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SUMMARY 

 In fibrotic disease, dysregulation of matrix remodeling generates excessive 

deposition of fibrous extracellular protein that can interfere with the architecture and 

function of tissue. The pathogenic role of aberrant fibrin remodeling is particularly 

interesting in idiopathic pulmonary fibrosis (IPF), which has proven largely unresponsive 

to conventional anti-fibrosis therapies. Due to the substantial variety of factors that 

combinatorially influence extracellular matrix (ECM) turnover, there exists the need for a 

phenotypic assay to evaluate cumulative effects involving cell-mediated fibrinolysis and 

collagen deposition. The goal of this project was to develop a novel in vitro assay that 

mimics fibroblast-mediated remodeling of the provisional fibrin matrix, in order to 

establish a model system for fibrotic scar formation and evaluate potential therapeutic 

compounds. 

This work introduces and evaluates new methods to analyze ECM turnover in a 

high-throughput, label-free format. An aqueous two-phase printing technique was 

established to enable generation of microscale fibroblast-laden fibrin gels, which resemble 

the provisional fibrin matrix in wound healing. In a first variant of the assay, addition of 

exogenous plasminogen enabled cell-mediated activation of plasmin for gradual 

degradation of the fibrin matrix. While this assay for cell-mediated fibrinolysis effectively 

demonstrated the effects of pro-fibrotic stimuli on fibrin degradation rates, it showed no 

significant changes in cellular activity with established IPF therapeutics. 

A second variation of the assay implemented higher fibroblast seeding densities 

with serum-supplemented media to facilitate remodeling of the fibrin matrix through 



 xviii 

concurrent fibrinolysis and collagen deposition. Live-cell imaging provided time-course 

brightfield micrographs that were analyzed through an automated image processing 

protocol for high-throughput evaluation of different stages of remodeling. Stimulation of 

assays with IPF therapeutics demonstrated decreased formation of fibrosis. Application of 

this assay allowed convenient evaluation of normal and diseased donors of pulmonary 

fibroblasts and assessment of anti-fibrotic compounds to determine their effects on 

different stages of remodeling. Additionally, the differences in drug response between the 

two variations of fibrin assay indicated that established IPF therapeutics affect fibrotic 

remodeling through mechanisms unrelated to fibrin degradation. 

This analysis of fibroblast-mediated remodeling of fibrin demonstrated 

characteristics of fibrotic ECM remodeling that are not assayed in other in vitro models of 

fibrosis. By investigating the cumulative effects of fibrinolysis and collagen deposition on 

fibroblastic remodeling of fibrin, this assay may provide a new resource for advancing 

understanding of fibrosis pathogenesis and for evaluating potential anti-fibrosis 

therapeutics.  
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CHAPTER 1. INTRODUCTION 

The pathogenesis of fibrosis follows the same sequence of steps and utilizes the same 

biological machinery as healthy wound healing; however, in fibroproliferative disease, 

aberrant regulation of remodeling results in excessive accumulation of ECM. Current 

phenotypic assays for fibrotic activity focus on specific stages of fibrosis pathogenesis such 

as invasion or contraction. There are currently no phenotypic assays to broadly evaluate 

cumulative effects of fibrinolysis and ECM deposition on aberrant matrix remodeling. 

1.1 Research Objectives and Specific Aims 

This work introduces and evaluates a new method to analyze ECM turnover in a 

high-throughput, label-free format. An aqueous two-phase system (ATPS) is used to enable 

generation of microscale fibroblast-laden fibrin gels, which resemble the provisional ECM 

in wound healing. Fibroblasts carry out fibrinolysis, collagen deposition, and matrix 

contraction to remodel the matrix from fibrin into collagen and eventually contracted 

tissue. Compared to other in vitro fibrosis assays, this enables evaluation of a broader range 

of the steps contributing to pathogenesis. By establishing a microscale fibrosis assay that 

enables label free analysis of fibrinolysis and collagen deposition, this technique hopes to 

enable more sophisticated studies of fibrosis biology and fibrosis therapeutics than prior in 

vitro approaches.  

Aim 1: Establish method for micro-printing fibroblast laden fibrin scaffolds. The first 

stage of this project focused on establishing a new technique to offer improved control over 

enzymatic crosslinking of fibrin. This was accomplished by implementing ATPS to 
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maintain fibrinogen and thrombin in separate phases until after the cell laden monomer 

solution had been dispensed. The optimization of a PEG/dextran ATPS enabled successful 

polymerization of sub-microliter volumes of cell-laden fibrin scaffolds, and improved 

control over crosslinking facilitated printing of scaffolds using standard multichannel 

pipettes in 96-well format. This novel fibrin printing approach enabled precise microscale 

control over hydrogel volume to create unprecedentedly small cell-laden fibrin scaffolds. 

Aim 2: Implement fibroblast laden fibrin micro-scaffolds to evaluate cell-mediated 

fibrinolysis. The ATPS fibrin micro-printing approach was then utilized to develop an 

assay for cell-mediated fibrin degradation. Fibrin micro-scaffolds could be directly 

degraded through addition of plasmin, or fibrinolysis could occur through cell-mediated 

activation of exogenous plasminogen. A simple image processing approach was 

established to evaluate fibrinolysis, and fibroblasts were shown to degrade fibrin at a rate 

dependent on cell type, cell density, and the presence of soluble factors. This presented a 

novel approach to evaluate the multifactorial contributions to dysregulated fibrinolysis 

seen in fibrotic disease. 

Aim 3: Establish fibrin remodeling assay & evaluate fibroblasts from normal and 

diseased donors with anti-fibrosis therapeutics. In order to broadly evaluate fibrotic 

remodeling another adaptation of ATPS fibrin micro-printing was implemented; where the 

combination of serum supplemented media, higher cell seeding density, and omission of 

exogenous plasminogen supported concurrent fibrinolysis and collagen deposition. A more 

sophisticated image processing approach from the prior aim was implemented in order to 

evaluate additional remodeling steps, and pro-fibrotic stimuli were evaluated for their 

effects on fibrinolysis, collagen deposition, and contraction. Multiple donors for normal  
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Figure 1: Generalized steps of wound healing and fibrosis, whereby initial tissue 
injury resolves to restore functional tissue (or deposit fibrotic lesions in fibrosis) 

and diseased lung fibroblasts were utilized in order to evaluate consistency in response to 

therapeutic stimuli and investigate the interplay between fibrinolysis and collagen 

deposition. 

1.2 Wound Healing and Fibrosis 

Wound healing requires a coherent progression of interconnected steps to restore 

functional tissue. The process of wound healing is divided into multiple phases, which are 

labelled in  

Figure 1 as clot formation, inflammation, proliferation, and remodeling [1]. After 

initial injury, the coagulation cascade establishes a fibrin clot to temporarily fill the 

wounded site. During the inflammatory phase, immune cells infiltrate the wound to prevent 

infection and orchestrate the recruitment fibroblasts. Next is the proliferative phase, where 

remodeling of the temporary fibrin matrix into collagen-dense ECM occurs [1]. Finally, 

during the remodeling phase, a more organized matrix resembling native ECM begins to 

restore healthy tissue function [1]. Dysregulation of this healing response can result in  
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Figure 2: Elasticity and compliance of lung tissue are vital for maintaining effective 
gas exchange. When interstitial fibrosis interferes with the mechanical properties of 
the lungs, respiratory capacity gas exchange efficiency can decrease. 

chronic wounds from inadequate ECM deposition or fibrotic scarring from excessive 

deposition. A substantial number of pathways contribute to this matrix turnover, and 

dysregulation can stem from a variety of sources  [2]. In the lungs, matrix properties are 

particularly important due to biomechanical requirements for elasticity and compliance as 

illustrated in Figure 2.  Alterations in lung architecture, such as excessive interstitial 

deposition of ECM, can reduce the efficacy of gas exchange leading to severe pathological 

conditions such as pulmonary fibrosis [3]. Specific matrix alterations and contributing 

biochemical pathways are detailed in the following sections. 

1.3 Pulmonary Extracellular Matrix and Cell Matrix Interactions 

ECM composition of the lungs plays a key role in defining the organ’s physical and 

mechanical properties. The basement membrane in the airways consists of several ECM 

proteins including collagen type IV, laminin, fibronectin, and entactin; all of which are 

involved in regulating the diffusion of gases across the epithelial layer. Pulmonary 

interstitial ECM also modulates a variety of cellular functions including cell migration, 

proliferation, and differentiation [4]. Thus, ECM proteins play essential roles in normal 
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lung structure and function. Although there are several ECM components in the lung, this 

thesis will focus on fibrin and collagen due to their pronounced roles in fibrotic remodeling. 

Fibrillar collagens are synthesized by fibroblasts in a process that is carefully 

regulated to maintain a balance between collagen synthesis and degradation. During 

pathological fibrotic remodeling, the collagen synthesis outpaces degradation and results 

in accumulation. Chemical signaling, biomechanical feedback, and cell-matrix interactions 

all contribute to maintaining this balance between synthesis and degradation [5]. The 

pulmonary ECM interacts dynamically with its surrounding cells, activating a variety of 

signaling pathways which influence cell morphology and behavior. 

Cells are able to utilize the ECM for communication between cells through 

mechanotransduction. Integrins are the surface proteins responsible for these cell matrix 

interactions, and are able to mediate both cell-cell and cell-matrix interactions [6]. In 

addition to direct interaction with ECM protein, integrins also interact with the pro-fibrotic 

cytokine transforming growth factor beta I (TGF-β1), enabling the activation of 

downstream signaling pathways that can increase expression of ECM proteins and ECM 

remodeling. Abnormal integrin signaling and elevated TGF-β1 levels have been implicated 

in pathogenesis of pulmonary fibrosis [7]. 

Degradation activity in ECM remodeling is dependent on numerous mediators 

including cytokines, proteases, growth factors, mechanical forces, and lipid mediators. 

Collagens are primarily degraded by matrix metalloproteinases (MMPs), while fibrinolysis 

is predominantly mediated by the serine proteinases tissue plasminogen activator (tPA), 

urokinase plasminogen activator (uPA), and plasmin [8]. The dominant inhibitor of cell- 
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Figure 3: Wound remodeling relies on coordinated fibrin degradation and collagen 
deposition. 

mediated fibrinolysis is plasminogen activator inhibitor type 1 (PAI-1), which has been 

observed in high levels in various forms of fibrosis [9, 10].  Maintaining a proper balance 

between fibrinolysis and collagen deposition is vital to wound remodeling (Figure 3). 

1.4 Myofibroblasts 

Fibroblasts are generally identified as collagen-producing cells that can anchor to the 

ECM; however, myofibroblasts are more synthetic and can anchor with more contractile 

stress than fibroblasts. These features enable the myofibroblast’s key wound-healing roles 

in collagen production and matrix contraction. During healthy wound healing, fibroblasts 

differentiate into myofibroblasts and generate contractile forces through the expression of 

alpha smooth muscle actin (αSMA). They also produce various ECM proteins for 

remodeling of the damaged tissue [11]. In pathological pro-fibrotic conditions, 

myofibroblasts can persist and sustain excessive production of ECM components. This 



 7 

excessive remodeling can disrupt tissue architecture and function [12]. During fibrosis, 

local fibroblasts are a major source of myofibroblastic cells. However, myofibroblasts may 

develop from other resident cellular precursors including alveolar epithelial cells and bone 

marrow-derived fibrocytes [13, 14]. 

1.5 Idiopathic Pulmonary Fibrosis 

Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disease with 

no known cause or cure, which effects an estimated 1 in 2000 people [15]. IPF occurs in 

aged demographics, and is diagnosed by histologic determination of usual interstitial 

pneumonia with no known underlying cause. In diagnostic CT scans and histologic sections 

from biopsied lung tissue, IPF is identified by presence of a variety of features including 

honeycombing, fibroblastic foci, excessive collagen accumulation, and loss of alveolar 

epithelial cells [16, 17]. Fibrotic scarring in the lungs not only disrupts the natural elasticity 

necessary for respiration, it also impairs gas exchange through thickening of alveolar walls 

[18]. Although there are two FDA-approved drugs on the market to treat IPF, neither is 

able to effectively halt or reverse disease progression [19]. The following chapter 

elaborates on current progress in developing phenotypic models of pulmonary fibrosis. 

Applications of these models are focused on evaluating fibrosis biology and establishing 

novel potential therapeutic. 
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CHAPTER 2. BIOFABRICATION OF PHENOTYPIC 

PULMONARY FIBROSIS ASSAYS* 

 Biofabrication techniques have enabled the formation of complex models of many 

biological tissues. We present a framework to contextualize biofabrication techniques 

within a disease modeling application. Fibrosis is a progressive disease interfering with 

tissue structure and function, which stems from an aberrant wound healing response. 

Epithelial injury and clot formation lead to fibroblast invasion and activation, followed by 

contraction and remodeling of the extracellular matrix. These stages have healthy wound 

healing variants in addition to the pathogenic analogs that are seen in fibrosis. This chapter 

evaluates biofabrication of a variety of phenotypic cell-based fibrosis assays. By 

recapitulating different contributors to fibrosis, these assays are able to evaluate 

biochemical pathways and therapeutic candidates for specific stages of fibrosis 

pathogenesis. Biofabrication of these culture models may enable phenotypic screening for 

improved understanding of fibrosis biology as well as improved screening of anti-fibrotic 

therapeutics.  

2.1 Introduction  

The field of biofabrication, the generation of complex structures from cellular and 

tissue building blocks, has seen widespread growth. These techniques may be useful in a 

wide variety of applications, including tissue engineering and regenerative medicine [20, 

21], developmental biology, disease modeling, drug/toxicity screening models, and others. 

Much attention has been paid to the manufacturing aspect of biofabrication [22], but we 

                                                 

* This chapter has been reproduced from Yamanishi, Robinson, Takayama. Biofabrication of phenotypic 
pulmonary fibrosis assays. Biofabrication, 2019. 11(3)  
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focus here on a framework to consider and evaluate the application of biofabrication to 

disease modeling and drug screening. The design parameters for a biofabricated structure 

should consider the disease pathology, cellular composition, and structure. With cellular 

systems, unexpected structures and functions may arise in interesting ways [23]. As these 

systems are explored and better understood, application to disease pathology is critical for 

translation to effective drug screening. In this chapter, we will focus on biofabrication 

techniques in the context of generating phenotypic assays of idiopathic pulmonary fibrosis. 

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease, in which normal 

lung parenchyma is progressively replaced with fibrotic scar tissue. An estimated 45% of 

deaths in the U.S. are attributed to disorders that are characterized by varying degrees of 

fibrosis, with a rising incidence [24]. Although the pathology of IPF is varied and still 

controversial, it generally involves dysregulation of the normal wound healing process. In 

a prevailing disease theory [25-28], an initial insult to the alveolar epithelial layer leads to 

recruitment of macrophages and other immune cells in a pro-inflammatory response 

(Figure 4). The epithelial injury leads to clotting and fibrin formation, accompanied by 

fibroblast invasion to plug the wound. The fibroblasts then proliferate and activate. 

Activated fibroblasts, termed myofibroblasts due to the expression of alpha-smooth muscle 

actin, contract the tissue and deposit extracellular matrix (ECM) to close the wound. In a 

healthy response, the myofibroblasts would subsequently apoptose to be cleared by 

macrophages, facilitating re-epithelialization and a return to the original healthy state. In 

pulmonary fibrosis, however, the myofibroblasts become senescent [29] and continue to 

generate stiff tissue. Lung stiffening is accompanied by irreversible alveolar collapse, 

ultimately preventing breathing in patients [30].  
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Figure 4. Simplified model of pulmonary fibrosis: Epithelial injury precedes formation of 
the clot-like provisional ECM. Fibroblasts invasion and differentiation accelerates wound closure by 
contracting and depositing ECM. The assays covered in this chapter are listed and roughly sorted by 
the phenotypes present in each assay, labelled by the gray arrows. 
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Treatment options for pulmonary fibrosis are sparse, highlighting the need for 

effective cellular and tissue models of the disease [31]. The standard animal model of 

pulmonary fibrosis uses bleomycin to generate scar tissue in rodents. This model yields 

lungs similar in histological appearance to fibrosis, but subtle differences from the human 

disease have led to misuse of the model [32]. In parallel with animal studies, there has been 

considerable progress in development of complex in vitro models of pulmonary fibrosis 

[33]. A subset of these models provides readouts of cell and tissue level phenotypes 

associated with pulmonary fibrosis. Phenotypic assays are complementary to mechanistic 

assays, because they can account for complex, multifactorial cell behaviors producing 

sometimes unexpected and emergent behavior [34-37]. Phenotypic assays have proven 

generally useful in the discovery of first-in-class therapeutics [38], although not yet for 

fibrosis. Biofabricated phenotypic assays have aided in understanding of disease 

pathology, particularly the role of mechanotransduction and matrix stiffness in a feedback 

loop of fibroblast activation [39-41]. Some of these discoveries have led to the 

investigation of new therapeutic targets [42, 43]. In this chapter, we will examine and 

contrast a variety of biofabrication techniques to assess pulmonary fibrosis phenotypes in 

the in vitro setting. This analysis aims to summarize progress and highlight challenges and 

opportunities in this field. We also note that while this chapter focuses on pulmonary 

fibrosis, many of the concepts are applicable to biofabrication of a broader range of 

diseases that involve fibrosis and we cite relevant examples from some of these other areas. 
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Table 1: Biofabricated phenotypic assays for pulmonary fibrosis. Colored dots 
correspond to fibrosis phenotypes, as in Figure 4. ⬤ Epithelial injury and clot formation. ⬤ Fibroblast 
invasion and differentiation. ⬤ Contraction and ECM remodeling. 

Technique Phenotypes 
Cell types 

used 
Exogenous 
materials 

Additional 
equipment 

Applications 
and findings Ref 

Scratch wound 
assay 

⬤ 

Re-
epithelialization 

Primary 
endothelial 
cells and 
NIH3T3 

None None 

Decreased migration 
of primary ECs upon 

deletion of focal 
adhesion kinase 

[44] 

Alveolar 
epithelial 
stretching 
damage 

⬤ 

Cell death 
Rat alveolar 

epithelial 
type II cells 

Silicone 
membrane 

Cam motor, 
gasket setup 

Cell death reduced 
by limiting the 
amplitude of 
deformation 

[45]  

Alveolar 
epithelial 
stretching 
damage 

⬤ 

Cell death and 
detachment from 

surface 

Mouse 
alveolar 

epithelial 
cells 

PDMS 
membrane 

Syringe pump, 
microfabrication 

Meniscus 
propagation in 

addition to cyclic 
stretch resulted in 

additional monolayer 
detachment 

[46] 

Air Transwell 
co-culture 

⬤ 

Protein 
expression 

SAEC and 
endothelial Transwell None 

Exposure of small 
airway epithelial 

cells to multi-wall 
carbon nanotubes 

induced pro-
inflammatory 

responses in co-
cultured endothelial 

cells 

[47] 

Transwell with 
aerosol exposure 

⬤ 

Viability, 
cytokine 

expression 
A549 Transwell with 

1 μm pore 

Nebulizer, gas 
containment 

chamber 

ZnO nanoparticles 
induced pro-

inflammatory and 
oxidative stress 

responses only above 
occupationally 

allowed exposure 
levels 

[48]  

Photodegradable 
microbeads in 
hydrogel co-

culture 

⬤ ⬤ 

Migration 

A549, human 
normal lung 
fibroblasts 
CCL-210. 

