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SUMMARY 

DNA methylation is a widespread epigenetic modification implicated in many 

important processes such as development, disease, and genomic imprinting. In well-studied 

mammalian systems, DNA methylation at gene promoters acts as a transcriptional 

repressor including playing a critical role in X chromosome inactivation. Despite the 

importance and prevalence of DNA methylation, essential model organisms such as D. 

melanogaster and C. elegans have experienced lineage-specific losses of genomic DNA 

methylation. This thesis focuses on a comprehensive epigenomics survey and investigation 

of the Hymenopteran insect order, a group of insects including wasps, bees and ants that 

have retained functional DNA methylation systems. This diverse group of insects allows 

us to gain new insights in to the function role of DNA methylation, especially in the context 

of gene expression regulation. I will first provide a general survey of the epigenetic 

landscape of insects, which have a completely different pattern compared to mammals, and 

offer a new approach to quantifying and analyzing DNA methylation in these organisms. 

Next, I investigate changes to DNA methylation and gene expression that accompany a 

bacterial infection and a drastic shift from sexual to asexual reproduction in a parasitoid 

wasp. I will then examine how the intricate honey bee society gives rise to allele-specific 

methylation and its potential relationship to allele-specific expression. Finally, I explore 

the importance of DNA methylation along with other promoter elements in regulating gene 

expression variation. 
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CHAPTER 1. INTRODUCTION 

DNA methylation, typically referring to the methylation of the fifth carbon in 

cytosines in the CpG context, has ancient origins and is widespread in both eukaryotes and 

prokaryotes (Jones 2012; Greenberg and Bourc'his 2019). The enzymes responsible for this 

chemical modification, DNA methyltransferases (DMNTs), are a conserved set of proteins 

where DNMT3 is responsible for de novo methylation of cytosines while DNMT1 

maintains faithful inheritance of methylation by the addition of methyl groups to 

hemimethylated DNA following replication (Bird 2002; Jones 2012; Greenberg and 

Bourc'his 2019). In mammals, CpG methylation has diverse roles in processes ranging 

from genomic imprinting, development, and cellular differentiation to cancer and 

neuropsychiatric diseases (Greenberg and Bourc'his 2019). 

Traditionally, CpG methylation in animals has been viewed and studied in the 

context of a transcriptional repressor (Yoder, et al. 1997; Schubeler 2015; Greenberg and 

Bourc'his 2019). Specifically, methylation in promoter regions is associated with down-

regulation of transcription (Bird 2002; Greenberg and Bourc'his 2019), as well as silencing 

of one copy of the X chromosome in therian female mammals (Sharp, et al. 2011). DNA 

methylation of repetitive genomic sequences is also associated with protecting the genome 

from transposable elements activity (Yoder, et al. 1997; Schubeler 2015). Yet, despite the 

prevalence and importance of DNA methylation, its function in other lineages remains 

poorly understood (Elango, et al. 2009; Sarda, et al. 2012). The recent burst of whole 

genome methylation profiling of diverse species (Feng, et al. 2010; Zemach, et al. 2010; 

Wang, et al. 2013; Galbraith, et al. 2015; Lindsey, Kelkar, et al. 2018) has greatly increased 
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our ability to survey both the presence of DNA methylation in previously unexplored 

species as well as study its function. Of particular interest to scientists are invertebrate 

lineages, where DNA methylation is widespread yet exhibit lineage-specific variation in 

terms of the extent, including a complete loss in some lineages (Glastad, et al. 2011; Yi 

2012; Bewick, et al. 2017; Rosic, et al. 2018).  

Hymenopteran insects, which include bees, wasps, and ants, have been focused on 

for their extreme diversity, importance to ecosystems, and presence of DNA methylation 

(Lyko, et al. 2010; Wang, et al. 2013). The advent of whole genome methylation studies in 

insects began with the publication of the honey bee (Apis mellifera) genome and discovery 

of a functional set of enzymes orthologous to vertebrate DNA methyltransferases 

(Honeybee Genome Sequencing 2006). In total, four CpG-specific DNMTs (two DNMT1 

and two DMNT3s) were found to be expressed (Honeybee Genome Sequencing 2006), and 

the genome of the honey bee was found to only have a small fraction of the methylation of 

heavily methylated mammalian genomes (Lyko, et al. 2010; Zemach, et al. 2010). The 

subsequent sequencing of other Hymenopterans revealed similar methylome patterns – 

DNA methylation in insects was almost exclusively limited to the gene bodies of 

evolutionarily conserved genes and enriched in exons compared to introns (Lyko, et al. 

2010; Wurm, et al. 2011; Wang, et al. 2013; Lindsey, Kelkar, et al. 2018). In the honey 

bee, queens and workers exhibit vastly different morphology and behaviors, yet share an 

identical genome (Honeybee Genome Sequencing 2006; Kucharski, et al. 2008). The 

specialized royal jelly diet fed to the queen-to-be was shown to modulate genome wide 

methylation patterns and was partly responsible for the phenotypic differences between 

queens and workers (Lyko, et al. 2010). Remarkably, the epigenetic states linked to 
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different phenotypes was found to be plastic and could be manipulated between behavioral 

subcastes (Herb, et al. 2012). However, direct causation, or even association, between 

changes in methylation and transcription mirroring mammalian systems have been difficult 

to establish in honey bee and other Hymenopterans (Elango, et al. 2009; Lyko, et al. 2010; 

Wang, et al. 2013; Galbraith, et al. 2015; Galbraith, et al. 2016). 

In my dissertation research, I focused on the study of DNA methylation in 

Hymenopteran insects. My overarching goals were to further our understanding of the 

evolution of DNA methylation, as well as to investigate the specific roles of DNA 

methylation in the study species. In Chapter 2, we propose a method for detecting and 

quantifying units of methylated CpG clusters we refer to as “methylation islands” (MIs) in 

insects. This idea was inspired by clusters of hypomethylated CpGs are often found at 

transcriptionally active promoters in mammals called “CpG islands” (Bird 1992; Schubeler 

2015). We employed high quality whole genome bisulfite sequencing datasets from seven 

Hymenopteran species to study the distribution and characteristics of these MIs. 

Additionally, we integrated RNA-seq are from three of the seven species to investigate 

potential functional associations between DNA methylation and transcription.  

In Chapter 3, I studied epigenetic and transcriptomic changes that accompany a 

drastic shift from sexual to asexual reproduction associated with Wolbachia infection in 

the Trichogramma pretiosum wasp. Wolbachia is a highly successful endosymbiont that is 

widespread and has profound effects on host fitness (Werren, et al. 2008; Zug and 

Hammerstein 2012). In Trichogramma wasps, Wolbachia infection induces 

parthenogenesis in females, a mode of asexual reproduction where unfertilized eggs 

develop into diploid adult females that propagate this infection vertically (Stouthamer, et 
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al. 2010). Due to geographic isolation of infected and uninfected lines, we devised a clever 

introgression scheme to control for confounding genetic differences between uninfected 

sexually reproducing Trichogramma and Wolbachia-infected wasps. We then performed 

whole genome bisulfite sequencing in parallel with RNA-seq to investigate epigenetic and 

transcriptomic changes linked to such an extreme shift in reproductive physiology. 

One of the many attractive qualities for studying honey bees is their extraordinary 

social structure. The typical queen produces offspring by mating with a multitude of males 

and the resulting differences in matrigene and patrigene relatedness among colony 

individuals has been hypothesized to contribute to parent-of-origin-specific expression 

(Haig 2000; Queller 2003). The kinship theory developed by David Queller predicts that 

the intragenomic conflict between the matrigenes and patrigenes due to differential fitness 

pressures should lead to parent-specific expression where the expression of an allele is 

dependent on the parent it was inherited from (Queller 2003). A previous study leveraging 

genotyping of European and Africanized reciprocal honey bee crosses found support for 

this theory using RNA-seq (Galbraith, et al. 2016), but the mechanisms behind these 

observations were not studied. In the fourth Chapter, I use the previously mentioned 

reciprocal crosses to investigate whether DNA methylation, the primary regulator of 

parent-specific expression in mammals and plants (Bird 2002; Queller 2003; Law and 

Jacobsen 2010), has a similar role in modulating parent-specific effects in the honey bee. 

In the fifth Chapter, I investigated the role of DNA methylation in relation to 

variation of gene expression variation in insects.  Gene expression levels may vary between 

individuals and within cell populations due to several mechanisms, including intrinsic 

factors such as the rate of transcription as well as extrinsic factors such as parasite infection 
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and cell cycle (Fraser, et al. 2004; Sanchez and Kondev 2008). It was previously proposed 

that DNA methylation may also affect gene expression variability (Sanchez and Kondev 

2008; Huh, et al. 2013; Sevier, et al. 2016; Wu, et al. 2020b). It is hypothesized that natural 

selection has affected expression variability of highly expressed genes as a means to control 

for the inherent stochasticity involved in transcription and subsequent protein synthesis, 

which has been shown to be detrimental to organisms (Fraser, et al. 2004; Wang and Zhang 

2011; Barroso, et al. 2018). Here, we gather high-quality RNA-seq datasets (8 honey bee 

and 12 Drosophila) to determine factors that contribute to gene expression variability. 

Importantly, DNA methylation is a known contributor to reducing gene expression 

variability (Huh, et al. 2013; Hunt, et al. 2013; Wang, et al. 2016) and the addition of 

Drosophila data allows us to ask whether the patterns of gene expression variability vary 

between the honey bee and a lineage that has lost ancestral gene body methylation. 

The research in this thesis encompasses a detailed investigation into the relationship 

between DNA methylation and transcription in Hymenopteran insects and expands our 

current understanding of the function of the epigenome. 
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CHAPTER 2. GENOMIC DISTRIBUTION AND 

CHARACTERIZATION OF METHYLATION ISLANDS IN 

HYMENOPTERAN INSECTS 

2.1 Introduction 

 The role of DNA methylation has been characterized extensively and plays 

important roles ranging from imprinting and disease to aging and development (Rainier 

and Feinberg 1994; Razin and Cedar 1994; Robertson and Wolffe 2000; Saze, et al. 2003). 

With the vast amount of sequencing in recent years, we have been able to dramatically 

expand the scope of DNA methylation profiling into previously unexplored lineages. This 

influx of genomic DNA methylation data has the potential to greatly increase our 

understanding of the phylogenetic distribution of DNA methylation and advance our 

knowledge of its function. 

 Traditionally viewed as repressor of transcription, we now have evidence that the 

function of DNA methylation is target dependent. When methylation occurs in gene 

regulatory regions such as promoters, downstream transcription is repressed (Jones 2012; 

Schubeler 2015). Similarly, DNA methylation at repetitive elements protects the genome 

from transposition of these elements (Yoder, et al. 1997; Schubeler 2015). In contrast, 

DNA methylation found in gene bodies is linked to active transcription, although whether 

it is the cause or effect remains unknown (Jones 2012). Though DNA methylation is 

widespread, some lineages including model organisms such as fruit flies and nematodes 

have experienced lineage-specific losses of methylation (Glastad, et al. 2011; Yi 2012; 

Rosic, et al. 2018). Of particular interest are insects from the order Hymenoptera due to 

being close relatives of fruit flies while also having functional DNA methylation systems 

(Lyko, et al. 2010; Hunt, et al. 2013; Wang, et al. 2013).  
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 Interestingly, genomic methylation landscapes vary between species and are 

especially notable when comparing invertebrates to vertebrates. Vertebrate methylation, 

particularly mammals, is heavily methylated throughout the genome with the exceptions 

of clusters of hypomethylated CpGs known as “CpG islands” (Bird, et al. 1985; Bird 1992). 

These CpG islands are often used targets for methylation chips and as units to describe 

regions of methylation and their associations with transcription (Mendizabal, et al. 2014; 

Schubeler 2015). In contrast, invertebrate genomic methylation tends to be low. In 

hymenopteran insects, methylation is almost exclusively found within gene bodies and 

especially enriched in coding regions (Lyko, et al. 2010; Wang, et al. 2013; Bewick, et al. 

