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Executive Summary 

The objective of this project is to assess the economic benefits and system impacts for grid-scale 

energy storage in the Southeast region for informed investment decision-making and policy 

analysis. Energy storage is a dynamic field exhibiting considerable near term growth. Energy 

storage systems (ESS) can provide a wide range of services and benefits to the sector’s entire value 

chain and, are therefore becoming an attractive technology among stakeholders.  

The key to an increased deployment of energy storage projects is their economic viability. Because 

of the significant potential value of energy storage services as well as the complexity of related 

decision-making problems, sophisticated ESS evaluation tools and studies need to be 

utilized.  Previous ESS studies show that the ESS assessment is site-specific, i.e. the economics 

and impacts are highly dependent on the region, policies, regulations, markets, incentives, use 

cases, etc. Most of the available studies focus on ESS within specific electricity market areas. 

While progress has been made in the determination of the value of ESS in some states, the value 

of ESS in the Southeast region is less well-understood, given the regulatory model and the lack of 

market signals for benefits and services. This study develops novel methodologies and software 

capability to understand the economics and system impacts of ESS in the Southeast region. A key 

goal of the proposed work is to help ensure that the region is prepared to accommodate such growth 

in an economically viable manner.  

The methodologies disclosed in the present study are applied primarily to techno-economic 

assessments of ESS. While analyses of societal impacts are beyond our scope, the methodologies 

disclosed herein can form the basis of future work to test new hypotheses that consider 

social/environmental factors (e.g., ESS can have favorable welfare effects, or quantifiable impacts 

of CO2 emissions). The simulations in this study were performed based on the current capital costs 

of ESS but there is wide acknowledgement that these costs are decreasing every year. Thus, it is 

expected that ESS payback periods can decrease.  

The study analyzes three scenarios for applications based on ESS ownership and operation models: 

1. Owned and operated by an end use customer, i.e., Behind-the-meter (BTM) 

2. Owned by an end use customer, but jointly operated by the customer and the utility 

3. Owned and operated by the utility 

The analysis of these scenarios has been conducted through advanced optimization models as well 

as realistic, historical, and publicly available datasets. Both the methodology and study input data 

have been developed to accurately represent ESS applications in the Southeast region. Below, we 

summarize the results of the study for these three key scenarios.  

Scenario 1: ESS Owned and Operated by the End User (BTM) 

Under the current tariff rates in Georgia, commercial and industrial (C&I) customers who are 

exposed to demand charges can benefit from BTM ESS investment. Cost savings are significant 

and can results in payback periods as low as 5 years for this class of customers. Residential 
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customers exposed to demand charges can also benefit from BTM ESS where the payback periods 

are closer to 10 years. Although residential ESS is not as profitable as C&I, with the decreasing 

capital costs of ESS, it is expected that residential ESS may become more profitable for certain 

tariff classes and use profiles. In most BTM ESS scenarios, cost savings realized by the customer 

result in reduced revenues by the utility. In terms of system impacts, high penetration of BTM ESS 

can have significant impacts on the system net load. Tariff rates with demand charges result in 

smoother net load profiles that are more desirable from the system operator’s perspective.  

Scenario 2: ESS Owned by End Customer, but Jointly Operated. 

Two joint operation strategies were proposed where utilities can operate BTM ESS jointly with 

the customers to hedge against their revenue loss, while customers can still benefit from BTM 

ESS. The first strategy, passing through wholesale prices, is generally not financially attractive 

and results in payback periods of more than 15 years. However, this strategy is revenue neutral for 

the utility. The second strategy, renting BTM ESS, has the same profitability for the customers 

as Scenario 1 and the utility can benefit from operating BTM ESS to maximize its own objective 

function. Optimization results show that significant revenues can be obtained by the utility from 

energy arbitrage depending on the price variability of the location. This strategy results in lower 

loss of utility’s revenue compared to Scenario 1. 

Scenario 3: ESS Owned and Operated by the Utility 

Utility-owned and operated ESS results in the highest revenues and payback periods as low as 

5 years using multiservice ESS optimization. The largest portion of the revenue is derived from 

frequency regulation. Simulations show that service co-optimization results in significant benefits 

and improve the financial viability of ESS projects. While spinning reserve service can increase 

the total revenue compared to the energy arbitrage only, it has minimal impact on the revenues for 

the cases that included frequency regulation. This is because the ESS capacity is better utilized to 

provide frequency regulation service, which is a bi-directional service compared the spinning 

reserve. Even under the most conservative simulation assumptions, multiservice ESS can reach a 

payback period of 5 years.  

The present study can prove to be of service to utilities, policy-makers, researchers and other 

stakeholders. Several novel optimization methodologies have been developed that can be used to 

evaluate the relative economic merits of ESS under a range of scenarios, input conditions, and 

performance parameters. The methods and approaches can be extended to include additional 

parameters, such as CO2 costs, CO2 emission, and welfare effects. Finally, the project provides 

detailed insights into the comparative economic benefits of major ESS use cases from the 

perspective of residential customers, large commercial customers, and utilities. The results 

suggest there are significant opportunities and net economic benefits from ESS systems, 

whether owned and operated by large customers or utilities, or jointly-operated by both. Taken 

together the methodologies and findings can contribute to informed investment decision-making 

and policy analysis in the Southeast region, and beyond.  
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1. Introduction 
 

The Georgia Tech Energy Policy and Innovation Center (EPICenter) has performed a review of 

the literature, and of the inventory of energy storage (ES) projects, and a high-level initial 

assessment and potential outlook for grid-scale ES deployment in the Southeastern U.S. The initial 

findings suggested that grid-scale energy storage use cases and applications are highly diverse 

and difficult to combine. Furthermore, their benefits and costs are highly variable and 

dependent upon regional context and economic factors, particularly when societal perspectives 

are considered. Two critical variables that are evolving rapidly are battery costs and balance of 

systems costs. In addition, renewables integration and other shifts in the electricity generation mix 

are creating opportunities for greater decarbonization, with non-trivial implications on ES 

deployment. While selected private party approaches to behind the meter (BTM) energy storage 

deployments may yield modest returns for certain commercial and industrial (C&I) customers, the 

Southeast region is generally confronted by market and regulatory conditions which are 

substantially different than in states such as CA, WA, OR, NY and MA, where explicit state 

subsidies and/or procurement targets have been enacted, or where explicit market signals 

incentivize and compensate owners for grid services. That said, the vertical integration of the 

region’s major utilities may provide certain economies of scale, operational efficiencies, or capital 

efficiency that are a result of single, centralized control authority from the point of generation, 

through transmission, to distribution. 

This study extends Phase one EPICenter efforts to perform quantitative analyses that evaluate 

deployment scenarios of energy storage under key future conditions that the region may 

experience, while applying best practices from other regions and improved methods for addressing 

techno-economic uncertainty. Herein, we study conditions that incorporate current trends in energy 

storage costs, and adjustments in rates (including new rate case data and time of use rates), and 

increasing value and ability to monetize multiple use stacking (for both utilities and behind-the-

meter private parties). The present report considers economic impacts under various projected 

generation supply and demand scenarios roughly approaching a 2030 horizon. The study team 

includes investigators from the School of Electrical and Computer Engineering (ECE): Mr. (now 

Dr.) Sadegh Vejdan and Prof. Santiago Grijalva, working in collaboration with the EPICenter 

Director, Dr. Rich Simmons. This project extends the previous development of the Energy Storage 

Evaluation Tool (NESET) sponsored by the Georgia Tech’s National Electric Energy Testing, 

Research & Applications Center (NEETRAC).  

Energy storage is a very dynamic field that is expected to grow considerably in the next two 

decades. A key goal of the proposed work is to contribute to the region’s preparation to 

accommodate such growth in an economically viable, environmentally sound, and socially 

responsible manner. Substantial investments are being expended into the R&D, demonstration and 

deployment of energy storage for a variety of objectives and stakeholders, most of which are in 

states outside of the Southeastern U.S. This project considers technologies and best practices, state-
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of-the-art approaches, publications and evolving business models. A particular focus of the 

scenario assessment and envisioned implementation strategies, however, has been on strategic 

partners that have a Southeastern focus, and are evaluating energy storage within the context 

of a regulated, vertically-integrated utility structure. In addition, the team has strived to 

construct its methodologies in ways that can be more broadly applicable.  

As a primary objective, the results of the study are intended to provide insight into the benefits of 

energy storage for grid applications for various stakeholders. These benefits include: 

For policy makers and civil society: 

• Impact of energy storage on affordability and economic impact. 

• Insights of energy storage performance that can inform resource planning, current and 

future trends in the generation mix, and in particular, approaches that may pair renewables 

plus storage. 

For customers: 

• Opportunities to deploy energy storage in ways that realize a favorable economic return or 

deliver other means of added value through various services.  

For the research community: 

• Identification of energy storage services trade-offs to inform new research priorities and 

potential sources of funding. 

• Identification of new data sets and findings that can provide opportunities for 

interdisciplinary partnering. 

For investors, technology companies, utilizes and OEMs: 

• Results which may provide insight into the benefits, costs, risks, and trade-offs associated 

with deployments of energy storage under the scenarios studied.   
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2. Research Context and Scope 

2.1. Chapter Overview  

 

In this Chapter we developed the project scoping and conducted a literature review necessary to 

frame the problem and the various project tasks. The team validated the simulation requirements 

for energy storage systems and incorporated additional inputs for key use cases and scenarios of 

ownership and operation, including:  

a) Behind the meter simulation,  

b) Customer-sited and owned energy storage with joint operation, and  

c) Utility owned and operated.  

 

Previously, the NESET tool was developed by the Electrical and Computer Engineering team, by 

using a market environment assumption, and consequently it took inputs such as temporal energy 

marginal prices. In order to develop corresponding simulations for the Southeast, the NESET tool 

was expanded to receive inputs associated with specific rates structures. Other new simulation 

requirements were also validated in this task.  

 

2.2. Simulation Scenarios, Inputs and Outputs 

2.2.1. Simulation Scenario 1: Behind-the-Meter (BTM) Energy Storage 

In this Scenario, energy storage is owned and operated by the end-use customer and therefore sited 

at the customer premises. This Scenario is identical to energy arbitrage and multi-variable revenue 

stream analysis, but it is implemented using regional economic data, and the inclusion of CO2 as 

an output parameter of interest.  

The required input data for this Scenario are: 

i. Storage technology parameters: 

a. Technological parameters: Energy storage size (power and energy ratings), energy 

storage efficiencies, durability, capacity fade effect, duty cycle, degradation, life 

constraints  

b. Economic parameters: Capital costs including I) storage module costs (e.g. cost of 

purchasing or financing battery cells/modules), II) balance of system (BOS) costs 

(containerized DC system), III) power conversion system costs (Inverters, 

protection, EMS). Operation and maintenance (O&M) costs, End-of-life (EOL) 

costs. 

ii. System parameters: 

a. Customer types: residential, residential with demand, C&I, etc. as well as their 
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penetration level in the system under study 

b. Load profiles: e.g. time-series data (metered or synthesized) of load consumed by 

different type of customers  

c. Prices and tariffs: e.g. energy and demand rates, real-time prices, time-of-use 

(TOU) rates, other fixed and overhead charges. 

d. Time of use CO2 intensity 

e. Incentives and credits 

 

The expected outputs of this Scenario are: 

i. Benefit of energy arbitrage to the customer: savings in energy and demand charges 

ii. Costs of customer’s total investments 

iii. CO2 impacts 

iv. Lost utility revenue 

v. Load profiles after the energy arbitrage 

vi. Other system and social benefits 

  

2.2.2. Simulation Scenario 2: Customer-Sited and Owned, Jointly Operated Energy Storage 

In this Scenario, energy storage is owned by the end-use customer and therefore sited at the 

customer premises as in Scenario 1. However, it is jointly operated by the customer and the utility 

in coordination. This Scenario leverages the previous Scenario 1 where the customer performs 

energy arbitrage to reduce the electricity bill charges but considers a hybrid control of the asset 

toward providing grid services as well, using approaches adopted in the wholesale markets. For 

this Scenario, grid ancillary services need to be defined for the Southeast region where there are 

no clear market signals/prices for frequency regulation, reserves, resilience, etc. A production cost 

modeling approach is proposed for this Scenario and is described more in detail in future steps of 

this project. 

The required input data for this Scenario are: 

i. Scenario 1 data 

ii. Value of grid services: e.g. where an established market does not exist 

iii. Marginal costs of generation mix (or their proxies) in the Southeast 

iv. Control and command algorithms: How the utility informs the customer to change the 

energy storage operation, e.g. direct load control, critical pricing, etc. 

 

The expected outputs of this Scenario are: 

i. Scenario 1 outputs 

ii. Benefits to the utility 
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2.2.3. Simulation Scenario 3: Utility Owned and Operated Energy Storage 

In this Scenario we will simulate utility-owned and operated ESS, and determine benefits that are 

obtained exclusively in front of the meter to a utility. The utilization of input data such as LMPs 

is proposed with the inclusion of energy storage operation is proposed for this Scenario and is 

described more in detail in future steps of this project. 

The required input data for this Scenario are: 

i. Scenario 1 and 2 data 

ii. Any other data required for additional energy storage services or “internalizable” 

benefits to the utility 

 

The expected outputs of this Scenario are: 

i. Benefits to the utility in a regulated context 

2.3. Sources of Data and Assumptions 

Energy storage is a disruptive technology that requires advances in interconnection processes, 

power system management, software analysis tools, and new policies in order to achieve broad 

penetration and to provide its full benefits to society. The timely execution of the proposed work 

relies upon the availability of and access to several datasets, including data that is currently 

excluded from the public domain or cannot otherwise be generated within the resources of the 

project team. Data and assumptions also depend highly on existing policies in each state as well 

as practices by utilities, vendors, and evolving customer needs. A study such as this one invariably 

has a level of uncertainty in the assumptions. The selection of conditions to a certain degree tries 

to address this uncertainty, but invariably, simplifications have to be made in order to make the 

simulation problem tractable. 

A key feature of this project is providing analysis and simulation results based on the most reliable 

and accessible input data that can be easily used and accessed by ESS stakeholders and researchers. 

Thus, all the input data used for simulations are based on publicly available data bases. The 

following publicly available sources are explored for collecting each type of required data: 

i. Storage technical and economical parameters are found publicly available at  

a. Department of Energy database: www.energystorageexchange.com 

b. Review papers and reports on energy storage technologies [1] – [22]  

ii. System parameters are found at 

a. Customer type penetration level (publicly available): www.eia.gov 

b. Synthesized load profiles provided by Center of Distributed Energy at Georgia 

Institute of Technology 

c. Georgia Power tariffs (publicly available): www.georgiapower.com 

d. time-of-use carbon intensity: The IPCC Special Report on Renewable Energy 

Sources and Climate Change Mitigation (Annex II), and  www.eia.gov 

http://www.energystorageexchange.com/
http://www.eia.gov/
http://www.georgiapower.com/
http://www.eia.gov/
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All data required for Scenario 1 is completely collected and simulation scenarios are initiated in 

the next task of this project. 

Other input data for Scenarios 2 and 3 are still being collected. Data privacy issues and their 

unavailability in publicly available sources requires lengthier data collection processes. These data 

include those required for production cost modeling (e.g. marginal costs) and command/control 

algorithms and the value of grid services in the Southeast.   

