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SUMMARY

Consumption patterns have been changed dramatically over the past decades, notably

by the growth of e-commerce. With the prevalence of e-commerce and home delivery, cus-

tomer expectations for a faster, punctual, and cheap delivery are increasing. In fact, many

customers are expecting for same-day or x-hour deliveries now and offering fast delivery

becomes more and more critical for e-retailers to survive in a fierce market competition.

However, many companies are simply lacking financial, physical, and/or operational re-

sources to increase their responsiveness.

Focusing on solving the challenges in the perspective of fulfillment and inventory, we

aim to find a breakthrough from a recently emerging logistics innovation movement in-

duced by the introduction of the Physical Internet (PI). PI can potentially enable respon-

sive yet affordable fulfillment for companies of any size through open asset utilization and

multi-player operations. The key of PI innovation is transforming asset-driven logistics op-

erations to service-driven logistics operations. This thesis provides an academic foundation

for hyperconnected fulfillment to effectively satisfy the growing customer expectations on

responsive deliveries. We first present a comprehensive design and evaluation of a hyper-

connected fulfillment system. Then, we focus on providing inventory operations models,

inventory allocation and deployment respectively, which maximally utilize the key features

of hyperconnected fulfillment system: connectivity, flexibility, and decentralization.

In Chapter 2, a hyperconnected fulfillment and delivery system is designed in the con-

text of the last-mile operations in urban areas. A comprehensive system and decision ar-

chitecture of the hyperconnected system is modeled. We carefully design the scenarios to

show a gradual transformation from dedicated to hyperconnected system in each thread of

delivery and fulfillment so as to reveal the marginal impact of each step of transformation.

We conduct a scenario analysis using a simulation platform built upon the system and de-

cision architecture where autonomous agents are optimizing their decisions and interact

xv



with the environment. The experimental results clearly demonstrate the potential benefit

of hyperconnected urban fulfillment and delivery system by concurrently improving often

opposing performance criteria: economic efficiency, service capability and sustainability.

Chapter 3 tackles an optimal inventory allocation problem among multiple sales out-

lets. Specifically, we analyze a case where a dropshipper allocates availability to multiple

e-retailers via availability promising e-contracts (APCs). Under the APC, the e-retailers

do not observe actual availability and this information asymmetry leads them to pose a

promised availability threshold (PAT). PAT is a threshold on remaining promised availabil-

ity set by an e-retailer for a product of a dropshipper, below which the e-retailer unlists

the product and thus does not accept any more orders from customers, until the promised

availability is climbed above the threshold by the dropshipper. The dropshipper’s APC

problem with PAT is modeled as 2-stage stochastic program with two stochastic parame-

ters: demand and PAT. We design and evaluate three contract policies differentiated by the

allowance level for overpromising: guaranteed fulfillment, controlled fillrate, and penalty-

driven fillrate policies. We also present a modeling approach to convert the endogenous

demands, per-retailer-distribution of which is affected by the APCs, to exogenous demands

with linear substitution constraints. The numerical results show the penalty-driven fillrate

policy is the dominating strategy for dropshippers especially under a lean availability.

Chapter 4 tackles an inventory deployment problem under the context of open asset uti-

lization and responsive fulfillment. When it comes to very responsive deliveries, such as X-

hour deliveries, the physical availability of inventories near the delivery locations becomes

necessary, which requires a broad and dense fulfillment network. The open asset utilization

and service-driven fulfillment operations of the PI can enable affordable access to such de-

centralized fulfillment network comprised of the open fulfillment centers. We evaluate the

benefit of such decentralized fulfillment network for a responsive fulfillment and develop

an appropriate inventory deployment model, which possesses a partially pooled demand

and inventory structure induced by responsiveness requirements, as a variant of Newsven-

xvi



dor. We derive a pragmatic heuristic inventory solution, W-solution, and present an effi-

cient binary search based solution heuristic, W-heuristic. Then, via numerical experiments

over both theoretical and empirical demand distributions, we demonstrate the advantage

of decentralized network and w-solution over centralized network and allocation-based in-

ventory model, pre-allocation model, respectively. We also report rather counter-intuitive

observations that the w-solution which accounts for pooling leads to more inventory than

pre-allocation model which does not account for pooling under low sales margin.

xvii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Recent delivery and fulfillment challenges

Consumption patterns have been changed dramatically over the past decades, notably by

the growth of e-commerce. Reports of Statista ([1]) indicate that the total e-commerce

sales in 2020 reached 4.3 trillion dollars, which is almost doubled compared to the amount

3 years ago (2.4 trillion dollars in 2017). In 2019, the e-commerce sales account for 14.1%

of total retail sales while it accounted for only 8.6% in 2016 ([2]). The number of digital

buyers is estimated to exceed 2 billion worldwide by 2021 ([3]). In US, the e-commerce

sales revenue reached 432 billion dollars in 2020 and projected to be 549 billion dollars

in 2024 ([4]). The growth is not only coming from pure e-commerce companies, but also

coming from a growing number of omnichannel players. The growth of e-retail has been

even more accelerated by COVID pandemic in 2020 due to the changed customer behavior

([5]). Forbes ([6]) reported that e-commerce recorded 129% of annual sales growth and

146% growth in terms of the number of orders. It is a remarkable growth considering

that the overall retail market size decreased in 2020. In fact, in 2020, e-commerce sales

accounted for 21% of total retail sales ([7]).

Along with the prevalence of the e-commerce and home deliveries, customer expecta-

tions for a faster, punctual, and cheap delivery are increasing. The recent survey of Invesp

([8]) reported that 56% of young online customers expect to have same-day deliveries and

61% of customers are willing to pay extra for the same-day deliveries. Moreover, it said

that fast delivery meant same-day delivery for 96% of customers and more than half of

customers want even faster delivery, such as 1-hour or 3-hour deliveries. Considering the

2-day delivery offered by Amazon Prime was a groundbreaking offer a few years ago, it

1



can be seen that the customer expectations are rapidly growing. At the moment, many

e-commerce companies are already offering very fast deliveries. For example, Amazon

now offers a same-day Prime delivery for selected items and a 2-hour delivery with Prime

Now. Walmart offers 2-hour Express Delivery and Target offers same-day delivery. Also,

many start-ups, such as Flexe.com, Darkstore, and Deliv (acquired by Target), have been

launched in offering fulfillment or distribution resources or services to support very-fast

delivery. In fact, offering fast deliveries becomes more and more critical for e-retailers to

survive in a fierce market competition.

These massive and irreversible wave of changes in retail, especially in e-commerce,

poses immense logistics challenges. For example, the short delivery lead time, to be re-

ferred as responsiveness here, requires a physical availability of inventory near delivery

locations, a fast pick-up, and an immediate transportation. Moreover, e-retailers tend to of-

fer more variety of products (heavy tailed product portfolio) and e-orders tend to be smaller

and more customized, which are all contributing factors for the operational complexity and

higher logistics cost. Given the thin margin of logistics operations, it requires even more

efficient operational schemes than currently available. This thesis targets to tackle this lo-

gistics challenge, especially focusing on inventory management and fulfillment operations.

1.2 Hyperconnected fulfillment system

Facing the fulfillment challenges, numerous studies have been conducted. Agatz, Fleis-

chmann, and Van Nunen [9] provides an extensive review for scholarly articles in E-

fulfillment and multi-channel distribution. As addressed, the critical logistics challenge to

focus here is to meet the customer expectations on the tight responsiveness while remain-

ing profitable. Notably, to satisfy such tight responsiveness requirements such as same-day

or x-hour delivery, physical availability of inventory within certain distance to delivery lo-

cations is necessary. That means inventories must be highly distributed over a broad and

dense network of fulfillment facilities. However, even though needed, most of the com-
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panies simply do not have financial capability to operate such broad and dense fulfillment

network.

This work aims to find a breakthrough from a recently emerging logistics innovation

movement induced by the introduction of the Physical Internet ([10]). The Physical Inter-

net (PI) is defined as a ”hyperconnected global logistics system enabling seamless open

asset sharing and flow consolidation through standardized encapsulation, modularization,

protocols and interfaces to improve the efficiency and sustainability of fulfilling human-

ity’s demand for physical object services.” ([10]). As can be seen from the definition, PI is

a comprehensive logistics system covering from manufacturing to delivery and usage de-

sign. The focus of this work is a distribution web among the five PI logistics webs presented

by Montreuil, Meller, and Ballot [11].

Among the distinctive features of the PI, two are the most critical to enable the respon-

sive fulfillment and the efficient inventory management over a decentralized fulfillment

network: open asset utilization and multi-player operations. The former brings economies

of scope and the latter brings economies of scale. Open asset utilization transforms a ful-

fillment network model from an asset-driven model to a service-driven model. In other

words, retailers who did not have financial capability to build a sufficiently large and dense

fulfillment network on their own can now deploy inventories over a broad and dense fulfill-

ment network provided by the fulfillment service providers. This changes the cost structure

as well. When operating their own network, the costs comprise of investment cost, facility

maintenance cost and operational costs. When using an open fulfillment network, they pay

for the service. That is, no huge capital investment cost is needed and the service cost only

occurs when they used the service. On the other hand, the service provider can reduce

its cost by gaining economies of scale from multiple users. The multi-player operations

are realized through those service providers. In fact, the existence of the service providers

enables multi-player operations without each user’s knowledge of or interaction with other

users. Some early business models of the service providers can be found from Fulfillment
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by Amazon, ES3 ([12]), Flexe.com, and Darkstore (www.darkstore.com).

Note that the open asset sharing and multi-player operation in the PI is beyond the tradi-

tional collaborations ([13]). In the perspective of players, the differences are the existence

of exclusive collaboration partners and fulfillment service providers. It enables to gain from

multi-player operations without negotiating collaboration agreements. Also, the usage of

certain fulfillment services can be controlled more dynamically by paying for the fulfill-

ment service on-demand. In the perspective of business models and operations, it changes

the focus of retailer’s or supplier’s operation from how to build and manage its own ful-

fillment network to how to utilize the open fulfillment network and how to design service

offers to customers (e.g. pricing, delivery lead time options). Also, the size and density

of the open fulfillment network is expected to exceed those of the collaborative network

on average and it is same to all users of the service regardless of their own size and asset

status. Figure 1.1 illustrates and contrasts the dedicated, collaborative and hyperconnected

fulfillment conceptually. The dedicated and collaborative systems are exemplified with two

players, marked in blue and red respectively. The open fulfillment facilities operated by one

or more service providers are marked in black, and the other players using the service is

marked in grey which can represent more than one players.

Figure 1.1: Illustration of dedicated, collaborative and hyperconnected fulfillments

However, the access to a broad and dense fulfillment network is not sufficient to resolve

the challenge. For efficient fulfillment operations, a proper inventory model adapted to the

new context is needed to maximize the benefit of the open fulfillment network. In fact,

decentralization has been widely considered to increase cost due to reduced pooling, since
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the famous work of Eppen [14]. Therefore, it must be answered if a decentralized net-

work can be more profitable than a centralized network given the setting. There are several

reasons why such contrast between the centralized and decentralized network and new in-

ventory model are needed. Firstly, under the tight responsiveness constraints, centralization

may lose demands due to its limited capacity to satisfy tight delivery lead time, trading off

the pooling benefits. Secondly, a decentralized inventory network with responsiveness re-

quirements results in a complex pooling structure, which is named as partial pooling here.

Because the traditional inventory deployment models do not reflect such complex struc-

ture induced by the responsiveness requirements, they may not lead to optimal results in

this new setting. Thirdly, besides the physical allocation of inventory over the fulfillment

network, often times inventories also need to be allocated to multiple sales channels in e-

commerce environment. The sales channels can be a mixture of a company’s own e-retail

site and other e-retailer’s site or can be multiple e-retailers it supplies. Both problems have

partial inventory and demand pooling structure in common. Accordingly, new inventory al-

location and deployment models are needed that exploit the partial pooling and maximally

utilize the hyperconnected fulfillment.

1.3 Contributions and summary

The objective is to build a framework for hyperconnected fulfillment, and inventory deploy-

ment and allocation under it, so as to evaluate the potential of the new fulfillment scheme

in terms of operational efficiency, profitability, service capability and sustainability facing

the growing needs for tighter responsiveness. The context is closely related to e-commerce

while the core of results and insights is not limited to e-commerce operations. Accord-

ingly, we present a modeling framework and solution methodology to evaluate the benefit

of hyperconnected fulfillment and to optimally allocate inventories both digitally and phys-

ically under hyperconnected system. We also provide the managerial insights on potential

business opportunities and caveats gained through analyzing the results of numerical exper-
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iments. This thesis is structured as follows. Firstly, in Chapter 2, we build a comprehensive

system and decision architecture for the proposed hyperconnected fulfillment system and

demonstrate the potential benefits of it. Then, in Chapters 3 and 4, we tackle the operational

models for digital and physical allocations of inventory, which we refer as inventory alloca-

tion and deployment models respectively. We first present an inventory allocation model to

multiple sales outlets through a form of an availability promising e-contract. Then, a net-

work inventory deployment model is presented and the benefit of decentralized fulfillment

network operations under tight responsiveness requirements is assessed. In the rest of the

current section, we summarize the overview and contributions of each chapter.

In Chapter 2, a hyperconnected fulfillment and delivery system is designed in the con-

text of the last-mile operations in urban areas. A comprehensive system and decision ar-

chitecture is modeled that supports the hyperconnected system. Then, multiple scenar-

ios for gradual transformation from dedicated system to hyperconnected system in each

thread of delivery and fulfillment are carefully designed. The scenario analysis shows

the marginal impact of each step of transformation. For the experiment, an optimization-

supported agent-based simulation platform is built that enables the evaluation of potential

benefits of hyperconnected system via scenario analysis. The computational experiment is

conducted in the context of the last-mile delivery of large items. The experimental results

clearly demonstrate the potential of hyperconnected urban fulfillment and delivery system

by concurrently improving often opposing measures: economic efficiency, service capabil-

ity and sustainability. In short, utilizing open peri-urban fulfillment centers and a network

of open urban logistic hubs lead to a reduction of operational costs by 24% with minimal

delivery lateness, and reduction of undesirable atmospheric emissions by 45∼50%. Fur-

thermore, although the proposed design framework and results are from the specific con-

text, the essence of the design and insights can be scaled to a hyperconnected fulfillment

system in larger areas such as a country or a continent.

Chapter 3 tackles an optimal inventory allocation problem in the context where a drop-
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ship manufacturer allocates its availability to multiple e-retailers via daily availability promis-

ing e-contracts (APCs). Availability, e.g. available-to-promise quantity, is used instead of

inventory because the digital allocation contract does not involve any physical transaction.

This means that inventories in transit or in production process can be promised to fulfill

orders as long as delivery lead time can be met. Moreover, it allows the dropshipper to

promise more than available quantity so that it can maximally utilize the fact that its inven-

tory is pooled until actual fulfillment at a potential penalty cost. The problem belongs to

a family of inventory allocation problems but we are the first to study the problem where

promised availability threshold (PAT) is imposed by e-retailers. PAT is a threshold on re-

maining promised availability internally set by an e-retailer for a product of a dropshipper,

below which the e-retailer unlists the product and thus does not accept any more orders

from customers, until the promised availability is climbed above the threshold by the drop-

shipper. PAT value is not shared with the dropshipper and we proved that when PAT value is

shared it is equivalent to have no PAT. The dropshipper’s APC problem under PAT is mod-

eled with 2-stage stochastic optimization with two stochastic parameters: demand and PAT.

Due to the existence of PAT and the nature of e-shopping where customers explore multi-

ple websites at the same time, demand becomes an endogenous parameter. We circumvent

modeling endogenous parameter by modeling customer’s shopping behavior with linear

constraints. We also design and evaluate three contract policies by varying the allowance

level of overpromising: Guaranteed fulfillment, controlled fillrate, and penalty-driven fill-

rate policies. The results show the penalty-driven fillrate policy is the dominating strategy

for dropshippers especially under lean availability.

In Chapter 4, we solve an inventory deployment problem under the context of tight

responsiveness requirements and open asset utilization. The problem context is closely re-

lated to the current market trend where the customer expectations for responsive fulfillment

are growing with prevalent home delivery practices. Tight responsiveness requirements,

such as x-hour deliveries, make the physical availability of inventories near demand loca-
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tions necessary which requires a broad and dense fulfillment network. However, it is often

infeasible or financially unviable to build such a decentralized network. The open asset

utilization and service-driven fulfillment operations of the PI can enable affordable access

to such decentralized fulfillment network comprised of the open fulfillment centers. In

this chapter, we first evaluate the benefit of a decentralized network under tight responsive-

ness requirements and second to develop an inventory deployment model appropriate to the

given setting. We build a Newsvendor-based inventory model with a partial risk and inven-

tory pooling induced by responsiveness requirements, followed by a pragmatic and easy-to-

compute heuristic solution, W-solution. We also designed a binary search based heuristic

algorithm, W-heuristic, to calculate the W-solution. Then, via numerical experiments over

theoretical demand distributions and empirical case study, we demonstrate the advantage

of decentralized networks and W-solution over centralized networks and allocation-based

inventory model, pre-allocation model, respectively. We also report rather counter-intuitive

observations that the W-solution which accounts for pooling leads to more inventory than

the pre-allocation model which does not account for pooling under low sales margin, while

W-solution always costs less then pre-allocation model.

In short, the thesis provides academic foundations for hyperconnected fulfillment to ef-

fectively satisfy growing customer expectations on responsive fulfillment. The key system

and decision architecture of hyperconnected fulfillment is designed and rigorous yet practi-

cal methodologies are presented that support key operational decisions related to inventory:

inventory allocation and deployment. Besides methodological contributions, we offer tools

to be used to evaluate the new business opportunities, for potential open fulfillment ser-

vice providers and users. Also, the proposed pragmatic models are designed to support the

operational decisions in industry with minimal customization.
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CHAPTER 2

HYPERCONNECTED URBAN FULFILLMENT AND DELIVERY

2.1 Introduction

Logistics operations in urban areas, notably urban fulfillment and last-mile delivery, tend to

be the most expensive of the entire logistic process while being the most critical in shaping

customer experience. There are two key trends which constantly challenge urban logistics:

ever-growing urbanization and customer expectations for faster and more precise, punctual

and affordable delivery. High urban population density creates economic, environmental,

and social issues such as logistics-induced road congestion and air pollution ([15]).

Growing demand for more convenient delivery services from time-sensitive customers

is an important challenge for logistics service providers and retailers. For example, cus-

tomers used to be satisfied with X-day delivery, while many are now expecting same-day,

Y-hour order-to-delivery time. The trend has certainly been accelerated with the growth of

e-commerce. In addition, there are emerging needs for precise and punctual delivery, with

customers requiring service within a precise delivery time window in line with their avail-

ability and a precise delivery location: their home, office, car, smart locker, or store ([16]).

Although urban logistics has received attention from many scholars and practitioners in the

last decade ([17]; [18]; [19]; [20]), emerging urban challenges still remain. Fast, precise,

and punctual urban logistic services are difficult and sometimes beyond the capability of

current dedicated and fragmented logistic systems. When achieved, it is usually at high cost

and high environmental impacts. The major drawback of the current fragmented systems is

that they quickly lose efficiency and sustainability as logistics services become customized

and individualized. To overcome the limitations of current systems, fundamental paradigm

shifts are needed. Savelsbergh and Woensel [16] have identified opportunities for address-

10



ing these challenges, and smart urban logistics and the physical internet (PI) initiatives are

one of them.

Through its novel perspectives and principles, the PI ([21]; [22]) offers the potential

to enable breakthrough solutions for current problems. Montreuil [10] defines the PI as

a ”hyperconnected global logistics system enabling seamless open asset sharing and flow

consolidation through standardized encapsulation, modularization, protocols and interfaces

to improve the efficiency and sustainability of fulfilling humanity’s demand for physical

object services.” As also implied in [16], the notion of PI lies in systematic change en-

abling open asset utilization, which is beyond the concept of collaboration. Multi-player

operations using open assets in a hyperconnected logistics system are achieved as business

models change from being assets-driven (e.g., fulfillment centers or fleets) to becoming

service-driven (e.g., fulfillment services), without requiring collaboration agreements such

as strategic alliances and partnerships. Fulfillment by Amazon, ES3 ([12]), Flexe.com, and

Darkstore (www.darkstore.com) provide early examples of such business models. These

service businesses act as trusted intermediaries, enabling open asset sharing beyond the

usual group-limited collaborative agreements, and offering collaborative benefits while cir-

cumventing collaboration conflicts. Hereafter, open logistics resources (e.g., facilities or

vehicles) refer to PI assets whose services can be used by any player.

A conceptual framework for hyperconnected urban logistics -the application of PI to

smart urban logistics- was first introduced by Crainic and Montreuil [23]. The framework

notably emphasizes interconnecting the urban logistics networks of different transporta-

tion modes, scopes and/or functionalities via a web of urban logistics centers. Figure 2.1

illustrates the transformation from a current dedicated system (left side) toward a hypercon-

nected system (right side), as investigated in this chapter. The model city is conceptually

described as a grid on which essential logistics facilities and operations are shown using

four color-coded retailers serving the city.

The typical current system is described on the left side of Figure 2.1, where last-mile
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Figure 2.1: From dedicated to hyperconnected urban logistic system, according to a physi-
cal internet induced transformation (PI transformation)

fulfillment and delivery operations are dedicated to individual retailers using their own re-

sources, such as dedicated peri-urban fulfillment centers. Generally speaking, in current

systems, each retailer owns and/or operates independently its digital/physical sales chan-

nel(s) and fulfillment center(s) (FCs) and owns or uses an exclusively contracted fleet of

vehicles and delivery/installation personnel. Due to their fragmented nature, the reliance

on current systems has limited potential to improve urban fulfillment and last-mile delivery.

The right side of Figure 2.1 shows a proposed hyperconnected urban logistics system

for last-mile fulfillment and delivery. Here, fulfillment is carried out through open FCs,

which handle a multi-retailer inventory mix instead of dedicated FCs. The retailers can

distribute and redeploy their inventories among the open FCs, notably aiming to improve

proximity to customers through the diversified storage locations. Multi-retailer operations

at FCs can facilitate delivery consolidation at origin. Open urban hubs (OUHs) further im-

prove operations by enabling two-tier delivery, for example first-tier delivery from FCs to

OUHs (dotted line) in the early morning and second-tier delivery from the OUHs to cus-

tomers during the day (solid line). Tier-1 delivery enables further consolidation at OUHs,

and tier-2 delivery enables the use of smaller, efficient and environmentally friendly last-
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mile vehicles. Hyperconnected delivery can potentially increase vehicle utilization, lower

travel miles, and lower greenhouse gas (GHG) emissions. Hereafter, we refer to this trans-

formation from the dedicated system to the hyperconnected system described in Figure 2.1

as a PI transformation.

The main goal of this study is to investigate at a strategic level the potential of this

PI transformation toward hyperconnected fulfillment and delivery in the last mile in ur-

ban areas. The contribution of this chapter can be summarized into four points. First, we

provide a decision and system architecture of the proposed hyperconnected urban system.

Open facilities in the proposed system is characterized by conceptualizing their types and

functionalities. Then, the system architecture defines key players in the market and the

logistics network with open facilities and the decision architecture defines key operational

components of the system such as inventory, routing, and scheduling. Second, a compre-

hensive set of scenarios is designed to demonstrate the gradual transformation toward a

hyperconnected system in each stream of fulfillment and delivery, which can provide better

insight on the implementation of a hyperconnected system. Third, an optimization sup-

ported agent-based simulation platform is built according to the system architecture. The

simulation platform enables assessing the performance and dynamics of alternative urban

logistics systems under a stochastic environment, capturing the interactions between play-

ers. In a nutshell, our experimental results, which have been built upon the case of large

item delivery in urban area, indicate significant improvements by evolving from the ded-

icated system to the hyperconnected system. The overall operation costs are reduced by

24% with minimal delivery lateness, while reducing atmospheric emissions by about 50%.

As a fourth contribution, this chapter fills a literature gap by addressing a challenging case

study of large-item delivery logistics when conducting a simulation experiment. This busi-

ness case has unique features of routing and scheduling due to the considerable delivery

and install time caused by large item sizes and white glove services.

The chapter is structured as follows. Section 2 reviews the related literature and posi-

13



tions the contribution of the chapter. Section 3 describes the decision and system architec-

ture. Section 4 presents the simulation structure, the scenarios, and the key performance

measures. Section 5 reports the experimental results for the main scenarios as well as key

results from sensitivity analyses. Section 6 concludes the chapter with insights, limitations

and avenues for future research.

2.2 Literature Review

General trends, challenges, and modeling approaches in urban logistics can be found in

Taniguchi, Thompson, and Yamada [18], Savelsbergh and Woensel [16], and Bektaş, Crainic,

and Woensel [17]. In this section, we focus on reviewing three key literature threads re-

lated to this chapter. First, we review the most relevant contributions on urban logistics

with a focus on urban multi-party consolidation and collaborative systems. We notably

highlight past work related to urban consolidation centers (UCCs), which is widely stud-

ied and practiced in the context of multi-player consolidation for urban delivery. Second,

we review recent trends in literature on two-tier and hyperconnected urban logistic systems

that match with PI principles. Third, we review literature on urban logistics simulation with

an emphasis on simulation-based methodologies incorporating decision-making processes

among players. This chapter develops from early works of Goyal, Cook, Kim, Montreuil,

and Lafrance [24], Kim and Montreuil [25] and Kim, Kholgade, and Montreuil [26] who

have reported exploratory investigations with interesting preliminary results for PI driven

large-item delivery systems.

2.2.1 Urban Consolidation and Collaborative Systems

UCCs can be found with varying names, such as city/urban distribution centers (CDCs/UDC)

and freight consolidation centers (FCCs). UCCs have been tested in many cities since the

new millennium as extensively summarized in BESTUFS [27]. Also, it has been widely

studied academically in various settings ([28]; [29]; [30]; [31]). For example, Duin, Quak,
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and Muñuzuri [30] investigated the success factor for the UCC in the city of Hague and

Faure, Montreuil, Burlat, and Marqués [28] analyzed the UCC operations in the context of

Physical Internet. Some researchers specifically focus on the routing problem from UCC

(Heeswijk, Mes, and Schutten [32]). Although there are a few cases of UCC that serve a

single property ([29]), the UCCs serving the entire city are closer to the hyperconnected

system proposed in this chapter. The main benefit of UCCs is stemming from a multiplayer

delivery consolidation to increase last-mile vehicle fillrate and the potential use of more ef-

ficient and environmentally friendly transportation means in congested city areas, although

the functionality of UCCs can be extended to other logistics or retail activities, such as

temporary storage ([29]; [33]; [31]). Despite myriad attention to their potential, most UCC

operations fail to sustain financially once the initial public subsidies cease ([34]; [29]; [31]).

Quak and Tavasszy [33] and Heeswijk, Larsen, and Larsen [35] pointed out that it is critical

for UCCs to secure enough flow to be profitable. Up to now, studies on financial viability

of UCCs lead to one key factor: the need for an efficient operation ensuring the benefit of

better consolidation to outweigh the cost of extra handling ([36]; [34]; [37]). However, the

UCC practices have not been able to replace FC operations due to limited or lack of storage

functionality, which could contributed to extra inbound shipping and handling cost. Here,

we expand the scope to fulfillment operations and propose a more comprehensive system

which covers both fulfillment and delivery operations.

Multi-player shipment consolidation, which is one of the key enablers for efficient and

sustainable urban logistics typically achieved via UCCs or two-tier delivery systems, is in

general aimed to be achieved through collaboration. Collaboration in logistics has been

studied and practiced historically in diverse contexts such as transportation operations of

carriers ([38]; [39]; [40]) and some of them have reported significant savings from multi-

party shipment consolidation ([41]). Cleophas, Cottrill, Ehmke, and Tierney [42] provide

an extensive summary of collaborative transportation examples, specifically in urban set-

tings. Multiparty storage and fulfillment are less studied compared to multi-party delivery.
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Collaborative logistics has significant potential to achieve economies of scale and scope,

yet it suffers from three issues: it is generally slow to implement, tough to adapt, and hard

to scale ([10]), because it requires executive approval from each party, the collaborative

solutions are designed to address a common specific problem in specific context, and these

solutions are conceived to benefit the group of collaborators, not to be expanded widely.

PI based hyperconnected logistic systems addressed next are aiming to get away from such

limitations and to facilitate seamless large-scale multi-player operation. Cleophas, Cottrill,

Ehmke, and Tierney [42], who categorize urban collaborative transportation into vertical

and horizontal collaboration, point out that PI-enabled transportation achieves the combi-

nation of both vertical and horizontal coalitions.

2.2.2 Two-tier and Hyperconnected Systems

In order to overcome the financial viability operational efficiency issues of UCCs, Crainic,

Ricciardi, and Storchi [43] proposed a shift from single-tier systems to two-tier systems,

exploiting a two-tier modeling framework. This approach has been used in tactical plan-

ning models ([44]) and operational transportation models ([44]; [45]; [46]). Some re-

searchers expanded such two-tier systems to further incorporate other variations, such as

collection-and-delivery points ([47]). The emphasis is on the optimization of loads of dif-

ferent shippers and carriers when they coordinate their transportation activities within a

city ([18]; [48]; [20]). These models have roots in the classical location-allocation mod-

els ([49]) and/or location-routing models ([50]). Several papers ([17]; [51]) discussed the

fact that due to the combinatorial complexity of the produced models, aggregation and ap-

proximation techniques are still necessary to solve them, which may lead to dismissing

details highly valuable for solution use. The two-tier hierarchical urban delivery system

uses a network of satellite centers ([52]), as a precursor step toward a hyperconnected de-

livery system with open hubs. This study builds on a two-tier hierarchical urban delivery

system to model open hub operations while expanding the scope for fulfillment and in-
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ventory operations. This is also a distinguishing feature of our proposed system versus

relying exclusively on UCCs where storage is only a minor function or non-existent. In

this chapter, we investigate the tiered delivery and fulfillment model at a fine level of gran-

ularity through simulation implementation, for example, congestion-affected travel speed,

stochastic delivery time, and varied hub usage and storage cost by location.

