and imaginary parts of matrix

V ∈ Cn1×r. Similarly, let

W = W1 + iW2, X = X1 + iX2.

Then

VW> = (V1W
>
1 − V2W

>
2 ) + i(V1W

>
2 + V2W

>
1 ).

Define

L1 := {U ∈ Rn1×n2 : Uij = 0, (i, j) ∈ Ω},

and L = L1 × L1. Then we can set

θ = (V1,W1, V2,W2, U1, U2),

and mapping

G(θ) := (G1(θ), G2(θ)),

where

G1(θ) = V1W
>
1 − V2W

>
2 + U1,

G2(θ) = V1W
>
2 + V2W

>
1 + U2,
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and U1 ∈ L1 and U2 ∈ L1. Hence we can write the problem (Equation 3.23) in the

following form

min
θ
‖X1 −G1(θ)‖2

2 + ‖X2 −G2(θ)‖2
2

s.t. X1,ij = b1,ij, X2,ij = b2,ij, (i, j) ∈ Ω,

X1,ij = X2,ij = 0, (i, j) ∈ Ωc.

(3.24)

The dimension of the manifold of n1 × n2 complex matrices of rank r, in terms of real

numbers, is twice the corresponding dimension r(n1 +n2− r) in the real case. That is, the

characteristic rank of the respective mapping G(·) here is

r = 2r(n1 + n2 − r).

Note that this differs from the real-value matrix completion case in subsection 3.4.1 by a

factor of 2.

3.4.3 Low-rank matrix sensing

Matrix sensing problems [37] is related to matrix completion, where the observations are

linear projections of the underlying low-rank matrix. Specifically, denote by Sd×d the space

of d × d symmetric matrices, and
〈
A,B

〉
:= tr(AB) the scalar product of A,B ∈ Sd×d.

Let X∗ ∈ Sd×d be a positive semidefinite matrix of rank r needed to be recovered. Given

measurement matrices Ai ∈ Sd×d, i = 1, . . . ,m, we observe y ∈ Rm, such that

yi = 〈Ai, X∗〉.

Then we aim to solve the following least square problem.

min
U∈Rd×r

f(U) :=
m∑
i=1

(
yi − 〈Ai, UU>〉

)2
. (3.25)
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It is shown in [37] that (Equation 3.25) is the same problem as the problem of fitting one-

layer neural networks with quadratic activation in (Equation 3.27), which we discuss next.

3.4.4 One-hidden-layer neural networks

We will show the general theory can be applied to determine the number of hidden nodes.

Consider a one-layer neural networks. Let xi ∈ Rd be the inputs and the observation is

assume to be generated by:

yi = 1>q(U∗>xi) + εi, (3.26)

where U∗ ∈ Rd×r, 1 ∈ Rr with all entries equal to 1 and εi is the Gaussian noise with

mean zero and variance σ2. The activation function can be one of the following,

(i) Quadratic activation:

q(z1, · · · , zr) = (z2
1 , z

2
2 , · · · , z2

r ).

(ii) Sigmoid activation:

q(z1, · · · , zr) = (1/(1 + e−z1), · · · , 1/(1 + e−zr)).

A commonly used approach to fit neural networks is to solve the least square problem:

min
U∈Rd×r

f(U) :=
m∑
i=1

(
yi − 1>q(U>xi)

)2
. (3.27)

Define Θ = Rd×r, for U ∈ Θ,

G(U) = (g1(U), . . . , gm(U)),

where gi(U) = 1>q(U>xi). In this setting problem (Equation 3.27) becomes a least
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squares problem of the form (Equation 3.1).

It is difficult to evaluate the characteristic rank r of the mapping G in a theoretical way.

By computing the rank of the corresponding Jacobian matrix (see Remark 3.4.1), we find

the following formulas for the characteristic rank fit well in numerical experiments:

r = dr − r(r − 1)/2,

for the Quadratic activation function; and r = dr for the Sigmoid activation function.

3.4.5 Tensor completion

Next, we consider the problem of determining the rank of a tensor from incomplete and

noisy observations to illustrate the role of the general theory.

Consider a tensor X ∈ Rn1×···×nd of order d over the field of real numbers. It is said

that X has rank one if

X = a1 ◦ · · · ◦ ad,

where ai ∈ Rni is ni × 1 vector, i = 1, . . . , d, and “ ◦ ” denotes the vector outer product.

That is, every element of tensor X can be written as the product

Xi1,...,id = a1
i1
× · · · × adid .

The smallest number r such that tensor X can be represented as a sum X =
∑r

i=1 Yi of

rank one tensors Yi is called the rank of X , and the corresponding decomposition is often

referred to as the (tensor) rank decomposition, minimal CP decomposition, or Canonical

Polyadic Decomposition (CPD).

The tensor completion problem can be formulated as the problem of reconstructing

tensor of rank r by observing a relatively small number of its entries. The second order

tensor (i.e., when d = 2) can be viewed as a matrix, and this becomes the matrix completion
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problem discussed in Section subsection 3.4.1. Consider now third order tensors X ∈

Rn1×n2×n3 , and denote byMr third order tensors of rank r. Without loss of generality, we

can assume that n1 ≥ n2 ≥ n3. With tensor X ∈ Mr are associated matrices A ∈ Rn1×r,

B ∈ Rn2×r, C ∈ Rn3×r such that

X = A⊗B ⊗ C,

meaning that

X =
r∑
i=1

ai ◦ bi ◦ ci,

with ai, bi, ci being ith columns of the respective matrices A, B, C.

The above leads to the following parameterization ofMr. For

ξ = (A,B,C) ∈ Rn1×r × Rn2×r × Rn3×r,

consider mapping

G(ξ) := A⊗B ⊗ C.

By definition of the tensor rank we have that rank of tensorX = G(ξ) cannot be larger than

r. So we define the parameter set

Ξ :=
{
ξ ∈ Rn1×r × Rn2×r × Rn3×r : G(ξ) ∈Mr

}
. (3.28)

We need to verify that the set Ξ is open and connected. Note that it could happen that the

complement (Rn1×r × Rn2×r × Rn3×r) \ Ξ of the set Ξ, has positive (Lebesgue) measure,

or even that Ξ has measure zero.

Careful analysis of properties ofMr is not trivial and is beyond the scope of this chap-

ter. We will make some comments below. Let us consider the following examples. Suppose

that n3 = 1. In that case, assuming that the elements of a matrix C ∈ R1×r are nonzero,
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by rescaling columns of the respective matrices A and B, we can assume that all elements

of C equal 1. Consequently, essentially, this becomes the matrix completion problem dis-

cussed in Section subsection 3.4.1. Thus the characteristic rank of G(ξ) in that case is

r = r(n1 + n2 − r).

The key question of the tensor rank decomposition is its uniqueness. Clearly the de-

composition X = A⊗ B ⊗ C, of X ∈ Mr, is invariant with respect to permutations, and

rescaling of the columns of matrices A, B, C by factors λ1i, λ2i, λ3i, i = 1, . . . , r, such that

λ1iλ2iλ3i = 1. It is said that the decomposition X = A⊗ B ⊗ C is (globally) identifiable

if it is unique up to the corresponding permutation and rescaling. It is beyond the scope

of this chapter to give a careful discussion of the (very nontrivial) problem of tensor rank

identifiability. As it was pointed above, for n3 = 1 this becomes the matrix rank problem

for which the identifiability never holds for r > 1 (e.g., [38, section 3.2]).

Suppose now that n3 ≥ 2. In that case the situation is different.

Definition 3.4.1. It is said that the rank r decomposition is generically identifiable if for

almost every (A,B,C) ∈ Rn1×r × Rn2×r × Rn3×r the corresponding tensor A ⊗ B ⊗ C

has identifiable rank r.

In particular, the generic identifiability implies that the complement of the parameter set

Ξ, defined in (Equation 3.28), has (Lebesgue) measure zero. It is known that for sufficiently

small r, the identifiability holds in the generic sense (we refer to [39],[40], and references

therein for a discussion of the tensor rank identifiability from a generic point of view).

The identifiability is related to the characteristic rank:

Definition 3.4.2. We say that (A,B,C) ∈ Rn1×r ×Rn2×r ×Rn3×r is locally identifiable if

there is a neighborhoodW of (A,B,C) such that (A′, B′, C ′) ∈ W and A′ ⊗ B′ ⊗ C ′ =

A ⊗ B ⊗ C imply that (A′, B′, C ′) can be obtained from (A,B,C) by the correspond-

ing rescaling. We say that model (n1, n2, n3, r) is generically locally identifiable if a.e.

(A,B,C) ∈ Rn1×r × Rn2×r × Rn3×r is locally identifiable.
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Note that local identifiability of (A,B,C) ∈ Rn1×r×Rn2×r×Rn3×r is a local property,

it could happen that rank of the corresponding tensorA⊗B⊗C is less than r. If indeed the

rank of tensor A⊗B ⊗ C is r, then its global identifiability implies its local identifiability

(note that the permutation invariance does not affect the local identifiability). Note also

that the rank of the Jacobian matrix of a mapping G(ξ) is always less than or equal to

r(n1 + n2 + n3)− 2r. This follows by counting the number of elements in (A,B,C) and

making corrections for the scaling factors. That is, the characteristic rank r of map G(·)

cannot be larger than r(n1 + n2 + n3 − 2).

Proposition 3.4.4. Model (n1, n2, n3, r) is generically locally identifiable if and only if the

following formula for the characteristic rank r holds,

r = r(n1 + n2 + n3 − 2). (3.29)

Since the generic (global) identifiability implies generic local identifiability we have

the following consequence of the above proposition.

Corollary 3.4.1. If the rank r decomposition is generically identifiable, then formula

(Equation 3.29) for the characteristic rank follows.

3.4.6 Determining number of sources in blind de-mixing problem

De-mixing problem (e.g., [41]) is a fundamental challenge in signal processing, which

arises from applications such as ambient noise seismic imaging [42], NMR imaging, etc.

In such problems, the goal is to recover the signals by observing their weighted mixture.

Blind de-mixing is particularly challenging in which we do not know the waveforms of

the signal. Moreover, the number of signals and the magnitudes of the waveforms are also

unknown. Such a problem has been addressed using a matrix factorization approach [43].

However, in existing approaches, there is no efficient method to determine the number of

signals, which is usually a critical input parameter to algorithms. In this section, we show
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how to determine the number of sources in the context of ambient noise imaging using the

general theory.

Assume there are N sensors. Define the signal received by the nth sensor as follows:

xn(t) =
K∑
k=1

sk(t− τn,k), n = 1, . . . , N. (3.30)

Assume the number of signals K and the delays τn,k are all unknown. Further assume the

signal is a Gaussian function

sk(t) = ρke
−αkt2 ,

where αk defines the width of the kth source, and ρk is the magnitude of the kth source.

Here, our goal is to estimate the number of signal sources K from observations of xn(t)

buried in Gaussian noise.

We now derive the observation model. For the ease of presentation, we present the

derivation in continuous time (and continuous frequency) domain, and the switch to discrete-

time (and discrete frequency) domain later. Let the Fourier transform of the signal to be

Sk(f) := F{sk(t)}(f) =

∫ ∞
−∞

sk(t)e
−2πitfdt.

Recall that the Fourier transform of the delayed signal corresponds to a phase-shift. Hence,

for Gaussian signals in (Equation 3.30), it can be shown that

F{sk(t− τ)}(f) = ρk

√
π

αk
e−2πifτe−π

2f2/αk .

For continuous function h1 and h2, the cross-correlation is defined as:

(h1 ⊗ h2)(s) :=

∫ ∞
−∞

h1(t− s)h2(t)dt.

Here, in this section, ⊗ represents the cross-correlation operator. By the duality of convo-
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lution in frequency and time, we have

F{h1 ⊗ h2}(f) = F{h1}∗(f)F{h2}(f),

where (·)∗ denotes the conjugate of a complex number.

In ambient noise imaging, the useful “signal” are extracted by performing pairwise

cross-correlation between sensors. Define rn,m(t) as the cross-correlation function of the

nth and the mth sensors:

rn,m(t) = xn(t)⊗ xm(t)

=
K∑
k=1

K∑
l=1

sl(t− τn,l)⊗ sk(t− τm,k).

Now consider the frequency domain. Denote the Fourier transform operator by F and

frequency by f . Define Rn,m(f) as the Fourier transform of rn,m at the frequency f ,

Rn,m(f) :=F{rn,m(t)}(f)

=
K∑
k=1

K∑
l=1

Qlk(f) · e2πif(τn,l−τm,k).
(3.31)

where

Qlk(f) = F{sl(t)⊗ sk(t)}(f) = S∗l (f)Sk(f).

The matrix Q(f) depends on unknown signal waveforms sk(t) as well as the the number

of sources K. For Gaussian signals defined in (Equation 3.30), we can write specifically

Rn,m(f) =
K∑
k=1

K∑
l=1

Qlk(f) · e2πif(τn,l−τm,k)

=
K∑
k=1

K∑
l=1

ρkρle
2πif(τn,l−τm,k)π

√
1

αkαl
e
−π2f2( 1

αk
+ 1
αl

)
.
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Now we can writeRn,m(f) in (Equation 3.31) in a compact form and show its low-rank

structure. Define a matrix Q(f) ∈ CK×K , where the (l, k)th entry of the matrix is Qlk(f).

