
PRACTICAL SYSTEMS FOR STRENGTHENING AND WEAKENING
BINARY ANALYSIS FRAMEWORKS

A Dissertation
Presented to

The Academic Faculty

By

Jinho Jung

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computing

Department of Computer Science

Georgia Institute of Technology

May 2021

© Jinho Jung 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/478868088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PRACTICAL SYSTEMS FOR STRENGTHENING AND WEAKENING
BINARY ANALYSIS FRAMEWORKS

Thesis committee:

Dr. Taesoo Kim (Advisor)
School of Computer Science
Georgia Institute of Technology

Dr. Joy Arulraj (Co-advisor)
School of Computer Science
Georgia Institute of Technology

Dr. Paul Pearce (Co-advisor)
School of Computer Science
Georgia Institute of Technology

Dr. Wenke Lee
School of Computer Science
Georgia Institute of Technology

Dr. Kyu Hyung Lee
The Department of Computer Science
University of Georgia

Date approved: Apr 6, 2021

ACKNOWLEDGEMENTS

My Ph.D. thesis would not exist without the support of many people.

First of all, I would like to thank to my advisors. I was very fortunate to have wonderful

advisors, Dr. Taesoo Kim, Dr. Joy Arulraj, Dr. Paul Pearce, and my hidden advisor Dr.

Hong Hu. Dr. Taesoo Kim has been always “nice” to me. He taught me how to concentrate

to the research topic and boost the outcome, excluding any minor or personal problems.

Considering my first year of study, I would say he created something out of nothing. I am so

grateful for it. Dr. Joy Arulraj is an intelligent researcher. I could not have a chance to work

with him if I am not a Georgia Tech student. Collaboration with him made the most efficient

performance during my study. I would like to thank to Dr. Paul Pearce and show my regret

about the unfinished project BLUEPRINT. It was a great pleasure working with him for this

project. Dr. Hong Hu collaborated with me for most of my research projects. Without his

close support, I may spend two more years finishing my Ph.D. program.

I also would like to appreciate my dissertation committee: Dr. Wenke Lee and Dr. Kyu

Hyung Lee for their comments and suggestions for my thesis. Dr. Wenke Lee guided me to

conduct research for MLSPLOIT project and Dr. Kyu Hyung Lee supported AVPASS and

FUZZIFICATION project.

I have been lucky to study and hack with many researchers and staffs at Georgia Tech:

Dr. Changwoo Min, Dr. Kangjie Lu, Dr. YeongJin Jang, Dr. Woonhak Kang, Dr. Hyungon

Moon, Dr. Sangho Lee, Dr. Chanil Jeon, Dr. Mohan Kumar, Dr. Steffen Maass, Dr.

Ming-Wei Shih, Dr. Meng Xu, Dr. Daehee Jang, Dr. Sanidhya Kashyap, Dr. Hyungjoon

Koo, Dr. Insu Yun, Max Wolosky, ChangSeok Oh, Wen Xu, Ren Ding, Soyeon Park, Fan

Sang, Seulbae Kim, Hanqing Zhao, Yechan Bae, Sujin Park, Mansour Alharthi, Ammar

Askar, Jungwon Lim, Yonghwi Jin, Yu-Fu Fu, Kevin Stevens, Stephen Tong, Trinh Doan,

Elizabeth Ndongi, Sue Jean Chae, and Chulwon Kang.

iii

Finally, I would like to thank my parents, Jungrok Choi and Haebok Jung, and my

parents-in-law, Soonae Lee and Myungjoo Won for their support. Also, I appreciate to

Sungmi Kim and Chin’s family for being a good friend. parent. Especially, I thank to my

wife, Keumyoung, and my little son, Noah. I could not finish the long journey without their

support.

Noah! My little boy! You found this document. I have something for you. Find and tell

me “I am ready to get it now”.

iv

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . ix

List of Figures . xii

Summary . xv

Chapter 1: Introduction . 1

1.1 Problem Statement . 1

1.2 Research Outline . 2

Chapter 2: Related work . 4

2.1 Fuzzing . 4

2.1.1 Coverage-Guided Fuzzing . 4

2.1.2 Hybrid Fuzzing . 5

2.2 Concolic Execution . 6

2.3 Anti-fuzzing Techniques . 6

Chapter 3: FUZZIFICATION: Anti-Fuzzing Techniques 8

3.1 Introduction . 8

3.2 Background and Problem . 11

v

3.2.1 Fuzzing Techniques . 11

3.2.2 FUZZIFICATION Problem . 13

3.2.3 Design Overview . 15

3.3 SpeedBump: Amplifying Delay in Fuzzing 17

3.3.1 Analysis-resistant Delay Primitives 19

3.4 BranchTrap: Blocking Coverage Feedback 21

3.4.1 Fabricating Fake Paths on User Input 21

3.4.2 Saturating Fuzzing State . 24

3.4.3 Design Factors of BranchTrap . 25

3.5 AntiHybrid: Thwarting Hybrid Fuzzers 26

3.6 Evaluation . 30

3.6.1 Reducing Code Coverage . 33

3.6.2 Hindering Bug Finding . 37

3.6.3 Anti-fuzzing on Realistic Applications 39

3.6.4 Evaluating Best-effort Countermeasures 41

3.7 Discussion and Future Work . 42

3.8 Conclusion . 44

Chapter 4: WINNIE: Fuzzing Windows Applications with Harness Synthesis
and Fast Cloning . 45

4.1 Introduction . 46

4.2 Background: Why Harness Generation? 49

4.2.1 The GUI-Based, Closed-Source Software Ecosystem 51

4.2.2 Difficulty in Creating Windows Fuzzing Harnesses 52

vi

4.3 Challenges and Solutions . 54

4.3.1 Complexity of Fuzzing Harnesses 54

4.3.2 Limitations of Existing Solutions 56

4.3.3 Our Solutions . 58

4.4 Harness Generation . 59

4.4.1 Fuzzing Target Identification . 60

4.4.2 Call-sequence Recovery . 63

4.4.3 Argument Recovery . 63

4.4.4 Control-Flow and Data-Flow Reconstruction 64

4.4.5 Harness Validation and Finalization 65

4.5 Fast Process Cloning on Windows . 66

4.6 Implementation . 69

4.6.1 Fuzzer Implementation . 70

4.6.2 Reliable Instrumentation . 70

4.7 Evaluation . 71

4.7.1 Applicability of WINNIE . 73

4.7.2 Benefits of Fork . 74

4.7.3 Efficacy of Harness Generation . 78

4.7.4 Overall Results . 79

4.8 Discussion . 81

4.9 Extension: Automatic Generation of Internet Scans for Malware 83

4.9.1 BLUEPRINT’s Methodology . 85

4.9.2 System Architecture . 87

vii

4.9.3 Network Primitive Restoration . 89

4.9.4 Network Scanning Signature Extraction 91

4.9.5 Prototype Implementation and Preliminary Evaluation 92

4.9.6 Extracted Signatures and Validation 95

Chapter 5: Conclusion and Future work . 98

5.1 Conclusion . 98

5.2 Future work . 98

5.2.1 Delay primitive on different H/W environments 98

5.2.2 Handling complicated data structure in harness 99

References . 101

viii

LIST OF TABLES

3.1 Possible design choices and evaluation with our goals. 14

3.2 Code size overhead and performance overhead of fuzzified binaries.
GIT means Google Image Test-suite. We set performance overhead budget
as 5%. For size overhead, we show the percentage and the increased size. . 28

3.3 Experiments summary. Protection optionfuzz: Original, SpeedBump,
BranchTrap, AntiHybrid, All. We use 4 binutils binaries, 4 binaries from
Google OSS project and MuPDF to measure the code coverage. We use
binutils binaries and LAVA-M programs to measure the number of unique
crashes. 30

3.4 Our configuration values for the evaluation. 32

3.5 Reduction of discovered paths by FUZZIFICATION techniques. Each
value is an average of the fuzzing result from eight real-world programs, as
shown in Figure 3.9 and Figure 3.10. 36

3.6 Overhead of FUZZIFICATION on LAVA-M binaries. The overhead is
higher as LAVA-M binaries are relatively small (e.g., ≈ 200KB). 39

3.7 FUZZIFICATION on GUI applications. The CPU overhead is calculated
on the application launching time. Due to the fixed code injection, code size
overhead is negligible for these large applications. 39

3.8 Defense against adversarial analysis. ✔ indicates that the FUZZIFICATION

technique is resistant to that adversarial analysis. 40

4.1 Comparison between various Windows fuzzers and Linux AFL. We
compare several key features that we believe are essential to effective fuzzing.
WINNIE aims to bring the ease and efficiency of the Linux fuzzing experi-
ence to Windows systems. 50

ix

4.2 Execution times (ms) with and without GUI. GUI code dominates fuzzing
execution time (35× slower on average). Thus, fuzzing harnesses are crucial
to effective Windows application fuzzing. We measured GUI execution
times by hooking GUI initialization code. 52

4.3 Comparison of harness generation techniques. Most importantly, WINNIE

supports closed-source applications by approximating source-level analyses.
Fine-grained data-flow tracing is impractical without source code as it incurs
a large overhead. 53

4.4 Dynamic information collected by the tracer. We record detailed infor-
mation about every inter-module call. We also record the same information
for intra-module calls within the main binary. If the argument or return value
is a pointer, we recursively dump memory around the pointed location. We
then use this information to construct fuzzing harnesses (§4.4). 60

4.5 Comparison of fork() implementations. Cygwin is not CoW, and WSL
does not support Windows PE binaries. WINNIE’s new fork API is therefore
the most suitable for Windows fuzzing. 68

4.6 WINNIE components and code size . 69

4.7 Harnesses generated by WINNIE. The majority of the harnesses worked
out of the box with few modifications. Some required fixes for callback and
struct arguments, which we discuss below. 75

4.8 Evaluation of fork(). We ran six applications that both WinAFL and
WINNIE could fuzz for 24 hours. We compared their speed and checked for
memory and handle (i.e., file descriptor) leaks. fork not only improves the
performance, but also mitigates resource leaks. Hang† means an execution speed
slower than 1.0 exec/sec. 75

4.9 Comparison of WINNIE against WinAFL. Among 15 applications, WinAFL
could only run 6, whereas WINNIE was able run all 15. Columns marked
“✗” indicate that the fuzzer could not fuzz the application. Markers “✔” in-
dicate which heuristics were applied during harness generation. When both
WinAFL and WINNIE support a program, WINNIE generally achieved better
coverage and throughput. Although WINNIE excels at fuzzing complicated
programs, WinAFL and WINNIE achieve similar results on small or simple
programs. We explain in further detail in §4.8. For all other programs,
WINNIE’s improvement was statistically significant (i.e., p<0.05). P-values
were calculated using the Mann-Whitney U test on discovered basic blocks. 76

x

4.10 Bugs found by WINNIE. We discovered total 61 unique vulnerabilities
from 32 binaries. All vulnerabilities were discovered on the latest version of
COTS binaries. We reported all bugs to the developers. “†” indicates that
the bug existed in the released binary, but the developer had already fixed it
when we filed our report. 80

4.11 Comparision between various scanning signature extraction techniques.
We compare several key features ath we believe are essential to effective ex-
traction process. BLUEPRINT aims to bring the ease and efficience solution.
. 86

4.12 Collected information during the hybrid binary analysis. BLUEPRINT

runs static analysis first and applies the dynamic analysis if the applied
heuristics requires dynamic run trace. To reduce the collected volume,
BLUEPRINT calculate function call and basicblock paths to the network
API and collects the auxiliary information if it belongs to the paths. 90

4.13 Heuristics used for the harness generation. 90

4.14 BLUEPRINT components and code size 92

4.15 Effectiveness of the replayer and signature extractor. We ran BLUEPRINT

on 100 unique samples. Overall, BLUEPRINT was able to enable the port-
listening on 20 samples. “Applied heuristics” indicates the ratio of used
heuristics and the last column shows the average number of heuristics for
individual sample. “Signature extractor” shows the number of succeeded
symbolic execution including constraint solving and concretization. 93

4.16 Efficiency of BLUEPRINT for each stage. We ran the evaluation on three
groups divided by the file size. “Overall” indicates the total number of
existing functions and basicblocks from our static analysis. “Replayer” and
“Extractor” show the number of discovered paths (e.g., call or basicblock) to
the interesting APIs. “Avg. processing time” indicates actual time taken for
each step. 96

4.17 Extracted network scanning signatures. We ran BLUEPRINT and ex-
tracted various scanning signatures from the generated harness (e.g., con-
nected and scrap the banner) or the symbolic execution. “Payload” is sending
data of the scanner and “Response” is the expected output to validate the
victim. 97

xi

LIST OF FIGURES

3.1 Impact of obfuscation techniques on fuzzing. (a) Obfuscation techniques
introduce 1.7×-25.0× execution slow down. (b) and (c) fuzzing obfuscated
binaries discovers fewer program paths over time, but gets a similar number
of paths over executions. 9

3.2 Workflow of FUZZIFICATION protection. Developers create a protected
binary with FUZZIFICATION techniques and release it to public. Meanwhile,
they send the normally compiled binary to trusted parties. Attackers cannot
find many bugs from the protected binary through fuzzing, while trusted
parties can effectively find significantly more bugs and developers can patch
them in time. 13

3.3 Overview of FUZZIFICATION process. It first runs the program with given
test cases to get the execution frequency profile. With the profile, it instru-
ments the program with three techniques. The protected binary is released if
it satisfies the overhead budget. 16

3.4 Protecting readelf with different overhead budgets. While satisfying
the overhead budget, (a) demonstrates the maximum ratio of instrumentation
for each delay length, and (b) displays the execution speed of AFL-QEMU
on protected binaries. 19

3.5 Example delay primitive. Function func updates global variables to build
data-flow dependency with original program. 20

3.6 BranchTrap by reusing the existing ROP gadgets in the original binary.
Among functionally equivalent gadgets, BranchTrap picks the one based on
function arguments. 23

3.7 Collision during the fuzzing. (a) AFL performance with different initial
bitmap saturation. (b) Impact on bitmap with different number of branches. 25

3.8 Example of AntiHybrid techniques. We use implicit data-flow (line 6-15)
to copy strings to hinder dynamic taint analysis. We inject hash function
around equal comparison (line 20) to cripple symbolic execution engine. . 27

xii

3.9 Paths discovered by AFL-QEMU from real-world programs. Each pro-
gram is compiled with five settingfuzz: original (no protection), SpeedBump,
BranchTrap, AntiHybrid, and all protections. We fuzz them with AFL-
QEMU for three days. 31

3.10 Paths discovered by QSYM from real-world programs. Each program
is compiled with the same five settings as in Figure 3.9. We fuzz these
programs for three days, using QSYM as the symbolic execution engine and
AFL-QEMU as the native fuzzer. 34

3.11 Crashes found by different fuzzers from binutils programs. Each pro-
gram is compiled as original (no protection) and fuzzified (three techniques)
and is fuzzed for three days. 37

3.12 Bugs found by VUzzer and QSYM from LAVA-M dataset. HonggFuzz
discovers three bugs from the original uniq. AFL does not find any bug. . . 37

3.13 Testing MuPDF. Paths discovered by different fuzzers from the original MuPDF
and the one protected by three FUZZIFICATION techniques. 41

4.1 Architecture of XnView on Windows. The program accepts the user input
via the GUI. The main executable parses the received path and dynamically
loads the library to process the input. A fuzzing harness bypasses the GUI
to reach the functionality we wish to test. 47

4.2 Fuzzing overview. (1) The fuzzer maintains a queue of inputs. Each cycle,
(2) it picks one input from the queue and (3) modifies it to generate a new
input. (4) It feeds the new input into the fuzzed program and (5) records the
code coverage. (6) If the execution triggers more coverage, the new input is
added back into the queue. 49

4.3 An example harness, synthesized by our harness generator. It tests the
JPM parser inside the ldf_jpm.dll library of the application XnView. The
majority of the harness was correct and usable out of the box. We describe
the steps taken to create this harness in §4.3.1 and in more detail in §4.4.
Low level details are omitted for brevity. 55

4.4 Overview of WINNIE. Given the target program and a set of sample inputs,
WINNIE aims to find security vulnerabilities. It uses a harness generator
to synthesize simple harnesses from the execution trace, and then fuzzes
harnesses efficiently with our implementation of fork. 57

xiii

4.5 A simplified call-graph of the ACDSee program. WINNIE analyzes the
call-graph for fuzzing possible targets, focusing on inter-module calls and
I/O functions. We look for functions that can reach both I/O functions and
also the interesting ones we wish to fuzz. “†” indicates such functions,
known as LCA candidates (§4.4.1). 62

4.6 Overview of fork() on Windows. We analyzed various Windows APIs and
services to achieve a CoW fork() functionality suitable for fuzzing. Note that
fixing up the CSRSS is essential for fuzzing COTS Windows applications: if
the CSRSS is not re-initialized, the child process will crash when accessing
Win32 APIs. 67

4.7 Overview of WINNIE’s fuzzer. We inject a fuzzing agent into the target.
The injected agent spawns the fork-server, instruments basic blocks, and
hooks several functions. This improves performance (§4.6.1) and sidesteps
various instrumentation issues (§4.6.2). 71

4.8 Applicability of WINNIE and WinAFL. Among 59 executables, WinAFL-IPT
and WinAFL-DR failed to run 33 and 30 respectively, whereas WINNIE was
able to test all 59 executables. 73

4.9 Comparison of basic block coverage. We conducted five trials, each 24
hours long, with three fuzzers: WINNIE, WinAFL-DR, and WinAFL-IPT.
Only programs which were supported by all fuzzers are shown here; WinAFL
was unable to fuzz the rest. When a program can be fuzzed by both WINNIE

and WinAFL, their performance is comparable. Nevertheless, most pro-
grams cannot be fuzzed with WinAFL. 77

4.10 Overview of BLUEPRINT. Given the collected sample programs, BLUEPRINT

aims to extract internet scanning signatures. It uses a harness generator to
synthesize program wrapper from the hybrid binary analysis, and then ex-
tract network scanning signatures efficiently with symbolic execution. . . . 88

4.11 Filtered samples for each phase. Upon the sample acquisition, BLUEPRINT

passes the de-deplicated files for the triaging. After removing packed and
challenging files due to the unclear API paths, BLUEPRINT starts the hybrid
analysis. 93

xiv

SUMMARY

Binary analysis detects software vulnerability. Cutting-edge analysis techniques can

quickly and automatically explore the internals of a program and report any discovered

problems. Therefore, developers commonly use various analysis techniques as part of their

software development process. Unfortunately, it also means that such techniques and the

automatic natures of binary analysis methods are appealing to adversaries who are looking

for zero-day vulnerabilities.

In this thesis, binary analysis is considered a double-edged sword for the users, based

on their purpose. To deliver the benefit of the binary analysis only for credible users such

as developers or testers, this thesis aims to present a practical system to strengthening the

binary analysis for the trusted parties and weakening the power of the binary analysis against

the untrusted groups exclusively.

To achieve the aforementioned goals, this thesis presents the new domain of the binary

analysis in two directions: 1) a protection technique against the fuzz testing and 2) a new

binary analysis system to expand the applicability of the current binary analysis techniques.

The mitigation approach will help developers protect the released software from attackers

who can apply fuzzing techniques. On the other hand, the new binary analysis frameworks

will provide a set of solutions to address the challenges that COTS binary fuzzing faces.

xv

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Binary analysis is widely adopted for detecting software bugs but brings the similar amount

of benefits for both the trusted parties and the adversaries. Recently, various state-of-the-art

techniques contributed to unearth the critical software vulnerabilities for the developers.

Unfortunately, those advanced techniques also empowered the adversaries who are hunting

for zero-day vulnerabilities.

Among the widely used binary analysis techniques, fuzzing is a software testing method

that aims to find software bugs automatically. It keeps running the program with randomly

generated inputs and waits for bug-exposing behaviors such as crashing or hanging. Due to

its effectiveness and scalability, it has become a standard practice to detect security problems

in complex, modern software [1, 2, 3, 4, 5, 6, 7]; thus developers commonly use fuzzing as

part of test integration throughout the software development process.

Nevertheless, advanced fuzzing techniques can also be used by malicious attackers to find

zero-day vulnerabilities. Recent studies [8, 9] confirm that attackers predominantly prefer

fuzzing tools over others (e.g., reverse engineering) in finding vulnerabilities. For example,

a survey of information security experts [10] shows that fuzzing techniques discover 4.8

times more bugs than static analysis or manual detection. Therefore, developers might

want to apply anti-fuzzing techniques on their products to hinder any fuzzing attempts

conducted by attackers, similar in concept to using obfuscation techniques to cripple reverse

engineering [11, 12]. To solve this problem, we propose a new mitigation approach, called

FUZZIFICATION, that helps developers protect the released, binary-only software from

attackers who are capable of applying state-of-the-art fuzzing techniques.

1

Besides the anti-fuzzing problem, an important challenge we are encountering in the

binary analysis is Windows application fuzzing. Fuzzing on the Windows OS is not well-

explored. Since existing fuzzing techniques are mainly applied to Unix-like OSes and

Windows application contains various challenges for applying the fuzzing technique, few of

them work as well on Windows platforms. Therefore, Windows applications are not free

from bugs. A recent report shows that in the past 12 years, 70% of all security vulnerabilities

on Windows systems are memory safety issues [13]. In fact, due to the dominance of the

Windows operating system, its applications remain the most lucrative targets for malicious

attackers [14, 15, 16, 17]. To bring popular fuzzing techniques to the Windows platform, this

thesis investigates common applications and state-of-the-art fuzzers, and identifies various

challenges of fuzzing applications on Windows:

1.2 Research Outline

This thesis proposes two systems to tackle the aforementioned problems. First, this thesis

proposes a technique called FUZZIFICATION that consists of three anti-fuzzing techniques

for developers to protect their programs from malicious fuzzing attempts: SpeedBump,

BranchTrap, and AntiHybrid. The SpeedBump technique aims to slow program execution

during fuzzing. It injects delays to cold paths, which normal executions rarely reach but

that fuzzed executions frequently visit. The BranchTrap technique inserts a large number

of input-sensitive jumps into the program so that any input drift will significantly change

the execution path. This will induce coverage-based fuzzing tools to spend their efforts on

injected bug-free paths instead of on the real ones. The AntiHybrid technique aims to thwart

hybrid fuzzing approaches that incorporate traditional fuzzing methods with dynamic taint

analysis and symbolic execution.

Second, this thesis presents WINNIE, an end-to-end system to address the challenges

on the Windows fuzzing and make the testing more practical. WINNIE contains two

components: a harness generator that automatically synthesizes harnesses from the program

2

binary alone, and an efficient Windows fork-server. To construct plausible harnesses, our

harness generator combines both dynamic and static analysis. We run the target program

against several inputs, collect execution traces, and identify interesting functions and libraries

that are suitable for fuzzing. Then, our generator searches the execution traces to collect all

function calls to candidate libraries, and extracts them to form a harness skeleton. Finally,

we try to identify the relationships between different function calls and arguments to build a

full harness.

3

CHAPTER 2

RELATED WORK

In this chapter, we introduce the various binary analysis techniques for testing binary such

as fuzzing (§2.1), concolic execution (§2.2), and anti-fuzzing techniques (§2.3).

2.1 Fuzzing

Since the first proposal by Barton Miller in 1990 [1], fuzzing has evolved into a standard

method for automatic program testing and bug finding. Various fuzzing techniques and tools

have been proposed [18, 19, 20, 21, 22], developed [2, 3, 4, 5, 6, 7], and used to find a large

number of program bugs [23, 2, 24, 25, 26]. There are continuous efforts to help improve

fuzzing efficiency by developing a more effective feedback loop [27], proposing new OS

primitives [28], and utilizing clusters for large-scale fuzzing [29, 30, 31].

Recently, researchers have been using fuzzing as a general way to explore program

paths with specialties, such as maximizing CPU usage [32], reaching a particular code

location [33], and verifying the deep learning result empirically [34]. All these works result

in a significant improvement to software security and reliability. In this thesis, we focus

on the opposite side of the double-edged sword, where attackers abuse fuzzing techniques

to find zero-day vulnerabilities and thus launch a sophisticated cyber attack. We build

effective methods to hinder attackers on bug finding using FUZZIFICATION, which can

provide developers and trusted researchers time to defeat the adversarial fuzzing effort.

2.1.1 Coverage-Guided Fuzzing

Coverage-guided fuzzing becomes popular especially since AFL [35] has shown its effective-

ness. AFL prioritizes inputs that likely reveal new paths by collecting coverage information

during program execution to assess generated inputs, enabling quick coverage expansion.

4

Also, AFLFast [36] uses a Markov chain model to prioritize paths with low reachability, and

CollAFL [37] provides accurate coverage information to mitigate path collisions.

However, fuzzing has a fundamental limitation: it cannot traverse paths beyond narrow-

ranged input constraints (e.g., a magic value). To overcome such a limitation, VUzzer [38]

develops application-aware mutation techniques by performing static and dynamic program

analysis. Steelix [39] recovers correct magic values by collecting comparison progress infor-

mation during program execution. FairFuzz [40] discovers magic values and prevents their

mutations with program analysis and heuristics. Angora [41] adopts taint tracking, shape

and type inference, and a gradient-descent-based search strategy to solve path constraints

efficiently. These approaches, however, can only handle certain types of constraints. In

contrast, WINNIE relies on symbolic execution such that it has a chance to satisfy any kinds

of constraints. In addition, a recent study, T-Fuzz [42], transforms a program itself to cover

more interesting code paths, which could be combined with WINNIE to remove unsolvable

constraints from the program.

2.1.2 Hybrid Fuzzing

The concept of hybrid fuzzing is first proposed by Majumdar and Sen [43]. Later, Driller [44]

demonstrated its effectiveness in DARPA CGC with a refined implementation. In both

studies, the majority of path exploration is offloaded to the fuzzer, while concolic execution

is selectively used to drive execution across the paths that are guarded by narrow-ranged

constraints. Pak [45] also proposes a similar idea, but it is limited to the frontier nodes that

are mainly magic value checks at early execution stages. However, these hybrid fuzzers use

general concolic executors that are not only slow but also incompatible with hybrid fuzzing.

On the contrary, WINNIE is tailored for hybrid fuzzing, so that it can scale to detect bugs

from real-world software.

5

2.2 Concolic Execution

Concolic execution is a path-exploring technique that performs symbolic execution along a

concrete execution path to direct the program to new execution paths. Concolic execution

has been largely adopted for automatic vulnerability finding from source code [46, 47, 48]

to binary [49, 50, 51, 52, 53].

However, concolic execution suffers from the path explosion problem in which the

number of paths to explore grows exponentially with a program size. To mitigate this

problem, SAGE [51, 54] proposes generational search to maximize the number of test cases

in one execution and applies unrelated constraint solving [55]. Dowser [56] uses static

analysis and taint analysis to guide concolic execution and minimizes the number of symbolic

expressions to find buffer overflow vulnerabilities. Mayhem [50] combines forking-based

symbolic execution and re-execution-based symbolic execution to balance performance and

memory usage. In contrast, WINNIE uses (1) fuzzing to explore most paths to avoid the

path explosion problem, (2) generic heuristics (e.g., basic block pruning) without assuming

any specific bug type, and (3) instruction-level re-execution-based symbolic execution for

better performance.

2.3 Anti-fuzzing Techniques

A few studies briefly discuss the concept of anti-fuzzing [57, 58, 59, 60]. Among them,

Göransson et al. evaluated two straightforward techniques, i.e., crash masking to prevent

fuzzers finding crashes and fuzzer detection to hide functionality when being fuzzed [58].

However, attackers can easily detect these methods and bypass them for effective fuzzing.

Our system provides a fine-grained controllable method to slow the fuzzed execution and

introduces effective ways to manipulate the feedback loop to fool fuzzers. We also consider

defensive mechanisms to prevent attackers from removing our anti-fuzzing techniques.

DeAFL [61] provides an way to prevent bug discovery by injecting edges that create

6

hash conflicts. However, our method introduces BranchTrap and saturates bitmap structure,

thereby also enforces hash conflicts. Hu et al. proposed to hinder attacks by injecting

provably (but not obviously) non-exploitable bugs to the program, called “Chaff Bugs” [60].

