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0.0 assuming an ideal antiparallel β-sheet. 
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Figure 
B.7 

Comparison of PITHIRDS-CT decays for two different nanofiber 
samples in which CATCH(+) is isotopically labeled while CATCH(-
) remains unlabeled. 
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Figure 
B.8 

System size effects on calculated self-association probability from 
Monte Carlo simulations of coassembled β-sheets. A) Self-
association probability set to 10%. B) Self-association probability set 
to 30%. C) Close-up of panel A. D) Close-up of panel B. 
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Figure 
B.9 

Effect of simulation runs on the calculated average self-association 
probability for Monte Carlo simulations of coassembled β-sheets 
consisting of 96 β-strands. A) Self-association probability set to 
10%. B) Self-association probability set to 30%. 
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Figure 
B.10 

(A,B) FTIR spectra of CATCH(+) and CATCH(-) lyophilized (C) 
PITHIRDS-CT measurements of unassembled CATCH(+) and 
CATCH(-) peptides lyophilized. The solid black curve corresponds 
to the predicted signal decay in the PITHIRDS-CT experiment from 
a nuclear spin simulation of eight 13C atoms along an ideal self-
assembled antiparallel β-sheet. 
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SUMMARY 

Functional biomaterials that recapitulate the complexity and sophistication of 

biological systems can be difficult to access given current techniques. Coassembling β-

sheet peptides offer a new supramolecular approach towards designing these functional 

biomaterials. One of the predominant design motifs used in these coassembling peptides is 

the concept of charge complementarity in which the sequences of two peptides are 

modified with charged amino acids giving rise to an overall positive or overall negative 

charge. Electrostatic repulsion prevents self-assembly while attraction between oppositely 

charged peptides promotes β-sheet assembly. While studies have assessed the secondary 

structure of peptide nanofibers fabricated from charge-complementary molecules, there is 

no detailed molecular-level description of how these peptides strands arrange within the 

nanostructure. Consequently, we lack an understanding of how these peptides coassemble 

and how to design the sequences to form a specific coassembled nanofiber structure. 

In this thesis, we investigate the molecular-level organization within coassembling 

β-sheet peptide nanofibers by a combination of experimental and computational 

techniques.  A detailed characterization of existing charge complementary β-sheet peptides 

indicates that patterning electrostatic interaction between peptide molecules can 

successfully promote selective coassembly at the molecular level. However, significant 

deviation from the expected structural arrangement occurs within the peptide nanofibers 

showcasing the difficulty in producing finely controlled nanostructures. With this in mind, 

we begin to explore new coassembling peptides based on this concept of charge 

complementarity to gain further insight into sequence design rules to encode peptide 
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coassembly. In the first approach, we evaluate the structural composition of a family of 

peptides systematically designed such that the overall charge is iteratively increased. In the 

second approach, coassembling peptide pairs are generated through a computational search 

algorithm that are further screened through a combined computational and experimental 

pipeline to identify new pairs. Peptides designed by both methods are characterized and 

evaluated to shed light on the design rules for selectively coassembling peptide sequences. 

These results begin to piece together the sequence to structure relationships governing the 

coassembly of charge-complementary β-sheet peptides and the sequence design rules for 

imparting selective coassembly behavior. 
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CHAPTER 1. INTRODUCTION 

1.1 Coassembling Peptides as Functional Biomaterials 

Building multifunctional biomaterials that mimic the complexity and sophistication 

of native biological systems represents one of the grand challenges in biotechnology. Two 

ways in which nature creates a level of sophistication important in regulating biological 

processes are co-stimulatory and multivalent signaling. One such process is in determining 

the fate of T cells in the immune system. The binding co-stimulatory and co-inhibitory 

receptors in addition to T cell receptors plays an important role in dictating how a T cell is 

activated.1 Multivalent presentation and clustering of proteins provide sharp transition 

points for regulating the interactions in extracellular and intracellular signaling.2, 3 Thus, it 

is desirable to engineer synthetic systems with these functionalities to manipulate cellular 

processes for applications such as drug delivery, immunoengineering and regenerative 

medicine. Not only would control of bioactive molecules be important in designing 

therapeutics, but the development of these types of sophisticated systems may unveil 

insights on the biological processes that rely on these multiplexed interactions. 

While significant progress has led to the development of immobilization chemistries 

that impart function onto biocompatible polymer scaffolds, the ability to controllably and 

reproducibly organize biomolecules at the nanoscale giving rise to functionality remains 

an active field of research. An attractive alternative towards creating these materials is 

through supramolecular assembly of a self-recognizing molecule. The self-templating of 

this “monomer” molecule can lead to long polymer-like fibers that physically entangle to 

form a hydrogel. One well-known class of molecule that exhibits this behavior is self-
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assembling peptides. By attaching a bioactive ligand to this self-assembling peptide, 

materials can be engineered with a specific function. Rudra et al. have demonstrated that 

self-assembled Q11 peptide nanofibers functionalized with OVA antigens can elicit an 

immune response.4-6 Assembly of a mixture of Q11 peptide and glycosylated Q11 peptides 

organize into nanofibers that exhibit hierarchical order similar to collagen fibers.7 These 

examples demonstrate the utility of peptide self-assembly, wherein molecule A associates 

with other A molecules to form fibrillar β-sheet structures, as an alternative route to 

fabricating synthetic biomaterials. 

Biomaterials developed through this supramolecular approach may improve upon 

some of the drawbacks observed in conventional polymeric systems.  Characterizing the 

efficiency of a reaction used in conventional immobilization techniques can be challenging 

making it difficult to control this density. In contrast, the density of the biomolecule 

covalently attached to a peptide can be manipulated in a controlled manner by simply 

changing the relative amounts of the unmodified and modified peptides. Immobilization 

chemistries also often use reactive sites that are present on multiple locations on a 

biomolecule such as a protein. Through solid-phase peptide synthesis methods or 

recombinant protein expression, the site of attachment can be specified with a higher 

degree of control for the peptide-based method. A “bottom-up” approach also facilitates 

the colocalization of multiple distinct ligands in a functional biomaterial as has been 

demonstrated by Ardoña et al.8 Co-immobilization of multiple ligands onto a conventional 

polymer scaffold often requires orthogonal chemistries. 

The next generation in hierarchical peptide assembly is in the design of peptide pairs 

that selectively coassemble expanding the forms and functions accessible in biomaterials. 



3 
 

Peptides are considered to selectively coassemble when each peptide component remains 

in a random coil configuration in single-peptide solutions but when combined, organize 

into two-component fibers as illustrated in Figure 1.1. Biomaterials developed with 

selectively coassembling peptides as the physical scaffold could enable more complex, 

multifunctional materials with finer control over nanoscale organization shown in Figure 

1.2. Compared to self-assembling peptides, selectively coassembling peptides benefit from 

a lack of external stimuli such as heat, salts, and pH which can be harmful to cells or 

biological molecules. Instead, peptides that exhibit selective coassembly are triggered by 

complementary interactions within peptide mixtures. Researchers have already made 

progress in creating functional biomaterials from selectively coassembling β-sheet 

peptides. Seroski et al. demonstrated the ability to create coassembled β-sheet nanofibers 

with superfolding green fluorescent protein immobilized onto the peptide nanofiber 

surface.9 Another coassembling peptide pair, p1 and p2, has shown potential as a cell 

culture scaffold displaying favorable adhesion and growth of human 3T3 fibroblast cells 

when functionalized with the RDG sequence.10 While several peptides that exhibit this 

behavior of selective coassembly have been reported, there has been no study evaluating 

the molecular-level organization and composition of these coassembled peptide nanofibers. 

More importantly, we do not understand how to design two peptides sequences with 

selective coassembly behavior. As such, this work aims to provide molecular-level 

insights on the sequence to structure relationships dictating organization within 

coassembled peptide nanofibers and thus, their inherent ability to organize functional 

biomolecular ligands. 
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Figure 1.1. Cartoon illustrating peptide coassembly into a two-component nanofiber 

 

 

Figure 1.2 Cartoon illustrating the possibility for (A) enzyme co-immobilization and 
(B) multivalent drug presentation in coassembled nanofibers 

 

1.2 From Disease to De Novo: A Brief History in Peptide Coassembly 

One of the hallmarks of neurodegenerative conditions Alzheimer’s disease is the 

formation and accumulation of amyloid plaques composed of insoluble amyloid fibrils. 
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Since their discovery, research has been conducted to understand the structures that the 

amyloidβ peptide can form and its role in loss of cognitive function. Interest in the 

misfolding and aggregation of amyloidβ, α-synuclein, and prion proteins has led to the 

expansion of study into short subsequences of larger proteins. In 1993, Zhang et al. 

discovered a 16-residue peptide sequence derived from the protein zuotin that 

spontaneously assembled into stable β-sheet tapes in aqueous solutions.11 These fibrillar 

structures showed morphological similarities to the amyloid fibrils found in 

neurogenerative diseases.11 This spurred the study and design of self-assembling peptide 

sequences as a biomaterial. Through this process of isolating β-sheet segments of larger 

proteins, self-assembling peptide sequences such as 24-residue peptide K24 and lysozyme-

derived peptide Lysβ-21.12 These initial peptides formed gels only in the presence of lipid 

bilayers and formamide, respectively.  

As technology made it possible to synthesize de novo peptide sequences, 

deconstructing the interplay of intermolecular forces governing protein folding could be 

studied in greater detail. Xiong et al demonstrated that the pattern of hydrophobic and 

hydrophilic amino acids dictated the secondary structure, either α-helix or β-strand, 

adopted in self-assembling oligomeric peptides.13 Despite individual amino acids 

prevalence in certain secondary structures in proteins, the pattern of (HP)n resulted in β-

sheets (Figure 1.3) while a heptad sequence of HPPHHPP resulted in α-helical coiled 

coils.13 Two years later, Aggeli et al. reported the first peptide de novo self-assembling 

peptide adequately named DN1 which built off their previous work on K24 and Lysβ-21.12 

From these initial studies, hundreds of self-assembling peptides have been discovered. 

Most notably, the design of RADA16-II was based off these early amphipathic de novo 



6 
 

peptide sequences.14 Another well-known self-assembling peptide Q11 was similarly 

designed by Collier and Messersmith based on the alternating QFQFQ pattern found in 

microfibril-associated glycoprotein-1 and other designer peptides.15 Early insights from 

these self-assembling peptides have since spurred the discovery of hundreds more.16  

 

Figure 1.3 Cartoon illustrating the patterning of hydrophobic (H) and polar (P) 
residues that promotes β-sheet formation 

 

Peptide coassembly has emerged as a new frontier in peptide design that expand the 

functionality of supramolecular biomaterials. Within peptide coassembly, significant 

progress has been made on α-helical coiled-coil peptides, while coassembled β-sheets have 

received far less attention. Pandya et al. developed the SAF p1 and p2a peptides with 

oppositely charged “sticky-ends” that coassembled into highly-organized peptide 

nanofibers.17 Analysis by cryo-EM has shown that the SAF p1 and p2a peptide nanofibers 

do organize into the 3D arrangement it was designed to form.18 These results highlight the 

success achieved in α-helical peptide assemblies. The significant strides in understanding 

sequence to structure relationships in α-helical systems may be in part due to the nature of 
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intermolecular forces in coiled-coil systems. α-helices have intramolecular hydrogen bonds 

and thus, mainly interact with other molecules through sidechain-sidechain interactions. 

This behavior results in efficient packing through a knobs-into-holes principle.19, 20 In 

contrast, coassembled β-sheets are a relatively unexplored concept with only a handful of 

known coassembling β-sheet forming peptide systems. No naturally occurring β-sheet 

forming peptide pairs are known. Programming peptide coassembly has been achieved 

through two distinct design motifs. First, peptide enantiomers have been shown to 

coassemble into rippled β-sheets.21, 22 Second, charge complementarity peptides, where a 

well-known self-assembling peptide is modified to produce a positively charged and a 

negatively charged variant, are observed to form gels as a result of complementary 

interactions.9, 10, 23-25 Due to charge repulsion, each peptide does not self-assemble, but 

oppositely charged peptides are attracted to one another triggering β-sheet formation. 

β-sheet-forming peptides that exhibit selectively coassemble commonly rely on this 

principle of charge complementarity with several peptide pairs designed along this 

principle. P11-4 and P11-5, one of the first coassembling β-sheet-forming pairs, were 

designed based off the self-assembling peptide DN1 created by Aggeli and coworkers to 

have opposing isoelectric points that prevented their self-association at neutral pH.12, 25 

Mixtures of the P11-4 and P11-5 peptides readily formed β-sheet rich nanofibers as observed 

by FTIR and CD spectroscopy.25 Other iterations utilizing this design principle of charge 

complementarity led to the P11-14 and P11-13 peptides by Kyle et al. and the p1 and p2 

peptides by King, Webb, and coworkers.10, 24 Seroski et al. also developed charged variants 

of the self-assembling Q11 peptide that exhibit selective coassembly behavior as assessed 

by CD and ThT fluorescence measurements.9, 15 A complete list of coassembling β-sheet 
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peptides is shown in Table 1.1. To date, there have been no structural studies on these 

coassembling β-sheet peptides. Therefore, it is not known whether these peptides truly 

coassemble at the molecular level. The coassembled peptides are also assumed to behave 

ideally and form coassembled antiparallel β-sheets with perfect alternation of the two 

peptide components. To further our understanding of complementary β-sheet-forming 

peptide and their design, we investigate charge-complementary coassembling pairs through 

a series of studies on the 3D arrangement within coassembled nanofibers. 

 

Table 1.1 Existing Coassembling β-sheet Peptide Designs 

Peptide Names Sequences Self-Assembly Coassembly 

L-Ac-(FKFE)2-NH2 

D-Ac-(FKFE)2-NH2 

L-Ac-FKFEFKFE-NH2 

D-Ac-FKFEFKFE-NH2 

Yes Yes 

p1 (KW-) 

p2 (KW+) 

EEFKWKFKEE 

KKEFEWEFKK 

No 

No 

Yes 

KF4K 

EF4E 

KFFFFK 

EFFFFE 

Yes 

Yes 

Yes 

P11-4 

P11-5 

Ac-QQRFEWEFEQQ-Am 

Ac-QQOFOWOFQQQ-Am 

No 

No 

Yes 
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Table 1.1 continued 

P11-13 

P11-14 

Ac-QQOFOWOFOQQ-Am 

Ac-EQEFEWEFEQE-Am 

No 

No 

Yes 

CATCH+ 

CATCH- 

Ac-QQKFKFKFKQQ-Am 

Ac-EQEFEFEFEQE-Am 

No 

No 

Yes 

CATCH(2+) 

CATCH(2-) 

Ac-QQKFQFQFKQQ-Am 

Ac-QQEFQFQFEQQ-Am 

Yes 

No 

Yes 

CATCH(4+) 

CATCH(4-) 

Ac-QQKFKFKFKQQ-Am 

Ac-QQEFEFEFEQQ-Am 

No 

No 

Yes 

CATCH(6+) 

CATCH(6-) 

Ac-KQKFKFKFKQK-Am 

Ac-EQEFEFEFEQE-Am 

No 

No 

Yes 

 

1.3 Overview of Work Presented 

In this work, solid-state NMR studies on the molecular-level organization of 

coassembling β-sheet peptide designs are presented assessing our understanding of the 

sequence to structure relationships governing peptide interactions. First, we examine two 

known coassembling peptide designs, KingWebb and CATCH peptides. These charge-

complementary peptides are hypothesized to arrange into antiparallel β-sheets that alternate 
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along the β-sheet nanofiber axis. In Chapters 3 and 4, we present experimental and 

computational results that while the proposed organization predominates, several types of 

structural defects are also observed. Then, we systematically assess the role of electrostatic 

forces in the imparting selective coassembly behavior within a series of peptides derived 

from the CATCH peptides. Solid-state NMR analysis of the nanofiber composition in 

Chapter 5 reveals an imbalance in the relative abundance of the complementary peptides. 

Finally, we combine computational tools with experimental characterization to identify 

new coassembling β-sheet peptide pairs in Chapter 6. This design framework successfully 

discovers 4 new pairs that appear to improve upon previous pairs informing the sequence 

patterning of new coassembling β-sheet peptides. 
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CHAPTER 2. METHODOLOGY FOR CHARACTERIZING 

COASSEMBLED PEPTIDE NANOFIBERS  

2.1 Solid-State NMR for Structural Information 

Techniques commonly employed to structurally characterize peptide nanofibers 

range from optical spectroscopy to microscopy, but these techniques do not provide the 

high-resolution structural information necessary to describe the peptide nanofiber in 

atomistic detail. Thioflavin T fluorescence and circular dichroism measurements can report 

on the β-sheet content within a sample as a function of time, but these methods cannot 

inform on the exact β-sheet structure formed. Similarly, FTIR can provide insight into the 

secondary structure formed in the sample and some evidence suggest it can differentiate 

between parallel and antiparallel oriented β-strands.1, 2 However, these measurements are 

insufficient in building a high-resolution model of the peptide nanofiber structure necessary 

in uncovering the sequence to structure relationships within protein folding and protein-

protein interactions.  

To this end, X-ray crystallography, cryo-electron microscopy, and solid-state nuclear 

magnetic resonance (NMR) have become the primary tools for developing atomistic 

models of folded protein structures and amyloid fibers. X-ray crystallography for protein 

structure determination dates back to 1934 with the study of myoglobin and has since led 

to the tens of thousands of protein structures in the Protein Data Bank (PDB).3 One of the 

limiting factors in the use of X-ray crystallography is the need for diffraction-quality 

crystals reach the resolution necessary for structure determination. Obtaining protein 
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crystals in itself can be challenging requiring considerable labor to determine suitable 

sample preparation conditions. X-ray crystallography of self-assembling peptides often 

only provides measurements of the unit cell along bundled peptide nanofibers and requires 

computational models for comparison.3-5 Due to recent technological advancements, cryo-

EM has garnered interest as a tool for characterizing the structure of proteins and peptide 

assemblies not amenable to crystallography. This technique has led to new insights into the 

polymorphic nature of amyloidogenic peptides, such as α-synuclein and amyloid β.6, 7 In 

spite of these advances, cryo-EM requires careful sample preparation in order to prevent 

preferential orientation of particles and robust computational analysis to correctly and 

reproducibly reconstruct electron density maps at atomic-level resolution.8  

The last of the aforementioned specialist techniques, solid-state NMR, is the method 

utilized in the Paravastu Lab and subsequently, is the method used throughout this research 

to provide high-resolution structural data of coassembled β-sheet peptide nanofibers. One 

of the features of solid-state NMR is its’ insensitivity. While the low sensitivity of solid-

state NMR requires a large volume of sample and long signal averaging periods, only local 

order is needed for measurements. In contrast, x-ray crystallography requires highly 

crystalline samples that may neglect disorder and heterogeneity within a system.4 

Similarly, cryo-EM also may not efficiently sample regions of disorder and heterogeneity 

within samples neglecting some of the complexity found in peptide assemblies.8 Another 

feature of solid-state NMR is the site-specific isotopic enrichment of samples often needed 

to enhance detection of these local interactions. However, isotopically enriched samples 

can be quite costly. 



15 
 

Solid-state NMR measurements can provide two pieces of information from NMR 

active nuclei such as 13C and 15N isotopes. First, the chemical environment surrounding a 

13C or 15N site is reflected in the value of the chemical shift. Chemical shift values allow 

us to identify nuclei and to detect slight changes in their chemical environments that result 

from changes in the peptide structure.9-11 Second, dipolar coupling measurements report 

on the distance-dependent interactions between 13C and/or 15N sites.12-14 By labeling 

peptides with isotopically enriched amino acids in a site-specific manner, different 

structural models such as antiparallel and parallel β-sheets can be distinguished by 

comparing predicted and measured distances as illustrated in Figure 2.1. An atomistic 

model of the coassembled peptide nanofibers can be built from structural constraints 

identified in this manner. 
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Figure 2.1 Comparison of inter-strand distances for carbonyl carbons (green) along 
the center of the peptide. (A) Model of antiparallel β-sheets and (B) parallel β-sheets. 

 

2.1.1 Synthesis of Isotopically Labelled Samples 

The process of synthesizing isotopically labeled peptide samples relies on Fmoc-

protected amino acids isotopically enriched at targeted 13C and 15N sites and conventional 

solid-phase synthesis methods for peptide synthesis. Through solid-phase synthesis, 

peptides are grown through the sequential addition of amino acids though a cycle of 
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reaction steps shown in Figure 2.2. This piecewise addition of amino acid blocks allows us 

to incorporate readily available amino acids isotopically enriched with 13C and 15N at 

targeted locations within the peptide molecule. Two categories of isotopically enriched 

amino acids are commonly employed: uniformly labelled and partially labelled amino 

acids. In the uniformly labelled amino acid, all carbon atoms and all nitrogen atoms are 

isotopically enriched with 13C and 15N. Partially labelled amino acids mostly have one 

carbon or nitrogen site 13C or 15N enriched most commonly at the backbone carbonyl 

carbon or backbone nitrogen. Selective labeling of a single carbon or nitrogen is necessary 

for more quantitative analysis of solid-state NMR measurements.  
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Figure 2.2 Illustration of solid-phase peptide synthesis. Examples of isotopically 
enriched amino acids that can be incorporated are highlighted by a red box. 
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2.1.1.1 Standard Peptide Synthesis and Purification Details 

Peptides were synthesized using standard Fmoc solid-phase peptide synthesis on a 

CS336X automated peptide synthesizer (CS Bio), according to established methods.15 

Peptides were acetylated at their N-termini with an acetylation cocktail (10% acetic 

anhydride (Sigma), 80% dimethylformamide (Fisher), and 10% N,N-

Diisopropylethylamine (Fisher)). Synthesis resin was collected and washed with acetone 

(Fisher) and placed in a desiccator overnight. Peptides were cleaved from resin and 

deprotected using a cocktail containing 95% trifluoroacetic acid (TFA) (Fisher), 2.5% 

triisopropylsilane (sigma), and 2.5% ultrapure water. Soluble peptide is then separated 

from the solid-resin support and then precipitated using diethyl ether (Fisher) on ice for 5 

minutes. To remove residual TFA, precipitated peptide was then pelleted via centrifugation 

and resuspended with cold diethyl ether three times and then dried by vacuum overnight. 