Clearly, Q(f) is a rank-one complex matrix. Define

S(f) = [S1
∗(f), . . . , S∗K(f)]>,

then

Q(f) = S(f)S(f)H ,

where (·)H denote the Hermitian of a complex vector or matrix (i.e., the complex conjugate

and transpose). Define

αn = [e−2πifτn,1 , e−2πifτn,2 , . . . , e−2πifτn,K ]>.

We have

Rn,m(f) = αHn Q(f)αm,∀f.

Define a matrix A = [α1, . . . , αN ] ∈ CK×N , and a matrix R(f), whose (n,m)th entry is

given by Rnm(f). We can further write

R(f) = AHQ(f)A,∀f.

Assume our observations are a subset of entries of the tensor R with additive Gaussian

noise. The missing data can be due to distance and communication constraints; see [44]

for context. Certain pairs of cross-correlations functions are not available. This can happen

when sensors far away, and it is impractical for them to communicate information and

perform cross-correlation, and only a subset of frequency samples are communicated. This

can also happen when the signal-to-noise ratio is too small for a pair of sensors. Denote the

indices of the observations as Ω. To recap, our goal is to infer K, from noisy and partial
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observations of a complex tensor R, indexed on Ω.

Now we present the form of the non-linear map. Consider discrete-time and frequency

samples. Assume the discrete event samples are indexed by t = 0, . . . , T − 1. Thus, for

discrete Fourier transform, the frequency samples are also indexed by f = 0, . . . , T − 1.

Define a vector of coefficients in our problem ξ ∈ Ξ ⊂ R2K+NK :

ξ = (ρ1, . . . , ρK , α1, . . . , αK , τ1,1, τ1,2, . . . , τN,K).

Define the set

L = {M ∈ RN×N×T : Mi,j,k = 0,∀(i, j, k) ∈ Ω},

which can be viewed as the “nullspace” of a given observation index set Ω. Then we set

θ = (ξ,M1,M2),

where M1 ∈ L and M1 ∈ L. Denote the real and imaginary parts of the frequency samples

as Rn,m,f = Re(Rn,m(f)), and In,m,f = Im(Rn,m(f)), respectively, and define the corre-

sponding tensors R and I (which depend on the parameter vector ξ). The non-linear map

(similar to the case the complex matrix completion) is defined by

G(θ) := (R+M1, I +M2). (3.32)

Hence, although the situation is fairly complex here, we can cast it into the format of the

general problem and use our result.

Numerical experiments suggest the following formula for the characteristic rank

r = 2K +NK − 1.

This is achieved by evaluating the rank of the Jacobian matrix of the map defined by (Equa-
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tion 3.32) (see Remark 3.4.1) and the appendix for the derivation of the Jacobian matrix).

3.5 Numerical Experiments

3.5.1 Complex matrix completion

In this section we consider the complex matrix completion problem (Equation 3.23). To

solve the related optimization problem, we use a generalize version the hard threshold-

ing algorithm in [30]. In the experiment, we generate a rank-r complex matrix with size

n1 × n2, by first generating V1, V2 ∈ Rn1×r and W1,W2 ∈ Rn2×r, where each entries are

i.i.dN (0, 1), and formX = (V1 + iV2)(W1 + iW2)>.We numerically verified that the char-

acteristic rank of the manifoldMr ⊂ Cn1×n2 , of matrices of rank r, is ρ = 2r(n1 +n2− r)

for all random instances, which is consistent with the results in Section subsection 3.4.2.

To show the asymptotic distribution of test statistics (Theorem Theorem 3.3.1), we

generate a rank-2 true matrix X∗ ∈ C100×100. The observed entries are contaminated with

Gaussian noise:

Yij = X∗ij + ε
(k)
ij + η

(k)
ij , (i, j) ∈ Ω,

where |Ω| = 1500 and the noise ε(k)
ij , η

(k)
ij

iid∼ N (0, 52). The experiments are repeated

400 times, i.e., k = 1, . . . , 400, to demonstrate the empirical distribution of the test statis-

tic. Figure 3.1 shows the QQ-plot of {TN(2)(k)}400
k=1 against the χ2 distribution with a

degrees-of-freedom equal to 2208. Recall that the characteristic rank of the manifold

Mr ⊂ Cn1×n2 , of matrices of rank r, is ρ = 2r(n1 +n2−r) (see Section subsection 3.4.2).

The results in Figure 3.1 show that the χ2 distribution fits the test statistics reasonably well.

Moreover, we show the result of detecting the rank in table Table 3.1, with the same exper-

iment setting. In each experiment, we complete the matrix from rank r = 1 to r = 4. We

choose the smallest r, such that TN(r) has p-value larger than 0.05. In table Table 3.1, there

are the results of 200 experiments for true rank r∗ = 2 and r∗ = 3. We can see the power

of tests are high when r < r∗ since there is no false acceptance and the false rejection rate
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is close to the significant level 0.05 when r = r∗.

Table 3.1: Result of hypothesis tests for the rank of complex matrix completion: r∗ is the
true rank. For each r∗, there are 200 experiments. We perform the test from r = 1 to r = 4
and count the number of determined r with significant level, 0.05; r = 0 means tests are
rejected for r = 1, . . . , 4.

r = 0 r = 1 r = 2 r = 3 r = 4 FDR
r∗ = 2 0 0 190 10 0 5%
r∗ = 3 0 0 0 193 7 3.5%
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Figure 3.1: QQ-plot of test statistics against χ2 distribution.

3.5.2 Characteristic rank of third order tensor

To generate third-order tensors of size n1 × n2 × n3, we form A ∈ Rn1×r, B ∈ Rn2×r,

C ∈ Rn3×r, where each entry in A, B, C are i.i.d. distributed as standard normal (zero-

mean and unit variance). Let X = A ⊗ B ⊗ C and ak, bk, ck be the kth columns of A,

B, C, respectively. To compute the Jacobian matrix, for all i = 1, . . . , n1, j = 1, . . . , n2,

l = 1, . . . , n3 and k = 1, . . . , r, we can show that

∂Xijl

∂aki
= bkj c

k
l ,

∂Xijl

∂bkj
= aki c

k
l ,

∂Xijl

∂ckl
= aki b

k
j .

All the other entries in the Jacobian matrix are zero.
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Table Table 3.2 shows the rank (evaluated numerically) of the Jacobian matrices for

different (n1, n2, n3, r) values. We note that when r is sufficiently small, the characteristic

rank is equal to r(n1+n2+n3−2), as expected. When r is large, the characteristic rank can

be less than r(n1 + n2 + n3 − 2). This effect can be explained by Proposition 3.4.4: since

in those cases the model is not generically locally identifiable, and hence is not generically

identifiable. It is not surprising that when r is large enough (the cases marked with * in the

left column), the rank of the Jacobian matrix is equal to n1n2n3. The interesting cases are

when r ≈ (n1n2n3)/(n1 + n2 + n3 − 2). The right column of table Table 3.2 shows some

cases in which ranks of the Jacobian matrices are less than min{n1n2n3, r(n1 + n2 + n3 −

2)}.

Table 3.2: Rank of the Jacobian matrices for third order tensor. For each combination
of (n1, n2, n3, r), the experiments are repeated 100 times and the results are all the same.
When r is small, rank(J) = r(n1 + n2 + n3 − 2). When r is large (cases marked with ∗),
rank(J) < r(n1 + n2 + n3 − 2).

n1 n2 n3 r rank(J) n1 n2 n3 r rank(J)
3 4 5 1 10 2 2 4 3 15∗

3 4 5 5 50 2 2 5 3 18∗

3 4 5 12 60∗ 2 3 5 4 28∗

15 15 15 5 215 3 3 3 4 26∗

15 15 15 15 645 3 4 4 5 44
15 15 15 100 3375∗ 3 5 5 7 74∗

3.5.3 Determining the number of signals in blind de-mixing

Consider the ambient noise imaging in a distributed sensor network setting (described in

Section subsection 3.4.6), where there are missing values in the observations. Our goal is

to determine the number of sources. For this problem, one can show that the characteristic

rank is 2K+NK−1 for large enough T . Therefore, by identifying the characteristic rank,

we can determine the number of sources.

In each experiment, we generate the random instances are follows: αk ∼ Unif[10, 11],

ρk ∼ Unif[10, 11], τn,k ∼ Unif[−2.5, 2.5], ∀n = 1, . . . N and k = 1, . . . , K∗.
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First, we want to verify the characteristic rank of the Jacobian matrix predicted using

our theory. Let N = 8, 10, 12 and K = 1, . . . , 5. For each N and K, we generate parame-

ters and compute the corresponding rank of the Jacobian matrix numerically. In Figure 3.2,

each point is the mean of ranks in 100 experiments corresponding to a certain pair of N

and K. The lines plotted correspond to 2K + NK − 1, for N = 8, 10, 12. We can see the

points are exactly on the lines, which justifies our formulation for the characteristic rank.

Second, we show the result of testing the rank in this problem. The observation noise

are normal random variables with zero mean and variance equal to 0.05. Table Table 3.3

is the result of determining source number K∗ with αk, ρk and τn,k being unknown. We

run experiments for K∗ = 1, . . . , 5. For each K∗, 100 experiments are run and in each

experiment, the test is running from K = 1 to K = 6 and the significant level is 0.01. In

the table, K = 0 means all the tests are rejected. We can see our test gives the true number

of sources most of the time, exceptK∗ = 5. WhenK∗ = 5, the algorithm becomes difficult

to converge to the optimal solution and therefore leads to a large fitting error.
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Figure 3.2: The characteristic rank of the problem in Section subsection 3.4.6: K is the
number of sources, N is the number of sensors, the points are the rank of the Jacobian
matrix of the mapping, and the line is 2K +NK − 1.

3.5.4 One-hidden-layer neural networks

In this section, we consider the problem of determining the number of hidden units for one-

hidden-layer neural networks; the problem described in (Equation 3.27). In the experiment,

xi ∼ N (0, Id), U ∈ Rd×r∗ , such that Uij ∼ N (0, 1) andm = 1000. Consider the activation
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Table 3.3: Results of hypothesis tests for the number of sources: K∗ is the true number
of sources. For each K∗, there are 100 experiments. We perform the test from K = 1
to K = 6 and count the number of determined K; K = 0 means tests are rejected for
K = 1, . . . , 6.

K = 0 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 FDR
K∗ = 1 0 100 0 0 0 0 0 0
K∗ = 2 1 0 98 0 1 0 0 6%
K∗ = 3 4 0 0 94 2 0 0 3%
K∗ = 4 9 0 0 0 91 0 0 9%
K∗ = 5 32 0 0 0 0 67 1 33%

function to be quadratic activation and sigmoid activation, respectively. Table Table 3.4

and Table Table 3.5 are the ranks of Jacobian matrices for different combinations of (d, r∗).

The results justify the formula of characteristic rank of one-hidden-layer neural networks

are dr∗− r∗(r∗− 1)/2 for quadratic activation and dr∗ for sigmoid activation, respectively.

Although we could not provide any theoretical prediction for the characteristic rank

when the activation function is a ReLu function, here we provide some numerical exam-

ples. We show the performance of our rank test for one-hidden-layer neural networks with

a ReLU activation function. In the experiments, d = 50, and σ = 0.1. We perform 100

experiments each from r∗, with the true rank of U being equals to 1 to 6. For each r∗, we

perform the test from r = 1 to r = 7 with significant level 0.05. With this setting, the

p-value is computed under the χ2(m − dr). The optimization problem involved with fit-

ting the neural networks model is solved using gradient descent (implemented by Pytorch

package).

For ReLu activation function, Table Table 3.6 shows the rank determined by our pro-

posed test for each r∗. Here, r = 0 means all tests are rejected. Results are similar to what

we observed in Table Table 3.3. When the order of the model is small, the test is consistent

with the significant level. When the order of the model increase, convergence to the opti-

mal solution becomes more difficult; in this setting, the false discovery rate will increase

but is still tolerable. An interesting finding is that our test still gives promising results even
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though the ReLU activation is not an analytic function.

Table 3.4: Rank of the Jacobian matrix for one-hidden-layer neural networks with a
quadratic activation function. For each combination of (d, r∗), the experiments are repeated
100 times, and the results are all the same. This justifies the formula of the characteristic
rank of one-hidden-layer neural networks with quadratic activation is dr∗ − r∗(r∗ − 1)/2.

d r∗ rank(J) d r∗ rank(J)
10 1 10 30 11 275
10 5 40 30 17 374
10 10 55 30 23 473
20 1 20 50 10 455
20 12 174 70 10 655
20 18 207 90 10 855

Table 3.5: Rank of the Jacobian matrix for one-hidden-layer neural networks with sigmoid
activation. For each combination of (d, r∗), the experiments are repeated 100 times and the
results are all the same. This justifies the formula of the characteristic rank of one-hidden-
layer neural networks with sigmoid activation is dr∗.

d r∗ rank(J) d r∗ rank(J)
10 1 10 30 11 330
10 5 50 30 17 510
10 10 100 30 23 690
20 1 20 50 10 500
20 12 240 70 10 700
20 18 360 90 10 900

3.6 Conclusions

We develop a general theory for the goodness-of-fit test to non-linear models, which essen-

tially shows that the parameter-of-interests are related to the characteristic rank of the linear

map that defines the manifold structure of our observation. The test statistic has a simple

chi-square distribution whose parameters are specified explicitly. Based on this result, it

is convenient to implement a test procedure to determine the model order in practice. Our

general theory can provide precise answers to several questions, such as determining the

rank of (complex) low-rank matrix from noisy and incomplete observations. In some other
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Table 3.6: Result of ReLU activation function: r∗ is the rank of true U∗. For each r∗, there
are 100 experiments. We perform the test from r = 1 to r = 7 and count the number of
determined r. r = 0 means tests are rejected for r = 1, . . . , 7.