These bugs will confuse bug analysis tools and waste attackers’ effort on exploit gener-

ation. Both chaff bugs and FUZZIFICATION techniques work on close-source programs.

Differently, our techniques hinder bug finding in the first place, eliminating the chance

for an attacker to analyze bugs or construct exploits. Further, both techniques may affect

normal-but-rare usage of the program. However, our methods, at most, introduce slow down

to the execution, while improper chaff bugs lead to crashes, thus harming the usability.

7

CHAPTER 3

FUZZIFICATION: ANTI-FUZZING TECHNIQUES

3.1 Introduction

Fuzzing is a software testing technique that aims to find software bugs automatically. It

keeps running the program with randomly generated inputs and waits for bug-exposing

behaviors such as crashing or hanging. It has become a standard practice to detect security

problems in complex, modern software [1, 2, 3, 4, 5, 6, 7]. Recent research has built

several efficient fuzzing tools [18, 19, 20, 22, 27, 28] and found a large number of security

vulnerabilities [23, 2, 24, 25, 26].

Unfortunately, advanced fuzzing techniques can also be used by malicious attackers to

find zero-day vulnerabilities. Recent studies [8, 9] confirm that attackers predominantly

prefer fuzzing tools over others (e.g., reverse engineering) in finding vulnerabilities. For ex-

ample, a survey of information security experts [10] shows that fuzzing techniques discover

4.83 times more bugs than static analysis or manual detection. Therefore, developers might

want to apply anti-fuzzing techniques on their products to hinder fuzzing attempts by attack-

ers, similar in concept to using obfuscation techniques to cripple reverse engineering [11,

12].

In this thesis, we propose a new direction of binary protection, called FUZZIFICATION,

that hinders attackers from effectively finding bugs. Specifically, attackers may still be able

to find bugs from the binary protected by FUZZIFICATION, but with significantly more effort

(e.g., CPU, memory, and time). Thus, developers or other trusted parties who get the original

binary are able to detect program bugs and synthesize patches before attackers widely abuse

them. An effective FUZZIFICATION technique should enable the following three features.

First, it should be effective for hindering existing fuzzing tools, finding fewer bugs within a

8

1×
2×
4×
8×

16×
32×
64×

LLVM-obf UPX-3.94 Themida-2.4 ASPack-2.43

50

100

150

200

0 10 20 30 40 50 60 70 80 0 10k 20k 30k 40k

Sl
ow

do
w

n

(a) Overheads of obfuscator/packer
” u 1:(2 ∗ 1.5) : (2)

25.0

1.7
4.2

1.9
B

ra
nc

he
s

Time (minutes)

(b) Unique branches over time

Original
Obfuscated

Fuzzed executions

(c) Unique branches over executions

Figure 3.1: Impact of obfuscation techniques on fuzzing. (a) Obfuscation techniques introduce
1.7×-25.0× execution slow down. (b) and (c) fuzzing obfuscated binaries discovers fewer program
paths over time, but gets a similar number of paths over executions.

fixed time; second, the protected program should still run efficiently in normal usage; third,

the protection code should not be easily identified or removed from the protected binary by

straightforward analysis techniques.

No existing technique can achieve all three goals simultaneously. First, software ob-

fuscation techniques, which impede static program analysis by randomizing binary repre-

sentations, seem to be effective in thwarting fuzzing attempts [11, 12]. However, we find

that it falls short of FUZZIFICATION in two ways. Obfuscation introduces unacceptable

overhead to normal program executions. Figure 3.1(a) shows that obfuscation slows the

execution by at least 1.7 times when using UPX [62] and up to 25.0 times when using

LLVM-obfuscator [63]. Also, obfuscation cannot effectively hinder fuzzers in terms of

path exploration. It can slow each fuzzed execution, as shown in Figure 3.1(b), but the

path discovery per execution is almost identical to that of fuzzing the original binary, as

shown in Figure 3.1(c). Therefore, obfuscation is not an ideal FUZZIFICATION technique.

Second, software diversification changes the structure and interfaces of the target application

to distribute diversified versions [64, 65, 66, 67]. For example, the technique of N-version

9

software [65] is able to mitigate exploits because attackers often depend on clear knowledge

of the program states. However, software diversification is powerless on hiding the original

vulnerability from the attacker’s analysis; thus it is not a good approach for FUZZIFICATION.

In this thesis, we propose three FUZZIFICATION techniques for developers to protect

their programs from malicious fuzzing attempts: SpeedBump, BranchTrap, and AntiHybrid.

The SpeedBump technique aims to slow program execution during fuzzing. It injects delays

to cold paths, which normal executions rarely reach but that fuzzed executions frequently

visit. The BranchTrap technique inserts a large number of input-sensitive jumps into the

program so that any input drift will significantly change the execution path. This will induce

coverage-based fuzzing tools to spend their efforts on injected bug-free paths instead of

on the real ones. The AntiHybrid technique aims to thwart hybrid fuzzing approaches that

incorporate traditional fuzzing methods with dynamic taint analysis and symbolic execution.

We develop defensive mechanisms to hinder attackers identifying or removing our

techniques from protected binaries. For SpeedBump, instead of calling the sleep function,

we inject randomly synthesized CPU-intensive operations to cold paths and create control-

flow and data-flow dependencies between the injected code and the original code. We reuse

existing binary code to realize BranchTrap to prevent an adversary from identifying the

injected branches.

To evaluate our FUZZIFICATION techniques, we apply them on the LAVA-M dataset

and nine real-world applications, including libjpeg, libpng, libtiff, pcre2, readelf,

objdump, nm, objcopy, and MuPDF. These programs are extensively used to evaluate the

effectiveness of fuzzing tools [68, 69, 70, 71]. Then, we use four popular fuzzers —AFL,

HonggFuzz, VUzzer, and QSYM— to fuzz the original programs and the protected ones for

the same amount of time. On average, fuzzers detect 14.2 times more bugs from the original

binaries and 3.0 times more bugs from the LAVA-M dataset than those from “fuzzified” ones.

At the same time, our FUZZIFICATION techniques decrease the total number of discovered

paths by 70.3%, and maintain user-specified overhead budget. This result shows that our

10

FUZZIFICATION techniques successfully decelerate fuzzing performance on vulnerability

discovery. We also perform an analysis to show that data-flow and control-flow analysis

techniques cannot easily disarm our techniques.

3.2 Background and Problem

3.2.1 Fuzzing Techniques

The goal of fuzzing is to automatically detect program bugs. For a given program, a

fuzzer first creates a large number of inputs, either by random mutation or by format-based

generation. Then, it runs the program with these inputs to see whether the execution exposes

unexpected behaviors, such as a crash or an incorrect result. Compared to manual analysis

or static analysis, fuzzing is able to execute the program orders of magnitude more times

and thus can explore more program states to maximize the chance of finding bugs.

Fuzzing with Fast Execution

A straightforward way to improve fuzzing efficiency is to make each execution faster.

Current research highlights several fast execution techniques, including (1) customized

system and hardware to accelerate fuzzed execution and (2) parallel fuzzing to amortize the

absolute execution time in large-scale. Among these techniques, AFL uses the fork server

and persistent mode to avoid the heavy process creation and can accelerate fuzzing by a

factor of two or more [72, 73]. AFL-PT, kAFL, and HonggFuzz utilize hardware features

such as Intel Process Tracing (PT) and Branch Trace Store (BTS) to collect code coverage

efficiently to guide fuzzing [74, 75, 5]. Recently, Xu et al. designed new operating system

primitives, like efficient system calls, to speed up fuzzing on multi-core machines [28].

Fuzzing with Coverage-guidance

Coverage-guided fuzzing collects the code coverage for each fuzzed execution and prioritizes

fuzzing the input that has triggered new coverage. This fuzzing strategy is based on two

11

empirical observations: (1) a higher path coverage indicates a higher chance of exposing

bugs; and (2) mutating inputs that ever trigger new paths is likely to trigger another new

path. Most popular fuzzers take code coverage as guidance, like AFL, HonggFuzz, and

LibFuzzer, but with different methods for coverage representation and coverage collection.

Coverage representation. Most fuzzers take basic blocks or branches to represent the

code coverage. For example, HonggFuzz and VUzzer use basic block coverage, while

AFL instead considers the branch coverage, which provides more information about the

program states. Angora [69] combines branch coverage with the call stack to further improve

coverage accuracy. However, the choice of representation is a trade-off between coverage

accuracy and performance, as more fine-grained coverage introduces higher overhead to

each execution and harms the fuzzing efficiency.

Coverage collection. If the source code is available, fuzzers can instrument the target

program during compilation or assembly to record coverage at runtime, like in AFL-LLVM

mode and LibFuzzer. Otherwise, fuzzers have to utilize either static or dynamic binary

instrumentation to achieve a similar purpose, like in AFL-QEMU mode [76]. Also, several

fuzzers leverage hardware features to collect the coverage [74, 75, 5]. Fuzzers usually

maintain their own data structure to store coverage information. For example, AFL and

HonggFuzz use a fixed-size array and VUzzer utilizes a Set data structure in Python to store

their coverage. However, the size of the structure is also a trade-off between accuracy and

performance: an overly small memory cannot capture every coverage change, while an

overly large memory introduces significant overhead. For example, AFL’s performance

drops 30% if the bitmap size is changed from 64KB to 1MB [68].

Fuzzing with Hybrid Approaches

Hybrid approaches are proposed to help solve the limitations of existing fuzzers. First,

fuzzers do not distinguish input bytes with different types (e.g., magic number, length speci-

fier) and thus may waste time mutating less important bytes that cannot affect any control

12

Source code

Fuzzification

Protected
binary

Normal
binary

Detected
bugs

Normal
compilation

Attackers

Normal users

Trusted parties

Compilation Distribution Fuzzing

Figure 3.2: Workflow of FUZZIFICATION protection. Developers create a protected binary with
FUZZIFICATION techniques and release it to public. Meanwhile, they send the normally compiled
binary to trusted parties. Attackers cannot find many bugs from the protected binary through fuzzing,
while trusted parties can effectively find significantly more bugs and developers can patch them in
time.

flow. In this case, taint analysis is used to help find which input bytes are used to determine

branch conditions, like VUzzer [19]. By focusing on the mutation of these bytes, fuzzers

can quickly find new execution paths. Second, fuzzers cannot easily resolve complicated

conditions, such as comparison with magic value or checksum. Several works [18, 71]

utilize symbolic execution to address this problem, which is good at solving complicated

constraints but incurs high overhead.

3.2.2 FUZZIFICATION Problem

Program developers may want to completely control the bug-finding process, as any bug

leakage can bring attacks and lead to financial loss [77]. They demand exposing bugs by

themselves or by trusted parties, but not by malicious end-users. Anti-fuzzing techniques can

help to achieve that by decelerating unexpected fuzzing attempts, especially from malicious

attackers.

We show the workflow of FUZZIFICATION in Figure 3.2. Developers compile their

code in two versions. One is compiled with FUZZIFICATION techniques to generate a

protected binary, and the other is compiled normally to generate a normal binary. Then,

13

Anti-fuzz candidates Effective Generic Efficient Robust

Pack & obfuscation ✔ ✔ ✗ ✔

Bug injection ✔ ✔ ✗ ✗

Fuzzer identification ✔ ✗ ✔ ✗

Emulator bugs ✔ ✗ ✔ ✔

FUZZIFICATION ✔ ✔ ✔ ✔

Table 3.1: Possible design choices and evaluation with our goals.

developers distribute the protected binary to the public, including normal users and malicious

attackers. Attackers fuzz the protected binary to find bugs. However, with the protection

of FUZZIFICATION techniques, they cannot find as many bugs quickly. At the same time,

developers distribute the normal binary to trusted parties. The trusted parties can launch

fuzzing on the normal binary with the native speed and thus can find more bugs in a timely

manner. Therefore, developers who receive bug reports from trusted parties can fix the bug

before attackers widely abuse it.

Threat Model

We consider motivated attackers who attempt to find software vulnerabilities through state-of-

the-art fuzzing techniques, but with limited resources like computing power (at most similar

resources as trusted parties). Adversaries have the binary protected by FUZZIFICATION and

they have knowledge of our FUZZIFICATION techniques. They can use off-the-shelf binary

analysis techniques to disarm FUZZIFICATION from the protected binary. Adversaries who

have access to the unprotected binary or even to program source code (e.g., inside attackers,

or through code leakage) are out of the scope of this study.

Design Goals and Choices

A FUZZIFICATION technique should achieve the following four goals simultaneously:

• Effective: It should effectively reduce the number of bugs found in the protected

binary, compared to that found in the original binary.

14

• Generic: It tackles the fundamental principles of fuzzing and is generally applicable

to most fuzzers.

• Efficient: It introduces minor overhead to the normal program execution.

• Robust: It is resistant to the adversarial analysis trying to remove it from the protected

binary.

With these goals in mind, we examine four design choices for hindering malicious

fuzzing, shown in Table 3.1. Unfortunately, no method can satisfy all goals.

Packing/obfuscation. Software packing and obfuscation are mature techniques against

reverse engineering, both generic and robust. However, they usually introduce higher

performance overhead to program executions, which not only hinders fuzzing, but also

affects the use of normal users.

Bug injection. Injecting arbitrary code snippets that trigger non-exploitable crashes can

cause additional bookkeeping overhead and affect end users in unexpected ways [60].

Fuzzer identification. Detecting the fuzzer process and changing the execution behavior

accordingly can be bypassed easily (e.g., by changing fuzzer name). Also, we cannot

enumerate all fuzzers or fuzzing techniques.

Emulator bugs. Triggering bugs in dynamic instrumentation tools [78, 79, 80] can

interrupt fuzzing [81, 82]. However, it requires strong knowledge of the fuzzer, so it is not

generic.

3.2.3 Design Overview

We propose three FUZZIFICATION techniques – SpeedBump, BranchTrap, and AntiHybrid–

to target each fuzzing technique discussed in §3.2.1. First, SpeedBump injects fine-grained

delay primitives into cold paths that fuzzed executions frequently touch but normal execu-

tions rarely use (§3.3). Second, BranchTrap fabricates a number of input-sensitive branches

to induce the coverage-based fuzzers to waste their efforts on fruitless paths (§3.4). Also,

it intentionally saturates the code coverage storage with frequent path collisions so that

15

❷ Fuzzification

❸ Measure

❶ Profiling

BB freq
profile

normal
binary

ovrhd
budget

source
code

test
cases

LLVM
IR

exec

SpeedBump

BranchTrap

AntiHybrid

exec

in
budget

?protected
binary

❹ Finish

Figure 3.3: Overview of FUZZIFICATION process. It first runs the program with given test cases to
get the execution frequency profile. With the profile, it instruments the program with three techniques.
The protected binary is released if it satisfies the overhead budget.

the fuzzer cannot identify interesting inputs that trigger new paths. Third, AntiHybrid

transforms explicit data-flows into implicit ones to prevent data-flow tracking through taint

analysis, and inserts a large number of spurious symbols to trigger path explosion during the

symbolic execution (§3.5).

Figure 3.3 shows an overview of our FUZZIFICATION system. It takes the program

source code, a set of commonly used test cases, and an overhead budget as input and

produces a binary protected by FUZZIFICATION techniques. Note that FUZZIFICATION

relies on developers to determine the appropriate overhead budget, whatever they believe

will create a balance between the functionality and security of their production. 1 We

compile the program to generate a normal binary and run it with the given normal test cases

to collect basic block frequencies. The frequency information tells us which basic blocks are

rarely used by normal executions. 2 Based on the profile, we apply three FUZZIFICATION

techniques to the program and generate a temporary protected binary. 3 We measure the

overhead of the temporary binary with the given normal test cases again. If the overhead

16

is over the budget, we go back to step 2 to reduce the slow down to the program, such as

using shorter delay and adding less instrumentation. If the overhead is far below the budget,

we increase the overhead accordingly. Otherwise, 4 we generate the protected binary.

3.3 SpeedBump: Amplifying Delay in Fuzzing

We propose a technique called SpeedBump to slow the fuzzed execution while minimizing

the effect to normal executions. Our observation is that the fuzzed execution frequently falls

into paths such as error-handling (e.g., wrong MAGIC bytes) that the normal executions

rarely visit. We call them the cold paths. Injecting delays in cold paths will significantly

slow fuzzed executions but will not affect regular executions that much. We first identify

cold paths from normal executions with the given test cases and then inject crafted delays

into least-executed code paths. Our tool automatically determines the number of code paths

to inject delays and the length of each delay so that the protected binary has overhead under

the user-defined budget during normal executions.

Basic block frequency profiling. FUZZIFICATION generates a basic block frequency

profile to identify cold paths. The profiling process follows three steps. First, we instrument

the target programs to count visited basic blocks during the execution and generate a

binary for profiling. Second, with the user-provided test cases, we run this binary and

collect the basic blocks visited by each input. Third, FUZZIFICATION analyzes the collected

information to identify basic blocks that are rarely executed or never executed by valid

inputs. These blocks are treated as cold paths in delay injection.

Our profiling does not require the given test cases to cover 100% of all legitimate

paths, but just to trigger the commonly used functionalities. We believe this is a practical

assumption, as experienced developers should have a set of test cases covering most of

the functionalities (e.g., regression test-suites). Optionally, if developers can provide a set

of test cases that trigger uncommon features, our profiling results will be more accurate.

For example, for applications parsing well-known file formats (e.g., readelf parses ELF

17

binaries), collecting valid/invalid dataset is straightforward.

Configurable delay injection. We perform the following two steps repeatedly to determine

the set of code blocks to inject delays and the length of each delay:

• We start by injecting a 30ms delay to 3% of the least-executed basic blocks in the test

executions. We find that this setting is close enough to the final evaluation result.

• We measure the overhead of the generated binary. If it does not exceed the user-

defined overhead budget, we go to the previous step to inject more delay into more

basic blocks. Otherwise, we use the delay in the previous round as the final result.

Our SpeedBump technique is especially useful for developers who generally have a good

understanding of their applications, as well as the requirements for FUZZIFICATION. We

provide five options that developers can use to finely tune SpeedBump’s effect. Specifically,

MAX_OVERHEAD defines the overhead budget. Developers can specify any value as long as they

feel comfortable with the overhead. DELAY_LENGTH specifies the range of delays. We use

10ms to 300ms in the evaluation. INCLUDE_INCORRECT determines whether or not to inject

delays to error-handling basic blocks (i.e., locations that are only executed by invalid inputs),

which is enabled by default. INCLUDE_NON_EXEC and NON_EXEC_RATIO specify whether to

inject delays into how ever many basic blocks are never executed during test execution. This

is useful when developers do not have a large set of test cases.

Figure 3.4 demonstrates the impact of different options on protecting the readelf binary

with SpeedBump. We collect 1,948 ELF files on the Debian system as valid test cases and

use 600 text and image files as invalid inputs. Figure 3.4(a) shows the maximum ratio of

basic blocks that we can inject delay into while introducing overhead less than 1% and 3%.

For a 1ms delay, we can instrument 11% of the least-executed basic blocks for a 1% overhead

budget and 12% for 3% overhead. For a 120ms delay, we cannot inject any blocks for 1%

overhead and can inject only 2% of the cold paths for 3% overhead. Figure 3.4(b) shows

the actual performance of AFL-QEMU when it fuzzes SpeedBump-protected binaries. The

ratio of injected blocks is determined as in Figure 3.4(a). The result shows that SpeedBump

18

0

2

4

6

8

10

12

1 20 40 60 80 100 0

1

2

3

4

5

1 20 40 60 80 100

%
of

in
st

ru
.b

lo
ck

s

(a) Max instruction ratio per delays

10
0

ex
ec

/s
ec

Delays(ms)

(b) Fuzzer performance

overhead < 1%
overhead < 3%

Figure 3.4: Protecting readelf with different overhead budgets. While satisfying the overhead
budget, (a) demonstrates the maximum ratio of instrumentation for each delay length, and (b) displays
the execution speed of AFL-QEMU on protected binaries.

with a 30ms delay slows the fuzzer by more than 50×. Therefore, we use 30ms and the

corresponding 3% instrumentation as the starting point.

3.3.1 Analysis-resistant Delay Primitives

As attackers may use program analysis to identify and remove simple delay primitives

(e.g., calling sleep), we design robust primitives that involve arithmetic operations and are

connected with the original code base. Our primitives are based on CSmith [83], which can

generate random and bug-free code snippets with refined options. For example, CSmith

can generate a function that takes parameters, performs arithmetic operations, and returns a

specific type of value. We modified CSmith to generate code that has data dependencies and

code dependencies to the original code. Specifically, we pass a variable from the original

code to the generated code as an argument, make a reference from the generated code to

the original one, and use the return value to modify a global variable of the original code.

Figure 3.5 shows an example of our delay primitives. It declares a local variable PASS_VAR

and modifies global variables GLOBAL_VAR1 and GLOBAL_VAR2. In this way, we introduce

data-flow dependency between the original code and the injected code (line 6, 9 and 12),

and change the program state without affecting the original program. Although the code is

randomly generated, it is tightly coupled with the original code via data-flow and control-

flow dependencies. Therefore, it is non-trivial for common binary analysis techniques,

19

1 //Predefined global variables
2 int32_t GLOBAL_VAR1 = 1, GLOBAL_VAR2 = 2;
3 //Randomly generated code
4 int32_t * func(int32_t p6) {
5 int32_t *l0[1000];
6 GLOBAL_VAR1 = 0x4507L; // affect global var.
7 int32_t *l1 = g8[1][0];
8 for (int i = 0; i < 1000; i++)
9 l0[i] = p6; // affect local var from argv.

10 (*g7) = func2(g6++);
11 (*g5) |= ~(!func3(**g4 = ~0UL));
12 return l1; // affect global var.
13 }
14 //Inject above function for delay
15 int32_t PASS_VAR = 20;
16 GLOBAL_VAR2 = func(PASS_VAR);

Figure 3.5: Example delay primitive. Function func updates global variables to build data-flow
dependency with original program.

like dead-code elimination, to distinguish it from the original code. We repeatedly run the

modified CSmith to find appropriate code snippets that take a specific time (e.g., 10ms) for

delay injection.

Safety of delay primitives. We utilize the safety checks from CSmith and FUZZIFICATION

to guarantee that the generated code is bug-free. First, we use CSmith’s default safety checks,

which embed a collection of tests in the code, including integer, type, pointer, effect, array,

initialization, and global variable. For example, CSmith conducts pointer analysis to detect

any access to an out-of-scope stack variable or null pointer dereference, uses explicit

initialization to prevent uninitialized usage, applies math wrapper to prevent unexpected

integer overflow, and analyzes qualifiers to avoid any mismatch. Second, FUZZIFICATION

also has a separate step to help detect bad side effects (e.g., crashes) in delay primitives.

Specifically, we run the code 10 times with fixed arguments and discard it if the execution

shows any error. Finally, FUZZIFICATION embeds the generated primitives with the same

fixed argument to avoid errors.

Fuzzers aware of error-handling blocks. Recent fuzzing proposals, like VUzzer [19] and

T-Fuzz [70], identify error-handling basic blocks through profiling and exclude them from the

code coverage calculation to avoid repetitive executions. This may affect the effectiveness

20

of our SpeedBump technique, which uses a similar profiling step to identify cold paths.

Fortunately, the cold paths from SpeedBump include not only error-handling basic blocks,

but also rarely executed functional blocks. Further, we use similar methods to identify

error-handling blocks from the cold paths and provide developers the option to choose not

to instrument these blocks. Thus, our FUZZIFICATION will focus on instrumenting rarely

executed functional blocks to maximize its effectiveness.

3.4 BranchTrap: Blocking Coverage Feedback

Code coverage information is widely used by fuzzers to find and prioritize interesting

inputs [2, 3, 5]. We can make these fuzzers diligent fools if we insert a large number

of conditional branches whose conditions are sensitive to slight input changes. When

the fuzzing process falls into these branch traps, coverage-based fuzzers will waste their

resources to explore (a huge number of) worthless paths. Therefore, we propose the

technique of BranchTrap to deceive coverage-based fuzzers by misleading or blocking the

coverage feedback.

3.4.1 Fabricating Fake Paths on User Input

The first method of BranchTrap is to fabricate a large number of conditional branches and

indirect jumps, and inject them into the original program. Each fabricated conditional branch

relies on some input bytes to determine to take the branch or not, while indirect jumps

calculate their targets based on user input. Thus, the program will take different execution

paths even when the input slightly changes. Once a fuzzed execution triggers the fabricated

branch, the fuzzer will set a higher priority to mutate that input, resulting in the detection

of more fake paths. In this way, the fuzzer will keep wasting its resources (i.e., CPU and

memory) to inspect fruitless but bug-free fake paths.

To effectively induce the fuzzers focusing on fake branches, we consider the following

four design aspects. First, BranchTrap should fabricate a sufficient number of fake paths to

21

affect the fuzzing policy. Since the fuzzer generates various variants from one interesting

input, fake paths should provide different coverage and be directly affected by the input so

that the fuzzer will keep unearthing the trap. Second, the injected new paths introduce mini-

mal overhead to regular executions. Third, the paths in BranchTrap should be deterministic

regarding user input, which means that the same input should go through the same path.

The reason is that some fuzzers can detect and ignore non-deterministic paths (e.g., AFL

ignores one input if two executions with it take different paths). Finally, BranchTrap cannot

be easily identified or removed by adversaries.

A trivial implementation of BranchTrap is to inject a jump table and use some input

bytes as the index to access the table (i.e., different input values result in different jump

targets). However, this approach can be easily nullified by simple adversarial analysis. We

design and implement a robust BranchTrap with code-reuse techniques, similar in concept

to the well-known return-oriented programming (ROP) [84].

BranchTrap with CFG Distortion

To harden BranchTrap, we diversify the return addresses of each injected branch according

to the user input. Our idea is inspired by ROP, which reuses existing code for malicious

attacks by chaining various small code snippets. Our approach can heavily distort the

program control-flow and makes nullifying BranchTrap more challenging for adversaries.

The implementation follows three steps. First, BranchTrap collects function epilogues from

the program assembly (generated during program compilation). Second, function epilogues

with the same instruction sequence are grouped into one jump table. Third, we rewrite the

assembly so that the function will retrieve one of several equivalent epilogues from the

corresponding jump table to realize the original function return, using some input bytes as

the jump table index. As we replace the function epilogue with a functional equivalent, it

guarantees the identical operations as the original program.

Figure 3.6 depicts the internal of the BranchTrap implementation at runtime. For one

22

epilogue
 pop rbp
 pop r15
 ret

func1 (arg1, arg2)

 gadget2
 pop rbp
 pop r15
 ret

 select jmp address❷ ❸

❶ calculate index

❹return

....
call func1
next inst
....

caller gadget1
 pop rbp
 pop r15
 ret

 gadgetN

 ...

 = arg1^arg2index

 jmp table[index]

...

Figure 3.6: BranchTrap by reusing the existing ROP gadgets in the original binary. Among
functionally equivalent gadgets, BranchTrap picks the one based on function arguments.

function, BranchTrap 1 calculates the XORed value of all arguments. BranchTrap uses this

value for indexing the jump table (i.e., candidates for epilogue address). 2 BranchTrap uses

this value as the index to visit the jump table and obtains the concrete address of the epilogue.

To avoid out-of-bounds array access, BranchTrap divides the XORed value by the length of

the jump table and takes the remainder as the index. 3 After determining the target jump

address, the control-flow is transferred to the gadget (e.g., the same pop rbp; pop r15; ret

gadget). 4 Finally, the execution returns to the original return address.

The ROP-based BranchTrap has three benefitfuzz:

• Effective: Control-flow is constantly and sensitively changed together with the user

input mutation; thus FUZZIFICATION can introduce a sufficient number of unproduc-

tive paths and make coverage feedback less effective. Also, BranchTrap guarantees

the same control-flow on the same input (i.e., deterministic path) so that the fuzzer

will not ignore these fake paths.

• Low overhead: BranchTrap introduces low overhead to normal user operations (e.g.,

less than 1% overhead) due to its lightweight operations (Store argument; XOR;

Resolve jump address; Jump to gadget).