Peptides were dissolved in water, frozen, and freeze-dried with a FreeZone 1 lyophilizer 

(Labconco).  

Peptides were purified to greater than 90% purity by reverse phase high-

performance liquid chromatography (RP-HPLC) using a DionexTM Ultimate 3000TM 

System (Thermo Scientific) equipped with a C18 column (Thermo Scientific) or a PFP 

column (Thermo Scientific). The mobile phase consisted of (A) water and (B) acetonitrile, 

both containing 0.1% TFA. Peptides were detected by absorbance at 215 nm. 

For MALDI-TOF MS analysis, RP-HPLC purified peptide was mixed 1:1 (v/v) with 

α-cyano-4-hydroxycinnamic acid (Sigma) (10 mg/mL) in 70% acetonitrile and 30% water 

both containing 0.1% TFA. 2 µl of the solution was spotted and dried onto a MSP 96-target 
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polished steel BC MALDI plate. Samples were analyzed using reflectron, positive mode 

on an AB SCIEX TOF/TOFTM 5800 (Bruker) equipped with a 1 kHz N2 Opti-BeamTM 

on axis-laser. 

2.1.2 Standard Solid-State NMR Sample Prep of Peptide Nanofiber 

Peptide nanofiber samples are prepared in salt solutions according to published 

protocols for the given peptide pair and allowed to incubate for 1-3 days to ensure samples 

reach equilibrium. Nanofiber samples are then centrifuged, and the pellet is resuspended 

in distilled water (DIW) to remove unassembled peptide and salts that reduce signal to 

noise in our solid-state NMR measurements. This wash procedure is done up to 2 times to 

remove as much unassembled peptides and salts without significant loss of assembled 

material. Once sufficiently washed, the resuspended peptide nanofiber sample is 

lyophilized. Lyophilized peptide nanofiber samples are then packed into Bruker 3.2 mm 

NMR rotors and are minimally hydrated within the NMR rotor by adding 1μL of DIW per 

1 mg of nanofiber sample unless otherwise specified. Rehydration of the assembled peptide 

sample improves NMR linewidths and signal to noise without changing the nanofiber 

structure.16 In cases where the peptide nanofibers do not easily pellet by tabletop 

centrifuges, an ultracentrifuge is employed to collect sample directly into the NMR rotor 

using a specially designed funnel.17 

2.1.3 Standard Solid-State NMR Experimental Setups and Parameters 

All measurements are performed with an 11.75 T Bruker Avance III spectrometer 

with a 3.2 mm Bruker MAS probe unless otherwise specified. 1H-13C CPMAS 

measurements were run at 22 kHz magic angle spinning (MAS) with 100 kHz proton 
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decoupling and a cross-polarization (CP) contact time set to 2 ms.18 NMR chemical shifts 

are referenced to tetramethyl silane, as calibrated using adamantane before each 

experiment.  Quantitative 1H-13C CPMAS measurements were run at 22 kHz magic angle 

spinning (MAS) and 100 kHz proton decoupling.19 Peptide nanofiber samples were run 

with 14 100μs CP periods to ensure equivalent cross-polarization. 

Finite-pulse Radio-Frequency Driven Recoupling (fpRFDR) and dipolar assisted 

rotational resonance (DARR) measurements were performed at a sample-rotation rate of 

22 kHz to produce 2D 13C-13C spectra.20-23 The mixing period for 2D DARR experiments 

was set to 500ms. 2D 13C-15N TEDOR measurements were conducted with mixing times 

of 2.4 ms and 8 ms to observe intra-residue and inter-residue couplings, respectively.24 

PITHIRDS-CT measurements were done at 12.5 kHz MAS with 26.7 μs π-pulses 

during 13C dipolar recoupling. Total recoupling time was 61.44 ms, where k1 = 4 and k2 + 

k3 = 16.14 Continuous wave proton decoupling at 100 kHz was applied during the 

PITHIRDS-CT pulse sequence and data acquisition, respectively. Sensitivity of 

PITHIRDS-CT measurements were improved by using pulsed spin locking.25 

Both 13C{15N}REDOR and 15N{13C}REDOR measurements were performed at 10kHz 

sample rotation.12, 13, 26, 27 Pulse imperfections were compensated using xy8 phase cycling 

of 15N{13C}REDOR 6 and 10 μs rotor-synchronized 13C and 15N π pulses, respectively.28 

EXORCYCLE phase cycling of the final 13C Hahn-echo refocusing pulse was applied with 

95 kHz Spinal 1H decoupling as well.29-31 
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2.2 Molecular Models and Nuclear Spin Simulations 

Constructing a high-resolution molecular model of assembled peptide nanofibers 

involves an iterative process of developing models and testing models via solid-state NMR 

measurements. First, a series of speculative molecular models are drawn out by hand or 

simulated using molecular dynamics software. Second, an isotopic-labeling scheme and 

solid-state NMR experiment is devised to test a set of intermolecular interactions and 

distances predicted across the nanofiber models. Third, the isotopically labeled peptide 

nanofiber samples are prepared and solid-state NMR measurements are conducted. Fourth, 

NMR spectra are analyzed, and results are assessed against the molecular models ruling 

out some of the considered arrangements. This process is repeated until a singular 

molecular model remains or enough intermolecular constraints are identified to constrain 

the molecular model. 

2.2.1 Idealized 3D Molecular Models 

3D molecular models aid in the interpretation of solid-state NMR measurements on 

13C and 15N isotopically labeled peptide nanofiber samples. The dipolar couplings probed 

by solid-state NMR decay by 1/r3 making measurements highly sensitive to the distance 

between 13C and/or 15N sites. To properly account for changes in these intermolecular 

distances between proposed 3D arrangements, MD simulations of peptide nanofiber 

structures are necessary. This molecular modeling is especially important for coassembling 

peptides given the increased complexity from the combinations of arrangements for two 

peptides versus a single peptide. 
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Each 3D molecular model of a coassembled β-sheet peptide nanofiber structure are 

constructed with the following assumptions. First, the two peptide molecules alternate 

perfectly along the nanofiber axis. Second, the peptide molecules are aligned to maximize 

the number of hydrogen bonds satisfied. Third, the amphipathic peptide molecules are 

arranged into a β-sheet such that there is a hydrophilic face and a hydrophobic face. Fourth, 

these two β-sheets are stacked with their hydrophobic faces pointing towards each other 

forming a hydrophobic core. 

2.2.1.1 NAMD Simulation Details 

Molecular models are constructed using a combination of custom code in Wolfram 

Mathematica, Nanoscale Molecular Dynamics (NAMD), and Visual Molecular Dynamics 

(VMD) software.32, 33 First, each peptide molecule is built and configured into a straight β-

strand conformation using the Molefacture plugin in VMD. Acetylation and/or amidation 

of the N- and C-termini are done during this step. The peptides are then manipulated and 

propagated along the nanofiber axis to form two β-sheets of 10 peptide strands each in 

Wolfram Mathematica. An initial protein databank (PDB) file of the peptide nanofiber 

structure is produced along with a separate file of dihedral angle and hydrogen bond 

constraints corresponding to an antiparallel or parallel β-strand orientation. These two files 

are used as the initial inputs to a series of NAMD simulations that assemble the peptide 

strands into the final hydrogen-bonded and stacked β-sheet nanofiber model in a stepwise 

fashion. More specific details on these simulations are included in each chapter. For each 

arrangement, 10 simulations are run to enhance statistical sampling of the distribution of 

distances created from slight variations in sidechain conformations. 
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2.2.2 Nuclear Spin Simulations of Solid-State NMR Experiments 

The simplified 13C and 15N spin systems produced from partially labeled amino acids 

allows for numerical simulation of the dipolar recoupling NMR experiments, such as 13C-

13C PITHIRDS-CT and 13C-15N REDOR, to be computationally feasible. Dipolar couplings 

between 13C and 15N labeled sites depend on distance and the relative geometry of isotopic 

labels. As previously shown in Figure 2.1, these distances differ between different 3D 

arrangements of peptide strands. Inputting the distances from MD-simulated peptide 

nanofiber structures into SpinEvolution simulations produces predictions for the 

PITHIRDS-CT decay and REDOR dephasing that can be compared to experimental 

results.34 In this manner, dipolar recoupling NMR experiments can be analyzed in a 

quantitative way and differentiate between distinct molecular arrangements. In certain 

cases, Monte Carlo simulations are combined with SpinEvolution simulations to 

understand how isotopic dilution influences the measured PITHIRDS-CT decays. Monte 

Carlo simulations capture the statistical distribution of 13C spins along the nanofiber axis 

resulting from isotopic dilution allowing us to better understand complex effects such as 

peptide self-association. 

2.3 Complementary Structural Information from Coarse-Grained DMD 

Simulations and Optical Spectroscopy 

Throughout this work, solid-state NMR measurements are complemented by coarse-

grained DMD simulations and optical spectroscopy. PRIME20/DMD simulations were 

provided by Dr. Carol Hall’s group at North Carolina State University. These coarse-

grained DMD simulations report on early kinetic behavior of single-peptide and two-
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peptide mixtures. The structure of peptide nanofibers coassembled in silico are analyzed 

and compared to experimental results to assess the ability for PRIME20 to predict structural 

features of two-component peptide nanofibers. 

Thioflavin T fluorescence measurements were conducted by Dr. Greg Hudalla’s 

group at University of Florida to monitor the change in β-sheet content over time. 

Thioflavin T is a fluorescent molecule that exhibits an increase in fluorescence emission 

upon binding to peptide β-sheets.35-39 The degree of increase in ThT fluorescence emission 

varies from peptide to peptide. This variation is likely due to the manner in which ThT 

binds onto the grooved surface of peptide β-sheets.37  

2.3.1 Coarse-grained DMD Simulations 

In collaboration with Dr. Carol Hall’s group at North Carolina State University, 

coarse-grained discontinuous molecular dynamics simulations were performed to observe 

early kinetic behavior during peptide coassembly. Discontinuous molecular dynamics is 

used as a fast alternative to traditional molecular dynamics.40 These DMD simulations 

utilize the Hall group’s custom implicit-solvent coarse-grained protein force field 

PRIME20 tailored to simulate peptide aggregation.41-43 Exact details regarding simulations 

are found in the chapter-specific methods sections. 

DMD/PRIME20 is among the most realistic of the protein coarse-grained models, 

does not build in any predetermined secondary structure or start from a pre-set ordered 

structure, provides a good representation of amyloid structure in comparison to experiment, 

and is fast enough to get to the fibrillar stage starting from the random coil state.41, 42, 44  

The DMD/PRIME20 combination allows us to explore in molecular detail the structure 
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and rearrangement of the oligomers that form along the aggregation/fibrilization pathway 

at time scales up to 672 µs at mM concentrations.44 All of the simulations are carried out 

in the canonical (NVT) ensemble at a peptide concentration of 20 mM by varying the 

number of peptides and the volume of the simulation box. The Andersen thermostat is 

implemented to maintain the simulation system at a constant temperature.45 The reduced 

temperature is defined to be T*=kBT/εHB, where εHB=12.47 kJ/mol is the hydrogen bonding 

energy. 

2.3.2 The PRIME20 model 

In the PRIME20 model, each of 20 residues contains three backbone spheres NH, 

Cα, CO and one sidechain sphere R as shown in Figure 2.3. The sidechain sphere R utilizes 

a unique set of geometric parameters: a hard sphere diameter (effective van der Waals 

radius), sidechain-to-backbone distances (R-Cα, R-NH, R-CO) for each sidechain. The 

potential function between two residue sidechain spheres is modeled as a square well 

potential. The parameter matrix for sidechain-sidechain interactions includes 210 different 

square well widths and 19 different square well depths to discriminate the polar, charge-

charge and hydrophobic types of interactions.43 The hydrogen-bonding interaction between 

backbone beads NH and CO is modeled as a directional square well potential. All the other 

non-bonded interactions are modeled as hard sphere potentials. For a detailed description 

of the geometric and energetic parameters of the PRIME20 model, please refer to the earlier 

work from the Hall group.43, 44, 46 
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Figure 2.3 Cartoon depiction of the PRIME20 bead model. (A) Beads with 
corresponding chemical groups. (B) Demonstation of amino acid sidechain and bead 
size difference in the KWOONNGG peptide. 

 

Structural analysis of the coarse-grained DMD simulations through custom code 

mostly in Wolfram Mathematica bridges the informational gap between predictions from 

simulations and experimental constraints from solid-state NMR measurements. Structures 

observed in simulations are identified and calculated to be compared against the 

experimental observations allowing a means for providing feedback for the protein force 

fields used in these molecular dynamics simulations.  

2.3.3 Other Spectroscopic Measurements 

2.3.3.1 Standard Fourier-Transformed Infrared Spectroscopy Details 

The FTIR spectra were recorded on a Frontier FTIR spectrophotometer 

(PerkinElmer) equipped with a universal ATR sampling accessory. For aqueous samples, 

the FTIR spectrophotometer was blanked with ultrapure water prior to scanning. Samples 

were prepared at 10 mM and 1x PBS with 5 µl spotted onto the ATR accessory. Aqueous 

samples were scanned 50 times with the average of the spectra reported. Dry samples were 
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spotted and dried on the ATR accessory and then scanned 4 times with the average of the 

spectra reported. 

2.3.3.2 Standard Thioflavin T (ThT) Assay Details 

A stock solution containing 0.8 mg/mL of thioflavin T (ThT) (Acros) in water was 

filtered through a 0.22 μm syringe filter (Millex). Peptides in water, ThT, and PBS were 

added to a black 96-well plate (Corning) to obtain a final concentration of 500 μM total 

peptide, 0.08 mg/mL ThT, and 10x PBS. Samples were analyzed with a Molecular Devices 

SpectraMax M3 spectrophotometer (excitation 450 nm, emission 482 nm). All samples 

were run in triplicate, with the mean and standard deviation of these samples reported. 
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CHAPTER 3. STRUCTURAL ANALYSIS OF COASSEMBLED 

KING-WEBB PEPTIDE NANOFIBERS1 

3.1 Overview of Chapter 

Despite the growth of coassembling β-sheet peptide designs, there has been limited 

structural characterization of the coassembling peptide pairs, and no atomistic model has 

been reported. In this chapter, the first of two existing coassembling β-sheet peptide 

designs, King-Webb peptides, is assessed to determine the molecular-level organization of 

the two components within the peptide nanofiber. This analysis is accomplished through a 

series of solid-state NMR measurements that are complemented by coarse-grained DMD 

simulations.  

3.2 Introduction 

Current selectively coassembling peptide designs rely on complementary 

electrostatic interactions between charged variants of well-known self-assembling 

peptides. An early example of complementary electrostatic sequences comes from Pandya 

et al. with the SAF-p1 and SAF-p2 peptides which form heteromeric coiled-coil peptide 

nanofibers via association of the “sticky-ends.”1 P11-4 and P11-5, one of the first 

coassembling β-sheet-forming pairs, were initially designed based off the self-assembling 

peptide DN1 created by Aggeli and coworkers to have opposing isoelectric points that 

                                                 
1 Portions of this chapter have been adapted and reproduced from Wong, K. M., Wang, Y., Seroski, D. T., 
Larkin, G. E., Mehta, A. K., Hudalla, G. A., Hall, C. K., Paravastu, A. K. “Molecular complementarity and 
structural heterogeneity within co-assembled peptide β-sheet nanofibers” Nanoscale, 2020,12, 4506-4518 - 
Reproduced by permission of The Royal Society of Chemistry. 
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prevented their self-assembly at neutral pH.2, 3 However, mixtures of the P11-4 and P11-5 

peptides were found to readily form β-sheet rich nanofibers as observed by Fourier 

Transform Infrared (FTIR) and circular dichroism (CD) spectroscopy.3 Other iterations 

built off the designs of the P11-4 and P11-5 peptides led to the P11-14 and P11-13 peptides 

by Kyle et al. and the p1 and p2 peptides by King, Webb, and coworkers.4, 5 The latter is 

the focus of this Chapter which we herein refer to as the King-Webb peptides, comprised 

of KW+ (KKFEWEFEKK) and KW- (EEFKWKFKEE). As can be seen from the amino 

acid sequence, the KW+ and KW- peptides contain a mixture of positively and negatively 

charged residues that results in low net peptide charges of +1 and -1, respectively. 

Prior structural characterization of coassembled KW+ and KW- peptide nanofibers 

by attenuated total reflectance FTIR spectroscopy suggests a coassembled antiparallel β-

sheet structure.4 While a lower amide I’ maxima and presence of a low-intensity peak 

around 1685 cm-1 in FTIR spectra has often been attributed to antiparallel β-sheets, several 

experimental and theoretical studies have argued that this interpretation is not always true.6 

Our own work on RADA16-I revealed a parallel β-sheet structure with a 2-residue registry 

shift contradicting the proposed antiparallel β-sheet model.7, 8 Included in this classification 

of a coassembled antiparallel β-sheet structure are three assumptions. First, KW+ and KW- 

peptides interact at the molecular level to form two-component nanofibers rather than self-

sorting. Second, KW+ and KW- peptides arrange in a perfect alternation within a β-sheet. 

Third, nanofibers contain equal amounts of KW+ and KW- peptides. Currently, there is no 

direct biophysical evidence to support these assumptions and resolve these structural 

details.  
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In this Chapter, we assess the coassembled antiparallel β-sheet structural model and 

test the assumptions in the King-Webb peptide system through a combination of computer 

simulations, solid-state nuclear magnetic resonance (NMR) experiments and biophysical 

measurements. Solid-state NMR measurements indicate that KW+ and KW- peptide 

coassemble into near stoichiometric two-component β-sheet structures, and coarse-grained 

DMD simulations of 48 KW+ and 48 KW- chains support this observation of molecular-

level coassembly. Although the experimental and computational results indicate some 

preference for an antiparallel β-sheet structure, a high percentage (31.7%) of β-strands are 

oriented parallel to at least one nearest neighbor. While the majority of β-sheets exhibit 

(AB)n alternation of KW+ and KW- strands, isotopic dilution NMR measurements reveal 

a significant amount of peptide self-association within the peptide nanofiber. The structural 

heterogeneity in the coassembled KW+ and KW- peptide nanofibers, which appears to 

occur within each coassembled peptide nanofiber, stands in contrast to typical behavior 

seen in self-assembling β-sheet peptides.  In self-assembled peptide nanofibers, structure 

may vary between nanofibers in the same sample, but is believed to be consistent within 

individual nanofibers.9-12 

3.3 Results 

3.3.1 King-Webb Peptides Exhibit Molecular-Level Coassembly into β-Sheet-Rich 

Nanofibers. 

Complementary interactions between KW+ and KW- peptides drive assembly into 

long β-sheet-rich nanofibers. Figure 3.1a shows a TEM image of a negatively stained 

nanofiber sample formed from an equimolar mixture of KW+ and KW- peptides at 10mM 
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concentration in 10X PBS. Fibers span microns in length and striations are visible 

indicating fiber bundling consistent with previous observations by the peptide designers.4 

Thioflavin T (ThT) fluorescence measurements of KW+, KW-, and an equimolar mixture 

of KW+/KW- shown in Figure 3.1b suggest complementary interactions are kinetically 

favored during assembly. ThT demonstrates enhanced fluorescence emission (Figure 3.1b) 

upon binding to β-sheet rich peptide nanofibers and increasing fluorescence corresponds 

to an increase in peptide nanofibers.13, 14 Individual aqueous solutions of KW+ and KW- 

peptides in 10X PBS show little fluorescence at 1 hour while the equimolar mixture of 

KW+ and KW- shows a higher fluorescence intensity indicating assembly. The formation 

of β-sheet rich nanofibers in KW+ and KW- mixtures as shown by ThT fluorescence agrees 

with prior FTIR measurements by King et al.4 Fluorescence of KW+ and KW- single-

peptide solutions increases over a few days indicating self-assembly over time. King et al. 

previously observed the formation of weak gels after several hours indicative of self-

assembly at room temperature.4 In addition, the KW- peptide exhibits a higher propensity 

for self-assembly than the KW+ peptide. This observation agrees with prior FTIR 

measurements by King et al. on single-peptide solutions of KW- and KW+ in 50 mM NaCl 

in which the formation of β-sheets was only observed in the KW- solution after 20 minutes 

of incubation.4 Coarse-grained DMD simulations of 48 KW+ or 48 KW- chains (Figure 

3.1c-d and Figure A.1 in Appendix A) were performed to evaluate the propensity for self-

assembly in silico. Formation of β-barrel-like oligomers and β-sheet nanofibers during 

simulation is observed in Figure 3.1d and Figure A.1. Remarkably, computational 

simulations qualitatively agree with the observation that the KW- peptide is more prone to 

self-assembly than the KW+ peptide, which remains as weakly associating random coils in 



37 
 

simulations. Simulations of mixtures of 48 KW+ and 48 KW- chains are also consistent 

with the experimental observation that the mixture assembles more quickly than either of 

the pure peptides (Figure 3.1c).  

