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SUMMARY

Analysis of multi-resolution signals and time-series data has wide applications in biol-

ogy, medicine, engineering, etc. In many cases, the large-scale (low-frequency) features of

a signal including basic descriptive statistics, trends, smoothed functional estimates, do not

carry useful information about the phenomenon of interest. On the other hand, the study

of small-scale (high-frequency) features that look like noise may be more informative even

though extracting such informative features are not always straightforward. In this disser-

tation we try to address some of the issues pertaining to high-frequency features extraction

and denoising of noisy signals. Another topic studied in this dissertation is focused on the

integration of genome data with transatlantic voyage data of enslaved people from Africa

to determine the ancestry origin of Afro-Americans.

1. Assessment of Scaling by Auto-Correlation Shells. Scaling and extracting such

high-frequency features, by analyzing the data in the time domain is impossible. To per-

form scaling a variety of tools such as Structure Functions, Spectrograms, Logscale Dia-

grams, q-th order Logscale Diagrams have effectively been used. Much of the literature in

this area has focused on orthonormal bases because of their interesting properties includ-

ing the simplicity of the implementation using numerical algorithms, and the capability of

precisely detecting edges of signals. Although the analysis of scale-to-scale growth or de-

cay of the orthonormal wavelet coefficients makes the estimation of the local behavior of

signals possible, these coefficients are not shift-invariant. The orthonormal shells, on the

other hand, are shift-invariant, but not symmetric.

In this chapter, we utilize the Auto-correlation (AC) Shell to propose a feature extrac-

tion method that can effectively capture small-scale information of a signal. The AC Shell

is a redundant shift-invariant and symmetric representation of the signal that is obtained

by using Auto-Correlation function of compactly supported wavelets. The small-scale fea-
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tures are extracted by computing the energy of AC Shell coefficients at different levels of

decomposition as well as the slope of the line fitted to these energy values.

We discuss the theoretical properties, and verify them using extensive simulations. We

compare the extracted features from AC-Shell with those of Wavelets in terms of bias,

variance, and mean square error (MSE). The results indicate that the AC-shell features tend

to have smaller variance, hence more reliable. Moreover, to show its effectiveness, we

validate our feature extraction method in the context of classification to identify patients

with ovarian cancer through the analysis of their blood mass spectrum. For this study, we

use the features extracted by AC Shell spectrogram along with a support vector machine

classifier to distinguish control from cancer cases.

The results show that for both region scenarios, the SVM classifier trained by using the

AC Shell spectra slopes as features outperform the wavelet counterpart, in terms of sensitiv-

ity, specificity, precision, and accuracy. For example, the specificity of the AC-Shell SVM

classifier is around .86, which is 17% higher than that of the Wavelet SVM classifier. The

4% difference in the sensitivity between the two methods, indicates that AC-Shell SVM

classifier can outperform its Wavelet counterpart in detecting the cancer cases. The overall

accuracy and precision of the AC-Shell SVM classifier are both around 0.93, which are 8%

higher than that of Wavelet’s. The main reason for this significant difference between the

two methods is that AC Shell can generate more robust features with smaller variations that

Wavelet.

2. Bayesian Binary Regressions in Wavelet-based Function Estimation. Wavelet

shrinkage has been widely used in nonparametric statistics and signal processing for a va-

riety of purposes including denoising noisy signals an images, dimension reduction, and

variable/feature selection. Wavelet shrinkage follows a three-step procedure: 1) transfor-

mation of the original signals into the wavelet domain and obtaining wavelet coefficients;

2) shrinkage of the coefficients using a thresholding function; and 3) Transformation of the
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shrunk coefficients back to the original domain, or utilization of of the low dimensional

thresholded coefficients in building a regression/classification model.

Although the traditional wavelet shrinkage methods are effective and popular, they have

one major drawback. In these methods the shrinkage process only relies on the informa-

tion of the coefficient being thresholded and the information contained in the neighboring

coefficients is ignored. Similarly, the standard AC Shell denoising methods shrink the em-

pirical coefficients independently, by comparing their magnitudes with a threshold value.

The information of other coefficients has no influence on behavior of a particular coeffi-

cients. However, due to redundant representation of signals and coefficients obtained by

AC Shells, the dependency of neighboring coefficients and the amount of shared informa-

tion between them increases. Therefore, it would be vital to propose a new thresholding

approach for AC Shells coefficients that considers the information of neighboring coeffi-

cients.

In this chapter, we develop a new Bayesian denoising for AC Shell coefficients ap-

proach that integrates logistic regression, universal thresholding, and Bayesian inference.

We validate the proposed method using extensive simulations with various types of smooth

and non-smooth signals. The results indicate that for all signal types including the neighbor

coefficients would improve the denoising process, resulting in lower MSEs. In all signal

types neighboring methods have lowers MSEs than their non-neighboring counterparts.

For example, for the Bumps signal the median MSE for Neighboring AC is around 19,

while this value for AC Shell is more than 20. This indicates the value of including the

neighboring information in the smoothing and denoising process.

Moreover, we validated the proposed methodology using a case study of denoising

Atomic Force Microscopy (AFM) signals measuring the adhesion strength between two

materials at the nano-newton scale, and correctly identifying the cantilever detachment

point.
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3. Bayesian Method in Combining Genetic and Historical Records of Transat-

lantic Slave Trade in the Americas. In the era between 1515 and 1865, more than 12

minions people were enslaved and forced to move from Africa to North and Latin America.

The shipping documents have recorded the origin and disembarkation of enslaved people.

However, over time due to slave trades they have been moved across North America. This

makes identification of African American’s origins particularly challenging.

Traditionally, genealogy study has been done via the exploration of historical records,

family tress and birth certificates. Due to recent advancements in the field of genetics,

genealogy has been revolutionized and become more accurate. Although these meth-

ods can provide continental differentiation, they have poor spatial resolution that makes

it hard to localize ancestry assignment as these markers are distributed across different

sub-continental regions.

To overcome the foregoing drawbacks, in this chapter, we propose a hybrid approach

that combines the genetic markers results with the historical records of transatlantic voy-

age of enslaved people. Addition of the journey data can provide with substantially in-

creased resolution in ancestry assignment, using a Bayesian modeling framework. The

proposed Bayesian framework uses the the voyage data from historical records available

in the transatlantic slave trade database as prior probabilities and combine them with ge-

netic markers of Afro-Americans, considered as the likelihood information to estimated the

posterior (updated) probabilities of their ancestry assignments to geographical regions in

Africa.

We applied the proposed methodology to 60 Afro-American individuals, as well as to

a group of 448 reference individuals. The results show that the prior information has in-

creased the assignment probabilities obtained by the posterior distributions for some of

the regions. The confusion matrices for both likelihood-based method (that does not con-

sider the prior information) and posterior-based method clearly show the accuracy of the

posterior-based assignment is more than that of the likelihood-based method. On average,
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5 individuals that are mis-classified using the likelihoods are correctly classified using the

posterior probabilities. This shows the importance of the prior information in making more

accurate determination of one’s origin.
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CHAPTER 1

BACKGROUND ON SELF-SIMILAR PROCESSES, WAVELETS

AND SCALING

Theoretical analysis of self-similar processes such as fractional Brownian motion, which

are intrinsically invariant to changes in scale are becoming an fundamental tool for mod-

eling a wide range of real-world phenomena in engineering, physics, medicine, biology,

economics, geology, chemistry, and so on.

Time series can be examined in two complementary domains: time and scale/frequency

domain. Multiscale methods including wavelets, orthogonal shells, autocorrelation shells,

and general time/frequency representations, provide tools and environments to analyze and

model such time-series in both time and scale and to unify several related phenomena

including self-similarity, and long range dependence.

In this Chapter we introduce self-similar processes and its properties, review fractional

Brownian motion (fBm) process as one of the most popular self-similar processes, and

discuss the basic principles of wavelet modeling and decomposition.

1.1 Self-similar Processes

One of the early mentions of the self-similar processes was done by Harold Edwin Hurst

who discovered the Hurst exponent. He was trying to find an optimal reservoir capacity R

such that it can accept the river flow inN units of time,X1, X2, ..., XN , and have a constant

withdrawal of X̄ per unit time. By inspecting historical data on Nile River, Hurst discovered

an interesting phenomenon that is now referred to as the Hurst effect. He realized that

the adjusted range (the ratio of range and standard deviation R/S) scales as NH for data

1



ranging from 0.46 to 0.93, with mean 0.73 and standard deviation of 0.09. H was later

called the Hurst exponent.

In contrast to Hurst’s findings, Feller proved that the theoretical value of R/S was 1/2

for independent and identically distributed random variables with a finite second moment

(Feller, 1951). It was assumed that strong Markovian dependence was responsible for the

deviation, which Hursts results showed. Later on Barnard (1956) proved that H = 1/2

holds for Markovian dependence cases.
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Figure 1.1: (a) Nile yearly minimal level data; (b) its Wavelet log spectra

1.1.1 Examples of Self-Similar Processes

Other examples of scaling data and self-similar processes in a variety of applications are

discussed in the following subsections.

1.1.1.1 Stock Market Prices and Exchange Rates

Many economic time series, such as stock market prices, exchange rate and asset return ex-

hibit scaling laws and long range dependence. This is in empirical contradiction to several

economic theories (random walk theory for stock market, perfect markets, etc) and gave

rise to several theories and models describing the scaling and LRD (such as ARFIMA, fGn,

fBm, GARCH, etc).
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Two example data sets discussed here include Coca Cola stock market prices and rates

of exchange between Hong Kong Dollar (HKD) and USDollar (USD).
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Figure 1.2: (a) Coke Stock Market Prices; (b) scaling behavior in the Fourier domain, and
(c) scaling behavior in the wavelet domain.

The rates of exchange between Hong Kong Dollar (HKD) and USDollar (USD) as reported

by the ONADA Company between 24 March 1995 and 1 November 2000.
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Figure 1.3: (a) Exchange Rates HKD per US$; (b) scaling behavior in the Fourier domain,
and (c) scaling behavior in the wavelet domain.

1.1.1.2 Gait Data

Scaling laws were recently detected in the apparently ”noisy” variations in the stride inter-

val (duration of the gait cycle) of human walking. Dynamic analysis of these step-to-step

fluctuations revealed a self-similar pattern: fluctuations at one time scale are statistically

similar to those at multiple other time scales, at least over hundreds of steps, while healthy

subjects walk at their normal rate. The experimental data consist of measurements on a
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healthy subject who walked for 1 hour at his usual, slow and fast paces. The stride interval

fluctuations exhibited long-range correlations with power-law decay for up to a thousand

strides at all three walking rates.

It is curious that during metronomically-paced walking, these long-range correlations

disappeared; variations in the stride interval were anti-correlated. Experiments confirm that

scaling behavior of spontaneous stride interval are normally quite robust and intrinsic to the

locomotor system. Furthermore, this fractal property of neural output may be related to the

higher nervous centers responsible for control of walking rhythm.
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Figure 1.4: (a) Gait timing for Slow, Normal and Fast Walk;(b) scaling behavior in the
Fourier domain, and (c) in the wavelet domain.

Participants in this experiment had no history of any neuromuscular, respiratory or car-

diovascular disorders, and were taking no medications. Mean age was 21.7 years (range:

18-29 years). Height was 1.77 ± 0.08 meters (mean ± S.D.) and weight was 71.8 ± 10.7

kg. Subjects walked continuously on level ground around an obstacle free, long (either 225

or 400 meters), approximately oval path and the stride interval was measured using ultra-

thin, force sensitive switches taped inside one shoe. Figure 1.4 shows 2048 data points for

one subject. Slow and fast stride intervals have slopes of -0.91 and -0.97 respectively, and

stride intervals for normal walk show scaling with -0.74 slope.

4



1.1.1.3 EEG Data

This data set gives fluctuations of measured electrical potential (in µV ) derived from brain

activity of a patient during an epileptic seizure. It was recorded in the ECT Lab at Duke

University Medical Center (Courtesy of Dr. B. Krystal). A patient undergoing ECT ther-

apy had measuring electrodes in his scalp and this particular time series is one of several

”channels”.
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Figure 1.5: (a) EEG signal at seizure time; (b) scaling behavior in the Fourier domain, and
(c) in the wavelet domain.

Outstanding problems for this kind analysis include the prediction, classification, and space-

time localization of seizures, see Benedetto and Colella (1995) for wavelet based diagnostic

methodology. The original data set covers a 104-second span at a frequency of 256 obser-

vations per second, but for our analysis we took a mid-segment of length 214. A power law

with slope of -2.5 was found only at the end of spectrum (several ”binomial decades”).

1.1.2 Formal Definition of Self-similar Process

Definition 1.1. A random process X(t), t > 0 is called self-similar if for any a > 0, there

exists b > 0 such that

X(at)
d
= bX(t) (1.1)

Lamperti (1962) proved the following result that connected the self-similar processes to the

Hurst exponent.
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Theorem 1.1. If random process X(t), t ≥ 0 is nontrivial, stochastically continuous at 0,

and self-similar, then there exists unique H ≥ 0 such that b = aH . If X(0) = 0 almost

surely (a.s.), then H > 0.

Standard definition of self-similar processes that involves the self-similarity index is given

below.

Definition 1.2. Process X(t), t ≥ 0 is self-similar, with self-similarity index H (H-ss) if

and only if there exists H > 0 such that for any a > 0, X(at)
d
= aHX(t).