• Robust: The ROP-based design significantly increases the complexity for an adver-

sary to identify or patch the binary. We evaluate the robustness of BranchTrap against

23

adversarial analysis in §3.6.4.

3.4.2 Saturating Fuzzing State

The second method of BranchTrap is to saturate the fuzzing state, which blocks the fuzzers

from learning the progress in the code coverage. Different from the first method, which

induces fuzzers focusing on fruitless inputs, our goal here is to prevent the fuzzers from

finding real interesting ones. To achieve this, BranchTrap inserts a massive number of

branches to the program, and exploits the coverage representation mechanism of each fuzzer

to mask new findings. BranchTrap is able to introduce an extensive number (e.g., 10K to

100K) of deterministic branches to some rarely visited basic blocks. Once the fuzzer reaches

these basic blocks, its coverage table will quickly fill up. In this way, most of the newly

discovered paths in the following executions will be treated as visited, and thus the fuzzer

will discard the input that in fact explores interesting paths. For example, AFL maintains a

fixed-size bitmap (i.e., 64KB) to track edge coverage. By inserting a large number of distinct

branches, we significantly increase the probability of bitmap collision and thus reduce the

coverage inaccuracy.

Figure 3.7(a) demonstrates the impact of bitmap saturation on fuzzing readelf. Ap-

parently, a more saturated bitmap leads to fewer path discoveries. Starting from an empty

bitmap, AFL identifies over 1200 paths after 10 hours of fuzzing. For the 40% saturation rate,

it only finds around 950 paths. If the initial bitmap is highly filled, such as 80% saturation,

AFL detects only 700 paths with the same fuzzing effort.

Fuzzers with collision mitigation. Recent fuzzers, like CollAFL [68], propose to mitigate

the coverage collision issue by assigning a unique identifier to each path coverage (i.e.,

branch in case of CollAFL). However, we argue that these techniques will not effectively

undermine the strength of our BranchTrap technique on saturating coverage storage for

two reasons. First, current collision mitigation techniques require program source code to

assign unique identifiers during the linking time optimization [68]. In our threat model,

24

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10 10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

re
al

pa
th

s

time (hour)

(a) readelf with different bitmap

0%
40%
80%

sa
tu

ra
tio

n
(%

)

number of branches (k)

(b) Impact of different number of branches

Figure 3.7: Collision during the fuzzing. (a) AFL performance with different initial bitmap
saturation. (b) Impact on bitmap with different number of branches.

attackers cannot obtain the program source code or the original binary – they only have a

copy of the protected binary, which makes it significantly more challenging to apply similar

ID-assignment algorithms. Second, these fuzzers still have to adopt a fixed size storage of

coverage because of the overhead of large storage. Therefore, if we can saturate 90% of the

storage, CollAFL can only utilize the remaining 10% for ID-assignment; thus the fuzzing

performance will be significantly affected.

3.4.3 Design Factors of BranchTrap

We provide developers an interface to configure ROP-based BranchTrap and coverage

saturation for optimal protection. First, the number of generated fake paths of ROP-based

BranchTrap is configurable. BranchTrap depends on the number of functions to make

a distorted control-flow. Therefore, injected BranchTrap is effective when the original

program contains plenty of functions. For binaries with fewer functions, we provide an

option for developers to split existing basic blocks into multiple ones, each connected with

conditional branches. Second, the size of the injected branches for saturating the coverage is

also controllable. Figure 3.7(b) shows how the bitmap can be saturated in AFL by increasing

the branch number. It clearly shows that more branches can fill up more bitmap entries. For

example, 100K branches can fill up more than 90% of a bitmap entry. Injecting a massive

25

number of branches into the program increases the output binary size. When we inject 100k

branches, the size of the protected binary is 4.6MB larger than the original binary. To avoid

high code size overhead, we inject a huge number of branches into only one or two of the

most rarely executed basic blocks. As long as one fuzzed execution reaches such branches,

the coverage storage will be filled and the following fuzzing will find fewer interesting

inputs.

3.5 AntiHybrid: Thwarting Hybrid Fuzzers

A hybrid fuzzing method utilizes either symbolic execution or dynamic taint analysis to

improve fuzzing efficiency. Symbolic (or concolic) execution is good at solving complicated

branch conditions (e.g., magic number and checksum), and therefore can help fuzzers

bypass these hard-to-mutate roadblocks. DTA (Dynamic Taint Analysis) helps find input

bytes that are related to branch conditions. Recently, several hybrid fuzzing methods have

been proposed and successfully discovered security-critical bugs. For example, Driller [18]

adapted selective symbolic execution and proved its efficacy during the DARPA Cyber Grand

Challenge (CGC). VUzzer [19] utilized dynamic taint analysis to identify path-critical input

bytes for effective input mutation. QSYM [71] suggested a fast concolic execution technique

that can be scalable on real-world applications.

Nevertheless, hybrid approaches have well-known weaknesses. First, both symbolic

execution and taint analysis consume a large amount of resources such as CPU and memory,

limiting them to analyzing simple programs. Second, symbolic execution is limited by

the path explosion problem. If complex operation is required for processing symbols, the

symbolic execution engine has to exhaustively explore and evaluate all execution states; then,

most of the symbolic execution engines fail to run to the end of the execution path. Third,

DTA analysis has difficulty in tracking implicit data dependencies, such as covert channels,

control channels, or timing-based channels. For example, to cover data dependency through

a control channel, the DTA engine has to aggressively propagate the taint attribute to any

26

1 char input[] = ...; /* user input */
2 int value = ...; /* user input */
3

4 // 1. using implicit data-flow to copy input to antistr
5 // original code: if (!strcmp(input, "condition!")) { ... }
6 char antistr[strlen(input)];
7 for (int i = 0; i<strlen(input); i++){
8 int ch = 0, temp = 0, temp2 = 0;
9 for (int j = 0; j<8; j++){

10 temp = input[i];
11 temp2 = temp & (1<<j);
12 if (temp2 != 0) ch |= 1<<j;
13 }
14 antistr[i] = ch;
15 }
16 if (!strcmp(antistr, "condition!")) { ... }
17

18 // 2. exploding path constraints
19 // original code: if (value == 12345)
20 if (CRC_LOOP(value) == OUTPUT_CRC) { ... }

Figure 3.8: Example of AntiHybrid techniques. We use implicit data-flow (line 6-15) to copy
strings to hinder dynamic taint analysis. We inject hash function around equal comparison (line 20)
to cripple symbolic execution engine.

variable after a conditional branch, making the analysis more expensive and the result less

accurate.

Introducing implicit data-flow dependencies. We transform the explicit data-flows in

the original program into implicit data-flows to hinder taint analysis. FUZZIFICATION first

identifies branch conditions and interesting information sinks (e.g., strcmp) and then injects

data-flow transformation code according to the variable type. Figure 3.8 shows an example

application of AntiHybrid, where array input is used to decide branch condition and strcmp

is an interesting sink function. Therefore, FUZZIFICATION uses implicit data-flows to copy

the array (line 6-15) and replaces the original variable to the new one (line 16). Due to the

transformed implicit data-flow, the DTA technique cannot identify the correct input bytes

that affect the branch condition at line 16.

Implicit data-flow hinders data-flow analysis that tracks direct data propagation. How-

ever, it cannot prevent data dependency inference through differential analysis. For example,

recent work, RedQueen [85], infers the potential relationship between input and branch con-

27

Pr
oj

ec
t

Ve
rs

io
n

Pr
og

ra
m

A
rg

.
Se

ed
s

O
ve

rh
ea

d
(B

in
ar

y
si

ze
)

O
ve

rh
ea

d
(C

PU
)

Sp
ee

d
B

ra
nc

hT
ra

p
A

nt
iH

yb
ri

d
A

ll
Sp

ee
d

B
ra

nc
hT

ra
p

A
nt

iH
yb

ri
d

A
ll

lib
jp

eg
20

17
.7

dj
pe

g
G

IT
9.

0%
(0

.1
M

)
10

1.
5%

(1
.2

M
)

0.
3%

(0
.0

M
)

10
3.

2%
(1

.3
M

)
1.

5%
0.

9%
0.

3%
2.

4%
lib

pn
g

1.
6.

27
re

ad
pn

g
G

IT
6.

2%
(0

.1
M

)
56

.0
%

(1
.3

M
)

0.
9%

(0
.0

M
)

65
.7

%
(1

.5
M

)
1.

8%
2.

0%
0.

3%
4.

0%
lib

tif
f

4.
0.

6
tif

fin
fo

G
IT

9.
2%

(0
.2

M
)

72
.5

%
(1

.5
M

)
0.

8%
(0

.0
M

)
77

.3
%

(1
.6

M
)

1.
0%

2.
1%

0.
5%

4.
8%

pc
re

2
10

pc
re

2t
es

t
bu

ilt
-i

n
12

.9
%

(0
.2

M
)

85
.3

%
(1

.3
M

)
0.

8%
(0

.0
M

)
10

8.
6%

(1
.7

M
)

1.
2%

1.
2%

1.
0%

3.
1%

bi
nu

til
s

2.
23

re
ad

el
f

-a
E

L
F

fil
es

9.
6%

(0
.2

M
)

77
.3

%
(1

.3
M

)
0.

2%
(0

.0
M

)
81

.0
%

(1
.4

M
)

1.
0%

0.
9%

0.
9%

3.
1%

ob
jd

um
p

-d
1.

4%
(0

.1
M

)
17

.0
%

(1
.3

M
)

0.
1%

(0
.0

M
)

17
.5

%
(1

.3
M

)
1.

6%
2.

0%
0.

9%
4.

6%
nm

1.
9%

(0
.1

M
)

23
.1

%
(1

.2
M

)
0.

1%
(0

.0
M

)
23

.3
%

(1
.2

M
)

1.
8%

1.
6%

1.
1%

4.
5%

ob
jc

op
y

-S
1.

7%
(0

.1
M

)
20

.2
%

(1
.3

M
)

0.
1%

(0
.0

M
)

20
.6

%
(1

.3
M

)
1.

7%
0.

8%
0.

5%
2.

9%

A
ve

ra
ge

6.
5%

56
.6

%
0.

4%
62

.1
%

1.
4%

1.
4%

0.
7%

3.
7%

Ta
bl

e
3.

2:
C

od
e

si
ze

ov
er

he
ad

an
d

pe
rf

or
m

an
ce

ov
er

he
ad

of
fu

zz
ifi

ed
bi

na
ri

es
.G
I
T

m
ea

ns
G

oo
gl

e
Im

ag
e

Te
st

-s
ui

te
.W

e
se

tp
er

fo
rm

an
ce

ov
er

he
ad

bu
dg

et
as

5%
.F

or
si

ze
ov

er
he

ad
,w

e
sh

ow
th

e
pe

rc
en

ta
ge

an
d

th
e

in
cr

ea
se

d
si

ze
.

28

ditions through pattern matching, and thus can bypass the implicit data-flow transformation.

However, RedQueen requires the branch condition value to be explicitly shown in the input,

which can be easily fooled through simple data modification (e.g., adding the same constant

value to both operands of the comparison).

Exploding path constraints. To hinder hybrid fuzzers using symbolic execution, FUZZIFICATION

injects multiple code chunks to intentionally trigger path explosions. Specifically, we re-

place each comparison instruction by comparing the hash values of the original comparison

operands. We adopt the hash function because symbolic execution cannot easily determine

the original operand with the given hash value. As hash functions usually introduce non-

negligible overhead to program execution, we utilize the lightweight cyclic redundancy

checking (CRC) loop iteration to transform the branch condition to reduce performance over-

head. Although theoretically CRC is not as strong as hash functions for hindering symbolic

execution, it also introduces significant slow down. Figure 3.8 shows an example of the

path explosion instrumentation. To be specific, FUZZIFICATION changes the original con-

dition (value == 12345) to (CRC_LOOP(value) == OUTPUT_CRC) (at line 20). If symbolic

execution decides to solve the constraint of the CRC, it will mostly return a timeout error

due to the complicated mathematics. For example, QSYM, a state-of-the-art fast symbolic

execution engine, is armed with many heuristics to scale on real-world applications. When

QSYM first tries to solve the complicated constraint that we injected, it will fail due to the

timeout or path explosion. Once injected codes are run by the fuzzer multiple times, QSYM

identifies the repetitive basic blocks (i.e., injected hash function) and performs basic block

pruning, which decides not to generate a further constraint from it to assign resources into

a new constraint. After that, QSYM will not explore the condition with the injected hash

function; thus, the code in the branch can be explored rarely.

29

Tasks Target AFL HonggFuzz QSym VUzzer

Coverage 8 binaries O,S,B,H,A O,S,B,H,A O,S,B,H,A –
MuPDF O,A O,A O,A –

Crash 4 binaries O,A O,A O,A –
LAVA-M O,A O,A O,A O,A

Table 3.3: Experiments summary. Protection optionfuzz: Original, SpeedBump, BranchTrap,
AntiHybrid, All. We use 4 binutils binaries, 4 binaries from Google OSS project and MuPDF to
measure the code coverage. We use binutils binaries and LAVA-M programs to measure the number
of unique crashes.

3.6 Evaluation

We evaluate our FUZZIFICATION techniques to understand their effectiveness on hindering

fuzzers from exploring program code paths (§3.6.1) and detecting bugs (§3.6.2), their

practicality of protecting real-world large programs (§3.6.3), and their robustness against

adversarial analysis techniques (§3.6.4).

Implementation. Our FUZZIFICATION framework is implemented in a total of 6,559 lines

of Python code and 758 lines of C++ code. We implement the SpeedBump technique as

an LLVM pass and use it to inject delays into cold blocks during the compilation. For

the BranchTrap, we analyze the assembly code and modify it directly. For the AntiHybrid

technique, we use an LLVM pass to introduce the path explosion and utilize a python

script to automatically inject implicit data-flows. Currently, our system supports all three

FUZZIFICATION techniques on 64bit applications, and is able to protect 32bit applications

except for the ROP-based BranchTrap.

Experimental setup. We evaluate FUZZIFICATION against four state-of-the-art fuzzers

that work on binaries, specifically, AFL in QEMU mode, HonggFuzz in Intel-PT mode,

VUzzer 321, and QSYM with AFL-QEMU. We set up the evaluation on two machines, one

with Intel Xeon CPU E7-8890 v4@2.20GHz, 192 processors and 504 GB of RAM, and

1We also tried to use VUzzer64 to fuzz different programs, but it did not find any crashes even for any
original binary after three-day fuzzing. Since VUzzer64 is still experimental, we will try the stable version in
the future.

30

0k3k6k9k12
k

8
16

24
32

40
48

56
64

72
0k2k4k6k8k10

k

8
16

24
32

40
48

56
64

72
0k3k6k9k12

k

15
k

8
16

24
32

40
48

56
64

72
0k5k10

k

15
k

20
k

25
k

30
k

8
16

24
32

40
48

56
64

72

0k4k8k12
k

16
k

20
k

8
16

24
32

40
48

56
64

72
0k5k10

k
15

k
20

k
25

k
30

k
35

k

8
16

24
32

40
48

56
64

72
0k3k6k9k12

k

15
k

8
16

24
32

40
48

56
64

72
0k5k10

k

15
k

20
k

25
k

30
k

8
16

24
32

40
48

56
64

72

(a
)l

ib
jp

eg

O
ri

gi
na

l
A

nt
iH

yb
ri

d
B

ra
nc

hT
ra

p
Sp

ee
dB

um
p

A
ll

(b
)l

ib
pn

g
(c

)l
ib

tif
f

(d
)p

cr
e2

#realpaths

Ti
m

e
(h

ou
rs

)

(e
)r

ea
de

lf

Ti
m

e
(h

ou
rs

)

(f
)o

bj
du

m
p

Ti
m

e
(h

ou
rs

)

(g
)n

m

Ti
m

e
(h

ou
rs

)

(h
)o

bj
co

py

Fi
gu

re
3.

9:
Pa

th
sd

is
co

ve
re

d
by

A
FL

-Q
E

M
U

fr
om

re
al

-w
or

ld
pr

og
ra

m
s.

Ea
ch

pr
og

ra
m

is
co

m
pi

le
d

w
ith

fiv
e

se
tti

ng
fu

zz
:o

rig
in

al
(n

o
pr

ot
ec

tio
n)

,
Sp

ee
dB

um
p,

B
ra

nc
hT

ra
p,

A
nt

iH
yb

ri
d,

an
d

al
lp

ro
te

ct
io

ns
.W

e
fu

zz
th

em
w

ith
A

FL
-Q

E
M

U
fo

rt
hr

ee
da

ys
.

31

Category Option Design Choice

SpeedBump

max_overhead 2%
delay_length 10ms to 300ms
include_invalid True
include_non_exec True (5%)

BranchTrap max_overhead 2%
bitmap_saturation 40% of 64k bitmap

AntiHybrid max_overhead 1%
include_non_exec True (5%)

Overall max_overhead 5%

Table 3.4: Our configuration values for the evaluation.

another with Intel Xeon CPU E7-4820@2.00GHz, 32 processors and 128 GB of RAM.

To get reproducible results, we tried to eliminate the non-deterministic factors from

fuzzers: we disable the address space layout randomization of the experiment machine

and force the deterministic mode for AFL. However, we have to leave the randomness in

HonggFuzz and VUzzer, as they do not support deterministic fuzzing. Second, we used

the same set of test cases for basic block profiling in FUZZIFICATION, and fed the same

seed inputs for different fuzzers. Third, we used identical FUZZIFICATION techniques and

configurations when we conducted code instrumentation and binary rewriting for each

target application. Last, we pre-generated FUZZIFICATION primitives (e.g., SpeedBump

codes for 10ms to 300ms and BranchTrap codes with deterministic branches), and used the

primitives for all protections. Note that developers should use different primitives for the

actual releasing binary to avoid code pattern matching analysis.

Target applications. We select the LAVA-M data set [86] and nine real-world applications

as the fuzzing targets, which are commonly used to evaluate the performance of fuzzers [69,

68, 28, 19]. The nine real-world programs include four applications from the Google

fuzzer test-suite [30], four programs from the binutils [87] (shown in Table 3.2), and the

PDF reader MuPDF. We perform two sets of experiments on these binaries, summarized in

32

Table 3.3. First, we fuzz nine real-world programs with three fuzzers (all except VUzzer2)

to measure the impact of FUZZIFICATION on finding code paths. Specifically, we compile

eight real-world programs (all except MuPDF) with five different settings: original (no

protection), SpeedBump, BranchTrap, AntiHybrid, and a combination of three techniques

(full protection). We compile MuPDF with two settings for simplicity: no protection and

full protection. Second, we use three fuzzers to fuzz four binutils programs and all four

fuzzers to fuzz LAVA-M programs to evaluate the impact of FUZZIFICATION on unique bug

finding. All fuzzed programs in this step are compiled in two versions: with no protection

and with full protection. We compiled the LAVA-M program to a 32bit version in order to

be comparable with previous research. Table 3.4 shows the configuration of each technique

used in our compilation. We changed the fuzzer’s timeout if the binaries cannot start with

the default timeout (e.g., 1000 ms for AFL-QEMU).

Evaluation metric. We use two metrics to measure the effectiveness of FUZZIFICATION:

code coverage in terms of discovered real paths, and unique crashes. Real path is the

execution path shown in the original program, excluding the fake ones introduced by

BranchTrap. We further excluded the real paths triggered by seed inputs so that we can

focus on the ones discovered by fuzzers. Unique crash is measured as the input that can

make the program crash with a distinct real path. We filter out duplicate crashes that are

defined in AFL [88] and are widely used by other fuzzers [69, 39].

3.6.1 Reducing Code Coverage

Impact on Normal Fuzzers

We measure the impact of FUZZIFICATION on reducing the number of real paths against

AFL-QEMU and HonggFuzz-Intel-PT. Figure 3.9 shows the 72-hour fuzzing result from

AFL-QEMU on different programs with five protection settings. The result of HonggFuzz-

2Due to time limit, we only use VUzzer 32 to finding bugs from LAVA-M programs. We plan to do other
evaluations in the future.

33

0k3k6k9k12
k

15
k

18
k

8
16

24
32

40
48

56
64

72
0k3k6k9k12
k

8
16

24
32

40
48

56
64

72
0k4k8k12
k

16
k

20
k

8
16

24
32

40
48

56
64

72
0k5k10
k

15
k

20
k

25
k

8
16

24
32

40
48

56
64

72

0k10
k

20
k

30
k

40
k

50
k

60
k

8
16

24
32

40
48

56
64

72
0k10
k

20
k

30
k

40
k

8
16

24
32

40
48

56
64

72
0k4k8k12
k

16
k

8
16

24
32

40
48

56
64

72
0k10
k

20
k

30
k

40
k

50
k

8
16

24
32

40
48

56
64

72

(a
)l

ib
jp

eg

O
ri

gi
na

l
A

nt
iH

yb
ri

d
B

ra
nc

hT
ra

p
Sp

ee
dB

um
p

A
ll

(b
)l

ib
pn

g
(c

)l
ib

tif
f

(d
)p

cr
e2

#realpaths

Ti
m

e
(h

ou
rs

)

(e
)r

ea
de

lf

Ti
m

e
(h

ou
rs

)

(f
)o

bj
du

m
p

Ti
m

e
(h

ou
rs

)

(g
)n

m

Ti
m

e
(h

ou
rs

)

(h
)o

bj
co

py

Fi
gu

re
3.

10
:

Pa
th

sd
is

co
ve

re
d

by
Q

SY
M

fr
om

re
al

-w
or

ld
pr

og
ra

m
s.

E
ac

h
pr

og
ra

m
is

co
m

pi
le

d
w

ith
th

e
sa

m
e

fiv
e

se
tti

ng
s

as
in

Fi
gu

re
3.

9.
W

e
fu

zz
th

es
e

pr
og

ra
m

s
fo

rt
hr

ee
da

ys
,u

si
ng

Q
S

Y
M

as
th

e
sy

m
bo

lic
ex

ec
ut

io
n

en
gi

ne
an

d
A

FL
-Q

E
M

U
as

th
e

na
tiv

e
fu

zz
er

.

34

Intel-PT is similar.

In summary, with all three techniques, FUZZIFICATION can reduce discovered real

paths by 76% to AFL, and by 67% to HonggFuzz, on average. For AFL, the reduction

rate varies from 14% to 97% and FUZZIFICATION reduces over 90% of path discovery for

libtiff, pcre2 and readelf. For HonggFuzz, the reduction rate is between 38% to 90%

and FUZZIFICATION only reduces more than 90% of paths for pcre2. As FUZZIFICATION

automatically determines the details for each protection to satisfy the overhead budget, its

effect varies for different programs.

Table 3.5 shows the effect of each technique on hindering path discovery. Among them,

SpeedBump achieves the best protection against normal fuzzers, followed by BranchTrap

and AntiHybrid. Interestingly, although AntiHybrid is developed to hinder hybrid ap-

proaches, it also helps reduce the discovered paths in normal fuzzers. We believe this is

mainly caused by the slow down in fuzzed executions.

We measured the overhead by different FUZZIFICATION techniques, on program size

and execution speed. The result is given in Table 3.2. In summary, FUZZIFICATION satisfies

the user-specified overhead budget, but shows relatively high space overhead. On average,

binaries armed with FUZZIFICATION are 62.1% larger than the original ones. The extra

code mainly comes from the BranchTrap technique, which inserts massive branches to

achieve bitmap saturation. Note that the extra code size is almost the same across different

programs. Therefore, the size overhead is high for small programs, but is negligible for large

applications. For example, the size overhead is less than 1% for LibreOffice applications,

as we show in Table 3.7. Further, BranchTrap is configurable, and developers may inject a

smaller number of fake branches to small programs to avoid large-size overhead.

Analysis on less effective results. FUZZIFICATION shows less effectiveness on protecting

the libjpeg application. Specifically, it decreases the number of real paths on libjpeg

by 13% to AFL and by 37% to HonggFuzz, whereas the average reduction is 76% and

67%, respectively. We analyzed FUZZIFICATION on libjpeg and find that SpeedBump and

35

SpeedBump BranchTrap AntiHybrid All

AFL-QEMU -66% -23% -18% -74%
HonggFuzz (PT) -44% -14% -7% -61%
QSym (AFL-QEMU) -59% -58% -67% -80%

Average -56% -31% -30% -71%

Table 3.5: Reduction of discovered paths by FUZZIFICATION techniques. Each value is an
average of the fuzzing result from eight real-world programs, as shown in Figure 3.9 and Figure 3.10.

BranchTrap cannot effectively protect libjpeg. Specifically, these two techniques only

inject nine basic blocks within the user-specified overhead budget (2% for SpeedBump

and 2% for BranchTrap), which is less than 0.1% of all basic blocks. To address this

problem, developers may increase the overhead budget so that FUZZIFICATION can insert

more roadblocks to protect the program.

Impact on Hybrid Fuzzers

We also evaluated FUZZIFICATION’s impact on code coverage against QSYM, a hybrid

fuzzer that utilizes symbolic execution to help fuzzing. Figure 3.10 shows the number of

real paths discovered by QSYM from the original and protected binaries. Overall, with

all three techniques, FUZZIFICATION can reduce the path coverage by 80% to QSYM on

average, and shows consistent high effectiveness on all tested programs. Specifically, the

reduction rate varies between 66% (objdump) to 90% (readelf). The result of libjpeg shows

an interesting pattern: QSYM finds a large number of real paths from the original binary

in the last 8 hours, but it did not get the same result from any protected binary. Table 3.5

shows that AntiHybrid achieves the best effect (67% path reduction) against hybrid fuzzers,

followed by SpeedBump (59%) and BranchTrap (58%).

Comparison with normal fuzzing result. QSYM uses efficient symbolic execution to help

find new paths in fuzzing, and therefore it is able to discover 44% more real paths than AFL

from original binaries. As we expect, AntiHybrid shows the most impact on QSYM (67%

reduction), and less effect on AFL (18%) and HonggFuzz (7%). With our FUZZIFICATION

36

0

50

100

150

200

readelf
objdump

nm objcopy 0

10

20

30

40

readelf
objdump

nm objcopy 0

100

200

300

400

readelf
objdump

nm objcopy

(a) AFL-QEMU (b) HonggFuzz (Intel-PT) (c) QSym (AFL-QEMU)

Original
Fuzzified

Figure 3.11: Crashes found by different fuzzers from binutils programs. Each program is
compiled as original (no protection) and fuzzified (three techniques) and is fuzzed for three days.

0

10

20

30

40

50

60

who
uniq base64

md5sum 0

30

60

90

120

150

who
uniq base64

md5sum

(a) VUzzer (b) QSym (AFL-QEMU)

Original
Fuzzified

Figure 3.12: Bugs found by VUzzer and QSYM from LAVA-M dataset. HonggFuzz discovers
three bugs from the original uniq. AFL does not find any bug.

techniques, QSYM shows less advantage over normal fuzzers, reduced from 44% to 12%.

3.6.2 Hindering Bug Finding

We measure the number of unique crashes that fuzzers find from the original and protected

binaries. Our evaluation first fuzzes four binutils programs and LAVA-M applications with

three fuzzers (all but VUzzer). Then we fuzz LAVA-M programs with VUzzer, where we

compiled them into 32bit versions and excluded the protection of ROP-based BranchTrap,

which is not implemented yet for 32bit programs.

Impact on Real-World Applications

Figure 3.11 shows the total number of unique crashes discovered by three fuzzers in 72 hours.

Overall, FUZZIFICATION reduces the number of discovered crashes by 93%, specifically,

by 88% to AFL, by 98% to HonggFuzz, and by 94% to QSYM. If we assume a consistent

crash-discovery rate along the fuzzing process, fuzzers have to take 40 times more effort

37

to detect the same number of crashes from the protected binaries. As the crash-discovery

rate usually reduces over time in real-world fuzzing, fuzzers will have to take much more

effort. Therefore, FUZZIFICATION can effectively hinder fuzzers and makes them spend

significantly more time discovering the same number of crash-inducing inputs.