 

 

Solid-state NMR and computational results for equimolar mixtures of King-Webb 

peptides provide direct molecular-level evidence of a coassembled nanofiber structure. To 

Figure 3.1 Complementary interactions are kinetically favored in KW co-assembly. 
a) TEM image of a negatively stained KW peptide nanofiber bundle. b) ThT 
fluorescence measurements of peptide solutions containing KW+ only, KW- only, 
and an equimolar mixture of KW+ and KW- at different assembly times. Error 
bars signify 95% confidence intervals, *p < 0.05, **p < 0.01, ***p < 0.001 by 
Student’s t-test. c) Percentage of β-sheet content over simulation time for 48 KW+ 
chains (orange), 48 KW- chains (cyan), and a mixture of 48 KW+ and 48 KW- 
chains (purple). d) Simulation snapshots of β-sheet nanofibers composed of KW+ 
strands (orange) and/or KW- strands (cyan) at specified times. 
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confirm this model, nearest-neighbor proximities between KW+ and KW- peptides were 

measured by 2-dimensional (2D) solid-state NMR. Nanofiber samples were prepared with 

uniform 13C and 15N isotopic enrichment at residue positions F3 and K9 on KW+ and E1 

on KW- (Sample A).  Table 1 lists samples investigated in this study with different residues 

isotopically labeled for NMR measurements.  In Figure 3.2, 2D Dipolar Assisted Rotational 

Resonance (DARR) spectra of centrifuged and lyophilized nanofiber samples show 

measureable intermolecular contacts (off-diagonal “crosspeaks” between atoms on 

different residues) between KW+ and KW- peptides,15 supporting coassembly at the 

molecular level. Solid colored lines in Figure 3.2 illustrate NMR peak assignments for the 

13C isotopically enriched amino acids determined from analysis of 1-bond correlations in 

the finite-pulse radio-frequency driven recoupling (fpRFDR) NMR spectra shown in 

Figure A.3.16, 17 Contacts between E1 and K9 as well as E1 and F3, marked by red-blue 

and red-green bi-color circles, indicate inter-residue distances (distances between the 

closest pair of 13C atoms on different residues) up to 0.6 nm between the specified amino 

acids. 1D slices of the DARR spectra are included in Figure A.2. Similarly, examination 

of the nanofibers in Figure 3.1d from a coarse-grained DMD simulation of a mixture of 48 

KW+ (orange) and 48 KW- (cyan) chains shows mixing within resulting assemblies 

indicative of a coassembled structure.  
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Table 3.1 Isotopic labeling schemes for coassembled KW fibril samples 

Sample KW+ peptide KW- peptide 

A U13C and U15N on F3 and K9 U13C and U15N on E1 

B U13C and U15N on F3 and K9 unlabeled 

C unlabeled U13C and U15N on E1 

D unlabeled unlabeled 

E 13C on CO of F3 and 15N on K9 13C on CO of F3 

F 13C on CO of F3 and 15N on K9 unlabeled 

G unlabeled 13C on CO of F3 
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Figure 3.2 Molecular-level evidence of King-Webb peptide coassembly. 2D 13C-13C 
500ms DARR spectrum of an isotopically enriched KW peptide nanofiber sample 
(Sample A). Colored lines indicate spectral assignments for isotopically enriched 
residues determined by 2D fpRFDR. Bi-colored circles highlight off-diagonal 
crosspeaks resulting from inter-residue 13C-13C couplings. Tri-colored circles indicate 
overlapping crosspeaks with signal contributions from 3 residues. 

 

The coassembled nanofibers are composed of near stoichiometric amounts of KW+ 

and KW- peptides. Though equimolar solutions of the complementary peptides are mixed 

together to initiate assembly, it has not been previously shown whether the peptides are 

present in equal abundance within the final structure. To evaluate the relative amounts of 

each peptide incorporated into the coassembled nanofibers, a 13C NMR spectrum was 

collected for Sample A using a method developed by Duan et. al. to produce a spectrum in 

which NMR peak intensities quantitatively represent relative numbers of underlying 13C 
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sites.18 In Figure 3.3a, peak positions (chemical shifts) uniquely attributable to the carboxyl 

carbon (Cδ) on glutamic acid and the γ-carbon (Cγ) on lysine sidechains are highlighted in 

red and blue, respectively.19-21 The ratio of the peak areas (KW+ K9 Cγ to KW- E1 Cδ) 

was 1.12 ± 0.03 to 1. The presence of both peptide components at a near stoichiometric 

ratio further supports complementary interactions as a contributing factor in the 

coassembly of KW peptides.  
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Figure 3.3 KW+ and KW- peptide coassemble stoichiometrically into β-sheet 
nanofibers. a) A quantitative 13C spectrum of Sample A, which was isotopically 
labeled at E1 on KW- and F3 and K9 on KW+. Chemical shifts unique to KW+ and 
KW- are highlighted in blue and red, respectively. b) An overlay of 2D 13C-15N 
TEDOR spectra of Samples A, B, and C, corresponding to black, cyan, and orange 
contours, respectively.  All three spectra were collected with 2.4 ms of 13C-15N mixing 
time. Chemical shift assignments indicated by arrows were determined by 
comparison with a 2D fpRFDR spectrum. Multiple assignments resulting from peak 
splitting are distinguished by an apostrophe (‘).  
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The NMR spectra show evidence of structural heterogeneity. The behavior is most 

clearly observed in NMR peak splitting, where more than one NMR peak is observed for 

individual isotopically enriched sites (Figure 3.3). Chemical shifts are sensitive to the local 

electronic environment surrounding 13C sites (bond angles, arrangement of nearest-

neighbor atoms) and differences in peptide nanofiber structure can result in distinct 

environments that produce different chemical shifts.9, 11, 22 Figure 3.3b exhibits this 

behavior in 15N chemical shifts, where 2D 13C-15N Transferred-Echo Double-Resonance 

(TEDOR) measurements were performed on Samples A, B, and C.23 2D TEDOR peaks 

arise because of magnetization transfer between 13C/15N that experience distance-

dependent dipolar couplings.23 Multiple spectral assignments were made for each of the 

enriched amino acids providing further evidence for structural heterogeneity in the 

coassembled King-Webb peptide nanofibers. As shown in Figure 3.3b, two peaks are 

observed for some near-backbone carbons and nitrogens suggesting at least 2 distinct 

chemical environments or structures exist. The starred NMR peak matches the peak 

position of a lysine α-carbon in a random coil configuration possibly indicating 

unassembled material in the sample.19-21 However, other random coil signatures such as a 

lysine carbonyl carbon peak around 176.5ppm are not observed. Analysis of NMR peak 

linewidths in a 13C NMR spectrum (Figure A.4) of a naturally abundant nanofiber sample, 

Sample D, indicate broad linewidths (~2.5 ppm). These broad linewidths are 5 times wider 

than those observed in protein crystals (0.5-0.6 ppm),24 and while many factors contribute 

to line broadening, these linewidths are consistent with the presence of multiple local 

environments that would be expected from nanofibers having structural heterogeneity as 

indicated by the simulations. 
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3.3.2 Antiparallel and Parallel β-Sheets Are Detected in King-Webb Peptide Nanofibers. 

Four distinct β-strand arrangements in coassembled peptide nanofibers were 

considered and compared using constrained 3D models of each arrangement. In Figure 

3.4a, the 4 cross β-sheet structures considered consist of either parallel or antiparallel β-

sheets that are stacked parallel or antiparallel to one another.42 Each structure assumes a 

hydrophobic core such that the hydrophobic face of each peptide is shielded from water. 

In addition, each peptide component is assumed to be surrounded only by complementary 

peptides as nearest neighbors. We note that, when self-assembled antiparallel β-sheets 

stack, structures generated from different orientations of the individual sheets are typically 

indistinguishable.  However, in the case of coassembling peptide β-sheets, the relative 

orientation of each peptide component between the two β-sheets is unique for antiparallel 

and parallel stacking leading to distinct arrangements; examine, for example, only the 

orange arrows for antiparallel β-sheets, stacked parallel and antiparallel, in Figure 3.4a. 

Figure 3.4b shows all-atom molecular models created from constrained MD simulations of 

10 KW- peptides and 10 KW+ peptides arranged according to the cartoon illustrations in 

Figure 3.4a. Dihedral angles and hydrogen bonds were constrained according to expected 

angles and bond lengths for a cross-β nanofiber.  
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Figure 3.4 Multiple coassembled structures are possible as suggested by comparing 
experimental NMR results against predicted intermolecular contacts. a) Cartoon 
illustrations of 4 ideal coassembled β-sheet configurations considered. Colored 
arrows pointing from N-terminal to C-terminal represent KW+ (orange) and KW- 
(cyan). b) Images of all-atom molecular models for the 4 idealized coassembled β-
sheet structures are shown. Cross-sectional and single sheet views are included to 
show predicted intermolecular contacts. c) Intermolecular contact tables based on the 
labeling scheme shown in part b. Gray squares depict computationally predicted 
intermolecular contacts. The symbol X marks experimentally observed 
intermolecular contacts from NMR measurements on labeled samples. 

 

Comparison of observed 2D DARR contacts with those predicted from 

aforementioned molecular models suggest that the β-sheets stack antiparallel to one 

another. In Figure 3.4b, amino acid sidechains are drawn that correspond to the isotopically 

enriched amino acids in Sample A. Cross-sectional and single β-sheet views highlight the 
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relative orientation of isotopically enriched amino acids. Each structural arrangement 

produces a different set of predicted intermolecular contacts (gray squares) summarized in 

the DARR contact tables displayed in Figure 3.4c. NMR results indicate that all 3 

intermolecular contacts (marked as ‘X’ in DARR contact tables) are observed. The 

presence of a contact between F3 and K9 labeled on the same peptide suggests that 

antiparallel stacking of the β-sheets occurs. Though antiparallel stacking must exist in the 

sample, observation of all 3 contacts does not rule out the existence of parallel stacked 

structures also existing because of the predicted parallel contacts are a subset of the 

antiparallel contacts. Thus, while the 2D DARR results provide some insight into the 

stacking in the nanofiber, more quantitative measurements are needed to discern between 

parallel and antiparallel β-sheet structures. 

Dipolar recoupling NMR measurements suggest a preference toward antiparallel β-

sheets, but surprisingly, a significant fraction of parallel β-sheets are present (Figure 3.5). 

By 13C isotopically enriching only the carbonyl (CO) of F3 on KW+ and KW- peptides as 

shown in Figure 3.5a, we can measure distance-dependent 13C-13C dipolar couplings with 

PITHIRDS-CT to assess parallel β-sheet content in coassembled nanofiber samples.25 In a 

parallel β-sheet, the 13C-13C interstrand spacing is expected to be 0.5 nm giving rise to a 

strong dipolar coupling and a strong 13C signal decay in the PITHIRDS-CT experiment 

(Black solid line in Figure 3.5c). On the other hand, an antiparallel β-sheet structure 

increases the 13C-13C spacing to 1.0 nm leading to a weak dipolar coupling and a small 

decay in 13C signal (Green solid line in Figure 3.5c). Results of PITHIRDS-CT experiments 

on Sample E suggest a mixture of strongly and weakly coupled spins. In Figure 3.5c, 

measurements of 13C signal (black dots) rapidly decay at early recoupling times before 
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flattening out. Fitting by a linear combination of the solid green and black decays maps to 

53.4% of the full signal decay. Therefore, the parallel β-sheet content is calculated to be 

31.7% assuming each coupling is an independent event. In the same sample, KW+ peptides 

were isotopically enriched with 15N at K9 to independently evaluate 15N-13C dipolar 

couplings. As demonstrated in Figure 3.5b, an antiparallel β-sheet arrangement results in a 

0.5 nm 15N-13C interstrand spacing, creating a strong heteronuclear coupling. 

Consequently, a weak coupling is expected in the parallel β-sheet case. The 

13C{15N}REDOR experiment measures 13C-15N dipolar couplings, hence 13C-15N 

interstrand spacing.26, 27 A 15N-13C distance of 0.5 nm is shown by the solid black curve in 

Figure 3.5d and generates a strong 13C-15N dipolar coupling. However, a 15N-13C distance 

of 1.0 nm has a weaker dipolar coupling resulting in a significantly smaller REDOR 

dephasing as depicted in Figure 3.5d as a solid green curve. Supporting the theory of a 

heterogeneous β-sheet structure, antiparallel β-sheet content is estimated to be between 

56.4% and 62.2% from 13C{15N}REDOR measurements on Sample E. While both 

antiparallel and parallel β-sheets are detected, it is unclear whether the two structures exist 

in the same nanofiber or self-sort into ideal parallel β-sheets and ideal antiparallel β-sheets.  
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Figure 3.5 Dipolar recoupling experiments and coarse-grained DMD simulations of 
KW peptides show the presence of both parallel and antiparallel β-strands in 
coassembled nanofibers. a) Illustration of the Sample E labeling scheme in a parallel 
β-sheet configuration. b) Illustration of the Sample E ([1-13C]F3 and [15N]K9 of KW+ 
and [1-13C]F3 of KW-) labeling scheme in an antiparallel β-sheet configuration. c) 
13C-13C PITHIRDS-CT curves of Sample E. Solid curves represent SpinEvolution 
simulations of PITHIRDS-CT data from pairs of spins separated by the indicated 
distance. The dotted curves are a linear combination of the simulated curves 
corresponding to 1.0 and 0.5 nm 13C-13C distances, with 53.4% weighting of the 0.5nm 
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curve. d) 13C{15N}REDOR spectra of Sample E. Solid curves represent calculated 
REDOR dephasing curves for pairs of atoms separated by the specified distance. The 
dotted curve represents a linear combination of the simulated REDOR curves using 
56.4% weighting of the curves for 0.5nm. e) Representation of a β-sheet nanofiber 
observed in the coarse-grained DMD simulation. 

 

Analysis of coarse-grained DMD simulations corroborates experimental 

observations of structural heterogeneity and unveils a possible minority population of out-

of-register antiparallel β-sheets. Intermolecular distances between F3 CO sites on both 

KW+ and KW- peptides were examined in the final frames of the DMD simulations 

mimicking the experimental design of our PITHIRDS-CT measurements. In Figure A.5, 

we plot the relative distribution of F3 CO to F3 CO interstrand distances averaged over 6 

simulation runs. In an ideal parallel β-sheet structure, a prominent peak would appear at 

0.5 nm, whereas an antiparallel β-sheet would only show a peak at 1.0 nm or longer. The 

interstrand distance distribution between F3 CO sites shows a peak at 0.5 nm consistent 

with PITHIRDS-CT results indicating a measureable amount of parallel β-sheet structure. 

Calculation of the predicted parallel β-sheet content suggests 40.2% of KW peptides are 

oriented parallel which is higher than estimated from PITHIRDS-CT measurements. 

Similarly, analysis of the interstrand distance distribution between the F3 CO on KW- and 

K9 backbone N on KW+ qualitatively agrees with experimental REDOR results that 

predict antiparallel β-sheet content in the coassembled nanofiber. Simulations predict 

54.0% antiparallel β-sheet content which is comparable to the experimentally measured 

value. Table 3.2 summarizes the computationally predicted and experimentally observed 

β-sheet structure content. Figure 3.5e shows a sample coassembled King-Webb nanofiber 

observed at the end of a DMD simulation.  Computational simulations predict a preference 
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for the antiparallel orientation in agreement with the experimental results. Surprisingly, 

DMD simulations reveal the presence of out-of-register antiparallel β-sheets, which result 

in molecules that are not oriented perfectly perpendicular to the nanofiber axis (see Figure 

3.5e).  This feature is also exhibited in Figure A.5, with the peak near 0.8 nm. A small 

population of out-of-register antiparallel β-sheets could be consistent with the behavior 

observed at longer recoupling times in the PITHIRDS-CT and REDOR measurements: 

simulations predict plateaus in NMR intensity, which are not observed in the data. Lastly, 

the simulations predict that in-register parallel, in-register antiparallel, and out-of-register 

antiparallel β-sheets can coexist in the same nanofiber rather than self-sorting into 

structurally distinct fibers. 

 

Table 3.2 Comparison of predicted and experimentally measured parallel and 
antiparallel β-sheet content 

 DMD Simulations NMR Measurements 

Parallel β-sheets 40.2% 31.7% 

Antiparallel β-sheets 54.0% 56.4% 

   

3.3.3 Peptide Self-Association Observed in King-Webb Coassembled β-Sheets 

Ideal coassembly produces a perfectly alternating (AB)n pattern within each β-sheet, 

where A and B correspond to KW+ and KW- peptide β-strands, respectively.  In such a 

configuration, the β-sheet would be stabilized only through hydrogen bonding between 
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complementary peptide molecules. However, solid-state NMR measurements and DMD 

simulations show evidence of peptide self-association within the coassembled nanofiber. 

Specifically, self-association refers to AA or BB nearest-neighbor interactions within a β-

sheet.  To detect KW+ and KW- self-association, PITHIRDS-CT experiments were 

conducted on nanofiber samples prepared with the CO site of F3 13C-enriched on one but 

not both peptide components (Samples F and G). Coassembly of labeled and unlabeled 

peptides results in “isotopic dilution” and reduction of 13C-13C dipolar couplings.  For 

coassembled nanofibers with ideal (AB)n alternation within β-sheets, the 13C-labeled sites 

would be separated by at least 1 nm (see Figure 3.5b).  Consequently, we would expect 

little detectable PITHIRDS-CT decays from Samples F or G.  In contrast, peptide self-

association would result in considerably stronger 13C-13C dipolar couplings and increased 

signal decay because nearest-neighbor 13C spacing would decrease to 0.5 nm. In Figure 

3.6a, an intermediate 13C signal decay is observed over 61.44 ms of recoupling time for 

isotopically diluted samples in the PITHIRDS-CT experiment. Figure 3.6b shows a 

segment of coassembled nanofiber from the DMD simulation with noticeable peptide self-

association along the β-sheet. In Figure A.6, we present the F3 CO to F3 CO interstrand 

distance distribution calculated for KW+ peptides from DMD simulations.  This 

distribution reveals a small peak around 0.5 nm, indicating that some KW+ peptides are 

adjacent to other KW+ peptides in the β-sheets. Similarly, a peak near 0.5 nm is observed 

in the distribution for the KW- chains, indicating KW- are also found to self-associate in 

the peptide nanofiber. These predictions of KW- and KW+ self-association in the 

coassembled peptides align with experimental results detecting measureable peptide self-

association in isotopically diluted nanofiber samples.  These findings are consistent with 
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the Thioflavin T fluorescence measurements of β-sheet self-assembly in Figure 3.1b.  Our 

measurements show that, while complementary peptide interactions between KW+ and 

KW- are kinetically favored, the peptides do have self-association tendencies. 

 

Figure 3.6 Self-association observed by NMR and coarse grained DMD simulations 
in coassembled King-Webb peptide nanofibers. a) 13C-13C PITHIRDS-CT decays 
measured for Sample F (orange) and Sample G (cyan). Solid curves represent 
SpinEvolution simulations of 2-spin PITHIRDS-CT experiments. Dotted curves 
represent linear combinations using 1.0 and 0.5 nm simulations. b) Representation of 
a β-sheet nanofiber exhibiting peptide self-association as predicted in the coarse-
grained DMD simulation. 

 

3.4 Discussion 
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In this work, we provide direct evidence for the molecular-level coassembly of KW+ 

and KW- peptides into β-sheet rich nanofibers. Although previous CD and FTIR 

measurements performed on King-Webb peptides indirectly indicated coassembly,4 neither 

technique is capable of probing for molecular-level interactions between the two peptides 

within assembled nanofibers. Solid-state NMR experiments supported by computational 

simulations have shown molecular-level coassembly between KW+ and KW- peptides 

occurs.  Even though individual peptides can self-assemble within days, coassembly is 

kinetically favored as observed by ThT fluorescence measurements and DMD simulations. 

Preference for coassembly results from the strong electrostatic attraction between the 

oppositely charged peptides. These results are consistent with previous studies of 

coassembling β-sheet systems based on enantiomeric peptides and oppositely charged 

Aβ(16-22) variants.28, 29 Analysis of NMR chemical shift peak areas uniquely attributable 

to the KW+ and KW- peptides in a quantitative 13C spectrum reveals a near stoichiometric 

ratio of the two components, emphasizing the role of complementary interactions. 