Home-made 
microspheres, 

hydrogels 

Operetta high 
content imaging 
system (Perkin 

Elmer) 

A549 epithelial cells 
stimulated fibroblast 

migration 
[49] 
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Transwell 
scratch and 

invasion 

⬤ ⬤ 

Migration, 
wound closure, 

re-
epithelialization 

A549 and 
fibroblast 
(NHLF vs 

IPF) 

Transwell with 
8 μm pore None 

Fibroblasts from IPF 
patients had an 

impaired response to 
epithelial injury 

compared to healthy 

[50] 

Tethered fibrotic 
microtissue 

array 

⬤ ⬤ ⬤ 

Contraction, 
tearing epithelial 
layer, activation 

Primary 
NHLF, 
human 
primary 
SAECs 

PDMS, 
collagen, 
matrigel, 

fibronectin 

Micropillar 
PDMS device 

Pirfenidone and 
Nintedanib both 

reduce contractile 
and fibrotic 
phenotypes 

[51] 

PDMS 
micropillar 

tethered collagen 
gel 

⬤ ⬤ 

Contraction BEAS-2B 
normal lung 

epithelial 
cells 

PDMS 
micropillars, 

collagen 

Microfabrication Short multi-wall 
carbon nanotubes 

stimulate contraction 
and pro-fibrotic 

phenotype 

[52] 

Fibroblast 
invasion from 
collagen into 

fibrin 

⬤ ⬤ 

Invasion Human adult 
dermal 

fibroblasts 

Dried fibrin 
gels, collagen, 

fibronectin 

None Dermatan sulfate is a 
necessary 

proteoglycan for 
fibroblast invasion 

into fibrin gels 

[53] 

Fibroblast 
invasion from 2D 

into fibrin gel 

⬤ ⬤ 

Invasion Isolated 
human lung 

mesenchymal 
cells 

Fibrinogen, 
thrombin 

inverted phase 
contrast 

microscope 

Fibroblast invasion 
into fibrin gels is 
CD44 dependent 

[54] 

Fibrin 
contraction 

Assay 

⬤ ⬤ 

Proliferation and 
collagen 
synthesis 

Human 
Dermal 

Fibroblasts 

Fibrinogen, 
thrombin, 

inverted 
microscope to 
measure height 

TGF-β induced fibrin 
gel contraction and 
collagen synthesis 

[55] 

Fibroblast 
invasion into 

spheroids 

⬤ 

invasiveness T47D (breast 
cancer), 
MCF7 + 

H1299 (lung 
cancer), HPF 
(pulmonary 
fibroblasts) 

480 compound 
library 

agarose for non-
adherent surface 

for spheroid 
formation 

Prostaglandins and 
ROCK inhibitors 
reduced fibroblast 

invasion into 
spheroids 

[56] 

2D nodule 
formation assay 

⬤ 

Nodule 
formation 

Many 
different 

cells 
examined 

None None Alk5 inhibitors and 
tranilast inhibited 
nodule formation 

[57] 

Table 1 continued 
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Stiffness 
gradient collagen 

gel 

⬤ 

Activation, 
collagen 

production 

Human lung 
fibroblasts 
(CCL-151) 

Collagen, 
acrylamide, 

bisacrylamide, 
Irgacure 2959 

UV light source Fibroblasts activate 
in response to stiff 

environments 
through COX-2 

dependent pathway 

[39] 

Aqueous two-
phase system 
microprinting 

⬤ ⬤ 

Contraction HEK 293, 
NIH 3T3, 
MC 3T3 

Polyethylene 
glycol, dextran, 

collagen 

Robotic pipettor Small volume 
collagen gels contract 
in response to 1 min 

of TGF-β1 
stimulation 

[58, 
59] 

Floating collagen 
gel contraction 

⬤ ⬤ 

Contraction Human 
foreskin 

fibroblasts 
monoculture 

Collagen None High population 
doubling level cells 
maintain contractile 

ability; gold standard 
method to assess 

contraction 

[60] 

Low-adherence 
plates facilitated 

collagen gel 
shrinkage 

⬤ ⬤ 

Contraction NB1RGB 
normal 
human 
dermal 

fibroblasts 

Collagen Flexcell 
compression 

Cyclic compression 
induced hyaluronic 
acid production in 

fibroblasts 

[61] 

Glass capillary 
confinement 

⬤ ⬤ 

Contraction Primary 
human 

bladder-
derived 
smooth 

muscle cells 
(SMC) 

Glass capillary None U46619, a 
prostaglandin H2 

analog, induces SMC 

contraction 

[62] 

Supersoft 
micropost 

lithography 

⬤ ⬤ 

Micropost area 
reduction 

HS-5 stromal 
fibroblast 
cell line 

Microfabricated 
device 

Microfabrication LPA reversibly 
induces contractile 
stress in fibroblasts 

[63] 

Teflon and oil 
lubrication ⬤ ⬤ 

Contraction Normal adult 
human 
dermal 

fibroblasts 

Teflon-coated 
glass, teflon-

coated washer, 
mineral oil 

None PDGF-BB induces 
fibroblast contraction 

[64] 

Direct contact 
collagen gel co-

culture 

⬤ ⬤ 

Macroscopic & 
microscopic 
contraction 

A549, 
16HBE14o-, 
CCD-18 lung 

fibroblast 

Collagen 2-photon 
microscope for 
collagen sub-

analysis 

Epithelial cells slow 
fibroblast contraction 

[65] 

Direct contact 
ALI with 

Gel contraction IMR-90 
human fetal 

lung 
fibroblasts, 

Collagen None Epithelial cells 
contribute to 

fibroblast expression 

[66] 

Table 1 continued 
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collagen gel 
contraction 

⬤ ⬤ 

normal 
human 

bronchial 
epithelial 

cells 
(HBECs) 

of MMP-9 and 
MMP-2 

Electrical 
impedance 

⬤ 

Contraction Human 
primary 

bronchial 
smooth 

muscle cells 
(BSMCs), 

primary lung 
fibroblasts 

(HLFs) 

Gold electrode 
arrays 

xCELLigence 
RTCA MP 
instrument 

Identified non-
covalent agonists and 

antagonists of 
TRPA1, applications 

in asthma and 
allergies 

[67] 

Nano-
indentation with 

collagen gel 
contraction to 

measure 
contractile forces 

⬤ 

Contractile force Human aortic 
adventitial 
fibroblasts 

Collagen type I Depth-sensing 
nanoindentation 

tester 

Histamine-induced 
collagen gel 

contraction by 
fibroblasts reduced 

the stiffness 

[68] 

Collagen gel 
tethering 

⬤ 

Direct force 
measurement via 

strain gauge 

Normal and 
diseased 

human and 
calf skin 

fibroblasts 

Strain gauge Custom strain 
gauge 

Fibroblasts generate 
tensional homeostasis 

[69] 

Microfluidic 
droplet 

generation 

⬤ 

Not reported 3T3 
fibroblast 

cells 

porcine gelatin, 
rat tail collagen 

type I 

Blue LED for 
photocrosslinking, 
microfabrication 

Fibroblasts spreading 
and invasion was 

enhanced by 
increased microgel 

stiffness 

[70] 

Optical 
measurement of 
collagen cluster 

formation 

⬤ 

Deposition Normal 
primary 

human lung 
fibroblasts 
(WI-38) 

Macromolecules 
(optional) 

None Known antifibrotic 
compounds reduced 

scarring; newer 
compound: 

microRNA29c found 
to be antifibrotic 

[71] 

Collagen 
microsphere 
generation 

⬤ 

None MDA 231 
cells 

Collagen Microfabrication 
lab 

Cells were 
successfully 

encapsulated in 
collagen microgels 

and remained viable 

[72] 

Agarose-
embedded 

collagen gels 

⬤ 

Contraction U373-MG 
human 

glioma cells 

Collagen, 
agarose 

None Microscale 
mechanics are more 
important for cell 

behavior than 
macroscale 
mechanics 

[73] 

Table 1 continued 
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2.2 Techniques for in vitro phenotypic analysis of pulmonary fibrosis 

This review is organized by describing in vitro cell-based assays that aim to recreate 

various aspects of pulmonary fibrosis pathogenesis roughly in their order of progression in 

vivo: epithelial damage, clotting, fibroblast invasion, fibroblast activation, myofibroblast 

contraction, and myofibroblast persistence. These techniques are summarized in Figure 4, 

where they are sorted roughly by the phenotypes they cover and when those phenotypes 

occur in a simplified model of IPF pathogenesis. Table 1 of this chapter further summarizes 

the techniques.  

2.2.1 Phenotypic assays incorporating epithelial damage 

In the context of pulmonary fibrosis, epithelial damage could arise from a variety 

of sources including aging, smoking, infection, inhaled toxins or nanoparticles, and a 

variety of other insults [74]. A common observation among IPF patients is telomere 

shortening. The telomere shortening hypothesis of disease pathogenesis is consistent with 

the strong correlation between prevalence and patient age. Assays of epithelial damage in 

the context of IPF should therefore include some consideration of aging, repetitive damage, 

or similar types of stress. Downstream biochemical signaling has been reviewed elsewhere 

[3, 75, 76], and should also be considered. A plethora of techniques for culturing and 

assaying epithelial cells exist, but this chapter will cover those assays that pertain most 

specifically to epithelial-fibroblast interactions in pulmonary fibrosis. 

Several techniques have been developed to physically induce epithelial damage, the 

presumed first step towards development of pulmonary fibrosis. Some of these techniques 

use custom-built devices to impose cyclical strain on epithelial cells, similar to that seen in 
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healthy breathing. In one iteration, alveolar epithelial cells were seeded onto a flexible 

silicone membrane, anchored with a washer [45]. This membrane was cyclically stretched 

by pressing on the underside of the membrane with a motorized cam mechanism. The 

authors demonstrated that epithelial cells were damaged by strains of ~25%. Furthermore, 

additional culture time prior to cyclic strain had a protective effect on the epithelial cells. 

Another version of the technique comprised a stretching microdevice with flexible 

polydimethylsiloxane (PDMS) membrane and syringe pump hydraulic actuation [46]. This 

study found that air-liquid interface culture exposed cells to high damage from cyclic 

stretching at ~35% strain. They also examined fluid mechanical stress from liquid plug 

movement, finding that the damage could be reduced by addition of pulmonary surfactant. 

These studies examined physiological strain, but they could be adapted to replicate the 

fibrotic lung, which is less compliant than healthy lungs. Although hyperventilation has 

not been causally linked to pulmonary fibrosis, mechanical ventilation has been shown to 

correlate with bleak outcomes for patients with pulmonary fibrosis whose hypoxemia 

prompts the use of mechanical ventilation [77, 78]. These cyclic stretch models provide 

methods to assess the epithelial contribution to disease exacerbation. 

In static culture settings, membrane culture techniques such as transwell culture 

have gained tremendous popularity. These devices comprise a porous membrane fixed to 

an insert that can be submerged into a culture well, enabling the membrane to physically 

separate co-culture with two distinct cell populations [47]. Transwells have also been used 

extensively to generate and test air-liquid interface (ALI) culture. ALI culture prompts 

many airway epithelial cells to differentiate into more physiologic epithelia [79]. The 

membrane ALI format has been adapted to allow aerosol exposure to nanoparticles in well-
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plate formats [48] as well as microfluidic devices [80]. In addition to cell viability and 

biochemical assays, membrane cultures enable measurement of epithelial barrier integrity. 

Barrier function can be measured by either permeability assays using fluorescently-labeled 

macromolecules, such as dextran [81], or using trans-epithelial electrical resistance [82]. 

Transwell and membrane techniques present versatile tools for biofabrication of assays 

incorporating ALI epithelial components. 

For analysis of epithelial injury and wound healing, the scratch wound assay is well 

established [44]. Briefly, a confluent monolayer of epithelial cells is denuded using a pipet 

tip or other blunt object to tear off the epithelial cells. The remaining edges are tracked 

visually as the epithelial cells proliferate and migrate to repair the wound area. A recent 

paper combined the scratch wound assay with Transwell co-culture [50], wherein A549 

epithelial cells were grown on the top of the membrane, while primary human lung 

fibroblasts (normal vs IPF) were grown on the underside of the membrane, as depicted in 

Figure 2A. The authors reported differing behavior in normal and IPF patient-derived 

pulmonary fibroblasts. After scratching the epithelial layer, the A549 migrated over 4 days 

to close the wound. In co-culture with normal fibroblasts, the fibroblasts migrated into the 

wound site to plug the gap and inhibited re-epithelialization. However, pulmonary fibrosis-

derived fibroblasts failed to invade the wound site, allowing the epithelium to close the 

wound. This study prompts interesting questions about the long-term behavior of 

pulmonary fibroblasts in healthy and diseased states, as the normal fibroblasts appeared 

more active in the short period examined than the diseased fibroblasts, contrary to what 

may be expected.  
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Despite the progress made with biofabricated assays of epithelial damage, there 

remains fertile ground for research regarding long-term culture, chronic epithelial damage, 

and downstream signaling relevant to IPF. A particularly challenging aspect of lung 

research has been the inability to culture alveolar epithelial cells. However, recent work 

has indicated that co-culture with pulmonary fibroblasts may help solve the problem [83]. 

New biofabrication methods could provide additional benefits by working directly with 

clinicians to establish cell cultures directly from the source. 

2.2.2 Phenotypic assays incorporating fibroblast invasion 

Following epithelial damage, a coagulation cascade results in the formation of the 

provisional ECM. Fibrinogen from blood plasma is cross-linked into fibrin, which is 

supported hydrostatically by glycosaminoglycans such as hyaluronic acid [84]. Fibroblasts 

from surrounding tissue then invade this provisional ECM in order to initiate the 

remodeling process. As illustrated in Figure 1, formation of the provisional ECM and 

invasion of fibroblasts is an early component of the wound healing response, where it can 

be exaggerated in fibrotic phenotypes [26]. A number of techniques have been developed 

to recapitulate behavior of fibroblasts in the provisional ECM, both for evaluation of the 

physiology of fibroblast invasion and for screening of potential therapeutics.  

One such approach utilized a fibroblast-containing collagen matrix, formed on top 

of a dehydrated/rehydrated fibrin gel in media. Fibroblasts were then able to invade the 

fibrin matrix. This was used to evaluate the influence of fibronectin during fibroblast 

invasion into a fibrin matrix, and it was found that patterns of fibronectin provide a conduit 

for fibroblast transmigration from collagenous stroma into the fibrin clot provisional  



 20 

 

Figure 5. Phenotypic assays for invasion: (a) In the Transwell scratch and invasion assay, 
fibroblasts are seeded on the underside of the Transwell, while epithelial cells are seeded on the top 
side. The epithelial layer is gently scratched with a pipet tip to remove a section of epithelial cells. After 
several days of culture, epithelial cells and fibroblasts may migrate into the opened area [50]. (b) The 
collagen plug covered in fibrin assay monitors fibroblast migration from an encapsulated collagen gel 
out into the surrounding fibrin gel [85]. (c) In a spheroid fibroblast invasion assay, spheroids are seeded 
in agarose-coated 384-well microplates. Fibroblasts added after spheroid formation can be observed 
invading the spheroids [56]. 

matrix. Fibroblast migration began as early as 24 hours into the assay, but was significantly 

slowed by the removal of fibronectin [86]. This approach was used to further establish the 

necessity of CD44 and Syndecan-4 Proteoglycan in fibroblast invasiveness [53, 87]. 

Miron-Mendoza et al. used a similar assay to evaluate the differences in fibroblast 

migration through collagen compared to migration through fibrin. Cell-laden collagen 

discs were coated with fibrin for an easily imaged cell invasion assay (Figure 5B). This 
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was used to show that supplemental fibronectin was necessary for the invasive fibroblast 

phenotype, and fibroblast-fibronectin network formation was dependent on α5β1 integrin. 

Fibronectin tracks (fluorescently labelled) were formed at the leading edge of migrating 

cells and fibroblasts preferentially migrated through pre-existing fibronectin tracks laid 

down by other cells [85].  

Other phenotypic assays for fibroblast invasiveness have focused on migration 

from 2D adherent culture into fibrin matrices. One such approach used microdroplets of 

fibroblast suspension patterned on a 6-well plate and covered with a fibrin matrix [88]. 

Through this approach, migration from the 2D culture into the fibrin gel was used to 

evaluate invasiveness of fibroblasts isolated from patients with acute lung injuries. This 

was used to evaluate the role of CD44 in mediating fibroblast invasion and subsequent 

tissue fibrosis. By blocking the function of CD44 with monoclonal antibodies, fibroblast 

invasion into a fibrin matrix was inhibited [54]. 

An alternative, matrix-free approach focused on fibroblast invasion into cancer 

spheroids. This was used for evaluation of therapeutic candidates to combat fibrotic 

processes in cancer, but could be applied as a phenotypic assay for invasiveness in other 

forms of fibrosis. The approach was optimized for 384-well microplates for high-

throughput evaluation of drug libraries. Tumor spheroids were formed in agarose-coated 

wells, as depicted in Figure 5C. A suspension of fluorescently labeled fibroblasts was then 

added and invasiveness was evaluated via confocal spinning disc microscopy to locate the 

fluorescent lung fibroblasts that had invaded the spheroids. A 480-compound library of 

bioactive substances was evaluated for anti-invasiveness, where several prostaglandins and 

ROCK inhibitors were identified as potential therapeutics [56].  
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Lewis et al. used a co-culture technique involving a photodegradable polyethylene 

glycol (PEG)-based hydrogel in order to evaluate the impact of crosstalk between 

fibroblasts and cancer cells on invasiveness of the fibroblasts. An Operetta high content 

imaging machine was used for high-throughput migration tracking in order to show the 

increased invasiveness and matrix metalloproteinase (MMP) expression of fibroblasts 

under the influence of cross-talk with cancer cells compared to fibroblasts alone [49]. 

Despite the involvement of the fibroblast invasion into the provisional ECM during 

fibrosis, there remains a question of whether it is necessary for the pathogenesis of fibrotic 

disease. In the case of pulmonary fibrosis, fibrin deposition does not itself appear to be 

required for pathogenesis because fibrinogen-null mice are still able to develop lung 

fibrosis after bleomycin-induced lung injury [89, 90]. Assays based on fibroblast invasion 

into the provisional ECM should therefore establish physiological importance before being 

used to evaluate compound libraries for potential therapeutic candidates.  

2.2.3 Phenotypic assays incorporating fibroblast contraction 

A histological hallmark of IPF is the presence of fibroblastic foci, dense clusters of 

cells and ECM in the lung. The characteristic cell type in these clusters is the myofibroblast. 

These cells are a differentiated and activated form of fibroblasts, which synthesize high 

amounts of collagen and contract the ECM. The myofibroblast is considered the primary 

effector cell in driving the progression of IPF [91]. There are extensive reviews covering 

the various roles and behaviors of myofibroblasts [91-95]. A plethora of biofabrication 

techniques have been developed to measure contraction, an identifying characteristic of the 

myofibroblast phenotype. The bulk of these techniques are based on collagen contraction, 
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but there are exceptions. Tuan et al. used a fibrin gel scaffold in their model as an analogue 

to the provisional ECM in wound repair. Gel contraction and collagen production were 

evaluated in order to show matrix remodeling under transforming growth factor (TGF-β1) 

stimulation [55]. The use of other hydrogel alternatives to collagen is already covered in 

detail by other reviews [33, 96, 97]. 

2.2.3.1 Collagen gel contraction assay 

Collagen gel contraction is the gold standard of phenotypic readouts for evaluation 

of fibrosis, with widespread use. The first reported use of a collagen gel contraction assay 

established the standard contraction assay format in 1979 [60]. When fibroblast-laden 

collagen gels are cultured in media with serum, they exhibit a high baseline level of 

contraction, shrinking gels to as small as 1/7th the original area within 24 hours [60, 98]. 

The collagen gel may adhere to the walls of the dish, so most protocols physically detach 

the gel from the wall using a sterile pipet tip after polymerization. The need for this step 

limits the throughput of collagen gel contraction assays. These assays are often called 

floating collagen gels [99]. The contraction has been divided into three phases: slow lag 

phase, rapid contraction phase, and sustained slow contraction phase [100]. During the lag 

phase, fibroblasts recover from trypsinization and elongate along collagen fibers. As 

previously reviewed [92], tensile force measurements of collagen gels indicated that the 

lag phase correlates with fibroblast adhesion and cell movement within the collagen gel. 