Impact on LAVA-M Dataset

Compared with other tested binaries, LAVA-M programs are smaller in size and simpler

in operation. If we inject a 1ms delay on 1% of rarely executed basic block on who binary,

the program will suffer a slow down of more than 40 times. To apply FUZZIFICATION

on the LAVA-M dataset, we allow higher overhead budget and apply more fine-grained

FUZZIFICATION. Specifically, we used tiny delay primitives (i.e., 10 µs to 100 µs), tuned

the ratio of basic block instrumentation from 1% to 0.1%, reduced the number of applied

AntiHybrid components, and injected smaller deterministic branches to reduce the code

size overhead. Table 3.6 shows the run-time and space overhead of the generated LAVA-M

programs with FUZZIFICATION techniques.

After fuzzing the protected binaries for 10 hours, AFL-QEMU does not find any crash.

HonggFuzz detects three crashes from the original uniq binary and cannot find any crash

from any protected binary. Figure 3.12 illustrates the fuzzing result of VUzzer and QSYM.

Overall, FUZZIFICATION can reduce 56% of discovered bugs to VUzzer and 78% of dis-

covered bugs to QSYM. Note that the fuzzing result on the original binaries is different

from the ones reported in the original papers [71, 19] for several reason: VUzzer and QSYM

cannot eliminate non-deterministic steps during fuzzing; we run the AFL part of each tool

in QEMU mode; LAVA-M dataset is updated with several bug fixes3.

38

who uniq base64 md5sum Average

Overhead (Size)
17.1% 220.6% 220.0% 210.7% 167.1%
(0.3M) (0.3M) (0.3M) (0.3M)

Overhead (CPU) 22.7% 13.2% 21.1% 6.5% 15.9%

Table 3.6: Overhead of FUZZIFICATION on LAVA-M binaries. The overhead is higher as LAVA-
M binaries are relatively small (e.g., ≈ 200KB).

Category Program Version Overhead
Size CPU

LibreOffice
Writer < 1% (+1.3 MB) 0.4%
Calc 6.2 < 1% (+1.3 MB) 0.4%
Impress < 1% (+1.3 MB) 0.2%

Music Player Clementine 1.3 4.3% (+1.3 MB) 0.5%
PDF Reader MuPDF 1.13 4.1% (+1.3 MB) 2.2%
Image Viewer Nomacs 3.10 21% (+1.2 MB) 0.7%

Average 5.4% 0.73%

Table 3.7: FUZZIFICATION on GUI applications. The CPU overhead is calculated on the applica-
tion launching time. Due to the fixed code injection, code size overhead is negligible for these large
applications.

3.6.3 Anti-fuzzing on Realistic Applications

To understand the practicality of FUZZIFICATION on large and realistic applications, we

choose six programs that have a graphical user interface (GUI) and depend on tens of

libraries. As fuzzing large and GUI programs is a well-known challenging problem, our

evaluation here focuses on measuring the overhead of FUZZIFICATION techniques and

the functionality of protected programs. When applying the SpeedBump technique, we

have to skip the basic block profiling step due to the lack of command-line interface (CLI)

support (e.g., readelf parses ELF file and displays results in command line); thus, we only

insert slow down primitives into error-handling routines. For the BranchTrap technique, we

choose to inject massive fake branches into basic blocks near the entry point. In this way,

the program execution will always pass the injected component so that we can measure

3httpfuzz://github.com/panda-re/lava/search?q=bugfix&type=Commits

39

Pattern Control Data Manual
matching analysis analysis analysis

SpeedBump ✔ ✔ ✔ -
BranchTrap ✔ ✔ ✔ -
AntiHybrid - ✔ ✔ -

Table 3.8: Defense against adversarial analysis. ✔ indicates that the FUZZIFICATION technique
is resistant to that adversarial analysis.

runtime overhead correctly. We apply the AntiHybrid technique directly.

For each protected application, we first manually run it with multiple inputs, including

given test cases, and confirm that FUZZIFICATION does not affect the program’s original

functionality. For example, MuPDF successfully displays, edits, saves, and prints all tested

PDF documents. Second, we measure the code size and runtime overhead of the protected

binaries for given test cases. As shown in Table 3.7, on average, FUZZIFICATION introduces

5.4% code size overhead and 0.73% runtime overhead. Note that the code size overhead

is much smaller than that of previous programs (i.e., 62.1% for eight relatively small

programs Table 3.2 and over 100% size overhead for simple LAVA-M programs Table 3.6).

Anti-fuzzing on MuPDF. We also evaluated the effectiveness of FUZZIFICATION on

protecting MuPDF against three fuzzers – AFL, HonggFuzz, and QSYM– as MuPDF supports

the CLI interface through the tool called “mutool.” We compiled the binary with the

same parameter shown in Table 3.4 and performed basic block profiling using the CLI

interface. After 72-hours of fuzzing, no fuzzer finds any bug from MuPDF. Therefore, we

instead compare the number of real paths between the original binary and the protected

one. As shown in Figure 3.13, FUZZIFICATION reduces the total paths by 55% on average,

specifically, by 77% to AFL, by 36% to HonggFuzz, and 52% to QSYM. Therefore, we

believe it is more challenging for real-world fuzzers to find bugs from protected applications.

40

0k

20k

40k

60k

80k

12 24 36 48 60 72 12 24 36 48 60 72 12 24 36 48 60 72

#
re

al
pa

th
s

Time (hours)

(a) AFL-QEMU

Original
Fuzzified (All)

Time (hours)

(b) HonggFuzz (PT)

Time (hours)

(c) QSym (AFL-QEMU)

Figure 3.13: Testing MuPDF. Paths discovered by different fuzzers from the original MuPDF and the
one protected by three FUZZIFICATION techniques.

3.6.4 Evaluating Best-effort Countermeasures

We evaluate the robustness of FUZZIFICATION techniques against off-the-shelf program

analysis techniques that adversaries may use to reverse our protections. However, the

experiment results do not particularly indicate that FUZZIFICATION is robust against strong

adversaries with incomparable computational resources.

Table 3.8 shows the analysis we covered and summarizes the evaluation result. First,

attackers may search particular code patterns from the protected binary in order to identify

injected protection code. To test anti-fuzzing against pattern matching, we examine a number

of code snippets that are repeatedly used throughout the protected binaries. We found that

the injected code by AntiHybrid crafts several observable patterns, like hash algorithms or

data-flow reconstruction code, and thus could be detected by attackers. One possible solution

to this problem is to use existing diversity techniques to eliminate the common patterns [64].

We confirm that no specific patterns can be found in SpeedBump and BranchTrap because

we leverage CSmith [83] to randomly generate a new code snippet for each FUZZIFICATION

process.

Second, control-flow analysis can identify unused code in a given binary automatically

and thus automatically remove it (i.e., dead code elimination). However, this technique

cannot remove our FUZZIFICATION techniques, as all injected code is cross-referenced with

the original code. Third, data-flow analysis is able to identify the data dependency. We run

protected binaries inside the debugging tool, GDB, to inspect data dependencies between

41

the injected code and the original code. We confirm that data dependencies always exist via

global variables, arguments, and the return values of injected functions. Finally, we consider

an adversary who is capable of conducting manual analysis for identifying the anti-fuzzing

code with the knowledge of our techniques. It is worth noting that we do not consider

strong adversaries who are capable of analyzing the application logic for vulnerability

discovery. Since FUZZIFICATION injected codes are supplemental to the original functions,

we conclude that the manual analysis can eventually identify and nullify our techniques

by evaluating the actual functionality of the code. However, since the injected code is

functionally similar to normal arithmetic operations and has control- and data-dependencies

on the original code, we believe that the manual analysis is time-consuming and error-prone,

and thus we can deter the time for revealing real bugs.

3.7 Discussion and Future Work

In this section, we discuss the limitations of FUZZIFICATION and suggest provisional

countermeasures against them.

Complementing attack mitigation system. The goal of anti-fuzzing is not to completely

hide all vulnerabilities from adversaries. Instead, it introduces an expensive cost on the

attackers’ side when they try to fuzz the program to find bugs, and thus developers are able

to detect bugs first and fix them in a timely manner. Therefore, we believe our anti-fuzzing

technique is an important complement to the current attack mitigation ecosystem. Existing

mitigation efforts either aim to avoid program bugs (e.g., through type-safe language [89, 90])

or aim to prevent successful exploits, assuming attackers will find bugs anyway (e.g., through

control-flow integrity [91, 92, 93]). As none of these defenses can achieve 100% protection,

our FUZZIFICATION techniques provide another level of defense that further enhances

program security. However, we emphasize that FUZZIFICATION alone cannot provide the

best security. Instead, we should keep working on all aspects of system security toward

a completely secure computer system, including but not limited to secure development

42

process, effective bug finding, and efficient runtime defense.

Best-effort protection against adversarial analysis. Although we examined existing

generic analyses and believe they cannot completely disarm our FUZZIFICATION techniques,

the defensive methods only provide a best-effort protection. First, if attackers have almost

unlimited resources, such as when they launch APT (advanced persistent threat) attacks,

no defense mechanism can survive the powerful adversarial analysis. For example, with

extremely powerful binary-level control-flow analysis and data-flow analysis, attackers may

finally identify the injected branches by BranchTrap and thus reverse it for an unprotected

binary. However, it is hard to measure the amount of required resources to achieve this

goal, and meanwhile, developers can choose more complicated branch logic to mitigate

reversing. Second, we only examined currently existing techniques and cannot cover all

possible analyses. It is possible that attackers who know the details of our FUZZIFICATION

techniques propose a specific method to effectively bypass the protection, such as by utilizing

our implementation bugs. But in this case, the anti-fuzzing technique will also get updated

quickly to block the specific attack once we know the reversing technique. Therefore, we

believe the anti-fuzzing technique will get improved continuously along the back-and-forth

attack and defense progress.

Trade-off performance for security. FUZZIFICATION improves software security at

the cost of a slight overhead, including code size increase and execution slow down. A

similar trade-off has been shown in many defense mechanisms and affects the deployment

of defense mechanisms. For example, address space layout randomization (ASLR) has

been widely adopted by modern operating systems due to small overhead, while memory

safety solutions still have a long way to go to become practical. Fortunately, the protection

by FUZZIFICATION is quite flexible, where we provide various configuration options for

developers to decide the optimal trade-off between security and performance, and our tool

will automatically determine the maximum protection under the overhead budget.

43

3.8 Conclusion

We propose a new attack mitigation system, called FUZZIFICATION, for developers to

prevent adversarial fuzzing. We develop three principled ways to hinder fuzzing: injecting

delays to slow fuzzed executions; inserting fabricated branches to confuse coverage feedback;

transforming data-flows to prevent taint analysis and utilizing complicated constraints to

cripple symbolic execution. We design robust anti-fuzzing primitives to hinder attackers

from bypassing FUZZIFICATION. Our evaluation shows that FUZZIFICATION can reduce

paths exploration by 70.3% and reduce bug discovery by 93.0% for real-world binaries, and

reduce bug discovery by 67.5% for LAVA-M dataset.

44

CHAPTER 4

WINNIE: FUZZING WINDOWS APPLICATIONS WITH HARNESS

SYNTHESIS AND FAST CLONING

45

4.1 Introduction

Fuzzing is an emerging software-testing technique for automatically validating program

functionalities and uncovering security vulnerabilities [1]. It randomly mutates program

inputs to generate a large corpus and feeds each input to the program. It monitors the

execution for abnormal behaviors, like crashing, hanging, or failing security checks [94].

Recent fuzzing efforts have found thousands of vulnerabilities in open-source projects [23,

24, 25, 26]. There are continuous efforts to make fuzzing faster [95, 19, 96] and smarter [28,

71, 18].

However, existing fuzzing techniques are mainly applied to Unix-like OSes, and few

of them work as well on Windows platforms. Unfortunately, Windows applications are

not free from bugs. Recent report shows that in the past 12 years, 70% of all security

vulnerabilities on Windows systems are memory safety issues [13]. In fact, due to the

dominance of Windows operating system, its applications remain the most lucrative targets

for malicious attackers [14, 15, 16, 17]. To bring popular fuzzing techniques to the Windows

platform, we investigate common applications and state-of-the-art fuzzers, and identify three

challenges of fuzzing applications on Windows: a predominance of graphical applications,

a closed-source ecosystem (e.g., third-party or legacy libraries), and the lack of fast cloning

machinery like fork on Unix-like OSes.

Windows applications heavily rely on GUIs (graphical user interfaces) to interact with

end-users, which poses a major obstacle to fuzzing. As shown in Figure 4.1, XnView [97]

requires the user to provide a file through the graphical dialog window. When the user

specifies the file path, the main executable parses the file, determines which library to

delegate to, and dynamically loads the necessary library to handle the input. Although some

efforts try to automate the user interaction [98], the execution speed is much slower than

ordinary fuzzing. For example, fuzzing GUI applications with AutoIt yields only around

three executions per second [99], whereas Linux fuzzing often achieves speeds of more

46

ldf_jpm.dll

zlib1.dll

libmpg.dll

Input parser

Image readerXnView.exe

Multi-media

Archive
Movie

Sound

Network

Plugin

Image

GUI

dialog
window

user

input path

GUI Main executable Libraries

User interaction

Figure 4.1: Architecture of XnView on Windows. The program accepts the user input via the
GUI. The main executable parses the received path and dynamically loads the library to process the
input. A fuzzing harness bypasses the GUI to reach the functionality we wish to test.

than 1,000 executions per second. Speed is crucial for effective fuzzing, and this slow-down

renders fuzzing GUI application impractical.

The general way to overcome the troublesome GUI is to write a simple program, called

a harness, to assist with fuzzing. A harness replaces the GUI with a CLI (command-line

interface), prepares the execution context such as arguments and memory, and invokes

the target functions directly. In this way, we can test the target program without any user

interaction. For example, with a harness that receives the input path from the command

line and loads the decoder library, we can test XnView without worrying about the dialog

window. Recent work has even explored generating harnesses automatically for open-source

programs [100, 101].

Nevertheless, Windows fuzzing still relies largely on human effort to create effective

harnesses because most Windows programs are closed-source, commercial-off-the-shelf

(COTS) software [102, 103, 104, 105, 106]. Existing automatic harness synthesis methods

require to access the source code, and thus cannot handle closed-source programs easily [100,

101]. Without the source code, we have little knowledge of the program’s internals, like the

locations of interesting functions and their prototypes. Since manual analysis is error-prone

and unscalable to a large number of programs, we need a new method to generate fuzzing

harnesses directly from the binary.

47

Finally, Windows lacks the fast cloning machinery (e.g., fork syscall) that greatly aids

fuzzing on Unix-like OSes. Linux fuzzers like AFL place a fork-server before the target

function, and subsequent executions reuse the pre-initialized state by forking. The fork-

server makes AFL run 1.5×–2× faster on Linux [107]. fork also improves the stability

of testing as each child process runs in its own address space, containing any side-effects,

like crashes or hangs. However, the Windows kernel does not expose a clear counterpart

for fork, nor any suitable alternatives. As a result, fuzzers have to re-execute the program

from the beginning for each new input, leading to a low execution speed. Although we can

write a harness to test the program in a big loop (aka., persistent mode [73]), testing many

inputs in one process harms stability. For example, each execution may gradually pollute

the global program state, eventually leading to divergence and incorrect behavior.

We propose an end-to-end system, WINNIE, to address the aforementioned challenges

and make fuzzing Windows programs more practical. WINNIE contains two components: a

harness generator that automatically synthesizes harnesses from the program binary alone,

and an efficient Windows fork-server. To construct plausible harnesses, our harness generator

combines both dynamic and static analysis. We run the target program against several inputs,

collect execution traces, and identify interesting functions and libraries that are suitable for

fuzzing. Then, our generator searches the execution traces to collect all function calls to

candidate libraries, and extracts them to form a harness skeleton. Finally, we try to identify

the relationships between different function calls and arguments to build a full harness.

Meanwhile, to implement an efficient fork-server for Windows systems, we identified and

analyzed undocumented Windows APIs that effectively support a Copy-on-Write fork

operation similar to the corresponding system call on Unix systems. We established the

requirements to use these APIs in a stable manner. The availability of fork eliminates

the need for existing, crude fuzzing techniques like persistent mode. To the best of our

knowledge, this is the first practical counterpart of fork on Windows systems for fuzzing.

We implemented WINNIE in 7.1K lines of code (LoC). We applied WINNIE on 59 exe-

48

➀

➂

➅

➁

➃

fuzzer

cull

select

insert

mutate

➄coverage

main

func
fuzzed execution

entry
fork

server

main

func

main

func

target

Figure 4.2: Fuzzing overview. (1) The fuzzer maintains a queue of inputs. Each cycle, (2) it picks
one input from the queue and (3) modifies it to generate a new input. (4) It feeds the new input into
the fuzzed program and (5) records the code coverage. (6) If the execution triggers more coverage,
the new input is added back into the queue.

cutables, including Visual Studio, ACDSee, ultraISO and EndNote. Our harness generator

automatically synthesized candidate harnesses from execution traces, and 95% of them could

be fuzzed directly with only minor modifications (i.e., ≤ 10 LoC). Our improved fuzzer also

achieved 26.6× faster execution and discovered 3.6× more basic blocks than WinAFL, the

state-of-the-art fuzzer on Windows. By fuzzing these 59 harnesses, WINNIE successfully

found 61 bugs from 32 binaries. Out of the 59 harnesses, WinAFL only supported testing

29 binaries.

4.2 Background: Why Harness Generation?

Fuzzing is a popular automated technique for testing software. It generates program inputs

in a pseudo-random fashion and monitors program executions for abnormal behaviors (e.g.,

crashes, hangs or assertion violations). Since it was introduced, fuzzing has found tens of

thousands of bugs [108].

Most popular fuzzers employ greybox, feedback-guided fuzzing. Under this paradigm,

fuzzers treat programs like black boxes, but also rely on light-weight instrumentation

techniques to collect useful feedback (e.g., code coverage) from each run. The feedback is

used to measure how an input helps explore the program’s internal states. Thus, a fuzzer

can gauge how effective an input is at eliciting interesting behaviors from the program.

49

Fuzzer AFL WinAFL HonggFuzz Peach WINNIE

Feedback ✔ ✔ ✗ ✗ ✔

Forkserver ✔ ✗ ✗ ✗ ✔

Open-source ✔ ✔ ✔ ✗ ✔

Windows ✗ ✔ ✔ ✔ ✔

Table 4.1: Comparison between various Windows fuzzers and Linux AFL. We compare several
key features that we believe are essential to effective fuzzing. WINNIE aims to bring the ease and
efficiency of the Linux fuzzing experience to Windows systems.

Intuitively, since most bugs lie in the relatively complicated parts of code, the feedback

guides the fuzzer towards promising parts of the program. This gives greybox fuzzers a

decisive advantage over black-box fuzzers which blindly generate random inputs without

any runtime feedback.

AFL [2], a popular Linux fuzzer, exemplifies greybox fuzzing in practice. Figure 4.2

depicts AFL’s fuzzing process. The testing process is similar to a genetic algorithm. It

proceeds iteratively, mutating and testing new inputs each round. Inputs which elicit bugs

(i.e., crashes or hangs) or new code coverage from the program are selected for further

testing, while other uninteresting inputs are discarded. Across many cycles, AFL learns

to produce interesting inputs as it expands the code coverage map. Although simple, this

strategy is surprisingly successful: several recent advanced fuzzers [96, 95, 41] follow

the same high-level process. Overall, AFL-style, greybox fuzzing has proven extremely

successful on Linux systems.

Although most recent research efforts focus on improving fuzzing Linux applications [2,

95, 96, 3, 109, 41, 37], Windows programs are also vulnerable to memory safety issues.

Past researchers have uncovered many vulnerabilities by performing a manual audit [13].

In fact, Windows applications are especially interesting because they are commonly used

on end-user systems. These systems are prime targets for malicious attackers [16, 14].

Automatic Windows testing would pave a way for researchers to look for bugs in many

Windows programs while limiting manual code review. In turn, this would help secure the

Windows ecosystem.

50

Unfortunately, no fuzzers can test Windows applications as effectively as AFL can test

Linux applications. Table 4.1 compares Linux AFL with popular Windows fuzzers. WinAFL

is a fork of AFL ported for Windows systems [110] and supports feedback-driven fuzzing.

HonggFuzz supports Windows, but only for fuzzing binaries in dumb mode, i.e., without

any coverage feedback [111]. Peach is another popular fuzzer with Windows support but

requires users to write specifications based on their knowledge of the fuzzed program [6].

Overall, although there are several rudimentary fuzzers for Windows systems, we find that

none offers fast and effortless testing in practice. In this thesis, we aim to address these

concerns and make Windows fuzzing truly practical. To do so, we must first examine what

the major obstacles are.

4.2.1 The GUI-Based, Closed-Source Software Ecosystem

Compared to Linux programs, Windows applications have two distinguishing features:

closed-source and GUI-based. First, many popular Windows applications are commercial

products and thus closed-source, like Microsoft Office, Adobe Reader, Photoshop, Win-

RAR, and Visual Studio. As these commercial applications contain proprietary intellectual

property, most of them are very unlikely to be open-sourced in the future. Second, Windows

software is predominantly GUI-based. Unlike on Linux which features a rich command-line

experience, essentially all of the aforementioned Windows programs are GUI applications.

Due to the closed nature of the ecosystem, vendors rarely have an incentive to provide a

command-line interface, as most end-users are most familiar with GUIs. In other words, the

only way to interact with most programs’ core functionality is through their GUI.

GUI applications pose a serious obstacle to effective fuzzing. First, GUI applications

typically require user interaction to get inputs, and cannot be tested automatically without

human intervention. Bypassing the GUI is nontrivial: it is slow to fully automate Windows

GUIs with scripting [99]; meanwhile avoiding the user interface altogether usually requires

a deep understanding of the application’s codebase, as programmers often intertwine the

51

Program Harness GUI Ratio Program Harness GUI Ratio

HWP-jpeg 117 4075 34.8×↑ Tiled 28 720 25.7×↑
Gomplayer 15 1105 73.6×↑ ezPDF 184 4397 23.8×↑
ACDSee 16 510 31.8×↑ EndNote 30 1461 23.8×↑

Table 4.2: Execution times (ms) with and without GUI. GUI code dominates fuzzing execution
time (35× slower on average). Thus, fuzzing harnesses are crucial to effective Windows application
fuzzing. We measured GUI execution times by hooking GUI initialization code.

asynchronous GUI code with the input processing code [112]. Second, GUI applications are

slow to boot, wasting a lot of time on GUI initialization. Table 4.2 shows the startup times

of GUI applications compared to a fully-CLI counterpart. In our experiments, GUI code

often brought fuzzing speeds down from 10 or more executions per second to less than one.

Naturally, fuzzing a CLI version of the application is absolutely essential. WinAFL [110]

acknowledges this issue, and recommends users to create fuzzing harnesses.

4.2.2 Difficulty in Creating Windows Fuzzing Harnesses

It is a common practice to write fuzzing harnesses to test large, complicated software [100,

101]. In general, a harness is a relatively small program that prepares the program state for

testing deeply-embedded behaviors. Unlike the original program, we can flexibly customize

the harness to suit our fuzzing needs, like bypassing setup code or invoking interesting

functions directly. Hence, harnesses are a common tactic for enhancing fuzzing efficacy

in practice. For instance, Google OSS-Fuzz [113] built a myriad of harnesses on 263

open-source projects and found over 15,000 bugs [108].

Harnesses are especially useful when testing GUI-based Windows applications. First,

we can program the harness to accept input from a command-line interface, thus avoiding

user interaction. This effectively creates a dedicated CLI counterpart for the target program

which existing fuzzers can easily handle. Second, using a harness avoids wasting resources

on GUI initialization, focusing solely on the functionality at the heart of the program (e.g.,

file parsing) [102, 103, 105].

52

Attributes Fudge FuzzGen Winnie

Binary ✗ ✗ ✔

Target OS Linux Linux/Android Windows
Control-flow analysis ✔ ✔ ✔

Data-flow analysis ✔ ✔ ✗

Input analysis Heuristic - Dynamic trace
Ptr / Struct analysis Heuristic Value-set analysis Heuristic

Table 4.3: Comparison of harness generation techniques. Most importantly, WINNIE supports
closed-source applications by approximating source-level analyses. Fine-grained data-flow tracing is
impractical without source code as it incurs a large overhead.

Unfortunately, Windows fuzzing faces a dilemma: due to the nature of the Windows

ecosystem, effective fuzzing harnesses are simultaneously indispensable yet very difficult

to create. In addition, due to the prevalence of closed-source applications, many existing

harness generation solutions are inadequate [100, 101]. As a result, harness creation often

requires in-depth reverse engineering by an expert, a serious human effort. In practice, this

is a serious hindrance to security researchers fuzzing Windows applications.

Fudge and FuzzGen. Fudge [100] and FuzzGen [101] aim to automatically generate

harnesses for open-source projects. Fudge generates harnesses by essentially extracting API

call sequences from existing source code that uses a library. Meanwhile, FuzzGen relies on

static analysis of source code to infer a library’s API, and uses this information to generate

harnesses. Table 4.3 highlights the differences between the existing solutions and WINNIE.

Most crucially, Fudge and FuzzGen generally target open-source projects belonging to the

Linux ecosystem, but WINNIE aims specifically to fuzz COTS, Windows software. Although

it may seem that Linux solutions should be portable to Windows systems, the GUI-based,

closed-source Windows software ecosystem brings new, unique challenges. As a result,

these tools cannot be used to generate harnesses for Windows applications.

Fudge, FuzzGen, and WINNIE all employ heuristics to infer API control-flow and data-

flow relationships. However, whereas Fudge and FuzzGen can rely on the availability of

source code, WINNIE cannot as a large amount of API information is irrevocably destroyed

53

during the compilation process, especially under modern optimizing compilers. Thus,

although Fudge and FuzzGen’s analyses are more detailed and fine-grained, they are crucially

limited by their reliance on source code. This is the fundamental reason why these existing

solutions are not applicable to Windows fuzzing. Hence, a new set of strategies must be

developed to effectively generate fuzzing harnesses in the absence of source code.

4.3 Challenges and Solutions

WINNIE’s goal is to automate the process of creating fuzzing harnesses in the absence

of source code. From our experience, even manual harness creation is complicated and

error-prone. Thus, before exploring automatic harness generation, we will first discuss

several common difficulties researchers encounter when creating harnesses manually.

4.3.1 Complexity of Fuzzing Harnesses

Fuzzing harnesses must replicate all behaviors in the original program needed to reach the

code that we want to test. These behaviors could be complex and thus challenging to capture

in the harness. For instance, a harness may have to initialize and construct data structures

and objects, open file handles, and provide callback functions. We identified four major

steps to create a high-quality harness: 1 target discovery; 2 call-sequence recovery; 3

argument recovery; 4 control-flow and data-flow dependence reconstruction.

To illustrate these steps in action, we look into a typical fuzzing harness, shown in

Figure 4.3. XnView is an image organizer, viewer and editor application [97]. Although the

original program supports more than 500 file formats [114], our goal is to test the JPM parser,

implemented in the library ldf_jpm.dll. Figure 4.3 shows the corresponding harness. First,

the harness declares callback functions (lines 2-3), and initializes variables (lines 6 and 9).

Second, the harness imitates the decoding logic of the original program: it opens and reads

the input file (line 10), retrieves properties (lines 14-17), decodes the image (line 20), and

closes it (line 23). Lastly, the harness declares the required variables (line 9) and uses them

54

1 // 1) Declare structures and callbacks
2 int callback1(void* a1, int a2) { ... }
3 int callback2(void* a1) { ... }
4

5 // 2) Prepare file handle
6 FILE *fp = fopen("filename", "rb");
7

8 // 3) Initialize objects, internally invoking ReadFile()
9 int *f0_a0 = (int*) calloc(4096, sizeof(int));

10 int f0_ret = JPM_Document_Start(f0_a0, &callback1, &fp);
11 if (f0_ret){ exit(0); }
12

13 // 4) Get property of the image
14 int f1_a2 = 0, int f4_a2 = 0;
15 JPM_Document_Get_Page_Property((void *)f0_a0[0], 0xA, &f1_a2);
16 ...
17 JPM_Document_Get_Page_Property((void *)f0_a0[0], 0xD, &f4_a2);
18

19 // 5) Decode the image
20 JPM_Document_Decompress_Page((void *)f0_a0[0], &callback2);
21

22 // 6) Finish the harness
23 JPM_Document_End((void *)f0_a0[0]);

Figure 4.3: An example harness, synthesized by our harness generator. It tests the JPM parser
inside the ldf_jpm.dll library of the application XnView. The majority of the harness was correct
and usable out of the box. We describe the steps taken to create this harness in §4.3.1 and in more
detail in §4.4. Low level details are omitted for brevity.

appropriately (lines 15, 17, 20 and 23). Conditional control flow based on return values is

also considered to make the program exit gracefully upon failures (line 11).

