
OVERCOMING NOISE AND VARIATIONS IN LOW-PRECISION NEURAL
NETWORKS

A Dissertation
Presented to

The Academic Faculty

By

Devon D. Janke

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2021

Copyright © Devon D. Janke 2021

OVERCOMING NOISE AND VARIATIONS IN LOW-PRECISION NEURAL
NETWORKS

Approved by:

Dr. David Anderson, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Arijit Raychowdhury
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Aaron Lanterman
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Shaolan Li
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Date Approved: May 6, 2021

Any intelligent fool can make things bigger and more complex. It takes a touch of genius —

and a lot of courage — to move in the opposite direction.

E. F. Schumacher

I dedicate this dissertation to my wife, Natalee. I would never have made it to where I am

nor become who I am now without your constant, patient support. Thank you for being my

greatest catalyst for growth.

ACKNOWLEDGEMENTS

I cannot begin to give thanks for those who supported my success without first acknowl-

edging the earnestness to learn and succeed that my parents planted in me at an early age.

They gave so much time and energy to my education and helped me to get on this path.

Nance Ericson gave me my first internship at Oak Ridge National Labs, where he showed

me a variety of exciting projects that were available in the world of research. It was because

of the hours he spent personally mentoring me and being my friend that I was able to really

appreciate the importance of what I was learning and how crucial it was for me to thoroughly

understand and internalize each principle.

I had my first independent research project under Shiuh-hua Chiang at Brigham Young

University, Provo. The trust he placed in me to work and succeed taught me that I am

capable and creative enough to contribute to the state of the art. He pushed me to apply for

more prestigious graduate schools than I ever would have considered. I never would have

submitted my application to Georgia Tech without his guidance.

A large part of my discovery for my current passions came through trial and error, and

the time spent doing research with Dr. Ayazi and Dr. Rincon-Mora were a big part of that.

They encouraged me to broaden my horizons of my interests and taught me how to begin a

thorough research project and develop an intuition for technical material.

Andy Smith and the guys in “group” were crucial to my personal development. I will

never forget the hundreds of hours they gave to helping me discover and redefine the way I

view myself. I do not believe I would have successfully completed my doctorate without

following the encouragement from my wife to seek counsel from Andy to begin this path of

change.

I must also acknowledge my committee and the time they gave up from their own

research to check my work, ask questions, and provide feedback. A special thanks to Arijit

Raychowdhury for meeting with me personally as I begin my work on this topic.

v

I am very grateful to Tom Darbonne for trusting me with this fascinating research topic

and for the opportunities you gave me for professional growth. Tom gave a wealth of time

to me in one-on-one mentoring as I navigated the realm of entrepreneurialism as a complete

novice.

Of course, I cannot neglect to give my gratitude to David Anderson. David was very

supportive of me exploring this field despite needing to learn from the very basics of machine

learning and provided all the support I needed while pushing me to be creative and self-

sufficient in my research. His academic, professional, and personal guidance are invaluable

and helped drive me to finish successfully.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xii

Introduction . xvii

Chapter 1: Intelligent Sensor Processing . 1

1.1 Sensors on the Edge . 2

1.2 Machine Learning and Neural Networks 3

1.2.1 Neural networks . 3

1.2.2 Common layer types . 5

1.2.3 Activation functions . 7

1.3 General Overview of Machine Learning Algorithms 8

1.3.1 Data Preprocessing . 8

1.3.2 Forward Propagation . 9

1.3.3 Loss Function . 9

1.3.4 Backpropagation . 10

1.3.5 Parameter Update . 10

vii

1.4 Mini-batch Training: Redundant Training Sets 11

Chapter 2: Implementing Neural Networks . 15

2.1 Digital Implementation . 15

2.1.1 Binary Arithmetic . 16

2.2 Powering Down . 19

2.3 Analog Hardware . 22

2.3.1 Arithmetic blocks . 22

2.3.2 Limitations . 25

2.4 Introducing Analog Into Machine Learning and Neural Networks 27

2.4.1 Full Replacement . 28

2.4.2 Computation Acceleration . 29

2.4.3 Deployment . 30

2.5 Training-to-Deployment Translation . 31

2.6 Modeling PVT in Analog Neural Networks 33

Chapter 3: Generalizing and Fitting . 36

3.1 Improving Generalization . 38

3.1.1 Dropout Training . 38

3.1.2 Data Augmentation . 39

3.1.3 Early Stopping . 40

3.1.4 Weight Regularization . 40

3.2 Device Fitting . 41

3.2.1 Understanding the Problem . 42

viii

3.2.2 Breaking from Traditional Techniques 42

3.3 Population Training . 43

Chapter 4: Building robustness into the network 47

4.1 Selecting a better activation function . 48

4.2 Effects of the Network Shape . 51

4.2.1 Effect of depth . 51

4.2.2 Effect of layer sizes . 53

4.2.3 Conclusion: best parameters for variation resilience 55

4.3 Sparse network connections . 57

Chapter 5: Generating the Best Sparse Networks 63

5.1 Genetic Programming . 63

5.2 Synaptic Pruning . 65

5.2.1 One-time pruning . 66

5.2.2 Gradual Pruning . 69

5.2.3 Repeated full pruning . 72

5.3 Again, But With More Parameters . 75

Chapter 6: Future Work . 80

6.1 Better Modeling . 80

6.2 Improving the Sparse Network Search . 80

6.3 Low-power Binary Multiplication: Bit Shift 81

6.3.1 Quantization Error . 83

ix

6.3.2 Training for One-Hot Quantization 87

6.3.3 N-Hot Quantization . 88

Chapter 7: Conclusion . 90

Appendix A: Datasets . 94

A.1 Custom Voice Activity and Noise Dataset 94

A.2 Microsoft Deep Noise Suppression (MDNS) Challenge 95

A.3 The Wisconsin Breast Cancer Dataset . 95

A.4 Electrical Grid Stability Dataset . 95

A.5 MNIST . 95

Appendix B: Voice Activity Detection — Feature Extraction 96

Appendix C: Modeling Feature Noise . 99

References . 111

x

LIST OF TABLES

4.1 Neural Network Layers and Sizes Used In Comparing Activation Functions 51

4.2 Activation Functions Compared and Their Associated Equations 51

5.1 Neural Network Layers and Sizes Used In Sparsity Analysis 66

xi

LIST OF FIGURES

1.1 Illustration of neuron/synapse connectivity in human brain. 4

1.2 Block diagrams for a single artificial neuron and a MLP 4

1.3 Depictions of convolutional and recurrent layers of neural networks 6

1.4 Three common activation functions used in nonlinear neural networks. . . . 8

1.5 Consequences of using a learning rate that is too small (left) or too large (right) 11

1.6 Color map plots showing how many of the samples used for training closely
resemble one another, both in terms of correlation and euclidean distance. . 12

1.7 Plot showing how repetition in data does not justify randomly selecting a
subset to use for training . 13

1.8 Plot showing the effectiveness of mini-batch optimization in machine learning 14

2.1 Diagram of the basic Von Neumann architecture 16

2.2 Transistor diagrams for (N)AND and XOR binary logic gates. 16

2.3 Gate- and block-level diagrams for the binary half and full adders. 17

2.4 Example of binary addition and ripple adder architecture 17

2.5 Example of binary multiplication and ripple-adder-based multiplier architec-
ture . 19

2.6 Plots showing the relationship between tranisistor count and binary number
bit length. 20

2.7 Plot illustrating the relative performance per power for GPUs and TPUs in
relation to CPUs. 22

xii

2.8 Block and transistor diagrams for components in analog multipliers 23

2.9 Kirchoff’s Current Law and an OpAmp voltage adder 24

2.10 Three simple architectures that can act as (a) an artificial neuron and (b) a
complete fully-connected layer in a neural network. 25

2.11 Examples of nonlinear phenomena in analog multipliers 26

2.12 CMOS floating gate transistor . 27

2.13 Illustration of how the noise vectors transform one network into many
variations . 35

3.1 Examples of edge-case images that may be misclassified. 37

3.2 Illustrations of the concept of fitting a function to the data. 37

3.3 An example of how connections may be disabled for dropout training . . . 39

3.4 Figures demonstrating how a single image can become six different exam-
ples in a training set by applying simple alterations. 39

3.5 Visualization of the early-stop point in relation to the validation and training
loss as a function of number of epochs trained. 40

3.6 Effects of (a) L2 normalization and (b) dropout training on device overfitting. 43

3.7 Performance of population training with gradients averaged. The colors
represent different numbers of noised networks that are trained in parallel,
with darker lines using more devices in parallel. 45

3.8 Performance of population training with gradients summed. 46

3.9 Performance of population training with summed gradients and learning rate
proportional to

√
p. 46

4.1 Activation functions and some of their derivatives 49

4.2 Difference in performance variation when using similar activation functions
but with different slopes . 50

4.3 Comparison of activation functions including ReLU with a variety of slopes 52

xiii

4.4 Plots demonstrating the relationship of various network layer sizes affects
the median and IQR of the network accuracies when subjected to variations.
The networks represented here have four hidden layers. 54

4.5 Plots demonstrating the relationship of various network layer sizes affects
the median and IQR of the network accuracies when subjected to variations.
The networks represented here have three hidden layers. 56

4.6 Plots demonstrating the relationship of various network layer sizes affects
the median and IQR of the network accuracies when subjected to variations.
The networks represented here have two hidden layers. 56

4.7 Demonstration of how introducing sparsity to a neural network serves to
reduce the effects of variations in the neural network parameters when
trained and tested under the same conditions as those in Fig. 4.2b. 58

4.8 Plots demonstrating the relationship of various network layer sizes affects
the median and IQR of the network accuracies when subjected to variations.
The networks represented here have four hidden layers, and the Electrical
Grid Stability dataset is used. 59

4.9 Plots demonstrating the relationship of various network layer sizes affects
the median and IQR of the network accuracies when subjected to variations.
The networks represented here have three hidden layers, and the Electrical
Grid Stability dataset is used. 60

4.10 Plots demonstrating the relationship of various network layer sizes affects
the median and IQR of the network accuracies when subjected to variations.
The networks represented here have two hidden layers, and the Electrical
Grid Stability dataset is used. 60

4.11 Plots demonstrating the relationship of various network layer sizes affects
the median and IQR of the network accuracies when subjected to variations.
The networks represented here have four hidden layers, and the Wisconsin
Breast Cancer dataset is used. 61

4.12 Plots demonstrating the relationship of various network layer sizes affects
the median and IQR of the network accuracies when subjected to variations.
The networks represented here have three hidden layers, and the Wisconsin
Breast Cancer dataset is used. 62

4.13 Plots demonstrating the relationship of various network layer sizes affects
the median and IQR of the network accuracies when subjected to variations.
The networks represented here have two hidden layers, and the Wisconsin
Breast Cancer dataset is used. 62

xiv

5.1 Illustration of mutation and crossover in genetic programming 64

5.2 Plots showing how differing methods of weight initialization for training
sparse neural networks may affect the training of the final neural network . 67

5.3 Results of using the “prune once” technique to generate sparse neural networks 68

5.4 Results of using gradual pruning to introduce sparsity into a neural network 70

5.5 Results of using repeated full pruning to introduce sparsity into a neural
network . 74

5.6 Results for repeated full pruning methods when starting out with larger
hidden layers with 12, 20, and 30 neurons per layer 77

5.7 Results for gradual pruning methods when starting out with larger hidden
layers with 12, 20, and 30 neurons per layer 78

5.8 Results for repeated full pruning methods when starting out with larger
hidden layers with 12, 20, and 30 neurons per layer 79

6.1 Pruning methods using larger neural networks with a subset of the MNIST
dataset. 82

6.2 Example of multiplying a number by 4 = 22, which is the same as a shifting
all bits to the left (or “decimal point” to the right) two positions. 83

6.3 Plot showing how the full-precision values between −32 and 32 are quan-
tized down to one-hot form (closest power of two). Histogram of the
resulting errors when comparing the original value to the quantized value . . 86

6.4 Histogram of quantization error when using equation (6.7) 86

6.5 Plots showing the histograms of quantization errors for two- and three-hot
quantization . 89

B.1 Example schematics for possible implementations of the signal and noise
level estimators used in feature detection. 97

B.2 Example signals generated by the circuits in Fig. B.1. 98

xv

C.1 Plots demonstrating the gaussian nature of the features extracted when
subjected to gaussian noise added to various parameters. The vertical black
line is the ideal value, and t is the number of samples from the start of the
audio (at 16kSps). The time shown is randomly selected from the given
sample and feature. 102

C.2 For a given extracted feature and across all bands, the standard deviation and
mean of the feature value is calculated at all time points, and the standard
deviations are all normalized to the mean. The vertical black line is the
average standard deviation for that feature and band. 103

xvi

SUMMARY

Machine learning and artificial intelligence have become commonplace in all aspects of

everyday life. They drive the decision-making process for major corporations by deriving

insights from data that may have otherwise gone unnoticed. At they same time, they provides

simple and accurate information about the world to help average consumers optimize their

own lives. From doorbells to refrigerators and smartphones to security systems, machine

learning has had an irreplaceable impact on the way people carry out their day-to-day

activities, and its reach is only becoming more and more ubiquitous.

Traditional machine learning algorithms and neural networks are implemented using pow-

erful digital computational architectures such as GPUs, TPUs, and FPGAs, demonstrating

high performance and successfully completing previously impossible tasks. Unfortunately,

the power required to train and generate predictions with the neural networks is too high to

be implemented in energy-constrained systems such as implants and edge devices. Many of

these systems would significantly benefit from on-board neural networks that could respond

to stimuli in real time. The important question that this work seeks to address is how to

bring the game-changing power of neural networks closer to the edge of the internet of

things without significant degradation of performance or battery life.

xvii

CHAPTER 1

INTELLIGENT SENSOR PROCESSING

In the age of the “Internet of Things” (IOT), data is transmitted to and from almost anything

imaginable including phones, televisions, cameras, ovens, and even doorbells. These

connected devices have integrated sensors that collect information about their surroundings:

audio, visuals, temperature, and anything else that can be quantified. After collecting the

data, so-called smart devices adjust their performance and carry out tasks based on user

interaction and preferences. The key to transforming simple transducers into smart sensors

lies in machine learning and neural networks.

Machine learning has transformed the way people approach data processing. In a

machine learning algorithm, the computer reads through vast amounts of data in a fraction

of the amount of time required by humans. Using this data, it ajusts the parameters of a

neural network by performing repetitive guess, check, and update cycles via billions of

multiplications, additions, and read and write operations on devices made up of billions of

transistors. In this way, the machine “learns” the trends and patterns within the data and

generates an approximation of the functions that govern the task, such as classification or

prediction. This learned information is part of what is referred to as artificial intelligence

(AI).

A properly designed and trained neural network can perform prediction and classification

tasks as well as or better than the average person. Many of these neural networks can be

designed, trained, and deployed on a consumer-grade computer. In a sense, machine learning

has made data processing more accessible by leveraging the mass amounts of computational

power and data now available.

In order to attain such impressive performance, some neural network architectures have

grown from a few layers of fully-connected neurons to networks such as Microsoft’s T-

1

NLG, natural language processing (NLP) network with 17 billion trainable parameters [1].

Training such large networks to achieve state-of-the-art accuracy can take days, weeks, or

months of constant computing before arriving at the final trained state.

As these models continue to grow, the energy needed for training and inferencing with

them grows as well. The process of training can demand between 100 W and 250 W on

a single GPU, with each training step costing at least 200 mJ per image [2] The energy

required to make predictions varies depending on the architecture, quoted at about 60 mJ

and 1180 mJ per image for state-of-the-art architectures AlexNet and VGG-16 respectively

on the Nvidia GeForce GTX Titan X GPU [3]. This not only goes contrary to the energy-

reduction mantra in an economy focused on a greener future; it inhibits classifiers from

being implemented in power-starved IoT edge devices.

1.1 Sensors on the Edge

It can likely be assumed that with adequate time, energy, data, and hardware, any problem can

be learned via machine learning and approximated with a neural network. However, many

applications that would benefit from added intelligence cannot afford all of these resources

due to space or energy limitations. A simple approach to overcoming computational power

limits such as in edge devices in the IoT is to send sensor data elsewhere for processing

before performing a desired task, but for many cases this may not be feasible or desirable.

Frequent wireless transmission of data from edge devices requires significant amounts

of energy, decreasing operational lifetime [4, 5]. Even in cases where energy limitations are

not an issue, transmitting data elsewhere for computation adds latency to the data-processing

pipeline and introduces security risks like interception of or tampering with data. Local

computing is one of the major appeals of edge AI, so turning to distributed computing

methods is not a desirable way forward.

One specific application that we explored was livestock behavioral monitoring for early

detection of illnesses. In this case, the end goal is to attach a device to an animal, such as a

2

cow or a pig, that will sense movement, sounds, and other information from the animal and

its environment. This information could then be used to predict whether or not the animal is

sick or if livestock managers need to pay close attention to it. Cattle and swine tend to move

around a lot; it is not likely that they will stay in one place to continuously transmit data to

wireless receiver points, and they definitely won’t want to be connected to a power supply.

In cases like these, on-board computing is the only option for providing accurate and timely

information for livestock caretakers to make informed decisions.

These and other edge applications present a new set of challenges that are not common

to most high-performance state-of-the-art neural networks.

1.2 Machine Learning and Neural Networks

Machine learning is the process of training some mathematical model, such as a neural

network or an equation, to approximate some function that governs a task such as prediction

or classification. To better understand how the machine learning process can be altered for

improved performance, a thorough understanding of neural networks and the process of

training is required. This section gives an overview of what neural networks are and how

they work and an intuitive explanation for how training can bring a randomly-generated

NN to its final state. While the structure of the neural network and the training process may

seem complicated, the basic functions needed to make it work are very simple.

1.2.1 Neural networks

Neural networks are meant to imitate the functionality of the brain. The brain is made up

of neurons which are interconnected via synapses (see Fig. 1.1); each neuron can output

electric pulses to other neurons, and these pulses allow the neurons to communicate and

tell the body what to do. As the brain learns, these synaptic connections grow weaker or

stronger based on which synaptic connections are most important for a given task. The basic

building block for artificial NNs is called the “neuron” because it behaves and learns in a

3

Figure 1.1: Illustration of neuron/synapse connectivity in human brain.

similar way. The artificial neuron is a single output of a layer in a NN. The value of the

output is governed by a linear combination of its weighted inputs; these weights are often

referred to as the synaptic weights of the neuron.

Fig. 1.2a shows a simplified diagram of a single neuron with (1.1) as the function

relating the inputs to the output.

y = g(w0x0 + w1x1 + w2x2) (1.1)

Put simply, all of the inputs xi are summed together, weighted by scalars wi. The sum

is usually passed through a nonlinear function g (i.e., the activation function) such as the

hyperbolic tangent or sigmoid functions to get the output y. One of the most common layers

used in NNs, the fully-connected layer, is formed by stacking multiple neurons such that

every input is connected to each output neuron. In this configuration, the output of each

neuron is a linear combination of all the inputs, which can be written in a simplified way as

y
x0

x1

x2

(a) Artificial neuron model

y
x0

x1

x2

(b) Multi-layer perceptron (MLP)

Figure 1.2: Block diagrams representing (a) an artificial neuron and (b) a multi-layer perceptron.

4

in (1.2), where m is the number of inputs, n is the number of outputs, and g is the activation

function that follows the layer.

ȳ = g(W x̄), x̄ ∈ Rm, ȳ ∈ Rn,W ∈ Rn×m (1.2)

A sequence of fully-connected layers and non-linear activation functions makes up the

multi-layer perceptron (MLP), shown in Fig. 1.2b, which is one of the earliest architectures

used in both regression and classification tasks and is still widely used today.

The full equation for the network shown in Fig. 1.2b is given in (1.3). The equation is

purposefully overcomplicated and redundant so that very complex relationships between

variables can be approximated; depending on the actual transfer function, the network and

its function may need to grow or shrink to provide a better fit.