Therefore, the lag phase has also been called the traction phase [92]. The length of the lag 

phase can be shortened by using more cells, more serum, or cells at higher passage number 

[100]. Following the lag phase, the collagen gel is rapidly contracted and remodeled, at 

rates sped up by high cell number or serum concentration and slowed down by higher initial 
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collagen concentration or cytoskeletal inhibitors. Lastly, the system enters a state of slow, 

prolonged contraction.  

Contraction by fibroblasts is regulated to a large extent by TGF-β1 [101], which 

can be added exogenously to induce contraction [13] or it can be produced or activated by 

fibroblasts themselves [102], among other sources [102-104]. The combination of TGF-β1 

and tensile stress induces fibroblasts to differentiate to myofibroblasts, identified by their 

expression of alpha-smooth muscle actin (α-SMA), stress fibers, and high contractility 

[101]. It should be noted that tensile stress is also a necessary and critical component for 

myofibroblast differentiation [105]. The capacity for tensile stress within collagen gels can 

be increased by tethering gels to the dish [60] or altering gelation parameters to form stiffer 

gels. Gels formed at more acidic conditions down to pH 5.5 have demonstrated higher 

tensile strength than gels formed at more neutral or alkaline conditions up to pH 8.0 [106]. 

Collagen stiffness can also be increased by using higher concentrations of collagen [107].  

Following the initial development of the collagen gel contraction assay, many 

adaptations to the format have been added. The conventional collagen contraction assay is 

low-throughput and high cost, due to the large consumption of collagen and cells. More 

modern techniques enable higher throughput with drastically lower collagen gel volumes. 

In addition to the cost benefit, low volume collagen gels also reduce the diffusion distance 

necessary for media and relevant exogenous biomolecules [58]. 
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Figure 6. Collagen contraction adaptations: (a) Soluble, cell-laden collagen is pipeted into glass 
capillary tubes. After gelation, the collagen contracts linearly, enabling easy measurement of 
contraction [62]. (b) Teflon-coated surfaces contain the collagen gel, allowing smooth contraction 
without friction-induced deformations. The mineral oil layer helps confine the gel to the Teflon-coated 
contraction region [64]. (c) Aqueous two-phase systems (ATPS) enable formation of collagen microgels 
without excessive evaporation by confining soluble collagen to a dextran-rich phase until gelation. The 
ATPS components are washed out and floating collagen gel assay can contract [58]. 

One approach to improve assay consistency is to confine the collagen gel within a 

glass capillary tube, yielding a single, linear measurement, as in Figure 6A [62]. Suspended 

human bladder-derived smooth muscle cells in an uncured collagen solution were aspirated 

into glass capillary tubes and polymerized. The collagen gels were then detached from the 

capillary by gently applying air pressure to one end. Over 48 hours of culture, cell viability 

was consistent between the capillary culture method and the traditional whole well culture 

method. Due to the diffusive barrier introduced by the glass capillary, the stimulants and 
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inhibitors were added to the gel prior to polymerization. Standard deviations ran close to 

1% between replicates. The authors also suggest that the capillary technique is amenable 

to future addition of electrical current. Although the capillary technique is limited to short-

term culture applications due to diffusive limitations, it provides a consistent, easy-to-read 

assay that uses low volumes of collagen.  

Although fibroblasts can contract collagen gels shortly after seeding, the gel can often 

attach to the walls and bottom surface of the well, introducing inconsistencies when 

measuring and analyzing the contraction. In addition to the pipet tip manual detachment 

method, several groups have developed techniques to consistently seed gels that cover only 

a fraction of the well area, often employing non-adherent surfaces to further reduce friction 

[61].  

Sage and coworkers published a series of papers using the collagen gel contraction 

assay, with an array of techniques to reduce gel adhesion. They initially used agarose-

coated microwells to reduce the adhesion of the collagen gels to wells [98]. In a subsequent 

study, however, their group designed a water-in-oil system to contain the collagen gel to a 

small Teflon-coated area in the center of the well, as shown in Figure 6B [64]. In this 

technique, a Teflon glass cloth was pinned to the bottom of a 12-well tissue culture well 

with a Teflon-coated washer. The pieces were then submerged in mineral oil. Collagen 

with suspended adult human dermal fibroblasts was then pipetted into the center of the 

Teflon washer ring and incubated to polymerize the gel. Interestingly, the authors found 

that as the collagen gel contracted, it expelled media, leaving a gel in water in oil 3-phase 

system.  The oil and Teflon modified collagen gel contraction assay performed better than 

the conventional assay on multiple fronts. The gels maintained a more consistent circularity 
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compared to the conventional assay, wherein gels had a tendency to adhere to the well and 

form elongated shapes, stretched tightly between the anchor points. In addition to altering 

the gel shape, the anchor points in the conventional method also prevented full contraction, 

introducing noise to the measurements.  

Furthermore, conventional assays exhibited cupping, a result of cells sedimenting 

to the bottom of the collagen gel as it cured, producing vertically asymmetric contraction. 

In the large gels, cupping can interfere with microscopy, as cells in the center of the gel are 

pulled to a higher plane than the cells at the bottom of the well. The pre-warmed oil 

facilitated more rapid polymerization, trapping cells in a more uniformly distributed state. 

In studies using platelet-derived growth factor (PDGF-BB) to stimulate contraction and 

measuring the reduction of area, Sage and coworkers achieved standard deviations of 

roughly 5% between replicates. While the oil and Teflon technique provides a more 

uniform and consistent contraction assay, it does lose some of the mechanical stress that 

has previously been shown to be a driving factor for fibroblast differentiation and activation 

[105]. The authors did not comment on this point. Additionally, the technique is rather low-

throughput and still uses large volume gels. Nonetheless, their study presents a compelling 

case for addressing assay consistency. The widespread availability of non-adherent 

microplates for spheroid culture provide an accessible alternative to the Teflon-coated 

method. 

More recently, aqueous two-phase systems (ATPSs) have been used to generate 

collagen microgels for contraction assays [58] (Figure 6C). Scaling down to single µL gels 

facilitates diffusion of stimulatory or inhibitory proteins and molecules into the center of 

the gel. However, these small gels evaporate during the 30 min collagen polymerization 
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process, often killing the embedded cells. The authors used ATPS to provide an aqueous 

buffer against evaporation, while confining the collagen and cells into the gel during 

polymerization. ATPS are phase separating solutions reminiscent of oil-water two-phase 

systems, but both phases contain primarily water. The distinction between phases in this 

particular ATPS is the presence of immiscible polymers: PEG and dextran. Conveniently, 

many cells and proteins partition preferentially to one phase, allowing ATPS to be used to 

spatially confine cells and collagen. After the collagen gel formed, the PEG and dextran 

were washed out and replaced with culture medium, leaving a 5 µL cell-laden collagen gel. 

This technique is compatible with conventional liquid handling tools and imaging, making 

it appropriate for high-throughput studies. A follow-up study used the technique to produce 

1 µL collagen gels and showed excellent robustness of the technique to assess cytotoxicity 

in collagen gels [59]. However, the consistency and reproducibility of the microgel 

technique to assess contraction have not yet been established. 

Several microfluidic approaches have facilitated formation of sub-millimeter 

collagen gels, as reviewed recently [108, 109]. These techniques use photolithography to 

generate channels 10s to 100s of microns in width for precise and controlled fluid mixing. 

Flow-focusing devices introduce a collagen-containing aqueous phase into a stream of oil 

to produce microdroplets of controlled size [110]. Several groups have utilized these device 

geometries to generate and cure cell-laden collagen microgels 10s to 100s of microns in 

diameter [70, 72, 111]. However, these studies have not yet examined the use of 

microfluidic collagen microgels in contraction assays. 
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2.2.3.2 Mechanics of collagen gel contraction 

In parallel with the development of techniques for assay consistency and throughput, 

several groups have designed methods to measure more detailed mechanical information 

from collagen gel contraction assays. Liu et al. demonstrated the importance of substrate 

stiffness in pulmonary fibrosis by generating a stiffness-gradient collagen gel using 

photopolymerization of polyacrylamide [39]. They showed that fibroblasts are more active 

and responsive to TGF-β1 on stiff substrates and less active on soft substrates. The lack of 

fibroblast activation was also found by inhibiting focal adhesion kinase formation with 

prostaglandin E2, a metabolic product produced by epithelial cells that has also been shown 

to suppress fibroblast activation in co-culture [112]. This technique was demonstrated as 

both a stiffness gradient gel and a 96-well discrete stiffness array, highlighting its 

versatility in probing the contractile phenotype of fibroblasts. It also provided evidence for 

the critical insight that fibroblasts enter a positive feedback loop, activating in response to 

a stiff microenvironment and contracting to exacerbate the stiffness. 

A separate study used agarose to modulate collagen gel stiffness [73]. More agarose 

yields macroscopically stiffer gels, which can activate fibroblasts [39]. However, the 

agarose also reduces the effective local stiffness experienced by the cells, inhibiting the 

ability of the cells to cross-link and locally stiffen the matrix [73]. This study indicated that 

collagen concentration can increase contractility by increasing ligand availability, possibly 

also by reducing the ability of the collagen fibrils to slide past the agarose. The competing 

factors of agarose-to-collagen ratio and the collagen concentration allow fine tuning of both 

collagen stiffness and ligand availability. 
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Although the strength of fibroblast contraction can be inferred in relative terms by 

monitoring the shrinkage of the collagen gel, more granular mechanical information 

requires more advanced techniques. A variety of mechanical sensors and accompanying 

theoretical frameworks have been built into or applied externally to the collagen gels [11, 

113]. Harley et al. made a collagen-glycosaminoglycan scaffold by freeze-drying [114]. 

The process generated somewhat uniform structures with repeating lattice units, allowing 

for single-cell microscopic measurements to be incorporated into a whole-gel solid 

mechanics model. The authors generated both homogeneous, isotropic structures and 

heterogeneous structures for comparison. They used an Euler model of buckling stress to 

determine how much force a cell must exert on the lattice to buckle a strut, given the strut’s 

thickness and the overall elastic modulus of the material. Depending on the thickness of a 

given strut, the dermal fibroblasts exerted contractile stress of 11 to 52 nN per cell. The 

authors examined many individual cells buckling struts of various thicknesses and found 

an upper bound of 450 nN, which the cell was unable to contract. The mode of contractile 

failure was proposed to be at the focal adhesion. While this model provides granular 

information about the mechanical stresses exerted by cells, the collagen 

glycosaminoglycan structure represents a far stiffer matrix (~5 MPa linear elastic modulus) 

compared to the healthy or fibrosis lung (1-20 kPa) [39]. The analysis provided in this 

study could be adapted in future studies examining biofabricated materials with stiffness 

more relevant to pulmonary fibrosis, as well as biochemical stimuli relevant to IPF. 

Another treatment of collagen gel contraction mechanics derived a solid mechanics 

model around a cylindrical collagen disc model [68]. The model assumes an 

incompressible solid with a non-linear strain-dependent elastic modulus. It uses linear 
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elastic mechanics to relate the area reduction and the elastic modulus (measured with a 

nano-indentation probe) to the bulk cell contraction force. These calculations yielded a 

contractile force of 1.41 nN (baseline) to 4.15 nN (activated) per human aortic adventitial 

fibroblast cell. The differences in substrate stiffness and cell type confound any 

comparisons between this method and the collagen-glycosaminoglycan scaffold 

calculations. One drawback to this model is the incompressible solid assumption. Several 

studies cited in this chapter indicate the collagen gels lose water as they compress and 

decrease volume [62, 64], invalidating the incompressible assumption. Nonetheless, this 

model provides a general method to approximate contractile forces from area reduction 

measurements for cylindrical collagen gels. 

2.2.3.3 Strain gauge techniques 

Several techniques have been developed to measure contractile forces using macroscale 

[69] and microscale strain gauges [11]. In most of these systems, cell-laden collagen gels 

are formed to span between two anchors. One or both of these anchors acts as a strain 

gauge. Early methods used large electronic strain gauges, converting the strain (or 

displacement) into a change in resistance using piezoelectric materials [69]. If the geometry 

and elastic modulus of the anchoring material is known, the force exerted by the cells can 

be calculated. Modern methods apply the same principle, but use microscale anchors and 

detect strain by time-lapse imaging. Because the force exerted by cells is relatively small, 

strains on the materials commonly used for cell culture (plastics, PDMS, etc.) can be 

difficult to detect. A common workaround forms the scaffold into tall micropillars, where 

the long torque arm and cantilever action amplifies the distance that the micropillar moves 

in response to the nN-scale cell contractile forces [11].  
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Figure 7. Microfabricated devices for fibroblast contraction: (a) Cell-laden collagen gels 
are formed inside of microfabricated, supersoft, donut-shaped wells. The cells are able to contract and 
deform the low elastic modulus pillars [63]. (b) Cell-laden collagen gels are seeded around micropillars. 
When the cells contract, the micropillars bend as predicted by cantilever solid mechanics [52]. 

Another technique to measure the contractile force of fibroblasts used supersoft 

PDMS to generate microposts inside donut-shaped wells, as shown in Figure 7A [63]. 

Although hydrogels and other supersoft materials can be produced, these materials often 

suffer from tearing during demolding in traditional replica molding techniques. The 

supersoft PDMS technique addressed the problem by using ‘hard candy’ recipes to 

generate sacrificial replica molds [63]. This technique enabled fabrication of PDMS 

microwells with 200 µm diameter microposts and an elastic modulus on the order of 0.1 

kPa. Fibroblast-laden collagen gels were centrifuged into the microwells, where they 

formed a ring around the post. When the fibroblasts contracted, they squeezed the post. 

Solid mechanics analysis enabled the calculation of contractile force on the post by 

measuring the reduced post area. The authors reported the force exerted as a bulk radial 

stress and did not calculate a per-cell force. The authors also demonstrated the ability to 
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detect an initial contraction, apply an inhibitor, then see the cells and the post relax back 

toward its original shape, demonstrating reversible elastic compression.  

Chen et al. modified the tethered collagen gel format to work at the microscale, as 

shown in Figure 7B [52]. They tested epithelial cells by treating the cells with multi-walled 

carbon nanotubes (MWCNTs) in the culture flask prior to seeding in the microdevice. Cells 

were then suspended and seeded into the microdevices along with type I collagen by 

centrifugation. The microtissues formed and detached from the outer walls within 12-24 

hours, with cultures lasting for 1 week without detaching from the micropillars, due to their 

goblet shape. The authors found that low concentrations of MWCNTs increased 

contraction force, while high concentrations inhibited contraction force. The low dose 

conditions corresponded to a state of inflammation and activation, indicated by contraction, 

presence of reactive oxygen species (ROS), and miR-21 expression. The high dose caused 

considerable cell death, offsetting the activation, as measured by the contraction force. This 

study demonstrates the need for multifactorial analysis of phenotypic screens, as 

counteracting influences may confound the interpretation of results. In this case, 

measurement of both cell activation (contraction force and ROS production) and cell 

viability elucidated the behavior along a dose-response curve that indicated peak bulk 

pathologic behavior at a medium concentration. 

The same group used a similar approach to evaluate anti-fibrotic therapeutics using 

their in vitro assay [51]. Fibroblasts were suspended by micropillars in a super thin (35 - 

55 μm) collagen layer arranged in a leaflet shape in order to mimic the geometry of alveoli. 

Contractile forces in the collagen were measured by deflection of the micropillars that 

suspended the collagen and differentiation of fibroblasts into myofibroblasts was 
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confirmed by staining for α-SMA. This assay was then used to evaluate the therapeutics 

Nintedanib and Pirfenidone through measurement of both changes in tissue compliance 

and differentiation of fibroblasts into myofibroblasts. They confirmed anti-fibrotic activity 

with both drugs. This paper also used an alternative implementation of the micropillar 

supported collagen membrane to evaluate traction bronchiectasis, a condition involving 

irreversible dilation of bronchi and bronchioles as a result of pulmonary fibrosis. By 

modulating the rigidity of the micropillars, it was shown that increased stiffness in lung 

tissue due to fibrosis would compound lung damage as seen in traction bronchiectasis. 

2.2.3.4 Co-culture collagen gel contraction assays 

The interplay between epithelial cells and fibroblasts may be a key component of 

pulmonary fibrosis pathology [27]. In an early study, A549 or bronchial epithelial cells 

were seeded directly on top of fibroblast-laden collagen gels [65]. Compared to the 

fibroblast monoculture, the co-culture gels showed less total contraction over 15 days. The 

authors fit an exponential decay curve to the area reduction, finding that the co-culture gel 

had the same time constant as the monoculture, despite the differences in total extent of 

contraction. Furthermore, the authors used two-photon microscopy to show that co-culture 

decreased the degree of collagen crosslinking, as inferred by two-photon fluorescence 

intensity. 

In another co-culture study, Ishikawa et al. prepared a similar collagen contraction 

gel with human bronchial epithelial cells seeded directly on top of the gel. However, this 

study also introduced air-liquid interface culture, as depicted in Figure 8 [66]. These gels 

were not manually detached and remained in place for 21 days before stimulation. The gels  
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Figure 8. Direct contact air/liquid interface: Epithelial cells are seeded on top of a fibroblast-
laden collagen gel in a Transwell insert. After confluence is reached, culture media is removed from 
the top well, generating an air-liquid interface culture. The epithelial layer differentiates in response 
to the air-liquid interface. After stimulation, the collagen gel contracts, separating from the walls of 
the well [66]. 

detached by cell contraction when cells were stimulated with TGF-β1. Histology slices of 

the microtissue demonstrated that TGF-β1 also induced a decrease in epithelial layer 

thickness. Immunostaining in these histological slices also revealed changes in MMP and 

tissue inhibitor of metalloproteinase (TIMP) expression due to the crosstalk between co-

cultured cells. These techniques demonstrated the synergistic interactions often seen in co-

culture approaches. 

The biochemical mechanisms of epithelial-fibroblast co-culture have been 

reviewed [75]. Growing evidence indicates that epithelial cells secrete a variety of 

biochemical signals to regulate fibroblast behavior. Biofabrication of phenotypic IPF 

assays would benefit from consideration of this cross-communication. 

2.2.3.5 Alternative techniques to measure fibroblast contraction 

A recently developed technique enables measurement of cell contraction based on 

the cell coverage of the culture surface. The xCELLigence platform uses electrodes 
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patterned on the surface of a culture plate to measure the electrical impedance past the cells 

[67]. As the cells contract, they tighten and narrow, exposing electrode surfaces. The 

exposed surfaces pass current more easily, as the resistance from the cells is removed. One 

of the key benefits of this technique is its rapid response time. However, that may be more 

useful in studies of rapid contraction, as seen in muscle and cardiac tissues rather than the 

progressive contraction typically observed in fibrosis.  

2.2.3.6 Discussion of contraction assays 

As the key effector phenotype of IPF, considerable progress has been made to 

develop biofabrication techniques assessing contraction. However, one key phenotype that 

is missing from these cell-based contraction assays is the divergence between physiological 

contraction, which resolves, and pathophysiological contraction, which persists and 

progresses. The standard collagen gel contraction assay moves only in the direction of 

contraction, with little consideration or potential for reversal. The ability of epithelial cells 

to delay activation and contraction of fibroblasts [66] presents a promising building block 

for future biofabrication of assays that reflect the divergence of healthy contraction 

resolution and pathologic IPF persistence. 

2.2.4 Phenotypic assays incorporating collagen production and deposition 

In addition to collagen contraction, the production and deposition of new collagen 

by fibroblasts is a key event in disease progression. Collagen is produced by multiple cell 

types, but fibroblasts and myofibroblasts are responsible for the increase in collagen 

deposition seen in pulmonary fibrosis. The excessive accumulation of collagen seen in 

fibrosis is a product of both increased collagen production due to changes in transcriptional 
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regulation and decreased degradation modulated by altered expression of various MMPs 

and cathepsins [115]. In order to evaluate the contributions to collagen accumulation, many 

approaches have paralleled the clinical approaches based on staining biopsies and 

evaluating serum biomarkers [116, 117].  Histologic approaches generally utilize sirius red 

and picrosirius red, however these methods lack specificity for collagen types [118]. 