1 Target discovery. The first step of fuzzing is to identify promising targets that handle

user inputs. This process can be time-consuming as, depending on the program, the input

may be specified in a variety of ways, such as by filename, by file descriptor, or by file

contents (whole or partial). In this example, the researcher should identify that the API

JPM_Document_Start from ldf_jpm.dll library is responsible for accepting the user input

through a pointer of an opened file descriptor (line 10).

2 Call-sequence recovery. The harness must reproduce the correct order of all function

calls relevant to the target library. In this example, there are total 10 API calls to be

reconstructed in the full harness. Note that static analysis alone is not enough to discover all

callsites. Due to the prevalence of indirect calls and jump tables, researchers must also use

55

dynamic analysis to get the concrete values of the call targets.

3 Argument recovery. The harness must also pass valid arguments to each function call.

Reconstructing these arguments is challenging: the argument could be a pointer to a callback

function (like &callback1 at line 10), a pointer to an integer (like &f1_a2 at line 15), a

constant (like 0xa at line 15), or many other types. When manually constructing a harness,

the researcher must examine every argument for each API call, relying on their expertise to

determine what the function expects.

4 Control-flow and data-flow dependence. It is oftentimes insufficient to simply produce

a list of function calls in the right order. Moreover, libraries define implicit semantic

relationships among APIs. These relationships manifest in control-flow dependencies

and data-flow dependencies. For example, a conditional branch between API calls may be

required for the harness to work, like the if-statement at line 11 of the example. Alternatively,

one API may return or update a pointer which is used by a later API call. Unless these

relationships are respected, the resulting harness will be incorrect, yielding false positives

and spurious crashes. For example, the above code updates array f0_a0 at line 10, and

uses the first element in lines 15, 17, 20, and 23. In the absence of source code, this step

is extremely challenging, and even the most advanced harness generator cannot guarantee

correctness. Human intuition and experience can supplement auto-analysis when reverse-

engineering.

4.3.2 Limitations of Existing Solutions

As Windows does not provide fast process cloning machinery (e.g., Linux’s fork), fuzzers

usually start each execution from the very beginning. Considering the long start-up time of

Windows applications (see Table 4.2), each re-execution wastes a lot of time to reinitialize

the program. Existing solutions (e.g., WinAFL) resort to a technique known as persistent

mode to overcome the re-execution overhead [73]. In persistent mode, the fuzzer repeatedly

invokes the target function in a tight loop within the same process, without reinitializing the

56

F
u

zz
er

fo
rk

-s
er

ve
r

pe
rs

is
te

nt
-m

od
e

fa
ul

t h
an

dl
er

ha
rn

es
s

cr
as

he
s

in
pu

ts

ta
rg

et
bi

na
ry

H
ar

n
es

s
G

en
er

at
or

T
ar

ge
t

Id
en

ti
fi

ca
ti

on
C

al
l-

se
q

R
ec

ov
er

y
A

rg
u

m
en

t
C

or
re

ct
io

n

§V

bl
oc

k-
co

v.
§V

I
C

on
tr

ol
-

D
at

a-
fl

ow

§I
V

.B
§I

V
.A

§I
V

.C
§I

V
.D

Fi
gu

re
4.

4:
O

ve
rv

ie
w

of
W

IN
N

IE
.G

iv
en

th
e

ta
rg

et
pr

og
ra

m
an

d
a

se
to

fs
am

pl
e

in
pu

ts
,W

IN
N

IE
ai

m
s

to
fin

d
se

cu
rit

y
vu

ln
er

ab
ili

tie
s.

It
us

es
a

ha
rn

es
s

ge
ne

ra
to

rt
o

sy
nt

he
si

ze
si

m
pl

e
ha

rn
es

se
s

fr
om

th
e

ex
ec

ut
io

n
tr

ac
e,

an
d

th
en

fu
zz

es
ha

rn
es

se
s

ef
fic

ie
nt

ly
w

ith
ou

ri
m

pl
em

en
ta

tio
n

of
f
o
r
k
.

57

program each iteration. To realize the most performance gains, one generally aims to test as

many inputs as possible per new process.

While persistent mode partially addresses the performance issues of Windows fuzzing,

its efficacy is limited by its strict requirements on the loop body. Specifically, persistent

mode expects harnesses to behave like pure functions, meaning that harnesses avoid any

side-effects, such as leaking memory or modifying global variables. Otherwise, each

execution would start from a different program state. Since the harness is repeatedly looped

for thousands of iterations, even the smallest side-effects will gradually accumulate over

time, finally leading to problems like memory leaks, unreproducible crashes and hangs, and

unreliable coverage. For example, a program that leaks 1MB of memory per iteration will

reach WinAFL’s default memory limit and be terminated. We experienced such errors very

often in practice, and discuss more details later in §4.7.1.

Many side-effect errors from persistent mode are difficult to debug or difficult to cir-

cumvent. A common issue is that persistent mode cannot continue if the target function

does not return to the caller. For example, a program can implement error handling by

simply terminating the program. Because most inputs generated during fuzzing are invalid

(albeit benign), this still demands constant re-execution, severely degrading performance.

Another common problem is that a program will open the input file in exclusive mode (i.e.,

other processes cannot open the same file) without closing it. This prevents the fuzzer from

updating the input file in the next iteration, breaking persistent mode. Problems like these

limit the applicability and scalability of persistent mode fuzzers.

4.3.3 Our Solutions

We propose WINNIE, an end-to-end system that addresses aforementioned obstacles to

effectively and efficiently fuzz Windows applications. WINNIE contains two components,

a harness generator that synthesizes harnesses for closed-source Windows programs with

minimal manual effort (§4.4), and a fuzzer that can handle uncooperative target applications

58

with our efficient fork implementation (Figure 4.7). Figure 4.4 shows an overview of our

system. Given the program binary and sample inputs, our tracer runs the program and

meanwhile, collects dynamic information about the target application, including API calls,

arguments and memory contents. From the trace, we identify interesting fuzzing targets that

handle user input, including functions in external libraries and locations inside the main

binary. For each fuzzing target, our harness generator analyzes the traces and reconstructs

related API sequences as a working harness. We test the generated harnesses to confirm

their robustness and effectiveness, and then launch fuzzing instances with our fork-server

to find bugs. In the following sections, we will use the harness shown in Figure 4.3 as an

example to explain the design of each component of WINNIE.

4.4 Harness Generation

To generate the harness, WINNIE followed the four steps previously outlined in §4.3.1.

Consider XnView as an example:

1 For target discovery (§4.4.1), we trace XnView while opening several JPM files, and then

search the traces for input-related APIs, such as OpenFile and ReadFile.

2 For call-sequence recovery (§4.4.2), we search the traces for function calls related to the

fuzzing target. In the example, we find all the function calls related to the chosen library

(lines 10, 15, 17, 20 and 23). We put the call-sequence into the harness, forming a harness

skeleton. The skeleton is now more-or-less a simple series of API calls, which we then flesh

out further.

3 For argument recovery (§4.4.3), we analyze the traces to deduce the prototype for each

function in the call sequence. The traces contain verbose information about APIs between

the main binary and libraries, like arguments and return values.

4 Finally, we establish the relationships (§4.4.4) among the various calls and variables

presented in the harness skeleton and emit the final code after briefly testing (§4.4.5) the

candidate harness. WINNIE also points out complicated logic potentially missed by our

59

Class Type What to record
1 Module string name, path, module
2 Call/Jump inter-module thread id, caller, callee, symbols, args

intra-module same as above, only for main .exe
3 Return inter-module thread id, callee, caller, retval

intra-module same as above, only for main .exe
4 Arg/RetVal constants concrete value

pointers address and referenced data (recursively)

Table 4.4: Dynamic information collected by the tracer. We record detailed information about
every inter-module call. We also record the same information for intra-module calls within the main
binary. If the argument or return value is a pointer, we recursively dump memory around the pointed
location. We then use this information to construct fuzzing harnesses (§4.4).

tracer (such as the callback function at line 20) as areas for further improvement.

4.4.1 Fuzzing Target Identification

In this step, WINNIE evaluates whether the program can be fuzzed and tries to identify

promising target functions. We begin by performing dynamic analysis on the target program

as it processes several chosen inputs. Table 4.4 shows a detailed list of items that the

tracer captures during each execution. 1 We record the name and the base address of all

loaded modules. 2 For each call and jump that transfers control flow between modules, our

tracer records the current thread ID, the caller and callee addresses, symbols (if available),

and arguments. Without function prototype information, we conservatively treat all CPU

registers and upper stack slots as potential arguments. 3 We record return values when

encountering a return instruction. 4 If any of values fall into accessible memory, we

conservatively treat it as a pointer and dump the referenced memory for further analysis.

To capture multi-level pointer relationships (e.g., double or triple pointers), we repeat this

process recursively. For pointers, we also recognize common string encodings (e.g., C

strings) and record them appropriately.

Using our captured traces, we look for functions which are promising fuzzing targets. It

is commonly believed that good fuzzing targets have two key features [115, 73]: the library

accepts the user-provided file path as the input, and it opens the file, parses the content and

60

closes the file. We use these two features to find candidate libraries for fuzzing. Specifically,

for each function call, we check whether one of its arguments points to a file path, like

C:\my_img.jpm. To detect user-provided paths, our harness generator accepts filenames

as input. Next, we identify callers of well-known file-related APIs such as OpenFile and

ReadFile. If a library has functions accepting file paths, or invokes file-related APIs, we

consider it is an input-parsing library and treat it as a fuzzing candidate.

WINNIE also identifies library functions that do not open or read the file themselves,

but instead accept a file descriptor or an in-memory buffer as input. To identify functions

accepting input from memory, our tracer dissects pointers passed to calls and checks if

the referenced memory contains any content from the input file. We also verify that the

appropriate file-read APIs were called. To find functions taking file descriptors as inputs,

we inspect all invocations of file-open APIs and track the opened file descriptors. Then, we

check whether the library invokes file-related APIs on those file descriptors.

Our harness generator focuses primarily on the external interfaces a library exposes. On

the other hand, we do not record control flow within the same module as these represent

libraries’ internal logic. Because invoking the API through those interfaces models the same

behavior as the original program, inter-module traces are sufficient for building an accurate

harness. However, we treat the main executable as a special case and record all control-flow

information within it. This is because the main executable is responsible for calling out to

external libraries. Thus, we also search the intra-module call-graph of the main executable

for suitable fuzzing targets.

WINNIE then expands its search to within the main binary by analyzing its call-graph.

Specifically, WINNIE begins at the lowest common ancestor (LCA) of I/O functions and the

parsing library APIs we previously identified. In a directed acyclic graph, the LCA of two

nodes is the deepest one that can reach both. In our case, we search for the lowest node in

the main binary’s callgraph that satisfies two criteria. First, it should be before the file-read

operation so that our fuzzer can modify the input. Note that even if the fuzzed process has

61

0x5cce80 0x401160

0x43fc50 0x43f890 0x4014f0

ReadFile()

OpenFile()

main()

IDP_Init

IDP_Metadata

IDP_OpenImageW

IDP_GetPageInfo

IDP_CloseImage

acdsee.exe
(main binary)

ide_acdstd.apl
(library)

†

†

Figure 4.5: A simplified call-graph of the ACDSee program. WINNIE analyzes the call-graph
for fuzzing possible targets, focusing on inter-module calls and I/O functions. We look for functions
that can reach both I/O functions and also the interesting ones we wish to fuzz. “†” indicates such
functions, known as LCA candidates (§4.4.1).

opened the input file, we still can modify it so the program uses the new content. Second,

the LCA should reach locations that invoke parsing functions. Figure 4.5 shows an example

callgraph from the program ACDSee. The function at address 0x5cce80 is the LCA as it

reaches two file-related APIs (i.e., OpenFile and ReadFile) and also invokes the parsing

functionality in ide_acdstd.apl. We also consider the LCA’s ancestors (e.g., main()) as

fallback candidates, if the immediate LCA does not yield a working harness. In cases where

a working LCA is found, it often is sufficient for making an effective harness.

Our tool can also optionally use differential analysis to refine the set of candidate fuzzing

targets. Given two sets of inputs, one triggering the target functionality and another not

triggering, WINNIE will compare the two execution traces and locate the library functions

that are specific to the target functionality. We discard the other functions which are present

in both sets of traces. This feature helps deal with multi-threaded applications where only

one thread performs operations related to the input file. In any case, differential analysis is

optional; it only serves as an additional criteria to improve harness generation.

62

4.4.2 Call-sequence Recovery

Now that we have identified a candidate fuzzing target, our goal in this step is to reproduce

a series of API calls which will correctly reach and trigger the functionality we wish to

fuzz. We call such an API sequence a harness skeleton. We search the traces for function

calls related to that library and copy them to the harness skeleton (lines 10, 15, 17, 20, 23

in Figure 4.3). We also reconstruct the functions’ prototypes (e.g., argument count and

types) with hybrid analysis: we combine the static analysis provided by IDA Pro [116]

or Ghidra [117] with concrete information retrieved from the dynamic execution traces.

Namely, we apply pointer types to arguments that were valid addresses in the traces, as the

static analysis can misidentify pointer arguments as integers. Lastly, we attach auxiliary

code that is required to make the harness work, like a main function, forward function

declarations, and helper code to open or read files (line 6).

Special care must be taken to handle applications which use multiple threads. In that

case, we will only consider the threads that invoke file-related APIs. This is to avoid adding

irrelevant calls that harm the correctness of the harness. We encountered several programs

that exhibit this behavior, such as GomPlayer, which had hundreds of irrelevant function

calls in the execution trace. When the program creates multiple threads within the same

library, the trace records an interleaving of many threads’ function calls combined. However,

since we recorded the thread IDs in our previous step, we can untangle the threads to focus

on them individually. With the per-thread analysis, we can narrow the number of calls down

to just seven.

4.4.3 Argument Recovery

In this step, we reconstruct the arguments that should be passed to each API call in the

call sequence recovered in the previous step. WINNIE attempts to symbolize the raw

argument values recorded in the traces into variables and constants. First, we identify pointer

arguments. We do so empirically through differential analysis of the trace data. Specifically,

63

the tracer runs the program with the same input twice, both times with address space layout

randomization (ASLR) enabled [118]. Because ASLR randomizes memory addresses across

different runs, two pointers passed to the same call site will have different, pseudo-random

values that are accessible addresses both times. If this is the case, we can infer that the

argument is a pointer. For pointer arguments, we use the concrete memory contents from

the trace, dissecting multiple levels of pointers of necessary. Otherwise, we simply consider

the value of the argument itself.

Next, we determine whether the argument is static or variable. Values which vary from

execution to execution are variable, and we define names for variables and replace their

uses with new names. Values which remain constant between runs are static, and we simply

pass them as the constant value seen in the trace (like 0xA and 0xD in Figure 4.3).

4.4.4 Control-Flow and Data-Flow Reconstruction

WINNIE analyzes the program to reflect control-flow and data-flow dependencies in the

harness. Control-flow dependencies represent how the various API calls are logically related

(e.g., the if-statement on line 11 in Figure 4.3). To find control-flow dependencies, we apply

static analysis. Specifically, WINNIE analyzes the control-flow between two API calls for

paths from the return value of the invoked function to a termination condition (e.g., return or

exit()). If such a path is found, WINNIE duplicates the decompiled control-flow code (e.g.,

if-statements). The current version of WINNIE avoids analyzing complex flows involving

multiple assignments or variable operands in the conditional statement; we leave such cases

to a human expert. This is important for accurate harness generation: neglecting control-flow

dependencies causes incorrect behavior. For example, consider a harness that fails to reflect

an early exit error handling condition in the original program. The program under normal

execution would terminate immediately, but the harness would proceed onwards to some

unpredictable program state. These kinds of mistakes lead to unreproducible crashes (i.e.,

false positives).

64

Data-flow dependencies represent the relationships among function arguments and return

values. To find data-flow dependencies, WINNIE tries to connect multiple uses of the same

variable between multiple call sites (e.g., f0_a0 in Figure 4.3). We consider the following

possible cases:

• Simple flows from return values. Return values of past function calls are commonly

reused as arguments for later calls. We detect these cases by checking if an argument

always has the same value as a past return value. We only do this for whose values

exceed a certain threshold. If we connected any frequently observed values (e.g.,

connect return value 0 as the next argument), we may generate incorrect harnesses;

this resolves many common cases where functions return object pointers.

• Points-to relationships. Some arguments are retrieved from memory using pointers

returned by previous code. For instance, an API may return a pointer, whose pointed

contents are used as an argument in a later API call. In the example harness in

Figure 4.3, line 23 uses an argument f0_a0 that is loaded from memory, initialized

by the API JPM_Document_Start. When we detect these points-to relationships in the

trace, we reflect them in the harness as pointer dereferences (i.e., *p). WINNIE also

supports multi-level points-to relationships (e.g., double and triple pointers), thanks to

the tracer’s recursive memory dumping.

• Aliasing. WINNIE defines a variable if it observes one or more repeated usages. In

other words, if the same non-constant value is used twice as an argument, then the

two uses are considered aliases forming a single variable.

4.4.5 Harness Validation and Finalization

Although it covers most common cases, WINNIE’s harness generator is not foolproof.

WINNIE points out parts of the harness that is unsure about and provides suggestions to help

users further improve it. 1 We report distant API calls where the second API’s call site is

far from the first. In such cases, our API-based tracer might have missed some logic between

65

two API calls. 2 We highlight code pointer arguments to users, which could represent

callback function pointers or virtual method tables. 3 We provide information about file

operations as they are generally important during harness construction.

Once a fuzzing harness has been generated, we perform a few preliminary tests to

evaluate its effectiveness. First, we check the harness’s stability. We run the harness against

several normal inputs; if the harness crashes, we immediately discard it. Second, we evaluate

the harness’s ability to explore program states. Specifically, we fuzz the harness for a short

period and check whether the code coverage increases over time. We discard harnesses that

fail to discover new coverage. Lastly, we test the execution speed of the harness. Of all

stable, effective harnesses, we present the fastest ones to the user.

WINNIE’s goal is to generate harnesses automatically. However, the general problem of

extracting program behaviors from runtime traces without source code is very challenging

so there will always be cases it cannot cover. Thus, we aim to handle most common cases to

maximize WINNIE’s ability to save the human researcher’s time. We observe that in practice

it produces good approximations of valid harnesses, and most of them can be fuzzed with

only minor modifications as shown in Table 4.7. We discuss our system’s limitations and

weaknesses in §4.7.3 and §4.8.

4.5 Fast Process Cloning on Windows

Fork indeed exists on Windows systems [119], but existing work fails to provide a stable im-

plementation. To support efficient fuzzing of Windows applications, we reverse-engineered

various internal Windows APIs and services and identified a key source of instability. After

overcoming these challenges, we were able to implement a practical and robust fork-server

for Windows fuzzing. Specifically, our implementation of the Windows fork corrects the

problems related to the CSRSS, which is a user-mode process that controls the underlying

layer of the Windows environment [120]. If a process is not connected to the CSRSS, it will

crash when it tries to access Win32 APIs. Note that virtually every Windows application

66

Win32 subsystem (csrss.exe)

❷ report creation

❻ acknowledge

Parent process

stack

code

data, handle

heap

fork()

❶ create suspended process

❹ de-initialize variables

❺ connects to CSRSS

❸ resume execution
stack

code

data, handle

heap

Child process

Figure 4.6: Overview of fork() on Windows. We analyzed various Windows APIs and services to
achieve a CoW fork() functionality suitable for fuzzing. Note that fixing up the CSRSS is essential
for fuzzing COTS Windows applications: if the CSRSS is not re-initialized, the child process will
crash when accessing Win32 APIs.

uses the Win32 API. Our fork correctly informs the CSRSS of newly-created child processes,

as shown in Figure 4.6. Connecting to the CSRSS is not trivial for forked processes: for the

call to succeed, we must manually de-initialize several undocumented variables before the

child process connects.

To the best of our knowledge, our fork implementation is the only one that can sup-

port fuzzing commercial off-the-shelf (COTS) Windows applications. Table 4.5 shows a

comparison of process creation techniques on Windows and Linux. CreateProcess is the

standard Windows API for creating new processes with a default program state, used by

WinAFL. New processes must re-execute everything from the beginning, wasting a lot of

time on GUI initialization code, shown in Table 4.2. Persistent mode [73] aims to mitigate

the re-execution overhead, but is impractical due to the numerous problems outlined in

§4.3.2. Thus, our goal is to avoid re-executions altogether by introducing a fork-style API.

Meanwhile, Cygwin’s fork implementation is not designed for COTS Windows applica-

tions. It works by manually copying the program state after calling CreateProcess. It also

suffers from problems related to address space layout randomization [121]. The Windows

Subsystem for Linux (WSL) is designed for running Linux ELF binaries on Windows.

67

Re-execute Forkserver
Fork() CreateProcess WINNIE Cygwin WSL(v1) WSL(v2) Linux

Supports PE files? ✔ ✔ ✔ ✗ ✗ ✗

Copy-on-Write? ✗ ✔ ✗ ✔ ✔ ✔

Speed (exec/sec) 91.9 310.9 72.8 442.8 405.1 4907.5

Table 4.5: Comparison of fork() implementations. Cygwin is not CoW, and WSL does not
support Windows PE binaries. WINNIE’s new fork API is therefore the most suitable for Windows
fuzzing.

Thus, we cannot use it for testing Windows PE binaries, even if it is faster [122]. Our

fork implementation achieves a speed comparable to the WSL fork, and most importantly,

supports Windows PE applications.

Verifying the Fork Implementation. We ran several test programs under our fork-server

to verify its correctness. First, verified that each child process receives a correct copy

of the global program state. We checked various the values of global variables in test

programs before and after forking a new process. For example, we incremented a global

counter in the parent process after each fork and verified that the child process received

the old value. Second, to verify that the fork implementation is CoW (copy-on-write), we

initialized large amounts of memory in the parent process before forking. Because the

memory footprint of the parent process did not affect the time taken by fork, we concluded

that our implementation is indeed CoW.

We also briefly measured the speed of fork with WinAFL’s built-in test program as

shown in Table 4.5. On an Intel i7 CPU, we were able to call our fork 310.9 times/sec per

core with a simple program, which is 4.2× faster than Cygwin’s No-CoW fork and ∼1.3×

slower than the WSL fork. Since we are not using the same fork mechanism as the one

provided by the Linux kernel but instead mimicking its CoW behavior using the Windows

API, the execution speed is nowhere as fast (e.g., >5,000 execs/sec). Even if Windows

implementation of fork is slower than Linux’s, the time regained from avoiding costly

re-executions easily makes up for the overhead of fork. Moreover, the process creation

machinery on Windows is slow in general: in our experiments, ordinary CreateProcess

68

Category Component Lines of code

Harness generator Dynamic tracer 1.6K LoC of C++
Synthesizer 2.0K LoC of Python

Fuzzer Fuzzer 3.0K LoC of C++
Fork library 0.5K LoC of C++

Table 4.6: WINNIE components and code size

calls (as used by WinAFL) only reach speeds of less than 100 execs/sec. Overall, we believe

that the reliability and quality of our Windows fork-server is comparable to ones used for

fuzzing on Unix systems.

Idiosyncrasies of Windows Fork. Our fork implementation has a few nuances due to

the design of the Windows operating system. First, if multiple threads exist in the parent

process, only the thread calling fork is cloned. This could lead to deadlocks or hangs in

multi-threaded applications. Linux’s fork has the same issue. To sidestep this problem,

we target deeply-nested functions that behave in a thread-safe fashion. For example, in the

program UltraISO, we bypassed the GUI and fuzzed the target function directly, shown in

Table 4.7. Second, handle objects, the Windows equivalent of Unix file descriptors, are not

inherited by the child process by default. To address this issue, we enumerate all relevant

handles and manually mark them inheritable. Third, because the data structures involved in

fork-related APIs differ from version to version of Windows, it is impractical to support all

possible installations of Windows. Nevertheless, our fork-server supports all recent builds

of Windows 10. Since Windows is very backwards-compatible, we do not see this as a

significant limitation of our implementation.

4.6 Implementation

We prototyped WINNIE with 7.1K lines of code (shown in Table 4.6). WINNIE supports

both 32- and 64-bit Windows PE binaries. We built our fuzzer on top of WinAFL and

implemented the fork library from the scratch. The tracer relies on Intel Pin [123] for

69

dynamic binary instrumentation.

4.6.1 Fuzzer Implementation

Figure 4.7 shows an overview of our fuzzer. We inject a fuzzing agent agent.dll into the tar-

get program, which cooperates with the fuzzer using a pipe for bidirectional communication.

This architecture helps assuage the most uncooperative of fuzzing targets.

The fuzzing agent is injected as soon as the program loads, before any application code

has begun executing. Once injected, the agent first hooks the function specified by the

harness and promptly returns control to the target application. Then, the target application

resumes and initializes itself. The application halts once it reaches the hooks, and the fuzzing

agent spins up the fork-server. Since we spin up the fork-server only at some point deep

within the program, initialization code only runs once, massively improving performance.

Our fuzzer works as follows: 1 The fuzzing agent, which contains the fork server, is

injected into the target application. The injected agent 2 installs function hooks on the

entry point and the target function, and 3 instruments all basic blocks so it can collect code

coverage. 4 Then, the fuzzer creates forked processes. Using the pipe between the fuzzer

and target processes, 5 the agent reports program’s status and 6 the fuzzer handles coverage

and crash events.

4.6.2 Reliable Instrumentation

Collecting code coverage from closed-source applications is challenging, specially for

Windows applications. WinAFL uses two methods to collect code coverage: one using

dynamic binary instrumentation using DynamoRIO [110], and another using hardware

features through Intel PT (IPT) [124]. Unfortunately, DynamoRIO and IPT are prone to

crashes and hangs. In our evaluation, WinAFL was only able to run 26 of 59 targets.

To address this issue, we discard dynamic binary instrumentation in favor of fullspeed

fuzzing [125] to collect code coverage. Fullspeed fuzzing does not introduce any overhead

70

hit new BB,
or actual crash

agent.dll
(forkserver)

❺ status,
exec cmd

Entry Point

Fuzzing target

NtCreateFile,
TerminateProc

❷ install
function hook

Target Program

Custom
exception handler

PIPE

❻ new cov,
crash

❹ forked processes

...fork

update
coveragefuzzing input

❸ instrument BBs

Mutator Selector Queue Monitor

❶ inject
agent

Figure 4.7: Overview of WINNIE’s fuzzer. We inject a fuzzing agent into the target. The injected
agent spawns the fork-server, instruments basic blocks, and hooks several functions. This improves
performance (§4.6.1) and sidesteps various instrumentation issues (§4.6.2).

except when the fuzzer discovers a new basic block. Based on boolean basic block coverage,

fullspeed fuzzing only considers there to be new coverage when a new basic block is

visited. To implement this, we patch all basic blocks of the tested program with an int 3

instruction. Then, we fuzz the patched program and wait for the execution to reach a new

block. When reached, the first byte of the new block is then restored so that it will no

longer generate exceptions in the future. Since encountering new basic blocks is rare during

fuzzing, fullspeed fuzzing has negligible overhead and can run the target application at

essentially native speed. Breakpoints need only be installed once thanks to the fork-server:

child processes inherit the same set of breakpoints as the parent. We noticed that this is

an important optimization as we observe Windows applications easily contain a massive

number of basic blocks (e.g., >100K).

4.7 Evaluation

We evaluated WINNIE on real-world programs to answer the following questions:

71

• Applicability of WINNIE. Can WINNIE test a large variety of Windows applications?

