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SUMMARY

The state-of-the-art quadratic program-based control Lyapunov-control barrier function (QP-

CLBF) is a powerful control approach to balance safety and stability in a pointwise optimal fashion.

However, under this approach, modeling inaccuracies may degrade the performance of closed-

loop systems and cause violation of safety-critical constraints. This thesis extends the recently-

developed QP-CLBF through the derivation of five novel robust quadratic program-based adaptive

control approaches for fully actuated and underactuated nonlinear systems with a view toward

adapting to unknown parameters, being robust to unmodeled dynamics and disturbances, ensur-

ing the system remains in safe sets, and being optimal with respect in a pointwise fashion. The

proposed control strategies are formulated for five different problems: (i) control of fully actuated

nonlinear systems with structured uncertainties, (ii) control and safety of fully actuated nonlinear

systems with unstructured uncertainties, (iii) active space control of underactuated systems, (iv)

passive space control and safety of underactuated systems, and (iv) exponential control and safety

of fully actuated nonlinear systems with parametric uncertainties and unknown control coefficient.

To achieve the above-mentioned goals, we begin by developing adaptation mechanisms, in-

corporated in the inner layer of the control structure, to estimate unknown nonlinear dynamics.

The adaptive laws use historical data concurrently with instantaneous data to achieve an accu-

rate estimation. A robust term robustifies closed-loop systems to disturbances and uncanceled

uncertainties. A three-term control law, including feed-forward, adaptive, and stabilizing terms, is

suggested whose latter term is generated in a pointwise optimal fashion by synthesizing a quadratic

program (QP) in the outer layer, subject to three inequality constraints: a robust control Lyapunov

function (RCLF), a robust control barrier function (RCLF), and control bounds. The unified two-

layer control techniques can significantly improve control objectives and safety performance over

the baseline QP-CLBF when applying to all above-mentioned problems. The boundedness / con-

vergence of all system signals is proven using Lyapunov stability arguments. The performance

of proposed control schemes are validated on different fully actuated and underactuated nonlinear

xvi



systems in each problem.

Simulation and quantitative results demonstrate the superiority of proposed approaches over

the baseline methods. These benefits are five-folds: (i) accurate estimation of unknown nonlinear

dynamics, (ii) convergence of error trajectories to a smaller neighborhood of the origin, (iii) con-

verge of the barrier violation to a smaller neighborhood of the origin, (iv) formal stability analysis

of closed-loop systems showing boundedness / convergence, and (v) establishment of robustness

to modeling error, unmodeled dynamics, and time-varying disturbances.

xvii



CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

In this section, the notion of quadratic program-based control Lyapunov function (QP-CLF),

history of different adaptive control approaches, and safety using control barrier functions (CBFs)

are studied. The advantages and related limitations to these methods are then highlighted.

1.1 Stabilization using control Lyapunov functions (CLFs)

Lyapunov stability analysis is a widely-used tool for assessing stabilization of closed-loop systems.

In particular, control synthesis using Lyapunov theory leads to the creation of CLFs for stabilizing

nonlinear control systems [1, 2]. CLFs are an effective online strategy when incorporating QP

as part of the control synthesis step, resulting in QP-CLF control design [3, 4]. QP is a powerful

optimization tool for balancing multiple control specifications at the same time. Thus, joint use of a

CLF approach with a QP leads to a pointwise optimal controller with the desired control Lyapunov

properties. The QP-CLF method provides good trade-off between control optimality, stabilization

performance, and other physical constraints. In the recent years, QP-CLF controllers have been

widely applied on different applications to find an optimal solution between system stability and

control optimality [5, 4].

In [6, 7], a pointwise optimal control strategy combining CLF and QP with impedance con-

trol was presented for a bipedal robot platform in simulation and a prosthesis device walking in

experiment. As the general design procedure of QP-CLF controllers, by defining tracking error

e = y − yd with actual y and desired yd outputs, the system dynamics are first transformed into

the error dynamics. By utilizing a general feedback linearization controller, error dynamics are

linearized by a main control signal u, which is a function of virtual control input µ and model in-

formation. Then, by employing a QP, the virtual control input as a pointwise local optimal control

input is computed. In [6, 7], however, due to the lack of model information, instead of substituting

1



µ into u, µ was directly considered as u. In other words, QP only focused on the tracking error

while not caring about the model information. This strategy was called “model-free QP-CLF”.

However, some works were designed with the assumption of perfect knowledge about system

dynamics. In [8, 3], a QP has been used as a pointwise optimal control synthesis method for mini-

mizing control effort while establishing system stability through a CLF approach. In those papers,

linear error dynamics were first created using an input-output feedback linearization approach.

Then, the convex optimization problem QP was employed to compute the virtual input while a set

of inequality constraints were enforced. The CLF and bounds on the control signals were consid-

ered as the constraints. Above-mentioned QP-CLF approaches suffer from several shortcomings.

(i) They are designed in a model-ignoring manner or with the assumption of fully-known system

dynamics. It implies that model uncertainty is not considered in the stability analysis. (ii) They

are not robust against unmodeled dynamics and external disturbances. These shortcomings deliver

QP-CLF controllers that provide convergence of error trajectories to a neighborhood of the origin

whose size is a function of uncompensated modeling errors.

In order to solve the aforementioned issues, baseline QP-CLF controller was modified under

parameter uncertainty in some recent works [9, 10]. In [9], a unified QP-CLF controller and

least-squares (LS) estimation was presented under parameter uncertainty for achieving exponential

convergence of fully-actuated nonlinear systems. That paper suffers from several drawbacks. The

main one is that the controller requires system acceleration and inversion of the mass matrix. The

LS estimation also needs an inversion, which causes the singularity issue and computational cost.

The approach is not also robust against the external disturbances and unmodeled dynamics. In [10],

parameter to state stability of CLF approach was presented for underactuated robots. In that paper,

the parameter uncertainty was only measured to quantify the affect of it on the performance of

system while no any estimation method was used to identify the unknown dynamics.

Since it is often that the mathematical model of a system is a simplified version of the real

system, system dynamics are not fully known and the approximated description contains model

uncertainties. On the other hand, with the aim of having a formal stability analysis and using the

2



model information in the controller structure, a model-based controller is desired to design. Under

these circumstances, an adaptive controller should be employed to estimate the missing dynamical

information.

1.2 Adaptive control approaches

Adaptive controllers can solve this problem by providing estimates of system dynamics for use in

QP-CLF. Adaptive control is able to implement learning and adaptation using an online parameter

estimation in the control structure. Various instantaneous data-based adaptive controllers such as

tracking-error based (TEB) and tracking error-based / prediction error-based (TEB/PEB) exist to

estimate the unknown system dynamics [11, 12, 13, 14].

The direct adaptive controller is one of the most widely-used adaptive approaches whose adap-

tation mechanism only uses instantaneous tracking error. In [15], a direct adaptive controller was

proposed for a manipulator in which parameter adaptation is derived by motion tracking error. The

controller presented in that paper has two parts. The first part is responsible for full dynamic com-

pensation and attempts to provide the joint dynamic torques necessary to make the desired motions.

The second part is simply a PD feedback. In [11], a robust adaptive sliding mode controller was

designed for nonlinear systems. The control law developed in that paper includes two parts. The

first part is an adaptive term to handle uncertain parameters. For the adaptive term, a TEB adapta-

tion law was used which extracts information about the parameters from only the tracking error. A

boundary layer trajectory was incorporated in the adaptation mechanism to prevent unfavorable pa-

rameter drift when tracking errors are small and due mostly to noise and disturbances. On the other

hand, this trajectory balances control chatter and performance. The second part is a robust term

that compensates for external disturbances and non-parametric uncertainties. Under that controller,

tracking error trajectory converges to boundary layers and robustness to non-parametric uncertain-

ties is established. Under the above-mentioned controllers, although asymptotic convergence of

tracking error is ensured, system parameters may not be properly identified.

The composite adaptive controller can provide more accurate parameter estimation based on
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an update law which uses both tracking and prediction errors [16, 12, 17]. Since tracking errors in

the joint displacements and prediction error in the joint torques are influenced by parameter uncer-

tainties, composite adaptive controller uses a TEB/PEB adaptation, whereby, parameter adaptation

is derived by using both tracking and prediction errors. In turn, it provides more accurate estima-

tion of system parameters. In [12], a composite adaptive controller (TEB/PEB) with bounded-gain

forgetting (BGF) was designed for parameter estimation. To avoid the need for joint acceleration

in the adaptation structure, model regressor was filtered by a first-order stable filter. To benefit

from data forgetting and to avoid unboundedness, composite adaptation law also benefited from

an exponential forgetting least-squares gain update along with BGF method. Under that method,

more accurate estimation of system parameters results in a better knowledge of system model, and

in turn, the controller achieves better tracking performance over TEB-based controllers. Other

modern methods in adaptive control improve parameter estimation through transient response and

strong parametric convergence properties [18].

However, to guarantee parameter convergence, all above-mentioned methods require persistent

excitation (PE) conditions for the system states, which is not always guaranteed nor feasible to

check. So in other words, the aforementioned adaptive controllers require PE conditions to achieve

asymptotic/exponential converge of the system parameters. Approaches that dispense of the need

for PE have been designed [19, 20], one of which is the concurrent learning (CL) approach. The

CL adaptive approach has been recently proposed in which instantaneous data along with the

recorded data are concurrently used for adaptation [21, 22]. CL is able to guarantee the exponential

convergence of system parameters without requiring PE, when the system has been observed to

be exciting over a finite time interval [21]. It uses current and recorded data for the adaptation

mechanism so exponential convergence of system parameters can be achieved under assumption

of linear independence of some recorded history stack [22].

In [21], an approximate model inversion-based model reference adaptive control (AMI-MRAC)

was formulated for a class of nonlinear systems with structured uncertainty. In that method, for

convergence of the system outputs y to the output of the reference model yd, a pseudo-control
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input v (desired acceleration) was designed to find the main control signal u so that the system is

transformed into the form ẍ = v − ∆ with ∆ as modeling uncertainty. The pseudo-control input

v has three terms: a PD feedback, a feed-forward term, and an adaptive term. To update system

parameters, a CL adaptation law was used that uses both recorded and instantaneous data. That

paper ensures that if system states are exciting over finite intervals (rich data can be recorded on-

line), exponential convergence of tracking error and parameter estimation error can be achieved,

so PE is not required. An online algorithm for recording data points was also proposed based

upon the maximizing minimum singular value of a matrix that shows up in the derivative of the

Lyapunov function. In [22], a CL-based MRAC approach was designed for systems with unstruc-

tured uncertainties and validated on flight test. The AMI-MRAC was formulated and a three-term

control law was synthesized. A single hidden layer NN was employed for adaptive term while the

NN weights were updated using a CL adaptation law. Results showed that the method guarantees

exponential convergence of the NN parameters to a compact ball around the true values without

the PE requirements.

In general, the above-mentioned CL model-based MRAC involves a two-part control law,

where a linear feedback part with constant gains (PD controller) stabilizes and controls the system,

and a CL adaptive part is in charge of identifying the system uncertainties, which altogether is able

to provide good reference model tracking performance. However, CL-MRAC suffers from sev-

eral shortcomings: (i) it is not robust to control coefficient uncertainty, unmodeled dynamics, and

disturbances; (ii) it is not optimal in terms of control signal; and (iii) the required control bounds

cannot be enforced to this controller.

1.3 Safety using control barrier functions (CBFs)

Control barrier functions (CBFs) are widely-used in the control literature because of their relation-

ship with Lyapunov-like functions, their ability to create the safety and avoidance properties, and

their performance in multi-objective control [5, 23]. CBFs are the extension of BFs in the control

systems whose conditions are affine in control signal and can be formulated as constraints in the

5



QPs. Similar to the CLFs, in CBFs, a set of inequality constraints is enforced on the derivative of a

candidate CBF (reciprocal or zeroing) to search for a class of control inputs that provides forward

invariance of a safe set. Thus, QPs can be synthesized subject to CBF and CLF constraints to

meet stability and safety performance at the same time, whereby, creating multi-objective control

systems. In QPs, stability objective can be viewed as a soft constraint and safety as a hard one.

These objectives may not be thus achievable at the same time to have a feasible control signal from

the QP optimization. Barrier functions can be categorized in two different types. (i) Reciprocal

barrier functions B(x), which are unbounded in the set boundary ∂C (B(x) −→∞ as x −→ ∂C),

require Ḃ ≤ α(1/B) with a class-K function α. (ii) Zeroing barrier functions h(x) are vanished

in the set boundary ∂C (h(x) −→ 0 as x −→ ∂C) and require ḣ ≥ −α(h) [5]. For both types, if

B(x) or h(x) meet the Lyapunov-like conditions, set C is then forward invariant.

CBFs are commonly-used to define safety conditions in control applications. In [5], CBFs were

unified with CLFs in the context of a QP (QP-CLBF) to achieve safety and control objectives. The

method was applied to adaptive cruise control (ACC) and lane keeping (LK). That work relies on

the perfect knowledge of system dynamics to construct the inequality constraints CBF and CLF.

However since system dynamics usually contain parametric or/and unstructured uncertainties, un-

der such controller, barrier functions may exceed the safe set and tracking performance is degraded.

To mitigate these issues, in [24], a robust QP-CLBF controller was designed to handle modeling

uncertainty, and to guarantee stability and safety. In [25], robustness of CBFs was studied under

modeling perturbation, and input-to-state stability conditions for forward invariance were provided

in the presence of disturbances. Although the above works investigate the robustness of QP-CLBF

controllers, they do not take the estimation of unknown dynamics into consideration to provide

better performance and more accurate safety.

Motivated by the shortcomings above and the desire of developing new multi-objective con-

trollers, this thesis formulates five different robust quadratic program-based adaptive control ap-

proaches to satisfy a large and diverse set of objectives for different fully actuated and under-

actuated nonlinear systems. The proposed controllers are developed to leverage the comple-
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mentary strengths of baseline existing QP-CLBFs under which the control objectives and safety

performance of systems with modeling inaccuracies and disturbances are degraded. Simulations

and comparisons to existing QP-CLBFs on different real-world fully actuated and underactuated

robotic applications are carried out to validate the benefits of the proposed techniques. The the-

sis is outlined as follows. Control and safety of fully actuated nonlinear systems with structured

and unstructured uncertainties are investigated in Chapter 2. Active space control of underactu-

ated robotic systems is formulated in Chapter 3. Passive space control and safety of underactuated

robotic systems are presented in Chapter 4. A method for exponential control and safety of fully

actuated nonlinear systems with parameter uncertainties and unknown control coefficients is sug-

gested in Chapter 5. Finally, conclusions and future works are discussed in Chapter 6.
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CHAPTER 2

CONTROL AND SAFETY OF NONLINEAR SYSTEMS WITH STRUCTURED AND

UNSTRUCTURED UNCERTAINTIES

In this chapter, we begin by presenting basics of control Lyapunov function (CLF) and zeroing

control barrier function (ZCBF), and then highlight associated drawbacks of baseline QP-CLF and

QP-CBF controllers in the presence of modeling error and disturbances. Proposed solutions to

improve the baseline methods are suggested. Problem statement is then described for systems

with structured and unstructured uncertainties. Finally, proposed controllers are introduced and

simulations are carried out to validate the benefits of our approaches over the baseline methods.

2.1 Basic background

2.1.1 Quadratic program-control Lyapunov function (QP-CLF)

Consider a general affine form of nonlinear systems as

ẋ = f(x) + g(x)u+ ∆(x) (2.1)

with x ∈ <n and u ∈ <m such that f(x) and g(x) are locally Lipschitz continuous, and ∆(x) is a

bounded modeling error.

Definition 1. A continuously differentiable function V (x) : <n → < is an exponentially stabiliz-

ing control Lyapunov function (eCLF) for the system (2.1) with ∆(x) = 0 if there exist a set of

controls U and positive scalars γ, a1, a2 > 0 such that [4]

a1‖x‖2 ≤ V (x) ≤ a2‖x‖2, (2.2)

inf
u∈U

[LfV (x) + LgV (x)u] ≤ −γV (x),
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Figure 2.1: Convergence of (a) the error trajectory e(t) and (b) the barrier function h(t), both in
the presence of the modeling error ∆
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where LfV (x) = ∂V (x)
∂x

f and LgV (x) = ∂V (x)
∂x

g are the Lie derivatives of V (x) with respect to f

and g, respectively.

CLF guarantees stability of nonlinear systems. We aim to design a family of controllers that

satisfies (2.2). In terms of error dynamics, this implies picking the control u for the system (2.1)

to achieve exponential convergence of the tracking error e to zero, where e = x − xd with xd as

a desired trajectory for x. Based on Definition 1, to achieve this convergence, a control Lyapunov

certificate like one presented in (2.2) must hold, which renders V (e) ≤ e−γtV (0) (due to Compar-

ison lemma [26] (Lemma 3.4)). In the absence of the modeling error ∆ and under a CLF-based

controller, V (t) starts from V (0) and exponentially converges to zero at the convergence rate γ.

However, in the presence of the modeling error, V̇ ≤ 0 if ‖e‖ ≥ ∆
γ

, resulting in the boundedness

of e in a neighborhood of the origin with size ∆
γ

. To shrink down the size of the neighborhood and

provide better convergence, one might think of is to increase the parameter γ. However, this may

result in more control effort and unfavorable system solutions. Without loss of generality, if the

control u is computed by a QP subject to the inequality constraint (2.2) (resulting in QP-CLF), the

system trajectory is uniformly ultimately bounded (UUB) in a neighborhood around the origin in

the presence of modeling error.

Solution 1: To avoid increasing the parameter γ which results in higher control effort, esti-

mating ∆ and compensating for the modeling error is suggested. By doing so, the proposed con-

troller/estimator renders convergence of the system trajectory to a smaller neighborhood of size

∆−∆̂
γ

without increasing the convergence rate (shown in Fig. 2.1(a)). Solution 1 will be formulated

later in this chapter through the derivation of two proposed adaptive approaches.

2.1.2 Quadratic program-control barrier function (QP-CBF)

Zeroing control barrier function (ZCBF) guarantees the forward invariance of a set so if the system

starts inside the set, it remains in the set for all time [5]. Defining the set

C = {x ∈ <n : h(x) ≥ 0}, (2.3)
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we aim to compute a family of controls to ensure the forward invariance of the set C.

Definition 2. A continuous function α : [0, a) −→ [0,∞) for a > 0 belongs to a class-K function

if it is strictly increasing and α(0) = 0.

Definition 3. A continuously differentiable function h(x) : <n → < is a zeroing control barrier

function (ZCBF) for the system (2.1) with ∆(x) = 0 and the set C if there exist a set of controls U

and a class-K function α such that [4]

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)), (2.4)

where Lfh(x) = ∂h(x)
∂x

f and Lgh(x) = ∂h(x)
∂x

g are the Lie derivatives of h(x) with respect to f and

g, respectively.

We aim to pick the control u for the system (2.1) such that the set C is forward invariant, which

requires holding the barrier certificate. Applying the Comparison lemma, the barrier certificate

renders h(x) ≥ e−γth(0), which results in h(x) ≥ 0 for t ≥ 0. With no modeling uncertainty,

∆ = 0, h(t) starts from h(0) and vanishes in the set boundary ∂C (h(x) −→ 0 as x −→ ∂C).

However, since the exact system model is not available, the barrier convergence for the system (2.1)

will be affected by the modeling error ∆. Under this condition and by picking α(h(x)) = βh(x)

with β > 0, we have ḣ(x) ≥ −βh(x) + ∆, which results in h(x) ≥ e−βth(0) + ∆
β

. It implies that

h(t) starts from h(0) + ∆
β

and converges to a ball of size ∆
β

around zero. Here, two cases can be

considered. (i) Increasing the parameter β decreases the effect of the modeling error and provides

smaller barrier violation, but resulting in more control effort. (ii) Decreasing the parameter β

boosts the effect of ∆ and renders higher barrier violation. In this case, x may/may not hit ∂C

depending on the nature of system and desired trajectory that x has to follow. Without loss of

generality, for any h, any function α, and using a QP-based controller, the variable of interest may

exceed the safe set in the presence of the modeling error.

Solution 2: To avoid increasing the parameter β which causes more control effort, estimating

∆ and compensating for the modeling error is suggested. This way, the barrier certificate under the
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proposed controller/estimator renders h(x) ≥ e−βth(0) + ∆−∆̂
β

. This implies that h(t) starts from

a neighborhood around h(0) and converges to a smaller ball of size ∆−∆̂
β

as shown in Fig. 2.1 (b).

Solution 2 will be formulated later in this chapter through the derivation of a proposed adaptive

control approach.

2.2 Problem statement

In this section, we aim to formulate Solutions 1 and 2 through the derivation of two robust quadratic

program-based adaptive controllers for nonlinear systems with structured and unstructured uncer-

tainties. Consider the following 2D nonlinear system of the form

ẋ1 = x2 (2.5)

ẋ2 = f(x) + bu+ d,

where x = [x1 x2]T ; the dynamics f(x) are unknown; b is an unknown control coefficient; u is

the control signal; and d is an unknown bounded disturbance such that ‖d‖ ≤ d̄.

Assumption 1. Assume that b = b0 + ∆b, where b0 is our best estimate with the same sign as b,

and ∆b is the uncertainty. Though b0 is constant, ∆b can have bounded state dependence.

Assumption 2. Assume that u = u∗+∆u, where u∗ is the commanded input, and ∆u is a bounded

control defect stemming from any input constraints.

Define the output y = x1 and its desired trajectory as yd, where boundedness of yd for all time

is presumed. A three-term pointwise optimal adaptive control law will be synthesized

u∗ =
1

b0

(ÿd − vopt − vad), (2.6)

where the control law u∗ uses the known part of the b; ÿd is the feed-forward term; vopt represents

the pointwise optimal signal (which will be presented later in this chapter); and vad is the adaptive

signal that will be introduced in the next two subsections.
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2.2.1 System with structured uncertainty

The unknown dynamics are linearly parameterized by known basis functions

Φ(x) = [φ1(x), ..., φr(x)]T ∈ <r and true parameter vector θ∗ ∈ <r,

f(x) = θ∗
T

Φ(x), (2.7)

where r is number of the unknown parameter vector elements. The adaptive component vad is

defined as

vad = θ̂TΦ(x), (2.8)

where θ̂ denotes the estimate of θ∗. Assume that d = 0. The tracking error dynamics follow from

Eqs. (2.5)-(2.8),

ë = vopt + εe − εb − εu, for e = yd − y, (2.9)

where the last three terms arise from the uncertainty and input constraint

εe =vad − f(x) = θ̃TΦ(x) for θ̃ = θ̂ − θ∗, (2.10)

εb =∆b u, and

εu =b∆u,

where εb and εu show the control error and the defect error, respectively. For bounded control signal

and bounded control defect, the control error and defect error are then bounded i.e., |εb| ≤ ε̄b and

|εu| ≤ ε̄u. The estimation error εe is bounded if vad − f(x) lies in a ball of radius ε̄e.

To formulate the Solution 1 for systems with structured uncertainty, using adaptive control

synthesis, an update law for θ̂ will be designed so that θ̂ → θ∗ in the ideal case, implying that vad →

f(x), and therefore that |εe| ≤ ε̄e in the non-ideal case. Consequently, the error dynamics (2.9)

represent stable linear evolution with three bounded disturbances εe, εu, and εb. Concurrent learning

(CL) adaptive approach is used to achieve an accurate parameter estimation and in turn smaller εe.
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The other disturbances εu and εb are compensated by a robust term. The adaptive, optimal, and

robust components are then unified to create the main control signal (2.6) to provide better stability

of the system with less control effort. Lyapunov arguments will establish UUB with exponential

convergence to the ultimate bound. The next section describes the controller components leading

up to the proposed approach to provide convergence of the solutions to small balls of the origin.

2.2.2 System with unstructured uncertainty

The system dynamic f(x) is assumed to be structurally unknown. The error dynamics are

ë = ÿd − f(x)− bu− d = ÿd − f(x)− b(u∗ + ∆u)− d (2.11)

= ÿd − f(x)− b∆u− u∗(b0 + ∆b)− d = −G(x, u∗) +D(d,∆u)− b0u
∗ + ÿd,

where G(x, u∗) = f(x) + u∗∆b contains unstructured uncertainties depending on measurable

variables x and u∗; andD(d,∆u) = −(b∆u+d) is the part with unmeasurable variables d and ∆u.

In this case, vad will be constructed by a neural network (NN) later in this chapter to compensate

for G(x, u∗).

Substituting the control law into (2.11) gives

ë = vopt + εe +D(d,∆u), (2.12)

where εe = vad −G(x, u∗) represents the estimation error.

Using the control law (2.6), the nonlinear system (2.5) turns into the linear system (2.12) with

input vopt, and the bounded disturbances D and εe. To address Solutions 1 and 2 for systems with

unstructured uncertainty, a NN adaptive approach is designed to estimate the unknown dynamics

and provide smaller εe. A robust term is designed to compensate for the term D. The adaptive

and optimal terms are then incorporated into the main control signal to provide better stability with

less control effort. UUB of system solutions are finally guaranteed using Lyapunov arguments.

The next section describes the controller components leading up to the proposed neuro-adaptive
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approach to provide convergence of the ZCBF and tracking error to smaller neighborhoods of the

origin over non-adaptive baseline approaches.

2.3 Proposed robust quadratic program-based adaptive controllers

In this section, adaptive controllers are designed to improve the convergence of barrier function

(safety performance) and error trajectory (tracking performance) over baseline non-adaptive con-

trollers in the presence of modeling error and disturbances. The proposed control approaches

meet multiple design specifications such as control optimality, tracking performance, dynamic

estimation, safety performance, and robustness to unmodeled dynamics. To provide context for

the proposed controllers, Fig. 2.2 illustrates their structures. The traditional QP-CLF and QP-

CLBF approaches act as an outer layer, synthesizing a stabilizing pointwise optimal control signal.

Though it works well empirically, performance is impacted by model uncertainty. The aim is to

incorporate an adaptive inner layer through the inclusion of a concurrent learning (CL) adaptive

control strategy.

We propose to incorporate the CL adaptive control component in the inner layer of the base-

line controllers. In the outer layer, vopt is optimized by the QP subject to robust RCLF (RCLF)

and CBF constraints, and control bounds. In the inner layer, the CL adaptive part identifies un-

known dynamics through the use of historical data plus the current instantaneous performance.

The identification rate is exponential. The optimal and adaptive signals vopt and vad are unified

with a feed-forward term to provide the main control signal u for the system. We formulate a QP

using an optimization problem to minimize the pointwise optimal signal part vopt, and in turn u.

System stability is maintained via a RCLF constraint. Following that, the CL approach is added so

the estimation error εe converges to zero or at least remains bounded by a small positive number.

Stability analysis of the system will be carried out using the Lyapunov argument.

15



System

Recording Data 
Algorithm

Fixed-Point 
Smoother

Controller
Quadratic 

Programing

RCLF
Constraint

Control 
Bounds

Adaptive

Outer Layer

Inner Layer

CBF 
Constraint

𝑑 

𝑥 

𝑍 

𝑥   

𝑦𝑑  
𝑣𝑎𝑑  

𝑣𝑜𝑝𝑡  𝑢 

𝑦 𝑑  

Figure 2.2: Proposed robust quadratic program-based adaptive control structure. The figure shows
the structure of QP-adaptive robust CLF (QP-ARCLF), while for QP-adaptive robust CLBF (QP-
ARCLBF), system is unstructured, adaptive part has a NN-based structure, and the CBF constraint
shown in red is incorporated in the QP formulation.

2.3.1 Robust control Lyapunov function (RCLF) and pointwise min-norm control (PWMNC)

law

With the aim of designing RCLF-based controllers for the system (2.5), this section provides an

overview of basic definitions for RCLF and PWMNC law for the problem of state-feedback design

for time-invariant systems [27].
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Definition 4. Consider the time-invariant system

ẋ = f(x, u, w), (2.13)

where f : X×U×W→ X is a continuous function with the state variable x ∈ X, the control input

u ∈ U, and the disturbance input w ∈W. A continuously differentiable function V (X) : X→ <+

is a RCLF for such system if and only if there exist a cv ∈ <+ and a function αv(x) such that

V (x) > cv and

inf
u∈U(x)

sup
w∈W(x,u)

[LfV (x, u, w) + αv(x)] < 0. (2.14)

Definition 5. Given a RCLF V (X) : X → <+ for the system (2.13), a lower semilcontinuous set

K : X→ U with nonempty convex values on V −1(cv,∞) is defined at points V (x) = cv as

K(x) := {u ∈ U(x) : D(x, u) < 0} (2.15)

with the control constraint U and the continuous function D : X× U→ < as

D(x, u) := max
w∈W(x)

[LfV (x, u, w) + αv(x)] . (2.16)

It follows that for all x ∈ V −1(cv,∞), the nonempty closed convex set

K(x) =U(x) ∩ {u ∈ U : D(x, u) ≤ 0} (2.17)

has a unique element of minimum norm. To achieve the minimal selection ofK(x) on V −1(cv,∞),

the following function is picked

m(x) = arg min
{
‖u‖ : u ∈ K(x)

}
. (2.18)
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Definition 6. Consider the time-invariant system

ẋ = f(x) + g(x)u+ h(x)w (2.19)

with continuous functions f(x), g(x), and h(x). In view of (2.15), the set K can be defined for

D(x, u) = Ψ0(x) + ΨT
1 (x)u (2.20)

with

Ψ0(x) :=∇V (x).f(x) + αv(x) + ‖∇V (x).h(x)‖ (2.21)

Ψ1(x) := [∇V (x).g(x)]T .

Definition 7. Given the set K(x) and the minimal selection m(x) from (2.17) and (2.18), the

following PWMNC law is applied for the system (2.19) for all x ∈ V −1(cv,∞)

m(x) =


− Ψ0(x)Ψ1(x)

ΨT1 (x)Ψ1(x)
if Ψ0(x) > 0

0 if Ψ0(x) ≤ 0

(2.22)

whose denominator never goes to zero as the set K(x) is nonempty when x ∈ V −1(cv,∞).

Remark 1. The PWMNC law (2.22) for the system (2.19) can be equivalently implemented by the

following QP optimization problem as claimed in [8, 5]

u = argmin uTu (2.23)

s.t. D(x, u) ≤ 0

which results in a QP-based RCLF controller.

Remark 2. Every RCLF can be also a CLF if cv = w = 0. It implies that a continuously differen-
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tiable radially unbounded function V (x) is a CLF for the system ẋ = f(x, u) if

x 6= 0 → inf
u∈U

LfV (x, u) < 0. (2.24)

2.3.2 QP-adaptive robust CLF (QP-ARCLF) for systems with structured uncertainties

In this section, QP-ARCLF is designed for systems with structured uncertainty to address the

Solution 1. Through this design, we aim to improve the tracking performance of the baseline non-

adaptive controllers which are deigned based on the CLF constraint. Using an adaptive controller

incorporated in the inner layer of the control structure, the unknown system dynamics are identified

and the estimates are sent to the outer layer (baseline CLF-based controller) to provide better

tracking performance in the presence of modeling error. This way, the size of convergence ball will

be decreased over the baseline methods via estimation of the unknown dynamics and compensation

for the disturbances.

A. Outer layer design

Define ξ = [e ė]T so that Eq. (2.9) becomes

ξ̇ = Fξ +Gvopt +Gεe −Gεb −Gεu (2.25)

with

F =

 0 I

0 0

 , G =

 0

I

 . (2.26)

To achieve a rapidly exponentially stabilizing RCLF for the system, we begin by defining

ξγ = [e/γ ė]T and Riccati equations [4, 7]

F TPγ + PγF −
1

γ
PγGG

TPγ +
1

γ
DγQDγ = 0, (2.27)
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where Q is a symmetric positive-definite matrix; γ is the tracking convergence rate; Pγ = DγPDγ

such that P = P T > 0 solves the continuous algebraic Riccati equation (CARE) F TP + PF −

PGGTP + Q = 0; and Dγ is defined as Dγ = diag(I/γ, I). All three disturbances εe, εu, and εb

are matched with vopt acting on the system (2.25). Therefore all the disturbances are compensated

for, in the RCLF structure, via vopt.

The following positive-definite Lyapunov function in the exponentially stabilizing RCLF frame-

work [4]

Vγ(ξ) = ξTPγξ (2.28)

satisfies the inequality conditions

α1‖ξ‖2 ≤ Vγ(ξ) ≤
α2

γ2
‖ξ‖2. (2.29)

Take derivative of (2.28) and substitute (2.25) into it to obtain

V̇γ(ξ) = ξT (PγF + F TPγ)ξ + 2ξTPγG(vopt + εe − εu − εb). (2.30)

On the other hand, the derivative of (2.28) can be written

V̇γ(ξ) =
∂Vγ(ξ)

∂ξ
ξ̇ = LFVγ(ξ) + LGVγ(ξ)(vopt + εe − εu − εb), (2.31)

where LFVγ(ξ) = ∂Vγ(ξ)

∂ξ
Fξ and LGVγ(ξ) = ∂Vγ(ξ)

∂ξ
G are the Lie derivatives of Vγ(ξ) with respect

to F and G, respectively.