Immunostaining enables identification of specific collagens, however quantification of 

collagen can still be challenging with these approaches. Methods based on soluble 

byproducts of collagen production and degradation have utilized radiolabelled amino acids 

and ELISAs [116, 117]. Other approaches specific to in vitro models have focused on 

evaluation of transcription PCR or electrophoretic mobility shift assay methods [119]. An 

alternative approach to evaluation of collagen remodeling focuses on quantification of 

collagen alignment [120]. Despite the wide array of collagen production assays, few 

biofabrication studies have utilized them. 

A study of kidney mesangial cells in 2D culture indicated that they respond to TGF-

β1 by forming clusters, or nodules, that somewhat resemble the nodules seen in human 

pulmonary fibrosis [57]. Immunostaining of these nodules indicated localized deposition 

of collagen. The nodule assay was later adapted in several different publications, one of 

which used the assay to screen Chinese herbal medicine extracts for inhibition of kidney 

fibroblast nodule formation [121]. Another similar study found that macromolecular 

crowding with dextran sulfate causes much higher collagen deposition by fibroblasts [71]. 

Neutral macromolecular crowding with Ficoll produces less elevated, but more sustained 

collagen deposition with greater cross-linking. Collagen deposition was assessed and 

screened using immunochemical staining and optical microscopy of the cluster formation. 
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This 2D method lacks the complex microenvironment of some of the other techniques, but 

it does provide disease-relevant information by assessing the collagen deposited by the 

fibroblasts. 

In addition to collagen, fibronectin and elastin play substantial roles in pulmonary 

fibrosis. Fibronectin is also an important ECM component that shows increased expression 

in various forms of pulmonary fibrosis [122] and can be quantified by analogous methods 

to those used for collagen. Globular fibronectin in blood serum is integrated in the fibrin 

matrix during formation of the provisional ECM [123] and plays a major role in invasion of 

fibroblasts into the provisional matrix [86]. Fibronectin expression can be up-regulated by 

treatment with TGF-β1 [124]. Fibronectin also binds a large number of growth factors that 

may promote myofibroblast differentiation [125]. Furthermore, a comparison between 2D 

and 3D models of fibroblast adhesion highlighted the importance of 3D scaffolds in 

interactions between fibronectin and integrins [126]. This demonstrates the importance of 

3D biofabricated models in evaluation of ECM remodeling. Elastin is another ECM 

component of interest in pulmonary fibrosis due to its roles in absorption of mechanical 

loads and preventing tissue damage [127]. This role in maintaining elasticity and breaking 

strength in lung tissue makes elastin homeostasis vital in maintenance of lung function. 

However, elastin expression is up-regulated in pulmonary fibrosis, contributing to the 

increased stiffness of fibrotic lung tissue [128]. Due to the importance of ECM composition 

in lung function, future biofabricated phenotypic assays for pulmonary fibrosis may 

consider including evaluation of expression of various ECM components. 
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Figure 9. Healthy function of the lungs: Requires compliant tissue that can readily expand and 
contract in response to diaphragmatic breathing in order to enable gas volume exchange during 
respiration. The line represents the volume of gas inside the lung over time. Normal tidal breathing 
uses a small fraction of the total lung capacity. A full inhale, followed by a full exhale (leaving residual 
gas volume behind) moves a volume of gas equal to the forced vital capacity (FVC). Formation of 
fibrotic foci interferes with this compliance due to the heterogenous accumulation of fibrous connective 
tissue. In the advancement of IPF, both FVC and residual volume progressively decline [129]. Models 
of pulmonary fibrosis could benefit from mimicing alveolar architecture and enabling fibrotic 
remodeling of alveolar tissue. Furthermore, phenotypic evaluation of more clinically relevant metrics 
such as gas volume exchange and tissue compliance may better suit evaluation of anti-fibrotic 
therapeutics. 

2.3 Challenges in biofabrication of pulmonary fibrosis models 

Despite the considerable progress in the field of phenotypic assays, there remains 

opportunity to design microtissues that better capture the complex microenvironment of 

the lung. Specifically, there is a lack of appropriate alveolar models. Existing alveolar 

models typically use artificial substrates to provide the thin membrane structure [130]. 

Although most lung microtissue models use static air or flow-over gas exchange, recent 

work has incorporated more physiologic diaphragmatic breathing [130]. However, these 

models have not been shown to allow the cells to remodel the space, generating healthy or 
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fibrotic tissue. Furthermore, these models generate cell monolayers, lacking the complex 

and interconnected structure of native alveoli, as in Figure 9. This type of architecture and 

cell-driven assembly and construction is a ripe area for the field of biofabrication, 

biomaterials, and bioprinting. In this section, we discuss relevant physiological parameters 

and considerations for adaptation into biofabricated microtissue.  

2.3.1 Suggested design parameters for phenotypic assays of pulmonary fibrosis 

Problems associated with pulmonary fibrosis are predominantly caused by the 

accompanied decline in respiratory function. Excess accumulation of fibrous connective 

tissue interferes with the architecture and function of the lungs, such that gas exchange is 

restricted [131]. This restriction is caused by a number of factors including a decrease in 

number of functional alveoli and an increase in the mechanical stiffness of lung tissue 

[132]. Figure 9 illustrates how fibrotic foci in the lung can interfere with gas exchange at 

the level of individual alveoli. 

To extract biological information from a fibrotic microtissue, the cells should have 

an opportunity to remodel their own microenvironment. Compared to the phenotypic 

assays presented in this chapter, modern biofabrication techniques, such as bioprinting, 

hold additional potential for their ability to use bioactive and degradable bioinks, while still 

establishing complex structures. A major shift in microtissue phenotypic assays would 

examine restoration of function, rather than only measuring therapeutic interventions at the 

point of disease progression/exacerbation.  

To recapitulate the restoration of lung function, consideration of relevant patient-

level measurements may be informative. In patients, overall lung decline is typically 
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measured in four ways: forced vital capacity (FVC - the maximum volume of air that can 

be inhaled and exhaled), carbon monoxide diffusion capacity (DLCO, a measure of gas 

transfer efficiency across the alveolar-capillary membrane), dyspnea (shortness of breath) 

and oxygen saturation after exertion (6-minute walk test). Each of these measurements 

reflect aspects of the total lung decline in pulmonary fibrosis. The FVC reflects a decline 

in compliance and the fraction of volume occupied by gas. Both DLCO and the 6-minute 

walk test assess the ability of the lungs to transfer oxygen species into the blood, while 

dyspnea may reflect an inability to effectively remove carbon dioxide. The reduction in gas 

exchange results from both a thickening of the alveolar wall and the reduction in the 

volume of gas exchanged in a full breath, as indicated by the reduction in FVC. Typical 

values for these measurements are included in Table 2. Incorporation of these patient-level 

measurements to a model would provide more directly relevant phenotypic readouts. 

Table 2: Patient-level phenotypic measurements in IPF. 

Macroscopic 
patient phenotypic 
parameter Description Functions measured Numbers Ref 

Forced vital 
capacity (FVC) 

Max volume of air that can be 
inhaled and exhaled in a single 
breath.  

Volumetric gas 
exchange 

>10% decrease 
indicates disease 
progression 

[133, 
134] 

Dyspnea 
Shortness of breath Gas exchange, 

inability to respond to 
ventilator needs 

NA [134, 
135] 

6-minute walk test.  

The patient is instructed to 
walk for 6 minutes, after which 
the blood oxygen saturation is 
measured. 

Gas exchange 
measurement with 
stress test 

6MWT followed by 
desaturation (<88%) 

[134] 

Carbon monoxide 
diffusion capacity 
(DLCO) 

Measure of the conductance of 
gas transfer from inspired gas 
to red blood cells 

Gas exchange at the 
blood level 

Lower in IPF [136] 
Drop of >15% 
indicates disease 
progression 

[133] 
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2.3.2 Biomaterials 

As biofabricated models of pulmonary fibrosis become more sophisticated, it is 

important to mimic the physiological parameters of both healthy and fibrotic lung tissue, 

particularly with the selection of biomaterials. General guides for selecting biomaterials 

for biofabrication have been published [137-140]. In the lungs, the dominant ECM 

components are collagen IV, laminin, entactin, and proteoglycans in basement membranes; 

and fibrillar collagens, elastic fibers, and proteoglycans in interstitial connective tissue. 

Fibronectin and tenascin are also present in the provisional ECM, which is important 

during development and wound repair [4]. In fibrosis, there is increased expression of 

elastin, fibronectin and collagens I, III, and IV. This alteration in ECM composition 

increases the stiffness of lung tissue, consequently decreasing the lungs’ ability to exchange 

gas [141]. In healthy tissue, alveolar compliance has been measured at 1-5 kPa, while 

fibrotic lung tissue is much stiffer, at 20-100 kPa [142]. 

Cellular composition of lung tissue also changes significantly during the 

pathogenesis of fibrosis. Cells found in the lungs include epithelial cells, endothelial cells, 

interstitial cells, macrophages, fibroblasts, and immune cells among others. These cell 

types are covered in greater detail in prior reviews [143, 144]. As stated previously, 

following epithelial injury, inflammatory cells such as macrophages, neutrophils, and T 

cells migrate to damaged epithelium where they produce a variety of cytokines and 

chemokines that amplify the inflammatory response. This also triggers fibroblast 

recruitment, proliferation, and activation of myofibroblasts [145]. Small aggregates of 

proliferating fibroblasts, myofibroblasts, and immune cells are concentrated in areas 

known as fibrotic foci. These areas are the sites of excessive ECM production where 
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scarring disrupts lung architecture and function [25]. Figure 9 demonstrates the effect that 

fibrotic foci can have on gas exchange function. 

The micro-scale structure of alveoli has been analyzed through a variety of imaging 

methods, including in vivo fluorescence microimaging [146], cryosectioning [147], and 

casting [148]. These measurements converge on alveolar diameter on the order of hundreds 

of microns and alveolar mouth openings that are 85-90% of the alveolar diameter (Figure 

9 and Table 3). Furthermore, many of the gaseous alveolar compartments abut capillaries, 

enabling gas exchange. In healthy patients, this translates to a fractional tissue volume (mL 

tissue to mL of total lung) of 0.106-0.191 between inspiration and expiration [149]. 

However, in fibrotic lungs, the accumulation of tissue increases the fractional tissue 

volume to 0.220-0.345 [149]. In the diseased state, fibroblast foci generate local alveolar 

collapse [150], making measurements of individual alveolar geometry difficult. Accurately 

designed micro-alveolar tissues should approximate these ratios of gas to tissue in order to 

reflect the altered microenvironment between healthy and diseased states.  

Table 3: Selected physical properties of the lung. 

Property Values in healthy people Values in IPF 
patients 

Compliance 1-5 kPa [142]  20-100 kPa 
[142]  

Fractional tissue 
volume  
(mL tissue per mL 
tissue and gas)  

0.106 – 0.191 (inspiration - expiration) [149] 0.220 – 0.345 
[149] 

Alveolar mouth 
opening 278 μm [146] 291.4 μm [151] 

Alveolar depth to 
mouth diameter 

0.85-0.9 for residual capacity to total lung capacity. 0.95-1.5 below 
residual capacity – results in collapse [147] NA 

Alveolar half-opening 
angle  60 degrees [148, 152] NA 

Alveolar lining layer 
thickness  0.1-0.2 μm [152, 153]  NA 

Alveolar diameter 225 μm [154] NA 



 44 

The use of exogenous biomaterials, such as polymers, can augment mechanical 

properties [39] or structure [51, 52, 63] of biofabricated models [137]. However, these 

exogenous materials can disrupt local mechanical properties in often unexpected ways 

[73], in addition to potential questions of cytotoxicity. Nonetheless, the interplay between 

exogenous and native biomaterials may produce interesting discoveries and further inform 

biofabrication of future models. 

2.3.3 Bioprinting techniques 

The choice of biofabrication technique may pose additional constraints on the 

selection of biomaterials. The technique of 3D bioprinting remains poorly explored in the 

area of fibrosis assays, but the general field of bioprinting has been reviewed extensively. 

A recent review of bioinks elaborated on several approaches to print fibroblast-laden 

hydrogels, however none of these methods were used to evaluate fibrosis [155]. Another 

review covering 3D bioprinting techniques evaluated bioprinting for creation of complex 

3D biomimetic architectures to provide improved in vitro analogues to in vivo tissue 

organization [156]. Decellularized ECM bioprinting techniques provide additional 

promise, as they already include native architecture [157]. These various techniques could 

be utilized to provide an added level of sophistication to fibrosis assays in order to evaluate 

a broader range of contributors to fibrosis pathogenesis. 
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2.4 Conclusions and future directions 

Considerable progress has been made in the past two decades to biofabricate 

complex 3D lung culture environments that recreate aspects of pulmonary fibrosis 

pathogenesis. These encompass epithelial damage, fibroblast invasion, contraction, and 

ECM deposition. Furthermore, some of these techniques have been adapted and applied as 

medium-throughput phenotypic screens for potential therapeutics.  

However, there remains unexplored territory, particularly in the areas of alveolar 

architecture, provisional extracellular matrix and long-term disease progression. These 

areas present particularly challenging hurdles for cell-based assays. Clotting is a complex 

process involving many different factors from blood. Incorporation of endothelial 

compartments or fibrin assays has somewhat addressed the issue. Recent literature 

implicates aging and fibroblast senescence as key differences between fibrotic and healthy 

tissue in both animal models [158] and in human patients [159]. The role of senescence in 

fibrosis has been reviewed recently [29]. Maintaining long-term culture has proven 

difficult, although multicellular systems have shown some success, including the direct 

contact epithelial-fibroblast culture that lasted 21 days [66]. Furthermore, we have 

deliberately neglected the ever-present immune system in this chapter. The exact role of 

the immune system in IPF remains controversial and the challenges surrounding 

biofabrication of immune components are immense, but new work in this area could have 

tremendous benefits. 

Development of future phenotypic assays should carefully consider the unique 

features of the lung environment: mechanical compliance, tissue geometry, and the 
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composition of cells and matrix proteins. Furthermore, selection of appropriate readouts 

will be critical to answering the right questions about disease progression. If the assays are 

to be adapted to high-throughput screens, then extensive optimization of the reproducibility 

and performance of the assay should be performed. Biofabrication of culture models that 

enable phenotypic screening of pulmonary fibrosis presents a compelling approach to 

finding new therapies in pulmonary fibrosis and potentially other related aberrant wound 

healing diseases.  
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CHAPTER 3. AQUEOUS TWO-PHASE PRINTING AND 

FIBRINOLYSIS OF FIBROBLAST-LADEN FIBRIN MICRO-

SCAFFOLDS† 

 This chapter describes printing of microscale fibroblast-laden matrices using an 

aqueous two-phase approach that controls thrombin-mediated enzymatic crosslinking of 

fibrin. Optimization of aqueous two-phase formulations enabled polymerization of 

consistent sub-microliter volumes of cell-laden fibrin. When plasminogen was added to 

these micro-scaffolds, the primary normal human lung fibroblasts converted it to plasmin, 

triggering gradual degradation of the fibrin. Time-lapse live-cell imaging and automated 

image analysis provided readouts of time to degradation of 50% of the scaffold as well as 

maximum degradation rate. The time required for degradation decreased linearly with cell 

number while it increased in a dose-dependent manner upon addition of TGF-β1. 

Fibroblasts isolated from idiopathic pulmonary fibrosis patients showed similar trends with 

regards to response to TGF-β1 stimulation. Addition of hydrogen peroxide slowed 

fibrinolysis but only in the absence of TGF-β1, consistent with the notion that cellular 

phenotypes induced by TGF-β1 are mediated, at least in part, through increased production 

of hydrogen peroxide. FDA-approved and experimental anti-fibrosis drugs were also tested 

for their effects on fibrinolysis rates. Given the central role of fibrinolysis in both normal 

and pathogenic wound healing of various tissues, the high-throughput cell-mediated 

fibrinolysis assay described has broad applicability in the study of many different cell types 

                                                 
† At the time of dissertation submission, this chapter was under review as Robinson, et al. Aqueous two-
phase printing and fibrinolysis of fibroblast-laden fibrin micro-scaffolds. Biofabrication, xxxx. 
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and diseases. Furthermore, aqueous two-phase printing of fibrin addresses several current 

limitations of fibrin bio-inks, indicating additional applications in tissue engineering and 

in vitro models. 

3.1 Introduction 

Degradation of the provisional fibrin matrix is a key process in wound healing [160]. 

Following tissue damage, fibrin serves as a temporary scaffold that enables fibroblasts to 

migrate to the injury site for matrix remodeling [161]. Accelerated fibrin degradation can 

delay healing by hindering cells’ ability to migrate into the wound [3], while suppressed 

fibrin degradation can promote fibrotic scarring by contributing to excessive collagen 

accumulation [162, 163]. Properly regulated fibrinolysis is crucial to wound resolution; 

however, few phenotypic assays are available to evaluate cell-mediated fibrin degradation 

[164]. Due to the variety of cell-produced proteases and inhibitors as well as biomechanical 

cellular processes that combinatorially influence fibrinolysis [165], there exists the need 

for a high-throughput phenotypic assay for cell-mediated fibrin degradation.  

Many techniques to evaluate cell-mediated fibrinolysis focus on quantifying mRNA 

and protein expression for specific components of the fibrinolytic system; however, these 

approaches are liable to overlook the fibrinolytic contributions of any components that are 

not specifically evaluated [166-169]. Cell-mediated modulation of the fibrinolytic system 

occurs predominantly through regulating conversion of the proenzyme plasminogen into 

the active enzyme plasmin, which degrades fibrin into soluble degradation products. This 

activation of plasmin is controlled by cellular expression of a variety of proteases and 

inhibitors, enabling cells to both positively and negatively regulate fibrinolysis [170-174]. 
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Due to this large number of regulators involved in fibrinolysis, experimental approaches 

that focus on specific contributors to cell-mediated fibrin degradation are liable to overlook 

unexpected changes to the fibrinolytic system. 

Here, we analyze human lung fibroblast-mediated fibrinolysis with a focus on 

idiopathic pulmonary fibrosis (IPF), a disorder of unknown etiology where repeated small 

injuries have been suggested to play a role. This chronic fibroproliferative disease presents 

as an exaggerated aging process; where epigenetics, senescence, and biomechanics have 

all been proposed as potential contributing factors [27]. The progression of IPF results in a 

continued decline in lung capacity that ultimately leads to respiratory failure [25]. A 

growing body of evidence indicates that dysregulation of the fibrinolytic system may be a 

contributor to IPF pathogenesis [175-177]. Current FDA-approved drugs for IPF are 

incapable of halting or reversing fibrosis, and can only slow the spread of fibrotic scarring 

throughout the lungs [26]. A high-throughput phenotypic assay for fibrinolysis may 

contribute to efforts to find therapeutic compounds. 

There are currently few phenotypic approaches to evaluate fibrinolysis. One  

implementation of cell-laden fibrin gels was able to differentiate between fibrinolytic 

stimuli and cell source tissue by comparing relative amounts of degraded matrix between 

conditions [164]. Importantly, this approach implemented a fibrin hydrogel, which enabled 

the biophysical feedback of matrix interactions to contribute to fibrin remodeling [178, 

179]. However, this fibrinolysis assay faces limitations due to its large volume format. A 

high-throughput adaptation of this fibrin-based fibrinolysis assay would require 

establishing a microplate-compatible technique to generate the cell-laden fibrin scaffolds. 

This poses an engineering hurdle due to difficulties controlling thrombin-mediated 
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crosslinking for low volume fibrin structures [180]. No prior methods to fabricate 

microscale fibrin scaffolds were suitable for this high-throughput assay. 