(§4.7.1)

• Efficiency of fork. How efficient is fork on versus other modes of fuzzing like

persistent mode? (§4.7.2)

• Accuracy of harness generation. How effectively can WINNIE create fuzzing har-

nesses from binaries? (§4.7.3)

• Finding new bugs. Can WINNIE discover new program states and bugs from real

world applications? (§4.7.4)

Evaluation Setup. Our evaluation mainly compares WINNIE with WinAFL. Other

Windows fuzzers either do not support feedback-driven fuzzing (e.g., Peach [6]), or cannot

directly fuzz Windows binaries (e.g., HonggFuzz [111]). We configured WinAFL to use

basic-block coverage as feedback and used persistent-mode to maximize performance. Our

evaluation of WinAFL considers two modes, the DynamoRIO mode (WinAFL-DR) where

WinAFL relies on dynamic binary instrumentation, and the PT mode where WinAFL uses

the Intel PT hardware feature to collect code coverage. We enlarged the Intel PT ring buffer

sizes from 128 kilobytes to 512 kilobytes to mitigate data-loss issues [93]. We performed

the evaluation on an Intel Xeon E5-2670 v3 (24 cores at 2.30GHz) and 256 GB RAM. All

the evaluations were run on Windows 10, except WinAFL-DR, which was run on Windows

7 as it did not run properly under Windows 10.

Target Program Selection. We generated 59 valid fuzzing harnesses with WINNIE. We ran

all 59 programs test the applicability of WINNIE (§4.7.1). For the other evaluations (§4.7.2

to §4.7.4), we randomly chose 15 GUI or CLI applications among the 59 generated harnesses

due to limited hardware resources (i.e., 15 apps × 24 hrs × 5 trials = 5,400 CPU hrs). We

aimed to show that WINNIE can fuzz complicated GUI applications and that WINNIE also

outperforms existing solutions on CLI programs. Thus, we chose a mixture of both types of

binaries from a variety of real-world applications. For this evaluation, we mainly focused on

programs that accept user input from a file, as their parsing components are usually complex

72

0

10

20

30

40

50

60

WinAFL-PT WinAFL-DR Winnie

Working
Timeout

Crash
Other

Figure 4.8: Applicability of WINNIE and WinAFL. Among 59 executables, WinAFL-IPT and
WinAFL-DR failed to run 33 and 30 respectively, whereas WINNIE was able to test all 59 executables.

(i.e., error-prone) and handle untrusted inputs.

4.7.1 Applicability of WINNIE

Figure 4.8 shows that WINNIE supports running a wider variety of Windows applications

than WinAFL. Specifically, WINNIE successfully generates working harnesses for all pro-

grams and is able to test them efficiently. WinAFL-IPT failed to run 33 of out 59 harnesses

(55.9%) while WinAFL-DR failed to run 30 (50.8%). Execution timeouts during the dry-

runs dominate all failed cases of WinAFL (18 for WinAFL-IPT and 19 for WinAFL-DR).

Specifically, before the fuzzing fully begins, WinAFL launches a few dry-runs to verify

that the fuzzing setup is valid (e.g., harness quality). If the program times out during the

dry-run, WinAFL will not be able to continue the testing. The second main failure mode

was crashing during the dry-run. This contributed seven failures for WinAFL-IPT and eight

for WinAFL-DR. We provide several case studies to understand why WinAFL fails to test

these programs:

Unexpected Change in Global State. 1 mspdbcmf.exe is a PDB (debug symbol file)

conversion tool, and WinAFL failed with a timeout error. When the fuzzer executes the

same function iteratively, the program falls into a termination condition, due to a corrupted

global variable. In particular, the program assigns a non-zero value to the global variable

(g_szPdbMini) in the first execution, and the changed value makes the application terminate

during the second execution. In other words, the root cause was that the target function

73

was not idempotent. Unfortunately, WinAFL misclassifies this unexpected termination

as a timeout, and thus the fuzzer quits after the dry-run. 2 ML.exe (Macro assembler

and Linker) is an assembler program in Visual Studio that crashes when fuzzing begins.

Similar to the aforementioned timeout issue, a crash happens at the second execution of

the main function. In the first execution, the target program checks the global flag (i.e.,

fHasAssembled) to determine whether the assembly is done and then initializes necessary

heap variables. Once the program finishes the first time, it changes the global flag to true.

In the second execution, the program’s control flow diverges because the fHasAssembled

flag is true. This ultimately leads to a crash when it tries to access the uninitialized heap

variable.

IPT Driver Issues. The dynamic binary instrumentation adopted by WinAFL-IPT had

unknown issues and sometimes prevented WinAFL from collecting code coverage. For

example, for the program KGB archiver, we observed that the fuzzer could not receive any

coverage due to a Intel-PT driver error.

4.7.2 Benefits of Fork

We tested whether fork makes fuzzing more efficient. To do so, we ran the selected

programs under our fuzzer in fork mode, while we set WinAFL to create a new process

for each execution (re-execution mode). Both of these configurations can run the target

program reliably. As shown in Table 4.8, fork improves fuzzing performance: compared to

re-execution mode, WINNIE achieved 31.3× faster execution speeds and discovered 4.0×

more basic blocks. In particular, GomPlayer and EndNote recorded 64.7× and 87.3× faster

executions and revealed 7.4× and 10.2× more basic blocks respectively.

We also evaluated whether fork makes fuzzing more stable. We configured WinAFL

to use persistent mode, which runs a specific target function in a loop. Then, we tracked

the system’s memory and resource usage over time while fuzzing. Almost immediately,

we observed memory leaks in the persistent mode harnesses for HWP-jpeg, HWP-tiff, and

74

Program Target Size API Calls LoC Fixed (LoC) (%)

ACDSee IDE_ACDStd.apl 3007K 19 506 CB (38), ST (174) 34.3
HWP-jpeg HncJpeg10.dll 220K 3 92 CB (7), ST (8) 16.3
ezPDF Pdf2Office.dll 3221K 4 112 CB (2), ST (8) 8.9
HWP-tiff HncTiff10.dll 630K 3 82 CB (7) 8.5
UltraIso UltraISO.exe 5250K 1 57 CB (2) 3.5
XnView ldf_jpm.dll 692K 10 199 CB (4), pointer (2) 3.0
Gomplayer avformat-gp.dll 4091K 7 116 pointer (2) 1.7
file magic1.dll 147K 3 96 0 0.0
EndNote PC4DbLib 2738K 1 55 0 0.0
7z 7z.exe 1114K 1 55 0 0.0
makecab makecab.exe 50K 1 55 0 0.0
Tiled tmxviewer.exe 113K 1 55 0 0.0
mspdbcmf mspdbcmf.exe 1149K 1 55 0 0.0
pdbcopy pdbcopy.exe 726K 1 55 0 0.0
ml ml.exe 476K 1 55 0 0.0

CB: Callback function, ST: Custom struct
Table 4.7: Harnesses generated by WINNIE. The majority of the harnesses worked out of the box
with few modifications. Some required fixes for callback and struct arguments, which we discuss
below.

Program Without Fork Fork
Leak Hang† Speed Cov. Speed Coverage

7z 5.2 1430 49.3 (9.5×↑) 2117 (1.5×↑)
makecab ✗ 14.8 576 49.4 (3.3×↑) 1020 (1.8×↑)
GomPlayer ✗ 0.4 201 25.9 (64.7×↑) 1496 (7.4×↑)
Hwp-jpeg ✗ 4.2 1045 25.9 (6.2×↑) 1847 (1.8×↑)
Hwp-tiff ✗ ✗ 0.3 1340 26.2 (87.3×↑) 2301 (1.7×↑)
EndNote 5.3 68 89.5 (16.9×↑) 693 (10.2×↑)

Total 3/6 2/6 (31.3×↑) (4.0×↑)

Table 4.8: Evaluation of fork(). We ran six applications that both WinAFL and WINNIE could fuzz
for 24 hours. We compared their speed and checked for memory and handle (i.e., file descriptor)
leaks. fork not only improves the performance, but also mitigates resource leaks. Hang† means an
execution speed slower than 1.0 exec/sec.

75

Pr
og

ra
m

Ve
nd

or
In

pu
t

G
U

I?
Si

ze
Sp

ee
d

(e
xe

c/
se

c)
C

ov
er

ag
e

(#
of

ne
w

B
B

s)
p

-v
al

ue
A

pp
lie

d
he

ur
is

tic
s

W
-D

R
W

-P
T

W
IN

N
IE

W
-D

R
W

-P
T

W
IN

N
IE

W
-D

R
W

-P
T

T
L

D
F

C
S

C
B

C
F

D
F

m
ak

ec
ab

W
in

do
w

s
10

.tx
t

C
L

I
50

K
B

22
8.

2
21

.3
49

.4
76

2
98

2
10

20
<

0.
00

1
<

0.
00

1
✔

✔
H

W
P-

jp
eg

H
an

co
m

20
.jp

g
G

U
I

22
0K

B
25

.2
21

.0
25

.9
18

21
14

98
18

47
0.

12
<

0.
00

1
✔

✔
✔

✔
7z

7-
Z

ip
.7

z
B

ot
h

1,
11

4K
B

8.
7

17
.0

49
.3

14
35

15
30

21
17

<
0.

00
1

<
0.

00
1

✔
✔

E
nd

N
ot

e
C

la
riv

at
e

.p
dt

G
U

I
2,

73
8K

B
2.

1
50

.4
89

.5
8

37
69

3
<

0.
00

1
<

0.
00

1
✔

✔
✔

✔
G

om
pl

ay
er

G
O

M
L

ab
.m

p4
G

U
I

4,
09

1K
B

0.
2

0.
6

25
.9

19
4

10
68

14
96

<
0.

00
1

<
0.

00
1

✔
✔

✔
✔

H
W

P-
tif

f
H

an
co

m
20

.ti
f

G
U

I
63

0K
B

0.
2

✗
26

.2
12

79
✗

23
01

<
0.

00
1

N
/A

✔
✔

✔
✔

Ti
le

d
T.

L
in

de
ije

r
.tm

x
B

ot
h

11
3K

B
✗

✗
8.

7
✗

✗
36

N
/A

N
/A

✔
✔

fil
e

lib
m

ag
ic

.p
ng

C
L

I
14

7K
B

✗
✗

52
.5

✗
✗

11
6

N
/A

N
/A

✔
✔

U
ltr

aI
SO

U
ltr

a
IS

O
.is

o
G

U
I

5,
25

0K
B

✗
✗

45
.3

✗
✗

15
58

N
/A

N
/A

✔
✔

✔
ez

PD
F

U
ni

do
cs

.p
df

G
U

I
3,

22
1K

B
✗

✗
18

.9
✗

✗
63

55
N

/A
N

/A
✔

✔
✔

✔
X

nV
ie

w
X

nS
of

t
.jp

m
G

U
I

69
2K

B
✗

✗
23

.2
✗

✗
16

70
2

N
/A

N
/A

✔
✔

✔
✔

✔
✔

m
sp

db
cm

f
V

S2
01

9
.p

db
C

L
I

1,
14

9K
B

✗
✗

8.
1

✗
✗

96
37

N
/A

N
/A

✔
✔

pd
bc

op
y

V
S2

01
9

.p
db

C
L

I
72

6K
B

✗
✗

28
.5

✗
✗

33
02

N
/A

N
/A

✔
✔

A
C

D
Se

e
A

C
D

se
e

.p
ng

G
U

I
3,

00
6K

B
✗

✗
63

.1
✗

✗
61

8
N

/A
N

/A
✔

✔
✔

✔
✔

✔
m

l
V

S2
01

9
.a

sm
C

L
I

47
6K

B
✗

✗
44

.0
✗

✗
23

99
N

/A
N

/A
✔

✔

T:
Ta

rg
et

id
en

tifi
ca

tio
n,

L
:L

C
A

,D
F:

D
iff

er
en

tia
la

na
ly

si
s,

C
S:

C
al

ls
eq

ue
nc

e,
C

B
:C

al
lb

ac
k,

C
F:

C
on

tr
ol

-fl
ow

(e
xi

t,
lo

op
),

D
F:

D
at

a-
flo

w
(c

on
st

an
t/v

ar
ia

bl
e,

po
in

te
r)

Ta
bl

e
4.

9:
C

om
pa

ri
so

n
of

W
IN

N
IE

ag
ai

ns
tW

in
A

FL
.A

m
on

g
15

ap
pl

ic
at

io
ns

,W
in

A
FL

co
ul

d
on

ly
ru

n
6,

w
he

re
as

W
IN

N
IE

w
as

ab
le

ru
n

al
l1

5.
C

ol
um

ns
m

ar
ke

d
“✗

”
in

di
ca

te
th

at
th

e
fu

zz
er

co
ul

d
no

tf
uz

z
th

e
ap

pl
ic

at
io

n.
M

ar
ke

rs
“✔

”
in

di
ca

te
w

hi
ch

he
ur

is
tic

s
w

er
e

ap
pl

ie
d

du
ri

ng
ha

rn
es

s
ge

ne
ra

tio
n.

W
he

n
bo

th
W

in
A

FL
an

d
W

IN
N

IE
su

pp
or

ta
pr

og
ra

m
,W

IN
N

IE
ge

ne
ra

lly
ac

hi
ev

ed
be

tte
rc

ov
er

ag
e

an
d

th
ro

ug
hp

ut
.A

lth
ou

gh
W

IN
N

IE

ex
ce

ls
at

fu
zz

in
g

co
m

pl
ic

at
ed

pr
og

ra
m

s,
W

in
A

FL
an

d
W

IN
N

IE
ac

hi
ev

e
si

m
ila

rr
es

ul
ts

on
sm

al
lo

rs
im

pl
e

pr
og

ra
m

s.
W

e
ex

pl
ai

n
in

fu
rt

he
rd

et
ai

li
n

§4
.8

.F
or

al
lo

th
er

pr
og

ra
m

s,
W

IN
N

IE
’s

im
pr

ov
em

en
tw

as
st

at
is

tic
al

ly
si

gn
ifi

ca
nt

(i
.e

.,
p<

0.
05

).
P-

va
lu

es
w

er
e

ca
lc

ul
at

ed
us

in
g

th
e

M
an

n-
W

hi
tn

ey
U

te
st

on
di

sc
ov

er
ed

ba
si

c
bl

oc
ks

.

76

0.
0k

0.
5k

1.
0k

1.
5k

2.
0k

2.
5k

0
4

8
12

16
20

24
0.

0k

0.
4k

0.
8k

1.
2k

0
4

8
12

16
20

24
0.

0k

0.
5k

1.
0k

1.
5k

2.
0k

0
4

8
12

16
20

24
1.

0k

1.
5k

2.
0k

0
4

8
12

16
20

24
0.

0k
0.

5k
1.

0k
1.

5k
2.

0k
2.

5k

0
4

8
12

16
20

24
0.

0k

0.
2k

0.
4k

0.
6k

0.
8k

0
4

8
12

16
20

24

#basicblocks

(a
)7

z
(b

)m
ak

ec
ab

(c
)G

om
pl

ay
er

(d
)H

W
P-

jp
eg

(e
)H

W
P-

tif
f

Ti
m

e
(h

ou
rs

)

(f
)E

nd
N

ot
e

W
in

ni
e

W
in

A
FL

-D
R

W
in

A
FL

-I
PT

Fi
gu

re
4.

9:
C

om
pa

ri
so

n
of

ba
si

c
bl

oc
k

co
ve

ra
ge

.
W

e
co

nd
uc

te
d

fiv
e

tr
ia

ls
,e

ac
h

24
ho

ur
s

lo
ng

,w
ith

th
re

e
fu

zz
er

s:
W

IN
N

IE
,W

in
A

FL
-D

R
,a

nd
W

in
A

FL
-I

PT
.

O
nl

y
pr

og
ra

m
s

w
hi

ch
w

er
e

su
pp

or
te

d
by

al
lf

uz
ze

rs
ar

e
sh

ow
n

he
re

;W
in

A
FL

w
as

un
ab

le
to

fu
zz

th
e

re
st

.
W

he
n

a
pr

og
ra

m
ca

n
be

fu
zz

ed
by

bo
th

W
IN

N
IE

an
d

W
in

A
FL

,t
he

ir
pe

rf
or

m
an

ce
is

co
m

pa
ra

bl
e.

N
ev

er
th

el
es

s,
m

os
tp

ro
gr

am
s

ca
nn

ot
be

fu
zz

ed
w

ith
W

in
A

FL
.

77

makecab. The HWP-jpeg and HWP-tiff harnesses also leaked file handles, which would

lead to system handle exhaustion if the fuzzer runs for a long time. These types of leaks tend

to cause fuzzing to unpredictably fail after long periods of fuzzing, creating a big headache

for the human researcher. We explain this in further detail in §4.3.2. fork prevented the

memory leaks and file handle leaks, improving stability. We further discuss the advantages

and disadvantages of persistent mode in §4.8.

4.7.3 Efficacy of Harness Generation

In this section, we evaluate how well WINNIE helps users create effective fuzzing harnesses.

To do so, we diffed the initial and final harness code in our evaluation. We analyzed the fixes

required to make the harnesses work, and present the findings in Table 4.7 and Table 4.9.

As shown, the majority of the harnesses worked with no modifications. On average, the

synthesized harnesses had 82.7 LoCs, relied on 3.2 heuristics, and required only 3.4% of the

code to be modified. Based on our findings, we discuss the various strengths and weaknesses

of the harness generator below.

Strengths of the Harness Generator. The execution tracer provides helpful information

about the target program, such as promising fuzzing targets (i.e., Table 4.9: Target identi-

fication). This saves the user’s time. While creating harnesses, we kept most the original

code that WINNIE generated. Without the aid of our system, the user would have had

to manually record all of the corresponding function calls and their arguments. The API

sequences WINNIE generates also gives useful clues to the user. In the example harness

for XnView, since WINNIE extracted 4 calls to the same API with differing arguments, one

could conclude that the API’s purpose was to initialize various attributes of an object. In

our experiments, WINNIE successfully inferred some relationships present in the program

(§4.4.4). For example, WINNIE automatically detected that an opened file handle is passed

to the next function (lines 6 and 10 in the example Figure 4.3) WINNIE also informs users

about constant values, suggesting that they may be magic values that should not be modified.

78

To assess the usability of WINNIE and its ability to aid human researchers, we recruited

two information security M.S. students who were unaware of the project. They were asked

to use WINNIE to create fuzzing harnesses for Windows applications of their choice. Within

3 days, they were able to produce 7 functional harnesses, spending roughly only 3 hours

per harness on average. The harness generator was most effective when it could rely on a

single LCA API (e.g., Table 4.7: 7z). In these cases, the user only needed to collect program

run traces and provide them to the harness generator. Upon receiving the trace, WINNIE

automatically calculated the LCA and generated C code to correctly invoke the function.

Weaknesses. Although most harnesses worked with few modifications, ACDSee and

HWP-jpeg in particular required relatively large modifications (e.g., 34.3% and 16.3%

respectively). This is mainly because they passed complex objects and virtual functions to

the library’s API. One challenge was reconstructing the custom structure layouts without the

original source code. Although WINNIE dissects structures and pointer chains from the trace

to provide plausible inferences, WINNIE is not perfect. To correct this, we analyzed the

object using a decompiler and identified eight variables and four function pointers. Second,

we manually extracted the callback functions by adding decompiled code. We followed the

function pointers from the trace, and copied the decompiled code into the harness. There

will always be some cases that WINNIE cannot handle. We discuss a few examples in §4.8,

and we hope to support them in future versions of WINNIE.

4.7.4 Overall Results

Overall Testing Results

Figure 4.9 shows the ability of each fuzzer to find new coverage. Overall, WINNIE dis-

covered 3.6× more basic blocks than WinAFL-DR and 4.1× more basic blocks than

WinAFL-IPT. We also applied statistical tests, using p-values to compare the performance

of three fuzzers, as suggested by [126]. For WinAFL-DR and WinAFL-IPT, all trials except

HWP-jpeg have p-values less than 0.05, meaning that WINNIE’s improvement is statistically

79

Product Buggy File Size Bug Type(s) Bug(s)

Source Engine engine.dll 6.1M ND 2
MS WinDBG pdbcopy.exe 743K Arbitrary OOB read 1
MS Windows makecab.exe 82K Double free 1
Visual Studio ml.exe 475K SBOF 1

undname.exe 23K SOF 1
Alzip Egg.dll 131K ND 1

Tar.dll 114K Integer underflow 1
Alz.dll 123K Stack OOB read 1

Ultra ISO ultraISO.exe 5.3M Integer overflow, SOF 2
Uninitialized use 1

XnView ldf_jpm.dll 709K HC, Integer overflow 2
Hancom Office HncBmp10.flt 85K Heap BOF 2

HncJpg,Png,Gif 134-225K ND 3
HncDxf10.flt 242K ND, Integer overflow 3
HncTif10.flt 645K HR, TC, FC, HC 6
IMDRW9.flt 147K ND, SBOF 2
ISGDI32.flt 760K Heap UAF, HC 3
IBPCX9.flt 83K Integer overflow, ND 2

FFMpeg FFmpeg.dll† 12.8M Div by zero 1
Uriparser uriparse.exe† 157K Integer underflow 1
Gomplayer RtParser.exe 18K SOF, SBOF, ND 3
EzPDF ezPDFEditor.exe 23.9M Race condition, ND 3

Pdf2Office.dll 3.2M SBOF, SOF, ND 3
VLC player Mediainfo.dll 136K Integer underflow 1

libfaad.dll 273K ND, Denial of service 2
Utable Utable.exe 874K SBOF 1
RetroArch bnes.dll 2.4M ND 2

emux_gb.dll 419K ND, Div by zero 3
snes_9x.dll 2.8M Heap OOB write 1
quicknes.dll 1.0M Div by zero 1

Capture2Text C2T_CLI.exe 558K ND 1
Total 32 19 61

ND: Null-ptr dereference, HR: Heap OOB read, HC: Heap corruption, TC: Type
confusion, FC: Field confusion, SOF: Stack overflow, SBOF: Stack buffer overflow

Table 4.10: Bugs found by WINNIE. We discovered total 61 unique vulnerabilities from 32 binaries.
All vulnerabilities were discovered on the latest version of COTS binaries. We reported all bugs to
the developers. “†” indicates that the bug existed in the released binary, but the developer had already
fixed it when we filed our report.

significant.

80

Real-world Vulnerabilities

WINNIE’s approach scales to complex, real-world software. To highlight the effectiveness of

our approach, we applied our system to non-trivial programs that are not just large in size but

also accompany complicated logic and GUI code. We also included binaries from several

well-known open-source projects because most of them have only been heavily fuzzed on

Linux operating systems; thus their Windows-specific implementations may still contain

bugs. Among them all, WINNIE found 61 previously unknown bugs in 32 binaries (shown

in Table 4.10). All these bugs are unique. These bugs cover 19 different types, including but

not limited to stack and heap buffer overflow, type confusion, double free, uninitialized use,

and null pointer dereference. At the time of writing, we have reported these bugs to their

corresponding maintainers and are working with them to help fix the bugs.

4.8 Discussion

Due to the difficulty of fuzzing closed-source, GUI-based applications, most Windows

programs are tested either by unscalable manual efforts, or are only evaluated during the

development by their vendors. In contrast, Linux programs are consistently tested and

improved at all stages of the software lifecycle by researchers over the world. Most prior

fuzzing work also has been concentrated on Linux systems. However, as shown in our

evaluation, it is easy to find many bugs in Windows software we target—especially given

the legacy code bases involved. Nevertheless, we identify several limitations of WINNIE,

which can be addressed in the future to better test more programs.

Limitations of Harness-Based Testing. Testing the program with a harness limits the

coverage within the selected features. In the case of WINNIE, we cannot reach any code

in unforeseen features absent from the trace. Thus, the maximum code coverage possible

is limited to the API set the trace covers; the number of generated harness is limited by

the number of inputs traced. To mitigate this issue, we recommend users to collect as

81

many sample inputs as possible to generate a diverse set of harnesses. Although we cannot

eliminate this problem inherited from harness-based testing, automatic harness generation

will help alleviate the burden of manually creating many harnesses.

Highly-Coupled Programs. It is more challenging for WINNIE to generate harnesses for

applications tightly coupled with their libraries. As the logic is split into two binaries, the

program may use frequent cross-module calls to communicate, making it hard to accurately

identify and extract the relevant code we wish to fuzz. In Adobe Reader, for instance, the

main executable AcroRd32.exe is simply a thin wrapper of the library AcroRd32.dll [102].

There are a lot of functions calls between these two binaries, or with other libraries, like

jp2.dll. Thus, the harness generator needs to handle calls between the main executable

and a library, callbacks from a library to the main executable, and calls between libraries.

Our system focuses on handling cases where the communication merely happens within two

components. To support more complicated invocations like in Adobe Reader, we plan to

improve our tracer and generator to capture a complete trace of inter-module control- and

data-flow.

False Positives. Inaccurate harnesses may generate invalid crashes or exceptions that

do not occur in the original program. As a result, WINNIE will mistakenly assume the

presence of a bug, leading to a false positive. As described in §4.4.5, WINNIE combats

false positives by pre-verifying candidate harnesses during synthesis. Still, eliminating false

positives requires a non-negligible effort. Since bug validation must be conducted against

the actual application, constructing a suitable input file and interacting with the GUI is

required. For example, when fuzzing Adobe Reader’s image parser, end-to-end verification

requires creating a new PDF with the buggy image embedded, and then opening the image

via the GUI. This step can be automated on a per-target basis, and it is mostly an engineering

effort. Nevertheless, as long as WINNIE can generate high-quality harnesses, this validation

incurs little overhead due to the small number of false crashes.

Focus on Shared Libraries. WINNIE’s harness generator focuses testing shared libraries

82

because shared libraries represent a clear API boundary. Past harness generation work also

focuses on testing functions within libraries [100, 101]. Moreover, unlike calls to exported

functions in libraries, private functions in the main executable are difficult to extract into

independent functions. To fuzz the main binary, we rely on our injected fork-server, allowing

any target address in the main binary to be fuzzed.

Performance Versus Persistent Mode. We noticed that WinAFL occasionally shows bet-

ter performance on certain target applications, typically simple ones. Upon investigation, we

found that the performance difference ultimately stems from WinAFL’s strong assumptions

about the target application. Specifically, WinAFL assumes the harness will not change any

global state and will cleanly return back to the caller (§4.3.2). Therefore, it only restores

CPU registers and arguments each loop iteration. Instead, WINNIE uses fork to comprehen-

sively preserve the entire initialized program state, which incurs a little overhead. However,

as shown in the evaluation, our conservative design makes WINNIE support significantly

more programs. Although WinAFL performs better on simple programs, it could not test

even half of the programs in our evaluation (§4.7.1).

Other input modes. In our evaluation, we focused on fuzzing libraries which accept

inputs from files or standard input. Another common way programs accept input is through

network packets. WINNIE supports this case. To fuzz these network applications, we

extended WINNIE by implementing a de-socket [127, 128] technique to redirect socket

traffic to the fuzzer.

4.9 Extension: Automatic Generation of Internet Scans for Malware

Remotely accessible applications such as remote access trojans or remote desktop programs

are a class of applications that allows an attacker interactive connection to the remote

computers. Regardless of their original purpose, these applications have been widely used to

leak private information from the remote machine to an attacker; thus rapidly scanning the

application and identifying the malicious campaign are the key to protect normal users from

83

stealing their private data. We extend WINNIE’s harness generator for rapid-prototyping

malware and extracting the network scanning signature for the two-sided internet scanning

and the longitudinal study. To generate the internet scanning signature from any given

binary samples, we implemented a prototype of the BLUEPRINT system. First, BLUEPRINT

builds a harness program to restore the intended networking behavior such as opening

a port and accepting a connection. Second, it retrieves input values that can trigger the

data-sending functions (e.g., send()). Without the returned message from the sample, the

network scanner is not able to classify the program from the connected port.