ȳ = g2(W s̄) = g2(Wg1(V r̄)) = g2(Wg1(V g0(U x̄)))

y = g2(w0s0 + w1s1 + w2s2)

= g2(w0(g1(v00r0 + v01r1) + w1(g1(v10r0 + v11r1) + w2(g1(v20r0 + v21r1)))

= g2(w0(g1(v00g0(u00x0 + u01x1 + u02x2) + v01g0(u10x0 + u11x1 + u12x2))

+ w1(g1(v10g0(u00x0 + u01x1 + u02x2) + v11g0(u10x0 + u11x1 + u12x2))

+ w2(g1(v20g0(u00x0 + u01x1 + u02x2) + v21g0(u10x0 + u11x1 + u12x2))))

(1.3)

1.2.2 Common layer types

Different types of neural network layers work better with different types of data. As an

example, the fully connected layer works well with data that can be represented as a vector,

such as a list of attributes for a house or a plant. On the other hand, image data is two-

dimensional (2D) and may contain important relationships between neighboring pixels that

may not be captured when represented as a one-dimensional (1D) vector. Color images are

usually represented by three images that contain information about the red, blue, and green

5

(a) Depiction of convolutional layer (b) Folded and unfolded views of the recurrent layer

Figure 1.3: Depictions of convolutional and recurrent layers of neural networks. In (a), the green
square on the top represents the output of the convolutional layer, the dark area on the lower blue
square represents the area of the filter and the input values that are used to calculate the output (from
[8]). In (b), a depiction of the recurrent layer shows how the layer can be “unfolded” to visualize
how the different time steps in the input data interact (from [7]).

light intensity, making the image more like a three-dimensional (3D) object. Video and

audio data include a time component, which becomes even more impractical to represent as

a single vector.

Neural networks for image classification tasks have worked much better using two-

dimensional synapse structures (known as filters). With these types of layers, each neuron

output is a weighted linear combination of a 2D subset of the image. The filter is swept over

the image horizontally and vertically to produce the full output, which is why these types of

layers are called “convolutional” [6]. For data with temporal relationships, recurrent neural

network layers provide a way to detect patterns and relationships between different points

in time. A feedback path in the network uses both the current datapoint and a combination

of the outputs from the data at earlier points in time to generate the current time output [7].

These and other types of layers are extremely important and provide more tools for working

with all kinds of data media; for the work and purposes of this research, our focus will be on

the multi-layer perceptron and fully-connected layers.

6

1.2.3 Activation functions

The activation function is a critical part of any neural network. Most real-world systems have

transfer functions (i.e., input-output relationships) that are nonlinear, so in order to represent

them accurately, the approximating function or decision boundary must also be nonlinear.

Recall that the function that represents a fully-connected layer is a linear combination of the

inputs to the layer for each neuron in the layer. The same is also true for convolutional and

recurrent layers. As such, the best that a neural network made up of only these layers can

achieve is a linear function.

By inserting nonlinear functions in various points within the network (e.g., between

layers), it becomes possible to approximate nonlinear functions as well, and adding more

layers with more nonlinear functions adds to the amount of nonlinearity that can be estimated.

This is the purpose of activation functions, which are represented by the gi functions in

(1.3). There are a number of activation functions that have been used in practice, most of

which are described in [9], along with their benefits and problems and a comparison of their

performance. Three of the most common activation functions are the hyperbolic tangent

(1.4), sigmoid (1.5), and rectified linear unit (ReLU) (1.6) functions, shown in Fig. 1.4.

tanh(x) =
ex − e−x

ex + e−x
(1.4)

sigmoid(x) =
1

1 + e−x
(1.5)

ReLU(x) =

x, x > 0

0, x ≤ 0
(1.6)

Usually, the same activation function is used on the output of every neuron from a given

layer. For example, if the ReLU function is used on the output of layer i, then the output of

7

(a) Hyperbolic tangent function (b) Sigmoid actication function (c) ReLU activation function

Figure 1.4: Three common activation functions used in nonlinear neural networks.

each neuron in the layer yij can be represented as in

yij = gi(v̄jx̄i) (1.7)

which, when all the output values are stacked in vector form, becomes (1.2).

1.3 General Overview of Machine Learning Algorithms

The goal of the machine learning algorithm is to set the synaptic weights of a neural network

to values such that passing a set of input values to the network will generate an output

that matches some expected result. Because the function that governs the input/output

relationship (i.e., the transfer function) is unknown, the best that the network can do is

approximate it.

1.3.1 Data Preprocessing

Before the data can be used to train the neural network, it usually needs to be scaled or

processed into a more practical form. For example, audio data is difficult to interpret just as

a string of values representing the signal magnitude, and some features may be on different

orders of magnitude, such as the sqare-foot area of a house versus the number of bedrooms.

There are a number of different ways to preprocess data to make it usable. While the

8

different means of extracting and preparing features in data are beyond the scope of this

research, one example for how we created usable features for audio classification is given in

appendix B. The importance of the scale of each of the features is covered more detail in the

next sections.

1.3.2 Forward Propagation

The forward propagation step computes the initial predicted output ŷ based on the inputs x̄

and the current synaptic weights of the network. This step is so named because the inputs

(i.e., the features of the input data) are propagated from one layer to the next until the output

values are generated. These output values can be used to generate predictions, but it is these

raw output values that are used during training to determine how to update the parameters.

Since the outputs of each layer are simply linear combinations, the math functions needed

for forward propagation are multiplication, addition, and the activation functions (see (1.3)).

1.3.3 Loss Function

The output from the forward propagation step ŷ is compared to the list of ground-truth

values or classes y to calculate an error or “loss” value for the network and training data.

The loss function is determined by the task and can be customized based on the nature of

the dataset, the class priority, and other training adjustments such as regularization. Almost

any differentiable function can be used as long as it increases with error and decreases as

the network predicts more accurately, though some functions work better than others. For

binary classification tasks, the cross entropy loss function shown in (1.8) is most commonly

used, while mean-squared error loss (1.9) is most common for regression. In general, the

operations required for loss calculations are addition, subtraction, multiplication, integration,

and a nonlinearity such as log or square.

loss =
1

M

M∑
ylog(p) + (1− y)log(1− p) (1.8)

9

loss =
1

M

M∑
(y − p)2 (1.9)

1.3.4 Backpropagation

Backpropagation is the process of determining how to adjust internal parameters to reduce

the loss function. This can be done by individually perturbing every weight by a small

amount and calculating the amount of change in the loss, but there is a much more efficient

means of calculating all of the gradients which takes advantage of the linear algebra (i.e.,

matrix multiplications) within the network as well as the chain rule in differentiation.

The name “backpropagation” is derived from the way these gradients are calculated.

First, the derivative of the loss is calculated with respect to the last layer of the network to

obtain the gradients ∆k for the last layers synaptic weights Wk. Using the chain rule and

the gradients ∆k, the derivative with respect to the next-to-last layer is calculated to obtain

∆k−1. This iterative process is repeated as the gradients ∆i are propagated backward to the

very first layer. The math involved in this process is outside the scope of this work, but

the functions required are addition, multiplication, and the derivative(s) of the activation

functions(s) used in the network.

1.3.5 Parameter Update

Finally, all the parameters are updated in the network using the calculated gradients. To

decrease the error of network, they are adjusted in the opposite direction of the slope

calculated during backpropagation and at a fraction of the full slope with the fraction

determined by a parameter called the “learning rate” α (1.10).

W ′
i = Wi − α∆i (1.10)

10

Figure 1.5: Consequences of using a learning rate that is too small (left) or too large (right)

The learning rate can have a huge impact on the training performance of the network as a

small value will cause the network to take longer to train, but a large value may prevent the

network from converging at the optimal solution (see Fig. 1.5). To avoid this, the learning

rate can start large and shrink over time as the loss decreases.

The parameter update method just discussed is known as gradient descent. It works very

well in most cases, but it does have a tendency to get stuck in non-optimal local minima

instead of the global minima. There are many other optimization algorithms available

to help get around this problem, though this is not discussed in detail in this work. For

the four steps needed to train a network, the mathematical functions needed are addition,

subtraction, multiplication, integration, the activation functions and their derivatives, and

a nonlinearity for the loss function. This is important because it shows that the process of

machine learning can achieve successful results representing very complex functions using

only simple operations.

1.4 Mini-batch Training: Redundant Training Sets

For two of the datasets that were used in our experiments, the data was audio MP3 files,

all of which were sampled at 16 kSps. The dominant frequencies for human voice are

in the low hundreds of Hz (i.e., 100-400) when considering all ages and genders, so this

sampling rate should be more than adequate to capture both the fundamental frequencies and

other frequency components of voice. Because our application of voice activity detection

required being able to detect human speech at any moment in time, five seconds of audio,

11

enough for a short phrase to be spoken, would contain 80,000 samples for the training or

test set. Taking into account multiple possibilities for signal-to-noise ratio (SNR), speakers,

vocal fluctuations, and different noise sources, the number of audio clips needed to perform

reliable grows to an unreasonably high number, easily more than billions of samples for a

thorough dataset.

Fortunately, it is not necessary to use every sample in the input data for each weight

update step. In our case, the features we were using were dependent on the envelope of the

audio rather than the actual signal value. The envelope changes much less drastically than

the audio signal, so many neighboring samples are very similar to one another, and with the

same speaker and background noise, it is likely that there will be many similar input values

throughout the audio clip.

Fig. 1.6 shows an example of how similar the features are for an audio clip generated

using the Microsoft DNS Challenge dataset and library. There are 1600 randomly selected

samples from over 30 seconds (480000 samples) of audio. Fig. 1.6a is a color map of how

correlated each sample is to each of the other samples. The correlation value ranges from -1

to 1, where 0 represents no correlation and -1 and 1 represent perfectly negative or positive

(a) Inter-sample correlation (b) Distance between samples

Figure 1.6: Color map plots showing how many of the samples used for training closely resemble
one another, both in terms of correlation and euclidean distance. In (a), the light colors represent high
positive correlation. In (b), the dark colors represent a small euclidean distance between samples.

12

correlation respectively. Most of the plot is light green or yellow, which shows that many

of the feature vectors are highly-correlated with one another. Fig. 1.6b is a color map that

shows the measure of the euclidean distance between each feature vector. Since most of the

plot is darkly-colored, it shows that most of the feature vectors are not far apart from one

another.

When training a neural network with traditional gradient descent, the machine learning

algorithm uses all data from the training dataset to calculate the loss and the gradients for

each trainable parameter in the network. The gradient of the loss is calculated for each

sample from the data and averaged together to get the final result. The problem with this

is that the neural network must process every input before taking the next step. Because

there is so much correlation between the samples in our dataset, it may seem that we can

use only a small fraction of the dataset to reduce the amount of time and energy required to

train the neural network However, it not usually obvious which samples are the most critical,

and randomly selecting a subset to use for training will lead to a significant difference in

performance between the fractional training set and the rest of the data. Fig. 1.7 demonstrates

that randomly selecting a subset of the data will lead to a difference in performance between

the subset and the full training set, such that the full training set essentially becomes a

Figure 1.7: This plot shows how repetition in data does not justify randomly selecting a subset to
use for training. The blue lines are the training datasets and training and the red lines represent the
validation data. The light colored area surrounding each line shows how the results varied over ten
different tests.

13

validation set. Rather than sorting through the data to hand-pick which to use, it is more

effective to rotate through all of the samples in the data set but in smaller batches.

Research has shown that a neural network can be trained effectively by processing only a

portion of the training data before taking an update step and then looping through the entire

dataset in these smaller batch sizes [10]. This method of training became known as “mini-

batch gradient descent”. Stochastic gradient descent takes this even further by taking using

only one random data point for each update step. Because of the similarities in the inputs,

the algorithm is able to move the weights of the neural network in the general direction of

the desired final state much more quickly because it is taking steps more frequently. The

path to the end result is not as direct, but the final accuracy is just as good as the accuracy

would have been if the entire batch of inputs were used for training. Fig. 1.8 shows how,

with the Microsoft DNS Challenge audio, we can reliably train and test the neural network

using only 0.02% of the data for each step with good matching to using the entire dataset,

and we have almost perfect matching using 1% of the data.

Figure 1.8: This plot shows how only a small fraction of the Microsoft DNS Challenge dataset can
be used for each gradient calculation while still expecting the performance to match what could be
attained if the entire dataset was used for training. The blue lines represent the portion of the dataset
used for training and the red lines represent the portion that was set aside for validation.

14

CHAPTER 2

IMPLEMENTING NEURAL NETWORKS

2.1 Digital Implementation

Almost all modern machine learning is implemented in digital hardware. Whereas analog

computation was more established in the mid-1900s, digital storage and computing quickly

overtook it in terms of density and accuracy as CMOS technologies progressed at a rate

famously observed and predicted by Gordon Moore [11]. This explosion of the capabilities

of digital systems is what has allowed modern machine learning to be so successful.

Hundreds and thousands of gigabytes of information can be stored in chips smaller

than a US dime, and CPUs with four or more processing threads are common in practically

all smartphones. For tasks outside of the capabilities of portable devices, data can be

transmitted and processed with remote cloud computing services on large amounts of

computation hardware, such as Google Cloud’s TPU pods. Regardless of the platform,

practically all general purpose digital hardware is capable of performing all the mathematical

operations required to train a neural network.

Unfortunately, the price for added computational power is just that: power. Progress in

increasing performance of digital systems is approaching a wall [5, 12]. Traditional transis-

tors are reaching the physical limitations of silicon, and practices of digital architectures

such as the standard Von Neumann have speed and energy issues due to repeated off-chip

memory access [5, 13, 14] as shown in Fig. 2.1. Aside from that, the circuit blocks for

performing basic arithmetic such as addition and multiplication tend to be made up of a

large number of transistors.

15

Figure 2.1: Diagram of the basic Von Neumann architecture for flexible computer processing. When
multiplying a vector by a matrix, where the matrix is stored in memory, each number in the input
vector is loaded one at a time and multiplied with each associated value in the matrix, which also
must be iteratively loaded from memory. Delay and loss are associated with the data request and
transmission along the interconnecting data lines. Taken from [15].

2.1.1 Binary Arithmetic

The basic units for binary arithmetic are the full adder and half adder, which are made up of

AND, NAND, and XOR logic gates. The schematic diagrams for each of these logic gates

are shown in Fig. 2.2. The half adder, shown in Fig. 2.3a, takes in two bits and outputs two

one-bit values: the sum and the carry-over bits. It takes one AND gate and one XOR gate to

form this logic block for a total of 12 transistors. The full adder in Fig. 2.3b takes two input

bits and a carry-in bit to generate the sum and carry-out bits. This logic block is made up of

two XOR gates and three NAND gates, which takes 24 transistors.

(a) (N)AND gate (b) XOR gate

Figure 2.2: Transistor diagrams for (N)AND and XOR binary logic gates.

16

(a) Binary half adder

(b) Binary full adder

Figure 2.3: Gate- and block-level diagrams for the binary half and full adders.

Adding two N -bit binary numbers can be accomplished by chaining together N − 1

full adders and one half adder, as shown in Fig. 2.4b. This particular adder is referred to

as the “ripple” adder because of how the carry-out bit must be calculated before the next

block can complete its own sum and carry-out values, making the output calculation ripple

across the blocks. To reduce the delay time caused by the rippling calculation, the adder can

calculate all of the carry-out bits independently so that each adder’s output can be generated

in parallel, but this requires significantly more logic gates. The number of transistors TADD

(a) Numerical binary addition

(b) Chaining four adder blocks together to add two four-bit binary numbers

Figure 2.4: This figure shows an example of how binary addition is carried out with two four-bit
binary numbers. The lighter-colored numbers in the top row of the upper figure are the carry-over
bits. The lower figure is a block diagram for how three full adders and one half adder can be chained
together to create a four-bit ripple adder.

17

needed for a an N-bit ripple adder can be calculated as

TADD = (N − 1)Tfull + Thalf

= (N − 1)[2TXOR + 3TNAND] + TXOR + TAND

= (2N − 1)TXOR + 3(N − 1)TNAND + TAND.

(2.1)

Binary multiplication can also be accomplished using these basic adder blocks. By

following the same pattern for binary multiplication as shown in 2.5a, a simple multiplier

using N -bit ripple adders can be generated as in 2.5b. This multiplier is intended for

unsigned binary numbers, so different architectures are needed for signed or floating point

numbers. However, using unsigned-only architectures will still give a relatively accurate

view of how large and complex digital arithmetic circuits can be.

For a N-bit multiplier, the transistor count TMULT can be calculated as

TMULT = (N2 − 2N)Tfull +NThalf +N2TAND

= (N2 − 2N)(2TXOR + 3TNAND) +N(TXOR + TAND) +N2TAND

= (2N2 − 3N)TXOR + (3N2 − 6N)TNAND + (N2 +N)TAND.

(2.2)

The plots in Fig. 2.6 show how the number of transistors grows to accommodate higher-

bit arithmetic. While the relationship is linear for the adder, there is a quadratic increase in

the transistor count for the multiplier as the number of bits increases. As stated before, there

are alternate architectures that can change the speed and reduce the number of transistors,

and these numbers do not directly apply to other binary number formats. However, even

an optimized 32-bit float multiplier requires over 20,000 transistors [16], which is close to

what is shown in the lower plot in Fig. 2.6.

18

(a) Numerical binary multiplication

(b) Block diagram for four-bit unsigned binary multiplier

Figure 2.5: This figure shows an example of how binary multiplication is carried out with two four-bit
binary numbers. The lighter-colored numbers in the upper figure are the carry-over bits. The lower
figure is a block diagram for how three full adders and one half adder can be chained together to
create a four-bit ripple adder.

2.2 Powering Down

Significant research has been invested into methods of reducing the amount of energy

required by neural networks, both in terms of training and inferencing with models. Lowering

numeric precision has proven promising for many applications. Instead of using 32- or

64-bit numbers, some researchers have found that a neural network only needs to work

19

Figure 2.6: Plots showing the relationship between tranisistor count and binary number bit length.

with four or eight bits of precision with little to no loss in performance [17]. An alternative

neural network architecture that has been explored more recently is the binarized neural

network (BNN) [12, 18–23]. This type of neural network takes an extreme approach to

precision reduction. For BNNs, the forward propagation step is performed with weights

and/or activation function outputs fixed to either −1 or 1. In the backpropagation step, the

actual weights and gradients are stored with full precision and clipped to stay within the (−1,

1) range. These networks have drastically reduced energy consumption, and the accuracy is

reduced only by a small amount in many cases.

Another method for reducing computation energy requirements is eliminating unneeded

connections in a neural network (i.e., sparsity) [24]. Once again, this method was taken by

looking at how biological brains develop. Throughout the early years of human development,

the number of neurons in the brain increases, but after reaching some age, the number starts

20

to decrease. This suggests that the brain eliminates unneeded or redundant neurons or

synaptic connections while still maintaining similar or better performance. Sparsity will be

covered in greater detail in chapter .

Some researchers have shown that it is possible to shrink a neural network down to

a smaller size with minimal loss in accuracy by changing the reference values used for

the “ground truth” when computing the loss function. Instead of using the labels from the

dataset, the class labels predicted by a larger pre-trained neural network are used to train a

smaller or compressed version of the network. This is known as Knowledge Transfer [25].

An alternative method, Knowledge Distillation, uses the raw output values, of the larger

network rather than the class labels [25].

Aside from techniques that reduce the size or complexity of the model or training

algorithm, there is also the possibility of using specialized hardware. Most computers use

CPUs and GPUs, which are general-purpose computing devices. However, the generality

of the hardware means that there is excess hardware that may not be needed for neural

networks, increasing the size and power required. Tensor processing units (TPUs) are better

suited for matrix and vector operations. As such, they are capable of completing an order

of magnitude more operations for the same amount of power as GPUs, and CPUs (see Fig.

2.7) [26].

Neural network architectures that operate using different mechanisms than standard

digital arithmetic can also lead to energy savings. In an attempt to more closely mimic the

brain, Spiking Neural Networks encode information into continuous-time voltage spike

trains. Because of this, the computation only occurs when spikes are present, and it can run

asynchronously and in discrete sections. These networks rely on integrate-and-fire circuits,

which are not present in standard computational hardware; special neuromorphic hardware

is used for deployment [27]. Finally, there has been also been a movement to return to the

roots of electronic computing by re-exploring analog circuits.

21

Figure 2.7: Plot illustrating the relative performance per power for GPUs and TPUs in relation to
CPUs. The TPU’ represents a second-generation improved TPU core. For more information about
this plot, see [26].

2.3 Analog Hardware

2.3.1 Arithmetic blocks

Although analog computing was largely abandoned for the digital revolution, many have

been looking to it as the solution to the limitations with current digital machine learning.