Comparing (2.30) and (2.31), one has

LFVγ(ξ) = ξT (PγF + F TPγ)ξ, LGVγ(ξ) = 2ξTPγG. (2.32)
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Exponential convergence of the error trajectory ξ requires satisfying

V̇γ(ξ) +
α3

γ
Vγ(ξ) ≤ 0, (2.33)

where α3 = λminQ
λmaxP

, and λmin(.) and λmax(.) denote the minimum and maximum eigenvalues of a

matrix, respectively. In doing so, the error signal satisfies

‖ξ‖ ≤ 1

γ

√
α2

α1

e−
α3
2γ ‖ξ(0)‖. (2.34)

The pointwise optimal control signal vopt can be found as

vopt(ξ) = {vopt : Ψ0(ξ) + ΨT
1 (ξ)vopt ≤ 0}, (2.35)

where the RCLF constraint

Ψ0(ξ) + ΨT
1 (ξ)vopt ≤ 0 (2.36)

satisfies the constraint (2.33). Using Eqs. (2.31), (2.32), and (2.33), Ψ0(ξ) and Ψ1(ξ) are found to

be

Ψ0(ξ) =LFVγ(ξ) +
α3

γ
Vγ(ξ) +R(ξ) (2.37)

Ψ1(ξ) =LGVγ(ξ),

where the robust term

R(ξ) = Kr‖LGVγ(ξ)‖ (2.38)

compensates for the effects of εu and εb for a proper selection of the gain Kr > 0.
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Due to Definition 7, the following PWMNC law provides an open-loop solution to Eq. (2.35)

vopt(ξ) =


− Ψ0(ξ)Ψ1(ξ)

ΨT1 (ξ)Ψ1(ξ)
if Ψ0(ξ) > 0

0 if Ψ0(ξ) ≤ 0

(2.39)

for all ξ ∈ V −1
γ (cv,∞) based upon Definitions 4, 5, 6, and 7. Note that the law (2.39) never

divides by zero as the set (2.35) is nonempty for ξ ∈ V −1
γ (cv,∞). In other words, the law (2.39) is

implementable and the RCLF constraint (2.36) could be satisfied through Ψ1(ξ) whenever Vγ(ξ) >

cv [27].

Due to Remark 1, the following QP is synthesized subject to the RCLF and control bound

constraints as

vopt =argmin vToptvopt + ld2 (2.40)

s.t. Ψ0(ξ) + ΨT
1 (ξ)vopt ≤ d

+ vopt ≤ b0umax + us

− vopt ≤ b0umax − us

where us = −vad + ÿd. The QP problem (2.40) bounds u through a relaxation of the RCLF

constraint associated to the penalty coefficient l. The last two constraints bound the main control

signal u such that −umax ≤ u ≤ umax.

Remark 3. Since in the above optimization problem, the RCLF constraint guarantees stability

in the presence of εe, εu, and εb, the proposed QP-ARCLF is robust against control coefficient

uncertainty.

Remark 4. When control limit constraints are not actively enforced, the system will have the

desired convergence properties. When actively enforced, there will be a control defect, ∆u =

u− u∗, and tracking performance may degrade.

22



B. Inner layer design

The CL adaptive control inner layer aims to estimate/recover the true system dynamics f(x)

using both recorded and instantaneous information of the system states. The reasons for CL adap-

tive control are two-fold: (i) it guarantees exponential convergence of parameter vector and (ii) it

does not require the PE condition to always hold (but to have held at some point in time). Esti-

mating vad from Eq. (2.8) involves updating the parameter vector θ. The modified form of the CL

adaptive law [21, 28] will be:

˙̂
θ = −ηaΦ(x)ξTPγG− ηb

m∑
i=1

Φ(xi)ε̂
T
ei, (2.41)

where m is the number of recorded data points kept; and ηa and ηb are the adaptation convergence

coefficients for the current (first term) and recorded (second term) adaptation parts, respectively.

For the recorded part, Φ(xi) and εei are realized for i-th recorded data, where i ∈ [1, 2, ...,m]. Since

θ∗ is not known, a proxy for it is estimated from the closed-loop system dynamics. In particular,

an estimate for εei is obtained from

ε̂ei = θ̂TΦ(xi)− f̂(xi) with f̂(xi) = ˙̂x2 − vi, (2.42)

where v = b0u (vi is the i-th recorded data) and ẋ2 can be estimated using a fixed-point smoother

algorithm [29, 30].

Remark 5. Recording data points [22]: Define the history stack Z = [Φ(xi), ...,Φ(xm)] ∈ <r×m

whose acceptance policy requires storing points that are sufficiently different from the last point

stored. The minimum cardinality required is the basis function dimension r, while a larger m

provides a richer, over constrained recorded data stack. If yd is exciting over a finite interval (Φ(x)

is exciting), Z will have r linearly independent columns (rankZ = r), and in turn exponential

convergence of the unknown parameter vector θ is guaranteed. There is no need to require the

PE condition of the Φ(x). In case that the history stack gets full, a data point remover algorithm
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removes one point and adds another one to maximize the minimum singular value of the history

stack σmin(Z), which increases the rate of the estimation convergence. Note that the σmin(Z)

may be more maximized if a larger maximum number of stored data mmax is chosen. Also, the

minimum number of the stored data mmin should be equal to the basis function dimension r.

C. Stability analysis

This section is devoted to perform stability analysis for the proposed joint controller QP-

ARCLF. The candidate Lyapunov function will be a function of both trajectory error ξ and the

parameter estimation error θ̃ with εb seen as an exogenous input and εu due to the control defect.

Consider the following candidate Lyapunov function

V (θ̃, ξ) =
1

2
θ̃Tη−1θ̃ +

1

2
ξTPγξ, (2.43)

where for simplicity η = ηa = ηb; see Eq. (2.41).

Theorem 1. Assume that |εb| ≤ ε̄b, |∆u| ≤ ε̄u over the time domain of interest, and yd is exciting

over a finite interval. Given the Lyapunov function (2.43), the QP optimization (2.40) subject to

the RCLF constraint, and the CL adaptation control law (2.41), if rank(Z) = r, then (ξ, θ̃) is UUB

with exponential convergence rate for all unknown b, unknown θ ∈ <r, and any x(0) [31].

Proof. Taking the time derivative of (2.43) gives

V̇ (θ̃, ξ) = θ̃Tη−1 ˙̃θ + ξTPγ ξ̇. (2.44)

Substituting (2.10), (2.25), and (2.41) into (2.44) yields

V̇ (θ̃, ξ) =− θ̃TΦ(x)ξTPγG− θ̃T
m∑
i=1

Φ(xi)Φ(xi)
T θ̃ (2.45)

+ ξTPγFξ + ξTPγG(vopt + θ̃TΦ(x)− εu − εb)
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for which utilizing

2γPγF =
(
PγGG

TPγ −DγQDγ

)
, (2.46)

one has

V̇ (θ̃, ξ) =− θ̃T
m∑
i=1

Φ(xi)Φ(xi)
T θ̃ − 1

2γ
ξTDγQDγξ (2.47)

+
1

2γ
ξT
(
PγGG

TPγ
)
ξ + ξTPγGvopt − ξTPγG(εu + εb).

Case 1: Ψ0(ξ) > 0

The PWMNC law vopt is determined from the first condition of (2.39) for which incorporation

of (2.32) and (2.37), one can write

vopt = −
ξT (PγF + F TPγ)ξ + α3

γ
ξTPγξ +Kr‖2ξTPγG‖

2ξTPγG
. (2.48)

Substituting vopt into (2.47) and using (2.46) yields

V̇ (θ̃, ξ) =− θ̃T
m∑
i=1

Φ(xi)Φ(xi)
T θ̃ − 1

2γ
ξTDγQDγξ +

1

2γ
ξT
(
PγGG

TPγ
)
ξ − ξTPγG(εu + εb)

− 1

2
ξT
(

1

γ
PγGG

TPγ −
1

γ
DγQDγ

)
ξ − α3

2γ
ξTPγξ −Kr‖ξTPγG‖.

(2.49)

Canceling the similar terms and bounding the control defect gives

V̇ (θ̃, ξ) = −θ̃T
m∑
i=1

Φ(xi)Φ(xi)
T θ̃ − ξTPγG(εu + εb)−

α3

2γ
ξTPγξ −Kr‖ξTPγG‖ (2.50)

which further reduces to

V̇ (θ̃, ξ) ≤ −λmin
( m∑
i=1

Φ(xi)Φ(xi)
T
)
‖θ̃‖2 − α3

2γ
λmin(Pγ)‖ξ‖2 − ‖ξTPγG‖ (Kr − (ε̄b + ε̄u)) .

(2.51)

25



Define H =
∑m

i=1 Φ(xi)Φ(xi)
T = ZZT . According to Remark 5, as soon as the history

stack Z becomes full rank, H is positive definite. Selection of the gain Kr determines the type

of system stability such that (i) if Kr = ε̄b + ε̄u, the system would be exponentially stabilizing,

(ii) if Kr > ε̄b + ε̄u, the system is asymptotically stable, and (iii) if Kr < ε̄b + ε̄u, the system

is concluded to be UUB. Note that in the absence of control saturation, ∆u vanishes and in turn,

smaller ultimate bound may be established.

Case 2: Ψ0(ξ) ≤ 0

From (2.37), Ψ0(ξ) ≤ 0 implies that

ξT (PγF + F TPγ)ξ +
α3

γ
ξTPγξ +Kr‖2ξTPγG‖ ≤ 0. (2.52)

Utilizing (2.52) to simplify (2.45), recalling that if Ψ0(ξ) ≤ 0, then vopt = 0, and following the

same steps results in (2.51), implying that the same results are obtained.

Remark 6. Proof of Theorem 1 shows that the system solutions are bounded inside the following

compact balls Bξ and Bθ̃ if Kr < ε̄b + ε̄u

‖ξ‖ ≤Bξ

(
θ̃, Kr − (εb + εu), γ

)
(2.53)

‖θ̃‖ ≤Bθ̃

(
ξ,Kr − (εb + εu), λmin(H)

)
.

This shows that the error trajectory converges to a neighborhood of the origin with size Bξ that

depends on the parameter estimation performance, disturbance compensation by the robust term,

and the convergence coefficient γ. It implies that with a proper dynamic estimation and disturbance

attenuation, there is no need to increase the parameter γ to achieve a nice tracking performance.

Hence, under the same convergence rate, the proposed controller could outperform the baseline

QP-CLF with regard to the tracking performance and control effort.
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2.3.3 QP-adaptive robust CLBF (QP-ARCLBF) for systems with unstructured uncertainties

In this section, the second controller QP-ARCLBF is formulated for systems with unstructured

uncertainties to address the Solutions 1 and 2. Through this design, the error trajectory and the

barrier violation converge to smaller neighborhoods of the origin over baseline non-adaptive meth-

ods under dynamic estimation and disturbance attenuation. This section presents the proposed

controller, which consists of a high level control synthesis method and a low-level adaptive com-

ponent. The low-level part, neural network concurrent learning (NNCL), provides an estimate of

the unknown plant to the high-level controller, which generates a pointwise optimal control signal

via a QP-RCLBF. Control and safety constraints are enforced during the pointwise optimal control

synthesis. First, the general setup of the optimizing control is described with regards to expected

stabilization performance via a RCLF, where the added robust term compensates for D(d,∆u)

and other modeling error terms. The barrier constraints are then formulated to create desired safe

sets. Since model uncertainty impacts both of these, the NNCL adaptive is deigned to estimate the

unknown dynamics. These components are all unified and UUB of tracking and estimation signals

is proven.

A. Control Lyapunov function (CLF) and pointwise min-norm control (PWMNC)

Utilize ξ = [e, ė]T to write (2.12) as

ξ̇ = Fξ +B(εe +D + vopt) (2.54)

for which using the same Lyapunov function (2.28) and the CLF condition (2.33), the error tra-

jectory ξ converges to zero with convergence rate α3

2γ
, when εe and D vanish. To satisfy the CLF

condition, the PWMNC law (2.39) can be applied with same Ψ0(ξ) and Ψ1(ξ) from (2.37), and the

robust term R(ξ) = Kr‖LBVγ(ξ)‖ to compensate for unmeasurable disturbance D(d,∆u). Using

the PWMNC law (2.39), the RCLF condition (2.36) holds for sufficiently small εe +D, relative to

R(ξ).
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B. Zeroing control barrier function (ZCBF)

To impose a velocity constraint for the system at the moment a disturbance encountered, control

barrier functions can be applied [23]. According to Definition 3, a controller is sought keeping the

state within the super level-set

C = {x ∈ <ns : h(x) ≥ 0}, (2.55)

where h(x) : <ns → < is a continuously differentiable ZCBF if

ḣ(x) + α4h(x) ≥ 0 (2.56)

on the set Int(C) = {x ∈ <ns : h(x) > 0} for α4 > 0. Then, if the initial velocity starts in the

set C, it will stay in set C for all t ≥ 0 (i.e., C is forward invariant). Here, a velocity constraint

is desired to hold even in the presence of a disturbance. When a disturbance is encountered, the

system velocity must be remained between a maximum velocity vmax and a minimum velocity

vmin such that vmin ≤ x2 ≤ vmin.

For this purpose, the associated positive ZCBFs are

h1(x) = x2 − vmin ≥ 0 and h2(x) = vmax − x2 ≥ 0 (2.57)

for which the equivalent ZCBF conditions to Eq. (2.56) are

− vopt + (ÿd − vad +G−D) + α41h1(x) ≥ 0 (2.58)

vopt − (ÿd − vad +G−D) + α42h2(x) ≥ 0,

where α4i > 0 for i = 1, 2. Since G and D are unknown, the ZCBF conditions (2.58) are not
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realizable. To solve this issue, let us define εe = vad − (G−D) to obtain

− vopt + ÿd + α41h1(x) ≥ εe (2.59)

vopt − ÿd + α42h2(x) ≥ −εe.

In view of (2.59), with a proper estimation ofG and compensation forD, the ZCBF constraints

will be bounded in a neighborhood of size εe. The following section covers the design of the NNCL

in conjunction with a fixed-point smoother to generate vad for the main control signal u and the

ZCBF conditions (2.59) to be implementable.

C. Neuro-CL adaptive control (NNCL)

Here, a single hidden layer (SHL) perceptron NN serves as the universal approximator for the

unknown part G(x, u∗) [32, 33]. Thus, the adaptive part vad can be defined as

vad(Ŵ1, Ŵ2, x, u
∗) = Ĝ(x, u∗) = Ŵ2

T
σ(Z), (2.60)

where Z = Ŵ1

T
z ∈ <nh; z = [bin, x, u

∗]T ∈ <(ns+nu+1) is the input vector with bias bin ≥ 0

to the NN ; Ŵ1 ∈ <(ns+nu+1)×nh and Ŵ2 ∈ <(nh+1) are NN weight matrices for the input later

to hidden layer and hidden layer to output layer, respectively; ns, nu, and nh are the number of

the control, number of the states, and number of the hidden layer neurons, respectively; σ(Z) =

[bσ, σ1(Z1), ..., σnh(Znh)]T ∈ <(nh+1) with bias bσ ≥ 0; and σi(Zi) = 1
1+e−aiZi

is the sigmoid

activation function for i = 1, ..., nh.

To achieve the best approximation ofG(x, u∗) (e.g., smallest bounded outcome vad−G(x, u∗)),

the following CL adaptation laws update the weight matrices Ŵ1 and Ŵ2 [34]
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˙̂
W1 =− ηa1ξ

TPγBzŴ2

T
σ̇(Ŵ T

1 z)− ηa1ηe‖ξ‖Ŵ1 − ηb1
m∑
i=1

ε̂eiziŴ
T
2 σ̇(Ŵ T

1 zi) (2.61)

˙̂
W2 =− ηa2ξ

TPγB
(
σ(Ŵ T

1 z)− σ̇(Ŵ T
1 z)Ŵ T

1 z
)
− ηa2ηe‖ξ‖Ŵ2

− ηb2
m∑
i=1

ε̂ei

(
σ(Ŵ T

1 zi)− σ̇(Ŵ T
1 zi)Ŵ

T
1 zi
)
,

where ηa1, ηa2, ηb1, and ηb2 are the adaptation convergence coefficients; and ε̂ei can be computed

as follows

ε̂ei = vadi − M̂(xi, u
∗
i , d,∆u) with M̂ = ˙̂x2 − vi, (2.62)

where M̂ = G−D; v = b0u
∗; and a fixed-point smoother computes x̂2 [30].

Remark 7. In the absence of the control defect and disturbance, M̂ = G and in turn ε̂ei = vadi−G.

Remark 8. The violation of system velocity from the safe set C is bonded by εe whose estimated

value is ε̂e = vad − M̂ .

Remark 9. Recording data points: To achieve the best convergence of vad to G, the candidate

point should be sufficiently different from the last point recorded to be eligible for storing. This

way the history stack H = [z1, ..., zm] will have at least ns + nu + 1 linearly independent columns

(rank(H) = ns + nu + 1) and in turn provide full-rank updates in Eq. (2.61) for exponential

convergence.

D. Unified controller

The PWMNC law (2.39) resolves the RCLF condition. This section formulates an online

closed-loop QP to satisfy the RCLF condition (2.36), and to apply control bounds and velocity

constraints (2.59) to the system. Meanwhile, G(x, u) is estimated by the NNCL adaptive part and

D(d,∆u) is compensated by the robust part R(ξ). The main control signal u is enforced to be

bounded by two control bounds (CBs), such that CB1 : u ≤ umax and CB2 : −umax ≤ u. Due to
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Remark 1, the QP with the above design requirements can be formulated as

vopt = argmin
(d,vopt)∈<nu+1

vopt
Tvopt + ld2 (2.63)

s.t. RCLF : −d + ΨT
1 (ξ)vopt ≤ −Ψ0(ξ)

ZCBF1 : + vopt ≤ α41h1(x) + (ÿd − ε̂e)

ZCBF2 : −vopt ≤ α42h2(x)− (ÿd − ε̂e)

CB1 : + vopt ≤ b0umax + us

CB2 : −vopt ≤ b0umax − us,

where us = −vad + ÿd and l is a penalty coefficient to relax the RCLF constraint when the CB and

ZCBF are applied.

Remark 10. The control bounds (CBs) and the velocity bounds (ZCBFs) may not be jointly real-

izable when an external disturbance is encountered even if the RCLF constraint is highly relaxed

(small l). Feasibility of the optimization problem (2.63) depends on (i) the underlying nonlinear

control system, (ii) the magnitude of the disturbance, (iii) the state of the system at its onset, and

(iv) whether the CBs and ZCBFs are in conflict. Under this circumstance, a priority should be

made by the engineer to determine which constraint is more important; the other constraint should

be dropped or relaxed.

E. Stability analysis

This section provides a unified stability analysis of the QP controller, NNCL adaptive estimator,

and RCLF part. Consider the following candidate Lyapunov function

V (W̃1, W̃2, ξ) =
1

2
tr
(
W̃ T

1 η
−1
1 W̃1

)
+

1

2
W̃ T

2 η
−1
2 W̃2 +

1

2
ξTPγξ, (2.64)

where tr(.) stands for trace of a matrix. To simplify the stability analysis, let η1 = ηa1 = ηb1 and

η2 = ηa2 = ηb2.
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Theorem 2. Assume both disturbance d and control defect ∆u are bounded, and yd is exciting over

a finite interval. Given the Lyapunov function (2.64), the QP program (2.63), and the adaptation

mechanism (2.61), if rank(H) = ns + nu + 1, then (ξ, W̃ ) is UUB for unknown b, unstructured

dynamics f(x), and any x(0) [35].

Proof. Define W̃1 = Ŵ1 −W ∗
1 and W̃2 = Ŵ2 −W ∗

2 . Taking the derivative (2.64) gives

V̇ = tr
(
W̃ T

1 η
−1
1

˙̂
W1

)
+ W̃ T

2 η
−1
2

˙̂
W2 + ξTPγ ξ̇. (2.65)

Substituting the error dynamics (2.12) into (2.65) yields

V̇ = ξTPγFξ + ξTPγB(vopt + vad −G+D) + tr
(
W̃ T

1 η
−1
1

˙̂
W1

)
+ W̃ T

2 η
−1
2

˙̂
W2. (2.66)

Using (2.27), the first term of (2.66) is given as

V̇ =
1

2γ
ξT
(
PγBB

TPγ
)
ξ − 1

2γ
ξTDγQDγξ + ξTPγB(vopt + vad −G+D) (2.67)

+ tr
(
W̃ T

1 η
−1
1

˙̂
W1

)
+ W̃ T

2 η
−1
2

˙̂
W2.

Case 1: Ψ0(ξ) > 0

For this case, incorporating the first condition of (2.39) instead of vopt into (2.67) gives

V̇ =
1

2γ
ξT
(
PγBB

TPγ
)
ξ − 1

2γ
ξTDγQDγξ + ξTPγB(vad −G+D) + tr

(
W̃ T

1 η
−1
1

˙̂
W1

)
(2.68)

+ W̃ T
2 η
−1
2

˙̂
W2 −

1

2
ξT
(
PγF + F TPγ

)
ξ − α3

2γ
ξTPγξ −Kr‖ξTPγG‖.

Substituting PγF + F TPγ from (2.27) into (2.68) and canceling the similar terms yields

V̇ = −α3

2γ
ξTPγξ + tr

(
W̃ T

1 η
−1
1

˙̂
W1

)
+ W̃ T

2 η
−1
2

˙̂
W2 −Kr‖ξTPγB‖+ ξTPγB(vad −G+D).

(2.69)
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Substitution of the NNCL adaptation laws (2.61) into (2.69) and noting that

vad −G = Ŵ2

T
σ(Ŵ T

1 z)−W ∗T
2 σ(W1

∗T z) (2.70)

gives

V̇ =ξTPγB
(
Ŵ2

T
σ(Ŵ T

1 z)−W ∗T
2 σ(W1

∗T z)
)
− W̃ T

2 ξ
TPγB

(
σ(Ŵ T

1 z)− σ̇(Ŵ T
1 z)Ŵ T

1 z
)

(2.71)

− W̃ T
2

m∑
i=1

ε̂ei

(
σ(Ŵ T

1 zi)− σ̇(Ŵ T
1 zi)Ŵ

T
1 zi
)
− W̃ T

2 ηe‖ξ‖Ŵ2 − tr
(
ηeW̃

T
1 ‖ξ‖Ŵ1

)
− tr

(
W̃ T

1 ξ
TPγBzŴ2

T
σ̇(Ŵ T

1 z)
)
− tr

(
W̃ T

1

m∑
i=1

ε̂eiziŴ
T
2 σ̇(Ŵ T

1 zi)

)

− α3

2γ
ξTPγξ −Kr‖ξTPγB‖+ ξTPγBD.

Utilizing the first-order Taylor approximation of σ(W1
∗T z) about the weight W1 as [22]

σ(W1
∗T z) = σ(Ŵ T

1 z)− σ̇(Ŵ T
1 z)W̃ T

1 z, (2.72)

the first line of Eq. (2.71) can be written as

Ŵ2

T
σ(Ŵ T

1 z)−W ∗T
2 σ(W1

∗T z) =W̃ T
2 σ(Ŵ T

1 z) + Ŵ T
2 σ̇(Ŵ T

1 z)W̃ T
1 z

− W̃ T
2 σ̇(Ŵ T

1 z)Ŵ T
1 z + W̃ T

2 σ̇(Ŵ T
1 z)W1

∗T z

whose substitution into (2.71) and canceling similar terms gives
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V̇ =− W̃ T
2

m∑
i=1

ε̂ei

(
σ(Ŵ T

1 zi)− σ̇(Ŵ T
1 zi)Ŵ

T
1 zi
)
− tr

(
W̃ T

1

m∑
i=1

ε̂eiziŴ
T
2 σ̇(Ŵ T

1 zi)

)
+ ξTPγBD

(2.73)

− W̃ T
2 ηe‖ξ‖(W̃2 +W ∗

2 )− tr
(
ηeW̃

T
1 ‖ξ‖(W̃1 +W ∗

1 )
)

− α3

2γ
ξTPγξ −Kr‖ξTPγB‖+ ξTPγBW̃

T
2 σ̇(Ŵ T

1 z)W1
∗T z,

where ε̂ei can be written as

ε̂ei = vadi − Ĝ(xi, u
∗
i ) = vadi −G(xi, u

∗
i ) + εsi = Ŵ2

T
σ(Ŵ T

1 zi)−W ∗T
2 σ(W1

∗T zi) + εsi (2.74)

such that εs = G− Ĝ is the estimation error of the fixed-point smoother.

Utilizing the first-order Taylor approximation of σ(W1
∗T zi) about the weight W1 (similarly as

Eqs. (2.72) and (2.73)), Eq. (2.74) can be written as

ε̂ei = W̃ T
2 σ(Ŵ T

1 zi) + Ŵ T
2 σ̇(Ŵ T

1 zi)W̃
T
1 zi − W̃ T

2 σ̇(Ŵ T
1 zi)Ŵ

T
1 zi + W̃ T

2 σ̇(Ŵ T
1 zi)W1

∗T zi + εsi.

(2.75)

By adding and subtracting
∑m

i=1 ε̂eiε̂
T
ei in (2.73), substituting (2.75) into it, and canceling the

similar terms, (2.73) can be written as

V̇ =− α3

2γ
ξTPγξ −Kr‖ξTPγB‖+ ξTPγB

(
W̃ T

2 σ̇(Ŵ T
1 z)W1

∗T z +D
)

(2.76)

−
m∑
i=1

ε̂eiε̂
T
ei +

m∑
i=1

(W̃ T
2 σ̇(Ŵ T

1 zi)W1
∗T zi + εsi)ε̂

T
ei − W̃ T

2 ηe‖ξ‖(W̃2 +W ∗
2 )

− tr
(
ηeW̃

T
1 ‖ξ‖(W̃1 +W ∗

1 )
)
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from which one has

V̇ ≤− α3

2γ
λmin(Pγ)‖ξ‖2 −Kr‖ξTPγB‖+ ‖ξTPγB‖

(
‖W̃ T

2 σ̇(Ŵ T
1 z)W1

∗T z‖+ |D|
)

(2.77)

−
m∑
i=1

‖ε̂ei‖2 +
m∑
i=1

‖ε̂ei‖(‖W̃ T
2 σ̇(Ŵ T

1 zi)W1
∗T zi‖+ |εsi|)− ηe‖ξ‖

(
‖W̃2‖2 + ‖W̃1‖2

)
+ ηe‖ξ‖

(
‖W̃2‖‖W ∗

2 ‖+ ‖W̃1‖‖W ∗
1 ‖
)
.

Let

‖ε̂ei‖ ≤ ε̄ei (2.78)

|εsi| ≤ ε̄si

‖W̃ T
2 σ̇(Ŵ T

1 z)W1
∗T z‖ ≤ Q1

‖W̃ T
2 σ̇(Ŵ T

1 zi)W1
∗T zi‖ ≤ Q2

|D| ≤ D̄

W̃ = [‖W̃1‖, ‖W̃2‖]T

W ∗ = [‖W ∗
1 ‖, ‖W ∗

2 ‖]T

with Q1, Q2, ε̄ei, ε̄si, D̄ > 0 to obtain

V̇ ≤− α3

2γ
λmin(Pγ)‖ξ‖2 − ‖ξTPγB‖

(
Kr −Q1 − D̄

)
−

m∑
i=1

ε̄2ei +
m∑
i=1

ε̄ei(Q2 + ε̄si)

− ηe‖ξ‖‖W̃‖2 + ηe‖ξ‖‖W̃‖‖W ∗‖. (2.79)

ChoosingKr = α5+Q1+D̄ with α5 > 0 and assuming that ‖W ∗‖ ≤ W̄ ∗(W̄ ∗ > 0), Eq. (2.79)

reduces to
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V̇ ≤− α3

2γ
λmin(Pγ)‖ξ‖2 − α5‖PγB‖‖ξ‖ −

m∑
i=1

ε̄2ei +
m∑
i=1

ε̄ei(Q2 + ε̄si) (2.80)

− ηe‖ξ‖‖W̃‖2 + ηeW̄
∗‖ξ‖‖W̃‖.

For a sufficiently large convergence rate γ and robust gain α5, V̇ ≤ 0 outside of the following

balls:

‖ξ‖ ≥
C1 +

√
C2

1 + 2α3

γ
λmin(Pγ)C2

α3

γ
λmin(Pγ)

: Bξ (2.81)

‖W̃‖ ≥ C3 +
√
C2

3 + 4ηe‖ξ‖C4

ηe‖ξ‖
: BW̃ ,

where

C1 = ηeW̄
∗‖W̃‖ − ηe‖W̃‖2 − α5‖PγB‖ (2.82)

C2 =
m∑
i=1

ε̄ei(Q2 + ε̄si)−
m∑
i=1

ε̄2ei

C3 = ηeW̄
∗‖ξ‖

C4 = C2 −
(
α3

2γ
λmin(Pγ)‖ξ‖2 + α5‖PγB‖‖ξ‖

)
.

Case 2: Ψ0(ξ) ≤ 0

In this case, Ψ0(ξ) ≤ 0 implies that

LFVγ(ξ) ≤ −
α3

γ
Vγ(ξ)−R(ξ) = −α3

γ
ξTPγξ − 2Kr‖ξTPγG‖. (2.83)

Since ξTPγFξ = 1
2
LFVγ(ξ), we have

ξTPγFξ ≤−
α3

2γ
ξTPγξ −Kr‖ξTPγG‖. (2.84)
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Now, substituting vopt = 0 and (2.84) into (2.66), and following the same steps results in the same

balls presented in (2.81).

Remark 11. Theorem 2 shows that in both cases I and II, all system solutions are UUB. It implies

that the unified proposed controller renders the bounded solution for the tracking error trajectories

and estimation errors to the compact balls Bξ and BW̃ , respectively. The boundedness of system

solutions to these balls are only guaranteed under the assumption of boundedness of D(d,∆u) i.e.,

both disturbance and control defect are bounded.

Remark 12. Proof of the Theorem 2 shows that the system solutions are bounded inside the com-

pact balls Bξ and BW̃ as

‖ξ‖ ≤ Bξ(W̃ ,Kr −D, γ) and ‖W̃‖ ≤ BW̃ (ξ,Kr −D, ηe). (2.85)

This shows that with a good dynamic estimation and compensation of D, the error trajectory con-

verges to a smaller neighborhood of the origin compared with baseline non-adaptive QP-CLBF,

while no high value of γ is needed. In addition, convergence of the barrier function to a smaller

ball is guaranteed. Thus, the proposed controller performs better with regard to the tracking perfor-

mance and control effort with the same convergence coefficient as used for non-adaptive baseline

method.

2.4 Simulation results for QP-ARCLF and QP-ARCLBF

2.4.1 Improved results of QP-ARCLF over baseline QP-CLF

To show the performance of the proposed approach QP-ARCLF, we apply our controller to an

illustrative nonlinear system example. We then compare the proposed method with the baseline

QP-CLF regarding to the control optimality, tracking performance, and robustness to the system

parameter and control coefficient uncertainties.

Design parameters of the controllers are tuned as γ = 2, umax = 3, l = 100, ηa = ηb = 1, and
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mmax = 5. Consider the following nonlinear second-order inverted pendulum system as:

ẋ1 = x2 (2.86)

ẋ2 = sin(x1)− x2|x2|+ u,

where x = [x1, x2]T is the vector of angular position and angular velocity; u is the joint torque;

Φ(x) = [sin(x1), x2|x2|]T ∈ <2, θ∗ = [1,−1]T ∈ <2, and b = 1.

A. Evaluation of the proposed controller

Fig. 2.3 shows tracking performance of both position and velocity of the inverted pendulum

for the proposed controller QP-ARCLF. It can be seen that the system states accurately track the

desired trajectories with a root mean square error (RSME) of 0.016 rad for position tracking and

0.022 rad/s for velocity tracking. Fig. 2.3 also shows the joint torque u and the optimal control

signal vopt, which are optimized by the QP framework (2.40). It is seen that vopt is minimized to

zero, when the history stack becomes full rank (rank(Z)=2) and in turn the system dynamics are

fully identified by the adaptation mechanism.

Fig. 2.4 demonstrates estimation performance for the parameter vector θ̂ using the CL adap-

tation mechanism (2.41). As expected from Theorem1, the estimated parameters exponentially

converge to a compact ball around their true values when rank(Z)=2. Fig. 2.4 illustrates estima-

tion performance of the unknown dynamics f(x) and convergence of its estimation error ε̂ei for

i = 1, ...,mmax = 5. It can be observed that after getting the rank condition satisfied, f(x) is

accurately identified. This figure also shows convergence of all ε̂ei, which implies that estimated

stored unknown dynamics converge to the current estimate of the unknown dynamics for all relat-

ing columns of the history stack. It shows that f̂(x) in (2.42) converges to a compact ball around

f(x).

B. Performance comparison with baseline QP-CLF

To test robustness and control optimality of the proposed controller QP-ARCLF, a robustness
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Figure 2.3: Results of QP-ARCLF: tracking performance and control effort. The control vopt
vanishes when the system is identified.

test is performed over the baseline QP-CLF controller. In this test, the system parameters θ and the

control coefficient b are perturbed so the uncertainties ∆θ and ∆b are iteratively changed with a

resolution of 10% from -50% to +50%. Fig. 2.5 shows that the tracking performance RMSEx of the

proposed controller remains unchanged and consistent for positive values of ∆θ while the baseline

QP-CLF controller has increasing tracking error. An increasing trend is observed on RMSEx for

both controllers as ∆b increases for negative values of ∆θ. However, tracking performance of the

proposed controller is still better than the baseline controller. Fig. 2.5 also shows that although the

control cost RMSEu of the proposed controller is lower than the one for the baseline controller,
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Figure 2.4: Results of QP-ARCLF: the left figure shows weight convergence, the middle figure
shows estimation performance of the unknown dynamics f(x), and the right figure shows conver-
gence of its estimation error ε̂ei for i = 1, ...,mmax.

both controllers perform similarly regarding the control effort for perturbed parameters. This figure

in general shows that the surfaces of RMSEx and RMSEu for the proposed controller remain

always below the baseline controller, implying better tracking performance and control optimality

of the proposed approach over the baseline method.