2017; Lindsey, Kelkar, et al. 2018). Figure 2.1 shows a typical genomic region contrasting 

the methylation landscapes between honey bee and humans. 

 

Figure 2.1 – Variable methylation landscapes between humans and honey bees. The 

honey bee genome is lowly methylated with only a few but clustered number of 

methylated CpGs. We termed these clusters “Methylation islands” which are 

usually around 250bp in length. In contrast, the human genome is heavily 

methylated throughout with regions of hypomethylated CpG islands that are 

around ~1kb in length. 
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CpG islands have been a useful concept in many studies that have shed light on the 

functional role of epigenetic variation in vertebrate species, and we apply a similar concept 

here to investigate the function and distribution of DNA methylation clusters in insects. 

We refer to these clusters of methylated CpGs are “methylation islands” (MIs) and applied 

this concept to seven hymenopteran species with high quality genome assemblies and 

methylome data. We first identify these MIs throughout the genomes and characterize their 

distribution, followed by exploring the functional roles these MIs have on transcription 

using RNA-seq data. 

2.2 Results 

2.2.1 Identifying Methylation Islands in Seven Invertebrate Genomes 

The seven species we selected (Apis mellifera, Camponotus floridanus, 

Harpegnathos saltator, Nasonia vitripennis, Polistes canadensis, Solenopsis invicta, and 

Trichogramma pretiosum) had well-annotated genomes along with whole-genome bisulfite 

sequencing (WGBS) data (Table 2.1). The fraction of methylated CpGs in the genome was 

low as expected, with all species examined having less than 1% (Table 2.1). The average 

fractional methylation of these methylated CpGs (mCGs) ranged from 0.44 to 0.74 while 

the global average of all CpGs ranged from 0.008 and 0.025 (Table 2.1). We tested to see 

if methylated CpGs were clustered based on previous findings, and found this to be the 

case (Wang, et al. 2013; Huh, et al. 2014). Specifically, the distance between neighbouring 

mCGs was significantly shorter than randomly selected CGs for all seven species. 

Table 2.1 – Genome composition summary of the seven species used in this study 

and their basic methylation statistics. 
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In order to capture these clustered mCGs, referred to as “methylation islands” 

(MIs), we developed a sliding window algorithm to search the genome for regions of dense 

mCGs and classified them as units of measurement for DNA methylation. In short, this 

algorithm labelled MIs as regions that are at least 200bp in length and contain >2% of 

mCGs (approximately a 3-fold enrichment compared to the genome average, Table 2.1). 

2.2.2 Characteristics of MIs 

Our sliding window approach captured thousands of MIs in each of the seven 

species. As we expected, the majority of mCGs in the genome were found within MIs even 

though the total length of MIs was only a small fraction of the genome size (Table 2.2). 

The average length of MIs in the genome was positively correlated with the number of 

mCGs (Pearson correlation coefficients = 0.97) rather than genome size (Tables 2.1 and 

2.2). For instance, P. canadensis had the fewest MIs out of all the species with a total 

number of 1,342 even though its genome is 20 Mb larger than T. pretiousum which had 

4,889 MIs.  

Table 2.2 – Summary of MI related statistics in each of the seven species. 
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 In A. mellifera, the majority of MIs overlapped with gene bodies (96.7%, with gene 

bodies defined as the region between the transcription start site and transcription 

termination site), especially exons (94.2%; Table 2.2). Furthermore, 60.8% of all MIs  were 

exclusively within exons. MIs also overlapped with introns, but much less frequently. In 

A. mellifera, only 3.5% of MIs were exclusively overlapped with introns. Interestingly, 

31.9% of A. mellifera MIs were found across exon-intron boundaries. Previous studies 

discussed the possibility of DNA methylation playing a role in alternative splicing by 

signalling splice junctions (Lyko, et al. 2010; Herb, et al. 2012; Li-Byarlay, et al. 2013; 

Galbraith, et al. 2015). Therefore, we asked if MIs were enriched at exon-intron 

boundaries. Our results show that this was in fact the case (empirical P value < 0.001) for 

all seven species.  

 It has been speculated that mCGs in insects were biased towards the 5’ end of a 

gene (Lyko, et al. 2010; Hunt, et al. 2013; Wang, et al. 2013; Galbraith, et al. 2015). Using 

MIs as our unit of measurement for methylation, we found that they tended to be slightly 

biased towards the 3’ end in A. mellifera and T. pretiosum (Figure 2.2B). In contrast, MIs 

in the four of the species (C. floridanus, H. saltator, P. canadensis, and N. vitripennis) 

displayed 5’ bias (Figure 2.2B). 
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Figure 2.2 – MIs characterized by genomic region in seven Hymenopterans. A) Box 

plots showing whether MIs were found in gene bodies, exons, or introns. B) Violin 

plots displaying the position of MIs relative to the TSS of genes. 

2.2.3 MIs Tend to Occur in Evolutionarily Conserved Genes and Amino Acids within MIs 

are More Conserved than those Outside MIs 

Previous studies typically used a binary classification for genes, labelling them as 

either methylated or unmethylated based on the mean fractional methylation (Lyko, et al. 

2010; Sarda, et al. 2012; Wang, et al. 2013). They showed that methylated genes were more 

evolutionarily conserved compared to unmethylated genes (Lyko, et al. 2010; Wang, et al. 

2013; Galbraith, et al. 2015), and we used a similar approach to determine whether the 

presence of MIs in genes displayed a similar quality. We first determined a set of all 

orthologous genes shared in all seven species using protein sequences (Materials), yielding 

a total of 5,403 (44%) single copy orthologues out of 12,249 gene sets. We labelled these 

5,403 genes as Complete Orthologues (CO). In the remaining gene sets, there were 6,429 

(52%) that were found in two or more species which we classified as Incomplete 
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Orthologous gene (IO) sets. Finally, genes that were lineage-specific to each species were 

called the Unique Gene (UG) set (Figure 2.3A). 

 

Figure 2.3 – MIs are overrepresented in evolutionarily conserved genes. A) Bar plots 

summarizing the number of genes classified as either all genes (AG), complete 

orthologous genes (CO), incomplete orthologous genes (IO), and unique genes (UG) 

in each species. B) The proportion of genes having different types of methylation 

features. 

 We followed by analyzing the frequency of genes with 1) MI, 2) without MI but at 

least one mCG, 3) without either MI or mCG in each gene set. We found that the proportion 

of genes with an MI is higher in the CO set compared to those in the IO and UG whereas 

the frequency of genes without MI but at least one mCG is comparable between CO and 

IO (Figure 2.3B). We next tested to see if genes with MIs were overrepresented in CO 

compared to IO with a Fisher’s exact test, which yielded an average odds ratio of 3.1. In 

contrast, using the number of genes with an MI but at least one mCG resulted in an average 

odds ratio of 1.31. The odds ratios between the two tests were statistically significantly 

different, suggesting that clusters of mCGs, and therefore MIs, rather than individual 

mCGs, tend to be enriched in conserved genes (Table 2.3). 
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Table 2.3 – Statistical comparison of differences in Odds Ratios (OR) of genes with and 

without MIs using Z approximation. 

 

 Additionally, we looked at whether the presence of DNA methylation and MIs was 

correlated with conservation status of individual amino acids. We first mapped the genomic 

coordinates of mCGs within coding regions to their corresponding positions in the protein 

sequence and quantified their conservation scores using the Jensen-Shannon (JS) 

divergence of protein sequence conservation (Capra and Singh 2007). We then applied a 

linear mixed model to predict the conservation scores of amino acids depending on the 

presence of mCG sites in the DNA sequence and the location of amino acids within or 

outside of MIs (Materials). We found that amino acids with mCGs had significantly higher 

conservation scores than those without mCGs (Figure 2.4). Moreover, amino acids within 

MIs had higher conservation scores when compared to amino acids outside MIs (P value 

< 2.2x10-16). Surprisingly, we also found that nucleotides that code for amino acids inside 

MIs that did not have any mCGs had comparable or higher conservation scores that amino 

acids than were inside MIs and had mCGs (Figure 2.4). While the relationship between the 

location of amino acids with respect to MIs and their conservation scores varied in different 

species, we consistently saw that sites within MIs had higher conservation scores that sites 
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outside of MIs. Our findings demonstrate that methylation islands had stronger association 

with protein sequence conservation than individual mCGs. 

 

Figure 2.4 – Relationship between amino acid conservation and MIs and DNA 

methylation. We applied a linear mixed model to fit the conservation score of amino 

acids depending on if they located outside or inside MIs and whether they contained 

mCGs as the main factors and the interaction and random factors being gene and 

species, respectively. We used the Jensen-Shannon (JS) divergence to calculate the 

amino acid conservation score. 

2.2.4 The Presence of MIs Affects Gene Expression 

Previous studies provided evidence that gene body methylation tends to occur in 

evolutionarily conserved genes which also have constitutively and highly expressed 

(Elango, et al. 2009; Lyko, et al. 2010; Wang, et al. 2013; Galbraith, et al. 2015). We tested 

to see whether the presence of MIs had a similar pattern on gene expression. We normalized 

gene expression levels and compared them between MI- and non-MI- genes for three of 

the seven species that we had RNA-seq data for (Figure 2.5). In all three species, we found 

that MI-genes exhibited higher gene expression levels than non-MI genes. Furthermore, 

high conserved genes such as CO genes had higher expression levels than lowly conserve 

genes (IO and UG) in all species. These results agree with previous observations showing 
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a positive correlation between gene body methylation and gene expression and sequence 

conservation (Sarda, et al. 2012; Huh, et al. 2013; Hunt, et al. 2013). Notably, expression 

levels of MI genes remained consistently high regardless of conservation status while non-

MI genes decrease in expression as conservation status decreased (Figure 2.5) 

 

Figure 2.5 – Gene expression levels of MI- and non-MI genes based on sequence 

conservation. Gene expression levels are log2 transformed and normalized by gene 

length while the x-axis categorizes genes based on their conservation level (all genes 

[AG], complete orthologous genes [CO], incomplete orthologous genes [IO], and 

unique genes to each species [UG]). 

We next described gene expression changes based on the gain or loss of MIs within 

conserved genes. Because it is difficult to directly compare expression levels between 

species, we tested how changes in MIs in CO genes affected gene expression between 

different species. First, each gene was classified as either being “same MI state” or 

“different MI state”. “Same MI state” genes either lacked MI in both species or contained 

an MI in both while “different MI state” genes only had MIs in one species. Overall, there 

were a greater number of “same MI state” genes than “different MI state” genes in 

orthologous gene pairs which agrees with our previous observations (Table 2.4). We 

applied pairwise gene expression comparisons between the two groups for each species 

and found a significant difference in Spearman’s rank correlation coefficients for all 
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pairwise comparisons between “same MI state” and “different MI state” genes. Moreover, 

“same MI state” genes showed stronger correlations which suggests that MIs in conserved 

genes are indeed associated with constitutively and highly expressed genes. (Table 2.4). 

Table 2.4 – Pairwise correlation coefficients between “Same state MI” and “Different State 

MI” genes. 

 

 We next tested whether MIs affected gene expression levels by comparing the 

relative expression of exons within MIs (MI-exon) and exons outside of MIs (non-MI-

exon). The median expression level was higher for MI-exons than non-MI-exons and this 

was particularly highlighted for CO and IO genes (Figure 2.6). We saw this consistent 

pattern of higher expression of MI-exons regardless of species and gene conservation 

status, suggesting a robust relationship between the presence of MIs and levels of gene 

expression. 
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Figure 2.6 – Average expression levels of exons inside (MI-exon) and outside of MIs 

(non-MI-exon). We calculated the fold change between MI- and non-MI exons for 

each of the three gene conservation types. Each dot in the plot represents one gene. 