Uniqueness of H is not obvious from this definition, although, H is unique by the Lam-

perti’s theorem. An example of a self-similar process is Standard Brownian Motion B(t)

in which H = 1/2, i.e, it is 1/2-ss. Indeed, the process W (t) = 1/
√
aB(at) is standard

Brownian motion, as well.

For 1-D data, there exist many estimation methods for self-similar processes including

re-scaled range calculation (R/S), Fourier-Spectra, variance plots, quadrature variations,

zero-level crossing, etc. For a comprehensive description, see Beran (1994), Doukhan et al.

(2003), and Abry et al. (2013). Wavelet transforms are especially suitable for modeling

self-similar phenomena, as is reflected in the literature. An overview is provided in Abry

et al. (2000).

If self-similar processes have a stochastic structure, the scaling exponent becomes a

parameter in a well-defined statistical model and can be estimated as such. For example,

Fractional Brownian Motion (fBm) is an important and well understood model for data that

scale. Their importance follows from the fact that they are unique Gaussian processes with

stationary increments that are self-similar. We discuss this important process in the next

subsection.

6



1.2 Fractional Brownian Motion (fBm)

Consider a Brownian motion process denoted asB(t). BH(t) is defined as fractional Brow-

nian motion with Hurst exponent H , (0 < H < 1) as in Mandelbrot and Ness. (1968) and

is represented by:

BH(t) =
1

Γ(H + 1/2)

[ ∫ 0

−∞

(
|t−s|H−1/2 − |s|H−1/2

)
dB(s)

+

∫ t

0

|t− s|H−1/2dB(s)
]
.

(1.2)

The case when 0 < H < 0.5 indicates a negatively correlated process, or anti-persistent

process; the case when 0.5 < H < 1 indicates that it is a positively correlated process and

the process exhibits long-range dependence (LRD); the case when H = 0.5 indicates that

the process is almost not a correlated process, it means the process is in fact a Brownian

motion (Beran, 1994).

The process BH(t) is unique, in the sense that class of all fractional Brownian motions

with exponent H coincides with the class of all Gaussian H-ss processes. However, a

Gaussian process is H-ss with independent increments, if and only if H = 1/2, i.e., if it is

a Brownian motion.

Alternatively, fractional Brownian motion with the Hurst exponent H could be defined

as a random process that satisfies the following properties:

1. BH(t) has stationary increments, BH(t)−BH(s)
d
= BH(t− s)

2. BH(0) = 0;

3. E
(
BH(t)

)
= 0 ∀t;

4. E
(
B2
H(t)

)
= σ2|t|2H , ∀t and σ2 = var(BH(1));

5. BH(t) is a continuous Gaussian process;
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6. BH(t) is self-similar process;

7. BH(t) has auto-covariance function:

E
(
BH(t)BH(s)

)
=
σ2

2

[
|t|2H + |s|2H − |t− s|2H

]
. (1.3)

where E|BH(1)|2 =
Γ(2− 2H)cos(πH)

πH(1− 2H)
.

The fractional Brownian motion (fBm) is arguably among the most popular statistical

models in signal and image processing when the process under consideration exhibits some

scale-invariance properties.

1.3 Wavelets Basics

The first theoretical results in wavelets are connected with continuous wavelet decompo-

sitions of L2 functions and go back to the early 1980s. Papers of Morlet et al. (1982) and

Grossmann and Morlet (1985) were among the first on this subject.

Let ψa,b(x), a ∈ R\{0}, b ∈ R be a family of functions defined as translations and

re-scales of a single function ψ(x) ∈ L2(R),

ψa,b(x) =
1√
|a|
ψ

(
x− b
a

)
. (1.4)

Normalization by 1√
|a|

ensures that ||ψa,b(x)|| is independent of a and b. The function

ψ (called the wavelet function or the mother wavelet) is assumed to satisfy the admissibility

condition,

Cψ =

∫
R

|Ψ(ω)|2

|ω|
dω <∞, (1.5)

where Ψ(ω) =
∫
R
ψ(x)e−ixωdx is the Fourier transformation of ψ(x). The admissibility
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condition implies

0 = Ψ(0) =

∫
ψ(x)dx. (1.6)

Also, if
∫
ψ(x)dx = 0 and

∫
(1 + |x|α)|ψ(x)|dx <∞ for some α > 0, then Cψ <∞.

Wavelet functions are usually normalized to ”have unit energy”, i.e., ||ψa,b(x)|| = 1.

For anyL2 function f(x), the continuous wavelet transformation is defined as a function

of two variables

CWTf (a, b) = 〈f, ψa,b〉 =

∫
f(x)ψa,b(x)dx. (1.7)

Here the dilation and translation parameters, a and b, respectively, vary continuously

over R\{0} × R.

Resolution of Identity. When the admissibility condition is satisfied, i.e., Cψ < ∞, it is

possible to find the inverse continuous transformation via the relation known as resolution

of identity or Calderón’s reproducing identity,

f(x) =
1

Cψ

∫
R2

CWTf (a, b)ψa,b(x)
da db

a2
. (1.8)

If a is restricted to R+, which is natural since a can be interpreted as a reciprocal of

frequency, becomes

Cψ =

∫ ∞
0

|Ψ(ω)|2

ω
dω <∞, (1.9)

and the resolution of identity relation in (1.8) takes the form:

f(x) =
1

Cψ

∫ ∞
−∞

∫ ∞
0

CWTf (a, b)ψa,b(x)
1

a2
da db. (1.10)
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Next, we list a few important properties of continuous wavelet transformations.

Shifting Property. If f(x) has a continuous wavelet transformation CWTf (a, b), then

g(x) = f(x− β) has the continuous wavelet transformation CWTg(a, b) = CWTf (a, b−

β).

Scaling Property. If f(x) has a continuous wavelet transformation CWTf (a, b), then

g(x) = 1√
s
f
(
x
s

)
has the continuous wavelet transformation CWTg(a, b) = CWTf

(
a
s
, b
s

)
.

Both the shifting property and the scaling property are simple consequences of changing

variables under the integral sign.

Energy Conservation. From (1.10),

∫ ∞
−∞
|f(x)|2dx =

1

Cψ

∫ ∞
−∞

∫ ∞
0

|CWTf (a, b)|2
1

a2
da db. (1.11)

Localization. Let f(x) = δ(x−x0) be the Dirac pulse at the point x0. Then,CWTf (a, b) =

1√
a
ψ(x0−b

a
).

Reproducing Kernel Property. Define K(u, v; a, b) = 〈ψu,v, ψa,b〉. Then, if F (u, v) is a

continuous wavelet transformation of f(x),

F (u, v) =
1

Cψ

∫ ∞
−∞

∫ ∞
0

K(u, v; a, b)F (a, b)
1

a2
da db, (1.12)

i.e., K is a reproducing kernel. The associated reproducing kernel Hilbert space (RKHS)

is defined as a CWT image of L2(R) – the space of all complex-valued functions F on R2

for which 1
Cψ

∫∞
−∞

∫∞
0
|F (a, b)|2 da db

a2
is finite.

Characterization of Regularity. Let
∫

(1 + |x|) |ψ(x)| dx < ∞ and let Ψ(0) = 0. If
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f ∈ Cα(Hölder space with exponent α), then

|CWTf (a, b)| ≤ C|a|α+1/2. (1.13)

Conversely, if a continuous and bounded function f satisfies the above condition, then

f ∈ Cα.

Example 1. Mexican hat or Marr’s wavelet. The function

ψ(x) =
d2

dx2
[−e−x2/2] = (1− x2)e−x

2/2 (1.14)

is a wavelet known as the “Mexican hat” or Marr’s wavelet.

By direct calculation one may obtain Cψ = 2π.

Example 2. Poisson wavelet. The function ψ(x) = −(1 + d
dx

) 1
π

1
1+x2

is a wavelet known

as the Poisson wavelet. The analysis of functions with respect to this wavelet is related to

the boundary value problem of the Laplace operator.

The continuous wavelet transformation of a function of one variable is a function of

two variables. Clearly, the transformation is redundant. To “minimize” the transformation

one can select discrete values of a and b and still have a transformation that is invertible.

However, sampling that preserves all information about the decomposed function cannot

be coarser than the critical sampling.

The critical sampling (Fig. 1.6) defined by

a = 2−j, b = k2−j, j, k ∈ Z, (1.15)

will produce the minimal basis. Any coarser sampling will not give a unique inverse

transformation; that is, the original function will not be uniquely recoverable. Moreover

under mild conditions on the wavelet function ψ, such sampling produces an orthogonal

basis {ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z}.
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Figure 1.6: Critical Sampling in R×R+ half-plane (a = 2−j and b = k 2−j).

There are other discretization choices. For example, selecting a = 2−j, b = k will lead

to non-decimated (or stationary) wavelets. For more general sampling, given by

a = a−j0 , b = k b0 a
−j
0 , j, k ∈ Z, a0 > 1, b0 > 0, (1.16)

numerically stable reconstructions are possible if the system {ψjk, j, k ∈ Z} constitutes a

frame. Here

ψjk(x) = a
j/2
0 ψ

(
x− k b0 a

−j
0

a−j0

)
= a

j/2
0 ψ(aj0x− k b0), (1.17)

is (1.4) evaluated at (1.16).

Next, we consider wavelet transformations (wavelet series expansions) for values of

a and b given by (1.15). An elegant theoretical framework for critically sampled wavelet

transformation is Mallat’s Multiresolution Analysis (Mallat, 1987, 1989a,b, 1998).

As an example, consider the signal Blocks from Wavelab toolbox. The wavelet coeffi-

cients at lower scales identify the discontinuities of the signal (see Fig. 1.7).
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Figure 1.7: Signal Blocks (top) and the CWT (bottom)

1.3.1 Multiresolution Analysis

A multiresolution analysis (MRA) is a sequence of closed subspaces Vn, n ∈ Z in L2(R)

such that they lie in a containment hierarchy

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (1.18)

The nested spaces have an intersection that contains the zero function only and a union

that is dense in L(R),

∩nVj = {0}, ∪jVj = L2(R). (1.19)

[With A we denoted the closure of a set A]. The hierarchy (1.18) is constructed such

that (i) V -spaces are self-similar,

f(2jx) ∈ Vj iff f(x) ∈ V0.
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and (ii) there exists a scaling function φ ∈ V0 whose integer-translates span the space V0,

V0 =

{
f ∈ L2(R)| f(x) =

∑
k

ckφ(x− k)

}
,

and for which the set {φ(• − k), k ∈ Z} is an orthonormal basis.1

Mild technical conditions on φ are necessary for future developments. It can be as-

sumed that
∫
φ(x)dx ≥ 0. Later, we will prove that this integral is in fact equal to 1. Since

V0 ⊂ V1, the function φ(x) ∈ V0 can be represented as a linear combination of functions

from V1, i.e.,

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k),

for some coefficients hk, k ∈ Z. This equation is called the scaling equation (or two-scale

equation) and it is fundamental in constructing, exploring, and utilizing wavelets.

Whenever a sequence of subspaces satisfies MRA properties, there exists (though not

unique) an orthonormal basis for L2(R),

{ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z}

such that {ψjk(x), j-fixed, k ∈ Z} is an orthonormal basis of the “difference space”

Wj = Vj+1 	 Vj. The function ψ(x) = ψ00(x) is called a wavelet function or informally

the mother wavelet.

Next, we detail the derivation of a wavelet function from the scaling function. Since

ψ(x) ∈ V1 (because of the containment W0 ⊂ V1), it can be represented as

ψ(x) =
∑
k∈Z

gk
√

2φ(2x− k)

for some coefficients gk, k ∈ Z.
1It is possible to relax the orthogonality requirement. It is sufficient to assume that the system of functions

{φ(• − k), k ∈ Z} constitutes a Riesz basis for V0.
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1.3.2 Haar Wavelets

In addition to their simplicity and formidable applicability, Haar wavelets have tremendous

educational value. Here we illustrate some of the relations discussed earlier using the Haar

wavelet. We start with φ(x) = I(0 ≤ x ≤ 1) and pretend that everything else is unknown.

The scaling equation is very simple for the Haar case. By inspection of simple graphs

of two scaled Haar wavelets φ(2x) and φ(2x+ 1) stuck to each other, we conclude that the

scaling equation is

φ(x) = φ(2x) + φ(2x− 1) =
1√
2

√
2φ(2x) +

1√
2

√
2φ(2x− 1),

which yields the wavelet filter coefficients:

h0 = h1 =
1√
2
.

Haar’s wavelet has linear phase, i.e., the scaling function is symmetric in the time

domain. By applying the inverse Fourier transformation we obtain

ψ(x) = φ(2x)− φ(2x− 1)

in the time-domain. Therefore we “discovered” the Haar wavelet function ψ.

The Haar basis is not an appropriate basis for all applications for several reasons. The

building blocks in Haar’s decomposition are discontinuous functions that obviously are not

effective in approximating smooth functions. Although the Haar wavelets are well localized

in the time domain, in the frequency domain they decay at the slow rate of O( 1
n
).

1.4 Discrete Wavelet Transformations

Discrete wavelet transformations (DWT) are applied to the discrete data sets to produce

discrete outputs. Transforming signals and data vectors by DWT is a process that resem-
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bles the fast Fourier transformation (FFT), the Fourier method applied to a set of discrete

measurements.