Rather than relying on digital arithmetic and logic, analog computing uses the physical

properties of semiconductor devices [28]. An operation such as multiplication, which

requires thousands of transistors in digital, can be reduced to only a handful of transistors in

analog. Fig. 2.8 illustrates the small number of transistors that can be used to create a pure

analog multiplier. The number of transistors in the multiplier depends on the specifications

required, such as linearity and whether the synaptic weight (i.e., gain) should be able to

represent either positive or negative values but the opamp represented in Fig. 2.8b can use

five to seven transistors (about as much as an AND gate) or as much as ten to twenty for

22

Rload

out

CAC

in
VB

(a) Single-transistor analog multiplier

VIN
VOUT

(b) Analog OpAmp multiplier

ip in

+

+
VIN2

VIN1

(c) Input multiplying stage of a Gilbert multiplier

Figure 2.8: Block and transistor diagrams for components in analog multipliers. (a) is the basic single-
transistor multiplier, which supports limited two-quadrant multiplication. (b) is a more complex
operational amplifier based multiplier, which offers more flexibility and benefits such as extended
linearity. (c) is the Gilbert multiplier, which is used when multiplying two analog values that can
take on both positive or negative values, such as in RF mixers.

Gilbert multipliers for four-quadrant multiplication as in Fig. 2.8c.

Other mathematic operations such as summation and integration can also be implemented

with analog devices with similar transistor count reduction. According to Kirchoff’s current

law, the current in one conductive path (i.e., wire) is equal to the summation of the currents

in all other connected wires, as in Fig. 2.9a. Using this law, we can build a simple summation

block using only a few devices that regulate current flow into a wire. Fig. 2.9b shows how

this can be done using resistors to set the summation weights. The input voltages on the left

are translated to currents by their respective resistors, and the currents are summed together

at the input of the opamp. The total current is translated back to a voltage by the feedback

23

(a) Kirchoff’s Current Law

V1

R1

R2

V2

RO

VOUT

(b) Analog opamp adder

Figure 2.9: Current summation is a built-in property of electronic devices and can be used to add
voltages translated to currents through resistors.

resistor above the opamp. This relationship can be represented as

vOUT =
R1

RO

v1 +
R2

RO

v2 (2.3)

The voltage across a capacitor vcap is approximated as

vcap =

∫ t2

t1

icapdt (2.4)

where icap is the current into the capacitor, so with one component, we can integrate currents

over time. Because of the reduced transistor count and simple structures, analog circuits

are comparatively low-power, faster, and smaller than their digital counterparts [12, 28–

38]. Using these simple architectures, it is possible to create an artificial neuron and a

vector-matrix multiplier (i.e., fully-connected layer) as in Fig. 2.10.

Analog circuits are also not limited by clocking or serial computation, where one set

of instructions must complete before another set can start, unlike their digital counterparts.

Multiple system components will operate in parallel independent of other blocks, further

enhancing overall computation speed [37]. This is normally only possible in digital if there

are multiple independent processing cores (or threads), and even then, the parallelism is not

as massive.

A research team at IBM has recently demonstrated all of these benefits by employing

analog in-memory computation [39]. As stated earlier, memory access is an expensive

24

vO

vIN0 vIN1 vIN2

(a) three-input artificial neuron

iO0

iO1

iO2

vI0 vI1 vI2

(b) Fully-connected neural network layer

Figure 2.10: Three simple architectures that can act as (a) an artificial neuron and (b) a complete
fully-connected layer in a neural network.

process for high-speed systems, both in terms of time and energy. The large blocks needed

for digital logic and arithmetic necessitate this separation. The inherent smaller size and

built-in parallelism of analog circuits allows us to build the multipliers and adders right

next to each other, elimitating the read and load times for multiplicative weights. It is also

possible to store the weights as voltages directly on the multipliers, as in VB in Fig. 2.8a.

2.3.2 Limitations

Despite all these benefits that analog can offer to computing, it has not been widely adopted

for several important reasons. The most significant limitation in analog circuits is the inter-

device variability. Due to small inconsistencies in the fabrication process, voltage sources,

and temperature, often referred to collectively as PVT variation, post-fabrication, devices

such as capacitors and resistors can vary up to 25% from their expected values making it

difficult to know their actual properties and causing offset and mismatch errors [40–42].

The relationships between physical properties of semiconductor devices are nonlinear

and have limited ranges, which may lead to unexpected operation. For example, if the circuit

is operating on a voltage supply range of -1.8 Volts to 1.8 Volts and we want to multiply a

unit sine wave by two, it would be impossible to correctly represent the sine wave using the

analog circuit because the range is restricted to a peak magnitude of 1.8 Volts. The resulting

25

sine wave would be clipped as in Fig. 2.11a. The actual transfer function for a multiplier

is not a straight line as expected for linear systems; it is more like a hyperbolic tangent

function, where smaller inputs may be multiplied by an amount similar to the expected gain,

but larger inputs would become distorted by the limited range (see Fig. 2.11b). The range of

input values allowed with minimal distortion in te output is referred to as the input dynamic

range.

Analog also has no perfect long-term storage; most storage methods suffer from leakage,

low-precision, or limitations in writability [12, 37, 43]. Capacitors are ubiquitous in physical

circuits, whether they are placed intentionally or as parasitic effects of the manufacturing

process. While they are very useful for short-term voltage storage, they do not work well as

long-term storage. Capacitors are typically charged through “switches”, or transistors turned

on and off. When the “switch” opens, it actually becomes a high-resistance path rather than

an open circuit. If there is any difference in voltage between the two sides of the transistor,

current will leak through and change the value over time.

Another option is floating gate transistors. These are similar to the transistor in Fig.

2.8a, but the capacitor CAC is built into the transistor with the intermediate gate completely

(a) Signal clipping (b) Infinite vs. finite multiplication

Figure 2.11: (a) The clipping of a sinusoid multiplied by 2 inside a limited voltage range. (b)
The black line is a linear function, y = 2x, and the grey line represents what an actual analog 2x
multiplier would look like.

26

isolated from any conductive path (see Fig. 2.12). The electrical isolation allows the voltage

to stay virtually unchanged for over a decade. The voltage is set on the floating gate by

using second-order effects of CMOS transistors. Using hot-electron injection, the charge

(voltage) is reduced. Electron tunneling removes negative charge from the gate, reducing the

voltage. Both of these processes require very-high voltages, which are difficult to generate

on-chip and degrade the device oxide, leading to more device property changes. A more

recent alternative for long-term storage is the memristor, which is used in the memory array

in [39]. As the name suggests, it is essentially a variable resistor that holds its value even

when disconnected from the rest of the circuit. While it has its own challenges, it has been

used with a lot of success. For the remainder of this dissertation, it will be assumed that

floating-gate transistors are being used to store the multiplicative weights.

The challenges described here are the reason why analog circuits are not as flexible as

their digital counterparts [12, 29, 30, 40], and training methods such as backpropagation are

more difficult to implement on chip [40, 44]. All these issues limit analog computation to

applications with low- to medium-precision data [12, 29, 42, 45].

2.4 Introducing Analog Into Machine Learning and Neural Networks

The techniques used to minimize the inherent issues depend on the approach taken to

introduce analog into the computation and classification flow of common machine learning

architectures. The most common ways are via full replacement, computation acceleration,

and deployment.

VG

VD

VS

VB

Figure 2.12: CMOS floating gate transistor

27

2.4.1 Full Replacement

Introducing analog circuits by full replacement is the effort to complete the entire machine

learning process (i.e., forward computation, backpropagation, weight learning/storage, and

classification) entirely with analog blocks. The basic functions needed to implement ML

are inherently available in hardware, including summation, multiplication by scalar, and

nonlinear functions. Integrals and derivatives are also computable using common circuit

components. Using all of these, it is theoretically possible to train and use an analog classifier

implementing many popular ML algorithms.

This approach is very desirable, especially for power-starved computing-on-the-edge

applications. Allowing disconnected devices to independently handle sensor output would

significantly reduce the power drain from constantly broadcasting data to a base station for

processing [4], and it would increase the level of privacy and security for such devices. These

classifiers would be able to learn from their immediate environment and then make decisions

without ever leaving the field. Because the actual device undergoes training, the classifier

learns in the presence of the device variations, which results in performance competitive

with an ideal digital classifier [33, 37, 43, 44, 46–52]. Many prototypes are reported in

research with surprising amounts of success, and quite a few commercial products have

been developed.

The biggest drawback for these types of classifiers is that the information learned is very

difficult to share and reproduce. Because each fabricated circuit can vary significantly from

another, the multiplicative weights learned on one chip are unlikely to directly translate to

another without some amount of retraining. Being able to read the weight values is another

issue entirely as each read process can also introduce noise that corrupts the learned value

[42]. Because of this, the classifier becomes a black box, where very little intuition can be

gained about what has been learned. Each device must be trained by the end user and is not

ready for immediate use.

Backpropagation, one of the most common training algorithms, can be very difficult to

28

implement accurately in analog. Although it is possible to calculate gradients, it is difficult

to design a reliable differentiation circuit because they are heavily influenced by device

variations and noise. Some have managed to use backpropagation on chip [30, 48, 53, 54],

but others have opted for alternative learning rules such as weight perturbation learning [31,

44, 55, 56], which randomly adjusts each weight in series or parallel and keeps the weights

that result in better performance. This algorithm takes much longer to converge, but it is

much easier to implement in analog.

2.4.2 Computation Acceleration

Network training is by far the most demanding step in machine learning in terms of power

and resources. As the boundaries of what digital can do have become more difficult to

push, many have looked to analog hardware to accelerate the learning process while also

reducing the power required [13, 39, 57]. Rather than completely do away with the entire

digital system, this approach seeks to augment the capabilities of the system by using analog

circuits for the most demanding tasks, such as matrix multiply-and-accumulate functions.

However, while this may accelerate the actual computation, latency is introduced due to the

required data conversion.

Except in the case of multi-core systems, digital calculations are completed serially—the

next set of multiplications cannot start until the current set has completed. Part of the reason

for this is because digital architectures make use of resource sharing, which allows the same

hardware to be used for multiple tasks at different time intervals. A major time and energy

bottleneck in digital classifiers is the reading and loading of synaptic weight values from

digital memory to the multiplier blocks [39]. This is a problem both during training and

in deployment. On the other hand, analog is inherently parallel. [39] demonstrates that

the entire vector-matrix multiplication step in forward propagation can be simplified to a

single parallelized step by implementing analog multipliers within analog memory, thus

eliminating the read and load steps. Since far fewer components are required to perform

29

arithmetic tasks, massive parallelism is very easy to implement when computing with analog

circuits.

The most common way to implement this is to convert sensor data using an analog-to-

digital converter (ADC), perform any necessary pre-processing on the data in the digital

domain, and then convert each value back to analog using digital-to-analog converters

(DACs). In order to store results and interface with the digital system, values will also need

to be converted back with an ADC. To ensure accuracy, each of these DACs and ADCs

must either be trimmed, calibrated, and designed with large silicon real estate. Each DAC

or ADC also introduces latency to the training path, which offsets the speed benefit from

using analog. Some applications have suggested completing the feature extraction and

pre-processing stages in analog as well, eliminating one ADC and one DAC [20].

One huge issue with using analog computation in a digital system is that high linearity

and precision are required. For the acceleration to be useful, there must be a direct translation

from analog circuit to digital model, which requires precise trimming and control of each

data converter and arithmetic block. This level of precision is especially required if the

intention is to use the learned weight values in a digital system or other hardware classifiers

for deployment. Full replacement and acceleration are both very important steps toward

low-power machine learning, but they have significant hurdles to becoming reality.

2.4.3 Deployment

The third method for replacing digital with analog in machine learning systems is to

implement the trained digital system as an analog classifier. In this case, the training is

completed on a digital system such as a computer, and the learned network characteristics

(including feature extraction, and multiplicative weights) are downloaded to the device

[13, 19, 28, 32, 36, 58–60]. After the device is programmed, it is ready for use in its

selected application. There are three benefits to this approach. First, the deployed classifiers

are inherently low-power compared to contemporary digital systems and can operate for

30

much longer. Second, the same set of weights can be used for all devices, improving the

manufacturing throughput. Third, the weights are externally programmable, allowing for

some flexibility should the weights need updating or if device-level trimming is implemented.

Just as with the other methods, the best set of parameters for one device is not the best for

another due to process variations and other randomness such as when programming weights

onto analog storage. For the same reason, the trained weights of an ideal system cannot

be downloaded to an analog classifier and produce the same accuracy. To minimize the

performance degradation due to these nonidealities, the architecture and training algorithm

must generalize well to all variations that could occur within the classifier [61].

2.5 Training-to-Deployment Translation

For any analog classifier to be useful, the weights it learns or is programmed with need to

result in good accuracy, but each device will perform differently even if programmed with

the exact same voltages. This is one benefit of training on the manufactured chip, as in the

full-replacement option. During the training, the weights will learn to account for all the

variations and non-idealities, maximizing the accuracy for each individual device, but this is

very time-consuming and significantly increases manufacturing costs and device complexity

[61, 62].

To overcome this, a few groups have looked to transfer learning, which is the process

of taking a neural network trained for a specific task and re-purposing it for a similar one.

The assumption is made that the network is close to where it needs to be since the new

application is not very different, so only the last few layers are re-trained. This significantly

reduces the power and time required for training. In hardware, a similar approach can

be taken. After the network is trained either digitally or on other hardware, the weights

can be transferred to similar but different hardware and only the last few layers retrained

[39, 50]. While this does reduce the penalty and challenge of on-chip training, the actual

implmentation, especially for backpropagation, is another hurdle by itself. Therefore, it is

31

desirable to have one set of weights that works with good accuracy on all devices without

retraining.

To determine the required parameters, the circuit and the model used in training must

match well [28, 58, 63]. Some have worked to force the circuit, including the multipliers

and activation functions, to match the model [28, 53, 63–67], but this requires unreasonable

amounts of careful design and silicon real estate. It is more logical to characterize the device

using predetermined models used in circuit simulations (e.g., SPICE), extract the behavior

of each designed block after design and layout, and to use the resulting transfer functions

or best-fit equations during training. Even with these models, there is still the issue of

accounting for unexpected behavior from physical implementations. This work addresses

the question of how to account for all noise and variations and produce a set of parameters

that generalize well for all possible device outcomes.

Because each circuit is different, achieving high accuracy on the digital model is not an

acceptable goal. The resulting parameters would be over-fit to the ideal model and have

varying degrees of performance in actual hardware. Some have proposed characterizing

fabricated devices and using the measured variations during training [36, 38, 59]. While this

may provide some benefit for a single wafer, it is not guaranteed that these measurements

will match other wafer runs. Measuring many devices from at least a few runs would yield

better results but is time consuming and expensive.

Rather than directly measuring the devices, regularization techniques can help reduce

the overfitting problem. Common techniques like L2 normalization, dropout training, and

adding noise to the input signals can provide some benefit, but a better understanding of

which parameters are overfitting the ideal model would be more effective. In [23, 61],

noise is introduced in the weights for each epoch/sample. Similarly, [38] adds noise to the

input of each new layer; the desired result is that the network will be trained to increase

accuracy even in the presence of variation. Each of these methods of normalization should

be compared for their effectiveness in variation resilience.

32

The purpose of this research is to improve the performance of neural networks that are

trained using a digital model and implemented/deployed on analog hardware. Specifically,

it is our goal to develop methods for designing and training a neural network such that

it will still perform with good accuracy and with some amount of predictability even

after the weights and input values have been corrupted by noise (representing inter-device

variations and system noise together). Because analog computing is a form of approximate

computation, we will also show that the methods we use can also be applied to digital

low-precision systems.

2.6 Modeling PVT in Analog Neural Networks

Noise and other random variables in analog hardware take on many forms. Noise can

be random — caused by the trapping and releasing of electrons from molecular bonds,

energy injections from radiation, the random motion of electrons due to thermal energy, and

other unpredictable phenomena. It can also be caused by electromagnetic interference from

nearby conduction lines within the same or neighboring circuits. Variations in performance

can be caused by temperature changes, aging of the device, and the finite precision of the

fabrication process. In analog neural networks, where the multiplicative synaptic weights

are set using physical phenomena such as an electric field, the precision of the programming

is finite, so it is very possible that the actual programmed weight could be higher or lower

than the intended value. In our work, we wanted to simulate the effect of these random noise

sources on the performance of a neural neural network. In other words, after applying noise

to the feature extraction stage and the synaptic weights of the network, we wanted to see

what the distribution of accuracies looked like for a large number of corrupted variants of

one ideal trained network.

Studies have shown that the values of passive components (i.e., resistors and capacitors)

can vary as high as 25% from their expected values because of process variations [40–

42]. The actual variation profile is similar to the gaussian distribution. For passive value

33

variations, the randomness is a multiplicative noise, but other variations such as charge

injections and programming errors are better modeled as additive noise. We decided to use

a combination of additive and multiplicative noise for adding noise to the synaptic weights

because additive noise has less of an effect on larger values and multiplicative noise has less

effect on smaller values.

After training a few of the different neural networks we tested with a few datasets, we

found that the maximum magnitude of one of the synaptic weights was typically about 3.

Using this information we arbitrarily chose a combination of additive and multiplicative

noise profiles such that around the maximum weight value, the percentage of the noise was

only slightly dominated by multiplicative noise and the total noise had a standard deviation

of about 7%. The paramters for multiplicative gaussian noise are given in (2.5), and the

parameters for additive noise are in (2.6).

µ = 1, σ = 0.035 (2.5)

µ = 0, σ = 0.07 (2.6)

We represent the variation in devices by a set of random vectors with values taken from

the gaussian distributions given above and as described in (Appendix). Each “device” is

represented by three random vectors: one for feature noise, one for multiplicative noise for

the synaptic weights, and the other for additive noise for the weights. Each vector contains

one value for each of the parameters to be corrupted by variations. To create a new “device”

for testing or training, the ideal parameter values are multiplied by or added to the associated

random vectors, and inference or training is performed as in the ideal case. In this way, we

can represent 1000 variations on the same device by 1000 sets of three random vectors, as

illustrated in Fig. 2.13.

34

Figure 2.13: Illustration of how the noise vectors transform one network into many variations

35

CHAPTER 3

GENERALIZING AND FITTING

Generalizing neural networks has been and continues to be a topic of interest in the ML field.

ML can achieve exceptional levels of accuracy because of the vast amounts of data that

is available thanks to the internet and the ubiquity of sensors. However, a neural network

can only be as good as the data it is trained on. As was described earlier, the algorithm for

machine learning involves minimizing some given function where the function is calculated

using predicted and ground-truth data from a finite dataset. Ideally, we would have an

instance for every possible input that the network would see, but this is impractical and

impossible for most tasks.

If we have an image classifier that predicts if a photo contains a cat, a dog, or some other

animal, we can collect every image on the internet of a four-legged house pet, but there are

many other factors that come into play. What if we are given an image where a dog happens

to look like a cat or another animal (see Fig. 3.3)? There are also camera quality differences,

lighting, and an infinite number of angles from which a camera may capture the animal’s

image. Since it is impossible to capture all these cases to train a classifier, it is important to

make sure that the classifier will perform as well as possible on data that was not used for

training.

One important metric for improving a neural network is how well it generalizes to

unseen data. Another common way to describe it is how well the network fits the data. As

important as it is for a neural network to get a high accuracy score on the training data, if

its performance drastically decreases on a separate but similar test dataset, that makes it

insufficient to be used in the real world. In this case, we would say the neural network has

“overfit” the training data. The opposite extreme of this condition is when the neural network

does not perform well on either the training set nor the test data, such as when the neural

36

(a) Dog (left) and cat (right).

(b) Dog (left) and bear (right).

Figure 3.1: Examples of edge-case images that may be misclassified.

network is first initialized; this is known as “underfitting” the data.

An example of what this may look like in a regression task is shown in Fig. 3.2, where

Fig. 3.2a shows an underfit function for the data and Fig. 3.2c shows an overfit function. The

goal for machine learning is to find a function that fits the data well enough to be accurate

on the training data while also being able to give an accurate prediction given a new input,

as in Fig. 3.2b.

(a) Underfitting (b) Optimal fit (c) Overfitting

Figure 3.2: Illustrations of the concept of fitting a function to the data.

37

3.1 Improving Generalization

Some basic preventative steps can be taken to avoid overfitting the training data, such as

using a smaller network and increasing the size of the training dataset. The neural network

needs to have enough layers and neurons in order to approximate the complex relationships

between the input features of the data, but making it too large increases the chances of being

to be too accurate on the training set. By increasing the number of samples in the training

set, the machine learning algorithm is able to increase performance in more cases. However,

sometimes it is not wise to make the network any smaller, and our dataset cannot have

infinite samples, so other methods are needed. There have been several proposed techniques

for combatting overfitting in machine learning. Some examples include dropout training,

data augmentation, early stopping, and L1 or L2 regularization.