To consistently print microscale cell-laden fibrin scaffolds with standard liquid 

handling equipment, this work details a new approach that controls crosslinking during the 

polymerization process by introducing fibrinogen and thrombin within separate aqueous 

phases. We utilize an aqueous two-phase system (ATPS), in which soluble polymers 

thermodynamically drive aqueous systems to form two distinct phases. Our research group 

has previously developed ATPS assays to evaluate collagen contraction with living cells 

[58]. Here, the optimization of a PEG/dextran ATPS enables successful polymerization of 

sub-microliter volumes of cell-laden fibrin scaffolds. These microgels can be directly 

degraded through addition of plasmin, or fibrinolysis can occur through cell-mediated 

activation of exogenous plasminogen. Fibrinolysis rates vary in response to pro-fibrotic 

stimuli and anti-fibrotic therapeutics, as determined through label-free brightfield 

microscopy. We demonstrate our fibrin-printing technology as a simple, versatile, and 

easily managed approach to fabricate precise microscale scaffolds, and this technology was 

applied for high-throughput evaluation of cell-mediated fibrinolysis. 

3.2 Materials and Methods 

3.2.1 Cell culture and ATPS reagents 

A stock solution of DEX (20% w/w dextran T500; Sigma) was prepared in 

phosphate buffered saline (PBS) on a rocker overnight. A stock solution of PEG (6% w/w, 

35k MW; Sigma) was prepared in fully supplemented culture media with 10% deionized 

water to balance osmolality. Both stock solutions were passed through a 0.22 μm sterilizing 
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syringe filter before storage. PEG working solutions were stored for up to 2 weeks at 4C. 

Thrombin (Human Alpha Thrombin; Enzyme Research Labs) was also added to the PEG 

solution at a concentration of 0.1 U/mL immediately preceding experiments. Fibrinogen-

DEX solutions were prepared by diluting fibrinogen stock solution (human fibrinogen 3; 

Enzyme Research Labs) to a final concentration of 4 mg/mL in a sterile solution of 4% 10x 

DMEM, 15% DEX stock solution (to a final concentration of 3% dextran), and 50% cell 

suspension in growth media. For all experiments excluding cell concentration evaluation, 

the cell suspension was diluted for 1000 cells per microliter in the final fibrinogen-DEX 

solution. 

3.2.2 Cell preparation 

Normal human lung fibroblasts (NHLF lot#0000580583; Lonza) from a 79 year old 

female with a history of smoking, and idiopathic pulmonary fibrosis fibroblasts (IPF 

lot#0000627840; Lonza) from a 52 year old male were cultured in fibroblast growth media 

(FGM; Lonza). Cells were passaged at 80-90% confluence, and were sub-cultured in 1:3 

ratios by trypsinization. When at the desired confluence, cells were washed with PBS and 

0.05% trypsin solution was added to the flask. Cells were incubated for 2 min, diluted with 

fibroblast growth media media, and then harvested and centrifuged (200 x g, 5min) in a 

conical tube. The supernatant was aspirated and the cell pellet was re-suspended in serum-

free culture media. When used in fibrin degradation experiments, cells were re-suspended 

at 2x the final desired concentration (1000 cells/μl unless otherwise indicated). All 

experiments were conducted with cells at or below passage 12. In all experiments, media 

was changed every 48 hours and any media additives (plasminogen, TGF-β1, drugs, etc.) 

were included. 
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3.2.3 ATPS printing of fibrin microgels 

Working solutions of PEG with 0.1 U/mL of thrombin were warmed to 37C and 

pipetted into a 96-well plate. For production of droplets, fibrinogen-DEX solutions with 

cell suspension were maintained at 37C and pipetted directly into the PEG-thrombin media 

using either a manual pipette or a semi-automated 96-channel pipette (Viaflo-96; Integra). 

All assays utilized a volume of 1 μl unless otherwise noted. Following dispensing of the 

DEX phase, the plates were placed in an incubator at 37C for 30 min to allow the thrombin 

to enzymatically crosslink the fibrinogen into a fibrin matrix (Figure 10A). The PEG-

enriched media was then washed four times by removing, then replacing half of the media 

with PEG-free media. When applicable, the final media addition was supplemented with 

stimuli as detailed in section 2.5. For the duration of each experiment, assay plates were 

imaged every 2 hours at 4x with an automated cell culture monitoring system (Incucyte S3; 

Essen Biosystems). After one day of culture, plasminogen (50 μg/mL) (Human Glu-

Plasminogen; Enzyme Research Labs) was added as a 10x concentrated solution to each 

well in order to initiate assay degradation (Figure 10B), unless otherwise noted for specific 

conditions. Fresh plasminogen was included with each subsequent media addition. Positive 

controls with active plasmin (1 U/ml) (Human Plasmin; Enzyme Research Labs) and 

negative controls without plasminogen were included in each experiment. As cells 

activated plasminogen, the fibrin scaffold progressively degraded as illustrated in Figure 

10C.  
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3.2.4 High-throughput brightfield image analysis 

After each experiment, brightfield images for every time point were downloaded in 

jpeg format from the automated cell culture monitoring system. Python’s OpenCV library 

was implemented for the masking approach illustrated in Figure 11A. First, a threshold was 

set at 50% of the maximum intensity (128 for 8-bit integer pixel values) in order to isolate 

the darker pixels of semi-opaque fibrin hydrogel from the background of the image. A 

closing morphological filter with a 25x25 kernel was then applied to each mask in order to 

remove noise. This masking approach was applied to the initial time point from every 

experimental condition in order to establish the relevant assay area for downstream 

measurements.  As fibrin degrades during an experiment, the average pixel intensity within 

the masked area increases accordingly (Figure 11B). The automated live-cell imager 

(Incucyte S3; Essen Biosystems) automatically adjusts brightness to maintain consistent 

white balance between images. For experiments involving multiple assay volumes, image 

brightness was scaled to maintain consistent background intensity (Appendix Figure A-1).  

For each experimental replicate, a sigmoid curve was fit using the curve_fit 

function from the SciPy library in Python. The logistic function given by the equation in 

Figure 11C enabled automated extraction of the time point for 50% degradation, as well as 

the maximum slope at the equation’s centroid (Figure 11 D, E). 

3.2.5 Phenotypic evaluation of stimuli 

In order to evaluate fibrin degradation rate with a known anti-fibrinolytic stimulus, 

various concentrations of transforming growth factor type β1 (Human Recombinant TGF-
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β1; Peprotech) were added to the assay media after ATPS polymers were rinsed out of the 

microplates. 

To evaluate the capability of this assay to test the fibrinolytic effects of therapeutic stimuli, 

a variety of drug compounds were introduced to the fibrinolysis assays after the wash step. 

This included 40 μM pirfenidone (Selleck Chem), 0.4 μM nintedanib (Selleck Chem), 100 

μM hydrogen peroxide (Sigma), and 20 μM diethyl-pythiDC (AOBIOUS). These 

concentrations were established in preliminary experiments that evaluated a range of 

concentrations used in prior literature. Stimuli were freshly mixed for each media change 

during experiments, and a minimum of four replicates were tested per experimental 

condition. 

3.2.6 Statistical Analysis 

All experimental values are reported as means ± standard deviation. ANOVA tests 

were performed using the statsmodels library in Python 3 with the Tukey test for post-hoc 

pairwise comparisons. 

3.3 Results and Discussion 

The development and characterization of the cell-mediated fibrinolysis assay was 

focused on establishing a microplate-compatible fibroblast-laden fibrin scaffold and 

verifying the ability to distinguish between subtly different fibrinolytic environments. First, 

we implemented an ATPS approach to enable accurate printing of unprecedentedly small 

cell-laden fibrin scaffolds. Then, an automated image processing approach quantified fibrin 

degradation data from label-free brightfield images. Next, the established fibrinolytic  
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Figure 10. ATPS fibrin printing and cell-mediated degradation: (a) Illustration of the 
enzymatic control enabled by ATPS printing of fibrin scaffolds, whereby thrombin from the PEG 
phase diffuses into the dextran phase and crosslinks the fibrinogen into fibrin during the incubation 
period. (b) Process schematic of ATPS generation of microscale fibrin droplets and subsequent 
fibrinolysis. (c) Characteristic brightfield microscope images (taken at 4x magnification) illustrate the 
assay progression when stimulated with 0.5 ng/mL of TGF-β1, showing an opaque fibrin matrix and 
progressive degradation. Scale bars are 1 mm. 

effects of cell density and TGF-β1 were used to validate the assay’s capability to 

distinguish between conditions. Finally, the microscale cell mediated fibrinolysis assay 

was implemented to evaluate the effects of anti-fibrotic therapeutics on fibroblasts from 

normal and diseased donors. 

3.3.1 Fabrication of microscale fibrin scaffolds 

Biological environments establish fibrin matrices through coagulation, where a 

cascade of clotting factors activates thrombin, which enzymatically crosslinks fibrinogen 

into fibrin [161]. Similarly, in vitro fibrin scaffolds rely on exposing monomeric fibrinogen 

to thrombin [181]. Fibrin has been used extensively in a wide variety of tissue engineering 

applications, but it is generally implemented as a bulk cast hydrogel. There have been a 

few applications of fibrin bio-printing that control crosslinking by alternating between 

layers of fibrinogen and thrombin, but this poses limitations to accuracy and reproducibility 

due to lack of control over fibrinogen’s exposure to thrombin [181-183]. There have also 
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been a variety of applications for fibrin microbeads where oil immersions were used to 

disperse microbeads during crosslinking in oil-suspended droplets, but this results in 

inconsistent size and cells must be added separately after the microbeads have been washed 

[184, 185]. Reliable microscale volume and microplate compatibility were necessary to 

enable high-throughput adaptation in this assay. Precise control over cell seeding density 

was also vital for our approach due to its effect on remodeling rate. 

We established a new approach to maintain fibrinogen in a distinct droplet and 

control diffusion of thrombin into fibrinogen during the polymerization process by 

implementing an ATPS with PEG and dextran. Above their critical concentrations, these 

soluble polymers thermo-dynamically drive aqueous systems to form two distinct phases 

[186]. A previous ATPS microscale adaptation from our lab for collagen contraction 

demonstrated consistency in response between the conventional 100 uL assay and ATPS 

microscale volumes. They specifically took advantage of the short length scales for time-

dependent and burst stimulation profiles, which would not be possible with conventional 

approaches due to diffusion constraints [58]. A similar ATPS adaptation suits our 

approach, and enables fabrication of microscale fibrin scaffolds with standard liquid 

handling equipment to facilitate microplate compatibility. 

During the initial optimization of PEG and dextran concentrations, we found that 

lower concentrations were unstable and resulted in fissure of the ATPS droplet. In order to 

maintain stable separation of phases during polymerization, minimum assay concentrations 

of 6% 35 kDa PEG and 3% T500 dextran were determined for stability during crosslinking 

(Figure 10A). Fibroblast viability has previously been verified at these ATPS 

concentrations in a prior microscale assay adaptation [58].  
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The necessity for this ATPS environment in our microscale fibrin degradation assay 

comes from the capability of aqueous two-phase partitioning to control diffusion of 

thrombin into the fibrinogen droplet. This restricts enzymatic crosslinking of cell-laden 

fibrin matrices until after the droplets have been dispensed (Figure 10A). After a 30 minute 

incubation period, the fibrin was sufficiently polymerized and the ATPS solutions could 

be rinsed and replaced with growth media and stimulants for specific conditions (Figure 

10B). We waited an additional period of 24 hours before adding exogenous plasminogen 

to enable cells to anchor themselves to the fibrin matrix. 

After plasminogen is added to the assays, various activators and inhibitors produced 

by cells regulate the conversion of plasminogen into plasmin [170-174]. Control conditions 

for each experiment verified rapid matrix degradation with the addition of exogenous 

plasmin and no matrix degradation when plasminogen is omitted (Supplemental Video 1). 

As the assay proceeds, the fibrin matrix gradually degrades with activated plasmin cleaving 

fibrin into soluble fibrin degradation products (Figure 10C).  This is visually evident as 

disappearance of the opaque fibrin matrix. The following section is focused on 

implementing an image processing and analysis approach in order to automate 

quantification of differences in fibrin degradation between conditions. 

3.3.2 Label-free quantification of fibrin degradation 

In the context of wound healing and fibrosis, evaluation of cell-mediated 

fibrinolysis generally implements quantitative assays to measure specific mRNAs and 

proteins involved in plasmin activation [166-169]. This evaluation is generally limited to 

the proteases that cleave plasminogen into activated plasmin and the inhibitors of these  
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Figure 11. High-throughput quantification of fibrin degradation: (a) Automated image 
processing and analysis utilized Python’s OpenCV library for thresholding and morphological filtering 
in order to establish an initial mask for each individual assay that was applied to all assay images for 
that well. Scale bars are 1 mm. (b) The average pixel intensity within masked regions was plotted for 
time course evaluation, as illustrated here with different plasminogen addition times, where dotted 
lines indicate the plasminogen addition time and error bars represent the standard deviation between 
experimental replicates. (c) An example measurement demonstrates image metric extraction by fitting 
a logistic function to time course pixel intensity data with least squares regression. The time point for 
50% degradation (d) and maximum slope from the sigmoid centroid (e) were determined using logistic 
functions fit for each experimental replicate. Note that the 50% degradation time (vertical axis) is 
indicated here as days after plasminogen addition, while the plasminogen addition time (horizontal 
axis) is in hours. (Statistical significance for (d, e)  P < 0.01 by ANOVA.  ab = P < 0.01;  bc = P < 0.05;  
ac = P < 0.1 by post-hoc Tukey test. N = 5 for all conditions) 

proteases; however, a variety of other enzymes and inhibitors, which are often overlooked, 

are also involved in regulation of cell-mediated fibrinolysis [172, 173]. Here, label-free 

evaluation of live-cell images enables quantification of fibrin degradation. 

Due to the relative opacity of our fibrin scaffolds, pixels within the assay area are 

significantly darker than those in the background of microscope images. This enables an 

analysis approach based on pixel intensities within the assay area.  Many established 

hemostasis assays take advantage of fibrin’s attenuation of light for quantification. These 

assays generally implement plate readers to measure absorbance during coagulation and 
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fibrinolysis [187, 188]. Evaluation of this assay in a microplate reader may therefore serve 

as an alternative to brightfield analysis. However, our approach favored evaluation of pixel 

intensity from brightfield images so that the micrographs could serve as validation of assay 

progression. Unfortunately, the commercial image analysis package embedded in our live 

cell imaging system was not able to reliably discern the microprinted fibrin scaffold. We 

therefore developed an alternative image analysis pipeline using Python’s OpenCV library. 

In order to isolate the assay area from background, a thresholding approach was 

sufficient because of the significant difference in pixel brightness. Here, any pixels brighter 

than the specified threshold were classified as background. A closing morphological filter 

was applied to the thresholded images to remove noise left by the thresholding process. 

Figure 11A demonstrates mask generation and its implementation at later time points as 

the fibrin matrix degrades. After isolation of the assay area, average pixel intensity within 

masked regions was plotted in order to visualize time-course fibrin degradation (Figure 

11B). Fitting time-course data from each individual well with a sigmoidal curve facilitated 

extraction of the time point for 50% matrix degradation, as well as the maximum slope at 

the sigmoid’s centroid (Figure 11C).  

Figure 11D shows changes in the 50% degradation time point in response to 

different plasminogen addition times. The 50% degradation time point is shown as days 

since plasminogen addition. Increases in bar height indicate slower cell-mediated 

fibrinolysis. ANOVA indicated statistical significance of these differences in degradation 

time (P < 0.01), and post-hoc pairwise analysis with the Tukey test demonstrated 

statistically significant differences between specific conditions (Figure 11D). The increase 

in time to 50% degradation for later plasminogen additions indicates significant changes 
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Figure 12. Assay volume consistency: (a) ATPS printing of fibrin scaffolds demonstrated 
consistency in assay shape and texture between volumes. Scale bars are 1 mm. (b) Cross sectional area 
of assays was compared between image J, Python generated masks, and a geometric model of assay 
volume. (c) A doubled spherical cap demonstrated the best fit of the geometric volume models 
evaluated (including sphere, hemisphere, and single spherical cap). (d) Time course data shows 
changes in average pixel intensity for different assay volumes to demonstrate consistency in fibrin 
degradation time between volume conditions. Different initial pixel intensity values between conditions 
indicate varied transmission of light through different volume constructs. The 50% degradation time 
(e) and maximum slope (f) further demonstrate these trends. (Statistical significance for (b, f) P < 0.01 
by ANOVA.  ab = P > 0.2;  cd = P < 0.05 by post-hoc Tukey test. N = 4 for all conditions) 

in the scaffold or cells in the first 24 hours. It has previously been demonstrated that cell-

matrix interactions influence the rate of fibroblast-mediated fibrinolysis, so additional time 

before plasminogen addition may have influenced rates observed here through similar 

pathways [179]. Hence, it was important in subsequent studies to evaluate cell-mediated 

fibrin degradation with a consistent plasminogen addition time. A plasminogen addition 

time at 24 hours was implemented so that fibroblasts could initiate cell-matrix interactions. 

The effects of assay volume were also evaluated. Assay volumes between 0.5 μl 

and 8 μl could be consistently printed and viewed within the field-of-view of a 4x 

microscope objective (Figure 12A). The Python-based image masking approach was 

compared against a manual approach that outlined the assay area in image J with no 

significant differences in cross sectional area between techniques (Figure 12B). Cross 
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sectional area was also compared to volume through evaluation of geometric models. 

Compared against spheres, hemispheres, and spherical caps; a doubled spherical cap fit the 

volume and area data most closely as determined through least squares regression (Figure 

12C).  

In our prior microscale adaptation of collagen contraction, we found that different 

assay volumes maintained consistent contraction rates as long as cell density was 

maintained [58]. Fibrinolysis trends in our experiments also depend on cell density rather 

than assay volume. While the pixel intensity of higher volume assays had lower starting 

values, this reflected the presence of more fibrin which resulted in decreased transmission 

of light through those assays (Figure 12D). Time points for 50% degradation, as determined 

by a sigmoid fit, showed no significant difference in degradation timing between different 

volume conditions (Figure 12E). This consistency in degradation timing indicates similar 

rates of cell-mediated fibrinolysis between different volume conditions. Differences in 

maximum slope between conditions followed the same trend as differences in initial pixel 

intensity, resulting from the decreased transmitted light through higher volume fibrin 

scaffolds. 

The consistency in degradation rates between volume conditions indicates 

uniformity in fibrin organization. Fibrin network morphology has a significant impact on 

fibrinolysis rate, where tight fibrin conformations degrade at a slower rate than scaffolds 

with looser fibrin conformations and thicker fibers [189]. This suggests that at the 

concentration of thrombin used in our assays, ATPS-mediated control over the diffusion 

of thrombin into the fibrinogen-containing phase results in consistent fibrin organization 

across the range of assay volumes tested. 
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Figure 13. Cell density and TGF-β1 effects: (a) Time course pixel intensity data demonstrates 
changes in fibrin degradation between different densities of cells within a 1 μl assay. The 50% 
degradation time (b) and maximum slope (c) demonstrate decreased fibrinolysis time and increased 
slope with higher cell counts. (d) Pixel intensity data for various concentrations of TGF-β1 indicates 
delays in fibrin degradation in response to the stimulus. The 50% degradation time (e) and maximum 
slope (f) show increases in fibrinolysis time but no significant changes in slope with higher 
concentrations of TGF-β1. (Statistical significance P < 0.01 by ANOVA. In (b, c, e, f) P < 0.05 by post-
hoc Tukey test between all bars with different lettered labels. N = 4 for all conditions) 

3.3.3 Effects of cell seeding density and TGF-β1 

Cell seeding density was also evaluated. Conditions with higher seeding densities 

demonstrated significantly faster fibrinolysis (Figure 13), with decreased time points for 

50% degradation and increased maximum slope (Figure 13 B, C; P < 0.05 for all pairwise 

comparisons). The linear relationship between rate of fibrinolysis and cell number is 

consistent with a cell-mediated step being rate limiting in this process. This also highlights 

the importance of consistent cell-seeding density in fibrin printing applications. Our ATPS 

printing technique is uniquely capable of establishing microscale cell-laden fibrin scaffolds 

with a consistent seeding density [181, 185]. 