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 FDR
r∗ = 2 3 0 96 1 0 0 0 0 4%
r∗ = 3 4 0 0 96 0 0 0 0 4%
r∗ = 4 4 0 0 0 94 1 0 1 6%
r∗ = 5 2 0 0 0 0 93 5 0 7%
r∗ = 6 5 0 0 0 0 0 88 7 12%

applications, we show that how the general theory can shed light on finding the “model-

order-of-interests”, such as tensor completion, determining the number of hidden nodes in

neural networks, determining the number of sources in blind signal demixing problems,

using analysis and simulations.
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CHAPTER 4

DETECTION OF CASCADING FAILURES

4.1 Introduction

This chapter develops an online change-point detection procedure for power system’s cas-

cading failure using multi-dimensional measurements over the networks. We incorpo-

rate the cascading failure’s characteristic into the detection procedure and model multiple

changes caused by cascading failures using a diffusion process over networks [45]. The

model captures the property that the risk of component failing increases as more compo-

nents around it fail. Our change-point detection procedure using the generalized likelihood

ratio statistics assuming unknown post-change parameters of the measurements and the

true failure time (change-points) at each node.

The rest of the chapter is organized as follows. In Section 4.2, we present the problem

setting, the models of failure propagation and the measurements. Section 4.3 provide our

proposed test procedure and the computation of the log likelihood function. In Section 4.4,

we introduced our fast algorithm to implement the test procedures and discuss the compu-

tation complexity. In Section 4.5, we compare our proposed procedure with other existed

methods. Finally, Section 4.6 concludes this chapter.

4.2 Problem Setup

Consider a graph G = (V , E), which is formed by a set of nodes V = {1, 2, 3, . . . , N} and a

set of edges E ⊂ V×V . Here V corresponds to the set of components in the power network,

and E can be constructed according to the physical network or interaction graph [46, 47].

Assume G is undirected; Xi,t ∈ R is the measurement of ith node at time t, t = 1, . . . , T .

We make the following assumptions about the change points, which correspond to the
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failure times at each node. Assume the true failure time of the ith node is τ ∗i ∈ R+ ∪ {∞},

and τ ∗(i) denotes the corresponding ordered failure time. When τ ∗i =∞, it means that there

is no failure on the ith node. Let τ ∗ = (τ ∗1 , τ
∗
2 , . . . , τ

∗
N) denote the vector of all true failure

times, which is unknown.

4.2.1 Failure (change-point) propagation model

Consider the following cascading model for the propagation process of the network’s fail-

ures. We assume that whenever a failure occurs on a node, it increases the neighboring

nodes’ tendency to fail. Mathematically, we define the influence of node i on node j as

αi,j > 0. We assume αj,i are known since they can be typically estimated beforehand

using historical and simulation data given on the topology of the power grid and power

flow. We do not know the distribution for the first failure. After the occurrence of the first

failure, the distribution of the subsequent failures is determined by the conditional hazard

rate (intensity function) λi(t):

λi(t) =


∑

j:(j,i)∈E,τ∗j <t
αj,i, τ ∗(1) < t ≤ τ ∗i ,

0, o.w.
(4.1)

We assume that the failed nodes can only affect the neighboring nodes in the graph. The

influence of the failed nodes is constant over time. Therefore, each node’s hazard rate

before failure is a piece-wise constant, starting at 0 and jumps when the failure affects its

neighboring nodes. Figure 4.1 shows an example of the failure propagation process.

Remark 4.2.1. Define the history (filtration) up to time t as

H(t) = {τ ∗i ≤ t, i = 1, . . . , N}.
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Figure 4.1: Example of how cascading failure propagates over networks. The failure ini-
tiate at node one, then all the neighbors of node one are affected, and node two and node
four fail eventually. As the failure propagates, node three is surrounded by more and more
failed nodes, and its hazard rate continues to increase. Here, red circles correspond to
failed nodes, solid yellow lines are possible paths for failures to diffusion, dashed yellow
lines correspond to paths with failed nodes at both ends, yellow circles are nodes affected
by failed neighbors.

Then, given theH(t), the conditional intensity function of the ith node is defined as:

λi(t) , lim
∆t→0

P{τ ∗i ∈ [t+ ∆t]|H(t), τ ∗i > t}
∆t

.

The distribution of τ ∗ is uniquely defined by the conditional hazard rate [45].

4.2.2 Measurement model

To simplify the study, we assume that the measurements at each node are independent,

conditioned on the failure time. Before a change, they follow an i.i.d. standard normal

distribution, and after a change they follow an i.i.d. normal distribution with an unknown

mean and variance. That is,

Xi,t
i.i.d∼


N (0, 1), t < τ ∗i ,

N (µi, σ
2
i ), t ≥ τ ∗i .

(4.2)
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Since we can typically use a certain length of data as a warm start to estimate the sample

mean and variance of the pre-change distribution, therefore we assume that the pre-change

distribution is known and can be standardized.

4.2.3 Likelihood function

According to the above models, in a time window [0, T ], given measurements and failure

times, Proposition 4.2.1 is the likelihood function.

Proposition 4.2.1. According to the model defined by Equation (Equation 4.1) and Equa-

tion (Equation 4.2), the likelihood function for a given τ ∗ andXi,t in [0, T ] can be expressed

as the following:

f(τ ∗i , Xi,t,∀i = 1, . . . , N, t = 1, . . . , T )

=
N∏
i=2

f(τ ∗(i)|τ ∗(1) · · · τ ∗(i−1))︸ ︷︷ ︸
(a)

·
N∏
i=1

T∏
t=1

f(Xi,t|τ ∗i )︸ ︷︷ ︸
(b)

(4.3)

where the term (a) captures the failure propagation model and term (b) captures the mea-

surement model.

Proof. According to model (Equation 4.2), given change-points τ ∗, Xi,t are independent.

i.e.

f(Xi,t, i = 1, . . . , N, t = 1, . . . , T |τ ∗) =
N∏
i=1

T∏
t=1

f(Xi,t|τ ∗i ) (4.4)

According to [45], the likelihood of a failure nodes is the product of the survival probability

up to the failure time and the hazard rate at the failure time, i.e. for τ ∗i < T

f(τ ∗i |{τ ∗1 , . . . , τ ∗N} \ τ ∗i , τ ∗i < T ) = λi(τ
∗
i ) exp

(
−
∫ τ∗i

0

λi(t)dt
)
. (4.5)

For a node which has no failure before time T , the likelihood of it is the survival function
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up to time T , i.e. for τ ∗i ≥ T :

f(τ ∗i |{τ ∗1 , . . . , τ ∗N} \ τ ∗i , τ ∗i ≥ T ) = exp
(
−
∫ T

0

λi(t)dt
)
. (4.6)

According to the definition of hazard rate (Equation 4.1), λi(t) only depends on the change-

points before time t. Therefore, we have

f(τ ∗1 , . . . , τ
∗
N) =

N∏
i=2

f(τ ∗(i)|τ ∗(1) . . . , τ
∗
(i−1)). (4.7)

Combine the above and (Equation 4.4), we have the following:

f(τ ∗i , Xi,t, i = 1, . . . , N, t = 1, . . . , T )

= f(τ ∗1 , . . . , τ
∗
N)f(X1,1, . . . , XN,T |τ ∗1 , τ ∗2 , . . . , τ ∗N)

=
N∏
i=2

f(τ ∗(i)|τ ∗(1) . . . , τ
∗
(i−1))

N∏
i=1

T∏
t=1

f(Xi,t|τ ∗i ). �

(4.8)

Our method can be extended in a more general setting. For the failure propagation

model, one can choose different hazard functions. Three models are provided in [45]. In

our study, we choose to use the exponential model. For the measurement model, one can

select the different distribution, and the measurement can be a high dimension.

4.3 Detection Procedure

Consider the following sequential hypothesis test for detecting a dynamic change. An alarm

is raised when there are at least η change-points. To perform the online detection, at each

time instance T we consider the following hypothesis test:

H0,η,T : τ ∗(η) > T, H1,η,T : 0 ≤ τ ∗(η) ≤ T.
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We consider a Shewhart chart type procedure: at each time, we evaluate a general likeli-

hood ratio (GLR) statistics over a sliding window. The GLR statistic can handle the mean,

and post-change distribution variance are unknown. As shown in (Equation 4.3), given

the failure time and the measurements, the likelihood can be decoupled into two parts:

the likelihood of the failure propagation model and the likelihood of measurement model,

respectively.

4.3.1 Log likelihood of failure propagation model

Define C(i) = {j ∈ V|(j, i) ∈ E} to be the set of the ith node’s neighbors. Given τ , the

log-likelihood function for [0, T ] is shown in Proposition 4.3.1:

Proposition 4.3.1. Given T , a set of failure times τ = (τ1, . . . , τN), graph G, and parame-

ters αi,j ∀i, j ∈ V , the log-likelihood function of the failure propagation model is given by

`1,T = log f(τ1, τ2, . . . , τN |{αi,j})

=
∑
i:τi≤T,
τi 6=τ(1)

{
log

∑
j∈C(i)

αj,iI(τj < τi)


−
∑
j∈C(i)

αj,i(τi − τj)+
}
−
∑
i:τi>T

∑
j∈C(i)

αj,i(T − τj)+,

(4.9)

where (·)+ = max(·, 0), and I(·) is the indicator function.

Proof. Combine the model (Equation 4.1), equations (Equation 4.5) and (Equation 4.6),

the log likelihood of a failure node is, ∀τi < T ,

log f(τi|{τ1, . . . , τN} \ τi) = log λi(τi)−
∫ τi

0

λi(t)dt

= log
( ∑
j∈C(i),τj<τi

αj,i

)
−

∑
j∈C(i),τj<τi

αj,i(τi − τj).
(4.10)

The log-likelihood function of a node without failure before time T is, ∀τi > T , can be
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written as

log f(τi|{τ1, . . . , τN} \ τi) = −
∫ T

0

λi(t)dt

= −
∑

j∈C(i),τj<T

αj,i(T − τj).
(4.11)

Combine with Equation 4.7, Equation 4.10 and Equation 4.11, we can derive the proposi-

tion.

4.3.2 Log likelihood of measurement model

Since we assume that the mean and variance of post-change distribution are unknown, we

estimate the µis and σis by maximum likelihood estimation (MLE): µ̂i, σ̂i. Therefore the

log-likelihood function of measurements of the ith node, given τi, is:

`2,i,T = log f(Xi,t, t = 1, . . . , T |τi)

=−
T∧(τi−1)∑

t=1

X2
i,t

2
−

T∑
t=τi

(Xi,t − µ̂i)2

2σ̂2
i

− T

2
log(2π)− (T − τi + 1)+ log(σ̂i). (4.12)

Since we assume that the distribution of measurements at each node is independent given

τ , the log likelihood function of all measurements is the summation of the log likelihood

function of each node, i.e., `2,T =
∑N

i=1 `2,i,T . Therefore, given the failure time τ and

measurements Xi,ts, the log likelihood at time T is:

`T (τ,Xi,t i = 1, . . . , N, t = 1, . . . , T ) = `1,T + `2,T . (4.13)

Notice that if τi > T for all i, Equation (Equation 4.9) equals 0 and `T is the sum of log

likelihoods of standard normal distribution for the measurements on each node, according

to Equation (Equation 4.12).
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To perform the hypothesis test between H0,η,T and H1,η,T , we need to search for τ such

that the log-likelihood in (Equation 4.13) is maximized. Define

U(η) = {τ :
N∑
i=1

I(τi ≤ T ) ≥ η},

and

L(η) = {τ :
N∑
i=1

I(τi ≤ T ) ≤ η − 1}.

We consider a Shewhart type of detection procedure, and we evaluate the test statistics with

the data over a sliding window [T − L + 1, T ], where L is the length of the window. To

detect a change for at least η change-points, we apply the following GLR test statistics

∀η = 1, . . . , N :

Sη,T = max
τ∈U(η)

`T (τ)− max
τ∈L(η)

`T (τ).

The corresponding stopping time is

Γ = inf{T > 0 : Sη,T > b},

for some preset threshold b.