2.4.Summary Table for Data Requirements 

For each of the 3 simulation Scenarios, the specific data requirements were identified and outlined 

as illustrated in Table 1. Each data requirement is provided with a source of data. Also, the last 

column indicates whether the original version of NEETRAC Energy Storage Evaluation Tool 

(NESET) supported inputs to those parameters, or whether software modifications were needed in 

order to input the necessary data. In column “NESET”, S denotes full support of that specific type 

of data, and U denotes that although the support is provided, it can be updated to become more 

user-friendly. This column indicates whether software changes were needed in the Input module 

of the tool for the tasks of this project. 

Table 1 Data Requirements per Scenario 

 

                                                 Table 3: Data Requirements per Scenario

Scenario Required Data Source of Data NESET

1. Behind-the-meter (BTM)

Storage technology parameters (technical and economical)

ESS size (power and capacity ratings) energystorageexchange.com S

Battery efficiency, durability, fade, duty cycle, life constraints NESET Report and References S

Battery and Balance of System (BOS) costs Lazard Report, energystorageexchange.com S

Operation & Maintenance (O&M) Costs NESET Report and References S

System parameters

Time of Use (TOU) rates https://www.georgiapower.com/ U

Demand charges https://www.georgiapower.com/ U

Other fixed/variable tariff factors https://www.georgiapower.com/ U

Time of Use CO2 intensity [CO2fn(t)] EIA, The IPCC Report on Renewable Energy U

Customer load profiles (Residential and Industrial) Sandia Load Data S

Penetration level of each customer in terms of tariffs within- 

each grid (for aggregation)
* U

Real-time prices * S

Incentives/credits * S

2. Customer-sited & owned, jointly-operated with utility

Additional Data (+ Case 1 Data)

Value of grid services (e.g., where an established market does 

not exist)
* U

Command/Control Algorithms https://www.georgiapower.com/ U

Customer behavior and response * U

Input data for a DCUC problem (Fuel prices, heat rates, 

marginal costs or proxies, network data)
Synthetic data U

3. Utility owned and operated

Additional Data (+ Case 1, 2 Data)

Value of grid services, T&D benefit, etc. (e.g., to the extent it 

can be estimated in a vertically-integrated regulated market)
* U
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3. Methodology and Assumptions 
 

In this Chapter, the methodologies and assumptions utilized for the simulation of energy storage 

scenarios are presented. The proposed workflow for analysis is described in Section 3.1. The 

optimization formulation is discussed in Section 3.2.  

3.1.Simulation Workflow 

An optimization-based approach is utilized extensively in this study in order to analyze all the 

scenarios of interest. The corresponding simulation workflow is shown in Figure 1. The analytical 

modules and input data are described in the following subsections. 

 

 

Figure 1: Simulation Workflow 

3.2.Analytical Modules 

There are three analytical modules in the proposed workflow as shown in Figure 1 colored in 

dark green: 

- Optimization 

- CO2 Impact Analysis 

- Benefit Cost Analysis 

 

3.2.1. Optimization  

The core of the developed methodology is the temporal optimization module, which determines 

the optimal operation of ESS (output power and energy level at each time period t: , ,dis chg

t t tP P E ) 

that: 

- Maximizes the total revenues from the energy storage services determined by the owner 

and operation mode at each scenario. Regardless of the scenario, this objective function 

can be generically modeled as in Equation (1). 
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- Subject to the following constraints: 

o Energy storage technical capabilities determined by storage parameters (Equation 

(2)), 

o Service requirements determined by mode of operation at each scenario (Equation 

(3)). 

 

The optimization method is expressed mathematically as: 

,
,

,
maxim e )_iz ( , ,

dis chg
t t t

dis chg

t t t
P P E

s t

s se trv ces Ti

Revenue RevTotal P Penue E
 

    (1) 

_ , , _dis chg

t t tP P ELower Limits Upper Limits   (2) 

, ( , , ) _ _ ,dis

s t

chg

t t tRevenue Service ConstraintP P E Set s t   (3) 

 

While the revenue is defined based on the requirements of each scenario, energy storage technical 

capabilities determined by its parameters are common among all scenarios. Despite the variety of 

energy storage technologies and their characteristics, the reliable operation of any storage 

technology should meet the following constraints and requirements for all the time periods within 

the operating horizon: 

1. The charging and discharging powers are non-negative values and based on the capabilities 

of each storage technology, they are limited by the technology output power ratings that 

determine their maximum allowable value (Equation (4)).  

2. Charging and discharging does not happen at the same time (Equation (5)). 

3. The energy level at each time period is equal to the energy stored in the previous time 

period and available now plus the energy stored from charging at the current time period 

minus the energy depleted from discharging at the current time period (Equation (6)). 

4. The energy level at each time period should not fall below a lower bound or exceed an 

upper bound to avoid deep discharging and overcharging, respectively. Otherwise, the 

useful life of the technology significantly degrades, and it might fail to operate reliably 

(Equation (7)). 

5. For numerical purposes, the energy level at the end of the optimization horizon should be 

equal to the energy level at the beginning of the optimization horizon. In this project we 

developed a monthly optimization approach and assumed that the energy level at the 

beginning of the optimization horizon is equal to one-half of the full energy capacity of the 

storage technology (Equation (8)). 
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The previous requirements are represented mathematically by the following constraints, 

respectively: 

 

max0 .dis dis dis

t tP P u      ;    max0 .chg chg chg

t tP P u   t T  (4) 

0 1dis chg

t tu u   t T  (5) 

 1 /chg

t s t chg t t dis

disE E P P t       t T  (6) 

min maxtE E E   t T  (7) 

0TE E  t T  (8) 

Where:  

Notation Type Description 

T  set Set of time periods 

t  index Index of time periods 

T  index Index of the last time period in the horizon 

dis

tP  variable Power discharged to the grid at time period t -kW 

chg

tP  variable Power charge from the grid at time period t -kW 

,chg dis

t tu u  variable 
Binary variables representing the status of charging and 

discharging at time period t 

tE  variable Energy level at time period t-kWh 

max max,chg disP P  parameter Maximum charging and discharging power-kW 

min max,E E  parameter Minimum and maximum energy levels-kWh 

s  parameter Storage self-discharge rate 

,chg dis   parameter Charging and discharging efficiencies 

t  parameter Time interval-h 
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Depending on the energy storage technology, the values of these parameters may vary. Even for a 

specific technology, these values may differ from one storage project to another depending on the 

size and application of the project.  

In optimizing the optimal operation (output power) of energy storage to maximize the service 

revenues, all of the above constraints (4) - (8) are considered as storage constraints (technical 

capabilities). As discussed, the definition of revenue and services are scenario-dependent and are 

described separately in each chapter. 

3.2.2. CO2 Impact Analysis 

One of the objectives in developing the present optimization methodology is to eventually simulate 

and quantify the relationship between energy storage and CO2 emissions. An analysis can either 

ignore or account for a price of carbon within the optimization model. The following provides a 

brief description of both approaches: 

1. Ignore Carbon Prices. In this model, carbon prices are not included in the 

optimization model, and the optimal operation of ESS is determined by maximizing 

the service revenues only. In other words, any cost or market price associated with 

carbon is not considered in the objective function of the optimization. However, the 

CO2 emissions associated with the optimal operation of the ESS can be estimated as 

a post-optimization process. The operation of ESS changes the net demand shape and 

accordingly, the generation dispatch, which impacts emissions. For instance, the 

optimization of the ESS may charge with excess generation during off-peak periods, 

and re-inject this electric power during peak periods. This will impact the dispatch 

of generation, and therefore the system CO2 emissions. This net CO2 impact can be 

net positive, neutral or negative relative to the baseline, depending on what sources 

and at what levels are being utilized during charging periods, and what sources are 

being displaced during ESS discharge.  

 

2. Consider Carbon Prices. In this model, carbon is considered to have a market value, 

and the optimal operation of ESS is determined by maximizing the sum of service 

revenues and the monetized benefits of avoided carbon costs. Carbon costs are 

directly considered in the objective function of the optimization. In other words, 

profitability and CO2 impact are both be considered in the optimization algorithm.  
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Figure 2 shows the workflow of this analysis, and how CO2 costs and impacts can be either 

considered or ignored in the optimization model. 

 

 

Figure 2 CO2 Impact Analysis1.  

In the ESS scenario assessments of the present study, we have elected to exclude an explicit price 

for CO2 from the analyses. This is primarily because at the time of publication, no explicit CO2 

market exists in the Southeast region. Thus, the ROI of an ESS asset, as well as economic dispatch 

decisions at a system level are both independent of CO2 price, since that price is taken to be zero 

at the present time in the Southeast region. However, as noted above, the methodology has been 

developed such that CO2 costs could readily be added future optimization scenarios. It would 

also be possible to determine the net impacts of CO2 emissions on an aggregated basis, for instance 

between modeled scenarios, provided adequate, temporally-resolved information is known about 

the particular dispatch of the regional system. Finally, if detailed dispatch information is not fully 

known, a rudimentary limits analysis could be performed on CO2 impacts based on heavily 

qualified assumptions (e.g., maximum and minimum shares of coal, natural gas, nuclear, 

renewables etc. in the generating mix). While inferior to a full production cost model approach 

and other methods of characterizing a true generation dispatch, the suggested limits analyses could 

be informative for planners and policy-makers, for instance, to determine the max and min 

projected CO2 emissions associated with a given level of ESS integration in a future deployment 

scenario, compared to a baseline condition. Its primary purpose would be to consider whether any 

unintended environmental consequences of ESS deployment are possible.    

  

3.2.3. Measures of Project Worth and Benefit-Cost Analysis 

After the maximum revenues are determined, a benefit-cost analysis is conducted and financial 

metrics such as net present value (NPV), rate of return, and payback period are determined. These 

quantities are defined as follows: 

                                                 
1 Notional dispatch is illustrative; real generation dispatch is more complicated than a simple layered stack, and 

involves decision variables that extend beyond marginal operating and maintenance costs.   
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- Net Present Value (NPV): It is the sum of all years’ discounted, after-tax, cash flows. The 

NPV method is a valuable indicator because it recognizes the time value of money. Projects 

whose returns show positive NPVs are attractive. For a discount rate (or in the case of 

NESET, EDR) r, it is calculated as: 

𝑁𝑃𝑉 = ∑
(𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑖 − 𝐶𝑜𝑠𝑡𝑖)

(1 + 𝑟)𝑖

𝑛

𝑖=0

 (9) 

 where n is the project life in years and i is the year index. 

- Internal Rate of Return (IRR): It is defined as the discount rate at which the after-tax 

NPV is zero. The calculated IRR is examined to determine if it exceeds a minimally 

acceptable return, often called the hurdle rate. The advantage of IRR is that, unlike NPV, 

its percentage results allow projects of vastly different sizes to be easily compared. 

- Payback Period: A payback calculation compares revenues with costs and determines the 

length of time required to recover the initial investment. The following formula is used:  

; ( ) 0Payback Period i NPV i   (10) 

3.3.Input Data 

3.3.1. Storage Costs 

The costs associated with any ESS project can be captured by using parameters that include: 

– Capital Cost: The capital needed to purchase energy storage assets and all of its other 

facilities such as converters, balance-of-plant, interconnection, and administrative costs. In 

the tool, it is formulated as: 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐹𝑖𝑥𝑒𝑑 + 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑃𝑜𝑤𝑒𝑟 × 𝑃𝑜𝑤𝑒𝑟 𝑅𝑎𝑡𝑖𝑛𝑔 + 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐸𝑛𝑒𝑟𝑔𝑦

× 𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑎𝑡𝑖𝑛𝑔 
(11) 

– Fixed Capital Cost: Includes all the capital costs that are fixed and do not grow with the 

energy and power ratings of energy storage. 

– Variable Capital Cost (Power): The coefficient ($/kW) at which the capital cost of 

storage grows with its power rating.  

– Variable Capital Cost (Energy): The coefficient ($/kWh) at which the capital cost of 

storage grows with its energy rating. 
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– Fixed Annual Operating Cost: A cost or expense incurred without regard to whether or 

how much a respective service, facility or equipment is used (i.e., unlike variable costs; 

fixed costs are incurred irrespective of how much the service, facility or equipment is used). 

This is also known as fixed O&M cost and it is shown in the financial results for every year 

throughout the project life.  

– Variable Operating Cost: Costs which change in proportion to the amount of energy 

generated or used. Variable costs may be associated with the cost for fuel, variable 

operating expenses, variable equipment and facility maintenance and depreciation from 

equipment wear. This number is multiplied by the actual energy output (determined by the 

tool as the optimal dispatch) and is shown in the financial results. 

– Replacement Cost: This cost incurs when the energy storage has to be replaced before the 

end of project life (the end of last operating year). 

– Disposal Cost: This cost incurs at the end of project life (the last operating year). 

– Expected Life: Also known as the project life, the number of years that the energy storage 

is expected to be operating. All financial calculations are done up to the last year in the 

expected life. 

All of these parameters depend of the ESS technology. Based on the requirements of each scenario, 

a proper ESS technology is selected. Further technological assumptions are documented in each 

scenario chapter. 

 

3.3.2. Storage Technical Parameters 

These parameters include: 

- Maximum charging and discharging power (kW) 

 

- Minimum and maximum energy levels (kWh) 

- Charging Efficiency: Charging the energy storage is a process that is not perfectly 

efficient. This means that not all of that energy is actually stored. This is because of 

conversion losses. The ratio of the energy that is stored in the energy storage over the 

energy that is drawn for charging shows the charging efficiency. For example, an energy 

storage with the charging efficiency of 90% needs 1kWh of energy to increase its energy 

level by 0.9kWh.    

- Discharging Efficiency: Discharging the energy storage is also not ideal. It means that not 

all of that energy is drawn from the energy storage is actually delivered externally. The 

ratio of the energy that is delivered externally over the energy that is drawn from energy 
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storage (and decreases the energy level). For example, an energy storage with the 

discharging efficiency of 90% delivers 0.9kwh of energy while its energy level is decreased 

by 1kWh.    

- Self-Discharge Efficiency: Storage discharge that occurs while energy storage is in an 

open-circuit condition. A self-discharge efficiency of 99% means that storage loses 1% of 

its total energy capacity at every time-step, regardless of its dispatch. 

All of these parameters depend of the ESS technology. Based on the requirements of each scenario, 

a proper ESS technology is selected. Further technological assumptions are documented in each 

scenario chapter. 

 

3.3.3. Load Profiles 

Based on the requirements of each scenario, proper load profiles are collected and simulated. For 

instance, in scenarios 1 and 2, where ESS is sited at the customer’s load, customer load profiles 

are used. Moreover, for scenario 3, where utility owns and operates the ESS, system aggregate 

load profiles are used. Further assumptions are documented in each chapter. 

 

3.3.4. Rates 

Based on the requirements of each scenario, proper rates are collected and simulated. For instance, 

in scenario 1, where ESS is sited at the customer’s load, utility rates are used. For scenario 3, where 

utility owns and operates the ESS, marginal costs of generation are used. Further assumptions are 

documented in each scenario chapter. 
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4. Scenario 1: Behind-the-Meter ESS Simulations 
 

The first of the three scenarios to be studied in this project is behind-the-meter (BTM) ESS where 

ESS is owned and operated by the end-use customer and therefore sited at the customer premises. 

This Scenario is identical to energy arbitrage and demand charge reduction in multi-service 

revenue stream analysis, but it is implemented using regional economic data, and the inclusion of 

CO2 as an output parameter of interest. The expected outputs of this Scenario are: 

vii. Benefits of energy arbitrage to the customer:  

a. Savings in energy charges 

b. Savings in demand charges 

viii. Costs of customer’s total investments 

ix. CO2 impacts 

x. Lost utility revenue 

xi. Load profiles after the energy arbitrage 

xii. Other system and social benefits 

 

In this section, the optimization problem is presented first, and the input data and respective 

assumptions are also provided. We note that the assumptions related to various input and data 

developed in Chapter 3 are utilized for this scenario. 