TGF-β1 is an established pro-fibrotic stimulus with well-characterized anti-

fibrinolytic effects [190]. Various concentrations of TGF-β1 were used to stimulate NHLF 

cells in the fibrin assays (Figure 13D. Increasing concentrations resulted in longer time 

delays before fibrinolysis. The time points for 50% degradation further demonstrate this 
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trend (Figure 13E). All pairwise differences in 50% degradation time between conditions 

were significant with P < 0.05 (Figure 13F). Interestingly, these differences in fibrinolysis 

profile appear as a delay before initiation of fibrin degradation. Prior studies have linked 

elevated PAI-1 with delayed fibrinolysis [191], although additional evaluation is necessary 

to determine its relative contribution to the changes in fibrinolysis rate associated with 

TGF-β1 stimulation [192].  

In NHLF cells, we also noticed an effect of cell passage number on fibrinolysis 

(Appendix Figure A-2a). Higher passage numbers exhibited progressively longer 50% 

degradation times with slower fibrin degradation rates (Appendix Figure A-2b). These 

incidental observations are consistent with prior studies that demonstrate that PAI-1 is 

upregulated in senescent fibroblasts in vivo and in vitro [193-195]. 

3.3.4 Evaluation of hydrogen peroxide, therapeutics and IPF fibroblasts 

Having established baseline cell response measurements for fibrinolysis of the 

bioprinted fibrin micro-scaffolds, we next compared fibrinolytic profiles between normal 

and diseased lung fibroblasts with a number of stimulants and inhibitors. Hydrogen 

peroxide is a reactive oxygen species (ROS) known to be produced by cells in response to 

TGF-β1 stimulation, while nintedanib and pirfenidone are the only two FDA-approved 

therapies for IPF. Diethyl-pythiDC, an experimental anti-fibrotic drug, is an inhibitor of 

certain prolyl 4-hydroxylases that play a role in post-translational modification of collagen 

and other proteins [196]. The plasmin control condition was included in graphs for  
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Figure 14. Cell donor and drug stimulation: Time-course pixel intensity data show the effects 
on fibrin degradation of several different stimulants, with NHLF cells on the left and diseased IPF cells 
on the right. The upper pixel intensity graphs have no TGF-β1 (a and e) while the lower graphs contain 
2 ng/ml TGF-β1 (b and f). Sigmoid fits were used to determine 50% degradation time (c, d, g and h) 
from the above pixel intensity graphs. (Statistical significance P < 0.01 independently for drug and 
TGF-β1 stimulus by two-way ANOVA: As the positive control, plasmin was excluded from ANOVA.  
‡ = P < 0.01;  ad, be = P < 0.05;  ac, fg, fh = P < 0.1 by post-hoc Tukey test. N = 4 for all conditions) 

reference, but was excluded from statistical analysis in the interest of focusing on 

therapeutic conditions of interest. 

A general comparison between normal and diseased fibroblasts (Figure 14 A-H) 

demonstrates that cells from the IPF donor consistently degraded fibrin significantly faster 

than the normal fibroblasts (P < 0.01 by two-way ANOVA). However, prior research 

indicates that diseased fibroblasts from IPF donors express elevated levels of PAI-1 and 

should consequently exhibit slower fibrin degradation [10]. This unexpected decrease in 

fibrinolysis time in IPF fibroblasts may be due to the cells’ extended removal from the 

diseased microenvironment. In the diseased lung, overactive epithelial cells secrete several 

growth factors, cytokines, and chemokines involved in migration, proliferation, and 
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activation of fibroblasts [197]. Additionally, the donor for these NHLF cells does not fit 

the typical profile for healthy lung tissue. This particular donor was a 79 year old female 

with a history of smoking. Age related cellular senescence and tobacco use have both been 

associated with increased levels of PAI-1, so the fibrinolytic system in these “normal” 

fibroblasts may be dysregulated compared to a younger non-smoking donor [198]. 

Stimulation with hydrogen peroxide alone demonstrated highly significant 

decreases in the rates of fibrinolysis (P < 0.1) suggesting a critical role of ROS in the 

process of cell-mediated fibrinolysis. In contrast, conditions that included TGF-β1 showed 

no significant difference upon further stimulation with exogenous hydrogen peroxide. This 

non-additive effect is consistent with a notion that the effects of adding exogenous H2O2 

and exogenous TGF-β1 converge [199]. That is, TGF-β1-triggered increase in endogenous 

H2O2 production [200, 201], may mask effects of any exogenous H2O2 addition. Such 

effects may also work in concert with ROS-induced reduction in TGF-β1 receptors [43].  

The two FDA-approved IPF drugs, nintedanib and pirfenidone, did not show a 

significant impact on fibrinolysis. These therapeutics have established anti-fibrotic effects, 

so these results indicate that the mechanism of action for nintedanib and pirfenidone may 

not be related to fibrinolytic activity of lung fibroblasts. As the precise mechanisms of 

action of these FDA-approved drugs are not known, the “negative” results of these drugs 

on fibroblast-mediated fibrinolysis is in and of itself of intellectual value. The experimental 

drug diethyl-pythiDC, on the other hand, significantly (P < 0.05) delayed fibrinolysis. 

Diethyl-pythiDC is a selective inhibitor of prolyl 4-hydroxylase, an enzyme best known 

for structure-stabilizing modifications of collagen [196] that also acts on a variety of 

proteins [202] including hypoxia inducible factor 1 [199, 203]. The ability of diethyl-
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PythiDC to reduce fibroblast-mediated fibrinolysis is also a novel finding and demonstrates 

the utility of our assay. 

While our assay is effective for finding molecules that modulate cell-mediated 

fibrinolysis, the lack of a significant effect with established IPF therapeutics does reveal 

limitations of using this assay for testing anti-fibrotic drugs. Although fibrinolytic 

proteases are known to play a significant role in IPF progression, their effects can be 

through non-fibrinolytic effects that our assay would miss, such as activation of protease 

activated receptors (PARs) [204]. Nintedanib and pirfenidone are also reported to exert 

anti-fibrotic effects through direct binding to collagen fibrils to inhibit their assembly 

[205], another mechanism of action our assay would miss. 

3.4 Conclusions 

This work describes an approach for ATPS-based printing of microscale cell-laden 

fibrin scaffolds. A droplet comprised of the heavier phase partitions cells and fibrinogen 

while the bulk phase provides thrombin to promote localized enzymatic crosslinking, 

leading to controlled production of microliter-scale fibrin constructs. Automated label-free 

image processing quantified rates of cell-mediated fibrin degradation from time-course 

brightfield images. We found that primary human lung fibroblasts degrade the fibrin 

scaffold at a rate dependent on source of cells, cell density, and the presence of soluble 

factors. Given the variety of contributors to dysregulation of fibrinolysis seen in cancer, 

fibrosis, and metabolic disease; this phenotypic assay for cell-mediated fibrin degradation 

provides a potentially valuable research tool for further studies in these and other fields. 

Additionally, the technique developed here for aqueous two-phase printing of cell-laden 
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fibrin can be much more broadly applied in bio-printing and tissue engineering 

applications. 
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CHAPTER 4. LUNG SCARRING-IN-A-WELL‡  

 Tissue damage often triggers rapid clotting followed by a slower, cell-mediated 

repair process of clot dissolution, deposition of new extracellular matrix, and contracture. 

This paper recreates key steps in this tissue repair process in 96-well plates using primary 

human lung fibroblasts and microscale fibrin clots. These cell-laden gels are formed by 

aqueous two-phase micro-printing, and the cell-mediated matrix remodeling is monitored 

by time-lapse microscopy and automated image processing. Stimulation of this wound 

healing model with the pro-fibrotic cytokine TGF-β1 leads to an excessive scar formation 

response that manifests as a combination of slowed fibrinolysis and increased collagen 

production. Addition of drugs also shifted the scarring profile: the two FDA-approved 

fibrosis drugs (nintedanib and pirfenidone) and a collagen cross-linking inhibitor Diethyl-

pythiDC reduced collagen deposition while a PAI-1 inhibitor, TM5275, and an autotaxin 

inhibitor, GLPG1690, reduced both collagen production and fibrinolysis time. An NMDA 

inhibitor, NP-120 also known as Ifenprodil, slightly increased collagen levels while a 

protease inhibitor, aprotinin, drastically delayed fibrinolysis and also increased collagen 

deposition. Not only is the assay useful for functional differentiation of drug action, it is 

highly sensitive; one of the few in vitro assays that can clearly detect Pirfenidone effects 

at physiological concentrations. Although this paper focuses on lung fibrosis, the approach 

opens new opportunities for studying a broad range of fibrotic diseases and for evaluating 

anti-fibrotic therapeutics. 

                                                 
‡ At the time of dissertation submission, this chapter was under preparation for submission 
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4.1 Introduction 

Fibrin degradation and collagen deposition are central to the wound healing process 

[206, 207]. The provisional fibrin matrix is formed by coagulation following initial injury 

and provides a temporary scaffold for tissue repair. Because fibrin lacks the organization 

of native interstitial extracellular matrix (ECM) it is gradually replaced through processes 

including cell-mediated fibrin degradation and collagen deposition [170, 208]. 

Dysregulation of this matrix turnover can result in pathological conditions such as 

fibroproliferative disease from chronic excessive collagen deposition [8, 209]. This 

dysregulation can result from multiple contributing pathways; however, there are currently 

no in vitro assays to evaluate multifactorial contributions to fibrin remodeling. Due to the 

variety of cytokines, proteases, inhibitors, and biomechanical factors that combinatorially 

influence remodeling [125, 175, 178, 210], a high-throughput phenotypic assay would be 

well suited to evaluate cell-mediated fibrin remodeling for applications in wound healing 

and fibrosis. 

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disorder of aberrant 

ECM accumulation in the lungs. Current FDA-approved drugs for IPF can only slow, not 

halt or reverse, disease progression [211-213]; but several recent reviews have proposed 

regulators of fibrinolysis as potential targets for future IPF treatment strategies [214-216]. 

Evidence indicates that IPF progression is driven in part by a hypercoagulable and anti-

fibrinolytic environment, where fibrin forms in the absence of exogenous tissue damage 

and degrades more slowly than the healthy physiological rate [26, 217]. However, specific 

mechanisms linking fibrin persistence to tissue fibrosis remain unclear. Different theories 

suggest that downstream signaling of the fibrinolytic system, mechanical persistence of the 
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fibrin scaffold, or biophysical feedback between cells and ECM may contribute to this 

pathological fibrin remodeling in fibroblasts [178, 179, 218-220].  

Our lab recently established a technique to print unprecedentedly small cell-laden 

fibrin matrices by implementing aqueous two-phase systems (ATPS). ATPS printing 

enabled separation of fibrinogen and thrombin in two distinct immiscible aqueous phases 

so that thrombin must diffuse between phases before crosslinking. This method for ATPS 

fibrin micro-printing was previously implemented to establish an assay for cell-mediated 

fibrinolysis. The conditions in this prior study, however, did not provide readouts of 

fibrotic processes such as collagen deposition, which typically accompanies fibrinolysis in 

wound healing and scarring.  

In this work, we adapt our prior ATPS fibrin micro-printing technique to enable high-

throughput label-free analysis of scarring. This adaptation built upon our finding that a 

more physiological higher seeding density, and use of serum, promoted fibroblast 

differentiation and collagen deposition in addition to fibrin degradation. The fibrin 

microgels were then stimulated with pro-fibrotic cytokines to evaluate mRNA expression 

and ECM deposition. Multiple donors for normal and diseased lung fibroblasts were 

utilized in order to evaluate consistency in response to therapeutic stimuli and investigate 

the interplay between fibrinolysis and collagen deposition at physiologically relevant 

concentrations of these compounds. To our knowledge, this is the first in vitro assay to 

conveniently combine label-free readouts for fibrin degradation, collagen synthesis, and 

cell contraction to evaluate fibrotic tissue remodeling. 
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4.2 Materials and Methods: 

4.2.1 Cell culture and ATPS reagents 

A stock solution of DEX (20% w/w dextran T500; Sigma) was prepared in PBS on 

a rocker overnight. A stock solution of PEG (6% w/w, 35k MW; Sigma) was prepared in 

fully supplemented culture media with 10% deionized water to balance osmolality. Both 

stock solutions were passed through a 0.22 μm sterilizing syringe filter before storage. PEG 

working solutions were stored for up to 2 weeks at 4C. Thrombin (Human Alpha 

Thrombin; Enzyme Research Labs) was also added to the PEG solution at a concentration 

of 0.1 U/mL immediately preceding experiments. Fibrinogen-DEX solutions were 

prepared by diluting fibrinogen stock solution (human fibrinogen 3; Enzyme Research 

Labs) to a final concentration of 4 mg/mL in a sterile solution of 4% 10x DMEM, 15% 

DEX stock solution (to a final concentration of 3% dextran), and 50% cell suspension in 

growth media. For all experiments, the cell suspension was diluted for 2500 cells per 

microliter in the final fibrinogen-DEX solution. 

4.2.2 Cell preparation 

Human primary lung fibroblasts were used in all experiments presented in this 

chapter. Unless otherwise noted, experiments utilized normal human lung fibroblasts 

(NHLF B lot#0000580583; Lonza) from a 79 year old female with a history of smoking. 

For experiments evaluating donor variability, the following cells were utilized: NHLF A 

(NHLF lot#0000608197; Lonza) from a 67 year old male, IPF A (IPF lot#0000627840; 

Lonza) from a 52 year old male, and IPF B (IPF lot#6F5002; Lonza) from a 83 year old 

male. All cells were cultured in fibroblast growth media (FGM; Lonza). Cells were 
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passaged at 80-90% confuence, and were sub-cultured in 1:3 ratios by trypsinization. When 

at the desired confluence, cells were washed with PBS and 0.05% trypsin solution was 

added to the flask. Cells were incubated for 2 min, and then harvested and centrifuged (200 

xg, 5min) in a conical tube. The supernatant was aspirated and the cell pellet was re-

suspended in serum-free culture media. When used in fibrin degradation experiments, cells 

were re-suspended at 2x the final desired concentration (2500 cells/μl unless otherwise 

indicated). All experiments were conducted with cells at or below passage 8 except for 

high passage experiments conducted at passage 12. In all experiments, media was changed 

every 48 hours and any media additives (plasminogen, TGF-β1, drugs, etc) were included. 

4.2.3 ATPS printing of fibrin microgels 

ATPS printing of fibrin micro-scaffolds was previously documented in Chapter 2. 

Briefly, working solutions of PEG with 0.1 U/mL of thrombin were warmed to 37C and 

pipetted into a 96-well plate. For production of droplets, fibrinogen-DEX solutions with 

cell suspension were maintained at 37C and 4 μl per assay (unless otherwise noted) was 

pipetted directly into the PEG-thrombin media using a semi-automated repeater pipette 

(Repeater E3X; Eppendorf). Following dispensing of the DEX phase, the plates were 

placed in an ambient air incubator at 37C for 30 min to allow the thrombin to enzymatically 

crosslink the fibrinogen into a fibrin matrix (Figure 15A). The PEG-enriched media was 

removed using a 12-channel micropipette and replaced with 100 μl of fully supplemented 

media in each well. When applicable, this media addition was supplemented with stimuli 

as detailed in section 2.7. For the duration of each experiment, assay plates were imaged 

every 2 hours at 4x with an automated cell culture monitoring system (Incucyte S3; Essen 
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Biosystems). As the assay proceeded, the fibroblasts progressively remodelled the fibrin 

scaffold as illustrated in Figure 15C.  

4.2.4 Histologic analysis of fibrin microgels 

Contracted assays were harvested after 12 days of culture. These assays were 

prepared for histology, stained, and imaged as previously described for cultured spheroids. 

Briefly, the assays were washed with PBS and fixed in 4% paraformaldehyde (Alfa Aesar) 

for 1 hour at room temperature. The assays were stained with 0.5% methylene blue solution 

in PBS for 10 minutes at room temperature to aid in visualization during histology. Samples 

were placed in a cryomold containing optimal cutting temperate (OCT), and flash frozen 

in cooled isopentane. 10 um sections were obtained using a CryoStar NX70 cryostat 

(Thermo Fisher Scientific).   

Upon warming to room temperature, the sections were washed with PBS, 

permeabilized with 0.2% Triton-X 100, and blocked for 1 hour at room temperature with 

4% bovine serum albumin (BSA) (Millipore Sigma). Sections were stained for 30 min at 

room temperature with Sirius red (0.1% of Sirius red in saturated aqueous picric acid), as 

previously described for collagen bundle staining [221]. The samples were then washed 

with PBS, stained with DAPI for 15 minutes at room temperature, and coverslipped. 

Samples were imaged using a DMi8 microscope (Leica) equipped with 10x and 20x air 

objectives. Fluorescence was detected using Texas Red channel settings as previously 

described [222]. Mean fluorescence intensity was quantified in ImageJ as the average pixel 

intensity within the sectioned assay. 
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4.2.5 mRNA quantification by qPCR 

RNA extraction and qPCR: 12 fibrin assays at the indicated time points were pooled 

together per condition, and lysed with 350 μl of RLT lysis buffer. RNA was extracted from 

assays using an RNeasy Mini Kit (Qiagen, #74104) and was performed according to the 

manufacturer’s instructions. RNA sample concentration was measured using a NanoDrop 

OneC Spectrophotometer (Thermo Fisher Scientific). A High-Capacity RNA-to-cDNA Kit 

(Applied Biosystems, #4387406) was used for reverse transcription; 400 ng of RNA for 

each sample was mixed with 10 μl primer, 1 μl reverse transcriptase enzyme and nuclease-

free water to bring the final reaction volume to 20 μl. The reaction was performed for 60 

minutes at 37 C, followed by 5 minutes at 95 C using a Veriti Thermal Cycler (Applied 

Biosystems). qPCR was performed using a QuantStudio 3 Real-Time PCR System 

(Applied Biosystems). Each reaction consisted of 1 μl cDNA, 10 μl TaqMan Fast advanced 

master mix (Applied Biosystems, #4444556), 1 μl primer, and 6 μl nuclease-free water. 

TaqMan primers (Applied Biosystems) for smooth muscle actin (ACTA2, 

Hs00426835_g1), plasminogen activator (PLAT, Hs00263492_m1), Plasminogen activator 

inhibitor-1 (SERPINE1, Hs00167155_m1), collagen type I (COL1A1, Hs00164004_m1), 

plasminogen activator (PLAU, Hs01547054_m1), and Ki67 (MKI67, Hs01032443_m1) 

were utilized. The QuantStudio 3 was programmed with a 2 minute hold at 95 C, followed 

by 40 cycles of 95 C for 1 second and 60 C for 20 seconds. Each sample was run with 

biological triplicates. The relative gene expression was calculated using the 2-ΔΔCT 

method, with glyceraldehyde-3-phosphate dehydrogenase as the housekeeping gene 

(GAPDH, Hs02786624_g1). Fold changes were normalized with respect to the time zero 



 75 

timepoint with no TGF-β1 stimulation, and are reported as the mean with the error bars 

representing the minimum and maximum values. 

4.2.6 High-throughput brightfield image analysis 

After each experiment, brightfield images at two hour intervals from the 4x 

objective of our automated cell culture monitoring system (Incucyte S3; Essen Biosystems) 

were downloaded in jpeg format from the automated cell culture monitoring system. 

Separate processes for pixel classification, thresholding, and morphological filtering were 

implemented for the masking approach illustrated in Figure 17A in order to isolate the 

assay area from the background.  