4.4 Computationally Efficient Algorithm

We would like to implement change detection online and detect the cascading changes as

quickly as possible in practice. Thus, we need a low-complexity algorithm and only search

for propagation paths with at most m nodes affected by the failure. The computation cost

of the maximum likelihood under the alternative hypothesis is high. For instance, for a

fully connected graph with N nodes with observations in time horizon T , the computation

cost isO(TmN !/((N −m)!m!)). We aim to develop a computationally efficient algorithm
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based on a pruning strategy (similar to the ideas in [48, 49]). Our proposed algorithm is

described as in Algorithm algorithm 1, which we describe below in more details.

To reduce the computation cost, we propose a random sampling strategy as follows.

Since the number of possible propagation paths in a fully connected network grows expo-

nentially as the number of nodes increases. Define F as the failure set that contains the

failed nodes, and

R = {j /∈ F : ∃i ∈ F , αi,j > 0},

as the risk set. Then, we generate the next possible failure points by randomly picking P

points inR without replacement with probability vector p = (pi)i∈R, where

pi = p̃i(
∑
j∈R

p̃j)
−1, p̃i =

∑
j∈F

αj,i. (4.14)

With this scheme, we reduce the number of paths to O(NPm).

To further reduce computational complexity, we also combine the above with a Thinning

algorithm by exploiting the monotonicity of e−x involved in the likelihood function, which

is summarize in Algorithm algorithm 3. Consider the likelihood

LT = e`T ,L2,i,T = e`2,i,T ,L2,T = e`2,T ,L1,T = e`1,T .

Given a propagation path, we need to compute the maximum LT (τ), which is the product

of L1,T and L2,T . Define the qth percentile of the ith node to be l2,i,q. Also define a lower

bound l1 for L1,T . Instead of maximizing LT (τ) over all the possible choices, we maximize

it only in a thinned set

{τ : L2,i,T (τi) ≥ l2,i,q, ∀i = 1, . . . , N} ∩ {τ : L1,T (τ) ≥ l1}.
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Figure 4.2: Illustration of the searching strategy for τj given the previous failure point τi.
When searching τj from τi + 1, we have L1,T (τi + 4) > l1 and L1,T (τi + 5) < l1; by the
monotonicity of e−x, we can stop searching at τi + 5.

Specifically, given τi, we consider

τj ∈ {τi + 1, τi + 2 . . . } ∪ {τj : L2,j,T (τj) ≥ l2,j,q},

from the smallest to the largest until L1,T < l1 as shown in Figure 4.2. The computation

cost of this step is O(h), where h depends on the topology of G, as well as parameters αi,j ,

l1 and q. Moreover, we can show that h ≤ [L(1− q)]m.

With the above strategies, we can reduce the computation cost to O(NPmh), which

is linear to N , the network’s size. As shown in the following numerical examples, we can

now efficiently compute the test statistics for a 300-bus power system. We combine random

sampling strategy and thinning to reduce the computation cost using a recursion function

genNext as shown in algorithm 2.
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Algorithm 1: Cascading change-point detection
Input: Data Xi,T−L+1, . . . Xi,T , i = 1, . . . N

Variables:

• m: the maximal number of change-points

• `: log likelihood given a set of change-points

• τ : a set of change-points

• r: path of change-points (sorted)

• `max, τmax, rmax: best log likelihood and parameters

• J : sets of potential change-points of each nodes

• j: current depth of recursion

• q: percentile to threshold the measurement likelihood

• l1: threshold of failure propagation likelihood

1. j = 1

2. J ← compute potential change-points using Thinning (j, m, r, τ , q, l1,

{Xi,t})

for x = 1 : N do

for t in J(x) do
p1 = x, τ1 = t

`, r, τ = genNext(j + 1,m, r, τ , {Xi,t})

if ` > `max then
`max = `, rmax = r, τmax = τ

end

end

end

4. Return (`max, rmax, τmax)
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Algorithm 2: genNext function
Input: j, m, r, τ , Data {Xi,t}

Variable K: a set of potential nodes with change-point

if j > m then
`← compute log-likelihood

return(`, r, τ )

end

J ← Thinning(j, m, r, τ , q, l1, Data)

K ← sample nodes with the probability as (Equation 4.14)

for x in K do

for t in J(x) do
rj = x, τj = t,

`, r, τ = genNext(j + 1, m, r, τ , {Xi,t})

if ` > `max then
`max = `, rmax = r, τmax = τ

end

end

end

Return (`max, rmax, τmax)

Algorithm 3: Thinning function
Input: j, m, r, τ , q, l1, Data {Xi,t}

1. J = ∅

2. compute l2,x,q, ∀x = 1, . . . , N using given Data.

for x = 1 : N \ r do

for t = τj : T do
Given t and τ , compute L2,x,T and L1,T .

if L2,x,T > l2,x,q then
J(x) = J(x) ∪ t

end

if L1,T < l1 then
exit for

end

end

end

4. Return (J)
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4.5 Numerical Examples

In this section, we perform several numerical examples to demonstrate our proposed method’s

performance and compare it to existing methods. We consider two commonly used per-

formance metrics in change-point detection: the average run length (ARL) (a large ARL

means a low false alarm rate) and the expected detection delay (EDD). More specifically,

for a stopping time Γ, we define ARL as E0[Γ], and we use E1[(Γ− τ ∗(1))
+] as a measure for

EDD (which is a common practice in literature (see, e.g., [50]), where Ei denotes the ex-

pectation with the probability measure under hypothesis Hi. As we increase the threshold,

ARL typically increases exponentially, whereas the EDD will increase linearly. A good

change-point detection procedure should have a small EDD, given the same ARL.

We consider two case studies: one is to detect the very first change in the network,

and the other is to detect the change when there are at least η change-points. In Case

I, we compare our methods with generalized likelihood ratio (GLR) and (CuSum), since

CuSum is the optimal procedure when the parameter is known [51]) and GLR is a natural

generalization of CuSum when the post-change parameter is unknown [52]. In Case II, we

compare our method with the state-of-the-art, including the S-CuSum [53] and a traditional

method, Generalized Multi-char CuSum, both of which are suitable for Case II. Below the

pre-change distribution is N (0, 1) and post-change distribution is N (1, 1).

Case I: Detect the first change-point. In Figure 4.3 (left), we show the results in a 300-

bus power system (see MATPOWER [54]). In this relatively large system, we apply our

algorithm with L = 100, q = 0.8, P = 1, l1 = e−5, and m = 5. Our detection statistic

can be computed quite efficiently: the average computation time for each time step is less

than 3 seconds. Dashed lines are the results when parameters are known. In this scenario,

we compare our proposed method with the exact CuSum and two misspecified CuSum

(µ = 2, 2.5). Solid lines are the results when parameters are unknown. In this scenario, we

compare our proposed method with GLR. Overall, our method shows the best performance,
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Figure 4.3: (Left) Comparison of CuSum, generalized likelihood ratio, and the proposed
method. (Right) Comparison of generalized multi-chart CuSum, S-CuSum, and the pro-
posed method.

which is reasonable because our method is not only based on the likelihood ratio but also

considers the likelihood of failure propagation.

Case II: Detect when there are at least η change-points. Here we compare our proposed

method with generalized multi-chart CuSum, and S-CuSum[53], because these are the most

well-known algorithms for tackling such problems. In this experiment, the graph is fully

connected with 15 nodes. The parameters for the algorithm are L = 100, q = 0.8, P = 1,

l1 = e−7, and m = 5. We set η = 3. To compute the ARL, we generate data with η − 1

affected nodes. The result in Figure 4.3 (right) shows that our method outperforms both

generalized multi-chart CuSum and S-CuSum.

4.6 Conclusion

In this chapter, we proposed a computationally efficient algorithm to perform the change-

point detection by modeling the cascading failure as a temporal diffusion process in a net-

work. Numerical experiments show that our proposed method demonstrates good perfor-

mance; for an IEEE 300-bus system, which is considered relatively large, our results show

that the proposed algorithm can scale up to larger systems.
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CHAPTER 5

CHANGE-POINTS DETECTION FOR NETWORK POINT PROCESS VIA SCAN

SCORE STATISTICS

5.1 INTRODUCTION

In this chapter, we proposed a change-point detection procedure by scan score statistics in a

multivariate Hawkes network. Our scan score statistics are computationally efficient, since

we don’t need to compute the estimates of the post-change parameters, which is of impor-

tance for online detection. We present the theoretical results of our proposed procedure

including the analysis of the false alarm rate (FAR) and average run length (ARL) of pro-

cedure under null hypothesis. We first compute the variance of our proposed statistics and

then use Brownian motion to approximate the distribution of our proposed statistics. Com-

bine the technique in [55], importance sampling can be used for computation of FAR and

ARL. We use simulation study to testify our theoretical results and compare our method

with an existing change-point detection procedure with generalized likelihood ratio statis-

tics [56]. We also apply our proposed procedure in real-world data such as memetracker

and stock market, which show promising results in detecting abrupt change in the network.

The rest of our chapter is organized as follows. Section 5.2 provides the background

knowledge of multivariate Hawkes process. Section 5.3 presents the definition of our prob-

lem. Section 5.4 proposes our detection procedure and includes the analysis of our scan

score statistics. In Section 5.5, there are experiments of simulation study and real-world

data application. Finally, Section 5.6 concludes this chapter.
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5.2 Background

A multivariate Hawkes process is a self-exitation process over a network. Let M denote

the number of nodes in the network and [M ] denote {1, . . . ,M}. The data is of the form

{(u1, t1), (u2, t2), . . . }, where ui ∈ [M ] denotes the location of ith event and ti ∈ R+

denotes the time of ith event. A multivariate Hawkes Process is actually a special case of

spatio-temporal counting process [57]. Let Ht denote the history before time t, i.e. the

σ-algebras of events before time t. {Ht}t≥0 is a filtration, an increasing sequence of σ-

algebras. Let Nm(t) denote the number of events on ith node up to time t, i.e a counting

process,

Nm(t) =
∑
ti≤t

I(ti ≤ t, ui = m).

Then, a multivariate Hawkes process can be determined by the following conditional inten-

sity function [58].

λm(t) = lim
s→0

P{Nm(t+ s) > 0|Ht}
s

. (5.1)

For a multivariate Hawkes process, the conditional intensity function takes the form:

λm(t) = µm +
∑
i∈[M ]

∫ t

0

gi,m(t− s)Ni(ds). (5.2)

Here µm is the base intensity and gi,j(t) is the kernel function that characterized the influ-

ence of the previous events. Specifically, we assume the commonly used kernel, exponen-

tial kernel, i.e.

gi,j(t) = αi,je
−βt. (5.3)

Let µ = (µ1, . . . , µM) and A ∈ RM×M , of which the (i, j)th entry is αi,j . A multivariate

Hawkes Process with exponential kernel is parametrized by the base intensity µ, influence

matrix A and decay rate β. Given all the events in time window [0, T ]. Let K denote the
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number of events. The log likelihood function is:

`T (A) =
K∑
k=1

log
(
µuk +

∑
ti<tk

αui,uke
−β(tk−ti)

)
−

M∑
m=1

µmT

+
1

β

M∑
m=1

K∑
k=1

αuk,m[e−β(T−tk) − 1],

(5.4)

Notice that, when A = 0, the process becomes a multivariate Poisson process.

5.3 Problem Setup

In this chapter, we consider a change-point detection problem in a network. In a network

with M nodes, there are events on each nodes over time. We say that time τ ∗ > 0 is a

change-point if the following applies. Before time τ ∗ the events of the network follows a

multivariate Hawkes process with parameters µ, A0 and β. After time τ ∗ the events of the

network follows a multivariate Hawkes of which the influence matrix change from A0 to

A1. For both the pre-change and post-change multivariate Hawkes process are assumed

to be stationary. To detect whether a change-point τ ∗ exists given data, we consider the

following hypothesis test:

H0 :λm(t) = µm +
∑
ti≤t

αui,m,0e
−β(t−ti), m ∈ [M ], t ≥ 0;

H1 :λm(t) = µm +
∑
ti≤τ∗

αui,m,0e
−β(t−ti), m ∈ [M ], 0 ≤ t ≤ τ ∗;

λm(t) = µm +
∑

τ∗≤ti≤t

αui,m,1e
−β(t−ti), m ∈ [M ], t > τ ∗;

(5.5)

where λm(t) is the true conditional intensity of node m at time t, αi,j,0 and αi,j,1 are the

(i, j)th entry of A0 and A1, respectively.
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5.4 Scan Score Statistics Detection Procedure

To perform the hypothesis test (Equation 5.5), we proposed a detection procedure base on

scan score statistics. A score statistics is the first derivative of the log likelihood function.

In a multivariate Hawkes network, we are interested in the influence between multiple pair

of nodes (i.e. the entries in influence matrix A). For each pair, we would have a score

statistics. Therefore, we will end up with a high dimensional vector of score statistics.

We use the scanning strategy to compute our test statistics as in [7, 59] . Specifically, we

divided the whole network into several clusters. At each time t, we compute the interested

score statistics in each cluster. Then we get a statistics for each cluster by summing up

the standardized score statistics in the corresponding cluster. Finally, we use the maximum

over all clusters to be the scan score statistics at time t for the whole network. More details

will be discussed in this section.