The PI introduced in Montreuil [53] and Montreuil [21] spans entire worldwide supply

chains and logistic systems. It emphasizes open asset sharing and flow consolidation at any

phase of supply chains, notably including both delivery and fulfillment. Pan, Ballot, Huang,

and Montreuil [54] summarize papers in PI. In the context of urban logistics, Crainic and

Montreuil [23] and Bektaş, Crainic, and Woensel [17] design and address the potential

of hyperconnected urban logistics. Crainic and Montreuil [23] have extended the two-tier

hierarchical urban delivery system of Crainic, Ricciardi, and Storchi [52] to a multi-tier

multi-party delivery system enabled through exploiting a network of various types of open

logistic hubs and open transportation/delivery service providers. A hyperconnected system

not only restructures the logistics system with open logistic resources, but also redesigns

the use of logistic resources by enabling dynamic multiplayer operation. Such multiplayer

operations are not limited to coalition, rather leveraging standardized protocols and inter-

faces, which mainly distinguish hyperconnected systems from collaborative systems. The

open resources are typically, but not necessarily, operated by third-party logistics providers

(3PL) and offered as a service. Examples of close-to-PI models in fulfillment are ES3,

Flexe.com, Fulfillment by Amazon, Warehouse Anywhere, and Darkstore. Also, close-to-PI

examples in transportation include Uber Freight and Convoy. These service providers en-

able users to bypass collaboration contracts and extra investment to connect physical and

digital systems of participants for multi-player resource use and operation. In other words,

finding collaborators ([55]) or potential competition between collaborators ([56]) is not a

barrier for the PI system.

Up to now, the early modeling and optimization oriented papers on two-tier and hyper-
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connected urban logistics ([57]; [52]) still mainly focus on transportation/delivery systems,

with fulfillment systems being kept out of the scope of study. This chapter aims to fill the

gap by encompassing both transportation and fulfillment systems. Also, the optimization-

based approach has limitations in capturing the multidimensional nature of the system,

including its operational efficiency, cost, profitability of each player, service, and sustain-

ability. Sustainability encompasses the economic, societal and environmental performance

facets, and is often related to the three Ps: planet, people, and profit (e.g., [58]). Improving

logistics sustainability is at the fundamental core of the PI ([21]). In the context of city

logistics study, achieving sustainability and improving quality of life for residents by re-

ducing congestion and air pollution, while providing better service level, is important ([16];

[58]), which is one of the main goals pursued by a hyperconnected logistic systems ([23]).

The chapter can also fill the gap in the literature by revealing the dynamics of such various

measures through a simulation-based approach.

2.2.3 Simulation in Urban Logistics

Simulation is a powerful tool to model complexity and dynamics of urban logistic systems

with a level of fidelity that can hardly be captured with a traditional optimization approach.

Taniguchi, Thompson, and Yamada [59] reviewed the use of optimization and simulation

techniques in urban logistics studies. One must notice that most of the related works resort

to optimization or to a combination of techniques ([60]; [61]) and that only a few resort to

simulation to tackle the problem. However, simulation enables capturing detailed factors

such as congestion, and the evolution of a wide set of interlaced key performance indicators

([61]). Duin, Kortmann, and Boogaard [62], in line with previous work by Verbraeck [63],

address five conditions that a simulation model benefits. Among these conditions, three

are relevant to the research in this chapter. (1) The problem is complex in such a way

that the outcomes are not simple and one-sided. (2) Because the new concept we want

to study does not exist yet, it is too expensive and time-consuming to experiment with a
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real-world model. (3) There is no simple, analytical solution to the mathematical models

of the system. Agent-based simulation (ABS) has an additional advantage in contexts

such as in this chapter: it enables investigating complex interactions between multiple

decision-making players, as well as the relative impact of different scenarios on each player.

Although less common than optimization models, simulation has been used for one or more

of the described reasons in the area of urban logistics and PI study. Concerning urban

logistics study, Heeswijk, Albertus, Mes, Schutten, and Zijm [64], Wangapisit, Taniguchi,

Teo, and Qureshi [65], Duin, Kolck, Anand, Taniguchi, et al. [66], and Roorda, Cavalcante,

McCabe, and Kwan [67] used multi-agent simulation approach, some specifically to study

UCC. In area of PI, Sarraj, Ballot, Pan, Hakimi, and Montreuil [68] and Pan, Nigrelli,

Ballot, Sarraj, and Yang [69] used ABS to respectively study efficiency and sustainability

of logistic networks and optimal inventory policies. Notably, Heeswijk, Albertus, Mes,

Schutten, and Zijm [64], Holmgren, Davidsson, Persson, and Ramstedt [70] and Roorda,

Cavalcante, McCabe, and Kwan [67] provided a great simulation framework for modeling

behaviors and interactions of urban actors on policy and contract decisions. Our framework

focuses more on operational decisions and interactions, incorporating dynamics such as

congestion and stochastic delivery times. It also models inventory management in detail

while the previous literature focuses on transportation.

2.3 Decision and System Architecture

In this section, we describe the decision and system architecture modeling. The key lo-

gistic resources and key players are defined and key operational decisions are modeled for

supporting alternative fulfillment and transportation systems. System and network archi-

tecture is first described to clarify the scope of the business context, such as urban logistic

resources and key players. Following is the key decision architecture including an inven-

tory policy and routing method. The decision and system architecture forms the blueprint

for the simulation platform.
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Figure 2.2: Schematic description of modeling and experiment structure

Figure 2.2 shows the overall experimental design through the link between the simu-

lation platform and network and decision architecture design, scenarios, and key perfor-
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mance indicators (KPIs), which are described in detail in Sections 3 and 4. The decision

and system architecture affects the simulation framework structure. All operation policies

and associated optimization algorithms are embedded in the simulation. It can be seen that

the simulation is modeling key players, such as retailers, customers, and suppliers, and that

each key player has key agents performing key operations, such as an inventory manager

and a router. Each component in the simulation framework is described in detail in this

section. Then, different scenarios are evaluated via the simulation using appropriate KPIs.

The experimental design is described in detail in Section 4.

The section begin with a comprehensive list of notations to be used in the following

sections.

2.3.1 Notations

• F: Fulfillment center (DPF: Dedicated Peri-urban FC, OUF: Open Urban FC)

– ic: Unit daily inventory holding cost

• H: Hub (OUH: Open Urban Hub)

– hc: Unit hub usage cost

• R: Set of retailers. For r ∈ R:

– Fr: Set of hubs r has access to

– Pr: Product portfolio of r

– Ir = {Irp = {Irpf∀f ∈ Fr, I
i
rp}∀p ∈ Pr}: Inventory of r for all products in

Pr, Irp which comprised of on-hand inventory in each FC (Irpf ) and in-transit

inventory (I irp)

– Cr: Set of customers to serve

• Q: Set of Suppliers. For q ∈ Q:
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– Pq: Product portfolio of supplier q

• P: Set of Products. For p ∈ P :

– qp: Supplier of p (unique)

– Rp: Retailer selling p

– lp: Stochastic replenishment leadtime of p

– ξp: Stochastic delivery time of p

– ωp: Stochastic install time of p

• C: Customer

– Ct: Set of customers to make delivery to on day t

– rc: Retailer received order of a customer c

– pc: Product that c orders

– (xc, yc): Latitude and longitude of delivery location for c

– TWc = (EDc, LDc): Delivery time window for c defined as the earliest and

latest delivery start time (EDc, LDc)

– fc: Fulfillment center from which c is fulfilled

– hc: Hub from which the delivery to c is made directly

• Ot: Routes to be served on day t. For a route o in Ot:

– fo or ho: A fulfillment center or a hub that is the depot for route o

– To: Departure time at the depot

– {
−→
Co}: Sequence of customers to visit

– d(a, b): Distance between a and b where a, b are customer delivery location,

hub, or FC
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– wh: Weight for distance from hub h calculated as the hub h’s usage cost (hch)

divided by usage cost of hubs in suburban area (hcsuburb)

• v: Vehicle

– typev: Type of vehicle v

– Vv, Wv: Volume and weight capacity of V

– ov: Route currently assigned to v to serve

2.3.2 Logistic Network and Resources

The main geographical area of interest is a single city. The two important physical elements

are logistics facilities and delivery vehicles. There are two main types of logistics facilities

modeled in this chapter: fulfillment centers and logistic hubs.

Model City

A grid city model shown in Figure 2.1 is used for a generic representation. It consists of

districts and a main road network, which are represented as basic square areas and edges

of the grid respectively. The main road network represents highways or boulevards. Ve-

hicles move along the main road network when moving between districts by entering to

and exiting from the closest point on the network. When moving within a district, vehi-

cles are assumed to move along an implicit small road network modeled as a straight line

travel. The average speed on the inter-district road network is higher than the speed on

intra-district roads. However, the actual speed is a stochastic variable varying by hour and

day on each road. Such a road network structure represents the essence of the common

structure of large cities.

As pointed, the geographically simplified grid city model provides flexibility to simu-

late different cities by varying parameters such as demand density distribution, population,
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or size. Its simplicity also enables us to focus on the logistic transformations and their

impact on the key performance objectives.

Urban Logistic Facilities (F,H)

There are two fundamental types of urban facilities in the study: fulfillment centers (F) and

logistic hubs (H). Fulfillment centers are the main storage facility to fulfill customer orders

in the city. Hubs enable consolidation, crossdocking and transshipment of goods. Both

are further differentiated according to their location, as peri-urban (P) or urban (U) and/or

according to whether they are open (O) to all retailers or dedicated (D) to a specific retailer

or an exclusive group of retailers. For example, OUH stands for an Open Urban Hub and

a PF stands for a Peri-urban Fulfillment center. In general, PFs have larger capacity than

UFs due to lower space cost and availability, so only a limited set of top-selling products

will be stored in UFs. The location of each facility is defined as an (x,y) coordinate in the

grid representing the city.

The costs associated with the facility use are the inventory holding cost (ic) and the hub

usage cost (hc). Each cost is measured in $/item,day and $/item, respectively. The costs

used in the experiment are determined exploiting representative market prices in Flexe.com.

Both costs differ only by the location of the facilities. For example, the usage cost of urban

facilities in the city center is higher than the cost of using facilities in peri-urban areas,

but the inventory holding cost is the same in dedicated peri-urban FCs and open peri-urban

FCs. Because the focus is on the operational efficiency rather than on network optimization,

facility opening cost is not considered.

Each fulfillment center f and hub h has the following attributes:

f = {Operation(D/O), Area(P/U), location = (x, y), icf , Rf}

h = {Operation(D/O), Area(P/I), location = (x, y), hch}
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where Rf is the set of retailers who has access to the fulfillment center f . In this study, all

the hubs are assumed to be open facilities.

Delivery Vehicles (v)

Different types of vehicles are used for each route type in the study. Last-mile routes from

FCs to customers are served by 17′ trucks. Smaller trucks -10′ trucks- are used for tier-2

routes which tend to be shorter and carry fewer items. Last, larger trucks -26′ trucks- are

used for tier-1 routes. Vehicles are assumed to be sourced on demand from a 3PL company.

Given a route and schedule assignment, vehicles travel at speeds according to actual

traffic of the time of day. Because of traffic fluctuations, the travel time is stochastic. The

times to deliver and install the goods are also stochastic. It means that delivery trucks

may arrive at each customer location earlier or later than scheduled. This, in turn, can

cause delivery lateness failing to arrive within the customer time window. Late delivery

may cause delivery failure and delivery rescheduling to other days. Here, we assume that

late deliveries are still made on the same day, causing customer dissatisfaction. When

delivery persons arrive earlier than the earliest delivery time specified at the time window,

they have to wait to start delivery. Waiting does not affect customer satisfaction, but it

decreases operational efficiency and causes road congestion. Each vehicle has the following

attributes: v = {typev, Vv,Wv, ov}, where type is vehicle type, Vv and Wv are volume and

weight capacity, and o is an assigned route.

2.3.3 Market

Three key players form the market: retailers (R), customers (C), and suppliers (Q). All in-

stances of the three key players are modeled as independent agents in the simulation with

their operations, behavior, and interactions implemented as rule-based policies or heuris-

tics.

Note that although municipalities often serve a significant role in city logistics ini-

25



tiatives, they are not included in the key players here because the proposed hypercon-

nected system is designed to be market-driven. However, municipalities’ objectives and

constraints are captured implicitly through social and ecological requirements.

Retailers (R)

Retailers (R) are at the center of the market in the study. They receive and fulfill customer

demand while managing inventory. Each retailer r has its own product portfolio of products

(Pr) and dynamically manages its inventory (Ir = {Irp,∀p ∈ Pr}) over the fulfillment

network of accessible fulfillment centers (Fr). Cr is the set of customers for r to serve. A

retailer r has the following attributes:

r = {Fr, Pr, Ir, Cr}

Ir is composed of the on-hand inventory of each product p ∈ Pr in each FC f ∈ Fr (Irpf ),

and the in-transit inventory of each product I irp. Each retailer r manages its own inven-

tory independently. Inventory management includes replenishment, distribution, and ful-

fillment. The inventory management scheme is described in detail in subsubsection 2.3.4.

Note that, because the retailers are not manufacturers, some products are sold by mul-

tiple retailers (Pr ∩ Pr′ 6= ∅) and customers are assumed not to have a preference among

retailers. This affects customer behavior, as explained in subsubsection 2.3.3.

Suppliers (Q) and Products (P)

Suppliers (Q) receive replenishment orders from one or more retailers and ship their prod-

ucts to them. Each supplier (q) produces or supplies an exclusive set of products, Pq. That

is, a product p is single sourced from a supplier q but can be sold by multiple retailers. The

set of retailers offering p is denoted as Rp. The stochastic lead time lp of each product p

combines a production lead time and delivery lead time. Production lead time is assumed
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to be zero for make-to-stock (MTS) products and is a positive stochastic variable for make-

to-order (MTO) products. Delivery lead time is affected by proximity of the supplier’s

facility. It is assumed suppliers always have available inventory.

There are a delivery time (ξp) and an install time (ωp) associated with the delivery of

p, and both are stochastic variables. In the experiments, the delivery and install times are

assumed to follow Uniform[ξp, ξp] and Uniform[ωp, ωp], respectively. Delivery time is

always positive but installation time can be zero for some products, such as a small chair.

A product p and supplier q are defined with their attributes as follows:

p = {qp, Rp, lp, ξp, ωp}

q = {type(MTS/MTO), Pq}

Customer (C)

Each customer (c) represents a delivery order. The customer order arrival process is mod-

eled as a Poisson process by product (p), district (d), and retailer (r) with a constant arrival

rate λdpr, meaning there is no seasonality over the study period. Some customers may find

the product they are looking for is not available at the first retailer. If the same product is

available at other retailer(s), the customers will order from any of the retailers with avail-

able stock (retailer substitution). If no other retailer has available stock, customers will wait

or leave with probability u(w) or 1−u(w) respectively. The probability u(w) is a function

of expected waiting time (w). Ct is the final set of customers to whom the delivery must be

made on day t.

The customer arrival rate varies by district in the study. In the main experiment, the

arrival rate is assumed to be higher in the center of the city. Such demand distribution is

commonly found in the large cities where population and businesses are concentrated in the

city center. However, different demand distribution is investigated via sensitivity analysis

as presented in subsubsection 2.5.2.
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Each customer is assumed to order one product (p) to retailer (r). The customer re-

quires a delivery to location (x, y) and also will choose the delivery time window TW =

(ED,LD) within the carrier’s available work hours. The delivery time window (TW) de-

fines the earliest and the latest time (ED and LD) when the delivery process must start. The

length of a time window is |TW | = LD − ED ∈ [2, 4] hours where ED ∈ [9AM, 6PM ]

and LD ∈ [11AM, 8PM ]. Next-day delivery is assumed for all customers. When multiple

FCs are available, customers are assigned to a FC f from which to be fulfilled by an inven-

tory manager of the corresponding retailer (see subsubsection 2.3.4) and assigned to hub h

if hubs are used by a router (see subsubsection 2.3.4).

In summary, each customer order c has the following attributes:

c = {rc, pc, (xc, yc), TWc = (EDc, LDc), fc, hc}

where (xc, yc) represents the delivery location and fc and hc represent assigned FC and hub

from which the customer c is served.

2.3.4 Last-Mile Fulfillment and Delivery

Inventory management and delivery routing under the hyperconnected fulfillment and trans-

portation system are different from those under the dedicated system and, therefore, must

be well designed to enable proper comparison of the two systems. Inventory management

includes inventory tracking and replenishment as well as deployment and order allocation

when multiple FCs are available. The delivery routes and schedules must cover all cus-

tomers, and aim to respect the delivery time window while minimizing total labor hours.

The inventory management scheme and routing algorithm are described in detail in this

section.
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Inventory Management

As mentioned in the previous section, inventory is managed by each retailer independently,

even in the hyperconnected settings, because it is at the core of retailers’ business. Among

the plethora of inventory policies available, here we assume that inventory management

is based on a service-level driven (srp, Srp) policy for each product p ∈ Pr. The reorder

point (srp) and order-up-to level (Srp) are calculated using a three-standard-deviation (3σ)

service level rule, with a normal approximated demand distribution.

When multiple open FCs are available with hyperconnected fulfillment, retailers can

deploy inventories among the open FCs. In those scenarios, inventory deployment and al-

location to customers are key dynamic decisions. The deployment among multiple FCs

must be done in a way to balance inventories with respect to demand in the network, which

means having the right amount of stock in each FC to fulfill future demand rather than

having equal stock level in each FC. Inventory can be balanced by smartly redeploying

inventories between FCs or deploying new stock among FCs. We assume suppliers stop

and unload the new stock at multiple open FCs at the request of retailers to balance inven-

tory, assuming close cooperation between retailers and suppliers. Inventory allocation to

customers requires deciding from which FC to fulfill each customer. One way is to ful-

fill a customer order is to fulfill from the nearest available FC, which is the nearest to the

customer location among those that have available inventory of the ordered product. This

allocation decision will be the input to delivery routing method.

Note that the increase in the number of FCs does not increase the required inventory

level because delivery zones are not preassigned to each FC. In other words, customer

orders are allowed to be fulfilled from any FC so that there is complete inventory pooling

among exploited FCs. Because the number of exploited FCs does not change demand of

the city, the overall required inventory level and (srp, Srp) level remain the same.
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Routing

A router (O) generates daily delivery routes based on order information such as delivery

location and time windows (TWs), inventory location assignments, expected traffic pattern

in terms of travel speed, and expected delivery and installation time. A router represents

the transportation department of a retailer or a 3PL service provider. It can belong to one

retailer in scenarios with dedicated transportation, but with hyperconnected transportation,

a router is modeled as an independent service provider who manages routing for all retailers

simultaneously. Daily routes are constructed in the early morning every day and inventory

location assignment made by an inventory manager of each retailer is forwarded to the

router.

When no PI hub is used, all routes depart from an FC and all customers in the route are

fulfilled by the FC. When hubs exist, two-tier routes are constructed. Last-mile routes (tier-

2 routes) from hubs to customers are built by first assigning customers to the nearest hubs

based on weighted distance (whd(h, ci)). Then the customer-hub assignments are used as

an input to build routes from fulfillment centers to the hubs (tier-1 routes). The weight for

hub h wh = hch/hcsuburb is calculated by dividing the per-item usage cost of hub h (hch)

by the per-item usage cost of hubs in suburban area (hcsuburb). Because the usage cost of

a hub located in the city center is more expensive than in suburban area, hubs in the city

center are penalized.

Each route (o) consists of an origin facility (FC (fo) or hub (ho)), a sequence of cus-

tomers to visit ({
−→
Co}), and the departure time at the depot (To):

o = {fo or ho, To, {
−→
Co}}

Note that when the sequence of customers to visit is known, a sequence of delivery loca-

tions and delivering items at each location is also known, as well as the expected delivery

schedule referring to the starting time of the route.
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The vehicle routing problem with time windows (VRPTW) is a well-known problem

and there is a large variety of heuristics proposed in literature. For example, Solomon

[71] proposed several construction heuristics, such as savings heuristics, nearest-neighbor

heuristics, insertion heuristics, and sweep heuristics. The most successful heuristic was an

insertion heuristic working as follows: at any position of a given route, insert if feasible

a new customer among unrouted customers that maximizes distance and time savings as

opposed to direct serving of the chosen customer. Initial routes can be constructed, for in-

stance, by choosing an unrouted customer with the latest feasible time window. Campbell

and Savelsbergh [72] concisely summarize information to be maintained, route updates,

and route finalization for VRPTW with insertion heuristics. They suggest that pushing de-

livery schedules to the latest possible time minimizes waiting time of any feasible route.

The VRPTW variant addressed by Liu, Guo, Yu, and Zhou [73], who consider stochastic

assembly time in addition to a deterministic travel time, is the closest to what we propose

in this chapter. They first modeled the problem as stochastic optimization with chance con-

straint, derived an equivalent deterministic program, and presented heuristics in sequence.

The approach in this chapter is similar to the time-sliding mechanism and saving algorithm

in Liu, Guo, Yu, and Zhou [73]. In the context of a large-item delivery, Weigel and Cao

[74] present a routing-and-scheduling algorithm that involves worker and service request

assignment.

The route construction heuristic with time window (TW) used in this chapter for last-

mile routing is a variation of the best insertion heuristics described in Solomon [71] reflect-

ing the observations of Campbell and Savelsbergh [72] on minimum waiting time. For tier-

1 routing, which is a lot simpler due to a small number of delivery points and no customer

TW constraint, the CW construction heuristic ([75]) is used. Insertion based heuristics and

CW heuristics are still commonly used as a part of advanced routing algorithms these days

([76]; [77]). Although more advanced and sophisticated routing algorithms are available,

a simple construction heuristic that can repeatedly generate good feasible routes in a short
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time satisfies the strategic goal of the chapter.

Algorithm 1: Routing Heuristic
Input: Customer set Ct, Inventory status I(r, p, f) ∀p ∈ Pr, f ∈ Fr, r ∈ R
Output: Tier-1 routes and tier-2 routes

1: for all c ∈ Ct do
2: fc = argminf∈F {d(f, c)|I(rc, pc, f) > 0}
3: hc = argminh∈H{whd(h, c)}
4: end for
5: Set Unrouted = Ct

6: Set Ot = ∅
7: while |Unrouted| > 0 do
8: i = argmaxi∈Unrouted{LDi}
9: o = {ho = hi, To = LDi − τ(ho, i|LDi),

−→
Co = Ci}

10: bo = LDi

11: t(o) = τ(ho, i|bo) + E[STi] + τ(ho, i|bo + STi)
12: Unrouted← Unrouted \ {i}
13: while |Unrouted| > 0 do
14: j = argminj∈Unrouted{∆t(o, o+j)|t(o+j) ≤ Tlabor, v(o+j) ≤ Vv2 , w(o+j) ≤Wv2 , hj = ho,

bo+j = min(LDj , bo − τ(j, i|bo)− E[STpj ]) ≥ EDj}
where o+j = {ho, To+j = To −∆t(o, o+j),

−−−→
Co+j = {j,

−→
Co}}

15: if j not NULL then
16: o← o+j

17: else
18: Ot ← {Ot, o} and go to line 7
19: end if
20: end while
21: end while
22: Set Unrouted1 = Ct

23: O′t = {oi∀i ∈ Ct} where oi = {foi = fi, Toi = Ti,
−−→
Coi = {i}}

24: while |Unrouted1| > 0 do
25: for oi ∈ O′t do
26: oj(i) = argmaxoj∈O′

t\oi
{t(oi) + t(oj)− t(oi,j)|t(oi) + t(oj)− t(oi,j) > 0,

t(oi,j) ≤ Tlabor,1, v(oi,j) ≤ Vv1 , w(oi,j) ≤Wv1 , fi = fj}
where oi,j = {hi, T1,

−−−→
Coi,j = {

−−−−−→
Coi , Coj }

27: savingsi = t(oi) + t(oj)− t(oi,j)
28: end for
29: Select oi∗ = argmaxoi∈O′

t
{savingsi}

30: if oi∗, oj(i∗) not NULL then
31: O′t ∪ oi∗,j(i∗) \ {oi∗, oj(i∗)}
32: else
33: Go to line 36
34: end if
35: end while
36: return tier-2 routes Ot and tier-1 routes O′t

The routing heuristic for two-tier routing with hubs is described in Algorithm algo-

rithm 1. Routes are generated everyday using the set of customers to serve on day t (Ct)

and the current inventory as an input. Each customer c is served from the nearest hub (hc)

using weighted distance and from the nearest available FC (fc) (line 1 to 4). Lines 5 to

21 describe the tier-2 route construction algorithm. The routes are constructed sequentially

and greedily and added to the set of tier-2 routes of day t (Ot). A route o begins to be

shaped by choosing a seed customer i among unrouted customers who has the latest deliv-
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ery time window (lines 8 to 12). bo is the time of service start time at the first customer

of route o. t(o) is the expected total duration of route o and it consists of expected travel

and service times. Travel and service times are stochastic, so expected values are used for

routing. Expected travel time between a and b at time of day dt is calculated based on ex-

pected traffic of the day in time dt (τ(a, b|dt)). Service time at customer j (STj) consists of

delivery time (xipj ) and install time (ωpj ). Iteratively, a new, not yet routed customer j who

increases the total route duration the least is selected. Then, feasibility of adding customer

j before the first customer of route o is checked as in line 14. Routing is constrained by

maximum labor hour (Tlabor), volume and weight capacity of each vehicle v (Vv,Wv), and

time windows (TW = (ED,LD)). Different vehicle types are used for no-hub routes,

tier-1 routes, and tier-2 routes (v0, v1, v2). If feasible, route o is updated; otherwise, route

o is finalized and added to Ot (lines 15 to 19). The tier-1 route construction algorithm is

described in lines 22 to 35. The time window constraints are not applied to tier-1 routes

delivering to hubs. As mentioned, a simple CW construction heuristic is used for tier 1.

Because the early-morning pre-delivery to hubs cannot take full regular labor hours, short-

ened maximum labor hours (Tlabor,1) are used for tier 1. An initial set of tier-1 routes of day

t (O′t) consists of single-stop routes to all customers. These routes are merged iteratively

by taking two routes that maximizes time saving (line 29) until no merge is feasible and

desirable.

Routing without hubs is the same as tier-2 routing, only it uses larger vehicles, and FCs

rather than hubs. To be specific, line 3 and lines 22 to 35 are deleted and in lines 9 and 14,

fo,fi replace ho,hi and v0 replaces v2. Finally, in line 36, it returns routes for each tier Ot

and O′t.

Urban Traffic Pattern

Traffic in each city area has a distinctive pattern, such as peak-hour distribution, and it

has a significant impact on travel time for delivery. To approximately model such a traffic
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congestion pattern, the traffic in the city is stochastically set as an average travel speed for

each hour of each day along each road type in the city. Even though it is possible to model

with fine granularity vehicles moving across a city and thus explicitly model traffic signal

and congestion for urban logistics study ([78]; [79]; [80]), this approach is highly resource-

intensive. For our strategic modeling purposes, we have selected to do as Taniguchi and

Der Heijden [81] have shown where a central traffic module sets average road-based and

day-and-time-based travel speeds dynamically.

Traffic varies by road type, hour of the day, and by weekday. For example, Monday to

Friday have heavy traffic during rush hours but traffic does not vary in such a way during

weekends. Traffic on small roads varies by district but is assumed to be identical within a

district. For example, small road traffic tends to be worse in the districts in the center of

the city. Traffic on main roads is differentiated only by city center and perimeter: whether

a path of a vehicle includes the city center or not. Average travel speed data by hour

and weekday is collected between different pairs of points in the real world map which

represent different segments: main roads (highways/boulevards) passing through the city

center, main roads not passing through the city center, small roads at the city center, and

small roads at the perimeter in South, West, North, or East of the city. Figure 2.3 shows

typical hourly traffic patterns for weekdays and weekends.

Figure 2.3: Typical traffic pattern in average speed by hour of day by road type in a weekday
or in weekend
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2.4 Simulation-based Experiment Design

To investigate the potential impact of the hyperconnected fulfillment and transportation

system on last-mile delivery of large items as shown in Figure 2.1, scenario analysis via

an optimization-supported simulation platform is used. Simulation-based scenario analysis

is well proven to be an effective tool to compare different systems at a strategic level by

evaluating overall performances, especially when the system is very complex involving dy-

namicity, interactions, and stochasticity. In this section, we start with scenarios designed to

represent gradual PI transformations in each thread of fulfillment and transportation. Fol-

lowed are KPIs carefully chosen to evaluate the scenarios in three dimensions: economic,

service level, and environmental aspects. Last, we describe the optimization supported

simulation platform built to evaluate scenarios based on the logistics system and decision

architecture defined in the previous section.

2.4.1 Scenario Design

As mentioned, last-mile logistics in a city area can be divided into two main logistic oper-

ations: fulfillment and delivery. From a facility’s point of view, hyperconnected fulfillment

enables storage spaces such as FCs to be used on demand by any company. From a net-

work’s point of view, hyperconnected fulfillment enables any company to access and ex-

ploit a large, broad fulfillment network regardless of the company’s size. Hyperconnected

delivery involves a dynamic and broad range of flow consolidation and modularization of

delivery activities by region and functional layers. It is often implemented through a net-

work of various types of open logistic (PI) hubs. The modularization of routes enables

dynamic flow consolidation and route specialization. For example, when long-haul routes

are divided into short routes connected to each other at PI hubs, shipments from different

long-haul routes can be merged fast and efficiently in some of the short routes. In the con-

text of urban delivery, the multi-tier delivery system described by Crainic and Montreuil
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[23] is one of the ways to implement hyperconnected delivery. The multi-tier system allows

the last-tier routes, which are shorter and carry fewer items compared to original routes, to

be operated with smaller greener vehicles in a multimodal approach including, for example,

bicycles and electrical scooters.

Scenarios are constructed by transforming the current urban large-item logistics system

into a hyperconnected system, first along each thread of fulfillment or delivery, and then

by combining both transformations. Figure 2.4 illustrates urban logistics network topol-

ogy and operation of each investigated scenario, representing the transformation into the

hyperconnected system along the thread of fulfillment and delivery. Similar to Figure 2.1,

the operations of four retailers and their customers are described in different colors. Each

scenario in Figure 2.4 is described in detail hereafter.

Figure 2.4: Sample scenarios illustrating the gradual transformation from dedicated to hy-
perconnected logistic structure and routes with delivery time windows

Scenario 1 represents typical current dedicated operations. Each retailer operates its

own fulfillment center, typically located in a peri-urban area (DPF, dedicated peri-urban

fulfillment center), and each retailer optimizes its own delivery routes served by its own or

exclusively contracted fleet of vehicles and delivery team. Scenario 1 forms the baseline to
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which other scenarios are compared.