3.1.1 Dropout Training

Overfitting is caused by the over-parameterized, redundant function represented by the

neural network learning the training data too well. Dropout training, also called “dilution”,

avoids this by randomly disconnecting portions of the neural network during training, as in

Fig. 3.3b. For example, say the neurons in the kth layer of the neural network have a 50%

chance of being disconnected (i.e., the output is zeroed) in any given cycle of the training

process. In this way, the layer learns to perform its given part of the task with roughly half

of its neurons. In other words, the neurons become less dependent on one another and are

able to give correct outputs under a greater variety of internal conditions [68]. Once the

network is trained, all the neurons are activated for inference, and the neurons are able to

work together without being over-trained. Dropout training has been shown to significantly

improve accuracy on unseen data samples for a variety of input media [69].

38

(a) FCNN (b) FCNN with dropped connections

Figure 3.3: An example of how connections may be disabled for dropout training. For each new
epoch, a new set of connections are disabled; effectively, a new network is used for each epoch of the
training cycle. Image taken from [69].

3.1.2 Data Augmentation

Data augmentation is artificially increasing the size of a dataset by creating “augmented”

versions of the training data. For example, for the dog/cat image classifier discussed before,

one image of a cat could be made into nine different images easily by adding transformations

such as mirroring, rotating, offsetting, cropping, and changing the brightness or coloring

(see Fig. 3.4). As stated before, having more examples allows the neural network to learn

(a) Original image (b) Cropped (c) Offset

(d) Rotated (e) Mirrored (f) Increased whiteness

Figure 3.4: Figures demonstrating how a single image can become six different examples in a training
set by applying simple alterations.

39

more possibilities; however, there is still the possibility of overfitting the augmented dataset,

so more steps may be needed to prevent this.

3.1.3 Early Stopping

In the early stages of the training of a neural network, the performance of the network on

the training set and a validation set is poor (loss is high). After a number of epochs and

parameter updates, the performance on both sets should improve. At the point where the

network starts overfitting the training data, the loss calculated for the validation set stops

improving and may even degrade over time. With early stopping, the loss of both datasets

are tracked, and the training is stopped when the validation loss stops improving or starts

increasing. The early stop point is illustrated in Fig 3.5. In some cases, a “best” state is

saved and reloaded after the stop condition is met. Early stopping is a simple and common

way to combat overfitting, but its success is again dependent on what is in each dataset; it is

possible to overfit the training set and the validation set as well.

3.1.4 Weight Regularization

Studies have shown that neural networks with larger synaptic weight values are more prone

to overfit a dataset. [70] explains this is because larger values cause sharper changes in the

learned function. Weight regularization is a way to force the neural network to learn smaller

synaptic weights. The most common regularization methods are L1 and L2 regularization.

Figure 3.5: Visualization of the early-stop point in relation to the validation and training loss as a
function of number of epochs trained.

40

The basic idea of either method is to add a term to the loss function that is dependent on

the magnitude of the weights in the neural network. As the weights grow more positive

or negative, the loss increases, so the machine learning algorithm works to balance the

loss due to inaccuracy and the loss caused by high-magnitude synaptic weights. L1 and

L2 differ in that L1 regularization use the sum of the absolute values of the weights, as in

(3.1), and L2 uses the sum of the squares of each weight, as in (3.2). This difference means

L1 regularization is more likely to create zero-valued weights. Whether to use one or the

other is dependent on the application and is one of the many parameters to explore when

designing the ML algorithm.

LOSSL1 = floss + λΣ|wijk| (3.1)

LOSSL2 = floss + λΣ|wijk|2 (3.2)

3.2 Device Fitting

One of the challenges of analog computing is the variability between fabricated devices;

no two devices will give the exact same result, and the result cannot be predicted with high

precision. Along with that, thermal noise, drift, and interference from nearby signals can

cause further uncertainty. Neural networks intended to work on analog systems or other

systems with unreliable parameters must be designed and trained in such a way that they

will work well on any device (from the intended set of devices) and remain robust to noise

and possible variations. This challenge sounds very similar to data overfitting, as discussed

in the previous section, but the solutions needed to overcome the device-overfitting problem

are quite different.

41

3.2.1 Understanding the Problem

When a neural network is designed for and deployed in a digital system with high precision,

as in most common use cases, we know that the results of the final system should exactly

match the performance of the network when it was trained. In binary, a four is guaranteed to

be a four; the standards for binary number representations allow for this guarantee. When

implementing this same system in an analog neural network, there is no guarantee. The

effective final value programmed to the device could be 4.1, and two minutes later it could

be 3.9 or any other value within some range. The function actually represented by the

programmed analog neural network will not exactly match the one learned during training.

Most likely, the final function could be close to the ideal, but even a small change in the

function defining the decision boundary could result in drastically different results; in critical

applications, this may not be allowable.

3.2.2 Breaking from Traditional Techniques

At first approach to this issue, it seems intuitive that using some of the same techniques used

for date fitting should transfer over and at least help with device fitting; our simulations show

that this is not the case. In Fig. 3.6, we show the results of applying dropout training and L2

regularization. For a wide range of L2 alpha parameter values and dropout probabilities from

0 to 1, no improvement in either metric is observed. Early stopping can be used to reduce the

interquartile range of the resulting accuracy, but only at the sacrifice of accuracy. One form

of data augmentation did seem to provide part of a solution, but structured augmentation as

in Fig. 3.4 is not necessary.

Unlike the examples given for data augmentation in 3.1.2, rather than adding some

systematic mutation to the input, some have tried adding noise to the input values and in

other parts of the network. Some previous works have proposed adding noise to the inputs

of all layers in the network, rather than just the input of the first layer [38]. Others have

added noise to every weight in the network as in [23, 61]. We simulated both cases; the

42

results are shown in the following section.

3.3 Population Training

In keeping with the idea that adding more noise to more parts of the network could lead to

better resilience to variations, we came up with the idea that if we were to train multiple

“devices" in parallel, it may be possible to take a more direct path the ideal solution. At the

same time, since all devices are trained in parallel, we would have a better guarantee that

the performance would carry over to a wider range of variations on the same network. We

call this type of training “population training”.

To implement this, we start with an ideal network (no variations added). To represent

each of the variations, a set of “device vectors" is generated, where each vector contains one

value for each of the parameters to be varied during training, including synaptic weights and

any parameters that may vary in the feature extraction stage. To calculate the gradient for

one device, all the ideal reference parameters are multiplied with their associated random

value in the device vector. The loss and gradient are calculated as usual, and then the

10 4 10 1

Weight Decay Rate

60

65

70

75

80

M
ed

ia
n

A
cc

ur
ac

y
(%

)

train
val

10 4 10 1

Weight Decay Rate

0

5

10

15

20

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

train val

(a) L2 normalization

0.0 0.5 1.0
Dropout Rate

60

65

70

75

80

M
ed

ia
n

A
cc

ur
ac

y
(%

)

train
val

0.0 0.5 1.0
Dropout Rate

0

5

10

15

20

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

train val

(b) Dropout training

Figure 3.6: Effects of (a) L2 normalization and (b) dropout training on device overfitting.

43

original reference weights are multiplied with the next device vector to create the next

device and calculate its associated loss and gradients. After repeating this process for each

of the vectors in the set, the calculated gradients are averaged together, and the reference

weights are updated using the calculated average gradients. This process is repeated until

the convergence or stop criteria are met.

Population training was tested under three conditions:

1. Population gradients averaged

2. Population gradients summed

3. Same as 2 but with learning rate increasing with population size

Rather than plotting the performance against the number of epochs, the performance is

tracked based on the number of passes on the neural network. In the case of a population of 1

(a different random device for each epoch), one epoch is a single forward and backward pass.

For a population of 5, one epoch is five forward and backward passes. Plotting against the

number of passes checks to ensure the extra training cost is worth the change in performance.

The following simulations were performed using the Microsoft DNS dataset (see appendix

A).

The first case is shown in Fig. 3.7a; training with a population of devices does not seem

to offer any benefit over simply adding noise to all weights (i.e., population of 1). Fig. 3.7b

also shows a repeated simulation where noise is added only to the input of each layer. These

plots show a clear advantage to varying all of the weights and features rather than just adding

noise at the input to each layer.

The second simulated case seeks to address the fact that population training only updates

the weight every p passes (p = population size). By using the sum of the gradients instead

of the average, the calculated gradient for larger populations should be larger (larger step

size). In this case (see Fig. 3.8) the larger populations do converge toward the final state

faster than before, but they still do not offer any benefit over the p = 1 case, even up to

44

20000 passes. Increasing the learning rate with the population size as in Fig. 3.9 also does

not show any significant improvement. The difference in performance using a single device

variation per update vs many is very similar to what is observed when comparing stochastic,

mini-batch, and batched gradient descent.

1000 2000 3000 4000
No. of Passes

50

55

60

65

70

75

80

M
ed

ia
n

A
cc

ur
ac

y
(%

)

1
5

10
20

40

1000 2000 3000 4000
No. of Passes

5

10

15
In

te
r-

qu
ar

til
e

R
an

ge
 (%

)
1
5

10
20

40

(a) Noise added to all weights, features

1000 2000 3000 4000
No. of Passes

50

55

60

65

70

75

80

M
ed

ia
n

A
cc

ur
ac

y
(%

)

1
5

10
20

40

1000 2000 3000 4000
No. of Passes

5

10

15

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

1
5

10
20

40

(b) Noise added to layer inputs, features
Figure 3.7: Performance of population training with gradients averaged. The colors represent
different numbers of noised networks that are trained in parallel, with darker lines using more devices
in parallel.

45

0 5000 10000 15000 20000
No. of Passes

70

75

80

M
ed

ia
n

A
cc

ur
ac

y
(%

)

1
5

10
20

40

0 5000 10000 15000 20000
No. of Passes

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

Figure 3.8: Performance of population training with gradients summed.

0 5000 10000 15000 20000
No. of Passes

70

75

80

M
ed

ia
n

A
cc

ur
ac

y
(%

)

1
5

10
20

40

0 5000 10000 15000 20000
No. of Passes

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

Figure 3.9: Performance of population training with summed gradients and learning rate proportional
to
√
p.

46

CHAPTER 4

BUILDING ROBUSTNESS INTO THE NETWORK

Designing the architecture of a neural network comes with a lot of free variables. Along

with deciding which types of layers to use, the activation functions, number of layers, and

dimensions of each layer can be changed to get different levels of performance. After

starting with an initial guess for an architecture and checking its performance after training,

there are some general rules that make it easier to adjust and improve the network.

For an underfit neural network, two simple changes that can be made are to either add

more neurons to one or more layers or add more layers. Deciding which works best may

require some experimentation, but usually the decision can be made based on how complex

the relationship is between the input and the output. Intuitively, one can look at adding

neurons as expanding the number of elements in the linear combinations going into the next

layer, while adding layers adds more synapses as well as an additional layer of nonlinearity.

As stated in the previous chapter, care must be taken to make sure that the larger neural

network is not allowed to overfit the data.

Since the depth and number of neurons in a layer can affect how the network fits the

data, we wanted to know if changing the same characteristics would have any impact on the

device fitting. To test this, we trained and tested a fully-connected neural network with three

different datasets: the Microsoft DNS Challenge, Electrical Grid Stability, and Wisconsin

Breast Cancer datasets (see appendix A). For each, we swept through a number of hidden

layers and various combinations of layer sizes for each layer. After each network completed

training, it was tested on 1000 randomized variations of the trained network, and the average

and inter-quartile range of the accuracies were saved. We used interquartile range as the

statistic for characterizing the spread of the accuracy performance because the distribution

of accuracy was skewed about the mean rather than balanced as in the gaussian distribution.

47

4.1 Selecting a better activation function

Before getting into how the depth and layer size affects the network’s resilience against

variations, it is important to discuss one other way to reduce the effects of parameter

variations. For a fully connected neural network, recall that the output of a neuron is a

weighted linear combination of all the inputs that is then passed through some nonlinear

function. As an example, assume a fully-connected layer has a ReLU activation function,

shown in Fig. 4.1a. If we vary the weights of one of a neuron by a given amount, that

amount of change in that synapse output is directly reflected on the output (assuming a

positive-valued input to the ReLU). The change directly affects the output value because the

slope of the ReLU is 1. However, if we were to reduce the slope, the amount of change that

passes through the neuron will also be reduced.

A ReLU function is not preferable for analog implementation. It is difficult to implement

a linear half-wave rectifier with analog circuits, especially when compared to other possible

activation functions, such as the hyperbolic tangent function (tanh). The peak slope of the

tanh function is 1, as shown in Fig. 4.1c, but a few small adjustments can decrease the

maximum. The slope of a function can be decreased by simply multiplying it by a value

less than one; this compresses the function along the y (i.e., independent variable) axis. The

slope can also be reduced by multiplying the x (i.e., independent) variable by a value less

than one, which stretches the function along the x axis. For example, we can adjust the

tanh function as in (4.1), which is plotted in Fig. 4.1b. Fig. 4.1c shows that the peak slope

is reduced to 0.25. Interestingly, this new function has the same derivative as the sigmoid

function (see Fig. 4.1b), with the only difference between the two functions being that the

sigmoid function has an offset on the y axis of 0.5.

0.5tanh(0.5x) = sigmoid(x)− 0.5 (4.1)

Using this “compressed tanh" function for both training and inference does significantly

48

(a) ReLU activation function (b) Other examples of activation functions

(c) Derivatives of activation functions in (b)

Figure 4.1: Activation functions and some of their derivatives

reduce the spread of the accuracy distribution of a neural network subjected to variations.

At the same time, the average accuracy also noticeably increases. Fig. 4.2 shows how this is

true for different network depths with varying layer sizes over hundreds of initializations.

While this change in the activation function does bring benefits in terms of device fitting, it

should also be noted that it is possible that reducing the slope of the activation function too

much could lead the network to underfit the data, so just as much care should be taken when

trying to balance device fitting with accuracy.

The type of plot in Fig. 4.2 is referred to as the “boxenplot” in the Python visualization

library seaborn and is referred to as the “letter-value plot” by its creaters in [71]. It is very

similar to a standard boxplot in that the center box shows the median or second quartile

49

1 2 3 4
No. Hidden Layers

60

65

70

75

80

85

M
ed

ia
n

A
cc

ur
ac

ie
s (

%
)

1 2 3 4
No. Hidden Layers

0

5

10

15

20

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

(a) Using tanh activation

1 2 3 4
No. Hidden Layers

60

65

70

75

80

85

M
ed

ia
n

A
cc

ur
ac

ie
s (

%
)

1 2 3 4
No. Hidden Layers

0

5

10

15

20

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

(b) Using the “compressed tanh” activation

Figure 4.2: Difference in performance variation when using similar activation functions but with
different slopes. The plots in (a) show a variety of network sizes using the hyperbolic tangent
activation, and (b) is using a compressed version as shown in (4.1).

(represented by the grey line near the middle) as well as the boundaries between the upper

and lower quartiles. The upper boundary of the center box is the third quartile and the lower

boundary is the first quartile. Unlike the boxplot, the letter-value plot offers more insight

into the spread of the values outside the center box, which only describes the middle 50% of

the data. The small dark-grey diamonds above and below each plot represent the outliers of

the data as well as the maximum and minimum values.

To underscore the importance of reduced slope in reducing variation, neural networks

with the shapes as in Table 4.1 are used with the activation functions as in Table 4.2. The

results of the simulations (using the Electrical Grid Stability dataset) are shown in 4.3. One

important note is that the ReLU function does seem to do better at suppressing variations

than the original hyperbolic tangent function. This is surprising because the slope of ReLU

50

Table 4.1: Neural Network Layers and Sizes Used In Comparing Activation Functions

Size Inputs Hidden Layer Sizes Outputs

2 Hidden Layers 12 [12,6] 1

3 Hidden Layers 12 [12,12,6] 1

4 Hidden Layers 12 [12,12,12,6] 1

Table 4.2: Activation Functions Compared and Their Associated Equations

Activation Equation

ReLU4 4×ReLU(x)

ReLU2 2×ReLU(x)

ReLU1 ReLU(x)

ReLU0.5 0.5×ReLU(x)

ReLU0.25 0.25×ReLU(x)

Tanh tanh(x)

CompTanh 0.5× tanh(0.5x)

CompTanh2 0.25× tanh(0.25x)

above x = 0 is one whereas only the peak slope of the hyperbolic tangent is one. However,

when we consider the fact that half of the ReLU function is zero and therefore has a

slope equal to zero, this makes more sense. This relationship is still true when comparing

the ReLU divided by four and the compressed tanh function, where the peak slop of the

compressed tanh equals the above-zero slope of the ReLU divided by four. However, since

hyperbolic tangent shapes are simple to implement in analog, we will use it instead of the

ReLU function.

4.2 Effects of the Network Shape

4.2.1 Effect of depth

The plots shown in Fig. 4.2 above gives our first look into how the depth of the network

affects the accuracy distribution for a network under variations. For the original network

51

2 3 4
No. Hidden Layers

70

80

90

100

M
ed

ia
n

A
cc

ur
ac

ie
s (

%
)

ReLU4
ReLU2

ReLU1.0
ReLU0.5

ReLU0.25
Tanh

CompTanh
CompTanh2

2 3 4
No. Hidden Layers

0

2

4

6

8

10

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

Figure 4.3: Comparison of how different activation functions affect the performance variation when
the weights and features are subjected to noise.

with the uncompressed tanh function (Fig. 4.2a, we see that, as expected, increasing the

number of layers increases the ability to fit the complex relationships in the data and give

better accuracy. However, adding more layers also increases the inter-quartile range of the

accuracy distribution. Eventually, the spread of accuracies grows to the point where the

average accuracy starts to decrease because the spread will increase toward lesser values

rather than equally toward higher and lower values. Replacing the activation with the

compressed tanh (i.e., the zero-centered sigmoid) function reduces the spread and allows for

more layers to better fit the data while also keeping the interquartile range limited (Fig. 4.2b.

We did not simulate with more than four hidden layers, so the plots do not show when the

spread gets so large that the average accuracy starts to decrease.

The fact that parameter noise has a greater impact with more layers is not at all surprising.

52

Noise in the parameters of the feature extraction stage are present in every neuron of the first

hidden layer because the output of that neuron is the linear combination of all of the inputs

to the layer (i.e., the features) where the weights of the combination also have noise. The

neurons in the next layer are a noised linear combination of all the corrupted outputs from

the previous layer, and this noise continues to be compounded with more and more layers.

In a similar way, multi-stage analog amplifiers take special care to ensure that the earlier

amplification stages suppress noise as much as possible because the noise at the input to the

first layer is amplified across all of the subsequent gain stages. Based on the observations in

these experiments, it is reasonable to assume that suppressing parameter variations in the

feature extraction and shallower hidden layers will have a greater impact on reducing the

performance variation. They also give further justification for using activation functions that

have a gain/slope less than one.

4.2.2 Effect of layer sizes

The next two pages contain plots that show the accuracy of a number of neural networks

with between one and three hidden layers and either 3, 6, 9, 12, or 15 nodes in each layer.

This experiment was repeated for three different datasets, including the Microsoft DNS

Challenge, Electrical Grid Stability dataset and Wisconsin Breast Cancer datasets. The goal

of these simulations and plots is to discover how the size relationships between layers affects

the performance of the network with variations or if there is a layer that has more impact

than the others.

Fig. 4.4 shows plots for neural networks with four hidden layers. To give an example

for how to interpret these plots, consider 4.4(a)-(b). This is a plot of the accuracies for

four-hidden-layer fully-connected neural networks where the x axis is the ratio of the number

of neurons in the second hidden layer (N1) to the number in the second hidden layer (N2)

and the colors are a discrete representation of the ratio of the number of neurons in the first

hidden layer (N0) to N1. A very clear trend in these plots is that the median accuracy tends

53

0 2 4
N1/N2 Ratio

70

75

80

85
M

ed
ia

n
A

cc
ur

ac
y

(%
)

N0/N1
r < 1

1 r < 3
3 r 5

(a) 4 Hidden Layers, medians, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

5

10

15

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

N0/N1
r < 1

1 r < 3
3 r 5

(b) 4 Hidden Layers, IQR, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

70

75

80

85

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(c) 4 Hidden Layers, medians, N1/N2 vs N0

0 2 4
N1/N2 Ratio

5

10

15

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(d) 4 Hidden Layers, IQR, N1/N2 vs N0

0 2 4
N1/N2 Ratio

70

75

80

85

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(e) 4 Hidden Layers, medians, N1/N2 vs N2

0 2 4
N1/N2 Ratio

5

10

15

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(f) 4 Hidden Layers, IQR, N1/N2 vs N2

0 2 4
N2/N3 Ratio

70

75

80

85

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(g) 4 Hidden Layers, medians, N2/N3 vs N3

0 2 4
N2/N3 Ratio

5

10

15

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(h) 4 Hidden Layers, IQR, N2/N3 vs N3

Figure 4.4: Plots demonstrating the relationship of various network layer sizes affects the median
and IQR of the network accuracies when subjected to variations. The networks represented here have
four hidden layers. Note that ’r’ stands for “ratio” and represents the ratio indicated in the legend.
For example, in (b), r is equal to the ratio of the number of neurons in the first hidden layer to the
number of neurons in the second hidden layer. The dotted horizontal line on the median accuracy
plots represent the best training accuracy for a trained neural network with the same number of
hidden layers and layer sizes, tested without adding noise to the parameters.