Electrostatic interactions are effective in promoting peptide coassembly at the molecular 

level while discouraging self-assembly. From our knowledge-based PRIME20 force 

field,30 we know that the E sidechain has a strong electrostatic repulsion (sidechain-

sidechain interaction strength, εEE = 3.15 kJ/mol) with other E sidechains. In contrast, the 

K sidechain, although positively charged, has a relatively weak repulsion (εKK = 0.91 

kJ/mol) with other K sidechains; this behavior results from its large hydrophobic aliphatic 

sidechain. The KW+ peptide may have stronger resistance against self-assembly than the 

KW- peptide due to the stronger electrostatic repulsion from the 3 E residues in the middle 

of the KW+ peptide. We note that self-sorting could occur at different assembly conditions 
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and relative peptide ratios as shown by Webber et al. on DWDW and KWKW peptides.31 

Furthermore, the agreement between experimental results and computational predictions 

showcases the power of coarse-grained DMD simulations. Although simulations and 

experiments access different assembly timescales, it is interesting that there appears to be 

a basis for direct comparison of assembled structure. 

Despite recent reports that peptide self-assemblies tend to be monomorphic, 

including recent work on RADA16-I and MAX1,8, 12 coassembled King-Webb peptides 

seem to exhibit a fundamental lack of preference for a single structure. Dipolar recoupling 

NMR measurements designed to assess parallel and antiparallel β-strand alignments 

surprisingly reveal both alignments are present in coassembled samples. This mixture of 

β-sheet structures is supported by coarse-grained discontinuous molecular dynamics 

simulations. While the observation of antiparallel β-sheets matches the prediction from 

FTIR spectra by King et al.,4 our site-specific measurements showed an abundance of 

parallel β-sheets that would be unresolved by FTIR. Estimation of the parallel and 

antiparallel β-sheet content from experimental results and computational predictions shows 

a preference for the expected antiparallel β-sheet structure (Table 3.2). Computational 

simulations show a mixture of β-strands aligned antiparallel and parallel along the same β-

sheet, indicating that the addition of peptides in either orientation is favorable. Observation 

of this predicted behavior would be difficult to resolve by solid-state NMR. In addition, 

structure predictions from computational simulations reveal antiparallel β-sheets with a 

registry shift of 2 amino acids. Nanofibers produced from β-strands with a registry shift 

have a reduced number of hydrogen bonds, produce flexible peptide ends, and are skewed 

from the fiber axis (Figure 3.5e). Though there is no direct experimental evidence for this 
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structural feature, the presence of antiparallel β-sheets with a registry shift is consistent 

with the increased PITHIRDS-CT signal decay and REDOR dephasing observed at longer 

recoupling times. We note that the presence of multiple structures in a single sample is 

rather unique. Though many self-assembling peptides can be assembled into various 

structures, the resulting polymorphic peptides generally produce nanofibers of a single 

favored structure for a given set of assembly conditions.19-21 In contrast, King-Webb 

peptide nanofibers surprisingly exhibit a mixture of several structures for a single assembly 

condition. Fast assembly kinetics may play a role in this structural heterogeneity though 

further studies would be needed. By combining computational simulations and 

experimental techniques, we have produced a detailed structural analysis of a highly 

heterogeneous coassembled peptide nanofiber that would be difficult to assess with a 

singular technique.  

Remarkably, self-association of KW+ and KW- peptides occurs in the coassembled 

nanofiber samples. ThT fluorescence measurements showed that coassembly is kinetically 

favored over self-assembly, but self-assembly occurs over 72 hours consistent with the 

time scale that KW+ and KW- peptides can self-associate into β-sheets. Evidence of the 

peptide self-association tendency was observed in the coassembled nanofibers with dipolar 

recoupling NMR measurements on samples isotopically enriched on one peptide 

component at a time (Figure 3.6). These results are consistent with prior observations on 

coassembled nanotubes of Aβ(16-22) derivatives where NMR measurements indicated a 

mixture of self-associated and complementary peptide leaflets.29 Given the high ionic 

strength of the assembly buffer (10X PBS), charge screening may facilitate KW+ and KW- 

self-association. Several self-assembling peptides have been shown to form gels upon 
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adjusting the solution’s ionic strength.32-34 Notably, the positively-charged MAX1 peptide 

forms β-hairpins that further assemble into β-sheet nanofibers in aqueous solution.12 Also, 

P11-4 and P11-5 peptides, predecessors of the King-Webb peptides, exhibit a strongly pH-

dependent self-assembly mechanism.5 In context, it is not surprising that counterions 

modulate effective interactions between like-charged sidechains. Again, computational 

simulations are able to capture this non-ideal assembly behavior, providing an accurate 

view into the structural possibilities within coassembled peptide nanofibers. 

While charge complementarity produces peptides that exhibit coassembly behavior, 

the King-Webb design does not produce well-controlled coassembled nanofiber structures. 

Long-range electrostatic interactions in charge-complementary peptide systems may 

reduce the energy difference in parallel and antiparallel β-sheet structures allowing 

peptides in either orientation to add to the fiber end. Electrostatic forces may also affect 

the assembly pathway of charge-complementary peptides. Hydrogen-bonding and 

hydrophobic interactions drive β-sheet formation in self-assembling peptides and 

contributions from charged residues can cause assembly to proceed along a different 

pathway dominated by charge complementarity.10, 31 Coexistence of multiple peptide 

arrangements within the coassembled nanofiber alludes to the possibility that peptides 

similar to the King-Webb peptides as long as favorable electrostatic interactions are 

formed. This heterogeneity highlights the challenge in designing selectively coassembling 

β-sheet peptides. These peptides could belong to a family of coassembling peptides capable 

of coassembling with similarly patterned partners. While this lack of a strong preference 

for a specific arrangement may be desirable, we suggest that design of coassembling 



57 
 

peptides for more specific structures would aid in understanding the principles of creating 

coassembled nanofibers.  

3.5 Conclusions 

The peptides introduced by from King et al. represent a successful design of a 

primarily coassembled peptide nanofiber.  Molecular-level coassembly was evaluated with 

computational simulations, biophysical measurements, and solid-state NMR spectroscopy. 

While charge-complementarity and the employed sidechain patterning do confer selective 

coassembly over self-assembly, analysis of the molecular-level structure reveals a lack of 

precise control over local intermolecular organization. This level of structural precision 

may be sufficient for certain biotechnological applications such as a cell-culture scaffold, 

but as we seek to increase our ability to manipulate biological systems with synthetic 

materials, higher molecular-level precision may be desired. Next-generation designs will 

need to turn towards hydrophobic interactions, lock-and-key mechanisms, and sidechain 

complementarity to introduce structural specificity as seen in many self-assembling peptide 

systems and folded proteins.10, 35 Coarse-grained simulations may enable researchers to 

rapidly iterate through possible designs to identify well-controlled and highly selective 

coassembling peptide designs similar to the computational work by Baker et al. to produce 

orthogonal coiled-coil oligomers.36, 37 Simulations can be combined with solid-state NMR 

techniques to reveal highly-resolved structural details to verify and validate new 

coassembling peptide designs as shown in this study. Structural insights from these 

combined studies refine our understanding of sequence to structure relationships necessary 

in the design process. The ability to exhibit fine control over peptide nanostructure will 

propel the design of supramolecular biomaterials beyond the designs in nature. 
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3.6 Materials and Methods 

For general methods, please refer to Chapter 2. Content presented below indicate a 

deviation from the standard protocols previously mentioned. 

3.6.1 King-Webb Peptide Material 

Unlabeled KW+ and KW- peptides were purchased from CPC Scientific, Inc. 

(Sunnyvale, CA). Labeled peptides were also purchased from CPC Scientific, Inc. 

synthesized using uniformly or partially 13C and/or 15N enriched amino acids supplied by 

Cambridge Isotope Laboratories, Inc. 

3.6.2 Standard Hydrogel Preparation 

All hydrogel samples were prepared by initially dissolving KW+ and KW- peptides 

in 10X PBS to produce 10mM solutions of single peptides. Equimolar mixtures of the KW+ 

and KW- peptide solutions were vortexed for 1 min and allowed to assemble. Initial 

assembly occurred within a few minutes, but samples were allowed to mature overnight 

for all samples. Isotopically labeled peptide samples were prepared according to labeling 

schemes in Table 3.1. Samples were centrifuged at 17.0 x g for 5 min. Supernatant was 

removed and fresh DI water added before resuspension. This wash cycle was repeated 2 

more times. Solutions were flash-frozen in liquid nitrogen before lyophilization overnight.  

3.6.3 Solid-State NMR Measurements 

REDOR measurements of lyophilized King-Webb peptide nanofibers were 

performed using a 14.1 T Bruker Avance spectrometer with a 4 mm Bruker HXY MAS 
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probe. To ensure MAS and RF heating did not denature the samples, the cooling and 

spinning air exit temperature was maintained below -1 °C. 13C (150.8 MHz) and 15N (60.8 

MHz) CPMAS spectra before and after REDOR experiments sample integrity during the 

experiment. The sum of center and sideband peak heights is used to calculate REDOR data 

points. 

3.6.4 Dipolar Recoupling Spin Simulations 

Calculation of signal decay curves from PITHIRDS-CT experiments were produced 

by using SpinEvolution NMR simulation software.42 Simulations were run with 2 nuclear 

spins set at 5.0 Å or 10.0 Å distances. Attenuated decay was quantified using linear 

combinations of simulated PITHIRDS-CT decay curves at 5.0 Å and 10.0 Å to fit 

experimental spectra. 

A single 15N spin in the presence of one 13C spin spaced 0.5 or 1.0 nm apart were 

simulated for REDOR analysis.27 Contributions from naturally abundant carbonyl carbons 

and 15N dephasing from these carbons were included.43 

3.6.5 Transmission Electron Microscopy (TEM) 

Coassembled KW+ and KW- nanofibers were deposited onto 400 mesh lacey 

carbon-coated Cu electron microscopy grids (TED Pella, INC.) and strained with 1 wt% 

uranyl acetate. TEM images were taken using a Hitachi HT-7700 electron microscope at 

an accelerating voltage of 80 keV. 

3.6.6 All-Atom Models of Ideal β-Sheet Structures 
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Idealized all-atom models of 4 possible β-sheet nanofiber structures were built to aid 

interpretation of intermolecular contacts observed by solid-state NMR. All β-sheet models 

were constructed using NAMD molecular dynamics and VMD software.44-46 Initial models 

of the KW+ and KW- peptides were individually created in VMD with the molefacture 

plugin. KW+ and KW- monomers were manipulated depending on the β-sheet structure 

and stacking and repeated along the fiber axis using Mathematica to produce a 2 β-sheets 

with 10 units each (5 KW+ and 5 KW-) which were stacked to form a hydrophobic core. 

Using NAMD molecular dynamics software, artificial dihedral angle and hydrogen bond 

constraints were introduced and the constrained structure was energy minimized for 10 ps 

in implicit solvent. Then, the temperature was increased from 0 K to 500 K followed by 

cooling to 300 K in 10 K increments with 10 ps simulation time per step in implicit solvent. 

Following a 25 ps equilibration period, the two β-sheets were stacked into a 2-layer 

nanofiber by artificially constraining intersheet distances. The constrained bilayer 

nanofiber structure was energy minimized for 10 ps, heated from 0 to 300 K in 10 K per 

10 ps increments before a final equilibration period of 20 ps.  

3.6.7 Coarse Grained Discontinuous Molecular Dynamics Simulations 

In this work, we performed large-scale DMD/PRIME20 simulations to evaluate the 

spontaneous aggregation propensities and coassembled structures of King-Webb peptides. 

All of the simulations are carried out for 30-36 μs in the canonical (NVT) ensemble at a 

peptide concentration of 20 mM. The Andersen thermostat is implemented to maintain the 

simulation system at a constant temperature.47 For the peptide coassembly cases, 48 A and 

48 B peptides are initially randomly placed in a cubic box with a length of 200.0 Å, 

corresponding to a peptide concentration of 20 mM. We set the reduced temperature T* of 
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the simulations to be 0.19, which corresponds to 319 K in real temperature unit.48 For the 

peptide self-assembly cases, single peptide species system containing either 48 A or 48 B 

are kept at the same concentration as in the coassembly cases by reducing the cubic 

simulation box length to 159.0 Å. The simulation temperature is also kept the same as in 

the coassembled King-Webb simulations. We repeat the simulation three times for each of 

the systems mentioned above. Simulations are run at the previously specified temperature 

and concentration to reduce aggregation lag phases and nucleation barriers. 
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CHAPTER 4. STRUCTURAL ANALYSIS OF COASSEMBLED 

CATCH PEPTIDE NANOFIBERS*2 

4.1 Overview of Chapter 

In the previous chapter, the coassembling King-Webb peptide nanofibers were 

evaluated by solid-state NMR and DMD simulations revealing a heterogeneous mixture of 

β-sheet structures. It is unclear whether other charge-complementary peptide pairs exhibit 

this structural heterogeneity as well. In this Chapter, we consider a related peptide pair, 

CATCH peptides, based on a different approach towards the concept of charge-

complementary amino acid sequences. The same combined experimental and 

computational approach used in Chapter 3 is applied here. 

4.2 Introduction: 

Within the class of selectively coassembling β-sheet peptides, two distinct 

approaches to charge-complementary sequences have emerged. In general, peptides will 

disfavor self-assembly as long as the molecules have an overall net charge, but 

complementary electrostatic attraction between oppositely charged peptide chains will 

promote coassembly. King-Webb peptides have a mixture of positively and negatively 

residues, but an imbalance of the two residue types results in an overall net charge 

preventing self-assembly. The King-Webb peptide’s predecessors, the P11-4 and P11-5, 

                                                 
2 Portions of this chapter have been adapted and reproduced from Shao, Q., Wong, K. M., Seroski, D. T., 
Wang, Y., Liu, R. Paravastu, A. K., Hudalla, G. A., Hall, C. K. “Anatomy of a selectively coassembled β-
sheet peptide nanofiber” Proceedings of the National Academy of Sciences, 2020, 9, 4710-471. Copyright 
2020 National Academy of Sciences. 
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peptides follow this principle.1 In contrast, “CATCH+” (Ac-QQKFKFKFKQQ-Am)  and 

“CATCH-“ (Ac-EQEFEFEFEQE-Am) developed by Seroski et al. are patterned with only 

positive residues or only negative residues resulting in a high overall charge.2 This 

sequence design follows another charge-complementary pair, the P11-13 and P11-14 

peptides.3 As shown in the previous chapter, King-Webb peptides align in both parallel and 

antiparallel orientations and exhibit significant peptide self-assembly within a single β-

sheet. It is not known whether this behavior is inherent to all coassembling β-sheet designs. 

Thus, we apply the same solid-state NMR and coarse-grained DMD analysis to evaluate 

coassembled CATCH peptide nanofibers to better understand structural heterogeneity in 

the charge complementary peptide sequences. 

Prior studies on the CATCH+ and CATCH- peptides focused on installing 

superfolding green fluorescent protein (GFP) onto β-sheet rich nanofibers with limited 

structural characterization the peptide nanofiber structure.2 Circular dichroism of single-

peptide solutions of CATCH- and CATCH+ indicate the peptides resist self-assembly. 

Equimolar mixtures of CATCH+ and CATCH- show a strong β-sheet signal at total peptide 

concentrations above 320 μM in 1X PBS solutions.2 These results are corroborated by a 

strong increase in thioflavin T fluorescence emission. When CATCH- peptides covalently 

fused to the GFP are incorporated into mixtures of CATCH+ and CATCH- peptides, β-

sheet-rich nanofibers form with the protein of interest immobilized onto the surface of the 

peptide nanofibers without any noticeable change in structure.2 These results suggest that 

CATCH+ and CATCH- peptides coassemble into β-sheet-rich nanofibers and the proteins 

covalently attached to the peptides are successfully fixed onto the nanofibers. However, 

there is no evidence that these peptide pattern into the hypothesized coassembled 
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antiparallel β-sheet structure. Similar to the King-Webb peptides, CATCH+ and CATCH- 

peptides are assumed to pattern into (AB)n alternating β-sheets though there is no direct 

evidence for this patterning.  

Here we present a comprehensive investigation into the alignment and patterning of 

CATCH+ and CATCH- peptides within coassembled amyloid-like β-sheet nanofibers. 

Solid-state nuclear magnetic resonance (NMR) measurements are used to determine 

secondary structure and inter-strand contacts between peptides within coassembled 

nanofibers. Experimental evidence of molecular-level coassembly into β-sheet-rich 

nanofibers are corroborated by discontinuous molecular dynamics (DMD) simulations of 

a large (96-peptide) system of CATCH+ and CATCH- peptides. Off-center 13C and 15N 

isotopic labeling of the CATCH+ and CATCH- peptides indicate a conglomerate of 

antiparallel and parallel aligned β-strands within the coassembled peptide nanofibers. 

CATCH nanofibers assembled in silico show this mixture of β-sheet alignments can exist 

within a single β-sheet. 13C-13C PITHIRDS-CT measurements of isotopically diluted 

nanofiber samples reveal a significant amount of AA and BB peptide self-association. 

Lyophilization of single-peptide CATCH solutions produces β-sheet-rich samples that 

exhibit strong 13C-13C couplings in PITHIRDS-CT measurements demonstrating that self-

association is possible despite the high overall charges of each peptide. The structural 

heterogeneity observed in coassembled CATCH peptide nanofibers is similar to that 

observed in King-Webb nanofibers suggesting this behavior is inherent to charge-

complementary β-sheet peptide pairs.  

4.3 Results: 
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4.3.1 CATCH(+) and CATCH(-) exhibit molecular-level coassembly 

Data from simulations and experiments in Figure 4.1 demonstrate molecular-level 

coassembly of CATCH(+) and CATCH(-) peptides into β-sheets. Here, we refer to the 

CATCH(+) peptide as “A” and the CATCH(-) peptide as “B” for simplicity. Ten DMD 

simulations were run at T* = 0.2 (equivalent to 342 K) for 16 µs, using the PRIME20 

model.  Each simulation started with a mixture of 48 A and 48 B molecules in random coil 

configurations at a concentration of 20 mM.  Representative snapshots of the simulations 

at 0, 3.2, 6.4, and 16 µs depict the coassembly process (Figure 4.1A). Ordered aggregates 

containing both A and B emerge as early as 3.2 μs, but they are β-barrel structures not 

amyloid-like structures. As the simulation progresses, more and more peptides join the 

ordered aggregates. At 6.4 µs, an amyloid-like structure can be seen in addition to several 

β-barrel structures. The amyloid-like structure grows with time and by 8 µs (not shown) 

differentiates itself significantly from the β-barrel structures. By 16 µs, nearly 90% of 

peptides have aggregated into two-component amyloid or β-barrel structures. The 

simulation kinetics for this run is described in APPENDIX B and shown in Fig. B.1. The 

β-barrel structures do not convert to amyloid or serve as seeds for amyloid formation, 

suggesting that they are off-pathway for fibril formation. However, the simulation time 

scale of 16 µs is orders of magnitude smaller than the experimental time scale, so 

simulations cannot be used to predict whether or not the β-barrels are a kinetically trapped 

metastable state or transient in real-world settings.  
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Figure 4.1 Computational simulations and biophysical measurements of an equimolar 
CATCH(+) and CATCH(-) mixture show coassembly. (A) DMD/PRIME20 
simulations of a mixture of 48 CATCH(+) and 48 CATCH(-) peptides at 20mM 
concentration. Snapshots at 0, 3.2, 6.4, and 16 μs are presented. (B) Γ_AB (r), Γ_AA 
(r), and Γ_BB (r), defined in the text as computationally-predicted average 
distributions of A or B central atoms as a function of distance r from centrals atoms 
within peptide A or B. (C) 1H-13C CPMAS spectra of a CATCH(+/-) nanofiber 
sample. (D) PITHIRDS-CT decay curve of a CATCH nanofiber sample 13C labeled 
on both CATCH(+) and CATCH(-) on the carbonyl C of Phe6. The solid black curve 
corresponds to the predicted signal decay in the PITHIRDS-CT experiment from a 
nuclear spin simulation of eight 13C atoms along an ideal coassembled antiparallel β-
sheet. (E) FTIR spectra of equimolar mixtures of labeled CATCH(+) and CATCH(-) 
(black), labeled CATCH(+) and unlabeled CATCH(-) (blue), and unlabeled 
CATCH(+) and CATCH(-) (red) at 10 mM in 1x PBS. 
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Quantitative analysis of the organization of A and B in the final configurations of the 

DMD simulations indicates that the majority of the peptides are arranged in an ordered 

alternating ABAB pattern. Figure 4.1B shows the numbers of AB, AA, and BB neighbors,  

Γ_AB (r), Γ_AA (r), and Γ_BB (r), as a function of the distance r between the Phe6 

carbonyl C atoms (central atoms) on the peptides in the final aggregated structure averaged 

over the 10 independent simulations. Choosing the central atom as a reference makes 

analysis of peptide organization insensitive to the relative directions of adjacent β-strands 

(parallel or antiparallel) within each β-sheet.  The high intensity peak for Γ_AB (r) at r = 

0.5 nm (the first-neighbor distance between peptides) demonstrates that the majority of A 

molecules are next to B molecules, and vice versa, in the final aggregated structures. 