 

4.1.Optimization 

The objective function of the optimization problem for this scenario corresponds to minimizing 

the customer’s monthly electricity bill charge (plus the cost of CO2 emissions). This is presented 

mathematically as: 

            max

m 2

1 1 1
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, ,

minimize
dis

t t
chg

r

ene dem CO
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P Pt P  
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
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                  (12) 

Subject to  

- ESS technical constraints as in Equations (4) – (8), 

- Customers net load with ESS, 

                                                  

net load dis

t t t

chg

tP P P P  
                                            (13) 

- Demand requirement 

                                                                 
maxnet

tP P                                                           (14) 
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4.2.Input Data 

The required input data for this Scenario are: 

iii. Storage technology parameters:  

a. Technical parameters, 

b. Economic parameters 

iv. System parameters:  

a. Customer types, 

b. Load profiles,  

c. Prices and tariffs, 

d. Time of use CO2 intensity  

 

(Continued on page 26) 
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Table 2 summarizes the input data for scenario 1, data sources and assumptions. Each input data 

is discussed more in detail in the following subsections. 

 

Table 2 Summary of Input Data for Scenario 1, Data Sources and Assumptions 

Scenario 
Required Data Source of Data Assumption(s) 

Currently 

Available 

NESET 

Model 

1. Behind-the-meter (BTM)         

  Storage technology parameters (technical and economical)       

  
  

ESS size (power and capacity 

ratings) 
energystorageexchange.com  500kW, 2hr(1MW) Y S 

  

  

Battery efficiency, durability, 

fade, duty cycle, life 

constraints 

NESET Report and its 

references [26] 

80% usable capacity, 

95% charging 

efficiency, 95% 

discharging 

efficiency, no 

capacity fade effect 

Y S 

  
  

Battery and Balance of 

System (BOS) costs 

Lazard Report [15] 

energystorageexchange.com   
  S 

  
  

Operation & Maintenance 

(O&M) Costs 

NESET Report [26] 

  
  S 

  System parameters         

    Time of Use (TOU) rates, georgiapower.com General Service 

Tariffs for each 

customer type (3,4 

rates per each 

scenario) 

Y U 

    Demand charges, Y U 

  
  

Other fixed/variable tariff 

factors 
Y U 

  
  

Time of Use CO2 intensity 

[CO2fn(t)] 

EIA.gov 

IPCC Report: iccp.ch 
 

  U 

  
  

Customer load profiles 

(Residential) 

pecanstreet.org/dataport  No Georgia data, we 

take Texas 
Y S 

  
  

Customer load profiles 

(Commercial) 

openeia.org 

hourly, 1 year 
Y S 

  
  

Customer load profiles 

(Industrial) 

  

 

N S 

    Incentives/credits   
 

  S 

 

https://www.dropbox.com/s/y03g8jhy2c82pdj/DOE%20DB%20projects.csv?dl=0
https://www.dropbox.com/s/y03g8jhy2c82pdj/DOE%20DB%20projects.csv?dl=0
https://www.pecanstreet.org/dataport/
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Since this scenario is centered around end-use customers, most of the input data is determined 

based on the customer’s type. We identified two main customer’s types: 

- Residential and 

- Commercial and Industrial (C&I) 

Therefore, ESS technology, load profiles and rates are chosen for each of these customer types. 

4.2.1. Storage Technology Parameters 

- For residential customers, energy storage technology parameters are selected based on 

Tesla Powerwall2: 

o Technical parameters:7 kW maximum charging/discharging rates, 15 kWh total 

capacity, 13.5 kWh usable capacity (90% depth of discharge), and 90.25% 

roundtrip efficiency (= 95% charging efficiency  95% discharging efficiency).  

o Economic parameters: the cost of Powerwall is 6700 $/module. We use this number 

as the fixed capital cost and assume no fixed or variable O&M costs. 

- For C&I customers, energy storage technology parameters are selected based on the most 

common ESS parameters for BTM application available at Department of Energy, Energy 

Storage Database3: 

o Technical parameters: 500 kW maximum charging/discharging rates, 1000 kWh 

total capacity, 900 kWh usable capacity (90% depth of discharge), and 90.25% 

roundtrip efficiency (= 95% charging efficiency * 95% discharging efficiency).   

o Economic parameters: We assume that the total cost (sum of capital, O&M, 

disposal) is equal to 400 $/kWh as the incurred in the Capex year. 

4.2.2. System Parameters 

4.2.2.1 Customer types: 

We identified two main customer’s types: 

- Residential and 

- Commercial and Industrial (C&I) 

4.2.2.2 Load profiles: 

- For residential customer load profiles, we use the Pecan Street Database4, which contains 

high resolution (1-minute) load data for more than 1,300 residential customers. Although 

none of these customers are in the Southeast region, we chose the customers located in 

Austin, Texas due to climate similarity. The average load size (annual demand or maximum 

load in a year) of these customers is 9.5 kW, and their average monthly energy consumption 

is about 900 kWh. The distribution of customers’ load sizes and their average monthly 

consumption are plotted in Figures 3 and 4. The average daily load profile for summer and 

winter months, averaged on all customers and all summer (June through September) and 

                                                 
2 https://www.tesla.com/powerwall 
3 https://energystorageexchange.com 
4 https://pecanstreet.org/dataport/ 

https://www.tesla.com/powerwall
https://www.tesla.com/powerwall
https://www.tesla.com/powerwall
https://energystorageexchange.com/
https://www.pecanstreet.org/dataport/
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winter (October through May) days, are also plotted in Figure 5. 

 

Figure 3 Histogram of the residential load sizes

 

Figure 4 Histogram of averege monthly electricity consumption of residential loads 
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Figure 5 Average daily load profile of residential loads for summer and winter months 

- For C&I load profiles, we use a publicly available data source supported by DOE that can 

be accessed at: 

 https://openei.org/datasets/files/961/pub/COMMERCIAL_LOAD_DATA_E_PL

US_OUTPUT/USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3/ 

 

This database provides 1-year long hourly simulated load profiles for various locations and 

a set of commercial buildings, such as restaurants, offices, hospitals, etc. we have used the 

data simulated for Atlanta location to represent the Southeast region. A quick analysis of 

these data is plotted in Figures 6 and 7. Figure 6 shows the annual demand (load size in 

kW) and the average hourly consumption of each building type. It is seen that the dataset 

includes a diverse set of load profiles with a wide range of average and maximum 

consumptions and different load factors. Therefore, using this dataset is a realistic proxy 

for actual commercial loads and their variability. Figure 7 shows the average daily load 

profile for summer and winter months, averaged on all customers and all summer (June 

through September) and winter (October through May) days. Compared with average 

residential load profiles plotted in Figure 5, commercial load profiles show a different 

pattern and therefore, the optimal energy storage operation would be different in shifting 

the energy to off-peak hours as well as demand reduction. Thus, separating residential and 

commercial loads and performing separate energy storage analysis is imperative.  

https://openei.org/datasets/files/961/pub/COMMERCIAL_LOAD_DATA_E_PLUS_OUTPUT/USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3/
https://openei.org/datasets/files/961/pub/COMMERCIAL_LOAD_DATA_E_PLUS_OUTPUT/USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3/
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Figure 6 Maximum and average of C&I loads per each building type 

 

Figure 7 Average daily load profile of C&I loads for summer and winter months 
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4.2.3. Prices and Tariffs: 

Because the focus of this project is on the Southeast region, we chose the Georgia Power rates and 

tariffs for all of the simulation studies. A comprehensive excel spreadsheet document was prepared 

including all the Georgia Power rates and links to documents. Figure 8 shows customer types, 

subtypes and tariffs based on Georgia Power data that were used in simulation studies. 

 

 

Figure 8 Customer types, subtypes and tariffs based on Georgia Power data 

The energy-tiered tariffs are not considered for residential ESS simulation. In these tariffs, 

customers are charged based on their total net consumption. Because the impact of the ESS on the 

net consumption is negligible (ESS is an energy-neutral technology), ESS cannot reduce the 

energy charge of residential customers that are billed based on energy-tiered tariffs. Thus, only 

time-of-use (TOU) tariffs are provided for the residential ESS simulations. 

For residential customers, energy-tiered tariffs do not include demand charge. However, for C&I 

customers, the demand charge is included in the tariff and therefore ESS can provide bill savings 

by smoothing the net load profile and reducing the demand.   

For C&I customers, Georgia Power defines the subtypes as: 

 Small: monthly demand not greater than 30 kW 

 Medium: monthly demand greater than 30 kW and not greater than 500 kW 

 Large: monthly demand greater than 500 kW 
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Small C&I customers are not included in ESS simulations since it is less likely to see large-scale 

deployment of ESS for those customers compared to medium and large C&I customers. 

Medium and large C&I customers are provided with a few tariff options. However, in this project 

only the two most common tariffs for each of them are used. One is energy-tiered with demand 

charge (Power and Light) and the other is TOU.  

Analyzing the TOU tariffs shown in Figure 8, showed that regardless of the customer type or 

subtype, the breakdown of the customer’s monthly bill charge based on Georgia Power rates is as 

follows: 

• Monthly Bill Charge = Base Rate + Other Schedules + Municipal Franchise Fee + Sales 

Taxes 

• Base Rate = Basic Service Charge + Energy Charge + Demand Charge 

• Basic Service Charge = Fixed 

• Energy Charge = Energy*rate where rate[c/kWh] depends on time of use 

and customer type 

• Demand Charge = Demand*rate where rate[$/kW] depends on time of use 

and customer type 

• Other Schedules = ECCR + NCCR + DSM + FCR 

• ECCR = 12.768% of the Base Rate 

• NCCR = 9.7357% of the Base Rate 

• DSM = 2.4471% of the Base Rate 

• FCR = Energy*rate where rate[c/kWh] depends on month and customer 

type 

• Municipal Franchise Fee = 2.9989% (Inside City Limits) or 1.1525% (Outside City 

Limits) of sum of all above 

• Sales Taxes = e.g. 6% of sum of all above 

 

4.3.Simulation Results 

Simulation results for residential and C&I customers are presented in the following subsections. 

4.3.1. Residential 

Using the optimization problem, residential load profiles and TOU tariff rates, the customers’ 

energy and demand savings and the ESS optimal operation are determined in 6 test cases including 

3 TOU tariff rates below: 

• Nights & Weekends: Energy only, On-Peak (20c/kWh) and Off-Peak (5c/kWh) 

• Plug-In Electric Vehicle: Energy only, On-Peak (20c/kWh), Off-Peak (7c/kWh) and Super 

Off-Peak (1c/kWh) 

• Smart Usage: Energy and Demand, On-Peak (10c/kWh), Off-Peak (1c/kWh), Maximum 

kW (6.64 $/kW)  
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Also, two cases per each rate is assumed where customer can or cannot sell to the grid (s=1 or 

s=1). The sell price is the same as buy price (tariff rate). For each test case, the summary of results 

for the benefit-cost analysis is presented in Table 3. These economic results can help customers 

and the utility for decision making about BTM ESS installations. Plug-In Electric Vehicle and 

Smart Usage rates show more promising results in terms of revenue and payback period. 

 

Table 3 Results Summary for BTM Residential ESS 

Test  

Case # 

Rate Annual Cust Savings ($) Payback Period (years) 

Median Maximum Medium Minimum 

1 Nights & Weekends (s=0) 248 277 27.0 24.2 

2 Nights & Weekends (s=1) 277 277 24.2 24.2 

3 Plug-In Electric Vehicle (s=0) 600 643 11.2 10.4 

4 Plug-In Electric Vehicle (s=1) 643 643 10.4 10.4 

5 Smart Usage (s=0) 289 635 23.2 10.5 

6 Smart Usage (s=1) 305 688 21.9 9.7 

 

It should be noted that most customers would generally not consider a payback period of greater 

than 10 years economically viable. This is in part because estimates of the lifespan of current ESS 

systems (based on today’s lithium ion batteries), while dependent upon utilization, are frequently 

in the 10-year range.  

The optimal ESS dispatch in each test case is averaged over all the available customers and plotted 

as in Figure 9. Positive values correspond to discharging while negative values correspond to 

charging. Since the Nights & Weekends tariff is flat for winter months, there is no arbitrage value 

and therefore the ESS does not operate in these months. ESS discharges in peak hours, which are 

2-7 pm of summer months. The difference between case 1 (s=0) and 2 (s=1) is that since customer 

can sell its excess power back to the grid, the discharging power of ESS is greater in case 2 than 

in case 1. 

Since the Plug-In Electric Vehicle tariff has super-off-peak rates at nights, we expect more 

charging activities from the ESS during night hours as seen in Figures 9(3) and 9(4). The peak 

hours are also evident from these plots where ESS discharges at higher rates. 

Although the Smart Usage tariff has a flat rate for energy for winter months, ESS dispatch is 

nonzero. This is because of the demand charge reduction operation. The ESS operation for winter 

months is fairly similar to the average winter load of customers shown in Figure 5. For summer 
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months, however, both energy and demand charge reduction control the ESS operation. As in 

Figures 9(5) and 9(6), during the peak hours of summer months, ESS discharges at higher rates. 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

 

Figure 9 Average Optimal ESS Dispatch for 6 Test Cases of the Residential BTM Scenario 

These ESS operation results are helpful for utilities to analyze the impact of large-scale BTM ESS 

deployment. Using the developed optimization algorithm, they can understand how ESS customers 
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will respond to each tariff signals and impact the net load of the system as well as the emissions 

and other system parameters. 

 

4.3.2. Commercial and Industrial Customers 

For this optimization problem, C&I load profiles and Georgia Power tariff rates, the customers’ 

energy and demand savings and the ESS optimal operation are determined for six test cases 

including the four tariff rates below: 

• Power and Light – Medium:  

• Energy charge: First 3,000 kWh at 11.2561¢ per kWh, Next 7,000 kWh at 10.3091¢ 

per kWh, Next 190,000 kWh at 8.8885¢ per kWh, Over 200,000 kWh at 6.8955¢ 

per kWh  

• Demand charge: 8.24 $/kW in excess of 30 kW. 

• TOU – General Service Demand:  

• Energy charge: On-Peak kWh at 12.2372¢ per kWh, Shoulder kWh at 6.2514¢ per 

kWh, Off-Peak kWh at 2.3541¢ per kWh  

• Demand charge: On-Peak kW at 15.66 per kW, Economy kW at 5.23 per kW, 

Maximum kW at 5.23 per kW  

• Power and Light – Large:  

• Energy charge: First 3,000 kWh at 13.2655¢ per kWh, Next 7,000 kWh at 12.0303¢ 

per kWh, Next 190,000 kWh at 10.2607¢ per kWh, Over 200,000 kWh at 7.9109¢ 

per kWh  

• Demand charge: 9.53 $/kW. 

• TOU – High Load Factor:  

• Energy charge: On-Peak Rate at 12.9222¢ per kWh, Off-Peak Rate at 3.4249¢ per 

kWh 

• No demand charge. 

 

For TOU tariffs, two cases per each rate were considered: a) The customer can sell to the grid, and 

b) the customer cannot sell to the grid. The sell price is the same as the buy price if applicable 

based on the tariff rate structure. However, since power and light tariffs are energy-tiered and they 

do not specify a price, the ability of the customer to sell or to not sell does not apply to these tariffs. 