54

to be higher for networks with more neurons in the first layer than in the second layer and

with more neurons in the second layer than in the third layer. The interquartile range of the

data tends to be lower under these conditions as well. In other words, these plots suggest

that we can increase resilience to variations when this condition is met:

N0 > N1 > N2 (4.2)

However, this is not a perfect indication since it seems that some networks that follow this

condition still end up with lower median accuracy and higher interquartile ranges. Looking

at Fig. 4.4(c)-(d) gives more insight, where we can see that networks with a higher number

of neurons in the first hidden layer perform best (i.e., at least 12 neurons). Fig. 4.4(e)-(f)

shows that there is a weak inverse relationship between N2 and variation resistance, meaning

less neurons in the third hidden layer leads to higher median accuracy and lower interquartile

range. Finally, Fig. 4.4(g)-(h) show that N2 > N3 and a lower number of neurons in the

last hidden layer (N3) tends to result in better performance, though the correlation is weak.

4.2.3 Conclusion: best parameters for variation resilience

The results shown in Fig. 4.5 and Fig. 4.6 agree with the conclusions gathered from the

simulations with four hidden layers. Deeper layers should have fewer neurons than shallower

layers, and, as is the case for data fitting, the network should be kept to the fewest layers

needed and with as many neurons in the first layer as needed to ensure proper fitting to the

data. Figs. 4.8 – 4.3 demonstrate that the same patterns can be observed when using the

same networks with the Electrical Grid Stability data set, and Figs. 4.11 – 4.13 show that

the results for the Wisconsin Breast Cancer dataset also agree. Our proposed explanation for

why layer sizes should decrease toward deeper layers is very intuitive. The noise in earlier

layers is added together in a linear combination, as is the nature of a fully-connected neural

network. The number of times that the noise is replicated is equal to the number of neurons

55

0 2 4
N1/N2 Ratio

70

75

80

85

M
ed

ia
n

A
cc

ur
ac

y
(%

)
N0/N1
r < 1

1 r < 3
3 r 5

(a) 3 Hidden Layers, medians, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

5

10

15

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

N0/N1
r < 1

1 r < 3
3 r 5

(b) 3 Hidden Layers, IQR, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

70

75

80

85

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(c) 3 Hidden Layers, medians, N1/N2 vs N0

0 2 4
N1/N2 Ratio

5

10

15

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(d) 3 Hidden Layers, IQR, N1/N2 vs N0

0 2 4
N1/N2 Ratio

70

75

80

85

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(e) 3 Hidden Layers, medians, N1/N2 vs N2

0 2 4
N1/N2 Ratio

5

10

15
In

te
r-

qu
ar

til
e

R
an

ge
 (%

)
3
6

9
12

15

(f) 3 Hidden Layers, IQR, N1/N2 vs N2

Figure 4.5: Same simulations as in Fig. 4.4, but the networks represented here have three hidden
layers. See Fig. 4.4 for additional explanation.

0 2 4
N0/N1 Ratio

70

75

80

85

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(a) 2 Hidden Layers, medians, N0 vs N1

0 2 4
N0/N1 Ratio

5

10

15

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(b) 2 Hidden Layers, IQR, N0 vs N1

Figure 4.6: Same simulations as in Fig. 4.4, but the networks represented here have two hidden
layers. See Fig. 4.4 for additional explanation.

56

in the next layer.

Assume a one-hidden-layer neural network with one input, three neurons in the hidden

layer, and one output. Given a synaptic weight matrix Ã with all weights equal to one and a

noise distribution with σ = σA, the output is equal to

ỹ = ã0x0 + ã1x1 + ã2x2 (4.3)

Since the noise distribution for each weight is about the same, if all inputs are roughly the

same magnitude, the noise distribution of ỹ would have σ = 3σA. If the number of neurons

in the hidden layer was expanded to ten, then the distribution for ỹ would then have 10σA.

This idea of limiting noise replication is corroborated by the fact that the more extreme layer

size ratios (i.e., 3 or more) are consistently better at limiting the variations in the output.

To make sure that the variations in the weights are replicated as little as possible, all layers

should decrease in size toward deeper layers, and higher-ratio reductions are better.

4.3 Sparse network connections

One of the limitations for ultra-low-power analog neural networks discussed in chapter 2

is low input dynamic range, meaning the input is restricted to a small range of values to

prevent unexpected behavior from the network. For ultra-low-power transistors operating in

the subthreshold region, only a small amount of current can go through the channel of the

MOSFET, so the number of inputs to each neuron must be kept low. We followed the advice

of a colleague familiar with subthreshold neural networks that a reasonable number would

be about three synapses per neuron (not including the bias input). For a fully connected

neural network, that would mean that each layer could have a maximum of three neurons,

and only three features could be used as inputs. Such a small network with so few inputs

would be unlikely to perform with reasonable accuracy in most cases, even in an ideal device

without variations. Instead of limiting the number of neurons and inputs, we can instead

57

disable some of the connections such that each neuron has no more than three synaptic

connections. This is also known as adding sparsity to the network.

Before getting into any details about how sparse networks are generated, we will finish

this chapter by showing that sparsity in the neural network reduces the effects of the weight

variation by following the conclusion found in the last subsection. By reducing the number

of inputs to a neuron, we reduce the amount of possible noise that goes into the neuron,

which in turn reduces the amount of noise that is propagated through to the output. Fig. 4.7

shows the same simulations that were performed in the previous section, but this time a

sparse architecture with only three inputs per neuron was used for each possible network

shape; the only difference is the addition of the five-hidden-layer neural network simulations.

In all cases, the interquartile range of accuracies is significantly reduced compared to the

simulations shown in 4.2, though the median accuracies are slightly reduced at the same

time.

2 3 4 5
No. Hidden Layers

60

65

70

75

80

85

M
ed

ia
n

A
cc

ur
ac

ie
s (

%
)

2 3 4 5
No. Hidden Layers

0

5

10

15

20

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

Figure 4.7: Demonstration of how introducing sparsity to a neural network serves to reduce the effects
of variations in the neural network parameters when trained and tested under the same conditions as
those in Fig. 4.2b.

58

0 2 4
N1/N2 Ratio

75

80

85

90
M

ed
ia

n
A

cc
ur

ac
y

(%
)

N0/N1
r < 1

1 r < 3
3 r 5

(a) 4 Hidden Layers, medians, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

N0/N1
r < 1

1 r < 3
3 r 5

(b) 4 Hidden Layers, IQR, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

75

80

85

90

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(c) 4 Hidden Layers, medians, N1/N2 vs N0

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(d) 4 Hidden Layers, IQR, N1/N2 vs N0

0 2 4
N1/N2 Ratio

75

80

85

90

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(e) 4 Hidden Layers, medians, N1/N2 vs N2

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(f) 4 Hidden Layers, IQR, N1/N2 vs N2

0 2 4
N2/N3 Ratio

75

80

85

90

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(g) 4 Hidden Layers, medians, N2/N3 vs N3

0 2 4
N2/N3 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(h) 4 Hidden Layers, IQR, N2/N3 vs N3

Figure 4.8: Same simulations as in Fig. 4.4; the networks represented here have four hidden layers,
and the Electrical Grid Stability dataset is used. See Fig. 4.4 for additional explanation.

59

0 2 4
N1/N2 Ratio

75

80

85

90

M
ed

ia
n

A
cc

ur
ac

y
(%

)

N0/N1
r < 1

1 r < 3
3 r 5

(a) 3 Hidden Layers, medians, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

N0/N1
r < 1

1 r < 3
3 r 5

(b) 3 Hidden Layers, IQR, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

75

80

85

90

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(c) 3 Hidden Layers, medians, N1/N2 vs N0

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(d) 3 Hidden Layers, IQR, N1/N2 vs N0

0 2 4
N1/N2 Ratio

75

80

85

90

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(e) 3 Hidden Layers, medians, N1/N2 vs N2

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(f) 3 Hidden Layers, IQR, N1/N2 vs N2

Figure 4.9: Same simulations as in Fig. 4.4; the networks represented here have three hidden layers,
and the Electrical Grid Stability dataset is used. See Fig. 4.4 for additional explanation.

0 2 4
N0/N1 Ratio

75

80

85

90

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(a) 2 Hidden Layers, medians, N0 vs N1

0 2 4
N0/N1 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(b) 2 Hidden Layers, IQR, N0 vs N1

Figure 4.10: S
ame simulations as in Fig. 4.4; the networks represented here have two hidden layers, and
the Electrical Grid Stability dataset is used. See Fig. 4.4 for additional explanation.

60

0 2 4
N1/N2 Ratio

80

85

90

95
M

ed
ia

n
A

cc
ur

ac
y

(%
)

N0/N1
r < 1

1 r < 3
3 r 5

(a) 4 Hidden Layers, medians, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

N0/N1
r < 1

1 r < 3
3 r 5

(b) 4 Hidden Layers, IQR, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

80

85

90

95

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(c) 4 Hidden Layers, medians, N1/N2 vs N0

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(d) 4 Hidden Layers, IQR, N1/N2 vs N0

0 2 4
N1/N2 Ratio

80

85

90

95

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(e) 4 Hidden Layers, medians, N1/N2 vs N2

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(f) 4 Hidden Layers, IQR, N1/N2 vs N2

0 2 4
N2/N3 Ratio

80

85

90

95

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(g) 4 Hidden Layers, medians, N2/N3 vs N3

0 2 4
N2/N3 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(h) 4 Hidden Layers, IQR, N2/N3 vs N3

Figure 4.11: Same simulations as in Fig. 4.4; the networkss represented here have four hidden layers,
and the Wisconsin Breast Cancer dataset is used. See Fig. 4.4 for additional explanation.

61

0 2 4
N1/N2 Ratio

80

85

90

95

M
ed

ia
n

A
cc

ur
ac

y
(%

)

N0/N1
r < 1

1 r < 3
3 r 5

(a) 3 Hidden Layers, medians, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

N0/N1
r < 1

1 r < 3
3 r 5

(b) 3 Hidden Layers, IQR, N1/N2 vs N0/N1

0 2 4
N1/N2 Ratio

80

85

90

95

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(c) 3 Hidden Layers, medians, N1/N2 vs N0

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(d) 3 Hidden Layers, IQR, N1/N2 vs N0

0 2 4
N1/N2 Ratio

80

85

90

95

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(e) 3 Hidden Layers, medians, N1/N2 vs N2

0 2 4
N1/N2 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(f) 3 Hidden Layers, IQR, N1/N2 vs N2

Figure 4.12: Same simulations as in Fig. 4.4; the networks represented here have three hidden layers,
and the Wisconsin Breast Cancer dataset is used. See Fig. 4.4 for additional explanation.

0 2 4
N0/N1 Ratio

80

85

90

95

M
ed

ia
n

A
cc

ur
ac

y
(%

)

3
6

9
12

15

(a) 2 Hidden Layers, medians, N0 vs N1

0 2 4
N0/N1 Ratio

0

5

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3
6

9
12

15

(b) 2 Hidden Layers, IQR, N0 vs N1

Figure 4.13: Same simulations as in Fig. 4.4; the networks represented here have two hidden layers,
and the Wisconsin Breast Cancer dataset is used. See Fig. 4.4 for additional explanation.

62

CHAPTER 5

GENERATING THE BEST SPARSE NETWORKS

Sparse artificial neural networks were inspired by the way the human brain develops. On

average, the human brain grows neurons until about 18 months of age; after this, the brain

gradually prunes the unneeded connections over the course of several years [72]. This

demonstrates that the brain recognizes that some of its synaptic connections are not needed

and that some neurons can perform their jobs just as well with fewer inputs. Research has

shown that sparse connectivity can work just as well with artificial neural networks.

Recall that one of biggest problems with digital neural networks is the energy needed to

train the network and use it for inference. With fewer connections or an overall less complex

architecture, the amount of energy needed can be reduced along with the computational

complexity. Of course, part of the benefit of machine learning is that the neural network

can be trained to recognize the unknown patterns and relationships within a dataset; people

generally do not have enough knowledge about a dataset to know which synapses are safe

to disable. Somehow, the training algorithm needs to be able to learn the synaptic weights

as well as which neurons or individual synapses are critical to the accuracy of the network.

There is a lot of literature about the best way to generate sparse neural networks, with each

researcher coming to differing conclusions about which algorithms work best. In general,

these methods can be categorized as genetic programming, one-time pruning, and gradual

pruning.

5.1 Genetic Programming

Simply put, genetic programming is a method of generating a high-performance piece of

code or some other simulated structure or device using the theories surrounding genetic

evolution. In the beginning, a random “population” of initial guesses are generated within a

63

range of given criteria. Each member of the population is scored based on its performance

at a given task (e.g., accuracy of a neural network, power usage by a circuit, lines of code).

A better score increases the probability that it will be kept from the population and used

to generate a new set of “offspring” that will become part of the next generation of the

population. This idea is taken from the theory of “survival of the fittest”, which is why this

comparison step is often referred to as the “fitness test”.

The methods for generating the new members in the next generation also borrow from the

theory of evolution. Similar to how the characteristics of children are taken from a random

mixture of the genetic properties of its parents, the next generation is created by taking

portions of two or more “parents” in the current generation and mixing random subsections

and/or parameters. This is referred to as “crossover”. Next-generation offspring can also

be created by randomly mutating a parent or one of the offspring already generated(e.g.,

adding a line of code or removing a layer from a neural network). This is similar to genetic

mutation, where a new characteristic appears that has no link to the parents. Both crossover

and mutation are illustrated in Fig. 5.1 The actual implementations of selection, crossover,

and mutation are beyond the scope of this paper.

Genetic programming has been used successfully in a number of fields; it has been

Figure 5.1: Illustration of mutation and crossover in genetic programming (from [73]). In this
example, the algorithm is trying to generate a mathematic function using basic building blocks such
as addition, numeric values, trigonometric functions, and variables.

64

used to create ideas that match, compete with, or outperform the state of the art, including

patented materials. However, sometimes genetic programming may overcomplicate the

problem at hand, especially with a larger population size. As an example, if we started with

a population of twenty sparse neural networks (a small/moderate population size), trained

the weights, and then tested each to compare their accuracy, this would require the time

needed to train all twenty of the randomly-generated neural networks. However, we found

that by using common pruning methodology, we had a high probability of generating a

high-performance sparse neural network in ten or fewer full training cycles. At the same

time, creating the next generation often gave very different results because the initialization

of the neural network has a significant impact of the final state of the weights, including

which connections are important. This unnecessary complication of the problem led us to

focus entirely on pruning-based methods for generating sparse neural networks.

5.2 Synaptic Pruning

The term “pruning” is just what it sounds like: removing weaker parts of a trained neural

network while keeping other sections that are more crucial to the performance of the network.

The pruning can remove entire neurons or channels or only a few synaptic connections.

Some of the hyperparameters for pruning that can be changed include how often to prune

the network during training, how much of the network to prune at one time, and how to

numerically score the usefulness of a synapse, neuron, or channel. Some concluded that

it is best to prune the unneeded connections all at one time and then retrain the remaining

weights. Others have demonstrated that better performance can be achieved by gradually

pruning the network. As for scoring the connections to determine importance, the most

common method is to rate them based on magnitude and eliminating the lowest-magnitude

weights. Neurons can also be scored based on the magnitude of the activation function such

that neurons that consistently get near-zero values out of the activation can be removed, or

neurons can be pruned if their synaptic weights are similar to others in the same part of the

65

Table 5.1: Neural Network Layers and Sizes Used In Sparsity Analysis

Size Inputs Hidden Layer Sizes Outputs

3 Hidden Layers 12 [12,6,3] 1

4 Hidden Layers 12 [12,12,6,3] 1

network (e.g., layer). These comparisons can be performed locally (e.g., within the neuron

or layer) or across the entire network.

In this work, we will rely on magnitude-based scoring because our main goal is to create

sparsity in each neuron rather than to increase sparsity in the network as a whole. We will

describe and compare the ability of each pruning method to reliably generate high-accuracy

sparse neural networks, at least in the case of fully-connected neural networks. This analysis

will be done in terms of one-time pruning and gradual pruning using a variety of algorithms

with the underlying data taken from the Electrical Grid Stability dataset. For the first set

of results, we started with network shapes that followed the guidelines we found from our

analysis in the previous chapter. Specifically, the neural network layer sizes are as given in

Table 5.1.

5.2.1 One-time pruning

For one-time pruning, the nerual network is trained to a point (e.g., a number of epochs),

and then then all the connections deemed as unneeded are removed from the network.

Along with this, there has been discussion as to whether the remaining weights should be

randomly reinitialized, returned to their original pre-trained state, or kept as they were before

continuing the training process. Our results showed that the resulting sparse architecture

is dependent on the first initialization. If the weights are randomly reinitialized, the new

starting weights may not be able to reach the same performance with the new architecture

since the dimensionality of the search space has been reduced. For the same reason, returning

to the original weight values may not allow the network to find the same best state. An

example for both of these cases in two dimensions is shown in 5.2a-5.2c. For this reason, it

66

is better to keep the same weights from when the network was pruned and continue training

from there rather than retraining from scratch.

Removing any amount of dimensionality in the weight search space during training

inhibits the ability of the machine learning algorithm to train the weights to the best

performance possible. If the network is overparameterized from the start, then the effects of

reduced dimensionality may not be as apparent. In this case, where some dimensions are

permanently removed after the network has been partially or fully trained, it may become

impossible for the network to return to its peak performance. 5.2d shows an example in two

dimensions where the path to better performance is blocked by a higher-loss wall after the

network has been pruned.

(a) 2D Training

(b) 1D Training after reducing dimensional-
ity of search space (sparsity) and reinitializ-
ing the weights to new values.

(c) 1D Training after reducing dimensional-
ity of search space (sparsity) and reinitializ-
ing the weights to original values.

(d) 1D Training after reducing dimensional-
ity of search space (sparsity) and continuing
to train from most recent values.

Figure 5.2: Plots showing how differing methods of weight initialization for training sparse neural
networks may affect the training of the final neural network. In all plots, the white ’x’ represents the
starting point for the training algorithm. The ’o’ is the final state after training. The colors in each
plot represent the value of the loss function that the optimization algorithm is trying to minimize.
An ideal algorithm for adding sparsity to a neural network would be able to always find the global
minima for the loss function after the dimensionality has been reduced.

67

We simulated multiple initializations of a neural network that were trained and pruned

using the one-time pruning method with a variety of wait times (epochs). The resulting

performances (both ideal accuracy and under variations) are shown in Fig. 5.3. The

performances for random pruning are shown on the same plot as a performance reference

point; if a pruning algorithm cannot do better than random initialization, then it is not a

useful algorithm.

Our simulation results suggest that for smaller fully-connected neural networks, one-time

pruning does not offer any benefit to randomly generating a sparse architecture. If anything,

it either decreases the possible accuracy, increases the spread of accuracies, and increases

the amount of time needed for training. It is unclear as to why the prune-once method did

3 4
No. Hidden Layers

60

70

80

90

100

Id
ea

l
A

cc
ur

ac
ie

s (
%

) 100
200
500
1000
rand.

(a) Ideal accuracy

3 4
No. Hidden Layers

60

70

80

90

100
M

ed
ia

n
A

cc
ur

ac
ie

s (
%

)

(b) Median accuracy

3 4
No. Hidden Layers

0

5

10

15

20

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

(c) Accuracy inter-quartile range

3 4
No. Hidden Layers

0

2500

5000

7500

10000

Tr
ai

ni
ng

 E
po

ch
s

(d) Epochs to train

Figure 5.3: Results of using the “prune once” technique to generate sparse neural networks. The
results of 50 initializations of the same neural network tested on 1000 network variations are
represented by each boxen plot. The numbers in the legend represent the number of epochs of
training before pruning the network, and rand. is the case where the sparsity is set randomly before
training starts.