Further, the peaks for Γ_AA (r) and Γ_BB (r) at r = 1.0 nm (the second-neighbor distance) 

demonstrate that the peptides are primarily organized into ABA or BAB configurations. 

The non-zero values for Γ_AA and Γ_BB when r < 1.0 nm indicate, however, that some of 

the A and B molecules do sit next to their own kind in the final structure, as will be 

discussed in a later section.  

FTIR and solid-state NMR measurements demonstrate that structures rich in β-sheets 

are formed in equimolar mixtures of A and B at comparable concentrations to those used 

in simulations. We observed up-field shifts in 13C natural abundance solid-state NMR peak 

frequencies for the carbonyl carbon (CO) and α-carbon (Cα) of Gln, Lys, Glu, and Phe 

relative to reference peptides in random-coil configurations (Figure 4.1C), which indicate 

that A and B aggregate into a β-sheet secondary structure.5, 6 A centrifuge pellet of 

coassembled A and B in which each peptide was labeled with 13C at its central atom (CO 

site of Phe6) yielded a strong 13C decay in PITHIRDS-CT NMR measurements (Figure 
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4.1D), which indicates dipolar couplings between 13C labeled site.7 This decay maps to 

simulations of 8 13C spins spaced as predicted by an antiparallel β-sheet structure, with 13C-

13C distances of either 0.49 nm or 0.65 nm. Likewise, the FTIR spectrum of an equimolar 

mixture of A and B has a strong maximum at 1620 cm-1 (Figure B.2), which is within the 

amide I region and indicative of peptides in a β-strand conformation.   

FTIR and solid-state NMR measurements also indicate that A and B are 

coassembled. In a centrifuge pellet of coassembled A and B, we observed 13C natural 

abundance solid-state NMR signals that are uniquely attributable to the Lys and Glu 

residues which are exclusive to CATCH(+) or CATCH(-), respectively (Figure 4.1C), 

indicating that both peptides are present in the sample.5  Likewise, in the deconvoluted 

FTIR spectrum of an equimolar mixture of 13C-labeled A and B, the amide I peak was split 

into maxima at 1628 and 1603 cm-1 (Figure 4.1E), similar to a prior report of enantiomeric 

peptide mixtures with a single 13C label on each peptide4. In contrast, the deconvoluted 

FTIR spectra of equimolar mixtures of labeled A and unlabeled B, as well as unlabeled A 

and labeled B, had maxima at 1628 and 1610 cm-1. The maximum at 1603 cm-1 in mixtures 

of labeled A and B is attributed to vibrational coupling between 13C atoms in neighboring 

hydrogen-bonded β-strands, whereas the higher frequency maximum at 1610 cm-1 in 

mixtures of labeled and unlabeled peptides is likely due to the presence of 13C labeled 

strands with interspersed 12C strands. The latter would only occur if unlabeled A is 

coassembled with labeled B, or vice versa, as has been reported recently for mixtures of 

12C/13C-labeled amyloid-β.8 Collectively, these experimental results validate the 

computational observations that A and B coassemble into two-component β-sheet 

structures rather than self-sort. 
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4.3.2 CATCH(+) and CATCH(-) peptides resist self-assembly  

DMD/PRIME20 simulations of single-component systems of CATCH(+) or of 

CATCH(-) peptides show little evidence of aggregation. Representative snapshots depict 

DMD/PRIME20 simulations of 96 CATCH(+) and of 96 CATCH(-) peptides at 16 μs 

(Figure 4.2A).  The peptides are in random coil configurations at this time point. CATCH(-

) peptides remain dispersed throughout the entire simulation run, whereas some instances 

of unstable interactions are observed in snapshots of CATCH(+) peptide simulation runs 

(Figure B.3). These computational observations are consistent with prior experimental data 

demonstrating that individual CATCH peptides resist self-assembly, albeit at much lower 

concentrations than those used in the models reported herein.9  
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Figure 4.2 Complementary interactions are necessary for assembly. (A) Snapshots of 
DMD/PRIME20 simulations of a system containing 96 CATCH(+) peptides (blue) 
and a system containing  96 CATCH(-) peptides (red)  at 16 μs. (B) FTIR spectra of 
20 mM CATCH(+) and CATCH(-). (C) Thioflavin T fluorescence measurements at 
varying CATCH(+):CATCH(-) ratios indicating saturation at equimolar mixtures. 

 

Biophysical measurements demonstrate that CATCH(+) and CATCH(-) do not self-

associate in solution at comparable concentrations to those used in simulations. FTIR 

spectra of solutions containing only CATCH(+) or CATCH(-) have broad peaks at ~1645 

cm-1 that are consistent with an unstructured and predominantly random coil state (Figure 

4.2B). Likewise, solutions containing only CATCH(+) or CATCH(-) did not increase the 

fluorescence emission of Thioflavin T (ThT) a dye that emits increased fluorescence when 

bound to β-sheet structures  (Figure B.4A). In contrast, adding increasing amounts of 
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CATCH(-) to a 1 mM CATCH(+) solution increased ThT fluorescence emission until the 

molar ratio of CATCH(+) to CATCH(-) approached unity (Figure 4.2C). CATCH(+) 

present in a molar excess relative to CATCH(-) produced no further increase in ThT 

fluorescence suggesting that coassembly of CATCH peptides proceeds until molar 

equivalency is reached, at which point excess peptide remains unassembled (Figure 4.2). 

Similar behavior was observed when the concentration of CATCH(-) was held constant 

and the concentration of CATCH(+) was varied. Collectively, computational models and 

experimental data demonstrate that CATCH(+) and CATCH(-) only assemble into β-sheets 

when the complementary peptide is present, and at a near-stoichiometric ratio. 

4.3.3 Mixtures of coassembled antiparallel and parallel β-sheets are detected 

Solid-state NMR measurements on isotopically enriched CATCH peptide nanofibers 

indicate that peptide strands align in both parallel and antiparallel orientations within 

coassembled β-sheets. Centrifuged and lyophilized peptide nanofiber samples were 

prepared with CATCH(+) and CATCH(-) peptides isotopically labeled with 13C at the 

carbonyl carbon on F4. Formation of parallel β-sheets would bring the 13C labeled sites 

within 0.5 nm of each other resulting in strong 13C-13C dipolar couplings. PITHIRDS-CT 

measurements are sensitive to this distance-dependent 13C-13C dipolar coupling resulting 

in a change in the 13C signal decay and report on the parallel β-sheet content within the 

coassembled peptide nanofibers.7 As shown in Figure 4.3A moderate 13C signal decay is 

observed during the PITHIRDS-CT experiment which indicates some parallel β-sheets are 

detected. However, the 13C signal decay does not match that expected for a homogeneous 

parallel β-sheet nanofiber sample. Therefore, other β-sheet structures must also exist in the 

sample. 
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Figure 4.3 CATCH(+) and CATCH(-) peptides coassemble into a mixture of parallel 
and antiparallel β-sheets. (A) 13C-13C PITHIRDS-CT curves of 13C isotopically 
enriched CATCH nanofiber samples. Solid curves correspond to SpinEvolution 
simulations of PITHIRDS-CT data from pairs of spins separated by the indicated 
distance. The dotted curves are a linear combination of the simulated curves 
corresponding to 1.0 and 0.5 nm 13C-13C distances. (B) 15N{13C}REDOR spectra of 
13C and 15N isotopically enriched CATCH nanofiber samples. Solid curves represent 
calculated REDOR dephasing curves for pairs of atoms separated by the specified 
distance. 
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Within the same nanofiber sample, the F8 residue on the CATCH(+) peptide was 

isotopically labeled with 15N on the backbone nitrogen. This 15N labeling along with the 

13C sites allow for the measurements of 13C-15N couplings that are enhanced when the 

CATCH(+) and CATCH(-) peptides are aligned antiparallel to one another. An antiparallel 

alignment would place the 13C site on the CATCH(-) peptide between 0.42 and 0.59 nm to 

the 15N site on the complementary CATCH(+) peptide. As a result, a strong 13C-15N dipolar 

coupling occurs between the two nuclei that shows up as an increase in ΔS/S0 during 

15N{13C}REDOR NMR experiments.9, 10 In Figure 4.3B, the value of ΔS/S0 increases with 

mixing time indicating that antiparallel β-sheets also exist within the sample. This 

observation is consistent with the partial decay observed in the PITHIRDS-CT 

measurement and our prior studies on the arrangement of King-Webb peptides within β-

sheet-rich nanofibers. 

Structural analysis of nanofibers formed in DMD simulations of 48 CATCH(+) and 

48 CATCH(-) peptides support the observation of both parallel and antiparallel β-sheets in 

coassembled nanofiber samples. The percentage of parallel and antiparallel β-sheets from 

DMD simulation predictions are quantified and compared to the values estimated from the 

PITHIRDS-CT and 15N{13C}REDOR spectra. Summarized in Table 4.1, both the DMD 

simulations and NMR measurements suggest a slight preference for antiparallel β-sheets. 

However, the DMD simulations predict a higher amount of antiparallel β-sheets than 

experimentally observed. The sum of the antiparallel and parallel β-sheet content from 

NMR measurements is less than 100% suggesting that out-of-register β-strands exist within 

the nanofiber sample. This result is again consistent with observations in the King-Webb 

peptide system. 
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Table 4.1 Comparison of predicted and experimentally measured parallel and 
antiparallel β-sheet content in CATCH peptide nanofibers 

 DMD Simulations NMR Measurements 

Parallel β-sheets 39.1% 24.5% 

Antiparallel β-sheets 60.9% 38.8% 

 

4.3.4 CATCH nanofibers contain detectable AA and BB nearest neighbors   

Simulations and experimental measurements identified a significant number of AA 

and BB neighbors within CATCH β-sheet assemblies; this behavior was unexpected based 

on the charge state of the peptides in neutral aqueous conditions. In the final configuration 

of the 10 DMD simulations, the percentage of AA (i.e., CATCH(+)) neighbors is 12.5 + 

6.9%, while that of BB (i.e., CATCH(-)) neighbors is 5.1 + 4.3%.  We probed for the 

presence of AA and BB neighbors using PITHIRDS-CT NMR experiments on nanofiber 

samples produced with 13C labeling of peptide A or peptide B, but not both.  As illustrated 

in Figure 4.4A, β-sheets with ideal alternation of A and B β-strands would correspond to a 

1.0 nm 13C-13C nearest-neighbor distance if only the central atom of one peptide were 13C-

labeled.  Figure 4.4B shows that the presence of some like-peptide nearest neighbors results 

in a fraction of 13C atoms having 0.5 nm nearest-neighbor distances. Centrifuge pellets of 

“isotopically diluted” equimolar mixtures of 13C-labeled A with unlabeled B (Figure 4.4C, 

red data points) or 13C-labeled B with unlabeled A (blue data points) yielded reduced 

decays of 13C signal intensity in PITHIRDS-CT NMR measurements when compared to 
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the decay observed for the “isotopically pure” mixture containing both labeled A and 

labeled B (Figure 4.1D, black data points). Reduction of PITHIRDS-CT decay with this 

kind of isotopic dilution indicates that A and B are coassembled into the same β-sheets.  As 

explained next, however, the degree of observed reduction in the decays with isotopic 

dilution is less than what would be anticipated with ideal AB alternation in the β-sheet 

structure.    

To understand the effects of isotopic dilution in the presence of deviation from ideal 

AB-alternation, we performed Monte Carlo simulations to generate the many possible 

arrangements of β-sheets that can form by coassembling two complementary peptides and 

combined this analysis with an analysis of the 13C-13C dipolar coupling during PITHIRDS-

CT NMR experiments on the various arrangements. These simulations, described in detail 

in the APPENDIX B and illustrated in Figure B.5, predict the relationship between the 

arrangements of A and B β-strands and the probabilities of having like-peptide (AA or BB) 

nearest neighbors within each β-sheet. The results of this analysis are the green dashed 

curves in Figure 4.4C, which are PITHIRDS-CT decays predicted for the probabilities of 

like-neighbors indicated by black arrows of the 13C-labeled peptide (AA or BB) for 

experiments in which only one peptide is 13C-labeled.  The experimental data lie in between 

the predicted curves corresponding to the two extreme cases.  The weakest predicted decay 

in Figure 4.4C, corresponding to a 0 probability for AA or BB nearest neighbors, is the 

prediction for ideal alternation of A and B peptides within each β-sheet (Figure 4.4A).  The 

strongest predicted PITHIRDS-CT decay in Figure 4.4C, corresponding to a 1.0 probability 

for AA/BB neighbors, is the prediction for the case in which the isotopically labeled 

peptide self-assembles into β-sheets that contain no unlabeled peptide.  Intermediate 
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predicted curves correspond to the illustration in Figure 4.4B, in which some AA/BB 

neighbors occur in coassembled β-sheets. As illustrated in Figure B.6A and B.6B, shapes 

of PITHIRDS-CT decays are sensitive to small changes in relative positions of 13C atoms 

within reasonable models of β-sheet structure, but this sensitivity is low for 13C-13C 

recoupling times below 30 ms.  At short 13C-13C recoupling times, we expect decays to be 

more sensitive to nearest-neighbor 13C-13C interactions and less affected by longer-range 

interactions.  Figure B.6C shows that PITHIRDS-CT curves on isotopically diluted 

samples exhibit linear dependence on like-peptide nearest-neighbor probability (AA or 

BB) for 13C-13C recoupling times below 30ms. Based on comparison of measured and 

simulated PITHIRDS-CT decays at recoupling times less than 30 ms, we estimate that the 

percentage of like-peptide nearest-neighbor pairs is between 9.4% and 32.8% in the 

coassembled nanofiber. Although there is significant sample-to-sample variation (Figure 

B.7, like-peptide neighbors of CATCH(+) appear more likely than like-peptide neighbors 

of CATCH(-), consistent with the simulation predictions. This observation is also 

consistent with the smaller net charge of +4 for CATCH(+) in comparison to -6 for 

CATCH(-). 
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Figure 4.4 Evaluating the propensity for CATCH(+) and CATCH(-) to self-associate. 
(A,B) Schematics of possible peptide organization within the nanofiber, green dots 
represent 13C labeling. (C) Isotopic dilution PITHIRDS-CT measurements of 
coassembled CATCH(+/-) nanofibers where only one peptide is 13C labeled at a time. 
The asterisks in the plot legend indicate which peptide was isotopically labeled with 
13C at the central atom.  The dashed green curves correspond to simulations that 
account for the probabilities of like-neighbors for the 13C-labeled peptide as indicated 
by black arrows along the right vertical axis. Details describing these simulations can 
be found in APPENDIX B. 

 

There are several possible explanations for the apparent discrepancy in the estimates 

of the numbers of AA and BB neighbors from PITHIRDS-CT experiments and simulations. 

First, the number of peptides assessed in simulations is orders of magnitude smaller than 

those present in samples analyzed using NMR; thus the probability will change 

significantly if the number of like-neighbors changes by only 1 or 2 in simulations (see 

Figures B.8 and B.9). Second, the apparent discrepancies could be due to inaccuracies in 

the PRIME20 potential energy function. Third, variability in the PITHIRDS-CT 



83 
 

measurements could result from errors introduced during sample preparation. Uncertainties 

associated with measuring peptide concentration could cause sample-to-sample variation 

in measured 13C signal decays as shown in Figure B.7. Lyophilization of CATCH(+/-) 

samples for ssNMR analysis may induce residual unassembled peptide to self-associate 

into β-sheet structures upon dehydration as described in APPENDIX B and demonstrated 

in Fig. S16. Fourth, our efforts to correct for naturally abundant 13C, which accounts for 

~1% of the carbon in the sample, may be inadequate. This is especially complicating at 

longer recoupling times where natural abundance plays a larger role as signal decays. 

Nonetheless, despite reasonable differences in the probabilities estimated from simulations 

and experiments, these observations collectively demonstrate a non-negligible frequency 

of like-neighbors in CATCH β-sheet coassemblies.   

4.4 Discussion: 

This work reports on the molecular-level coassembly of CATCH(+) and CATCH(-) 

peptides into two-component amyloid-like β-sheet nanofibers. When kept alone in aqueous 

solution, CATCH(+) and CATCH(-) largely resist self-assembly, although CATCH(+) 

demonstrates propensity for weak, transient association in DMD simulations, possibly due 

to its lower net charge compared to CATCH(-). When combined in aqueous solution, the 

two peptides co-organize into a bilayer of β-sheet tapes. Each tape has a predominant 

alternating -ABABAB- type β-strand pattern. Bilayer formation is a result of hydrophobic 

collapse; the tapes have opposing hydrophilic and hydrophobic faces conferred by the 

alternating sequence of hydrophilic and hydrophobic amino acids in CATCH(+) and 

CATCH(-), and these hydrophobic faces are packed into the core of the bilayer. This 

general architecture is not surprising, as it is consistent with the structure hypothesized for 
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the self-assembling zwitterionic Q11 peptide from which CATCH(+) and CATCH(-) were 

designed,4 as well as the closely related P11 variant.11-13 Taken together, these observations 

support the general hypothesis that electrostatic attraction and repulsion can encode 

molecular-level organization of β-strands within coassembled β-sheets. 

The CATCH peptides are charged variants of a well-known self-assembling peptide 

Q11 that is hypothesized to preferentially form antiparallel β-sheets to favor interactions 

between oppositely charged amino acids either end of the peptide.4 The designs of the 

CATCH(+) and CATCH(-) peptides lose this electrostatically driven alignment preference 

through the replacement of charged residues on either peptide that make the sequence 

palindromic. This sequence design may explain the lack of preference for the antiparallel 

or parallel orientation though the lack of programming towards an arrangement does not 

inhibit the MAX1 peptide from aligning in a specific manner within nanofibers.14 Another 

possible cause for the mixture of β-sheet structures is the fast kinetics which result in 

gelation within mixing times. Either of the β-sheet structures could be a kinetically trapped 

state. Thus, these results stand in contrast to the prevailing thought that peptides form a 

singular nanofiber structure for a given set of assembly conditions as observed in self-

assembling peptides.15-18 

The resultant assemblies are not, however, perfectly alternating. Rather, some 

CATCH(-):CATCH(-) and CATCH(+):CATCH(+) neighbors were found in DMD 

simulations and observed in ssNMR measurements. Not surprisingly, the tendency for 

CATCH(+):CATCH(+) mismatches appears greater than that for CATCH(-):CATCH(-) 

mismatches, presumably due to the lower net charge of the former. This tendency for like-

charge mismatches in CATCH nanofibers may be due in part to charge-shielding by 
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counterions present in buffered aqueous solutions. Here, instances may exist in which 

favorable hydrophobic interactions between the Phe residues on a free peptide and those in 

the core of a CATCH bilayer can overcome weakened Coulombic repulsion associated 

with peptide-ion complexation, thereby leading to like-charge peptide pairing within the 

growing amyloid. Similar results have been observed in ferricytochrome c fibrillization, 

where hydrophobic interactions can outweigh electrostatic repulsion in alkaline conditions 

even in the absence of counterions,19 as well as thermally induced assembly of the cationic 

MAX3 peptide.20 Thus, although electrostatic attraction and repulsion can encode peptide 

organization in general, our results suggest that achieving exquisite molecular-level 

precision in coassembled amyloid-like structures will require more sophisticated designs 

that incorporate other types of specific interactions between complementary β-strands. 

Such precision may ultimately be important in coassembling peptides systems finding use 

as biomaterials for medical or biotechnological applications because like-charged neighbor 

“defects” could act as fracture points or facilitate fiber remodeling via strand-swapping.  

Our experimental observations suggest that hydration is an important determinant of 

CATCH peptide self-association versus coassembly propensity. CATCH(+) and CATCH(-

) adopted random-coil configurations when kept alone in aqueous conditions, yet each 

peptide aggregated into β-sheet rich structures when dehydrated (Figure B.10). Consistent 

with this result, a previous report demonstrated that dehydration of amyloid-forming 

peptides can increase their fibrillization kinetics.21 Likewise, studies based on 

computational models have identified peptide dehydration as a key event in Aβ aggregation 

and self-assembly.22, 23 One plausible explanation for the role of water in preventing 

erroneous, “off-pathway” (AA) or (BB) self-association is rooted in observations that 
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hydrophilic molecules that tightly bind water molecules experience a repulsive steric-

hydration force that leads them to repel each other at small separations (<1 nm). Here, we 

postulate that it is the combination of long-range electrostatic repulsion plus the energy 

needed to dehydrate two CATCH(+) or two CATCH(-) molecules as they approach each 

other that limits (AA) or (BB) interactions in aqueous conditions. When CATCH(+) and 

CATCH(-) are combined in solution, though, Coulombic attraction between oppositely 

charged E and K residues coupled with hydrophobic collapse involving Phe residues is 

sufficient to overcome the dehydration energy barrier. Ultimately, coulombic interactions 

favor formation of β-sheets with an alternating (AB) strand arrangement over (AA) or (BB) 

pairings. 