Table 1.1: The analogy between Fourier and wavelet methods

Fourier Fourier Fourier Discrete
Methods Integrals Series Fourier Transformations
Wavelet Continuous Wavelet Discrete
Methods Wavelet Transformations Series Wavelet Transformations

Discrete wavelet transformations map data from the time domain (the original or input

data, signal vector) to the wavelet domain. The result is a vector of the same size. Wavelet

transformations are linear and they can be defined by matrices of dimension n×n if they are

applied to inputs of size n. Depending on boundary conditions, such matrices can be either

orthogonal or “close” to orthogonal. When the matrix is orthogonal, the corresponding

transformation is a rotation in Rn space in which the signal vectors represent coordinates

of a single point. The coordinates of the point in the new, rotated space comprise the

discrete wavelet transformation of the original coordinates.

Example. Let the vector be {1, 2} and let M(1, 2) be the point in R2 with coordinates

given by the data vector. The rotation of the coordinate axes by an angle of π
4

can be

interpreted as a DWT in the Haar wavelet basis. The rotation matrix is

W =

 cos π
4

sin π
4

cos π
4
− sin π

4

 =

 1√
2

1√
2

1√
2
− 1√

2

 ,

and the discrete wavelet transformation of (1, 2)′ isW ·(1, 2)′ = ( 3√
2
,− 1√

2
)′.Notice that the

energy (squared distance of the point from the origin) is preserved, 12 + 22 = (1
2
)2 + (

√
3

2
)2,

since W is a rotation.

Example. Let y = (1, 0,−3, 2, 1, 0, 1, 2). If Haar wavelet is used, the values f(n) =

yn, n = 0, 1, . . . , 7 are interpolated by the father wavelet, the vector represent the sampled

piecewise constant function. It is obvious that such defined f belongs to Haar’s multireso-
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lution space V0.

The following matrix equation gives the connection between y and the wavelet coeffi-

cients (data in the wavelet domain).



1

0

−3

2

1

0

1

2



=



1
2
√

2
1

2
√

2
1
2

0 1√
2

0 0 0

1
2
√

2
1

2
√

2
1
2

0 − 1√
2

0 0 0

1
2
√

2
1

2
√

2
−1

2
0 0 1√

2
0 0

1
2
√

2
1

2
√

2
−1

2
0 0 − 1√

2
0 0

1
2
√

2
− 1

2
√

2
0 1

2
0 0 1√

2
0

1
2
√

2
− 1

2
√

2
0 1

2
0 0 − 1√

2
0

1
2
√

2
− 1

2
√

2
0 −1

2
0 0 0 1√

2

1
2
√

2
− 1

2
√

2
0 −1

2
0 0 0 − 1√

2



·



c00

d00

d10

d11

d20

d21

d22

d23



.

The solution is 

c00

d00

d10

d11

d20

d21

d22

d23



=



√
2

−
√

2

1

−1

1√
2

− 5√
2

1√
2

− 1√
2



.

Thus,

f =
√

2φ−3,0 −
√

2ψ−3,0 + ψ−2,0 − ψ−2,1 +
1√
2
ψ−1,0 −

5√
2
ψ−1,1 +

1√
2
ψ−1,2 −

1√
2
ψ−1,3.
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The solution is easy to verify. For example, when x ∈ [0, 1),

f(x) =
√

2 · 1

2
√

2
−
√

2 · 1

2
√

2
+ 1 · 1

2
+

1√
2
· 1√

2
= 1/2 + 1/2 = 1 (= y0).

Performing wavelet transformations by multiplying the input vector with an appropriate

orthogonal matrix is conceptually straightforward, but of limited practical value. Storing

and manipulating transformation matrices when inputs are long (> 2000) may not even be

feasible.

In the context of image processing, Burt and Adelson (1983a,b) developed orthogonal

and biorthogonal pyramid algorithms. Pyramid or cascade procedures process an image at

different scales, ranging from fine to coarse, in a tree-like algorithm. The images can be

denoised, enhanced or compressed by appropriate scale-wise treatments.

Mallat (1989a,b) was the first to link wavelets, multiresolution analyses and cascade

algorithms in a formal way. Mallat’s cascade algorithm gives a constructive and efficient

recipe for performing the discrete wavelet transformation. It relates the wavelet coefficients

from different levels in the transformation by filtering with h and g. Mallat’s algorithm

can be viewed as a wavelet counterpart of Danielson-Lanczos algorithm in fast Fourier

transformations.

It is convenient to link the original signal with the space coefficients from the space VJ ,

for some J . Such link is exact for interpolating wavelets (Haar, Shannon, some biorthog-

onal and halfband-filter wavelets) and close to exact for other wavelets, notably coiflets.

Then, coarser smooth and complementing detail spaces are (VJ−1,WJ−1), (VJ−2,WJ−2),

etc. Decreasing the index in V -spaces is equivalent to coarsening the approximation to the

data.

By a straightforward substitution of indices in the scaling equations, one obtains

φj−1,l(x) =
∑
k∈Z

hk−2lφjk(x) and ψj−1,l(x) =
∑
k∈Z

gk−2lφjk(x). (1.20)
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The relations in (1.20) are fundamental in developing the cascade algorithm.

Consider a multiresolution analysis · · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ . . . . Since Vj =

Vj−1 ⊕ Wj−1, any function vj ∈ Vj can be represented uniquely as vj(x) = vj−1(x) +

wj−1(x), where vj−1 ∈ Vj−1 and wj−1 ∈ Wj−1. It is customary to denote the coefficients

associated with φjk(x) and ψjk(x) by cjk and djk, respectively.

Thus,

vj(x) =
∑
k

cj,kφj,k(x)

=
∑
l

cj−1,lφj−1,l(x) +
∑
l

dj−1,lψj−1,l(x)

= vj−1(x) + wj−1(x).

(1.21)

By using the general scaling equations (1.20), orthogonality of wj−1(x) and φj−1,l(x)

for any j and l, and additivity of inner products, we obtain

cj−1,l = 〈vj, φj−1,l〉 = 〈vj,
∑
k

hk−2lφj,k〉 =
∑
k

hk−2l〈vj, φj,k〉 =
∑
k

hk−2lcj,k.

Similarly, dj−1,l =
∑

k gk−2lcj,k.

The cascade algorithm works in the reverse direction as well. Coefficients in the next finer

scale corresponding to Vj can be obtained from the coefficients corresponding to Vj−1 and

Wj−1. The relation describes a single step in the reconstruction algorithm.

cj,k = 〈vj, φj,k〉 =
∑
l

cj−1,l〈φj−1,l, φj,k〉+
∑
l

dj−1,l〈ψj−1,l, φj,k〉

=
∑
l

cj−1,lhk−2l +
∑
l

dj−1,lgk−2l,
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For DAUB2, the scaling equation at integers is

φ(n) =
3∑

k=0

hk
√

2φ(2n− k). (1.22)

Recall that h = {h0, h1, h2, h3} = {1+
√

3
4
√

2
, 3−

√
3

4
√

2
, 3+

√
3

4
√

2
, 1−

√
3

4
√

2
}.

Since φ(0) =
√

2h0φ(0) and
√

2h0 6= 1, it follows that φ(0) = 0. Also, φ(3) = 0. For

φ(1) and φ(2) we obtain the system

 φ(1)

φ(2)

 =
√

2 ·

 h1 h0

h3 h2

 ·
 φ(1)

φ(2)

 .
From

∑
k φ(x − k) = 1 it follows that φ(1) + φ(2) = 1. Solving for φ(1) and φ(2) we

obtain

φ(1) =
1 +
√

3

2
and φ(2) =

1−
√

3

2
.

Now, one can refine φ,

φ

(
1

2

)
=
∑
k

hk
√

2φ(1− k) = h0

√
2φ(1) =

2 +
√

3

4
,

φ

(
3

2

)
=
∑
k

hk
√

2φ(3−k) = h1

√
2φ(2)+h2

√
2φ(1) =

3 +
√

3

4
·1−

√
3

2
+

3−
√

3

4
·1 +

√
3

2
= 0,

φ

(
5

2

)
=
∑
k

hk
√

2φ(5− k) = h3

√
2φ(2) =

2−
√

3

4
,

or ψ,

ψ(−1) = ψ(2) = 0,

ψ

(
−1

2

)
=
∑
k

gk
√

2φ(−1− k) = h1

√
2φ(1) = −1

4
, [gn = (−1)nh1−n]

ψ(0) =
∑
k

gk
√

2φ(0− k) = g−2

√
2φ(2) + g−1

√
2φ(1) = −h2

√
2φ(1) = −

√
3

4
, etc.
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In its general form, wavelet basis is an orthonormal basis in L2(R), formed by:

ψj,k(x) = 2j/2ψ(2jx− k) (1.23)

φj,k(x) = 2j/2φ(2jx− k) (1.24)

as dilation and translation of a wavelet function ψ(x) and scaling function φ(x). The family

{ψj,k}1≤j≤J,0≤k≤2n−j−1 and {φJ,k}0≤k≤2n−J−1 consists of orthonormal basis.

Decomposition of a function f(x) ∈ L2(R) in wavelet domain is given by

f(x) =
J∑
j=1

2n−j−1∑
k=0

dj,kψj,k(x) +
2n−J−1∑
k=0

sJ,kφJ,k(x) (1.25)

where dj,k =
∫
f(x)ψj,k(x)dx, and sj,k =

∫
f(x)φj,k(x)dx. We refer to the set of co-

efficients {dj,k}1≤j≤J,0≤k≤2n−j−1 and {sJ,k}0≤k≤2n−J−1 as detail and scaling coefficients,

respectively. Here, n0 indicates the coarsest scale or lowest resolution level of the trans-

form, and larger values of j correspond to higher resolutions.

The norm of the function f is defined as:

‖f‖2 =
J∑
j=1

2n−j−1∑
k=0

(dj,k)
2 +

2n−J−1∑
k=0

(sJ,k)
2 (1.26)

1.4.1 Wavelet Analysis of Self-similar Signals

In this subsection, we discuss some properties of self-similar signals in the wavelet domain.

Lets consider f(x) as a fractional Brownian motion with Hurst exponent H . As shown

by Remenyi and Vidakovic (2013), there is relationship between the expected energy of

wavelet coefficients is a linear function of the Hurst exponent. We know that the detail

21



coefficients in Wavelet decomposition is:

dj,k =

∫
f(x)2j/2ψ(2jx− k)dx (1.27)

Therefore:

E(d2
j,k) = 2j

∫ ∫
E
[
f(u)f(v)

]
ψ(2ju− k)ψ(2jv − k)dudv

= 2j
∫ ∫

σ2

2

(
|u|2H + |v|2H − |u− v|2H

)
ψ(2ju− k)ψ(2jv − k)dudv

=
σ2

2
2j
[ ∫
|u|2Hψ(2ju− k)

(∫
ψ(2jv − k)dv

)
du

+

∫
|v|2Hψ(2jv − k)

(∫
ψ(2ju− k)du

)
dv

−
∫ ∫

|u− v|2Hψ(2ju− k)ψ(2jv − k)dudv
]

(1.28)

Since
∫
ψ(2jv−k)dv =

∫
ψ(2ju−k)du = 0 the two first integrals vanish. By considering

p = 2j(u− v) and q = 2jv − k we have:

E(d2
j,k) = −σ

2

2
2j
∫ ∫

|2−jp|2Hψ(p+ q)ψ(q)2−jdp2−jdq

= 2−2Hj2−j
(
− σ2

2

∫ ∫
|p|2Hψ(p+ q)ψ(q)dpdq

)
= 2−(2H+1)j

(
− σ2

2

)
Vψ

(1.29)

where Vψ =
∫ ∫
|p|2Hψ(p+ q)ψ(q)dpdq.

If we take log2 from both side we have:

log2E(d2
j,k) = −(2H + 1)j + C (1.30)

where C = log2(−σ2Vψ/2).

The wavelet spectra can be plotted the points (j, log2E(d2
j,k)), and consequently the Hurst

exponent can be estimated by computing the slope of this spectra.
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CHAPTER 2

ASSESSMENT OF SCALING BY AUTO-CORRELATION SHELLS

2.1 Introduction

Analysis of multi-resolution signals and time-series data has wide applications in biology,

medicine, engineering, etc. In many cases, the large-scale (low-frequency) features of a

signal including basic descriptive statistics, trends, smoothed functional estimates, do not

carry useful information about the phenomenon of interest. On the other hand, the study

of small-scale (high-frequency) features that look like noise may be more informative even

though extracting such informative features are not always straightforward. For example,

the pupil diameter in humans fluctuates with high frequency (in hundreds of Hz), and pro-

longed monitoring of such a diameter leads to massive data sets. Researchers found that

the fast dynamics of changes in pupil diameter is associated with eye pathologies (e.g.,

macular degeneration (Moloney et al., 2006), yet the low-frequency features like trend and

mean of the data are clinically irrelevant since the magnitude of the diameter depends on

the ambient light and not on the inherent eye pathology.

However, scaling and extracting such high-frequency features, by analyzing the data

in the time domain is impossible. To perform scaling a variety of tools such as Structure

Functions, Spectrograms, Logscale Diagrams, q-th order Logscale Diagrams have been

effectively used. As an example, in Fourier Log-Spectrograms or Logscale Diagrams, if it

is possible to fit a straight line with particular slope of−α, over duration of several decades

(octaves, “binary-decades”), then the scaling in the data is present.