5.4.1 Score Statistics

Since the change in hypothesis test (Equation 5.5) is caused by the change of influence

matrix, we define the following score statistics, given data up to time t, with respect to αp,q:

S
(p,q)
T (A) ,

∂`T (A)

∂αp,q
. (5.6)

Moreover, define ST (A) is the vector of all elements in {S(p,q)
T (A); p, q ∈ [M ]}. According

to [57, Theorem 1], we have the following corollary.

Corollary 5.4.1. Under the assumptions in [57], assume the influence matrix of the mul-

tivariate Hawkes Process is A. The score function ST (A) satisfies that, T−
1
2ST (A)

D→

N (0, I(A)), where I(A) is the Fisher information.
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Theoretical Result of I(0)

When A = 0, it is possible to compute the theoretical result of I(0) as shown in the

following theorem. For simplicity, let’s define C(i, t) as the set of events at node i before

time t, i.e. C(i, t) = {k : tk < t, uk = i}

Theorem 5.4.2. Assume the the conditional intensity function has the form as in Equa-

tion 5.2 and the kernel function is exponential as in Equation 5.3. According to Equa-

tion 5.6,

S
(p,q)
T (A) =

∂`T (A)

∂αp,q

=
∑

k∈C(q,T )

∑
i∈C(p,tk) e

−β(tk−ti)

µq +
∑

ti<tk
αui,qe

−β(tk−ti)
+

1

β

∑
k∈C(p,T )

[e−β(T−tk) − 1]
(5.7)

Moreover, when A = 0, as T →∞, we have the following limits of the (co)variances:

Var[T−
1
2S

(q,q)
T (0)]→ 1

2β
+
µq
β2
,

Var[T−
1
2S

(p,q)
T (0)]→ µp

µq
(

1

2β
+
µp
β2

),

Cov[T−
1
2S

(p,q)
T (0), T−

1
2S

(p′,q)
T (0)]→ µpµp′

µqβ2
,

(5.8)

Remark 5.4.1. Since we assume the stationary of the multivariate Hawkes process, ac-

cording to [58], the stationary intensity for multivariate Hawkes process with exponential

kernel is:

λ̃(t) = (I−A/β)−1µ (5.9)

Therefore, given A and µ, to simplify the computation, we can compute the score statistics

with the parameters of stationary distribution, i.e. Astationary = 0 and µstationary = λ̃.
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Estimation of I(A)

When A 6= 0, it is difficult to compute the variance theoretically. According to [57], we

have the following approximation of I(A).

Theorem 5.4.3. With the same assumption as in Theorem Theorem 5.4.2. We have the

following estimation of fisher information. Let

ÎT (A)(i,j),(p,q) =


0 if j 6= q∑

k∈C(q,T )

(
∑
k∈C(i,t) e

−β(tk−ti))(
∑
k∈C(p,t) e

−β(tk−ti))(
µq+

∑
ti<tk

αui,qe
−β(tk−ti)

)2 if j = q
(5.10)

We have 1
T
ÎT (A)→ I(A), i.e. ∀i, j, p, q,

1

T
ÎT (A)(i,j),(p,q) → I(A)(i,j),(p,q), (5.11)

where I(A)(i,j),(p,q) is the asymptotic (co)variance of T−1/2S
(i,j)
T (A) and T−1/2S

(p,q)
T (A).

5.4.2 Scan Score Statistics

To combine all the score statistics and complete the detection procedure, we compute the

scan statistics based on given clusters. A cluster is a subset of nodes, which is defined as

Ri below:

Ri = {v ∈ V, v belongs to ith cluster}, i = 1, . . . , L;

where L is the number of clusters.

In practise, to reduce the computation cost, we only compute the score statistics given

data in a time window of length w. Specifically, at time t, for ith cluster, we compute all the

interested score statistics with data in [t−w, t] and have a vector of score statistics denoted

as S(i)
t,w(A). Let R̃i and I(i)

t,w(A) denote the dimension of S(i)
t,w(A) and Fisher information of

S
(i)
t,w(A), respectively. Then the test statistics for cluster i at time τ , with window length w
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is:

Γ
(i)
t,w = R̃

−1/2
i 1>I

(i)
t,w(A)−1/2S

(i)
t,w(A) ∼ N (0, 1) (5.12)

Then at each time t, we compute the scan score statistics for whole network:

Γt = max
1≤i≤L

|Γ(i)
t,w|,

Given a threshold b, we stop our procedure and raise an alarm for change-point detection

as the following rule:

Tb = inf{t : Γt > b} (5.13)

As we discuss in Remark Remark 5.4.1, we can use parameters of stationary distribution

to compute our score statistics with less computation cost. In the following we provide the

analysis for the case A = 0.

False Alarm Rate of Scan Statistics

According to the Theorem 5.4.2, we can approximate it with Brownian motion as the fol-

lowing:

Sp,qt (0) ≈
√
µp
µq

( 1√
2β
a(p,q)(t) +

√
µ
p

β
b(q)(t)

)
, (5.14)

where a(p,q)(t), b(q)(t) is independent Brownian motion ∀p, q ∈ [M ]. With the same man-

ner, for a score statistics for a window length w, we have the following approximation:

Sp,qt,w(0) ≈
√
µp
µq

( 1√
2β

(a(p,q)(t)− a(p,q)(t− w)) +

√
µ
p

β
(b(q)(t)− b(q)(t− w))

)
. (5.15)

With above approximation, we have

Cov(Sp,qt,w, S
i,j
t+δ,w) = (w − δ)+Cov(Sp,q1 , Si,j1 ) (5.16)
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Therefore, for cluster i and j, we have

Cov(Γ
(i)
t,w,Γ

(j)
t+δ,w) =

(w − δ)+

w
Cov(Γ

(i)
1,1,Γ

(j)
1,1) (5.17)

Suppose there are L cluster, at time t, we want to control the false alarm rate.

P(Γt > b) = P
(

max
1≤i≤L

|Γ(i)
t,w| ≥ b

)
= P

( L⋃
i

|Γ(i)
t,w| ≥ b

)
= P

( L⋃
i

{Γ(i)
t,w ≥ b}

L⋃
i

{Γ(i)
t,w ≤ −b}

)
= P

(
{max

1≤i≤L
Γ

(i)
t,w ≥ b}

⋃
{ min

1≤i≤L
Γ

(i)
t,w ≤ −b})

≤ 2P
(

max
1≤i≤L

Γ
(i)
t,w ≥ b

)
(5.18)

Lwt Γt,w denote the vector of Γ
(i)
t,ws. To control the upper bound of the false alarm rate, we

compute the Equation 5.18 with the technique in [55]:

P
(

max
1≤i≤L

Γ
(i)
t,w ≥ b

)
= P

( L⋃
i=1

{Γ(i)
t,w ≥ b,Γ

(i)
t,w ≥ Γ

(j)
t,w, j 6= i}

)
=

L∑
i=1

P
(
Γ

(i)
t,w ≥ b,Γ

(i)
t,w ≥ Γ

(j)
t,w, j 6= i}

)
=

L∑
i=1

P
(
APiΓt,w ≥ b

)
, (5.19)

where Pi is the permutation matrix interchanging first entry and the ith entry, and

A =



1 0 · · · · · · 0

1 −1 0 · · · 0

1 0 −1
. . . ...

...
... . . . . . . 0

1 0 · · · 0 −1


, b =



b

0

...

0


(5.20)
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According to equation (Equation 5.12), Γt,w ∼ N (0,Σ). In [55], they provide an impor-

tance sampling algorithm to estimate the equation (Equation 5.19). Σ can be computed

with Equation 5.17 according to the network topology and the score statistics in the clus-

ters. Figure 5.1 is an example and the corresponding Σ.

Figure 5.1: In this example, there are 4 clusters, and each cluster includes 5 loca-
tions. The light blue nodes are the centers of each cluster and in each cluster we con-
sider the 4 directions from the center to the neighboring nodes as shown in I and II.
S

(i)
t,w ∼ N (04, w(1/(2β) + µ/β2)I4) and Γt,w ∼ N (0,Σ). For the case I, the Σij cor-

responding to Γ
(i)
t,w and Γ

(j)
t,w equals to 0. For case II, Σij = σ2 , µ/(β + 2µ). Therefore,

Σ>·,1 = (1, 0, 0, σ2), Σ>·,2 = (0, 1, σ2, 0), Σ>·,3 = (0, σ2, 1, 0), Σ>·,4 = (σ2, 0, 0, 1).

Remark 5.4.2. Since our scan statistics are standardized, determining the threshold b with

the method in Equation 5.19 does not depend on the window length w. However, with a

larger w the approximation in Equation 5.15 would be better. In Table 5.1, we can see, as

window length increase, the false alarm rate would be better controlled.

Table 5.1: Approximation of false alarm rate.

w b P(maxi Γ
(i)
t,w > b) P̂(ΓGt > b)

50 3 0.005 0.0174

100 3 0.005 0.0146

200 3 0.005 0.0114

50 2.8 0.01 0.0282

100 2.8 0.01 0.0226

200 2.8 0.01 0.0210
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5.4.3 Average Run Length of Tb

Besides false alarm rate, another performance measure of a change-point detection pro-

cedure is the average run length (ARL) of the stopping time in Equation 5.13, which is

denoted as E∞[Tb]. To evaluate the ARL, we are going to show that Tb is approximately

exponential distribution with some parameter λ0. The analysis is similar to [60]. Let

f(b) = beb
2/2. For certain interval [0, xf(b)], we decompose it into k sub-intervals with

length m, i.e xf(b) = km. For simplicity, we assume k and m are integers. Let indi-

cator Xj denotes I{maxt∈((j−1)m,jm] Γt > b}, and defind W =
∑k

j=1 Xj , then we have

{W = 0} = {Tb > xf(b)}. To prove that Tb is approximately exponential, it is same

to prove W is approximately Poisson distributed. We herein apply the result from [61].

According to the [61, Theorem I], we establish the following theorem.

Theorem 5.4.4. Let Tb be the stopping time defined in Equation 5.13, Xj be the indicator

defined above and W be the sum of the indicators. With w � m� f(b), then

limb→∞|P(Tb > xf(b))− e−EW | = 0 (5.21)

According to the construction of W , we have

EW = xf(b)P(Xj = 1)/m

≤ 2xf(b)P{ max
0<t≤m,1≤i≤d

Γ
(i)
t,w > b}/m ≤ 2xf(b)P{max

1≤i≤d
Γ

(i)
t,w > b}.

By Theorem Theorem 5.4.4, E∞(T ) ≈ λ−1
0 and

λ0 ≤ 2P{ max
0<t≤m,1≤i≤d

Γ
(i)
t,w > b}/m (5.22)

≤ 2P{max
1≤i≤d

Γ
(i)
t,w > b} (5.23)
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5.5 Experiments

5.5.1 Simulated result of ARL and EDD

In this experiment, the network is set up as shown in Figure 5.1. The event in each notes

follows a Poisson process with µ = 1, and we set the β = 1. The window length is

set to be 200 and the statistics is computed each δ = 10 time units. In Table 5.2, we

show the estimated ARL of simulation with the threshold estimated by (Equation 5.22) and

(Equation 5.23) for λ−1 ≥ 1000 and λ−1 > 2000, which corresponds to ARL≥ λ−1δ. To

get the simulated ARL, we generate events in time window [0, 60000] and compute the run

length when the statistics exceed the corresponding threshold. Note that this approximation

will always underestimate the ARL since we can only generate events in finite time window.

We can see the thresholds computed from (Equation 5.22) give us desired results. However

(Equation 5.23) tends to over estimate the threshold.

Table 5.2: Verification of approximated ARL in (Equation 5.22) and (Equation 5.23)

b theoretic ARL simulated ARL
Results of (Equation 5.22), m = 100 3.3718 10000 9762
Results of (Equation 5.22), m = 50 3.3859 10000 9945
Results of (Equation 5.23) 3.6625 10000 22818
Results of (Equation 5.22), m = 100 3.5824 20000 18380
Results of (Equation 5.22), m = 50 3.5867 20000 18747
Results of (Equation 5.23) 3.8352 20000 32157

Now, let’s compare expected detection delay (EDD) of our proposed method with gen-

eralized likelihood ratio (GLR) method in [56]. In the experimentsof EDD, the distribution

under H0 is set as mentioned above. The thresholds of our methods are set according to the

estimate of Equation 5.22 with m = 50, so that our desired ARL are 10000 or 20000 (see

detials in Table 5.2). As for the GLR, we compute the log generalized likelihood ratio with

frequency 0.1 per time unit, and window length w = 200. The maximum likelihood esti-

mates of the A1 and µ1 are computed by Newton method. The thresholds of desired ARLs

96



are estimated with simulation. We compare different settings of post-change distribution,

which is shown in Table 5.3. The simulated EDDs are shown in column 4-9 of Table 5.4.

We can see our proposed method has better performance in the cases that there are multiple

changes in the influence matrix A1. Even though our method does not consider the change

in base intensity µ1, from case iv, we can see our method still have a better performance

when there are significant change in the influence matrix A1. In case v and vi, we can see,

when the main change is the base intensity or the change of influence matrix is weak, GLR

has better performance. It is also worth noticing that the computation cost of our proposed

methods is much less than the GLR methods since our method does not require to estimate

the post-change distribution parameters. The speed of performing our method are about 5

times faster than the GLR method in our experiments.