4.5 Conclusions 

Coassembly of charge-complementary peptide pairs into amyloid-like β-sheet 

nanofibers is an emerging area of biophysics that is gaining increasing interest as the basis 

for fabricating new nanomaterials for medical and biotechnological applications. It is often 

suggested that charge-complementary peptides precisely coassemble into β-sheets with an 

alternating -ABABAB- strand pattern based on intuition and inferences drawn from 

biophysical measurements, yet such molecular-level order has not previously been 

validated. Here, we demonstrate that a combination of computational modeling and 

biophysical measurement methodologies can close this gap. In particular, we observed that 

an alternating strand pattern does indeed predominate upon coassembly of CATCH(+) and 

CATCH(-), yet some CATCH(+):CATCH(+)  and CATCH(-):CATCH(-) neighbors do 

occur. Thus, charge-complementarity alone is insufficient to encode precise β-strand order 

in two-component amyloid-like nanofibers. The charge patterning on the CATCH(+) and 
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CATCH(-) peptides also neglect to bias the alignment of β-strands within the nanofiber 

resulting in a mixture of arrangements. Collectively, these examples demonstrate the power 

of our computational-experimental framework to provide previously inaccessible views of 

the process of peptide coassembly from initiation to equilibrium. Such insights are 

expected to yield advances in our understanding of the molecular-level interactions that 

drive peptide coassembly, which in turn will lead to guiding principles for a priori design 

of new peptide pairs demonstrating exquisite molecular-level organization. We envision 

that achieving fine control of coassembled β-strand structure will afford unprecedented 

opportunities to design new nanomaterials with precisely defined organization of 

integrated functional biomolecule components, such as cell binding peptides, enzymes, or 

antigens. As a result, we may ultimately be able to realize supramolecular designs or 

patterns that are not possible with conventional self-assembling systems, thereby greatly 

expanding the range of functional nanomaterials available to medicine and biotechnology. 

4.6 Materials and Methods  

For general methods, please refer to Chapter 2. Content presented below indicate a 

deviation from the standard protocols previously mentioned. 

4.6.1 DMD simulations 

Discontinuous Molecular Dynamics (DMD) simulations are used to investigate 

spontaneous aggregation of complementary charged peptides. For DMD simulations with 

both CATCH(+) and CATCH(-) peptide chains, the initial configuration was prepared by 

randomly placing 48 CATCH(+) and 48 CATCH(-) peptide chains in a 200.0×200.0×200.0 
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nm3 box (20 mM). For DMD simulations with only CATCH(+) or CATCH(-) peptides, 96 

peptide chains were placed in the simulation box with a concentration of 20 mM.  

Canonical-ensemble (NVT ensemble) DMD simulations were conducted using our 

in-house code. DMD is an alternative to classical MD simulations. Instead of solving 

Newton’s equation of motion at regularly spaced time steps, DMD simulations proceed by 

solving the dynamics after each event between any two interacting sites. The temperature 

of the simulation system was controlled at T*=0.20 using the Andersen thermostat and is 

equivalent to temperature (342 K) with the PRIME20 model.24 Ten independent DMD 

simulations were conducted for each system; and each DMD simulation contains 500 

billion collisions, equivalent to 16 μs. The criteria for determining when pairs of peptides 

adjacent to each other are in a β-barrel or a β-sheet are the following. Any two peptide 

chains are considered to form a pair if they form >5 hydrogen bonds between them. Two 

peptides are in the same cluster if they form either >5 hydrogen bonds or >1 hydrophobic 

association. The tail and head amino acid resides are excluded from either calculation. 

4.6.2 PITHIRDS-CT nuclear spin simulations 

To understand the effects of isotopic dilution in the presence of deviation from ideal 

AB-alternation, we performed Monte Carlo simulations of β-sheets formed by coassembly 

of complementary peptides A and B. Each β-sheet pattern is symbolized by a string 

sequence of A’s and B’s. The addition of a peptide to the end of a β-sheet sequence in the 

Monte Carlo simulations is determined by the identity of the current peptide at the end and 

a probability of AA or BB nearest neighbors. The β-sheet length was set to 2000 peptide 
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units to approximate steady state. Then, the β-sheet sequence patterns were used to create 

spin simulations to examine dilutions effects on PITHIRDS-CT measurements.  

Due to computational limitations of spin simulations, the Monte Carlo predicted β-

sheet sequence pattern was sampled in 8-unit long segments at 50 random and distinct 

locations. Each 8-unit long letter sequence was then mapped to central sites on an ideal 

antiparallel β-sheet to produce sets of isotopically diluted spin systems. Simulations of 

PITHIRDS-CT decay curves are then produced using SpinEvolution NMR simulation 

software on each spin system.25 The series of simulations are summed across all 50 

locations. This procedure was performed 10 times on each Monte Carlo sequence to 

eliminate sampling artifacts to produce an averaged PITHIRDS-CT decay simulation. 

Finally, PITHIRDS-CT decays were produced by averaging over 10 Monte Carlo 

sequences at each simulated percentage of self-association propensity to again reduce 

sampling bias. 
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CHAPTER 5. CHARGE-DEPENDENCE OF SELECTIVE 

COASSEMBLY INTO Β-SHEET NANOFIBERS 

5.1 Overview of Chapter 

In Chapter 3 and 4, we evaluated two existing coassembling peptide pairs that 

represent two distinct approaches towards charge-complementary sequences. The amino 

acid sequences and overall peptide charges differ significantly from peptide pair to peptide 

pair. Even within the CATCH peptides design, the number of charged residues to promote 

selective coassembly ranges from 4 to 6 charged amino acids. As a result, it is not known 

how many negatively and positively charged amino acids are necessary to prevent self-

assembly and consequently, how this charge density affects peptide coassembly behavior. 

In this chapter, we evaluate the assembly behavior and composition of a series of designs 

incorporating an increasing number of lysine or glutamic acid residues to elucidate the role 

electrostatic repulsion plays in selective coassembly. 

5.2 Introduction 

Among the design of coassembling β-sheet peptides, there are two classes of 

sequences; selective coassembly versus nonselective coassembly. Peptides exhibiting 

selective coassembly behavior resist self-assembly in single-peptide solutions but form 

two-component β-sheets when combine. In contrast, we consider nonselective coassembly 

to include peptide pairs that self-assemble in addition to coassembly. Selective coassembly 

offers a method for triggered peptide assembly that does not rely on common stimuli such 

as temperature, pH, and salt to induce β-sheet formation. Many biological systems are 
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sensitive to such environmental factors and could result in unintended effects thereby 

limiting the application of peptide materials fabricated in this manner.1, 2 In addition, 

resistance to self-assembly prevents the formation of inclusion bodies in E. coli when 

recombinantly expressed with proteins of interest enabling its use for protein 

immobilization.3, 4 Understanding how to create peptide pairs that selectively coassemble 

into β-sheet nanofibers would broaden the form and function of peptide-based biomaterials.  

Charge-complementarity has been the prevalent method for creating peptide pairs 

exhibiting selective coassembly behavior, but there are no design rules on how to promote 

this behavior. In contrast, the alternation of hydrophilic and hydrophobic residues (HP)n 

has been shown to promote the formation of β-sheet nanofibers.5 The existing peptide pairs 

shown in Table 1.1 differ significantly with regards to the amino acid sequences making it 

difficult to conclude how electrostatic repulsion and attraction contributes to selective 

coassembly behavior. Peptide-peptide interactions involves an interplay of interactions 

such as van der Waals, hydrogen bonding, and electrostatic forces. These interactions 

create an energetic landscape that give rise to the hierarchy of structures for a specific 

amino acid sequence. Early studies relating the periodicity of polar and nonpolar residues 

to promote α-helical or β-strand conformations showcase the importance of these 

sequence-to-structure relationships.5 However, there has not been a systematic study of the 

charge necessary to prevent self-assembly and promote coassembly.  

In this Chapter, we investigate the propensity for coassembly over self-assembly in 

a series of peptides with increasing overall charge through a combination of experimental 

measurements and computational simulations. The three peptide pairs were designed by 

systematically incorporating an increasing number of lysine (K) or glutamic acid (E) 
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residues into an 11-amino acid sequence based off the well-known Q11 peptide. Equimolar 

mixtures of each charge-complementary pair successfully produce two-component β-

sheet-rich nanofibers as observed in TEM images and 1D 13C NMR spectra. Of these 3 

pairs, only the CATCH(4+/4-) and CATCH(6+/6-) pairs qualify as selectively 

coassembling designs based on FTIR measurements of single-peptide solutions. The 

kinetics of coassembly was evaluated by thioflavin T (ThT) fluorescence measurements 

and DMD simulations highlighting the role of complementary electrostatic interactions in 

promoting coassembly. Comparison of the relative abundance of the two components from 

quantitative 13C NMR spectra reveals that the positively charged peptide is more prevalent 

than the negatively charged peptide in all cases. Altogether, these results begin to shed light 

on the complex sidechain-sidechain interactions that result in selective coassembly 

behavior. 

5.3 Results 

5.3.1 Charge-complementarity peptides assemble into β-sheet-rich nanofiber 

Each equimolar mixture of charge-complementary CATCH peptides produces long 

nanofibers with distinct morphological features dependent on charge. Nanofiber samples 

were prepared at 10 mM total peptide concentration in 1X phosphate-buffered saline (PBS) 

and allowed to incubate for 24 hours before preparing TEM grids. CATCH(2+) and 

CATCH(2-) peptides assemble into long, straight nanofibers that seem to bundle and twist 

together as shown in Figure 5.1. Fibrils from coassembled CATCH(4+) and CATCH(4-) 

form long, thin and wiry nanofibers that sometimes associate and bundle into thicker and 

more rigid regions. This partial fiber bundling is similar to that observed in TEM 
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micrographs of coassembled King-Webb peptide nanofibers. Finally, mixtures of 

CATCH(6+) and CATCH(6-) peptides assemble into relatively uniform nanofibers that do 

not exhibit the same bundling observed in CATCH(2+/2-) and CATCH(4+/4-) mixtures. 

Similar differences in morphology have been reported for one- and two-component peptide 

nanofibers suggesting differences in the nanofiber compositions.6 However, we also note 

that differences may arise as a result of drying artifacts associated with TEM samples 

preparations. 

 

 

Figure 5.1 Coassembled CATCH peptides exhibit charge-dependent differences in 
nanofiber morphologies. TEM images of nanofibers produced from 10 mM mixtures 
of CATCH(2+/2-), CATCH(4+/4-), and CATCH(6+/6-) 

 

Solid-state NMR analysis of CATCH(2+/2-), CATCH(4+/4-), and CATCH(6+/6-) 

nanofiber samples  point to the formation of highly ordered two-component β-sheets. 13C 

NMR spectra were collected for centrifuged and lyophilized CATCH(2+/2-), 

CATCH(4+/4-), and CATCH(6+/6-) mixtures. The chemical shift peak centered at 53.4 
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ppm can be attributed to the α-carbons (Cα) of Gln, Lys, Glu, and Phe while the peak 

centered around 171.8ppm is assigned to the carbonyl carbons (CO) of the same residues.7, 

8 Comparison the measured chemical shifts for near-backbone carbon sites to values at the 

same sites in random coil structures can report on the secondary structure.7, 8 As illustrated 

in 97, the majority of the Cα and CO peaks are shifted upfield consistent with a β-strand 

conformation. The presence of shifts corresponding to the Cϵ of lysine and Cδ of glutamic 

acid at ~23 and ~181 ppm, respectively, indicated that both peptides were abundant in 

CATCH(4+/4-) and CATCH(6+/6-) samples.9 The abundance of both peptides suggest 

coassembly is strongly promoted by charge complementary partners. In contrast, a 

relatively smaller peak around 181 ppm is observed in the CATCH(2+/2-) suggesting that 

a smaller fraction of the total CATCH(2-) coassembled with the CATCH(2+) peptide. 

Narrow linewidths observed in the aliphatic region of the 1D 13C spectra ranged from 1.1 

ppm to 1.8 ppm (Table 5.1) and are close to linewidths found in protein crystals (0.5 – 0.6 

ppm).10 These results suggest that the nanofibers are highly ordered. Surprisingly, 

CATCH(2+/2-) peptide nanofibers seem to be less ordered despite the observation of long, 

straight nanofibers in TEM micrographs. 
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Figure 5.2 CATCH peptides coassemble into β-sheets as shown by 1D 13C NMR 
spectra of CATCH(2+/2-), CATCH(4+/4-), and CATCH(6+/6-) pairs 

 

Table 5.1 Comparison of Linewidths for the Lysine Cϵ Peak 

 FWHM in ppm 

CATCH(2+/2-) 1.82 

CATCH(4+/4-) 1.09 

CATCH(6+/6-) 1.18 
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5.3.2 Resistance to self-assembly depends on sidechain-sidechain interactions 

The minimum charge density necessary to prevent self-assembly in the CATCH 

peptides depends on the amino acid. Single-peptide solutions of CATCH(2-), CATCH(4+), 

CATCH(4-), CATCH(6+), and CATCH(6-) remain as random coils as shown by a broad 

maximum between 1642-1645 cm-1 in FTIR spectra as shown in Figure 5.3. FTIR spectra 

of CATCH(2+) solutions exhibit a maximum at 1621 cm-1 consistent with a β-sheet 

secondary structure indicating that CATCH(2+) readily self-assembles. The propensity for 

self-assembly of CATCH(2+) peptides corroborates the higher ratio of CATCH(2+) 

peptides to CATCH(2-) peptides observed in the 1D 13C NMR spectra. Thus, a minimum 

of at least 4 lysine residues are needed to disfavor peptide self-assembly while only 2 

glutamic acid residues are required in the negatively charged CATCH peptides. Altogether, 

the FTIR spectra indicate that only CATCH(4+/4-) and CATCH(6+/6-) peptide pairs meet 

our criteria for selective peptide coassembly. 

 

  

Figure 5.3 Most charged CATCH peptides remain as random coils as indicated by 
FTIR of single-peptide solutions. 
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5.3.3 The rate of coassembly increases with charge density 

CATCH(6+/6-) mixtures assemble more rapidly than the CATCH(4+/4-) solutions 

call attention to the role of electrostatic attraction plays in fibrillization kinetics. To probe 

coassembly kinetics, ThT fluorescence emission was monitored over 48 hours of assembly 

time. ThT binds to the grooved surface of β-sheets causing a shift in fluorescence excitation 

and an increase in ThT fluorescence corresponds to an increase in β-sheet content.11, 12 A 

large initial increase in ThT fluorescence in both CATCH(4+/4-) and CATCH(6+/6-) 

mixtures with no noticeable lag phase indicates rapid coassembly into β-sheets. The signal 

of the latter pair appears to saturate sooner suggesting a faster rate of coassembly. This 

rapid assembly behavior is consistent with our prior studies on the CATCH(4+/6-) and 

King-Webb peptides. Assembly kinetics of the CATCH(4+/4-) and CATCH(6+/6-) pairs 

were also assessed in PRIME20/DMD simulations to probe early timescales inaccessible 

by experiments. Each simulation run consisted of 48 positively charged chains and 48 

negatively charged chains within a 200 nm3 box. Analysis of the hydrogen bonds formed 

in DMD simulations qualitatively agrees with the faster coassembly of CATCH(6+/6-) 

pairs.  
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Figure 5.4 CATCH(6+/6-) coassembles more rapidly than CATCH(4+/4-) peptides as 
observed by kinetics analysis. (A) ThT kinetics measurements (B) Hydrogen bond 
analysis of DMD simulations. 

 

5.3.4 Composition of Coassembled β-sheet Nanofibers 

The positively charged CATCH peptide is more abundant than the negatively 

charged CATCH peptide within all coassembled peptide pairs. Analysis of chemical shift 

peaks in 1D 13C NMR spectra collected in a quantitative manner allow for a direct 

comparison of the relative amounts of a 13C site.13 As previously mentioned, the peak at 

~23 ppm can be attributed to the Cϵ of lysine residues within the positively charged 

CATCH peptides while the peak at ~181 ppm can be assigned to the Cδ of glutamic acid 
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residues in the negatively charged CATCH peptide sequences as shown in 102.9 Within 

each peptide pair, the number of positively and negatively charged residues in the 

complementary sequences is equivalent. Thus, the ratio of the peak areas directly 

corresponds to the relative amount of each peptide component within the coassembled β-

sheet nanofibers. Table 5.2 summarizes the ratio of the two peak areas highlighted in 102 

for each of the peptide pairs. The CATCH(2+) peptide is 4 times more abundant than the 

CATCH(2-) peptide within coassembled nanofibers produced from equimolar mixtures. 

The higher amount of CATCH(2+) peptides is not surprising given the propensity for self-

assembly shown by FTIR. Remarkably, the CATCH(4+) peptide is 2 times more abundant 

than the CATCH(4-) peptides. CATCH(6+/6-) peptide nanofibers are similarly 

proportioned. Though we would expect increasing the charge of the peptide molecules to 

promote a 1-to-1 assembly, the ratio of the two peptides seems to plateau as noted by the 

similar composition of CATCH(4+/4-) and CATCH(6+/6-) nanofibers. In each case, the 

ratio of the K Cϵ peak area to the E Cδ peak area is greater than 1 for all pairs despite the 

expectation that peptides would assemble into charge neutral nanofibers. 
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Figure 5.5 Quantitative 1D 13C NMR spectra of CATCH(2+/2-), CATCH(4+/4-), and 
CATCH(6+/6-) pairs. Peak areas for Cδ of E and Cγ of K residues are highlighted in 
red and blue, respectively. 
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Table 5.2 Composition of Coassembled CATCH Nanofibers 

 Ratio of Peak Areas 

Lys Cϵ/Glu Cδ 

CATCH(2+/2-) 4.33 

CATCH(4+/4-) 2.22 

CATCH(6+/6-) 2.07 

 

5.4 Discussion 

Our studies show that the minimum charge density necessary to prevent peptide self-

assembly depends on the sidechain-sidechain repulsion of the chosen amino acid. Several 

charge-complementary peptide sequences have been reported to exhibit selective 

coassembly behavior.4, 14-16 Despite the variety of peptide sequence designs, no systematic 

study has been conducted to determine the net charge density necessary to prevent self-

assembly. CATCH(2-) peptides remained as random coils within 10mM single-peptide 

solutions suggesting that 2 glutamic acid residues is sufficient to resist self-assembly in an 

11-residue amphiphilic peptide. In contrast, CATCH(2+) peptides are prone to self-

assemble into β-sheets as observed in FTIR measurements. For the positively charged 

CATCH peptides, a minimum density of at least 4 lysine residues was required to prevent 

self-assembly. This discrepancy in minimum net charge density to deter peptide self-

assembly may be rationalized by analysis of sidechain-sidechain interactions. The E 
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sidechain has a strong electrostatic repulsion as determined from the sidechain-sidechain 

interaction strength (εEE = 3.15 kJ/mol) computed from the knowledge-based PRIME20 

force field.17 In constrast, the K sidechain has a lower sidechain-sidechain interaction 

strength of εKK = 0.91 kJ/mol with other K sidechains. The relatively weaker repulsion 

results from its large hydrophobic aliphatic sidechain. Therefore, the CATCH(2+) peptide 

exhibits relatively weaker repulsion compared to the CATCH(2-) peptide. The weak 

repulsion is evidenced in the peptide nanofibers produced from mixtures of CATCH(2+) 

and CATCH(2-) which were primarily composed of CATCH(2+) peptides. 

Increasing the charge density disfavors self-assembly in single-peptide solutions, 

however, self-association still occurs in all cases. In all cases, the positively charged 

CATCH peptides were more abundant than the negatively charged CATCH peptides. 

Therefore, the peptide nanofibers likely grow and elongate through a kinetic competition 

between peptide self-assembly and coassembly. This kinetic competition is evidenced by 

the fact that CATCH(6+) peptides self-associate despite their high overall charge. The self-

association of the positively charged CATCH peptides can be rationalized by the sidechain-

sidechain interactions previously mentioned. On the other hand, a significant percentage 

of the CATCH(2+/2-) must be coassembled given that 20% of the peptide nanofiber is 

composed of CATCH(2-) peptides even though the CATCH(2+) peptides show a high 

propensity for self-assembly. Thus, oppositely charged peptides do favorably coassemble 

into two-component β-sheets echoing our previous findings. The competitive addition of 

peptide molecules to the β-sheet nanofibers is similar to the behavior of random copolymer 

growth.18 As such, it may be possible to tune the kinetic rate at which the peptide 
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“monomers” add to the nanofiber ends and thereby control the nanoscale patterning of 

peptide strands along the coassembled β-sheet nanofibers. 

Another consequence of increasing the overall charges of the two peptide 

components is the increase in the rate of fibrillization. ThT fluorescence kinetic 

measurements and hydrogen bond analysis of DMD simulations of CATCH(4+/4-) and 

CATCH(6+/6-) mixtures indicate a faster nanofiber formation in the latter pair. This 

behavior would suggest that the higher overall charges increase the rate of coassembly and 

complementary interactions should dominate, but the amount of self-association in the two 

charge-complementary pairs is similar. Instead, the long-range electrostatic interactions 

may promote aggregation and nucleation of peptide nanofibers. The DMD simulations 

show the formation of a peptide nanofiber occurs sooner in the CATCH(6+/6-) pair than 

the CATCH(4+/4-) pair possibly supporting this theory.  