Much of the literature in this area has focused on orthonormal bases because of their

interesting properties including the simplicity of the implementation using numerical algo-
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rithms, and the capability of precisely detecting edges of signals. Although the analysis

of scale-to-scale growth or decay of the orthonormal wavelet coefficients makes the esti-

mation of the local behavior of signals possible, these coefficients are not shift-invariant

(Saito (1994), chapter 7). To address this issue we can use orthonormal shells (Abry et al.,

2003). However, the representation of a signal in an orthonormal shell is not symmetric

(Daubechies, 1988) due to the asymmetric shape of the compactly supported wavelets used

in the shell. Moreover, there might be too many zero-crossings because of the rough shape

of the wavelets (Mallat, 1991). These drawbacks are of critical in the the edge detection

applications where the scale-to-scale analysis of the coefficients is necessary (Mallat and

Zhong, 1992).

Additionally, choosing ranges in frequencies for Fourier tools or in scales for wavelet-

based tools, and estimating the slope and its variation are important steps since in many

situations estimation of the slope is non-robust. This robustness is influenced by several

factors, including the quality of data, the closeness of the slope to zero, presence of a peri-

odicity, or injection of energy at a particular scale. Especially the selection of lower scale is

more critical. The high variability of spectra at lower scales is influenced by several factors,

some of which have nothing to do with the nature of data. For instance, in the Logscale

diagrams, points at low scales are obtained by averaging substantially less empirical values

of energy (squared wavelet coefficients) than those at high scales. For example, if the scale

l = 10 averages 1024 energies, the scale l = 3 averages only 8 values.

To address the foregoing issues, one can use Auto-Correlation (AC) Shell for signal

analysis instead of wavelets or orthonormal shells. The AC shell is a redundant shift-

invariant representation of the signal that is obtained by using Auto-Correlation function

of compactly supported wavelets (Saito and Beylkin, 1993), and considering dilation and

translation. AC Shell is exactly symmetric which allows to detect zero-crossings and com-

pute the slopes at these points. It also simplifies the scale-to-scale analysis of the coef-

ficients. Additionally, it solves the problem of the unbalanced number of coefficients in
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computing the average of empirical energy values at different scales as the number of co-

efficients in each scale is the same and equal to the length of the original signal.

In this chapter, we utilize the AC Shell to propose a feature extraction method that

can effectively capture small-scale information of a signal. We study the properties of the

proposed method using extensive simulations. To show its effectiveness, we validate our

feature extraction method in the context of classification to identify patients with ovarian

cancer through the analysis of their MRI images.

The organization of this chapter is as follows. In Section 2, we discuss theoretical back-

ground of AC Shells. In Section 3, we present the proposed feature extraction method and

discuss its theoretical properties. Section 4 provides simulations and comparative study

with existing benchmarks including wavelets counterpart. In Section 5, a real-life appli-

cation of the proposed methodology is presented, in which we utilize the proposed feature

extraction method combined with Support Vector Machine (SVM) classification to iden-

tify patients with ovarian cancer by analyzing their MRI images. In Section 5 we provide

conclusions and delineate some possible directions for future research.

2.2 Auto-correlation Shell Transform

In this section, we introduce a shift-invariant transform, known as the Auto-Correlation

(AC) shells that have some advantages over the Wavelet shells. We begin with reviewing the

wavelet decomposition using orthonormal basis inL2(R). The family {ψj,k}1≤j≤J,0≤k≤2n−j−1

and {φJ,k}0≤k≤2n−J−1 consists of orthonormal basis. Decomposition of a function f(x) ∈

L2(R) in wavelet domain is given by:

f(x) =
J∑
j=1

2n−j−1∑
k=0

dj,kψj,k(x) +
2n−J−1∑
k=0

sJ,kφJ,k(x) (2.1)

where dj,k =
∫
f(x)ψj,k(x)dx, and sj,k =

∫
f(x)φj,k(x)dx. We refer to the set of co-

efficients {dj,k}1≤j≤J,0≤k≤2n−j−1 and {sJ,k}0≤k≤2n−J−1 as detail and scaling coefficients,
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respectively. Here, J indicates the coarsest scale or lowest resolution level of the trans-

form, and larger values of j correspond to higher resolutions.

The norm of the function f is defined as

‖f‖2 =
J∑
j=1

2n−j−1∑
k=0

(dj,k)
2 +

2n−J−1∑
k=0

(sJ,k)
2 (2.2)

It is possible to study local behavior of a signal by scale-to-scale analyzing of orthonor-

mal wavelet coefficients, but these coefficients are not shift-invariant. To add the shift-

invariance property, we can define orthonormal shells. Consider the family of functions

ψ̃j,k(x) = 2j/2ψ(2j(x − k)) and φ̃j,k(x) = 2J/2φ(2J(x − k)). We call these functions

{ψ̃j,k(x)}1≤j≤J,0≤k≤N−1 and {φ̃j,k(x)}0≤k≤N−1 where N = 2n−J , a shell of the orthonor-

mal wavelets or orthonormal shell in short.

Decomposition of a function f(x) in orthonormal shell is given by:

f(x) =
J∑
j=1

N−1∑
k=0

d̃j,kψ̃j,k(x) +
N−1∑
k=0

s̃J,kφ̃J,k(x) (2.3)

where d̃j,k =
∫
f(x)ψ̃j,k(x)dx and s̃J,k =

∫
f(x)φ̃J,k(x)dx. We refer to the set of coeffi-

cients {d̃j,k}1≤j≤J,0≤k≤N−1 and {s̃J,k}0≤k≤N−1 as orthonormal shell coefficients.

The new family of functions defined by the above equations can also considered as basis

in multi-resolution analysis. They are complete, but they are redundant and not orthonormal

(Saito, 1994). Therefore, the decomposition of a function in these bases is not unique.

The representation of signals using this family of bases are shift-invariant among different

scales. The norm defined as

‖f(x)‖2
S =

J∑
j=1

2j
N−1∑
k=0

(
d̃j,k
)2

+ 2J
N−1∑
k=0

(
s̃J,k
)2 (2.4)

The factor 2j in (2.4) is used to offset the redundancy of this presentation, since this

presentation at the j-th scale is 2j times more redundant than the orthonormal wavelet
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representation. Therefore, it can be seen that ‖f‖2 = ‖f‖2
S

The AC functions of compactly supported wavelets were introduced by Saito and Beylkin

(1993). These functions have some interesting properties that among them, symmetry

(which is not the necessary case for the corresponding wavelets) and smoothness, are crit-

ical for denoising purposes. Using these functions one can define a new shift-invariant

transform in the AC shell.

2.2.1 Auto-Correlation Function of Compactly Supported Wavelets

Consider ψ a wavelet function and φ the corresponding scaling function. By definition,

auto-correlation function are defined by:

Φ(x) =

∫ ∞
−∞

φ(y)φ(y − x)dy (2.5)

Ψ(x) =

∫ ∞
−∞

ψ(y)ψ(y − x)dy (2.6)

Because of orthonormal bases {φ(x− k)}0≤k≤N−1 and {ψ(x− k)}0≤k≤N−1 , AC func-

tions have 0 and 1 values at integer points, i.e., for k ∈ Z

Φ(k) = δ0k =


1 for k = 0

0 for k 6= 0

(2.7)

and

Ψ(k) = δ0k

where δ0k is the Kronecker Delta. Besides, Φ and Ψ have vanishing moments given by:

Mm
Ψ =

∫ ∞
−∞

xmΨ(x)dx = 0 for 0 ≤ m ≤ L− 1 (2.8)
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Mm
Φ =

∫ ∞
−∞

xmΦ(x)dx = 0 for 1 ≤ m ≤ L− 1 (2.9)

where
∫∞
−∞Φ(x)dx = 1. We can see that m = 0 in (2.8) implies

∫∞
−∞Ψ(x)dx = 0. As

mentioned earlier, the AC functions Ψ(x) and Φ(x) are symmetric which was not necessary

the case for φ and ψ, and are smoother than the original functions, as can be seen in Figure

2.1.

Figure 2.1: Wavelet and Scaling functions of Daubechies 4 wavelet with their Auto-
Correlation functions
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2.2.2 Auto-Correlation Shell

To have the shift-invariant property, we consider the following family of functions,

{
Ψ̃j,k(x)

}
1≤j≤J,0≤k≤N−1

and
{

Φ̃J,k(x)
}

0≤k≤N−1

where

Ψ̃j,k(x) = 2j/2Ψ(2j(x− k)) (2.10)

Φ̃j,k(x) = 2J/2Φ(2J(x− k)) (2.11)

As mentioned earlier, the decomposition in the Auto-Correlation Shell is a shift-invariant

transformation. But this decomposition has a significant redundancy compared to the

orthonormal shell decomposition. Specifically, for a signal f(x) of length N , we get

N × (L+ 1) coefficients from its decomposition in the AC shell at level L.

The other interesting property of this representation is its relation to the orthonormal

shell of the corresponding compactly supported wavelet. On each scale, the AC Shell

coefficients, Dj,k and orthonormal shell coefficients, d̃j,k are convertible to each other in-

dependent of other scales (Saito and Beylkin, 1993). It is known that (Rayana, 1998):

∫
f jd(y)2jψ(2j(y − x))dy =

N−1∑
k=0

Dj,kΨ(x− k) ∀x (2.12)

∫
f js (y)2jφ(2j(y − x))dy =

N−1∑
k=0

Sj,kΦ(x− k) ∀x (2.13)

where

f jd(y) =
N−1∑
k=0

d̃j,kφ(y − k) (2.14)
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f js (y) =
N−1∑
k=0

s̃j,kφ(y − k) (2.15)

and s̃j,k and d̃j,k are the orthonormal shell coefficients, respectively.

For integer k we have:

Dj,k =

∫
f jd(y)2jψ(2j(y − k))dy (2.16)

Sj,k =

∫
f js (y)2jφ(2j(y − k))dy (2.17)

2.3 Feature extraction using AC Shell Spectra

Recall that a stochastic process {X(t), t ∈ Rd} is self-similar with scaling exponent (or

Hurst exponent) H if, for any λ ∈ R+, X(λt) d
= λHX(t), where “ d

=” denotes the equality

in all finite dimensional distributions. The scaling exponent possesses important informa-

tion about the stochastic process structure and how it scales. Hence, it can be used as a

distinguishing feature among different stochastic processes (e.g., case vs control, normal

vs. anomalous).

Wavelet spectra that shows the energy level of wavelet coefficients at different scales

(decomposition level), is a capable tool in capturing the self-similarity in the signals and

estimating the scaling exponent. Some important pioneering work in this area was done

by Flandrin and his collaborators (Abry et al., 1993; Flandrin, 1989, 1992a; Flandrin and

Goncalves, 1992). It can be shown (Vidakovi, 1999) that the expected value of the energy

of wavelet coefficients at each scale can be represented by a linear function of the scale

whose slope linearly depends on the Hurst exponent. Specifically,

log2E(d2
j,k) = −(2H + 1)j + C, (2.18)
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where d2
j,k is the energy at scale j, H is the Hurst exponent, and C = log2(−σ2Vψ/2).

Therefore, as can be seen in Figure 2.2 (b), by plotting the points (j, log2E(d2
j,k)) we

will get a spectra that can be used to estimate the slope and consequently the Hurst (scaling)

exponent.

One problem with the estimate of the Hurst exponent obtained from the wavelet spectra

is the high variance of the such estimate. As mentioned earlier, these estimates can be used

as features for classification. Therefore, the high variability may impact the accuracy of the

classification or anomaly detection procedure. To address this issue, in the next subsection,

we propose a new method for estimation of the Hurst exponent, using AC Shell spectra.

AC Shell due to symmetry, smoothness and redundancy properties will result in estimates

with less variations, therefore, useful for classification.

2.3.1 Hurst Exponent Estimation using AC-Shell Spectra

Consider the AC Shell coefficients of signal S as (SJ,k, D1,k, D2,k, ..., DJ,k) where J is a

fixed level smaller than log2(N) − 1. SJ,k are scaling AC Shell coefficients and Dj,k are

detail AC Shell coefficients for k = 0, ..., N − 1, given by Dj,k =
∫
f jd(y)2−jψ

(
2−j(y −

k)
)
dy, where f jd(y) =

∑N−1
k=0 d̃j,kφ(y − k).

Proposition 2.1. The expected energy of AC Shell coefficients is given by

E(D2
j,k) = 2−(2H+1)j σ

2
H

2
VψQψ,j, (2.19)

where Vψ and Qψ,j depend on wavelet functions.

Proof.

E(D2
j,k) = E

{(∫
f jd(y)2jψ

(
2j(y − k)

)
dy
)(∫

f jd(z)2jψ
(
2j(z − k)

)
dz
)}

= 22j

∫ ∫
E
(
f jd(y)f jd(z)

)
ψ
(
2j(y − k)

)
ψ
(
2j(z − k)

)
dydz

(2.20)
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Now, we calculate E
(
f jd(y)f jd(z)

)
and then we plug it in the above equation.