Table 5.3: Setting of different cases in Table 5.4

changed parameters in post-change distribution
Case i α4,1 = α4,3 = α4,5 = α4,8 = 0.2
Case ii α4,1 = α4,3 = α4,5 = α4,8 = 0.5
Case iii α4,5 = α4,8 = α9,8 = α9,5 = 0.5
Case iv µ4 = 1.5, α4,5 = α4,8 = 1
Case v µ4 = 1.5, α4,5 = 0.5
Case vi α4,5 = 0.5

Table 5.4: Comparison of EDD

Methods thresholds ARLs Case i Case ii Case iii Case iv Case v Case vi
Proposed 3.3859 10000 101.16 45.63 46.45 26.4 77.8 152.86
Log GLR 20.599 10000 145.25 62.75 48.95 28.55 66.6 128.45
Proposed 3.5867 20000 107.63 47.86 48.70 28.0 85.4 164.60
Log GLR 21.407 20000 153.55 66.00 51.95 29.85 69.5 134.60

5.5.2 Real-data

In this section, we apply our scan statistics on a memetracker data and stock data.
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• memetracker data: It tracks texts and phrases, which are called meme, over different

websites. This data is used to study the information diffusion via social media and

blogs. We use three meme data in [56]. The first data is“Barack Obama was elected

as the 44th president of the United State”. We use data from the top 40 news website,

which includes Yahoo, CNN, Nydaily, The Guardian, etc. We use the data from

Nov.01.2008 to Nov.02.2008 as the training data and the data from Nov.03.2008 to

Nov.05.2008 as the test data. Our procedure detect a change at the time around 7pm

on Nov.03, which is few hours before the votes. The second data is “the summer

Olympics game in Beijing”. We use data from Aug.01.2008 to Aug.03.2008 as the

training data and data from Aug.04.2008 to Aug.15.2008 as the test set.

• Stock data: This data is downloaded from Yahoo Finance. We collect the closing

price and trading volume of stock tickers: SPY, QQQ, DIA, EFA, and IWM, which

are all index-type stock and can reflect the situation of overall stock market. For

each ticker, we construct 3 types of events. High return: the day with return over

90 percentile. Low return: the day with return below 10 percentile. High volume:

the day with trading volume over 90 percentile. Therefore, in this data we have a

network with 15 nodes. Such extreme trading events are of interest in the study of

finance [62]. We use the data from Jan.04.2016 to Dec.31.2018 as the training data

and data from Jan.01.2019 to Dec.31.2020 as the test data.

For each data, we apply Newton method to fit the MLE of the parameters for the training

set. Then, we use the fitted parameters to compute the scan statistics on the test set. For

memetracker data, we construct the cluster by applying community detection methods on

the fitted Â. For stock data, each cluster are the events that related to certain ticker. Details

are shown in Table 5.5. The change point detected from the “Obama” data, is around 7am

on 2008.11.03. The result indicates that the public opinion of Barack Obama changed at

around one day before the votes. For the “Olympic” data, our procedure detect a change

on Aug.04 which is 3 days before the Olympic game. For the stock data, we detect 3 time
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intervals of which the starting dates are 2019.06.21, 2019.08.16 and 2020.03.04. According

to the news, the first change-point 2019.06.21 is the date that the S&P 500 hit a new record-

high and the three major stock indexes surged with different scale. The second change-point

2019.08.16 is related to the US-China trade war. In August 2019, both US and China made

multiple announcement about their tariffs. The last change-point is 2020.03.04 which is

3 business day before the first circuit breaker in 2020. There are a lot change-points after

first circuit breaker 2020.03.09, which indicates a long-term change in stock market caused

by pandemic and trade-war. The results of real data shows that our proposed scan statistics

has a good performance on detecting the real change in different area such as social media,

finance markets.

Table 5.5: result of real data

Data training set test set # of cluster thresholds change-points

“Obama” 08.11.01-08.11.02 08.11.03-08.11.05 5 4 11.03 7am

“Olympic” 08.08.01-08.08.03 08.08.04-08.08.08 4 4 08.04 6pm

stock data 16.01.04-18.12.31 19.01.01-20.12.31 5 4 19.06.21, 19.08.16, 20.03.04
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Figure 5.2: Scan Statistics procedure applied on real data. Red line: detected change-
points. For the upper plots, the blue line is the smoothed frequency of all events in the
network. For the lower plots, the blue line is the scan statistics of proposed procedure.
(1,1) & (2,1): data of “Obama”. (1,2) & (2,2): data of “Olympic”. (1,3) & (2,3): data of
stock.

5.6 Conclusion

In this chapter, we proposed a scan score statistics for detecting the change-points of net-

work point processes. We use multivariate Hawkes process to model the sequential event

data. Our proposed method is based on score statistics, meaning that we don’t need to

compute the post-change parameters. Therefore, our method is computational efficient

compared to the conventional GLR method, which is of importance in online detection.

Moreover, we are able to provide analysis of the false alarm rate and average run length. In

experiments, we first use simulated data to verify our theoretical results. We also perform

our method in real world data, which shows a promising detection performance.
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APPENDIX A

APPENDICES OF CHAPTER 2

Proof of Theorem 2.3.2

We argue by a contradiction. Suppose that there is a sequence {Yk} ⊂ Mr (with Yk 6= Ȳ )

converging to Ȳ such that PΩ(Yk) = M . It follows that Yk − Ȳ ∈ VΩc . By passing to a

subsequence if necessary we can assume that (Yk − Ȳ )/tk, where tk := ‖Yk − Ȳ ‖, con-

verges to some H ∈ VΩc . Note that H 6= 0. Moreover Yk = Ȳ + tkH + o(tk), and hence

H ∈ TMr(Ȳ ). That is H ∈ VΩc ∩ TMr(Ȳ ), and H 6= 0 by the construction. This gives the

desired contradiction with (Equation 2.17).

Proof of Theorem 2.3.4

Let % be the characteristic rank of mapping F. Consider θ∗ ∈ Θ such that % = rank
(
∆(θ∗)

)
.

It follows that matrix ∆(θ∗) has an %×% submatrix whose determinant is not zero. Consider

function φ : Θ → R defined as the determinant of the corresponding % × % submatrix of

∆(θ). We have that φ(·) is a polynomial function and is not identically zero on Θ since

by the construction φ(θ∗) 6= 0. Since Θ is connected, it follows that the set {θ ∈ Θ :

φ(θ) = 0} is “thin”, in particular has Lebesgue measure zero. That is, φ(θ) 6= 0 and hence

rank
(
∆(θ)

)
≥ % for a.e. θ ∈ Θ. Also by the definition of % we have that rank

(
∆(θ)

)
≤ %

for all θ ∈ Θ. It follows that rank
(
∆(θ)

)
= % for a.e. θ ∈ Θ. Since rank of ∆(V,W,X) is

the same for all X ∈ VΩc , this completes the proof of the assertion (i). Since rank
(
∆(·)

)
is a lower semicontinuous function, the assertion (ii) follows.

Now consider a regular point θ̄ = (V̄ , W̄ , X̄) with X̄ = 0, and the corresponding

matrix Ȳ = V̄ W̄>. Since θ̄ is regular, we have that rank of ∆(θ) is constant (equal %)
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for all θ in a neighborhood of θ̄. By the Constant Rank Theorem it follows that there is a

neighborhood V of θ̄ such that the set S := {F(θ) : θ ∈ V} forms a smooth manifold of

dimension % in Rn1×n2 . The tangent space to this manifold at Ȳ is the space TMr(Ȳ )+VΩc .

Hence if % = f(r,m), then

dim
(
TMr(Ȳ ) + VΩc

)
= dim(TMr(Ȳ )) + dim(VΩc).

Consequently dim
(
TMr(Ȳ ) ∩ VΩc

)
= 0, and thus condition (Equation 2.17) follows (com-

pare with Proposition Proposition 2.3.1). On the other hand if % < f(r,m), then the mani-

fold (VΩc + Ȳ )∩Mr, in a neighborhood of Ȳ , has a positive dimension. Thus in that case

the solution of MRMC is not locally unique and condition (Equation 2.17) does not hold.

This completes the proof of the assertions (iii) and (iv).

Proof of Theorem 2.3.5

Suppose that Ω is reducible. Then by making permutations of rows and columns if neces-

sary, it can be assumed that M has the block diagonal form as in (Equation 2.23). Let Ȳ be

a respective minimum rank solution. That is M1 = V1W
>
1 , M2 = V2W

>
2 and Ȳ = VW>

with V =
(
V1
V2

)
and W =

(
W1
W2

)
being n1 × r and n2 × r matrices of rank r. Note that

Ȳ =
(

M1 V1W>2
V2W>1 M2

)
. By changing V1 to αV1 and W1 to α−1W1 for α 6= 0, we change ma-

trix Ȳ to matrix
(

M1 αV1W>2
α−1V2W>1 M2

)
. If V1W

>
2 6= 0 or V2W

>
1 6= 0, we obtain that solution

Ȳ is not locally unique. On the other hand when both V1W
>
2 = 0 and V2W

>
1 = 0, and

hence Ȳ =
(
M1 0
0 M2

)
, rank r solutions for example are matrices of the form Ȳ =

(
M1 M3
0 M2

)
,

where columns of matrix M3 are linear combinations of columns of matrix M1. If M1 = 0,

then we can use matrix Ȳ =
(
M1 0
M3 M2

)
in the similar way. Hence nonuniqueness of rank r

solutions follows.
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Proof of Theorem 2.3.6

Suppose that Ω is irreducible. Consider a rank one solution Ȳ = vw> with respective vec-

tors v = (v1, ..., vn1)> and w = (w1, ..., wn2)>. We can assume that v1 is fixed, say v1 = 1.

Consider an element M1j1 , (1, j1) ∈ Ω, in the first row of matrix M . Since it is assumed

that each row has at least one observed entry, such element exists. Since M1j1 = v1wj1 ,

it follows that the component wj1 of vector w is uniquely defined. Next consider element

Mi1,j1 , (i1, j1) ∈ Ω. Since Mi1j1 = vi1wj1 , it follows that the component vi1 of vector v

is uniquely defined. We proceed now iteratively. Let ν ⊂ {1, ..., n1} and ω ⊂ {1, ..., n2}

be index sets for which the respective components of vectors v and w are already uniquely

defined. Let j 6∈ ω be such that there is (i, j′) ∈ Ω with j′ ∈ ω and hence wj′ is already

uniquely defined. Since Mij = viwj and Mij′ = viwj′ , it follows that wj is uniquely de-

fined and j can be added to the index set ω. If such column j does not exist, take row i 6∈ ν

such that there is (i′, j) ∈ Ω with i′ ∈ ν. Then vi is uniquely defined and hence i can be

added to ν. Since Ω is irreducible, this process can be continued until all components of

vectors v and w are uniquely defined.

Proof of Proposition Proposition 2.3.3

Consider function defined in (Equation 2.26). The differential of f(Y ) can be written as

df(Y ) = tr[(PΩ(Y )−M)>dY ].

Therefore if Y ∈ Mr is an optimal solution of the least squares problem (Equation 2.5),

then∇f(Y ) = PΩ(Y )−M is orthogonal to the tangent space TMr(Y ). By (Equation 2.16)

this implies optimality conditions (Equation 2.24) .
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Proof of Proposition 2.3.4

Consider function φ defined in (Equation 2.25), and the problem of minimization of φ(Y,Θ)

subject to Y ∈ Mr with Θ viewed as a parameter. Locally for Y near Ȳ ∈ Mr the mani-

foldMr can be represented by a system of K = n1n2 − dim(Mr) equations gi(Y ) = 0,

i = 1, ..., K, for an appropriate smooth mapping g = (g1, ..., gK). That is, the above

optimization problem can be written as

minφ(y, θ) subject to gi(y) = 0, i = 1, ..., K, (A.1)

where with some abuse of the notation we write this in terms of vectors y = vec(Y ) and

θ = vec(Θ). Note that the mapping g is such that the gradient vectors ∇g1(ȳ), ...,∇gK(ȳ)

are linearly independent.

First order optimality conditions for problem (Equation A.1) are

∇yL(y, λ, θ) = 0, g(y) = 0, (A.2)

where L(y, λ, θ) := f(y, θ) + λ>g(y) is the corresponding Lagrangian. For θ = θ0 this

system has solution ȳ and the corresponding vector λ̄ = 0 of Lagrange multipliers. We can

view (Equation A.2) as a system of (nonlinear) equations in z = (y, λ) variables.