Fig. 2.6 illustrates RMSE values of weight convergence and ε̂e convergence in the presence

of ∆θ and ∆b. It is seen that although the error values increase as the parameter uncertainties

increase, the RMSE values are bounded in small balls around the origin.

2.4.2 Improved results of QP-ARCLBF over baseline QP-CLBF

In this section, the effectiveness of QP-ARCLBF is shown by performing simulation studies on the

same inverted pendulum, which is now affected by an unknown disturbance d. In the simulation,

θ and θ̇ are the position and velocity of the pendulum, and the system dynamics are assumed to be

structurally unknown. The controller parameters chosen are (i) dynamic estimation: ηa1 = ηa2 =

ηb1 = 1, ηb2 = 5, ηe = 1 (adaptation convergence rate), bσ = bin = 1 (network bias), m = 5

(number of recorded data), nu = 1 (input number), ns = 2 (state number), nh = 8 (hidden layer

number); (ii) safety constraint: α41 = α42 = 100; (iii) control constraint: umax = 2; (iv) tracking

error convergence rate: γ = 1; (v) robust gain: Kr = 1.2; and (vi) relaxing coefficient of RCLF

constraint: l = 20.
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A. Tracking and estimation performances

In this section, the main control signal u should not exceed from ± 2 N.m. The tracking

performance and control effort of the proposed controller QP-ARCLBF are illustrated in Fig. 2.7.

From Figs. 2.7(a) and 2.7(b), it can be seen that both position and velocity of the inverted pendulum

can accurately track the desired trajectories even when the initial value of the states and references

are different from each other. Fig 2.7(c) shows that the error trajectories of the system remain

uniformly ultimately bounded based on what we claimed through Theorem 2. In other words,

the error trajectories certainly lie inside the ball Bξ derived in the proof. Fig 2.7(d) shows the

main control torque u and the internal signal vopt from the high-level controller. It is observed that

solution of the proposed optimization-based controller i.e., vopt is minimized when the unknown

dynamics are identified and the error signals enter the compact ball.

Figs 2.8(a) and 2.8(b) show that the NN weights Ŵ1 and Ŵ2 get settled when the history stack

H meets the rank condition i.e., rank(H) = ns + nu + 1 = 4. This implies that the weight

estimation error definitely converges to the ball BW̃ around its true value as expected from the

proof of Theorem 2. In turn, Ĝ converge to a compact ball around G as observed from Fig 2.8(c).

Fig 2.8(d) shows that vad − M̂ converges when rank(H) = 4, which implies convergence of the

NN output to the estimated unknown dynamics for different stored data of the history stack.

B. Performance comparison with baseline QP-CLBF

In this section, superiority of the proposed QP-ARCLBF over the baseline QP-CLBF is shown

via a robustness test. Simulation is carried out with perturbed system parameters and control

coefficient for different values of disturbance d and barrier coefficient β to evaluate performance

of the controllers with regard to tracking performance, control optimality, and velocity violation

∆v form the safe set. Here, the velocity constraints are actively enforced to see how different

controllers react at the moment when the disturbance (unexpected push) encountered. For the sake

of a fair comparison, design parameters of the controllers are chosen to be same. The velocity

constraints are formulated as ZCBF:−1 rad/s ≤ θ̇ ≤ 1 rad/s. In the simulation, system parameters
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p and control coefficient b are both perturbed by +50% from their nominal values, while different

values of d(t) are applied to the system each time at t = 30sec. The applied disturbance takes

different values d = 3, 4, 5, 6 N.m.

Figure 2.9 demonstrates barrier violation, tracking performance, and control cost in the pres-

ence of the perturbed parameters over different values of d and β for the proposed and baseline

controllers. Fig 2.9(a) shows that the barrier violation ∆v under the proposed controller remains

unchanged and consistent during the variations of β and d. However, when the baseline controller

is used, ∆v is variable and increases as d increases and/or β decreases. It shows that the proposed

controller is robust against different values of d and β. However, the baseline controller is sensitive

to the parameters β and d such that barrier violation significantly decreases as β increases. Thus,

to achieve a good and robust safety permanence, the proposed controller does not require a high

value of β, which may cause higher control effort and peak torque on the system.

Figure 2.9(b) demonstrates that the RMSEx surface of the proposed controller is always below

the surface of the baseline one, showing better robustness of QP-ARCLBF over variations of d

and β. Figs 2.9(c) and (d) show that the proposed controller requires less average control effort

RMSEu and peak torque umax for different values of β and d when the system parameters are

perturbed by 50%. From the robustness tests, the conclusion that can be drawn is that the proposed

controller generates the lower values of ∆v, RMSEx, RMSu, and umax for different values of β

and d, showing that the proposed approach improves safety performance, control optimality, and

robustness over the non-adaptive baseline QP-CLBF.

2.5 Conclusions and next chapter

This chapter presented two robust QP-based adaptive control approaches for nonlinear systems

with structured and unstructured uncertainties. The unified multi-objective controllers were able

to estimate the unknown nonlinear dynamics and robustify the closed-loop system in the presence

of unmodeled dynamics and disturbances in an optimal control fashion. UUB of all system’s

solutions was proven through Theorems 1 and 2 by using Lyapunov arguments. Simulations and
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comparisons to baseline controllers (QP-CLF and QP-CLBF) on an illustrative nonlinear example

confirmed the benefits of our approaches with regard to safety performance, tracking accuracy,

and robustness to disturbances. While the presented approaches can be applied to a wide range of

uncertain fully actuated nonlinear systems, their applications to underactuated systems have to be

taken into consideration. This naturally encourages us to extend the presented approaches for the

active control of underactuated systems in the presence of modeling error and disturbances; this

will be formulated in the next chapter.
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(a) Tracking performance

(b) Control optimality

Figure 2.5: Performance of different controllers in the presence of ∆θ and ∆b; red surface shows
the behavior for the proposed controller QP-ARCLF and the blue one is for the baseline controller
QP-CLF.
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Figure 2.6: Performance of the proposed controller in the presence of ∆θ and ∆b.
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(a) (b)

(c) (d)

Figure 2.7: Results of QP-ARCLBF: tracking performance and control effort
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(a) (b)

(c) (d)

Figure 2.8: Results of QP-ARCLBF: estimation performance
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(c)

(d)

Figure 2.9: Barrier violation, tracking performance, and control cost in the presence of the per-
turbed parameters ∆p=50% and ∆b=50% over different values of d and β for the proposed QP-
ARCLBF and baseline QP-CLBF. Red surface shows the behavior for the proposed controller and
the blue one is for the baseline controller.
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CHAPTER 3

ACTIVE (COLLOCATED) SPACE CONTROL OF UNDERACTUATED SYSTEMS

This chapter develops a controller for the active space control of underactuated robotic systems

with a view toward adapting to unknown parameters, being robust to unmodeled dynamics and

disturbances, and being optimal with respect in a pointwise fashion. To achieve the goals of this

chapter, the model dynamics are first partitioned into active and passive spaces. As a remedy for

nonlinear coupling between these spaces, the system’s acceleration is estimated for use in the con-

trol algorithm. The modeling uncertainty associated with both unknown system parameters and

unknown control map is then estimated. An online QP is synthesized utilizing an intelligent ro-

bust control Lyapunov function (IRCLF) constraint to ensure the system stability with minimal

control effort, while using the estimates of the unknown dynamics. The IRCLF is designed to au-

tomatically compensate for acceleration estimation error, unmodeled dynamics, and disturbances

without the need for their bounds a priori. Convergence / UUB of all system signals is proven

using Lyapunov stability arguments and the Barbalat lemma. The performance of the proposed

control scheme is validated on two different underactuated systems: a foot-leg model on the de-

formable ground and the overhead crane system. Simulation results show the benefits of our con-

troller against the baseline QP-RCLF and an adaptive QP-RCLF regarding the control optimality,

tracking accuracy, dynamic estimation performance, and robustness to disturbances.

In the last two decades there has been increased emphasis on designing control algorithms for

underactuated systems; herein underactuated systems mean systems that have fewer degrees of

actuation (DoA) than degrees of freedom (DoF). This is, in part, due to the multiple applications

such as manipulators operating on dynamic platforms [36], aircraft [37], brachiating robots [38,

39, 40], bat robots [41, 42], and walking robots [43, 44]. This has been coupled with large body of

work on control strategies for fully-actuated systems [45, 46, 47, 48, 49, 50, 51, 52]. However, the

techniques that have been already designed for fully-actuated systems cannot be directly applied
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for underactuated systems. This, coupled with the desire to develop new multi-objective control

schemes for underactuated robotic systems motivates the study of such systems.

3.1 Background

Underactuated systems often can be partitioned to two different subspaces: the active (actuated)

subspace and the passive (unactuated) subspace. Active and passive subspaces are also called

collocated and non-collocated subspaces, respectively [53]. The active space is the subsystem, of-

ten achieved with a coordinate transformation, with the same dimension as the number of control

inputs while the remaining components of the system are the passive space, i.e., the component

of the system that cannot be actuated directly. Partial feedback linearization is a classic method

wherein normal form renders the system into the active and passive spaces, this has a variety of

applications [53, 54, 55, 56]. Additionally, a variety of other methods have been developed for the

control of underactuated systems. Energy-based approach is a popular control technique that has

been extensively studied for very important underactuated systems such as Pendubot [57], pen-

dulums [58], robot manipulators [59], and biped locomotion [60]. Torque optimality is another

design specification that should be taken into account in the control design problems. To have the

optimal energy consumption, optimal control has been also recently applied on several underac-

tuated applications such as bipedal robot, spacecraft, snake robots, wheeled inverted pendulum,

cable-driven robot, etc [44, 61, 62, 63, 64].

Since the theoretical model of an underactuated system is almost approximated version of the

actual system, the derived model may contain modeling inaccuracies. Thus, the control design of

underactuated systems has to take model uncertainties into account. Sliding mode control is one

of the most popular approaches to compensate for the modeling issues and provide stability of the

closed-loop system in their presence [65, 66, 67, 68, 69, 70, 71, 72]. Adaptive control is able to

implement learning and adaptation using an online parameter estimation in the control structure.

Over the years, an enormous amount of research has been carried out in an attempt of applying

different adaptive controllers for underactuated robotic systems [73, 74, 75, 76].
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For underactuated systems, controlling all degrees of freedom is almost impossible or at least

a very problematic task. Thus, the control problem of such systems reduces to stabilization of

either the active or passive spaces. However, nonlinear coupling between the active and passive

spaces adds complexity to control the underactuated systems. Thus, to control the active joints,

as targeted in this chapter, the acceleration information of the passive joints can be provided for

the control algorithm. One approach is to directly measure the acceleration [77], which is called

direct measurement method. However, in practice, the joint acceleration measurements are not

available, or if are, very noisy and not convenient for real-time implementation. To mitigate this

issue, the acceleration equations of the passive space could be substituted into the active space, i.e.,

the substitution method (which refers to the well-known partial feedback linearization approach).

However, the result is that the active space may not be linearly parametrized, which requires much

more complexity in the controller structure, particularly for systems with high dimensions. Mod-

eling uncertainty associated with underactuated systems makes the control problem even more

complex. The existence of the unmodeled dynamics and external time-varying disturbances may

also degrade the closed-loop performance or even lead to instability. Meanwhile, the control of un-

deractuated systems should also take optimality of the controller and the required control bounds

into consideration.

3.2 Contributions

The goal of this chapter is to design a robust quadratic program-based adaptive controller that

accounts for all of the aforementioned challenges in the control of underactuated systems. The

main contributions of this chapter are as follows:

1. The design of a multi-objective robust quadratic program-based adaptive control scheme for

application to underactuated robotic systems that is able to achieve simultaneous objectives:

active space control, system identification, and point-wise control optimality in the presence

of unmodeled dynamics and disturbances
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2. The estimate of system’s accelerations as an alternative to the direct measurement and sub-

stitution methods for use in the control algorithm

3. The estimate of system dynamics and unknown control map simultaneously

4. The design of an intelligent robust component to automatically compensate for acceleration

estimation error, unmodeled dynamics, and disturbances without the need for their bounds a

priori

5. The formal proof of the convergence / UUB of all system solutions

6. Validation of the proposed controller on two illustrative underactuated systems: a foot-leg

system on deformable ground and the overhead crane system

In this chapter, we begin by partitioning the underactuated system into the active and passive

spaces. With the aim of the stabilization of the active state space, an affine form of this space is

derived. As an alternative for the direct measurement and substitution methods, in this chapter, the

system’s accelerations are estimated for use in the proposed control algorithm. By doing so, the

direct acceleration measurements are not required and the active space retains the property of linear

parameterization. To estimate the unknown system dynamics, associated with both parameter

uncertainties and unknown control map, this chapter extends and encompasses the CL adaptive

approach, which was recently developed for fully actuated systems.

As explained earlier, CL is able to achieve exponential convergence of parameter and tracking

errors without requiring the PE conditions while simultaneously using instantaneous and recorded

data. However, to date, scant attention has been paid to extend the CL technique for underactu-

ated systems while simultaneous estimation of system parameters and control map is desired. As

also discussed, QP-CLF controller is able to find the optimal solution between system stabilization

and control effort, whereby to date, has been widely applied for different applications. However,

the previous chapter provided ample evidence regarding the performance degradation of such con-

trollers under modeling inaccuracies. Recall that although the robust QP-CLF controllers [9, 10,
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78] are able to robustify the system against parameter uncertainties, the first work [9] requires

the measurement of the system’s acceleration and the last two ones [10, 78] do not include any

estimation method to identify the unknown system dynamics.

In this chapter, we basically extend and robustify the QP-CLF controller to underactuated sys-

tems with model inaccuracies. With the goal of achieving boundedness of the active error trajecto-

ries in a pointwise optimal fashion, a QP is synthesized w.r.t. a robust CLF (RCLF). The resulting

QP-RCLF simultaneously uses the estimates of system dynamics derived by the proposed adaptive

controller, and a robust component that can automatically compensate for unmodeled dynamics,

acceleration estimation error, and disturbances only when they negatively impact the system’s sta-

bility (in a pointwise optimal manner).

The appeal of the proposed QP-RCLF is that the gain of the robust component is updated

using an adaptation mechanism which removes the need for knowing the bounds of the aforemen-

tioned unknown terms. Unlike the robust controllers with constant gains, our method renders better

control optimality and stronger robustness in the presence of unexpected time-varying external dis-

turbances. The convergence / UUB of all system solutions is finally proven by Lyapunov stability

arguments and the Barbalat lemma. Simulations and comparisons to two of existing strategies, the

baseline QP-RCLF and a model-based adaptive QP-RCLF [31], on two underactuated systems: a

foot-leg model on deformable ground and the overhead crane system, are carried out to validate

the soundness of the proposed scheme.

The chapter is organized as follows. Section 3.3 presents the system’s model and the problem

statement. Section 3.4 formulates the proposed controller. Section 3.5 presents simulation results.

Section 3.6 concludes this chapter and discusses the need for the next chapter.

3.3 System description and problem statement

In this section, we begin by describing a general form of the underactuated systems and then

present the problem statement. Consider the following equations of motion of the n DoF robot that
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can be derived by using the Euler-Lagrange formula:

M(q)q̈ + C(q, q̇)q̇ + Φ(q) = τ + d(t), (3.1)

where q = [q1, ..., qn]T ∈ <n is a vector of generalized coordinates; τ ∈ <n is the control torque

vector; M(q) and C(q, q̇) are the n × n inertia matrix, and the n × n Coriolis and Centripetal

matrix respectively; Φ(q) ∈ <n is a vector that consists of the gravity effects and elastic forces;

and d(t) ∈ <n is the vector of bounded disturbances.

For an underactuated system, M(q), C(q, q̇), Φ(q), τ , d(t), and q of the above system can be

partitioned as the following “lower actuated” form

M =

 Muu Mua

Mau Maa

 , C =

 Cu

Ca

 ,Φ =

 Φu

Φa

 , τ =

 0

u

 , d =

 du

da

 , q =

 qu

qa

 ,
(3.2)

where subscripts “u” and “a” stand for unactuated (passive) and actuated (active) subspaces,

respectively; and u is the vector of the torque inputs acting on the active subspace. The sys-

tem (3.1) along with the partitioned components in Eq. (3.2) yields a lower actuated system for

which the first l coordinates are unactuated and the remaining n− l coordinates are actuated such

that qu = [qu1 , ..., qul ]
T ∈ <l and qa = [qa1 , ..., qan−l ]

T ∈ <n−l. It implies that the system has n− l

DoA. Note that if control constraints are actively enforced, then there will be a control defect such

that

u =


u∗ if |u∗| ≤ ū

u∗ + ∆u if |u∗| > ū

, (3.3)

where u∗ is the commanded input and ∆u is the control defect when u∗ hits ū.
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Assumption 3 (Bounded disturbance and control defect). The time-varying disturbance d(t) and

the control defect ∆u are uniformly bounded such that d(t),∆u ∈ L∞.

The following properties of the model (3.1) are assumed when developing the proposed algo-

rithms:

Property 1. The inertia matrix M(q) is symmetric, positive definite, and uniformly bounded.

Property 2. The matrix Ṁ − 2C is skew-symmetric, i.e., xT (Ṁ − 2C)x = 0 ∀x ∈ <n.

Property 3. The Coriolis and centripetal matrix C has the property that |C(q, q̇)| ≤ κ|q̇| for some

κ > 0.

Property 4. The system dynamics (3.1) is expressed linearly in terms of the unknown parameter

vector PG ∈ <rG×1 such that

M(q)q̈ + C(q, q̇)q̇ + Φ(q) = YG(q, q̇, q̈)PG, (3.4)

where YG(q, q̇, q̈) ∈ <n×rG is a known model regressor matrix.

We aim to extend and encompass both QP-CLF controller and CL technique to underactuated

robotic systems. The control problem is to design a robust quadratic program-based adaptive

controller for the underactuated system (3.1) to achieve multiple design specifications: active state

space stabilization, pointwise control optimality, dynamic estimation, and robustness to unknown

disturbances. Under the proposed controller, the boundedness of all system signals is desired.

In the next section, a new multi-objective robust quadratic program-based adaptive controller is

designed to meet the above objectives.

3.4 Proposed robust quadratic program-based adaptive controller

This section is organized into three distinct subsections. Subsection 3.4.1 describes an affine con-

trol form of the active state space of the underactuated system (3.1) while the system’s acceleration
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is estimated for use in the controller formulation. Subsection 3.4.2 formulates the proposed con-

troller through five distinct parts. The UUB of all system solutions is finally proven using Lyapunov

stability frameworks and the Barbalat lemma in Subsection 3.4.3.

3.4.1 Affine representation of the active space

With the aim of partial control of the active state space, the last n − l equations of (3.1) can be

written as the following affine control form

q̈a = f(q, q̇, q̈) +Bu∗ +B∆u+Bda(t), (3.5)

where q̈a = [q̈a1 , ..., q̈an−l ]
T ∈ <n−l and u∗ = [u∗1, ..., u

∗
n−l]

T ∈ <n−l are the vectors of the acceler-

ations and the commanded torques of the active space, respectively; B ∈ <n−l×n−l is the control

map; da(t) ∈ <n−l and ∆u ∈ <n−l are the vectors of the bounded disturbances and the control

defects acting on the active space, respectively; and f ∈ <n−l is a vector of unknown nonlinear

functions whose elements are given as

fi = − 1

Maaii

(
MT

aui
q̈u +MT

aai
Kiq̈a + CT

ai
q̇ + Φai

)
, (3.6)

where Maui ∈ <l, Maai ∈ <n−l, Cai ∈ <n, and Φai ∈ < denote the ith row of Mau, Maa, Ca, and

Φa respectively for i = 1, ..., n− l; the scalar Maaii stands for the ith diagonal element of Maa with

i = 1, ..., n− l; Ki ∈ <n−l×n−l with i = 1, ..., n− l represents an identity matrix whose ith element

is zero; and the control map is defined as B = diag( 1
Maaii

) ∈ <n−l×n−l with i = 1, ..., n− l.

Let us define Maaii(q) = b1i + b2iFi(q) such that b1i and b2i are two positive constants as-

sociated with system parameters, and Fi(q) is a position-dependent function. This follows that

1
Maaii

= 1
b1i
− b2iFi(q)

b1iMaaii
using which one obtains

fi = f̄i + ∆fi(Fi(q)) with f̄i = − 1

b1i

(
MT

aui
q̈u +MT

aai
Kiq̈a + CT

ai
q̇ + Φai

)
, (3.7)

57



where f̄i can be expressed linearly with respect to the system’s parameters, but ∆fi(Fi(q)) does

not necessarily hold this property. Hence, the vector f̄ including the elements f̄i can be linearly

parametrized by a regressor matrix Y ∈ <n−l×r and a parameter vector P ∈ <r such that the

control affine model (3.5) can be rewritten as

q̈a = Y (q, q̇, q̈)P +Bu∗ +B∆u+Bda(t) + ∆f (F (q)), (3.8)

where the nonparameterizable term ∆f (F (q)) ∈ <n−l includes ∆fi(Fi(q)) for i = 1, ..., n− l.

As seen from Eq. (3.8), the regressor matrix Y contains the acceleration information of the

active and passive subspaces, and cannot be directly utilized in the controller structure. Because

one of the goals of this work is to develop a control scheme which does not require the system’s

acceleration, we estimate this information as an alternative to the direct measurement and direct

substitution of the acceleration equations. For this purpose, a Kalman filter (KF) [30] is employed

to estimate the system’s acceleration (̂̈qu, ̂̈qa) while assuming that the measurements of position q

and velocity q̇ of both active and passive subspaces are available.

Remark 13 (Acceleration estimation). To estimate the acceleration information, the KF algo-

rithm [30] is applied for the following linear system which is constructed based upon the measure-

ments of q and q̇:

ż = Az and A =

 02n×n I2n×2n

0n×n 0n×2n

 ∈ <3n×3n, (3.9)

where z = [q, q̇, q̈]T ∈ <3n. The KF algorithm only requires available noisy measurements of q

and q̇, while there is no need for any knowledge of the system dynamics.

Property 5 (Bounded acceleration estimation error). The acceleration estimation error of the KF

algorithm is bounded under certain conditions if the initial estimation error, control input u, distur-

bance da(t), control defect ∆u, and the nonparameterizable term ∆f (F (q)) are all bounded [79,

80].
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3.4.2 Controller structure

Utilizing the system’s acceleration estimated from the previous subsection, this subsection is de-

voted to formulate the proposed controller. This subsection is comprised of five distinct parts. Part

A is dedicated to derive a control law in which the estimation of model uncertainties associated

with both system parameters and control map is targeted. Part B revisits CLF-based controllers and

discusses the impact of uncertainties on their performance. Part C presents an intelligent robust

CLF-based controller to ensure robustness against model uncertainties. Part D presents a parameter

adaptation mechanism to provide simultaneous estimation of system parameters and control map.

Finally, Part E unifies design components through a QP to construct a multi-objective controller.

A. Main control law

With the acceleration estimation of the previous subsection in hand, one may think of choosing

the following control law

u∗ = B−1(q̈da − vopt − vad), (3.10)

where q̈da = [q̈da1 , ..., q̈
d
an−l

]T ∈ <n−l is the vector of desired active space acceleration; vopt ∈ <n−l

represents the pointwise optimal signal that will be computed by the QP controller; and vad =

Y (q, q̇, ̂̈qu, ̂̈qa)P̂ ∈ <n−l is the adaptive component with P̂ as the estimates of P .

However since the elements of matrix B (i.e., Maaii) are unknown, the control law (3.10)

is not implementable, and one may think of estimating the matrix B. However, (i) simultaneous

estimation of the parameter vector P and the control mapB adds more complexity to the controller

design and (ii) this may pose the singularity issues for B̂−1. To mitigate the above-mentioned

obstacles, the control design in this part avoids to estimate the matrix B by itself, but alternatively,

the estimation of uncertainty associated with matrix B is aimed.

For this purpose, the system (3.8) can be rewritten as

q̈a = Y P + U∆B +B0u
∗ +B∆u+Bda(t) + ∆f (F (q)), (3.11)
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where B is split into the constant matrix B0 = diag( 1
b1i

) ∈ <n−l×n−l and the state-dependent

vector ∆B(q) ∈ <n−l including the elements − b2iFi(q)

b1iMaaii
for i = 1, ..., n − l; and U = diag(ui) ∈

<n−l×n−l for i = 1, ..., n− l. Since vector ∆B is unknown and we have access to the control signal

measurements, augmenting ∆B and U with the regressor matrix Y and the parameter vector P

respectively yields

q̈a = ΨΥ +B0u
∗ +B∆u+Bda(t) + ∆f (F (q)), (3.12)

where Ψ = [Y, U ] ∈ <(n−l)×(r+n−l) is the augmented regressor matrix; and Υ = [P,∆B]T ∈

<r+n−l is the augmented parameter vector.

Lemma 1 (Boundedness of Υ̇). The derivative of the unknown part ∆B is bounded, which in turn

results in the boundedness of Υ̇ by a positive scalar such that ‖Υ̇‖ ≤ Υ.

Proof. The kinetic energy of the system (3.1) can be expressed as

T =
1

2
q̇TM(q)q̇, (3.13)

using which the Lagrangian’s equation can be derived as

d

dt

∂T

∂q̇
− ∂T

∂q
= Mq̈ + Ṁ q̇ − 1

2

(
∂M

∂q
q̇

)T
q̇ = Q, (3.14)

where jth column of the matrix ∂M
∂q
q̇ is defined as

∑n
i=1

∂(M)i
∂qj

q̇i with (M)i denoting the ith column

of the matrix M ; and Q represents the vector of generalized forces. Rewriting the equations of

motion (3.1) as M(q)q̈ + C(q, q̇)q̇ = Q and comparing it with (3.14) results in the following

relationship between Ṁ and C

Cq̇ = Ṁ q̇ − 1

2

(
∂M

∂q
q̇

)T
q̇. (3.15)
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Given Property 3, in view of (3.15), one obtains

‖Ṁ q̇ − 1

2

(
∂M

∂q
q̇

)T
q̇‖ ≤ ‖Cq̇‖ ≤ κ‖q̇‖2 (3.16)

wherein it follows that all terms on the left-hand side of (3.16) are bounded for bounded velocities

of the system. Consequently, Ṁ and in turn its diagonal elements associated with the active space,

Ṁaaii with i = 1, ..., n− l, are bounded. This in turn implies that the derivatives of the matrices B

and ∆B, and consequently, the derivative of the vector Υ are all bounded. To meet the demands

of the stability analysis in Subsection 3.4.3, we consider Υ > 0 as an upper bound for ‖Υ̇‖.

Based upon the system (3.12), the following three-term control law is suggested

u∗ = B−1
0 (q̈da − vopt − vad), (3.17)

where vad = Ψ̂Υ̂ represents the adaptive component with Υ̂ as the estimation of Υ. Note that here,

the constant matrix B0 with positive diagonal elements 1
b1i

is always invertible. With the structure

of the main control law (3.17) in hand, the next part will review CLF-based controllers and discuss

how such controllers can be negatively impacted by model uncertainties.

B. CLF-based controller

With the goal of active state space stabilization, let us define the tracking error vector of the ac-

tive coordinates as e = qda−qa ∈ <n−l. Substituting the control law (3.17) into the dynamics (3.12)

yields

ë = −ΨΥ + Ψ̂Υ̂ + vopt −B∆u−Bda(t)−B∆f . (3.18)

Let define Υ̃ = Υ̂−Υ and Ψ̃ = Ψ− Ψ̂ to have

ë = vopt + εΥ − εΨ −∆uB − dBa −∆B
f , (3.19)
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where εΥ = Ψ̂Υ̃ ∈ <n−l and εΨ = Ψ̃Υ ∈ <n−l stem from the estimation error and the acceleration

estimation error, respectively; and ∆uB = B∆u, dBa = Bda(t), and ∆B
f = B∆f . Note that for

bounded acceleration estimation error (Property 5) and bounded dynamic estimation error (i.e., if

vad converge to a small neighborhood of ΨΥ), signals εΥ and εΨ are bounded such that ‖εΥ‖ ≤ ε̄Υ

and ‖εΨ‖ ≤ ε̄Ψ. In addition, since B, ∆u, da(t), and ∆f are all bounded, then ∆uB, dBa , and ∆B
f

are bounded such that ‖∆uB‖ ≤ ∆u, ‖dBa ‖ ≤ d̄, and ‖∆B
f ‖ ≤ ∆f with ∆u, d̄,∆f > 0.

Let us define ζ = [e, ė]T ∈ <2(n−l) to rewrite the error dynamics (3.19) as

ζ̇ = Fζ + Evopt + E
(
εΥ − εΨ −∆uB − dBa −∆B

f

)
(3.20)

with

F =

 0(n−l)×(n−l) I(n−l)×(n−l)

0(n−l)×(n−l) 0(n−l)×(n−l)

 ∈ <2(n−l)×2(n−l) (3.21)

E =

 0(n−l)×(n−l)

I(n−l)×(n−l)

 ∈ <2(n−l)×(n−l).

Definition 8. A continuously differentiable function V (ζ) : <2(n−l) → < is an exponentially

stabilizing CLF for the system (3.20) if εΥ = εΨ = ∆u = da = ∆f = 0 and there exist a set of

controls V and positive scalars αQ, a1, a2 > 0 such that [4]

a1‖ζ‖2 ≤ V (ζ) ≤ a2‖ζ‖2, (3.22)

inf
vopt∈V

[LFV (ζ) + LEV (ζ)vopt] ≤ −αQV (ζ),

where LFV (ζ) = ∂V (ζ)
∂ζ

Fζ and LEV (ζ) = ∂V (ζ)
∂ζ

E are the Lie derivatives of V (ζ) with respect to

F and E, respectively.

Motivated by the desire to achieve exponential convergence of the error trajectory ζ to zero in

the absence of εΥ, εΨ, ∆u, da, and ∆f through a CLF-based controller, let us select the following
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Lyapunov function

V (ζ) = ζTPζ, λmin(P )‖ζ‖2 ≤ V (ζ) ≤ λmax(P )‖ζ‖2, (3.23)

where λmin(.) and λmax(.) denote minimum and maximum eigenvalues of a matrix; and P =

P T ∈ <2(n−l)×2(n−l) > 0 is the solution of CARE F TP + PF − PEETP + Q = 0 with Q =

QT ∈ <2(n−l)×2(n−l) > 0.

To achieve exponential convergence of V (ζ) to zero, we seek a set of all stabilizing optimal

signals vopt to satisfy the following CLF constraint

ψ0(ζ) + ψT1 (ζ)vopt ≤ 0 (3.24)

with

ψ0(ζ) = LFV (ζ) + αQV (ζ), ψ1(ζ) = LTEV (ζ), (3.25)

and

LFV (ζ) = ζT (PF + F TP )ζ, LEV (ζ) = 2ζTPE, (3.26)

where ψ1(ζ) is a n− l-denominational vector, and LFV (ζ) and ψ0(ζ) are both scalars.

One candidate of vopt to satisfy the condition (3.24) is the PWMNC law (2.39) using which it

follows that ∥∥∥∥∥∥∥
e(t)

ė(t)

∥∥∥∥∥∥∥ ≤
√
λmax(P )

λmin(P )

∥∥∥∥∥∥∥
e(0)

ė(0)

∥∥∥∥∥∥∥ e−
α
2
t, (3.27)

which leads to exponential convergence of
(
e(t), ė(t)

)
at a rate of α

2
.

By noting that the PWMNC can be expressed as a convex optimization problem, the QP-

CLF controller has been recently introduced in which the CLF constraint is encoded in a QP to

ensure stability in a pointwise optimal fashion [4]. Although this controller derives ζ to zero in the

absence of unknown disturbances εΥ, εΨ, ∆u, da, and ∆f , the errors converge to a neighborhood
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of the origin in the presence of these terms, where the size of the neighborhood is dependent on the

scale of the unknown terms. To avoid the performance degradation of the QP-CLF controller in

the presence of the terms εΥ, εΨ, ∆u, da, and ∆f , the next part presents an intelligent robust CLF

(IRCLF) to robustify the closed-loop system against the above-mentioned unknown terms without

knowing their bounds.

C. Intelligent robust CLF (IRCLF)

One of the main disadvantages of the QP-CLF controller is that its performance is degraded

for system (3.20) with unknown terms εΥ, εΨ, ∆uB, dBa , and ∆B
f . In the following, an IRCLF is

introduced which uses the RCLF and a projection-based adaptation mechanism to deal with the

given issues without knowing the bounds of the unknown terms.

We begin by robustifying the CLF through defining the following robust term

R(ζ) = Kr‖ζTPE‖, Kr > 0 (3.28)

and D = εΥ − εΨ −∆uB − dBa −∆B
f as the lumped disturbance.

Definition 9. Given the system (3.20), the function V (ζ) is an exponentially stabilizing RCLF if

there exist a set of controls V and positive scalars Kr, ρ > 0 such that Kr = 2D̄ + ρ and

a1‖ζ‖2 ≤ V (ζ) ≤ a2‖ζ‖2, (3.29)

inf
vopt∈V

[LFV (ζ) +R(ζ) + LEV (ζ)vopt] ≤ −αQV (ζ),

where D̄ = ε̄Υ + ε̄Ψ + ∆u+ d̄+ ∆f is the bound of the lumped disturbance such that ‖D‖ ≤ D̄.