Image segmentation implemented Ilastic, a freely available image classification 

tool developed by the European Molecular Biology Laboratory. Ilastik’s pixel 

classification utility implements a random forest classifier for quick and robust 

segmentation. In order to train the classifier, 10 characteristic images were selected to 

include different stages of ECM remodeling. In this step, each individual pixel is assigned 

a probability for belonging to layers for the background or the assay. Ilastik enables 

interactive training of the random forest classifier via user annotations of the training 

images. All default features (σ = 0.3 through 10 for intensity, edge, and texture) were 

utilized for this interactive training by methodically annotating mislabelled areas of each 

training image. Care was taken to equally annotate background and assay areas in order to 

prevent the algorithm from weighting features inappropriately. Through this iterative 

training method, the user can evaluate interactive predictions by the algorithm and then 

draw additional annotations to correct mistakes. When additional training annotations no 
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longer improved background noise and edge feature fit of the predicted mask over the assay 

area, the trained classifier was saved for future use. With each experiment, this trained 

classifier was reloaded and assay fit was evaluated on representative images (not from the 

training set) before use. 

This pixel classification workflow performs semantic segmentation, and therefore 

returns a probability map for the background and assay area for each image. The probability 

map was transformed into background as assay area objects through thresholding. 

Thresholding of these probability masks then enabled generation of a single mask to isolate 

the assay area. A closing morphological filter with a 25x25 kernel was then applied to each 

mask in order to remove noise. This masking approach was implemented for each time-

course brightfield image for every condition over the course of an experiment. 

The area from segmented masks was used to quantify assay contraction. For each 

experimental replicate, a sigmoid curve was fit using the curve_fit function from the SciPy 

library in Python. The logistic function given by the equation in Figure 17C enabled 

automated extraction of the time point for 50% contraction and the maximum slope at the 

equation’s centroid. In many cases, the final contracted assay was out of view for the 4x 

objective in the live cell imager. For this reason, final assay area was determined from 

brightfield images taken on a benchtop imaging system (2x objective; EVOS M7000; 

ThermoFisher) and evaluated by the same segmentation procedure described above. 

Various concentrations of transforming growth factor type β1 (Human 

Recombinant TGF-β1; Peprotech) were used for validation due to its established anti-

fibrinolytic and pro-fibrotic qualities. TGF-β1 was added at indicated concentrations in the 
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assay media which was used to rinse and remove ATPS polymers after incubation. In order 

to visualize dynamics between assay contraction time and final assay area, kernel density 

estimate plots (KDE plots) were generated using the Seaborn Statistical Data Visualization 

library in Python 3. These bivariate kernel density estimates represent the probability 

density functions for each experimental condition. 

In order to evaluate metrics not based on changes in assay area, the segmented 

images were used to generate masks that isolate the assay from image background. Within 

these masked regions, a variety of metrics were evaluated including average intensity, 

standard deviation, kurtosis, and skew from histograms of pixel intensity. Plots of time 

course changes in average pixel intensity were generated to evaluate ECM composition. 

4.2.7 Phenotypic evaluation of stimuli 

Our customized high-throughput image analysis approach was applied for 

phenotypic evaluation of all experiments. In order to evaluate assay remodeling behavior 

with established stimuli; experiments implemented different conditions of TGF-β1, serum, 

and cell seeding density. TGF-β1 was introduced at concentrations of 0, 0.5, 2, and 10 

ng/mL; however the highest concentration did not contract within the duration of the 

experiment and was therefore omitted from analysis. In order to evaluate the remodeling 

effects of serum, foetal bovine serum (FBS, Lonza) at concentrations of 0, 1, 2, 4, and 8% 

by volume of the cell culture media was added during the washing step after fibrin 

crosslinking. For cell seeding density experiments, fibroblasts were suspended at 

appropriately modified concentrations in the dextran phase of the ATPS fibrin printing 
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formulation so that assays were printed with concentrations of  1, 2, 4, and 8 thousand cells 

per microliter within a 4 μl assay. 

In order to evaluate the capability of this assay to test the fibrinolytic and anti-

fibrotic effects of therapeutic stimuli, a variety of drug compounds were introduced to the 

assays after the wash step. This included 1.0 μM  ifenprodil (MedChemExpress), 1 μM 

nintedanib (Selleck Chem), 500 μM pirfenidone (Selleck Chem), 10 μM TM5275 

(MedChemExpress), 0.50 μM aprotinin (MedChemExpress), 1.0 μM  GLPG 1690 

(MedChemExpress), and 20 μM diethyl-pythiDC (AOBIOUS); all diluted and stored 

according to supplier data sheet recommendations. These concentrations were established 

in preliminary experiments that evaluated a range of concentrations used in prior literature. 

These stimuli were freshly mixed for each media change during experiments, and a 

minimum of four replicates were tested per experimental condition. 

4.2.8 Statistical Analysis 

All experimental values are reported as means ± standard deviation. ANOVA tests 

were performed using the statsmodels library in Python 3 with the Tukey test for post-hoc 

pairwise comparisons. Experiments involving two independent variables (such as 

therapeutic stimulus and TGF-β1) implemented two-way ANOVA to evaluate the 

significance of combined effects. Kernel density estimates were determined for KDE plots 

using the Seaborn Statistical Data Visualization library in Python 3. 
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4.3 Results and Discussion 

In tissue repair, fibrin formation is followed by fibroblast migration, fibrinolysis and 

matrix remodeling. We previously reported a method to print microscale cell-laden fibrin 

gels to quantify cell-mediated fibrinolysis. Our prior study conditions, however, did not 

provide readouts of fibrosis formation such as collagen deposition and fibroblast activation.  

 In the work described here, we adapt our prior ATPS fibrin micro-printing 

technique to allow for high-throughput automated image-based analysis of 

fibroproliferation as well as fibrinolysis. This adaptation built upon the finding that a higher 

seeding density and the use of serum-supplemented media enabled fibroblast proliferation, 

differentiation, and collagen deposition. This newly discovered model for fibrin 

remodeling was characterized by staining histologic slices of remodeled matrices and 

quantifying mRNA expression in order to elucidate which proteins were affecting matrix 

turnover. Then, an automated image processing approach quantified different aspects of 

matrix remodeling from label-free brightfield images. Finally, the microscale cell mediated 

fibrinolysis-fibrosis assay was implemented to evaluate the effects of anti-fibrotic 

therapeutics on fibroblasts from normal and diseased donors. 

4.3.1 Fabrication of microscale fibrin matrices 

Biological environments establish fibrin matrices through coagulation, where a 

cascade of clotting factors activates thrombin to enzymatically crosslink fibrinogen into 

fibrin [161]. Similarly, synthetic fibrin scaffolds are formed by exposing monomeric 

fibrinogen to activated thrombin [181]. Our previously established technique for 

generating fibrin micro-scaffolds utilized an ATPS with PEG and dextran to improve  
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Figure 15. ATPS fibrin printing and cell-mediated remodeling: (a) Process schematic of 
ATPS generation of microscale fibrin droplets and subsequent remodeling. After the initial pipetting 
step, thrombin from the PEG phase diffuses into the dextran phase for controlled crosslinking of 
fibrinogen into fibrin over the incubation period. Subsequent remodeling includes concurrent 
fibrinolysis and collagen deposition, followed by contraction. (b) Characteristic brightfield microscope 
images (taken at 4x magnification) illustrate the assay progression when stimulated with 2 ng/mL of 
TGF-β1. Scale bars are 1 mm. (c) Microscale illustration shows the changes in ECM organization at 
stages of remodeling. Fibrosis denotes deposition and accumulation of fibrous extracellular protein. 

control over enzymatic crosslinking, which enables printing of unprecedentedly small cell-

laden fibrin matrices with standard liquid handling equipment. This prior implementation 

of fibrin micro-printing was used to evaluate fibroblast-mediated fibrinolysis by utilizing 

lower seeding density (1000 cells/μl) in combination with a concentration of exogenous 

plasminogen comparable to levels found in serum [223]. However, most tissue in vivo is 

not exposed to serum-level concentrations. The majority of plasminogen is produced in the 

liver, so tissue availability depends on vascular permeability to plasma proteins [224]. In 

the current work, decreased availability of plasminogen in addition to higher fibroblast 

seeding density and serum supplemented media result in a significantly altered trajectory 

of fibrin remodeling compared to our prior approach. Rather than strictly degrading the 
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scaffold into fibrin degradation products and dissociated cells, these conditions enable 

deposition of significant collagen and contraction into a fibrotic spheroid.  

In this approach, a microscale format was necessary to enable microplate 

implementation and evaluation with a conventional live-cell imager. In order to fit the 

entire assay within the field of view of a 4x objective, the fibrin scaffold needed an initial 

volume below 8 μl. In order to establish this microscale fibrin environment, we 

implemented ATPS printing as previously described. The necessity for this ATPS 

environment in our microscale fibrin degradation assay comes from the capability of 

aqueous two-phase partitioning to control diffusion of thrombin into the fibrinogen droplet. 

This restricts enzymatic crosslinking of cell-laden fibrin matrices until after the droplets 

have been dispensed (Figure 15A). After a 30 minute incubation period, the fibrin was 

sufficiently polymerized and the ATPS solutions could be rinsed and replaced with growth 

media and stimulants for specific conditions.  

During assay progression, remodeling is visually apparent in brightfield images as 

opaque fibrin transitioning into a translucent fibrous matrix and eventually contracting into 

a dense spheroid (Figure 15 B, C).  Our previously implemented fibrin degradation assay 

demonstrated the opaque material to be fibrin, so qualitative analysis of the current assay 

indicates concurrent fibrinolysis and deposition of cell-secreted ECM. In the absence of 

serum, which contains plasminogen, the initial fibrin matrix remained opaque and intact 

with minimal change (Supplemental Video 2). Control conditions verified that presence of 

both serum and cells was necessary for degradation of the opaque fibrin scaffold, indicating 

that cell mediated activation of plasmin was necessary for fibrin degradation. Factors 
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contributing to altered fibrinolysis and increased collagen deposition are assessed in the 

following section. 

4.3.2 Response to TGF-β1 

Exogenous addition of TGF-β1 served as a broad pro-fibrotic stimulus to determine 

whether varying degrees of fibrosis are distinguishable in the context of this assay. 

Downstream signaling effects include inhibition of fibrinolysis, increased fibroblast 

proliferation, increased synthesis and deposition of connective tissue, and inhibition of 

connective tissue breakdown [225]. Preliminary qualitative assessment of microscale fibrin 

remodeling in our assay indicated dose-dependent increases in both timing of contraction 

and final contracted assay size. Specific biological contributions to these differences in 

remodeling were evaluated through histologic staining and qPCR analysis. 

4.3.2.1 Final organization of deposited collagen 

Histologic evaluation was used to determine the ECM content and organization of 

collagen in the final contracted assays. The most commonly used commercially-available 

method for quantification of deposited collagen is the Sircol™ insoluble collagen assay 

kit, which implements the dye Sirius Red F3B due to its high specificity for collagen [226]. 

These kits, however, are optimized for use on fixed quantities of excised tissue. Due to the 

low assay volume and variability in assay final size (Figure 16A), Sircol™ kits were not 

practical for use in this approach. Many alternative methods for benchtop quantification of 

collagen rely on ELISAs to evaluate soluble collagen and products of collagen synthesis. 

These methods were also infeasible for our application due to high background protein 

concentrations from the serum-supplemented media. 
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Figure 16. Matrix remodeling in vitro: (a) Brightfield images of histologic sections show the 
difference in final size between assays treated with varied concentrations of TGF-β1. The contracted 
assays were harvested after 12 days, and sections were stained with picrosirius red. Scale bars are 
250μm. (b) Evaluation of mean fluorescence intensity demonstrates consistency in collagen 
organization between conditions. Quantification of mRNA expression via qPCR evaluated dose-
dependent time-course changes in SERPENE1 (c), COL1A1 (d), ACTA2 (e), PLAU (f), PLAT (g), 
MKI67 (h) in response to concentrations of TGF-β1. The dotted lines indicate the zero time point used 
as reference for relative expression. Two-way ANOVA indicated significant combined effects of time 
and TGF-β1 for COL1A1 with P < 0.01; significant one-way effects for both variables with 
SERPENE1, PLAU, PLAT, and ACTA2 with P < 0.01; and significant one-way effects for only TGF-
β1 concentration for MKI67 of P < 0.01. 

Picrosirius red (PSR) utilizes the same anionic dye as Sircol™ assay kits to 

visualize collagen in paraffin embedded tissue sections. Under light microscopy, PSR 

stained collagen appears red and can be used for qualitative evaluation of collagen 

organization [221]. A variety of quantitative approaches for morphometric assessment of 

collagen networks implement polarized light to visualize fiber alignment; however, signal 

strength and hue under linear polarized light are heavily dependent on sample orientation 

[227]. Fluorescent imaging of PSR stained tissues with standard red filter sets yields a 
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strong red fluorescence signal that is sensitive, collagen-specific, and is unaffected by 

sample orientation [222, 227]. 

In order to evaluate deposited collagen, contracted assays were collected after 12 

days of culture. Intermediate time points could not be sectioned due to adhesion of flat 

fibrin scaffolds to the microplate. Stained sections demonstrated consistent appearance of 

collagen between conditions, with a consistent increase in size for higher concentrations of 

TGF-β1 (Figure 16A). Fluorescent micrographs demonstrate relatively homogenous 

collagen distribution for the interior of the contracted assay with higher deposition at the 

interface between the assay and the media. Evaluation of area demonstrated a dose-

dependent increase in final contracted assay size (P < 0.05).  Mean fluorescence intensity 

(MFI) was measured in order to evaluate relative differences in collagen organization 

between sections (Figure 16B). While this measure cannot provide absolute quantification 

of collagen content, it indicated relative consistency in organization of collagen networks 

between different TGF-β1 conditions and the control. 

Well-established mechanisms have linked TGF-β1 signaling to exaggerated 

extracellular deposition of type I collagen in fibrosis [228]. Here, histologic evaluation 

demonstrated consistency in organization of collagen between histologic slides. This 

indicates that assay size is at least partially influenced by the total amount of collagen 

accumulated during assay progression; however, there are likely differences in collagen 

compaction due to variations in fibroblast contractility between conditions. Additional 

analysis is necessary to better characterize variability in collagen density. Potential 

contributors to collagen remodeling are evaluated in the following section. 
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4.3.2.2 Alterations in mRNA expression 

In order to further evaluate the factors contributing to altered ECM remodeling with 

TGF-β1 stimulation, qPCR was used to determine mRNA expression for proteins involved 

in fibrinolysis and collagen deposition. These genes were chosen for their involvement in 

specific pathways contributing to slowed fibrinolysis, increased collagen deposition, and 

increased myofibroblast activation in response to TGF-β1 stimulation. Time points at 12, 

24, and 36 hours evaluated time-dependent and dose-dependent response to TGF-β1 within 

the dynamic fibrin-remodeling environment. Quantification of mRNA for SERPENE1 

demonstrated significant time-dependent and dose-dependent increases in expression in 

response to TGF-β1 (Figure 16C).  

The induction of SERPENE1 by TGF-β1 signaling is a well-established connection 

between TGF-β1 and fibrinolysis because SERPENE1 encodes the protein plasminogen 

activator inhibitor type 1 (PAI-1) [229]. PAI-1 is the dominant inhibitor of fibrinolysis, and 

acts by binding to the active sites of urokinase-type and tissue-type plasminogen activators 

(uPA and tPA). These three regulators have been evaluated extensively in animal models 

of IPF to evaluate their potential involvement in fibrosis pathogenesis [177]. TGF-β1 

mediated increases in PAI-1 contribute to the anti-fibrinolytic environment during certain 

stages of wound healing and fibrosis [230]. Additionally, gene polymorphisms of TGF-β1 

and PAI-1 have been associated with susceptibility to IPF due in part to dysregulation of 

the fibrinolytic system [231]. 

Time course measurements also show significant increases in expression of the 

genes for tPA and uPA relative to the initial time point, but the effect of TGF-β1 stimulation 
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is inverted between these two plasminogen activators. uPA demonstrated relative 

upregulation compared to the control time series, while tPA demonstrated a relative 

downregulation (Figure 16 D, E). However, the qPCR results for tPA and uPA do not 

indicate relative quantities between the two, so additional quantitative evaluation is 

necessary to determine the dominant TGF-β1 mediated changes.  

This highlights the potential utility for a phenotypic assay in evaluating 

multifactorial contributions to fibrotic remodeling. While PAI-1 is generally credited as 

the anti-fibrinolytic mediator in fibrosis, other components of the fibrinolytic system 

demonstrate significant differential expression in response to a pro-fibrotic stimulus. 

Additionally, there are several other activators and inhibitors not evaluated here that are 

produced by cells and play roles in regulating conversion of plasminogen into plasmin 

[170-174]. This phenotypic evaluation of fibrin remodeling can incorporate these effects 

even though expression of individual contributing proteins was not specifically quantified. 

In addition to its effects on the fibrinolytic system, TGF-β1 also has established 

roles in myofibroblast activation and collagen synthesis [192]. Myofibroblasts are 

collagen-producing cells that express the contractile protein alpha smooth muscle actin 

(αSMA). Increases in myofibroblast activation and myofibroblast resistance to apoptosis 

have been identified as major contributors to IPF pathogenesis [12]. Evaluation of ACTA2 

mRNA demonstrated significant time-course increases in αSMA expression as well as 

increased expression for the highest concentration of TGF-β1 (Figure 16F). These time-

course changes may be due to a variety of factors including biomechanical feedback, 

cytokine secretion, or downstream signaling of the fibrinolytic system [12, 232, 233]. 
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COL1A1 encodes the pro-alpha1(I) chain, which is a primary component of type I 

collagen. Quantification of mRNA for COL1A1 demonstrated significant combined effects 

of TGF-β1 and time (Figure 16G). Collagen expression in pulmonary fibrosis is heavily 

dependent on myofibroblast activation [234], but increased collagen expression in 

fibroblasts has also been linked to downstream effects of anti-fibrinolytic environments 

[220]. Due to the variety of TGF-β1 effects on cellular activity, the increased expression 

of COL1A1 likely results from the combinatorial effects of multiple contributing pathways. 

Expression of MKI67 mRNA was evaluated as a marker for proliferation. The 

substantial decrease from initial RQ reference value to the first time point may be due to 

that time point’s proximity to trypsinization and manipulation during experimental setup 

(Figure 16H). In later time points, MKI67 expression was significantly upregulated with 

higher concentrations of TGF-β1, indicating increased cellular proliferation relative to the 

control condition. TGF-β1 is a key regulator of ECM remodeling and dysregulation of 

TGF-β function is closely associated with fibrosis [228]. Our assay reveals multiple effects 

of TGF-β1 on fibroblasts including its ability to impact ECM remodeling through 

regulation of the fibrinolytic system and upregulated collagen synthesis. 

4.3.3 Label-free quantification of fibrotic remodeling 

In order to evaluate fibrosis in vitro, conventional approaches generally quantify 

specific contributors such as activation of myofibroblasts or concentration of soluble 

collagen. Here, an automated approach was developed in order to broadly assess 

phenotypic changes associated with fibrin remodeling. Preliminary qualitative assessment 

indicated that pro-fibrotic stimulation with TGF-β1 increased the time before assay  
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Figure 17. High-throughput quantification of fibrin Remodeling: (a) The segmentation 
approach utilized Ilastik for pixel classification and the Python OpenCV library for thresholding and 
morphological filtering. Example images from diverse stages of assay remodeling were chosen to 
demonstrate the resilience of this segmentation approach to different image features. (b) The resulting 
masks enabled calculation of assay area, as illustrated here with NHLF cells and different 
concentrations of TGF-β1. (c) An example measurement demonstrates image metric extraction for 
NHLF cells with no TGF-β1. For each individual microwell, the logistic function is fit using a least 
squares regression. This function enabled extraction of 50% contraction time (d), maximum 
contraction rate (e), and final area (f). Note that the 50% contraction time (vertical axis) is indicated 
here as days after start of assay, contraction rate in mm2 per day, and final area in mm2. (Statistical 
significance:  ab, bc = P < 0.01;  bd = P < 0.05) 

contraction and increased the final assay size after contraction. There were also changes in 

assay appearance associated with the transition from an opaque fibrin matrix to a 

translucent collagen matrix. 