Scenarios 2 to 4 are constructed along the thread of hyperconnected fulfillment. In

these scenarios, customers of any retailer fulfilled from the same FC are served in multi-

retailer routes. The scenario mimics the use of a third-party logistics orchestrator ([82])

contracted by all retailers to consolidate orders out of an FC to ensure efficient routes to

customers, while the actual drivers and trucks may be from various businesses contracting

to perform specific routes. Scenario 2 exploits a single open peri-urban FC (OPF) in which

all retailers store multi-product inventory and from which all customers are served. Note

that when delivery routes are dedicated to each retailer, delivery related metrics remain the

same as scenario 1 given symmetric demand distribution and network structure.

Scenario 3 exploits multiple OPFs. Each retailer smartly deploys its inventory in any

of the OPFs to ensure inventory availability at the nearest FC to future customers. Cus-

tomers are served from the nearest FC that has available inventory. Proximity to customers

is increased for all retailers. This scenario can be interpreted as a scenario in which exist-

ing DPFs of the retailers start to be open, operated by a third-party logistics orchestrator.

When the current FCs are the most spread-out, as assumed in the scenario, the proximity

to customers can be increased the most.

Scenario 4 introduces an additional open FC located at the city center (OUF) to scenario

3. The capacity of the OUF is limited and unit storage cost at the OUF is higher compared

to that of OPFs due to the limited land and high rent at the city center.

Scenarios 5 and 6 experiment further hyperconnected delivery, beyond the multi-retailer

delivery in scenarios 2-4, by exploiting open urban hub(s) (OUH(s)). FCs are retailer-

dedicated in these scenarios, but products are first shipped to OUHs from FCs in the early

morning on a large truck and shipped to customers from OUHs during the day on a small

truck. The former routes are referred as tier-1 routes and the latter routes are referred as

tier-2 routes. Scenario 5 exploits a single OUH at the city center and scenario 6 exploits a

network of OUHs spread over the city.
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Scenarios 7-8 represent combined hyperconnected fulfillment and delivery systems.

Both of them exploit multiple OPFs as in scenario 3. Scenario 7 exploits a single OUH

and scenario 8 exploits a network of OUHs. Scenario 7 can be seen as a combination of

scenarios 3 and 5 and scenario 8 can be seen as a combination of scenarios 3 and 6.

2.4.2 Key Performance Indicators

It is critical to use proper KPIs to evaluate scenarios from multiple perspectives. We cat-

egorize the KPIs into three major groups by the type of impacts they measure: economic,

environmental and social impacts.

All indicator values are measured as a daily expected value because the last-mile op-

erations including customer arrivals are on a daily basis. That is, when a simulation runs

for T days, T observations of each indicator value are obtained and the expected value is

calculated based on these observations.

Measurement of Economic Impacts

The most straightforward KPIs to use are travel distance and several cost components.

Cost components related to delivery are labor, fuel, and vehicle rental cost. Cost compo-

nents related to facility cost are hub usage and inventory holding cost. The sum of all cost

components provides the total induced cost. In this experiment, the unit of all costs is $/day.

To define the KPIs, first let the distance in miles between locations i and j be dij . Ot is

a set of routes to serve on day t, d(o) =
∑∑

i,j∈{depot,
−→
Co,depot} dij is the travel distance of

route o. The depot would be an FC fo or a hub ho. Vt is a set of vehicles used on day t, and

lc(v), fc(v), vc(v) are labor cost, fuel cost, and vehicle cost associated with each vehicle

v ∈ Vt respectively. Different hourly rates are applied to each personnel based on his or her

role; therefore, the labor cost lc(v) is calculated differently by the type of routes assigned

to each vehicle v. For example, installation staff requires higher hourly wages than delivery

staff. To serve a deliver-and-install route, one installation staff and one delivery staff form
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a team. Alternatively, to serve a tier-1 route, only one driver is needed. Vehicle cost can be

the cost of daily/hourly vehicle rental or vehicle maintenance cost depending on context. In

this chapter, vehicles are assumed to be rented by the hour in all scenarios for consistency,

so the rental cost is proportional to usage time.

The cost of using a hub is charged by item going through each hub. hch is the cost of

using hub h per item, and it is more expensive for a hub in the city center. THt(h) is the

throughput at hub h on day t. icf and IOt(f) are unit inventory holding costs ($/item,day)

and on-hand inventory level on day t at FC f , respectively. Similar to hub costs, unit

holding costs are more expensive for a FC at the city center. In addition to costs, we present

travel miles to provide better insight because delivery costs are not always proportional to

travel miles, especially with hub operations.

The economic KPIs are expressed as follows:

• (KPI1a) Expected daily travel miles: E[TM ] = 1
T

∑T
t=1

∑
o∈Ot

d(o)

• (KPI1b) Expected daily labor cost: E[LC] = 1
T

∑T
t=1

∑
v∈Vt lc(v)

• (KPI1c) Expected daily fuel cost: E[FC] = 1
T

∑T
t=1

∑
v∈Vt fc(v)

• (KPI1d) Expected daily vehicle rental cost: E[V C] = 1
T

∑T
t=1

∑
v∈Vt vc(v)

• (KPI1e) Expected hub usage cost: E[HC] = 1
T

∑T
t=1

∑
h∈H hch ∗ THt(h)

• (KPI1f) Expected inventory holding cost: E[IC] = 1
T

∑T
t=1

∑
f∈F icf ∗ IOt(f)

• (KPI1g) Expected total delivery cost: E[TTC] = E[LC] + E[FC] + E[V C]

• (KPI1h) Expected total facility cost: E[TFC] = E[HC] + E[IC]

• (KPI1i) Expected total induced cost: E[TC] = E[LC]+E[FC]+E[V C]+E[HC]+

E[IC]
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Measurement of Service Level Impacts

In this chapter, service capability is used to measure social impacts, which can be poten-

tially improved by a hyperconnected urban logistics system. When a delivery time window

(TW) is required by a customer, lateness plays a critical role in the customer’s experience,

which can result in delivery postponement and rescheduling or even lost sales. As direct

measures, expected lateness and conditional expected lateness time are calculated.

• (KPI2a) Expected lateness per order: E[lateness] =
∑T

t=1

∑
o∈Ot

∑
c∈o[DTc−LDc]+∑T

t=1

∑
o∈Ot

|o|

• (KPI2b) Conditional expected lateness per order:

E[lateness|lateness > 0] =
∑T

t=1

∑
o∈Ot

∑
c∈o[DTc−LDc]+∑T

t=1

∑
o∈Ot

|o+|

where |o| is the number of customers in route o, o+ is customers in route o whose

delivery was late, DTc is delivery time to customer c, and LDc is the latest delivery time of

time window of customer c. Note that the delay is calculated as [DTc − LDc]+. Also, the

(KPI2b) will be simply zero when there is no late delivery.

Montreuil, Labarthe, and Cloutier [83] modeled various types of TW requirements and

satisfaction curves and showed the impact of delays and early delivery in a make-to-order

environment. Similarly, customer satisfaction level is also measured using three different

types of utility function.

• (KPI2c-k) Expected customer satisfaction level with utility function gk, k = 1, 2, 3:

E[Satisfaction|gk] =
∑T

t=1

∑
o∈Ot

∑
c∈o fk(DTc,LDc)∑T

t=1

∑
o∈Ot

|o| where

– g1(DTc, LDc) = ρ−[DTc−LDc]+
ρ

: linear utility function

– g2(DTc, LDc) = 1
1+[DTc−LDc]+

: Inverse utility function

– g3(DTc, LDc) = exp−[DTc−LDc]+ : Exponential utility function

Note that all the utility functions have a satisfaction level of 100% when the delay is 0 and a

satisfaction level converging on 0 as delay time increases. For all calculations of the utility
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functions, DTc and LDc are measured in hourly units. In g1, the constant ρ = 8 is used

because the regular working hour is 8 hours a day.

Measurement of Environmental Impacts

From an environmental perspective, GHG or toxic gas emissions are important because

delivery vehicles are one of the most critical sources of GHG emissions and air pollution in

urban areas. We measure carbon dioxide (CO2) emission, the most critical GHG, emitted

by the combustion of fossil fuels in motor vehicles. GHGs are linked to global warming,

and there is a strong global push to curb CO2 emissions. In addition to CO2, vehicular

emission also leads to the release of toxic gases such as sulfur dioxide (SO2) and nitrogen

dioxide (NO2) into the atmosphere. The emission of fine particles, especially the atmo-

spheric particulate matter (PM2.5), is another important measure of environmental impact.

PM2.5 can penetrate into the lungs during inhalation and can lead to severe respiratory ill-

nesses ([84]). In addition to the atmospheric emission, fuel consumption of each vehicle v,

fuel(v), is measured.

To estimate the cumulative emissions of CO2, SO2, NO2, and PM2.5, we used the

Motor Vehicle Emission Simulator (MOVES) software produced by the US Environmen-

tal Protection Agency (EPA). The software estimates the emissions based on the number of

vehicles, vehicle types, road types, travel miles, and average travel speed. The input param-

eters are generated from the output of each scenario-based simulation run using our urban

sandbox simulator. We use Fulton County, Atlanta, GA as an example city for MOVES.

Even though this approach is sufficient for our purposes, it is possible to get more accurate

measures by using additional simulators for GHG emissions, such as that proposed by Os-

orio and Nanduri [80] who combine a traffic simulator and fuel consumption simulator for

accurate fuel consumption estimation.

The environmental KPIs are calculated as follows:

• (KPI3a) Expected daily CO2 emissions: E[CO2] = 1
T

∑T
t=1

∑
v∈Vt CO2(v)

41



• (KPI3b) Expected daily SO2 emissions: E[SO2] = 1
T

∑T
t=1

∑
v∈Vt SO2(v)

• (KPI3c) Expected daily NO2 emissions: E[NO2] = 1
T

∑T
t=1

∑
v∈Vt NO2(v)

• (KPI3d) Expected daily PM2.5 emissions: E[PM2.5] = 1
T

∑T
t=1

∑
v∈Vt PM2.5(v)

• (KPI3e) Expected daily fuel consumption: E[Fuel] = 1
T

∑T
t=1

∑
v∈Vt fuel(v)

2.4.3 Optimization-supported Simulation Platform

Here, we describe the optimization-supported simulation platform built on the network and

decision architecture described in the previous section. An agent-based discrete-events

simulation is exploited in this study. Figure 2.2 in section 3 shows the structure of the

simulation using a conceptual diagram illustrating the key agents, objects, and interactions

between them described as information and physical flows in the middle. The key players

and logistics resources are modeled as agents. For example, retailers and customers are

modeled as individual agents as seen in Figure 2.2. The optimization algorithms for key

decisions are embedded in active agents. For example, routing and scheduling algorithms

and inventory algorithms are respectively embedded in the router agent inventory manager

agent. Customers are classified as active agents due to the retailer substitution process

described in subsubsection 2.3.3. Figure 2.5 shows a snapshot of the simulation used in the

study.

Along with a simulation platform, one of the critical components of a simulation exper-

iment is data. The experiment in this chapter is designed to explore novel systems without

using industry data or existing benchmark data. Therefore, the market data, including prod-

uct specifications, sales, and retailer portfolios, are designed to be as realistic as possible

referring to information available on the web, for example, exploiting information on the

website of an e-commerce retailer selling furniture and large appliances. A total of 440

products are modeled, each belongs to one of 13 product categories. The product cate-

gories define general types of products such as a desk, chair, and refrigerator. The relative
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Figure 2.5: Model city and simulation snapshot

sales volume is designed to follow a Pareto curve, both in total and within each category,

as seen in Figure 2.6.

Figure 2.6: Pareto sales: total and per category

The product portfolio of each retailer is carefully designed as well. The most critical

characteristic of retailers to model is that retailers are selling products produced by differ-

ent manufacturers. In other words, based on the size or strategy of the manufacturer, the

same products can be sold by a single retailer (exclusive contract), by only a few retailers,

or by all retailers. The product portfolio of the four base retailers, used for the main exper-

iments, is designed accordingly. Figure 2.7 shows the number of products sold by the four
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Figure 2.7: Number of products sold by retailers

base retailers. The numbers in overlapped areas represent the number of products sold by

multiple retailers.

2.5 Experimental Results

The decision and system architecture and scenarios constructed in previous sections are

built into a simulation using Java and AnyLogic 8.2.3 for computational experiments. Each

scenario is ran for 2.5 years where the first 0.5 year is used as a warm-up period. From the

results, the KPIs proposed in the subsection 2.4.2 are calculated based on which scenarios

are evaluated and compared. Results of the eight main scenarios are hereafter analyzed,

followed by a sensitivity analysis.

2.5.1 Comparative Results

Experimental results for each of the eight scenarios described in section 4.1. are presented

here. The different combinations of dedicated or hyperconnected fulfillment and delivery

options have led to highly distinctive routing and scheduling patterns. With hyperconnected

fulfillment, routes can be shortened because customers can be served from nearer FCs and

deliveries of different retailers can be consolidated as shown in scenarios 2-4 in Figure 2.4.

With hyperconnected delivery, as in scenarios 5 and 6 in Figure 2.4, customers are served

with very short routes from OUHs, where environmentally friendly vehicles can be used.
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Short tier-2 routes can reduce road congestion in the city during the day, and tier-1 delivery

can be done in the early morning when traffic is not heavy. Combined, tier-1 routes can

also be efficient because deliveries to hubs can be served from nearer FCs and consolidated

among retailers while maintaining the benefits of multi-tier delivery, as shown in scenarios

7 and 8 in Figure 2.4.

Let us concentrate first on economic performance. The total induced cost (KPI1i) can

summarize the economic efficiency of each scenario most effectively. Figure 2.8 shows

the total induced cost along with its elements, fulfillment, and delivery costs of each sce-

nario. On top of each hyperconnected scenario, the total cost reduction rate with respect to

scenario 1 is shown.

Figure 2.8: Total induced cost consists of fulfillment and delivery cost by scenario with
total cost reduction rate with respect to scenario 1

With open FCs as in scenarios 2-4, delivery costs are reduced because many customers

can be served from closer FCs. Facility costs remain almost unchanged throughout scenar-

ios 1-3 because the inventory holding cost in peri-urban FCs is set to be the same. Even

when a more expensive urban FC is used in scenario 4, it remains almost the same because

only a small amount of inventory is stored in the urban FCs due to limited capacity. How-

ever, with open hub(s), as in scenarios 5 and 6, delivery costs are further reduced with the

two-tier routing scheme but facility costs are increased due to the added hub costs. Com-
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pared to scenarios with a single hub at the expensive city center, hub costs are saved by

using hubs in the suburban area in scenarios with multiple hubs.

Cost reduction rates of scenarios 2-8 in comparison to scenario 1 are shown in Fig-

ure 2.8. Each cost component and the total cost are shown in Table A.1 in Appendix A.

From scenarios 2 and 3, it can be seen that open PF(s) can reduce total costs by 12% to

17% depending on the number and location of the OPF(s). However, by comparing scenar-

ios 3 and 4, it can be inferred that an open UF (OUF) hardly brings more economic gain.

Scenario 3 is dominant among the scenarios in hyperconnected fulfillment.

The total cost was only reduced by 3∼4% by using a single OUH regardless of ful-

fillment operations, as shown in scenarios 5 and 7. However, significant cost reduction in

scenario 6 shows that having multiple OUHs, especially those not in the city center where

the hub cost is a lot cheaper, can be beneficial. The cost achieved with hyperconnected

delivery in scenario 6 is about 3% smaller than the cost achieved with the hyperconnected

fulfillment in scenario 3 because the savings from efficiency of tiered delivery outweighs

the cost of open hub use.

Figure 2.9: Average daily travel miles by delivery tier by scenario

As mentioned earlier, the cost of scenario 7 is not significantly different from the cost

of scenario 5, varying by about only 1%. However, the cost of scenario 8 is significantly

smaller than the cost of scenario 6, differing by 4%. That is, under the operation of the
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multiple OUHs, combining hyperconnected fulfillment can further reduce the cost mainly

by improving tier-1 operations. From Figure 2.9 which presents average daily travel miles

(KPI1a) by delivery type, it can be inferred that by distributing inventories in OPFs, tier-1

operations are improved significantly in scenario 8 compared to scenario 6 where each re-

tailer must supply all hubs from a single PF independently. Such a benefit does not exist

with a single hub operation where all tier-1 routes are simply single-stop round trips. Sce-

nario 8 reduces the total cost the most, by 24%, and later on it will be shown that other KPIs

have similar patterns. Therefore, we can say that scenario 8 dominates over all the other

scenarios. However, it must be noted that either hyperconnected fulfillment or delivery

can solely achieve about three quarters of the cost reduction found by the ultimate hyper-

connected fulfillment and delivery scenario. In practice, this implies that implementing

either one of the threads can be a good first step toward a hyperconnected system. Mean-

while, the marginal gain from transforming the remaining thread when one of the threads

is transformed first is still significant.

Figure 2.10 illustrates the service level improvement through the reduction rate of over-

all and conditional delivery lateness level per order (KPI2a and KPI2b) with respect to

baseline scenario 1. It can be seen that the expected lateness per order can be reduced by

∼40% and the conditional lateness by ∼30% with hyperconnected delivery. Using multi-

ple hubs, hyperconnected delivery can reduce these measures by up to ∼95% and ∼50%,

respectively. With hyperconnected delivery, the difference between overall and conditional

lateness increases, meaning that the lateness probability is decreased significantly. Note

that under hyperconnected delivery, having multiple hubs can reduce delivery lateness more

compared to the reduction achieved by a single hub, as shown by smaller reduction rates in

scenarios 5 and 7 compared to the reduction rates in scenarios 6 and 8.

Customer satisfaction level improvement by different utility function types −linear

(KPI2c-1), inverse (KPI2c-b), and exponential (KPI2c-3)− is described in Figure 2.11.

The impact of lateness reduction on customer satisfaction level depends on the shape of
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Figure 2.10: Lateness reduction rate by scenario

customer utility function. With a linear utility function, there is only very marginal im-

provement. However, with inverse or exponential utility function, meaningful improvement

in customer satisfaction level is observed. This is because the satisfaction level decreases

faster with inverse and exponential functions than with a linear function.

Figure 2.11: Customer satisfaction level improvement by utility function type by scenario

Environmental KPI improvement is illustrated in Figure 2.12. With little variation, all

four environmental KPIs follow a similar pattern. As in the previous performance perspec-

tives, scenarios 3, 6, and 8 are the best scenarios with respect to environmental KPIs from

their corresponding thread of transformation. Similar to the insights from economic KPIs,

OPFs do not make any difference in cases of single hub operations (comparing scenario 5
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and 7), whereas OPFs have significant impact when multiple hubs are used (comparing 6

and 8). In all scenarios except scenario 8, the reduction rate only reaches 20∼30%. How-

ever, in scenario 8, all emissions are reduced by almost half. This is an inspiring result for

companies with environmental goals or city governments needing to meet GHG emission

limits. Moreover, such significant reduction affects air quality in the city, which in turn can

improve quality of life of people living and/or working in the city. Also, the reduction in

fuel consumption can help companies to save operation costs.

Figure 2.12: Environmental KPI improvement by scenario

In summary, hyperconnected fulfillment and delivery scenario 8 shows improvement

in all KPIs - 24% cost reduction, more than 90% reduction in delivery lateness, and about

50% reduction in GHG emission - in comparison to base scenario 1, exploiting dedicated

fulfillment and delivery. Moreover, as can be seen from scenarios 3 and 6, hyperconnected

fulfillment or delivery alone can achieve about 60% of the KPI improvements in scenario

8.

2.5.2 Sensitivity Analysis

In this section, we perform a sensitivity analysis of the robustness of the previous results

with respect to key assumptions: (1) demand distribution, (2) demand size, (3) the number
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of retailers, (4) storage capacity limits, and (5) usage cost of open facilities. Each variation

is explained and its impacts are shown with experimental results for selected scenarios.

Demand Distribution

Each city has its own shape and population distribution. Such attributes of the city deter-

mine the distribution of delivery locations. In the main experiment, city-center-concentrated

demand distribution is assumed, where demand share is diminishing with distance from

the city center. However, demand may not be concentrated in the city center in some

cities. For example, it can be rather concentrated in the suburbs where residential com-

plexes are located. To examine the impact of demand distribution, the baseline scenario 1

and the dominant hyperconnected scenario 8 are simulated under geo-uniform demand and

suburb-concentrated demand distributions. The resulting expected daily cost is shown in

Figure 2.13 and each cost component is shown in Table A.2 in the Appendix.

Figure 2.13: Expected daily cost of scenario 1 and 8 by demand distribution and cost
reduction rate of scenario 8 in comparison to baseline scenario 1

For all demand distributions, scenario 8 saves about a quarter of the total induced daily

cost. This suggests that PI transformation can bring significant benefit to any city regard-

less of population or demand distribution. Cost savings are the smallest at 24% under
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center-concentrated demand distribution and increased to 27% and 28% under uniform and

suburb-concentrated demand distribution, respectively. This is because the more demand

is spread over a large area, the more gains in delivery efficiency can be achieved with the

hyperconnected system. It can be seen that most of the additional savings come from the

delivery cost. In fact, the savings in delivery cost with scenario 8 under center-concentrated,

uniform and suburb-concentrated distributions are 37%, 39%, and 40%, respectively.

Demand Size

Demand size, measured as the average number of customers to be served a day, also affects

the hyperconnected logistics system. For a main scenario comparison, each retailer serves

20 customers per day on average. Demand size is here increased by 2, 5, and 10 times so

that each retailer is to serve 40, 100, and 200 customers every day on average. Scenarios

1 and 8 are evaluated at the increased demand size. Resulting expected daily costs under

each demand size are shown in Figure 2.14.

Total daily cost savings increase with the size of demand, up to $8,937 with 10x demand

size from $1,560 with 1x demand size. In fact, the cost savings are increasing slightly less

than linearly relative to demand size. This does not mean that there will be no benefit from

hyperconnected logistics when the size of each retailer is large enough to have its own

economies of scale. It should rather be interpreted that the cost savings would converge,

reaching a maximum cost savings with respect to demand size. Also, in all experiments,

the number of retailers was fixed. When more retailers get involved as the demand size

increases, the total cost savings can be changed, and it is expected to climb because there

are more retailers for a given urban demand size.

Number of Retailers

The baseline case used for the main computational experiment offers a business context

in which four large item retailers operate in the city. In this subsection, instances with an
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Figure 2.14: Expected daily cost of scenario 1 and 8 by demand size and cost reduction
rate of scenario 8 in comparison to baseline scenario 1

expanded number of retailers are tested. This is done by (1) fixing the total market size or

(2) proportionally increasing the total market size while the relative sizes of retailers are set

to be the same. The results of the sensitivity analysis with 8 and 12 retailers are presented

in Table 2.1 in terms of savings in total costs and in transportation costs in scenario 8 with

respect to scenario 1. We notice that the network of open facilities for scenario 8 is fixed as

in the main experiment and that the additional experiments were run on an updated version

of the simulation platform Anylogic 8.5.1.

The incremental percentage cost savings, summarized in Table 2.1, is given by num-

ber of retailers and market size. These complementary results underline the robustness of

our previous findings because the percentage savings have not changed significantly by the

number of retailers regardless of total market size. In other words, the percentage sav-

ings for each retailer remains almost the same, regardless of the total number of retailers

or the size of each retailers. It also means the percentage savings are not benefited by

economies of scale which is in line with the results in the sensitivity analysis with respect

to demand size. The number of retailers increasing while the total market size is fixed indi-

cates reduced size of each retailer. This brings the additional cost savings to near zero. The
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additional cost savings were slightly negative in the case of eight retailers due to increased

safety stock to cover relatively higher demand variation with respect to expected demand

size. The major insight here is that the benefits of the hyperconnected system came not

only from the size of total market size or the number of participants, but also from the

structural change of PI transformation. In other words, because the multiplayer operations

are offered and used as a service, a hyperconnected system is not constraining the number

of players using the service, in contrast to a collaborative system.

Table 2.1: Incremental percentage savings transforming from scenario 1 to scenario 8 with
respect to the four-retailer case as the number of retailers increases

Number of Retailers 8 12 8 12
Relative Market Size 1x 1x 2x 3x

∆ % Saving in Total Cost -0.5% 0.2% 1.8% 2.9%
∆ % Saving in Transportation Cost 0.1% 2.1% 2.3% 3.6%

Storage Capacity Limits

All scenarios have been run assuming a very large/unlimited storage capacity of all FCs.

However, in several practical contexts, each FC could have a tight capacity limit that can be

an obstacle toward deploying inventory at a desired location. For scenarios with dedicated

FCs, capacity constraints can be relaxed without loss of generality if we assume that each

FC has been designed to handle the demand variability of the owning retailer. Therefore,

capacity constraint is applied only to dominant hyperconnected scenario 8 and compared to

scenario 1 and 8 without capacity constraints. Results of scenario 1 are used to determine

storage capacity of each peri-urban FC measured as the number of products. Note that no

more capacity should be needed for hyperconnected fulfillment because inventory levels in

the network remain the same due to a demand-driven inventory policy.

The expected daily cost for scenarios 1 and 8 with no capacity constraint as experi-

mented for the base scenario analysis and the expected daily cost for scenario 8 with limited

storage capacity are shown in Table 2.2. The storage capacity constraints only slightly in-
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crease daily costs. This is because the impact of sub-optimal demand allocation to FCs with

capacity constraints is mitigated with 2-tier delivery. This result strengthens the scenario

analysis results in this chapter, which are done without capacity constraints. To summarize,

benefits of the hyperconnected system can be obtained without additional storage capacity.

Table 2.2: Expected daily cost in scenarios 1 and 8 with no capacity constraint and scenario
8 with capacity constraint

Scenario ID Capacity Constraint
at Each Fulfillment Center Average Daily Cost ($)

1 No 6,477
8 No 4,917
8 Yes 4,959

Usage Cost of Open Facilities

The usage cost of open facilities, the open FCs, and open hubs is determined based on

the closest current market practice. However, as a new operational scheme, the usage

cost of open facilities is rather uncertain. Therefore, the sensitivity analysis is conducted

to measure the impact of usage cost of the open facilities on the cost reduction rate of a

hyperconnected fulfillment and delivery system (scenario 8) with respect to a dedicated

system (scenario 1). Figure 2.15 shows the expected cost reduction rate changes over a

range of unit open hub usage costs and unit inventory holding costs at an open FC. The

x-axis shows the size of each cost as a multiplication of the base cost. Point A corresponds

to the base cost results shown in the main computational analysis in the chapter. Point

B (2.5x) and C (4.7x) are the points at which the operation costs of the hyperconnected

system become equal to that of the dedicated system in terms of each cost, respectively.

The results show that even though the holding costs at open FCs is twice more as expensive

as than the holding costs at dedicated FCs, hyperconnected systems still result in ∼10%

cost reduction. Also, even though the hub usage cost is tripled, we still can get more than a

10% overall cost reduction.
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Figure 2.15: Sensitivity analysis with respect to open facility usage cost

2.6 Conclusion

In this chapter, a novel urban logistics system in line with Physical Internet concepts, a

hyperconnected urban logistics system, is designed for last-mile delivery and fulfillment.

A comprehensive decision and system architecture for the proposed system is presented

and the gradual transformation from a current dedicated system towards a proposed hy-

perconnected system is illustrated through eight scenarios. Along with the comprehensive

modeling of system and decision architecture, the scenario-based analysis provides a po-

tential guideline to implement such PI transformations in practice. The potential benefits

of the proposed system are examined from economic, service, and environmental perspec-

tives through simulation-based scenario analysis on a simulation platform built upon the

proposed architecture. A case of large-item delivery is used for experimental purposes.

Results show the marginal impact of each transformation step. In short, compared to a ded-

icated system, a hyperconnected fulfillment and delivery system through open OPFs and

OUHs could operate with 24% lower cost concurrent to reducing GHG and atmospheric

particulate matter (PM2.5) emission by about 50% while enhancing customer satisfaction

by reducing delivery lateness. Hyperconnected fulfillment or delivery alone could reduce

the cost by 17% and 20%, respectively with about 30% reduction in GHG and PM2.5

emission while offering better delivery punctuality.
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Under the pressure of customer expectations for better service, low operation budgets

due to market competition, and environmental goals to reduce pollution and emissions in

the city, diverse solutions have already been proposed and implemented. However, the

issues of urban logistics are not completely resolved. The encouraging results in this chap-

ter indicate that the PI enabled hyperconnected logistics systems for urban fulfillment and

last-mile delivery can be significant contributors to the efficiency and sustainability of smart

cities and retailers serving these cities. However, the assumption of having readily avail-

able open FCs or hubs is not realistic in current cities. Also, the main difference between

hyperconnected and collaborative systems is their business structure. For example, any

company in need can purchase and use the fulfillment service at open FCs, whereas col-

laborative FCs can be accessed only by exclusive members; the use of such collaborative

fulfillment is not flexible because actors typically rely on mid- or long-term agreements.

However, although still in an embryonic phase, there are emerging businesses providing

such open logistics services. In the fulfillment thread, especially, ES3, Flexe.com, Ful-

fillment by Amazon, Warehouse Anywhere and Darkstore are good examples of successful

business models. The on-demand delivery or transportation services, which are implicitly

assumed in the modeling, can be seen in the offerings of businesses such as Uber Freight

and Convoy. The PI initiative is driven by market, but policies can be made to urge such

systems, given the significant potential of the hyperconnected urban delivery systems to

reduce GHG emissions and congestion. This study can provides preliminary analysis on

the hyperconnected system to offer insights to potential business models and city logistics

systems.

There is a rich potential for future research on hyperconnected urban logistics to ad-

dress the limitations of this study. First, the impact of demand seasonality on the perfor-

mance of hyperconnected systems can be studied, especially how the synchronization of

seasonality between retailers affects operations, for example in terms of storage capacity

requirements. Future studies may investigate the impact of seasonality on the general ef-
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ficiency of hyperconnected systems. A smart way to use the open logistics resources to

handle demand peaks on special days such as Thanksgiving and pre-Holidays weeks can

also be explored. Second, the study can be extended to model the open fulfillment and

delivery service providers’ business including pricing and network optimization. The re-

sults of sensitivity analysis on total market size and the number of retailers indicate that

the impact of network configuration and structural changes on cost savings is significant.