Let us take the time derivative of V (ζ) along the system trajectory (3.20) to have

V̇ (ζ) = LFV (ζ) + LEV (ζ)
(
vopt +D

)
. (3.30)

To achieve exponential convergence of V (ζ) to zero, i.e., V̇ (ζ) ≤ αQV (ζ), a class of controls
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vopt is sought to hold the following RCLF constraint

ψ0r(ζ) + ψT1 (ζ)vopt ≤ 0 with ψ0r(ζ) = ψ0(ζ) +R(ζ). (3.31)

The above RCLF constraint holds by using the PWMNC in terms of ψ0r(ζ) yielding

vopt(ψ0r(ζ), ψ1(ζ)) (3.32)

if the robust gain Kr is selected as

Kr = 2D̄ + ρ. (3.33)

Again, when the signal vopt is generated by an equivalent QP optimization problem, a QP-RCLF

controller is emerged. Although such a controller is able to drive the error ζ to zero even in the

presence of D, the main drawback of this approach is that the bound of the lumped disturbance

is required to tune the robust gain Kr. Since D̄ is unknown, the minimal stabilizing value for the

robust gain Kr is not known. Thus, if this gain is not correctly selected, it may not be able to

properly compensate for D or may increase the control effort when ψ0r(ζ) > 0.

To relieve the engineer of the need to define the robust gain Kr correctly and enhance the

optimality of the controller without knowing the bound of disturbances, the gain Kr can be auto-

matically updated using an adaptation mechanism. To design such adaption law while providing

robustness and preventing the parameter drift, the following projection-based robust gain adapta-

tion mechanism is suggested

K̇r = Kr0Proj
(
Kr, ‖ζTPE‖

)
, (3.34)

where Proj(Kr, ‖ζTPE‖) is defined as
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Proj =


‖ζTPE‖ − (∇g(Kr))2

‖∇g(Kr)‖2‖ζ
TPE‖g(Kr), if g(Kr) > 0 and ‖ζTPE‖∇g(Kr) > 0

‖ζTPE‖, otherwise
,

(3.35)

where g(Kr) =
‖Kr‖2−K2

rmax

νKrK
2
rmax

: < −→ < is a smooth convex function; Krmax is a prescribed upper

bound of Kr to ensure that the robust gain does not exceed Krmax; νKr > 0 is the projection

tolerance; and∇g(Kr) = ∂g(Kr)
∂Kr

∈ < is the derivative of g(Kr) w.r.t. Kr evaluated at Kr.

The adaptation mechanism (3.35) guarantees the boundedness ofKr(t) byKrmax

√
1 + νKr (no

concern about the drift issue on the robust gain Kr) such that

if |Kr(0)| ≤ Krmax and g(Kr) ≤ 1, (3.36)

then |Kr(t)| ≤ Krmax

√
1 + νKr , ∀t ≥ 0.

Thus, the robust term (3.28) along with the adaptation mechanism (3.34) constructs the IRCLF

structure for which the following properties are met: (i) when ψ0r(ζ) ≤ 0, vopt(ψ0r(ζ), ψ1(ζ))

and in turn R(ζ) are off, emerging a robust mechanism in a pointwise optimal fashion; (ii) even if

ψ0r(ζ) > 0, Kr increases as needed (unlike the robust controllers with constant gain); (iii) there is

no need to know the bound of the unknown terms; (iv) it prevents the parameter drift in UUB case;

and (v) it bounds Kr as desired.

Remark 14 (Adaptive QP-RCLF presented in [31]). To handle the control map uncertainty, one

approach is to consider U∆B as an extra disturbance (εB) acting on Eq. (3.11). By doing so, the

acceleration equations (3.11) can be rewritten as

q̈a = Y P +B0u
∗ + εB + ∆uB + dBa + ∆B

f . (3.37)

Utilizing the same control law (3.17), the adaptive component vad uses the regressor matrix Y to
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estimate the parameter vector P such that vad = Y (q, q̇, ̂̈qu, ̂̈qa, u)P̂ . This way, the error dynam-

ics (3.20) are given as

ζ̇ = Fζ + Evopt + E(D − εB). (3.38)

Given the system (3.38), the same discussion from Eq. (3.21) to Eq. (3.31) can be followed. How-

ever, under this approach, the robust term has to compensate for one more disturbance, which can

result in a higher control effort. Furthermore, since in this case, ∆B is not desired to be estimated,

a proper dynamic estimation is not achieved and in turn, it may negatively impact the system’s

performance. This method with constant robust gain can be found in [31].

Remark 15 (Robust term). It should be pointed out that R(ζ) compensates for D in a pointwise

optimal fashion, such that when ψ0r(ζ) ≤ 0, the system is stable and the robust term is not actively

enforced.

With the formulation of IRCLF in hand, it can be assured that the unknown terms, associated

with the acceleration estimation error, the parameter estimation error, and other disturbances, are

automatically compensated. Now, it is time to estimate the unknown system dynamics through the

derivation of a parameter adaptation mechanism. This will be developed in the next part.

D. Estimator structure

This part is devoted to derive a parameter adaptation mechanism that can identify the unknown

system dynamics by estimating the parameter vector Υ. A proper dynamic estimation plays a

role in decreasing the error εΥ, consequently, generating the smaller Kr by the IRCLF and in turn

enhancing the control optimality of the proposed controller. For this purpose, we extend the CL

adaptive mechanism [21] for simultaneous estimation of the system’s parameters and control map

as a unified parameter vector Υ. Let us define the following update law, in which both instan-

taneous (first term) and recorded information (second term) of the positions, velocities, control
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inputs, and estimated accelerations are utilized

˙̂
Υ = −η1Ψ̂TETPζ − η2

m∑
i=1

Ψ̂T
i ε̂Υi , (3.39)

where ηi ∈ <(r+n−l)×(r+n−l) for i = 1, 2 are two diagonal matrices whose entries are positive; m

is the number of the recorded data points; and Ψ̂i and ε̂Υi are realized at the i-th recorded data for

i ∈ [1, 2, ...,m].

Since the true system dynamics ΨΥ are not known, the residual εΥi is not realizable. Alterna-

tively, the estimates of εΥi can be computed as

ε̂Υi = Ψ̂iΥ̂− (Ψ̂Υ)i with (Ψ̂Υ)i = ̂̈qai −B0u
∗
i , (3.40)

where ̂̈qai is the i-th recorded acceleration that is estimated by an optimal fixed-point smoother

(OFPS) algorithm [29, 30] applying for the linear system (3.9).

Remark 16 (Recording data points). To achieve the best estimation of ΨΥ and, consequently, the

smallest possible disturbance εΥ, the storing algorithm only keeps those points that are sufficiently

different from the last point recorded [22]. This way, for m ≥ r+n−l
n−l , the history stack H =

[Ψ̂T
i , ..., Ψ̂

T
m] ∈ <r+n−l×m(n−l) will have rank(H) = r+n− l and in turn provide full-rank updates

for the most accurate estimation.

Thus, using the adaptation law (3.39) along with the above recording data policy and the ac-

celeration estimation, the unknown dynamics ξ = ΨΥ can be estimated as ξ̂ = Ψ̂Υ̂ such that

ξ̃ = ΨΥ− Ψ̂Υ̂ converges to a small neighborhood of the origin. To this end, we can utilize the the

adaptive signal vad = Ψ̂Υ̂ for use in the main control law (3.17). Because the ultimate goal of this

work is to develop a multi-objective controller, the next part will synthesize a QP which uses all

the predefined components, i.e., control law, IRCLF, and parameter adaptation, to ensures active

space stabilization and robustness in a pointwise optimal fashion.

Remark 17 (Acceleration estimation). Note that the estimate of the acceleration is improved using
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the OFPS algorithm over the ordinary Kalman filter, but it enforces a constant time delay. For the

second term of the adaptation law of Eq. (3.39) (CL part), the acceleration information is estimated

by the OFPS to provide more accurate estimation. In this term, the acceleration is only computed

when the history stack H is updated and it is not required at the current time. Thus, the delay from

the OFPS only postpones the history stack to be full ranked and does not impact the tracking error

at the current time [21]. However, since the first term of the adaptation law (traditional part) uses

the current acceleration information, tracking performance will be affected by delayed acceleration

if the OFPS algorithm is used. That is why, the acceleration used in the first term is provided by

the Kalman filter.

E. QP-IRCLF controller

In this part, the pointwise optimal signal vopt(ψ0r(ζ), ψ1(ζ)) is generated in the closed-loop

form by the following online QP as a convex optimization problem

v∗opt =argmin
h

vT
optvopt + hT

contlconthcont + lrclfhrclf
2 (3.41)

s.t. RCLF (Eq. (3.31)) : ψ0r(ζ) + ψT1 (ζ)vopt ≤ hrclf

CB1 : vopt − q̈da + vad +B0u ≤ hcont

CB2 : − vopt + q̈da − vad −B0ū ≤ hcont,

where h = (hrclf ,hcont,vopt) ∈ <2(n−l)+1 is the vector of the optimization variables; the control

input u∗ in (3.17) is enforced to satisfy u ≤ u∗ ≤ ū; and lrclf ∈ < and lcont ∈ <(n−l)×(n−l) are the

penalty coefficients to relax the IRCLF constraint and the control bounds, respectively.

The reason behind assigning such coefficients is that the control bounds and the IRCLF con-

straint may not be jointly realizable for different applications. Under this condition, a trade off

should be made between the performance and optimality by choosing the convenient penalty coef-

ficients lrclf and lcont. Next subsection will perform a stability analysis to ensure that all system’s

solutions are uniformly ultimately bounded under the proposed adaptive QP-IRCLF controller.
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3.4.3 Stability analysis

Subsection 3.4.2 has formulated the proposed control scheme. The goal of this subsection is to for-

mally prove the convergence / UUB of system’s solutions when the proposed controller is applied.

For this purpose, let us define the following Lyapunov function candidate

W (ζ, Υ̃, K̃r) = V (ζ) +
1

2
Υ̃Tη−1Υ̃ +

1

2Kr0

K̃2
r , (3.42)

where assume that η1 = η2 = 2η and define K̃r = Kr − K∗r with K∗r as the ideal robust gain.

Throughout this subsection, we make the following assumption.

Assumption 4 (Stable zero dynamics). The zero dynamics of the system (3.1) are stable.

Theorem 3. Consider the Lyapunov function (3.42), the control law (3.17), the adaptation laws (3.34)

and (3.39), and the unified QP-IRCLF controller (3.41). Under the Assumptions 3 and 4, Prop-

erty 5, and applying the recording policy in Remark 16 and the Lemma 1, uniform ultimate bound-

edness of (Υ̃, ζ, K̃r) is guaranteed for all Υ ∈ <r+n−l and any ζ(0) ∈ <2(n−l) without knowing

the bounds of the unknown disturbances.

Proof. We begin by taking the time derivative of the Lyapunov function (3.42) to have

Ẇ = 2ζTP ζ̇ + Υ̃Tη−1 ˙̃
Υ +

1

Kr0

K̇rK̃r. (3.43)

Substituting the error dynamics (3.20), the update law (3.39), and the robust gain adaptation

mechanism (3.34) in case that g(Kr) > 0 and ‖ζTPγE‖∇g(Kr) > 0 into Eq. (3.43) yields

Ẇ =2ζTPFζ + 2ζTPE
(
vopt + εΥ − εΨ −∆uB − dBa −∆B

f

)
− 2Υ̃T Ψ̂TETPζ (3.44)

− 2Υ̃T

m∑
i=1

Ψ̂T
i ε̂Υi − 2Υ̃Tη−1Υ̇ + K̃r

(
‖ζTPE‖ − (∇g(Kr))

2

‖∇g(Kr)‖2
‖ζTPE‖g(Kr)

)
.

Noting that εΥ = Ψ̂Υ̃ and ε̂Υi = Ψ̂iΥ̃ − εΨi , defining H1 = 2
∑m

i=1 Ψ̂T
i Ψ̂i, and canceling the
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similar parts, we have

Ẇ =2ζTPFζ + 2ζTPE
(
vopt − εΨ −∆uB − dBa −∆B

f

)
− Υ̃TH1Υ̃ (3.45)

+ 2Υ̃T

m∑
i=1

Ψ̂T
i εΨi − 2Υ̃Tη−1Υ̇ + K̃r

(
‖ζTPE‖ − (∇g(Kr))

2

‖∇g(Kr)‖2
‖ζTPE‖g(Kr)

)
.

Recall that the QP solution coincides with the solution of the PWMNC vopt(ψ0r(ζ), ψ1(ζ)) in

the closed-loop form. Thus, replacing vopt with the first term of (2.39) yields

Ẇ =2ζTPFζ − ψT1 (ζ)

(
ψ0r(ζ)ψ1(ζ)

ψT1 (ζ)ψ1(ζ)

)
− Υ̃TH1Υ̃ + 2Υ̃T

m∑
i=1

Ψ̂T
i εΨi − 2Υ̃Tη−1Υ̇ (3.46)

− 2ζTPE
(
εΨ + ∆uB + dBa + ∆B

f

)
+ K̃r‖ζTPE‖ − K̃r

(∇g(Kr))
2

‖∇g(Kr)‖2
‖ζTPE‖g(Kr).

Note that

− K̃r
(∇g(Kr))

2

‖∇g(Kr)‖2
‖ζTPE‖g(Kr) ≤ 0 (3.47)

and expand ψ0r to have

Ẇ =− αQζTPζ −K∗r‖ζTPE‖ − Υ̃TH1Υ̃ + 2Υ̃T

m∑
i=1

Ψ̂T
i εΨi − 2Υ̃Tη−1Υ̇ (3.48)

− 2ζTPE
(
εΨ + ∆uB + dBa + ∆B

f

)
.

Considering the bounds on terms Υ̇, εΨ, ∆uB, dBa , and ∆B
f , it follows that:

Ẇ ≤− αQλmin(P )‖ζ‖2 − λmin(H1)‖Υ̃‖2 + 2‖Υ̃‖‖
m∑
i=1

Ψ̂iεΨi‖+ 2‖Υ̃‖‖η−1‖Ῡ (3.49)

−
(
K∗r − 2

(
ε̄Ψ + ∆u+ d̄+ ∆f

) )
‖ζ‖‖PE‖.

At this stage, we assume the following.
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Assumption 5 (Matching assumption). Assume that

∃K∗r : K∗r = 2(ε̄Ψ + ∆u+ d̄+ ∆f ). (3.50)

Th above assumption assumes only the existence ofK∗r so that true knowledge of the ideal gain

is not required. Due to Assumption 5, the last term in Eq. (3.49) vanishes and we have

Ẇ ≤ −αQλmin(P )‖ζ‖2 − λmin(H1)‖Υ̃‖2 + 2‖Υ̃‖

(
‖

m∑
i=1

Ψ̂iεΨi‖+ ‖η−1‖Ῡ

)
. (3.51)

Let us define two positive scalars εb and η̄ such that ‖
∑m

i=1 Ψ̂iεΨi‖ ≤ εb and ‖η−1‖ ≤ η̄, which

follows the following

Ẇ ≤ −αQλmin(P )‖ζ‖2 − λmin(H1)‖Υ̃‖2 + C‖Υ̃‖, (3.52)

where C = 2(εb + Ῡη̄).

Hence, Ẇ < 0 outside the compact set

Ω =
{(

ζ, Υ̃, K̃r

)
∈ <2(n−l) ×<r+n−l ×< : ‖ζ‖ ≤ Bζ ∧ ‖Υ̃‖ ≤ BΥ̃ ∧ ‖K̃r‖ ≤ BK̃r

}
, (3.53)

where

Bζ =

√
C‖Υ̃‖ − λmin(H1)‖Υ̃‖2

αQλmin(P )
(3.54)

BΥ̃ =
C +

√
C2 − 4αQλmin(P )λmin(H1)‖ζ‖2

2λmin(H1)

BK̃r
= 2Krmax

√
1 + νKr .

Hence, all trajectories (ζ, Υ̃, K̃r) enter the set Ω in finite time T and remain there ∀ t ≥ T .

This proves UUB of all signals in the closed-loop dynamics.

The above proof holds even if the projection operator does not alter the term ‖ζTPE‖. In
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this case, the second term of (3.35) is utilized in Eq. (3.44) and the same results can be similarly

achieved. The above proof of Theorem 3 holds even in case that ψ0r(ζ) ≤ 0, from which it follows

that 2ζTPFζ ≤ −αQζTPζ − Kr‖ζTPE‖ (according to Eq. (3.31)) and the optimal signal vopt

vanishes (due to (2.39)). Using these properties, Eq. (3.45) reduces to Eq. (3.48) and following the

same argument, the proof is similar to that above, resulting in the UUB of all signals.

Remark 18 (Ultimate bounds). According to Eq. (3.54), the ultimate bounds on ζ and Υ̃ are

dependent on the acceleration estimation error εΨ and the bound on the derivative of the control

map defect ∆B.

Remark 19 (Tracking performance). The ultimate bound on the tracking error ζ can be decreased

by increasing the design parameter αQ.

Special Case. Asymptotic Convergence: Theorem 3 proved the UUB of all signals under

the proposed adaptive QP-IRCLF controller. However, asymptotic convergence (stronger form

of stability) of the tracking and estimation errors (ζ, Υ̃) to the origin can be also achieved if the

acceleration estimation is perfect and the elements of ∆B are constant.

Theorem 4. Apply the recording policy in Remark 16 and assume that Assumptions 3 and 4 hold.

Given the Lyapunov function (3.42), and laws (3.17), (3.34), (3.39), and (3.41), if the acceleration

estimation error is zero and the elements of ∆B are constant, asymptotic convergence of (Υ̃, ζ)

to the origin is guaranteed for any initial condition ζ(0), and all unknown system parameters,

unmodeled dynamics, and disturbances without knowing their bounds a priori.

Before proving this theorem, let us first define uniform continuity and state the Barbalat lemma [81].

Definition 10 (Uniform continuity). A function h(t) : < → < is said to be uniformly continuous

on [0,∞] if

∀ ε > 0, ∃ δ(ε) > 0, ∀ t1 ≥ 0, ∀ t ≥ 0, |t− t1| < δ → |h(t)− h(t1)| < ε. (3.55)
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Definition 11 (Barbalat lemma). If h(t) is uniformly continuous for all t ≥ 0 and if the limit of

the integral lim
t→∞

∫ t

0

h(τ)dτ exists and is finite, then lim
t→∞

h(t) = 0.

Proof. The assumption of zero acceleration estimation error and constant ∆B immediately follows

that εΨi = Ῡ = 0, which reduces Eq. (3.49) to have

Ẇ ≤ −αQλmin(P )‖ζ‖2 − λmin(H1)‖Υ̃‖2, (3.56)

implying negative semi-definiteness of Ẇ .

Let us define the following uniformly continuous function

h(t) = αQλmin(P )‖ζ‖2 + λmin(H1)‖Υ̃‖2 ≥ 0 (3.57)

to have Ẇ (t) ≤ −h(t) of which integrating form 0 to∞ yields

W (0)−W (∞) ≥ lim
t→∞

∫ t

0

h(τ)dτ. (3.58)

Since Ẇ (t) ≤ 0, the term W (0) − W (∞) is positive and finite, from which it follows that

lim
t→∞

∫ t

0

h(τ)dτ is also positive (h(t) is positive) and finite. Hence, due to the Barbalat lemma, it

follows that

lim
t→∞

h(t) = lim
t→∞

(
αQλmin(P )‖ζ‖2 + λmin(H1)‖Υ̃‖2

)
= 0. (3.59)

With the results of Remark 16 in hand, H1 is positive definite and in turn λmin(H1) > 0. On

the other hand, since λmin(P ) > 0 and αQ > 0, Eq. (3.59) implies that (ζ, Υ̃) → 0. This proves

asymptotic convergence of the tracking and estimation errors (ζ, Υ̃) to zero in the closed-loop

dynamics while K̃r is also UUB due to the boundedness of Kr by Krmax

√
1 + νKr .

Remark 20 (Uniform continuity of function h(t)). To prove the uniform continuity of the function

h(t) presented in (3.57), the boundedness of its time derivative has to be shown; for this purpose,

74









ll Im ,

y

u

l

cml

ff Im ,

g

.
.m

c



y

x
ly



k
ry

ls
F

rsF k

(a) (b)

Figure 3.1: (a) The foot-leg model, and (b) foot and soft ground

the following discussion can be made. In view of Eqs. (3.42) and (3.56), it can be inferred that

W > 0 and Ẇ ≤ 0 implying that all variables ζ, Υ̃, and K̃r are bounded. From the boundedness

of ζ and due to Assumption 4, since the reference trajectory qda and its derivative are bounded, then

q and q̇ are bounded. This along with the boundedness of vopt (by enforcing control bounds in QP

optimization) and the assumption of all the disturbances being bounded concludes the boundedness

of ζ̇ . On the other hand, since Υ̇, ζ , and the acceleration estimation error are all bounded, it follows

that ˙̃Υ is bounded. Taken altogether, since all the variables ζ, Υ̃, ζ̇ , and ˙̃Υ are bounded, then

ḣ(t) = 2αQλmin(P )ζT ζ̇ + 2λmin(H1)Υ̃T ˙̃Υ (3.60)

is bounded which follows that h(t) is uniformly continuous.
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Figure 3.2: The quasi-static spring forces (left) and foot angle (right) with the stabilization range
(no negative forces) indicated by red dashed lines.

3.5 Simulation results

In this section, simulation studies are carried out to validate the effectiveness of the proposed

adaptive QP-IRCLF. A comprehensive comparison is then conducted between our control strategy

with an adaptive QP-RCLF (Remark 14 from [31]) and the baseline non-adaptive QP-RCLF on

two illustrative underactuated robotic systems: a foot-leg model on deformable ground shown in

Fig. 3.1 and the overhead crane system shown in Fig. 3.5. The proposed controller is applied for

both systems through the laws (3.17), (3.34), (3.39), and (3.41) while utilizing the recording policy

in Remark 16 and the estimated system’s acceleration. The design parameters of all controllers are

tuned such that they can achieve their best performance in different simulation conditions.

3.5.1 Example 1. the foot-leg model on deformable ground

A. Modeling and initialization

The model is a foot plus a leg resting on two unidirectional springs to represent the soft ground

as shown in Fig. 3.1(a). The springs are located at the ends of the feet so that they can only exert

a pushing force, but cannot create a pulling force. Thus, the simulation with pulling force will be

considered as the instability condition of the system. We assume that the foot-leg system can only
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(a) Condition 1: Initial condition mismatch, and 40% uncertainty in parameters and control map
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(b) Condition 2: Initial condition mismatch, 40% uncertainty in parameters and control map, and
applied disturbances

Figure 3.3: The passive state space solutions (y, θ), active space tracking, phase portrait, and ankle
torque under Condition 1 and Condition 2. The desired leg angle and the quasi-static trajectories
are indicated by the red and magenta dashed lines, respectively. The red square and circle show
the starting and the end points, respectively.
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move up and down (no horizontal motion). The horizontal position of the foot is also assumed to be

at zero and coincides with the center of the foot (which is where the ankle will lie for simplicity).

Thus, the proposed model has a prismatic-revolute-revolute (PRR) joint structure as illustrated in

Fig. 3.1(a). The foot-leg system can be modeled as a three DoF robot (n = 3) and its equations of

motion are derived using the Euler-Lagrange formula as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τext + τ, (3.61)

where q = [y, θ, α]T ∈ <3 is the vector of the generalized coordinates with y as the vertical

displacement, θ as the foot angle, and α as the leg angle; M(q), C(q, q̇), G(q) are the inertia

matrix, the Coriolis and Centripetal matrix, and gravity vector, respectively; the system has only

one actuator at the ankle so τ = [0, 0, u]T with u as the ankle torque; and τext = JT (q)Fs is the

effect of the combined spring forces Fs = [Fsr , Fsl ]
T stemming from the soft ground on each joint,

where the Jacobian matrix J is defined as

J(q) =

 1 −δcos(θ) 0

1 δcos(θ) 0

 . (3.62)

The ground force’s components are modeled as Fsr = −kyr and Fsl = −kyl for which we

define yr = y − δsin(θ) and yl = y + δsin(θ). Due to the structure (3.1), let us define Φ(q) =

G(q)− τext, which comprises both gravity and ground reaction force effects. Then, the partitioned

form (3.2) of system (3.61) in the lower actuated form is given as

Muu =

 mf +ml −lcmmlsin(θ + α)

−lcmmlsin(θ + α) mll
2
cm + If + Il

 , Mau =

[
−lcmmlsin(θ + α) mll

2
cm + Il

]
,

Maa = mll
2
cm + Il, Mua =

 −lcmmlsin(θ + α)

mll
2
cm + Il

 , Ca = [0, 0, 0]
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(a) Condition 1

(b) Condition 2

Figure 3.4: The robust gain evolution and the dynamic estimation ξ under Conditions 1 and 2,
where the red dotted line indicates the prescribed upper bound of the robust gain.

Cu =

 0 −lcmmlcos(θ + α)(θ̇ + 2α̇) −lcmmlcos(θ + α)α̇

0 0 0

 , (3.63)

Φu =

 g(mf +ml) + 2ky

kδ2sin(2θ)− glcmmlsin(θ + α)

 , Φa = −glcmmlsin(θ + α),

where Il and If are the moments of inertia of the leg and foot about the ankle joint, respectively;

ml and lcm are the mass and length of the leg to the center of mass; mf is the mass of the foot; δ is

the length between the ankle joint and the tip of the foot; and k is the spring stiffness.
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As seen from (3.63), the foot-leg model is an underactuated system with only one DoA, which

follows that l = 2 and n − l = 1. The task is to apply the proposed controller for this system to

track the desired trajectory αd(t) = Asin(2πft) over 100 sec, while avoiding the ground reaction

force to be negative. It follows that the simulation fails and the foot-leg system falls over (an

instability condition) if Fsr < 0 and/or Fsl < 0. To avoid this concern, the range of motion for the

leg angle α, i.e., stabilization range, should be computed using the quasi-static equilibrium (QSE)

of the system for which no pulling force is generated. For this purpose, we begin by deriving the

QSEs (ye, θe) from Φ(q) = 0 for a fixed α0, which are the solutions of

g(mf +ml) + 2kye = 0 (3.64)

kδ2sin(2θe)− glcmmlsin(θe + α0) = 0.

We then evaluate the forces at QSEs as

Fsre = −k(ye − δsin(θe)) (3.65)

Fsle = −k(ye + δsin(θe)).

By plotting Fsre , Fsle , and θe versus α0 (as illustrated in Fig. 3.2), it can bee seen that the system

does not fall over for α ∈ [−0.27,+0.27] (rad). In other words, the stabilization leg angle must lie

within the given range to have the only pushing non-negative forces. Therefore, the desired αd(t)

should be assigned for −0.27 ≤ A(rad) ≤ +0.27, based on which we choose A = 0.175 (rad)

and f = 1
4π

(Hertz) during the simulation.

B. Design parameters and controller set up

For the sake of having a fair comparison, the design parameters of all controllers (proposed,

adaptive QP-RCLF, and baseline QP-RCLF) are chosen to be the same as Q = lcont = diag(1, 1),

lrclf = 10, ū = 150, u = −150, Kr0 = 1, Kr(0) = 1, Krmax = 3, νKr = 0.1, η1 = η2 =
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diag(1, 1, 0.01), and m = 31. The proposed controller and the adaptive QP-RCLF both use αQ =

1. However since the simulation with this αQ fails for the baseline non-adaptive QP-RCLF, the

convergence coefficient is selected to be 60αQ to have a reasonable tracking performance for this

controller.

The active space of the system (3.63) can be written in the form of (3.12) to obtain

α̈ = ΨΥ + b0u (3.66)

with Ψ = [Y, u] and Υ = [P,∆b]T including the regressor matrix and parameter vector

Y =[− ˆ̈θ, sin(θ + α)(g + ˆ̈y)] (3.67)

P =[1,
mllcm

Jl +mll2cm
],

where b0 = 1
Jl+mll2cm

is the base control coefficient with ∆b = b− b0 as the unknown part of b.

The objective is to control the active space (leg joint), while the passive space (other joints)

stays bounded and the ground reaction forces remain positive (to prevent the system falls over). To

evaluate the performance of different controllers, the simulation is carried out under the following

two different conditions:

Condition 1 (Initial condition mismatch; and 40% parameter uncertainty). In this condition, the

initial conditions are randomly chosen as q(0) = [0, 0,−0.0785]T and q̇(0) = 0, and all parameters

are perturbed equally and at the same time by 40%.

Condition 2 (Initial condition mismatch; 40% parameter uncertainty; and disturbance). In this

condition, in addition to Condition 1, two unexpected pushes are also randomly applied to the leg

joint at t = 30 and 60 (sec) with magnitudes of +30 and −30 (N.m), respectively.

1Since for the foot-leg system, r = 2 and n−l = 1, then the number of the recorded data points should be selected
as m ≥ 3 for use in the recording policy in Remark 16.
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C. Simulation results

Simulation results are shown in Figs. 3.3 and 3.4 with the proposed adaptive QP-IRCLF under

Conditions 1 and 2. Figure. 3.3(a) confirms that under Conditions 1, the leg joint position nicely

tracks its desired trajectory, while the passive joint positions (y, θ) stay bounded and converge

to their quasi-static trajectories. This figure also demonstrates the phase portrait of the leg joint,

showing convergence of the controller to a stable limit periodic orbit. In order to evaluate the adap-

tation mechanism (3.34), Condition 2 is applied to the system to test the robustness of the proposed

controller. It can be seen in Fig. 3.3(b) that tracking of the leg joint is maintained while the other

joints stay stable. This figure also shows that the portrait deviates at the disturbance encounters,

but then smoothly converges to the cycle. These observations confirm a strong robustness of the

proposed controller as it can tolerate the disturbance and parameter uncertainties simultaneously.

Figure 3.4 depicts the evolution of Kr generated by the proposed adaptation law (3.34) under

Conditions 1 and 2. It can be observed in Fig. 3.4(a) that the robust gain is able to adapt itself based

upon the scale of parameter uncertainties and the initial conditions in such a way that stabilization

of the leg joint is maintained under Condition 1. In addition, under Condition 2, Kr can become

adjusted at the disturbance exposure (Figure 3.4(b)) to maintain the tracking performance, while

the boundedness of Kr is always guaranteed by Krmax

√
1 + νKr ≈ 3.15 (the parameter drift will

never happen). Figure 3.4 also illustrates that under both conditions, the adaptive signal vad ap-

propriately estimates the augmented dynamic ξ such that the estimation error converges to a small

neighborhood around the origin. These findings reveal that our proposed control approach is able

to provide an appropriate dynamic estimation under both Conditions 1 and 2. Taken altogether, the

results in Figs. 3.3 and 3.4 support the claim of Theorem 3 in which UUB of all system’s solutions

(ζ, ξ̃, Kr) is guaranteed.

To show the superiority of the proposed controller over the adaptive QP-RCLF and the baseline

QP-RCLF, a numerical comparison is performed under both Conditions 1 and 2 through Table 3.1.

This table lists root mean square error (RMSE) of the active joint tracking (sum of position and ve-

locity) RMSEt, RMS value of the ankle torque RMSu, absolute peak torque value umax, RMSE of

83



Table 3.1: Comparison results for different controllers under both conditions (Condition 1 / Con-
dition 2) for 100 sec simulation on the foot-leg system, where the negative values in red show that
the ground forces are negative (the robot falls over).

Proposed Adaptive QP-RCLF Baseline
RMSEt (rad) 0.037 / 0.040 0.065 / 0.090 0.114 / 0.120
umax (N.m) 81 / 115 89 / 145 139 / 168

RMSu (N.m) 52 / 53 62 / 65 83 / 84
Fmax
sr (N) 356 / 354 361 / 421 462 / 462
Fmax
sl

(N) 369 / 369 369 / 478 471 / 492
Fmin
sr (N) 20 / 20 20 / -63 -39 / -67
Fmin
sl

(N) 20 / 20 20 / 1 -38 / -38
RMSEξ 0.172 / 0.175 1.315 / 1.00 -

dynamic estimation RMSEξ, and maximum and minimum values of the spring force components

for 100 sec simulation. It can be inferred from Table 3.1 that under Condition 1, the proposed con-

troller (i) improves tracking by 43% and 67%; (ii) decreases umax by 9% and 41%; (iii) reduces the

control cost by 16% and 37%, all compared with the adaptive QP-RCLF and the baseline method,

respectively. This table also shows that the baseline controller is not able to maintain the stability

criteria under this condition such that Fmin
sr , Fmin

sl
< 0, which implies that the robot falls down

under this controller. The quantitative results also reveal that our controller improves the dynamic

estimation by 86% over the adaptive QP-RCLF. These improvements obtained by the proposed

controller are mainly due to the estimation and control of the augmented dynamic ξ along with the

derivation of the IRCLF component and dynamic estimator. Recall that these results are obtained

where the coupling effects between the passive and active subspaces are taken into consideration

for the control design by estimating the system’s acceleration. Overall, these results provide strong

evidence that the proposed control methodology outperforms other two controllers regarding the

all design requirements when Condition 1 is applied.

The strong robustness of our proposed controller can be significantly highlighted when Con-

dition 2 is applied for which the quantitative results are reported in Table 3.1. The first thing that

catches our attention is that neither adaptive QP-RCLF nor baseline QP-RCLF is able to maintain

the stability criteria under this condition (negative ground forces), which implies that the robot
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Figure 3.5: The overhead crane system

falls down when these controllers are applied. However, the proposed controller can nicely toler-

ate the pushes and remain stable. Regarding the other design specifications, the numerical results

reveal that the proposed controller (i) enhances the tracking performance by 56% and 67%; (ii)

decreases umax by 20% and 31%; and (iii) improves RMSu by 19% and 37%, all compared with the

adaptive QP-RCLF and the baseline QP-RCLF, respectively. Our approach also improves RMSEξ

by 83% compared with the adaptive QP-RCLF. These findings are consistent with previous results

in Condition 1 showing the benefits of our approach over the other two controllers. Taken alto-

gether, the results here confirm the strong robustness of our control methodology under both model

uncertainties and disturbances.