 

For each test case, the ESS annual revenues for each building were calculated by solving the 

optimization problem. The summary of results for the benefit-cost analysis is presented in Table 

4. These economic results can help customers and the utility for decision making about BTM ESS 

installations. All the rates, other than TOU – Large, show promising results in terms of revenue 

and payback period. TOU – Large does not provide enough revenues since the energy time-shift 
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is limited to only about 22% of the days in a year. Also, there is no demand charge included in this 

tariff. Demand reduction usually provide a great portion of the total revenue. 

 

Table 4 Results Summary for BTM C&I ESS 

Test 

Case 

# 

Rate Customer 

Can Sell? 

Mean of Annual 

Customer’s 

Savings (k$) 

Maximum 

of Annual 

Customer’s 

Savings (k$) 

Median of 

Payback 

Periods 

(Years) 

Minimum 

Payback 

Period 

(Years) 

7 Power & Light - 

Medium 

N/A 23.6 61.1 14.2 9.7 

8 TOU - Medium NO 39.8 79.3 16.0 6.7 

9 TOU - Medium YES 40.9 79.3 15.8 6.7 

10 Power & Light - 

Large 

N/A 27.4 70.9 25.8 7.8 

11 TOU - Large NO 7.3 9.0 Very High Very High 

12 TOU - Large YES 9.0 9.0 Very High Very High 

 

 

The payback period for each test case (TC) of each building is provided in Table 5. All the numbers 

are in years. It is assumed that the ESS used for all these buildings are identical (500kW, 2hr) and 

the capital cost is $400,000 incurred at the Capex year. Discount rate is assumed to be 8%.  

 

Note that these customers are grouped to Medium (M) and Large (L) customers based on Georgia 

Power definition. Also, since TC 7, 8, and 9 are applicable to Medium customers and TC 10, 11, 

and 12 are applicable to Large customers, the ESS revenues for the other group (not applicable by 

that rate) are reported (for the sake of completeness) in orange color. Results show promising 

payback periods for ESS deployed at large hotels, schools and large offices that are exposed to 

“Power and Light – Large” tariff. 

 

The optimal ESS dispatch in each test case is averaged over all the available customers and plotted 

as in Figure 10. Positive values correspond to discharging while negative values correspond to 

charging.  
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Table 5 ESS Payback Periods (in years) for each C&I building 

Building Size Sc 7 Sc 8 Sc 9 Sc 10 Sc 11 Sc 12 

Strip Mall M 18.3 10.9 10.7 15.8 51.3 44.7 

Stand-alone Retail M 18.7 10.8 10.7 16.1 47.3 44.7 

Medium Office M 21.8 10.4 10.2 18.8 50.1 44.7 

Warehouse M 26.9 13.7 12.5 23.2 102.6 44.7 

Outpatient M 28.9 10.9 10.9 24.9 44.7 44.7 

Full-Service Restaurant M 34.1 12.1 12.1 29.3 44.7 44.7 

Small Hotel M 42.5 14.8 14.1 36.5 59.2 44.7 

Midrise Apartment M 47.4 15.9 15.1 40.8 61.8 44.7 

Quick-Service 

Restaurant 

M 55.7 22.7 19.5 47.9 92.9 44.7 

Small Office M 238.4 60.0 31.8 117.1 338.1 44.7 

Large Hotel L 6.5 5.0 5.0 5.6 44.7 44.7 

Secondary School L 8.0 7.0 7.0 6.9 44.7 44.7 

Primary School L 9.7 7.9 7.8 8.4 51.0 44.7 

Large Office L 10.5 6.1 6.1 9.1 44.7 44.7 

Super Market L 13.1 9.4 9.2 11.3 48.7 44.7 

Hospital L 14.9 7.5 7.5 12.8 44.7 44.7 

 

Although the Power and Light tariffs (both Medium and Large) are energy tiered and not suitable 

for energy time-shift, the ESS dispatch is nonzero as seen in Figure 10(7) and 10(10). This is 

because of the demand charge reduction operation. The ESS operation is fairly similar to the 

average load of customers shown in Figure 7.  

The TOU – Medium tariff provides opportunities for both energy time shift and demand charge 

reduction services in summer months and demand charge reduction in winter months. The high 

discharging rate at peak hours illustrated in Figure 10(8) and 10(9) shows the energy time-shift 

operation. 

Since the TOU – Large tariff is flat for winter month and the demand charge is zero, there is no 

energy time-shift or demand charge reduction value and therefore ESS does not operate in these 

months. However, ESS discharges in peak hours, which are 2-7 pm of summer months. For those 

test cases where the customer can sell its excess power back to the grid, the discharging power of 

ESS is greater than that of the case where the customer cannot sell back to the grid. 
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Figure 10 Average Optimal ESS Dispatch for 6 Test Cases of the C&I BTM Scenario 

 

  



Assessment of Grid-Scale Energy Storage Scenarios for the Southeast 

39 

4.4. Scenario Conclusion 
Simulation results provided in this chapter show that under the current GP tariff rates, C&I 

customers who are exposed to demand charges can benefit from BTM ESS investment. The 

significant cost savings result in payback periods of as low as 5 years for these customers. 

Residential customers exposed to demand charges can also benefit from BTM ESS where the 

payback periods are around 10 year. Although residential ESS is not as profitable as C&I, with the 

decreasing capital costs of ESS, it is expected that residential ESS become more profitable. In 

terms of system impacts, high penetration of BTM ESS can have significant impact on the system 

net load. Tariff rates with demand charges result in smoother net load profiles that are more 

desirable from the system operator’s perspective. 
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5. Scenario 2: Customer-Sited and Jointly Operated ESS 

Simulations 
 

5.1. Introduction and Objective 

The second of the three scenarios studied in this project considers an ESS sited at the end-use 

customer premises (BTM), with the potential to be jointly operated by the customer and the utility. 

The motivation for considering this scenario is to better understand how the two factors of 

ownership and control authority can be approached when multiple parties are involved. Therefore, 

the objective of this Section is to develop a joint operation strategy for BTM ESS that provides 

value to both customers (energy users and energy storage owners) and the utility. Specifically, we 

answer how BTM ESS can be operated so that the customers and the utility will benefit from the 

ESS or more generally, we consider how the costs and benefits might be shared between the two 

parties, such that both parties are motivated to cooperate.  

 

5.2. Methodology Overview 

Optimization models are developed to analyze the ESS operation strategies and operators’ 

(customers’ and the utility’s) objective functions. The customer’s objective is to minimize their 

electricity bill, while the utility seeks to maximize its net profit. The customer’s objective function 

is expressed as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑃𝑡

𝑒𝑠𝑠,𝑐ℎ𝑔
,𝑃𝑡

𝑒𝑠𝑠,𝑑𝑖𝑠
∑𝜋𝑡

𝑒𝑛𝑒(𝑃𝑡,𝑛
𝑙𝑜𝑎𝑑 + 𝑃𝑡,𝑛

𝑒𝑠𝑠,𝑐ℎ𝑔
− 𝑃𝑡,𝑛

𝑒𝑠𝑠,𝑑𝑖𝑠)Δ𝑡

𝑇

𝑡=1

+ ∑𝜋𝑟
𝑑𝑒𝑚𝑃𝑟

𝑚𝑎𝑥

𝑅

𝑟=1

 (15) 

where the decision variables 𝑃𝑡
𝑒𝑠𝑠,𝑐ℎ𝑔

 and 𝑃𝑡
𝑒𝑠𝑠,𝑑𝑖𝑠

 denote the energy storage charge and discharge 

powers at time step t. 

The utility’s objective function includes the sum of customers’ bill payments minus the costs of 

operating utility’s generation and wholesale transactions. This is expressed as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑃𝑡

𝑤ℎ,𝑃𝑡
𝑔
(,𝑃𝑡,𝑛

𝑒𝑠𝑠,𝑐ℎ𝑔
,𝑃𝑡,𝑛

𝑒𝑠𝑠,𝑑𝑖𝑠)
∑ [∑𝜋𝑡

𝑒𝑛𝑒(𝑃𝑡,𝑛
𝑙𝑜𝑎𝑑 + 𝑃𝑡,𝑛

𝑒𝑠𝑠,𝑐ℎ𝑔
− 𝑃𝑡,𝑛

𝑒𝑠𝑠,𝑑𝑖𝑠)Δ𝑡

𝑇

𝑡=1

+ ∑𝜋𝑟
𝑑𝑒𝑚𝑃𝑟,𝑛

𝑚𝑎𝑥

𝑅

𝑟=1

]

𝑁

𝑛=1

 

− ∑ ∑𝜋𝑡,𝑏
𝑔

𝑃𝑡,𝑏
𝑔

Δ𝑡

𝑇

𝑡=1

𝐵

𝑏=1

− ∑𝜋𝑡
𝑤ℎ𝑃𝑡

𝑤ℎΔ𝑡

𝑇

𝑡=1

 

(16) 

where 𝑃𝑡
𝑤ℎ is the power purchased by the utility at the wholesale level and 𝑃𝑡,𝑏

𝑔
 is the power 

generated by utility’s generation. Index b shows the blocks of energy generated at different 

marginal costs. Index n denotes the number of customers served by the utility. Also, 𝑃𝑡
𝑤ℎ +

∑ 𝑃𝑡,𝑏
𝑔𝐵

𝑏=1 = ∑ 𝑃𝑡,𝑛
𝑙𝑜𝑎𝑑 + 𝑃𝑡,𝑛

𝑒𝑠𝑠,𝑐ℎ𝑔
− 𝑃𝑡,𝑛

𝑒𝑠𝑠,𝑑𝑖𝑠𝑁
𝑛=1  shows that the total customers’ net load is met from 
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the utility’s generation as well as the wholesale market. Note that in this formulation, the 

customers’ ESS charging and discharging powers (𝑃𝑡,𝑛
𝑒𝑠𝑠,𝑐ℎ𝑔

, 𝑃𝑡,𝑛
𝑒𝑠𝑠,𝑑𝑖𝑠

) are or are not the utility’s 

decision variables depending on the assumption of joint-operation where the utility has or does not 

have direct control over BTM ESS. 

In Scenario 1, BTM ESS is operated exclusively to minimize the customers’ bill using Eq. (15). 

This strategy impacts the utility’s profit in two ways: First, the total energy sales will decrease 

since the ESS customers’ bills are minimized as in Eq. (15). Second, the change in the time-of-use 

of the system’s net load caused by the ESS may change the cost of the utility’s local energy 

generation as well as wholesale purchases. In this scenario, Eq. (16) can be used with the 

customers’ ESS charging and discharging powers (𝑃𝑡,𝑛
𝑒𝑠𝑠,𝑐ℎ𝑔

, 𝑃𝑡,𝑛
𝑒𝑠𝑠,𝑑𝑖𝑠

) as parameters (and not 

decision variables) to quantify the utility’s profit.   

In this Section, as an initial baseline, we first analyze the impact of customer-owned and operated 

BTM ESS (in Scenario 1 where ESS is operated to minimize customer’s electricity bill) on the 

utility’s revenue in Subsection 4.1. and show that this strategy results in a net loss for the utility. 

Next, we propose two independent optimization-based approaches for the joint operation of BTM 

ESS. The two approaches are defined as parts of Scenario 2: 

 Scenario 2A: “Passing-through” wholesale prices for BTM ESS: the utility sends the 

wholesale energy prices to BTM ESS customers. ESS customers are billed based on their 

load profile and the applicable tariff rates (no change compared to the case with no ESS) 

but they can benefit from the energy arbitrage at the wholesale level prices. Therefore, the 

utility’s net profit will not be impacted. Note that a regulated utility may or may not elect 

to use this approach and may or may not be able (technically or according to regulations) 

to do this. However, we are making this assumption to baseline the analytical approaches. 

 Scenario 2B: “Renting” BTM ESS: utility rents the capacity of BTM ESS and operates it 

to minimize the costs of the utility’s generation and wholesale transactions. ESS customers 

are paid based on the maximum revenue that they could have obtained if they had operated 

their ESS.  

These approaches are described and analyzed separately and provide simulation results. We are 

considering either one approach or the other. While it might be interesting to consider some hybrid 

approach, it is considered beyond the scope of this analysis. 

 

5.3. Input Data and Assumptions 

The required input data for this Scenario are: 

v. Storage technology parameters:  

a. Technical parameters, 

b. Economic parameters 

vi. System parameters:  
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a. Customer types, 

b. Load profiles,  

c. Price Signals, 

These are almost identical to Scenario 1 input data except for Price Signals that will be discussed 

more in detail. 

5.3.1. Storage technology parameters 

- For residential customers, energy storage technology parameters are selected based on 

Tesla Powerwall5: 

o Technical parameters: 7 kW maximum charging/discharging rates, 15 kWh total 

capacity, 13.5 kWh usable capacity (90% depth of discharge), and 90.25% 

roundtrip efficiency (= 95% charging efficiency  95% discharging efficiency).  

o Economic parameters: We utilize the same cost parameters that were used for 

Scenario 1. The cost of Powerwall is $6700/module. We use this number as the 

fixed capital cost and assume no fixed or variable O&M costs. 

- For C&I customers, energy storage technology parameters are selected based on an 

extensive literature review of research paper as well as real-world BTM ESS projects 

available at Department of Energy, Energy Storage Database6. Typical parameter values 

for this case are selected as: 

o Technical parameters: power rating (=max charging and discharging rates) of 20% 

yearly peak load, capacity of 2 hours at the maximum power rating, with 90% 

usable capacity (90% depth of discharge), and 90.25% roundtrip efficiency (= 95% 

charging efficiency * 95% discharging efficiency).   

o Economic parameters: We utilize the same cost parameters that were used for 

Scenario 1. We assume that the total capital cost is equal to $400/kWh as the 

incurred in the Capex year. The capital cost includes the Li-ion Battery cells and 

packing cost ($200/kWh) as well as balance-of-system (BOS) cost ($200/kWh). 

The values of these cost parameters are selected based on estimates of Bloomberg 

New Energy Finance7 and NREL Report8, respectively. We assume that the O&M 

cost is captured in the BOS cost parameter.  

In both residential and C&I cases, we assume that there is no salvage/residual value after the 

storage end-of-life. This is a conservative estimate since the literature discusses end of life value 

for ESS. Also, the life cycle of the above batteries is understood and considered in this study.  

 

                                                 
5 https://www.tesla.com/powerwall 
6 https://energystorageexchange.com 
7 Bloomberg New Energy Finance: Sustainable Energy in America Factbook, 2019 
8 2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Costs, National Renewable Energy Lab, 

Technical Report NREL/TP-6A20-71714 Nov 2018 

https://www.tesla.com/powerwall
https://www.tesla.com/powerwall
https://www.tesla.com/powerwall
https://energystorageexchange.com/
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5.3.2. System parameters 

5.3.2.1. Customer types: 

We identified two main customer’s types: 

- Residential and 

- Commercial and Industrial (C&I) 

5.3.2.2. Load profiles: 

Similar to Scenario 1, the load profiles from the Pecan Street Database were used for residential 

cases. Also, the load profiles from the DOE building load database were used for C&I cases. For 

more information about the load profiles please refer to Scenario 1 section on load data. 

5.3.2.3. Prices: 

We have used wholesale electricity market energy prices as well as System Lambda of the 

Southern Company. The various price data are used to compare the impact different energy prices 

have on ESS outputs and potential customer revenues and payback periods. Hourly prices from 

2018 are collected from ISO websites and other publicly available sources. The price signals of 

the following ISO/locations are used for comparison: 

 Midwest Independent Transmission System Operator (MISO) Arkansas Hub  

 New York ISO 

o Reference bus 

o Gowanus, Brooklyn, NY 

 Pennsylvania New Jersey Maryland Interconnection (PJM) Aggregate node 

 ISO New England  

 California ISO, city of San Jose 

 Electric Reliability Council of Texas (ERCOT)  
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Figure 11 shows the hourly energy prices from the above markets as well the Southern Company’s 

System Lambda during month of January 2018.  