In fact, the fulfillment network optimization, which is highly dependent on the character-

istics of the city, has not been considered in the study as the goal is to conduct a strategic

analysis for general case. However, analyzing the impact of the number of open FCs and

locations of them is one of the interesting future research topics. Moreover, the fulfill-

ment network optimization will be required to implement the hyperconnected fulfillment

network in a specific city. Third, as an extension of the second point, hyperconnected sys-

tems can be contrasted to collaborative systems of various degrees and orientations. The

thorough comparison can further emphasize the difference between hyperconnected and

collaborative systems. Note that for this contrast, it is essential to model a large number of

retailers to capture the open-to-market aspects of hyperconnected systems and to explore

various collaboration possibilities. Fourth, delivery failure and second-time delivery can be

considered for more accurate reflection of practices. Although it is assumed in the chapter

that customers are always present at the first delivery regardless of delivery lateness, it is

common in home delivery practice to visit customers multiple times due to the absence

of customers at delivery. Fifth, the impact of routing algorithms could be investigated.

The selection of routing algorithm could be subject to experiment, as the potential and im-

pact of improving routing efficiency are well recognized with ample scientific literature on

routing with diverse variations, yet with limited investigation of routing in hyperconnected

systems. In addition, the potential opportunity of faster delivery options such as same-day

and X-hour delivery of large items can be explored, which would require online dynamic

routing algorithms to be run numerous times each day.
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Despite the limitations of the study, the results presented in the chapter demonstrate

the potential of designing, implementing and operating a hyperconnected urban logistics

system, as a future urban logistics system alternative for urban fulfillment and last-mile

delivery, notably for large items. It is expected that the insights obtained from this study can

be among the building blocks enabling to shape an efficient, capable, and environmentally-

friendly future urban logistics system.
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CHAPTER 3

OPTIMAL ALLOCATION UNDER AVAILABILITY PROMISING E-CONTRACT

IN DROPSHIP OPERATIONS

3.1 Introduction

Dropshipping, where e-retailers advertise products and transfer received customer orders

to suppliers while suppliers (dropshippers) manage their inventories and fulfill the orders,

is often adopted in e-commerce practice. This is especially beneficial when an e-retailer of-

fers a large variety of products, and those from a supplier have relatively small sales volume

at each retailer and/or require special treatment. This enables both e-retailers and suppliers

to focus on their own expertise ([85]). It can reduce inventory assets at the e-retailer and

improve flow and inventory consolidation at the dropshipper. Capitalizing on financial and

operational advantages, many e-retailers and manufacturers have adopted dropshipping as

their joint mode of operation ([86]). However, the lack of control on inventory and or-

der fulfillment poses potential risks for the e-retailers ([87]; [88]). In fact, Cheong, Goh,

and Song [89] showed that accurate inventory information in dropship operations plays a

critical role not only for e-retailers but also for dropshippers. To reduce the risk, some

e-retailers take a dual fulfillment strategy using both internal stock and dropshipping ([90];

[91]) or make risk-reducing contracts with dropshippers, notably with service level agree-

ment terms ([92]).

In this chapter, we focus on an alternative approach based on availability promising

contracts (APCs). APC is driven by dropshippers unlike the typical service level agree-

ments which mainly impose e-retailer’s requirements to dropshippers ([92]). Through an

APC with each e-retailer, the dropshipper promises a certain quantity of each product to be

available for fulfilling the e-retailer’s customers. While the APC is enforced, it limits the
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maximum number of products ordered by each e-retailer to the promised quantity stated

in the APC. In practice, it is possible to renew APCs on a daily basis or even more often,

allowing to adapt promises based on demand and supply fluctuations. On one side, the

dropshipper can promise through APCs more than what is actually available (overpromis-

ing) as these e-contracts do not involve immediate physical transactions. Although the total

promised quantity across all e-retailers may exceed the available quantity with overpromis-

ing, APCs can be robustly upheld for each e-retailer by leveraging demand uncertainty

pooling. On the other side, each e-retailer can enforce a promised availability threshold

(PAT). An e-retailer may unlist any product from its online platform or mark it as ’out-of-

stock’, when the remaining promised quantity falls below this PAT. Each e-retailer decides

whether to enforce PATs for the contracted products to protect their service level against

potential fulfillment failure due to overpromising. The PAT value is typically not shared

with dropshippers.

The optimal allocation problem under APC addressed in this chapter is to determine the

quantity of each product to be promised to each e-retailer so as to maximize expected profit

of the dropshipper, given its product availability, uncertain demand and unknown PATs. In

other words, setting the APC quantity for each product is an ’ex-ante’ activity performed

when demand is not yet realized, unlike the typical inventory allocation that is modeled

as an ’ex-post’ activity performed once demand is realized. The structure of the APC de-

sign problem fits with two-stage stochastic programming framework ([93]; [94]), as the

daily renewing APC is made in the morning once a day (first stage) and orders are received

throughout the day and fulfillment decisions are made at the end of the day according to the

realization of demand and threshold which were unknown in the morning (second stage).

Our study stems from a partnership with a dropship furniture manufacturer in the North

American market who is continually facing such an availability promising contract design

problem with some of its e-retailers exploiting hidden PATs. The schematic description of

the APC problem is described in Figure 3.1. We focus on a daily-renewing APC problem
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under the existence of PATs. The problem is naturally decomposed into independent sub-

problems by product as each PAT is product-specific and the dropshippper’s products are

unsubstitutable.

Figure 3.1: Illustration of daily availability promising contract

The essence of the problem is here described using a simple example. Assume a drop-

ship manufacturer has 100 units of a type-x table on hand when setting its APC for two

e-retailers A and B at the beginning of a day. The two APCs respectively promise 80 units

to e-retailer A and 30 units to e-retailer B. The type-x tables are sold throughout the day

and at 3pm, A sells its 60th table and suddenly the product is marked ’out-of-stock’ on

e-retailer A’s site. No more customer order is accepted on that day by A although there still

remains 20 units promised to A. Meanwhile, the manufacturer sold 15 units via B and the

product has remained available until the end of the day. Observing the patterns over time,

the dropship manufacturer can guess that the e-retailer A has a PAT of value between 15

and 22 for the type-x tables, which may be dynamically changing daily, and that e-retailer

B has no PAT. Now assume that the actual demand at A and B are 75 and 15 units respec-
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tively that day, and the PAT of A that day is known to be 20. If the demand and PAT have

been known in advance, the manufacturer could have promised 100 units to A instead of

80 units knowing that the last 20 units won’t be sold. Such APC would lead to the maxi-

mum sales, 75 units and 15 units via A and B respectively. Yet in reality, the manufacturer

usually does not know with certainty either the demand or PAT of each e-retailer, making

the APC decisions complex.

Accordingly, the contributions of the chapter are (1) to investigate a new type of contract

(APC), faced by a dropshipper under the existence of unknown retailer-specific thresholds

(PAT), (2) to provide 2-stage stochastic optimization models which build on a linear formu-

lation of endogenous uncertainty from substitution behavior and on closed-form stockout

probability bounds and (3) to deliver managerial insights on the performance of three con-

tract policies, guaranteed fulfillment, controlled fillrate and penalty-driven fillrate policies,

and the impact of PAT on both dropshipper and e-retailer.

The chapter is structured as follows. In section 3.2, relevant literature is analyzed so

as to clearly position the original contributions of the chapter. Then the problem structure

and components are described in section 3.3, followed by section 3.4 which describes the

modeling and solution approaches. Then, computational results from a case study and sen-

sitivity analysis are presented in section 3.5. Lastly, the chapter concludes with section 3.6.

Throughout the chapter, we use the term retailer instead of e-retailer for simplicity.

3.2 Literature Review

Dropshipping became a common practice with the growth of e-commerce. It has been

studied for more than a decade ([95]; [85]) and is still an ongoing research topic. One

of the main research streams in recent years is to model the retailer’s order fulfillment

planning leveraging the dropshipping option ([96]; [97]), and to complementarily model

the retailer’s inventory planning problem when dropshipping is an option in addition to

in-house inventory ([98]; [87]; [99]; [100]). There are relatively less studies focusing on
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the dropshipper’s perspective. Peinkofer, Esper, Smith, and Williams [101] and Dennis,

Cheong, and Sun [102] studied the supplier’s capability and profitability of expanding to

dropship operations. The availability promising contract (APC) is a new problem that is

dropshipper focused. APC is distinguished from previously studied dropship service level

agreements ([87]). Broadly, the APC problem belongs to a category of inventory alloca-

tion problems, which will be reviewed first in this section. The information asymmetry

in the dropship setting allows overpromising and this, in turn, makes some retailers adopt

promised availability thresholds (PATs). Therefore, the relative literature for each aspect

will be reviewed, following the inventory allocation literature review. Lastly, we review

recent pertinent literature on 2-stage stochastic optimization.

The inventory allocation problem, which is part of a broader category of resource allo-

cation problem, arises when an inventory owner deals with multiple retailers or sales chan-

nels to whom it needs to allocate available inventory, which is to bound sales through each

retailer or channel. This is well-studied problem, but the term ’inventory allocation’ is used

for different classes of problems. It may refer to an inventory positioning problem, notably

in a multi-echelon setting ([103]). It can refer to an order allocation problem which matches

inventories and capacities to realized demand ([104]) or received orders from downstream

players which may have been exaggerated to gain more allocation ([105]), which can also

happen in a dropshipping context ([106]). When demand is not observed directly by a

supplier, it is important to understand the value of information shared between retailer and

supplier ([107]). Inventory rationing is one of the closely related inventory allocation prob-

lems, occurring when there are multiple customer classes and limited inventory availability

([108]; [92]; [109]).

Typical objectives of inventory allocation problems are related to maximizing profit,

notably through minimizing lost sales ([110]) or backorder costs ([111]). The retailers or

channels may have different preferences or margins ([112]), or require different service lev-

els ([113]). In a multi-period setting, order acceptance decisions in the current period are
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affected by future orders and availability ([114]). The APC problem is defined as a single-

period expected profit maximization problem. It deals with multiple retailers and allocates

inventory to them optimally to maximize expected profit as in most inventory allocation

problems. However, the combination of relying on dropship operations and contracting

on promised availability prior to demand instantiation, instead of committing inventory to

realized demand, creates critical differences between APC and traditional inventory alloca-

tion problems. As promising availability does not involve physical transactions, a dropship

manufacturer can promise more than what is actually available (overpromising). This,

combined with the facts that APC is dropshipper-driven and that there is competition be-

tween retailers, leads some retailers to adopt PAT. Also, unlike most of inventory alloca-

tion where allocation decision is made to fulfill realized demand (’ex-post’ activity), APC

problem promises inventory before demand realization (’ex-ante’ activity). Such problem

characteristics require optimization under uncertainty, which is commonly tackled using

stochastic programming ([94]).

Stochastic optimization is a well-established methodology and widely used to solve

supply chain and logistics problems ([93], [94]). Pre-allocating resources in the first stage

and optimally using them in the second stage upon realization of demand is one of the

most common problems formulated as a stochastic optimization model ([115], [116]). An-

other common first-stage decision is resource planning such as production capacity ([117]).

Stochastic optimization is also largely employed in network design ([118], [119]), distri-

bution network deployment ([120], [121]), or asset allocation ([122]) problems. The qual-

ity of the solutions produced by stochastic location-allocation models compared to their

deterministic counterparts is discussed in Klibi, Martel, and Guitouni [123]. One of the

most common approaches to solve a stochastic model is the sample average approximation

(SAA) ([124]; [125]). SAA uses N scenarios, each corresponds to a specific realizations of

the stochastic parameters, with probability 1
N

, which converts the original stochastic prob-

lem to an equivalent deterministic problem. Choosing proper N to balance solution opti-
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mality and computational effort is important. Kleywegt, Shapiro, and Homem-de-Mello

[125] presented an algorithm to calculate the performance gap for a SAA solution and to

determine a proper N . Dupačová, Gröwe-Kuska, and Römisch [126] demonstrated how

to reduce the optimality gap by sampling a good quality of scenarios. As indicated ear-

lier, stochastic optimization fits well with the APC design problem structure and inherent

uncertainty, justifying its use in this chapter.

As stressed earlier, APC is a virtual commitment of availability. One of the major

advantages of dropshipping and APC on inventory management is that the physical inven-

tories remain pooled until the point of order fulfillment ([91]). Such a setting creates a

main differentiation in optimal promising strategy, as it enables overpromising. In fact,

overpromising (related to overallocation or overbooking) is commonly found in revenue

management. For example, overbooking has been practiced in airline and lodging indus-

try where firms try to maximize expected revenue considering the potential no-shows and

overselling that respectively lead to empty seats and boarding denial ([127]; [128]). An

extension of such problems includes minimizing penalty via substitutable resources ([129]

). The problem of overbooking has also been applied to patient scheduling ([130]). Such

overbooking operations can increase potential profit but can also result in order decline

causing explicit penalties charged by retailers or indirect penalties induced from disap-

pointed customers ([131]). Although APC shares the idea of overallocation with these cited

problems, the risk structure is different. Overbooking hedges against potential order can-

cellation while overpromising hedges against retail demand and retailer PAT uncertainty.

The promised quantity, combined with retailer substitution behavior of customers, affects

the demand distribution by limiting the maximum number of product units to be ordered.

Also, while the overbooking decision is made sequentially as customers make reservations

in traditional booking models, the APC decision is made once and only once to all retailers

for the target sales period. Lastly, APC does not change product margin or price, while

dynamic pricing is often used along with overbooking in revenue management ([132]).
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Another unique aspect of APC is the product availability thresholds (PATs) set by retail-

ers for each product. PAT is a new concept and has not been presented in the existing liter-

ature at the best of the author’s knowledge. Accurate inventory information is important to

both retailers and supplier in dropship operations ([89]), but more critical to retailers as in-

ventory is only indirectly observed by them via APCs which may have been overpromised.

Typical retailer strategies for protecting their service level consist of carrying some owned

inventory in addition to dropshipping ([90]; [91]), contracting to multiple dropshippers

([114]), or penalizing dropshipping company for poor fulfillment performance. However,

the PAT strategy has never been studied. In this chapter, we firstly aim to design opti-

mal APCs under PATs. Secondly, we aim to evaluate the effectiveness of PAT to retailers

through dropship manufacturer’s APC decisions under varying PATs.

3.3 Problem Description and Modeling

As described, the dropshipper promises available inventory quantities to retailers through

daily availability promising contracts (APCs) knowing that some retailers have promised

availability thresholds (PATs) that, when reached, stop these retailers from accepting fur-

ther customer orders. It is assumed that the location of inventory is not part of the contract.

In short, the APC problem is a single-period (day, hour, etc.), single-product, and single-

location problem. The dropshipper makes the decision to maximize expected profit based

on demand forecast and PAT estimation.

Figure 3.2 shows the structure of the APC design problem by describing information

and decision flows between the three main players: dropshipper, e-retailers and customers.

The forecast and estimation of uncertain information at the point of dropshipper’s APC

decision are shown in blue. Information flow between players are numbered by the chrono-

logical order of events. The modeling of each important element of the problem shown in

Figure 3.2.
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Figure 3.2: Structure of the inventory promising contract problem

3.3.1 Availability promising contract (APC)

The availability promising contract (APC) is made on a periodic basis (e.g. daily) in an-

ticipation of unknown demand and promised availability thresholds (PATs) for the period.

Note that APC is unilateral: based on its forecasts, the dropshipper decides the contract

quantity (zr ∀r) and transmits the contract to the retailers. Dropshippers exploiting APCs

have to face customer demand rather closely as compared to traditional setting where ven-

dors allocate available inventory based on retailer orders which may have been exaggerated.

In other words, the dropshipper observe true customer orders, not the potentially exagger-

ated orders of retailers who try to gain priority over other retailers. Since online customers

typically visit multiple websites before purchasing a product while exhibiting some pref-

erences among the online retailers, the dropshipper also needs to understand how its APC

decisions affect customer behavior and its sales. Under dropshipping and APC, retailers

only received the digitally contracted quantity and do not observe the dropshipper’s avail-

ability directly. Such information asymmetry allows the dropshipper to pool availability

for multiple retailers via overpromising. Overpromising has the potential to increase profit

as sales are limited by the promised quantities, not necessarily by actual available inven-

tory quantities. On the other hand, this is the reason why some retailers set PATs to protect
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themselves against potential order fulfillment failure caused by overpromising. Order rejec-

tion or expedited production, in case of orders exceeding availability due to overpromising,

create extra cost for the dropshipper and also harm the relationship with retailers and its

reputation to customers. This indicates that setting an optimal contract policy is neither

trivial nor insignificant.

In addition to profit maximization, the dropshipper also needs to take its relationship

with retailers into consideration when designing APCs. For example, the dropshipper may

promise availability only to retailer 1, and none to retailer 2, so as to maximize the expected

profit in the current period. This may harm its long-term profit potential with retailer 2,

as this retailer may switch to consider the dropshipper as uncommitted and/or unreliable.

Such myopic decision may put the profitability of the dropshipper at risk, as well as its

collaboration with retailers and/or channel diversification strategies. To prevent this, a

dropshipper may set an internal policy forcing minimum and maximum contract quantities

or minimum and maximum fractions of the total available inventory (lr, ur) to be promised

to each retailer r.

The three most critical inputs for APC design are the available-to-promise (ATP) quan-

tity, the retailer specific PAT estimates, and the overall and retailer-specific demand fore-

casts. The ATP level is deterministic data when the dropshipper relies on on-hand inven-

tory, yet may have some degree of uncertainty when relying on current production and/or

in-transit supplies. On the other hand, retailer thresholds and demand are in most cases

unknown and the accuracy of their estimation is critical to APC design. Each input is

described in detail here, assuming a single-day period for descriptive simplicity.

Product Availability

The APC is made based on a given availability level (or available-to-promise level) at the

start of the day (A) ([133]; [134]). In general, the availability level is considered low or

high with respect to replenishment lead time. However, for a daily APC, we categorize
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availability levels with respect to the daily demand forecast. For example, F , F , F , F

and F in Figure 3.3 can be the most likely demand forecast, F + σ, F − σ, F + 3σ, and

F−3σ respectively and availability zones are defined accordingly. The exact criteria values

or number of zones can vary based on the estimated probability distribution or company

policy. Five zones are used for the categorization as shown in Figure 3.3: scarce, low, lean,

high, and overfull.

Figure 3.3: Illustration of availability zone definition with respect to daily demand forecast

As mentioned earlier, the dropshipper has the ability to pool via overpromising. How-

ever, the impact of overpromising may depend on the daily availability level, which to be

shown via experimental results.

Promised Availability Threshold (PAT)

Let θr denote the promised availability threshold (PAT) of retailer r. To protect their service

level and potential stockout under such unilateral contracts with no information on true

availability levels, some retailers set internal threshold, PAT, (θr). There are two intuitive

ways to model PAT: absolute value and fraction of promised quantity, zr. For example, in

the first case, the retailer cut off sales once remaining promised quantity reaches θr. In the

second case, the retailer cut off sales once 1−θr of promised quantity is sold, which makes

the absolute cut-off threshold level endogenous to allocation, (1− θr)zr. In the context our
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study, the first PAT definition is chosen. Moreover, when a large (small) amount is promised

it is more likely for the dropshipper’s availability is in high or overfull (low or scarce)

zone, which makes the first definition more reasonable than the second. Yet more complex

models can be used such as defining PAT as a step-wise stochastic function of promised

quantity. However, because the focus of this chapter is on designing optimal allocation for

a dropshipper under APC with PAT, we assumed the PAT will be determined as a simple

stochastic value in a given period. Another assumption on the characteristics of PAT made

in this study is that PAT value of a given period is only determined by historical APCs and

actual fulfillment records. For example, if an retailer observes that the dropshipper tended

to decline 10 to 15 customer orders per period, it may set its PAT between 10 to 20 for the

given period regardless of how many units are promised at the moment. For the case study

presented in this chapter, we estimated retailer PATs from historical APC and sales data

and a few direct observations on the availability on retailer’s website. Note that we do not

have direct observations or deterministic information of retailer PAT for the case study.

Given the definition, when remaining promised availability level falls below the PAT

for a product, they remove the product from their online sales platform or mark the prod-

uct out-of-stock. In case of positive PAT, the effective promised quantity (zr − θr) will be

smaller than nominal promised quantity (zr). The PAT values (θr) are not shared with the

dropshipper and potentially changing everyday, so the dropshipper needs to calibrate its

APC based on the uncertain threshold. It is critical for the dropshipper to understand the

PAT because it affects the maximum sales directly. Also, when the PAT is estimated accu-

rately, the dropshipper can overpromise by PAT quantity without risk of stockout knowing

that the additional quantity will never be sold (i.e. overpromising at risk of thresholds).

However, since the PAT value is not shared with the dropshipper, in practice the dropship-

per typically has to rely on its estimation of a plausible range of the PAT (θr, θr) based on

its historical observations.

An important observation about PAT is that when the PAT θr is known by the drop-
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shipper, there is an optimal promising quantity corresponding to the optimal quantity when

θr = 0. Proposition 1 presents it analytically and demonstrates it.

Proposition 1. If θr is known, then the optimal promising quantity is z∗r = z0
r + θr where

z0
r is an optimal promising quantity when θr = 0.

Proof. Let the demand to retailer r is δr and let y0
r be the number of orders received through

r when z0
r is promised and θr = 0. Then, y0

r = min(z0
r , δr). Now, assume the threshold of

the retailer r, θr, is known to the dropshipper and the corresponding promising quantity is

z∗r = z0
r +θr. That is, the effective promising quantity is z∗r −θr = z0

r and resulting number

of orders is y∗r = min(z∗r − θr, δr) = min(z0
r , δr) = y0

r . Note that the optimal profit with

a threshold cannot be better than the optimal profit when θr = 0 ∀r ∈ R (no threshold).

Therefore, z∗r = z0
r + θr is the optimal promising quantity under known threshold θr.

Customer Demand

Demand forecast is one of the critical stochastic inputs to APC along with retailer PAT esti-

mation. Recall the two dotted blue arrows in Figure 3.2. Demand forecasting is a common

practice in industry and various forecasting tools are used, ranging from simple extrapo-

lation and exponential smoothing methods to state-of-the-art machine learning models, at

varying time horizon and aggregation level ([135]). Most of the supply chain, production

and inventory related forecasts are mid- or long-term demand forecasts, e.g. over a lead

time, quarterly, or yearly. For daily APC, next-day demand forecasts are required. Another

complexity is to estimate demand including lost sales which is not observable. Simply

estimating lost demand due to stockout is already a significant challenge in demand fore-

casting as Ferreira, Lee, and Simchi-Levi [136] stressed. Estimating lost demand under

the existence of unknown retailer PAT and partially pooled demand adds extra complexity.

Appropriate forecasting method must be selected that performs the best for the target case,

allowing to provide point forecasts coupled with prediction intervals and probability distri-

butions. The forecasting method used for our case study is described in subsection 3.4.3 in
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detail.

APC problem requires next day demand forecast δr for the contracted product at each

retailer r. However, as mentioned, demands are partially pooled between retailers since

customers visit multiple e-retailers at the same time, with almost no extra cost. In fact,

demand dependency between channels ([137]) or products ([138]) is common, causing sig-

nificant challenges in e-commerce demand forecasting and fulfillment modeling. Majority

of customers also have a preferred retailer and only order from other retailers if there is

no availability at preferred retailer. Such partially pooled demand structures impose sig-

nificant complexity to the model by affecting customer choice of retailers with APC. In

this chapter, we circumvent such endogenous uncertainty by modeling customer’s retailer

substitution behavior as described in subsubsection 3.3.3.

3.3.2 Contract Policy

We examine three contract policies differentiated by overpromising allowance: guaran-

teed fulfillment, controlled fillrate, and penalty-driven fillrate. The two extremes are not

allowing overpromising at all (guaranteed fulfillment) and allowing full flexibility to over-

promise but at stockout penalty (penalty-driven fillrate). Controlled fillrate policy, which

limits maximum overpromising quantity based on retailer threshold uncertainty, is a policy

designed specific to the business context.

Recall that there are two stochastic input parameters: demand (δ) and threshold (θ).

That is, when overpromising is allowed to take advantage of inventory pooling effect, there

are two sources of potential stockout: (1) The dropshipper overpromised assuming certain

threshold levels may face stockout when actual thresholds were smaller than expected and,

as a results, it received more orders through some retailers than expected maximum. (2)

The dropshipper overpromised assuming the total maximum demand of the day (D) would

be D ≤ A may face stockout if actual total demand was larger than availability A. This

means that the dropshipper can control the probability of stockout with respect to threshold
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uncertainty, demand uncertainty, or both. The controlled fillrate policy focuses on limit-

ing overpromising quantity to control the probability of stockout with respect to threshold

uncertainty.

Let xr be the internal pre-allocation quantity to retailer r where
∑

r∈R xr ≤ A and or

be overpromised quantity to retailer r which makes contracted quantity zr = xr +or. Then,

along with demand δr, the effective contracted quantity ([zr−θr]+) sets the upper bound of

orders received via retailer r, yr: yr = min([zr − θr]+, δr). Note that since
∑

r∈R xr ≤ A,

the stockout can only occur if and only if there exists r overpromised quantity exceeds

threshold level.

P [stockout] = P [
∑
r∈R

yr > A] ≤ P [max
r

(or − θr) > 0] (3.1)

When distributional information on threshold is available, we can control the probabil-

ity of stockout by setting upper bounds for or with respect to θr. Let Θα,r = argmax{Θ :

P [θr < Θ] ≤ α}. Constraining upper bound of or with Θα,r would ensure stockout proba-

bility to be no more than α. Proposition 2 proves this formulation is correct and conserva-

tive.

Proposition 2. If or ≤ Θα,r ∀r ∈ R, then P [stockout] = P [
∑

r∈R yr ≥ A] ≤ α.

Proof. Assume a sufficiently large demand. That is, sales is bounded by allocation and

inventory availability, not by demand. Then, the probability of stockout is bounded as

shown in (Equation 3.1). If or ≤ Θα,r,

P [stockout] = P [
∑
r∈R

yr > A]

≤ P [max
r

(or − θr) > 0]

≤ P [θr∗ < or∗ ]

= P [θr∗ < or∗ ≤ Θα,r∗ ]
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≤ P [θr∗ < Θα,r∗ ]

≤ α

where r∗ = argmaxr(or − θr). Due to the assumption of large demand, this is a conserva-

tive upper bound for stockout probability.

3.3.3 Order Characterization

It is important to understand online sales structure and customer behaviors to characterize

the correlated demand. As described in the previous section, APC and PAT affect order

quantities via availability. In the mean time, they also affect customer behaviors, espe-

cially supplier and retailer substitution. To properly structure the order capturing process

in the given business context, the impact and interaction of these factors must be clarified.

Figure 3.4 shows different stages from demand to sales with critical factors. This section

characterizes order quantity in terms of demand, APC, and substitutions.

Figure 3.4: Order capturing and sales realization process

Note that sales realization from given order (order fulfillment) is relatively simple in a

single period problem: sort orders by margin and fulfill up to available inventory. However,

in a multi period setting, the fulfillment decision is not as simple since future profits and

long term relationship with retailers must be taken into account at current order fulfillment

decision.
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Substitution

When there is no available inventory at their preferred or primary e-retailer, customers may

buy a similar product of another dropshipper or supplier (supplier substitution), a similar

product from the same dropshipper (product substitution), or the same product from another

e-retailer with available inventory (retailer substitution). Customers may decide not to buy

anything, but it is not different to supplier substitution for the dropshipper. Both are counted

as lost opportunities. Moreover, since we focus on the single-product problem, product

substitution is here counted as lost demand as well. This only leave retailer substitution or

lost demand to the APC modeling.

Such substitution behavior can be explained with the brand power of the dropshipper,

the product, and of the retailer. If the dropshipper’s and/or the product’s brand power is

more critical, customers will be inclined to buy the product from any retailer who has

available inventory because customers want ‘the product’. On the other hand, if the re-

tailer’s brand power is more critical, then customers prefer to buy a similar product from

the dropshipper or from other dropshippers available at their primary retailer.

When dropshipper brand power is dominant, the contract quantity becomes less criti-

cal as total profit will be determined mostly by total demand. This can happen when the

dropshipper is actually a dropship manufacturer, not a vendor. When retailer brand power is

dominant, the APC problem becomes simpler as demand at each retailer becomes rather in-

dependent. The APC problem becomes complex when both brand powers exist as it creates

endogenous uncertainty: the demand is affected by contract quantity since customers may,

but not always, switch to another retailer who has availability in case of unavailability at

the primary retailer. It is known that stochastic optimization with endogenous uncertainty

is very hard to solve ([139]).

Alternatively, we embed the endogenous uncertainty in the model by introducing re-

tailer substitution ratio. In fact, modeling substitution with deterministic ratio is common

approach ([87]). Note that, to model the endogeneity, the substitution ratio is applied to
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realized demand and inventory availability status, not to the demand rate. Substitution

can be modeled as customer’s have preference hierarchy from which purchase decision is

made based on availability ([140]), but here we model the substitution as it happens with a

certain probability when the product is unavailable at the most preferred retailer, yet only

once: e.g. if there is no availability at the first substituted retailer, then customers will be

lost without further substitution. Assume the demand created initially through retailer r,

δr, cannot be fully captured by r due to limited contract quantity zr < δr. When the substi-

tution ratio from r to r′ is γrr′ , we assume γrr′ fraction of unsatisfied demand, γrr′(δr−zr),

will be captured through retailer r′. γrr indicates the fraction lost. The substitution process

is described in Figure 3.5 for 2-retailer case. Note that the substitution process is modeled

as linear equations and it can be easily expanded to more than 2 retailer cases.

Figure 3.5: Description of demand and orders with retailer substitution

Order Characterization with Effective Contracted Quantity and Demand

Orders realized through retailer r, denoted by yr, are limited by effective contracted quan-

tity and demand. Effective contracted quantity is expressed as contracted quantity zr sub-

tracted by retailer threshold θr, (zr − θr), as retailers do not accept any more orders once

the remaining promised quantity reaches to the threshold. When customers are dedicated

to a specific retailer (retailer brand power is dominant), order quantity can be expressed as
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below where δr represents the demand primarily captured by retailer r:

yr = min{δr, [zr − θr]+} (3.2)

With substitution, the demand is not independent by retailer anymore. Let effective

demand be the sum of primary demand (δr) and substituted demand captured by a retailer

r. Substituted demand is defined as a fraction of unsatisfied primary demand (d−) as shown

in Figure 3.5. Unsatisfied demand from a retailer r is expressed as below:

d−r = max{0, δr − [zr − θr]+} = [δr − [zr − θr]+]+ (3.3)

The substitution ratio γrr′ indicates the fraction of d−r switched to retailer r′ where γrr is

the fraction of d−r lost. Now, the order quantity can be expressed as the minimum between

effective demand and contracted quantity:

yr = min{δr +
∑

r 6=r′∈R

γr′rd
−
r′ , [zr − θr]+} (3.4)

3.4 Models and Solution Approach

The ultimate goal of the chapter is to solve the dropshipper’s APC problem addressing

unknown PATs using a stochastic optimization that maximizes expected profit of a drop-

shipper based on demand forecast. In this section, we describe our model and solution

approach. The overall scheme is described in Figure 3.6. As can be seen from the figure,

there are three main dimensions for modeling and solution structure. First is alternative

contract policy design which is closely related to managerial insight derivation. Second

is uncertainty modeling. Scenarios are generated from it to solve the model using sample

average approximation. Last is solution evaluation. The solution from stochastic opti-

mization model is evaluated with respect to the solutions from comparison models. The
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section starts with the 2-stage stochastic optimization model and describes contract policy

variations, followed by sample average approximation (SAA) approach. Then, uncertainty

modeling and solution evaluation scheme are described.