3.5.2 Example 2. the overhead crane model

A. Modeling and initialization

The overhead crane, shown in Fig. 3.5, is a two DoF system which consists of a cart and a pay-

load suspended with a massless rope from the cart. For this system, the partitioned structure (3.2)
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in the “upper actuated” form is given as

Maa = m+M, Mau = mlcos(θ), Mua = Mau, Muu = ml2 (3.68)

Ca = [−mlθ̇sin(θ), 0], Cu = [0, 0], Φa = 0, Φu = mglsin(θ),

where x and θ are the cart position and the payload angle respectively such that q = [x, θ]T

(m, rad); m and M are the masses of the cart and the payload; l is the length of the rope; and

the system has only one actuator at the cart so that τ = [u, 0]T . The task is to control the cart

position to track the desired trajectory yd = 0.8sin(t) over 100 sec simulation.

B. Design parameters and controller set up

In this example, the design parameters are tuned as Q = lcont = diag(1, 1), lrclf = 10, ū = 40,

u = −40, Kr0 = 1, Kr(0) = 1, Krmax = 4, νKr = 0.1, η1 = η2 = diag(0.1, 0.01), and m = 22.

Unlike the proposed controller that uses αQ = 1, the convergence coefficients of the adaptive QP-

RCLF and the baseline QP-RCLF are chosen to be 5αQ and 20αQ, respectively. The reason why

we choose such larger gains is that these two controllers are not able to maintain tracking with

αQ = 1. The active space of the overhead crane (3.68) can be stated in the form of (3.12) to obtain

ẍ = ΨΥ + b0u, (3.69)

where the regressor, the parameter, and the base control coefficient can be derived as

Y =θ̇2sin(θ)− ˆ̈θcos(θ) (3.70)

P =
ml

m+M

b0 =
1

m+M
.

Again, to evaluate the controllers, the following two conditions are considered:
2Since for the overhead crane system, r = 1 and n− l = 1, we should pick m ≥ 2 for use in the recording policy

in Remark 16.
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Condition 3 (Initial condition mismatch; and 100% parameter uncertainty). In this condition, the

initial conditions are q(0) = [0.4,− π
10

]T and q̇(0) = 0, and all parameters are deviated by 100%.

Condition 4 (Initial condition mismatch; 100% parameter uncertainty; and disturbance). In this

condition, Condition 3 holds while disturbances d(t) = +20,−20 (N.m) are applied to the system

at t = 30, 60 (sec), respectively.

C. Simulation results

Figure 3.6 illustrates simulation results obtained by applying the proposed controller to the

overhead crane system under Conditions 3 and 4. Under both conditions, the cart position rapidly

converges to its desired trajectory, as indicated in Fig 3.6. As also shown in this figure, the bound-

edness of the payload angle is always satisfied for both conditions. In addition, it can be seen in

Fig 3.6 that the overhead crane control is very low force. This figure also demonstrates how the

robust gains evolve under different conditions towards maintaining the tracking performance. In

particular, Fig. 3.6(b) shows that when Condition 4 is applied, the gain Kr updates itself twice at

t = 30 and t = 60 (sec) to compensate for the unexpected disturbances. Finally, as demonstrated

in Fig. 3.6, the adaptive signal vad nicely estimates the actual unknown dynamic ξ. These results

confirm that under our proposed controller, tracking error, dynamic estimation error, and the ro-

bust gain are all bounded, which is in agreement with Theorem 3 in which UUB of all system’s

solutions is guaranteed.

Table 3.2 provides a numerical evaluation of different controllers applied to the overhead crane

system under Conditions 3 and 4. A cursory glance at Table 3.2 reveals that when Condition 3 is

applied our controller (i) enhances tracking performance by 50% and 60%; (ii) reduces umax by

25% and 58%; and (iii) improves RMSu by 9% and 11%, all compared with the adaptive QP-RCLF

and the baseline QP-RCLF, respectively. With proposed controller, the estimation performance is

also improved by 20% over the adaptive QP-RCLF. Table 3.2 also confirms the benefits of our pro-

posed controller over the other two controllers when Condition 4 is imposed to the system. Under

this condition, the proposed controller (i) enhances tracking by 62% and 65%; (ii) reduces umax
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(a) Condition 3: Initial condition mismatch, and 100% parameter uncertainty in parameters and
control coefficient
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(b) Condition 4: Initial condition mismatch, 100% parameter uncertainty in parameters and control
coefficient, and applied disturbances

Figure 3.6: The active space tracking (cart position), passive state space solution θ (payload angle),
control force, robust gain evolution, and dynamic estimation ξ under Conditions 3 and 4, where
the red dotted line indicates the prescribed upper bound of the robust gain.
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Table 3.2: Comparison results for different controllers under both conditions (Condition 3 / Con-
dition 4) for 100 sec simulation on the overhead crane system.

Proposed Adaptive QP-RCLF Baseline
RMSEt (rad) 0.067 / 0.070 0.135 / 0.184 0.170 / 0.200
umax (N) 13 / 31 18 / 37 32 / 40

RMSu (N) 8.13 / 8.60 8.95 / 9.45 9.20 / 10.00
RMSEξ 0.048 / 0.093 0.060 / 1.340 -
θmax (rad) 0.313 / 0.313 0.313 / 0.320 0.314 / 0.315

by 14% and 20%; and (iii) enhances RMSu by 9% and 14%, all compared with the adaptive QP-

RCLF and the baseline QP-RCLF, respectively. In addition, our controller improves the estimation

performance by 9% compared with the adaptive QP-RCLF. It can be also seen in Table 3.2 that the

peak payload angle θmax is relatively the same under all controllers.

According to both examples together, the results provide convincing evidence for the claim that

our proposed control scheme can outperform the adaptive QP-RCLF and the baseline QP-RCLF

controllers in the presence of model uncertainties and unknown disturbances.

3.6 Conclusions and next chapter

This chapter presented a robust QP-based adaptive control approach for the active space stabiliza-

tion of underactuated robotic systems. The unified multi-objective controller was able to identify

the model uncertainties and robustify the closed-loop system against unmodeled dynamics and dis-

turbances in an optimal control fashion without the need for knowing the bounds of these unknown

terms. UUB of all system’s solutions was proven through Theorems 3 and 4 by using Lyapunov

and Barbalat arguments. To demonstrate these results, the proposed technique was implemented in

simulations on two underactuated robotic systems through which the soundness of our method was

validated. Comparisons with existing controllers (the baseline and adaptive QP-RCLF controllers)

confirmed the benefits of our approach with regard to different design objectives.

The controller developed in this chapter can be slightly modified for fully-actuated systems.

The presented approach can be implemented for a wide range of underactuated robotic systems

when only the active space stabilization is required. However, there is a variety of underactuated
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applications with the objective of stabilizing the passive space (the space that cannot be actuated

directly) while guaranteeing the boundedness of other solutions. This naturally encourages us to

extend the presented approach for such systems in the presence of unmatched uncertainties while

providing a formal disturbance-to-error stability analysis. This goal will be formulated in the next

chapter.
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CHAPTER 4

PASSIVE (NON-COLLOCATED) SPACE CONTROL AND SAFETY OF

UNDERACTUATED SYSTEMS

This chapter extends and encompasses the QP-CLBF approach whose direct application to un-

certain nonlinear dynamical systems with model uncertainties and disturbances could potentially

degrade the performance of closed-loop systems and violate safety-critical constraints. In this

chapter, we present a novel robust quadratic program-based adaptive approach for non-collocated

control of a class of underactuated robotic systems with diagonal inertia matrices through which

exponential disturbance-to-error (eDE) stability of all system solutions is ensured. We begin by

developing a backstepping design technique based on which a neural network-based adaptive con-

trol is designed to approximate unknown nonlinear functions. To compensate uncanceled uncer-

tainties, including modeling approximation error, chained error effects between coordinates, and

time-varying disturbances, virtual inputs are designed whose gains are evolved by projection-based

adaptation mechanisms. To construct a three-term control law, including feedforward, adaptive,

and optimal terms, a QP optimization problem is synthesized to compute a family of optimal sta-

bilizing signals while encoding time-varying robust CLF (TVRCLF) and CBF (TVRCBF), and

control bounds as constraints. In contrast with existing QP-CLBF, our control technique with

proposed TVRCLF and TVRCBF significantly improves control objectives, and strictly guarantee

safety by automatically compensating unknown uncertainties without the need for knowing their

bounds a priori. The eDES of all system errors is proven using Lyapunov stability arguments for

both collocated and no-collocated coordinates. Simulations and comparisons to a baseline QP-

CLBF-based feedback linearization (QP-CLBF/FL) on a single-link flexible-joint robot verify the

benefits of the proposed control approach.

92



4.1 Background

In recent years, researchers have become increasingly interested in controlling of underactuated

robotic systems due to their redundant applications such as aerial and underwater vehicles [82,

83], flexible-joint robots [84, 85], and walking robots [86, 87]. A challenging control problem with

underactuated robots is that they have fewer degrees of actuation (DoA) than degrees of freedom

(DoF). This, coupled with the existence of modeling uncertainties and disturbances makes such

problem even more complex. The control of underactuated robots can be generally categorized

into two different problems: collocated and non-collocated control, where the former controls the

“actuated” degrees of freedom whose dimension is the same as the number of torque inputs and

the latter stabilizes the remaining “passive” degrees [88, 89]. Over the years, an enormous amount

of control strategies has been developed based on sliding modes [67, 90, 91], fuzzy logic [75,

92], adaptive controls [73, 93], and backstepping techniques [84, 94] for the collocated and non-

collocated control of underactuated robots.

As we know, the QP-CLBF approach satisfies a large and diverse set of objectives for nonlin-

ear dynamical systems through which both stabilization and safety can be ensured in an optimal

fashion [5, 95]. However, as mentioned, the main drawback of QP-CLBF is that the existence of

modeling inaccuracies degrades the performance of closed-loop systems and causes the violation

of safety-critical constraints. Although the robust QP-CLBFs presented in [96, 78] could robustify

the system against unmodeled dynamics and disturbances, the underlying assumption for those

approaches is that the bound of unknown terms should be known a priori, which is not a practical

assumption. It should be pointed out that under high gain control parameters, stabilization and

safety may be achieved for the above approaches, however, this results in increasing the control

efforts and restricting the safe sets.
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4.2 Contributions

The shortcomings above along with the desire of extending the applications of QP-CLBF con-

troller [5] motivates us to introduce a unified implementable control framework for the non-

collocated control of underactuated robots. This chapter focuses on the control problem of the

n DoF-one DoA underactuated robots with diagonal inertia matrices whose applications include,

but not limited to, flexible-joint robots [84], moment gyroscopes [97], beam-ball systems [68],

magnetic suspensions [98], and servo systems [99]. Note that clearly, the complexity of non-

collocated control problem reduces for systems with non-diagonal inertia matrices as the control

inputs can directly reach through the dynamics to stabilize the variables of interest. The main

idea behind this work is that strict safety performance and accurate control objectives are achieved

for underactuated robots with diagonal inertia matrices under a novel robust quadratic program-

based adaptive control approach, that can ensure stability from bounded model inaccuracies and

disturbances existing in the dynamics to all system solutions.

The goals of this chapter are, therefore, four-fold:

1. Drive non-collocated coordinate to a desired trajectory in an optimal fashion in the presence

of modeling uncertainties and disturbances without knowing their bounds a priori (Theo-

rem 6)

2. Prove exponential disturbance-to-error (eDE) stability of both collocated and non-collocated

degrees of freedom (Theorem 6)

3. Guarantee strict safety for collocated coordinate against uncanceled terms with unknown

bounds (Theorem 5)

4. Demonstrate benefits of the proposed controller over an existing QP-CLBF-based feedback

linearization (QP-CLBF/FL) method (Section 4.7)

To the best of our knowledge, to date, no study has focused on developing a formal robust quadratic

program-based adaptive approach to non-collocated control and safety of underactuated robots
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under which the above goals are satisfied.

To address the first goal, we begin by developing a 2n-step backstepping design procedure

for an uncertain strict-feedback form of the n DoF-one DoA underactuated robots with diagonal

inertia matrices. Utilizing this recursive method, a radial basis function neural network (RBFNN)-

based adaptive control is designed to approximate the unknown nonlinear functions. To achieve

a proper estimation while being robust to disturbances, recorded data is concurrently used with

instantaneous data to derive the neural network’s weights. Modeling approximation error, chained

errors between the system’s states stemming from the backstepping design, and time-varying dis-

turbances are compensated by designing virtual inputs whose gains are evolved by projection-

based adaptation laws. With the estimates of unknown functions in hand, a three-term control law,

including feed-forward, adaptive, and optimal terms, is suggested whose optimal term (stabilizing

signal) is the solution of a QP optimization problem subject to a time-varying robust CLF (TVR-

CLF). The novel TVRCLF along with the backstepping design ensures driving non-collocated

coordinate to a desired trajectory while a time-varying robust gain compensates for the uncanceled

terms without knowing their bounds a priori.

With the second goal in mind, a 2n-step stability analysis is performed to guarantee eDES

of all collocated and non-collocated coordinates for any bounded disturbances. For this purpose,

Lyapunov arguments are investigated to derive the ultimate bounds of system’s errors with re-

spect to disturbances. To satisfy the third goal, a novel time-varying robust CBF (TVRCBF) is

introduced whose gain is automatically updated in such a way that safety requirements are strictly

satisfied for collocated coordinate of the system. By combining TVRCBF, TVRCLF, and torque

bounds as optimization constraints encoded to a QP, an optimal balance is sought between non-

collocated control, collocated safety, and torque requirements. Simulations and comparisons to

a QP-CLBF/FL method on a single-link flexible-joint robot—an underactuated system with two

DoF and one DoA—are carried out to validate the soundness and benefits of the proposed control

methodology. The structure of this chapter is as follows. Section 4.3 presents the system descrip-

tion and problem statement. Section 4.4 revisits basic preliminaries and definitions. Section 4.5

95



formulates the proposed robust quadratic program-based adaptive controller. Section 4.6 provides

the stability analysis. Section 4.7 presents the simulation and comparison results. Section 4.8

concludes the chapter and suggests for the future work.

4.3 System description and problem statement

In this section, we begin by describing a class of underactuated systems and then present our prob-

lem statement. Consider a class of n DoF-one DoA underactuated robotic systems with diagonal

inertia matrices described by the following equations of motion (EoM):

M(q)q̈ + C(q, q̇)q̇ +G(q) = u+ d(t), (4.1)

where q = [qnc, qc]
T ∈ <n is the vector of generalized coordinates in which qnc = [q1, ..qn−1] ∈

<n−1 and qc = qn belong to the non-collocated (passive) and collocated (active) spaces, re-

spectively; u = [01×n−1, uc]
T is the control vector with uc as the collocated space’s torque;

d(t) = [d1(t), ..., dn(t)]T is the vector of unknown disturbances acting on both collocated and

non-collocated spaces; M(q) = diag(m11, . . . ,mnn) ∈ <n×n is the diagonal inertia matrix;

C(q, q̇) = [c1, . . . , cn]T ∈ <n×n is the Coriolis and Centripetal matrix with cTi ∈ <n; and

G(q) = [g1, . . . , gn]T ∈ <n is the gravity vector.

Assumption 6. The unknown disturbance d(t) is uniformly bounded for all t ≥ 0.

Let us define the state vector z = [q1, q̇1, ..., qn, q̇n]T ∈ <2n to obtain the following strict-

feedback form of the system (4.1)

żi = zi+1, i = 1, 3, . . . , 2n− 3 (4.2)

żi = zi+1 + fki/2(z) + funi/2(z) + dmi/2(t), i = 2, 4, . . . , 2n− 2

ż2n−1 = z2n, ż2n = fkn(z) + funn(z) + dmn(t) + b0un,

where the control coefficient b = 1
mnn

is assumed to be separable into the known term b0 and

96



unknown state-dependent term ∆b(z). The functions fki(z) and fkn(z) are known with nomi-

nal system parameters, and the functions funi(z) and funn(z) are unknown such that they can be

expressed in the following forms

fki(z) = − 1

mii

(ciq̇ + gi)− z2i+1, 1 ≤ i ≤ n− 1 (4.3)

fkn(z) = − 1

mnn

(cnq̇ + gn)

and

funi(z) = ∆fi(z), dmi(t) =
di(t)

mii

, 1 ≤ i ≤ n− 1 (4.4)

funn(z) = ∆fn(z) + ∆b(z)un, dmn(t) =
dn(t)

mnn

,

where the functions ∆fi(z) and ∆fn(z) stem from the parameter uncertainties and unmodeled

dynamics. Due to Assumption 6, the above disturbances are bounded such that |dmi | ≤ d̄mi and

|dmn| ≤ d̄mn for some d̄mi , d̄mn > 0.

This chapter is aimed at extending the applications of QP-CLBF controller to non-collocated

control of underactuated robotic systems while enhancing the existing functionalities of this method

with regard to stabilization and safety in the presence of model uncertainties and disturbances. The

objective of this chapter is to design a robust quadratic program-based adaptive controller, mainly,

based on backstepping technique and quadratic programs, for the system (4.2) such that (i) the

non-collocated variable z1 follows a desired trajectory zd1 , (ii) all system errors are exponential

disturbance-to-error stable (eDES), and (iii) the collocated variable z2n−1 is enforced to stay in the

specified safe set z2n−1 ≤ z2n−1 ≤ z̄2n−1. In the next section, basic preliminaries and definitions

will be revisited to meet the demands for the later control design stages.

Assumption 7. The desired trajectory zd1 is of class C2n.
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4.4 Basic preliminaries and definitions

This section provides an overview of basic preliminaries and definitions [100, 26, 101] that will be

later used when developing the proposed algorithm.

Definition 12. A continuous function α1 : [0, a) −→ R+ for some a > 0 belongs to class K

if it is strictly increasing and α1(0) = 0. A continuous function α2 : R+ −→ R+ belongs to

class K∞ if it is strictly increasing, α2(0) = 0, and lim
r−→∞

α2(r) −→ ∞. A continuous function

α3 : (−b, c) −→ (−∞,∞) for some b, c > 0 belongs to a extended class K if it is strictly

increasing and α3(0) = 0. A continuous function α4 : R+ × R+ −→ R+ belongs to class KL if

α4(r, t) is class K∞ for each t and lim
t−→∞

α4(s, t) −→ 0.

Definition 13 (eISS). Consider the system ẋ(t) = f(x(t), u(t)), where x ∈ <n and u ∈ <m are

the state and input vectors, and f : Rn × Rm −→ Rn is locally Lipschitz with f(0, 0) = 0. This

system is exponential input-to-state stable (eISS) if there exist α2 ∈ K∞, α4 ∈ KL, and some

positive constant λ such that

|x(t)| ≤ α4(|x(0)|, t)e−λt + α2(‖u‖∞), ∀x(0),∀u,∀t ≥ 0. (4.5)

Definition 14. An eISS system holds the asymptotic gain (AG) property if there exists α2 ∈ K∞

such that lim
t−→∞

|x(t, x(0), u)| ≤ α2(‖u‖∞), ∀x(0),∀u. An eISS system is zero stable (ZS) if there

exists α4 ∈ KL such that |x(t, x(0), 0)| ≤ α4(|x(0)|, t)e−λt, ∀x(0),∀t ≥ 0. The system is eISS if

and only if it is AG and ZS.

Definition 15 (eISS-LF). Consider the system ẋ = f(x(t), u(t)). A continuously differentiable

function V (x) : Rn −→ R+ is an eISS-Lyapunov function (eISS-LF) if there exist α2 ∈ K∞ and

some constant λ > 0 such that

V̇ (x) ≤ −λV (x) + α2(‖u‖∞), ∀x,∀u. (4.6)
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Definition 16 (Projection operator). The projection operator for two vectors X ,Y ∈ Rn is de-

fined as

Proj(X ,Y ) =


Y − ∇g(X )(∇g(X ))T

‖∇g(X )‖2 Y g(X ), if g(X ) > 0 ∧ Y T∇g(X ) > 0

Y , otherwise
, (4.7)

where g(X ) = X TX −X 2
max

νX X 2
max

: Rn −→ R is a smooth convex function; Xmax is the norm bound

enforced on X ; and νX > 0 is the projection tolerance. The projection operator has the following

properties: (i) it guarantees forward invariance of set D = {X ∈ <n : ‖X ‖ ≤ Xmax

√
1 + νX }

for g(X ) ≤ 1 and (ii) −X̃ T (Y − Proj(X ,Y , g)) ≤ 0, where X̃ = X −X ∗ with X ∗ as the

true value of X .

Definition 17 (eISSs-ZCBF). Consider the system ẋ = f(x)+g(x)(u+D(x, t)) with state x ∈ <n,

input u ∈ <m, unknown disturbanceD(x, t) ∈ <m, and the locally Lipschitz functions f : Rn −→

Rn and g : Rn −→ Rn × Rm. Define the set C = {x ∈ <n : h(x) ≥ 0} for which h : <n → < is

an r-times continuously differentiable function with relative degree r. Given the system above, the

function h(x) is an exponential input-to-state safe zeroing control barrier function (eISSs-ZCBF)

for the set C, if there exist α1 ∈ K, a set of controls V2, gains KT ∈ <r with proper positive

elements ki for i = 1, ..., r, and bound D̄ to have ‖D(x, t)‖ ≤ D̄ such that

sup
u∈V2

[
Lr
fh(x) + LgL

r−1
f h(x)u

]
≥ −KH(x)− α1 (‖D(x, t)‖) , (4.8)

where H(x) = [Lr−1
f h(x), . . . ,Lfh(x), h(x)]T ∈ <r.

In case thatD(x, t) = 0 (i.e., α1 (‖D(x, t)‖) = 0), h(x) is an exponential ZCBF (eZCBF) from

which it follows that the forward invariance of set C is always guaranteed.

In the next section, we formulate our proposed multi-objective robust quadratic program-based

adaptive control methodology to meet the objectives listed in Section 4.3.
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4.5 Proposed robust quadratic program-based adaptive controller

With the above definitions in hand, this section, which deals with the formulation of our proposed

controller, is organized into five distinct subsections. Subsection 4.5.1 designs a backstepping tech-

nique based on which virtual inputs and main control law are formulated. Projection-based adap-

tation mechanisms are also derived to compensate uncanceled dynamics with unknown bounds.

Subsection 4.5.2 introduces a TVRCLF using which a robust stabilizing signal is generated for the

system in the presence of unknown disturbances. Subsection 4.5.3 develops an adaptive control

based on RBFNNs to approximate unknown functions, and inform virtual inputs and control law

about them. Subsection 4.5.4 suggests a TVRZCBF under which strict safety requirements are

ensured. Subsection 4.5.5 finally constructs a QP by unifying all the design components above to

generate the optimal stabilizing control in a pointwise fashion.

4.5.1 Virtual inputs, control law, and error dynamics

In this section, an adaptive backstepping design approach is developed for the system (4.2). The

design procedure includes 2n steps and uses the following coordinate transformations

e1 = z1 − zd1 and ei = zi − zdi for i = 2, . . . , 2n, (4.9)

where zd1 is a predefined desired trajectory; e1 is the non-collocated tracking error; ei for i =

2, . . . , 2n is the intermediate system error; and zdi for i = 2, . . . , 2n is the virtual input to be

designed later.

Step 1: Using the transformation (4.9) along with the system (4.2), one obtains

ė1 = ż1 − żd1 = z2 − żd1 = e2 + zd2 − żd1 . (4.10)
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By choosing the virtual input

zd2 = żd1 − k1e1 − kr1(t)tanh(
e1

a1

), (4.11)

the error dynamics (4.10) can be written as

ė1 = −k1e1 + e2 − kr1(t)tanh(
e1

a1

), (4.12)

where k1, a1 > 0 are some parameters to be designed later; tanh(.) is the hyperbolic tangent

function; and kr1(t) is the time-varying robust gain whose adaptation law is suggested as

k̇r1 = l1

(
Proj

(
kr1 , e1tanh(

e1

a1

)

)
− σ1kr1

)
(4.13)

with scalars l1, σ1 > 0 and Proj(.,.) defined in Definition 16. This shows that for any bounded error

e2, the trajectory e1 converges to a neighborhood of the origin exponentially at a rate of k1 > 0.

Step 2: Using Eqs. (4.9) and (4.2), one has

ė2 = ż2 − żd2 = z3 + fk1 + fun1 + dm1(t)− żd2 = e3 + zd3 + fk1 + fun1 + dm1(t)− żd2 , (4.14)

where żd2 is known and can be computed by taking the time derivative of (4.11).

By picking the virtual input

zd3 = żd2 − fk1 − f̂un1 − k2e2 − kr2(t)tanh(
e2

a2

), (4.15)

the system (4.14) becomes

ė2 = −k2e2 + e3 + (fun1 − f̂un1) + dm1(t)− kr2(t)tanh(
e2

a2

), (4.16)
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where k2, a2 > 0 and kr2(t) is updated by

k̇r2 = l2

(
Proj

(
kr2 , e2tanh(

e2

a2

)

)
− σ2kr2

)
(4.17)

with l2, σ2 > 0. In view of (4.16), e2 exponentially converges to a neighborhood of the origin with

convergence rate k2 > 0 for any bounded signals e3, fun1 − f̂un1 , and dm1(t).

Step i (i = 3, 5, . . . , 2n− 3): With the virtual inputs derived from Step 1 to Step i− 1 in hand,

the adaptive backstepping design procedure at i-th step for i = 3, 5, . . . , 2n − 3 is presented as

follows:

Utilizing Eqs. (4.9) and (4.2), one can obtain

ėi = żi − żdi = zi+1 − żdi = ei+1 + zdi+1 − żdi . (4.18)

Let us split żdi into the known term żdik and the unknown term żdiu , and define funn+i−2
= −żdiu

to obtain

ėi = ei+1 + zdi+1 + funn+i−2
− żdik , (4.19)

for which selecting

zdi+1 = −kiei + żdik − f̂unn+i−2
− kri(t)tanh(

ei
ai

) (4.20)

results in

ėi = −kiei + ei+1 + (funn+i−2
− f̂unn+i−2

)− kri(t)tanh(
ei
ai

), (4.21)

where ki, ai > 0 and kri(t) is updated by the following adaptation law

k̇ri = li

(
Proj

(
kri , eitanh(

ei
ai

)

)
− σikri

)
(4.22)

with li, σi > 0. Referring to (4.21), for any bounded variables ei+1 and funn+i−2
− f̂unn+i−2

, ei

exponentially converges to a neighborhood of the origin at a rate of ki > 0.

102



Step i (i = 4, 6, . . . , 2n − 2): The design procedure for i-th step with i = 4, 6, . . . , 2n − 2 is

slightly different from the previous step as presented as follows:

Once again, referring to Eqs. (4.9) and (4.2), one can write

ėi = żi−żdi = zi+1+fki/2+funi/2+dmi/2(t)−ż
d
i = ei+1+zdi+1+fki/2+funi/2+dmi/2(t)−ż

d
i . (4.23)

By defining żdi = żdik + żdiu and funn+i−2
= funi/2 − żdiu , one has

ėi = ei+1 + zdi+1 + fki/2 + funn+i−2
+ dmi/2(t)− ż

d
ik
, (4.24)

for which picking

zdi+1 = −kiei + żdik − fki/2 − f̂unn+i−2
− kri(t)tanh(

ei
ai

) (4.25)

yields

ėi = −kiei + ei+1 + (funn+i−2
− f̂unn+i−2

) + dmi/2(t)− kri(t)tanh(
ei
ai

), (4.26)

in which kri(t) can be updated by (4.22). Again, Eq. (4.26) implies that for any bounded variables

ei+1, funn+i−2
− f̂unn+i−2

, and dmi/2(t), ei is exponentially convergent into a ball of the origin while

the rate of convergence is ki > 0.

Step 2n−1: With having the virtual input zdn−1 from Step 2n−2, and using Eqs. (4.9) and (4.2),

one can write

ė2n−1 = e2n + zd2n − żd2n−1 (4.27)

for which splitting żd2n−1 into terms żd2n−1u and żd2n−1k
while defining fun3n−3 = −żd2n−1u results in

ė2n−1 = e2n + zd2n + fun3n−3 − żd2n−1k
. (4.28)
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Let us select

zd2n = −k2n−1e2n−1 + żd2n−1k
− f̂un3n−3 − kr2n−1(t)tanh(

e2n−1

a2n−1

) (4.29)

using which (4.28) becomes

ė2n−1 = −k2n−1e2n−1 + e2n + (fun3n−3 − f̂un3n−3)− kr2n−1(t)tanh(
e2n−1

a2n−1

), (4.30)

where k2n−1, a2n−1 > 0 and kr2n−1(t) is evolved by

k̇r2n−1 = l2n−1

(
Proj

(
kr2n−1 , e2n−1tanh(

e2n−1

a2n−1

)

)
− σ2n−1kr2n−1

)
(4.31)

with l2n−1, σ2n−1 > 0. This shows that if e2n and fun3n−3 − f̂un3n−3 are bounded, then exponential

convergence of e2n−1 into a ball of the origin is ensured with the rate of convergence k2n−1 > 0.

Step 2n: Utilizing the virtual input designed from the previous step (Step 2n − 1), this final

step is devoted to compute the collocated control torque un.

In view of Eqs. (4.9) and (4.2), one writes

ė2n = ż2n − żd2n = fkn + funn + dmn(t) + b0un − żd2n. (4.32)

Letting żd2n = żd2nk + żd2nu and fun3n−2 = funn − żd2nu leads to

ė2n = fkn + fun3n−2 + dmn(t) + b0un − żd2nk . (4.33)

Pick the main control law as

un =
1

b0

(żd2nk − fkn − f̂un3n−2 + vopt) (4.34)

104



using which the system (4.33) becomes

ė2n = vopt + (fun3n−2 − f̂un3n−2) + dmn(t), (4.35)

which follows that a stabilizing control signal vopt can provide exponential convergence of e2n to a

neighborhood around the origin for any bounded estimation error fun3n−2− f̂un3n−2 and disturbance

dmn(t).

In the next section, the stabilizing control signal vopt will be computed in an optimal fashion to

guarantee the stability of the error dynamics (4.35).

4.5.2 Time-varying robust control Lyapunov function (TVRCLF)

While traditional CLF-based controllers [5, 8] ensure the stability of nonlinear systems, their per-

formance is degraded under unknown modeling errors and disturbances. Robust CLF-based ap-

proaches [78, 101] enhance the performance of those controllers by incorporating a robust compo-

nent whose “constant” gain should be manually tuned to compensate for unknown terms. However

since the bound of these terms is unknown, improper selection of the gains causes either undesir-

able tracking performance or aggressive control effort. In this section, a TVRCLF is introduced to

ensure exponential disturbance-to-error (eDE) stability of the system (4.35) (from the disturbance

(fun3n−2 − f̂un3n−2) + dmn(t) to the error e2n). An adaptive law is designed to tune the robust

gain automatically in such a way that all disturbances are rejected without knowing their bounds a

priori .

For this purpose, we begin by presenting the following definition.

Definition 18. Given the system (4.35), the function V (e2n) is an exponentially stabilizing TVR-

CLF if there exist a set of controls V and positive scalars λ, a1, a2 > 0 such that

a1|e2n|2 ≤ V (e2n) ≤ a2|e2n|2, (4.36)

inf
vopt∈V

[Rclf (e2n) + e2nvopt] ≤ −λV (e2n),
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where Rclf (e2n) is the time-varying robust component that can automatically compensate for the

uncanceled terms.

Let us pick the Lyapunov function V (e2n) = 1
2
e2

2n whose time derivative along the error dy-

namics of the collocated space is

V̇ (e2n) = e2nvopt + e2n

(
(fun3n−2 − f̂un3n−2) + dmn(t)

)
. (4.37)

By picking vopt = −λ
2
e2n, one has

V̇ (e2n) = −λ
2
e2

2n + e2n

(
(fun3n−2 − f̂un3n−2) + dmn(t)

)
(4.38)

which reduces to

V̇ (e2n) ≤ −λV (e2n) + |e2n||(fun3n−2 − f̂un3n−2) + dmn(t)|. (4.39)

Due to Definition 15, V (e2n) is an eDES-LF (with exponential rate λ) in the error dynamics

ė2n such that the ultimate bound of the error trajectory e2n is

(
2|(fun3n−2 − f̂un3n−2) + dmn(t)|

λ

)1/2

. (4.40)

Due to Definition 7, to find a balance between the stabilization and control optimality, the

stabilizing signal vopt can be generated by the following PWMNC law [27]

vopt
(
φ0(e2n), φ1(e2n)

)
=


−φ0(e2n)
φ1(e2n)

if φ0(e2n) > 0

0 if φ0(e2n) ≤ 0

(4.41)

for which φ0(e2n) and φ1(e2n) are defined as

φ0(e2n) = λV (e2n) + Rclf (e2n), φ1(e2n) = e2n (4.42)
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with the robust component

Rclf (e2n) = kr2n(t)e2ntanh(
e2n

a2n

), (4.43)

where a2n > 0. Note that the law (4.41) applies for all e2n ∈ V −1(cv,∞) and never divides by

zero as the set

vopt(e2n) = {vopt : φ0(e2n) + φ1(e2n)vopt ≤ 0} (4.44)

is nonempty for e2n ∈ V −1(cv,∞). Hence, the law (4.41) is implementable for all V (e2n) > cv.