A locally weighted smoothing curve was applied to show the general trend of 

relative expression bias where values > 0 means higher expression of MI-exons 

compared to non-MI-exons. This analysis was done for A) Apis mellifera, B) Nasonia 

vitripennis, and C) Trichogramma pretiosum. 

2.2.5 Knockdown of DMNT3 Implicates MIs in Alternative Splicing 

We utilized A. mellifera gene expression data from a previous knockdown 

experiment of DMNT3 (Li-Byarlay, et al. 2013), the enzyme responsible for de novo 

methylation, to determine whether reduced genomic DNA affected transcription. 

Consistent with the function of DMNT3, we observed a modest reduction of both mCGs 

and MIs in the knockdown individual (Table 2.5). Overall, 89.8% of mCGs were shared 
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between control and knockdown samples which was also reflected in the 83.2% of shared 

MIs (Table 2.5). A total of 205 genes lost MIs in the knockdown sample, though we found 

no significant expression different in those genes. Gene ontology analysis of genes that 

showed similar methylation levels but lost MIs in the knockdown sample revealed 

functions related to nucleotide binding (P value = 0.017) and methyltransferase activity (P 

value = 0.032), though these were no longer significant following adjustment for false 

discovery rate. 

Table 2.5 – Summary of methylation statistics in control and DNMT3 knockdown 

honey bees. 

 

 Interestingly, 116 (23.1%) of the 501 MIs lost in the knockdown overlapped with 

exon-intron boundaries, suggesting that MIs lying at exon-intron boundaries tend to be 

excluded from the effects of DNMT3 knockdown (P < 0.05, Fisher’s exact test). This 

observation is in line with the importance of DNA methylation, and subsequently MIs, at 

splicing sites (Li-Byarlay, et al. 2013). Additionally, the 327 MIs that were gained in the 

knockdown were significantly underrepresented at exon-intron boundaries (P value < 

0.0001, Fisher’s exact test), further indicating that splicing regulation may be affected in 

DNMT3 knockdown bees (Li-Byarlay, et al. 2013). 
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2.3 Discussion 

A classical finding in mammalian epigenetics was the discovery of hypomethylated 

CpGs occurring in clusters, or “CpG islands” (CGIs) (Bird 1992; Bird 1995; Suzuki and 

Bird 2008), which have been useful markers for studying DNA methylation for decades 

(Suzuki and Bird 2008; Illingworth and Bird 2009; Yi 2017). The recent explosion in 

sequencing of methylome data of invertebrate species has provided an intriguing contrast 

between the different epigenetic landscapes of mammals and invertebrates (Figure 2.1). 

These differences bring about several interesting questions: in an otherwise unmethylated 

genome, do these rare mCGs occur in clusters? And if so, what functional roles do they 

play? To answer these questions, we used high quality methylome data from seven 

hymenopteran insects to characterize their methylation landscapes. Previously, 

methylation in insects was studied in the context of defining genes as either methylated or 

unmethylated, and measuring methylation based on the average fractional methylation 

level of a gene (Lyko, et al. 2010; Wang, et al. 2013; Lindsey, Kelkar, et al. 2018). While 

this approach provided meaningful insights into many aspects of invertebrate DNA 

methylation, taking averages of typically small numbers of mCGs may have diluted true 

signals of DNA methylation (Lyko, et al. 2010; Bonasio, et al. 2012; Wang, et al. 2013). 

However, these studies showed that DNA methylation occurred in clusters, a pattern we 

confirmed using the seven species here. We developed a sliding window algorithm to 

capture clusters of mCGs similar to the concepts for identifying CpG islands in mammals, 

reasoning that these clusters may represent functional units and therefore be conserved 

across closely related species similar to mammalian species (Illingworth and Bird 2009). 

This approach led to the identification of “methylation islands” (MIs) with a 3-fold 
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enrichment of methylation compared to the rest of the genome. Interestingly, mammalian 

CpG islands typically show a 3-fold enrichment of unmethylated CpGs (Gardiner-Garden 

and Frommer 1987; Jones and Takai 2001). Despite the similarity, criteria for defining 

CGIs are known to require adjustments depending the species, primarily due to differences 

in nucleotide composition (Matsuo, et al. 1993; Aerts, et al. 2004). Therefore, our definition 

and criteria for selecting MIs will likely require adjustments as well depending on the 

specific organism at hand. 

One of the main consequences of CGIs was that genes containing them in their 

promoters had higher and more stable gene expression compared to genes without 

promoter CGIs (Aerts, et al. 2004; Elango and Yi 2008). This trend was consistent across 

diverse vertebrate species (Elango and Yi 2008). Here, we show that MIs in a group of 

insects have similar important implications for gene expression. First, they are 

overrepresented at exon-intron boundaries which is consistent with their proposed role of 

regulating alternative splicing (Flores, et al. 2012; Herb, et al. 2012; Li-Byarlay, et al. 2013; 

Galbraith, et al. 2015). This could potentially aid in discovering previously unannotated 

genes and their coding regions. In DNMT3 knockdown samples (Li-Byarlay, et al. 2013), 

MIs at exon-intron boundaries tended to be preserved at a rate higher than by random 

chance. Second, MI-genes exhibited higher and more stable gene expression compared to 

non-MI genes, a pattern that was mirrored at the exon level as well. This supports previous 

conclusions about the role of DNA methylation and inclusion of alternative transcripts. 

Further, we explored whether gain and loss of MIs influenced gene expression, which may 

reveal insights into cause-and-effect relationships between DNA methylation and gene 

expression. Though the available datasets are from fairly diverged species, we were 
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nevertheless able to show that expression levels were strongly correlated with MIs in 

coding regions across species. Our findings here offer insights into characteristics and 

functions of DNA methylation beyond single mCGs and implications of regions of 

methylation on transcription. 

2.4 Methods 

2.4.1 Analysis of WGBS and RNA-seq Data 

Raw sequences for each species were downloaded from SRA and subjected to 

basically quality control such as adapter and low quality read trimming using Trim_galore! 

(Martin 2011). They were then aligned to their respective reference genomes and 

deduplicated using Bismark v0.14.4 (Krueger and Andrews 2011). 

 RNA-seq data from A. mellifera, N. vitripennis, and T. pretiosum were also 

downloaded from SRA. The reads were processed using FastQC to assess quality and 

adapters were removed with Trimmomatic (Bolger, et al. 2014a). We then aligned and 

quantified transcript count using Tophat2 and FeatureCount, respectively (Liao, et al. 2014; 

Ghosh and Chan 2016). Lowly expressed genes with fewer than 5 counts were removed 

from the analysis. 

2.4.2 Identifying mCGs and MIs 

Individual mCGs were identified using Bis-Class (Huh, et al. 2014), and we used a 

custom script for finding methylation islands based on individual mCGs. The process of 

identifying MIs is as follows: 
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1. Scaffolds are scanned in a 5’ to 3’ direction in 200bp windows. Each window 

is evaluated for its fraction of mCG which is calculated as the number of mCGs 

divided by the length of the window. 

2. If window’s mCG fraction is < 0.02, the algorithm moves to the next 

downstream mCG which begins the new 200bp window. This process continues 

until a window has a mCG fraction of >= 0.02. 

3. Once this occurs, the window is extended by 50bp and its mCG fraction is re-

evaluated. This continues for as long as the mCG fraction remains < 0.02. As 

soon as the extended window’s mCG fraction falls below 0.02, extension is 

stopped and the previous mCG is chosen as the end position of the MI. As a 

result, the start and end of all MIs is always an mCG. 

4. The algorithm then restarts at the next mCG, scanning a new 200bp window. 

Steps 2 and 3 are repeated until the end of the scaffold. 

2.4.3 Protein and Amino Acid Conservation Score 

ProteinOrtho with default settings was used to create orthologous gene sets (Lehner 

2008). Each orthologous gene set including all protein sequences from each species was 

further analysed to calculate their conservation scores using Clustal-Omega (Sevier, et al. 

2016). Individual amino acid conservation scores were calculated using the Jensen-

Shannon (JS) divergence, a robust method for calculating protein sequence conservation 

(Capra and Singh 2007). We applied a linear mixed effects model with amino acid position 

(inside or outside MI) and the presence of mCGs as main factors along with the gene and 

species as the interaction and random factors. To avoid biased towards extremely short 
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proteins, we only included genes with at least five amino acids for each category in the 

analysis. 
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CHAPTER 3. WOLBACHIA-MEDIATED ASEXUALITY IS 

LINKED TO DISTINCT EPIGENOMIC AND 

TRANSCRIPTOMIC CHANGES 

3.1  Introduction 

Wolbachia is a highly successful and widespread endosymbiont that is estimated to 

infect 40-60 percent of all insect species (Hilgenboecker, et al. 2008; Zug and Hammerstein 

2012). Its infection brings about wide ranging effects on its host fitness, including 

reproductive parasitism (Werren, et al. 2008). In the Trichogramma parasitoid wasps, 

Wolbachia induces parthenogenesis where female hosts convert to reproduce asexually 

(Stouthamer, et al. 1990; Stouthamer, et al. 1993; Stouthamer and Werren 1993). Typically, 

uninfected males develop from unfertilized haploid eggs while females result from 

fertilized, diploid eggs. Wasps that are infected with Wolbachia give rise to diploid female 

offspring through a fertilization-independent mechanism, spreading this infection along 

with its reproductive phenotype throughout the population (Stouthamer, et al. 2010). Some 

Trichogramma wasps become entirely dependent on Wolbachia to reproduce female 

offspring – these wasps are no longer able to fertilize their eggs, and cannot produce female 

offspring without Wolbachia-mediated diploidization (Stouthamer, et al. 2010). This 

scenario has been described as “symbiont addiction”, where the infection leads to an 

evolutionary dependency on Wolbachia (Bennett and Moran 2015; Sullivan 2017). 

Despite knowledge of Wolbachia’s ubiquity and ability to completely transform host 

reproductive physiology, the mechanisms surrounding the manipulation of its host and 
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induction of parthenogenesis are still poorly understood. Genes related to Wolbachia’s 

prophage are known to be responsible for cytoplasmic incompatibility (Beckmann, et al. 

2017; LePage, et al. 2017; Lindsey, Rice, et al. 2018) and male-killing, but the strain 

infecting Trichogramma lack a prophage (Gavotte, et al. 2007; Lindsey, et al. 2016) and 

orthologs to genes known to manipulate reproductive behavior (Lindsey, et al. 2016). 

Despite this lack of knowledge, we do know that Wolbachia in Trichogramma arrests 

unfertilized eggs in the first mitotic division and prevents chromosome segregation 

(Stouthamer and Kazmer 1994).  

 One potential lead into the mechanism of parthenogenesis induction is Wolbachia’s 

manipulation of the host epigenome. It has been speculated that Wolbachia is capable of 

changing the host’s heritable epigenetic modifications, especially DNA methylation and 

histone modifications (Bernstein, et al. 2007). For instance, in the fly Drosophila simulans, 

Wolbachia has been shown to modify chromatin reorganization during spermatogenesis 

(Harris and Braig 2003). Recently, there has been evidence of Wolbachia manipulation of 

the host epigenetic machinery in Aedes aegypti (Ye, et al. 2013; Zhang, et al. 2013), 

Drosophila melanogaster (Bhattacharya, et al. 2017), and Cotesia plutellae (Kumar and 

Kim 2017). While these studies indicate that Wolbachia may play a role in modifying host 

epigenetic systems, investigating this question on a genome level is difficult for several 

reasons. First, current insect model organisms such as flies have little to no genomic DNA 

methylation (Bewick, et al. 2017). Second, epigenetics are influenced by the underlying 

DNA sequence (Keller, et al. 2016; Yi 2017) and therefore it is necessary to separate the 

effects of the infection and the genetic background. 
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Trichogramma wasps, unlike flies, has a fully functioning DNA methylation system and 

genomic CpG methylation (Lindsey, Kelkar, et al. 2018). Despite this, there are several 

challenges when it comes to studying the effects of Wolbachia infection on the host 

epigenome. First, they are geographically widespread and therefore genetically diverse, 

thus differences in their methylomes are dependent on their diverse genetic backgrounds. 