E
(
f jd(y)f jd(z)

)
= E

(N−1∑
n=0

d̃j,nφ(y − n)
N−1∑
m=0

d̃j,mφ(z −m)
)

=
N−1∑
n=0

N−1∑
m=0

E(d̃j,nd̃j,m)φ(y − n)φ(z −m)

=
N−1∑
n=0

N−1∑
m=0

E
[ ∫

f(u)ψ̃j,n(u)du

∫
f(v)ψ̃j,m(v)dv

]
φ(y − n)φ(z −m)

=
N−1∑
n=0

N−1∑
m=0

φ(y − n)φ(z −m)
[ ∫ ∫

E
(
f(u)f(v)

)
ψ̃j,n(u)ψ̃j,m(v)dudv

]
=

N−1∑
n=0

N−1∑
m=0

φ(y − n)φ(z −m)
[ ∫ ∫

E
(
f(u)f(v)

)
2j/2ψ

(
2j(u− n)

)
2j/2ψ

(
2j(v −m)

)
dudv

]
(2.21)

By using the form of auto-covariance function of fBm, we have:

E
(
f(u)f(v)

)
=
σ2
H

2
(|u|2H + |v|2H − |u− v|2H) (2.22)

By plugging in this in the main equation, we can see

E
(
f jd(y)f jd(z)

)
= 2j

N−1∑
n=0

N−1∑
m=0

φ(y − n)φ(z −m)
σ2
H

2

[
∫
|u|2Hψ

(
2j(u− n)

)( ∫
ψ
(
2j(v −m)

)
dv
)
du

+

∫
|v|2Hψ

(
2j(v − n)

)( ∫
ψ
(
2j(u−m)

)
du
)
dv

−
∫ ∫

|u− v|2Hψ
(
2j(u− n)

)
ψ
(
2j(v −m)

)
dudv

]
.

(2.23)

The first two integrals inside the above brackets are zero, as
∫
ψ(x)dx = 0, for the third

doubled integral we use change of variables in the form of p = 2j(u − n) − 2j(v −m) =
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2j(u− v +m− n) and q = 2j(v −m).

Consequently, we have u− v = 2−jp+ n−m and 2j(u− n) = p+ q. So,

E
(
f jd(y)f jd(z)

)
= 2j

σ2
H

2

N−1∑
n=0

N−1∑
m=0

φ(y − n)φ(z −m)
[

∫ ∫
|2−jp+ n−m|2Hψ(p+ q)ψ(q)(2−jdp)(2−jdq)

] (2.24)

for choice of n = m = k, we get,

E
(
f jd(y)f jd(z)

)
=
(
2j
)(

2−2j
)(

2−2Hj
)σ2

H

2

N−1∑
k=0

φ(y − k)φ(z − k)
[

∫ ∫
|p|2Hψ(p+ q)ψ(q)dpdq

]
= 2−(2H+1)j σ

2
H

2
Vψ

N−1∑
k=0

φ(y − k)φ(z − k),

(2.25)

where Vψ =
∫ ∫
|p|2Hψ(p+ q)ψ(q)dpdq does not depend on j, but just on H and ψ.

We finally have the E
(
f jd(y)f jd(z)

)
to plug into the main equation. That is,

E(D2
j,k) =

∫ ∫
E
(
f jd(y)f jd(z)

)
2jψ
(
2j(y − k)

)
2jψ
(
2j(z − k)

)
dydz

= 2−(2H+1)j σ
2
H

2
Vψ

N−1∑
k=0

(∫
φ(y − k)ψ

(
2j(y − k)

)
2jdy

)(∫
φ(z − k)ψ

(
2j(z − k)

)
2jdz

) (2.26)

The Last summation depends on the wavelet function ψ and j, so, we call it Qψ,j . To

summarize:

E(D2
j,k) = 2−(2H+1)j σ

2
H

2
VψQψ,j (2.27)

Based on the results of the foregoing proposition, we can see the Hurst exponent of
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a fraction Brownian motion can be estimated from the slope in the equation given in the

proposition. The empirical counterpart of this equation is a regression model defined on

the pairs of
(
j, log2(D2

j,k)
)
, where D2

j,k) (average of squared detail AC Shell coefficients

at level j) is an empirical counterpart of E(D2
j,k). The sample mean in can be replaced by

sample median or any other location estimation to produce more robust estimators of the

spectra. Also, the regression should be weighted since the variances in the levels are not

equal anymore.

The slope of this linear equation is an estimator for Hurst Exponent of fBm.

Slope ' −(2H + 1)

therefore a biased AC Shell based estimator for Hurst exponent can be introduced by:

Ĥ ' −(Slope+ 1)/2

where the slopes can be computed by the above AC Shell methods.

Figure 2.2 (c) shows AC Shell spectra for an fBm with H = 0.5 by length 1024.

(a) (b) (c)

Figure 2.2: (a) fBm with H = 0.5 (we expect slope = −2), (b) Wavelet spectra with
slope = −2.14748, (c) AC Shell spectra with slope = −2.03909
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2.4 Evaluation of the Proposed Method using Simulations

In this section, we evaluate the performance of the proposed method for estimation of the

Hurst exponent using AC Shell spectra. For this purpose, we generate a variety of the

fBm time series of length 1024 with the different Hurst exponents of H = 0.3, 0.4, 0.5.

For each signal, we compute the slope of spectra by using Wavelet, AC Shell spectra. This

procedure is repeated 1000 times to capture the variability of estimates. We use two wavelet

basis functions, namely, Daubechies 4 and Symmelet 4. Table 2.1 contains the mean and

(variance) of slopes and Table 2.2 shows the estimated Hurst exponent and (Mean Square

Error) of the estimated Hurst exponent.

Table 2.1: Mean and variance of computed slopes with Wavelet and AC Shell methods by
Daubechies4 and Symmlet4 wavelets. In each cell we have mean and (variance) of 1000
times computed slope for a fBm with Hurst exponent H

Slope Daubechies Symmlet
H −(2H + 1) Wavelet AC Shell Wavelet AC Shell

0.3 -1.6
-1.6096 -1.6123 -1.5635 -1.5537
(0.0223) (0.0172) (0.0196) (0.0143)

0.4 -1.8
-1.8239 -1.8237 -1.8067 -1.7839
(0.0179) (0.0131) (0.0197) (0.0134)

0.5 -2.0
-1.9587 -1.9516 -01.9978 -1.9523
(0.0116) (0.0076) (0.0167) (0.0111)

As can be seen from Table 2.1, both Wavelets and AC Shell perform similarly in esti-

mating the slope, but the variances of slopes in AC Shell method is smaller than the one

with Wavelet method. For example, for H = 0.5, the variance of the estimated slopes

(standard error) using Wavelet is 0.0116, while this number for AC Shell is 0.0076, when

Daubechies4 basis function is used. Also, this smaller variability does not depend on the

type of the basis function, and may help us to use this feature for creating accurate classi-

fiers. Additionally, the MSE results reported in Table 2.2, which is the sum of the squared

bias and variance, confirms the observations made from the slope estimates.
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Table 2.2: Hurst exponent estimation with Wavelet and AC Shell methods by Daubechies
and Symmlet wavelet. The number in parenthesis shows MSE of each estimation based on
1000 iteration

Daubechies Symmlet
H Wavelet AC Shell Wavelet AC Shell

0.3
0.3048 0.3062 0.2818 0.2769

(0.0056) (0.0043) (0.0052) (0.0041)

0.4
0.4120 0.4118 0.4033 0.3919

(0.0046) (0.0034) (0.0049) (0.0034)

0.5
0.4793 0.4758 0.4989 0.4761

(0.0033) (0.0025) (0.0042) (0.0033)

Furthermore, Figure 2.3 show the distribution of the estimated slopes obtained in dif-

ferent replications using boxplots. These boxplots again confirm that the variability of the

slope estimates obtained by AC Shell is less than those of Wavelets. This difference in

variability is more profound when H = 0.5
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Figure 2.3: Boxplot of estimated slopes based on Wavelet Spectra and AC Shell Spectra
for fBm with Hurst exponent (a) H = 0.3, (b) H = 0.4, (c) H = 0.5

In short, the simulation study conducted in this section showed that the slope estimation

of the AC Shell spectra leads to less variable and therefore more robust features than the

Wavelet counterpart.
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2.5 Case Study: Classification of Ovarian Cancer Spectrum Data

The development of tools for the early cancer diagnosis is a major open problem, and clin-

icians have investigated a variety of diagnosis techniques. Recently, they have discovered

that cancer may affect the blood mass spectrum, and studied diagnosis methods based on

the analysis of mass-spectrum data, which provide information about proteins and their

fragments (Bakhtiar and Nelson, 2001; Bakhtiar and Tse, 2000; Yates, 2000). The blood

mass spectrum, as shown in Figure (2.4), is a curve, where the x- axis shows the ratio of

the weight of a specific molecule to its electric charge, and the y-axis is the signal intensity

for the same molecule. The mass-spectrum analysis is a fast inexpensive procedure based

on a sample of a patient’s blood, and it may potentially allow cancer screening with little

discomfort to a patient.

The dataset we used in this study includes the mass spectra of 162 patients with ovarian

cancer and 91 healthy people. Each mass-spectrum curve consists of 15,154 points. The

dataset is available at http://clinicalproteomics.steem.com (Tang et al., 2004). The main

goal of this case study is to extract robust features that can help distinguish between the case

and control instances. For this purpose, we apply both Wavelet-based and AC Shell-based

spectra to extract features and use them to train a support vector machine (SVM) classifier.

The results are compared in terms of Sensitivity, Specificity, Precision, and Accuracy.

We begin with some preprocessing step to prepare the signals for analysis. We first use

an overlapping window with the size of 210 and shift it along the entire signal with step

size 25 to create 442 sub-signals. Then, using the wavelet ”Symmlet 4”, we compute the

slope of the spectra for all sub-signals with wavelet and AC methods. The mean of slopes

in Wavelet method over all lags and people in the control group is -1.9748, which shows

that Hurst exponent H is close to 0.5. As discussed in the simulation section, in this case,

the AC Shell spectra results in features (slope estimates) with smaller variation, which can

lead to a better separation between control and cancer. Figure (2.5) shows the 442 slopes
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(a) (b)

Figure 2.4: A sample of blood mass spectrum for (a) a control and (b) a cancer case person

for all control and cancer cases in (a) Wavelet method and (b) AC method.
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Figure 2.5: Slopes of spectra for 442 sub-signals with (a) wavelet method and (b) AC
method. Blue used for control and green for cancer cases

In order to find the most informative sub-signals, we use Wilcoxon-Mann-Withny (WMW)

test to compare the mean of slopes for the control and cancer group for each region (sub-

signal). From 442 regions, 339 and 347 regions have smaller p-values than 0.05 for wavelet

and AC methods respectively. We pick 4 regions with the smallest p-values to train the clas-

sification model. Figure (2.6) (a) shows those 4 regions with smallest p-value for on of the

control patients.

38



0 2000 4000 6000 8000 10000 12000 14000 16000
0

10

20

30

40

50

60

70

80

90

100
regions with smallest p-values in WMW test

0 2000 4000 6000 8000 10000 12000 14000 16000
0

10

20

30

40

50

60

70

80

90

100
Big Picks

(a) (b)

Figure 2.6: 4 regions in mass spectrometry of serum proteins of a control case as an ex-
ample.(a) regions with smallest p-values in WMW test (b) regions with biggest picks in
practice

In addition, we consider another scenario, where we pick 4 regions with the largest

peaks and regions of interest. These regions are shown in Figure (2.6) (b). After feature

extraction (estimation of the slope in spectra), we train an SVM classifier for each scenario

(i.e., largest peaks and smallest p-values). We randomly split the data into a training set

(169 observations, two third of the data) and a testing set (84 observations, a third of the

data) with a similar proportion of cancer cases. Then, the slopes of 4 regions are used

as features to train the SVM model with Gaussian or Radial Basis Function (rbf) kernels.

The outcome of the SVM classifier on test data is used to compute sensitivity, specificity,

precision, and accuracy. This procedure is repeated 1000 times and the average assessment

metrics for each scenario and feature extraction method is reported in Tables 2.3 - 2.4.

Table 2.3: SVM results based on slopes of 4 regions with smallest p-values of WMW test
in mass spectrometry of serum proteins for both Wavelet and AC methods

Method Sensitivity Specificity Precision Accuracy
Wavelet 0.9656 0.9255 0.9587 0.9510

AC 0.9822 0.9665 0.9813 0.9765

As can be seen from the tables, for both region scenarios, the SVM classifier trained

by using the AC Shell spectra slopes as features outperform the wavelet counterpart, in
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Table 2.4: SVM results based on slopes of 4 regions with biggest picks in mass spectrom-
etry of serum proteins for both Wavelet and AC methods

Method Sensitivity Specificity Precision Accuracy
Wavelet 0.9291 0.6942 0.8432 0.8438

AC 0.9670 0.8632 0.9265 0.9293

terms of all assessment measures including sensitivity, specificity, precision, and accuracy.

For example, for the four-peak scenario, the specificity of the AC-Shell SVM classifier is

around .86, meaning that 86% of control people are correctly classified. This specificity is

17% higher than that of the Wavelet SVM classifier which is around 0.69. The 4% differ-

ence in the sensitivity between the two methods, indicates that AC-Shell SVM classifier can

outperform its Wavelet counterpart in detecting the cancer cases. The overall accuracy and

precision of the AC-Shell SVM classifier are both around 0.93, which are 8% higher than

that of Wavelet’s. The main reason for this significant difference between the two methods

is that AC Shell can generate more robust features with smaller variations that Wavelet.