We would like now to apply the Implicit Function Theorem to this system of equa-

tions to conclude that for all θ near θ0 it has unique solution near z̄ = (ȳ, λ̄). Con-

sider the Jacobian matrix
(
H G
G> 0

)
of the system (Equation A.2) at (y, λ) = (ȳ, λ̄), where

H := ∇yyφ(ȳ, θ0) is the Hessian matrix of the objective function and G := ∇g(ȳ) =

[∇g1(ȳ), ...,∇gK(ȳ)]. We need to verify that this Jacobian matrix is nonsingular. This

is implied by condition (Equation 2.17), which is equivalent to condition (Equation 2.27).
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Indeed suppose that  H G

G> 0


 v

u

 = 0, (A.3)

for some vectors v and u of appropriate dimensions. This means that Hv + Gu = 0 and

G>v = 0. It follows that v>Hv = 0. Condition G>v = 0 means that v is orthogonal to

the tangent space TMr(ȳ). It follows then by condition (Equation 2.27) that v = 0. Then

Gu = 0 and hence, since G has full column rank, it follows that u = 0. Since equations

(Equation A.3) have only zero solution, it follows that this Jacobian matrix is nonsingular.

Now by implying the Implicit Function Theorem to the system (Equation A.2) we obtain

the required result. This completes the proof.

Proof of Proposition 2.4.2

Note that under the specified assumptions,Mij−Y ∗ij are of stochastic orderOp(N
−1/2). We

have by Proposition 2.4.1 that an optimal solution of problem (Equation 2.29) converges

in probability to Y ∗. By the standard theory of least squares (e.g., [63, Lemma 2.2]) we

can write the following local approximation near Y ∗ as (Equation 2.32). It follows that

the limiting distribution of TN(r) is the same as the limiting distribution of N times the

first term in the right hand side of (Equation 2.32). Note that N1/2w
1/2
ij Eij converges in

distribution to normal with mean σ−1
ij ∆ij and variance one. It follows that the limiting

distribution of N times the first term in the right hand side of (Equation 2.32), and hence

the limiting distribution of TN(r), is noncentral chi-square with degrees of freedom ν =

m − dim (PΩ(L)) and the noncentrality parameter δr. Recall that dimension of the linear

space L is equal to the sum of the dimension of its image PΩ (L) plus the dimension of the

kernel Ker(PΩ). It remains to note that condition (Equation 2.17) means that Ker(PΩ) =
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{0} (see Remark 2.3.3), and hence

dim (PΩ(L)) = dim (L) = r(n1 + n2 − r). (A.4)

This completes the proof.

107



APPENDIX B

APPENDICES OF CHAPTER 3

Proof of Proposition 3.2.1

(i) Since G(·) is twice continuously differentiable, it follows that J(·) is continuous. Thus

the function rank(J(·)) is lower semicontinuous, and hence the set {θ ∈ Θ : rank(J(θ)) ≤ r− 1}

is closed. It follows that its complement set {θ ∈ Θ : rank(J(θ)) = r} is open.

(ii) Let θ0 ∈ Θ be such that rank(J(θ0)) = r, such θ0 exists since the function

rank(J(·)) is piecewise constant. Consider an r × r submatrix of J(θ0) of rank r, and

the associated function φ(θ) given by the determinant of this submatrix of J(θ). Since

G(·) is analytic, we have that the function φ(·) is analytic and is not constantly zero since

φ(θ0) 6= 0. It follows that the set {θ : φ(θ) = 0} has (Lebesgue) measure zero (e.g., [64]).

That is, for a.e. θ we have that rank(J(θ)) ≥ r. Since by the definition the rank r is maxi-

mal, it follows that rank(J(θ)) = r for a.e. θ ∈ Θ. This completes the proof.

Proof of Proposition 3.3.1

Since M is a smooth manifold near x0 it can be defined by equations φ(x) = 0 in a

neighborhood of x0 with φ : Rm → Rm being a smooth near x0 mapping with nonsingular

Jacobian matrix∇φ(x0). Then optimality condition (Equation 3.9) can be written as: there

exists λ ∈ Rm such that the derivatives of the Lagrangian L(x, λ) := 1
2‖ŷ − x‖2 − λ>φ(x)

are zeros at (x̂, λ). This can be written as the following system of equations in (x, λ),

∇xL(x, λ) = 0, φ(x) = 0. (B.1)
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Note that as ŷ and x approach x0, the corresponding λ tends to 0. The Jacobian ma-

trix of partial derivatives of this system, with respect to (x, λ), at x = x0 and λ = 0 is(
Im ∇φ(x0)

∇φ(x0)> 0

)
. This Jacobian matrix is nonsingular. It follows by the Implicit Function

Theorem that in a neighborhood W of x0 the system (Equation B.1) has unique solution.

Moreover by Remark 3.3.1 the neighborhoodW can be such that if ŷ ∈ W , then any op-

timal solution of the least squares problem is in W . If moreover x̂ is in W and satisfies

optimality Equation B.1, then by the uniqueness property x̂ should coincide with the cor-

responding optimal solution. This completes the proof.

Proof of Theorem 3.3.1

Since ŷ converges in probability to x0, the assertion (i) follows from Proposition 3.3.1. Also

any minimizer x̂ in the right hand side of (Equation 3.8) converges in probability to x0 (see

Remark 3.3.1). Therefore we can perform the asymptotic analysis in a neighborhood of x0.

As in the above proof of Proposition 3.3.1, M can be defined by equations φ(x) = 0 in

a neighborhood of x0 with nonsingular Jacobian matrix ∇φ(x0). Let (x̂, λ̂) be a solution

of Equation B.1 in a sufficiently small neighborhood of (x0, 0). By the Implicit Function

Theorem we have that

 x̂− x0

λ̂

 =

 Im ∇φ(x0)

∇φ(x0)> 0


−1  ŷ − x0

0


+ o(‖ŷ − x0‖).

(B.2)

Also it follows by (Equation 3.7) that N1/2(ŷ − x0) converges in distribution to normal

N (γ, σ2Im). In particular this implies that ‖ŷ − x0‖ = Op(N
−1/2), and hence

x̂− x0 = P (ŷ − x0) + op(N
−1/2), (B.3)
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where

P = Im −∇φ(x0)
(
∇φ(x0)>∇φ(x0)

)−1∇φ(x0)>. (B.4)

Note that TM(x0) = {v : ∇φ(x0)>v = 0}. Therefore matrix P in (Equation B.4) is

the orthogonal projection matrix onto the tangent space TM(x0). Slutsky’s theorem to-

gether with (Equation B.3) imply that N1/2(x̂ − x0) has the same asymptotic distribution

as P [N1/2(ŷ − x0)]. Since N1/2(ŷ − x0) converges in distribution to normal N (γ, σ2Im),

the assertion (iii) follows, and the assertion (iv) follows by similar arguments.

Moreover by (Equation B.3),

ŷ − x̂ = ŷ − x0 − (x̂− x0) = (Im − P )(ŷ − x0) + op(N
−1/2),

and since ‖ŷ − x0‖ = Op(N
−1/2) it follows that

‖ŷ − x̂‖2
2 = ‖(Im − P )(ŷ − x0)‖2

2 + op(N
−1). (B.5)

It follows by Slutsky’s theorem that the N times right hand side of (Equation B.5) has the

same asymptotic distribution as Z>(Im−P )Z, where Z ∼ N (γ, σ2Im). The assertion (ii)

follows. This completes the proof.

Theorem 3.3.2 can be proved in a similar way by showing that asymptotically this is equiv-

alent to the linear case.

Proof of Proposition 3.3.2

Let x = G(ξ) be a well-posed point. Then TM(x) = {dG(ξ)h : h ∈ Rd}, and for any

ζ ∈ Rk we have by (Equation 3.14) that dimension of the image of the differential dG(ξ, ζ)
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is ρ+ k. It follows that r ≥ ρ+ k. Since r ≤ ρ+ k, it follows that r = ρ+ k.

Conversely suppose thatM is a smooth manifold of dimension ρ and r = ρ + k. Let

θ ∈ Θ be such that dimension of the image of dG(θ) is r, by Proposition Proposition 3.2.1

we have that a.e. θ is like that. Since r = ρ+ k and TM(x) = {dG(ξ)h : h ∈ Rd} we have

by (Equation 3.14) that (Equation 3.15) follows. It remains to note that dG(θ) = dG(θ′)

for any points θ = (ξ, ζ) and θ′ = (ξ, ζ ′) in Θ with the same first component. This com-

pletes the proof.

Proof of Proposition 3.4.4

Let ρ be the characteristic rank of mapping

Rn1×r × Rn2×r × Rn3×r 3 (A,B,C) 7→ A⊗B ⊗ C. (B.6)

Recall that it always holds that r(n1 + n2 + n3 − 2) ≥ ρ.

Consider ξ = (A,B,C) such that rank of the Jacobian matrix of mapping (Equation B.6)

at (A,B,C) is ρ. For X = A⊗B ⊗ C consider the set

G−1(X) =
{

(A′, B′, C ′) ∈ Rn1×r × Rn2×r × Rn3×r :

A′ ⊗B′ ⊗ C ′ = X} .

By the Constant Rank Theorem this set forms a smooth manifold of dimension

dim
(
Rn1×r × Rn2×r × Rn3×r

)
− ρ = r(n1 + n2 + n3)− ρ

in a neighborhood of the point ξ. If (Equation 3.29) holds, then dimension of this manifold

is 2r, and hence any (A′, B′, C ′) ∈ G−1(X) in a neighborhood of (A,B,C) can be obtained
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by the rescaling. That is, the local identifiability follows.

On the other hand if r(n1 + n2 + n3) − ρ > 2r, then this will imply that there exists

(A′, B′, C ′) ∈ Rn1×r×Rn2×r×Rn3×r near (A,B,C) such that A′⊗B′⊗C ′ = A⊗B⊗C

and (A′, B′, C ′) cannot be obtained from (A,B,C) by the rescaling. That is, the local

identifiability does not hold.

Derivation of the Jacobian matrix in section subsection 3.4.6.

For all k0 = 1, . . . , K, ∀n,m, n0 = 1, . . . , N and f = 0, . . . , T − 1, the entries of the

Jacobian matrix can be derived as follows

∂Rn,m,f

∂ρk0

=
K∑
l=1

ρl(cos(2πf(τn,l − τm,k0))

+ cos(2πf(τn,k0 − τm,l)))

· π

√
1

αk0αl
e
−π2f2( 1

αk0
+ 1
αl

)
.

∂In,m,f
∂ρk0

=
K∑
l=1

ρl(sin(2πf(τn,l − τm,k0))

+ sin(2πf(τn,k0 − τm,l)))

· π

√
1

αk0αl
e
−π2f2( 1

αk0
+ 1
αl

)
.
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∂Rn,m,f

∂αk0

=− π

2

K∑
l=1

ρk0ρl(cos(2πf(τn,l − τm,k0))

+ cos(2πf(τn,k0 − τm,l)))

· α−
3
2

k0
α
− 1

2
l e

−π2f2( 1
αk

+ 1
αl

)

+ π3f 2

K∑
l=1

ρk0ρl(cos(2πf(τn,l − τm,k0))

+ cos(2πf(τn,k0 − τm,l)))α
− 1

2
k0

· α−
1
2

l e
−π2f2( 1

αk0
+ 1
αl

)
α−2
k0

=
∂Rn,m,f

∂ρk0

(−
ρk0α

−1
k0

2
+ π2f 2ρk0α

−2
k0

).

∂In,m,f
∂αk0

=− π

2

K∑
l=1

ρk0ρl(sin(2πf(τn,l − τm,k0))

+ sin(2πf(τn,k0 − τm,l)))

· α−
3
2

k0
α
− 1

2
l e

−π2f2( 1
αk

+ 1
αl

)

π3f 2

K∑
l=1

ρk0ρl(sin(2πf(τn,l − τm,k0))

sin(2πf(τn,k0 − τm,l)))

· α−
1
2

k0
α
− 1

2
l e

−π2f2( 1
αk0

+ 1
αl

)
α−2
k0

=
∂In,m,f
∂ρk0

(−
ρk0α

−1
k0

2
+ π2f 2ρk0α

−2
k0

).
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∂Rn,m,f

∂τn0,k0

=I(n = n0)
K∑
l=1

ρlρk0(−2πf sin(2πf(τn0,k0 − τm,l)))

πα
− 1

2
l α

− 1
2

k0
e
−π2f2( 1

αl
+ 1
αk0

)

+ I(m = n0)
K∑
l=1

ρlρk0(2π·

f sin(2πf(τn,l − τn0,k0))) · πα−
1
2

l α
− 1

2
k0
e
−π2f2( 1

αl
+ 1
αk0

)
.

∂In,m,f
∂τn0,k0

=I(n = n0)
K∑
l=1

ρlρk0(2πf cos(2πf(τn0,k0 − τm,l)))

· πα−
1
2

l α
− 1

2
k0
e
−π2f2( 1

αl
+ 1
αk0

)

+ I(m = n0)
K∑
l=1

ρlρk0(−2πf cos(2πf(τn,l − τn0,k0)))

· πα−
1
2

l α
− 1

2
k0
e
−π2f2( 1

αl
+ 1
αk0

)
.

With the above result, we can numerically check the rank of Jacobian matrix J(ξ) = ∂G(ξ)
∂ξ

.

Discussion of estimating the noise variance σ2.

In the paper, we provide two ways to estimate the variance σ2 of the noise ε in the model.