68

not perform any better than random generation, but it is likely related to the limitations in

reducing the dimensions of the parameter search space. The performance first increased

with the number of wait epochs, but then it deteriorated after the wait time was extended,

which suggests that waiting too long to prune the network allows it to start fitting the data

too well with the full dimensionality, after which similar performance is then unreachable

after removing some of those dimensions.

5.2.2 Gradual Pruning

Gradual pruning can be broken down further into a few sub-algorithms. We can gradually

prune all layers in parallel, start with the shallower layers and move to deeper layers, or

we can do the reverse and start with deeper layers All three of these will be simulated and

compared in this section. Based on the findings about reducing the dimensionality of the

search space given in the previous section, our initial guess was that gradual pruning would

be better able to find a sparse neural network; instead of eliminating the pruned dimensions

all at once, the dimensionality would be slowly reduced. In theory, this should help mitigate

the problems faced by one-time pruning. The results of our simulations are shown in 5.4.

69

60

70

80

90

100
Id

ea
l

A
cc

ur
ac

ie
s (

%
)

backward0400
backward0800
backward1600
forward0400

forward0800
forward1600
parallel0400

parallel0800
parallel1600
random

60

70

80

90

100

M
ed

ia
n

A
cc

ur
ac

ie
s (

%
)

0

5

10

15

20

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3 4
No. Hidden Layers

0

2500

5000

7500

10000

Tr
ai

ni
ng

 E
po

ch
s

Figure 5.4: Results of using gradual pruning to introduce sparsity into a neural network. In each
legend label, the first part tells the direction of the pruning (backward = deepest to shallowest, parallel
= all layers at once), and the second value is the number of epochs over which the entire pruning
process is completed. For example, “forward_0800” prunes one synapse in every neuron in the
first layer until all neurons in the layer have only three inputs, and then it starts to prune the next
deepest layer. Each pruning step is spaced across 800 epochs, at which point the pruning process is
considered completed.

70

One interesting finding from the simulation of different methods of gradual pruning is

that pruning forward was more effective than backward or parallel pruning. Our intuition

is that this is caused by the fact that both parallel and backward pruning are more likely to

disable connections that have not yet been confirmed to be “low impact”. When synapses

in deeper layers are pruned, larger chunks of the estimated function are removed. As a

visual example, recall the network shown in 1.2b and described by (1.3). If we disable the

connection between the first layer top neuron with the first input feature x0, the function for

the network becomes

y = g2(w0(g1(v00g0(u01x1 + u02x2) + v01g0(u10x0 + u11x1 + u12x2))

+ w1(g1(v10g0(u01x1 + u02x2) + v11g0(u10x0 + u11x1 + u12x2))

+ w2(g1(v20g0(u01x1 + u02x2) + v21g0(u10x0 + u11x1 + u12x2))))

(5.1)

while removing the connection between the second layer top neuron and the output neuron

results in

y = g2(w1(g1(v10g0(u00x0 + u01x1 + u02x2) + v11g0(u10x0 + u11x1 + u12x2))

+ w2(g1(v20g0(u00x0 + u01x1 + u02x2) + v21g0(u10x0 + u11x1 + u12x2))))

(5.2)

Because backward and parallel pruning remove connections in the deeper layers near the

beginning of the pruning algorithm, it may be removing connections that may still prove to

be necessary later on. Forward pruning is still prone to deleting needed connections in the

last layer, but the difference in performance suggests that the network has had more time to

train the deeper layers and confirm which connections are more important. This may also be

the reason why allowing more epochs for the pruning process (e.g., 1200 instead of 200)

results in better networks for both backward and parallel pruning.

The possible range of performance for gradually pruning networks is noticeably im-

proved over the one-time pruning method; the median and ideal accuracy are both at least

comparable to random sparsity. In some cases, it gradual pruning is better, though it is

71

still not guaranteed to outperform randomized sparsity. The inter-quartile range of the

accuracy of 1000 variations of a neural network that is gradually pruned is worse than

random initialization in most cases. This can be improved by adding noise to the training

process to make sure that the learned weights do not result in an over-fit network.

5.2.3 Repeated full pruning

The main obstacle that we want to avoid in pruning the neurual network is that pruning

reduces the dimensionality of our weight search space and may prevent us from reaching an

optimal point. In other words, we want to be able to find the best-performing sparse network

without limiting the search space of the optimization algorithm. The only way to do this is to

allow all weights to be updated even after pruning. This of course will not result in a sparse

neural network; the network will still be a dense fully connected neural network. However,

it is possible that as we prune and retrain, one of the resulting sparse architectures that is

created along the way will be a good candidate for a final sparse architecture. By keeping

track of the loss of each sparse network that is generated, we can compare the performance

of multiple architectures at once while continuing to search through the entire space.

For this method, we prune the neural network to the desired level of sparsity after N

epochs; the training continues to apply gradient descent to all of the weights, including the

weights that were reset to zero by pruning. This initial sparse network would be backed

up, and the calculated loss would be saved as the “best loss” so far. Every N epochs, this

process would repeat, and the loss of the pruned network would be computed and compared

to the loss of the previous best pruned network. If the new pruned network ends up having a

lower loss, the new network is saved and replaces the previous back-up, and the saved best

loss value is updated. Similar to how early stopping works in training, this continues until

no new better sparse network is discovered after M prunings; at this point, the best sparse

network is loaded from the backup, and training continues as in the the other methods, with

only the remaining weights being updated by the optimization algorithm.

72

We found that this method of searching for sparse neural networks, while not a perfect

solution, was significantly more likely to generate a high-accuracy sparse network than any

of the other methods previously discussed, as shown in Fig. 5.5. The performance is better

both in terms of ideal accuracy and performance under parameter variations, but waiting

too long between prunings decreases the chances of finding a good sparse network. We

observed that pruning the network less frequently (e.g., every 50 or 100 epochs) resulted in

performance worse than random initialization, so these examples are not plotted here for the

sake of space.

We then wondered if gradually pushing the lower weights to zero instead of simply

zeroing them each time we pruned the network would lead to similar or better results faster.

Our reasoning was that zeroing so many of the dimensions at once would cause the path

to the best sparse network to be very jagged, sometimes taking large steps in the wrong

directions. By reducing the weights instead of zeroing them, we hoped that the backtracking

would be minimized. We decided to follow the example used in [74] where weights close to

zero were pushed to zero more quickly and weights closer to the most significant weights

were less-drastically reduced.

The method we use to reduce the lower weights is to first determine the top s synaptic

weights in each neuron (represented by a row in the weight matrix) in each layer (in terms

of magnitude). A coefficient matrix is generated for each layer with the same number of

values as there are weights in the layer. The coefficients corresponding to the tops s weights

in each neuron are one. The other coefficients cj for a given neuron are calculated by taking

the ratio of its own magnitude divided by the magnitude of the lowest of the top s weights

for that neuron. Optionally, this ratio can be raised to a power p, as shown in (5.3). An

example is given for deriving the new weights in (), where s = 2 and p = 3. Note that the �

represents the Hadamard product, or elementwise multiplication of the matrices.

coefficientsij =

(
|wij|

min(max3(rowj))

)p

(5.3)

73

60

70

80

90

100
Id

ea
l

A
cc

ur
ac

ie
s (

%
)

all_010
all_020
allsoft_10_1
allsoft_10_2

allsoft_10_4
allsoft_10_8
allsoft_20_1
allsoft_20_2

allsoft_20_4
allsoft_20_8
random

60

70

80

90

100

M
ed

ia
n

A
cc

ur
ac

ie
s (

%
)

0

5

10

15

20

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

3 4
No. Hidden Layers

0

2500

5000

7500

10000

Tr
ai

ni
ng

 E
po

ch
s

Figure 5.5: Results of using repeated full pruning to introduce sparsity into a neural network. In
each legend label, the first number tells the number of epochs waited before pruning, and the second
number (if present) is the power of the softening function (5.3).

Wm =

−2 1 2 −1

−1 −3 0 1

3 1 −3 −2

⇒ Cm =

 1 1/23 1 1/23

1/23 1 0 1

1 1/33 1 23/33

⇒ W ′
m = Wm � Cm (5.4)

74

Fig. 5.5 shows that using the softer weight reduction function may result in similar perfor-

mance to the case where all lower weights are zeroed, but the number of epochs required for

training may increase.

5.3 Again, But With More Parameters

For the simulations in the previous section, recall that we ran the simulations using neural

networks with layer sizes described by Table 5.1. While these pre-set shapes may work well

for fully-connected neural networks as discussed in the preceding chapter, they start the

sparsity search space off with an already reduced dimensionality. In this section, we ran the

same simulations, but this time every layer was assigned the same number of neurons. This

was repeated for layer sizes of 12, 20, and 30 neurons in each hidden layer.

The results for these simulations for the prune-once, gradual, and full-prune methods

are shown in Figs. 5.6 – 5.8 respectively. As was the case before, the prune-once method

is least effective with backward gradual pruning also performing relatively poorly. Again,

repeated full and soft pruning gave the best results and showed some improvement as the

initial network size increased. One surprising change is that random sparsity generation

performs better as the size of the initial neural network increases; this is likely because

an increased number of neurons in each layer makes it more likely that the right synaptic

combinations will be made in each layer, even if selected randomly. It is interesting, then,

that purposeful methods such as prune once and gradual pruning do not achieve similar

results, but this could be an effect of removing search dimensions while in the middle of a

search, which as we have seen may interrupt the current search path and get the optimization

function stuck in a local minima.

It actually makes a lot of sense that starting with a larger size can give a better result,

especially in terms of ideal (no variation) accuracy. Although each test involved the same

level of input sparsity (three synapses per neuron), the architectures with a larger initial size

are more likely to end up with more parameters in their final form, which leads to better

75

fitting. At the same time, this may also lead to overfitting, but this was not observed in these

simulations.

76

80

85

90

95

100

Id
ea

l
A

cc
ur

ac
ie

s (
%

)

(a) Ideal accuracy

80

85

90

95

100

M
ed

ia
n

A
cc

ur
ac

ie
s (

%
)

(b) Median accuracy

0.0

2.5

5.0

7.5

10.0

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

(c) Accuracy inter-quartile range

3 4
No. Hidden Layers

0

2500

5000

7500

10000

Tr
ai

ni
ng

 E
po

ch
s

3 4
No. Hidden Layers

3 4
No. Hidden Layers

(d) Epochs to train

Figure 5.6: From right to left, the plots in each row show the results for repeated full pruning methods
when starting out with larger hidden layers with 12, 20, and 30 neurons per layer respectively. Note
that the range of the y axis has been reduced in this plot. Outliers are hidden for clarity.

77

80

85

90

95

100
Id

ea
l

A
cc

ur
ac

ie
s (

%
)

(a) Ideal accuracy

80

85

90

95

100

M
ed

ia
n

A
cc

ur
ac

ie
s (

%
)

(b) Median accuracy

0.0

2.5

5.0

7.5

10.0

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

(c) Accuracy inter-quartile range

3 4
No. Hidden Layers

0

2500

5000

7500

10000

Tr
ai

ni
ng

 E
po

ch
s

3 4
No. Hidden Layers

3 4
No. Hidden Layers

(d) Epochs to train

Figure 5.7: From right to left, the plots in each row show the results for gradual pruning methods
when starting out with larger hidden layers with 12, 20, and 30 neurons per layer respectively.
Outliers are hidden for clarity.

78

80

85

90

95

100
Id

ea
l

A
cc

ur
ac

ie
s (

%
)

(a) Ideal accuracy

80

85

90

95

100

M
ed

ia
n

A
cc

ur
ac

ie
s (

%
)

(b) Median accuracy

0.0

2.5

5.0

7.5

10.0

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

(c) Accuracy inter-quartile range

3 4
No. Hidden Layers

0

2500

5000

7500

10000

Tr
ai

ni
ng

 E
po

ch
s

3 4
No. Hidden Layers

3 4
No. Hidden Layers

(d) Epochs to train

Figure 5.8: From right to left, the plots in each row show the results for repeated full pruning methods
when starting out with larger hidden layers with 12, 20, and 30 neurons per layer respectively. Note
that the range of the y axis has been reduced in this plot. Outliers are hidden for clarity.

79

CHAPTER 6

FUTURE WORK

6.1 Better Modeling

This work is a part of the foundation for methods and practices that are necessary for

improving performance in approximate computing, both analog and digital. However,

simply using these methods to train a neural network is not all that is required to successfully

deploy a neural network onto analog hardware. As was in chapter 2, analog hardware does

not accurately represent the linear mathematics involved in neural network layers. Not

only are they nonlinear, the multiplicative weights will not be constant for all inputs. In

general, the effective gain of the transistor will decrease as the amplitude of the input signal

decreases, leading to compression and clipping.

Because of this and other factors, the behavior of the ideal layers used in these simulations

will be very different from real circuits. To more faithfully represent the hardware neural

network, the training needs to be done using transistor-level models. This may sacrifice

how effectively the neural networks can be trained since it would not be possible to take

advantage of efficient vector-matrix multipliers. Still, accurate representation of the ideal

model combined with methods used here to prepare the network for variations should

provide the best chance for designing a robust analog neural network.

6.2 Improving the Sparse Network Search

The results with finding high-accuracy sparse neural networks consistently showed that

repeated full pruning works best for smaller networks with fewer parameters. Repeating

these simulations with a subset of the MNIST dataset revealed that this may not be the case

for larger neural networks. The network shapes we tested were two- and three-hidden-layer

80

fully-connected networks with 200 neurons in each hidden layer. Using a sparsity of 3 did

not give enough accuracy for this small number of layers, but using 5 synapses per neuron

gave ideal accuracies close to 100%. The results of pruning using forward and parallel

gradual pruning as well as full and full soft pruning are shown in Fig. 6.1. Note that the

simulations are incomplete for the two-hidden-layer network and do not include the results

for soft full pruning.

In these simulations, it seems that none of the structured pruning methods work as well

as simple random initialization, including repeated full pruning. One guess as to why this is

may be that, with larger networks, it is best to start with all weights near the origin in order

to find the best synaptic weights given a sparse architecture. The optimization function may

have been getting stuck in local minima when the final training step was completed after

structured pruning. If this is the case, then it may be better for larger networks to have their

weights re-initialized or restored to their original state after pruning. More research needs to

be done to confirm why the results here were different than for the smaller networks.

One possible change that could be made would be to begin with random pruning and

then switch to repeated full pruning after a number of epochs in order to check a few nearby

sparse architectures that are nearby in the full-dimensional search space. Another avenue that

would be important to explore is if high-accuracy can be achieved using a predetermined

structure for sparsity. For example, if a single neuron with three synaptic weights that

connected to three neighboring neurons from the preceeding layer, the connectivity between

the layers could be simplified, and the length of the connections would be reduced. Since

randomized sparsity seems to work well for larger neural networks, it would not be surprising

if predetermined sparsity could also be trained to work well in large networks.

6.3 Low-power Binary Multiplication: Bit Shift

Arguably the simplest multiplication to perform in base-10 math, aside from multiply by 0

or 1, is to multiply by 10. In base-10, multiplying by 10 is as simple as shifting the decimal

81

60

70

80

90

100

Id
ea

l
A

cc
ur

ac
ie

s (
%

)

all_10
all_20
allsoft10_1
allsoft10_2
allsoft10_4
allsoft10_8

allsoft20_1
allsoft20_2
allsoft20_4
allsoft20_8
forward_0800
forward_1600

forward_2400
parallel_0800
parallel_1600
parallel_2400
random

60

70

80

90

100

M
ed

ia
n

A
cc

ur
ac

ie
s (

%
)

0

2

4

6

8

10

In
te

r-
qu

ar
til

e
R

an
ge

 (%
)

2 3
No. Hidden Layers

0

5000

10000

15000

20000

Tr
ai

ni
ng

 E
po

ch
s

Figure 6.1: Pruning methods using larger neural networks with a subset of the MNIST dataset.

82

point one digit to the right, and dividing by 10 is the same as shifting the decimal point one

digit to the left. Multiplying by any integer power of 10 is the same as shifting the decimal

point to the right or left by the same number. For example, 1000 = 103 ⇒ shift decimal

right three digits. For the case of base-2 (i.e., binary) math, multiplying by a power of two is

the same as shifting all of the bits right or left, depending on the sign and magnitude of the

power. Fig. 6.2 shows an example of bit-shift multiplication.

As one can imagine, the amount of energy and transistors required to perform a bit

shift is orders of magnitude less than what is required for full-precision multiplication. A

common structure to use for bit shifts is the shift register, which is made up of a series of

D Flip Flops (DFF), one for each bit. Depending on the architecture, the standard DFF is

made up of about 48 transistors [75], so a 32-bit shift register would require about 1536

transistors, which is only 10% of what is needed for a 32-bit multiplier. Using alternative

structures for the DFF, an even greater reduction is possible.

6.3.1 Quantization Error

When training a neural network or using a pre-trained network, the weights are usually

full-precision; they have been adjusted with enough detail to capture the minute qualities

of the dataset. While some of the weights may be able to change small amounts without

changing the accuracy, some of the weights are very sensitive to change and can have a

major impact on performance. The challenge, then, with quantizing multiplication to a

power of two (bit shift) is dealing with the error that results from limiting the precision of

the multiplicative weights. A power-of-two binary number is all zeros except for one high

bit; in other words, it is a one-hot value.

Figure 6.2: Example of multiplying a number by 4 = 22, which is the same as a shifting all bits to
the left (or “decimal point” to the right) two positions.

83

Before quantizing the weights, we first must decide on the level of precision we want

for our quantized weights. Arbitrarily, we decided to represent out weights as signed

fixed precision numbers with one sign bit, five integer bits, and eleven decimal bits. In

terms of absolute values, this can represent numbers as large as 32 and as small as 2−11 =

0.00048828125. For most neural networks, it is unlikely that we will ever have a single

synaptic weight that is that small, so we will assume that 2−11 is the smallest number

possible in the following analysis

Algorithm 1 shows how the closest power of two is calculated. Put simply, we take

the absolute value of the given number and keep track of the sign. Then we calculate the

two closest integer powers of two using the base-two logarithm. Whichever power of two

is closer to the original value is returned. Using this logic, the maximum absolute error

between the original and quantized values would occur at the average between two powers

of two. With this number, the maximum absolute error is about 33%.

n =
2p + 2p+1

2
= 2p−1 + 2p (6.1)

err1 =
n− 2p

n
=

2p−1 + 2p − 2p

2p−1 + 2p
=

1

3
(6.2)

err2 =
n− 2p+1

n
=

2p−1 + 2p − 2p+1

2p−1 + 2p
= −1

3
(6.3)

However, we would also like to know what the distribution of the errors is between the

maximum and minimum error.

The beginning assumption is that any value between the maximum and minimum weight

value is equally possible for a synaptic weight to assume, so the value for a weight is a

uniform random variable W with minimum −32 and maximum 32:

W ∼ U(−32, 32) (6.4)

84

Algorithm 1: Finding the closest power of 2
Input :Number to quantize n 6= 0
Output :Closest one-hot value to n

begin
s← sign(n)
absn← abs(n)
p1 ← floor (log2(absn))
p2 ← ceil (log2(absn))
if absn− 2p1 < 2p2 − absn then return s× 2p1

else return s× 2p2

Using Python, we simulated randomly selecting one million values from W , finding the

closest number that is a power of two, and then calculating the error as in

err2(w) = sign(w)× w − w2

w
(6.5)

where w is the full-precision number and w2 is the closest power of two. The sign of the

weight is used because we are interested in the error of the absolute value of the weight

rather than the signed weight. Fig. 6.3 shows how the values are quantized and a histogram

of the errors calculated, normalized to the total number of samples; the red line in the plot is

the probability density function (PDF) for the error y such that y = err2(w). The equation

for the PDF is

fY (y) =

1
2

(
2

(1−y)2 + 1
(1+y)2

)
,−1

3
≤ y < 0

1
2

(
1

(1−y)2 + 2
(1+y)2

)
, 0 ≤ y ≤ 1

3

(6.6)

Others have mistakenly calculated the closest power of two as

p = s× round(log2(abs(n))) (6.7)

However, this may result in even larger error between the actual and quantized values. Fig.

6.4 shows the histogram for the distribution of error using this equation. Obviously, for less

error, it is better to use algorithm 1.