Second, curing many Wolbachia infected lines is impossible due to their dependence on 

Wolbachia to reproduce, therefore we are unable to generate both infected and uninfected 

individuals from the same genomic background.  The Wolbachia infected Trichogramma 

used in this study reproduce sexually at a reduced rate, where they are unable to maintain 

a self-sustaining population through fertilization. This does, however, enable us to 

introgress the genome of a sexually reproducing line into the cytoplasm of a Wolbachia 

infected cytoplasm via back-crossing multiple generations. With each generation, more and 

more of the sexual genome is introduced, eventually completely replacing the asexual 

genetic material and creating a line that is Wolbachia infected yet is able to be cured of the 

infection. These cured individuals are therefore genetically identical to the infected 

hybrids, allowing us to for the first time directly compare their epigenomes and 

transcriptomes in a genetically homogenous environment.  

3.2 Results 

3.2.1 Introgressing a Sexual Nuclear Genome into an Asexual Cytoplasm Infected with 

Wolbachia 

For our introgression scheme, we used a total of four isofemales lines of 

Trichogramma pretiosum – two naturally sexually reproducing lines (“CA29” and “CA9”) 

and two Wolbachia infected, parthenogenesis lines (“Insectary” and “ES865”). We 

introgressed one uninfected genome into one Wolbachia infected cytoplasm – the CA29 
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genome into Insectary cytoplasm, and the CA9 genome into the ES865 cytoplasm (Figure 

3.1A). The introgression pairs were determined based on the ability to track an 

introgression molecular marker (Methods). With each successive introgression generation, 

the fecundity of the hybrids decreased as expected given the increased cyto-nuclear 

incompatibilities (Figure 3.1B; GLM: Insectary: χ2 = 33.701, P < 0.0001; ES865: χ2 = 

44.372, P < 0.0001). Over the entire introgression procedure, the sex ratios did not 

significantly change in the offspring produced by the Wolbachia infected females, an 

indicator of successful introgression (Figure 3.1C; GLM: Insectary: χ2 = 1.527, P = 0.2166; 

ES865: χ2 = 2.943, P = 0.0862). One of the pairs, the CA9 X ES865 cross, was less fecund 

than other which is common in some Trichogramma crosses due to disadvantageous cyto-

nuclear incompatibilities (Stouthamer, et al. 1990; Stouthamer, et al. 1993; Stouthamer and 

Werren 1993; Stouthamer and Kazmer 1994). As a result, we used the CA29 X Insectary 

crosses as the source of our samples. We maintained a total of three independent isofemales 

lines, each of which were cured of Wolbachia following seven generations using antibiotics 

and subsequently restoring their ability to reproduce sexually. We found no other microbes 

in these wasps, meaning that the only difference between the cured and infected individuals 

was the presence of the Wolbachia infection. The infection was confirmed in each line 

using PCR (Methods). We then extract DNA and RNA from the infected and uninfected 

individuals in each of the three lines for RNA and whole-genome bisulfite sequencing 

(Methods). 

 We used the parental genomes (Insectary and CA29) along with the WGBS data of 

the introgressed hybrids to explore the genomics of the introgression. By using a tool to 

identify single nucleotide polymorphisms from WGBS data (Gao, et al. 2015) , we were 
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able to determine if the origin of each SNP was from the paternal (introgressed) or maternal 

(non-introgressed) parent. This approach allowed us to estimate the amount of non-

introgressed genome in the generation seven hydrbids to assess the efficiency of 

introgression. Our results indicate that all three introgressions were extremely efficient, 

with two lines (B and C) showing greater than 99% introgression. Line A was less efficient, 

retaining about 5-8% of the original asexual genome. For unbiased comparisons in our 

analyses, we excluded the large amount of non-introgressed regions from Line A, although 

we obtained similar results regardless if these regions were included or not. 
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Figure 3.1 – Introgression scheme used to create genetically homogeneous lines of 

Wolbachia infected and free Trichogramma. A) We estimate that 95-99% of the asexual 

genome was replaced with the sexual genome after seven generations of introgression. We 

screened virgin wasps in each generation for sex ratio (proportion of female offspring) and 

fecundity prior to mating. This scheme was performed 3 times to create 3 isofemale lines. 

B) Wasp fitness and C) the efficiency of parthenogensis in each generation.  

 

3.2.2 Wolbachia Infection Results in DNA Methylation Changes in T. pretiosum 

Our first analysis compared genome-wide methylation changes between infected 

and uninfected wasps at CpG sites. In total, 106,475 cytosines were methylated (mCGs) in 

at least one sample (Huh, et al. 2014). Of all the mCGs, we found a total of 340 
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differentially methylated positions (DMPs) (FDR-adjusted Q < 0.05). 317 were found 

within gene bodies with the other 23 DMPs being intergenic. The majority of DMPs (238, 

or 70%) were hypermethylated in the infected wasps, meaning that their levels of fractional 

methylation were higher compared to the uninfected individuals (Figure 3.2A). The 317 

genic DMPs were distributed across 84 genes, which we defined as “differentially 

methylated genes” (DMGs). These DMGs were enriched for functions relating to 

embryonic axis specification, pattern specification, and oocyte development, which is 

concordant with speculation that Wolbachia is at least in part manipulating egg 

development and cell division mechanics by targeting the host epigenome (Medzhitov, et 

al. 1997; Sun, et al. 2004). 

3.2.3 Gene Expression and Exon Usage is Associated with Wolbachia Infection 

We next performed differential expression analysis using a negative binomial 

generalized linear model (Love, et al. 2014b) and identified 59 differentially expressed 

genes (DMGs; FDR Q < 0.05; Figure 3.2B). 45 (76%) of DMGs were up-regulated in the 

infected group (χ2 test, P < 10−15) with an average of 4.72-fold change compared to the 

cured group. These DMGs were not enriched for any gene ontology terms, mostly because 

the majority of these genes were functionally unannotated. In fact, 35 of the 59 DEGs were 

specific to the Trichogramma lineage (Lindsey, Kelkar, et al. 2018), suggesting that 

Wolbachia infection may be inducing a host-specific response, or potentially a host-

specific method of manipulation by Wolbachia.  

We also looked to determine whether exon usage differed between the infection 

groups using a generalized linear model (Anders, et al. 2012). In total, 685 genes containing 
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1,012 exons were classified as differentially used exons, although once again these genes 

were not enriched for any gene ontology terms. 

 

Figure 3.2 – Comparing methylation and expression between Wolbachia infected and 

uninfected wasps. A) Heatmap of 340 differentially methylated positions, most of which 

(239/340) were hypermethylated in the infected wasps compared to the uninfected wasps. 

B) 59 differentially expressed genes, 39 of which were up-regulated in the infected wasps. 

C) Gene body methylation (log10 transformed) and gene expression (log2 transformed) for 

DMGs, DEGs, and the rest of the genes in the genome. The expecte bimodal gene body 
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methylation distribution is shown above. D) Gene length and E) gene length densities for 

each gene classification. 

 

3.2.4 Differential Exon Usage but Not Differential Expression is Associated with 

Differential Methylation 

Despite changes to both methylation and expression as a result of Wolbachia 

infection, we found no overlap between DEGs and DMGs. However, there was some 

concordance in the direction of change in both of these processes. 32 of the 39 genes that 

were up-regulated in the infected wasps also had higher, but not statistically significant 

methylation. Gene body methylation has also been shown to regulate expression 

variability, typically by reducing transcriptional noise (Bird 1995; Huh, et al. 2013). Based 

on our previous analyses, we expected infected wasps to have lower transcriptional noise 

due to an overall increase in methylation. We tested this hypothesis by constructing a linear 

model using transcriptional noise (coefficient of variation of gene expression (Huh, et al. 

2013)) as the response variable and gene body methylation, gene expression, gene length, 

and infection status as explanatory variables (Figure 3.3A). Our results indicate that 

Wolbachia infected wasps do indeed have lower transcriptional noise compared to 

uninfected wasps (Figure 3.3B and 3C), even when the increased DNA methylation is taken 

into account. 

We also tested to see whether differential methylation was associated with 

differential exon usage since one potential role of DNA methylation is regulating 

alternative splicing (Ding, et al. 2016; Arsenault, et al. 2018; Li, et al. 2018). In our list of 

differentially used exons, only 5 overlapped with DMPs. However, this overlap was 
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statistically significant due to the low number of DMPs genome-wide (Odds ratio = 4.40, 

Fisher’s exact test, P = 0.0071). Furthermore, of the 685 genes containing differentially 

used exons, 14 overlapped with DMGs which was also statistically significant (Fisher’s 

exact test, Odds ratio = 3.29, P = 3.14x10-4). While the number of overlaps between 

differential exon usage and differential methylation is low, the fact that the overlaps are 

statistically significant supports the role of methylation in alternative splicing (Flores, et 

al. 2012; Foret, et al. 2012; Lev Maor, et al. 2015). Figure 3.4 depicts two examples of such 

overlap. 
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Figure 3.3 – Transcriptional noise and Wolbachia infection. A) Linear model results 

using transcriptional noise (coefficient of variation of gene expression) as the response 

vector and gene body methylation, expression, length, and Wolbachia infection status as 

explanatory variables. B) Infected wasps have lower transcriptional noise than uninfected 

wasps. C) Violin plot comparing significant differences in transcriptional noise between 

the two infection groups (Student’s t-test, P < 10-15). 
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Figure 3.4. Two example genes that contain both differentially used exons and 

differentially methylated positions. Purple boxes represent differentially used exons and 

those that also contain DMPs are highlighted in yellow. A) An ortholog of D. melanogaster 

CG14299 with 2 differentially used exons (exon 1 and 23). Exon 23 also contains 6 DMPs. 

B) An ortholog of D. melanogaster Mzt1, with 4 differentially used exons (exons 5,7,8,and 

10). Exon 10 contains 8 DMPs. 

3.3 Discussion 

Wolbachia’s successful and widespread infection of wasps presents an interesting 

and useful model for studying molecular mechanisms behind infection and reproductive 

manipulation. Here, we use a Wolbachia-mediated parthenogenesis system, controlled for 

genetic background by a clever introgression scheme, to describe major methylome and 

transcriptome changes that accompany a drastic change in reproductive physiology. Our 

system comes with the major advantage of controlling for differences in genetic 

background (Keller, et al. 2016; Yi 2017) by creating two genetically homogeneous groups 

as well as using an organism that has global DNA methylation (Lindsey, Kelkar, et al. 

2018). 

From our system, we saw global changes in both DNA methylation and gene 

expression as a result of Wolbachia infection. On the methylation side, we found 340 

DMPs spread across 84 genes. This number compares favorably with genes associated with 

Wolbachia infection in A. aegypti (Ye, et al. 2013) and a viral infection in A. mellifera 

(Galbraith, et al. 2015). This overall pattern from several insect species suggest that 

perhaps only a small subset of the genome is subject to changes in DNA methylation in 
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response to an outside infection. Humans, in comparison have an even smaller number of 

genes change in methylation as a result of disease, estimated to be around 0.5% (Liu, et al. 

2013; Dayeh, et al. 2014; Mendizabal, et al. 2019). Differentially expressed genes tend to 

be evolutionarily conserved and are enriched in functions related to egg maturation and 

cell division. These functions support the role of Wolbachia acting as a disruptor of 

chromosome segregation and arresting the egg in mitosis (Lindsey, et al. 2016).  