2.6 Conclusions

In this chapter, we proposed a new method for robust feature extraction from signal with

scaling property. We suggested the use of slope estimate of the AC Shell spectra (i.e.,

the energy of AC Shell coefficients at different scales) as a feature and showed that it

has less variation than the slope estimate of the Wavelet spectra. This makes AC Shell-

based feature more robust and hence it results in a better classification performance. We

validated the proposed method using simulations by generating random realizations of fBm

with different Hurst exponents and computing the bias, variance and MSE for both Wavelet

and AC Shell spectra slopes. The results confirmed our hypothesis that AC shell features

have smaller variance. Furthermore, we applied our proposed method in analyzing blood

mass spectra to detect cancer cases and distinguish them from healthy people. We trained

two SVM classifiers with features obtained from Wavelets and AC Shell spectra slopes and
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measured the performance using sensitivity, specificity, precision, and accuracy measures.

The results again indicated that the classifier that was trained by using AC Shell features is

superior.
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CHAPTER 3

BAYESIAN BINARY REGRESSIONS IN WAVELET-BASED

FUNCTION ESTIMATION

3.1 Introduction

Wavelet shrinkage has been widely used in nonparametric statistics and signal processing

for a variety of purposes including denoising noisy signals an images, dimension reduc-

tion, and variable/feature selection. Wavelet shrinkage follows a three-step procedure: 1)

transformation of the original signals into the wavelet domain and obtaining wavelet coeffi-

cients; 2) shrinkage of the coefficients using a thresholding function; and 3) Transformation

of the shrunk coefficients back to the original domain, or utilization of of the low dimen-

sional thresholded coefficients in building a regression/classification model. Examples of

shrinkage methods include universal soft and hard thresholding (Donoho, 1995; Donoho

and Johnstone, 1994a), Stein’s Unbiased Risk Estimate (SURE)-based shrinkage (Donoho

and Johnstone, 1994b), and Bayes’ shrink (Chang et al., 2000).

Although the traditional wavelet shrinkage methods are effective and popular, they have

one major drawback. In these methods the shrinkage process only relies on the informa-

tion of the coefficient being thresholded and the information contained in the neighboring

coefficients is ignored. To address this issue (Remenyi and Vidakovic, 2013) proposed a

Bayesian wavelet-based denoising methodology based on the total energy of a neighboring

pair of coefficients at the same decomposition level plus their parental coefficient. Their

proposed shrinkage model is based on a Bayesian hierarchical model using a contaminated

exponential prior on the total mean energy in a neighborhood of wavelet coefficients. The

hyperparameters of their model are estimated empirically. In this approach the shrinkage
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is performed based on based on the ratio of the estimated and observed energy. They val-

idated their method and showed its superior performance through simulations and a case

study from inductance plethysmography.

Auto-Correlation (AC) Shell has some advantage over the wavelets by providing a re-

dundant shift-invariant representation of the signal that is obtained by using Auto-Correlation

function of compactly supported wavelets [5] Saito and Beylkin (1992) and considering di-

lation and translation. AC Shell is exactly symmetric which allows to detect zero-crossings

and compute the slopes at these points. It also simplifies the scale-to-scale analysis of the

coefficients. Additionally, it solves the problem of the unbalanced number of coefficients

in computing the average of empirical energy values at different scales as the number of

coefficients in each scale is the same and equal to the length of the original signal.

In function estimation and denoising applications, the standard AC Shell methods shrink

the empirical coefficients independently, by comparing their magnitudes with a threshold

value. The information of other coefficients has no influence on behavior of a particular

coefficients. However, due to redundant representation of signals and coefficients obtained

by AC Shells, the dependency of neighboring coefficients and the amount of shared infor-

mation between them increases. Therefore, it would be vital to propose a new thresholding

approach for AC Shells coefficients that considers the information of neighboring coeffi-

cients.

For this purpose, we develop a new Bayesian denoising for AC Shell coefficients ap-

proach that integrates logistic regression, universal thresholding, and Bayesian inference.

We validate the proposed method using extensive simulations and a case study of denois-

ing Atomic Force Microscopy (AFM) signals measuring the adhesion strength between two

materials at the nano-newton scale.
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3.2 Overview of Proposed Methodology

In this section, we provide an overview of the neighborhood AC shell denoising. It has

been inspired by block shrinkage (De Canditiis and Vidakovic, 2004) and Λ-Shrinkage

(Remenyi and Vidakovic, 2013).

In the subsequent sections, we discuss neighborhood AC shell denoising details. The pro-

posed method can be summarized through the following steps:

• Step 1. Decompose the original signal by using AC Shell basis functions and obtain

the corresponding coefficients.

• Step 2. Apply the universal hard thresholding function to the coefficients individ-

ually and indicate the unthresholded coefficients by 1 and the rest by zero. This

information is used as prior in the Bayesian setting.

• Step 3. For each coefficient, consider the two immediate left and right neighbors.

The information provided by the energy of these neighbor coefficients is useful for

determining the significance of the coefficient, hence, considered as as the likelihood.

• Step 4. The posterior, defined as the probability that a coefficient is unthresholded

given the energy of the neighboring coefficients, are computed by fitting a logis-

tic regression. The posterior probabilities are thresholded to identify the significant

coefficients.

• Step 5. The final list of significant coefficients is formed by finding the union of un-

thresholded priors and posteriors. The remainder of the coefficients are thresholded

and set to zero. Dj,k for j = 1, ..., L and k = 0, ..., N − 1 where N is signal length

and L is the level of decomposition

44



3.3 Neighboring AC Shell Denoising

In this section we elaborate the proposed Bayesian method for denoising a signal using AC

Shell decomposition.

3.3.1 AC Shell Decomposition and Thresholding

The proposed method begins with decomposing the signal using the AC Shell basis. Con-

sider a noisy observed signal Y , defined by

Yi = f(xi) + εi; i = 1, 2, ...N, (3.1)

where f(xi) is the true function and εi is the white noise. The goal is to denoise the observed

signal and obtain the true function f(x).

To obtain the signal representation in the AC Shell domain, we consider the following

family of functions,

{
Ψ̃j,k(x)

}
1≤j≤J,0≤k≤N−1

and
{

Φ̃J,k(x)
}

0≤k≤N−1
, (3.2)

where Ψ̃j,k(x) = 2j/2Ψ(2j(x − k)) and Φ̃j,k(x) = 2J/2Φ(2J(x − k)) and the coefficients

{Dj,k}1≤j≤J,0≤k≤N−1 and {SJ,k}0≤k≤N−1 are defined as in equations (2.16) and (2.17).

In practice since the true function is unknown the noisy coefficients are computed by

replacing f(x) with the noisy signal Y . Note that similar to wavelet denoising the thresh-

olding is only performed on detail coefficients, Dj,k

To perform denoising according to the proposed approach, we first threshold the noisy

coefficients using the universal hard thresholding (Donoho, 1995):

bj,k = I{|Dj,k| > λ}; j = 1, ..., L; k = 0, ..., N − 1 (3.3)
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where I is an indicator function, and λ =
√

2 logNσ̂, where σ̂ is an estimator of standard

deviation of noise present, and N is the size of the original signal. Given the redundancy

of the transform, we estimate σ̂ by averaging two estimators, which are sample standard

deviations of wavelet coefficients at every odd and even locations, respectively, within

the finest level of detail. Basically, if the magnitude of the coefficient is larger than the

threshold, the function returns 1 and zero, otherwise. This thresholding function is applied

on all the detail coefficients and the binary values, bj,k, are computed and considered as the

prior information for our Bayesian thresholding.

3.3.2 Computing Posteriors using Logistic Regression Model

As mentioned earlier, due to redundancy resulting from the AC Shell decomposition, the

neighboring coefficients contain information about the significance of for each AC Shell

coefficient. Therefore, this information should be incorporated in the denoising process.

Consider two immediate neighbor coefficients on the left and right sides of the coeffi-

cient of interest, Dj,k, as shown in Figure 3.1. That is, Dj,k−2, Dj,k−1, Dj,k+1, and Dj,k+2.

The energy of these coefficients, i.e., the squared coefficients, are considered as the likeli-

Dj,k-2 Dj,k-1 Dj,k Dj,k+1 Dj,k+2

Figure 3.1: 2-steps coefficient neighbors in AC Shell decomposition

hood information that are integrated with the prior information obtained from thresholding

the AC Shell coefficients, i.e., bj,k. The posterior probabilities are defined by:

Pr(significantDj,k |D2
j,k−2, D

2
j,k−1, D

2
j,k+1, D

2
j,k+2) ≈

l(D2
j,k−2, D

2
j,k−1, D

2
j,k+1, D

2
j,k+2) × Pr(significantDj,k).

(3.4)

To compute the posterior probabilities, we fit a logistic regression model, in which the

response data is the bj,k and the input is the energy of the neighboring coefficients. Specif-
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ically, the logit of the posterior is given by:

log
( pj,k

1− pj,k
)

= β0 + β1D
2
j,k−2 + β2D

2
j,k−1 + β3D

2
j,k+1 + β3D

2
j,k+2, (3.5)

where pj,k = P (bj,k|D2
j,k−2, D

2
j,k−1, D

2
j,k+1, D

2
j,k+2), is the posterior probability for coeffi-

cient Dj,k. The coefficients β0, β1, β2, β3 are estimated by maximizing likelihood function

(Myers et al., 2002).

The posterior probabilities are then thresholded by applying a universal hard threshold-

ing function given by

cj,k = I{pj,k > z}, z ∈ (0, 1). (3.6)

The threshold z is determined by leave-one-out cross-validation such that the mean square

error of signal reconstruction is minimized.

The final denoising step is performed by finding the union set of unthresholded prior

and posteriors, i.e., bj,k and cj,k, and setting the remainder coefficients to zero. That is:

DNeighbor
j,k =


Dj,k if |Dj,k| ≥ λ or pj,k ≥ z

0 otherwise

(3.7)

Lastly, the denoised AC Shell coefficients are transformed back to the original domain and

the denoised signal, f̂(x) will be estimated.

3.4 Validation of the neighboring AC Shell Denoising using Simulations

In this section, we evaluate the performance of the proposed denoising methodology and

compare it with benchmark methods using simulations. We consider four functions with

different shapes and degrees of smoothness, namely, Doppler, Bumps, HeaviSine, and

Blocks (Donoho and Johnstone, 1994a). Each simulated signal is of length N = 2048.

A sample of each signal type is shown in Figure 3.2. For each signal type, 100 instances
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Figure 3.2: 4 different signals to check the performance of proposed method

with three signal-to-noise ratios (SNR) of 3, 5, and 7 are generated. A sample of noisy

Doppler signal with different SNR values are shown in Figure 3.3.

We analyze the simulated data using four methods and compare the results. Specifically,

we apply 1) Wavelet denoising, 2) Neighboring Wavelet denoising, 3)AC Shell denoising,

and 4) Neighboring AC Shell denoising to the simulated data with different SNRs and

compute the mean squared error of reconstructed signal (i.e., ‖ ˆf(x)− f(x)‖2/N ). We use

Daubechies 4 basis and 5 levels of decomposition. As an example, we show the denoised

signals using each method against the true function for the Doppler signal with the SNR of

3 in Figure 3.4.

The MSE of each smoothing/denoising method for different signal type - SNR com-

binations are given in Figures ??. As can be seen from these figures for the Doppler and

HeaviSine where the true signals are smooth, AC Shell and Neighboring AC Shell signifi-

cantly outperform the Wavelet-based benchmarks. For example, for the Doppler signal the
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Figure 3.3: Doppler Signal (blue line) with different amount of noises (red line) with (a)
Signal-to-Noise SNR=3, (b) SNR=5 and (c) SNR=7
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Figure 3.4: Compare denoised signal with the original Doppler in 4 different methods based
on MSE

median MSE for Neighboring AC is around 2, while this value for Neighboring Wavelet

is around 2.75. This can be attributed to the redundancy obtained by the AC Shell basis.

However, for non-smooth signals like Bumps and Blocks, Wavelet-based methods have

lower MSE values.

Moreover, by comparing the neighboring methods with the regular AC Shell and Wavelets

denoising, we can see the value that neighbor coefficients brings to the denoising process.

In all signal types neighboring methods have lowers MSEs than their non-neighboring

counterparts. For example, for the Bumps signal the median MSE for Neighboring AC

is around 19, while this value for AC Shell is more than 20. This indicates the value of

including the neighboring information in the smoothing and denoising process.

Finally, we compare the performance of different methods under different SNR values. The

foregoing observations are mostly consistent across different SNR values.

50



3.5 Case Study

In this section, we validate the proposed denoising method using real data. Specifically,

we denoise a signal captured by an atomic force microscope. The atomic force microscopy

(AFM) is a type of scanned proximity probe microscopy that measures the adhesion strength

between two materials at the nano-newton scale. The AFM data from the adhesion mea-

surements between carbohydrate and the cell adhesion molecule (CAM) E-Selection was

collected by Bryan Marshall from the Department of Biomedical Engineering at Georgia

Institute of Technology. The technical description and details provided in Marshall et al.

(2001) is illustrated in Figure 3.10. A sample of the AFM signal is shown in Figure 3.9.