 

Figure 11 Hourly day-ahead energy prices from the selected markets in January 2018 

5.4. Impacts of BTM ESS operated to minimize customer’s bill on the utility’s 

revenue 

This subsection provides numerical results for the impacts of BTM ESS operated to minimize 

customer’s bill on the utility’s revenue based on results from Scenario 1 and the state/regional 

generation and market data collected for Scenario 2. In Scenario 1, the BTM ESS is operated just 

to minimize the customers’ bill. This strategy impacts the utility’s profit in two ways:  

 First, the total energy sales will decrease since the ESS customers’ bills are minimized as 

in (1).  

 Second, the change in the time-of-use of the system’s net load by ESS may change the cost 

of utility’s local energy generation as well as wholesale purchases.   

For each of the residential and C&I rates used in simulating Scenario 1, the financial results (annual 

customers’ revenues) and the optimal dispatch results (hourly output power of ESS) are normalized 

based on the kW power rating of the ESS. This parameter was chosen as 7kW (Tesla PowerWall 

rating) for all residential customers and assumed to be 20% of the maximum annual load9 for each 

                                                 
9 I.  Alsaidan, W. Gao, A. Khodaei, “Battery energy storage sizing for commercial customers,” in IEEE Power & 

Energy Society General Meeting, Chicago, IL, USA, July 2017. 
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of the C&I customers. These results are then averaged among all the customers of the same type 

to calculate how much the utility’s net revenue will be impacted on average by a 1kW BTM ESS 

(having a capacity of 2.1h for residential, and 2h for C&I). The following parameters are then 

calculated from the utility’s perspective: 

1) Annual net change in total energy sales: which is equal to the average normalized annual 

revenues of the customers. 

2) Annual net change in costs of local generation: This parameter is calculated assuming all 

the ESS charge and discharge energy is provided by the local generation. The average 

normalized dispatch of ESS is multiplied by the simulated prices from Georgia generation 

data. 

3) Annual net change in costs of wholesale energy market transactions: This parameter is 

calculated assuming all the ESS charge and discharge energy is provided by the utility from 

participating in the wholesale energy market. The average normalized dispatch of ESS is 

multiplied by the wholesale day-ahead energy market prices. 

Table 6 presents the results of the BTM ESS impact analysis. Rates are denoted with the following 

convention. The numbers after the letter “R” define the tariff rate’s code based on Georgia Power 

tariffs. CS1 determines if the customer “can sell” back to the grid (at the same purchase price) 

while CS0 does not allow a reverse power flow from the customer to the grid. The changes in the 

cost of wholesale markets are reported only for two representative markets for brevity and for their 

proximity to the state of Georgia. The total change in the utility’s objective function (“Delta 

Utility’s Revenue column”) compared to the case without energy storage is reported as a range in 

Table 6. This total change is the sum of changes in the energy sales (the “Delta Energy Sales” 

column) and one of the alternative generation options, either local generation (“Delta Local 

Generation Cost” column) or either of the wholesale markets (“Delta Cost PJM/MISO Market” 

column). In this scenario (Scenario 1), the total change in the utility’s revenue is always a negative 

number under all the tariff rates showing that the utility’s revenue will always decrease with 

increasing BTM ESS operated by the customers. Note that the numbers are calculated based on a 

1kW BTM ESS and they have a linear relationship with the kW power.  
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Table 6 Utility’s Change of Revenue in the Case of Customer-owned and Operated ESS 

Rate Delta Energy 

Sales ($) 

Delta Local 

Generation 

Cost ($) 

Delta Cost 

PJM Market 

($) 

Delta Cost 

MISO Market 

($) 

Delta 

Utility’s 

Revenue ($) 

R220CS0 -19.5 -0.6 2.2 1.9 [-21.1, -17.3] 

R220CS1 -23.4 -0.7 2.6 2.2 [-24.1, -20.8] 

R230CS0 -49.1 -1.9 7.0 5.7 [-51, -42.1] 

R230CS1 -55.2 -2.1 7.6 6.2 [-57.3, -47.6] 

R240CS0 -44.9 -1.2 2.9 2.4 [-46.1, -42] 

R240CS1 -47.9 -1.3 3.4 2.9 [-49.2, -44.5] 

R400CS0 -80.3 -0.5 1.6 1.0 [-80.8, -78.7] 

R410CS0 -117.3 -0.8 4.0 3.0 [-118.1, -

113.3] 

R410CS1 -117.4 -0.9 4.0 3.0 [-118.3, -

113.4] 

R500CS0 -93.4 -0.5 1.6 0.9 [-93.9, -91.8] 

R520CS0 -17.8 -0.5 3.2 2.6 [-18.3, -14.6] 

R520CS1 -17.9 -0.5 3.2 2.5 [-18.4, -14.7] 

 

The significance of this analysis is underlined in the following example. Currently, Georgia Power 

serves more than 2.2M residential and 0.3M commercial customers10. Assume 1% residential and 

commercial customers have installed BTM ESS. The total kW of BTM ESS would be: 

2,200,000 ∗ 0.01 ∗ 7𝑘𝑊 +  300,000 ∗ 0.01 ∗ 325𝑘𝑊 =  1,129,000𝑘𝑊  

where 7kW and 325kW are average kW ratings for residential and commercial BTM ESSs. Using 

the results from Table 4, Georgia Power will lose a significant revenue of M$20 to M$123 in 

annual revenues. Therefore, although BTM ESS can provide reasonable savings for the customers, 

it will decrease the utility’s revenues drastically. Thus, other operation strategies for BTM ESS 

should be explored so that both customers and utilities may benefit from BTM ESS under multi-

party control strategies. 

 

                                                 
10 https://www.georgiapower.com/company/about-us/facts-and-financials.html 

https://www.georgiapower.com/company/about-us/facts-and-financials.html
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5.5. Joint Operation Strategy A (Scenario 2A): “Passing-through” wholesale 

prices for BTM ESS 

In this case, the utility “passes-through” the wholesale energy prices to BTM ESS customers. It is 

assumed that such customers are billed based on their load profile and the applicable tariff rates 

(no change compared to the case with no ESS) but they can benefit from the energy arbitrage at 

the wholesale prices. Therefore, the utility’s net profit will not be impacted. A regulated utility 

may or may not elect this approach and may or may not be able to do this. However, we are making 

this assumption to baseline the analytical approaches. Also, note that from the market services that 

can be provided by ESS, only energy arbitrage is modeled since we assume that those services 

require costly infrastructure that are not available at the current state of the distribution grid as well 

as electricity markets. 

5.5.1. Optimization 

The objective function of the optimization problem for this scenario corresponds to minimizing 

the customer’s monthly electricity bill charge. Unlike, scenario 1, there is no demand charge. The 

objective function is presented mathematically as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑃𝑡

𝑒𝑠𝑠,𝑐ℎ𝑔
,𝑃𝑡

𝑒𝑠𝑠,𝑑𝑖𝑠
∑𝜋𝑡

𝑒𝑛𝑒 (𝑃𝑡
𝑙𝑜𝑎𝑑 + 𝑃𝑡

𝑒𝑠𝑠,𝑐ℎ𝑔 − 𝑃𝑡
𝑒𝑠𝑠,𝑑𝑖𝑠

)Δ𝑡

𝑇

𝑡=1

 (17) 

Subject to  

- ESS technical constraints as in Equations (4) – (8), 

max0 .dis dis dis

t tP P u      ;    max0 .chg chg chg

t tP P u   t T  (18) 

0 1dis chg

t tu u   t T  (19) 

 1 /chg

t s t chg t t dis

disE E P P t       t T  (20) 

min maxtE E E   t T  (21) 

0TE E  t T  (22) 

- If the customer cannot sell net energy back to the grid then the following constraints is 

enabled, 

𝑃𝑡
𝑙𝑜𝑎𝑑 + 𝑃𝑡

𝑐ℎ𝑔
− 𝑃𝑡

𝑑𝑖𝑠 ≥ 0 (23) 

5.5.2. Simulation Results 

The seven regional prices are used to simulate arbitrage results. Also, results from three Georgia 

Power Residential rates are provided for comparison. Simulation results for the residential and 

C&I customers using variable price signals are presented in the following subsections. 
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5.5.2.1. Residential 

Using the optimization problem formulation, residential load profiles, and the seven different price 

signals from the ISOs, the optimal ESS operation is determined for 14 test cases (a customer can 

sell and cannot sell for each of the seven price signals) and compared with the results from the six 

test cases using Georgia Power Tariffs from Scenario 1. When using a variable price signals the 

only source of revenue is energy arbitrage (EA) since no other incentives are included. For each 

test case, the summary of results for the benefit-cost analysis is presented in Table 7. These 

economic results can help customers and the utility make decisions about the economic impact 

that results from the installation of ESS.  

Just as in Scenario 1, when it is assumed that the customer can sell energy back to the grid at an 

identical price as the current buying price, the revenue becomes independent of the load profile 

and converges to a single value. However, when switching from the “can sell” case to “cannot 

sell”, the payback period for Scenario 2A increases in the range of 60% to 90%, which is 

significantly higher than the 10%-20% seen in Scenario 1. This is because the optimal time 

window for discharging with price signals occurs at an hourly level, and if the customer does not 

have a large load to offset, a significant portion of the revenue is lost in comparison with the tariff 

rates with much larger windows of peak price. This demonstrates that when operating on a variable 

price signal the ESS needs to be able to sell energy back to the grid to remain competitive with an 

ESS operating under a tariff.  

While none of the payback periods for the ISO price signals compete with the Plug-In Electric 

Vehicle Rate, both the ERCOT and CAISO price signals demonstrate that when customers can 

sell energy back to the grid, price signals can result in payback periods that are competitive with 

the Smart Usage and Nights & Weekends Rates.   

Table 7 Residential Payback Period 

 

ERCOT 

(HB_BUSAVG) 

CAISO 

(SNJOSEB_1_N001) 

NYISO 

(GOWANUS_GT1_1) 
ISONE CA PJM Aggregate 

 

CS0 CS1 CS0 CS1 CS0 CS1 CS0 CS1 CS0 CS1 

mean  35.3 18.5 36.6 21.2 49.5 29.1 73.4 40.8 72.2 43.0 

median  34.9 18.5 36.1 21.2 48.7 29.1 72.7 40.8 70.7 43.0 

           

 

NYISO 
MISO (Arkansas 

Hub) 
Georgia Power Tariff 

 

CS0 CS1 CS0 CS1 R220CS0 R220CS1 R230CS0 R230CS1 R240CS0 R240CS1 

mean 81.3 49.1 103.7 61.1 29.0 24.2 11.7 10.4 21.3 20.0 

median 80.0 49.1 101.2 61.1 27.0 24.2 11.2 10.4 23.2 21.9 
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The average optimal ESS dispatch for the CAISO (1-2), MISO (3-4) and Georgia Power Plug-In 

Electric Vehicle rates R230 (5-6) are plotted in Figure 12, with positive values corresponding to 

discharging and negative values corresponding to charging. The average of all 1379 customer 

discharge rates was taken.  

 

Cannot Sell     Can Sell 

 

Figure 12 Residential ESS Dispatch for CAISO (1,2), MISO (3,4), and GA Power (5,6) 

The optimal ESS operation with wholesale market price signals is more variable than that with 

utility tariff rates. In the case of wholesale prices, higher charging and discharging values occur 

over smaller windows as the system tries to capitalize on the individual hours with peak and 

minimum prices instead of the multi-hour windows seen in the Georgia Power Rates. In other 
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words, wholesale market prices vary hourly and can create arbitrage opportunities during shorter 

periods, e.g. all ESS would discharge during the one hour with maximum price. While utility tariff 

rates are usually flat for several hours of the day, e.g. peak hours and off-peak hours, and ESS can 

charge or discharge during longer periods of time. When the operator can sell to the grid, both the 

max discharge and charge are dependent on the battery parameters, however when the operator 

cannot sell the max discharge is limited by the customers load profile instead, which is seen when 

comparing cases 1 and 3 with cases 2 and 4.  

These results demonstrate that the profitability of an ESS under this scenario is dependent on the 

specific price signals and rate used. In addition, the optimal operation of an ESS under a variable 

price signal as in wholesale prices generally involves higher rates of discharge and charging and 

is much more dependent on being able to sell energy back to the grid than existing Georgia tariffs. 

5.5.2.2. C&I 

For the C&I case, the same seven variable price signals are used as in the residential case. For each 

price signal, two cases are again considered, where the customer can sell back to the grid and 

where the customer cannot sell back to the grid. The payback period for the 15 building types are 

seen below in Table 8.  

Similar to the residential test cases, when the customer can sell back to the grid the payback period 

converges to a single value for all cases. Unlike the residential case, for the C&I case the payback 

period only increases between 0%-25% in most cases when switching from can sell to cannot sell. 

This occurs because the peak load of each user type is used to size the battery, and, since the battery 

can discharge in 2 hours, not much revenue is lost when operating with smaller optimal pricing 

windows. This makes the C&I test cases much less dependent on the ability to sell energy to 

the grid than the residential cases. This ability is denoted by CS1 and the inability is denoted by 

CS0 in Table 8. As seen in Table 8, the ERCOT and CAISO price signals results in favorable 

payback periods for most users, while the other price signals generally result in payback periods 

in excess of 25 years.  

Table 8  C&I Pay Back Periods Average and Standard Deviations 

Price Data 

Location 

ERCOT 

(HB_BUS 

AVG) 

CAISO 

(SANJOSE)  

NYISO 

(GOWANUS)  

ISONE 

CA 

PJM 

Aggregate 

NYISO 

(Reference 

Bus)  

MISO 

Average (CS0) 17.04 20.1 27.06 38.16 39.56 45.33 56.07 

Average (CS1) 16.4 18.7 25.7 36.1 38.2 43.6 54.2 

Std Deviation 

(CS0) 

1.06 1.95 1.68 2.62 1.92 2.36 2.61 

Std Deviation 

(CS1) 

0 0 0 0 0 0 0 
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The optimal ESS dispatch for the CAISO (7-8), ERCOT (9-10), and MISO (11-12) is seen below 

with positive values representing ESS discharge and negative values representing charge in Figure 

13. The average discharge of all building types was taken. Similar to the residential results, 

comparing cases (1), (3), and (5) with cases (2), (4), and (6) shows that the peak discharge is 

significantly higher when the ESS operator can sell energy back to the grid. Also like the 

residential cases, the C&I cases show an increased amount of variance between charging and 

discharging as the optimization function maximizes revenue with a price signal that changes by 

the hour.  

Cannot Sell     Can Sell 

(1) (2) 

(3) (4) 

(5) (6) 

Figure 13 C&I ESS Dispatch for CAISO (1, 2), ERCOT (3, 4), and NYISO (5, 6) 
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These results show that while in some cases an ESS operation may be profitable when working 

with varying price signals, it is important to examine the specific price signal that will be used in 

order to determine if EA will generate enough revenue in that specific use case.  

 

5.5.3. Joint Strategy Analysis 

In this strategy where ESS customers are exposed to wholesale prices, the customers’ revenues, 

which is the reduction in their energy bills, from wholesale energy arbitrage are significantly lower 

than scenario 1 with Georgia Power Tariffs. Therefore, this strategy is less favorable for customers. 