The time-varying robust gain kr2n(t) can be updated by the following law to compensate for

the uncanceled term (fun3n−2 − f̂un3n−2) + dmn(t)

k̇r2n = l2n

(
Proj

(
kr2n , e2ntanh(

e2n

a2n

)

)
− σ2nkr2n

)
, (4.45)

where l2n, σ2n > 0.

The solution of the PWMNC (4.41) can also be generated by a QP while incorporating the

following TVRCLF constraint in the optimization problem to ensure eDE stability for the error

dynamics ė2n:

φ0(e2n) + φ1(e2n)vopt ≤ 0. (TVRCLF)

Noting that the time-varying disturbance dmi(t) for i = 1, . . . , n is compensated by the adap-

tation mechanism

k̇ri = li

(
Proj

(
kri , eitanh(

ei
ai

)

)
− σikri

)
, i = 1, . . . , 2n, (4.46)

the next step will concentrate on designing adaptation mechanisms to estimate the unknown func-

tions fun1 , fun3n−3 , fun3n−2 , and funn+i−2
for i = 3, 4, . . . , 2n− 1.
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4.5.3 Unknown nonlinear function estimation

To implement the virtual inputs zd3 , z
d
2n, and zdi+1 for i = 3, 4, . . . , 2n − 1, and the main con-

trol law un, the estimate of the unknown functions fun1 , fun3n−3 , fun3n−2 , and funn+i−2
for i =

3, 4, . . . , 2n− 1 is required. In this section, we begin by revisiting the radial basis function neural

networks (RBFNNs) [102] to approximate these unknown functions and then develop adaptation

mechanisms to estimate the approximated models.

The continuous function fun(z) : R2n −→ R can be modeled as

fun(z) = P T
f Φf (z) + εf (z) (4.47)

for which the true weight vector P ∈ <nf+1 and the basis function Φ(z) ∈ <nf+1 are defined as

P = [p0, p1, p2, . . . , pnf ]
T and Φ(z) = [bw,Φ1(z),Φ2(z), . . . ,Φnf (z)]T (4.48)

with the bias bw > 0 and the Φ’ elements given by the Gaussian kernels

Φi(z) = e
− ‖z−zci‖

η2
i , i = 1, . . . , nf , (4.49)

where nf is the number of nodes in the RBFNN; and zci and ηi represent the center of the receptive

field and the width of the Gaussian kernel, respectively.

Remark 21. The error εf (z) shrinks down for nf to be sufficiently large which follows that the

function fun(z) can be approximated by fun(z) = P T
f Φf (z). There also exists a positive constant

ε̄f such that |εf (z)| ≤ ε̄f .

Due to Remark 21, the unknown functions fun1 , fun3n−3 , fun3n−2 , and funn+i−2
for i = 3, 4, . . . , 2n−

1 can be approximated as
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f̂un1(z) =P̂ T
f1

Φf1(z), f̂unn+i−2
(z) =P̂ T

fn+i−2
Φfn+i−2

(z), (4.50)

f̂un3n−3(z) =P̂ T
f3n−3

Φf3n−3(z), f̂un3n−2(z) =P̂ T
f3n−2

Φf3n−2(z)

in which the weight vectors are updated by the following adaptation mechanisms

˙̂
Pf1 = Γ−1f1

Φf1(z)e2 +

m1∑
j=1

Φf1j
(z)δTf1j

(z)− σf1 P̂f1

 (4.51)

˙̂
Pfn+i−2

= Γ−1fn+i−2

Φfn+i−2
(z)ei +

mn+i−2∑
j=1

Φfn+i−2j
(z)δTfn+i−2j

(z)− σfn+i−2
P̂fn+i−2

 , i = 3, 4, . . . , 2n− 1

˙̂
Pf3n−3

= Γ−1f3n−3

Φf3n−3
(z)e2n−1 +

m3n−3∑
j=1

Φf3n−3j
(z)δTf3n−3j

(z)− σf3n−3
P̂f3n−3


˙̂
Pf3n−2

= Γ−1f3n−2

Φf3n−2
(z)e2n +

m3n−2∑
j=1

Φf3n−2j
(z)δTf3n−2j

(z)− σf3n−2
P̂f3n−2

 ,

where m1, mn+i−1, m3n−3, and m3n−2 are the numbers of the recorded data points; Γ−1
f1
∈

<(nf1+1)×(nf1+1), Γ−1
fn+i−2

∈ <(nfn+i−2
+1)×(nfn+i−2

+1), Γ−1
f3n−3

∈ <(nf3n−3
+1)×(nf3n−3

+1), and Γ−1
f3n−2

∈

<(nf3n−2
+1)×(nf3n−2

+1) are positive definite diagonal matrices; and σf1 , σfn+i−1
, σf3n−3 , and σf3n−2

are positive scalars.

The laws presented in (4.51) use recorded data concurrently with instantaneous data to render

a proper estimation while being robust to disturbances. These three-term adaptation mechanisms

unify (i) a traditional term which derives the parameter adaptation based upon the instantaneous

system’s errors [11] (first term), (ii) a concurrent learning (CL) term which enhances the estimation

performance by exploiting recorded information [103] (second term), and a σ-modification term

to robustify the adaptation against disturbances [104] (third term).

To implement the second term (CL) of (4.51), the discrepancy between unknown real functions
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and their estimates, evaluated at j-th recorded data point, is defined as

δf1j =fun1j
− f̂un1j

, δfn+i−2j
=funn+i−2j

− f̂unn+i−2j
, (4.52)

δf3n−3j
=fun3n−3j

− f̂un3n−3j
, δf3n−2j

=fun3n−2j
− f̂un3n−2j

for which the unknown real functions are identified as follows

fun1j
= ˆ̇e2 + ν1j , ν1j = −fk1j − z3j + żd2j (4.53)

funn+i−2j
= ˆ̇ei + νn+i−2j , νn+i−2j = −ei+1j − zdi+1j

+ żdikj
, i = 3, . . . , 2n− 3

funn+i−2j
= ˆ̇ei + νn+i−2j , νn+i−2j = −ei+1j − zdi+1j

+ żdikj
− fki/2 , i = 4, . . . , 2n− 2

fun3n−3j
= ˆ̇e2n−1 + ν3n−3j , ν3n−3j = −e2n − zd2nj + żd2n−1kj

fun3n−2j
= ˆ̇e2n + ν3n−2j , ν3n−2j = −fknj − b0unj + żd2nkj

in which ˆ̇e2, ˆ̇ei, ˆ̇e2n−1, and ˆ̇e2n are estimated by an optimal fixed-point smoother (OFPS) [30].

Note that (4.53) is derived by using Eqs. (4.14), (4.19), (4.24), (4.28), (4.33) while assuming that

the disturbances dm1(t), dmi/2(t), and dmn(t) are properly compensated by the proposed robust

gain adaptation mechanisms (4.46).

At this point, the error dynamics can be rewritten as

ė1 = −k1e1 + e2 − kr1(t)tanh(
e1

a1
) (4.54)

ė2 = −k2e2 + e3 + P̃ Tf1Φf1(z) + εf1(z) + dm1(t)− kr2(t)tanh(
e2

a2
)

ėi = −kiei + ei+1 + P̃ Tfn+i−2
Φfn+i−2

(z) + εfn+i−2
(z)− kri(t)tanh(

ei
ai

), i = 3, . . . , 2n− 3

ėi = −kiei + ei+1 + P̃ Tfn+i−2
Φfn+i−2

(z) + εfn+i−2
(z) + dmi/2(t)− kri(t)tanh(

ei
ai

), i = 4, . . . , 2n− 2

ė2n−1 = −k2n−1e2n−1 + e2n + P̃ Tf3n−3
Φf3n−3(z) + εf3n−3(z)− kr2n−1(t)tanh(

e2n−1

a2n−1
)

ė2n = vopt + P̃ Tf3n−2
Φf3n−2(z) + εf3n−2(z) + dmn(t),

where P̃f = Pf − P̂f and εf (z) are the estimation and approximation errors, respectively.
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Remark 22. In this work, the RBF neural network P̂ T
f Φf (z) for each unknown function de-

fined in (4.50) contains nf nodes with centers uniformly randomly distributed in the interval

[z1min , z1max ]× · · · × [zimin , zimax ]× · · · × [z2nmin , z2nmax ] for i = 1, . . . , 2n.

Remark 23. To achieve a proper estimation of the weight vector Pf , let us define the matrix Z =

[Φf1(z), . . . ,Φfm(z)] ∈ <(nf+1)×m which stores those basis functions that are sufficiently different

from the last point stored. Under this storing algorithm, if zd1 is such that Φf (z) is exciting [105]

over a finite interval, then rank(Z) = nf +1 and in turn,H = ZZT ∈ <(nf+1)×(nf+1) is guaranteed

to be a positive definite matrix [103].

Remark 24. The number of recorded data points should be selected in such a way thatm ≥ nf +1

holds. If a larger m is picked, the matrix Z may store a richer recorded data stack depending on

the level of excitation of Φf (z). This results in a larger λmin(Z) and in turn a larger exponential

Lyapunov convergence rate. In should be pointed out that determining the maximum value of m

is not easy to decide a priori, but could be limited due to the computation complexity and memory

restriction.

The next section will develop a time-varying control barrier function using which the collocated

variable z2n−1 is strictly enforced to lie in a safe set.

4.5.4 Time-varying robust control barrier function (TVRCBF)

As aimed in the previous sections, the proposed robust quadratic program-based adaptive controller

drives the non-collocated variable z1 to zd1 while providing eDE stability of all system solutions. In

this section, we aim to enforce the collocated position z2n−1 to remain in a predefined safe set using

the concept of control barrier functions (CBFs) [5]. This subsection consists of two parts. Part A

provides a brief introduction to eISSs-ZCBF (Definition 15) for applying to the collocated position

safety. The impact of unknown disturbances on the safety constraint violation is then evaluated and

our proposed solution is suggested in Part B to ensure a strict safety for the collocated coordinate

z2n−1.
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A. Exponential disturbance-to-state safe zeroing control barrier function (eDSSs-ZCBF):

The goal is to seek a family of the stabilizing signal vopt to maintain the collocated position

z2n−1 in the following safe set

C = {z ∈ <2n : hi(z) ≥ 0, i = 1, 2} (4.55)

with hi(z) for i = 1, 2 as a two-times continuously differentiable function with relative degree two

that is defined as

h1(z) = z2n−1 − z2n−1, h2(z) = z̄2n−1 − z2n−1, (4.56)

where z2n−1 and z̄2n−1 are the minimum and maximum threshold values for the collocated position

z2n−1, respectively.

For this purpose, we begin by substituting the main control law (4.34) (derived in Step 2n) into

the system (4.2) to obtain

ż2n = K1(z) + K2(z)(vopt +D(z, t)), (4.57)

where K1(z) = żd2nk − f̂un3n−2(z), K2(z) = 1, and D(z, t) = funn(z) + dmn(t).

For the system (4.57), the following ZCBF certificate can be considered such that hi(z) be-

comes an eDSSs-ZCBF due to Definition 16

L2
K1
h(z) + LK2LK1h(z)vopt ≥ −αha(z), (4.58)

where α = [α1, α2] and ha(z) = [LK1h(z), h(z)]T with α1, α2 > 0.

Lemma 2. Given the system (4.57), the set C, and the ZCBF certificate (4.58), the function h(z)

is an eDSSs-ZCBF with the ultimate violation bound Bb1 = |LK2LK1h(z)|‖D(z, t)‖∞.

Proof. Adding term LK2LK1h(z)D(z, t) to both sides of the barrier certificate (4.58) yields

L2
K1
h(z) + LK2LK1h(z) (vopt +D(z, t)) ≥ −αha(z) + LK2LK1h(z)D(z, t) (4.59)

112



for which utilizing the system dynamics ż2n−1 and ż2n results in

ḧ+ α1ḣ+ α2h ≥ LK2LK1h(z)D(z, t) ≥ −|LK2LK1h(z)|‖D(z, t)‖∞ : Bb1 . (4.60)

This, in turn, implies that hi(z) for i = 1, 2 is an eDSSs-ZCBF for which the violation of the

collocated position z2n−1 from the safe set C is bounded in a neighborhood of the set boundary,

where the size of the neighborhood is Bb1 .

Utilizing the barrier certificate suggested in Lemma 2 leads to safety constraint violation whose

ultimate bound depends on the scale of D(z, t). In the next part, we will propose a time-varying

robust control barrier certificate using which an accurate safety-critical system is obtained.

B. Exponential time-varying robust ZCBF (eTVRZCBF):

While robust CBF techniques [96, 78] are able to shrink down the violation ultimate bound,

they assume that the bound of disturbances is known, which is not the case in real-world applica-

tions; hence, the barrier gains should be heuristically tuned by engineers. Consequently, improper

selection of these gains leads to either the degradation of safety performance or the restriction of

safe set. This part is devoted to present a TVRZCBF certificate to automatically compensate for

the unknown disturbance D(z, t) without the need for knowing its bounds a priori. This, in turn,

provides an accurate safety for the collocated position z2n−1 to be restricted to always lie within its

prespecified bounds.

To achieve this goal, we begin by estimating the unknown disturbance D(z, t) by using the

system (4.2) as presented as follows

D̂(z, t) = ˆ̇z2n + νn with νn = −(fkn + b0un), (4.61)

where the joint acceleration ˆ̇z2n can be estimated by a Kalman filter (KF) algorithm [30].

Assumption 8. Assume that the KF provides a bounded acceleration estimation error which fol-

lows that there exists a positive scalar ε̄D for εD = D(z, t)− D̂(z, t) such that |εD| ≤ ε̄D.
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With the estimate of the disturbance D(z, t) in hand, the following TVRZCBF certificate is

suggested

L2
K1
h(z) + LK2LK1h(z)vopt + LK2LK1h(z)D̂(t) + Rcbf (h(z)) ≥ −αha(z), (TVRZCBF)

in which Rcbf (h(z)) is a time-varying robust component that is defined by

Rcbf (h(z)) = −Kb|LK2LK1h(z)| (4.62)

whose robust gain is evolved by the kernel function

Kb(h(z)) = Kb0

(
1− e−

‖h(z)‖2

2ρ2

)
(4.63)

with the tuning gain Kb0 > 0 and the kernel size ρ > 0.

Theorem 5. Given the system (4.57), the set C, and the TVRZCBF certificate (TVRZCBF) along

with the time-varying robust component (4.62) and the robust gain (4.63), if the vector α is properly

selected, then the forward invariance of set C is guaranteed and the function h(z) is an exponential

TVRZCBF (eTVRZCBF).

Proof. By adding the term LK2LK1h(z)D(z, t) to both sides of the TVRZCBF certificate (TVRZCBF),

one has

L2
K1
h(z) + LK2LK1h(z) (vopt +D(z, t)) + LK2LK1h(z)D̂(z, t)−Kb|LK2LK1h(z)| ≥ (4.64)

−αha(z) + LK2LK1h(z)D(z, t)

for which noting that

ḧ = L2
K1
h(z) + LK2LK1h(z) (vopt +D(z, t)) and

LK2LK1h(z)(D(z, t)− D̂(z, t)) ≥ −|LK2LK1h(z)||D(z, t)− D̂(z, t)| ≥ −|LK2LK1h(z)|ε̄D,
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one obtains

ḧ+ α1ḣ+ α2h ≥ −|LK2LK1h(z)|(Kb − ε̄D). (4.65)

In view of (4.65), if εD = 0, then h(z) → 0 based on which Kb(h(z)) = 0; hence, it follows

that the right hand side of (4.65) is zero which implies that h(z) is an eTVRZCBF under a proper

selection of α. On the other hand, the existence of εD 6= 0 causes violation/restriction of the safe set

C resulting in the function h(z) to be nonzero. For h(z) 6= 0, the robust component Rcbf measures

the distance between the variable z2n−1 and its allowable threshold, and tunes the robust gain Kb to

automatically compensate for the source of this error that is εD 6= 0. Hence, the mechanism (4.63)

applies to the system until the disturbance εD is fully compensated, resulting in the strict forward

invariance of set C.

Remark 25. Utilizing the TVRZCBF certificate (TVRZCBF), the collocated position z2n−1 is

always enforced to lie within its prescribed threshold values in the presence of the unknown dis-

turbance D(z, t) without the need for knowing its bound a priori (in contrast with existing robust

CBFs, there is no any ultimate violation/restriction bound).

Remark 26. Under the proposed TVRZCBF, the forward invariance of set C is ensured. However,

under robust ZCBFs with constant robust gain Kcons, the function h(z) is an eDSSs-ZCBF for

which the ultimate violation bound isKcons−|D(z, t)|. Since the disturbanceD(z, t) is not known,

its bound is not given and in turn, the robust ZCBF with an improper selection of Kcons can cause

violation/restriction of the safe set.

4.5.5 QP structure

In this section, the stabilizing signal vopt is computed by constructing an online QP optimization

problem while satisfying the TVRCLF constraint (TVRCLF), the TVRZCBF constraint (TVRZCBF),
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and some required torque bounds:

U∗ = argmin
U=(ρr,ρc,vopt)T∈<3

v2
opt + σcρ

2
c + σrρ

2
r (4.66)

s.t. TVRCLF : φ1(e2n)vopt − ρr ≤ −φ0(e2n)

TVRZCBF1 : + vopt ≤ +H1 + α1h2(z)− α2z2n −Kb(h2(z))

TVRZCBF2 : − vopt ≤ −H1 + α1h1(z) + α2z2n −Kb(h1(z))

CB1 : + vopt − b0ρc ≤ b0ūn +H2

CB2 : − vopt − b0ρc ≤ b0ūn −H2

where Kb(hi) is the robust gain evaluated at hi(z) for i = 1, 2, and the functions H1 and H2 are

defined as

H1 = f̂un3n−2 − D̂ − żd2nk and H2 = f̂un3n−2 − żd2nk + fkn . (4.67)

Under the last two constraints, the control torque un is enforced to satisfy −ūn − ρc ≤ un ≤

+ūn+ρc; the user-defined coefficients σr, σc > 0 relax the TVRCLF constraint and torque bounds

in case that all constraints are enforced simultaneously causing the infeasibility of the optimization.

Remark 27. The above QP is feasible if the constraints are not in conflict with each other, which

depends on the application that this optimization problem is applied to.

With the computed stabilizing signal vopt in hand, the next section provides a detailed stability

analysis through which the eDE stability of all system errors is proven.

4.6 Stability analysis

This section is concerned with proving the eDE stability of all system solutions, including the non-

collocated tracking and collocated intermediate errors, the weight estimation error, and the robust

gain estimation error, in the presence of unknown terms stemming from model uncertainties and

disturbances. Throughout this section, we make the following assumption.
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Assumption 9 (Matching assumption). Assume that there exist some scalars

k∗r2n , k
∗
r2n−1

, . . . , k∗ri , . . . k
∗
r2
, k∗r1 > 0 (4.68)

such that

k∗r2n = ε̄f3n−2 + d̄mn (4.69)

k∗r2n−1
= ε̄f3n−3 +B2n

k∗ri = Bi+1 + ε̄fn+i−2
+ d̄mi/2 , i = 4, 6, . . . , 2n− 2

k∗ri = Bi+1 + ε̄fn+i−2
, i = 3, 5, . . . , 2n− 3

k∗r2 = B3 + ε̄f1 + d̄m1

k∗r1 = B2,

where ε̄f > 0 is the upper bound of the approximation error (Remark 21); k∗r > 0 is the true value

of the robust gain kr; and B2n, . . . , Bi, . . . , B2 > 0 denote the ultimate bounds of the intermediate

errors e2n, . . . , ei, . . . , e2, respectively. Note that the above assumption assumes only the existence

of k∗r so that true knowledge of the ideal gain is not required.

Theorem 6. Given the virtual inputs (4.11), (4.15), (4.20), (4.25), and (4.29), the main control

law (4.34), the weight adaptation law (4.51), the robust adaptation mechanism (4.46), and the opti-

mization problem (4.66) inducing the TVRCLF (TVRCLF) and TVRZCBF (TVRZCBF) constraints,

all the system solutions are eDES for any bounded disturbances and any initial conditions.

Proof. The proof is comprised of 2n steps beginning from the 2n-th step.

Step 2n: Consider the following candidate eDES-LF

V2n(e2n, P̃f3n−2 , k̃r2n) =
1

2

(
e2

2n + P̃ T
f3n−2

Γf3n−2P̃f3n−2 +
1

l2n
k̃2
r2n

)
(4.70)
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such that

1

2
min

(
1, λmin(Γf3n−2),

1

l2n

)
‖ξ2n‖2 ≤ V2n ≤

1

2
max

(
1, λmax(Γf3n−2),

1

l2n

)
‖ξ2n‖2, (4.71)

where ξ2n = [e2n, P̃f3n−2 , k̃r2n ]T ∈ <nf3n−2
+3 and k̃r2n = kr2n − k∗r2n with the true value k∗r2n .

Taking the time derivative of V2n along the error dynamics ė2n given by Eq. (4.54) yields

V̇2n = e2nvopt+e2nP̃
T
f3n−2

Φf3n−2+e2nεf3n−2+e2ndmn(t)−P̃ T
f3n−2

Γf3n−2

˙̂
Pf3n−2+

1

l2n
k̃r2n k̇r2n . (4.72)

By substituting the PWMNC law (4.41) (in case of φ0 > 0) and the weight adaptation law (4.51)

into (4.72), one has

V̇2n =− λ

2
e2

2n − kr2ne2ntanh(
e2n

a2n

)− P̃ T
f3n−2

H3n−2P̃f3n−2 + P̃ T
f3n−2

σf3n−2P̂f3n−2 (4.73)

+ e2n

(
εf3n−2 + dmn(t)

)
+

1

l2n
k̃r2n k̇r2n ,

where H3n−2 =
∑m3n−2

j=1 Φf3n−2j
ΦT
f3n−2j

> 0.

By adding and subtracting the term e2ntanh( e2n
a2n

)
(
ε̄f3n−2 + d̄mn

)
, we have

V̇2n ≤−
λ

2
|e2n|2 − kr2ne2ntanh(

e2n

a2n

)−
(
λmin(H3n−2) + σf3n−2

)
‖P̃f3n−2‖2 +

1

l2n
k̃r2n k̇r2n (4.74)

+
(
ε̄f3n−2 + d̄mn

)(
|e2n| − e2ntanh(

e2n

a2n

)

)
+ e2ntanh(

e2n

a2n

)
(
ε̄f3n−2 + d̄mn

)
+ σf3n−2‖P̃f3n−2‖‖Pf3n−2‖.

Substituting the robust adaptation law (4.45), and noting that k∗r2n = ε̄f3n−2 + d̄mn (due to

Assumption 9) and |e2n| − e2ntanh( e2n
a2n

) ≤ c2na2n for some scalar c2n > 0 yields
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V̇2n ≤−
λ

2
|e2n|2 −

(
λmin(H3n−2) + σf3n−2

)
‖P̃f3n−2‖2 − (k̃r2n + ε̄f3n−2 + d̄mn)e2ntanh(

e2n

a2n
) (4.75)

+ k̃r2nProj(kr2n , e2ntanh(
e2n

a2n
))− k̃r2nσ2n(k̃r2n + ε̄f3n−2 + d̄mn) +

(
ε̄f3n−2 + d̄mn

)
c2na2n

+ e2ntanh(
e2n

a2n
)
(
ε̄f3n−2 + d̄mn

)
+ σf3n−2‖P̃f3n−2‖‖Pf3n−2‖.

By applying the projection operator (Definition 16) and canceling the similar terms, one can obtain

V̇2n ≤ −
λ

2
|e2n|2 −

(
λmin(H3n−2) + σf3n−2

)
‖P̃f3n−2‖2 − σ2n|k̃r2n|2 + E2n, (4.76)

where

E2n =
(
ε̄f3n−2 + d̄mn

) (
c2na2n + σ2n|k̃r2n|

)
+ σf3n−2‖P̃f3n−2‖‖Pf3n−2‖. (4.77)

Using the property (4.71), one obtains

V̇2n(e2n, P̃f3n−2 , k̃r2n) ≤ −κ2nV2n(e2n, P̃f3n−2 , k̃r2n) + E2n (4.78)

with exponential Lyapunov converge rate

κ2n =
min
(
λ, 2λmin(H3n−2) + 2σf3n−2 , 2σ2n

)
max

(
1, λmax(Γf3n−2),

1
l2n

) . (4.79)

Due to Definition 15, V2n is an eDES-LF in the error dynamics ė2n. By applying the Compari-

son lemma [26] (Lemma 3.4), we have

V2n(e2n, P̃f3n−2 , k̃r2n) ≤ V2n(e2n(0), P̃f3n−2(0), k̃r2n(0))e−κ2nt +
E2n

κ2n

(4.80)

from which
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‖ξ2n‖ ≤

max
(

1, λmax(Γf3n−2),
1
l2n

)
min

(
1, λmin(Γf3n−2),

1
l2n

)


1
2

‖ξ2n(0)‖e−
κ2n
2
t +

 2E2n

κ2nmin
(

1, λmin(Γf3n−2),
1
l2n

)
 1

2

.

(4.81)

In view of (4.81) and Definition 14, the system is ZS for E2n = 0 and it holds the AG property

if ‖ξ2n(0)‖ = 0, which follows that the system is eDES.

Selecting κ2n = κ2n1 + κ2n2 with κ2n1 , κ2n2 > 0, Eq. (4.78) becomes

V̇2n(e2n, P̃f3n−2 , k̃r2n) ≤ −κ2n1V2n(e2n, P̃f3n−2 , k̃r2n) (4.82)

if

− κ2n2

2
|e2n|2 −

κ2n2

2
λmin(Γf3n−2)‖P̃f3n−2‖2 − κ2n2

2l2n
|k̃r2n|2 + E2n ≤ 0 (4.83)

which results in the following ultimate bound for e2n

|e2n| ≤

√
2E2n

κ2n2

− λmin(Γf3n−2)‖P̃f3n−2‖2 − 1

l2n
|k̃r2n|2 : B2n. (4.84)

Remark 28. Note that when φ0 ≤ 0, the stabilizing signal is inactivated due to the law (4.41) (i.e.,

vopt = 0); hence, the first term of (4.72) vanishes. However since the condition φ0 ≤ 0 has the

property of kr2ne2ntanh( e2n
a2n

) ≤ −λ
2
e2

2n, the same result can be obtained in (4.76), which in turn,

provides the same bound B2n as derived in (4.84).

Step 2n− 1: Let us define

V2n−1(e2n−1, P̃f3n−3 , k̃r2n−1) =
1

2

(
e2

2n−1 + P̃ T
f3n−3

Γf3n−3P̃f3n−3 +
1

l2n−1

k̃2
r2n−1

)
(4.85)
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with

1

2
min

(
1, λmin(Γf3n−3),

1

l2n−1

)
‖ξ2n−1‖2 ≤ V2n−1 ≤

1

2
max

(
1, λmax(Γf3n−3),

1

l2n−1

)
‖ξ2n−1‖2,

(4.86)

where ξ2n−1 = [e2n−1, P̃f3n−3 , k̃r2n−1 ]
T ∈ <nf3n−3

+3 and k̃r2n−1 = kr2n−1 − k∗r2n−1
.

Taking the time derivative of (4.85) along the dynamics (4.54), (4.31), and (4.51), adding and

subtracting the term e2n−1tanh( e2n−1

a2n−1
)(B2n + ε̄f3n−3), noting that k∗r2n−1

= B2n + ε̄f3n−3 due to As-

sumption 9, and recalling that |e2n−1| − e2n−1tanh( e2n−1

a2n−1
) ≤ c2n−1a2n−1 for some c2n−1 > 0, one

has

V̇2n−1 ≤− k2n−1|e2n−1|2 −
(
λmin(H3n−3) + σf3n−3

)
‖P̃f3n−3‖2 + c2n−1a2n−1(B2n + ε̄f3n−3)

(4.87)

− (k̃r2n−1 +B2n + ε̄f3n−3)e2n−1tanh(
e2n−1

a2n−1

) + k̃r2n−1Proj(kr2n−1 , e2n−1tanh(
e2n−1

a2n−1

))

− k̃r2n−1σ2n−1(k̃r2n−1 +B2n + ε̄f3n−3) + e2n−1tanh(
e2n−1

a2n−1

)(B2n + ε̄f3n−3)

+ σf3n−3‖P̃f3n−3‖‖Pf3n−3‖,

where H3n−3 =
∑m3n−3

j=1 Φf3n−3j
ΦT
f3n−3j

> 0. Apply the projection operator, defined in Defini-

tion 16, to have

V̇2n−1 ≤ −k2n−1|e2n−1|2 −
(
λmin(H3n−3) + σf3n−3

)
‖P̃f3n−3‖2 − σ2n−1|k̃r2n−1|2 + E2n−1 (4.88)

with

E2n−1 = (B2n + ε̄f3n−3)(c2n−1a2n−1 + |k̃r2n−1|σ2n−1) + σf3n−3‖P̃f3n−3‖‖Pf3n−3‖, (4.89)

from which it follows that
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V̇2n−1 ≤− κ2n−1V2n−1 + E2n−1 with (4.90)

κ2n−1 =
min

(
2k2n−1, 2λmin(H3n−3) + 2σf3n−3 , 2σ2n−1

)
max

(
1, λmax(Γf3n−3),

1
l2n−1

) .

Referring to Definition 15, V2n−1 is an eDES-LF in the error dynamics ė2n−1. Use the Compar-

ison lemma to obtain

V2n−1 ≤ V2n−1(0)e−κ2n−1t +
E2n−1

κ2n−1

(4.91)

from which, one can write

‖ξ2n−1‖ ≤

max
(

1, λmax(Γf3n−3
), 1

l2n−1

)
min

(
1, λmin(Γf3n−3

), 1
l2n−1

)


1
2

‖ξ2n−1(0)‖e−
κ2n−1

2 t +

 2E2n−1

κ2n−1min
(

1, λmin(Γf3n−3
), 1

l2n−1

)
 1

2

.

(4.92)

Equation (4.92) shows that the system is ZS for E2n−1 = 0 and the AG property holds for

‖ξ2n−1(0)‖ = 0, which implies that the system is eDES. By selecting κ2n−1 = κ2n−11 + κ2n−12

with κ2n−11 , κ2n−12 > 0, Eq. (4.90) reduces to V̇2n−1 ≤ −κ2n−11V2n−1 if

−κ2n−12

2
|e2n−1|2 −

κ2n−12

2
λmin(Γf3n−3)‖P̃f3n−3‖2 − κ2n−12

2l2n−1

|k̃r2n−1 |2 + E2n−1 ≤ 0 (4.93)

from which the ultimate bound of e2n−1 is

|e2n−1| ≤

√
2E2n−1

κ2n−12

− λmin(Γf3n−3)‖P̃f3n−3‖2 − 1

l2n−1

|k̃r2n−1|2 : B2n−1. (4.94)

Step i (i = 4, 6, . . . , 2n − 2): With the ultimate bounds derived from Step 2n to Step i + 1 in

hand, the eDE stability at i-th step is proven as follows:
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Define ξi = [ei, P̃fn+i−2
, k̃ri ]

T ∈ <nfn+i−2
+3 with k̃ri = kri − k∗ri , and consider

Vi(ei, P̃fn+i−2
, k̃ri) =

1

2

(
e2
i + P̃ T

fn+i−2
Γfn+i−2

P̃fn+i−2
+

1

2li
k̃2
ri

)
with (4.95)

1

2
min

(
1, λmin(Γfn+i−2

),
1

li

)
‖ξi‖2 ≤ Vi ≤

1

2
max

(
1, λmax(Γfn+i−2

),
1

li

)
‖ξi‖2.

Take the time derivative of (4.95) along the dynamics ėi to have

V̇i =− kie2
i + eiei+1 + eiP̃

T
fn+i−2

Φfn+i−2
+ ei

(
εfn+i−2

+ dmi/2(t)
)

(4.96)

− eikritanh(
ei
ai

)− P̃ T
fn+i−2

Γfn+i−2

˙̂
Pfn+i−2

+
1

li
k̃ri k̇ri .

Use the adaptation laws (4.51) and (4.22), add and subtract eitanh( ei
ai

)(Bi+1 + ε̄fn+i−2
+ d̄mi/2),

assume that k∗ri = Bi+1 + ε̄fn+i−2
+ d̄mi/2 (Assumption 9), and note that |ei| − eitanh( ei

ai
) ≤ ciai

for some ci > 0 to write

V̇i ≤− ki|ei|2 −
(
λmin(Hn+i−2) + σfn+i−2

)
‖P̃fn+i−2

‖2 + ciai(Bi+1 + ε̄fn+i−2
+ d̄mi/2) (4.97)

− (k̃ri +Bi+1 + ε̄fn+i−2
+ d̄mi/2)eitanh(

ei
ai

)− k̃riσi(k̃ri +Bi+1 + ε̄fn+i−2
+ d̄mi/2)

+ k̃riProj(kri , eitanh(
ei
ai

)) + eitanh(
ei
ai

)(Bi+1 + ε̄fn+i−2
+ d̄mi/2) + σfn+i−2

‖P̃fn+i−2
‖‖Pfn+i−2

‖,

where Hn+i−2 =
∑mn+i−2

j=1 Φfn+i−2j
ΦT
fn+i−2j

> 0. Note that Bi+1 is the ultimate bound of ei+1

calculated at the i + 1-th step, which depends on the chained bounds from Step 2n to Step i + 2

such that |ei+1| ≤ Bi+1(B2n, . . . , Bi+2).