Figure 3.6: Model variation and solution structuring

3.4.1 Two-Stage Availability Promising Contract (APC) Model

The most general APC problem modeled as a two-stage stochastic problem is presented

here which corresponds to penalty-driven fillrate contract policy. The APC is made in the

first stage only knowing distribution of not-yet realized uncertain variables, so as to maxi-

mize expected profit. Retailer PAT values are revealed in the second stage. Demand is also

realized in the second stage given the contract and PAT and received orders are accepted or

declined so that the profit is maximized. This mimics the actual business procedure: APC

is made in the beginning of the business day based on demand forecast and PAT estimation

and the fulfillment decision is made at the end of business day given received orders. No-

tations used are listed below:

First stage variables

• zr: Contracted(promised) quantity to retailer r via APC

Second stage variables

• yr: Order quantity received through retailer r
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• y+
r : Accepted order quantity (sales) through retailer r

• y−r : Declined order quantity through retailer r due to shortage at dropshipper

• d−r : Demand lost by preferred retailer r due to unavailability at the retailer

• d−r,r′: Demand lost by retailer r and substituted with retailer r′; indicate lost demand

without substitution when r = r′

• br: Binary variable indicating d−r = 0 or not (br = 1 if δr ≤ zr − θr and br = 0 if

δr > zr − θr)

• vr: Binary indicator variable (vr = 1 if zr − θr < 0 and vr = 0 otherwise)

• wr: Binary variable indicating order quantity yr is bounded by contracted quantity

(wr = 0) or by demand (wr = 1)

Stochastic Parameters

• δr: Daily demand of product p with a preference in retailer r

– fr(δ): PMF/PDF of demand δr

– Fr(δ): Distribution function of demand δr

• θr: Promised availability threshold of retailer r

– gr(θr): PMF/PDF of θr

– Gr(θr): Distribution function of θr

Deterministic Parameters

• cr: Unit sales margin of product p sold through retailer r

• πr: Unit out-of-stock penalty associated to retailer r

• tlr, tur: Estimated lower and upper bound of θr
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• A: The available quantity of product p at dropshipper

• lr, ur: Minimum/maximum fraction of total available-to-promise that can be promised

to retailer r (dropshipper’s policy parameters)

• γrr′: Average fraction of customers originally reached through retailer r order through

retailer r’ when the product is not available at r

– γrr represents the average fraction of customers lost when the product is not

available at r, γrr = 1−
∑

r 6=r′∈R γrr′ ∀r ∈ R

• M : Sufficiently large number (auxiliary parameter for model linearization)

General APC Model: Penalty-Driven Contract Policy

Here we present a general 2-stage optimization model under stochastic demand and thresh-

old. Following Model (Equation 3.5) is a stochastic APC model with penalty-driven con-

tract policy.

max : E[Q(z, δ, θ)] (3.5.1)

s.t. Min-Max Contract Quantities

zr ≤ urA , ∀r ∈ R (3.5.2)

zr ≥ lrA , ∀r ∈ R (3.5.3)

z ∈ Z+ (3.5.4)

where Q(z, δ, θ) = max
∑
∀r∈R

(cry
+
r − πry−r ) (3.5.5)

s.t. Order Acceptance∑
r∈R

y+
r ≤ A (3.5.6)

yr = y+
r + y−r ,∀r ∈ R (3.5.7)

Order Characterization
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yr ≤ zr − θr +Mvr ,∀r ∈ R (3.5.8)

yr ≤ δr +
∑

r 6=r′∈R

d−r′r , ∀r ∈ R (3.5.9)

yr ≤M(1− vr) ,∀r ∈ R (3.5.10)

yr ≥ zr − θr −Mwr −Mvr ,∀r ∈ R (3.5.11)

yr ≥ δr +
∑

r 6=r′∈R

d−r′r −M(1− wr)−Mvr ,∀r ∈ R (3.5.12)

Retailer Substitution∑
r′∈R

d−rr′ = d−r , ∀r ∈ R (3.5.13)

d−rr′ ≤ γrr′d
−
r ,∀r, r′ ∈ R, r 6= r′ (3.5.14)

d−rr′ >= γrr′d
−
r − 1 + 1/M , ∀r, r′ ∈ R, r 6= r′ (3.5.15)

Lost Customer

d−r ≤ δr +M(1− vr) , ∀r ∈ R (3.5.16)

d−r ≥ δr −M(1− vr) , ∀r ∈ R (3.5.17)

d−r ≤ δr − (zr − θr) +Mvr +Mbr ,∀r ∈ R (3.5.18)

d−r ≥ δr − (zr − θr)−Mvr −Mbr ,∀r ∈ R (3.5.19)

d−r ≤M(vr + (1− br)) ,∀r ∈ R (3.5.20)

Control Binary Variables

br ≥
(zr − θr)− δr + 1

M
,∀r ∈ R (3.5.21)

br ≤ 1 +
(zr − θr)− δr

M
,∀r ∈ R (3.5.22)

vr ≥
−(zr − θr)

M
,∀r ∈ R (3.5.23)

(1− vr) ≥
zr − θr
M

,∀r ∈ R (3.5.24)

y, y+, y−, d− ∈ Z+ and b, v, w ∈ {0, 1} (3.5.25)
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First stage objective (Equation 3.5.1) is to make the APCs to maximize an expected

margin with respect to δ and θ. Constraints (Equation 3.5.2) and (Equation 3.5.3) repre-

sent a dropshipper’s policy on minimum and maximum promising quantity to each retailer.

We will name them as ’business relationship constraints’. For general purpose, these con-

straints can be ignored. Promised quantities must be nonnegative (Equation 3.5.4).

Second stage objective (Equation 3.5.5) is to fulfill to maximize profit at a certain re-

alization of demand and threshold. The profit is expressed as the sum of sales margin

subtracted by stockout penalty.

Order acceptance constraints (Equation 3.5.6) and (Equation 3.5.7) models sales and

order acceptance. The dropshipper can decline (y−r ) or accept (y+
r ) customer orders (yr)

but cannot accept more than available inventory.

The total order quantity received through retailer r is

yr = min{δr +
∑

r 6=r′∈R

γrr′d
−
r ,max{0, zr − θr}

which is ensured by order characterization constraints (Equation 3.5.8) - (Equation 3.5.12).

Note that, in the model formulation, substituted demand γrr′d
−
r is represented with an

integer variable d−rr′ to ensure integer demand. As can be seen from constraints (Equa-

tion 3.5.13)-(Equation 3.5.15), substituted demand of retailer r by retailer r′ is defined as

d−rr′ = bγrr′d−r c and the rest d−rr is all lost. The max function for effective contract quan-

tity (max{0, zr − θr}) is linearized via binary variables vr. Constraints (Equation 3.5.11)

and (Equation 3.5.12) explicitly ensures the equality of order characterization function at

existence of positive penalty with binary variables wr.

Following set of constraints (Equation 3.5.16) - (Equation 3.5.20) model lost customers

at each retailer d−r (i.e. lost opportunity constraints). It is assumed that as long as there is

remaining availability from effective contracted quantity, customers will order through their

preferred retailer and the retailer will always accept the orders. The detailed description of
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linear modeling is in section B.1.

Lastly, constraints (Equation 3.5.21)- (Equation 3.5.22) and constraints (Equation 3.5.23)-

(Equation 3.5.24) control binary variables b and v respectively (i.e. sales limit indicator

constraints and effective contract quantity indicator constraints).

3.4.2 Models for Alternative Contract Policies

The general APC model corresponds to penalty-driven fillrate policy and serves as a basic

backbone model. Recall the three contract policies from subsection 3.3.2: guaranteed ful-

fillment, controlled fillrate, and penalty-driven fillrate. Models (Equation 3.6) and (Equa-

tion 3.7) corresponds to the stochastic APC models with guaranteed fulfillment policy and

controlled fillrate policy respectively.

Guaranteed fulfillment policy is the simplest and the most naive policy. The model is

as follows:

max E[Q(z, δ, θ)] (3.6.1)

s.t.
∑
r∈R

zr ≤ A (No Overpromising) (3.6.2)

(Equation 3.5.2)− (Equation 3.5.25) (3.6.3)

An addition of maximum promising quantity constraint (Equation 3.6.2) to model (Equa-

tion 3.5) in the first stage is sufficient to model the guaranteed fulfillment policy, the model

(Equation 3.6). Meanwhile, the second stage can further be simplified as all orders can be

fulfilled (y− = 0 and y = y+) and constraint (Equation 3.5.6) is implied by the new first

stage constraint. That said, the two second stage variables (y−, y+) and constraint (Equa-

tion 3.5.6) can be removed without losing model validity. In fact, under the guaranteed

fulfillment policy, there is no pooling effect and it does not take advantage of dropship

operation.

Controlled fillrate policy is designed to smartly incorporate PATs into APC decision as
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described in detail in subsection 3.3.2. To model controlled fillrate policy, another first-

stage variable x should be added to the general model:

• xr: Internal contract quantity to retailer r

According to the proposition 2, replacing Θα,r with tlr, a lower bound of θr, ensures zero

stock out probability while preventing demand loss due to retailer thresholds. Model (Equa-

tion 3.7) solves the APC problem with controlled fillrate policy. Note that the constraint

(Equation 3.7.3) controls stockout probability following Proposition 2.

max E[Q(z, δ, θ)] (3.7.1)

s.t. Controlled Overpromising∑
r∈R

xr ≤ A (3.7.2)

zr ≤ xr + Θα,r ,∀r ∈ R (3.7.3)

x ∈ Z+ (3.7.4)

(Equation 3.5.2)− (Equation 3.5.25) (3.7.5)

3.4.3 Solution Generation and Evaluation

The modeling approaches described in Section 3 resulted in a 2-stage stochastic program-

ming with linear constraints and objectives. That, in turn, enables the use of sample aver-

age approximation (SAA) to obtain solutions, which can be solved by using commercial

solvers such as Gurobi or cplex. Such reduction to a simple solution approach also offers

more practicality to model application in industry and better reflects the inherent general-

ity of the problem where demand distribution varies by product, company, and/or season.

Here, we describe the uncertainty modeling used for the case study, scenario generation

for SAA, and evaluation models with respect to the two stochastic parameters in scenario
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space as illustrated in Figure 3.7.

Figure 3.7: Model positioning over scenario space and comparison

The scenarios are generated with respect to the two stochastic parameters: demand and

threshold. As stressed earlier, the APC model is independent of the methods used to obtain

the probability distributions, so any method can be used to model uncertainty which suits

the best to the case. Firstly, to obtain a next-day demand forecast of the target product

by retailer. We use a two-step top-down approach ([135]): (1) forecast the total market

demand and (2) obtain retailer specific forecast by estimating the market share of each

retailer. For part (1), we used dual-seasonality BM model ([141]), which is a variation of

Holts-Winter’s forecasting method. Time-series models are traditional and most commonly

used for demand forecast ([142]), while new variations are still explored ([143]). The

unobservable lost demand due to unavailability is captured by dynamic smoothing factor

adjustment based on APC and sales. Simple exponential smoothing is used to forecast

market share of retailers. The 2-step approach can intrinsically embed correlation between

demands of multiple retailers. Intuitively, in the first step, positive correlation is included

by estimating total demand and in the second step, negative correlation is included as the

market shares must be summed up to 1. Along with point forecast, upper and lower bounds

of forecast are estimated with confidence level 0.98.
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Retailer threshold (PAT) is not directly observable from historical order and contract

data as the dropshipper cannot distinguish if the leftover is due to lack of customer demand

or to the threshold. It can be only observed via real-time monitoring of current sales status

on all retailers’ websites and sales status. Due to the difficulty of data acquisition, empirical

PAT distributions based on business information and experience are used.

Demand and PAT scenarios are sampled from each distribution independently and com-

bined to construct scenarios for SAA as illustrated in the 2-D space in Figure 3.7. Demand

scenario is sampled in 2 steps: (1) total demand sample is obtained from demand distribu-

tion and (2) retailer market share is sampled from multinomial distribution using market

share forecast as its parameter. Multiplying total demand from (1) and market share (2)

gives demand by retailer. The main assumption underlying the 2-step sampling approach

is total market size (demand) is independent of retailer market shares.

The solution generated from SAA with N training data is then evaluated over a sep-

arate scenario set, an evaluation data. The performance of solutions on evaluation set is

then used to understand various policies and impact of stochastic parameters. The pol-

icy variation introduced earlier enables solution comparison with respect to contract policy

and to find best policy. On the other hand, evaluating and comparing solutions at different

levels of uncertainties also provide important insights. As described in Figure 3.6, three

alternative models are used to evaluate value of information about the stochastic parame-

ters. The first model is when both demand and threshold (PAT) is known deterministically

(perfect information). This model provides objective upper bound for stochastic optimiza-

tion model. The second model is when only PAT value is known with better intelligence

of dropshipper or cooperative retailer (symmetric information). Note that such symmetric

information does not enforce dropshipper to share availability status transparently with re-

tailer. Comparison between the stochastic model and these two models gives the value of

information: Expected value of perfect information (EVPI, or regret) and expected value

of symmetric information (EVSI) respectively. The last is point estimation where APC is
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made only based on point estimation values of demand and PAT, not based on distribu-

tional knowledge. The value of stochastic solution (VSS) can be calculated by comparing

this model with the stochastic model. Figure 3.7 shows the positioning of each model over

the scenario space with respect to corresponding degrees of uncertainty and comparison

tables between models. According to Proposition 1 the symmetric information model can

be solved by projecting the 2-dimensional scenario space with demand and PAT to a one

dimensional space where θ = 0.

3.5 Computational Results

In this section, we present computational results from a case study and derive managerial

insights from the results. Sensitivity analysis is also performed to better understand the

impact of retailer substitution and retailer threshold.

3.5.1 Case Study

The case consists of 7 days and 4 retailers for a single product. The average of total market

demand is forecasted to be 22 units per day. The case is built on the anonymized sam-

ple of our industry partner’s data. The daily forecasts for the 7 days generate lower and

upper bounds together with point forecasts as shown on the left of Figure 3.8. Triangular

distribution is used with the point forecast and upper/lower bounds. On the right side of

Figure 3.8, the four retailers are relatively positioned based on their threshold (PAT) un-

certainty and market share. Simply, each can be categorized as large/small retailer with

high/low PAT uncertainty. The sample size of 100 is chosen with a low statistical gap of

1.6% based on the algorithm presented in Kleywegt, Shapiro, and Homem-de-Mello [125].

For all retailers, the margin and penalty are set at 1 and no substitution is assumed. All

models are solved to optimality using commercial solver Gurobi. Each APC problem is

solved under five different availability levels: scarce, low, lean, high and overfull. Recall

the five availability levels are defined w.r.t. daily forecast as illustrated in Figure 3.3.
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Figure 3.8: Daily forecast with lower and upper bound (left) and retailer positioning with
respect to market share and threshold (right)

Figure 3.9 shows the average daily expected profit over 7 days by the three contract

policies under varying availability level. The result of each day shows similar patterns

although the profit size varies due to the demand size on each day. The daily results are

attached in section B.2. At any availability level, a policy allowing more overpromising

outperforms the others and the extra profit with overpromising flexibility is maximum at

lean availability. Under scarce or low availability, the impact of contract policy is minor as

the lack of availability is dominant constraint limiting sales. On the other hand, with high

or overfull availability, the importance of contract policy decreases as there are enough

products to offer to all retailers. That is, operating with smarter contract methodology

becomes more critical when the availability is not too low or too high. Another insights

from Figure 3.9 is that although penalty-driven fillrate policy always outperforms or equals

controlled fillrate policy, most of the profit increase from guaranteed fulfillment which

allows no overpromising can be achieved by controlled fillrate policy.

Figure 3.10 shows expected profit by model with different information as presented in

Figure 3.7. Expected profit under perfect information model provides profit upper bound

for corresponding policy and availability level combination. The difference between per-

fect information and stochastic models gives expected value of perfect information (EVPI)

and the difference between symmetric information and stochastic models gives expected

value of symmetric information (EVSI). The point estimation model cannot outperform
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Figure 3.9: Average daily expected profit by contract policy under varying availability over
7 days

stochastic model as the optimal solution of point estimation model is also a feasible solu-

tion for the stochastic model. The difference between these two models gives the value of

stochastic solution (VSS). VSS tends to increase when availability increases because us-

ing point forecast values only underestimate demand although there is enough availability

to satisfy it. However, under penalty-driven fillrate policy, VSS increases when availabil-

ity level deviates from lean level in either direction. Because the point estimation ignores

the potential of getting lower PAT value, point estimation model results in excessive over-

promising which cannot be fulfilled under low or scarce availability.

Figure 3.10: Average daily expected profit by varying level of information (left) over 7
days and average values of information (right)

Unlike VSS, it can be seen from Figure 3.10 that the value of information (EVPI, EVSI)

is highest at lean availability and decreasing as the availability level deviates from it. This

can be explained similar to the impact of smarter contract policy. When the availabil-
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ity level is too low, the information affects profit less as sales are dominantly bounded

by availability. When availability level is very high, again, the information also affects

profit less as enough availability can be provided to all retailers to cover most of demand

and/or threshold variation. Comparing policies, it can be seen that knowing demand and/or

threshold with higher certainty is more critical when overpromising is not allowed. This

is because the APC is less flexible without overpromising. Another observation is that the

difference between EVPI and EVSI is small compared to EVSI in most of the cases. That

is, the uncertainty of thresholds has significant impact on the dropshipper’s expected profit.

In short, for APC which is made as an ex-ante decision, it is important to reflect the un-

certainty into decision process and increase both accuracy and precision of the uncertain

parameters, demand and threshold.

While the retailer threshold (PAT) certainly affects dropshipper’s APC decisions and

profit, it is questionable if the PAT is an effective strategy for retailers. Assuming the ne-

gotiation power of retailers to make the dropshipper assign the limited availability to them

is equivalent, the threshold strategy benefits retailers when it leads the dropshipper to as-

sign more availability to them. Figure 3.11 shows how many more or less quantities are

promised to each retailer when some of the retailers adopt the threshold strategy. Recall

that retailers 1 and 4 adopted threshold strategy while retailers 2 and 3 did not. When over-

promising is allowed, retailers with PAT tend to get more availability assigned regardless

of the overall availability level, which in some cases is taken from the retailers without

PAT. When overpromising is not allowed and availability level is lean or lower, the drop-

shipper rather takes promised quantity away from the retailers with PAT and assign them

to retailers without PAT. In other words, under the tight availability and inflexible policy,

the dropshipper invests in more certain options than those with more risk. When the avail-

ability level is high, on the other hand, the dropshipper puts most of the availability to

retailer 1 who has availability but has highest demand. Considering that retailer 1 has the

largest market share, it can be interpreted that the best strategy for the dropshipper was to
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bet on the high-risk high-return option. In short, retailers can expect to benefit from hav-

ing PAT with overpromising dropshippers, but it may not be an advantageous strategy with

non-overpromising dropshippers, especially when their market share is not dominant.

Figure 3.11: Total promised quantity over 7 days changes with threshold information by
retailer (stochastic model - symmetric information)

3.5.2 Sensitivity Analysis of Retailer Substitution

For the purpose of sensitivity analysis in subsection 3.5.2 - subsection 3.5.4, the demand

distribution of day 7 is used as it is the closest to the average demand distribution. Also, to

focus on the sensitivity analysis, we limit the availability to only low, lean and high levels.

The impact of promised quantity on demand (endogenous uncertainty) induced by the

demand pooling between retailers is a main reason which makes the APC and fulfillment

problem nontrivial. The demand pooling impact can be modeled with retailer substitution

as described in previous sections. The main results assume no substitution, which induce

independent and exclusive demand by retailer, but in practice, customers check multiple

websites before making their purchases although they usually have a preferred retailer.

In addition to the no-substitution scenario, two more substitution scenarios are as-

sumed: equal substitution and proportional substitution. In equal substitution, customers

will be lost or leave to any other retailers with equal probability in case of unavailability at
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their preferred retailer (γrr′ = 1
|R| , ∀r, r

′ ∈ R). In proportional substitution, the probabil-

ity that the customer will leave to another retailer (or be lost if it is the preferred retailer)

in case of unavailability at the preferred retailer is the same as the market share of the

corresponding retailer (γrr′ = marketshare(r′), ∀r, r′ ∈ R).

As seen in Figure 3.12, positive substitution benefits the dropshipper in all policies

and availability levels as demand is not just lost but may be captured by the dropshipper

through another retailer. The percentage profit increase is the largest under the guaranteed

fulfillment policy (no overpromising allowed) and lean availability level. This is firstly

because there is no availability pooling through overpromising under this policy. Secondly,

when the availability level is low or high, the impact of other factors, such as policy or

substitution, is weakened as availability becomes a binding constraint or there is enough

availability to absorb the variability.

Figure 3.12: Impact of retailer substitution to dropshipper’s expected profit

The promised quantities to the retailers change only marginally, except under guaran-

teed fulfillment policy with lean availability as shown in Figure 3.13. With a dropshipper

who does not overpromise and has lean availability, positive retailer substitution makes the

dropshipper remove promised quantity from a retailer with PAT (retailer 1) and assign it to

retailers without PAT (retailers 2 and 3). This is because part of demand lost from retailer

1 can be captured via retailer 2 or 3 so the better strategy for the dropshipper is to reduce

uncertainty from PAT and capture the deviated demand.

92



Figure 3.13: Promised quantity changes to each retailer by varying substitution scenarios
with respect to no substitution scenario

3.5.3 Sensitivity Analysis of PAT Uncertainty

Threshold (PAT) uncertainty can be represented as a standard deviation or range of a thresh-

old distribution. To investigate the impact of PAT uncertainty, three threshold distributions

are compared for retailers 1 and 4 respectively with respect to their expected demand δ̂:

Uniform[(1 − β)δ̂, (1 + β)δ̂] where β = 0.1, 0.3, 0.5. The three ranges will be referred

as narrow, medium, and wide respectively. Recall that only retailers 1 and 4 have PAT.

Table 3.1 shows the dropshipper’s expected profit change when a retailer’s PAT uncer-

tainty changes under each contract policy. PAT uncertainty is measured as the range of

potential PAT values while the average remains unchanged. The results are highlighted by

color green or red if the expected profit increases or decreases respectively. It can be seen

that when the availability level is low or high, the PAT range has only a marginal impact.

Also, the impact of PAT range is largest with overbook at risk of threshold policy. In gen-

eral, the dropshipper’s expected profit decreases as the threshold range, or the uncertainty

of threshold, increases.

Figure 3.14 and Figure 3.15 show the promised quantity change induced by having

narrower or wider range of PAT for each retailer 1 and retailer 4. When one retailer’s range
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Table 3.1: Dropshipper’s expected profit change by threshold (PAT) range variation with
respect to narrow PAT ranges

changes, the other’s PAT range is fixed at medium. In general, when overpromising is not

allowed (or limited) and/or inventory level is low, increasing PAT range decreases promised

quantity. This indicates that pressuring dropshippers by imposing high PAT uncertainty

may not be a good strategy for retailers. Also, the pattern appears to both retailers whose

market shares are different. Recall that retailers 1 and 4 have large and small market shares

respectively.

Figure 3.14: Changes in promised quantity to retailer 1 when its PAT range is nar-
rowed/widened from medium range
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Figure 3.15: Changes in promised quantity to retailer 4 when its PAT range is nar-
rowed/widened from medium range

3.5.4 Sensitivity Analysis of PAT Size

Threshold (PAT) size is defined as an expected value of PAT. We varied the PAT size from

low to high with respect to demand size of the corresponding retailer. More specifically,

three PAT sizes are studied: small, medium, and large, corresponding to x0.1, x0.5, and

x1.0 of corresponding demand size. While varying the PAT size, the deviation and shape of

PAT distribution remains unchanged. Also, since only the PAT size changes, the controlled

fillrate policy is excluded in this sensitivity analysis.

Table 3.2 and Table 3.3 show the dropshipper’s expected profit changes by the PAT

sizes of retailers 1 and 4 as small thresholds for both retailers a baseline. With guaranteed

fulfillment policy, expected profit decreases with larger thresholds, except under low avail-

ability level. Since no more quantity can be promised from availability, the dropshipper

may not have enough overall availability to exceed retailer’s PAT level with a larger PAT

size. In the case of low availability, the APC or PAT affects less as the available quantity

is a dominant constraint. In case of penalty-driven fillrate policy, on the other hand, the

varying PAT size has no significant impact on the dropshipper’s profit.
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Table 3.2: Dropshipper’s expected profit change by PAT size variation with respect to small
PAT: Guaranteed fulfillment policy

Table 3.3: Dropshipper’s expected profit change by PAT size variation with respect to small
PAT: Penalty-driven fillrate policy

3.6 Conclusion

This chapter studies the design of availability promising contracts (APCs), motivated from

a partnership with a furniture dropship manufacturer. This dropshipper dynamically en-

gages in APCs with multiple retailers, some of them having promised availability thresh-

olds (PATs). When the remaining promised availability level falls below the retailer-

specific PAT, no more orders can be received through the retailer. The dropshipper only

knows the probability distribution of the threshold. As the contract does not involve phys-

ical transaction, the dropshipper may promise more quantities than available-to-promise

quantity using the ignorance of retailers on actual availability level (overpromising). Three

contract policies are investigated based on overpromising behavior: (1) Guaranteed ful-

fillment, (2) Controlled fillrate, and (3) Penalty-driven fillrate. The contract design opti-

mization problem is modeled as a stochastic programming with two stochastic parameters:

demand and threshold.

The model-driven decision support system can readily be used by companies with cus-

tomized forecast and distribution assumptions. It can also generate customized manage-

rial insights. The computational experiments presented in the chapter provide general yet
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critical managerial insights for APC and PAT operations. The results show that the over-

promising policy always outperforms other policies and the benefit is maximized at lean

availability level while the benefit is decreasing as the availability level decreases or in-

creases. The retailer-specific PAT has significant impact on the dropshipper’s expected

profit while its benefit for retailers varies. When the dropshipper overpromises, adopting

a PAT operation is beneficial to retailers as the dropshipper tends to commit more to com-

pensate the extra uncertainty from thresholds. However, with a dropshipper who does not

overpromise, having thresholds can rather reduce the quantity promised to the retailer un-

less the availability level of the dropshipper is high and the retailer has a dominant market

share.

The chapter investigates a new type of contract for dropshipping operation, which opens

a rich set of future research avenues. We here highlight three such avenues as an extension

of current model and additional avenue as an exploration of the model in an different per-

spective. Firstly, the model can be extended to multi-period setting. With future sales

included in the scope, the optimal strategy can be to promise less quantity today for se-

curing future sales even though it may decrease today’s profit. The extension covering the

product’s replenishment lead time can be easily linked to availability planning as well. A

second potential avenue is a multi-location extension where the contracts are made by prod-

uct and storage location. This has significant managerial impact on both dropshipper and

e-retailers. E-retailers can offer faster delivery lead times and dropshippers can reduce de-

livery cost when fulfilling customers from closer locations. More specific demand forecasts

by region is required for the multi-location extension. The model scope can be extended

to a deployment problem as well. The third potential research avenue is to investigate and

enable dynamical contract renewal. For example, more quantity can be assigned as the re-

maining quantity is getting close to the expected PAT or multiple contracts can be renewed

to enable promised availability reallocation based on demand pattern observed during the

day. The forth extension is to further investigate the point estimation model by finding the
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optimal quantile to be used instead of using the expected value. The point estimation value

has not been optimized in the setting as it was not the focus of the sutdy. However, if the

point estimation model with optimal quantile can generate near-optimal value compared to

the stochastic models, the simpler deterministic model can be used to support more com-

plex models such as multi-period extension models. Another future research avenue is to

view the problem in a perspective of game theory by extending the problem to model re-

tailer’s PAT decision instead of treating PAT as an exogenous stochastic parameter. Such

game theoretical model can deliver interesting insights on how effective the PAT strategy

is and if the PAT and stockout penalty are complementary or supplementary.
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CHAPTER 4

NETWORK INVENTORY DEPLOYMENT FOR RESPONSIVE FULFILLMENT

4.1 Introduction

With the growth of e-commerce and prevalent home delivery practices, expectations for

shorter delivery lead times are increasing and meeting such expectations is critical for hold-

ing the lead in the competitive market. In 2020, the e-commerce sales revenue in the US

exceeded 432B dollars and projected to be 549B dollars in 2024 ([4]). Moreover, a report

of Invesp ([8]) indicated that 56% of young online customers expect same-day delivery

and more than half of customers want even faster delivery, 1- to 3-hour-delivery. That

is, customers are becoming more and more service conscious ([144]; [131]). Nowadays,

Amazon offers a same-day Prime delivery for selected items and a 2-hour delivery with

Prime Now. Walmart offers 2-hour Express Delivery and Target offers same-day delivery.

Besides the big players, many start-ups, such as Flexe.com, Darkstore, and Deliv (acquired

by Target), have been launched in offering delivery or distribution services to support very-

fast delivery. Noticing the trend and growing customer expectations, existing e-commerce

companies have started to explore new business opportunities and adjusting strategic plans

to adopt to the market changes.

Our research is motivated by a collaborative project with an industry partner, a dropship

manufacturer in the North American market offering furniture and home interior acces-

sories that consist of over 2000 stock keeping units (SKUs). It ships per year almost a mil-

lion items ordered online to more than 250 thousands customer locations by zip code. Cur-

rently, our industrial partner is operating with rather a centralized fulfillment/distribution

network with three facilities in Utah, Texas, and Tennessee as shown in the left side of

Figure 4.1. The locations are also used as mid- or long-term storage locations to hedge
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against demand uncertainty. However, capability to offer same-day or x-hour delivery is

limited in such centralized fulfillment network. Accordingly, we investigated alternative

fulfillment solutions in collaboration with our partner. First, the solution is to expand the

fulfillment network by utilizing open fulfillment centers (FCs) through service providers

spread all over the US as exemplified on the right hand side of Figure 4.1. Second, the

solution aims to optimally deploy the fulfillment inventories in the decentralized network

to better utilize the increased density and smartly leveraging the pooling structure than the

current fulfillment scheme, based on a pre-allocation of demand zones to a specific FC

(usually the nearest).