The PDF for the error is almost uniform, which means that the quantized weight has

85

(a) Quantization of values to powers of two (b) PDF of error after quantization

Figure 6.3: (a) Plot showing how the full-precision values between −32 and 32 are quantized down
to one-hot form (closest power of two). (b) Histogram of the resulting errors when comparing the
original value to the quantized value.

Figure 6.4: Histogram of quantization error when using equation (6.7)

about as much of a chance to have high quantization error (33%) as it is to have low or no

quantization error. This is much more error than we were dealing with when considering

noise and variation in analog circuits, and analog circuits much more likely to have low

variability. However, the biggest difference and benefit to this type of noise is that it is

completely predictable. First, we know exactly what the value of each weight is after

86

training. We also know how each weight will be quantized. For example, we know that the

value 3.2 will be rounded to 4, and the error will be 25%. If we know exactly what values

the synaptic weights will take after they are quantized, is it possible to train the network

such that the final weights are close to powers of two so that the change in accuracy after

quantization is minimal?

6.3.2 Training for One-Hot Quantization

In this section, we will attempt to use the same methods we used to suppress errors due to

variations in the analog circuit. For these simulations, we will use the power grid stability

dataset as well as MNIST to show the effectiveness of each training method. First, we can

try training the neural network while adding noise to the weights. The profile for the noise

will be similar to the PDF in Fig. 6.3: a uniform random variable with values between −1
3

and 1
3
. We can also try adding a term to our loss function that will cause the loss to decrease

as the weight values get closer to a power of two, as in (6.8), where q is the quantized

weight value. Using reduced-slope activation functions and repeated quantization during

training (like repeated full pruning) may also help to train the neural network for bit-shift

multiplication.

LOSS1HOT = floss + λΣ|wijk − qijk| (6.8)

One of the challenges with training low-precision neural networks is arriving at low-

precision weights while also training with enough precision in the gradients to allow the

weights to change over time and overcome the barriers created by quantization. For example,

if the gradient is smaller than the value of the least significant bit, the value of the weight

will not change. At the same time, there is no way to calculate the derivative or gradient of

the quantization step. As such, common optimization algorithms for low-precision must

include a means of bypassing the quantized weights, which normally means keeping track of

both the full-precision weights as well as the quantized weights. By adding a power-of-two

factor to the loss and periodically quantizing the weights, we can train using full precision

87

and avoid these problems altogether.

6.3.3 N-Hot Quantization

If one bit is not enough to provide the accuracy needed, additional bits may be used. For a

single multiplication with one synapse, multiplication with a N-hot (N high bits) number,

N shift registers and N-1 adders are needed. For low values of N, this still offers a benefit

in terms of transistor count. The algorithm for finding the closest N-hot value to a given

number is shown in algorithm 2. Note that in this algorithm, the ClosestPowerOf2 function

is given by algorithm 1.

The error historgram for two- and three-hot quantization are plotted in 6.5. The profile

of the error for these two cases more closely resemble normal distributions with standard

deviations close to σ2 = 8% and σ3 = 3% respectively. These normal distributions are

plotted as well for comparison. As expected, the standard deviation of the distribution of

Algorithm 2: Finding the closest N-hot value to a given number

Input :Number to quantize n 6= 0, Number of hot bits N (integer > 0), Smallest
possible power of two T > 0

Output :Closest N -hot value to n
begin

if N=1 then
return ClosestPowerOf2 (n)

s← sign(n)
n← abs(n)
absn← n
n2 ← 0
while N − 1 > 0 do

p← floor(log2(n))
n← n− 2p

n2 ← n2 + 2p

N ← N − 1
if absn < T then break

n2 ← n2 + ClosestPowerOf2(n)
return s× n2

88

(a) Two-hot quantization error PDF (b) Three-hot quantization error PDF

Figure 6.5: Plots showing the histograms of quantization errors for two- and three-hot quantization

error decreases with additional bits, and the maximum possible error is halved for every

additional bit. With only two high bits representing a synaptic weight, the equivalent normal

distribution for numeric error is very close to the error we used to represent device variations

in analog synaptic weights. The methods we used in previous chapters may also prove

useful in this case.

89

CHAPTER 7

CONCLUSION

We have shown that small and simple changes in how a fully-connected neural network is

designed and trained can have a significant impact and limit the damage caused by variations

in the hardware. Previous techniques designed to regularize the neural networks weights

to prevent data overfitting do not directly translate to device overfitting in analog neural

networks, but the general ideas can be used to create new methods more targeted to the

specific problem of device overfitting. Our simulations have shown that adding noise to

the training process by systematically corrupting each parameter that may be affected by

variations can help the network to learn to fit a wider variety of weights or handle noise

in the input features. We also unintentionally reconfirmed the validity of minibatch and

stochastic gradient descent as efficient ways to train a network by showing that it is better to

use only one network variation for each training optimization step rather than averaging the

gradients of a population of variants.

When deciding on the architecture of the neural network, following these guidelines will

lead to less accuracy degradation in the face of corrupted parameters:

1. Activation functions with smaller slopes, especially near x = 0, will suppress the

variations of the weights in the layer. If it is possible to use a ReLU-like function, it is

preferred over the sigmoid and hyperbolic tangent functions.

2. Just as a large number of parameters can cause a neural network to overfit the training

data, having more layers and neurons than is necessary will also cause the network to

become overfit to one parameter set and less accomodating to variations. Start with

smaller neural networks (fewer layers and neurons), and increase the size and depth

only as needed.

90

3. When adding more parameters to improve accuracy, it is better to add more neurons

than to add more layers. Adding more neurons only adds more elements to the linear

combinations of the following layer while additional layers effectively multiplies the

complexity of the approximated function.

4. If more neurons are needed, it is better to add more neurons to the shallower layers.

Each layer should have at least the same number of neurons as the next deeper layer.

5. By reducing the number of connections in the neural network (i.e., introducing

sparsity), the noise that is propagated through the network is reduced, so there is less

impact on the accuracy of the neural network.

In general, it is best to keep the network simple. More parameters means more noise and

therefore greater chance in affecting the behavior of the neural network.

One of the biggest challenges in finding a sparse architecture is knowing which connec-

tions are okay to remove. Each time a parameter is removed, a dimension of information is

lost, and it becomes more difficult to find the best solution with the remaining dimensionality.

Techniques that allow access to all available dimensions while searching for a sparse solution

are expected to have a better chance of finding the best set of sparse parameters. Still, one

aspect of machine learning that adds some uncertainty to the search space is the random

initialization of the synaptic weights; depending on their starting values, the final solution

could be completely different for each initialization. Because of this, there is no guarantee

that the first trained network will be the best, so multiple iterations of training may be

required. Using a method that is more likely to produce a solution with high accuracy and

robustness would mean fewer training iterations before finding a network with the desired

performance.

This research has given more credence to the idea that it is possible to train a digital

model of an analog neural network and deploy it to multiple hardware devices with minimal

change to the performance. Taking this research to the next step and attempting to train

91

accurate models of the hardware would be the next step in proving the validity of these

findings. A simpler application to explore would be to see how these methods affect

approximate computing methods using digital hardware. These would be much easier to

implement and test, and there would be no uncertain variability between devices. N-hot

multiplication would be a good next candidate.

92

Appendices

93

APPENDIX A

DATASETS

In this work, five different datasets are used to test the theories and methods described. Our

main task of interest at the start of this project was voice activity detection (VAD), where

the goal is to identify human speech both with and without noise or interferance in the audio.

However, to confirm the generality of the techniques we present, we needed to use other

types of data and explore a variety of network sizes and shapes. The first two datasets listed

below are for the VAD task; the other two are for confirming our findings on different data.

A.1 Custom Voice Activity and Noise Dataset

The first task we approached was voice activity detection (VAD), where the goal is to

identify human speech both with and without noise or interferance in the audio. For our

initial attempts, we used a custom dataset made up of speech samples from The Speech

Accent Archive [76] and a variety of noisy audio samples from YouTube, including a

lawnmower, a vacuum, cafeteria babble, highway noise, and various machine noise (e.g., air

conditioning, dishwasher, etc.). Unfortunately, the links for the YouTube videos were not

saved because this dataset was only intended for proof-of-concept work.

There were many issues with this dataset including lack of variety of SNRs and a very

limited rane of voice types and noise sources. It was clear that we needed something that

would cover more possible environments that a speech detector might be used. Fortunately,

the task of picking out voice from noise is a common problem, so there are already a number

of great datasets available.

94

A.2 Microsoft Deep Noise Suppression (MDNS) Challenge

The Microsoft DNS Challenge dataset [77] is intended for deep neural networks to be

able to remove the background noise from an audio clip while preserving the human

speech. While the purpose is different, the code available for the dataset provided a simple

means of generating a large number of noisy speech clips with a variety of SNRs an other

customizations.

A.3 The Wisconsin Breast Cancer Dataset

This is a popular dataset that contains the characteristics cells extracted from breast tissue for

the purpose of detecting which cells are cancerous and which are benign [78]. Information

about the features can be found at

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).

A.4 Electrical Grid Stability Dataset

A simple, low-dimension dataset where characteristics of an electrical grid are used to

predict whether or not the system is stable [79].

A.5 MNIST

A dataset commonly used for benchmarking and comparison purposes, it is a set of hand-

written numberic digits 0–9. Neural networks using this dataset are tasked with correctly

identifying which digit is in each image [80].

95

APPENDIX B

VOICE ACTIVITY DETECTION — FEATURE EXTRACTION

There are many complex algorithms used to extract features from audio data with DSP

techniques. Most of these are extremely difficult to implement in analog, and creating

a complex feature extraction stage would likely lead to large area and energy overhead.

Audio can be classified generally as stationary or transient; stationary audio is semi-constant

such as the drone of machinery or babble of a crowd while transient is intermediate and

inconsistent such as car horns or hammering. In most situations for VAD, the background

audio (noise) is fairly stationary while human speech is more transient, especially when

giving commands to digital assistants. Voice also contains harmonic components while most

non-speech sounds do not. Our feature extraction stage was derived taking advantage of

these characteristics.

The incoming audio signal is first passed through an array of bandpass (BP) filters with

selected frequencies with log spacing. The envelope of each band is detected, and the

noise and voice signal levels are estimated (NL and SL respectively). NL is estimated as a

voltage that slowly follows the minimum of the band envelope; when the envelope is greater

than NL, NL increases and vice versa at the same rate. The SL value is estimated as the

maximum between the envelope and a voltage that is similar to NL except that it tracks the

maximum of the envelope. The tracking voltage rises much faster than it decays. Simplified

equations representing this behavior are (B.1) – (B.3); Fig. B.1 contains simplified circuits

for obtaining each of these signals, and Fig. B.2 shows examples of these signals. The

difference between SL and NL for each band make up the input features for the NN.

VNL(VENV , VNL, t) =

 VNL(tcross)− τf t, for VENV < VNL

VNL(tcross) + τrt, for VENV > VNL

(B.1)

96

VSLtrack(VENV , VSLtrack, t) =

 VSLtrack(tcross)− τf t, for VENV < VSLtrack

VSLtrack(tcross) + τrt, for VENV > VSLtrack

(B.2)

VSL(VENV , VSLtrack) =

 VSLtrack for VENV < VSL

(VENV for VENV > VSL

(B.3)

The feature extraction stage has many parameters that cannot be learned by common

training algorithms such as backpropagation (i.e., hyperparameters). Some of the hyperpa-

rameters include the range of frequencies for the BP filters; the number of BP filters; the

center frequencies, Q, order, and gain for the BP filters; and the time constants for each of the

rise and decay rates for the signal and noise level estimators. Hyperparameters are normally

set by methodical trial and error, which is the pattern we followed. First, a gridsearch

algorithm was used to sweep each of the parameters to discover a range of parameters with

the best performance. Random initialization within this range helped ensure that the step

size of the grid search did not prematurely rule out any itermediate hyperparamenter values.

The values that resulted in the highest accuracy without over-design are shown in Table.

These three genearated signals can be used as features that are input to the neural network.

In our earlier work when testing the viability of our research, we used six frequency bands

and the difference between the signal and noise features, SL − NL. To improve the

CFB RFB

vSIG

RDECAY

vENV

CENV

(a) Simple envelope detector

vENV

RUP

RDN

vNOI

CNOI

(b) Noise level estimator

CPK

RUP

vENV

RDECAY

vPK

(c) Signal level estimator

Figure B.1: Example schematics for possible implementations of the signal and noise level estimators
used in feature detection.

97

Figure B.2: Example signals generated by the circuits in Fig. B.1.

performance of the network under a wider range of audio levels and SNRs, we also used the

NL feature on its own, making a total of 12 features for audio classification.

98

APPENDIX C

MODELING FEATURE NOISE

One of the challenges that we ran into when trying to simulate or train with noise in the

neural network was how to best represent variations that occur in the feature extraction

stage. Based on the assumption that most or all the parameters used for feature extraction

are controlled by RC time constants (namely the bandpass filter center frequencies and

decay rates for the noise and signal level estimators), we decided to characterize the possible

variations as multiplicative random values with a gaussian distribution with a mean µ of 1

and a standard deviation of 3σ = 20. This number was used based on the finding that passive

values can vary by up to 25% [40–42]. Among the features that were corrupted by random

values were the bandpass center frequencies, the filter Q value, filter gain, envelope detector

decay time constant, and the rise and fall time constants for the signal peak and noise level

estimators.

When generating the features used for classification, the audio signal is passed through

the array of bandpass filters, envelope detectors for each band, and the estimators for the

signal peak and noise levels for each band. Calculating these features takes a considerable

amount of time, and the required time increases with the number of frequency bands and the

number of input audio samples. When training an ideal network or with only one device

variation, the features can be generated and saved for re-use at the beginning. However,

testing the network on multiple variations (hundreds to thousands) or when using population

training or noised training with a new device variation for each epoch, the feature extraction

must be repeated frequently during training and for each device tested. The amount of time

required to train a neural network using the one-varied-device-per-epoch method suddenly

increases by more than 100x. Again, the features could all be pre-extracted and saved to a

hard drive for later use, but this still creates significant overhead in term of time, and the

99

amount of storage space required exceeds several terabytes, depending on the number and

length of the audio samples.

To decrease the time needed to extract features and add variations, we characterized

the amount of variation that occurs in the final extracted features after multiplying the

parameters within the feature extraction stage by the random values as discussed before.

The purpose of the characterization was to see if, instead of adding noise to the parameters

and re-extracting the features, we could instead extract and save the ideal features and then

multiply or add some noise that would result in noisy features with a similar distribution

as if we had extracted them with the parameter variations. We did this for multiple audio

samples and characterized the randomness observed in the envelope, signal peak, and noise

level values for all frequency bands (six in this case).

First, we confirmed that the distribution of the extracted features was a normal distribu-

tion. Features were extracted for 1000 variations of the feature extraction stage; for each

feature, all 1000 variations were averaged at a point in time and the standard deviation from

the mean was calculated. Using these statistics, all 1000 features were normalized (for each

point in time individually) and plotted as a histogram. The plots below in Fig. C.1 show

that these histograms closely resemble a standard normal distribution. The ideal value was

very close to the mean of the variations. This suggests that the distribution of the parameter

variations follows a multiplicative gaussian distribution, which supports our goal.

Next, we needed to calculate the standard deviation that we would use for the gaussian

distribution that we would draw from when adding noise to a feature. For a given feature, the

mean and standard deviation at a point in time were calculated, and the standard deviation

was normalized with respect to the mean. The value of this normalized standard deviation

was collected for all points in time for that audio sample and plotted as in Fig. C.2. The

values roughly follow a right-skewed Gumbel distribution; the distribution parameters were

calculated, and the PDF was plotted along with the datapoints to show the similarities. The

average normalized standard deviation is around seven or eight percent, with a significant

100

majority falling below the 10% mark. Using this information, we decided to represent

variations in the feature extraction with a gaussian random variable with a mean of one and

a standard deviation of 0.1.

101

(a) NL Signal, band 0 (b) NL Signal, band 1 (c) NL Signal, band 2

(d) NL Signal, band 3 (e) NL Signal, band 4 (f) NL Signal, band 5

(g) SL Signal, band 0 (h) SL Signal, band 1 (i) SL Signal, band 2

(j) SL Signal, band 3 (k) SL Signal, band 4 (l) SL Signal, band 5

Figure C.1: Plots demonstrating the gaussian nature of the features extracted when subjected to
gaussian noise added to various parameters. The vertical black line is the ideal value, and t is the
number of samples from the start of the audio (at 16kSps). The time shown is randomly selected
from the given sample and feature.

102

Fi
gu

re
C

.2
:F

or
a

gi
ve

n
ex

tr
ac

te
d

fe
at

ur
e

an
d

ac
ro

ss
al

lb
an

ds
,t

he
st

an
da

rd
de

vi
at

io
n

an
d

m
ea

n
of

th
e

fe
at

ur
e

va
lu

e
is

ca
lc

ul
at

ed
at

al
lt

im
e

po
in

ts
,a

nd
th

e
st

an
da

rd
de

vi
at

io
ns

ar
e

al
ln

or
m

al
iz

ed
to

th
e

m
ea

n.
T

he
ve

rt
ic

al
bl

ac
k

lin
e

is
th

e
av

er
ag

e
st

an
da

rd
de

vi
at

io
n

fo
rt

ha
tf

ea
tu

re
an

d
ba

nd
.

103

REFERENCES

[1] Corby Rosset. Turing-NLG: A 17-billion-parameter language model by Microsoft. Accessed
Oct. 2020. Microsoft Research Blog.

[2] D. Li et al. “Evaluating the Energy Efficiency of Deep Convolutional Neural Networks on
CPUs and GPUs”. In: 2016 IEEE International Conferences on Big Data and Cloud Comput-
ing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and
Communications (SustainCom) (BDCloud-SocialCom-SustainCom), pp. 477–484.

[3] Ermao Cai et al. “NeuralPower: Predict and Deploy Energy-Efficient Convolutional Neural
Networks”. In: ArXiv abs/1710.05420 (2017).

[4] T. Talaska et al. “Analog Programmable Distance Calculation Circuit for Winner Takes All
Neural Network Realized in the CMOS Technology”. In: IEEE Transactions on Neural
Networks and Learning Systems 27.3 (2016), pp. 661–73.

[5] Hu Miao et al. “Memristor-based Analog Computation and Neural Network Classification
with a Dot Product Engine”. In: Advanced Materials 30.9 (2018), 1705914 (10 pp.)

[6] Keiron O’Shea and Ryan Nash. “An Introduction to Convolutional Neural Networks”. In:
ArXiv abs/1511.08458 (2015).

[7] Wei Bao, Jun Yue, and Yulei Rao. “A deep learning framework for financial time series using
stacked autoencoders and long-short term memory”. In: PLoS ONE 12 (July 2017).

[8] S. Saha. “A Comprehensive Guide to Convolutional Neural Networks the ELI5 way”.
In: Towards Data Science. URL: https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53 Accessed 18 Feb 2021.

[9] “Bio-inspired Neurocomputing”. In: Studies in Computational Intelligence (2021).

[10] Andrew Cotter et al. “Better Mini-Batch Algorithms via Accelerated Gradient Methods”. In:
Advances in Neural Information Processing Systems. Ed. by J. Shawe-Taylor et al. Vol. 24.
Curran Associates, Inc., 2011.

[11] G. E. Moore. “Cramming more components onto integrated circuits”. In: Electronics 38.8
(1965).

[12] Seok Mingoo et al. “Cases for Analog Mixed Signal Computing Integrated Circuits for Deep
Neural Networks”. In: 2019 International Symposium on VLSI Design, Automation and Test
(VLSI-DAT), 22-25 April 2019. 2019 International Symposium on VLSI Design, Automation
and Test (VLSI-DAT). Proceedings. Mingoo, Seok Minhao, Yang Zhewei, Jiang Lazar, A. A.
Jae-Sun, Seo: IEEE, 2 pp.

104

[13] L. Fick et al. “Analog In-Memory Subthreshold Deep Neural Network Accelerator”. In: 2017
IEEE Custom Integrated Circuits Conference (CICC), 30 April-3 May 2017. 2017 IEEE
Custom Integrated Circuits Conference (CICC). Fick, L. Blaauw, D. Sylvester, D. Skrzyniarz,
S. Parikh, M. Fick, D.: IEEE, pp. 195–8.

[14] Du Yuan et al. “An Analog Neural Network Computing Engine Using CMOS-Compatible
Charge-Trap-Transistor (CTT)”. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 38.10 (2019), pp. 1811–19.

[15] “Computer Organization | Von Neumann architecture”. In: GeeksforGeeks. URL: https://
www.geeksforgeeks.org/computer-organization-von-neumann-architecture/ Accessed 05 May
2020.