In contrast to DMGs, differentially expressed genes had completely different 

characteristics. DEGs tended to be unmethylated following Wolbachia infection, and have 

unknown functions due to being specific to the Trichogramma lineage (Lindsey, Kelkar, 

et al. 2018). This suggests that Wolbachia may induce host-specific responses to infection 

and may explain the lack of horizontal transfer out of the Trichogramma lineage 

(Raychoudhury, et al. 2009). Even though there was no direct link between differential 

methylation and expression at the gene level, our study did discover potential relationships 

between these two processes. At the genome level, we saw an overall increase in both 

global DNA methylation and transcription which mirrors the pattern of viral infection in 

honey bees (Galbraith, et al. 2015). Additionally, infection reduced gene expression 

variability, or transcriptional noise, although it is unclear what the mechanism behind this 

observation is. We also showed that expression at the exon level was significantly altered 

as a result of Wolbachia infection, and that these differentially used exons tended to contain 

DMPs. This observation supports previous studies that link DNA methylation to roles in 

regulating alternative transcripts and splicing (Li-Byarlay, et al. 2013; Galbraith, et al. 

2015; Arsenault, et al. 2018). One potential pitfall of our experimental design is the pooling 

of individuals used for our data, though it was necessary due to the extremely small size of 
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the wasps. As a result, our samples were heterogeneous and therefore may have diluted 

methylation and expression signals. 

3.4 Methods 

3.4.1 Rearing of Trichogramma lines 

Trichogramma pretiosum colonies were kept in 12 x 75 mm glass tubes and 

incubated in 24 ˚C with a 16:8 hour light:dark cycle. Four isofemales lines were used here. 

The “Insectary” line originates from Peru and has been kept since 1966 (Lindsey, et al. 

2016) while the “ES865” line started in Hawaii in 2011. Both lines are infected with 

Wolbachia that induces parthenogenesis and have been resistant to curing by antibiotics 

(using rifampicin) to restore sexual reproduction (Russell and Stouthamer 2011). The other 

two lines, “CA29” and “CA9” are highly inbred and come from females collected in 

California in 2008. Neither of these two lines are infected with Wolbachia. 

3.4.2 Introgression of Sexual Genome into Wolbachia Infected Cytoplasm 

We Introgressed the CA9 genome into the ES865 cytoplasm and the CA29 genome 

into the Insectary cytoplasm (Figure 3.1A). Females from the Wolbachia infected 

cytoplasm were crossed with uninfected males which produced female hybrids that were 

heterozygous. There female hybrids were then backcrossed with the original uninfected 

male strain, a process that was repeated for a total for seven generations. A total of 3 

independent isofemale lines were created using this introgression scheme. After three 

generations, individuals in each line were split, with one being cured of the Wolbachia 

infection using rifampicin (Stouthamer, et al. 1990). Cured wasps were allowed to 



 35 

“recover” from the effects of antibiotics for three generations prior to being used for 

sequencing. 

3.4.3 Nucleotide Extractions 

Newly emerged wasps of less than 48 hours were collected and sex sorted based on 

antennal morphology. Approximately 500 females were used for each biological replicate 

for a total of six samples – three infected and three uninfected replicates. The pools were 

then homogenized and split evenly for DNA and RNA extraction using Qiagen DNeasy 

and RNeasy kits, respectively.  

3.4.4 RNA Sequencing 

RNA-seq libraries were created using NovoGene based on the standard eukaryotic 

workflow. Final library quality and quantity was assessed using the Agilent 2100 

Bioanalyzer and Qubit 2.0, respectively (Panaro, et al. 2000; Mardis and McCombie 2017). 

Libraries were then multiplexed and sequenced on the Illumina HiSeq 4500 platform with 

150 paired-end reads. 

3.4.5 Genome Sequencing 

Genomic libraries were prepared using a modified version of an illumina 

compatible protocol (Urich, et al. 2015). DNA was extracted and fragmented using the 

Covaris machine using a 200bp target peak size protocol. The size selection was performed 

according to a previous protocol (Urich, et al. 2015). 

3.4.6 Whole-genome Bisulfite Sequencing 
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We used a previously published protocol to create our WGBS libraries (Urich, et 

al. 2015). Bisulfite treatment was performed using the MethylCode Bisulfite conversion 

kit (Life technologies). DNA was treated with CT conversion reagent for 10 minutes and 

10ng of unmethylated lambda phage DNA was added as control. Libraries were diluted 

and sequenced on the Illumina HiSeq X machine for 150bp paired-end reads, yielding 

between 100-200 million reads per sample. 

3.4.7 Creation of Alternative Reference Genome 

The GATK best practices pipeline (Urich, et al. 2015) was used to detect high 

quality SNPs with confidence in the CA29 line and added to the published Trichogramma 

reference genome (from the Insectary line) (Lindsey, Kelkar, et al. 2018). This alternative 

reference genome was used for subsequence alignment of WGBS and RNA-seq data. 

3.4.8 RNA-seq Analysis 

Reads were trimmed for low quality and adapters using Trimmomatic v.0.35 

(Bolger, et al. 2014b). They were then mapped to the alternative reference genome using 

the CA29 SNPs (see above) (Lindsey, Kelkar, et al. 2018) with tophat2 v. 2.2.1 (Kim, et 

al. 2013). Gene counts were generated using HTSeq (Anders, et al. 2015b) and differential 

expression analysis carried out using DESeq2 (Love, et al. 2014b). Gene expression was 

measured by the normalized count generated using the “estimateSizeFactors” function 

from DESeq2. 

Differential exon usage was performed using the DEXseq (Anders, et al. 2012) 

package. Expression at the exon-level was quantified with their raw counts and normalized 
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using the “estimateSizeFactors” function. Differential exon usage was modeled based on 

the following linear model: Exon count ~ sample + exon + infection status:exon. Exons 

significance was assessed at the FDR < 0.05 (Benjamini and Hochberg 1995) level. 

3.4.9 Analysis of Transcriptional Noise 

We used the percent coefficient of variation of gene expression to measure 

transcriptional noise (Huh, et al. 2013), which was used as the response variable in the 

following linear regression model: log10(transcriptional noise) ~ gene body methylation + 

log2(gene expression) + log10(gene length) + Wolbachia infection status. The linear model 

was performed in R version 3.3.2 (R Core Team 2014) using the “lm” function. 

3.4.10 WGBS Data Processing 

Reads were trimmed to filter out low quality reads and remove adapter sequences 

using Trim Galore! (Martin 2011). They were then aligned to the alternate reference 

genome with Bismark using the parameters --score_min L,0,-0.4 (Krueger and Andrews 

2011). Additionally, the reads were aligned to the lambda genome (GenBank Accession: 

J02459.1) as a way of measuring the bisulfite conversion efficiency. Aligned reads were 

deduplicated and CpG counts from both minus and plus strands were combined. Each CpG 

was classified as either “methylated” or “unmethylated” using Bis-Class (Huh, et al. 2014). 

3.4.11 Using WGBS Data to Analyze Introgressed Regions 

To assess the efficiency of introgression, we mapped our WGBS reads to both the 

paternal and maternal genomes separately. We then used BS-SNPer (Gao, et al. 2015) to 

call SNPs using WGBS data with stringent parameters to retain high quality SNPs with 
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confidence. The origin of each SNP was determined by comparing it to the original 

maternal and paternal genomes, with maternal SNPs considered as non-introgressed. We 

then labelled putative non-introgressed regions as clusters of maternal SNPs – they started 

with a maternal SNP and were followed in close succession by additional maternal SNPs 

within 10kb. Genes and CpGs belonging to non-introgressed regions were removed from 

subsequent analyses. 

3.4.12 WGBS Data Analysis 

We retained mCGs that were methylated in at least one of the six samples, leaving 

106,475 CpGs for differential methylation analysis (Huh, et al. 2017). We then used 

RADMeth (logit link) package (Dolzhenko and Smith 2014) to model individual CpGs in 

a beta-binomial regression to identify CpGs that were differentially methylated between 

the two infection groups (DMPs). The initial list of DMPs were corrected for multiple 

testing at a FDR threshold of 0.05 (Benjamini and Hochberg 1995).  
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CHAPTER 4. LINEAGE AND PARENT-OF-ORIGIN 

METHYLATION PATTERNS IN A. MELLIFERA USING 

WHOLE-GENOME BISULFITE SEQUENCING 

4.1 Introduction 

Several theories have been proposed to explain the origins of parent-specific 

expression (e.g.,(Patten, et al. 2014)), including Haig’s kinship theory of intragenomic 

conflict (Haig 2000; Pegoraro, et al. 2017). The kinship theory predicts that parent-specific 

expression arises due to maternal and paternal genes having different selection pressures, 

such as in a scenario where one female reproduces with multiple males for offspring. In 

this scenario, matrigenes may favor traits that promote equal survival among siblings 

whereas patrigenes support traits that focus on individual “selfish” fitness (Haig 2000; 

Pegoraro, et al. 2017). Evidence for this theory has been reported in mammals and plants, 

though social insects such as honey bees where it is especially applicable have not yet been 

studied in this context (Haig 2000; Wilkins and Haig 2003). In a honey bee colony, the 

vast differences in matrigene and patrigene relatedness among individuals lends itself as 

an ideal example for studying both kinship theory and its role in regulating social behaviors 

(Queller 2003; Kocher, et al. 2015; Galbraith, et al. 2016; Pegoraro, et al. 2017). 

 Previous studies in insects have shown support for the kinship theory (Bonasio, et 

al. 2012; Lonsdale, et al. 2017). For example, Kocher et al. (2015) showed parent-specific 

expression patterns across different developmental stages, behavioral states, and tissues. 

Galbraith (Galbraith, et al. 2016) showed that worker ovary size and activation timing were 
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dependent on the parental phenotype, an observation that is consistent with predictions of 

kinship theory (patrigenes should favor worker reproduction). Furthermore, Galbraith et 

al. (Galbraith, et al. 2016) showed that patrigenes were upregulated compared to 

matrigenes in reproductive tissues of both reproductive and sterile workers in reciprocal 

crosses of Africanized and European bees. 

Studies supporting the kinship theory, however, failed to address the mechanisms 

behind parent-specific expression. In other lineages such as mammals and plants, parent-

specific expression is primarily regulated via the epigenome and DNA methylation (Reik 

and Walter 2001; Bird 2002; Queller 2003; Law and Jacobsen 2010). The honey bee does 

possess a functional DNA methylation system and has genomic CpG methylation, albeit at 

a much lower frequency than the aforementioned organisms (Wang, et al. 2006; Lyko, et 

al. 2010). Rather than being ubiquitous through the genome, DNA methylation in honey 

bees is sparse and almost exclusive to gene bodies and coding regions (Elango, et al. 2009; 

Lyko, et al. 2010; Galbraith, et al. 2015). 

 In this study, we take samples from the previous study of reciprocal crosses 

between Africanized and European honey bees (Galbraith, et al. 2016) to look for 

signatures of parent-specific methylation using whole-genome bisulfite sequencing 

(WGBS). Samples consisted of sterile as well as reproductive workers, allowing us to study 

allelic methylation patterns based on parent, lineage, and reproductive state differences. 

We can then investigate whether parent-specific methylation exists in honey bees and if it 

is associated with parent-specific expression. 

4.2 Results 
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4.2.1 Honey Bees Exhibit Both Lineage and Parent-specific DNA Methylation 

To study allelic patterns of DNA methylation, we used a list of informative SNPs 

that allowed us to assign reads based on their allelic origin (Methods). We performed our 

DNA methylation analysis for each block separately, allowing us to increase the scope of 

our analysis by using the large amount of SNPs that were unique to each genetic block. In 

genetic block A, we had 213,056 informative SNPs allowing us to examine 48,745 

methylated CpGs (mCGs) and 5,613 methylated genes. In block B, there were 214,504 

informative SNPs, overlapping with 41,764 methylated CpGs and 5,359 methylated genes. 

We used a linear model to assess each individual mCG and its methylation levels 

based on variation in parent-of-origin and lineage effects (Methods). The significant mCGs 

from this model were referred to as differentially methylated positions (DMPs) and 

summarized in Table 4.1 based on their bias. Figure 4.1 shows examples of DMPs showing 

both types of allelic methylation biases. 