Very long payback periods will also demotivate customers to own BTM ESS. As shown by results, 

payback periods are above 15 years that is much longer than the normal calendar life of many 

battery technologies (5 to 10 years)11,12. From a utility’s perspective, however, this strategy is 

revenue neutral since customer is directly transacting at the wholesale price. Note that, this strategy 

has some implementation cost to send wholesale market prices to BTM ESS. Analyzing the 

implementation cost is out of the scope of this work. Moreover, the total system load would have 

more spikes due to sharp variabilities of ESS operation. 

 

5.6. Joint Operation Strategy B (Scenario 2B): “Renting” BTM ESS 

In this strategy, the utility rents the capacity of BTM ESS and operates them to minimize the costs 

of operating utility’s generation and wholesale transactions (Equation 2). ESS customers are paid 

based on the maximum revenue they could have obtained if they had operated their ESS. 

5.6.1. Optimization 

The optimization model used in this strategy is almost similar to the one in the joint strategy #1 

but for the aggregate of all the customers’ BTM ESSs. The model is described in Equations (24) 

– (29). 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑃𝑡,𝑛

𝑒𝑠𝑠,𝑑𝑖𝑠,𝑃𝑡,𝑛
𝑒𝑠𝑠,𝑐ℎ𝑔

∑ [∑𝜋𝑡
𝑒𝑛𝑒 (𝑃𝑡,𝑛

𝑒𝑠𝑠,𝑑𝑖𝑠 − 𝑃𝑡,𝑛
𝑒𝑠𝑠,𝑐ℎ𝑔

)Δ𝑡

𝑇

𝑡=1

]

𝑁

𝑛=1

 (24) 

 

                                                 
11 B Zakeri, S Syri, “Electrical energy storage systems: A comparative life cycle cost analysis,” Renewable and 

sustainable energy reviews, 2015 
12 J, Tant, et al., “Multiobjective battery storage to improve PV integration in residential distribution grids,” IEEE 

Transactions on Sustainable Energy, 4(1), 182-191. 
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Subject to  

- ESS technical constraints:  

0 ≤ 𝑃𝑡,𝑛
𝑑𝑖𝑠 ≤ 𝑃𝑛

𝑑𝑖𝑠,𝑚𝑎𝑥𝑢𝑡,𝑛
𝑑𝑖𝑠    ;    0 ≤ 𝑃𝑡,𝑛

𝑐ℎ𝑔
≤ 𝑃𝑛

𝑐ℎ𝑔,𝑚𝑎𝑥
𝑢𝑡,𝑛

𝑐ℎ𝑔
 

∀𝑡 ∈ 𝒯, ∀𝑛

∈ 𝑁 
(25) 

0 ≤ 𝑢𝑡,𝑛
𝑑𝑖𝑠 + 𝑢𝑡,𝑛

𝑐ℎ𝑔
≤ 1 

∀𝑡 ∈ 𝒯, ∀𝑛

∈ 𝑁 
(26) 

𝐸𝑡,𝑛 = 𝜂𝑠,𝑛𝐸𝑡−1,𝑛 + (𝜂𝑐ℎ𝑔,𝑛𝑃𝑡,𝑛
𝑐ℎ𝑔 − 𝑃𝑡,𝑛

𝑑𝑖𝑠/𝜂𝑑𝑖𝑠,𝑛)𝛥𝑡 
∀𝑡 ∈ 𝒯, ∀𝑛

∈ 𝑁 
(27) 

𝐸𝑛
𝑚𝑖𝑛 ≤ 𝐸𝑡,𝑛 ≤ 𝐸𝑛

𝑚𝑎𝑥 
∀𝑡 ∈ 𝒯, ∀𝑛

∈ 𝑁 
(28) 

𝐸𝑇,𝑛 = 𝐸0,𝑛 ∀𝑡 ∈ 𝒯, ∀𝑛
∈ 𝑁 

(29) 

In Equation (24), the hourly price of energy (𝜋𝑡
𝑒𝑛𝑒) is either the marginal cost of local generation 

(simulated price of Georgia) or the hourly price of the wholesale market (𝜋𝑡
𝑤ℎ). 

 

5.6.2. Simulation Results 

The optimization model in Eqns. (24) – (29) is simulated with all the seven wholesale prices as 

well as the Georgia System Lambda. Results are normalized for a total of 1kW 2hr aggregate 

battery with 90% usable capacity and 95% roundtrip efficiency. Table 9 presents the results of 

utility annual revenues from participating in the wholesale markets with the normalized BTM ESS. 

 

Table 9 Utility Annual Revenues in Joint Strategy B (Scenario 2B) 

Price Location ERCOT CAISO NYISO 

Ref 

NYISO 

NYC 

ISONE PJM MISO Georgia 

System 

Lambda 

Annual Revenue 

($/kW) 

48.3 42.1 18.2 30.7 21.9 20.8 14.6 11.4 

 

As in Subsection 4.4, assuming 1% residential and commercial customers have installed BTM 

ESS, the total kW of BTM ESS would be 1.129GW that will result in up to M$54.5 of annual 

revenue. Note these market revenues of the utility from BTM ESS using this “renting” strategy 

has increased 3 to 10 times compared to the case where customers operating their ESS based on 

tariffs. This is because BTM ESS is operated by the utility to maximize the market revenue. 
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5.6.3. Joint Strategy Analysis 

In this strategy, BTM ESS is rented by the utility from the customers who own the ESS outright. 

The renting price is calculated based on the maximum customer benefits as in Scenario 1. Since 

those benefits are considerable under most of the tariff rates, the customers will still have enough 

financial motivation to invest in a BTM ESS and let the utility operate the ESS. The utility will 

take the full control of the BTM ESS operation and maximize the energy arbitrage value from all 

the distributed BTM ESS. Optimization results show significant revenues can be obtained by the 

utility from energy arbitrage depending on the price variability of the location. This strategy will 

always result in lower losses of utility’s revenue compared to Scenario 1. In some cases, there are 

financial opportunities for utilities using this strategy based on various tariff rates and wholesale 

market prices. For example, if utility rents BTM ESS from large commercial customers under tariff 

rate R520 and transacts at ERCOT, the normalized renting price is $17.8/kW while the energy 

arbitrage revenue is $48.3/kW. This will yield in a net profit of $30.5/kW. Higher utility revenues 

are expected if ancillary market participation is also considered. More on this will be provided in 

Scenario 3. Moreover, this strategy is also more desirable from a system operation perspective 

since the system operator has more flexibility to compensate the uncertainties of the grid. 

Implementation of this strategy requires communication infrastructure to send and receive control 

and feedback signals. However, it does not require significant software update in the electricity 

market operator compared to joint strategy #1 since all the distributed bids are aggregated at the 

utility’s point of connection. Again, the implementation details are out of scope of this project. 

 

5.7. Scenario Conclusion 

Simulation results provided in this chapter show that BTM ESS owned and operated by ESS can 

have negative impacts on the utility’s revenue. Thus, two joint operation strategies were proposed 

that utilities can operate BTM ESS jointly with the customers to hedge against their revenue loss 

while customers can still benefit from BTM ESS. The first strategy, passing through wholesale 

prices, is not financially attractive and result in payback periods of more than 15 years. However, 

this strategy is revenue neutral for the utility. The second strategy, renting BTM ESS, has the same 

profitability for the customers as Scenario 1 and the utility can benefit from operating BTM ESS 

to maximize its own objective function. Optimization results show significant revenues can be 

obtained by the utility from energy arbitrage depending on the price variability of the location. 

This strategy will always result in lower losses of utility’s revenue compared to Scenario 1. 
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6. Scenario 3: Utility-owned and Operated ESS 

6.1.  Introduction and Objective 

The third of the three scenarios studied in this project considers an ESS owned and operated by 

the electric utility. We simulate this scenario to determine the benefits to a utility that are obtained 

from ESS exclusively “before the meter”. For this scenario, the utilization of system-wide input 

data such as system lambda is proposed to drive the optimal operation of ESS. The results provide 

insights on the maximum potential value of a utility-owned and operated ESS in the Southeast. 

The methodology maximizes the benefits for the utility using realistic and publicly available data 

from the Southeast U.S. Specifically, we answer the following question: how utility-owned and 

operated ESS should be optimally operated so that the utility will obtain the maximum benefit from 

the ESS services. The analysis methodology involves the following steps described in the next 

subsections: 

 Identifying utility’s objectives and applicable ESS benefits and services 

 Developing the optimization model for ESS service revenue maximization 

 Collecting the required input data 

 Developing an ESS software and performing the simulations 

 Analyzing the simulation results 

 

6.2.  Utility’s Objective and Applicable ESS Services 

In this scenario, the utility seeks to maximize the monetary benefits of ESS applications i.e. service 

revenues. Thus, identifying the applicable services is a key step. While many ESS applications and 

potential services have been discussed in the literature13, we analyze the most important services, 

including services that have been studied in other regions in the U.S. We apply analysis 

methodologies and optimization models specifically developed for publicly available data for the 

Southeast region to study the following ESS services: 

 System Supply Capacity  

 Energy Arbitrage 

 Ancillary Services 

 Transmission and Distribution (T&D) Upgrade Investment Deferral 

 Reliability Improvement and Outage Mitigation 

Each service and the corresponding optimization model are described in the next Section. 

                                                 
13 EPRI, “Electric Energy Storage Technology Options: A White Paper Primer on Applications, Costs and Benefits,” 2010 
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6.3.  Optimization Methodology for ESS Service Revenue Maximization 

This section introduces applicable ESS service and proposes optimization models that maximize 

the service revenues. Significant research effort has been taken to develop such optimization 

methodologies that require only publicly available data and can best describe the ESS service 

revenues and dispatch operation. Each service is described next. 

6.3.1. System Supply Capacity 

ESS can be used to provide system supply capacity. This service ensures that enough available 

generation can meet the peak load requirement in the next few years. This requirement is based on 

available and forecasted generation, load, renewables, retired plants and system reliability 

calculations. A simple proxy for this requirement can be specified by having the installed capacity 

be no less than the system forecasted peak load plus a 15% margin. In this project, we define this 

capacity requirement as:  

                      𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥  𝑀𝑎𝑥 𝐴𝑛𝑛𝑢𝑎𝑙 𝐿𝑜𝑎𝑑 ∗  1.15                       (30) 

This is reasonable, given previous studies and IRPs [23], and the presence of large conventional 

units in the South. Evaluation of the monetary benefits of this service is usually done by capturing 

the investment deferral in alternative supply resources for peak conditions, e.g. gas turbines. With 

the available forecast data for system future annual peak load of the region (described in Section 

6.5.3), the currently installed capacity already meets the requirement for more than 20 years. 

Therefore, no additional capacity is required, and hence no capacity value is modeled in this study. 

6.3.2. Energy Arbitrage 

Energy arbitrage is known as the “buy-low, sell-high” service where ESS buys energy and charges 

during off peak periods with low-cost energy and sells and discharges during peak periods with 

high-cost energy. The service optimal dispatch and revenue are conventionally modeled with an 

optimization problem that maximizes the net profit of ESS from energy arbitrage at the Locational 

Marginal Price (LMP) of the ESS pricing node (𝜋𝑒𝑛𝑒): 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑃𝑡

𝑒𝑠𝑠,𝑐ℎ𝑔
,𝑃𝑡

𝑒𝑠𝑠,𝑑𝑖𝑠
∑𝜋𝑡

𝑒𝑛𝑒(𝑃𝑡
𝑒𝑠𝑠,𝑑𝑖𝑠 − 𝑃𝑡

𝑒𝑠𝑠,𝑐ℎ𝑔
)Δ𝑡

𝑇

𝑡=1

 (31) 

 

where the decision variables 𝑃𝑡
𝑒𝑠𝑠,𝑐ℎ𝑔

 and 𝑃𝑡
𝑒𝑠𝑠,𝑑𝑖𝑠

 denote the energy storage charge and discharge 

powers at time step t.  

LMPs are the outputs of wholesale market clearing process done by ISOs/RTOs. They are publicly 

available data and can be access through ISO/RTO’s websites. However, the supply of energy in 

the Southeast is different from the wholesale market areas. As a substitute for LMPs, the Southeast 

hourly system cost of energy supply is captured in the “System Lambda” that is the output of the 

utility’s unit-commitment and real-time dispatch optimization problems solved to determine the 
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lowest system operational cost to meet the expected load with the available generation. To evaluate 

the ESS energy arbitrage in the Southeast, we use system lambda a) instead of and b) besides 

LMPs in the above maximization problem in the two following cases, respectively: 

6.3.2.1.Isolated Southeast 

In this case, we assume that the utility buys and sells ESS energy at a price equal to the system 

lambda (λ) instead of LMP: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑃𝑡

𝑒𝑠𝑠,𝑐ℎ𝑔
,𝑃𝑡

𝑒𝑠𝑠,𝑑𝑖𝑠
∑𝜆𝑡 (𝑃𝑡

𝑒𝑠𝑠,𝑑𝑖𝑠 − 𝑃𝑡
𝑒𝑠𝑠,𝑐ℎ𝑔

)Δ𝑡

𝑇

𝑡=1

 (32) 

Subject to ESS power and energy constraints as in equations (4) – (8). 

6.3.2.2.Southeast and Wholesale Markets 

In this case, we assume that the utility buys and sells ESS energy at the system lambda (λ) besides 

the LMP. In other words, the utility has the option to buy and sell energy not only in its own 

system, but also to other neighboring ISOs/RTOs at their LMPs. Each ISO/RTO market is indexed 

with m: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑃

𝑒𝑠𝑠,𝑐ℎ𝑔
,𝑃𝑒𝑠𝑠,𝑑𝑖𝑠

∑

[
 
 
 𝜆𝑡 (𝑃𝑡,0

𝑒𝑠𝑠,𝑑𝑖𝑠 − 𝑃𝑡,0
𝑒𝑠𝑠,𝑐ℎ𝑔

) +

∑(𝜋𝑡,𝑚
𝑒𝑛𝑒 − 𝐶𝑚

𝑊)

𝑀

𝑚=1

𝑃𝑡,𝑚
𝑒𝑠𝑠,𝑑𝑖𝑠 − (𝜋𝑡,𝑚

𝑒𝑛𝑒 + 𝐶𝑚
𝑊)𝑃𝑡,𝑚

𝑒𝑠𝑠,𝑐ℎ𝑔

]
 
 
 

Δ𝑡

𝑇

𝑡=1

 (33) 

 

𝐶𝑚
𝑊is the transaction cost with other wholesale markets, which includes “wheel-through” and 

congestion costs. The total purchased energy for charging and sold energy for discharging are 

defined as below and are subject to ESS power and energy constraints as in equations (4) – (8).  

𝑃𝑡
𝑒𝑠𝑠,𝑑𝑖𝑠 = 𝑃𝑡,0

𝑒𝑠𝑠,𝑑𝑖𝑠 + ∑ 𝑃𝑡,𝑚
𝑒𝑠𝑠,𝑑𝑖𝑠

𝑀

𝑚=1

 

 

(34) 

𝑃𝑡
𝑒𝑠𝑠,𝑐ℎ𝑔

= 𝑃𝑡,0
𝑒𝑠𝑠,𝑐ℎ𝑔

+ ∑ 𝑃𝑡,𝑚
𝑒𝑠𝑠,𝑐ℎ𝑔

𝑀

𝑚=1

 (35) 

We note that unlike many conventional ESS evaluation studies in market areas, a degradation 

model is used for ESS operation in this Scenario. The model uses a linear penalty cost for ESS 

output power, which fits well for Li-ion batteries, the most common technologies in new ESS 
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deployments. The term corresponding to this linear penalty cost is subtracted from the objective 

function of the above maximization problems. This term can be expressed as: 

𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝐶𝑑𝑒𝑔(𝑃𝑡
𝑒𝑠𝑠,𝑑𝑖𝑠 + 𝑃𝑡

𝑒𝑠𝑠,𝑐ℎ𝑔
) (36) 

The linear degradation coefficient is calculated based on the ESS capital cost and the number of 

full cycles the ESS can provide before its end of useful life14. 