5.5 Conclusion 

The design of two-component β-sheet peptide nanofibers has been predominated by 

experimentally derived sequences that utilize charge complementarity to confer 

coassembly behavior. This study has shown that electrostatic repulsion can be effective in 

preventing peptide self-assembly and consequently, it can confer selective coassembly 

behavior in charge complementary systems. Closer examination of the composition of the 

β-sheet rich peptide nanofibers reveals an imbalance in the stoichiometry that is consistent 

with FTIR measurements and analysis of the relative repulsion forces from the PRIME20 

force-field. Coassembling peptides were previously assumed to assemble 

stoichiometrically to form neutral β-sheets. Instead, the composition of the peptide 
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nanofibers follows the difference in repulsion between glutamic acid and lysine residues 

with the latter observing weaker like-sidechain repulsions due to the longer aliphatic 

sidechain. The non-stoichiometric assembly of the peptides highlights the complexity of 

interactions that contribute to the self-assembly and coassembly of peptides. As a result, it 

is challenging to develop two peptide sequences that selectively coassemble in a finely 

controlled manner. Designs of coassembling β-sheet peptides should attempt to account for 

sidechain-sidechain interactions in a more detailed manner. Computational simulations 

provide one route to factoring in this complexity. By tuning these sidechain-sidechain 

interactions, the competition between self-association and complementary addition to the 

fiber end may be manipulated to produce assemblies with exquisite control over the 

patterning of the β-sheet peptide nanofibers. 

5.6 Materials and Methods 

For general methods, please refer to Chapter 2. Content presented below indicate a 

deviation from the standard protocols previously mentioned. 

5.6.1 Discontinuous Molecular Dynamics Simulations  

Discontinuous Molecular Dynamics (DMD) simulations are used to investigate 

spontaneous aggregation of complementary charged peptides. DMD simulations were 

performed in a 200.0×200.0×200.0 nm3 simulation box using either 48 chains for peptides 

alone or 48 of both the cationic and anionic peptides. The simulation temperature was 

maintained at T*=0.20 (~310 K) using the Andersen thermostat. Ten independent DMD 

simulations were conducted for each DMD simulation containing 500 billion collisions, 

equivalent to 16 µs.  
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CHAPTER 6. A COMBINED COMPUTATIONAL AND 

EXPERIMENTAL FUNNEL FOR COASSEMBLING PEPTIDE 

DISCOVERY 

6.1 Overview of Chapter 

Existing coassembling β-sheet peptide pairs were discovered by an iterative 

experimental approach using a well-known self-assembling peptide as the starting point. 

This iterative approach has been successful in discovering several selectively coassembling 

peptide pairs including those identified in Chapter 5. Thus far, current designs have 

employed a limited set of residues ignoring the wealth of sidechain-sidechain interactions 

afforded by all 20 naturally occurring amino acids. This lack of sequence diversity is in 

part due to the intractability of exploring the full sequence space for two 11-residue 

peptides. Here, we propose a combined computational and experimental pipeline for the 

efficient discovery of selectively coassembling β-sheet peptides. In addition, we compare 

the computationally designed peptide pairs with previous designs. 

6.2 Introduction 

Coassembly is rare in nature requiring insights from de novo designs to inform the 

discovery of synthetic peptide pairs. A simple scan through the sequences of existing 

coassembling β-sheet peptides reveals that a small portion of the possible sequence space 

has been explored thus far. As a result, we have little direct knowledge of the molecular-

level interactions that cause two distinct peptides to coassemble into amyloid-like 

structures. Subsequently, the discovery of coassembling peptide pairs has relied on an 
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iterative approach beginning with the peptide sequences of well-known self-assembling 

peptides.1-5 The King-Webb and CATCH peptides were developed in this manner.2, 5 This 

iterative approach requires significant labor and cost; peptide synthesis and purification 

along with structural characterization can take several weeks. Even so, the process does 

not guarantee selective coassembly behavior as evidenced by the results in Chapter 5. 

Therefore, it is desirable to create a design framework that efficiently identifies 

coassembling β-sheet peptide sequences. 

One of difficulties in designing of β-sheet-forming peptides comes from the 

challenge of effectively searching the enormous amino acid sequence space to identify 

peptides with the desired properties. For this reason, systematic investigation of peptide 

assembly has been limited to short peptides within two to three residues.6, 7 The design 

problem becomes even more challenging for two distinct peptides that selectively 

coassemble into β-sheet nanofibers. Algorithms such as WALTZ, TANGO, and 

Zyggregator predict the self-aggregation propensities of sequences by correlate 

amyloidogenic tendencies of individual amino acids.8 No such algorithm exists for the 

prediction of peptide coassembly. Even with a design algorithm, these sequence designs 

need to be validated by experiments. Thus, evaluation by FTIR spectroscopy and solid-

state NMR are necessary to determine self-assembly propensity and molecular-level 

coassembly. A combined computational and experimental funnel would expedite the 

discovery of new peptide pairs yielding insights into the design rules for selective 

coassembly and the broader protein folding problem. 

In this Chapter, we describe a combined computational and experimental design 

funnel to efficiently identify new coassembling peptide pairs for a targeted nanofiber 
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structure. Initially, candidate selectively coassembling peptide designs are identified 

through a Monte Carlo-type computational algorithm. This algorithm builds off prior work 

from Xiao et al. to design peptide sequences that bind to biomolecular targets with high 

affinity.9, 10 Potential peptide pairs are then screened by discontinuous molecular dynamics 

(DMD) simulations and FTIR spectroscopy for the likelihood of selectively coassembling 

into β-sheet-rich nanofibers. Of the 6 peptide pairs, only 4 of the peptides are observed to 

resist self-assembly in single-peptide solutions and form β-sheets in two-component 

mixtures. Finally, centrifuged and lyophilized nanofiber samples were prepared, and solid-

state NMR measurements were conducted testing molecular coassembly by detecting 

chemical signatures from each peptide component within the assembled β-sheet 

nanofibers. Further analysis of the 1D 13C NMR spectra suggest the computationally 

identified peptide nanofibers are more highly ordered than previous designs, but peptide 

self-association still occurs and may be unavoidable in charge-complementary designs. 

6.3 Results 

6.3.1 The computational algorithm identifies 6 potential pairs 

Six coassembling peptide sequences are evolved from the Monte Carlo-based search 

algorithm that exhibit high binding energies and low intrinsic self-aggregation 

propensities. The computational algorithm runs were initiated from a randomly generated 

sequence following the same hydrophobic and hydrophilic residue patterning as the 

CATCH(4+) and CATCH(6-) peptides. Peptide molecules with this sequence pattern are 

arranged into a two-component β-sheet nanofibril structure derived from the 

CATCH(4+/6-) peptides. In this arrangement, the peptide strands are aligned antiparallel 
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to one another to form two perfectly alternating β-sheets. These two coassembled β-sheets 

are then stacked with their hydrophobic faces pointing towards each other forming a 

hydrophobic core. Additional details regarding this initial structural model are described 

in Appendix D. Once initiated, the Monte Carlo-based algorithm proceeds through 3 

possible sequence moves for 1000 steps as described in the methods section. For each of 

six runs (3 runs with λ = 3.0 and 3 runs with λ = 4.0), the sequence with the lowest score 

was selected producing six candidate pairs. All of the peptide pairs show negative values 

for the binding free energy and low values for self-assembly propensities summarized in 

Table 6.1. 

 

Table 6.1 Sequences of 6 computationally identified coassembling peptide pairs 

Designs Sequences and Sites Scores 

(kcal/mol) 

Binding 
free 

energy 

Aggregation 
propensity 

1 2 3 4 5 6 7 8 9 10 11 

1 A K K K M K V K V N T T -203.20 -200.56 -0.88 

B T N T A D F E F E E D 

Starting sequences for design 1: DRKLEFRATQS, EQHFDYNVKRE. (Initial score: 62.34 
kcal/mol) 

2 A K K K V K V K F T T N -202.74 -199.43 -1.11 

B T N T V D F E Y E E D 

Starting sequences for design 2: ETSYDFKAREQ, RSEIQWNLDEE. (Initial score: 70.82 
kcal/mol) 

3 A K K K W K M K A T N T -214.69 -206.95 -2.58 

B T N T V E V E L D D D 

Starting sequences for design 3: HREWRLRITRQ, ESNFEMRWKQK. (Initial score: 212.12 
kcal/mol) 
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Table 6.1 continued 

4 A K K K V K V K V N T T -204.90 -201.26 -0.91 

B T N T A E F E F E E D 

Starting sequences for design 4: DRKLEFRATQS, EQHFDYNVKRE. (Initial score: 62.34 
kcal/mol) 

5 A K K K V K V K V N T T -206.44 -204.95 -0.37 

B T N T M D F E Y E E D 

Starting sequences for design 5: ETSYDFKAREQ, RSEIQWNLDEE. (Initial score: 70.82 
kcal/mol) 

6 A K K K V K Y T F K N T -207.40 -201.63 -1.44 

B T N T M E V D F D E D 

Starting sequences for design 6: HREWRLRITRQ, ESNFEMRWKQK. (Initial score: 212.12 
kcal/mol) 

*Designs 1-3 result from setting λ=3.0, while Designs 4-6 result from setting λ =4.0. 

The starting sequences for the six pairs of the peptides A and B are listed after each design. 

 

6.3.2 DMD simulations and FTIR measurements screen for β-sheet-rich Nanofibers 

Computationally identified peptides are screened through a series of DMD 

simulations to observe coassembly and self-assemlby behavior in silico reducing the pool 

to 5 peptide pairs. Final snapshots of PRIME20/DMD simulations of peptides are shown 

in Figure 6.1. Four of the peptide designs (1, 2, 4, and 5) form multilayer β-sheet fibrils 

during the simulations. While unintended, the computational observation of multilayer β-

sheet suggests this structural feature can be programmed into peptide sequences. Peptide 

design 3 remains as random coils throughout the simulation time suggesting a low 
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propensity for coassembly. As a result, we exclude design 3 from further testing. Of the 6 

original designs, only design 6 assembles into the desired two-layer β-sheet nanofibers 

within DMD simulations. Subsequently, designs 1, 2, 4, 5, and 6 were synthesized and 

purified. 

 

 

Figure 6.1 PRIME20/DMD simulations of all 6 candidate pairs identified by the 
computational search algorithm 

 

Experimentally, all of the synthesized designs resist self-assembly and four out of 

the 5 candidates successfully assemble into β-sheets. FTIR spectra were collected on each 

of the peptides individually as well as in equimolar mixtures at a total peptide concentration 

of 10 mM in 1X PBS. Figure 6.2 shows FTIR spectra for the 5 candidate pairs that were 
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synthesized. Individually, all synthesized peptides remained as random coils as suggested 

by the broad peak at 1640 cm-1. FTIR spectra of design pairs 1, 2, 4, and 5 exhibited peaks 

at 1620 cm-1 consistent with the formation of β-sheets. These results are consistent with 

our prior studies on charge complementary peptides indicating that complementary 

interactions drive assembly in charge-complementary peptides. Further analysis by solid-

state NMR is required to assess peptide coassembly. 

 

 

Figure 6.2 All candidate pairs resist self-assembly and form β-sheets through 
complementary interactions as shown by FTIR spectra of the computationally 
identified pairs 1, 2, 4, 5, and 6. 
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6.3.3 Computationally identified pairs coassemble into β-sheet nanofibers 

Remarkably, the remaining 4 computationally identified pairs coassemble into β-

sheet-rich nanofibers. The positively charged, A, peptide features 5 lysine residues in each 

of the designs providing an abundant and distinct chemical shift around 23 ppm 

corresponding to the Cϵ site on the lysine sidechain. Similarly, the negatively charged, B, 

peptides all contain 3-4 glutamic acid residues. As we have previously demonstrated, the 

δ-carbon of the Glu sidechain provides a well-separated chemical shift peak at ~181ppm. 

In 1D 13C NMR spectra of centrifuged and lyophilized nanofiber samples, the Glu Cδ peak 

and Lys Cϵ peaks are well resolved and are present in all 4 cases.11 This result suggests 

that each of the computationally identified pairs coassemble into nanofibers. Comparison 

of the measured carbonyl carbons (CO) chemical shifts against the value for the same sites 

in a random coil configuration in Figure 1.1 shows a decrease in the upfield shift in the 

peak consistent with a β-sheet-rich structure.12, 13 This result corroborates the analysis from 

FTIR spectra of equimolar mixtures. After the computational and experimental testing, 

four out of the six evolution runs successfully produced sequences that meet the criteria for 

selective coassembly. 
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Figure 6.3 1D 13C NMR spectra of computationally identified peptide pairs 1, 2, 4 
and 5 show signatures of coassembled β-sheets. 

 

6.3.4 Computationally Designed Pairs are more ordered than previous designs 

Measurements of the peak linewidths in 1D 13C NMR spectra of the coassembled 

peptide pairs show that the nanofibers are exceptionally well ordered. Linewidths (full 

width at half maximum) are reported in Table 6.2 for the Glu Cδ and Lys Cϵ chemical shift 

peaks. The sensitivity of chemical shift values to the chemical environment surrounding a 

13C site can result in broad linewidths for a disordered structure or multiple structures 

though other factors can contribute to broad linewidths. On the other hand, narrow 
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linewidths would suggest a highly ordered structure. The linewidths observed in the 

computationally identified pairs are comparable to those observed in protein crystals 

indicating a very highly ordered structure.14 Compared to linewidths in the family of 

CATCH peptides and King-Webb peptides, the linewidths of the computationally 

identified pairs are almost 2X smaller suggesting the new peptide pairs may be better 

behaved and structurally homogeneous. 

 

Table 6.2 Peak linewidth and area analysis computationally identified peptides (CIP) 

 Peptide A 

FWHM in ppm 

Peptide B 

FWHM in ppm 

Peak Area   

Lys Cϵ/Glu Cδ 

CIP 1 0.682 0.430 1.73 

CIP 2 0.775 0.687 1.55 

CIP 4 0.522 0.526 1.53 

CIP 5 0.553 0.553 1.78 

 

In each of the pairs, the two peptides are almost equally abundant though the amount 

of the positively charged peptide (peptide A) is slightly higher as observed in other charge-

complementary peptide systems. As previously detailed, the chemical shift peaks assigned 

to the Glu Cδ and the Lys Cϵ sites are unique to peptide B and peptide A, respectively. The 
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ratio of the peak areas is normalized for the number of Glu and Lys residues within the 

sequence and reported in Table 6.2. In all cases, the Lys Cϵ peak area is larger than the Glu 

Cδ peak area consistent with our prior observations in the CATCH and King-Webb 

systems. Surprisingly, the computationally identified pairs form coassembled β-sheet-rich 

nanofibers that are significantly closer to stoichiometric as compared to the family of 

CATCH peptides investigated in Chapter 5. 

6.4 Discussion 

Computational tools can successfully explore the vast amino acid sequence space to 

identify sequences that selectively coassemble into β-sheet-rich nanofibers. From six 

evolution runs, four peptide pairs were shown to resist self-assembly and coassemble into 

β-sheets experimentally. This computational algorithm combined with FTIR and solid-

state NMR spectroscopy represent a shift in the paradigm of discovering selectively 

coassembling peptide pairs. Prior to this work, peptides were designed through an iterative 

process that systematically replaced residues within a well-characterized self-assembling 

peptide to produce two peptides that remained in a random coil configuration in single-

peptide solutions but formed coassembled β-sheet nanofibers when combined.1-3, 5 It is 

important to note that one of the designs failed to coassemble into β-sheets. Until 

simulations can capture the full complexity of protein folding and interactions, 

experimental validation is necessary. Successful application of coassembling β-sheet 

peptides as functional biomaterials will inevitably require different peptide sequences with 

different material properties. This design framework reduces the labor and cost in 

expanding the breadth of literature on coassembling β-sheet peptides enabling their 

application to a variety of challenges. 
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Despite the simplicity in the score function used in evolving the peptide sequences, 

the computational algorithm identifies coassembling peptide sequences that may be more 

structurally homogeneous than previously reported peptide sequences. The score function 

accounts only for the self-assembling propensities and the binding energy of the peptide 

sequence. These two factors were sufficient in producing sequences that had exceptionally 

narrow linewidths and that were coassembled into near stoichiometric β-sheets as 

compared to our investigations of the CATCH and King-Webb peptides. These results 

highlight the utility in including computational tools that can better capture the 

complexities of sidechain-sidechain interactions.15 In addition, the high-resolution of the 

1D NMR spectra and the diversity of residues used in the sequence encodes more structural 

information into the nanofiber structure that can be easily probed by 2D solid-state NMR 

measurements. Nanofibers produced from the computationally identified pairs may exhibit 

less structural heterogeneity than that observed in the CATCH and King-Webb aggregates 

potentially yielding insights into the design of complementary sequences for a targeted 

structure. 

Similarities between the sequence pairs may indicate design considerations for 

peptides that coassemble into β-sheet-rich nanofibers. It is important to note that the 

algorithm was initiated from a random sequence that obeyed the hydrophilic/hydrophobic 

patterning of the CATCH peptides. In addition, the amino acids were restricted to 3 

hydrophobic residues, 5 charged residues, and 3 hydrophilic residues to ensure sufficiently 

solubility in aqueous solutions. The evolution of the sequences led to the clustering of 

lysine (K) residues to the N-terminus of Peptide A while glutamic acid (E) and aspartic 

acid (D) residues are clustered at the C-terminus of the Peptide B in all complementary 
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pairs. Similar “sticky ends” have been shown to be effective the coassembly of the SAF p1 

and p2a peptides into highly ordered coiled-coil nanofibers.16 Asparagine (N) and 

threonine (T) amino acids appear frequently in the sequences due to their low intrinsic self-

aggregation propensities and favorable sidechain-sidechain interactions between the 

carboxamide group (CO-NH2) on the asparagine sidechain and the hydroxyl group (OH) 

on the threonine sidechain.15 As expected, the arrangement of the amino acids likely 

accounts for the preference for a certain arrangement within the coassembled nanofiber and 

could explain the mixed β-strand alignments seen in the more palindromic King-Webb and 

CATCH peptides. 

6.5 Conclusions 

The discovery of coassembling peptides has commonly relied on an iterative 

experimental approach requiring significant labor and cost. Through a combined 

computational and experimental funnel, the identification of selectively coassembling 

peptides can be facilitated. The utility of this framework has been shown to successfully 

produce four new coassembling peptide pairs significantly increasing the number of 

designs in literature. The peptide nanofibers produced from these computationally 

identified pairs appear to be more ordered and structurally homogeneous than previously 

reported coassembling β-sheet peptides. As it stands, the computational algorithm only 

factors in two design parameters, self-aggregation propensity and binding energy, and has 

several constraints to the sequence pattern. Most notably, it constrains the sequence to an 

alternating hydrophobic/hydrophilic patterning derived from earlier work sequence 

patterning to promote secondary structure reducing the possible designs. Releasing the 

sequence constraints could identify design motifs that promote selectively coassembly 
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behavior not currently known. Increasing the complexity of the computational algorithm 

could produce nanofibers with exquisite control over the molecular-level organization of 

the peptide strands. 

 

6.6 Materials and Methods 

For general methods, please refer to Chapter 2. Content presented below indicate a 

deviation from the standard protocols previously mentioned. 

6.6.1 Peptide design algorithm 

A Monte Carlo-based search is used to design peptides A and B that can coassemble 

into a predetermined molecular architecture, such as a β-sheet or a β-barrel. This 

architecture, hereafter referred to as the “peptide scaffold”, can be of any type, e.g., a single 

or multiple β-sheet fibril (flat or twisted, parallel or antiparallel, in-register or out-of-

register), a β -barrel oligomer, or an α-helix bundle, and can contain any number of 

assembling peptides. Figure 6.4 shows a flowsheet of the computational search algorithm. 

Classification used by the algorithm for the 20 natural amino acids is provided in Table 

6.3. 
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Figure 6.4 Workflow for the MC-based search algorithm. A) Different possible initial 
structures including β-sheet fibril, β-barrel oligomer, and α-helix bundle. B) 
Schematic depicting the design process for coassembling peptide sequences. 
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Table 6.3 Classification of the 20 natural amino acids 

Hydrophobic Residues 

Ala(A),  Leu(L),  Val(V) 

Ile(I),  Met(M) 

Phe(F),  Tyr(Y),  Trp(W) 

3 H 

Charged Residues 
Arg(R),  Lys(K) 

Glu(E),  Asp(D) 
5 

P 

Hydrophilic Residues 
Asn(N),  Gln(Q) 

Ser(S),  Thr(T),  His(H) 
3 

Other Residues Cys(C),  Pro(P),  Gly(G) 0  

    

6.6.2 Discontinuous molecular dynamics (DMD) simulation and PRIME20 model 

In this work, we performed large-scale DMD/PRIME20 simulations to evaluate the 

spontaneous aggregation and coassembled structures of the best six peptide pairs designed 

from our computational algorithm. In addition, we also perform simulations on the CATCH 

peptide pair designed by Seroski et al.5 All the simulations are carried out for 5 μs in the 

canonical (NVT) ensemble. For the peptide coassembly cases, 100 A and 100 B peptides 

are initially randomly placed in a cubic box with a length of 321.0 Å, corresponding to a 

peptide concentration of 10 mM. We set the reduced temperature T* of the simulations to 

be 0.195, which corresponds to 330 K in real temperature units.23 For the peptide self-

assembly cases, single peptide species system containing either 40 A or 40 B that originate 

from the six designed peptide pairs are kept at the same concentration and temperature as 
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in the coassembly cases. We repeat the simulation three times for each of the systems 

mentioned above. 
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CHAPTER 7. CONCLUSIONS 

Coassembling β-sheet peptides emerged as a new frontier in functional biomaterials 

that expand the portfolio of accessible nanostructures.1 These materials were assumed to 

behave as programmed, but there has been no evidence to support this claim.2, 3 Through 

the structural analysis presented here, we show that the peptides coassemble into the 

proposed arrangements, but remarkably, a significant proportion of the nanofibers form 

off-target structures. While this level of heterogeneity may suffice for some 

biotechnological applications, these results highlight the challenge in designing 

complementary peptides with exquisite control. Subsequently, we investigated a series of 

new peptide pairs discovered through two different methods, a systematic experimental 

approach and a combined computational and experimental pipeline. Coassembling 

peptides developed through these two methods provided insights into the sidechain-

sidechain interactions governing the formation of two-component β-sheet-rich nanofibers. 