[16] P. Asadi and K. Navi. “A New Low Power 322-bit Multiplier”. In: World Applied Sciences
Journal 2 (2007).

[17] Jong-Hwan Ko et al. “Limiting Numerical Precision of Neural Networks to Achieve Real-
time Voice Activity Detection”. In: IEEE Int. Conf. Acoustics Speech and Signal Processing
(ICASSP).

[18] Kim Jaehyun, Lee Chaeun, and Choi Kiyoung. “Energy Efficient Analog Synapse/Neuron Cir-
cuit for Binarized Neural Networks”. In: 2018 International SoC Design Conference (ISOCC),
12-15 Nov. 2018. 2018 15th International SoC Design Conference (ISOCC). Jaehyun, Kim
Chaeun, Lee Kiyoung, Choi: IEEE, pp. 271–2.

[19] Yang Minhao et al. “A 1uW voice activity detector using analog feature extraction and digital
deep neural network”. In: 2018 IEEE International Solid-State Circuits Conference (ISSCC),
11-15 Feb. 2018. 2018 IEEE International Solid-State Circuits Conference (ISSCC). Minhao,
Yang Chung-Heng, Yeh Yiyin, Zhou Cerqueira, J. P. Lazar, A. A. Mingoo, Seok: IEEE,
pp. 346–8.

[20] Yang Minhao et al. “Design of an always-on deep neural network-based 1-W voice activity
detector aided with a customized software model for analog feature extraction”. In: IEEE
Journal of Solid-State Circuits 54.6 (2019), pp. 1764–77.

[21] R. Yasuhara et al. “Reliability Issues in Analog ReRAM Based Neural-network Processor”. In:
2019 IEEE International Reliability Physics Symposium (IRPS), 31 March-4 April 2019. 2019
IEEE International Reliability Physics Symposium (IRPS). Yasuhara, R. Ono, T. Mochida,
R. Muraoka, S. Kouno, K. Katayama, K. Hayata, Y. Nakayama, M. Suwa, H. Hayakawa, Y.
Mikawa, T. Gohou, Y. Yoneda, S.: IEEE, 5 pp.

[22] D. Bankman et al. “An always-on 3.8J/86processor with all memory on chip in 28nm CMOS”.
In: 2018 IEEE International Solid - State Circuits Conference - (ISSCC), pp. 222–224. ISBN:
2376-8606.

105

[23] D. Miyashita et al. “A Neuromorphic Chip Optimized for Deep Learning and CMOS Tech-
nology With Time-Domain Analog and Digital Mixed-Signal Processing”. In: IEEE Journal
of Solid-State Circuits 52.10 (2017), pp. 2679–2689.

[24] Decebal Constantin Mocanu et al. “Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science”. In: Nature Communications 9.1 (2018),
p. 2383.

[25] A. Goel et al. “A Survey of Methods for Low-Power Deep Learning and Computer Vision”.
In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). 2020, pp. 1–6.

[26] Norman Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit”. In:
ACM SIGARCH Computer Architecture News 45 (June 2017), pp. 1–12.

[27] Qiang Yu et al. “Constructing Accurate and Efficient Deep Spiking Neural Networks With
Double-Threshold and Augmented Schemes”. In: IEEE Transactions on Neural Networks
and Learning Systems (2021), 113.

[28] A. Jayaraj, I. Banerjee, and A. Sanyal. “Common-Source Amplifier Based Analog Artificial
Neural Network Classifier”. In: 2019 IEEE International Symposium on Circuits and Systems
(ISCAS), 26-29 May 2019. 2019 IEEE International Symposium on Circuits and Systems
(ISCAS). Jayaraj, A. Banerjee, I. Sanyal, A.: IEEE, 5 pp.

[29] P. Kinget and M. S. J. Steyaert. “A programmable analog cellular neural network CMOS
chip for high speed image processing”. In: IEEE Journal of Solid-State Circuits 30.3 (1995),
pp. 235–43.

[30] M. Valle, D. D. Caviglia, and G. M. Bisio. “An experimental analog VLSI neural network with
on-chip back-propagation learning”. In: Analog Integrated Circuits and Signal Processing
9.3 (1996), pp. 231–45.

[31] Y. Maeda and T. Kusuhashi. “An analog neural network system with learning capability using
simultaneous perturbation”. In: IEICE Transactions on Information and Systems E82-D.12
(1999), pp. 1627–33.

[32] Dong Puxuan, G. L. Bilbro, and Chow Mo-Yuen. “Implementation of artificial neural network
for real time applications using field programmable analog arrays”. In: 2006 International
Joint Conference on Neural Networks, 16-21 July 2006. 2006 International Joint Conference
on Neural Networks. Puxuan, Dong Bilbro, G. L. Mo-Yuen, Chow: IEEE, pp. 1518–24.

[33] B. Heruseto et al. “Embedded analog CMOS Neural Network inside high speed camera”. In:
2009 1st Asia Symposium on Quality Electronic Design (ASQED 2009), 15-16 July 2009. 2009
1st Asia Symposium on Quality Electronic Design (ASQED 2009). Heruseto, B. Prasetyo, E.
Afandi, H. Paindavoine, M.: IEEE, pp. 144–7.

106

[34] R. Dlugosz, T. Talaska, and W. Pedrycz. “Current-mode Analog Adaptive Mechanism for
Ultra-Low-Power Neural Networks”. In: IEEE Transactions on Circuits and Systems II:
Express Briefs 58.1 (2011), pp. 31–5.

[35] B. Larras et al. “Analog encoded neural network for power management in MPSoC”. In:
Analog Integrated Circuits and Signal Processing 81.3 (2014), pp. 595–605.

[36] J. Binas et al. “Precise deep neural network computation on imprecise low-power analog
hardware”. In: arXiv (2016), 21 pp.

[37] E. Rosenthal et al. “A fully analog memristor-based neural network with online gradient
training”. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 22-25
May 2016. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Rosenthal,
E. Greshnikov, S. Soudry, D. Kvatinsky, S.: IEEE, pp. 1394–7.

[38] Moon Suhong, Shin Kwanghyun, and Jeon Dongsuk. “Enhancing Reliability of Analog
Neural Network Processors”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 27.6 (2019), pp. 1455–9.

[39] Stefano Ambrogio et al. “Equivalent-accuracy accelerated neural-network training using
analogue memory”. In: Nature 558.7708 (2018), pp. 60–67.

[40] A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos. “Building blocks for a temperature-
compensated analog VLSI neural network with on-chip learning”. In: Proceedings of IEEE
International Symposium on Circuits and Systems - ISCAS ’94, 30 May-2 June 1994. Vol. vol.6.
1994 IEEE International Symposium on Circuits and Systems (Cat. No.94CH3435-5). Mon-
talvo, A. J. Gyurcsik, R. S. Paulos, J. J.: IEEE, pp. 363–6.

[41] “On-Chip Resistors and Capacitors”. In: Adaptive Techniques for Mixed Signal System on
Chip. Boston, MA: Springer US, 2006, pp. 67–94. ISBN: 978-0-387-32155-4.

[42] S. Agarwal et al. “Designing and Modeling Analog Neural Network Training Accelerators”.
In: 2019 International Symposium on VLSI Technology, Systems and Application (VLSI-
TSA), 22-25 April 2019. 2019 International Symposium on VLSI Technology, Systems
and Application (VLSI-TSA). Agarwal, S. Jacobs-Gedrim, R. B. Bennett, C. Hsia, A. Van
Heukelom, M. S. Hughart, D. Fuller, E. Yiyang, Li Talin, A. A. Marinella, M. J.: IEEE, 2 pp.

[43] T. Lehmann, E. Bruun, and C. Dietrich. “Mixed analog/digital matrix-vector multiplier for
neural network synapses”. In: 12th NORCHIP Seminar, 8-9 Nov. 1994. Vol. 9. Analog Integr.
Circuits Signal Process. (Netherlands). Lehmann, T. Bruun, E. Dietrich, C.: Kluwer Academic
Publishers, pp. 55–63. ISBN: 0925-1030.

[44] A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos. “An analog VLSI neural network with
on-chip perturbation learning”. In: IEEE Journal of Solid-State Circuits 32.4 (1997), pp. 535–
43.

107

[45] T. Yamasaki and T. Shibata. “Analog soft-pattern-matching classifier using floating-gate MOS
technology”. In: IEEE Transactions on Neural Networks 14.5 (2003), pp. 1257–65.

[46] J. Fieres, K. Meier, and J. Schemmel. “A convolutional neural network tolerant of synaptic
faults for low-power analog hardware”. In: Artificial Neural Networks in Pattern Recognition.
Second IAPR Workshop, ANNPR 2006. Proceedings, 31 Aug.-2 Sept. 2006. Artificial Neural
Networks in Pattern Recognition. Second IAPR Workshop, ANNPR 2006. Proceedings
(Lecture Notes in Artificial Intelligence Vol. 4087). Fieres, J. Meier, K. Schemmel, J.: Springer-
Verlag, pp. 122–32.

[47] Sun Zhuoli, Kang Kyunghee, and T. Shibata. “A self-learning multiple-class classifier using
multi-dimensional quasi-Gaussian analog circuits”. In: 2010 IEEE International Symposium
on Circuits and Systems. ISCAS 2010, 30 May-2 June 2010. 2010 IEEE International Sympo-
sium on Circuits and Systems. ISCAS 2010. Zhuoli, Sun Kyunghee, Kang Shibata, T.: IEEE,
pp. 2330–3.

[48] N. Rajeswaran and T. Madhu. “An analog Very Large Scale Integrated circuit design of Back
Propagation Neural Networks”. In: 2016 World Automation Congress (WAC), 31 July-4 Aug.
2016. 2016 World Automation Congress (WAC). Rajeswaran, N. Madhu, T.: IEEE, 4 pp.

[49] Hsieh Hung-Yi, Li Pin-Yi, and Tang Kea-Tiong. “An Analog Probabilistic Spiking Neural
Network with On-Chip Learning”. In: Neural Information Processing. 24th International
Conference, ICONIP 2017, 14-18 Nov. 2017. Vol. pt.VI. Neural Information Processing. 24th
International Conference, ICONIP 2017. Proceedings: LNCS 10639. Springer International
Publishing, pp. 777–85.

[50] Jia Kaige et al. “Calibrating Process Variation at System Level with In-Situ Low-Precision
Transfer Learning for Analog Neural Network Processors”. In: 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 24-28 June 2018. 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). Proceedings. Kaige, Jia Zheyu, Liu Qi, Wei Fei, Qiao
Xinjun, Liu Yi, Yang Hua, Fan Huazhong, Yang: IEEE, 6 pp.

[51] D. Rancour and H. Michel. “Self-trained multi-layer analog real-time artificial neural network
circuits”. In: 2018 International Conference on Artificial Intelligence, ICAI 2018 at 2018
World Congress in Computer Science, Computer Engineering and Applied Computing, CSCE
2018, July 30, 2018 - August 2, 2018. 2018 World Congress in Computer Science, Computer
Engineering and Applied Computing, CSCE 2018 - Proceedings of the 2018 International
Conference on Artificial Intelligence, ICAI 2018. CSREA Press, pp. 84–89.

[52] N. Dey et al. “On-chip learning in a conventional silicon MOSFET based Analog Hardware
Neural Network [arXiv]”. In: arXiv (2019), 18 pp.

[53] E. Gatt, J. Micallef, and E. Chilton. “An analog VLSI time-delay neural network imple-
mentation for phoneme recognition”. In: Proceedings of the 2000 6th IEEE International
Workshop on Cellular Neural Networks and their Applications (CNNA 2000), 23-25 May
2000. Proceedings of the 2000 6th IEEE International Workshop on Cellular Neural Networks

108

and their Applications (CNNA 2000) (Cat. No.00TH8509). Gatt, E. Micallef, J. Chilton, E.:
IEEE, pp. 315–20.

[54] O. Krestinskaya, K. N. Salama, and A. P. James. “Learning in Memristive Neural Network
Architectures Using Analog Backpropagation Circuits”. In: IEEE Transactions on Circuits
and Systems I: Regular Papers 66.2 (2019), pp. 719–32.

[55] A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos. “Toward a general-purpose analog VLSI
neural network with on-chip learning”. In: IEEE Transactions on Neural Networks 8.2 (1997),
pp. 413–23.

[56] V. F. Koosh and R. Goodman. “VLSI neural network with digital weights and analog multipli-
ers”. In: ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems, 6-9
May 2001. Vol. vol. 3. ISCAS 2001. The 2001 IEEE International Symposium on Circuits
and Systems (Cat. No.01CH37196). Koosh, V. F. Goodman, R.: IEEE, pp. 233–6.

[57] A. Shafiee et al. “ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog
Arithmetic in Crossbars”. In: 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 18-22 June 2016. 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). Shafiee, A. Nag, A. Muralimanohar, N.
Balasubramonian, R. Strachan, J. P. Miao, Hu Williams, R. S. Srikumar, V.: IEEE Computer
Society, pp. 14–26.

[58] G. Geske, F. Stupmann, and A. Wego. “High speed color recognition with an analog neural
network chip”. In: 2003 IEEE International Conference on Industrial Technology, 10-12 Dec.
2003. Vol. Vol.1. 2003 IEEE International Conference on Industrial Technology (IEEE Cat.
No.03TH8685). Geske, G. Stupmann, F. Wego, A.: IEEE, pp. 104–7.

[59] D. Maliuk et al. “Analog neural network design for RF built-in self-test”. In: 2010 IEEE
International Test Conference (ITC 2010), 31 Oct.-5 Nov. 2010. Proceedings 2010 IEEE
International Test Conference (ITC 2010). Maliuk, D. Stratigopoulos, H. G. He, Huang
Makris, Y.: IEEE Computer Society, 10 pp.

[60] H. Abdelbaki, E. Gelenbe, and S. E. El-Khamy. “Analog hardware implementation of the
random neural network model”. In: Proceedings of IEEE-INNS-ENNS International Joint
Conference on Neural Networks, 24-27 July 2000. Vol. vol.4. Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing:
New Challenges and Perspectives for the New Millennium. Abdelbaki, H. Gelenbe, E. El-
Khamy, S. E.: IEEE Comput. Soc., pp. 197–201.

[61] T. Marukame et al. “Proposal, analysis and demonstration of Analog/Digital-mixed Neural
Networks based on memristive device arrays”. In: 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), 27-30 May 2018. 2018 IEEE International Symposium on
Circuits and Systems (ISCAS). Marukame, T. Nomura, K. Matusmoto, M. Takaya, S. Nishi,
Y.: IEEE, 5 pp.

109

[62] A. Martinez-Nieto et al. “An accurate analysis method for complex IC analog neural network-
based systems using high-level software tools”. In: 2018 IEEE 9th Latin American Symposium
on Circuits amp; Systems (LASCAS), 25-28 Feb. 2018. 2018 IEEE 9th Latin American
Symposium on Circuits Systems (LASCAS). Proceedings. Martinez-Nieto, A. Medrano, N.
Sanz-Pascual, M. T. Calvo, B.: IEEE, 4 pp.

[63] Hua Ruobing and A. Sanyal. “39fJ analog artificial neural network for breast cancer classifi-
cation in 65nm CMOS”. In: 2019 IEEE 62nd International Midwest Symposium on Circuits
and Systems (MWSCAS), 4-7 Aug. 2019. 2019 IEEE 62nd International Midwest Symposium
on Circuits and Systems (MWSCAS). IEEE, pp. 436–9.

[64] Y. Berg et al. “An analog feed-forward neural network with on-chip learning”. In: 12th
NORCHIP Seminar, 8-9 Nov. 1994. Vol. 9. Analog Integr. Circuits Signal Process. (Nether-
lands). Berg, Y. Sigvartsen, R. L. Lande, T. S. Abusland, A.: Kluwer Academic Publishers,
pp. 65–75. ISBN: 0925-1030.

[65] R. C. Chang et al. “Programmable-weight building blocks for analog VLSI neural network
processors”. In: Analog Integrated Circuits and Signal Processing 9.3 (1996), pp. 215–30.

[66] L. Gatet, H. Tap-Beteille, and M. Lescure. “Design and test of a CMOS MLP analog neural
network for fast on-board signal processing”. In: 13th IEEE International Conference on
Electronics, Circuits and Systems, 10-13 Dec. 2006. 13th IEEE International Conference on
Electronics, Circuits and Systems. Gatet, L. Tap-Beteille, H. Lescure, M.: IEEE, pp. 922–5.

[67] Pan Chih-Heng, Hsieh Hung-Yi, and Tang Kea-Tiong. “An analog multilayer perceptron
neural network for a portable electronic nose”. In: Sensors 13.1 (2013), pp. 193–207.

[68] G. E. Hinton et al. “Improving neural networks by preventing co-adaptation of feature
detectors”. In: ArXiv abs/1207.0580 (2012).

[69] N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”.
In: J. Mach. Learn. Res. 15.1 (Jan. 2014), 19291958.

[70] R. D. Reed and R. J. Marks. Neural Smithing: Supervised Learning in Feedforward Artificial
Neural Networks. Cambridge, MA, USA: MIT Press, 1998. ISBN: 0262181908.

[71] H. Hofmann, K. Kafadar, and H. Wickham. “Letter-value plots: Boxplots for large data”. In:
The American Statistican (2011).

[72] S. Ackerman. Discovering the Brain. Ed. by Sandra Ackerman. ISBN: 978-0-309-46799-5.

[73] Markus Quade et al. “Prediction of Dynamical Systems by Symbolic Regression”. In: Physical
Review E 94 (Feb. 2016).

[74] K. Gregor and Y. LeCun. “Learning Fast Approximations of Sparse Coding”. In: Proceedings
of the 27th International Conference on International Conference on Machine Learning.
ICML’10. Haifa, Israel: Omnipress, 2010, 399406. ISBN: 9781605589077.

110

[75] Sarah Harris and David Harris. Digital Design and Computer Architecture: ARM Edition. 1st.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2015. ISBN: 0128000562.

[76] S. Weinberger. “Speech Accent Archive”. In: George Mason University. URL: http:// ac-
cent.gmu.edu Accessed 05 Aug 2019, 2015.

[77] Chandan KA Reddy et al. “ICASSP 2021 Deep Noise Suppression Challenge”. In: arXiv
preprint arXiv:2009.06122 (2020).

[78] “Breast Cancer Diagnosis via Linear Programming”. In: IEEE Computational Science and
Engineering 2.3 (1995), p. 70.

[79] V. Arzamasov, K. Böhm, and P. Jochem. “Towards Concise Models of Grid Stability”. In: 2018
IEEE International Conference on Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm), pp. 1–6.

[80] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database”. In: ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

111

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Intelligent Sensor Processing
	Sensors on the Edge
	Machine Learning and Neural Networks
	Neural networks
	Common layer types
	Activation functions

	General Overview of Machine Learning Algorithms
	Data Preprocessing
	Forward Propagation
	Loss Function
	Backpropagation
	Parameter Update

	Mini-batch Training: Redundant Training Sets

	Implementing Neural Networks
	Digital Implementation
	Binary Arithmetic

	Powering Down
	Analog Hardware
	Arithmetic blocks
	Limitations

	Introducing Analog Into Machine Learning and Neural Networks
	Full Replacement
	Computation Acceleration
	Deployment

	Training-to-Deployment Translation
	Modeling PVT in Analog Neural Networks

	Generalizing and Fitting
	Improving Generalization
	Dropout Training
	Data Augmentation
	Early Stopping
	Weight Regularization

	Device Fitting
	Understanding the Problem
	Breaking from Traditional Techniques

	Population Training

	Building robustness into the network
	Selecting a better activation function
	Effects of the Network Shape
	Effect of depth
	Effect of layer sizes
	Conclusion: best parameters for variation resilience

	Sparse network connections

	Generating the Best Sparse Networks
	Genetic Programming
	Synaptic Pruning
	One-time pruning
	Gradual Pruning
	Repeated full pruning

	Again, But With More Parameters

	Future Work
	Better Modeling
	Improving the Sparse Network Search
	Low-power Binary Multiplication: Bit Shift
	Quantization Error
	Training for One-Hot Quantization
	N-Hot Quantization

	Conclusion
	Datasets
	Custom Voice Activity and Noise Dataset
	Microsoft Deep Noise Suppression (MDNS) Challenge
	The Wisconsin Breast Cancer Dataset
	Electrical Grid Stability Dataset
	MNIST

	Voice Activity Detection — Feature Extraction
	Modeling Feature Noise
	References