Figure 4.1: Current centralized FC network (left) and decentralized FC network (right) in
Contiguous United States

As stressed, the main motivation of the study is the growing customer expectations on a

very fast delivery. We will use the term ’responsiveness’ and ’responsiveness level’ to refer

to how fast a delivery can be and delivery lead time respectively, following Snoeck and

Winkenbach [145]. To meet such a tight responsiveness level requirement, products must

be physically available within the lead time distance. This requires an access to a broad and

dense network of FCs. In fact, when considering the US market, it is possible to exploit

more expensive but fast transportation mode, such as air transportation, to cover the lack of

physical availability if the shortest delivery lead time is next-day as pointed by Acimovic

and Graves [146]. However, when it comes to same-day or X-hour delivery, the physical

availability of items nearby becomes necessary as illustrated conceptually in Figure 4.2,

which contrasts low and high responsiveness and centralized and decentralized network.
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When higher responsiveness is required, the coverage area which is within the maximum

distance to deliver to each customer in the required delivery time (shown in dotted line in

Figure 4.2) shrinks. Naturally, a broader and denser FC network is required to maintain the

same level of demand fill rate. Traditionally, however, although companies are aware of

the benefit of a more decentralized network, often it is impossible or financially unviable

as it implies a huge capital investment. We find that the Physical Internet (PI) initiative

([147]; [148]; [21]) can provide an alternative solution to overcome the hurdles. The PI

builds a hyperconnected global logistics system enabling seamless asset sharing and flow

consolidation by applying the mechanism of digital data operations in the web to physical

object. We specifically focused on its emphasis on open asset utilization which can poten-

tially enable affordable access to broad and dense fulfillment network by using services of

open FCs on-demand instead of building own fulfillment network. For instance, the open

FCs in Figure 4.1 can be a set of available FCs that a company can use by purchasing the

service provided by one or more service providers. Several early business examples that

offer fulfillment and storage services can be found in market already, such as the services

provided by Flexe.com, ES3, WarehouseAnywhere, and Darkstore.

Yet the advantage of decentralized networks is not obvious as centralized inventory

systems often outperformed decentralized systems due to maximized demand pooling as

shown in many previous studies for decades under various settings ([14]; [149]; [150]).

However, earlier research found it beneficial to rely on decentralized networks in other

contexts such as supply chain disruption ([151]), omnichannel ([152]) and e-commerce

([146]). Therefore, it must be rigorously evaluated whether decentralization is beneficial

and how pooling affects in our context where the fulfillment of online orders that require

tight responsiveness. Responsiveness requirements results in a complex and interesting ful-

fillment capability structure that affects pooling structure in inventory management. Note

that online customers do not differentiate where the products are shipped from, unlike

customers at a store who can only buy products available at the store in traditional or om-
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Figure 4.2: Demand fulfillment from centralized and decentralized network under low and
high responsiveness requirements

nichannel contexts ([152]). That is, online demands, that we are focusing on here, can be

satisfied from any inventory location, e.g. FC, as long as the delivery lead time require-

ments are met. In the meantime, not all locations are capable of serving certain customer

due to a tight responsiveness requirement. This is major difference to previous works that

assumes the minimum delivery lead time is a day or more which can be covered by any

inventory locations ([146]). As a results, demands become partially pooled, where each

demand segment can only be served from a certain subset of inventory locations due to the

responsiveness requirement (fulfillment capability). Such partial demand pooling leads to

a very complex model as illustrated with a case of 3 inventory locations in Figure 4.3. The

complexity tend to increase exponentially as the network size and the number of respon-

siveness options grows. Although there is a plethora of inventory and fulfillment studies

considering the shipping cost and/or demand pooling, the context of such tight responsive-

ness level constraints has not been studied as much because it became critical only recently.
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It is important to maximize the utilization of fulfillment flexibility and partial demand pool-

ing.

Figure 4.3: Illustrative example with three inventory locations case

As the study focuses on online demand and home delivery, inventory locations are

referred to as FCs throughout the manuscript.

This chapter builds and solves an inventory deployment model under tight responsive-

ness requirements for a company which needs to evaluate operations in a centralized fulfill-

ment network given its resource and a decentralized fulfillment network accessed through

a service provider. The chapter makes four major contributions.

• To the best of our knowledge, we are the first to introduce the notion of responsive-

ness to inventory modeling and formulate a Newsvendor model for a partially pooled

network. We stress the complexity of the model as well as the intractability of the

exact solution.

• We develop a pragmatic and easy-to-compute heuristic solution built upon the exact

solution, a W-solution, which has an equal-fractile structure. We also present a binary

search based heuristic to efficiently calculate the W-solution, referred to as a W-

heuristic.
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• We demonstrate the benefit of the decentralized network under tight responsiveness

requirements over the centralized network and the pre-allocation-based inventory

network. This is performed through numerical experiments on theoretical demand

distributions. We also report rather counter-intuitive observations that solutions with

pooling lead to more inventory than solutions without pooling under low sales mar-

gins.

• Using the case of a drop-ship manufacturer in the US market, we provide empirical

evidence of the benefit of decentralization over the risk pooling when a responsive

fulfilment is required. We also demonstrate the effectiveness of the W-solution over

the empirical demand distributions and the practical-sized case.

The chapter is structured as follows. The section 3.2 reviews the relevant literature and

positions the work. In section 4.3, the Newsvendor model with partial pooling induced

by the responsiveness level requirements is built and a solution heuristic is presented. In

section 4.4, computational experiments are first conducted over theoretical demand dis-

tributions. The experiment explores the benefit of distributed network over centralized

network and the benefits of flexible fulfillment (pooling) over zone allocated fulfillment

(no-pooling). Results of a case study are also presented using a real company data, evalu-

ating the decentralization and the heuristic solution over an empirical distribution. Lastly,

the chapter concludes in section 3.6 with a summary of the findings, contributions and

limitations along with avenues for future research.

4.2 Literature Review

There are several streams of literature that are the most related to our study. The first

refers to inventory models in decentralized single-echelon networks, especially those that

consider constraints related to responsiveness. The second stream relates to fulfillment

flexibility. These two streams are closely related to demand and inventory pooling. The
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third stream deals with the Newsvendor model which is the model used in this study among

the various inventory models. The last is inventory modeling in the PI context.

Eppen [14] is one of the first who investigated the inventory pooling under centralized

and decentralized networks. Following Eppen [14], a large body of literature studied the

benefit of pooling in various settings ([150]; [153]; [149]; [154]; [155]; [156]). Among

the large volume of research in this literature stream, some are more focused on comparing

the trade-offs between centralization and decentralization. Schmitt, Sun, Snyder, and Shen

[151] analyzed trade-offs between risk pooling and risk diversification under centralized

and decentralized inventory systems and showed that decentralization is optimal under sup-

ply disruption, especially benefiting risk averse firms. Yang, Hu, and Zhou [157] compared

both centralization/decentralization and pooling/no-pooling systems where the decentral-

ized system without pooling can be represented as N independent Newsvendor models and

the centralized system with pooling as a single Newsvendor model. Other implicit ex-

amples that provide good intuition are where demand or inventory can be pooled through

transshipment ([158]; [159]; [160]). Govindarajan, Sinha, and Uichanco [152] presented

decentralized and integrated inventory models under an omnichannel setting where the on-

line demand is pooled among all stores and fulfillment centers whereas store demands are

exclusive to each store. Alptekinoğlu and Tang [161] tackled the inventory ordering and

allocation problem by decomposing the master problem into subproblems per inventory

location by assigning demands and integrating them to find the optimal assignment. In

our modeling framework, inventories and demands are partially pooled. Previously, partial

pooling occurs as each company or inventory location decides to pool only a predetermined

fraction of inventories ([162]; [160]) or inventories are physically distributed in a central

(pooled) location and local (not pooled) locations ([163]). In our context, partial pooling

arises due to the complex fulfillment capability structure induced by the responsiveness

requirements.

One of the goals of our work is to find optimal inventory deployment over the network,

105



as in Guo, Liu, and Wang [164], who examined the decisions for reserved inventories that

hedges against sudden demand surge. Alptekinoğlu and Tang [161] study optimal alloca-

tion policy under the context of differentiated services. Govindarajan, Sinha, and Uichanco

[152] is closely related to the study where it has a mixture of demands that can be exclu-

sively served by each store and demands that are pooled. However, responsiveness and ful-

fillment capability induced by responsiveness requirements have not been modeled before.

Such fulfillment capability structure with two levels, where some demand are exclusive to

stores (as in omnichannel) or retailers and the others can be served by any locations, had

been studied previously (e.g. [152]) but not in the context of responsiveness or further

extended to more than two levels of pooling. Although responsiveness has started to gain

attention, most of the literature focus on transportation ([145]; [165]; [166]) and/or network

design ([167]). Some considers fast-ship options ([168]; [169]), which is not considered in

our context. Note that the inventory allocation problem is often combined with the facility

location problem ([170]; [171]), but in this study we focus on inventory order and alloca-

tion decisions for a given fulfillment network. Also, some inventory allocation literature

considers service requirements ([172]; [104]), where the service level is measured as the

minimum demand fill rate. However, in this study, we only consider the responsiveness

requirements and the demand fill rate is determined as a result of cost minimization under a

Newsvendor model. We contribute to the stream of inventory literature by first introducing

the notion of responsiveness to inventory model and complex fulfillment structure induced

by it.

Fulfillment flexibility is also a pertinent topic as it is not only related to responsiveness-

induced fulfillment capability structure but also as it affects the inventory model. DeValve,

Wei, Wu, and Yuan [173] emphasizes the fulfillment flexibility in an e-retail environment

and many papers in the inventory literature with demand pooling address it directly or in-

directly (e.g. [157]). However, in general, it is assumed that all demand segments can be

served by any potential fulfillment location while it is not allowed due to pre-allocation (or
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pre-assignment) or fulfillment preference is set and controlled through the shipping cost.

For example, in a pure e-commerce setting, Acimovic and Graves [146] modeled a base

stock policy that minimizes the shipping cost by maximizing the inventory balance over

the network and mitigating spillover. The underlying assumption is that even the shortest

delivery lead time can be met by any fulfillment centers (FCs) utilizing a faster transporta-

tion mode such as air. Therefore, the total inventory level in the network can be set as a

complete pooling inventory level and it is allocated to each FC. In a similar context, Aci-

movic and Graves [174] modeled a problem that consists to find from which FC online

orders should be fulfilled to minimize the total discounted shipping cost. Process flexibility

and production capacity in a context of manufacturing can be mapped to fulfillment flex-

ibility and inventory in a context of demand fulfillment. Jordan and Graves [175] is the

first that introduced the concept of chaining which is also relevant to our work. Chain-

ing has been further studied and applied since Jordan and Graves [175] ([176]; [177]). In

our model, the ’chain’ is already determined from responsiveness requirements. However,

the concept of chaining gives a good intuition to understand the fulfillment flexibility. In

our experiment, we compare our solution with the solution without fulfillment flexibility

where demand segments are pre-allocated to specific fulfillment locations to further add

on to the studies in fulfillment flexibility. Again, no previous study exists that considers a

complex fulfillment capability structure as we present in the chapter. We allow a complete

fulfillment flexibility given the fulfillment capability.

Here, we used the Newsvendor model to build the inventory ordering and allocation

model. the Newsvendor model is one of the most well-known and well-studied inventory

models. Khouja [178] provides an extensive review of traditional Newsvendor models.

It is still one of the most actively used models until now with various extensions ([157];

[179]). Yet in most cases, the fulfillment capability is not tightly modeled as in our model

even in multi-location models. For example, Govindarajan, Sinha, and Uichanco [179],

who modeled a distribution-free multi-location Newsvendor and derived bounds, assumed
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that demand can be fulfilled by any locations while extra cost occurs when fulfilled from

further locations. Our work is the most related to a variant: Newsvendor Network ([180];

[181]; [182]). The modeling and solution approach of the Newsvendor Network especially

provided a great insight to tackle the new type of problems we present, although Newsven-

dor Network was not built in the fulfillment context. Although the Newsvendor model has

a few limitations, especially due to the single-period nature, it is a basic component of

many other multi-period models such as the basestock policy and it is still widely used.

For example, Özer and Xiong [183] proposed a Newsvendor based heuristic to find the

optimal basestock levels in a warehouse and multiple retailer distribution centers served by

the warehouse with minimum fillrate requirements.

The Physical Internet (PI) is an innovative logistics transformation movements ([147];

[10]; [21]). Montreuil [21] defines PI as a ”hyperconnected global logistics system en-

abling seamless open asset sharing and flow consolidation through standardized encapsu-

lation, modularization, protocols and interfaces to improve the efficiency and sustainability

of fulfilling humanity’s demand for physical object services.”. Then, [147] summarizes

recent progress of PI study and address future research avenues. Although the focus of the

study is responsiveness, the sustainability PI system has also been shown in many literature

([21]; [148]). The open asset utilization invigorated by PI movement offers the potential

to enable an affordable access to a decentralized fulfillment network through on-demand

open fulfillment services for companies regardless of their market share. More importantly,

here we aim to study on how to manage inventory efficiently over the open FC network.

The hyperconnected distribution system, especially in comparison to a collaborative sys-

tem, is modeled and evaluated by Sohrabi, Montreuil, and Klibi [13], Sohrabi, Montreuil,

and Klibi [184] and Sohrabi, Montreuil, and Klibi [185]. Under the context of inventory

management in the PI and hyperconnected fulfillment, Pan, Nigrelli, Ballot, Sarraj, and

Yang [69] and Yang, Pan, and Ballot [186] studied the optimal (Q,R) inventory control

policy in a multiechelon supply chain utilizing PI hubs in a hyperconnected network. Both
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reported reduction in cost and the global inventory level with PI. Ekren, Akpunar, and Mul-

laoglu [187] developed an optimal (s,S) policy with lateral transshipment in a two-echelon

network under a PI environment. Yang, Pan, and Ballot [188] studied and demonstrated

the positive impact of such PI inventory system on mitigating supply chain disruptions. Ji,

Peng, and Luo [189] extend the scope and build an integrated production-to-distribution

model. Although the literature on inventory models in PI is growing, up to now, most of

the PI-based inventory policies emphasize the use of PI hubs instead of inventory policies

in an open fulfillment network or responsiveness.

4.3 Newsvendor Model with Partial Pooling

Here, we develop the inventory model as a variant of the Newsvendor model. Firstly, we

present a general linear programming model of the Newsvendor policy with responsiveness

as shown in (Equation 4.1). FC, R and S are a set of available fulfillment centers (FCs),

regions, and responsiveness levels respectively. The demand Drs, from region r ∈ R

requiring a responsiveness level s ∈ S, is a stochastic parameter. Let t(s) be the delivery

lead time required for responsiveness level s and t(i, r) be the time to deliver from FC i to

region r. Then a subset of demand segments which can be fulfilled from f ∈ FC is defined

as Drs(f) where rs(f) := {(r, s) ∈ (R, S)|t(f, r) ≤ t(s)}. Similarly, a subset of FCs that

can serve demand segment Drs is defined as f(rs) := {f ∈ FC|t(f, r) ≤ t(s)}.

Three cost parameters are considered: the unit holding cost at FC i, hi, the unit purchase

cost of inventory c, as well as the unit sales profit when a unit Dr,s is fulfilled from FC i,

denoted by pirs. Because the sales price of item, p, is in general the same regardless of

the region, pirs is defined as a unit sales price subtracted by the shipping costs. The unit

overage and underage cost can be written as co = (hi + c) for each i and cu = pirs − c

for each i, r, s respectively. Since the goal of the study is to find the inventory policy that

utilizes the partial pooling to fulfill demands with tight responsiveness, we assume that the

shipping costs are the same, e.g. flat rate shipping. We also assume that the holding costs
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are the same across the network. In other words, as long as the responsiveness requirement

is satisfied, there is no cost difference to serve a unit demand from a different FC.

The first stage decision variable is the inventory level at FC i, denoted by Ii, and there is

a second stage variable xirs, which is the sales quantity used to fulfill demand Drs from FC

i, such that (r, s) ∈ rs(i). Note that the responsiveness requirements and partial pooling

are already embedded in the model as a fulfillment feasibility.

max
I∈R+

E[Q(I)]−
∑
i

(c+ hi)Ii (4.1.1)

where Q(I) = max
∑
i,r,s

(pirs + hi)xirs (4.1.2)

s.t.
∑

(r,s)∈rs(f)

xirs ≤ Ii ∀i ∈ FC (4.1.3)

∑
i∈f(rs)

xirs ≤ Drs ∀(r, s) ∈ {R, S} (4.1.4)

X, I ∈ R+ (4.1.5)

One way to solve the Newsvendor problem is to use dual values (shadow prices) cor-

responding to capacity constraints (Equation 4.1.3), following the method of Harrison and

Van Mieghem [181] and Mieghem and Rudi [180]. More specifically, we are using Propo-

sition 2 in Harrison and Van Mieghem [181]. As it was for the case of newsvendor network

([180]), the approach is very useful to gain insights and solve more complex version of

newsvendor problem. When using the other approaches such as solving the expected profit

equation directly as in Govindarajan, Sinha, and Uichanco [152], it becomes almost impos-

sible to have the equation due to the flexible fulfillment options and feasibility in constraints

(Equation 4.1.4) induced by service sensitive demand. One option is to assign priority to

demand segments for each FC, which again becomes almost infeasible in practice when

the system complexity increases with more number of FCs and service options.
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To tackle the problem, here we start with a simple case with two FCs, which induces

three demand segments: it can be served only by the first FC, only by the second FC,

and by both FCs. We name it the W-case. Then extended models and their solutions are

presented. The approximate solution of a general model is derived and named as the W-

solution. Lastly, a heuristic to calculate the W-solution is presented, which will be referred

to as the W-heuristic.

4.3.1 W-case

The assumption of a fixed shipping cost across the network simplifies the model but also

adds more flexibility that may result in multiple optima. Therefore, we assigned a fulfill-

ment priority to the closer fulfillment location to reduce the number of optimal solutions

as shown in Figure 4.4 where the pooled demand is divided into Da and Db. These two

demands are preferred to be served by I1 and I2 respectively. The goal of this section is to

solve the case of Figure 4.4 and to use it as a base for a solution to a general problem.

Figure 4.4: W-case with fulfillment preference

The linear relaxation of the primal distribution problem and the corresponding dual

problem are described in Model Equation 4.2 and Model Equation 4.3. The primal corre-

sponds to the second stage of Model Equation 4.1 where p is p = pirs + hi for all i, r, s
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combinations.
Primal Dual

max pX (4.2.1)

s.t. A1X ≤ I (4.2.2)

A2X ≤ D (4.2.3)

X ∈ R+ (4.2.4)

min IΛ +Dµ (4.3.1)

s.t. B1Λ, B2µ ≥ p (4.3.2)

Λ, µ ∈ R+ (4.3.3)

Where X = (x1, x1a, x1b, x2, x2a, x2b), A1 =

1 1 1 0 0 0

0 0 0 1 1 1

,

A2 =



1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


, I = (I1, I2), D = (D1, D2, Da, Db), Λ = (λ1, λ2),

µ = (µ1, µ2, µa, µb), B1 = AT1 , B2 = AT2 . The demand space partition is shown in

Table 4.1 and Figure 4.5 gives more intuitive visualization of the demand space partition

on a 2-D plot with I1 and I2 on each axis.

Figure 4.5: Demand space partition in 2-D plot
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Table 4.1: Dual solutions by demand partitions, where Dij = Di +Dj

Demand Partition I1 I2 I1, I2

Ω11

I1 ≤ D1

I2 ≤ D2 -
Ω12 D2 < I2 ≤ D2b -
Ω13 D2b < I2 ≤ D2ab -
Ω14 D2ab < I2 I1 + I2 ≤ D12ab

Ω15 D2ab < I2 I1 + I2 > D12ab

Ω21

D1 < I1 ≤ D1a

I2 ≤ D2 -
Ω22 D2 < I2 ≤ D2b -
Ω23 D2b < I2 ≤ D2ab I1 + I2 ≤ D12ab

Ω24 D2b < I2 ≤ D2ab I1 + I2 > D12ab

Ω25 D2ab < I2 -
Ω31

D1a < I1 ≤ D1ab

I2 ≤ D2 -
Ω32 D2 < I2 ≤ D2b I1 + I2 ≤ D12ab

Ω33 D2 < I2 ≤ D2b I1 + I2 > D12ab

Ω34 D2b < I2 ≤ D2ab -
Ω35 D2ab < I2 -
Ω41

D1ab < I1

I2 ≤ D2 I1 + I2 ≤ D12ab

Ω42 I2 ≤ D2 I1 + I2 > D12ab

Ω43 D2 < I2 ≤ D2b -
Ω44 D2b < I2 ≤ D2ab -
Ω45 D2ab < I2 -

The optimal dual solution corresponding to each demand partition is shown in Table 4.2.

The primal solution value is shown in Table C.1 in Appendix. Also, the dual solution

with extra shipping cost (s) for x1b, x2a is attached in Appendix: Table C.2, for additional

reference.

To calculate the optimal solution, we need to find the gradient from the dual problem.

In equation (Equation 4.4.1), the expected revenue, E[Revenue], is the objective value of

the primal model.

∂

∂I1

E[Revenue] =
∑
∀k

λ∗1|Ωk
P [Ωk]

= p
(
P [I1 ≤ D1] + P [D1 < I1 ≤ D1 +Da&I1 + I2 ≤ Dall]

+ P [D1 +Da < I1 ≤ D1 +Da +Db&I1 + I2 ≤ Dall]
) (4.4.1)

The result is symmetric for I2.
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Table 4.2: Dual solution by demand partition

Demand Partition λ1 λ2 µ1 µ2 µa µb
Ω11 p p 0 0 0 0
Ω12 p p 0 0 0 0
Ω13 p p 0 0 0 0
Ω14 p 0 0 p p p
Ω15 p 0 0 p p p
Ω21 p p 0 0 0 0
Ω22 p p 0 0 0 0
Ω23 p p 0 0 0 0
Ω24 0 0 p p p p
Ω25 0 0 p p p p
Ω31 p p 0 0 0 0
Ω32 p p 0 0 0 0
Ω33 0 0 p p p p
Ω34 0 0 p p p p
Ω35 0 0 p p p p
Ω41 0 p p 0 p p
Ω42 0 p p 0 p p
Ω43 0 0 p p p p
Ω44 0 0 p p p p
Ω45 0 0 p p p p

By setting ∂
∂I1
E[Revenue] = c, where the cost c is defined as c = c+hi for any location

i, we can find the condition for the optimal solution:

c =
∂

∂I1
E[Revenue] (4.5.1)

= p
(
P [I1 ≤ D1] + P [D1 < I1 ≤ D1 +Da&I1 + I2 ≤ Dall]

+ P [D1 +Da < I1 ≤ D1 +Da +Db&I1 + I2 ≤ Dall]
)

= p
(
P [I1 ≤ D1] + P [D1 < I1 ≤ D1 +Da +Db&I1 + I2 ≤ Dall]

)
= p
(

1− P [D1 < I1] + P [D1 < I1&I1 + I2 ≤ Dall]

− P [D1 +Da +Db < I1&I1 + I2 ≤ Dall]
)

= p
(

1− P [D1 < I1&I1 + I2 > Dall]− P [D1 +Da +Db < I1&I1 + I2 ≤ Dall]
)
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The above equation can be simplified as below.

p− c
p

= P [D1 < I1&I1 + I2 > Dall] + P [D1 +Da +Db < I1&I1 + I2 ≤ Dall] (4.6.1)

= P [D1 +Da +Db < I1] + P [D1 < I1 ≤ D1 +Da +Db&I1 + I2 > Dall] (4.6.2)

In (Equation 4.6), the left hand side is Newsvendor ratio. In the right hand side, it is the

probability of no stockout in the demands that can be fulfilled by location 1 (Drs(1)). This

can be seen clearer in Equation 4.6.2: The first term is the probability of Drs(1) completely

fulfilled by I1 alone. The second term is the probability of Drs(1) to be fulfilled by a

combination of I1 and I2 where D1 can only be served by I1 exclusively. Although the

expression seems not too complicated, the joint probability in the second term is actually

adding a significant issue. We are to derive approximation that further simplifies the result

to apply to more complicated cases as follows.

p− c
p
≈ P [D1 +Da +Db < I1] + P [D1 < I1 ≤ D1 +Da +Db]P [I1 + I2 > Dall] (4.7.1)

≈ P [D1 +Da +Db < I1] + (1− P [D1 +Da +Db < I1])P [I1 + I2 > Dall] (4.7.2)

The approximation starts from Equation 4.6.2 and firstly approximate the second joint

probability term by taking them independent as in (Equation 4.7.1). Then, assuming high

enough fill rate is guaranteed and the demands that can be served by only one FC, D1 and

D2, is not so significantly larger than pooled demand, Da + Db, that makes the pooling

negligible, we can assume the probability of I1 not enough to cover D1 be very small,

e.g. P [D1 < I1] ≈ 1. Then we get the second approximation (Equation 4.7.2). Now we

can see that there is no joint probability term that is extremely hard to solve and there are

only three probabilities left with respect to the equation (Equation 4.7.2) for FC 1 and 2:

P [D1 + Da + Db < I1], P [D2 + Da + Db < I2], and P [I1 + I2 > Dall]. Furthermore,

P [D1 + Da + Db < I1] = P [D2 + Da + Db < I2] and once the first two is solved,

P [I1 + I2 > Dall] is automatically set. In other words, finding solution is to find η =

115



P [D1+Da+Db < I1] = P [D2+Da+Db < I2], that satisfies the approximation equation. It

is interesting to find that the approximation is a family of equal fractile solutions which has

been found by many inventory literature that embeds pooling in different contexts ([158];

[161]; [152]).

4.3.2 Case extensions

As stressed earlier, the main difference of our model compared to past works (e.g. [152];

[146]; [158]) is that there can be more than one layer of fulfillment feasibility induced by

larger number of FCs and responsiveness requirement levels, as illustrated in Figure 4.3.

Figure 4.6 shows a simpler demand fulfillment capability structure with 3 FCs.

Figure 4.6: 3-FC Cases: If is an inventory level at FC f and Du is demand segments that
can be served by a subset of FCs, u

Recall (Equation 4.6), which show that for FC i, the optimal stock quantity is to satisfy

P [no stockout in demand segments that can be fulfilled by i,Drs(f)] = p−c
p

. However, writ-

ing the optimality condition even for the simplest extension, such as case 2 in Figure 4.6,

is not straightforward. For example, in case 2, there can be a chance to fill a unit demand

in D1,2 or in D2,3 from I2, which makes it impossible to write the equation although the

it makes no difference for the objective value. That is, some priority rules must be made.

Exclusive demand segments, Df , or demand segments that can be served by a lower num-

ber of FCs, will be prioritized as we assumed in the W-case. Also, to write the optimality

condition for I1, we assume that I2 will prioritize D2,3 over D1,2,3, which results in a more

conservative I1. With the priority rules, the optimality condition w.r.t. I1 for case 2 can be
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written as Equation 4.8.1.

p− c
p

= P [D1 +D1,2 ≤ I1]

+ P

 D1 ≤ I1 < D1 +D1,2

&I1 + [[I2 −D2]+ − [D2,3 − [I3 −D3]+]+]+ ≥ D1 +D1,2

 (4.8.1)

≤ P [D1 +D1,2 ≤ I1] + P

 D1 ≤ I1 < D1 +D1,2

&I1 + (I2 + I3 −D2 −D2,3 −D3) ≥ D1 +D1,2


(4.8.2)

≈ P [D1 +D1,2 ≤ I1] + P [D1 ≤ I1 < D1 +D1,2]P [I1 + I2 + I3 ≥ Dall] (4.8.3)

≈ P [D1 +D1,2 ≤ I1] + (1− P [D1 +D1,2 ≤ I1])P [I1 + I2 + I3 ≥ Dall] (4.8.4)

Then, Equation 4.8.2 relaxed [x]+ to x. In the W-case, it was not necessary because the

joint probability guaranteed it implicitly due to the low complexity. Note that the assump-

tion made here is similar to the ones made in the W-case. P [If ≥ Df ] ≈ 1 for each FC

f and P [I2 + I3 ≥ D2 + D3 + D2,3] ≈ 1. In other words, for any subset of demands and

FCs with a higher fulfillment priority, there is an assumption for a sufficient inventory. We

will refer to this assumption hereafter as the ’local sufficiency assumption’. Following the

approximation to Equation 4.8.4 is same to the W-case approximations.

Similar argument can be made for the optimality condition for I1 in case 3, which results

in (Equation 4.9). Step-by-step equations (Equation C.1) are included in section C.2 in the

Appendix. Note that I3 is symmetric to I1 in case 2 and 3.

p− c
p
≈

P [D1 +D1,2 +D1,2,3 ≤ I1]

+(1− P [D1 +D1,2 +D1,2,3 ≤ I1])P [I1 + I2 + I3 ≥ Dall]
(4.9)

Solving for I2 in case 2 also follows similar steps. For simplicity, here we denote
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demands that can be fulfilled by depot 2 as D2∗ = D2 +D1,2 +D2,3.

p− c
p

= P [D2∗ ≤ I2] + P



D2 ≤ I2 < D2∗

&I2 + [I1 −D1]+ ≥ D2 +D1,2

&I2 + [I3 −D3]+ ≥ D2 +D2,3

&I2 + [I1 −D1]+ + [I3 −D3]+ ≥ D2∗


(4.10.1)

≤ P [D2∗ ≤ I2] + P



D2 ≤ I2 < D2∗

&I2 + I1 −D1 ≥ D2 +D1,2

&I2 + I3 −D3 ≥ D2 +D2,3

&I2 + I1 −D1 + I3 −D3 ≥ D2∗


(4.10.2)

≈ P [D2∗ ≤ I2] + P

 D2 ≤ I2 < D2∗

&I2 + I1 + I3 ≥ Dall

 (4.10.3)

≈ P [D2∗ ≤ I2] + (1− P [D2∗ ≤ I2])P [I2 + I1 + I3 ≥ Dall] (4.10.4)

The first relaxations (Equation 4.10.2) and (Equation 4.10.3) are based on local sufficiency

assumption. Then, the joint probability is relaxed as two independent probability. Equa-

tion 4.10 is directly applied to case 3 simply by setting D2∗ = D2 +D1,2 +D2,3 +D1,2,3.