 

6.3.3. Ancillary Services 

Ancillary services include a few services that support the reliable delivery of energy. Depending 

on the region/market these services may vary in definition, requirements, pricing and dispatch. 

Based on our previous studies15, the two most important and common ancillary services studied in 

this Scenario are: 

 Frequency Regulation: This service is one of the ancillary services specified by FERC 

under Order 888. It is a market-based service where participants offer their output power 

capacity to be responsive to the regulation signal, which is a measure of frequency 

deviation. The signal shows how much of the offered capacity should be dispatched.  In 

some markets such as PJM, it is one product (regulation), while in some other markets such 

as CAISO it is two separate products for frequency regulation up and down. 

 Operating Reserve: Also known as spinning or synchronized reserve, is another market-

based ancillary service where participants offer their output power capacity to be able to 

respond in case of an emergency for an unplanned outage. Resources participating in this 

service must be dispatched in a short period of time based on the market, usually less than 

ten minutes. 

While these services are generally defined as market-based, other utilities in non-market regions 

such as the Southeast U.S. still buy or sell such services based on their local requirements and 

production as well as other systems in the interconnection. 

To evaluate the revenue of these services, the following optimization objective function is used: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑃𝐴𝑆,𝑃

𝑐ℎ𝑔
,𝑃𝑑𝑖𝑠

∑𝜆𝑡
𝐴𝑆𝑃𝑡

𝐴𝑆 − 𝜆𝑡 (𝑃𝑡
𝑐ℎ𝑔

− 𝑃𝑡
𝑑𝑖𝑠) − 𝐶

𝑑𝑒𝑔
(𝑃𝑡

𝑐ℎ𝑔
+ 𝑃𝑡

𝑑𝑖𝑠)

𝑡

 (37) 

 

                                                 
14 S. Vejdan and S. Grijalva, “Maximizing the revenue of energy storage participants in day-ahead and real-time 

markets,” IEEE Clemson University Power Systems Conference 2018, Charleston, SC, Sept 2018. 
15 S. Vejdan and S. Grijalva, “Analysis of Multiple Revenue Streams for Privately-Owned Energy Storage Systems,” 

2018 IEEE Power and Energy Conference at Illinois (PECI), Feb 2018. 
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where the first term denotes the ESS revenue from allocating a capacity (𝑃𝑡
𝐴𝑆) for the specific 

ancillary service at each time step t, AS indexes the set of ancillary services: frequency regulation 

and spinning reserve, the second term is the dispatch cost of ancillary service that is calculated 

based on the energy price (system lambda), and the third term is the degradation cost as described 

before.  

The dispatch of ancillary services is based on real-time control signals that the system operator 

sends to the resources that have allocated a non-zero capacity for ancillary services. For frequency 

regulation, a high-resolution (2-second) signal from the historical system data of PJM is used. This 

signal provides the deviation from the nominal 60 Hz frequency. During normal operation, and 

assuming no slow frequency oscillations are present, the system frequency can be considered 

uniform in the interconnection. Thus, the frequency signal provides a proper regulation signal for 

the Southeast as well. The spinning reserve service is infrequently dispatched and thus, no real-

time dispatch signal is associated provided for this service3. 

 

6.3.4. Transmission and Distribution (T&D) Upgrade Investment Deferral 

This service is defined as delaying (and in some cases as entirely avoiding) utility investments in 

transmission and/or distribution asset upgrades (e.g. substation, feeder, transformer, etc.), using 

relatively energy storage16. Consider a T&D system whose peak electric loading is approaching 

the system’s load carrying capacity (design rating). In some cases, installing a small 

amount of energy storage downstream from the nearly overloaded T&D node will defer the need 

for a T&D upgrade. To do so, the storage dispatch (output power and duration) should meet the 

following requirements: 

 ESS discharge output power is high enough to reduce the peak load, so that the net 

load (load minus storage output power) does not exceed a threshold (the ratings of 

current T&D assets), 

 ESS discharge duration is long enough to keep the maximum load below the upgrade 

threshold for the peaking periods. 

Accordingly, ESS provides the benefit of deferring an investment in upgrading T&D assets. This 

deferred cost is quantified as the service revenue. The proposed optimization model for evaluating 

the maximum revenue of this service has the same structure as in ancillary services except that 

𝜆𝑡
𝐼𝐷 and 𝑃𝑡

𝐼𝐷  are used instead of 𝜆𝑡
𝐴𝑆 and 𝑃𝑡

𝐴𝑆 to denote the avoided cost per unit of power and 

deferred upgrade power values, respectively. 

The steps to quantify 𝜆𝑡
𝐼𝐷 are as follows: 

                                                 
16 J. Eyer and G. Corey, “Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide,” 

SANDIA Report SAND2010-0815, Feb 2010. 
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 Forecast the T&D asset peak loading conditions: This can be done for each individual 

asset. However, due to limited publicly available data for each asset, we use a fraction 

of the system peak load to represent a plausible constrained peak load of a T&D asset 

in the system.  

 Find the maximum deferrable period as a function of ESS maximum output power.  

 Calculate the upgrade cost with a conventional alternative: using a price (e.g. a new 

small-scale gas turbine may cost about 1500$/kW) multiplied by power rating of the 

alternative to fully relieve the peak conditions. 

 Find the present value of the upgrade cost based on the maximum deferrable period 

and utility’s discount rate. 

The conventional models assume this service operation as a pre-dispatch process where ESS 

provides this service at the highest priority and its residual power and energy are dispatched for 

other services, e.g. energy arbitrage. However, the proposed approach relies on the optimization 

model to decide whether to discharge and provide this service or not. This decision is made by 

comparing the service revenues and results in higher total revenues. 

 

6.3.5. Reliability Improvement and Outage Mitigation 

This service entails using ESS to provide highly reliable electric service. In the event of a complete 

power outage lasting more than a few seconds, the ESS provides enough energy to ride through 

outages of extended duration to complete an orderly shutdown of processes, and/or to transfer to 

on-site generation resources4. Utilities can benefit from this service to minimize the loss of revenue 

from energy sales to the customers during outages and minimize the cost of customer’s claims for 

unplanned outages.  

The proposed optimization model used for evaluating the maximum revenue of this service has 

the same structure as for the ancillary services except that 𝜆𝑡
𝑅𝐼 and 𝑃𝑡

𝑅𝐼 are used instead of 𝜆𝑡
𝐴𝑆and 

𝑃𝑡
𝐴𝑆 to denote the avoided revenue loss per power and the sustained power during an outage, 

respectively: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑃𝑅𝐼,𝑃

𝑐ℎ𝑔
,𝑃𝑑𝑖𝑠

∑𝜆𝑡
𝑅𝐼𝑃𝑡

𝑅𝐼 − 𝜆𝑡
𝑜𝑢𝑡𝑎𝑔𝑒

(𝑃𝑡
𝑐ℎ𝑔

− 𝑃𝑡
𝑑𝑖𝑠) − 𝐶

𝑑𝑒𝑔
(𝑃𝑡

𝑐ℎ𝑔
+ 𝑃𝑡

𝑑𝑖𝑠)

𝑡

 (38) 

 

Note that in this service, the ESS dispatch variables (𝑃𝑡
𝑐ℎ𝑔

, 𝑃𝑡
𝑑𝑖𝑠) are multiplied by the price 𝜆𝑡

𝑜𝑢𝑡𝑎𝑔𝑒
 

which is equal to: 

 System lambda during normal conditions 
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 Zero during outage (islanding) 

The steps to quantify the service revenue are as follows: 

 Using historical outage data and reliability metrics, outage scenarios are generated as the 

percentage of customers (load size) impacted by the outage and the duration of outage. 

 Using historical energy sales data and estimates of avoided reconnection costs, 𝜆𝑡
𝑅𝐼 is 

determined.  

 ESS is dispatched to maximize this service revenue and to mitigate the outage impacts. 

We note that the conventional methods for evaluating this service use the Value of Loss Load 

(VOLL) metric, which depends on the customer type, size and location, which is difficult to 

quantify accurately. Moreover, VOLL is not the source of a collectible revenue for the utility- 

owned ESS. Thus, we use the avoided loss of revenue from utility energy sales instead of the 

VOLL. This approach provides a more accurate and insightful model for the service revenue 

estimation. 

6.4.  Simulation Assumptions and Input Data 

The important assumptions regarding the simulation of this scenario are described as follows. 

 Optimization: Mixed Integer Linear Programming (MILP) model, daily optimization with 

hourly granularity. 

 Forecasting: For future parameters, e.g. load growth rate, we use forecast data published 

by agencies such as the EIA. If future parameters are not available, we use historical data 

with the back-casting approach to represent future parameters. In the latter case, results 

represent the maximum expected value of ESS if they had been deployed in the past. 

Forecasting future parameters as a part of this task is out of scope, but can prove to be 

beneficial in a future study. 

 Horizon: the study uses a 10-year horizon, where all investments are made at year zero. 

We assume that there is no salvage/residual value after the storage end-of-life. This is a 

conservative estimate since the literature discusses end-of-life value for ESS. Using 

optimization, we maximize the utilization of ESS for 10 years so that at the end of the 

horizon it reaches its end-of-life. Note that if any timeseries input data has a horizon of less 

than 10 years (e.g. load and system lambda) we rollover the data to cover the 10-year 

horizon. 

 ESS technical parameters: Fixed throughout 10 years horizon. Sensitivity analysis is 

performed with respect to a few of them. 

 No grid model: all the generation, load and ESS are connected to one node with infinite 

capacity. This is based on the information that the Southeast region does not currently face 

critical transmission capacity constraints or congestion. Thus, the assumption of an infinite 
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transmission capacity is reasonable. In addition, simulation of distribution grid is out of 

scope. 

The required input data for this scenario are described in the next subsections.  

 

6.4.1. Utility-scale ESS parameters 

 Technology: Li-ion with the following parameters: lowest-cost battery ESS, 95% charge 

and discharge efficiency (90.25% roundtrip), negligible leakage, linear degradation cost 

with respect to energy throughput 

 Power rating: 80 MW as described by the 2019 Georgia Power (GP) Integrated Resource 

Planning (IRP) 

 Capacity rating: No information from Georgia Power IRP. We assume 2 hours (most 

common duration among current BESS based on Department of Energy, Energy Storage 

Database17) at 80 MW (160 MWh) and perform sensitivity analysis. 

 Maximum and minimum ESS state-of-charge (SOC) are assumed to be 90% and 10%, 

respectively, to minimize the overcharging and over discharging stresses on battery’s 

useful life. 

 Economic parameters: We utilize the same cost parameters that were used for Scenario 1 

and 2. We assume that the total capital cost is equal to $400/kWh as the incurred in the 

Capex year. The capital cost includes the Li-ion Battery cells and packing cost ($200/kWh) 

as well as balance-of-system (BOS) cost ($200/kWh). The values of these cost parameters 

are selected based on estimates of Bloomberg New Energy Finance18 and NREL Report19, 

respectively. We assume that the O&M cost is captured in the BOS cost parameter.  

6.4.2. System parameters 

The following data has been collected from publicly available databases, e.g. EIA, FERC, GP 

website, etc. 

 System historical hourly load data, peak periods (GP data, usu. hours 13 – 16 weekdays in 

July and August) 

 System load forecast, annual peak demand (GP ~16.4 GW in 2019), annual load growth 

rate (GP ~0.4%/year) 

 System total generation capacity (20.4 GW sum of powerplants available capacities at hour 

of annual peak demand), 

                                                 
17 https://energystorageexchange.com 
18 Bloomberg New Energy Finance: Sustainable Energy in America Factbook, 2019 
19 2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Costs, National Renewable Energy Lab, 

Technical Report NREL/TP-6A20-71714 Nov 2018 

https://energystorageexchange.com/
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 Historical system lambda (Southern Company data, 2016 – 2018 at hourly granularity),  

 Historical energy sales data (EIA form 861 for GP), 

 Historical ancillary service transactions data (FERC form 1 for GP purchases and sales of 

ancillary services, used to calculate average ancillary service prices (𝜆𝑡
𝐴𝑆).), 

 Historical outage data and reliability metrics (EIA form 861 for GP). 

 

6.5.  Simulation Results and Analysis 

This Section provides numerical results for Scenario 3 simulated with the developed optimization 

models and collected data under several important simulation cases and input parameters. For each 

simulation case, the net present value (NPV) of ESS is calculated as in equation (9), where the 

total cost is $64 MM all incurred at the CapEx year (year 0). Since this cost includes all the O&M 

costs, the OpEx years do not include any costs. The cashflows in OpEx years include the ESS 

service revenues. Simulation cases start with single service analysis. Next, all services are co-

optimized with each other using optimal service stacking3. For NPV calculation, the discount 

factor is assumed to be 8%. After each case is simulated, the annual revenues are discounted and 

used to calculate NPV. Results help decision makers understand the potential benefits and financial 

viability of ESS in the Southeast region. 

6.5.1. System Supply Capacity Revenue 

Figure 14 shows the available 10-year forecast data for system summer and winter peak load and 

the capacity requirement (1.15*annual peak load as in equation (30)) in the Georgia Power 

territory, as well as the currently installed capacity which already meets the capacity requirement. 

Therefore, no additional capacity is required, and capacity value of ESS is assumed to be zero in 

this study. 

 

Figure 14 Generation Capacity vs. System Peak Load 
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6.5.2. Energy Arbitrage Revenue 

The energy arbitrage revenue is analyzed in the two cases of isolated Southeast and with the 

wholesale markets . For the second case, various wheel-through costs are simulated. Results are 

presented in Table 10. We determined NPV for each case, with an assumption of 8% discount rate. 

None of the simulated cases provide positive NPV, which is aligned with other studies on Energy 

arbitrage revenue. However, the simulation results show the potential added value of intermarket 

arbitrage. We also provide the simple average annual revenue in the Table, as a rough barometer 

for comparison among the various simulation cases. If Georgia Power can only transact with one 

market, PJM is shown to be more profitable. Moreover, the cases where Georgia Power transacts 

with both PJM and MISO result in the highest revenues. Although wheel-through costs in 

intermarket arbitrage cases decrease the arbitrage revenues, intermarket arbitrage can still 

significantly increase the revenue compared to the case with arbitrage only within Georgia Power. 

 

Table 10 Energy Arbitrage Results 

Sim. 

Case # 

Energy Price 

Region(s) 

Wheel-through Cost(s) 

(% Energy Price) 

Average 

Annual 

Revenue (M$) 

NPV (M$) 

1 GP 0 0.9 -58.0 

2 GP, MISO 0, 0 2.6 -46.6 

3 GP, MISO 0, 10 2.1 -50.1 

4 GP, MISO 0, 20 1.7 -52.5 

5 GP, PJM 0, 0 2.7 -46.0 

6 GP, PJM 0, 10 2.1 -50.1 

7 GP, PJM 0, 20 1.6 -52.9 

8 GP, PJM, MISO 0, 0, 0 3.6 -39.9 

9 GP, PJM, MISO 0, 10, 10 2.8 -45.1 

10 GP, PJM, MISO 0, 20, 20 2.2 -49.2 

 

 

 6.5.3. Ancillary Services Revenue 

Ancillary service revenues are analyzed for both frequency regulation (FR) and spinning reserve 

(SR) services. Analyzing FERC form 1 provides monthly costs of these services for each utility 

including Georgia Power (GP). Using this data, we calculate the average hourly price of these 

services for one year. Using PJM RegD signal as a proxy for frequency deviation and dispatch 
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signal in the Southeast, we calculate the hourly averaged dispatch-to-contract ratios that show how 

much of the allocated capacity are dispatched in real-time. These values are usually between 0.1 

to 0.2 for both charge and discharge signals. The spinning reserve service is very infrequently 

dispatched and thus, no real-time dispatch signal is associated with this service. For the case with 

multiple regions, the ESS participates in the various markets.  