The main challenge of the internet scanning signature extraction is the uncertainty of

the collected samples. Since the dataset is reported and collected without the full packaged

information, the typical sample does not provide source code or description about the

binary, which demands researchers to conduct heavyweight manual binary analysis to

understand the sample’s structure. It is also challenging because triggering the intended or

hidden networking behavior (e.g., listening a port and accepting a connection) requires an

intervention by the user. For an example of the typical remote desktop server which employs

GUI, we need to emulate the same user interaction such as clicking the icon or typing text

data to enable the server. If the sample requires special conditions like the existence of a

specific file or registry, triggering the behavior becomes more difficult. Besides, hidden

information in the binary is challenging to discover. For example, the binary can read the

socket configuration data (e.g., port number) from its data section and decrypt on-the-fly;

thus, typical static analysis is not able to extract the configuration data for extracting the

signature.

Definition: Generating Network Scanning Signature. The problem of generating the

network scanning signature is defined as: given any collected binaries, extract any payload

value to return unique string through the listening socket and its socket configurations that

reduce the scanning space. The extracted scanning signature consists of payload, expected

return message, and socket configurations.

84

Research Scope. Analyzing the malicious binary is challenging because the distributor

oftentimes attempts to hide their intention by using multiple protection techniques. To limit

the scope of our research, we made the following assumptions about the handled sample to

be analyzed by BLUEPRINT:

• BLUEPRINT collects samples from any repositories. We do not demand the de-

scription or source code of the sample, or dependent library files. Also, we do

not selectively collect malware. Instead, we assume that the sample is potentially

malicious if it contains port-listening ability.

• Network APIs are used in the sample. Since we are extracting the network scanning

signature, the binary should contain the ability to listen to a port and exchange data

with an external network.

• The collected sample invokes the imported network APIs and the cross-reference to

the that exist in the binary; thus we discard the collected sample if the networking

functionality is unreachable (i.e., dead code).

• Since our approach combines both static and dynamic analysis, we consider binary

packing and obfuscation as an orthogonal problem with our approach and they require

additional or manual analysis; hence, they are not appropriate for large-scale analysis.

• The sample does not require solving a complex cryptographic challenges to retrieve

the internet scanning signature.

4.9.1 BLUEPRINT’s Methodology

To overcome the aforementioned challenges and extract the network scanning signatures,

we employ two methods:

• Network operation restoration: A method to reveal the hidden functions and force to

replay the network operation.

• Microscopic symbolic execution: A method to solve the existing constraints to dis-

cover the scanning input to send out unique string to the external network.

85

Method Pattern Fuzzing Sym-exec Manual BLUEPRINT

Extract signature ✔ ✔ ✔ ✔ ✔

Extract auxiliary ✗ ✔ ✔ ✔ ✔

Validation ✗ ✔ ✗ ✔ ✔

Scalability ✔ ✗ ✗ ✗ ✔

Table 4.11: Comparision between various scanning signature extraction techniques. We
compare several key features ath we believe are essential to effective extraction process. BLUEPRINT

aims to bring the ease and efficience solution.

The Network operation restoration method aims to generate a harness program to run the

collected sample without resolving the complicated conditions that the sample contains

initially. To be specific, we apply both static and dynamic binary analysis and identify the

candidate functions that can reach out to the network APIs. Once we have the candidate

function addresses, we execute the target function with proper arguments until we success-

fully activate the networking routine. To extract the scanning signatures with scale, we

utilize Microscopic symbolic execution which runs on reachable and relatively short paths.

For example, we let the symbolic execution engine works between recv() and send() if it

is reachable from the recv().

To the best of our knowledge, BLUEPRINT is the first approach to automatically extract

internet scanning signatures on a large-scale. Nevertheless, various approaches achieved

similar goals with BLUEPRINT. String extraction technique [129], fuzzing-based [130], and

symbolic execution-based[131] approaches are proposed. Unfortunately, no methods can

extract network scanning signatures on a large-scale. Table 4.11 compares BLUEPRINT

with other available techniques. String extraction can extract several candidate payloads but

does not validate the data on the program. If fuzzing discovers a special input to trigger

the actual network operation, it can extract the signature and validate it with the program.

However, fuzzing usually requires countless executions; thus cannot tell the success in a

short amount of time. Symbolic execution is a good way to reveal the scanning signature

with well-defined beginning and termination locations. Unfortunately, it cannot validate

the signature because the execution does not operate on the live socket. Although manual

86

analysis can discover and validate the signature, this method is not applicable for large-scale

analysis. In this thesis, we attempt to resolve the aforementioned concerns and make the

signature extraction process effective and efficient.

4.9.2 System Architecture

We present BLUEPRINT, an end-to-end system that conducts malware binary analysis to

effectively and efficiently extract the internet scanning signatures. BLUEPRINT contains

two components, a harness generator that restore an active network operation for scrapping

signature and validation, and a signature generator that can resolve constraints to discover

particular input to send out unique string to an external network. Figure 4.10 presents

an overview of our system. BLUEPRINT accepts collected samples from the repositories

(e.g., VirusTotal [132]). Given the sample, the Harness generator quickly classifies and

decides whether to allocate further resources or discard. Suppose we select the sample for

the next step analysis. We generate a harness program that load the sample binary into

the virtual memory and calls the specific function (i.e., reachable to network APIs) by

leveraging the hybrid binary analysis. From the harness, the Signature extractor retrieves

scanning signature and auxiliary information (e.g., port number or internet address) from

the symbolic executions. Finally, BLUEPRINT returns the scanning rule and launches the

internet scanning.

When generating the scanning signature, we follow the four steps:

1 For rapid prototype, we discard any samples if we are not able to apply static binary

analysis; thus we check binary packing, customized import address table (IAT), the existence

of network API, and cross-reference to the network API.

2 For binary analysis, we reconstruct function call graphs and collect function call paths

between any connection control function (e.g., accept()) to the data exchange functions

(e.g., recv() or send()). To obtain the necessary information for the harness generation

process, BLUEPRINT dynamically analyzes the binary and captures the run traces to acquire

87

dr
iv
er

sc
an
ni
ng

ru
le
s

sa
m
pl
es

D
ri

ve
r

ge
n

er
at

or

H
yb

ri
d

A
n

al
ys

is
H

ar
n

es
s

G
en

er
at

io
n

§4
.2

§4
.1

§4
.3

R
ap

id
T

ri
ag

in
g

C
F
G
,

fu
nc
si
g,

de
co
m
pi
le

R
ep
o

se
le
ct
ed

sa
m
pl
es

S
tr

in
g

ex
tr

ac
ti

on

A
u

x.
 e

xt
ra

ct
io

n

§5
.1

§5
.2

S
ig

n
at

u
re

 e
xt

ra
ct

or

R
u

le
ge

n
er

at
io

n

§5
.3

Fi
gu

re
4.

10
:

O
ve

rv
ie

w
of

B
L

U
E

P
R

IN
T

.
G

iv
en

th
e

co
lle

ct
ed

sa
m

pl
e

pr
og

ra
m

s,
B

L
U

E
P

R
IN

T
ai

m
s

to
ex

tr
ac

ti
nt

er
ne

ts
ca

nn
in

g
si

gn
at

ur
es

.
It

us
es

a
ha

rn
es

s
ge

ne
ra

to
r

to
sy

nt
he

si
ze

pr
og

ra
m

w
ra

pp
er

fr
om

th
e

hy
br

id
bi

na
ry

an
al

ys
is

,a
nd

th
en

ex
tr

ac
tn

et
w

or
k

sc
an

ni
ng

si
gn

at
ur

es
ef

fic
ie

nt
ly

w
ith

sy
m

bo
lic

ex
ec

ut
io

n.

88

the real function call paths and control flow graph. For the signature extraction, BLUEPRINT

additionally infers multiple pairs of start/end addresses of the symbolic execution.

3 For harness generation, we infer the least common ancestor (LCA) function of the

essential network APIs and call the function with proper arguments.

4 For signature extraction, BLUEPRINT conducts multiple small-scale symbolic execu-

tions and generates the scanning signatures.

4.9.3 Network Primitive Restoration

The goal of network primitive restoration is to reproduce the active network operation from

the given samples without knowing the actual usage of the binary.

Rapid Prototyping. BLUEPRINT rapidly prototypes the given samples and classify the

binaries before engaging the heavy static and dynamic binary analysis because they require

a significant amount of H/W resource and time; hence, rapid prototyping is critical for the

large-scale application. To do so, BLUEPRINT conducts sequential analysis and quickly

classifies binary. First, we check segment names and match those names with well-known

binary packer’s signature. Second, we enumerate the network-related functions from the

import address table and check cross-reference to the functions (i.e., any instruction to

call the network API). Finally, BLUEPRINT removes duplicated files. In particular, we

de-duplicate the samples with the aid of imphash (i.e., a hash of library/API names).

Hybrid Binary Analysis. Now that we have collected analyzable and unique samples,

our goal in this stage is to provide sufficient internal information by using hybrid analysis,

which is a critical process for harness generation, extracting signature, and extracting the

auxiliary information. Once we receive the results from the static analysis, then we fix any

misidentified data with solid information collected from the dynamic execution trace.

Table 4.12 shows the list of items that BLUEPRINT demands for further operations.

We first enumerate boundary information of all basicblocks and functions as well as their

signatures and decompiled code (1 , 2 , and 5). Then, we reconstruct call graph of all

89

Class S/D† Type What to analyze and collect

1 Basicblock S address start, end address pairs
2 Function S signature address, name, argument types
3 Call path S address call path to the network APIs
4 Basicblock path S address basicblock path for each call path address
5 Decompile S code decompiled code for each referenced function
6 Sym-exec S address start, end address pairs for symbolic execution
7 hton/inet_addr S data inferred port numbers and internet addresses
8 Loaded module D data list of loaded modules and addresses
9 Run trace D address observed call path and basicblock addresses

†: Static or Dynamic binary analysis
Table 4.12: Collected information during the hybrid binary analysis. BLUEPRINT runs static
analysis first and applies the dynamic analysis if the applied heuristics requires dynamic run trace. To
reduce the collected volume, BLUEPRINT calculate function call and basicblock paths to the network
API and collects the auxiliary information if it belongs to the paths.

Name Description

1 LCA Infer the least common ancestor functions and call them
2 force_init Initialize the socket on behalf of the sample
3 socket_arg Provide active socket as a function’s argument
4 infer_arg Provide proper arguments to minimize error
5 fake_lib Provide crafted library to avoid dependency error
6 before_crash Run before program makes crash and try other heuristics
7 force_exec Force the execution toward the network APIs

Table 4.13: Heuristics used for the harness generation.

functions to extract call paths to the network APIs (3) and calculate the basicblock paths

for each referenced function in the call paths (4). For the symbolic execution, BLUEPRINT

retrieves pair of start and end addresses, and we infer the expected port number and internet

address by checking the argument of corresponding functions (6 and 7).

Harness Generation. A wrapper program, namely harness, makes the collected sample

alive and activates the intended network operation. By doing so, BLUEPRINT can directly

extract signatures from the activated port or validate signatures among the candidates pro-

posed by the symbolic execution; thus this is one of the key components. We automatically

apply a set of rules and return a C code to generate a harness program. Table 4.13 shows the

heuristics that we empirically found very useful:

90

• Call LCA function: We load the target binary and call the LCA function to trigger

the hidden behavior.

• Forced socket initialization: we first initialize the socket in the harness and then

invoke the LCA function for configuring and controlling the socket.

• Active socket as argument: If we identify a function that requires listening or

accepting the socket, we handle the socket initialization and pass the activated socket

as an argument.

• Safe argument: When we pass a constant or pointer to the function, we allocate

memory (e.g., heap) and fill with the value because the passed variable could be

referenced with an offset; thus allowing access to the nearby address will decrease the

error ratio.

• Fake library generation: BLUEPRINT examines the import address table and recon-

structs the fake library file with all function names included.

• Run sample until crash: We patch the crash-inducing instruction and let the execu-

tion stop before the crash. Then, we invoke the LCA function.

• Forced execution: If the execution does not visit the path that we expected but failed

to call the network APIs, we patch the binary to force the execution to the intended

direction.

4.9.4 Network Scanning Signature Extraction

We use symbolic execution to extract any string or character array for the scanning signature.

During the extraction, we do both intra- and inter-procedural symbolic executions. For

the intra-procedural symbolic execution, BLUEPRINT retrieves the partial LCA addresses

which can reach to the specific network APIs internally. For example, the LCA function

address contains APIs for connection control and data exchange. Knowing the function

and its corresponding APIs, BLUEPRINT discovers several candidate address pairs for the

symbolic execution. If we confirm that the intra-procedural execution is not available, then

91

Category Component Lines of code

Binary analyzer Triaging 1.0K LoC of Python
Static analysis 1.2K LoC of Python

Driver generator Dynamic analysis 0.3K LoC of C++
Builder 2.3K LoC of Python

Signature extractor Symbolic executor 0.3K LoC of Python
Rule gen & Scanner 0.8K LoC of GoLang

Table 4.14: BLUEPRINT components and code size

we seek a chance to the inter-procedural execution. To do so, we choose another LCA

address that acrosses multiple callees to the network APIs, and then locates the address pairs.

After the symbolic execution, if we discover the solution to resolve the existing constraints,

retrieving the input value and expected output is a trivial process. Since all network APIs

have a clear description of their arguments, we can directly read the memory data from the

end state. For example, if our execution ends at send() function, we can access the memory

on the second argument, which is the address of the buffer, and finally extract the string.

4.9.5 Prototype Implementation and Preliminary Evaluation

We evaluated BLUEPRINT on collected samples to answer the following evaluation ques-

tions:

• Effectiveness and efficiency of BLUEPRINT: Can BLUEPRINT apply techniques to

a large variety of malicious applications? How efficient is BLUEPRINT in processing

large datasets? (§4.9.5)

• Extracted scanning signature: Can BLUEPRINT discover the ready-to-use scanning

signature? (§4.9.6)

Implementation. We prototyped BLUEPRINT with 5.9K lines of code as shown in Ta-

ble 4.14. BLUEPRINT handles both 32- and 64-bit PE binaries running on Windows OS.

Statis analysis relies on IDA [116] and dynamic analysis conducts binary instrumentation

on top of DynamoRIO [79]. BLUEPRINT adopts the ANGR platform [133] for the sym-

92

0

20

40

60

80

100

Collection Triaging Analysis

R
at

io
(%

)

Sample processing phases

Duplicated

Unique

Packed

No-API-call

Triage-pass

Hybrid-failed

Hybrid-succeed

Pass Pass

Figure 4.11: Filtered samples for each phase. Upon the sample acquisition, BLUEPRINT passes
the de-deplicated files for the triaging. After removing packed and challenging files due to the unclear
API paths, BLUEPRINT starts the hybrid analysis.

Driver generator Signature extractor

Overall Applied heuristics (%) Payload Response Port
EXE DLL 1 2 3 4 5 6 7 #

10/80 6/20 80% 45% 10% 60% 10% 25% 35% 3.1 3/100 3/100 7/100

Table 4.15: Effectiveness of the replayer and signature extractor. We ran BLUEPRINT on 100
unique samples. Overall, BLUEPRINT was able to enable the port-listening on 20 samples. “Applied
heuristics” indicates the ratio of used heuristics and the last column shows the average number of
heuristics for individual sample. “Signature extractor” shows the number of succeeded symbolic
execution including constraint solving and concretization.

bolic execution and implements the rule generator and internet scanner with Golang to be

compatible with ZMAP [134].

Evaluation Setup. Our evaluation mainly checks how many samples can BLUEPRINT

handle and how many internet scanning signatures are extracted. First, we configure the

YARA rule to collect any submitted samples if they have any network APIs to open a

port. Then, BLUEPRINT runs the harness generator and signature extractor to generate the

network scanning signatures. We conducted the evaluation on an Intel Xeon(R) E5-2670 v3

(24 cores at 2.30GHz) machine with 256 GB RAM. For the initial triaging, hybrid analysis,

and harness generation, we run the evaluation on Windows 10 virtual machine. For the

symbolic execution and the internet scanning, we run on Ubuntu 18.04.

93

Effectiveness and Efficiency of BLUEPRINT

First, we evaluate how well BLUEPRINT extracts internet scanning signatures effectively

and efficiently. To do so, we traced how individual sample is classified, passed, or discarded

for each stage.

Rapid-Prototyping. The purpose of the rapid-prototyping is to discard any samples that

BLUEPRINT is not able to handle and preserve the available resource for other passed

binaries. Figure 4.11 shows the performance of our rapid-prototyping process and the

ratio of the filtered binaries for each stage. We initially collected 10,000 samples and

de-duplicated 95.4% of files, which remained to 460 files. Among the 460 samples, we

launched the BLUEPRINT’s triaging component. During the classification, BLUEPRINT

applied several pattern matching to identify packed binaries and analyzed call instructions

to the imported network APIs to find “challenging-to-analyze” binaries. During the triaging

process, BLUEPRINT passed 73% of files from the de-duplicated samples (total of 336

binaries) to the next stage (i.e., hybrid analysis) after removing 13% of packed binaries and

14% of unapplicable binaries.

Hybrid Analysis. Before the actual harness generation, hybrid analysis plays a key role

for both harness generation and symbolic execution by providing all necessary data to each

component from the one-time analysis. After accepting the triaged binaries, the following

hybrid analysis discovers the function call and basicblock execution paths to the network

APIs as much as possible. Figure 4.11 shows the success ratio and Table 4.15 displays the

detailed result of the harness generator and signature extractor. Among all samples from the

triaging, hybrid analysis succeeded to finish the mission on 83% of binaries.

Harness generation and signature extraction. BLUEPRINT’s harness generator success-

fully opened a port for 14% of EXE files and 25% of DLL files. As shown in Table 4.15,

all seven heuristics were used during the harness generation process and an average of

3.1 heuristics was used for all samples. Among all heuristics, function-LCA (heuristic- 1)

94

and argument inference (heuristic- 4) were most frequently used, recording 80% and 60%

respectively. Also, symbolic execution succeeded in extracted the signature about the string

and port number. On average, symbolic execution extracted meaningful information from

5% of the binaries.

The efficiency of the harness and signature generation. Since BLUEPRINT aims to

support large-scale signature generation, it should pass all pipelines quickly without using

many resources. Table 4.16 shows the amount of data collected and elapsed time for

processing the samples. Compare to all existing functions and basicblocks, BLUEPRINT

partially collects necessary information only. For example, when the binary size is less

than 1MB, BLUEPRINT collected an average of 3.0 paths for the string extractor and 25.6

function information (e.g., decompiled code and signature) that belong to the path. It means

that BLUEPRINT collects 1.1% of function information from the entire binary.

BLUEPRINT spent 363.7 seconds processing one sample on average. In particular,

hybrid analysis required 175.2 seconds, and symbolic execution required 92.9 seconds,

which accounts for 48.1% and 25.5% of the total execution time respectively. Note that

the average time does not correspond to all samples collected. For example, as shown in

Figure 4.11, many samples are de-duplicated or discarded during the triaging stage. In

this case, the discarded samples consume time for calculating imphash or triaging (see the

“triaging” column in Table 4.16).

4.9.6 Extracted Signatures and Validation

BLUEPRINT’s approach scales to large-scale analysis. To highlight the applicability, we

applied BLUEPRINT to randomly collected samples and attempted to extract the scanning

signature. Table 4.17 shows the 23 signatures for the internet scanning. Among the

signatures, generated harness discovers 18 signatures and symbolic execution discovers 5

signatures. All these signatures are unique and applicable to different binary families.

95

Fi
le

si
ze

O
ve

ra
ll†

D
ri

ve
r

E
xt

ra
ct

or
fu

nc
si

g
Av

g.
pr

oc
es

si
ng

tim
e

(s
ec

)
D

at
a

si
ze

Fu
nc

s
B

B
s

ca
llp

at
h

B
B

pa
th

st
ri

ng
ht

on
Tr

ia
gi

ng
H

yb
ri

d
R

ep
la

ye
r

Sy
m

-e
xe

c
To

ta
l

<1
M

B
(2

9.
4%

)
2.

2K
22

.5
K

3.
0

6.
5

6.
7

12
.4

25
.6

7.
6

42
.7

30
.7

90
.1

17
1.

1
31

9K
1-

5
M

B
(4

4.
1%

)
7.

2K
74

.3
K

10
.4

7.
3

5.
4

19
.2

40
.7

28
.4

21
3.

5
67

.5
11

1.
4

42
0.

8
76

7K
>5

M
B

(2
6.

5%
)

15
.7

K
18

4.
0K

2.
7

6.
6

6.
0

22
.5

33
.4

75
.0

26
9.

4
77

.8
77

.2
49

9.
4

81
5K

Av
er

ag
e

8.
4K

93
.6

K
5.

4
6.

8
6.

0
18

.0
33

.2
37

.0
17

5.
2

58
.7

92
.9

36
3.

7
63

3.
6K

O
ve

ra
ll†

:E
xi

st
in

g
in

fo
rm

at
io

n
in

bi
na

ry
.B

L
U

E
P

R
IN

T
co

lle
ct

s
ne

ce
ss

ar
y

da
ta

on
ly

.

Ta
bl

e
4.

16
:E

ffi
ci

en
cy

of
B

L
U

E
P

R
IN

T
fo

r
ea

ch
st

ag
e.

W
e

ra
n

th
e

ev
al

ua
tio

n
on

th
re

e
gr

ou
ps

di
vi

de
d

by
th

e
fil

e
si

ze
.“

O
ve

ra
ll”

in
di

ca
te

s
th

e
to

ta
l

nu
m

be
ro

fe
xi

st
in

g
fu

nc
tio

ns
an

d
ba

si
cb

lo
ck

s
fr

om
ou

rs
ta

tic
an

al
ys

is
.“

R
ep

la
ye

r”
an

d
“E

xt
ra

ct
or

”
sh

ow
th

e
nu

m
be

ro
fd

is
co

ve
re

d
pa

th
s

(e
.g

.,
ca

ll
or

ba
si

cb
lo

ck
)t

o
th

e
in

te
re

st
in

g
A

PI
s.

“A
vg

.p
ro

ce
ss

in
g

tim
e”

in
di

ca
te

s
ac

tu
al

tim
e

ta
ke

n
fo

re
ac

h
st

ep
.

96

Fa
m

ily
C

la
ss
†

sh
a1

[0
:5

]
Pa

yl
oa

d
R

es
po

ns
e

Po
rt

C
ob

al
tS

tr
ik

e
m

al
w

ar
e
9
d
7
3
7
6

H
E

X
:|0

D
|0

A
|

ST
R

:H
T

T
P/

1.
1

-
Fa

rfl
i

m
al

w
ar

e
3
1
5
0
a
5

ST
R

:C
O

N
N

E
C

T
ST

R
:H

T
T

P/
1.

0
40

00
-5

00
0

H
id

de
nC

ob
ra

m
al

w
ar

e
e
3
d
0
3
8

ST
R

:A
N

Y
_S

T
R

ST
R

:b
hj

o.
or

g
-

Sl
in

gs
ho

t
m

al
w

ar
e
8
7
a
2
8
a

ST
R

:A
N

Y
_S

T
R

ST
R

:|B
2|

7F
|2

3|
-

M
yd

oo
m

m
al

w
ar

e
0
0
0
5
4
9

ST
R

:A
N

Y
_S

T
R

H
E

X
:|A

B
|F

5|
10

42
D

er
is

bi
m

al
w

ar
e
d
f
b
8
1
a

H
E

X
:|F

F|
FF

|F
F|

H
E

X
:|0

0|
00

|0
0|

50
00

P1
be

ni
gn

0
6
8
1
6
4

ST
R

:A
N

Y
_S

T
R

44
33

,6
88

1
R

C
2

be
ni

gn
0
9
4
b
f
f

ST
R

:A
N

Y
_S

T
R

12
34

5
G

am
eS

er
ve

r
be

ni
gn

1
0
b
6
8
1

ST
R

:A
N

Y
_S

T
R

H
E

X
:|2

0|
C

1|
49

36
3

W
IS

er
vi

ce
be

ni
gn

1
3
c
6
9
2

ST
R

:A
N

Y
_S

T
R

88
88

,9
88

8
Sa

lit
y

m
al

w
ar

e
1
8
e
8
e
9

ST
R

:A
N

Y
_S

T
R

54
29

R
A

dm
in

m
al

w
ar

e
1
b
e
d
4
d

ST
R

:A
N

Y
_S

T
R

59
31

D
ro

id
C

am
be

ni
gn

2
f
4
8
2
5

ST
R

:A
N

Y
_S

T
R

ST
R

:C
M

D
/v

2
47

47
Se

rv
er

be
ni

gn
3
b
c
6
9
a

ST
R

:A
N

Y
_S

T
R

H
E

X
:|2

5|
39

|4
0

97
11

B
itC

om
et

m
al

w
ar

e
5
2
5
6
e
4

ST
R

:A
N

Y
_S

T
R

11
91

2
H

up
ig

on
m

al
w

ar
e
6
3
e
7
1
2

ST
R

:A
N

Y
_S

T
R

ST
R

:H
T

T
P/

1.
0

38
38

dd
eg

w
be

ni
gn

9
6
d
3
e
9

ST
R

:A
N

Y
_S

T
R

ST
R

:Z
L

SG
W

50
00

Pf
Pk

!1
g

m
al

w
ar

e
c
9
b
1
4
7

ST
R

:A
N

Y
_S

T
R

H
E

X
:|F

D
|F

D
|0

0|
99

10
A

er
oA

dm
in

be
ni

gn
e
9
b
a
c
5

ST
R

:A
N

Y
_S

T
R

59
50

C
la

ss
†:

cl
as

si
fic

at
io

n
re

su
lt

fr
om

V
ir

us
To

ta
l,

Ta
bl

e
4.

17
:

E
xt

ra
ct

ed
ne

tw
or

k
sc

an
ni

ng
si

gn
at

ur
es

.
W

e
ra

n
B

L
U

E
P

R
IN

T
an

d
ex

tr
ac

te
d

va
ri

ou
s

sc
an

ni
ng

si
gn

at
ur

es
fr

om
th

e
ge

ne
ra

te
d

ha
rn

es
s

(e
.g

.,
co

nn
ec

te
d

an
d

sc
ra

p
th

e
ba

nn
er

)o
rt

he
sy

m
bo

lic
ex

ec
ut

io
n.

“P
ay

lo
ad

”
is

se
nd

in
g

da
ta

of
th

e
sc

an
ne

ra
nd

“R
es

po
ns

e”
is

th
e

ex
pe

ct
ed

ou
tp

ut
to

va
lid

at
e

th
e

vi
ct

im
.

97

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis proposes two systems to strengthen and weaken the binary analysis process. For

weakening the two notable binary analysis techniques, fuzzing and symbolic execution, this

thesis proposes a new attack mitigation system, called FUZZIFICATION, for developers to

prevent adversarial fuzzing. We develop three principled ways to hinder fuzzing: injecting

delays to slow fuzzed executions; inserting fabricated branches to confuse coverage feedback;

transforming data-flows to prevent taint analysis and utilizing complicated constraints to

cripple symbolic execution. We design robust anti-fuzzing primitives to hinder attackers

from bypassing FUZZIFICATION.

On the other hand, for enabling the fuzzing on the Windows application, this thesis

presents WINNIE, an end-to-end system to support fuzzing Windows applications. Instead

of repeatedly running the program directly, WINNIE synthesizes lightweight harnesses to

directly invoke interesting functions, bypassing GUI code. It also features an implementation

of fork on Windows to clone processes efficiently.

5.2 Future work

This dissertation presents three prototype systems: FUZZIFICATION, WINNIE, and BLUEPRINT.

In this section, we discuss research topics to be handled in the near future.

5.2.1 Delay primitive on different H/W environments

We adopt CSmith-generated code as our delay primitives using measured delay on one

machine (i.e., developer’s machine). This configuration implies that those injected delays

98

might not be able to bring the expected slow down to the fuzzed execution with more

powerful hardware support. On the other hand, the delay primitives can cause higher

overhead than expected for regular users with less powerful devices. To handle this, we

plan to develop an additional variation that can dynamically adjust the delay primitives at

runtime. Specifically, we measure the CPU performance by monitoring a few instructions

and automatically adjusting a loop counter in the delay primitives to realize the accurate

delay in different hardware environments. However, the code may expose static pattern such

as time measurement system call or a special instruction like rdtsc; thus we note that this

variation has inevitable trade-off between adaptability and robustness.