The W-case results and the case extensions results described in this section give in-

tuitive and direct extension to general cases. Using the general notations introduced in

section 4.3 and Dall to denote the sum of demand over all regions and responsiveness lev-

els, the generalized W-solution for the general model, (Equation 4.1), can be written as

follows.

p− c
p
≈ P [Drs(f) < If ] + (1− P [Drs(f) < If ])P [

∑
i∈FC

Ii > Dall] ∀f ∈ FC (4.11)

We will refer the solution in Equation 4.11 as W-solution throughout the chapter.
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4.3.3 W-heuristic

Here, a heuristic to calculate the solution using the equations found in previous sections is

presented. First, consider the functions gf for all f ∈ FC below where I = (If ∀f ∈ FC),

Iall =
∑

i∈F Ii, and f and F is probability and distribution function respectively. In fact,

finding solution is equivalent to find solution that makes function g = 0.

gf (I) = P [Drs(f) < If ] + (1− P [Drs(f) < If ])P [
∑
i∈F

Ii > Dall]−
p− c
p

= Frs(f)(If ) + (1− Frs(f)(If ))Fall(Iall)−
p− c
p

Note that for f, q ∈ FC such that f 6= q,

∂gf
∂If

= frs(f)(If )(1− Fall(Iall)) + fall(Iall)(1− Frs(f)(If ))

∂gq
∂If

= fall(Iall)(1− Frs(f)(If ))

Because f ≥ 0 and 0 ≤ F ≤ 1 due to the property of probability and distribution func-

tions, g is monotonically increasing function of If . Also, since ∂If
∂Frs(f)

≥ 0, g is monoton-

ically increasing function of Frs(f) and the equal-fractile structure of the solution requires

Frs(f)(If ) = q for all f . Thanks to these properties, an efficient binary search using q as a

search variable can find the solution as shown in algorithm 2. In algorithm 2, the overage

and underage costs are used for generality. The line 5-line 8 keep the ratio of each inventory

value obtained with the minimum f value and let the total inventory in the network to be

determined as a single Newsvendor solution. This is needed when the demand distribution

is bounded, as well as to compensate the practical limit of computational ability. Similarly,

the line 9-line 12 scale the solution while keeping the ratio obtained with the maximum f

when the upper bound of g is below zero. The line 31-line 35 is where the lower bound

is forced that corresponds to the local sufficiency assumption made for the approximation.
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However, this potentially adds significant computational complexity as the number of sub-

sets grows exponentially to the number of FCs: 2|FC|. Therefore, in the line 29, we let the

maximum size of checked subsets to be bounded with k, i.e., |SFC | ≤ k|FC|k.
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Algorithm 2: w-heuristic - binary search based heuristic for calculating w-
solution in Equation 4.11

Input : Demand distributions: PDFs (or PMFs) f and CDFs (or CMFs) F
Fulfillment centers FCs and fulfillment eligibility rs(f)
Cost parameters (overage and underage cost): co, cu

output: I
1 Newsvendor Ratio R = cu

co+cu

2 Initialization: I lf = F−1rs(f)(l), Iuf = F−1rs(f)(u) ∀f ∈ FC where l, u are lower and upper probability
computation bounds

3 Calculate gl = l + (1− l)Fall(I
l
all)−R where I lall =

∑
f∈FC I

l
f

4 and gu = u+ (1− u)Fall(I
u
all)−R where Iuall =

∑
f∈FC I

u
f

5 if gl > 0 then
6 If ← F−1all (R)

Il
f

Il
all

∀f ∈ FC
7 Go to line line 31
8 end
9 if gu < 0 then

10 If ← F−1all (R)
Iu
f

Iu
all
∀f ∈ FC

11 Go to line line 31
12 end
13 while |gu − gl| > 0 do
14 Let q = l+u

2

15 Iqf = F−1rs(f)(q) ∀f ∈ FC
16 Calculate gq = q + (1− q)Fall(I

q
all)−R

17 if gq == 0 then
18 If ← Iqf ∀f ∈ FC
19 break and go to line line 31
20 else if gq < 0 then
21 Update I lf ← Iqf ∀f ∈ FC
22 else
23 Update Iuf ← Iqf ∀f ∈ FC
24 end
25 end
26 if I is NULL then
27 If ←

Il
f+Iu

f

2 ∀f ∈ FC
28 end
29 Define SFC = {S ⊂ FC|∃Drs s.t. f(rs) = S; |S| ≤ k; sorted in ascending order of |S| }
30 and DS =

∑
Drs s.t. f(rs) ⊆ S

31 for S in SFC do
32 if FDS

(
∑

f∈S If ) < R then
33 Update If ← F−1DS

(R)
If∑

f∈S If
∀f ∈ S

34 end
35 end
36 Update and return I = (If ← bIfe ∀f ∈ FC)
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4.4 Numerical Experiment

The two main goals of the numerical investigation are: (1) to show the benefit of the de-

centralized network under high responsiveness and (2) to evaluate the effectiveness of the

W-solution obtained in section 4.3 under partial pooling induced by responsiveness re-

quirement. In other words, we are interested to investigate if the decentralized network

is actually more profitable under tight responsiveness requirements, and how important is

it to consider the partial pooling to deploy inventories over the network. For the second

goal, the W-solution is compared to a simple pre-allocation model. In addition, we also

aim to numerically evaluate the proposed heuristics. Therefore, in this section, we are to

answer the questions via computational experiments using different settings of the demand

distribution and costs. Normal distribution is used which is the most commonly used dis-

tribution for evaluating inventory models and due to its good theoretical properties, e.g. a

convolution of independent normal distributions is also a normal distribution. Throughout

the experiment in this section, the unit sales price and the purchase cost are set to 105 and

5 respectively and therefore the unit overage and underage cost are set to 5 and 100, unless

set differently for a sensitivity analysis. The bound for the local sufficiency guarantee is set

to k = 1 (refer line 29 in algorithm 2). Also, we used l = 0.0001 and u = 0.9999 as lower

and upper bounds to calculate the probability and in line line 13, we replaced 0 with 1e−4 to

ensure a reasonable convergence. Each obtained solution is evaluated for key performance

indices (KPIs) such as the expected cost, the profit, and the fill rate via simulation over

independently generated demand samples.

The section is organized as follows. Firstly, the proposed W-solution and W-heuristic

(algorithm 2) are evaluated meticulously under the W-case (2-FC network) by varying the

mean and variance of selected demand segments or randomizing demand distributions.

Secondly, we investigate if the results of the W-case can be extended to more generalized

cases such as a 10 by 10 grid model. Lastly, we present the case study results demonstrating
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the scalability of the results and the behavior over empirical demand distributions.

4.4.1 W-case experiment

We first start with tackling the W-case. For the experimental design, three coverage cases

are considered as in Figure 4.7. There are eight regions and two responsiveness levels.

Each region is defined, or named, by the lower left coordinate and each fulfillment center

is named with its coordinate. For example, the region in the upper right corner is region

1-3, denoted as ’r1-3’. Similarly the central FC is FC2-1. Assume it takes one time period

to move one region in the grid and travel time from a FC to a region is defined as the

Manhattan distance from the FC to the center of the region. For instance, the travel time

from FC1-1 to region r0-1 is |1 − 0.5| + |1 − 1.5| = 1. Also, the responsiveness level s

requires a delivery in s time period. In Figure 4.7, the coverage from each FC within time

periods 1 and 2 are shown in green and orange respectively. Blue indicates pre-allocation

of regions to the nearest FC. There can be one central FC or 2 FCs which is the minimum

number of FCs to have a full coverage. With 2 FCs, the W-case considers partial pooling.

That is, demand with responsiveness level 2 in regions r1-1, r2-1, r1-0 and r2-0 can be

served by any FCs. On the other hand, the pre-allocation case exclusively assign regions to

the nearest FCs and do not utilize the partial pooling. In this case, any demand satisfied is

served with the minimum delivery distance.

Figure 4.7: Three coverage cases for W-case experiment

Let Drisj be the demand from region i that require the responsiveness level j. In a link

to Figure 4.4, D1 in Figure 4.4 is equivalent to Dr0−1s1 + Dr1−1s1 + Dr0−0s1 + Dr1−0s1 +
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Dr0−1s2 + Dr0−0s2 and Da is equivalent to Dr1−1s2 + Dr1−0s2. Similarly, D2 and Db in

Figure 4.4 are equivalent to Dr2−1s1 +Dr3−1s1 +Dr2−0s1 +Dr3−0s1 +Dr3−1s2 +Dr3−0s2

and Dr2−1s2 + Dr2−0s2 respectively. Additionally, for simpler notations, we denote all

demands that can be covered by FC i as Diall, e.g. D1all = D1 +Da +Db using notations

from Figure 4.4. Also, Diassign denotes all demands that are pre-allocated to FC i, e.g.

D1all = D1 +Da.

Note that the coverage cases above can be applied to inventory and fulfillment solutions

separately. For example, applying pre-allocation in inventory solution means that demands

are allocated to the FCs and independent Newsvendor problems are solved to determine

inventory level at each FC. This does not necessarily require same pre-allocation coverage

for fulfillment. That is, once demand is realized, demands are allowed to be fulfilled from

any FC as long as responsiveness requirements are met (e.g. spillover). Accordingly, five

solutions are investigated in the experiment.

The Table 4.3 compares the solutions with respect to FC network and coverages for

inventory solution and fulfillment. The difference between the pre-allocation and pre-

allocation with spillover is a fulfillment flexibility. In other words, both have same in-

ventory level at each FC, calculated from pre-allocation that solves independent Newsven-

dor given the pre-allocation, but W-case allows spillover at fulfillment (flexible fulfillment)

while pre-allocation only allows to serve demands that are allocated to each FC. W-solution

is the solution calculated from W-heuristic, e.g. algorithm 2. W-solution without lower

bound is the solution from algorithm 2 without line 31-line 35. This is a direct solution from

Equation 4.7.2. Hereafter, subscripts c, a, aso, w, and wnlb stand for centralization, pre-

allocation, pre-allocation with spillover, W-solution, and W-solution with no lower bound

respectively. For example, the total inventory in the network under pre-allocation will be

Itotala, so does the total inventory under pre-allocation with spillover Itotala = Itotalaso.

The total cost under these pre-allocation and pre-allocation with spillover will be costa

and costaso respectively. For extended cases, the pre-allocation and w-case for inventory
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solution coverage can be interpreted as no-pooling and partial pooling. Similarly, the pre-

allocation and w-case for fulfillment coverage can be interpreted as inflexible fulfillment

and flexible fulfillment respectively. The W-solution with and without lower bound with

respect to varying demand distributions is shown in subsection C.3.1 in the Appendix.

Table 4.3: Solution comparison by fulfillment network and coverage for inventory solution
and fulfillment for W-case experiment

FC Network
Inventory Solution

Coverage
Fulfillment
Coverage

Centralization Centralized Centralized Centralized
Pre-allocation Decentralized Pre-allocation Pre-allocation
Pre-allocation
with Spillover Decentralized Pre-allocation W-case

W-solution Decentralized W-case W-case
W-solution with
no Lower Bound Decentralized W-case W-case

To observe how the different coverage and solutions perform under certain distributions,

three phases of experiments and sensitivity analysis on margin have been conducted. First

is to vary the mean and the coefficient of variance (cov) of a demand segment that can only

be served by FC 1 or central FC: Dr1−1s1. Second is to vary the mean and the variance of a

demand segment that can be served by both FC 1 and FC2 or central FC: Dr1−1s2. Lastly,

we randomly vary the mean and the variance of demand segments. The three cases are con-

ducted with the default costs, co = 5, cu = 100. Then, we repeat the first and the last experi-

ments with co = 100, cu = 25 as a sensitivity analysis. The default demand distribution has

been set up as follows: Dr0−1s1, Dr1−1s1, Dr2−1s1, Dr3−1s1, Dr1−1s2, Dr2−1s2 follow Nor-

mal with mean of 50 and cov of 0.2. The others are set to zero. With the default distribu-

tion, Di, Diassign, Diall follow N(100,
√

200), N(100,
√

200), N(150,
√

300), N(200, 20)

respectively for both i = 1, 2. Demand under coverage of central DC follows N(200, 20).

Figure 4.8 shows the total inventory in the network by solutions when varying the

mean and the cov of Dr1−1s1. Itotalw, Itotalwnlb, Itotalc, and Itotala represents the
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total inventory in the network from W-solution, W-solution with no lower bound, cen-

tralization and preallocation respectively. Preallocation with spillover is omitted because

Itotalaso = Itotala. For all cases, it is shown that centralization has significantly a smaller

inventory, which is not because of efficiency obtained with better pooling but rather because

of losing demands requiring tight responsiveness from regions 1, 4, 5 and 8. Pre-allocation

tends to require more inventory and this is because it is ignoring the pooling. Lastly, in

most cases, the W-solution and the W-solution w/o LB result in the same inventory but it

deviates when the mean of Dr1−1s1 becomes much higher than the others.

Figure 4.8: Total inventory by mean and cov of Dr1−1s1

Figure 4.9 plots the expected cost by solution when varying the mean and the cov of

Dr2s1. costw, costwnlb, costa, and costaso represents the total inventory in the network from

W-solution, W-solution with no lower bound, preallocation and preallocation with spillover

respectively. In the plot of the expected cost, the centralized coverage is excluded for better

readability as it is significantly higher than the other solutions. As explained, because

the centralized network is not capable of serving demands requiring tight responsiveness

from regions 1,4,5 and 8, these lost demands incur high opportunity costs. In other words,

due to the responsiveness requirements, the cost of lost demands surpass the benefit of extra

pooling. In all cases, including both the centralized and decentralized cases, the W-solution

outperforms the other solutions which demonstrates the importance of utilizing the partial

pooling properly. Also, although the pre-allocation solution results in higher costs than

the W-solution, it can be seen that allowing spillover can reduce costs significantly given

the pre-allocation solution (e.g. costa ≥ costaso). This support the benefit of fulfillment
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flexibility.

Figure 4.9: Expected cost by mean and cov of Dr1−1s1

Besides the economic performances, the demand fill rate is an interesting performance

measure. Expected demand fill rate by mean of Dr1−1s1 and fill rate per unit inventory

by total inventory the network are plotted on each side of Figure 4.10 respectively. Recall

that the fill rate is measured as the fraction of demands that is satisfied directly from stock.

The left curve clearly shows the limitations of centralized network to capture demands by

offering satisfying responsiveness, which results in a high opportunity cost. The efficiency

curve also shows the value of the distributed network over the centralized one while there

is no significant difference between the variations of the distributed network, in line with

the results in Figure 4.8 and Figure 4.9.

Figure 4.10: Expected fill rate by mean of Dr1−1s1 (left) and the fill rate per unit inventory
(right) when varying the mean of Dr1−1s1

The results of the second experiment, by varying mean and cov of D1−1s2 are similar

to the results of the first experiment, as shown in Figure 4.11 and Figure 4.12. Figure 4.11

shows the total inventory in the network by varying mean and cov of Dr1−1s2. Figure 4.12
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shows the expected cost by varying mean and cov of Dr1−1s2 for distributed network. The

results are very similar to the first experiment whereDr1−1s1 was varied, except in this case,

the difference between w-case and w-solutions to preallocation is seemed to be smaller and

at all cases, w-solution and w-solution with LB resulted in the same inventory levels.

Figure 4.11: Total inventory by mean and cov of Dr1−1s2

Figure 4.12: Expected cost by mean and cov of Dr1−1s2

The randomized experiment is done in the following manner. Starting from the default

demand distribution, each demand segment, by region and responsiveness level, is revisited

and changed with probability of 0.3. Once it is chosen for a random change, the Normal

distribution with mean∼ Uniform[20, 170] and cov∼ Uniform[0.1, 0.4] is randomly as-

signed. The number of demand segments to get the normal distribution with random pa-

rameters are also chosen randomly to maximize the impact of randomization. The Table 4.4

summarizes the results as a percentage change of the total inventory and the expected cost,

profit and fill rate with respect to W-solution. The results show that the centralized solution

is the least profitable and the cost of lost demand is very high. From the expected fill rate, it

can be seen that centralized solution is losing almost 30% of the demand than decentralized
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solutions due to its limited capability to offer responsiveness. As mentioned earlier this is

due to the high margin and we are to make comparison to the low margin case through the

sensitivity analysis. Under the decentralized network, the W-solution results in less inven-

tory than the pre-allocation with a lower cost and slightly a higher profit. The W-solution

w/o LB performs similar to the W-solution, but the W-solution brings extra cost saving.

Table 4.4: Relative KPIs w.r.t. W-solution from W-case random experiment

Total Inventory Cost Profit Fill rate
Centralized -26.3 % 2930.3% -28.9% -29.1%

Pre-allocation 5.8% 33.5% -0.3% 0.0%
Pre-allocation w/ Spillover 5.8% 11.1% -0.1% 0.2%

W-solution w/o LB 0.0% 0.1% 0.0% 0.0%

The efficiency curve is shown in Figure 4.13. The curve for centralized solution is

fluctuating due to the fluctuations in demands that cannot be served by the central location.

However, the trend is clear that efficiency of centralized solution is inferior to others which

results in higher opportunity cost.

Figure 4.13: Efficiency curve with respective to fill rate per inventory and total inventory
for W-case with random variation

The results of sensitivity analysis with respect to margin are presented from here. One

of the following questions to answer is if w-solution works well when margin is not as

high as the default. The sensitivity analysis has been conducted by repeating the first and

third w-case experiments assuming low margin, where co = 100, cu = 25. We begin with

presenting the first experiment results.
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Figure 4.14 shows the total inventory in the network by solution when mean and cov

is varied on Dr1−1s1. Unlike the default case where margin is very high (refer Figure 4.8),

w-solution results in higher inventory level in total at all cases.

Figure 4.14: Total inventory by mean and cov of Dr1−1s1 under low margin where co =
100, cu = 25

However, w-solution remains to be the most profitable solution as shown in Figure 4.15.

That is, preallocated model often overstock or understock by ignoring partial pooling effect.

In other words, it often ignores the capability for the allocated demand to be partially served

from other FCs, resulting in overstock, or ignores the capability for the FC to serve part of

demands allocated to other FCs, resulting in understock. It is rather trivial that centralized

model is losing demand due to limited capability to satisfy all responsiveness levels, as in

the previous case.

Figure 4.15: Expected profit by mean and cov of Dr1−1s1 under low margin where co =
100, cu = 25

Under the randomized experiment, w-solution tend to have more inventory in the net-

work when the margin is low while resulting in lower cost and higher profit. The sensitivity

results with randomized demand are summarized in Table 4.5. In short, the results show
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that the W-solution remains the most profitable and the least costly solution and the cen-

tralized network remains more costly than the decentralized network under a low margin as

well. However, as can be seen by comparing Table 4.4 and Table 4.5, the cost gap between

the centralized solution and the decentralized solutions is significantly smaller when the

margin is low. Because in both cases, centralized solution is losing about 30% of the de-

mand than W-solution, the gap decrease is due to the reduced cost of the lost demands under

low margin. We also observe that, with a low margin, the W-solution results in a higher

inventory level in the network than the pre-allocation solution as shown in Table 4.5. This

observation will be discussed in more details in the next section.

Table 4.5: Relative KPIs w.r.t. W-solution from W-case random experiment under low
margin where co = 100, cu = 25

Total Inventory Cost Profit Fill rate
Centralized -31.0% 206.7% -32.6% -31.9%

Pre-allocation -2.8% 34.0% -5.3% -3.3%
Pre-allocation w/ Spillover -2.8% 4.0% -0.6% -2.4%

W-solution w/o LB 0.0% 0.0% 0.0% 0.0%

In short, w-solution remains the most profitable and the least costly model under low

margin as well. The cost gap between centralized solution and decentralized solution has

been decreased significantly because the total cost of lost demand by centralized system is

smaller when margin is low. We also observed that, with low margin, w-solution results in

higher inventory level in the network than preallocation. This observation will be discussed

more in detail in the next section.

4.4.2 Extended case experiment

The more generalized experiment is conducted on 10*10 grid network with decentralized

network with 25 FCs as shown in Figure 4.16. Based on the results of previous experi-

ments that demonstrate the benefit of having the lower bound for the W-solution, hereafter

we omit the W-solution w/o LB. The definition of demand regions as well as travel time
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remains the same. Here, we assume 5 responsive levels, s1, s2, s3, s5 and s9, each requires

delivery in 1, 2, 3, 5 and 9 time units, respectively. For instance, it can represent 4-hour,

same-day, next-day, 2-day, and 5-day delivery options. The coverage from the FCs in the

middle, FC5-5, is shown in color on the right side in Figure 4.16. The coloring scheme is

from very prompt and urgent in red to no-rush in blue and it will be consistently used in

the manuscript. In the grid experiment, we did not fix the location of the centralized FC.

Instead, for each experiment one FC is chosen that can cover the most demand as a central

FC.

Figure 4.16: 10*10 Grid Network with 25 FCs (left) and coverage from FC5-5 (right)

To investigate how the solution performs when varying the responsiveness expectations,

16 responsiveness expectations scenarios are first set as shown in Figure 4.17. Scenarios 0

and 15 are extreme cases. Scenario 0 enables a complete pooling in the network, as all can

be served from FC 5-5. Therefore, from an inventory point of view, the centralization is the

most efficient with a minimum cost. In scenario 15, all demand segments can only be served

by the nearest FC. Therefore, the pre-allocated solution on distributed network generates

the optimal solution. The experiment is conducted under the default (high) margin and a

low margin.

Under the default (high) margin, the total inventory using the W-solution is always

lower than the pre-allocation solution, except in scenario 15 where the two solutions result

in the same inventory as shown in Figure 4.18. The total inventory of the W-solution is
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Figure 4.17: Responsiveness expectation scenarios: from slow to fast

the same as that of the centralized inventory under scenario 0. As expected from the total

inventory level, the W-solution generates the optimal cost and profit in scenario 0 and 15

as the central and the pre-allocation solutions do in each scenario respectively. In scenarios

1-14, the W-solution has a superior performance than all the other solutions. Note that the

performance of the centralized solution deteriorates sharply when a tighter responsiveness

is required.

Figure 4.18: Total inventory (A), expected cost (B) and profit (C) by solution and by sce-
nario under a high margin where co = 5, cu = 100

Under the low margin, the total inventory using the W-solution is always higher than the
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other solutions with exceptions under scenario 0 and 15 as shown in Figure 4.19. Consistent

to the earlier numerical results in the W-case and the 3-FC case, the W-solution generates

more (less) inventory under high (low) margin than the pre-allocation solution. This is

rather a counter-intuitive result as intuitively the more are pooled, the less inventories are

needed due to variance reduction. We interpret the results as the role of pooling can be

seen as a buffer to margin changes. In fact, the pooling has a 2-directional impact: (1) the

inventory level in FC A can be reduced knowing that some demands can be covered by FC

B and (2) the inventory level in FC A can be increased knowing that part of the inventory

in A can be used to serve demands that are usually served by FC B. When the margin is

high, the pre-allocation solution stocks up each FC to increase sales in demand segments

allocated to it ignoring the potential to serve some of the demand from other FCs. On

the other hand, when the margin is low, the pre-allocation solution tends to stock less to

avoid the overage cost, which becomes relatively higher compared to the high margin case,

ignoring the potential to use some of the excess inventories to serve the demand segments

allocated to other FCs. However, the W-solution implies a pooling that is more robust to

the margin change since the pooling works as a buffer to the change.

Although the plots of the inventory level were reversed, the relative cost and profit

among the models remain the same to that of the case of the high margin as shown in

plots B and C in Figure 4.19. With the low margin, the impact of lost demand due to the

responsiveness requirement is relatively smaller, so the profit of the centralized inventory

is rather comparable to the decentralized total inventory.

4.4.3 Case Study

The case study is further experimenting the impact of the decentralized fulfillment network,

potentially using open FCs, and the W-solution under such environment using real data

from our industry partner. The fulfillment network and historical sales of a selected product

in USA are taken for the case study. The open FC network that consists of 186 FCs is set
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Figure 4.19: Total inventory (A), expected cost (B) and profit (C) by solution and by sce-
nario under a low margin where co = 100, cu = 25

using the public information on the FC locations of Amazon and Walmart. The resulting

FC network used in the case study is shown in Figure 4.1.

The regions are estimated at the city level and the data includes 2021 cities. Each city

is categorized into a metropolitan area or a non-metropolitan area based on its proximity to

the 218 US metropolitan cities: a metropolitan area is when the estimated travel time is less

than or equal to 2 hours and a non-metropolitan area is otherwise. Figure Figure 4.20 shows

the cities by category on the map. In this case study, distance is calculated by multiplying

circuity factor to great circle distance. Ballou, Rahardja, and Sakai [190] estimated average

circuity factor as 1.2 and 1.21 with standard deviation of 0.16 and 0.17 in US East and West

respectively. Noting that the circuity factor tend to increase as distance decreases and it tend

to be larger within urban area ([191]; [192]), we used average plus one standard deviation

of average US circuity factor, 1.2+1.21
2

+ 0.16+0.17
2

= 1.37 to estimate travel distance from

great circle distance. Travel time is estimated from travel distance assuming average travel

speed is 40 mph.

Five responsive levels are considered: 4-hr, Same-day, Next-day, 2-day, and Next-week.
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Figure 4.20: Extended metropolitan area and others on US map

The first 4 responsive levels require the travel time to be less than or equal to 2, 4, 10, and

24 hours respectively. Any location can be served from any FCs in the US by next-week.

The travel time is shorter than the total delivery time required by the responsive level con-

sidering the pick-up time, the delay with traffic and the maximum driving time per day.

With current network, the most responsive options are either 2-day or Next-week and 4-hr

fulfillment is only feasible in few cities. However, with open FC network, majority of the

cities can be fulfilled by next-day except few cities in inland states in Northwest. Moreover,

the number of cities where 4-hr fulfillment becomes feasible increases significantly. Fig-

ure 4.21 shows the best coverage from the nearest FC in the current and open FC network

respectively.

Figure 4.21: Contrasting the achievable time-sensitive coverage from current FC network
(left, centralized) and Open FC network (right, decentralized)

For the experiment, 2 responsiveness requirement scenarios are considered as summa-

rized in Table 4.6. For both scenarios, the requirements differ between the metropolitan and
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non-metropolitan areas. Customers in a metropolitan area expect a higher responsiveness

level. In the moderate responsiveness scenario, the majority of customers expect next-day

or 2-day delivery, whereas in the tight responsiveness scenario, more customers expect 4-

hour or same day delivery. The inventory solutions using pre-allocation with spillover and

the W-solution on the current and the open FC networks are compared for each scenario.

For the ease of comparison, the results are compared as percentage differences to that of

a base case. A centralized case where only next-week delivery is required is used as the

base case, which is also an upper bound (best case). The overage and underage cost and

Newsvendor ratio from the data are $45.6, $22.1, and 0.326 respectively.

Table 4.6: Fraction of demands in metropolitan and non-metropolitan areas by responsive-
ness requirements under 2 scenarios: Moderate and Tight responsiveness

Scenario Moderate Responsiveness Tight Responsiveness
City Category Metro Non-Metro Metro Non-Metro

4-hr 0.1 0.01 0.3 0.05
Same-day 0.3 0.09 0.3 0.15
Next-day 0.2 0.2 0.2 0.2

2-day 0.2 0.3 0.15 0.3
Next-week 0.2 0.4 0.05 0.3

The Table 4.7 and Table 4.8 summarize the case study results. For both scenarios, the

current FC network is insufficient to offer a satisfactory responsiveness and the limitation

becomes more critical with tighter responsiveness requirements. As a result, it only cap-

tures ∼ 50% and ∼ 35% of the total demand under moderate and tight responsiveness

requirements respectively and this is reflected in the profit directly. Also, due to the limited

number of FCs, the pre-allocation and the W-solution have almost no difference under the

current network. On the other hand, the open FC network has a significantly higher demand

fill rate and profit in both scenarios. Moreover, in the open FC network, the W-solution is

superior to pre-allocation in both scenarios. Even with the open FC network, pre-allocation

loses ∼ 18% and ∼ 23% of demand in each scenario while W-solution fulfill more than

∼ 90% of demand in both scenarios. The W-solution captures ∼ 5% more profit than
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pre-allocation in both scenarios. With the moderate responsiveness requirement, it cap-

tures ∼ 95% of the maximum profit (the base case profit). With the tight responsiveness

requirement, it still captures ∼ 90% of the maximum profit. The Figure 4.22 visualizes

pre-alllcation solution and W-solution in the open FC network on the map under the tight

responsiveness requirements. It can be seen that W-solution results in more uniform inven-

tory levels at each FC than pre-allocation solution and this is because the demands that can

be covered by each FC become similar with pooling.

Table 4.7: KPI changes with respect to the base case (upper bound) under moderate re-
sponsiveness requirements (PASO: Preallocation w/ spillover)

Total Inventory Demand Fill Rate Cost Profit
Current Open Current Open Current Open Current Open

PASO -48 % -21% -48% -18% 67% 14% -48% -10%
W-solution -51 % -4% -50% -4% 67% 7% -48% -5%

Table 4.8: KPI changes with respect to the base case (upper bound) under tight responsive-
ness requirements (PASO: Preallocation w/ spillover)

Total Inventory Demand Fill Rate Cost Profit
Current Open Current Open Current Open Current Open

PASO -65 % -25% -65% -23% 89% 21% -65% -16%
W-solution -66 % -8% -66% -9% 89% 15% -65% -11%

Figure 4.22: Inventory at each open FC from Preallocation (left) and w-solution (right)
under tight responsiveness requirement scenario, sized by global relative inventory level
and colored by relative level within each solution
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4.5 Conclusion

We have presented an inventory problem where demands are partially pooled due to respon-

siveness requirements, as often observed in the current competitive e-commerce delivery.

The problem is modelled as a variant of a Newsvendor model which determines the inven-

tory requirements and allocation at the same time. Then we have derived an approximated

solution, the W-solution, followed by a pragmatic heuristic to calculate the solution. The

performance of the W-solution has been evaluated through numerical experiments and an

empirical investigation based on the case of a drop-ship manufacturer in the US market.

The results provide evidence on the importance of inventory models exploiting the pool-

ing structure and the limit of the centralized inventory network under tight responsiveness

requirements. Our investigation has also revealed the impact of the margin on the compar-

ative inventory levels and profits.