Once again, applying the projection operator (Definition 16) yields

V̇i ≤ −ki|ei|2 −
(
λmin(Hn+i−2) + σfn+i−2

)
‖P̃fn+i−2

‖2 − σi|k̃ri |2 + Ei, (4.98)

where

Ei = (Bi+1 + ε̄fn+i−2
+ d̄mi/2)(ciai + σi|k̃ri |) + σfn+i−2

‖P̃fn+i−2
‖‖Pfn+i−2

‖.
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This can be then written as

V̇i ≤− κiVi + Ei with (4.99)

κi =
min

(
2ki, 2λmin(Hn+i−2) + 2σfn+i−2

, 2σi
)

max
(

1, λmax(Γfn+i−2
), 1
li

) .

This shows that Vi is an eDES-LF in the error dynamics ėi. Use Comparison lemma to obtain

Vi ≤ Vi(0)e−κit + Ei
κi

based on which, one has

‖ξi‖ ≤

max
(

1, λmax(Γfn+i−2
), 1
li

)
min

(
1, λmin(Γfn+i−2

), 1
li

)


1
2

‖ξi(0)‖e−
κi
2
t +

 2Ei

κimin
(

1, λmin(Γfn+i−2
), 1
li

)
 1

2

,

(4.100)

which follows that the system is ZS for Ei = 0 and the AG property holds for ‖ξi(0)‖ = 0,

implying that the system is eDES. Defining κi = κi1 +κi2 with κi1 , κi2 > 0 such that the following

relation holds

− κi2
2
|ei|2 −

κi2
2
λmin(Γfn+i−2

)‖P̃fn+i−2
‖2 − κi2

2li
|k̃ri|2 + Ei ≤ 0 (4.101)

yields V̇i ≤ −κi1Vi from which the ultimate bound of ei is derived as

|ei| ≤

√
2Ei
κi2
− λmin(Γfn+i−2

)‖P̃fn+i−2
‖2 − 1

li
|k̃ri |2 : Bi. (4.102)

Step i (i = 3, 5, . . . , 2n− 3): This step includes the following steps.

1. Take the time derivative of the Lyapunov function (4.95) along the dynamics ėi, and the

adaptation laws (4.51) and (4.22), for i = 3, 5, . . . , 2n− 3.

2. Add and subtract the term eitanh( ei
ai

)(Bi+1 + ε̄fn+i−2
) in Step 1 while applying the Assump-

tion 9.
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3. Apply the projection operator, stated in Definition 16, to obtain (4.98) with

Ei = (Bi+1 + ε̄fn+i−2
)(ciai + σi|k̃ri |) + σfn+i−2

‖P̃fn+i−2
‖‖Pfn+i−2

‖. (4.103)

4. Use the disturbance Ei from the Step 3 to obtain V̇i, ‖ξi‖, |ei| as derived in (4.99), (4.100),

and (4.102), respectively.

5. By following the Steps 1-4, it is proven that Vi is an eDES-LF in the error dynamics ėi for

i = 3, 5, . . . , 2n− 3 and the system is eDES.

Step 2: Let us define

V2(e2, P̃f1 , k̃r2) =
1

2

(
e2

2 + P̃ T
f1

Γf1P̃f1 +
1

l2
k̃2
r2

)
with (4.104)

1

2
min

(
1, λmin(Γf1),

1

l2

)
‖ξ2‖2 ≤ V2 ≤

1

2
max

(
1, λmax(Γf1),

1

l2

)
‖ξ2‖2, (4.105)

where ξ2 = [e2, P̃f1 , k̃r2 ]
T ∈ <nf1+3 and k̃r2 = kr2 − k∗r2 .

Take the time derivative of V2 along the dynamics ė2, ˙̂
Pf1 , and k̇r2 , add and subtract the term

e2tanh( e2
a2

)(B3 + ε̄f1 + d̄m1), assume that k∗r2 = B3 + ε̄f1 + d̄m1 (Assumption 9), note that |e2| −

e2tanh( e2
a2

) ≤ c2a2 for some c2 > 0, and apply the projection operator (Definition 16) to obtain

V̇2 ≤ −κ2V2 + E2 (4.106)

with

E2 =(B3 + ε̄f1 + d̄m1)(c2a2 + σ2|k̃r2 |) + σf1‖P̃f1‖‖Pf1‖, (4.107)

κ2 =
min (2k2, 2λmin(H1) + 2σf1 , 2σ2)

max
(

1, λmax(Γf1),
1
l2

) , and

H1 =

m1∑
j=1

Φf1j
ΦT
f1j

> 0,
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where B3 is the ultimate bound of e3 calculated in Step 3.

In view of (4.106), the Lyapunov function V2 is an eDES-LF in the error dynamics ė2. Em-

ploying Comparison lemma, we have V2 ≤ V2(0)e−κ2t + E2

κ2
using which, one obtains

‖ξ2‖ ≤

max
(

1, λmax(Γf1),
1
l2

)
min

(
1, λmin(Γf1),

1
l2

)


1
2

‖ξ2(0)‖e−
κ2
2
t +

 2E2

κ2min
(

1, λmin(Γf1),
1
l2

)
 1

2

(4.108)

from which it follows that the system is ZS for E2 = 0 and the AG property holds for ‖ξ2(0)‖ = 0;

it further implies that the system is eDES. By picking κ2 = κ21 +κ22 with κ21 , κ22 > 0, Eq. (4.106)

becomes V̇2 ≤ −κ21V2 if

− κ22

2
|e2|2 −

κ22

2
λmin(Γf1)‖P̃f1‖2 − κ22

2l2
|k̃r2|2 + E2 ≤ 0 (4.109)

using which

|e2| ≤

√
2E2

κ22

− λmin(Γf1)‖P̃f1‖2 − 1

l2
|k̃r2|2 : B2. (4.110)

Step 1: In the final step, the ultimate bound of the main tracking error e1 is calculated which

shows how accurate the non-collocated variable z1 can track the desired trajectory zd1 .

Let us select

V1(e1, k̃r1) =
1

2

(
e2

1 +
1

l1
k̃2
r1

)
with (4.111)

1

2
min

(
1,

1

l1

)
‖ξ1‖2 ≤ V1 ≤

1

2
max

(
1,

1

l1

)
‖ξ1‖2,

where ξ1 = [e1, k̃r1 ]
T ∈ <2 with k̃r1 = kr1 − k∗r1 .

By taking the time derivative of V1 along the dynamics ė1 and the robust gain adaptation law

k̇r1 , one has
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V̇1 = −k1e
2
1 + e1e2 − e1kr1(t)tanh(

e1

a1

) + k̃r1Proj(kr1 , e1tanh(
e1

a1

))− k̃r1σ1kr1 . (4.112)

By adding and subtracting the term e1tanh( e1
a1

)B2, applying the projection operator (Defini-

tion 16), noting that k∗r1 = B2 (Assumption 9), and recalling that |e1| − e1tanh( e1
a1

) ≤ c1a1 for

some c1 > 0, we have

V̇1 ≤ −k1|e1|2 − σ1|k̃r1|2 +B2(c1a1 + σ1|k̃r1|), (4.113)

which can be written as

V̇1 ≤− κ1V1 + E1 with (4.114)

E1 =B2(c1a1 + σ1|k̃r1|) and

κ1 =
min (2k1, 2σ1)

max
(

1, 1
l1

)
form which it follows that V1 is an eDES-LF in the error dynamics ė1. Once again, by using

Comparison lemma, one writes

‖ξ1‖ ≤

max
(

1, 1
l1

)
)

min
(

1, 1
l1

)


1
2

‖ξ1(0)‖e−
κ1
2
t +

 2E1

κ1min
(

1, 1
l1

)
 1

2

(4.115)

which shows that the system is eDES because it is ZS for E1 = 0 (i.e., B2 = 0) and the AG

property holds for ‖ξ1(0)‖ = 0.

Similarly, by selecting κ1 = κ11 + κ12 for κ11 , κ12 > 0, Eq. (4.114) becomes V̇1 ≤ −κ11V1 if

−κ12
2
|e1|2 −

κ12
2l1
|k̃r1|2 + E1 ≤ 0 using which the ultimate bound of e1 is

|e1| ≤

√
2E1

κ12

− 1

l1
|k̃r1|2 : B1. (4.116)
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Taken altogether, this section confirms that all system errors are eDES and specifically, the

non-collocated tracking error e1 is bounded in a neighborhood around the origin whose size is

B1.

Remark 29. The ultimate bound of the non-collocated tracking error e1 is dependent on the ulti-

mate bounds of the other collocated and non-collocated intermediate errors; this, in turn, implies

that B1 depends on B2, B3, . . . , B2n.

Remark 30. The weight and robust gain adaptation mechanisms (4.51) and (4.46) contribute to

the system in following different ways.

1. The weight adaptation law (4.51) identifies the approximated model of the unknown function

fun by estimating the weight vector Pf , while is able to compensate neither the modeling

and chained errors nor time-varying disturbances.

2. The robust adaptation law (4.46) compensates the modeling approximation error εf , the

chained error effect Bi, and the unknown disturbance dm(t). In other words, this adapta-

tion mechanism mitigates the discrepancy between the actual and approximated models as

well as the chained errors from one coordinate to another and unknown disturbances.

3. Under the existing backstepping-based adaptive controllers, if the number of nodes in the

RBFNN is chosen to be sufficiently large such that nf → ∞, the unknown function fun is

properly approximated and in turn, the modeling approximation error vanishes. Although

this results in the smaller ultimate bound B1 (lower tracking error e1), the problem deals

with a high-dimensional weight vector, which in turn, causes a computationally demand-

ing estimation process. This further increases the computational time and is less suitable for

real-time control algorithms. In contrast with the existing backstepping adaptive approaches,

however, in this chapter, a reasonable number of nodes is selected to compromise the com-

putational complexity and effectiveness, while the modeling approximation and chain errors,

and disturbances are automatically compensated by the robust gain adaptation mechanisms

without knowing the bounds of the aforementioned unknown terms a priori.
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Remark 31. To achieve better attenuation of the modeling approximation and the chain errors, and

the time-varying disturbances, the smaller value of the width ai for i = 1, ..., 2n can be selected.

However, it should be pointed out that if ai → 0, then tanh(.) becomes discontinuous and the

virtual inputs and the main control law are not implementable.

With the main results of Theorems 5 and 6 in hand, the next section will implement the pro-

posed control methodology on an illustrative underactuated robotic system. The benefits of our

approach will also be confirmed over the baseline QP-CLBF/FL.

4.7 Simulation results

This section is devoted to demonstrate the soundness of the proposed control approach on an

underactuated robot of class (4.1). Comparisons to a baseline QP-CLBF-based feedback lineariza-

tion (QP-CLBF/FL) [106, 5] method are then carried out to verify the benefits of our proposed

controller. The baseline QP-CLBF/FL linearizes the system using coordinate transformations, as

described in [106], for which the stabilizing control is provided by employing a QP while encoding

the baseline CLF and CBF constraints [5]. A single-link flexible-joint robot rotating in the vertical

plane is chosen in which the link is driven by a motor through a torsional spring while ignoring

the viscous damping. This robot is a two DoF-one DoA system whose model is described by the

following EoM:

M(q)q̈ +G(q) = u+ d(t), (4.117)

where q = [q1, q2]T ∈ <2 in which q1 (rad) is the link angular displacement (non-collocated coor-

dinate) and q2 (rad) is the motor angular displacement (collocated coordinate); u = [0, u2]T with

u2 (N.m) as the motor torque; d(t) = [d1(t), d2(t)]T is the vector of time-varying disturbances;

M(q) = diag(I, J) ∈ <2×2 is the inertia matrix with I and J as the link and motor inertias, re-

spectively; and G(q) = [MgLsin(q1) + K(q1 − q2),−K(q1 − q2)]T ∈ <2 is the gravity vector in

which M is the link mass, L is the center of mass, K is the torsional spring stiffness, and g is the

gravity constant.
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In view of (4.2), it is obtained that the state vector is z = [q1, q̇1, q2, q̇2]T ∈ <4, the known

functions with nominal system parameters are

fk1(z) =− 1

I
(MgLsin(z1) +K(z1 − z3))− z3 and (4.118)

fk2(z) =
1

J
(K(z1 − z3)),

b0 is our best guess about the control coefficient b = 1
J

, and the unknown disturbances are dm1(t) =

d1(t)
I

and dm2(t) = d2(t)
J

. The time-varying disturbances are considered to be d1(t) = 3 + 3sin(8t)

and d2(t) = 3 + 5sin(5t) while including some Gaussian random noise with strength 0.3. Due

to the presence of parameter uncertainties, there exist unknown functions funi(z) for i = 1, 2 as

defined in (4.4). The control objectives are (i) to drive the link angular displacement z1 from a

randomly-selected initial condition to the desired displacement zd1 = pi
4

sin(2t) while the system

and intermediate errors are all eDES and (ii) to enforce the motor angular displacement to stay in

the safe set −2π
5

(rad) ≤ z3 ≤ +2π
5

(rad).

For doing so, we begin by estimating the unknown functions fun1(z), fun3(z), and fun4(z)

(defined in (4.4), and Steps 2 and 2n, respectively) through the laws (4.50) and (4.51). To compute

the robust gain kri for i = 1, . . . , 4 and the optimal signal vopt, the adaptation mechanism (4.46)

is applied and the optimization problem (4.66) is formulated while encoding the TVRCLF and

TVRZCBF constraints (the torque bounds are selected in such a way that the motor torque is

not saturated by them). Utilizing the estimates f̂un1(z), f̂un3(z), and f̂un4(z), the robust gains

kri , and the stabilizing signal vopt, the virtual inputs (zd2 , zd3 , and zd4) and the motor torque u2 are

computed by laws (4.11), (4.15), (4.29), and (4.34). To ensure accurate safety for the motor angular

displacement z3, the proposed TVRZCBF is applied through Theorem 5 while picking two relative

degree 2 barrier functions h1 = z3 + 2π
5

and h2 = 2π
5
− z3. Design parameters of both proposed

and baseline controllers are tuned to achieve the best tradeoff between the non-collocated tracking

accuracy and the collocated safety performance.
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(a) (b)

(c)

Figure 4.1: Results of the proposed controller for the estimates of unknown functions (a) fun1 , (b)
fun3 , and (c) fun4 .
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(a) (b)

(c)

Figure 4.2: Results of the proposed controller, including (a) the link angular displacement tracking
performance, (b) the phase portrait whose consistency indicates stale limit cycle for the robot link,
and (c) the evolution of robust gains.
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4.7.1 Verification of the proposed controller

Figure 4.1(a)-(c) illustrate the estimates of the unknown functions fun1(z), fun3(z), and fun4(z)

while utilizing the model (4.50) and the weight adaptation mechanism (4.51). It can be seen

that all three unknown functions are properly identified. Figure 4.2(a) compares the link angular

displacement z1 of the flexible-joint robot with the desired trajectory zd1 when the proposed con-

troller is applied. As observed in this figure, z1 is not distinguishable for zd1 , implying that the

non-collocated link displacement tracking error e1 is bounded in a small neighborhood around the

origin whose size can be realized by B1 described in (4.116). Figure 4.2(b) demonstrates phase

portrait for the link over 20 sec simulation time from which it is observed that the controller con-

verges to a stable limit periodic orbit. Such great tracking performance and consistent portrait

for the robot link stem from the combined effect of the proper unknown function estimation (see

Fig 4.1), the proposed TVRCLF, and the robust gains kri for i = 1, . . . , 4 whose evolution is

demonstrated in Fig 4.2(c). Observe that in contrast with the robust gains kri for i = 1, . . . , 3, the

gain kr1 , which affects on the error dynamics e1 presented in (4.54), takes much lower magnitude.

The reason for this is that the ultimate bound of the link displacement tracking error (see (4.116))

depends on the chained errors from the other collocated and non-collocated spaces whose effects

are already compensated by the robust gains kri for i = 1, . . . , 3. It is also worth noting that due to

the noise effects and the sinusoidal nature of zd1 , these gains are fluctuating around their true values

as listed in (4.68). Taken altogether, these results support the claim of Theorem 6 in which eDES

of all system’s errors is guaranteed.

Figure 4.3(a) and (b) depict the results of the proposed TVRZCBF through which the collo-

cated motor angular displacement is restricted to stay in its prescribed upper and lower bounds.

Figure 4.3(a) demonstrates the positiveness of the barrier functions h1 and h2, implying the for-

ward invariance of the safe set (4.55). While Theorem 5 formally guarantees, these results provide

a perfect safety for the variable z3 under the TVRZCBF whose non-negative gains are evolved

based upon the mechanism (4.63) (see Fig. 4.3(b)). These results confirm that with the proposed

time-varying control barrier technique, safety is strictly achieved in the presence of unknown dis-

133



turbances without the need for knowing their bounds a priori.

4.7.2 Comparison results

This section provides convincing evidence demonstrating the superiority of our proposed con-

trol methodology over the baseline QP-CBLF/FL. Figure 4.4(a) illustrates the tracking error of

the non-collocated link angular displacement obtained by applying both controllers. It is clearly

observed that the tracking performance is significantly improved under the proposed controller.

Figure 4.4(b) shows the safety performance for the collocated motor angular displacement under

both controllers. It can be seen that in contrast with the baseline QP-CBLF/FL under which the

motor displacement violates the safe set (indicated by magenta dashed line in Fig. 4.4(b)), the vari-

able z3 is perfectly bounded in the set with our proposed controller. This is in agreement with both

Theorems 5 and 6, which guarantees perfect safety of the collocated variable z3 and eDE stability

of the non-collocated tracking error e1, respectively.

To highlight the benefits of our proposed controller over the baseline method, a numerical com-

parison is performed whose results are incorporated in Table 4.1. This table lists the RMS value of

link displacement tracking error, the RMS value of the motor torque, and the absolute peak motor

displacement value. It can be inferred from Table 4.1 that the proposed controller improves the

tracking error by 67% and reduces the motor torque by 93%. This table also shows that unlike the

baseline QP-CBLF/FL that violates the safe set by 42%, perfect safety is rendered under the pro-

posed controller. These improvements obtained by the proposed controller are mainly due to the

unknown function estimation and the robust gain adaptation, along with the derivations of TVR-

CLF and TVRZCBF, whose results are presented in Theorems 5 and 6. These findings support

our claim that the baseline QP-CBLF/FL is not able to properly balance safety and stability for

non-collocated control of underactuated robots with unknown dynamics and time-varying distur-

bances; hence, the proposed controller is required to apply for such control problem as a remedy

to mitigate the issues of the existing QP-CBLF/FL.
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(a)

(b)

Figure 4.3: Results of the proposed controller, including (a) the barrier functions h1 and h2 with
positive values indicating perfect safety, and (b) the evolution of barrier gains.
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(a)

(b)

Figure 4.4: Comparison results between the proposed scheme and the baseline QP-CLBF/FL,
including (a) the link angular displacement tracking error e1 and (b) the safety performance of
motor angular displacement z3.

136



Table 4.1: Comparison results of different controllers for 20 sec simulation on the single-link
flexible-joint robot, where RMS is a function that returns the root mean square of a signal. The
best value of each metric is underlined.

Controller RMSe1 (rad) RMSu2 (N.m) |z3|max (rad)
Proposed 0.026 133 1.250
Baseline 0.078 2000 1.780

4.8 Discussions and conclusions

The direct application of recently-developed QP-CLBF approach [5, 95] to non-collocated con-

trol of underactuated robots with model uncertainties and disturbances degrades the performance

of closed-loop systems and leads to the violation of safety-critical constraints. Although existing

robust QP-CLBFs [96, 78] are able to mitigate the above issues, perfect stabilization and safety

cannot still be guaranteed against disturbances whose bounds are unknown. Even assuming that

under high gain design parameters, the above objectives are satisfied, heuristic methods of param-

eter tuning could potentially cause increasing the control efforts and restricting the safe sets. Mo-

tivated by resolving the above issues and the desire of introducing a novel controller, this chapter

presented a robust quadratic program-based adaptive control approach for extending the applica-

tions of QP-CLBF to non-collocated control of a class of n DoF-one DoA underactuated robots

with diagonal inertia matrices.

Beginning with the design of a backstepping technique for the given system, that includes 2n

steps, we developed neural network-based adaptation mechanisms to estimating unknown non-

linear functions. To compensate remaining uncanceled terms, virtual inputs were derived whose

gains are automatically adjusted by projection-based adaptation laws. A three-term control law,

including feed-forward, adaptive, and stabilizing terms, was suggested whose latter term is gen-

erated in an optimal fashion by synthesizing a QP subject to TVRCLF and TVRCBF constraints

as well as torque bounds. The explicit motivation for the introduction of these time-varying terms

was to achieve accurate non-collocated tracking and perfect collocated safety in the presence of

unknown disturbances without requiring their bounds for use in the control design. We proved eDE
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stability of all system errors and the forward invariance of safe sets through Theorems 5 and 6.

To demonstrate these results, simulation studies were carried out on an illustrative underactuated

system: a single-link flexible-joint robot. The results confirmed the soundness of the proposed

technique by achieving accurate link displacement tracking while enforcing the motor displace-

ment to lie in its safe set. Comparisons with a baseline QP-CLBF/FL provided evidence that our

proposed controller significantly enhances tracking error by 67% and reduces the control torque by

93% over QP-CLBF/FL. In contrast with QP-CLBF/FL under which the safety violation was 42%,

the proposed scheme could achieve safety-critical requirements strictly. This provides convincing

evidence of applicability of our proposed approach as an alternative for QP-CLBF/FL to be ap-

plied to the class of underactuated robots studied in this work. Future studies will have to continue

extending the present technique to non-collocated control of “stochastic” robotic applications.
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CHAPTER 5

ADAPTIVE QP-CLBF WITH EXPONENTIAL SOLUTIONS

This chapter presents an adaptive QP-CLBF approach for a class of nonlinear systems in the

presence of parameter uncertainties and unknown control coefficient. We begin by presenting a

filtering-based concurrent learning (FCL) adaptive technique to guarantee simultaneous exponen-

tial convergence of system parameters and control coefficient. The proposed FCL extends and

encompasses the baseline CL technique, which was developed to achieve exponential convergence

of either system parameters exclusively or control coefficient. The proposed FCL adaptive method

is then unified with a modified version of the QP-CLBF to achieve exponential convergence of

system parameters, control coefficient, state variables, and control barrier functions. The main

contribution of this chapter is that all results are exponential in the presence of modeling error as-

sociated with both parameter uncertainty and unknown control coefficient. This is formally proved

by employing a Lyapunov argument. Soundness of the proposed approach is finally demonstrated

on two illustrative examples: a mass-damper system and an underwater vehicle. Simulation results

show that the proposed control methodology achieves exponential results with regard to trajectory

tracking, parameter estimation, and safety.

5.1 Background

The previous chapters provided convincing evidence supporting the claim that although QP-CLBF

can guarantee stability and safety, model uncertainties may degrade the stabilization of a closed-

loop system and lead to violation of safety-critical constraints. As discussed, robustness of this

approach has been extensively researched and different robust QP-CLBFs have been recently for-

mulated for nonlinear dynamical systems [107, 108, 96, 78]. Although for systems with uncertain-

ties, robust QP-CLBFs can drive system errors and violation of the safety-critical constraints to

small neighborhoods around the origin, they are not still convergent to zero. In many physical sys-
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tems, model uncertainty arises from “both” unknown system parameters and control coefficient1.

This adds more complexity to control of nonlinear systems and may deteriorate the performance

of robust QP-CLBFs regarding stability and safety.

Recall that Slotine’s adaptive control techniques (TEB-based and TEB/PEB-based) [11, 12]

utilize only instantaneous data for adaptation and require PE conditions for the system states to

guarantee parameter convergence. However, as comprehensively studied, CL approach [21, 28] is

able to guarantee exponential convergence of both tracking and parameter errors while requiring

a finite excitation condition which is a weaker condition than PE. Most TEB-based, TEB/PEB-

based, and CL-based adaptive techniques have focused mainly on estimating the system param-

eters, so limited research has been done investigating the impact of both parameter uncertainties

and unknown control coefficient in nonlinear control systems [21, 11, 84, 31, 35]. To the best of

our knowledge, to date, no study has looked specifically at the exponential convergence of both

parameter uncertainties and control coefficient at the same time.

5.2 Contributions

In this chapter, an adaptive QP-based control technique is formulated to guarantee simultaneous

exponential convergence of system parameters and control coefficient, while providing exponen-

tial convergence of tracking error and safety-critical constraints. In particular, this work basically

extends the QP-CLBF controller (which degrades the stability and safety in the presence of model

uncertainties) and the CL technique (which has not been developed to guarantee exponential con-

vergence of both system parameters and control coefficient) to the nth-order single-input single-

output (SISO) nonlinear systems (multi-input multi-output (MIMO) systems are beyond the scope

of this work).

1Parametric uncertainty can arise from “control coefficient” and “system parameters”. The former determines how
an input affects system states, while the latter determine how current states affect states change.
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The main contributions of this chapter are fourfold:

1. The introduction of a new adaptation technique to guarantee simultaneous exponential con-

vergence of system parameters and control coefficient

2. The design of an adaptive QP-CLBF controller to achieve exponential convergence of system

errors while strictly avoiding the violation of safety constraints

3. Formal convergence analysis using a Lyapunov stability argument

4. Validation of the proposed controller on two illustrative nonlinear systems: a mass-damper

system and an underwater vehicle

In this chapter, the nth-order SISO nonlinear system is first transformed into an “isolated form”

through which control input is separated alone on one side of a dynamical model. The main

control law is suggested which uses two quantities: the estimate of unknown parameters and the nth

derivative of state. The former is driven by a proposed filtering-based CL (FCL) adaptive technique

and the latter is provided by an optimal estimation utilizing the QP solution. The FCL extends the

baseline CL by exploiting a filtered version of the system’s basis function and a prediction error

in the input signal. We then show that this formulation can encompass the CL for simultaneous

exponential convergence of system parameters and control coefficient errors. The results of QP-

based CLFs and QP-based CBFs are revisited and they are then modified based upon the suggested

control law. The negative impact of model inaccuracies (associated with parameter uncertainties

and unknown control coefficient) is then discussed. The CBFs and CLFs are then unified with the

FCL via QP to emerge an adaptive QP-CLBF, providing exponential results of all system solutions.

The soundness of the proposed control technique is finally verified on two nonlinear systems: a

mass-damper system and an underwater vehicle. Simulation results show that our approach can

exponentially drive trajectory tracking, parameter estimation, and safety errors to zero.

The chapter is organized as follows. Section 5.3 presents the problem statement and the control

law. Section 5.4 revisits the QP-based CLFs and CBFs, and discuss the impact of uncertainties on
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them. Section 5.5 derives the FCL, formulates the proposed adaptive QP-CLBF, and presents the

stability analysis. Section 5.6 presents the simulation results. Section 5.7 concludes the chapter

and suggests for the future work.

5.3 Problem statement and control law

This section comprises two subsections. In the first subsection, we begin by introducing a class

of nonlinear systems with parameter uncertainties and unknown control coefficient. Utilizing an

isolated form of the system, the remainder of this subsection describes the problem statement.

Based upon the isolated form, the second subsection is devoted to construct the main control law

to achieve our design objectives.

5.3.1 Problem statement

Consider the following affine form of an nth-order SISO nonlinear system

x(n) = f(X) + g(X)u, (5.1)

where x(n) is the nth derivative of x; u ∈ < is the control signal; and X = [x, ẋ, ..., x(n−1)]T ∈ <n

is the state vector. Functions f(X) ∈ < and g(X) ∈ < are unknown continuous nonlinear system

functions that can be linearly parameterized as

f(X) = aTφ(X) and g(X) = bϕ(X), (5.2)

where φ(X) ∈ <r and ϕ(X) ∈ < are known functions; a = [a1, a2, ..., ar]
T ∈ <r is the sys-

tem’s base parameters; and b ∈ < is the control coefficient. The vector a is a vector of unknown

parameters and the control coefficient b is an unknown constant of known sign.

Assumption 10. Assume that only the state vector X is measurable, but not the nth derivative of

x, i.e., x(n).

142



To satisfy the needs of the later design structure, the nonlinear system (5.1) along with the

definitions in (5.2) is transformed into the following “isolated form2”

ΘTY (x(n), φ(X)) = ϕ(X)u (5.3)

with the parameter vector Θ and the basis function Y (x(n), φ(X)) as

Θ =
1

b

1

a

 ∈ <r+1, Y =

 x(n)

−φ(X)

 ∈ <r+1. (5.4)

Referring to Eq. (5.4), the r+ 1-dimensional parameter vector Θ contains the unknown system

parameters and the unknown control coefficient. The basis function Y cannot be directly used for

the controller, as based on Assumption 10, it contains the unmeasurable quantity x(n). Thus, both

Θ and x(n) are required to be estimated for use in the control algorithm. The control objective is

to synthesize a quadratic program-based adaptive controller to guarantee exponential convergence

of tracking error, parameter error, and control coefficient error in an optimal fashion without the

need for the nth derivative of x while also enforcing safety-critical constraints. The next subsec-

tion introduces a quadratic program-based adaptive control law to achieve the above-mentioned

objectives.

5.3.2 Control law

With the goal of controlling the variable x, we define the tracking error as e = x − xd(t), where

xd(t) represents the desired trajectory to be of class Cn. Let us define the estimate of x(n) as

x̂(n) = x
(n)
d (t) + vopt, (5.5)

2An isolated form separates the term ϕ(X)u alone on one side of the dynamical system (5.1).
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where vopt ∈ < is a pointwise optimal signal that will later be generated by a QP optimization

problem. Using the definitions of x̂(n) and e, Eq. (5.3) can be expressed as

1

b
e(n) − 1

b
vopt + ΘT Ŷ (x̂(n), φ(X)) = ϕ(X)u. (5.6)

Define control law u ∈ < as

u =
1

ϕ(X)
Θ̂T Ŷ (x̂(n), φ(X)), (5.7)

where Θ̂ is an estimate of Θ, ϕ(X) is assumed to be nonsingular, i.e., ϕ(X) 6= 0, and the estimates

of the basis function Y are defined as

Ŷ (x̂(n), φ(X)) = [x̂(n),−φT (X)]T . (5.8)

Substituting Eq. (5.7) into Eq. (5.6) yields

e(n) = vopt + bΘ̃T Ŷ (x̂(n), φ(X)), (5.9)

where Θ̃ = Θ̂−Θ is the estimation error.

Define ξ = [e, ė, ..., e(n−1)] ∈ <n and rewrite Eq. (5.9) as

ξ̇ = Fξ +G
(
vopt +D(Θ̃)

)
, (5.10)

where D(Θ̃) = bΘ̃T Ŷ (x̂(n), φ(X)) and

F =

 0 I

0 0

 ∈ <n×n, G =

 0

1

 ∈ <n×1. (5.11)

With the error dynamics (5.10) in hand and with the goal of extending the QP-CLBF controller

in a way that its results are exponentially convergent, the next section revisits and modifies the
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QP-CLBF, and discusses the impact of the uncertainty term D(Θ̃) on the stability and safety.

5.4 Impact of uncertainties on QP-CLF and QP-CBF

The use of QP-CLBF [5] can ensure safety through CBFs and control objectives via CLFs for

systems without uncertainties. However, under this controller, stability and safety are degraded

for systems with uncertainties. In this section, we will first briefly revisit definitions and results

relating to QP-CLFs and QP-CBFs for the nonlinear system in Eq. (5.1). We then discuss the

effects of uncertainties on the performance of these controllers and finally suggest our solutions to

tackle such effects.

5.4.1 QP-CLF

In this section, we aim to design a controller to stabilize the error dynamics (5.10). We begin by

considering the special case of D(Θ̃) = 0 using which the error dynamics (5.10) become

ξ̇ = Fξ +Gvopt. (5.12)

Definition 19. A continuously differentiable function V (ξ) : <n → < is an exponentially stabiliz-

ing control Lyapunov function (eCLF) for the error dynamics (5.12) if there exist a set of controls

V1 and positive scalars η, a1, a2 > 0 such that [4]

a1‖ξ‖2 ≤ V (ξ) ≤ a2‖ξ‖2, (5.13)

inf
vopt∈V1

[LFV (ξ) + LGV (ξ)vopt] ≤ −ηV (ξ),

where LFV (ξ) = ∂V (ξ)
∂ξ

Fξ and LGV (ξ) = ∂V (ξ)
∂ξ

G are the Lie derivatives of V (ξ) with respect to

F and G, respectively.

To formulate a CLF-based controller in the absence of the uncertainty term D(Θ̃), choose a
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candidate Lyapunov function

V (ξ) = ξTPξ, (5.14)

where given F andG by (5.11) , P = P T > 0 is the solution of the CARE F TP+PF−PGGTP+

Q = 0 with Q = QT > 0.

The time derivative of V along the trajectory of Eq. (5.12) yields

V̇ (ξ) = LFV (ξ) + LGV (ξ)vopt (5.15)

with

LFV (ξ) = ξT (PF + F TP )ξ and LGV (ξ) = 2ξTPG. (5.16)

To guarantee exponential convergence of ξ to zero, a family of vopt is sought to satisfy the

following CLF constraint

Φ0(ξ) + Φ1(ξ)vopt ≤ 0 (5.17)

for which

Φ0(ξ) = LFV (ξ) + ηV and Φ1(ξ) = LGV (ξ), (5.18)

where η is a positive constant. Note that the CLF constraint (5.17) is equivalent to the inequal-

ity constraint V̇ (ξ) ≤ −ηV (ξ) to guarantee that the Lyapunov function (5.14) is exponentially

convergent.

To meet the inequality constraint of Eq. (5.17), one candidate for vopt is the following PWMNC

law

vopt =


−Φ0(ξ)

Φ1(ξ)
if Φ0(ξ) > 0

0 if Φ0(ξ) ≤ 0

. (5.19)

The optimal signal vopt can be alternatively generated pointwise in time by using a quadratic

program while including the CLF constraint of Eq. (5.17). This formulation of the QP-CLF [3]
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ensures exponential convergence of ξ to zero and in turn according to Definition 19, V (ξ) is a

valid eCLF.