In AFM, a cantilever beam is adjusted until it bonds with the surface of a sample,

and then, the force required to separate the beam and sample is measured from the beam

deflection. Additionally, researchers are interested in the shape of the signal in the first

segment (i.e., the first 350 observations), prior to cantilever detachment. Hence, identifying

the drop point is an important part of the process. However, beam vibration can be caused

by external factors such as thermal energy of the surrounding air or even the footsteps of

someone outside the laboratory. In Figure 3.10 the vibration of a beam shows that the noise

can mask the deflection signal and drop point. Therefore, it is important to first denoise the

signal and then, identify the deflection point.

To denoise the AFM signal, we decomposed it of size 3,000 into 10 decomposition levels

using the DWT with a 6-tab Daubechies wavelet (3 vanishing moments) and applied hard

thresholding on wavelet coefficients. The threshold for this process is set as
√

2 logNσ̂,

where σ̂ is an estimator of standard deviation of noise, and N is the size of the original

signal. Given the redundancy of the transform, we estimate σ̂ by averaging two estimators,

σ̂ and ê, which are sample standard deviations of wavelet coefficients at every odd and even

locations, respectively, within the finest level of detail.

We apply four denoising methods discussed in the previous section and compare the
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results. The original and denoised signals obtained from applying each method are plot-

ted in Figure 3.11. As can be seen from the results, the AC Shell methods outperform

the Wavelet-based methods in smoothing the signal. Additionally, the neighboring meth-

ods have slightly better performance compared with the original AC Shell and Wavelets

denoising methods.

In short, both the simulations and case study show the superiority of the proposed

method over the existing benchmarks and underline the importance of both information

redundancy resulting from AC Shell basis as well as the neighboring information in de-

noising signals.

3.6 Conclusions

In this chapter, we utilized the redundant information property obtained by applying the

AC Shells on noisy signals to devise a novel denoising/smoothing method. For this pur-

pose, we proposed to incorporate the information of its neighboring AC Shell coefficients

in identifying whether a coefficient is significant or should be removed. A Bayesian frame-

work was proposed that combines the thresholded coefficients as the prior, with the energy

of neighboring coefficients as the likelihood information to obtain the posterior probability

of thresholding a coefficient. We used both simulations and a case study of analyzing and

smoothing the atomic force microscopy signals to evaluate the performance of the proposed

denoising method. The results indicated that the proposed method outperforms existing de-

noising methods for different signal-to-noise ratios. The results showed that if the signal is

not smooth the proposed Neighboring AC Shell method performs poorly. The extension of

this method to be applicable to non-smooth signal is an important topic that requires further

research.
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Figure 3.5: Boxplot of Mean Squared Error (MSE) for 4 different denoising methods
(smoothing) for noisy Doppler signal with (a) SNR = 3, (b) SNR = 5 and (c) SNR = 7
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Figure 3.6: Boxplot of Mean Squared Error (MSE) for 4 different denoising methods
(smoothing) for noisy Bumps signal with (a) SNR = 3, (b) SNR = 5 and (c) SNR = 7
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Figure 3.7: Boxplot of Mean Squared Error (MSE) for 4 different denoising methods
(smoothing) for noisy HeaviSine signal with (a) SNR = 3, (b) SNR = 5 and (c)
SNR = 7
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Figure 3.8: Boxplot of Mean Squared Error (MSE) for 4 different denoising methods
(smoothing) for noisy Blocks signal with (a) SNR = 3, (b) SNR = 5 and (c) SNR = 7
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Figure 3.9: AFM illustration and a sample signal

Figure 3.10: Steps of collecting data from Atomic Force Microscopy (AFM) and a sample
signal
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Figure 3.11: Denoising AFM measurements signal with both Hard and Neighbor thresh-
olding for Wavelet and AC Shell decomposition with Daubechies 4 wavelet
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CHAPTER 4

BAYESIAN METHOD IN COMBINING GENETIC AND

HISTORICAL RECORDS OF TRANSATLANTIC SLAVE TRADE

IN THE AMERICAS

4.1 Introduction

In the era between 1515 and 1865, more than 12 millions people were enslaved and forced

to move from Africa to North and Latin America, which has had significant social, cultural,

health and genetic impacts across the Americas. The shipping documents have recorded

the origin and disembarkation of enslaved people. For example, the data show that more

than 10 millions enslaved people disembarked in Central America, South America, and the

Caribbean, and fewer than half a million disembarked in North America (Eltis, 2007).

However, over time due to slave trades they have been moved across North America.

This makes identification of African American’s origins particularly challenging. The ge-

nealogy study that focuses on tracing one’s family ancestry and origins is an ancient human

desire (Potter-Phillips, 1999). Traditionally, genealogy study has been done via the explo-

ration of historical records, family tress and birth certificates. Due to recent advancements

in the field of genetics, genealogy has been revolutionized and become more accurate by

DNA marker-based methods (Aulicino, 2013; Fitzpatrick and Yeiser, 2005). DNA sequenc-

ing provides accurate, unbiased and sensitive markers measuring the relationships among

family members in the family trees, and helps identify individual ancestral origins. The use

of DNA-markers are more pronounced when there is a lack of historical ancestral records

(Gates Jr., 2010).
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Figure 4.1: Slave arrivals on the North American mainland: North American destinations
and African origins, all years. Attributed to https:// tracingafricanroots .wordpress.com/

Mitochondrial DNA (mtDNA) and Y-DNA sequences (haplotypes) are two most pop-

ular markers widely used for genetic genealogy (Cann et al., 1987; Pakendorf and Stonek-

ing, 2005; Stumpf and Goldstein, 2001). mtDNA and Y-DNA are sex-specific markers that

help with determining the female and male lineages, respectively. Additionally, they can

show geographical differentiation that localizes the ancient ancestral origins. However, as

discussed in the literature (Emery et al., 2015; Salas et al., 2005; Stefflova et al., 2011),

mtDNA and Y-DNA genetic markers have some limitation for genealogical studies. They

are only capable of capturing single unbroken ancestral lineages, hence, can be used for

fully identifying an individual ancestry. Additionally, although these markers can provide

continental differentiation, they have poor spatial resolution that makes it hard to local-

ize ancestry assignment as these markers are distributed across different sub-continental

regions.
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To overcome the foregoing drawbacks, a hybrid approach has increasingly become

more relevant that combines the genetic markers results with the historical records that

show the transatlantic journeys of enslaved people. Addition of the journey data can pro-

vide with substantially increased resolution in ancestry. Historical information could also

be combined with genetic information at the population level to increase confidence in

genetic-based ancestry assignments. However, in the genealogy context, there is little re-

search for the integration of historical and genetic data. Rishishwar et al. (2015) used a

Bayesian approach for the combination of population-level historical records with genetic

marker data for determining the ancestry of Afro-Colombian. Micheletti et al. (2020) used

Bayesian modeling to compare the timing of genetic connections between African popula-

tions and individuals from the Americas with historical records of the transatlantic shipping

of enslaved Africans.

In this chapter, we propose a Bayesian modeling framework to integrate genetic data,

namely genome sequences as well as genotypes, and its geographic distribution in Africa

with historical records of the transatlantic shipping of enslaved Africans to increase the

spatial resolution of ancestry assignments for African-Americans. The proposed Bayesian

framework uses the the voyage data from historical records available in the transatlantic

slave trade database as prior probabilities and combine them with genetic markers of Afro-

Americans, considered as the likelihood information to estimated the posterior (updated)

probabilities of their ancestry assignments to geographical regions in Africa.

4.2 Dataset Description

4.2.1 Genome Sequence Data and Admixture Analysis:

A total of 427 whole genome sequences or genotypes, taken form the 1000 Genomes

Project (1KGP) (McVean, 2010, 2012) and Human Genome Diversity Project (HGDP) .

Specifically, the Mandenka population were taken from the HGDP, all the rest from 1KGP.
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Number of cases from each region showed in Table 4.1

Table 4.1: Number of whole genome sequences from each region

Regions GWD MSL ESN Mandenka YRI Sum
Number of cases 113 85 99 22 108 427

Whole genome sequences for 60 admixed Afro-American from the 1000 Genomes

Project. Whole genome sequence variant data from 1KGP individuals were merged with

genome genotype data from HGDP individuals using the program PLINK version 1.9 (Pur-

cell et al., 2007), keeping only those sites common to both datasets and correcting SNP

strand orientations for consistency as needed. These processes were done separately for

genome sequence and genotype data together and for genome sequence data alone.

Allele sharing distances between pairs of genomes were computed as the fraction of

differences between SNP calls. The program ADMIXTURE v1.23 (Alexander et al., 2009)

was used to estimate the admixture fractions of six putative ancestral populations among

Afro-American genome sequences. ADMIXTURE was run with default settings and k =

6 ancestral populations. The program SupportMix (Ver. Jul 18, 2012) (Omberg et al.,

2010) was used to characterize the regional (locus-specific) ancestry admixture fractions

in the Afro-American genomes using default settings. A sample of these fractions is given

in Table 4.2. Also, the references along with corresponding regions and the number of

unrelated individuals are summarized on Table 4.3.

Table 4.2: Copying fractions from African American individuals (ASW), and reference
African populations (ESN, GWD, LWK, Mandenka, MSL and YRI)

Individuals GWD MSL ESN Mandenka YRI LWK
ASW1 0.1559312 0.1467045 0.2455052 0.03247513 0.2478764 0.1715075
ASW2 0.1693882 0.1428647 0.2600602 0.02752310 0.2499406 0.1502233
ASW3 0.1820081 0.1438091 0.2217078 0.03044837 0.2353801 0.1866465

. . . . . . .

. . . . . . .

. . . . . . .
ASW60 0.1623608 0.1451124 0.2368917 0.03243721 0.2485918 0.1746061

62



Table 4.3: References and related regions plus the number of unrelated individuals

Reference Region Num. of Individuals
GWD Gambian in Western Divisions or Senegambia 113
MSL Sierra Leone 85

Mandenka Windward Coast and Gold Coast 22
ESN Esan in Nigeria 99
YRI Yoruba in Ibadan, Nigeria 108
LWK Luhya in Webuye, Kenya

4.2.2 Historical Records and Transatlantic Voyages Data

Historical data on the African ancestral origins and voyages of enslaved people from those

origins of the modern Afro-American population, compiled from records of trans-Atlantic

slave voyages available on slave voyages website . The dataset covers voyages from 1626

to 1875 originated from 6 geographical regions in Africa, namely, Senegambia and off-

shore Atlantic, Sierra Leone, Windward Coast and Gold Coast, Bight of Benin, Bight of

Biafra and South-east Africa and Indian ocean islands. The total numbers of voyages from

each in this 250 years time period are, 111822, 54339, 92947, 11456, 82726 and 10551

respectively. The detailed voyage statistics for 25 year periods are given in Table 4.4.

Table 4.4: Number of voyages from each region in the time period of 1626 till 1875

Year GWD MSL Mandenka ESN YRI LWK Totals
1626-1650 0 0 0 0 0 0 0
1651-1675 2403 0 0 0 1627 0 4030
1676-1700 4884 0 726 573 5519 2604 14306
1701-1725 11571 735 10789 2875 17741 3342 47053
1726-1750 32508 3490 11147 1506 35799 527 84977
1751-1775 41135 21171 39337 4518 16027 381 122569
1776-1800 8505 10063 12834 510 395 0 32307
1801-1825 10816 18880 18114 1348 5513 3697 58368
1826-1850 0 0 0 0 105 0 105
1851-1875 0 0 0 126 0 0 126

Totals 111822 54339 92947 11456 82726 10551 363841
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4.3 Ancestry Assignments to Geographical Regions using a Bayesian

Approach

In this section, we describe our proposed Bayesian method for ancestry assignments of

Afro-Americans to geographical regions in Africa. The Bayesian method incorporates the

historical records of transatlantic voyages that provide prior knowledge about the origins,

with the the regional ancestry fractions of individuals obtained from the number of chunks

of genome matches with references, considered as the likelihood information to compute

the posterior probabilities. For any given Afro-American individual with genome data, their

African ancestral origin can be assigned by finding the posterior probability of coming from

any of the six ancestral regions.

According to the Bayes’ rule,

Pr(Region |Regional ancestry fractions) =

Pr(Regional ancestry fractions |Region)× Pr(Region)

Pr(Regional ancestry fractions)
,

(4.1)

where:

Pr(Region |Regional ancestry fractions) is the posterior probability,

Pr(Regional ancestry fractions |Region) is the likelihood,

Pr(Region) is the prior probability, and

Pr(Regional ancestry fractions) is the marginal genome probability considered as a

normalizing constant.

We assume that the likelihood function of the number of regional ancestry matches

or chunks that copy region k follows a multinomial distribution. Specifically, let fik; i =

1, 2, ..., 60, k = 1, 2, ..., 6 denote the number of chunks that copies region k for the individ-
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ual i. That is,

fi1, ..., fi6|(pi1, ..., pi6) ∼ MN
(
N, (pi1, ..., pi6)

)
, (4.2)

where N =
∑K

k=1 fik, and pik is the probability of copying from region k for sample i. The

probability mass function is given by

g
(

(fi1, ..., fi6)|(pi1, ..., pi6)
)

=
N !

fi1!...fi6!
pfi1i1 p

fi2
i2 ...p

fiK
iK . (4.3)

We also consider the conjugate prior for multinomial distribution, namely Dirichlet,

i.e., the probability of a voyage from area k has a Dirichlet distribution (pi1, ..., piK) ∼

Drich
(
αi1, ..., αiK

)
. The probability density function of the prior is given by

h
(
pi1, ..., piK

)
=

Γ(
∑

k αk)∏
k Γ(αk)

∏
k

pαk−1
ik , (4.4)

where pik ∈ (0, 1) and
∑

k pik = 1.