Table 4.1 – Summary of DMPs in each block and reproductive state based on their 

direction of allelic bias. 
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 The strongest factor affecting DNA methylation was the lineage effect, which was 

the effect due to either Africanized or European alleles. In genetic block A, 743 mCGs 

showed lineage-specific methylation in sterile workers and 1,868 showed lineage-specific 

methylation in reproductive workers. In genetic block B, 1,525 mCGs showed lineage-

specific methylation in sterile workers and 1,691 showed lineage-specific methylation in 

reproductive workers (Table 4.1). We also saw a greater number of European biased 

mCGs compared to Africanized biased mCGs in both genetic blocks and reproductive 

statuses. In all cases other than reproductive workers in block A, these differences were 

statistically significant (Table 4.1; Χ2 test, P < 0.05). 

There were also hundreds of mCGs that displayed parent-specific methylation 

effects (Table 4.1 and Figure 4.2; Figure 4.1). In block A, there were 280 DMPs showing 

parent-of-origin effects in sterile workers (132 maternal and 148 paternal; Table 4.1 and 

Figure 4.2). In the reproductive workers, we saw a total of 408 parent-of-origin DMPs (190 

maternal and 218 paternal; Table 4.1 and Figure 4.2). The increase in paternal biased DMPs 

was a significant increase over maternal biased DMPs (Χ2 test, P < 0.01; Table 4.1 and 

Figure 4.2). In block B, we saw 208 maternal biased DMPs and 216 paternal biased DMPs 

in sterile workers as well as 189 maternal and 188 paternal biased DMPs in the reproductive 

workers (Table 4.1 and Figure 4.2). In all allelic bias categories, we observed a greater 

number of DMPs in the reproductive workers compared to the sterile workers (Χ2 test, P < 

0.05 for all directions of bias) in genetic block A but for none of the categories in block B. 

We found significant overlaps of DMPs between workers of different reproductive 

states. 69 parent-of-origin DMPs overlapped between sterile and reproductive workers in 
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block A while 119 parent-of-origin DMPs were shared in block B. Both overlaps were 

highly significant enrichments compared to a null expectation of no association (Fisher’s 

exact test, P < 0.01 for both comparisons). However, a large number of DMPs were still 

specific to each reproductive state. In block A, 211 and 339 parent-of-origin DMPs were 

specific to sterile and reproductive workers, respectively. In block B, 305 parent-of-origin 

DMPs were specific to sterile workers and 258 parent-of-origin DMPs specific to 

reproductive workers. Furthermore, 189 sterile-specific and 191 reproductive-specific 

DMPs are shared across blocks which is also a highly significant overlap in both cases 

(Fisher’s exact test, P < 0.01 for both comparisons). These overlaps suggest common, 

robust factors affecting genome-wide DNA methylation that are independent of 

reproductive status and genetic block.  
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Figure 4.1 – Examples of mCGs showing parent-of-origin and lineage effects. A) and 

B) DMPs showing parent-of-origin bias in sterile workers. C) An example of Africanized 

biased DMP and D) European biased DMP in sterile workers. E) and F) show paternal 

and maternal biased DMPs, respectively. G) Lineage biased DMP in reproductive 

workers and H) DMPs biased towards Africanized and European workers. 

 

4.2.2 Genes with Signatures of Parent-specific Methylation 
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Genes containing DMPs showing the same direction of allelic methylation bias 

were defined as differentially methylated genes (DMGs)(Methods). For example, parent-

of-origin DMPs in block A were found across 179 and 230 genes in the sterile and 

reproductive workers, respectively, and these genes are subsequently referred to as parent-

of-origin differentially methylated genes (Table 4.2). Interestingly, the majority of parent-

of-origin DMGs contained just a singular DMP (sterile average: 1.21 DMPs; reproductive 

average: 1.24 DMPs).   

Table 4.2 – DMGs for all directions of allelic bias based on genetic block and worker 

reproductive status. 

 

To take advantage of the information provided by the two different genetic blocks, 

we combined DMGs from both blocks for gene ontology (GO), pathway and comparative 

analyses. GO terms for sterile parent-of-origin DMGs included protein glycosylation, ATP 

binding functions, and involved in fatty acid degradation. Reproductive parent-of-origin 

DMGs were enriched for functions involving intracellular protein transport and mRNA 

surveillance pathways. 
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We observed moderate but significant overlaps between parent-of-origin DMGs of 

the two reproductive states in both blocks. Thus, these were the genes which showed 

parent-of-origin effects in both sterile and reproductive workers.  Specifically, there were 

16 DMGs showing maternal bias (Fisher’s exact test, P < 0.01) and 30 DMGs showing 

paternal bias (Fisher’s exact test, P < 0.01) overlapping between sterile and reproductive 

workers in block A. In block B, there were 45 maternal DMGs (Fisher’s exact test, P < 

0.01) and 35 paternal DMGs (Fisher’s exact test, P < 0.01) overlapping between sterile and 

reproductive workers. Though none of the overlapping gene sets were enriched for specific 

GO terms, they nevertheless mirrored the DMP results and reinforce the idea of a common 

set of genes that are differentially methylated due to parent-of-origin effects.   

Interestingly, there was significant overlap between genes showing lineage 

differential methylation and parent-of-origin differential methylation (Figure 4.3). We 

found 46 DMGs exhibiting both lineage and parent-of-origin biases in block A sterile 

workers (Fisher’s exact test, P < 0.01), and 83 DMGs showing both biases in reproductive 

workers (Fisher’s exact test, P < 0.01; Figure 4.3). In block B, sterile workers and 

reproductive workers had 96 and 83 genes belonging to lineage and parent-of-origin 

DMGs. Functions of genes that show both types of allele-specific methylation did not 

deviate from the enriched GO terms of their respective reproductive states, which were 

generally focused on cell energy metabolism and signal transduction. Since these genes 

exhibit both lineage and parent-of-origin differential methylation, they may be particularly 

labile in terms of allele-specific methylation. 

We next examined parent-of-origin DMGs that were unique to sterile and 

reproductive workers to investigate the relationship between parent-specific methylation 
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and reproductive phenotype. There were a total of 133 sterile-specific DMGs and 184 

reproductive-specific DMGs in block A and 266 sterile-specific DMGs and 233 

reproductive-specific DMGs in block B. 12 such DMGs were commonly found in sterile 

workers of both blocks whereas 22 DMGs were common between the reproductive workers 

(Fisher’s exact test, P < 0.05 for both comparisons). While these overlaps were statistically 

significant, they did not exhibit any significant functional enrichment in our analysis, likely 

due to the small number. In comparison, DMGs specific to sterile workers in block A were 

enriched for GO terms associated with protein deubiquitination while reproductive-worker 

specific DMGs were enriched for functions such as mRNA surveillance pathway and 

hydrolase activity. For block B, sterile-specific DMGs were enriched for GO terms related 

to protein glycosylation and signal transduction whereas reproductive-specific DMGs 

showed enriched GO terms such as intracellular transport.  
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Figure 4.2 – DMP biases for A) genetic block A and B) genetic block B. Each dot 

represent a DMP and is shown as the relative percentage of Africanizedmethylation in 

each cross (Methods). 
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Figure 4.3 – Number of genes belonging to each bias category based on the worker 

reproductive state and their overlaps. A) DMG and overlap summary for genetic block 

A. B) DMG and overlap summary for genetic block B. 

 

4.2.3 Weak Association Between Allelic Methylation and Expression 

We investigated if parent-of-origin expression and methylation were correlated by 

comparing the previously obtained RNA-seq dataset (Galbraith, et al. 2016) with our 

current results. The individuals from the RNA-seq study are sisters of the individuals in 

the current study. To make the results comparable to the methylation results, we re-

analyzed the RNA-seq data using the same analysis pipeline as the current study 

(Methods). Our results recapitulated trends from the previous study, and while the number 

of genes in each category was different from the original study, they were all subsets of the 
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genes from Galbraith et al. 2016. For both genetic blocks, there was a significantly more 

patrigene bias compared to matrigene bias as well as bias towards reproductive workers 

compared to sterile workers (Fisher’s exact test, P < 0.01 for all comparisons). 

Interestingly, we found that differentially expressed genes (DEGs) varying due to parent-

of-origin and lineage effects were almost exclusive to reproductive workers in both genetic 

blocks. Additionally, there was essentially no overlap between allelic DMGs and allelic 

DEGs in either genetic blocks. In fact, the only overlap we observed was in reproductive 

workers for the lineage effect in block A and there was a complete lack of overlap for any 

parent-of-origin genes in both genetic blocks. 

 

4.3 Discussion 

Our study uses the power of reciprocal crosses to understand lineage and parent-of-

origin effects on genome-wide DNA methylation and how these effects differ between 

reproductive and sterile workers. We found very strong lineage effects which agrees with 

many previous studies showing that DNA methylation is highly influenced by the genetic 

background (Jones 2012; Smith and Meissner 2013; Mendizabal, et al. 2014; Yi 2017). 

Our analysis also indicates that some of the CpGs in the honey bee genome show variation 

consistent with parent-of-origin effects. The numbers of DMPs and DMGs showing a 

parent-of-origin effect were 2-3 fold smaller than those exhibiting lineage effects, 

indicating that parent-of-origin effect is not as strong as genetic background effects. 

Nevertheless, the numbers of genes exhibiting parent-of-origin effects range between 3.2 

~ 9.9 % of genes analyzed, similar ranges as observed in mammals (Luedi, et al. 2007; 
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Ferguson-Smith and Bourc'his 2018). We also observed that many genes harbored both 

parent-of-origin DMPs and lineage-specific DMPs in both blocks (Figure 4.3). This 

observation could potentially indicate that some positions or some genes in the honey bee 

genome tend to be labile in terms of epigenetic modification, and potentially targets of 

regulation for a many different factors. 

Interestingly, we found that, with the exception of the paternal category, there was 

an increase in both DMP and DMG numbers in the reproductive workers compared to the 

sterile workers (Χ2 test, P < 0.05 for all comparisons) in block A. This observation mirrored 

the increase of parent-of-origin effect in reproductive workers at the level of gene 

expression (Galbraith et al. 2016). However, in block B, this pattern was not observed 

(except a modest increase in European biased DMPs, Table 4.1, Χ2 test, P < 0.05). One 

possibility is that this difference could have arisen due to the different ages of the workers 

between the two genetic blocks – though all the reproductive workers were confirmed to 

have activated ovaries, since workers in block A were 4 days older, they were likely more 

reproductively mature, which could manifest in clearer DNA methylation difference 

between worker castes.  

Previous work on parent-of-origin gene expression supported the prediction that 

worker ovary activation was associated with biased expression of patrigenes, with a 

stronger paternal bias in reproductive workers compared to sterile workers (Galbraith, et 

al. 2015). Our re-analysis of the RNA-seq data recapitulated this finding, though we did 

not see the same patterns in our DNA methylation analysis. In terms of the link between 

DNA methylation and gene expression, we observed almost no overlap between parent-

specific gene expression and methylation. This could indicate that either DNA methylation 
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does not affect parent-of-origin gene expression, or that the effect of DNA methylation is 

indirect. It is worth noting that studies in insects thus far suggest that differential DNA 

methylation does not directly correlate with differential gene expression (Galbraith, et al. 

2015; Arsenault, et al. 2018; Wu, et al. 2020a). Rather, DNA methylation may affect other 

aspects of gene expression such as gene expression variability or alternative splicing (Huh, 

et al. 2013; Hunt, et al. 2013; Wang, et al. 2013; Galbraith, et al. 2015; Arsenault, et al. 

2018).  

4.4 Methods 

4.4.1 Biological Sample Collection 

Samples were collected based on the previous study (Galbraith, et al. 2016). We 

obtained 8 sterile and 8 reproductive workers equally from both genetic blocks and from 

both types of reciprocal crosses. These samples came from the same crosses as those used 

for the Galbraith et al. 2016 transcriptomic study. DNA was extracted from the ovaries and 

abdominal fat bodies for bisulfite sequencing library construction. 