Altogether, these results begin to chip away at the complexities underlying peptide 

sequence to structure relationships. 

7.1.1 Charge Complementarity: an Imperfect Tool for Selective Coassembly 

While several coassembling β-sheet peptides exist, only a handful coassemble in a 

selective manner meaning the peptides only form β-sheets when combined rather. The only 

reported method for imparting selective coassembly behavior is through the concept of 

charge complementarity. Each peptide exhibits an overall charge that reduces the 

likelihood of self-assembly via electrostatic repulsion, but the oppositely charged peptides 

attract each other and arrange into two-component β-sheets. It was assumed that these 
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complementary peptides alternate along the β-sheet due to electrostatic repulsion of like-

peptides.2, 3 However, our solid-state NMR measurements indicate that like-peptides can 

neighbor each other forming self-associated pairs within the peptide nanofiber. Depending 

on the amino acid sequence, abundance of self-associated peptide pairs can be significant 

as shown in Chapter 4.  

Direct and indirect observations of like-peptide pairs in all charge-complementary β-

sheet peptides investigated leads to two possibilities. First, charge complementarity alone 

is insufficient in preventing self-association in mixtures of the two peptide components. A 

number of self-assembling peptides have an overall charge, yet, self-assemble in ionic 

solutions. Most notably, the lysine-rich MAX1 peptide folds into β-hairpins and assembles 

into highly ordered β-sheet-rich nanofibers.4 Several of the P11 peptides developed by 

Aggeli and Boden have an overall negative or positive charge but self-assemble into β-

sheet ribbons and fibrils beyond a critical concentration.5 Charge-screening from salts and 

the complementary peptides may facilitate the addition of a like-peptide to the fiber end to 

form a self-associated pair.  Second, the alternating polar and nonpolar residue patterning 

(HP)n promotes self-association driven by hydrophobic interactions and hydrogen bonding. 

β-sheet oligomers were shown to be promoted by sequence patterning despite the 

individual amino acid’s propensity for β-sheet formation.6 One solution to this problem is 

exploring the sequence space for new amino acid patterns that promote selective 

coassembly into β-sheets. 
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7.1.2 Sequence Symmetry and Structural Heterogeneity in Peptide Designs 

Existing coassembling β-sheet peptides are derived from well-known self-

assembling peptides that are believed to arrange into antiparallel β-sheets. By extension, 

the charge-complementary variants of these parent sequences are hypothesized to also form 

antiparallel β-sheets.2, 3 Limited FTIR measurements provide some support for this claim. 

However, solid-state NMR measurements along with coarse-grained DMD simulations 

revealed that complementary β-strands can orient into both parallel and antiparallel 

positions within a β-sheet. Looking at the amino acid sequences of the CATCH and King-

Webb peptides, these findings are not surprising. Symmetry in the amino acid sequence 

may be aesthetically pleasing but the palindromic patterning of the sidechains may permit 

peptides to add onto the fiber end in either orientation. Simulations also predict the out-of-

register alignment of peptide strands that could result from lack of programming for a given 

3D arrangement. Sequences generated by the combined computational and experimental 

framework in Chapter 6 exhibit a patterning that may bias towards antiparallel β-sheets. 

With linewidths in 1D 13C NMR spectra comparable to protein crystals, the 

computationally identified peptides are more likely to form a single structure. The 

computational algorithm produced sequences that used a wider variety of amino acids that 

could aid preferential arrangement into antiparallel β-sheets. 

7.1.3 Combining Computational Simulations with Solid-State NMR 

By combining computational simulations with experiments, a deeper understanding 

of peptide coassembly was achieved. These two approaches complement each other and 

can make up for the limitations of the other. Computational tools allow us to observe 
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peptide coassembly at timescales inaccessible by conventional experimental methods. 

Probing these timescales provides insight into possible mechanisms that cannot be easily 

observed by solid-state NMR. Furthermore, the use of predictions from simulations and 

the use of 3D molecular models aides in the design of solid-state NMR measurements and 

the interpretation of NMR results. On the other hand, computational cost restricts the size 

and length of simulations. These constraints make it difficult to truly sample all 

thermodynamic states and has been shown in our studies could lead to a gap in the 

predictive capabilities of computations on the final structure of coassembled peptide 

nanofibers. Experimental techniques capture these final states and can report on behavior 

from a true statistical distribution. Computational tools such as the PRIME20 force-field7 

provide insight into these intermolecular interactions and could enable the future design of 

sequences with a specific nanoscale organization important in the use of these peptide-

based fibers as functional biomaterials. 

7.2 Future work: 

Broadly speaking, peptide coassembly is a novel route to expanding the portfolio of 

nanostructured biomaterials with the possibility of incorporating functional motifs in a 

reproducible and controlled manner. Further development of coassembled peptides as 

functional biomaterials will be enabled by a better understanding of the coassembly 

pathway, refining the computational algorithms to design novel coassembled 

nanostructures, and characterizing the effects of covalently attached biomolecules on the 

peptide nanofiber structure. 
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7.2.1 Uncovering the Peptide Coassembly Pathway 

Self-assembling peptides are considered to fold and organize into their 

thermodynamically favored state. Coassembling peptides are less well characterized and 

have fast assembly kinetics within mixing times. This difference in behavior raises the 

question whether or not the structural defects in the coassembled King-Webb and CATCH 

peptides are kinetically trapped states. Further study along this pathway is needed to test 

this hypothesis. Lowering the total peptide concentration can slow down the assembly 

times of the peptides. Solid-state NMR analysis of nanofiber samples prepared through this 

method would make progress toward answering this question. Another consideration is the 

assembly pathway in which the charge-complementary coassembling peptides proceed. 

Rapid formation of peptide aggregates has been observed in TEM micrographs of CATCH 

peptides at low concentration and lower temperatures. The strong electrostatic attraction 

between the oppositely charged peptides may facilitate this rapid oligomer formation. The 

oligomers may then slowly reorganize into bi-layer β-sheets that grow by oligomer addition 

or by monomer addition.8-10 If these mixtures can be trapped in the oligomeric state, further 

study by solid-state NMR or cryo-EM may be possible. Recent advancements in dynamic 

nuclear polarization NMR and high-resolution magic-angle-spinning NMR have benefitted 

the related fields, such as metabolomics and protein folding, and could also aid in the study 

of oligomeric species.11, 12 However, these methods are relatively new and not widely used 

in characterizing self-assembling and co-assembling peptides possibly requiring adaptation 

to these systems. Understanding the cause of this mixture in β-strand arrangements and 

peptide self-association will enable us to develop next generation coassembled β-sheets 

with exquisite control. Furthermore, control over the arrangement and patterning of 



133 
 

peptides in the nanofiber may be desirable to intentionally promote self-association to co-

localize biomolecules. These designed defects are reminiscent of the implantation of 

defects in crystalline materials to effect change in its physical properties.  

One of the changes necessary in developing a mechanistic understanding of the 

assembly pathway is the characterization of non-ideal samples. Commonly, the field of 

biomolecular NMR focuses on the analysis of highly ordered protein and peptide 

samples.13-16 While the highly ordered structures provide high quality and high resolution 

data that facilitate the study of biological systems, these systems and samples neglect the 

more nuanced effects of off-pathway structures and the presence of structural defects. 

These deviations deepen our knowledge on the ensemble of interactions that govern 

peptide assembly and protein folding. Minor structures that form in these assembly 

conditions may also be ignored in the same manner.17 Evaluating these heterogeneities will 

also benefit from the further refinement of nuclear spin simulations that capture some of 

their complex effects on different NMR measurements. By studying peptide assemblies 

holistically in different conditions we can better capture the complex interactions involved 

in the process. 

7.2.2 Structures: Oligomers and Computationally Aided Design 

The ability to computationally identify new coassembling β-sheet peptides is a 

promising step forward in the design of these materials. However, the designs produced 

from the algorithm rely on the same sequence pattern found in the CATCH peptide pair 

which consequently results in charge-complementary peptides. Materials with highly 

charged surfaces are unattractive in certain cell applications that are sensitive to 
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interactions between the cell membrane, which has a negative resting membrane potential, 

and the material scaffold.2, 18-20 Creating peptides that do not only rely on electrostatic 

repulsion and attraction to confer coassembly behavior is the next challenge in designing 

functional peptide-based biomaterials for a broader range of biotechnological applications. 

Insights from the design of peptides beyond the experimentally based sequences could 

unveil novel design motifs that promote β-sheets and deepen our understanding of protein 

folding and misfolding. Coassembling β-sheet segments that react orthogonally could also 

further our ability to design more complex geometries and nanoarchitectures beyond those 

found in nature similar to efforts in DNA origami.21  

Computational simulations revealed the possibility of β-barrel-like oligomers 

forming along the coassembly pathway. These β-sheet rich oligomers could be a desirable 

structure for developing functional biomaterials. These β-sheet rich oligomers would offer 

a higher density of functional ligands in soluble nanoparticles. Through our combined 

computational and experimental approach, characterization of the organization of these 

oligomeric aggregates observed by TEM and DLS in the CATCH systems may provide 

insights into the targeted design of these structures. The design and study of β-sheet rich 

oligomers would inform the active research on disease-related amyloids which are often 

though to form toxic oligomers.22 

7.2.3 Towards Functional Use 

Ultimately, our interest in coassembled peptides is rooted in the desire to create 

biomaterials with specific properties for use in a variety of biomedical and biotechnological 

applications. Towards this end, assessing the influence of covalently attached biomolecules 
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on peptide coassembly is necessary to develop fine control of nanoscale organization. 

Experimental measurements and computational simulations have highlighted the 

significant heterogeneity present in current coassembling peptide designs. Subsequently, it 

is likely that covalently attached biomolecules will influence the structure of coassembled 

peptide nanofibers especially if the ligands have negatively and positively charged 

functional groups. Despite the prevalence of self-assembling peptides as biomaterial 

scaffolds, there has not been any systematic studies on the structural changes that could 

arise from the additional functional motifs onto these self-recognizing peptides. The 

attachment of glycans to well-known self-assembling peptide Q11 has been shown to 

produce to hierarchical structures similar to collagen.23 On a more applied side, the 

organization of these functional segments may be important in the type and degree of 

response they elicit when interacting with cells in applications such as immunoengineering 

and regenerative medicines.24-28  

Zooming out from the nanoscale, macroscopic material properties are often 

important in determining the choice of material for a targeted application. The field of 

biocompatible polymers has benefitted from the polymer theory that bridges this gap in 

molecular-level design to macroscopic material properties enabling their prevalent use in 

biomedical and biotechnological applications. Similarly, peptide-based biomaterials 

research should develop a functional theory of how sequence design can influence physical 

properties of the assembled material. Ultimately, an engineer should be able to search 

through a library of materials to identify a subset of peptide designs that have the desired 

elastic, thermal, and optical properties. Work from the Barone lab has begun to characterize 

the material properties of β-sheet inducing additives to produce structurally engineered 
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peptide materials.29 This work while promising falls short of understanding the structure. 

A common example of proteinaceous material with exceptional physical properties is silk. 

Characterization of the composition and structure of silk has led to the development of 

synthetic silk as well as the creation of silk-like materials for other applications.30   
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APPENDIX A. SUPPLEMENTARY INFORMATION FOR 

CHAPTER 3 
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Figure 5 Snapshots of coarse-grained discontinuous molecular dynamics (DMD) 
simulations of King-Webb peptides at specified times. 
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Figure 6 2D 13C-13C 500ms dipolar assisted rotational resonance (DARR) spectrum 
of an isotopically labeled KW peptide nanofiber sample (Sample A). Colored lines 
indicate spectral assignments for isotopically labeled residues determined by 2D 
fpRFDR. Bi-colored circles highlight off-diagonal crosspeaks resulting from 
interresidue 13C-13C couplings. Tri-colored circles indicate overlapping crosspeaks 
with signal contributions from 3 residues. 1D slices are shown to illustrate analysis of 
interresidue 13C-13C couplings at indicated frequencies. 
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Figure 7 2D 13C-13C finite-pulse radio-frequency driven recoupling (fpRFDR) NMR 
spectrum of Sample A. Solid lines indicate spectral assignments determined by 
analysis of peak positions with random coil values from the BMRB. 
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Figure 8 1D 13C NMR spectrum of Sample D where signal intensity represents 
naturally abundant 13C. NMR linewidths of glutamic acid δ-carbon and lysine γ-
carbon are highlighted for reference. 
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Figure 9 Analysis of parallel and antiparallel β-sheet content averaged over 6 coarse-
grained DMD simulations. a) Distance distribution between F3 carbonyl sites as 
analyzed from the coarse-grained DMD simulation. b) Distance distribution between 
F3 carbonyl and K9 backbone nitrogen sites evaluated from the cg DMD simulations. 

 

 

Figure 10 Analysis of self-association of King-Webb peptides averaged over 6 coarse-
grained DMD simulations. a) Distance distribution of KW+ to KW+ (orange) peptides 
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and b) distance distribution of KW- to KW- (cyan) peptides. Calculations are based 
on F3 carbonyl sites on KW+ and KW- peptides. 
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APPENDIX B. SUPPLEMENTARY INFORMATION FOR 

CHAPTER 4 

 

 

Figure 11 The numbers of peptide chains in random coil, β-barrel oligomers and 
amyloid as a function of simulation time. The number of random-coil peptides 
decreases monotonically as the simulation progresses. The number of peptides in β-
barrel oligomers, which first appear at ~1 µs, increases until ~6 µs and remains 
constant thereafter. The number of peptides in amyloid structures, which first appear 
at ~3 µs, surpasses that in β-barrel oligomers at around 5 µs, increases rapidly 
thereafter, and eventually plateaus because the number of peptide chains are fixed in 
the simulation. 
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Figure 12 FTIR spectra of aqueous 10 mM CATCH(+/-) in 1x PBS demonstrating a 
β-sheet maximum at 1620 cm-1. 

 

 

Figure 13 Two snapshots that demonstrate transient self-assembly of CATCH(+) 
peptides during DMD simulations. 
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Figure 14 (A) Standard curve relating equimolar CATCH(+/-) peptide concentration 
to Thioflavin T fluorescence demonstrating linearity of RFU signal with peptide 
concentration. (B) ThT kinetics of 1 mM peptide alone or mixed. Key: (CATCH(+), 
blue triangle; CATCH(-), red square; CATCH(+/-), black circle). 

 

B.1  Simulating effects of AA and BB nearest neighbors on PITHIRDS-CT 

measurements 

The PITHIRDS-CT measurements on “isotopically diluted” CATCH(+/-) 

nanofibers in the presence of varying probabilities of CATCH(+):CATCH(+) and 

CATCH(-):CATCH(-) nearest neighbors was modeled using a combination of Monte Carlo 

simulations of co-assembled β-sheet arrangements with nuclear spin simulations. Figure 

B.5 illustrates the workflow used to generate predictions of PITHIRDS-CT decay curves 

for a given self-association probability. In this model, we assume an ideal antiparallel β-

sheet structure. As shown in Figure B.6, an ideal antiparallel β-sheet fits the “isotopically 

pure” CATCH(+/-) nanofiber sample better than an ideal parallel β-sheet. Simulations of 

PITHIRDS-CT measurements do not vary significantly up to 30 ms of 13C-13C recoupling 
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time (Figure B.6 A-B). Therefore, we determine the probability of AA or BB pairs by 

evaluating the earlier 13C signal decays using a linear fit of the two extreme cases, p =1 

(self-sorting) and p=0 (ideal co-assembled).  

 

 

Figure 15 Calculation of a PITHIRDS-CT decay curve from a Monte Carlo 
simulation. A) Probability matrix for the Monte Carlo simulations of coassembled β-
sheets, where p(A|A) indicates the probability of adding peptide A to the β-sheet end 
given A. B) An example sequence produced from a Monte Carlo simulation at a self-
association probability of 50%. The green box indicates an 8-molecule sampled 
segment where isotopically labeled 13C sites (peptide A) are highlighted by green 
letters. C) Space-filling model of the peptide backbones for an ideal 8-molecule 
antiparallel β-sheet. Green spheres indicate 13C sites (peptide A) while gray spheres 
represent unlabeled 12C sites (peptide B) according to the pattern highlighted in panel 
A. D) Simulated PITHIRDS-CT decay curve of the 13C-spin arrangement depicted in 
panel B. 
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Figure 16 Effects of different β-sheet models on simulated PITHIRDS-CT decay 
curves. A) Comparison of simulated PITHIRDS-CT decay curves for a single 
antiparallel β-sheet (solid green) and two stacked antiparallel β-sheets (solid purple). 
B) Comparison of experimental PITHIRDS-CT measurement on an “isotopically 
pure” sample (black dots) against simulated PITHIRDS-CT decay curves for an ideal 
parallel β-sheet (solid blue) and an ideal antiparallel β-sheet (solid black). C) 
Comparison of simulated PITHIRDS-CT decay curves determined by Monte Carlo 
simulations (dashed green) or a linear combination (solid red) of the curves at 
probabilities of 1.0 and 0.0 assuming an ideal antiparallel β-sheet. 
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Figure 17 Comparison of PITHIRDS-CT decays for two different nanofiber samples 
in which CATCH(+) is isotopically labeled while CATCH(-) remains unlabeled. 
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B.2  Sampling effects on Monte Carlo predictions of β-sheet arrangements 

To understand how the number of peptide strands and number of simulations affect 

the calculated probability of AA or BB nearest neighbors, we ran multiple Monte Carlo 

simulations of co-assembled β-sheet arrangements at two different self-association 

probabilities, 0.1 and 0.3. As can be seen in Figure B.8, the calculated self-association 

probability for a given Monte Carlo simulation run approaches the steady-state probability, 

depicted as a dashed line, only after thousands of β-strands are added. The Monte Carlo 

simulations show significant variability at 96 β-strands (the system size of the DMD 

simulations). Sufficient sampling by running multiple simulations and averaging over a 

series of simulations can reduce variability in the calculation of self-association 

propensities as shown in Figure B.9. Hundreds of simulations are needed to reduce 

sampling variability and approach the true steady-state probability. The size of simulation 

and number of simulation runs necessary to accurately predict self-association probabilities 

from DMD simulations would be too computationally costly. 
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Figure 18 System size effects on calculated self-association probability from Monte 
Carlo simulations of coassembled β-sheets. A) Self-association probability set to 10%. 
B) Self-association probability set to 30%. C) Close-up of panel A. D) Close-up of 
panel B. 
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Figure 19 Effect of simulation runs on the calculated average self-association 
probability for Monte Carlo simulations of coassembled β-sheets consisting of 96 β-
strands. A) Self-association probability set to 10%. B) Self-association probability set 
to 30%. 

 

B.3  Dehydrated conditions promote CATCH peptide self-assembly 

We observed that CATCH(+) and CATCH(-) self-associate into β-sheet structures 

when dehydrated, which contrasts with their resistance to aggregation in aqueous 

conditions. FTIR spectra of CATCH(+) and of CATCH(-) peptides individually 

lyophilized from water have strong maxima near 1620 cm-1 (Fig. S16A, B), indicating that 

the peptides are in a β-sheet conformation when dehydrated. Likewise, PITHIRDS-CT 

spectra of either lyophilized 13C-labeled CATCH(+) or lyophilized 13C-labeled CATCH(-

) have strong signal decays (Figure B.10), indicating strong dipolar coupling between 13C 

labeled sites. Such decays would only occur if 13C labeled sites were within ~0.5 nm of 

each other, consistent with peptides assembled in a β-sheet structure. Collectively, these 

observations demonstrate that CATCH peptides can self-associate when water is depleted 

from the system, which may help to explain the formation of AA and BB neighbors in 

CATCH β-sheet co-assemblies.  
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Figure 20 (A,B) FTIR spectra of CATCH(+) and CATCH(-) lyophilized (C) 
PITHIRDS-CT measurements of unassembled CATCH(+) and CATCH(-) peptides 
lyophilized. The solid black curve corresponds to the predicted signal decay in the 
PITHIRDS-CT experiment from a nuclear spin simulation of eight 13C atoms along 
an ideal self-assembled antiparallel β-sheet. 
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