We now turn to the general case in which D(Θ̃) 6= 0 for the dynamics given by (5.10). Due

to the existence of D(Θ̃), applying either the baseline QP-CLF or its robust modifications [78, 10]

does not result in an exponential convergence of the solutions to zero. In this case, using such

controllers only provides UUB of V (ξ) with exponential convergence rate η from which it follows

that

V̇ (ξ) ≤ −ηV (ξ) + z1

(
‖Θ̃‖

)
, (5.20)

where z1 ∈ K∞
3. Equation (5.20) implies that under the controllers presented in [3, 78, 10], if

D(Θ̃) 6= 0, then the tracking error ξ converges to a neighborhood around the origin for which the

ultimate bound is dependent on the uncertainty stemming from the unknown system parameters

and control coefficient.

In Section 5.5.1, we will propose an adaptive controller that can provide simultaneous exponen-

tial convergence of system parameters and control coefficient. This implies that Θ̃ exponentially

converges to zero and in turn according to Eq. (5.20), exponential convergence of ξ is guaranteed.

5.4.2 QP-CBF

In this section, the goal is to establish safety requirements for the system (5.1) through which the

system states are restricted to stay in a safety set. For this purpose, we seek a family of the optimal

signals vopt to keep the state vector X in the following safety set

C = {X ∈ <n : h(X) ≥ 0}, (5.21)

3A continuous function z1 : [0,∞) −→ [0,∞) belongs to a class-K∞ function if it is strictly increasing, z1(0) =
0, and lim

q−→∞
z1(q) −→∞.
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where h : <n → < is an rh-times continuously differentiable function with relative degree rh4.

For this purpose, let us define the following companion form by applying the control law (5.7)

to the system (5.3)

Ẋ = Fb(X, x
(n)
d ) +Gb

(
vopt +D(Θ̃)

)
, (5.22)

where

Fb = [x2, . . . , xn, x
(n)
d ]T ∈ <n and (5.23)

Gb = [0(n−1)×1, 1]T ∈ <n.

Once again for the case of D(Θ̃) = 0, from (5.22) we obtain

Ẋ = Fb(X, x
(n)
d ) +Gbvopt. (5.24)

Definition 20. Given the system (5.24), the function h(X) is an exponentially zeroing barrier

function (eZCBF) for the set C, if there exists a set of controls V2 and gains KT ∈ <rh with

positive elements ki for i = 1, ..., rh, such that [109]

sup
vopt∈V2

[
Lrh
Fb
h(X) + LGbL

rh−1
Fb

h(X)vopt
]
≥ −KH(X) (5.25)

with

H(X) = [Lrh−1
Fb

h(X), . . . ,LFbh(X), h(X)]T ∈ <rh . (5.26)

The existence of such h(X) renders a family of vopt (generated by a QP while incorporating

the CBF constraint of Eq. (5.25)) that guarantees forward invariance of set C i.e., if h(X0) ≥ 0,

then h(X(t)) ≥ 0, ∀t. With a proper selection of ki [109], if D(Θ̃) = 0, then h(X) exponentially

4The function h(X) has relative degree rh, if rh-times time derivative of h(X) has to be taken in order to appear
the optimal signal vopt.
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converges to zero. However, similar to what we discussed regarding the effect of uncertainties on

QP-CLF, the existence ofD(Θ̃) causes violation/restriction of the safe set C; whereby, the problem

has to be generalized for the system (5.22), where D(Θ̃) 6= 0.

Again, in this case, under either the baseline QP-CBF [109, 23] or its robust versions [96, 25],

h(X) does not vanish in the set boundary but converges to a neighborhood around it from which

the inequality (5.25) becomes

h(rh)(X) + k1h
(rh−1)(X) + · · ·+ krhh(X) ≥ −z2

(
‖Θ̃‖

)
, (5.27)

where z2 ∈ K5. Equation (5.27) implies that under the methods presented in [109, 23, 96, 25],

D(Θ̃) 6= 0 leads to safety constraint violation in which the ultimate violation bound depends on

the scale of Θ̃. In the next section, we will introduce our proposed adaptive technique to guarantee

exponential convergence of both system parameters and control coefficient, and in turn driving the

CBF to zero. This will help avoid the barrier violation while using the same CBF certificate of

Eq. (5.25).

Remark 32. Although the existing robust QP-CLBF [96, 25, 78, 10, 31, 35] can provide conver-

gence of CLF and CBF to smaller ultimate bounds for the system Eq. (5.1), the results are still

UUB and the exponential convergence cannot be achieved against the parameter uncertainty and

unknown control coefficient.

With the goal of developing an adaptive QP-CLBF with exponential results, the next section is

devoted to unifying the QP-CLBF with FCL technique for systems with parameter uncertainty and

unknown control coefficient.

5.5 Unified adaptive QP-CLBF

Section 5.4 has discussed the effect of parameter uncertainty and unknown control coefficient

on the QP-CLF and QP-CBF. According to the inequities (5.20) and (5.27), the results are not
5A continuous function z2 : [0, a) −→ [0,∞) belongs to a class-K function if it is strictly increasing and z1(0) =

0.
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exponential in the presence of Θ̃. This section has two principle objectives. The first is to design a

filtering-based concurrent learning (FCL) adaptive controller to guarantee exponential convergence

of both system parameters a and control coefficient b in the system (5.2). The second objective

is to synthesize a QP optimization w.r.t. the CLF and CBF constraints, which uses the parameter

estimates derived by the FCL to guarantee exponential convergence of the tracking error ξ and

the barrier function h(X) to zero. The solution of this optimization, vopt, will be then used in the

control law (5.7) and finally applied to system Eq. (5.1).

5.5.1 Filtering-based CL (FCL)

As mentioned earlier, exponential convergence of QP-CLF and QP-CBF requires driving D(Θ̃)

exponentially to zero. This section extends the CL adaptive control [21] which was developed

to guarantee exponential convergence of tracking and system parameter estimation errors to zero.

In the CL technique, stored data is concurrently used with the online data to achieve exponential

convergence of the solutions without the need for PE conditions on the system states; instead the

finite exciting condition is required.

However, this technique has two main disadvantages. The first one is that the formulation relies

on the estimates of x(n); if they are not accurate, the solutions converge to an ultimate bound whose

size is dependent on the estimation error of x(n) [110, 111]. The second one is that this technique is

not formulated to achieve simultaneous exponential convergence of system parameters and control

coefficient, even if x(n) is perfectly estimated. Motivated by these issues related to the baseline

CL, this section extends the CL and develops a new technique that can guarantee exponential

convergence of both system parameter and control coefficient, and also removes the need for the

numerical estimation of x(n) using a fixed-point smoother.

Due to the presence of the unavailable quantity x(n) in Eq. (5.4), Eq. (5.3) cannot be directly

used for the parameter estimation. To cope with this issue, the filtering technique [81] is employed.

Let us filter both sides of Eq. (5.3) by a first-order stable filter c/(s + c) with s as the Laplace

variable and c > 0 as a known constant number. In the time domain, this filtering can be done by

150



convolving both sides of Eq. (5.3) by the impulse response of the filter i.e., w(t) = ce−ct:

∫ t

0

w(t− τ)ΘTY (x(n), φ(X))dτ =

∫ t

0

w(t− τ)ϕ(X)udτ (5.28)

which can be expanded as

∫ t

0

w(t− τ)

[
1

b
x(n) − a

b
φ(X)

]
dτ =

∫ t

0

w(t− τ)ϕ(X)udτ. (5.29)

Exploiting the partial integration, the first term on the left-hand side of Eq. (5.29) becomes

1

b

∫ t

0

w(t− τ)x(n)dτ = +
1

b

[
w(t− τ)x(n−1)

∣∣∣t
0
−
∫ t

0

d

dτ
(w(t− τ))x(n−1)dτ

]
(5.30)

=
1

b

[
w(0)x(n−1)(t)− w(t)x(n−1)(0)−

∫ t

0

d

dτ
(w(t− τ))x(n−1)(τ)dτ

]
.

Substituting Eq. (5.30) into Eq. (5.29), the left-hand side of Eq. (5.29) can be written as

z(t) = ΘTYf (X) (5.31)

with

Yf =

w(0)x(n−1)(t)− w(t)x(n−1)(0)−
∫ t

0
d
dτ

(w(t− τ))x(n−1)(τ)dτ

−
∫ t

0
w(t− τ)φ(X(τ))dτ

 , (5.32)

where Yf ∈ <r+1 is the filtered version of Y ; and z(t) is the filtered version of the right-hand side

of Eq. (5.29). Thus, signal z(t) can be computed from the right-hand side of Eq. (5.29)

z(t) =

∫ t

0

w(t− τ)ϕ(X)udτ. (5.33)
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The estimate of z(t) can be then defined as

ẑ(t) = Θ̂TYf (X). (5.34)

With the computed signals Yf , z(t), and ẑ(t), and the matrix P as the solution of CARE in

hand, the following filtering-based concurrent learning (FCL) parameter adaptation mechanism is

suggested as

˙̂
Θ = −γ

(
Ŷ ξTPGsgn(b) +

m∑
i=1

Yf (Xi)δ
T
i

)
, (5.35)

where γ ∈ <r+1×r+1 > 0 is the adaptation convergence rate; m is the number of stored data points;

Xi is the i-th recorded state vector; and δ is the prediction error that is computed as

δ(t) = ẑ(t)− z(t) = Θ̃TYf (X) (5.36)

with Yf (Xi) and δi are both realized for the i-th store data.

The above adaptation law comprises two terms. The first term is a TEB adaptation law, which

updates the parameters based upon the error trajectory ξ. The second term is a PEB adaptation

mechanism, that enhances the parameter estimation by using the prediction error signal δ and the

filtered vector Yf (X) realized for i-th stored data with i = [1, 2, . . . ,m].

To guarantee the exponential convergence of the parameter error Θ̃ to zero, the following

recording policy is used for δ and Yf .

Recording policy. Let define matrix Z = [Yf (X1), . . . , Yf (Xm)] ∈ <r+1×m, which only stores

the filtered vectors Yf (Xi) that are sufficiently different from the last filtered vector stored [21]. In

order to store such vectors, if

‖Yf (X(t))− YfL‖2

‖Yf (X(t))‖
≥ εp (5.37)
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for a given positive scalar εp, then the filtered vector Yf (X(t)) is eligible to be stored in the matrix

Z, where YfL represents the last filtered vector stored.

Using this policy, if xd is such that Yf (X) is exciting over a finite interval i.e., if there exist

positive constants T and α such that for an interval [t, t+ T ] and t ≥ t0,

∫ t+T

t

Yf (X(τ))Y T
f (X(τ))dτ ≥ αI, (5.38)

then all r + 1 columns of the matrix are linearly independent, rank(Z) = r + 1, and in turn the

parameter estimation error exponentially converges to zero, i.e., Θ̃→ 0.

Remark 33. The main differences between the FCL adaptation law, presented in Eq. (5.35), and

the CL mechanism, presented in [21], are two-fold. (i) The adaptation law (5.35) uses the pre-

diction error δ(t) in its second term which does not require an estimate of x(n). On the contrary,

the CL mechanism requires the estimates of x(n) that is provided by a fixed-point smoother. Thus,

under the baseline CL, if these estimates are not accurate, Θ̃ does not converge to zero, but stays

bounded to a neighborhood of the origin [110, 111]. (ii) The second term of Eq. (5.35) records the

filtered basis of the system Yf (X) which allows the FCL to achieve simultaneous convergence of

a and b, whereas the baseline CL collects the original basis.

5.5.2 Adaptive QP-CLBF

With the formulation of the FCL in hand, the goal of this subsection is to unify safety, stabil-

ity, and adaptation through a QP optimization to formulate a multi-objective controller. The ap-

peal of FCL adaptation law lies in the use of the same CLF and CBF constraints presented in

Eq. (5.20) and (5.27) even in the presence of the system parameters and control coefficient. Re-

lying on Eq. (5.35) that can provide exponential convergence of D(Θ̃) to zero (will be proved

in Section 5.5.3), exponential convergence of V (ξ) and h(X) can be achieved.

The PWMNC in (5.19) can be equivalently formulated by the following optimization problem

153



w.r.t the constraints (5.20) and (5.27) to find the optimal signal vopt

v∗opt =argmin
vopt∈<

vopt
2 (5.39)

s.t. Φ1(ξ)vopt ≤ −Φ0(ξ)

Lrh
F1
h(X) + LG1L

rh−1
F1

h(X)vopt ≥ −KH(X)

+ b̂−1ϕ−1(X)vopt ≤ ū− Θ̂TY d
(
x

(n)
d , φ(X), ϕ(X)

)
− b̂−1ϕ−1(X)vopt ≤ ū+ Θ̂TY d

(
x

(n)
d , φ(X), ϕ(X)

)

where Y d = ϕ−1(X)[x
(n)
d ,−φ(X)]T ; the first constraint ensures exponential convergence of ξ to

zero; the second one guarantees exponential convergence of h(X) (with a proper selection of gain

K); and the last two constraints enforce the control input u to be bounded as −ū ≤ u ≤ +ū. The

next subsection provides a formal stability analysis to show simultaneous exponential convergence

of Θ̃, ξ, and h(X) to zero.

Remark 34. The last two constraints encoded in the QP optimization problem (5.39) apply control

bounds to the system such that the optimal control value can be found with respect to these bounds.

It should be pointed out that under these constraints, the control input may hit its prescribed bounds,

causing input saturation phenomenon. Since dealing with this phenomenon is beyond the scope of

this work, the control bounds are selected in such a way that the control input will not be saturated

by them.

5.5.3 Stability analysis

To show the global exponential convergence of the system solutions (ξ, Θ̃), let us define the fol-

lowing Lyapunov function

W (ξ, Θ̃) = V (ξ) + VΘ(Θ̃) (5.40)

with

VΘ(Θ̃) = Θ̃Tγ−1|b|Θ̃, (5.41)
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which benefits from the following bounding property

min
(
λmin(P ), λmin(|b|γ−1)

)
‖ζ‖2 ≤ V (ζ) ≤ max

(
λmax(P ), λmax(|b|γ−1)

)
‖ζ‖2, (5.42)

where λmin(.) and λmax(.) denote the minimum and the maximum eigenvalues of a matrix, and

ζ = [ξT , Θ̃T ]T ∈ <n+r+1.

Theorem 7. Consider the Lyapunov function (5.40), the control law (5.7), the estimate of x(n) in

Eq. (5.5), the optimization problem (5.39), and the adaptation mechanism (5.35). Under the As-

sumption 10 and applying the Recording Policy, the global exponential convergence of ζ is guar-

anteed for unknown system parameters, unknown control coefficient, and any ξ(0).

Proof. The time derivative of W along the trajectory of Eq. (5.10) is

Ẇ (ζ) = 2ξTPFξ + 2ξTPG
(
vopt + bΘ̃T Ŷ

)
+ 2Θ̃Tγ−1|b| ˙̂Θ. (5.43)

Using the definitions of LFV (ξ) and Φ1(ξ), Eq. (5.43) becomes

Ẇ (ζ) = LFV (ξ) + Φ1(ξ)
(
vopt + bΘ̃T Ŷ

)
+ 2Θ̃Tγ−1|b| ˙̂Θ. (5.44)

Upon substitution of LFV (ξ) from Eq. (5.16) and vopt from Eq. (5.19) for Φ0(ξ) > 0, Eq. (5.44)

becomes

Ẇ (ζ) = −ηξTPξ + 2ξTPGbΘ̃T Ŷ + 2Θ̃Tγ−1|b| ˙̂Θ. (5.45)

Substituting the adaptation law (5.35) and the prediction error (5.36) into Eq. (5.45) yields

Ẇ (ζ) = −ηξTPξ − Θ̃THΘ̃, (5.46)

where

H = 2|b|
m∑
i=1

Yf (Xi)Y
T
f (Xi) = 2|b|ZZT (5.47)
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is a positive definite matrix due to the full rankness of matrix Z, which is guaranteed by applying

the Recording Policy on the filtered vector Yf (X).

Then, Eq. (5.46) can be reduced to

Ẇ (ζ) ≤ −ηλmin(P )‖ξ‖2 − λmin(H)‖Θ̃2 ≤ −min
(
ηλmin(P ), λmin(H)

)
‖ζ‖2 (5.48)

≤ −
min
(
ηλmin(P ), λmin(H)

)
max

(
λmax(P ), λmax(|b|γ−1)

)
︸ ︷︷ ︸

β>0

W (ζ)

from which it follows that

W (ζ(t)) ≤ W (ζ(0))e−βt. (5.49)

Employing the Rayleigh-Ritz inequality, Eq. (5.49) provides

‖ζ(t)‖ ≤

√
max (λmax(P ), λmax(|b|γ−1))

min (λmin(P ), λmin(|b|γ−1))︸ ︷︷ ︸
A>0

‖ζ(0)‖e−
β
2
t (5.50)

which leads to ∥∥∥∥∥∥∥
ξ(t)

Θ̃(t)

∥∥∥∥∥∥∥ ≤ A

∥∥∥∥∥∥∥
ξ(0)

Θ̃(0)

∥∥∥∥∥∥∥ e−
β
2
t. (5.51)

This shows that the system solutions (ξ(t), Θ̃(t)) converge to zero exponentially at a rate of β
2
,

and since W (ζ) is radially unbounded, the results are also global.

Remark 35. Th above proof implies that the estimation error of both system parameters a and the

control coefficient b converges to zero at the exponential rate β
2
, i.e., â→ a and b̂→ b.

Remark 36. The exponential convergence of Θ̃ to zero results in an exponential convergence of

the eZCBF h(X) to zero, providing an accurate safety-critical system.
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Table 5.1: Physical parameters used in the simulation results.

System Parameter Value Units

Mass-damper
system

m 7 kg
f0 0.1 N
f1 5 Ns

m

f2 0.25 Ns2

m2

Underwater
vehicle

m 7 kg

c 3 Ns2

m2

5.6 Simulation results

In this section, we illustrate the effectiveness of our proposed control strategy through simula-

tions on two illustrative examples: (i) a first order mass-damper system and (ii) a second order

underwater vehicle.

5.6.1 The mass-damper system

A mass-damper system moving in a straight line can be modeled by the following first order non-

linear system [5]

v̇ = aTφ(v) + bu, (5.52)

where v (m/s) denotes the velocity of the system; u (N) is the force (control input); b = 1
m

is

the control coefficient with m (kg) as the mass of the system; and the vector of system’s base

parameters a and the known function φ(v) are given as

a = [a1, a2, a3]T = [
f0

m
,
f1

m
,
f2

m
]T and φ(v) = −[1, v, v2], (5.53)

where f0, f1, f2 > 0 are the friction coefficients. Physical parameters of the mass-damper system

are listed in Table 5.1.

By comparing the mass-damper dynamics (5.52) with Eqs. (5.1)-(5.4), we can easily obtain that

n = 1, r = 3, and ϕ = 1. The control objectives are (i) to drive the mass-damper system’s velocity

v from a randomly-selected initial condition v0 = 0.5 (m/s) to the desired velocity vd = sin(t),
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(ii) to estimate the system parameters a and the unknown control coefficient b starting from a

randomly-selected initial condition (a0, b0) = (1.5, 1.5, 1.5, 1.5), (iii) to enforce the input force

constraint −20N ≤ u ≤ 20N , and (iv) to enforce the velocity constraint v ≤ v ≤ v̄ by defining

the following eZCBFs

h1 = v̄ − v and h2 = v − v (5.54)

with v̄ = +0.7 (m/s) and v = −0.7 (m/s). Note that the eZCBFs in Eq. (5.54) are both velocity-

based and relative degree 1, i.e., rh = 1. Exponential convergence of all items (i)-(iv) is desired

when applying the proposed adaptive QP-CLBF through the laws (5.5), (5.7), (5.17), (5.18), (5.25),

(5.32)-(5.36), and (5.39).

Case 1. In this case, the proposed controller is applied while the CBF constraint is not actively

enforced in Eq. (5.39). By doing so, exponential convergence of tracking and estimation errors is

sought while the mass-damper system’s velocity is not restricted. From left to the right, Fig. 5.1

depicts the mass-damper system’s velocity tracking, the estimated base parameters a and b, the

input force u as well as the optimal signal vopt, and the Lyapunov functionW with its derivative Ẇ .

As illustrated in Figs. 5.1(a) and 5.1(b), the mass-damper system’s velocity accurately tracks the

desired velocity, and the system parameters a and the control coefficient b reach their ideal values

in 20 sec. Once a and b converge, the optimal signal vopt converges to zero and the input force is

properly minimized (Fig. 5.1(c)). Figure 5.1(d) shows that the Lyapunov functionW exponentially

converges to zero, implying that all the results are exponential and achieved simultaneously as

proven in Theorem 7.

Case 2. In order to enforce the velocity constraint, in this case all the constraints are activated in

Eq. (5.39). The forward invariance of the safe set (whose CBF is defined in Eq. (5.54)) is illustrated

in Fig. 5.2(a) by the mass-damper system’s velocity v restricted between the prescribed upper and

lower bounds, and the positiveness of eZCBFs h1 and h2. Due to the limits on the velocity, a

sluggish convergence of the system parameters ai for i = 1, 2, 3 and the control coefficient b is

observed in Fig. 5.2(b) while also slightly fluctuating around their true values. This case shows
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that the proposed control strategy is able to achieve exponential convergence of all system solutions

in the presence of the unknown system parameters and the unknown control coefficient while the

mass-damper system’s velocity is constrained.

5.6.2 The underwater vehicle

An underwater vehicle moving in a straight line can be modeled by the following second order

nonlinear system [81]

ẍ = aTφ(x, ẋ) + bu, (5.55)

where x (m) and ẋ (m/s) represent the position and the velocity of the vehicle; u (N) is the

propeller force (control input); b = 1
m

is the control coefficient, in which m (kg) is the mass of the

vehicle; and the system base parameter a and the known function φ(x, ẋ) are

a =
c

m
and φ(x, ẋ) = −ẋ2sign(ẋ), (5.56)

where c > 0 is the drag coefficient. The base parameters of the vehicle are listed in Table 5.1.

In view of Eqs. (5.1)-(5.4), it can be figured out that n = 2, r = 1, ϕ = 1, andX = [x, ẋ]T . For

this system, the control tasks are (i) to obtain convergence of the state vector X from a randomly-

selected initial condition X0 = [0.5, 0]T to the desired trajectory Xd with xd = sin(t), (ii) to

achieve convergence of (a, b) starting from a randomly-selected initial condition (a0, b0) = (1.5, 1)

to their actual values, (iii) to bound the propeller force as −20N ≤ u ≤ 20N , and (iv) to enforce

the constraint x ≤ x ≤ x̄ on the vehicle’s position x by defining two relative degree 2 eZCBFs

(position-based constraints i.e., rh = 2) as

h1 = x̄− x and h2 = x− x, (5.57)

where x̄ = +0.7 and x = −0.7. Again, we will apply our proposed approach comprises the

laws (5.5), (5.7), (5.17), (5.18), (5.25), (5.32)-(5.36), and (5.39) to obtain exponential convergence
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of all above-mentioned items (i)-(iv).

Case 3. In this case, exponential convergence of the system solutions (ξ, a, b), guaranteed by The-

orem 7, is verified while the CBF constraint (5.57) is not taken into account. As indicated in

Fig. 5.3(a), the actual position of the vehicle converges to the desired position. The convergence

of the system parameter a and the control coefficient b to the true values can be seen in Fig. 5.3(b).

The propeller force and the optimal signal vopt obtained from the QP optimization are illustrated

in Fig. 5.3(c). In addition, it can be seen in Fig. 5.3(d) that the Lyapunov function converges to

zero. While Theorem 7 formally guarantees, Fig. 5.3 verifies that all solutions are exponential and

converge in 10 sec.

Case 4. To enforce the vehicle’s position to be bounded between x = −0.7 and x̄ = +0.7,

the relative-degree two safety constraint (5.57) is activated in this case. Fig. 5.4(a) shows the

position x that is restricted by its upper and lower bounds. This figure also shows non-negativity of

the functions h1 and h2 demonstrating enforcement of the position-based constraints. Fig. 5.4(b)

illustrates exponential convergence of the system parameters a and the control coefficient b to their

actual values (due to Theorem 7) in spite that the vehicle’s position is restricted. Therefore, as the

estimation error converges to zero, h1 and h2 vanish in the set boundary and an accurate safety is

obtained.

5.7 Conclusions and future works

The baseline QP-CLBF controller can only guarantee accurate safety and stability for systems

without uncertainties. Existing robust QP-CLBFs are able to enhance the performance of the base-

line approach but still cannot drive the system errors to zero. In this chapter, an adaptive QP-CLBF

controller has been proposed for a class of nonlinear systems with parameter uncertainty and un-

known control coefficient, that can provide exponential results. We have introduced an extension

of the CL adaptive approach, which was not developed for simultaneous estimation of system pa-

rameters and control coefficient, to guarantee exponential convergence of all parameter errors to
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zero simultaneously. This was achieved by introducing a filtering-based CL, called FCL technique,

that allows for simultaneous exponential convergence of system parameters and control coefficient

without the need for numerical estimation of state derivatives using a fixed-point smoother. An

adaptive QP-CLBF controller has been then formulated by synthesizing a QP subject to CLF and

CBF constraints while using the parameter estimates derived by the FCL technique to ensure ac-

curate safety and stability for systems with uncertainties. It has been proved using a Lyapunov

argument that under the proposed scheme, simultaneous exponential convergence of all system pa-

rameter error, control coefficient error, tracking error, and safety-critical constraints to zero can be

achieved. Simulation results have shown the soundness of the proposed scheme on two illustrative

examples: a first order mass-damper system and a second order underwater vehicle.

This chapter has formulated the adaptive QP-CLBF controller for nth-order SISO nonlinear

systems. Although the proposed controller can be applied to a variety of mechanical and robotic

systems, there are numerous MIMO applications of the presented approach that have been excluded

from the scope of this thesis. This naturally motivates us to conduct our future direction towards

extending the proposed scheme for the uncertain MIMO nonlinear systems.
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(a) (b)

(c) (d)

Figure 5.1: Results of the proposed controller applying for the mass-damper system in Case 1,
including (a) the velocity v tracking, (b) the estimates of the system parameters a and the control
coefficient b with their actual values indicated by black dashed lines, (c) the input force u and the
pointwise optimal signal vopt, and (d) the Lyapunov function and its derivative.
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(a)

(b)

Figure 5.2: Results of the proposed controller applying for the mass-damper system in Case 2,
including (a) the velocity v with its upper and lower bounds indicated by black dotted lines as
well as the eZCBFs with positive values indicating satisfaction and (b) the estimates of the system
parameters a and the control coefficient b with their actual values indicated by black dashed lines.
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(a) (b)

(c) (d)

Figure 5.3: Results of the proposed controller applying for the underwater vehicle in Case 3,
including (a) the position x tracking, (b) the estimates of the system parameters a and the control
coefficient b with their actual values indicated by black dashed lines, (c) the propeller force u and
the optimal signal vopt, and (d) the Lyapunov function and its derivative.
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(a)

(b)

Figure 5.4: Results of the proposed controller applying for the underwater vehicle in Case 4,
including (a) the position x with its upper and lower bounds indicated by black dotted lines as
well as the eZCBFs with positive values indicating satisfaction and (b) the estimates of the system
parameters a and the control coefficient b with their actual values indicated by black dashed lines.
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CHAPTER 6

DISCUSSION, CONCLUSIONS, AND FUTURE WORKS

6.1 Discussion and conclusions

The QP-CLBF controllers are widely used for nonlinear systems, wherein they have the advan-

tage that they can balance stability and safety in a pointwise optimal fashion. However, they are

not amenable to guarantee the performance of closed-loop systems and satisfy safety-critical con-

straints in the presence of parameter uncertainties, unmodeled dynamics, and disturbances. This

motivated the results presented in this thesis. We proposed five different control approaches to-

wards unifying adaptation, robustness, CLFs, and CBFs into a QP framework that can enhance

the existing functionalities of QP-CLBFs to achieve better control objectives and safety perfor-

mance. The proposed control schemes extend the applications of QP-CLBFs to uncertain fully

actuated and underactuated systems that include structured and unstructured uncertainties as well

as system-environment interactions. This could allow for reliable implementation of the proposed

controllers that their soundness is formally proven on real-world systems whose dynamics models

are fully/partially unknown and that involve significant contact with the environment.

In this thesis, we formulated five different robust quadratic program-based adaptive controllers

for fully actuated and underactuated systems, the contribution of each problem can be summarized

as follows:

Control of fully actuated nonlinear systems with structured uncertainties. A two-layer

controller is presented for fully actuated nonlinear systems whose dynamics can be expressed lin-

early in terms of the unknown parameter. In the inner layer, the unknown system dynamics are

identified by an adaptive control and the estimates are sent to the outer later in which a QP is

synthesized utilizing an RCLF constraint and control bounds. The RCLF is responsible for com-

pensating uncanceled dynamics and disturbances. The UUB of all system solutions are proven and
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the benefits of the unified controller over the baseline QP-CLF are demonstrated through simula-

tion.

Control and safety of fully actuated nonlinear systems with unstructured uncertainties. A

two-layer three-term (adaptive, optimal, and feed-forward) control strategy is formulated for fully

actuated nonlinear systems with unstructured uncertainties and time-varying disturbances. The

unknown dynamics of the system are estimated by a neuro-adaptive approach to inform the adap-

tive term. The pointwise optimal term is generated by a QP while incorporating three inequality

constraints RCLF, CBF, and control bounds. A robust term robustifies the proposed controller to

disturbances and uncanceled uncertainties. The end result is a single controller that can balance

stabilization and safety in the presence of modeling error and disturbances, while outperforming

the baseline QP-CLBF and proving the UUB of all system signals.

Active space control of underactuated robotic systems. A multi-objective control scheme

is presented for application to underactuated robotic systems that is able to achieve simultaneous

objectives: active space control, system identification, and point-wise control optimality in the

presence of unmodeled dynamics and disturbances. The system’s accelerations are estimated as

a remedy for nonlinear coupling between active and passive spaces, and as an alternative to the

direct measurement and substitution methods for use in the control algorithm. The modeling un-

certainty associated with both unknown system parameters and unknown control map is estimated.

An IRCLF is presented to automatically compensate for acceleration estimation error, unmodeled

dynamics, and disturbances without the need for their bounds a priori. Utilizing the IRCLF, a

QP is synthesized to ensure the system stability with minimal control effort, while using the esti-

mates of the unknown dynamics. Simulations and comparisons to the baseline QP-RCLF and an

adaptive QP-RCLF on two different underactuated systems—a foot-leg model on the deformable

ground and the overhead crane system—validate the superiority of our approach.

Passive space control and safety of underactuated robotic systems. A novel approach for

non-collocated control of n DoF-one DoA underactuated robotic systems with diagonal inertia

matrices is presented. By unifying a 2n-step backstepping design procedure and RBFNNs, an
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adaptive control is designed to approximate the unknown nonlinear functions. Modeling approx-

imation error, chained errors between the system’s states stemming from the backstepping de-

sign, and time-varying disturbances are compensated by designing virtual inputs whose gains are

evolved by projection-based adaptation laws. Novel TVRCLF and TVRCBF are presented to be

encoded into a QP to balance stabilization and safety in the presence of unmodeled dynamics and

disturbances without knowing their bounds a priori. The eDE stability of all system solutions is

ensured and the benefits of our approach is confirmed over the baseline QP-CLBF/FL method on

a single-link flexible-joint robot.

Control and safety of fully actuated systems with exponential results. A new adaptation

technique, called FCL, is presented to guarantee simultaneous exponential convergence of system

parameters and control coefficient. This technique extends and encompasses the traditional CL

adaptive approach that suffers from the followings. CL formulation relies on the estimates of n-th

derivative of state; if they are not accurate, the solutions converge to an ultimate bound whose

size is dependent on the estimation error of x(n). CL is not formulated to achieve simultaneous

exponential convergence of system parameters and control coefficient, even if x(n) is perfectly

estimated. The FCL is unified with QP-CLBF to achieve exponential convergence of all system

errors while strictly avoiding the violation of safety constraints. This is formally proven and the

soundness of the proposed approach is demonstrated on two illustrative examples—a mass-damper

system and an underwater vehicle.

6.2 Future works

With the proposed robust QP-based adaptive control approaches in hand, this thesis opens up the

following possible directions for the future work.

Stabilization and safety of stochastic nonlinear systems. The presented approaches in this

thesis can be implemented for a wide range of fully actuated and underactuated applications with

deterministic nonlinear systems. However there is a variety of practical applications in which

stochastic/random disturbances often exist that forbids the direct application of the presented ap-
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proaches. Motivated by redundant applications with stochastic nonlinear systems, the future work

would aim to reformulate CBF and CLF frameworks for such systems based upon which the pro-

posed controllers can be extended, while providing a formal framework of boundedness in proba-

bility.

Control of multi-agent systems with uncertain dynamic network structure. In recent years,

there has been an increasing interest in the consensus control design of multi-agent systems due to

its multiple applications in formation control, rendezvous control, leader–follower problem, etc. In

such problems, a graph is usually considered to model the information interaction among agents.

One of the main challenges in such problems lies in the fact that consensus is not achievable if the

connectivity of network/graph is destroyed during the missions. This, coupled with the existence

of stochastic disturbances increases the complexity of consensus control of multi-agent systems.

This naturally motivates us to extend the presented approaches to multi-agent system control while

formally ensuring the consensus and convergence of all system solutions.
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