4.4.2 WGBS Library Construction and Sequencing 

WGBS libraries were made according to a Illumina compatible protocol (Urich, et 

al. 2015). Bisulfite treatment of genomic DNA was performed using the MethylCode 

Bisulfite Conversion Kit (Life Technologies, Cat. No. MECOV-50). Finished libraries 

were diluted and sequenced on the Illumina HiSeq X machine using 150bp paired-end 

reads. 

4.4.3 Creating N-masked Genomes 
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SNPs for the parents of each cross were from the previous study (Galbraith, et al. 

2016). For each cross, we removed ambiguous SNPs and SNPs with a Phred quality score 

of < 30, as well as C -> T and T -> C SNPs. We also removed any SNPs that had fewer 

than 5 coverage in either their European or Africanized alleles. Using this stringent filtering 

criteria, we ended with 213,056 and 214,504 informative SNPs for genetic blocks A and 

B, respectively. A custom python script was used to generate one N-masked genome for 

each genetic block based on the final list of informative SNPs. 

4.4.4 WGBS Data Processing 

Raw reads were trimmed for low quality and adaptors using Trim_galore! (Martin 

2011) and aligned to the respective N-masked genome using default Bismark parameters 

(Krueger and Andrews 2011). We then use SNPSplit (Krueger and Andrews 2016) to 

assign each read as either European or Africanized origin based on the list of informative 

SNPs for the genetic block. We then applied the binomial test for each CpG site using the 

deamination rate as the probability of success and an FDR threshold of < 0.05 (Benjamini 

and Hochberg 1995) to label each CpG as “methylated” or “unmethylated” (Lyko, et al. 

2010; Wang, et al. 2013; Galbraith, et al. 2015). Only CpGs that were methylated in at least 

one sample were retained for downstream analyses (Huh, et al. 2019). 

4.4.5 Differential Methylation Analysis 

The DSS package (Park and Wu 2016) was used to find CpGs that were 

differentially methylated (DMPs). For the model, we included parent-of-origin (either 

maternal or paternal) and lineage (European or Africanized) as explanatory variables. We 

applied this model separately for each gene block. Additionally, each significant CpG was 
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required to exhibit at least 60% relative allele-specific methylation bias in both reciprocal 

crosses (Europeanmother x Africanizedfather and Africanizedmother x Europeanfather), similar to 

previous calculation of  allele-specific expression bias (Kocher, et al. 2015; Galbraith, et 

al. 2016). The relative allele-specific methylation is the percent of fractional methylation 

(Galbraith, et al. 2015; Lindsey, Kelkar, et al. 2018) of one allele relative to the sum of the 

fractional methylation of both alleles. Differentially methylated genes (DMGs) for each 

explanatory variable in the model were defined as genes that contain DMPs that all showed 

the same direction of bias (Galbraith, et al. 2015; Kocher, et al. 2015). 

4.4.6 RNA-seq Processing 

We re-analyzed the data from (Galbraith, et al. 2016) using the same pipeline and 

criteria as the methylation analysis to provide a consistent comparison between the two 

datasets. Briefly, RNA-seq reads were aligned to their respective N-masked genome 

HISAT2 and then assigned to an allele using SNPSplit (Krueger and Andrews 2016). 

HTSeq (Anders, et al. 2015a) with default parameters was used to count the allele-

separated reads. We used DESeq2, which applies a similar linear model as DSS, and the 

same model variables as the methylation analysis to find differentially expressed genes. 

Significant genes were further corrected for FDR at a threshold of 0.1 (Benjamini and 

Hochberg 1995). 

4.4.7 Gene Ontology 

Gene ontology was performed using the DAVID bioinformatics Functional Annotation 

tool (Huang da, et al. 2009). Enriched GO terms were considered significant at P < 0.05 

with the background gene list set to all protein coding genes in the honey bee genome. 
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CHAPTER 5. GENE BODY DNA METHYLATION IS 

ASSOCIATED WITH REDUCED GENE EXPRESSION 

VARIABILITY 

5.1 Introduction 

 Population-level data on gene expression brings new opportunities to understand 

genomic factors that associate with variability of gene expression. Gene expression levels 

may vary between individuals and within cell populations due to several mechanisms, 

including intrinsic factors such as the rate of transcription and epigenetic regulation 

(Sanchez and Kondev 2008; Huh, et al. 2013; Sevier, et al. 2016; Wu, et al. 2020b) as well 

as extrinsic factors such as parasite infection and cell cycle (Fraser, et al. 2004; Sanchez 

and Kondev 2008; Wu, et al. 2020b).  

Previous studies of gene expression variability from wide ranging taxa have 

discovered that highly expressed genes tend to have reduced variability between 

individuals (Bird 1995; Choi and Kim 2008; Huh, et al. 2013; Wu, et al. 2020b). It is 

hypothesized that natural selection has shaped expression variability of highly expressed 

genes as a means to control for the inherent stochasticity involved in transcription and 

subsequent protein synthesis, which has been shown to be detrimental to organisms (Fraser, 

et al. 2004; Wang and Zhang 2011; Barroso, et al. 2018). Genes that are constitutively 

highly expressed are typically essential housekeeping genes whose noise are therefore 

minimized by natural selection (Fraser, et al. 2004; Wang and Zhang 2011; Barroso, et al. 

2018). 
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Other traits that were shown to significantly associate with gene expression 

variability include gene length, presence of a TATA box, initiator motifs, and disease and 

infection (Huh, et al. 2013; Ravarani, et al. 2016; Faure, et al. 2017; Wu, et al. 2020b). The 

presence of a TATA box has been shown to have a strong impact on increasing gene 

expression noise, with other core promoter elements such as initiator motifs and GC motifs 

being associated with higher gene expression noise to a much lesser degree (Faure, et al. 

2017). These observations indicate that genomic features can play significant roles in 

shaping gene expression variability. 

Gene body DNA methylation, which is an ancestral form of epigenetic regulation 

in animal genomes, is negatively associated with gene expression variability in humans 

(Huh et al. 2013), indicating that they may reduce transcriptional noise. Studies in insects 

also supported this observation (Hunt et al. 2013, Wu et al. 2020, Wang et al. 2016). 

However, the relative contributions of these different genomic features have not been 

examined systematically in insects. In this study, we aim to elucidate relative contributions 

and roles of different genomic features on gene expression variability. 

 In addition, some lineages, notably the order Diptera that includes the model insect 

Drosophila melanogaster, has lost DNA methylation (Sarda, et al. 2012). Given that DNA 

methylation is implicated in the regulation of gene expression variability, it is of interest to 

examine whether the patterns of gene expression variability vary between honey bee, from 

the hymenopteran lineage possessing ancestral gene body methylation, and Drosophila. 

 

5.2 Results 
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5.2.1 Core promoter elements are significant contributors to gene expression 

variation 

For each dataset, we first modeled gene expression variation, quantified as the 

coefficient of variation (Huh, et al. 2013; Islam, et al. 2014; Fan, et al. 2016), using a linear 

model based using the following co-variates: mean gene expression, gene length, presence 

of a TATA box, and presence of an initiator motif (Methods). Our main motivation was to 

evaluate the impact of DNA methylation on gene expression variability. However, for data 

sets in honey bees, matching data on DNA methylation are lacking. Therefore, for honey 

bee data sets, we included CpG O/E as an additional covariate which is an approximate 

measure of DNA methylation (Elango, et al. 2009).  

Here, we discuss the impacts of gene expression, TATA box, initiator motifs, and 

gene lengths. The effects of DNA methylation are discussed in a separate section later. As 

expected, mean gene expression was strongly anti-correlated with gene expression 

variation and was by far the most significant term with the largest coefficient in the linear 

model in all datasets (Huh, et al. 2013; Islam, et al. 2014; Fan, et al. 2016; Wu, et al. 2020b) 

(Figure 5.1A and Table A.1). Following mean expression, the presence of a TATA box in 

the gene promoter region was a significant term in all but 3 fly datasets (Lindsey et al. 

2020, Miozzo et al. 2020, and Thackray et al. 2018) and in all but 2 honey bee datasets 

(Doublet et al. 2016 and Galbraith et al. 2016; Table A.1). With the exception of one fly 

study (Lehmann et al. 2020), the TATA box factor was positively correlated with gene 

expression variation in all datasets in which the term was significant and is consistent with 

previous findings that have reported that genes with TATA boxes are associated with high 

noise (Blake, et al. 2003; Lehner 2008; Ravarani, et al. 2016; Faure, et al. 2017). The other 
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core promoter element, presence of initiator motif, was only significant in approximately 

half of the studies (6 out of 12 fly studies; 3 out of 8 honey bee studies; Table A.1). The 

direction of correlation for the initiator motif was also less consistent than the previous two 

discussed factors, as the coefficient was positive in 4 of the 6 fly datasets it was significant 

in and in 2 of the 3 honey bee datasets it was significant in (Table A.1). Lastly, gene length, 

while a significant term in the majority of datasets, also failed to display a consistent 

direction of correlation in either fly or honey bee datasets. In conclusion, in the linear 

models, we observed a strong and significant anti-correlation between mean expression 

and expression variability along with consistent, though not always significant, correlation 

between the presence of a TATA box and expression variability (Figure 5.1A). The other 

promoter element, initiator motifs, failed to display a consistent relationship with 

expression variability. 

 

Figure 5.1 – Linear model covariate coefficients.  A) Box plot of log ratio of 

covariate coefficients including mean expression, core promoter elements, gene 

length, and CpG O/E (for honey bee datasets) from the full linear model. B) 

Covariate coefficients with mean regressed out using a quadratic model (Methods).  
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Because of the strong effects of mean gene expression on the linear model, we applied 

another strategy to control for this effect. We first regressed out mean expression using a 

quadratic model (Methods). We used the quadratic model as it was shown to have fairly 

unbiased residual distributions for our data (Figure A.1) and previously applied to model 

the relationship between gene expression and expression variability (Alemu, et al. 2014). 

The residual from this regression would reflect the remaining variation independent of gene 

expression, which then can be interrogated for other genomic factors. This analysis yielded 

almost identical results as our initial linear models, though at the cost of heavily reduced 

R2 values across the board (Table A.2). For the TATA box term, the significance at the P 

< 0.05 threshold and the direction of correlation remained the same for all honey bee 

studies. Similarly, the P-value for the TATA box term was nearly the same for the fly 

datasets, with only one study, Thackray et al.  2018, having a small change going from P 

= 0.055 in the full model to P = 0.048 (Table A.2). For the initiator motif term, the direction 

and significance remained the same for all fly studies and only changed for one honey bee 

study (Rutter et al. 2019) (Table A.2). Gene length, as with the other covariates, was the 

same across all studies with the exception of Brown et al. 2020, which was no longer 

statistically significant after regressing out the effects of gene expression (Table A.2). Due 

to the expected strong effects of mean expression on expression variability, there was a 

sharp drop off in R2 values across the board. By regressing out gene expression, only 3 fly 

and 2 honey bee studies had models explaining more than 10% of the variance in 

expression variability. Nevertheless, the results of both linear model approaches indicate 

that the presence of a TATA box in the gene promoter region is consistently correlated 

with higher expression variability (Figure 5.1B). 
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We also used a partial correlations approach to examine effects of covariates free from 

the effects of gene expression. Specifically, we separately applied partial correlations for 

each numerical variable (gene length for both organisms in addition to CpG O/E for honey 

bee) while controlling for mean expression. Using this method, gene length was a 

significant term in 10 fly and 6 honey bee datasets (Table A.2). 