The results lead to several insights on the inventory management in the market where

customers expect a high responsiveness level. Firstly, the results show that the central-

ized network loses profit sharply as the customer expectation increases. The decentralized

network seems to keep more inventory than a centralized network, but it covers more de-

mand. However, it is clear that only a few companies can afford such a large decentralized

fulfillment network under a traditional business model. The open FC networks and hy-

perconnected fulfillment system where the fulfillment centers are operated by third party

service providers can open a new opportunity for companies to have access to a decen-

tralized network without a huge capital investment. Analyzing the value of a decentralized

network is the first step towards establishing a solid business model for such an open fulfill-

ment network. Secondly, the relative superiority of the W-solution over the pre-allocation

one addresses the importance of considering the partial pooling. An interesting observa-

tion is that the pre-allocation solution results in more inventory than the W-solution under

a high margin whereas it generates less inventory under a low margin while the W-solution
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constantly costs less. A common intuition is that the optimal inventory level decreases

as pooling increases. An interpretation of the rather counter-intuitive observation is that

the solutions considering the pooling are more robust to the margin change as the pooling

plays as a bumper that absorbs the impact of margin changes. On the other hand, the solu-

tion that does not consider pooling, such as the pre-allocation one, is susceptible to margin

changes. It tends to overstock when the margin is high ignoring the possibility for the al-

located demand to be partially served by other FCs and to understock when the margin is

low, ignoring the possibility for its inventory to be used to serve demands allocated to other

FCs.

We are to conclude the chapter by addressing the key limitations of the study which

leaves the door open to avenues for a future research. The first avenue concerns the single-

period nature of the Newsvendor model. Many products are continuously produced and

replenished over time requiring a multi-period model. Because the Newsvendor model

forms a base of many multi-period inventory models and the results of the study can be a

solid building block of multi-period extension. The second avenue is the simplified cost

structure. For example, a distance based shipping cost can be studied which can potentially

decrease the degree of pooling on inventory as it increases the preference for shipping from

a closer location. We believe that combining the inbound and/or outbound transportation

costs is a promising further research topic. Again, the future research can be benefited by

the results and insights of this chapter to tackle the complexity of the problem efficiently.

The third avenue is that we take the fulfillment network as a given parameter and offers a

solution for how to operate on the given network. However, it is often a critical question

on which FC should be used, especially in the perspective of Physical Internet where a de-

centralized FC network is accessible via service providers. For example, when a company

aims to decentralize its inventory by renting the space via Warehouse Anywhere, how many

and which locations does it need? If an omnichannel retailer uses its stores as fulfillment

locations as well, does it need to use all stores to get coverage or, if not, which subset of
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stores should be chosen? It is a problem that is gaining more and more practical and schol-

arly attentions and we believe that the modeling structure we presented in the chapter and

the solution can be used to support the network selection problems. The last avenue for

future research concerns the flat pricing of the services. Here we assume the profit does not

depend on responsiveness. However, the faster delivery is often charged more and demand

is often elastic to price. Although it is not within the scope of the chapter, the service design

and pricing is a very interesting and pertinent future research extension.
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CHAPTER 5

CONCLUSION

In summary, this thesis has investigated an alternative fulfillment solution, hyperconnected

fulfillment, that enables open asset utilization and multi-player operations, facing the cur-

rent logistics challenges under the prevalence of e-commerce and home delivery combined

with growing needs for more responsive deliveries. Firstly, in Chapter 2, we provided aca-

demic foundations for the hyperconnected fulfillment system by designing the key system

and decision architecture of the hyperconnected fulfillment. The numerical results clearly

demonstrated the potential benefit of the hyperconnected fulfillment system by concur-

rently improving often-conflicting measures, such as induced costs, harmful atmospheric

emissions, and customer service. In the following chapters, we turned our focus from a

strategic to an operational decision support model. More specifically, we have studied op-

erational models which optimally allocate inventories digitally and physically to maximize

the benefit of the hyperconnected fulfillment. Chapter 3 presented the inventory allocation

problem to multiple sales outlet under availability promising contract (APC) and retailers’

promised availability threshold (PAT). We designed and evaluated three allocation policies

and analyzed the impact of the PATs. We showed that the demand is partially pooled due

to the customers’ retailer substitution and preference, which also makes the per-retailer-

demand endogenous. The experimental results revealed the importance of utilizing the

pooling especially at a lean availability level. In chapter 4, we investigated the benefit of a

decentralized fulfillment network and model a proper inventory ordering and deployment

problem under tight responsiveness requirements. The model includes partially pooled risk

and inventory structure induced by the responsiveness requirements. We showed the com-

plexity of the model and the intractability of its solution. Then, we derived a pragmatic

heuristic solution, named W-solution, and an efficient solution algorithm using the equal-
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fractile structure of W-solution, named W-heuristic. The numerical study demonstrated

the benefit of decentralized fulfillment network and w-solution under responsiveness re-

quirements. Together, it has enabled us to provide insights on the potential benefits of the

hyperconnected fulfillment. We presented rigorous methodologies on how to design such

a system and how to allocate and deploy inventories effectively under the system. From a

practical view, the transition from asset-driven system to service-driven system can open a

new business opportunity that a few companies have already started to exploit.

The works in this thesis have their own limitations and they open a rich potential for

future research to be built upon them. We have addressed the limitations of each chapter

at the end of the corresponding chapter. Here, we list the limitations which are the most

relevant to the goal of the thesis, with respect to building and operating the hyperconnected

fulfillment system. Firstly, additional study is needed to design the network of open FCs

from the perspective of the service provider and how to select which FCs to use from the

perspective of users who have the access to the full network. It includes the impact of

the market size and/or the flow of products in the open FC network. Our work has taken

the open FC network as given and assumed the given network is a subset of the open FC

network selected for use. The operational models we presented can be used to support the

network selection and expansion models. For example, the W-solution presented in chap-

ter 4 can provide good insights on selecting a subset of open FCs by using it to calculate

marginal gains of adding or removing each FC. Also the simulation framework presented

in chapter 2 can be used to evaluate the performance of a selected sub-network. Secondly,

pricing models are required to properly charge for fulfillment services that benefit both ser-

vice providers and users. Such a pricing model is also closely related to the optimal subset

of open FCs selected for use by each user. Such studies can also deliver critical insights for

new businesses leading service-driven fulfillment. The models and insights from chapter 3

can support understanding the dynamics between players. Adding a pricing model is also

an interesting extension of the inventory model presented in chapter 4. Thirdly, studies
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on facility design of such open FCs or hubs are necessary. The complexity, connectivity

and dynamics of the open facilities with multi-player operations and on-demand utilization

need to be analyzed carefully and suitable facility design needs to be accompanied to en-

able seamless operations. The cost of intra-facility operations will also affect the pricing

models. Fourthly, from the perspective of inventory operations, expanding the scope to

supplier and replenishment operations can enable more comprehensive design of inventory

flow and bring additional insights. Also, expanding the scope to transportation, from a

higher echelon to fulfillment network, between FCs, and from FCs to customers, is one of

the most interesting future research avenue.

Despite its own limitations, the thesis contributes to the current literature in logistics

and Physical Internet by being the first that explored the potential of the hyperconnected

fulfillment system at systematic level and studied inventory operations under the setting

revealing complex pooling structure in it under tight responsiveness requirements.
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APPENDIX A

CHAPTER 2

A.1 Experimental Results: Cost Details

Table A.1: Costs of each scenario ($)

Labor
Cost

Fuel
Cost

Vehicle
Cost

Inventory
Holding Cost

Hub
Usage Cost

Total
Daily Cost

Total Cost
Reduction (%)

Scenario1:
DPFs 4,242 1,020 143 1,073 - 6477

Scenario2:
OPF 3,711 796 125 1,063 - 5696 -12%

Scenario3:
OPFs 3,456 702 117 1,072 - 5346 -17%

Scenario4:
OPFs & OUF 3,459 702 117 1,106 - 5384 -17%

Scenario5:
OUH 3,531 679 90 1,068 866 6234 -4%

Scenario6:
OUHs 3,001 616 104 1,068 421 5211 -20%

Scenario7:
OPFs & OUH 3,559 686 91 1,069 873 6279 -3%

Scenario8:
OPFs & OUHs 2,860 483 86 1,067 421 4917 -24%

Table A.2: Expected cost of scenario 1 and 8 by demand distribution ($)

Demand
Distribution

Labor
Cost

Fuel
Cost

Vehicle
Cost

Inventory
Holding

Cost

Hub
Usage
Cost

Total Daily
Cost

Total Cost
Reduction

(%)

Scenario1:
DPFs

Center-
Concentrated 4,242 1,020 143 1,073 - 6477

Uniform 4,610 1,175 155 1,068 - 7008
Suburb-

Concentrated 4,670 1,214 157 1,070 - 7111

Scenario8:
OPFs & OUHs

Center-
Concentrated 2,860 483 86 1,067 421 4917 -24%

Uniform 3,013 537 89 1,066 410 5116 -27%
Suburb-

Concentrated 3,020 542 89 1,071 402 5124 -28%
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APPENDIX B

CHAPTER 3

B.1 Linear modeling of lost demand

The demand lost by preferred retailer r due to inventory availability given original demand

δr is d−r = [δr − [zr − θr]+]+. To model it as a linear constraints, two indicator variables vr

and br are used. Note that there are the four possible cases as in table Table B.1.

Table B.1: Cases for linear d−r

[zr − θr]+ vr [δr − [zr − θr]+]+ br d−r
Case 0 zr − θr < 0 vr = 1 δr − [zr − θr]+ ≥ 0 br = 0 d−r = δr
Case 1 zr − θr < 0 vr = 1 δr − [zr − θr]+ < 0 br = 1 d−r = δr
Case 2 zr − θr ≥ 0 vr = 0 δr − [zr − θr]+ ≥ 0 br = 0 d−r = δr − (zr − θr)
Case 3 zr − θr ≥ 0 vr = 0 δr − [zr − θr]+ < 0 br = 1 d−r = 0

For simplicity, case 0 and 1 can be considered as one case, but they are separately

described to avoid any confusion here. The 5 constraints in the model (Equation 3.5.16)

- (Equation 3.5.20) ensure to achieve the non linear equality constraint for d−r under all

cases. Note that d−r ≥ 0.

Table B.2: Lost opportunity constraint by cases

Constraint Case 0 Case 1 Case 2 Case 3
(Equation 3.5.16) d−r ≤ δr d−r ≤ δr d−r ≤M d−r ≤M
(Equation 3.5.17) d−r ≥ δr d−r ≥ δr d−r ≥ −M d−r ≥ −M
(Equation 3.5.18) d−r ≤M d−r ≤ 2M d−r ≤ δr − (zr − θr) d−r ≤M
(Equation 3.5.19) d−r ≥ −M d−r ≥ −2M d−r ≥ δr − (zr − θr) d−r ≥ −M
(Equation 3.5.20) d−r ≤ 2M d−r ≤M d−r ≤M d−r ≤ 0

Total d−r = δr d−r = δr d−r = δr − (zr − θr) d−r = 0
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B.2 Daily expected profit

Figure B.1: Daily expected profit by allocation policy under varying availability level over
7 days
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APPENDIX C

CHAPTER 3

C.1 Newsvendor Solutions

C.1.1 Primal solutions for W-case

Table C.1: Primal solution by demand partition

Demand Partition x11 x1a x1b x22 x2b x2a

Ω11 I1 0 0 I2 0 0
Ω12 I1 0 0 D2 I2 −D2 0
Ω13 I1 0 0 D2 Db 0
Ω14 I1 0 0 D2 Db I2 −D2 −Db

Ω15 I1 0 0 D2 Db Da

Ω21 D1 I1 −D1 0 I2 0 0
Ω22 D1 I1 −D1 0 D2 I2 −D2 0
Ω23 D1 I1 −D1 0 D2 Db I2 −D2 −Db

Ω24 D1 I1 −D1 0 D2 Db Da − (I1 −D1)
Ω25 D1 I1 −D1 0 D2 Db Da − (I1 −D1)

Ω31 D1 Da I1 −D1 −Da I2 0 0
Ω32 D1 Da I1 −D1 −Da D2 I2 −D2 0
Ω33 D1 Da Db − (I2 −D2) D2 I2 −D2 0
Ω34 D1 Da 0 I2 Db 0
Ω35 D1 Da 0 I2 Db 0
Ω41 D1 Da Db I2 0 0
Ω42 D1 Da Db I2 0 0
Ω43 D1 Da Db − (I2 −D2) D2 I2 −D2 0
Ω44 D1 Da 0 D2 Db 0
Ω45 D1 Da 0 D2 Db 0

C.1.2 Dual solutions for W-case with shipping cost

Here, it is assumed that for unit sales shipped from FC1 to Db or from FC2 to Da, results

in extra shipping cost s.
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Table C.2: Dual solution by demand partition with extra shipping cost s

Demand Partition λ1 λ2 µ1 µ2 µa µb
Ω11 p p 0 0 0 0
Ω12 p p 0 0 0 0
Ω13 p p-s 0 s 0 s
Ω14 p 0 0 p p-s p
Ω15 p 0 0 p p-s p
Ω21 p p 0 0 0 0
Ω22 p p 0 0 0 0
Ω23 p p-s 0 s 0 s
Ω24 s 0 p-s p p-s p
Ω25 s 0 p-s p p-s p
Ω31 p-s p s 0 s 0
Ω32 p-s p s 0 s 0
Ω33 0 s p p-s p p-s
Ω34 0 0 p p p p
Ω35 0 0 p p p p
Ω41 0 p p 0 p p-s
Ω42 0 p p 0 p p-s
Ω43 0 s p p-s p p-s
Ω44 0 0 p p p p
Ω45 0 0 p p p p

C.2 Optimality condition for I1 for case 3

p− c
p

= P [D1 +D1,2 +D1,2,3 ≤ I1]+

P [D1 +D1,2 +D1,2,3 ≤ I1] + P



D1 ≤ I1 < D1 +D1,2 +D1,2,3

&I1 + [[I2 −D2]+ − [D2,3 − [I3 −D3]+]+]+ ≥ D1 +D1,2

&I1 + [[[I2 −D2]+ − [D2,3 − [I3 −D3]+]+]+ −D1,2]+

+[I3 −D3 −D2,3]+ ≥ D1 +D1,2,3


(C.1.1)

≈ P [D1 +D1,2 +D1,2,3 ≤ I1] + P


D1 ≤ I1 < D1 +D1,2 +D1,2,3

&I1 + I2 + I3 ≥ D1 +D2 +D3 +D1,2 +D2,3

&I1 + I2 + I3 ≥ D1 +D2 +D3 +D1,2 +D2,3 + d1,2,3


(C.1.2)

≈ P [D1 +D1,2 +D1,2,3 ≤ I1] + P [D1 ≤ I1 < D1 +D1,2 +D1,2,3&I1 + I2 + I3 ≥ Dall] (C.1.3)

≈ P [D1 +D1,2 +D1,2,3 ≤ I1] + P [D1 ≤ I1 < D1 +D1,2 +D1,2,3]p[I1 + I2 + I3 ≥ Dall] (C.1.4)
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≈ P [D1 +D1,2 +D1,2,3 ≤ I1] + (1− P [D1 +D1,2 +D1,2,3 ≤ I1])p[I1 + I2 + I3 ≥ Dall] (C.1.5)

C.3 Extra experimental results

C.3.1 W-solutions with respect to demand distributions

Here we show the impact of the having lower bound constraint. Finding W-case solution

with or without lower bound constraint is illustrated in Figure C.1. For all three examples,

probability functions ofD1, D2 ,D1assign, D2assign, D1all, D2all andDall is shown in the top

graph with W-case solutions I1w, I2w and I1wnlb, I2wnlb are marked with vertical line. In

example 1, lower bound didn’t make any difference because I1w, I2w is already larger than

the bound. However, in example 2 and 3, values of I1w and I2w is increased due to lower

bound constraint respectively. It can be seen that the impact of forcing lower bound differs

depends on the shape of demand distributions. The bottom graphs shows how cumulative

probabilities F1(I1), F2(I2) and Fall(I1 + I2) changes to η = P [D1 + Da + Db < I1] =

P [D2 + Da + Db < I2] which was defined in previous section, as well as the error, or the

value of function g, which was also defined previously.

Figure C.1: Examples of w-solutions under W-case by varying demand distributions
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[38] E. Pérez-Bernabeu, A. A. Juan, J. Faulin, and B. B. Barrios, “Horizontal coopera-
tion in road transportation: A case illustrating savings in distances and greenhouse
gas emissions,” International Transactions in Operational Research, vol. 22, no. 3,
pp. 585–606, 2015.

[39] X. Wang and H. Kopfer, “Collaborative transportation planning of less-then-truckload
freight,” OR spectrum, vol. 36, no. 2, pp. 357–380, 2014.

[40] M. A. Krajewska, H. Kopfer, G. Laporte, S. Ropke, and G. Zaccour, “Horizontal
cooperation among freight carriers: Request allocation and profit sharing,” Journal
of the Operational Research Society, vol. 59, no. 11, pp. 1483–1491, 2008.

[41] R. T. Wood, “Measuring urban freight in the tri-stae region,” in The urban move-
ment of goods: Proceedings of the third Technology Assessment Review. Paris,
OECD, 1970, pp. 61–82.

[42] C. Cleophas, C. Cottrill, J. F. Ehmke, and K. Tierney, “Collaborative urban trans-
portation: Recent advances in theory and practice,” European Journal of Opera-
tional Research, vol. 273, no. 3, pp. 801–816, 2019.

[43] T. G. Crainic, N. Ricciardi, and G. Storchi, “Models for evaluating and planning
city logistics systems,” Transportation science, vol. 43, no. 4, pp. 432–454, 2009.

[44] T. G. Crainic, P. K. Nguyen, and M. Toulouse, “Synchronized multi-trip multi-
traffic pickup & delivery in city logistics,” Transportation Research Procedia, vol. 12,
pp. 26–39, 2016.

[45] T. G. Crainic, F. Errico, W. Rei, and N. Ricciardi, “Modeling demand uncertainty
in two-tier city logistics tactical planning,” Transportation Science, vol. 50, no. 2,
pp. 559–578, 2015.

[46] R. Cuda, G. Guastaroba, and M. G. Speranza, “A survey on two-echelon routing
problems,” Computers & Operations Research, vol. 55, pp. 185–199, 2015.

[47] M. Janjevic, M. Winkenbach, and D. Merchán, “Integrating collection-and-delivery
points in the strategic design of urban last-mile e-commerce distribution networks,”

155



Transportation Research Part E: Logistics and Transportation Review, vol. 131,
pp. 37–67, 2019.

[48] K. Toh, P. Nagel, and R. Oakden, “A business and ict architecture for a logistics
city,” International Journal of Production Economics, vol. 122, no. 1, pp. 216–228,
2009.

[49] M. T. Melo, S. Nickel, and F. Saldanha-Da-Gama, “Facility location and supply
chain management–a review,” European journal of operational research, vol. 196,
no. 2, pp. 401–412, 2009.

[50] G. Nagy and S. Salhi, “Location-routing: Issues, models and methods,” European
journal of operational research, vol. 177, no. 2, pp. 649–672, 2007.

[51] W. Klibi, A. Martel, and A. Guitouni, “The impact of operations anticipations on
the quality of stochastic location-allocation models,” Omega, vol. 62, pp. 19–33,
2016.

[52] T. G. Crainic, N. Ricciardi, and G. Storchi, “Advanced freight transportation sys-
tems for congested urban areas,” Transportation Research Part C: Emerging Tech-
nologies, vol. 12, no. 2, pp. 119–137, 2004.

[53] B. Montreuil, Physical internet manifesto: Globally transforming the way physical
objects are handled, moved, stored, realized, supplied and used, versions 1.1 to
1.11, 2009-2012.

[54] S. Pan, E. Ballot, G. Q. Huang, and B. Montreuil, “Physical internet and inter-
connected logistics services: Research and applications,” International Journal of
Production Research, vol. 55, 2017.

[55] A. Domı́nguez, J. Holguı́n-Veras, Á. Ibeas, and L. dellOlio, “Receivers’ response
to new urban freight policies,” Procedia-Social and Behavioral Sciences, vol. 54,
pp. 886–896, 2012.

[56] Lindawati, J. van Schagen, M. Goh, and R. de Souza, “Collaboration in urban lo-
gistics: Motivations and barriers,” International Journal of Urban Sciences, vol. 18,
no. 2, pp. 278–290, 2014.

[57] I. Ben Mohamed, W. Klibi, O. Labarthe, J.-C. Deschamps, and M. Z. Babai, “Mod-
elling and solution approaches for the interconnected city logistics,” International
Journal of Production Research, vol. 55, no. 9, pp. 2664–2684, 2017.

[58] J. A. van Nunen, P. Huijbregts, and P. Rietveld, Transitions Towards Sustainable
Mobility: New Solutions and Approaches for Sustainable Transport Systems. Springer
Science & Business Media, 2011.

156



[59] E. Taniguchi, R. G. Thompson, and T. Yamada, “Emerging techniques for enhanc-
ing the practical application of city logistics models,” Procedia-Social and Behav-
ioral Sciences, vol. 39, pp. 3–18, 2012.

[60] N. Firdausiyah, E. Taniguchi, and A. Qureshi, “Modeling city logistics using adap-
tive dynamic programming based multi-agent simulation,” Transportation Research
Part E: Logistics and Transportation Review, vol. 125, pp. 74–96, 2019.

[61] C. Osorio and M. Bierlaire, “A simulation-based optimization framework for ur-
ban transportation problems,” Operations Research, vol. 61, no. 6, pp. 1333–1345,
2013.

[62] J. R. van Duin, R. Kortmann, and S. van den Boogaard, “City logistics through
the canals? a simulation study on freight waterborne transport in the inner-city of
amsterdam,” International Journal of Urban Sciences, vol. 18, no. 2, pp. 186–200,
2014.

[63] A. Verbraeck, Discrete modellen. Deel. 2. Simulatie theorie: SPM 2321. TU Delft,
2010.

[64] W. van Heeswijk, J. Albertus, M. Mes, J. Schutten, and W. Zijm, “Evaluating urban
logistics schemes using agent-based simulation,” Transportation science, 2020.

[65] O. Wangapisit, E. Taniguchi, J. S. Teo, and A. G. Qureshi, “Multi-agent systems
modelling for evaluating joint delivery systems,” Procedia-Social and Behavioral
Sciences, vol. 125, pp. 472–483, 2014.

[66] J. R. van Duin, A. van Kolck, N. Anand, E. Taniguchi, et al., “Towards an agent-
based modelling approach for the evaluation of dynamic usage of urban distribution
centres,” Procedia-Social and Behavioral Sciences, vol. 39, pp. 333–348, 2012.

[67] M. J. Roorda, R. Cavalcante, S. McCabe, and H. Kwan, “A conceptual framework
for agent-based modelling of logistics services,” Transportation Research Part E:
Logistics and Transportation Review, vol. 46, no. 1, pp. 18–31, 2010.

[68] R. Sarraj, E. Ballot, S. Pan, D. Hakimi, and B. Montreuil, “Interconnected logis-
tic networks and protocols: Simulation-based efficiency assessment,” International
Journal of Production Research, vol. 52, no. 11, pp. 3185–3208, 2014.

[69] S. Pan, M. Nigrelli, E. Ballot, R. Sarraj, and Y. Yang, “Perspectives of inventory
control models in the physical internet: A simulation study,” Computers & Indus-
trial Engineering, vol. 84, pp. 122–132, 2015.

157



[70] J. Holmgren, P. Davidsson, J. A. Persson, and L. Ramstedt, “Tapas: A multi-agent-
based model for simulation of transport chains,” Simulation Modelling Practice
and Theory, vol. 23, pp. 1–18, 2012.

[71] M. M. Solomon, “Algorithms for the vehicle routing and scheduling problems with
time window constraints,” Operations research, vol. 35, no. 2, pp. 254–265, 1987.

[72] A. M. Campbell and M. Savelsbergh, “Efficient insertion heuristics for vehicle rout-
ing and scheduling problems,” Transportation science, vol. 38, no. 3, pp. 369–378,
2004.

[73] B. Liu, X. Guo, Y. Yu, and Q. Zhou, “Minimizing the total completion time of an
urban delivery problem with uncertain assembly time,” Transportation Research
Part E: Logistics and Transportation Review, vol. 132, pp. 163–182, 2019.

[74] D. Weigel and B. Cao, “Applying gis and or techniques to solve sears technician-
dispatching and home delivery problems,” Interfaces, vol. 29, no. 1, pp. 112–130,
1999.

[75] G. Clarke and J. W. Wright, “Scheduling of vehicles from a central depot to a
number of delivery points,” Operations research, vol. 12, no. 4, pp. 568–581, 1964.

[76] V. N. Coelho, A. Grasas, H. Ramalhinho, I. M. Coelho, M. J. Souza, and R. C. Cruz,
“An ils-based algorithm to solve a large-scale real heterogeneous fleet vrp with
multi-trips and docking constraints,” European Journal of Operational Research,
vol. 250, no. 2, pp. 367–376, 2016.

[77] C. Wang, D. Mu, F. Zhao, and J. W. Sutherland, “A parallel simulated annealing
method for the vehicle routing problem with simultaneous pickup–delivery and
time windows,” Computers & Industrial Engineering, vol. 83, pp. 111–122, 2015.

[78] S. Baldi, I. Michailidis, V. Ntampasi, E. Kosmatopoulos, I. Papamichail, and M.
Papageorgiou, “A simulation-based traffic signal control for congested urban traffic
networks,” Transportation Science, 2017.

[79] L. Chong and C. Osorio, “A simulation-based optimization algorithm for dynamic
large-scale urban transportation problems,” Transportation Science, vol. 52, no. 3,
pp. 637–656, 2017.

[80] C. Osorio and K. Nanduri, “Energy-efficient urban traffic management: A micro-
scopic simulation-based approach,” Transportation Science, vol. 49, no. 3, pp. 637–
651, 2015.

[81] E. Taniguchi and R. E. van Der Heijden, “An evaluation methodology for city lo-
gistics,” Transport Reviews, vol. 20, no. 1, pp. 65–90, 2000.

158



[82] B. Montreuil, “Omnichannel business-to-consumer logistics and supply chains: To-
wards hyperconnected networks and facilities,” in 14th IMHRC Proceedings (Karl-
sruhe, Germany), 2016.

[83] B. Montreuil, O. Labarthe, and C. Cloutier, “Modeling client profiles for order
promising and delivery,” Simulation Modelling Practice and Theory, vol. 35, pp. 1–
25, 2013.

[84] Y. Xing, Y. Xu, M. Shi, and Y. Lian, “The impact of pm2. 5 on the human respira-
tory system,” Journal of thoracic disease, vol. 8, no. 1, E69, 2016.

[85] S. Netessine and N. Rudi, Supply chain structures on the internet and the role of
marketing-operations interaction. d. simchi levi, sd wu, m. shen, eds. handbook of
supply chain analysis in the e-business era, 2004.

[86] Z. Zacharia, “Supply chain collaboration in transformative vertical industries: Im-
plications of omnichannel and dropshipping,” Di Central, vol. url:
https://go.dicentral.com/downloads/lehigh-study (access date: 2020-05-01), May
2019.

[87] Y.-K. Chen, F.-R. Chiu, W.-H. Lin, and Y.-C. Huang, “An integrated model for on-
line product placement and inventory control problem in a drop-shipping optional
environment,” Computers & Industrial Engineering, vol. 117, pp. 71–80, 2018.

[88] T. Randall, S. Netessine, and N. Rudi, “An empirical examination of the decision
to invest in fulfillment capabilities: A study of internet retailers,” Management Sci-
ence, vol. 52, no. 4, pp. 567–580, 2006.

[89] T. Cheong, M. Goh, and S. H. Song, “Effect of inventory information discrepancy
in a drop-shipping supply chain,” Decision Sciences, vol. 46, no. 1, pp. 193–213,
2015.

[90] A. Ayanso, M. Diaby, and S. K. Nair, “Inventory rationing via drop-shipping in in-
ternet retailing: A sensitivity analysis,” European Journal of Operational Research,
vol. 171, no. 1, pp. 135–152, 2006.

[91] S. Netessine and N. Rudi, “Supply chain choice on the internet,” Management Sci-
ence, vol. 52, no. 6, pp. 844–864, 2006.

[92] C.-M. Chen and D. J. Thomas, “Inventory allocation in the presence of service-level
agreements,” Production and operations management, vol. 27, no. 3, pp. 553–577,
2018.

[93] J. R. Birge and F. Louveaux, Introduction to stochastic programming. Springer
Science & Business Media, 2011.

159



[94] W. B. Powell, “A unified framework for stochastic optimization,” European Jour-
nal of Operational Research, vol. 275, no. 3, pp. 795–821, 2019.

[95] J. P. Bailey and E. Rabinovich, “Internet book retailing and supply chain manage-
ment: An analytical study of inventory location speculation and postponement,”
Transportation Research Part E: Logistics and Transportation Review, vol. 41,
no. 3, pp. 159–177, 2005.

[96] T. F. Rodrigues, M. M. Dantas, C. A. Cavalcante, et al., “A dynamic inventory
rationing policy for business-to-consumer e-tail stores in a supply disruption con-
text,” Computers & Industrial Engineering, vol. 142, p. 106 379, 2020.

[97] C. A. Cavalcante et al., “Order planning policies for business-to-consumer e-tail
stores,” Computers & Industrial Engineering, vol. 136, pp. 106–116, 2019.

[98] S. Ma and Z. Jemai, “Inventory rationing for the news-vendor problem with a drop-
shipping option,” Applied Mathematical Modelling, vol. 71, pp. 438–451, 2019.

[99] S. Ma, Z. Jemai, E. Sahin, and Y. Dallery, “The news-vendor problem with drop-
shipping and resalable returns,” International Journal of Production Research, vol. 55,
no. 22, pp. 6547–6571, 2017.

[100] M. Khouja and A. C. Stylianou, “A (q, r) inventory model with a drop-shipping
option for e-business,” Omega, vol. 37, no. 4, pp. 896–908, 2009.

[101] S. T. Peinkofer, T. L. Esper, R. J. Smith, and B. D. Williams, “Assessing the impact
of drop-shipping fulfilment operations on the upstream supply chain,” International
Journal of Production Research, vol. 57, no. 11, pp. 3598–3621, 2019.

[102] Z. Y. Dennis, T. Cheong, and D. Sun, “Impact of supply chain power and drop-
shipping on a manufacturer’s optimal distribution channel strategy,” European Jour-
nal of Operational Research, vol. 259, no. 2, pp. 554–563, 2017.
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