5.2.2 Handling complicated data structure in harness

Custom structures. Beyond this initial work towards practical Windows fuzzing, we

identify several directions for future improvement. Among the following, we believe that

handling structures and callback functions is fundamentally challenging, whereas supporting

other ABIs or languages would be relatively straightforward.

Structures. Custom structures are challenging to both automatic testing tools and human

researchers, and incorrect structures may lead to program crashes. To mitigate this issue, we

could apply a memory pre-planning technique [135] to provide probabilistic guarantees to

avoid crashes. We could also use memory breakpoints to trace the detailed memory access

patterns of the program and infer the structure layouts.

Callback functions. Callback functions in the main executable make harness generation

difficult. In our example Figure 4.3, we reconstructed the callback function by copying

decompiled code from the main binary into the harness. For simple callbacks, we could

automatically add decompiled code to the harness. For complicated cases, we could load

the main binary and call the functions directly, as copied code is not always reliable.

Support for Non-C ABIs. WINNIE focuses on C-style APIs, and we did not investigate

fuzzing programs with other ABIs. In our experience during the evaluation, these libraries

99

are rare in practice. In the future, WINNIE can be extended to support other native languages’

ABIs, like C++, Rust, or Go.

Bytecode languages and interpreted binaries. While WINNIE supports most native

applications, it does not support applications compiled for a virtual machine (e.g., .NET,

Java). To support these binaries, specialized instrumentation techniques [136] should be

used to collect code coverage.

100

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An Empirical Study of the Reliability of
UNIX Utilities,” Commun. ACM, vol. 33, no. 12, pp. 32–44, Dec. 1990.

[2] M. Zalewski, American Fuzzy Lop (2.52b), http://lcamtuf.coredump.cx/afl/, 2018.

[3] LLVM, LibFuzzer - A Library for Coverage-guided Fuzz Testing, http://llvm.org/
docs/LibFuzzer.html, 2017.

[4] Google, Syzkaller - Linux Syscall Fuzzer, https://github.com/google/syzkaller, 2016.

[5] ——, Honggfuzz, https://google.github.io/honggfuzz/, 2016.

[6] M. Eddington, “Peach Fuzzing Platform,” Peach Fuzzer, p. 34, 2011.

[7] CENSUS, Choronzon - An Evolutionary Knowledge-based Fuzzer, ZeroNights
Conference, 2015.

[8] D. Votipka, R. Stevens, E. M. Redmiles, J. Hu, and M. L. Mazurek, “Hackers vs.
Testers A Comparison of Software Vulnerability Discovery Processes,” in Proceed-
ings of the 39th IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2018.

[9] Synopsys, Where the Zero-days are, https://www.synopsys.com/content/dam/
synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf, 2017.

[10] M. Hafiz and M. Fang, “Game of Detections: How Are Security Vulnerabilities
Discovered in the Wild?” Empirical Software Engineering, vol. 21, no. 5, pp. 1920–
1959, Oct. 2016.

[11] C. Collberg, C. Thomborson, and D. Low, “A Taxonomy of Obfuscating Transfor-
mations,” Department of Computer Science, University of Auckland, New Zealand,
Tech. Rep., 1997.

[12] ——, “Manufacturing Cheap, Resilient, and Stealthy Opaque Constructs,” in Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, San Diego, California, USA, 1998.

[13] M. Miller, Trends, Challenges, And Strategic Shifts In The Software Vulnerability
Mitigation Landscape, https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/
assets/doc/Trends,Challenges,andStrategicShiftsintheSoftwareVulnerabilityMitigationLandscape.
pdf, BlueHat IL, 2019.

101

http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://github.com/google/syzkaller
https://google.github.io/honggfuzz/
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends, Challenges, and Strategic Shifts in the Software Vulnerability Mitigation Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends, Challenges, and Strategic Shifts in the Software Vulnerability Mitigation Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends, Challenges, and Strategic Shifts in the Software Vulnerability Mitigation Landscape.pdf

[14] Emma Woollacott, Windows Of Opportunity: Microsoft OS Remains The Most
Lucrative Target For Hackers, https://portswigger.net/daily-swig/windows-of-
opportunity-microsoft-os-remains-the-most-lucrative-target-for-hackers, The Daily
Swig, 2018.

[15] A. Fiscutean, Microsoft Office Now The Most Targeted Platform, As Browser Security
Improves, https://www.csoonline.com/article/3390221/microsoft-office-now-the-
most-targeted-platform-as-browser-security-improves.html, CSO, 2019.

[16] Brian Krebs, The Scrap Value of a Hacked PC, https://krebsonsecurity.com/2012/
10/the-scrap-value-of-a-hacked-pc-revisited/, 2012.

[17] D. Palmer, Top Ten Security Vulnerabilities Most Exploited By Hackers, https :
//www.zdnet.com/article/these-are- the- top- ten-security-vulnerabilities-most-
exploited-by-hackers-to-conduct-cyber-attacks/, ZDNet, 2019.

[18] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, “Driller: Augmenting Fuzzing through Selective Symbolic
Execution,” in Proceedings of the 2016 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2016.

[19] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “VUzzer:
Application-aware Evolutionary Fuzzing,” in Proceedings of the 2017 Annual Net-
work and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2017.

[20] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with Code Fragments.,” in Proceedings
of the 21st USENIX Security Symposium (Security), Bellevue, WA, Aug. 2012.

[21] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated Whitebox Fuzz Testing,” in
Proceedings of the 15th Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2008.

[22] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim, “CAB-Fuzz: Practical
Concolic Testing Techniques for COTS Operating Systems,” in Proceedings of the
2017 USENIX Annual Technical Conference (ATC), Santa Clara, CA, Jul. 2017.

[23] M. Rash, A Collection of Vulnerabilities Discovered by the AFL Fuzzer, https :
//github.com/mrash/afl-cve, 2017.

[24] Syzkaller, Syzkaller Found Bugs - Linux Kernel, https://github.com/google/syzkaller/
blob/master/docs/linux/found_bugs.md, 2018.

[25] Google, Honggfuzz Found Bugs, https://github.com/google/honggfuzz#trophies,
2018.

102

https://portswigger.net/daily-swig/windows-of-opportunity-microsoft-os-remains-the-most-lucrative-target-for-hackers
https://portswigger.net/daily-swig/windows-of-opportunity-microsoft-os-remains-the-most-lucrative-target-for-hackers
https://www.csoonline.com/article/3390221/microsoft-office-now-the-most-targeted-platform-as-browser-security-improves.html
https://www.csoonline.com/article/3390221/microsoft-office-now-the-most-targeted-platform-as-browser-security-improves.html
https://krebsonsecurity.com/2012/10/the-scrap-value-of-a-hacked-pc-revisited/
https://krebsonsecurity.com/2012/10/the-scrap-value-of-a-hacked-pc-revisited/
https://www.zdnet.com/article/these-are-the-top-ten-security-vulnerabilities-most-exploited-by-hackers-to-conduct-cyber-attacks/
https://www.zdnet.com/article/these-are-the-top-ten-security-vulnerabilities-most-exploited-by-hackers-to-conduct-cyber-attacks/
https://www.zdnet.com/article/these-are-the-top-ten-security-vulnerabilities-most-exploited-by-hackers-to-conduct-cyber-attacks/
https://github.com/mrash/afl-cve
https://github.com/mrash/afl-cve
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/honggfuzz#trophies

[26] O. Chang, A. Arya, and J. Armour, OSS-Fuzz: Five Months Later, and Rewarding
Projects, https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-
and.html, 2018.

[27] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based Greybox Fuzzing
as Markov Chain,” in Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

[28] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing New Operating Primitives to
Improve Fuzzing Performance,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, 2017.

[29] Google, Fuzzing for Security, https://blog.chromium.org/2012/04/fuzzing-for-
security.html, 2012.

[30] ——, OSS-Fuzz - Continuous Fuzzing for Open Source Software, https://github.
com/google/oss-fuzz, 2016.

[31] Microsoft, Microsoft Previews Project Springfield, a Cloud-based Bug Detector,
https : / / blogs . microsoft . com / next / 2016 / 09 / 26 / microsoft - previews - project -
springfield-cloud-based-bug-detector, 2016.

[32] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “SlowFuzz: Automated Domain-
Independent Detection of Algorithmic Complexity Vulnerabilities,” in Proceedings
of the 24th ACM Conference on Computer and Communications Security (CCS),
Dallas, TX, 2017.

[33] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed Greybox
Fuzzing,” in Proceedings of the 24th ACM Conference on Computer and Communi-
cations Security (CCS), Dallas, TX, 2017.

[34] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated Whitebox Testing of
Deep Learning Systems,” in Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), Shanghai, China, Oct. 2017.

[35] M. Zalewski, American fuzzy lop, http://lcamtuf.coredump.cx/afl/, 2015.

[36] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based Greybox Fuzzing
as Markov Chain,” in Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

[37] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL: Path
sensitive fuzzing,” in Proceedings of the 39th IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2018.

103

https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://blogs.microsoft.com/next/2016/09/26/microsoft-previews-project-springfield-cloud-based-bug-detector
https://blogs.microsoft.com/next/2016/09/26/microsoft-previews-project-springfield-cloud-based-bug-detector
http://lcamtuf.coredump.cx/afl/

[38] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “VUzzer:
Application-aware evolutionary fuzzing,” in Proceedings of the 2017 Annual Net-
work and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2017.

[39] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu, “Steelix: Program-
State Based Binary Fuzzing,” in Proceedings of the 11th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), Paderborn, Germany, Sep. 2017.

[40] C. Lemieux and K. Sen, “FairFuzz: Targeting Rare Branches to Rapidly Increase
Greybox Fuzz Testing Coverage,” ArXiv e-prints, Sep. 2017.

[41] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,” in Proceed-
ings of the 39th IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2018.

[42] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: Fuzzing by program trans-
formation,” in Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2018.

[43] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” in Proceedings of the 29th
International Conference on Software Engineering (ICSE), Minneapolis, MN, May
2007.

[44] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic
execution,” in Proceedings of the 2016 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2016.

[45] B. S. Pak, “Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic
execution,” Master’s thesis, Carnegie Mellon University Pittsburgh, PA, 2012.

[46] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated Random
Testing,” in Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Chicago, IL, Jun. 2005.

[47] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “EXE: Auto-
matically Generating Inputs of Death,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security (CCS), Alexandria, VA, 2006.

[48] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic Generation
of High-coverage Tests for Complex Systems Programs,” in Proceedings of the 8th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), San
Diego, CA, Dec. 2008.

104

[49] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis, “Path-
exploration lifting: Hi-fi tests for lo-fi emulators,” in Proceedings of the 18th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Houston, TX, Mar. 2013.

[50] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on
binary code,” in Proceedings of the 33rd IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2012.

[51] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz testing,” in
Proceedings of the 15th Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2008.

[52] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-vivo multi-
path analysis of software systems,” in Proceedings of the 16th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Newport Beach, CA, Mar. 2011.

[53] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of) The Art of War: Of-
fensive Techniques in Binary Analysis,” in Proceedings of the 37th IEEE Symposium
on Security and Privacy (Oakland), San Jose, CA, May 2016.

[54] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of constraints:
Whitebox fuzz testing in production,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE), San Francisco, CA, May 2013.

[55] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine for C,”
in Proceedings of the 10th European Software Engineering Conference (ESEC) /
13th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE),
Lisbon, Portugal, Sep. 2005.

[56] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing for Overflows:
A Guided Fuzzer to Find Buffer Boundary Violations,” in Proceedings of the 22th
USENIX Security Symposium (Security), Washington, DC, Aug. 2013.

[57] O. Whitehouse, Introduction to Anti-Fuzzing: A Defence in Depth Aid, https: / /
www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/january/
introduction-to-anti-fuzzing-a-defence-in-depth-aid/, 2014.

[58] D. Göransson and E. Edholm, “Escaping the Fuzz,” Master’s thesis, Chalmers
University of Technology, Gothenburg, Sweden, 2016.

[59] C. Miller, Anti-Fuzzing, https://www.scribd.com/document/316851783/anti-fuzzing-
pdf, 2010.

105

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
https://www.scribd.com/document/316851783/anti-fuzzing-pdf
https://www.scribd.com/document/316851783/anti-fuzzing-pdf

[60] Z. Hu, Y. Hu, and B. Dolan-Gavitt, “Chaff Bugs: Deterring Attackers by Making
Software Buggier,” CoRR, vol. abs/1808.00659, 2018. arXiv: 1808.00659.

[61] K. Li, “Afl’s blindspot and how to resist afl fuzzing for arbitrary elf binaries,” Black
Hat USA Briefings (Black Hat USA), Las Vegas, NV, 2018.

[62] UPX Team, The Ultimate Packer for eXecutables, https://upx.github.io, 2017.

[63] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM – Software
Protection for the Masses,” in Proceedings of the IEEE/ACM 1st International
Workshop on Software Protection, B. Wyseur, Ed., IEEE, 2015.

[64] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated Software
Diversity,” in Proceedings of the 35th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2014.

[65] A. Avizienis and L. Chen, “On the Implementation of N-version Programming for
Software Fault Tolerance during Execution,” Proceedings of the IEEE COMPSAC,
pp. 149–155, 1977.

[66] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck, A.
Pathak, S. Trujillo, and K. Villela, “Software Diversity: State of the Art and Per-
spectives,” International Journal on Software Tools for Technology Transfer (STTT),
vol. 14, no. 5, pp. 477–495, Oct. 2012.

[67] B. Randell, “System Structure for Software Fault Tolerance,” IEEE Transactions on
Software Engineering, no. 2, pp. 220–232, 1975.

[68] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL: Path
Sensitive Fuzzing,” in Proceedings of the 39th IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2018.

[69] P. Chen and H. Chen, “Angora: Efficient Fuzzing by Principled Search,” in Proceed-
ings of the 39th IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2018.

[70] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: Fuzzing by Program Trans-
formation,” in Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2018.

[71] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing,” in Proceedings of the 29th USENIX Security
Symposium (Security), Aug. 2020.

106

https://arxiv.org/abs/1808.00659
https://upx.github.io

[72] M. Zalewski, Fuzzing Random Programs without execve(), https://lcamtuf.blogspot.
com/2014/10/fuzzing-binaries-without-execve.html, 2014.

[73] ——, New in AFL: Persistent Mode, https://lcamtuf.blogspot.com/2015/06/new-in-
afl-persistent-mode.html, 2015.

[74] Z. Xu, PTfuzzer, https://github.com/hunter-ht-2018/ptfuzzer, 2018.

[75] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kAFL: Hardware-
Assisted Feedback Fuzzing for OS Kernels,” in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, Canada, Aug. 2017.

[76] M. Zalewski, High-performance Binary-only Instrumentation For AFL-fuzz, https:
//github.com/mirrorer/afl/tree/master/qemu_mode, 2016.

[77] C. online, Seven of the Biggest Recent Hacks on Crypto Exchanges, https://www.ccn.
com/japans-16-licensed-cryptocurrency-exchanges-launch-self-regulatory-body/,
2018.

[78] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in Proceedings of the
2005 USENIX Annual Technical Conference (ATC), Anaheim, CA, Apr. 2005.

[79] T. G. Derek Bruening Vladimir Kiriansky, Dynamic Instrumentation Tool Platform,
http://www.dynamorio.org/, 2009.

[80] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Chicago, IL, Jun.
2005.

[81] WinAFL Crashes with Testing Code, https://github.com/ivanfratric/winafl/issues/62,
2017.

[82] Unexplained Crashes in WinAFL, https://github.com/DynamoRIO/dynamorio/
issues/2904, 2018.

[83] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and Understanding Bugs in C
Compilers,” in ACM SIGPLAN Notices, ACM, vol. 46, 2011, pp. 283–294.

[84] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-libc
Without Function Calls (on the x86),” in Proceedings of the 14th ACM Conference
on Computer and Communications Security (CCS), Alexandria, VA, 2007.

107

https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://github.com/hunter-ht-2018/ptfuzzer
https://github.com/mirrorer/afl/tree/master/qemu_mode
https://github.com/mirrorer/afl/tree/master/qemu_mode
https://www.ccn.com/japans-16-licensed-cryptocurrency-exchanges-launch-self-regulatory-body/
https://www.ccn.com/japans-16-licensed-cryptocurrency-exchanges-launch-self-regulatory-body/
http://www.dynamorio.org/
https://github.com/ivanfratric/winafl/issues/62
https://github.com/DynamoRIO/dynamorio/issues/2904
https://github.com/DynamoRIO/dynamorio/issues/2904

[85] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “REDQUEEN:
Fuzzing with Input-to-State Correspondence,” in Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2019.

[86] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,
and R. Whelan, “LAVA: Large-scale automated vulnerability addition,” in Proceed-
ings of the 37th IEEE Symposium on Security and Privacy (Oakland), San Jose, CA,
May 2016.

[87] GNU Project, GNU Binutils Collection, https://www.gnu.org/software/binutils,
1996.

[88] M. Zalewski, Technical Whitepaper for AFL-fuzz, https://github.com/mirrorer/afl/
blob/master/docs/technical_details.txt, 2017.

[89] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang, “Cy-
clone: A Safe Dialect of C,” in Proceedings of the USENIX Annual Technical
Conference, 2002.

[90] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe Retrofitting of
Legacy Code,” in Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2002.

[91] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow Integrity,” in Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security,
2005.

[92] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient Protection
of Path-Sensitive Control Security,” in Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, Canada, Aug. 2017.

[93] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim, and W. Lee,
“Enforcing Unique Code Target Property for Control-Flow Integrity,” in Proceedings
of the 25th ACM Conference on Computer and Communications Security (CCS),
Toronto, Canada, Oct. 2018.

[94] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “AddressSanitizer: A
Fast Address Sanity Checker,” in Proceedings of the 2012 USENIX Annual Technical
Conference (ATC), Boston, MA, Jun. 2012.

[95] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based Greybox Fuzzing
As Markov Chain,” in Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

108

https://www.gnu.org/software/binutils
https://github.com/mirrorer/afl/blob/master/docs/technical_details.txt
https://github.com/mirrorer/afl/blob/master/docs/technical_details.txt

[96] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “IJON: Exploring Deep State
Spaces via Fuzzing,” in Proceedings of the 41th IEEE Symposium on Security and
Privacy (Oakland), May 2020.

[97] XnSoft, XnView Image Viewer, https://www.xnview.com/en/, 2020.

[98] AutoIt Consulting Ltd, AutoIt Scripting Language, https://www.autoitscript.com/
site/autoit/, 2019.

[99] R. Freingruber, Fuzzing Closed Source Applications, https://def.camp/wp-content/
uploads/dc2017/Day_1_Rene_Fuzzing_closed_source_applications_DefCamp.
pdf, 2017.

[100] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano, C. Lemieux, L.
Szekeres, and W. Wang, “FUDGE: Fuzz Driver Generation At Scale,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ACM, 2019, pp. 975–
985.

[101] K. K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “FuzzGen: Automatic Fuzzer
Generation,” in Proceedings of the 29th USENIX Security Symposium (Security),
Aug. 2020.

[102] Y. Alon and N. Ben-Simon, 50 CVEs In 50 Days: Fuzzing Adobe Reader, https:
//research.checkpoint.com/50-adobe-cves-in-50-days/, 2018.

[103] R. Schaefer, Fuzzing Adobe Reader For Exploitable Vulns, https://kciredor.com/
fuzzing-adobe-reader-for-exploitable-vulns-fun-not-profit.html, 2018.

[104] symeon, Fuzzing The MSXML6 Library With WinAFL, https://symeonp.github.io/
2017/09/17/fuzzing-winafl.html, 2017.

[105] J. Min, Using WinAFL To Fuzz Hangul(HWP) AppShield, https://sigpwn.io/blog/
2018/1/29/using-winafl-to-fuzz-hangul-appshield, 2018.

[106] R. Freingruber, Hack The Hacker: Fuzzing Mimikatz On Windows With Winafl &
Heatmaps, https://sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-
mimikatz-on-windows-with-winafl-heatmaps-0day/, 2017.

[107] M. Zalewski, Fuzzing Random Programs Without Execve(), https://lcamtuf.blogspot.
com/2014/10/fuzzing-binaries-without-execve.html, 2019.

[108] Google, A New Chapter For OSS-Fuzz, https://security.googleblog.com/2018/11/a-
new-chapter-for-oss-fuzz.html, 2018.

109

https://www.xnview.com/en/
https://www.autoitscript.com/site/autoit/
https://www.autoitscript.com/site/autoit/
https://def.camp/wp-content/uploads/dc2017/Day_1_Rene_Fuzzing_closed_source_applications_DefCamp.pdf
https://def.camp/wp-content/uploads/dc2017/Day_1_Rene_Fuzzing_closed_source_applications_DefCamp.pdf
https://def.camp/wp-content/uploads/dc2017/Day_1_Rene_Fuzzing_closed_source_applications_DefCamp.pdf
https://research.checkpoint.com/50-adobe-cves-in-50-days/
https://research.checkpoint.com/50-adobe-cves-in-50-days/
https://kciredor.com/fuzzing-adobe-reader-for-exploitable-vulns-fun-not-profit.html
https://kciredor.com/fuzzing-adobe-reader-for-exploitable-vulns-fun-not-profit.html
https://symeonp.github.io/2017/09/17/fuzzing-winafl.html
https://symeonp.github.io/2017/09/17/fuzzing-winafl.html
https://sigpwn.io/blog/2018/1/29/using-winafl-to-fuzz-hangul-appshield
https://sigpwn.io/blog/2018/1/29/using-winafl-to-fuzz-hangul-appshield
https://sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-heatmaps-0day/
https://sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-heatmaps-0day/
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

[109] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: Fuzzing By Program Trans-
formation,” in Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2018.

[110] A. Souchet, I. Fratric, J. Vazquez, and S. Denbow, AFL For Fuzzing Windows
Binaries, https://github.com/ivanfratric/winafl, 2016.

[111] Google, Honggfuzz, https://github.com/google/honggfuzz, 2010.

[112] H. Gray, Fuzzing Linux GUI/GTK Programs With American Fuzzy Lop (AFL) For
Fun And Pr... You Get the Idea. https : / / blog . hyperiongray. com / fuzzing - gtk -
programs-with-american-fuzzy-lop-afl/.

[113] Google, OSS-Fuzz - continuous fuzzing of open source software, https://github.com/
google/oss-fuzz, 2016.

[114] XnSoft, Supported file formats in XnView, https://www.xnview.com/en/xnviewmp/
formats, 2019.

[115] A. Souchet, I. Fratric, J. Vazquez, and S. Denbow, How to Select A Target Function,
https://github.com/googleprojectzero/winafl#how-to-select-a-target-function, 2016.

[116] I. Guilfanov, IDA Pro - Hex Rays, https://www.hex-rays.com/products/ida/, 2018.

[117] N. S. Agency, Ghidra Software Reverse Engineering Framework, https://ghidra-
sre.org/, 2019.

[118] PaX Team, PaX Address Space Layout Randomization (ASLR), http://pax.grsecurity.
net/docs/aslr.txt, 2003.

[119] Dmytro Oleksiuk, fork() for Windows, https://gist.github.com/Cr4sh/126d844c28a7fbfd25c6,
2016.

[120] M. Russinovich and D. A. Solomon, Windows internals: including Windows server
2008 and Windows Vista. Microsoft press, 2009.

[121] C. authors, Highlights of Cygwin Functionality, https://cygwin.com/cygwin-ug-
net/highlights.html, 1996.

[122] Microsoft, Frequently Asked Questions about Windows Subsystem for Linux, https:
//docs.microsoft.com/en-us/windows/wsl/faq, 2018.

[123] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with

110

https://github.com/ivanfratric/winafl
https://github.com/google/honggfuzz
https://blog.hyperiongray.com/fuzzing-gtk-programs-with-american-fuzzy-lop-afl/
https://blog.hyperiongray.com/fuzzing-gtk-programs-with-american-fuzzy-lop-afl/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.xnview.com/en/xnviewmp/formats
https://www.xnview.com/en/xnviewmp/formats
https://github.com/googleprojectzero/winafl#how-to-select-a-target-function
https://www.hex-rays.com/products/ida/
https://ghidra-sre.org/
https://ghidra-sre.org/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://gist.github.com/Cr4sh/126d844c28a7fbfd25c6
https://cygwin.com/cygwin-ug-net/highlights.html
https://cygwin.com/cygwin-ug-net/highlights.html
https://docs.microsoft.com/en-us/windows/wsl/faq
https://docs.microsoft.com/en-us/windows/wsl/faq

dynamic instrumentation,” in Acm sigplan notices, ACM, vol. 40, 2005, pp. 190–
200.

[124] A. Souchet, I. Fratric, J. Vazquez, and S. Denbow, WinAFL Intel PT mode, https:
//github.com/googleprojectzero/winafl/blob/master/readme_pt.md, 2019.

[125] S. Nagy and M. Hicks, “Full-speed Fuzzing: Reducing Fuzzing Overhead Through
Coverage-guided Tracing,” in Proceedings of the 40th IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2019.

[126] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz testing,”
in Proceedings of the 25th ACM Conference on Computer and Communications
Security (CCS), Toronto, Canada, Oct. 2018.

[127] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-afl: High-
throughput greybox fuzzing of iot firmware via augmented process emulation,” in
Proceedings of the 28th USENIX Security Symposium (Security), Santa Clara, CA,
Aug. 2019.

[128] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang,
and K. Zhang, “Iotfuzzer: Discovering memory corruptions in iot through app-based
fuzzing.,” in Proceedings of the 2018 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2018.

[129] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh, “Automatic generation of string
signatures for malware detection,” in International Workshop on Recent Advances
in Intrusion Detection, Springer, 2009, pp. 101–120.

[130] J. Caballero, P. Poosankam, S. McCamant, D. Babi ć, and D. Song, “Input generation
via decomposition and re-stitching: Finding bugs in malware,” in Proceedings of the
17th ACM Conference on Computer and Communications Security (CCS), Chicago,
IL, Oct. 2009.

[131] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J.
Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new approach to computer
security via binary analysis,” in International Conference on Information Systems
Security, Springer, 2008, pp. 1–25.

[132] G. Sood, virustotal: R Client for the virustotal API, R package version 0.2.1, 2017.

[133] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary analysis,” in
2017 IEEE Cybersecurity Development (SecDev), IEEE, 2017, pp. 8–9.

111

https://github.com/googleprojectzero/winafl/blob/master/readme_pt.md
https://github.com/googleprojectzero/winafl/blob/master/readme_pt.md

[134] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-wide scan-
ning and its security applications,” in Proceedings of the 22th USENIX Security
Symposium (Security), Washington, DC, Aug. 2013.

[135] W. You, Z. Zhang, Y. Kwon, Y. Aafer, F. Peng, Y. Shi, C. Harmon, and X. Zhang,
“Pmp: Cost-effective forced execution with probabilistic memory pre-planning,” in
Proceedings of the 41th IEEE Symposium on Security and Privacy (Oakland), May
2020.

[136] 0xd4d, .NET module/assembly reader/writer library, https://github.com/0xd4d/dnlib,
2013.

112

https://github.com/0xd4d/dnlib

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Problem Statement
	Research Outline

	2 | Related work
	Fuzzing
	Concolic Execution
	Anti-fuzzing Techniques

	3 | Fuzzification: Anti-Fuzzing Techniques
	Introduction
	Background and Problem
	SpeedBump: Amplifying Delay in Fuzzing
	BranchTrap: Blocking Coverage Feedback
	AntiHybrid: Thwarting Hybrid Fuzzers
	Evaluation
	Discussion and Future Work
	Conclusion

	4 | Winnie: Fuzzing Windows Applications with Harness Synthesis and Fast Cloning
	Introduction
	Background: Why Harness Generation?
	Challenges and Solutions
	Harness Generation
	Fast Process Cloning on Windows
	Implementation
	Evaluation
	Discussion
	Extension: Automatic Generation of Internet Scans for Malware

	5 | Conclusion and Future work
	Conclusion
	Future work

	References