As Dirichlet is a conjugate prior for the Multinomial likelihood, the posterior distribu-

tion would have a close-form with Dirichlet distribution, i.e.,

(
pi1, ..., piK

)
|
(
fi1, ..., fiK ,αi1, ..., αiK

)
∼ Drich

(
α1 + fi1, ..., αK + fiK

) (4.5)

The posterior pdf is written by

l
(
pi1, ..., piK

)
=

Γ(
∑

k(αk + fik))∏
k Γ(αk + fik)

∏
k

pαk+fik−1
ik , (4.6)

where pik ∈ (0, 1) and
∑

k pik = 1.
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4.3.1 Estimation of Hyperparameter of Prior Distribution

We deal with the unknown prior hyperparameters, αk’s, in two different ways: First,

we use Markov Chain Monte Carlo (MCMC) simulations and generate αk’s from a non-

informative prior, namely a wide uniform distribution. The generated αk’s are used to

generate prior probabilities which are in turn utilized along with fik’s to draw from the

posterior distributions, p1, ..., p6. The average posterior draws are used to estimate the pos-

terior probabilities and consequently assign an individual’s ancestry region.

Second, we use empirical Bayes method. Using the method of moment, and the voyage

data, we can estimate the hyperparameters. Specifically, the following set of equations are

used to estimate the hyperparameters, αk.

E(pk) =
αk∑
k αk

(4.7)

Var(pk) =
E(pk)

(
1− E(pk)

)
1 +

∑
k αk

(4.8)

log
∑
k

αk =
1

K − 1

K−1∑
k=1

log

(
E(pk)

(
1− E(pk))

)
Var(pk)

− 1

)
(4.9)

E(pk) and Var(pk) are estimated from the voyage data. Ê(pk) = xk
n

, where xk is the number

of the voyages from region k, and n is the total number of voyages. V̂ar(pk) is estimated

by the sample variance, in which estimated E(pk) from each 25 year period is considered

as an observation.

Finally, using the estimated αk’s, and the likelihood observations, fik’s, the posterior

means are estimated by

E(pik) =
α̂k + fik∑
k(α̂k + fik)

. (4.10)

The region with the maximum mean a posterior is assigned to the corresponding individual.
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4.4 Results and Discussions

In this section, we analyze the genome data combined with the voyage records using the

proposed Bayesian methods, namely the Empirical Bayes and MCMC method, to localize

ancestry assignment for individual Afro-Americans. Additionally, we perform a validation

study on the genome data of the references sample to show the value of including prior

information in the analysis.

4.4.1 Posterior Probabilities Results using Empirical Bayes

As discussed in the previous section, we use the method of moment to estimate the hyper-

parameter α for each region using the the voyage data. We should note that since the

voyage data are given for the periods of 25 years, we estimate the E(pk) for each period

and use these estimates to find the sample variance as the estimate for Var(pk). The point

estimations for prior probabilities, variances, and the hyper-parameters α for each region

are given in Table 4.5.

Table 4.5: Estimation of E(pk), Var(pk) and the hyperparameters α

Estimate ESN GWD LWK Mandenka MSL YRI
E(pk) 0.0315 0.3073 0.0290 0.2555 0.1493 0.2274

Var(pk) 0.0002 0.0047 0.0018 0.0092 0.0135 0.0230
α 0.6846 6.6825 0.6305 5.5545 3.2473 4.9437

As the posterior distribution of the assignment probabilities is Dirichlet, its parame-

ters are estimated by combining the number of matches with the estimated priors. That

is, Dirichlet
(
αi1 + fi1, ..., αiK + fiK

)
. The fik is computed by multiplying the fraction

matches, obtained by the ”Supportmix” package, with N = 400. For each individual i

the mean a posteriori values are considered as the posterior assignment probabilities, i.e.,

E(pik) =
α̂k + fik∑
k(α̂k + fik)

. The final assignment is done by finding the region with the max-

imum posterior probability, i.e., Ri = argmaxk

(
E(pik)

)
.
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The posterior assignment probabilities for each individual along with the assignment

probabilities obtained by only considering the genome data are illustrated in Figures 4.2,

4.3, and 4.4 using bar charts. The impact of the prior information on the assignment prob-

abilities is clear from these figures. As can be seen for some regions inclduing the GWD

and Mandenka these probabilities increase, while decreasing for some others such as LWK.
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Figure 4.2: The probability of ancestry assignment for individuals 1 to 20, ordered from
top left corner to bottom right

To have a clearer comparison between posterior probabilities and likelihood, we study

the probability distributions across the individuals by plotting two sets of boxplots in Figure

4.9.

As can be seen from the figures, the prior information has increased the assignment
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Figure 4.3: The probability of ancestry assignment for individuals 21 to 40, ordered from
top left corner to bottom right

probabilities for some regions including GWD, and Mandenka. To further highlight the

impact of the prior information, we plot the confusion matrix in Figure 4.6 that shows how

many individuals’ assignments have changed due to prior information. Based on the confu-

sion matrix and the boxplots, it is clear that 11 individuals were assigned to the ESN region,

7 of whom were reassigned to the YIR region after incorporating the prior information. 49

individuals are assigned to YRI based on only likelihood information. However, due to a

high prior probability (high voyage frequency) of YRI, the assignments based on posterior

probability do not change.
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Figure 4.4: The probability of ancestry assignment for individuals 41 to 60, ordered from
top left corner to bottom right

4.4.2 Validation study for Empirical Bayes

In this section, we use the reference individual genome data to validate the importance of

including prior information in empirical Bayes approach using simulations. There are 427

reference individuals in this study, we use sampling with replacement to sample from refer-

ence individuals with the proportions defined by voyage data. We generate populations of

1000 individuals whose origins are known. Then, we apply the empirical Bayes discussed

in the previous section to estimate the posterior probability and consequently determine the

origin of simulated individuals. Next, the assigned origin is compared with the true origin

to compute the accuracy. We repeat this procedure 1000 times.

The average confusion matrices for both likelihood-based method and posterior-based
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Figure 4.5: The probability of ancestry assignment for different regions, left panel: likeli-
hood without priors, right panel: posterior probabilities

Figure 4.6: The confusion matrix of likelihood assignment vs posterior assignment

method are plotted in Figures 4.8 and 4.7, respectively. Comparing the two confusion

matrices clearly shows the accuracy of the posterior-based assignment is more than that

of the likelihood-based method. On average, 5 individuals that are mis-classified using

the likelihoods are correctly classified using the posterior probabilities. This shows the
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importance of the prior information in making more accurate determination of one’s origin.

Figure 4.7: The confusion matrix of likelihood-based approach

To see the distribution of the errors for each method, we plot boxplots of 1000 error

values in Figure 4.9. The boxplot clearly shows that the posterior-based method outperform

the likelihood-based method. The median improvement is about 1%.

4.4.3 Posterior Probabilities Results using MCMC

In this approach, random draws are made from a non-informative uniform distribution for

the prior hyper-parameters, i.e., αk ∼ Uniform(0.1, 5000). Then an MCMC sampling

scheme is followed to obtain the posterior probabilities.

The resulting probability of ancestry assignment to a region obtained by using only the

genome data and MCMC are shown in Figures 4.10 and 4.11, respectively. As can be seen

from these figures the assignment probabilities for both methods are very similar. This is

mainly because unlike the empirical Bayes approach that uses the voyage data to estimate
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Figure 4.8: The confusion matrix of posterior-based approach

the hyper-parameters (informative priors), the non-informative flat priors chosen for sam-

pling the Dirichlet’s parameters add almost no information to the likelihood function and

the genome data. This again emphasizes on the importance of the prior information.

4.5 Conclusions

Recently, due to advancements in the field of genetics, genealogy has been revolutionized

and become more accurate by DNA marker-based methods. However, the poor spatial

resolution of DNA marker-based methods makes it hard to localize ancestry assignment.

To overcome the issue, in this chapter, we utilized Bayesian methodology to propose a

hybrid approach that combines the genetic markers results with the historical records that

show the transatlantic journeys of enslaved people.

The proposed methodology consists of two methods; the empirical Bayes, in which

the hyper-parameters of the prior distribution are estimated using the data, and the MCMC
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Figure 4.9: Boxplots of 1000 error values for each method (Likelihood versus Posterior)

method that assumes non-informative priors. We applied the proposed methodology to

transatlantic voyage data and a sample of genome data from 60 Afro-American individuals.

We showed the effectiveness of the proposed methodology and the importance of prior

information in increasing the accuracy of ancestry assignment. The results showed that

the empirical Bayes can improve ancestry assignment, while the MCMC that uses non-

informative priors has little impact on the assignment and does not add much to the genome

data.
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Figure 4.10: The probability of ancestry assignment to a region obtained by using only the
genome data

Figure 4.11: The probability of ancestry assignment to a region obtained by using MCMC
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APPENDIX A

AC SHELL DETAIL COEFFICIENTS ENERGY

E(D2
j,k) = E

{(∫
f jd(y)2jψ

(
2j(y − k)

)
dy
)(∫

f jd(z)2jψ
(
2j(z − k)

)
dz
)}

(A.1)

= 22j

∫ ∫
E
(
f jd(y)f jd(z)

)
ψ
(
2j(y − k)

)
ψ
(
2j(z − k)

)
dydz

Now, we calculate E
(
f jd(y)f jd(z)

)
and then we will replace it in (A.1).

E
(
f jd(y)f jd(z)

)
= E

(N−1∑
n=0

d̃j,nφ(y − n)
N−1∑
m=0

d̃j,mφ(z −m)
)

=
N−1∑
n=0

N−1∑
m=0

E(d̃j,nd̃j,m)φ(y − n)φ(z −m)

=
N−1∑
n=0

N−1∑
m=0

E
[ ∫

f(u)ψ̃j,n(u)du

∫
f(v)ψ̃j,m(v)dv

]
φ(y − n)φ(z −m)

=
N−1∑
n=0

N−1∑
m=0

φ(y − n)φ(z −m)
[ ∫ ∫

E
(
f(u)f(v)

)
ψ̃j,n(u)ψ̃j,m(v)dudv

]
=

N−1∑
n=0

N−1∑
m=0

φ(y − n)φ(z −m)
[ ∫ ∫

E
(
f(u)f(v)

)
2j/2ψ

(
2j(u− n)

)
2j/2ψ

(
2j(v −m)

)
dudv

]
(A.2)

By using the form of auto-covariance function of fBm, we have:

E
(
f(u)f(v)

)
=
σ2
H

2
(|u|2H + |v|2H − |u− v|2H)
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replace this in (A.2),

E
(
f jd(y)f jd(z)

)
= 2j

N−1∑
n=0

N−1∑
m=0

φ(y − n)φ(z −m)
σ2
H

2

[
∫
|u|2Hψ

(
2j(u− n)

)( ∫
ψ
(
2j(v −m)

)
dv
)
du

+

∫
|v|2Hψ

(
2j(v − n)

)( ∫
ψ
(
2j(u−m)

)
du
)
dv

−
∫ ∫

|u− v|2Hψ
(
2j(u− n)

)
ψ
(
2j(v −m)

)
dudv

]
the first two integrals inside the above brackets are zero, as

∫
ψ(x)dx = 0, for the third

doubled integral we consider some variable changes such as: p = 2j(u−n)−2j(v−m) =

2j(u− v +m− n) and q = 2j(v −m).

By these variable changes, we will have u− v = 2−jp+n−m and 2j(u−n) = p+ q. So,

E
(
f jd(y)f jd(z)

)
= 2j

σ2
H

2

N−1∑
n=0

N−1∑
m=0

φ(y − n)φ(z −m)
[

∫ ∫
|2−jp+ n−m|2Hψ(p+ q)ψ(q)(2−jdp)(2−jdq)

]
for choice of n = m = k, we will get:

E
(
f jd(y)f jd(z)

)
=
(
2j
)(

2−2j
)(

2−2Hj
)σ2

H

2

N−1∑
k=0

φ(y − k)φ(z − k)
[

∫ ∫
|p|2Hψ(p+ q)ψ(q)dpdq

]
= 2−(2H+1)j σ

2
H

2
Vψ

N−1∑
k=0

φ(y − k)φ(z − k)

(A.3)

where Vψ =
∫ ∫
|p|2Hψ(p+ q)ψ(q)dpdq does not depend on j, but just on H and ψ.

We finally have the E
(
f jd(y)f jd(z)

)
to plug into (A.1) equation:
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E(D2
j,k) =

∫ ∫
E
(
f jd(y)f jd(z)

)
2jψ
(
2j(y − k)

)
2jψ
(
2j(z − k)

)
dydz (A.4)

= 2−(2H+1)j σ
2
H

2
Vψ

N−1∑
k=0

(∫
φ(y − k)ψ

(
2j(y − k)

)
2jdy

)(∫
φ(z − k)ψ

(
2j(z − k)

)
2jdz

)

The Last summation is dependent to the wavelet function ψ and j, so, we call it Qψ,j .

To summarize:

E(D2
j,k) = 2−(2H+1)j σ

2
H

2
VψQψ,j (A.5)
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