Results are presented in Table 11 where cases with the frequency regulation service have positive 

NPVs. Note that cases 15 and 16, co-optimize both ancillary services20. For the multi-region case, 

ESS performs arbitrage across time given prices of the various regions. While spinning reserve 

service can increase the total revenue compared to the energy arbitrage only, it has minimal impact 

on the revenues of the cases with frequency regulation. This is because the ESS capacity that is 

not used by energy arbitrage is better utilized in the frequency regulation service which is a bi-

directional service compared the spinning reserve (only discharge). In addition, average frequency 

regulation prices are higher than those for the spinning reserve service. In summary, FR’s bi-

directional nature and higher market prices explain why FR dominates over SR, when compared 

as revenue generating ancillary services.  

 

Table 11 Ancillary Service Results 

Sim. 

Case # 

Energy Price 

Region(s) 

Ancillary Service(s) Average Annual 

Revenue (M$) 

NPV (M$) 

11 GP FR 16.7 48.2 

12 GP, PJM, MISO FR 18.6 61.0 

13 GP SR 2.6 -46.4 

14 GP, PJM, MISO SR 4.8 -31.6 

15 GP FR, SR 16.7 48.2 

16 GP, PJM, MISO FR, SR 18.7 61.2 

 

Finally, it should be noted that the market for Frequency Regulation in other regions of the U.S. is 

very dynamic. There are indications that many ESS systems were deployed to capitalize on 

revenue streams from this specific ancillary service in the 2013-2018 timeframe. Caution is 

advised because some studies [25] have observed that Frequency Regulation may eventually 

plateau or saturate in other markets.  

 

                                                 
20 This co-optimization generates a new result that is not merely a simple, additive sum of the two services, since the 

delivery of multiple services must be coordinated, resulting in some constraints compared to independent cases. 
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6.5.4. T&D Investment Deferral Revenue 

Figure 15 shows the 10-year forecast of GP system annual peak load in per unit (p.u.). Using a 

linear interpolation, the average annual peak load growth is 3.6%/year. We assume that a specific 

T&D asset that needs upgrade has the same peak load growth rate as shown in Figure 16 (red plot). 

Once the ESS is installed to reduce the net load (blue plot in Figure 16), it can defer the T&D 

upgrade investment. The deferral period can be calculated based on the maximum peak shaving 

capability of ESS (𝑃𝑒𝑠𝑠,𝑑𝑖𝑠,𝑚𝑎𝑥), which is determined based on the historical hourly load data and 

the ESS ratings, as well as the peak load growth rate (r) and the T&D upgrade threshold (𝑃𝑇&𝐷) 

as: 

𝐷𝑒𝑓𝑒𝑟𝑟𝑎𝑙 𝑃𝑒𝑟𝑖𝑜𝑑 (𝐷𝑃) =  
𝑃𝑒𝑠𝑠,𝑑𝑖𝑠,𝑚𝑎𝑥

𝑟𝑃𝑇&𝐷
 (39) 

 

 

Figure 15 10-year forecast of GP system annual peak load in per unit (p.u.) 
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Figure 16 Linearized Peak Load Growth with and without ESS 

 

The present value of the per unit deferred investment cost (𝜆𝑡
𝐼𝐷) is then calculated as: 

 

𝜆𝑡
𝐼𝐷 = 𝐶𝑢𝑝𝑔 (1 −

(1 + 𝑖)𝐷𝑃

(1 + 𝑑)𝐷𝑃
) (40) 

 

where i and d are inflation and discount rates, respectively assumed to be 2.5% and 8%. Parameter 

𝐶𝑢𝑝𝑔 is the per unit cost of upgrade investment, which we assume to be $1.5 MM/MW21. 

We assume that ESS is distributed optimally so that it can shave the system peak effectively. The 

forecasted system peak for 2019 is 16406 MW which we assume is the T&D upgrade threshold. 

Also, using the historical hourly load data and the simulated 80 MW / 2 hr ESS, 𝑃𝑒𝑠𝑠,𝑑𝑖𝑠,𝑚𝑎𝑥 is 

73MW. Thus, the deferral period is calculated as 
73

0.0036×16406
= 1.2 years which is rounded to 1 

year. Thus, 𝜆𝑡
𝐼𝐷 is $76,388/MW. Simulating this service with the developed optimization model 

and calculated parameters is performed for several cases varying in the size of the T&D asset as a 

percentage of the sum of T&D peak loads relative to the system peak load. For simplicity, we do 

not include energy arbitrage in these cases, but the services are co-optimized further in this chapter. 

Simulation results for the investment deferral service revenue are presented in Table 12. 

 

                                                 
21 Cost of a medium size (a few MW) natural gas generator based on National DER Reports 
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Table 12 Investment Deferral Results 

Sim. 

Case # 

Percentage of the T&D 

Peak Load Relative to 

the System Peak Load 

Deferral 

Period 

(years) 

𝝀𝒕
𝑰𝑫 

($/MW) 

10-year 

Revenue 

(M$) 

NPV (M$) 

17 100 1 76,388 5.6 -58.4 

18 50 2 148,888 6.0 -58.0 

19 25 5 344,974 6.9 -57.1 

20 10 10 610,610 4.9 -59.1 

21 5 10 610,610 2.4 -61.6 

22 1 10 610,610 0.5 -63.5 

 

Results show that when ESS is used to peak-shave a bigger aggregated load (100% of the system 

load in case 17) it may not have enough capacity to do so and since the load is large, the deferred 

period might be very short, e.g. only 1 year in case 17. However, as the T&D load size decreases, 

ESS can fully peak shave it and defer the investments to further years, e.g. 5 years in case 19. This 

results in higher avoided costs or revenues. Moreover, if the T&D load size further decreases, the 

value of the deferred investment decreases much more than increase in the added value of a longer 

deferred period. Note that since the ESS project horizon and its end-of-life is assumed to be 10 

years, the maximum deferred period is 10 years. 

A key takeaway from these simulation results is that a distributed ESS (case 19) can provide higher 

revenues in this service compared to an aggregate ESS (case 17). Thus, the optimal placement of 

distributed ESS can have significant impacts on the economics of the project, which is out of scope 

of this study. Another key takeaway is that while Investment T&D Deferral can deliver some 

benefits, it would generally need to be stacked with other value streams to contribute to an 

economically viable ESS investment. 

 

6.5.5. Reliability Improvement Revenue 

Reliability data for electric utilities in the U.S. are provided in EIA form 861. The GP reliability 

data in 2018 shows that the System Average Interruption Duration Index (SAIDI) is 227.4 minutes 

with 2,456,340 total number of customers. This translates to 9,309,528.6 hours of total customer 

interruption duration in the GP territory. The same data base provides energy sales data where the 

average electricity sales for GP is $0.09/kWh. An average customer consumes 33.7 MWh per year. 

Assuming a constant load, the average hourly load of each customer in GP is 3.847 kW. Using this 

data, the annual GP loss of revenue from interruptions is calculated as $3,223,486. ESS can save 

some of this lost revenue by providing backup power. Results for cases with different ESS 
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capabilities in saving the lost revenues are provided in Table 13. Note these results are conservative 

since interruptions impose many charges, e.g. reconnection, customer claims, etc., on the utilities 

and using ESS a utility can avoid those costs and adds to the service revenue. However, the 

provided conservative results serve as the worst-case lower bound for the revenue of this service. 

Table 13 Reliability Improvement Results 

Sim. 

Case # 

Percentage of the 

Interruption 

Mitigation 

Annual 

Revenue 

(M$) 

10-year 

Revenue (M$) 

NPV (M$) 

23 100 3.2 21.6 -42.4 

24 50 1.6 10.8 -53.2 

25 25 0.8 5.4 -58.6 

26 10 0.3 2.2 -61.8 

 

6.5.6. All Service Revenues Co-optimized 

Cases where all the studied services are co-optimized are presented in Table 14. For a better 

insight, 4 cases are simulated where two of use GP system lambda as energy price (cases 27 and 

29) and the other two enable intermarket energy arbitrage (cases 28 and 30). Also, other service 

parameters such as wheel-through costs (0, 20%), percentage of T&D peak load (25%, 1%), and 

percentage of interruption improvement (100%, 10%) are assumed to be equal to their “best” and 

“worst” values that result in the highest and lowest revenues, respectively. These are shown under 

the column “Other Parameters” in the Table.  

The results presented in Table 14 shows that multiservice ESS optimization can provide significant 

economic benefits and improve the ESS project financial viability. Even though the results report 

aggregated results, it should be noted that the largest portion of the revenue is from the frequency 

regulation service. This is consistent with other research studies, such as [3], where frequency 

regulation service provides the highest revenue among services under wholesale market territories. 

Payback periods are as low as 4 years. Even under the worst simulation case, the payback period 

is 5 year which is equal to the half of the ESS useful life. This small difference between payback 

periods and estimated revenues (between highest and lowest simulations) is reassuring, and 

provides a compelling justification for the economic viability of utility-owned ESS value stacking. 
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Table 14 All Services Co-Optimized Results 

Sim. 

Case # 

Energy Price 

Region(s) 

Other 

Parameters 

10-year 

Revenue 

(M$) 

NPV (M$) Payback Period 

(Years) 

27 GP Best 133.1 69.2 4 

28 GP, PJM, MISO Best 146.0 82 4 

29 GP Worst 114.5 50.5 5 

30 GP, PJM, MISO Worst 111.2 45.1 5 

 

6.6. Scenario Conclusion 

This chapter has developed simulation of various ESS services. The simulation of service co-

optimization results in significant benefits and improve the ESS project financial viability.  

While spinning reserve service can increase the total revenue compared to the energy arbitrage 

only, it has minimal impact on the revenues of the cases with frequency regulation. This is 

because the ESS capacity is better utilized in the frequency regulation service, which is a bi-

directional service compared the spinning reserve. The largest portion of the revenue is derived 

from frequency regulation. 

The simulation results provided in this chapter show that even under the most conservative 

simulation assumptions, multiservice ESS can reach a payback period of 5 years. The simulations 

were performed based on the current capital costs of ESS while these costs are decreasing every 

year. Thus, it is expected that the multiservice ESS payback periods can further decrease.  
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7. Conclusions and Future Work 

7.1. Study Conclusions 

The economic benefit and impact of energy storage systems depends on the technology properties, 

the regional generation and grid characteristics, as well as key policies, regulatory structures, and 

rate designs.  

Emerging advanced optimization methods, coupled with integrated modeling and publicly 

available data enable the assessment of energy storage for a number of relevant use cases and 

applications. In this study, tree scenarios have been studied: 1) ESS Owned and operated by end 

use customer, 2) ESS owned by end use customer, but jointly operated by the customer and the 

utility, and 3) ESS owned and operated by the utility.  

The Simulation results for Scenario 1, ESS owned and operated the customer, show that under the 

current tariff rates, C&I customers who are exposed to demand charges can greatly benefit from 

BTM ESS investment. The significant cost savings result in payback periods of as low as 5 years 

for these customers. Residential customers exposed to demand charges can also benefit from BTM 

ESS where the payback periods are around 10 year. Although residential ESS is not as profitable 

as C&I, with the decreasing capital costs of ESS, it is expected that residential ESS become more 

profitable. In terms of system impacts, high penetration of BTM ESS can have significant impact 

on the system net load. Tariff rates with demand charges result in smoother net load profiles that 

are more desirable from the system operator’s perspective. 

In the case of Scenario 2, ESS owned by the customer but operated jointly with the utility, the 

simulation results show that ESS can have negative impacts on the utility’s revenue. Two joint 

operation strategies were proposed that utilities can operate BTM ESS jointly with the customers 

to hedge against their revenue loss while customers can still benefit from BTM ESS. The first 

strategy, passing through wholesale prices, is not financially attractive and result in payback 

periods of more than 15 years. However, this strategy is revenue neutral for the utility. The second 

strategy, renting BTM ESS, has the same profitability for the customers as Scenario 1 and the 

utility can benefit from operating BTM ESS to maximize its own objective function. Optimization 

results show significant revenues can be obtained by the utility from energy arbitrage depending 

on the price variability of the location. This strategy will always result in lower losses of utility’s 

revenue compared to Scenario 1. 

In Scenario 3, Utility Owned and Operated ESS, simulations show that service co-optimization 

results in significant benefits and improve the ESS project financial viability. While spinning 

reserve service can increase the total revenue compared to the energy arbitrage only, it has minimal 

impact on the revenues of the cases with frequency regulation. This is because the ESS capacity is 

better utilized in the frequency regulation service, which is a bi-directional service compared the 

spinning reserve. The largest portion of the revenue is derived from frequency regulation. 

The simulation results provided in this chapter show that even under the most conservative 

simulation assumptions, multiservice ESS can reach a payback period of 5 years. The simulations 
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were performed based on the current capital costs of ESS while these costs are decreasing every 

year. Thus, it is expected that the multiservice ESS payback periods can further decrease.  

This study can valuable to utilities, policy-makers, researchers and other stakeholder for several 

reasons. First of all, several novel optimization methodologies have been developed that can be 

used to evaluate the relative economic merits of ESS under a range of scenarios, input conditions, 

and performance parameters. Second, the methods and approaches can be extended to include 

additional parameters, such as CO2 costs, CO2 emission, and welfare effects. Finally, the project 

provides detailed insights into the comparative economic benefits of major ESS use cases from the 

perspective of residential customers, large commercial customers, and utilities. The results suggest 

there are significant opportunities and net economic benefits from ESS systems, whether owned 

and operated by large customers or utilities, or jointly-operated by both. Taken together the 

methodologies and findings can contribute to informed investment decision-making and policy 

analysis in the Southeast region, and beyond.  

 

7.2. Study Limitations 

The study assumptions are limited to currently known parameters and uses a 2030 horizon. This 

time horizon will permit us to compare key scenarios at a sufficient scale for decision-makers, yet 

maintain confidence in key technology and systems assumptions, such as ESS performance 

attributes, tariffs, and generating resources. The study has not conducted sensitivity analysis for 

these parameters.  

Battery costs have experienced a rapid decline in the last decade. The study however, assumes that 

the decision is made at present costs, without including the impact of storage cost forecasting on 

financing parameters.  

For reasons of simplicity and lack of data and CO2 market signals in the Southeast, we did not 

assume a cost for CO2, nor did we did consider CO2 in the optimization. We also did not estimate 

emissions change by scenario. However, the methodologies would readily lend themselves to such 

analyses for future optimization studies. 

 

7.3. Future Work 

Future work on the analysis of ESS in the Southeast can follow several directions: 

 Inclusion of the impact of emissions, which requires corresponding development of 

production costing and generation dispatch simulations with energy storage.  

 Sensitivity analysis, most notably, considering implications of expected cost reduction on 

ESS.  

 Expansion of the study to analyze additional rates that are present in the Southeast.  

 Analyze the impact of modification to rate design on the benefit of ESS and their allocation. 
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