1. As it is mentioned in Section Section 3.3, if N > 1, i.e, we can use sample variance

to estimate the σ2. That is: we have samples yi,j ∀i = 1, . . . ,m, j = 1, . . . , N . Let

ȳi = (N)−1
∑N

j=1 yi,j and σ̂2 = (mN)−1
∑m

i=1

∑N
j=1(yi,j − ȳi)2.

2. If N = 1, let’s assume εi ∼ N(0, σ2) and γ = 0. Then we can apply Theorem

III.2 to construct a consistent estimate of σ2. Consider M′ ⊂M and r′ = dim(M′),

114



r = dim(M), let

T̃ ′N = min
x∈M′
‖ŷ − x‖2

2, T̃N = min
x∈M
‖ŷ − x‖2

2.

Then let,

σ̂2 =
T̃ ′N − T̃N
r− r′

. (B.7)

According to Theorem III.2, we know that under the true model T ′N − TN follows

central χ2 distribution with r − r′ degrees-of-freedom asymptotically. Therefore σ̂2

is a consistent estimate of σ2, i.e. σ̂2 → σ2 as r′ − r → ∞. More specifically, as

mentioned in section III.C, we assume that our manifold can be decomposed to be a

sum of smooth manifold and linear space. Therefore, for an x0 ∈M′ =M+L′, we

can construct a linear space L, s.t L′ ⊂ L. Then, let M =M + L. we can compute

eq.(Equation B.7).

Below, we will show how to use this general strategy to construct the L in each application

mentioned in the paper. The key idea is that we can always leave out some observations to

construct the L.

1. Matrix completion: Denote the set of observation indices as Ω0 manifold: M′ =

Mr + L′, where L′ = {X ∈ Rn1×n2 : Xi,j = 0, ∀(i, j) ∈ Ω0}. To estimate the σ2,

we can leave out some observation, i.e. we form a smaller observation set Ω1 ⊂ Ω0.

Then the new manifold is M = Mr + L, where L = {X ∈ Rn1×n2 : Xi,j =

0,∀(i, j) ∈ Ω1}. We can see that L′ ⊂ L ⇒ M′ ⊂ M. Therefore, according to
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eq.(Equation B.7), we can estimate σ2 as following:

T̃ ′N = min
X∈Mr

∑
(i,j)∈Ω0

(Ŷij −Xij)
2,

T̃N = min
X∈Mr

∑
(i,j)∈Ω1

(Ŷij −Xij)
2,

σ̂2 =
T̃ ′N − T̃N
|Ω0| − |Ω1|

. (B.8)

2. Complex matrix completion: It is similar to real matrix completion. By leaving out

some observations, we have a smaller set of observation indices Ω1 ⊂ Ω0, and

L′ = {X ∈ Cn1×n2 , Xij = 0, ∀(i, j) ∈ Ω0}

L = {X ∈ Cn1×n2 , Xij = 0, ∀(i, j) ∈ Ω1}

Let T̃ ′N be the objective value of eq.(24) in the paper with respect to observation set

Ω0 and T̃N be the result with respect to observation set Ω1. Then, we can estimate

the σ2:

σ̂2 =
T̃ ′N − T̃N
|Ω0| − |Ω1|

3. Rank-r tensor completion: It is similar to matrix completion problem: Denote the

manifold of rank-r tensors asMr, and there is an observation index Ω0. By leaving

out some observations, we have Ω1 ⊂ Ω0. Let’s define,

L′ = {X ∈ Rn1×n2 , Xijk = 0, ∀(i, j, k) ∈ Ω0}

L = {X ∈ Rn1×n2 , Xijk = 0, ∀(i, j, k) ∈ Ω1}

and

M′ =Mr + L′, M =Mr + L.
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We can see M′ ⊂ M. According to the Theorem III.2, we can construct the σ̂2

similar to eq.(Equation B.8),

T̃ ′N = min
X∈Mr

∑
(i,j,k)∈Ω0

(Ŷijk −Xijk)
2,

T̃N = min
X∈Mr

∑
(i,j,k)∈Ω1

(Ŷijk −Xijk)
2,

σ̂2 =
T̃ ′N − T̃N
|Ω0| − |Ω1|

.

4. Demixing: It can be viewed as a tensor completion problem in our setting. The

difference between the demixing problem and rank-r tensor completion problem is

the way of parameterizing. In the rank-r tensor completion problem, we parameterize

the tensor with rank. In the demixing problem, we parameterize the tensor as the

cross-correlation function of the frequency domain signals. However, in estimating

σ2, what matters is the L part, which is not related to the parameterization of theM

part.

5. Neural networks: Suppose we have m observations, i.e. y ∈ Rm. Then we say

that our set of observation indices are all the indices i.e. Ω0 = {1, 2, . . . ,m}. Then

L′ = {X ∈ Rm : Xi = 0, ∀i ∈ Ω0} = {0}. By leaving out some observations, we

have Ω1 ⊂ Ω0, L = {X ∈ Rm : Xi = 0, ∀i ∈ Ω0} ⊃ L′, according to the eq.(27) in

the paper, σ2 is estimated as:

T̃ ′N = min
U∈Rd×r

m∑
i=1

(yi − 1>q(U>xi))
2,

T̃ ′N = min
U∈Rd×r

∑
i∈Ω1

(yi − 1>q(U>xi))
2,

σ̂2 =
T̃ ′N − T̃N
m− |Ω1|

. (B.9)

6. Matrix sensing: As mentioned in the paper, matrix sensing is a special case of one-
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hidden-layer neural networks with quadratic activation function.

Below we also present two numerical examples to show the performance of the estimate of

the sigma:

1. Matrix completion: Table Table B.1 shows a result of estimating σ2 for each rank r.

In this experiment, n1 = n2 = 100, true rank r∗ = 6, |Ω0| = 8000, σ = 10, N = 1.

In practise, we may not know the true rank, therefore, we compute the estimate of σ2

for each rank r ranging from 1 to 8. σ2 is estimated by σ̂2 in eq.(Equation B.8) with

|Ω1| = 2000. When r < r∗, σ̂2 largely overestimates the σ2 and decreases hugely as

r increases because part of the signal is treated as noise. When r > r∗, σ̂2 become

stable since it is over-fitting the noise. We can also see that when r = r∗, our σ̂2 is

close to σ2.

Table B.1: Estimate of σ2 in matrix completion with true rank r∗ = 6.

rank σ̂2 rank σ̂2

1 34995.5 5 5050.63
2 26751.3 6 97.7
3 18719.6 7 96.6
4 11231.8 8 96.7

2. Matrix sensing (One-hidden-layer neural networks with quadratic activation). Table

Table B.2 shows a result of estimating σ2 for each rank r. In this experiment, d = 50,

true rank r∗ = 3 (the number of hidden nodes), m = |Ω0| = 500, σ = 1, N = 1. We

compute the estimate of σ2 for each rank r ranging from 1 to 4. σ2 is estimated by

σ̂2 in eq.(Equation B.9) with |Ω1| = 400. We can see that our estimator σ̂2 is close

to the true σ2 when r = r∗.
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Table B.2: Estimate of σ2 in matrix sensing (r∗ = 3).

rank σ̂2 rank σ̂2

1 8952.8 4 1.04
2 1498.8 5 1.12
3 1.12 6 0.88
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APPENDIX C

APPENDICES OF CHAPTER 5

Proof of Theorem Theorem 5.4.2

Proof.

(i) Since under H0, S(q,q)
T (0) has the same the distribution as the univariate case.

VarH0(T−
1
2ST (0)) =T−1V ar(ST (0))

=T−1
( T

2β
+

4µT − 1

4β2

+
e−2βT

4β2
− 3µ

2β3
− µe−2βT

2β3
+

2µe−βT

β3

)
→ 1

2β
+

µ

β2
as T →∞
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(ii) To prove the variance of S(p,q)
T , we use the fact that VarH0 [S

(p,q)
T (0)] = −EH0 [

∂S
(p,q)
T (0)

∂αp,q
]

EH0 [−∂S
(p,q)
T (0)

∂αp,q
] (C.1)

=E[
1

µ2
q

∑
k∈C(q,T )

(
∑

i∈C(p,tk)

e−β(tk−ti))2]

=E[
1

µ2
q

E[
∑

k∈C(q,T )

(
∑

i∈C(p,tk)

e−β(tk−ti))2|Nq, Np]] (C.2)

=E[
Nq

µ2
q

E[(

Np∑
i=1

Zi(tk))
2|Np, tk]] (C.3)

=E[
Nq

µ2
q

E[

Np∑
i=1

Z2
i (tk) +

Np∑
i 6=j

Zi(t)Zj(t)|Np, tk]]

=E
[Nq

µ2
q

(
NpE[Z2

i (tk))|tk] +Np(Np − 1)Ei 6=j[Zi(tk)Zj(tk)|tk]
)]

=E
[Nq

µ2
q

( Np

2βT
(1− e−2βtk) +

Np(Np − 1)

β2T 2
(1− e−βtk)2

)]
(C.4)

=
T

µq
(

1

2β
+
µq
β2

) + o(T ) (C.5)

where Nq and Np are the number of events in [0, T ] on nodes q and p respectively. In

eq(item C.2), we use the fact that for Poissson process, the arrival times follow i.i.d.

uniform distribution when it is conditional on the number of arrivals. With this fact,

in eq(item C.3), we define

Zi(t) =


0 if ti ≥ t,

e−β(t−ti) if ti < t.

Since ti
i.i.d∼ unif[0, T ], then

EZi(t) =
1

T

∫ t

0

e−β(t−u)du =
1

βT
(1− e−βt)

EZ2
i (t) =

1

T

∫ t

0

e−2β(t−u)du =
1

2βT
(1− e−2βt),
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which proves the eq(item C.4). Since Np and Nq follow Poisson distribution with

mean Tµp and Tµq, respectively. Therefore eq(item C.5) is prooved.

(iii) Follow the similar techniques in (ii), we can prove

CovH0 [T−
1
2S

(p,q)
T (0), T−

1
2S

(p′,q)
T (0)]→ µpµp′

µqβ2
.

Proof of Theorem 5.4.3

Proof. Follow the definition in [57], let’s define the kernel function,

g(s1, s2, t) = s>2 As1e
−βt,

where si ∈ RM . Then, we can define the conditional intensity function:

Λ(s, t) =µ(s) +

∫ t

0

∫
X

g(s,u, t− r)N(du× dr)

=µ(s) +
∑
ti<t

u>i As · e−β(t−ti),

where u = em, if ui = m, and em is the vector that mth entry is 1 and other entries are 0.

Further, define a measure with delta function:

v(x) =
M∑
i=1

δei(x)

δei(x) =


1 if x = ei

0 o.w.
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We can write the likelihood function as the following:

`T (A) =

∫ T

0

∫
X

log Λ(s, t;A)N(ds× dt)−
∫ T

0

∫
X

Λ(s, t;A)v(ds)dt

We can easily check this define the same multivariate Hawkes process in Equation 5.2,

Equation 5.3, Equation 5.4. Define the function ∆ as:

∆(i,j),(p,q) ,
Λ̇i,jΛ̇p,q

Λ
,

where Λ̇i,j is the partial derivative of Λ with respect to αi,j . Therefore, by the result of [57,

Equation 4.7], we have:
1

T

K∑
k=1

∆(uk, tk)

Λ(uk, tk)
→ I(A).

By direct computation, we can have the result of Equation 5.10

Proof of Theorem 5.4.4

Proof. According to the Theorem I in [61], let’s define the “neighbor of dependence” for

index j, J(j) = {(j − 1), j, j + 1}, with simple modification for j = 1 and j = k, for

m > w, Xj and Xi are independent for i 6∈ J(j). Therefore the dependence of elements

not in the neighbor vanished, i.e. b3 and b′3 equals to 0.

b1 =
k∑
j=1

∑
i∈J(j)

P(Xj = 1)P(Xi = 1)

≤ 3kP(X1 = 1)2 (C.6)

b2 =
k∑
j=1

∑
i∈J(j)\j

P(Xj = 1, Xi = 1)

≤ 2kP(X1 = 1, X2 = 1)

≤ 2kP{Tb ∈ (0,m− w)}P{Tb ∈ (m+ w, 2m)}+

2kP{Tb ∈ (m− w,m+ w)} (C.7)
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With the inequality of the tail probability of normal distribution in [65],

P(X1 = 1) = P(Tb ∈ (0,m])

= P
{

max
0<t≤m,
1≤i≤d

|Γ(i)
t,w| > b

}
≤ 2P

{
max

0<t≤m,
1≤i≤d

Γ
(i)
t,w > b

}
≤ 2mdP(Γ

(i)
t,w > b)

≤ 2md

b
e−

b2

2 (C.8)

With same computation, we can show P{Tb ∈ (m−w,m+w)} ≤ 4wdb−1eb
2/2. Therefore

with the Theorem 1 in [61], we can show

|P(Tb > xf(b))− e−EW | (C.9)

= |P(W = 0)− e−EW | (C.10)

< b1 + b2 (C.11)

≤ 12km2d2

b2eb2
+

8km2d2

b2eb2
+

4kwd

beb2/2
(C.12)

=
12xmd2

beb2/2
+

8xmd2

beb2/2
+

4xwd

m
(C.13)
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