5.2.2 DNA methylation is anti-correlated with expression variation 

We utilized CpG O/E as a proxy measurement for Gene body DNA methylation in the 

honey bee (Elango, et al. 2009) datasets, as Drosophila lacks genomic DNA methylation 

and displays a unimodal CpG O/E distribution unlike the honey bee (Figure A.2). In all of 

our statistical methods (full linear model, linear model with mean expression regressed out, 

and partial correlations), the CpG O/E term was highly significantly and positively 

correlated with gene expression variation (Figure 5.1 and Table A.1-3). The value of the 

coefficient was highly consistent across all methods, including the full linear model, linear 

model with mean expression regressed out, and partial correlations, respectively (Figure 

5.1 and Table A.1-3). Outside of mean expression, which was by far the most significant 

and impactful covariate, CpG O/E displayed strong and stable correlation with gene 

expression variation across all honey bee datasets. Since CpG O/E itself is negatively 

correlated with DNA methylation, these results align with previous findings in both 

mammals and insects that DNA methylation is associated with reduced gene expression 

variation (Huh, et al. 2013; Wu, et al. 2020b). 

5.3 Methods 

5.3.1 Gene expression data 



 62 

We analyzed a total of 20 RNA-seq datasets for this study, 12 of which are from fly 

(Drosophila melanogaster) and 8 from honey bee (Apis mellifera) (Table A.1). Our fly 

datasets were chosen from a diverse set of laboratories as well as recently published with 

at least 10 samples (no more than 2 years old). The honey bee studies were all of the RNA-

seq datasets we could access, as well as being fairly recent and a minimum of 10 samples 

(one from 2012, the rest were from 2016-2020). 

5.3.2 Data processing 

Reads for each study were trimmed to remove low quality reads and adaptors using 

default Trim_galore! (Martin 2011) settings. Trimmed reads were then aligned to their 

respective genomes, amel 4.5 and dmel  r6.33 for honey bee and fly, respectively, using 

HISAT2 with soft clipping disabled (parameter setting: --sp 1000,1000). Following 

alignment, gene counts were generated with HTSeq (Anders, et al. 2015a) default 

parameters and imported into R (Team 2014) for further downstream analyses. Gene 

expression for each study was quantified and normalized using the “estimateSizeFactors” 

function in the DESeq2 package (Love, et al. 2014a). To remove lowly expressed genes, 

we removed genes with counts less than 5 and also required a gene to be expressed in at 

least 10% of all samples in the study. Gene expression variation was measured as the 

percent coefficient of variation (CV) of gene expression (Huh, et al. 2013) and CpG O/E 

values for the honey bee genome was calculated as previously described (Lindsey, Kelkar, 

et al. 2018). 

5.3.1 Core promoter elements 
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Core promoter element designations for TATA boxes and initiator motifs were obtained 

from the Eukaryotic Promoter Database (Cavin Perier, et al. 1998; Dreos, et al. 2017). 

Briefly, promoter classifications for each organism were downloaded from the database 

using the “EPDnew selection tool” as done in a previous study (Faure, et al. 2017). 

5.3.2 Statistics 

For our full linear model, gene expression variation was used as the response variable 

for the following quadratic model: log10(CV) ~ log2(expression) + log2(expression)2
 + 

log10(gene length) + TATA box + Initiator motif + X, where X are additional covariates 

from each experiment based on its metadata file. In our second set of linear models, we 

first regressed out the effect of gene expression with log10(CV) ~ log2(expression) + 

log2(expression)2 and then using the residuals as the response variable mirroring the full 

linear model: residuals ~ log10(gene length) + TATA box + Initiator motif + X. Partial 

correlation was performed using the “pcorr” function in R with gene expression as the 

variable that was controlled for and gene length and CpG O/E (honey bee studies only) as 

the response variables. 
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CHAPTER 6. CONCLUSIONS 

The incredible pace of technical advances of multi-omics methods has allowed 

researchers to greatly expand profiling of DNA methylation throughout previously 

unexplored lineages (Zemach, et al. 2010; Bewick, et al. 2017). This thesis is centered on 

characterizing DNA methylation in the hymenopteran insect lineage, an emerging system 

for epigenetic research (Lyko, et al. 2010; Glastad, et al. 2011; Herb, et al. 2012), and its 

functional relationship with transcription. The hymenopterans include bees, wasps, and 

ants, providing an astonishing amount of diversity to study behavioral, molecular, and 

evolutionary hypotheses. 

Chapter 2 provides a general survey of DNA methylation in the hymenopteran order 

by characterizing its distribution in seven organisms and presenting a method for 

identifying units of methylation. The idea was inspired by the concept of “CpG islands” 

that are characterized in mammals, which are dense regions of hypomethylated CpGs often 

found in the promoters of actively transcribed genes (Bird 1992; Schubeler 2015). We 

developed an analogous, but entirely different, concept and applied it to the overall 

hypomethylated insect genome that has clusters of methylated CpGs. By using a sliding 

window approach to capture these clusters of hypermethylated of CpGs, we developed 

units of methylation term “methylation islands” (MIs) that could be compared across 

species to find potentially underlying functional consequences. Indeed, we discovered that 

MIs were functional units that were enriched in evolutionarily conserved genes and 

overrepresented at exon-intron boundaries, supporting previous findings that gene body 

methylation is associated with increased transcription and has roles in splicing (Flores, et 
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al. 2012; Herb, et al. 2012; Li-Byarlay, et al. 2013; Galbraith, et al. 2015). We also found 

that MI gain and loss in coding regions was significantly correlated with up- and down-

regulation in expression, respectively. While studies with paired epigenomic and 

transcriptomic data are currently limited, these preliminary findings suggest that 

methylation islands in insects and other lineages has the potential to offer new insights into 

epigenetic regulation. 

How changes in methylation, whether due to intrinsic or extrinsic causes, affect gene 

transcription is another question at the forefront of epigenetics. In Chapter 3, we 

demonstrated that both epigenomic and transcriptomic changes accompanied a drastic 

alteration in reproductive physiology due to Wolbachia infection in Trichogramma 

pretiosum. The transition from sexual reproduction to parthenogenesis is a phenomenon in 

arthropods (Werren, et al. 2008), but the mechanism by which Wolbachia induces this 

phenotype remain unclear. By devising an innovative introgression scheme, we created 

genetically identical infected and uninfected wasp strains in order to make comparisons 

free from the effects of the divergent genetic background. We discovered that Wolbachia 

infection and the resulting parthenogenesis phenotype was indeed accompanied by both 

genome-wide DNA methylation and transcriptomic changes. Differentially methylated 

genes were associated with functions related to oocyte development and cell division, 

seemingly fitting in with Wolbachia’s potential manipulation of meiosis (Werren, et al. 

2008; Lindsey, Kelkar, et al. 2018). However, differentially expressed genes tended to be 

lineage-specific genes with unknown functions, potentially pointing to host-specific 

responses to infection. Despite Wolbachia infection affecting both epigenomic and 

transcriptomic processes, as well as increasing levels of methylation and transcription, we 
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found little overlap between differentially methylated and expressed genes. These results 

indicate and support previous findings that changes in DNA methylation do not directly 

cause changes in transcription (Lyko, et al. 2010; Wang, et al. 2013; Galbraith, et al. 2015). 

Parent-of-origin expression, where the allele from one parent is preferentially 

expressed over the other, has been long observed in mammals and plants and found to be 

regulated in part regulated by DNA methylation (Reik and Walter 2001; Bird 2002; Law 

and Jacobsen 2010). The kinship theory of intragenomic conflict predicts that the 

differential relatedness between matrigenes and patrigenes in social insects such as the 

honey bee should lead to parent-specific expression (Queller 2003). Evidence for this 

theory was found in a previous study utilizing reciprocal crosses of European and 

Africanized bees (Galbraith, et al. 2016), yet whether this phenomenon was associated with 

epigenetic regulation was unknown. Chapter 4 sampled bees from the same crosses as the 

aforementioned study to investigate whether predictions from the kinship theory applied to 

DNA methylation and whether it was regulating parent-specific expression. Our results 

indicated that the lineage effect was the strongest, which was in line with previous studies 

in other species showing that DNA methylation was highly influenced by the background 

genetics (Jones 2012; Smith and Meissner 2013; Mendizabal, et al. 2014; Yi 2017). More 

importantly, we showed, for the first time, evidence of parent-specific methylation in 

insects. Interestingly, genes displaying parent-specific methylation significantly 

overlapped with those exhibiting lineage-specific methylation, but not with those 

displaying parent-specific expression. These finding suggest that certain CpGs in the honey 

bee genome may be particularly modifiable to methylation changes, and that allele-specific 

DNA methylation is not directly responsible for allele-specific gene expression. 
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Given the lack of direct association between DNA methylation and transcription, 

Chapter 5 deals with an alternate hypothesis proposing that methylation may affect gene 

expression variability, which may largely reflect transcriptional noise (Bird 1995; Blake, 

et al. 2003; Arias and Hayward 2006; Huh, et al. 2013), rather than the total amount of 

transcripts. We gathered a wealth of RNA-seq datasets to test the impact of DNA 

methylation on gene expression variability in honey bees. We tested this in the context of 

other variables previously shown to affect gene expression variability (Huh, et al. 2013; 

Faure, et al. 2017). In addition, we included Drosophila data to see whether patterns in 

expression variability vary for lineages that have lost DNA methylation. We found that 

levels of gene expression had by far the most profound effect on the expression variability, 

with genes having high expression having decreased expression variability. The presence 

of a TATA box in the gene promoter was consistently positively correlated with gene 

expression noise which has been a well-established pattern in other organisms (Hornung, 

et al. 2012; Zoller, et al. 2015; Faure, et al. 2017). Controlling for the effect of gene 

expression using two different methods provided support for these results. Finally, we 

show that DNA methylation as approximated using CpG O/E is significantly and 

consistently anti-correlated with gene expression variability across all datasets. 

In summary, the chapters outlined in this thesis provide an extensive examination of 

the functional role of DNA methylation in the hymenopteran order. We provided a 

comprehensive survey of distribution of DNA methylation in the order along with a novel 

method of finding and characterizing clusters of methylated CpGs. The subsequent 

studies demonstrated that genome-wide methylation was highly labile, subject to change 

as a result of genetic and infectious forces. And while we consistently found a lack of 
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direction association between levels of DNA methylation and gene transcription, we did 

observe strong effects of methylation on gene expression variation. With the continued 

proliferation of sequencing technologies and studies, incorporation of additional methods 

such as chromatin accessibility assays and single-cell genomics can hopefully further 

elucidate the role of DNA methylation in the insect lineage.  
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APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

 

Figure A.1   Distance to nearest neighbor for control and mCGs.  

Density plot for each type of CG in A. mellifera (n = 78,846 for both mCpG and control 

CpGs) 
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Figure A.2  Sliding window algorithm.  

Sliding window approach used to identify MIs. A) The window moves in a 5’ -> 3’ fashion 

and calculates the mCG fraction of windows until a window meets the mCG fraction 

threshold (0.02 for this study). B) A window that satisfies the threshold is extended by 

50bp a time until the entire region (original window + extension) falls below the threshold. 

C) The MI is terminated at the last mCG of the previously evaluated region and the 

evaluation mCG fraction of windows at the next downstream mCG starts. 
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Figure A.3  Distribution of MIs in key genic regions.  

Pie charts showing percentage of MIs found within exons, introns, exon-intron boundaries, 

and intergenic regions for all seven species. 
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Figure A.4  Permutation of MIs at exon-intron boundaries.  

Empirical evidence showing that the expected number of MIs (blue bars) is much lower 

than the observed (Red line) over 1000 permutations. 
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APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

 

Figure B.1 DMPs in genes.  

Number of DMPs found within differentially methylated genes. 
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Figure B.2 Methylated genes have higher and are more constitutively expressed.  

Methylated genes, defined as having >0.004 gene body methylation, show higher gene 

expression than unmethylated genes (<0.004 gene body methylation) in both A) cured and 

B) infected wasps.  
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APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

Table C.1 Differentially expressed genes for each reproductive state and genetic 

block.  

RNA-seq data from the previous study was re-analyzed using the same pipeline was the 

WGBS data. 

 



 76 

Table C.2 Overlap between DMGs and DEGs.  

We found almost no overlap between DEGs and DMGs showing the same direction of 

allelic bias. 
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