The first step of image analysis was to isolate the assay from the background of 

each image. Due to transitions in assay appearance during remodeling, the basic image 

segmentation software for our live-cell imager was inadequate for accurate segmentation. 

In order to consistently isolate assay area, it was necessary to implement an approach that 
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utilized machine learning. Our approach utilized Ilastic, a freely available image 

classification tool developed by the European Molecular Biology Laboratory. 

Ilastik’s pixel classification tool utilizes a random forest algorithm that can be 

interactively trained through iterations of user annotations on a small set of training images. 

It was important here to use training images from time points throughout the experiment 

with a variety of different image features. Otherwise, the trained algorithm might mis-

classify brightfield images from stages of remodeling that were omitted from the training 

set. When additional training annotations no longer improved background noise and edge 

feature fit, the trained pixel classification algorithm was saved for future use. Figure 17A 

illustrates the output of this pixel classification algorithm. Ilastik performs semantic 

segmentation, which returns probability maps that can be converted into masks by 

thresholding. In order to remove remaining background noise, opening and closing 

morphological filters were applied to the masks. 

After establishing segmented masks, time-course changes in assay area were 

plotted in order to visualize assay remodeling (Figure 17B). Fitting time-course data from 

each individual well with a sigmoidal curve facilitated extraction of the time point for 50% 

contraction and the maximum slope at the sigmoid’s centroid (Figure 17C). Figure 17D 

shows changes in the 50% contraction time point in response to different TGF-β1 

concentrations. ANOVA indicated statistical significance of these differences in 

degradation time (P < 0.01), and post-hoc pairwise analysis with the Tukey test 

demonstrated statistically significant differences between specific conditions. The dose-

dependent increases in time for 50% contraction correspond with changes in mRNA 

expression from the previous section.  



 90 

Maximum contraction rate (Figure 17E) was determined as the centroid slope of 

the sigmoidal fit for each experimental replicate (Figure 17C). This value reflects 

contractile stress generated by cells within the assay. In order for contraction to initiate, 

stress within the assay must overcome adhesion to the microwell. In some cases, initial 

contraction was not sustained and occurred in multiple steps (Appendix Figure A-5). Due 

to this inconsistency, the slope of contraction did not serve as a reliable indicator of assay 

remodeling activity. 

Final contracted cross-sectional area was also evaluated in our analysis, and 

demonstrated significant dose-dependent increase with TGF-β1 stimulation (Figure 17F). 

COL1A1 mRNA quantification and histologic analysis demonstrated increased collagen 

synthesis and deposition in response to TGF-β1. Additionally, qualitative evaluation of 

assay appearance and pixel intensity quantification leading up to contraction (Appendix 

Figure A-4) also indicate increased deposition of collagen with TGF-β1. These data and 

observations together suggest that final contracted cross-sectional area of the assay is 

correlated with total collagen deposition. However, variability in collagen density due to 

differences in generation of contractile stress likely also contribute to final cross-sectional 

area due to differences in compaction density. Fibroblast proliferation may also play a role. 

Additional evaluation is necessary to determine relative contributions to final cross-

sectional area.  

PAI-1 may be particularly relevant in this remodeling process due to its multiple 

effects on fibrin remodeling. In addition to inhibiting fibrinolysis, PAI-1 can disrupt 

integrins, which form cell-matrix adhesions [218]. Appendix Figure A-4 shows increasing 

pixel intensity leading up to assay contraction. We previously established that this increase  
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Figure 18. TGF-β1, serum concentration, and seeding density effects: Output contraction 
times and final assay areas from image processing analysis were used to plot kernel density estimates 
showing interplay between contraction time and final assay area. (a) Stimulation with TGF-β1 resulted 
in increases in both 50% contraction time and final assay area. (b) Evaluation of serum concentration 
demonstrated relatively consistent contraction time with increasing final assay area in response to 
higher serum concentrations. The disparity between apparent slope and maximum slope for 8% serum 
is detailed in Appendix Figure A-4. (c) Cell seeding density had an inverse relationship between 
contraction time and final assay area. Final contracted area is shown in mm2 and statistical differences 
are annotated on graphs in Appendix Figure A-6. 

in pixel intensity corresponds with degradation of the fibrin matrix. Initially, all conditions 

degraded fibrin at a similar rate; however, fibrinolysis slows down substantially with higher 

concentrations of TGF-β1 after the initial 12 hours. This timing corresponds with the 

increases in PAI-1 expression determined by qPCR in the previous section. Fibrin 

degradation initially proceeds at similar rates between conditions until the TGF-β1 

mediated increase in PAI-1 can establish an anti-fibrinolytic environment. Time-course 

evaluation of pixel intensity before contraction may therefore serve as an indicator for 

fibrin degradation.  

4.3.4 Evaluation of serum and cell number effects 

In order to validate remodeling behavior, the established stimuli of TGF-β1, serum, 

and cell seeding density were evaluated for their effects on matrix turnover. The 

relationship between contraction time and final contracted area of remodeled assays was 



 92 

visualized using kernel density estimates to approximate probability density functions for 

each experimental condition. Figure 18A demonstrates the effects of TGF-β1 stimulation 

on the 50% contraction time and final area as determined in the previous section. With 

increasing concentrations of TGF-β1, the time for 50% contraction and the final assay area 

increased in a dose dependent manner. 

The effects of serum concentration on matrix remodeling were also evaluated. FBS 

contains a complex mix of growth factors, hormones, cytokines, proteases, zymogens, co-

factors, latent TGF-β1, and inhibitors that influence cellular activity. In the context of fibrin 

remodeling, one important component of FBS is plasminogen which can be activated by 

fibroblasts into plasmin for cell-mediated fibrinolysis. The fibroblast growth media used 

for propagating NHLF cells contained 2% FBS, but conditions were evaluated here ranging 

from serum-free to 8% serum content in the assay media.  

Serum free conditions did not contract within the length of the experiment, but there 

were slight changes in assay cross-sectional area over the course of the experiment. In the 

absence of serum, assays maintained their opaque appearance, indicating that very minimal 

fibrin degradation had occurred. Evaluation of contraction rate indicated no significant 

difference in contraction time for most conditions, however some replicates of the 8% 

condition contracted in multiple steps, resulting in larger values for 50% contraction time 

(Appendix Figure A-5). 

Final assay cross-sectional area exhibited dose-dependent increases in response to 

serum concentration, indicating increased deposition of collagen (Figure 18B). Due to the 

vast number of distinct proteins in serum, it is difficult to speculate which specific 
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components contribute to the altered assay remodeling. However, latent TGF-β1 and 

fibroblast growth factor (FGF) are both present in serum and have established effects on 

collagen production. These increases in concentration of serum are relevant to fibrotic 

disease. In vivo tissue availability of serum proteins depends largely on vascular 

permeability, and dysregulated endothelial permeability and vascular leak have long been 

associated with pulmonary fibrosis [217, 224].  

The initial fibroblast seeding density used to form assays is also relevant to IPF. 

Fibroblasts from fibrotic lungs have particularly proliferative phenotypes, resulting in 

higher numbers of fibroblasts and myofibroblasts in fibrotic tissue [235]. Here, initial 

fibroblast seeding density were varied between 1000 and 8000 cells/μl in order to evaluate 

the impact on remodeling (Figure 18C). Evaluation of contraction rate indicated significant 

dose dependent decreases in contraction time and increases in maximum contraction slope. 

Final assay cross-sectional area exhibited dose-dependent increases in response to higher 

cell density. The volume of cells within each assay contributes significantly to the final 

contracted assay size, so additional evaluation is necessary to determine differences in 

collagen deposition between conditions. Final volume of the contracted assay is dependent 

on a variety of contributors including cell number, ECM accumulation, and contractile 

stress. 

4.3.5 Fibroblast donor variability 

Alternative donors of normal and diseased fibroblasts were utilized in our assay to 

evaluate variability in remodeling behavior. Prior studies have demonstrated exaggerated  
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Figure 19. Consistency in response between cell lines: (a, b) Histologic sections show final 
contracted assays for NHLF B and IPF B with picrosirius red staining. For each example, color 
brightfield images are shown on the left with fluorescent images on the right. Scale bars are 250μm. 
(c-g) Individual plots for each fibroblast donor show remodeling response to TGF-β1 and nintedanib 
stimulation. (h) TGF-β1 response was compared between fibroblast donors with lines indicating the 
average responses with and without TGF-β1. Final areas are indicated in mm2 and statistical 
differences are annotated on graphs in Appendix Figure A-7. 

fibrogenic response in aged and diseased pulmonary fibroblasts compared to normal donors 

[197]. PAI-1 production and TGF signaling have both been implicated in this pathogenic 

alteration in behavior [10, 236]. We evaluated remodeling with pulmonary fibroblasts from 

2 normal donors, 2 IPF diseased donors, and one higher passage (p11) in order to evaluate 

consistency in assay progression. Each fibroblast lineage was evaluated with TGF-β1 to 

determine consistency in response to pro-fibrotic stimulus, in addition to nintedanib as an 

FDA-approved therapeutic. 
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Final contracted assays from normal and diseased fibroblasts were stained for 

histologic evaluation. These sections demonstrated consistency in organization of collagen 

in fluorescent images (Figure 19 A, B). However, PSR staining in color brightfield images 

had a darker hue in sections with IPF fibroblasts. It has previously been demonstrated that 

dysregulation of TGF-β1 signaling in diseased fibroblasts can contribute to increased 

activation of myofibroblasts in IPF [237]. It is possible that the altered hue of PSR staining 

in brightfield images reflects differences in contractility and compaction, but additional 

analysis is necessary to evaluate potential contributions. 

Evaluation of assay contraction time and final cross-sectional area demonstrated 

altered fibrin remodeling profiles between conditions (Figure 19 C-G). These shifts are 

particularly apparent in the response to TGF-β1, where IPF fibroblasts and high passage 

fibroblasts have a muted effect on final assay area (Figure 19H). These data indicate 

consistency in remodeling response to TGF-β1 and nintedanib between cell lineages, but 

magnitude of response to these stimuli varies between fibroblast donors.  

Prior studies have demonstrated increased sensitivity to TGF-β in diseased 

fibroblasts [10, 238], but TGF-β conditions in the fibrin remodelling assay had smaller 

final assay sizes compared to normal fibroblasts. Prior literature has also shown that 

diseased fibroblasts express more PAI-1, differentiate more easily into myofibroblasts, and 

synthesize more type I collagen [10, 197, 236]; however, both IPF fibroblasts and the 

higher passage number normal fibroblasts in this fibrin remodelling assay contracted into 

a smaller final assay size. This smaller final size may indicate decreased accumulation of 

collagen or greater contractility of cells within the assay. 
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Figure 20. Response to therapeutic stimuli: (a) Time-course changes in assay area show the 
effects of IPF therapeutics on remodelling behavior. (b) Evaluation with therapeutics targeting the 
fibrinolytic system demonstrate the impact of a PAI-1 inhibitor (TM 5275) and a tPA/uPA inhibitor 
(aprotinin). (c) Additional experimental therapeutics were also evaluated. Final areas are indicated in 
mm2 and statistical differences are annotated on graphs in Appendix Figure A-8. 

4.3.6 Drug response 

We then evaluated changes in remodeling with different therapeutic stimuli in order 

to assess applications as a pharmaceutical model of fibrotic disease. In IPF, specific sites 

of proliferative injury are identified as dense aggregates of ECM-producing fibroblasts, 

termed fibroblastic foci [17]. In clinical evaluation of IPF severity, the extent of fibroblastic 

foci within lung biopsies is used as a predictor of survival. Interestingly, the most important 

prognostic indicator from histologic analysis is the extent of young connective tissue 

present within the fibroblastic foci rather than the extent of interstitial cellularity or ECM 

accumulation [131]. Newly remodeled ECM is therefore a particularly important target for 

IPF therapeutic intervention. 

Here, we compared fibrin remodeling between healthy and diseased lung 

fibroblasts with a variety of stimulants (Figure 20). Ifenprodil was included as a potential 

IPF therapeutic that is currently being evaluated in clinical trials. Final assay area showed 

marginal increases compared to control in most conditions with one condition showing a 
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significant increase (Figure 20A). Ifenprodil inhibits lung fibroblast proliferation and 

differentiation, and has been shown to reverse the damage of initial acute lung injury in an 

animal model of pulmonary fibrosis [239]. While the mechanism for ifenprodil’s effects 

on fibrosis is not yet fully understood, current evidence indicates that it may play a role in 

reducing invasiveness of immune cells and fibroblasts [240, 241]. Ifenprodil may therefore 

act on aspects of fibrosis pathogenesis not evaluated in this assay. 

Nintedanib conditions showed significant decreases in final area for all conditions 

(P < 0.01). Nintedanib is a multiple tyrosine kinase inhibitor with effects on expression of 

ECM proteins and TGF-β1 induced signaling, so its tyrosine kinase inhibitory activity 

likely contributed to decreased final assay area through its effect on collagen production 

[242]. Stimulation with pirfenidone also demonstrated a significant decrease in fibrinolysis 

rate in most conditions (P < 0.01; except IPF TGF-β1−). The specific mechanism of 

pirfenidone is unclear, but it has been established to reduce fibroblast proliferation, α-SMA 

expression, and collagen synthesis [243, 244].  

Our prior assay for cell-mediated fibrinolysis did not show significant changes in 

fibrin degradation in response to nintedanib and pirfenidone, indicating minimal effects on 

the fibrinolytic system. By showing significant effects of these therapeutics on fibrinolysis, 

the fibrin remodelling assay demonstrated the utility of evaluating broader contributions to 

fibrosis. Nintedanib and pirfenidone are the two current FDA-approved therapeutics for 

IPF. In clinical use, administration of these drugs is incapable of halting or reversing 

fibrosis, and can only slow the spread of fibrotic scarring in the lungs [26]. The 

insufficiency of current IPF therapeutics served as motivation for development of this 

assay. 
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To address the need for alternative treatment strategies, several recent reviews have 

proposed components of the fibrinolytic system as potential targets for therapeutic 

intervention (Figure 20B) [214-216]. Inhibition of PAI-1 is of particular interest, as 

increased expression in IPF has been associated with worse clinical outcome [9, 10]. 

TM5275 is a small molecule inhibitor of PAI-1, which has been shown to minimize the 

extent of fibrotic remodeling in an animal model of pulmonary fibrosis [245]. Stimulation 

of assays with TM5275 decreased final assay size for all conditions, although these 

decreases were only statistically significant in the IPF condition without TGF-β1 (P < 

0.05). Interestingly, TM5275 was among the two drugs that demonstrated significant 

changes in contraction time (Appendix Figure A-8). This indicates that delays in start time 

of contraction may be related to inhibition of fibrinolysis by PAI-1.  

GLPG 1690 also demonstrated significant changes in contraction time (Appendix 

Figure A-8). This decreased time to contract may also be related to PAI-1 production. 

GLPG 1690 has been demonstrated to decrease TGF-β1-induced production of several pro-

fibrotic mediators in fibroblasts which are involved in PAI-1 production [246]. Final 

contracted area was also significantly decreased in all conditions treated with GLPG 1690. 

Diethyl-pythiDC is an inhibitor of prolyl 4-hydroxylase, which plays a role in post-

translational modifications that stabilize deposited collagen, and was included to evaluate 

the role of collagen matrix stability in remodeling of the assay [196]. However, prolyl 4-

hydroxylase is responsible for a variety of other post-translational modifications of proteins 

important to cell function, so there are multiple potential contributing pathways to the 

measured changes in assay remodling [202]. Alterations in PAI-1 expression may be also 
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be involved, but further evaluation of mRNA or protein expression would be necessary to 

confirm specific changes to the fibrinolytic system [199, 203]. 

Fibrosis is the aggregate outcome of diverse dysregulated contributions, and the 

readouts of this fibrin remodelling assay incorporate a broader variety of contributors than 

other current in vitro assays for fibrosis. A broad evaluation of protein and mRNA 

expression for components of each contributing pathway of the remodelling process would 

be necessary to fully understand which specific pathways cause changes to remodelling 

behaviour for a given set of conditions. This assay provides a pragmatic alternative by 

enabling phenotypic evaluation of the fibrinolytic system with high resolution time-course 

data for fibrin degradation. This enables visualization of the formation of fibrosis in vitro, 

resulting from the cumulative remodelling effects of fibrinolysis and collagen deposition.  

4.4 Conclusion 

Coordinated fibrinolysis and collagen deposition are necessary for restoration of 

tissue function after injury. However, no in vitro assays currently evaluate the combined 

effects of these processes on cell-mediated fibrin remodeling. Here, microscale fibroblast-

laden fibrin matrices were used to investigate the cumulative effects of fibrinolysis and 

collagen deposition on fibroblastic scar formation. By implementing ATPS printing of 

microscale fibrin scaffolds, we established an in vitro analogue to the provisional ECM In 

wound healing. This fibrin micro-scaffold was remodeled by fibroblasts through 

concurrent fibrinolysis and fibroplasia, followed by contraction. Through implementing 

and evaluating this assay, we demonstrated applications for an in vitro model for aberrant 

fibrin remodeling in evaluation of anti-fibrosis therapeutics. Despite different therapeutic 
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mechanisms, the assay was able to indicate changes in fibrotic remodeling with diverse 

therapeutic compounds at physiologically relevant concentrations.  

 Given the variety of contributors to dysregulation of fibrinolysis seen in fibrosis, 

cancer, and metabolic disease; this phenotypic assay provides a potentially valuable 

research tool for further studies in these fields. By mimicking matrix remodeling of the 

provisional fibrin matrix in vivo, this method offer a new approach to phenotypically 

evaluate fibrotic remodelling with applications in biological inquiry, personalized 

medicine, and drug discovery. 
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

 Dysregulation of fibrinolysis contributes to the pathogenesis of fibrosis, cancer, and 

metabolic disease; however, no prior assays have evaluated the phenotypic effects of 

dysregulated fibrinolysis on cell-mediated ECM remodeling. The microscale fibrin 

remodeling assay described in this dissertation provides a new research tool for label-free 

evaluation of fibroblast behavior within a fibrin scaffold, with a variety of applications in 

biomedical research and drug discovery. 

5.1 Conclusions 

5.1.1 Novel fibrin remodeling assay 

Fibrosis is the aggregate outcome of various dysregulated wound healing pathways. 

While wound healing is comprised of steps for initial epithelial damage, inflammation, 

proliferation, and remodeling; in vitro assays for fibrosis generally focus on quantifying 

specific proteins or mRNAs in a single stage of the remodeling process. In order to establish 

an assay that evaluates multifactorial contributions to the pathogenesis of fibrosis, this 

dissertation established a phenotypic assay for fibroblastic remodeling of microscale fibrin 

scaffolds. 

Here, we recapitulated certain aspects of the provisional fibrin matrix, which is 

present during the initial steps of wound healing. By culturing fibroblasts within a fibrin 

clot with physiologically relevant concentrations of serum and nutrients, fibroblasts are 

able to remodel the fibrin scaffold into a collagen-rich fibrous ECM. The work presented  
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Figure 21. Fibrinolysis assay vs. remodeling assay: Chapter 3 of this dissertation established 
an assay for cell-mediated fibrinolysis, where fibroblasts activated plasminogen into plasmin in order 
to degrade the fibrin scaffold. In Chapter 4 of this dissertation, modified culture conditions enabled 
concurrent fibrinolysis and collagen deposition, so that formation of fibrosis was visualized in vitro. 

here investigates the development and implementation of microscale fibrin scaffolds to 

assess cell-mediated fibrinolysis and remodeling. This required establishing a new 

approach to fabricate microscale fibrin scaffolds, which implemented aqueous two-phase 

printing for improved control over enzymatic crosslinking of fibrin. This offered 

unprecedented control over scaffold volume and cell seeding density for sub-microliter 

scaffolds, using standard liquid handling equipment. 

These micro-printed fibrin scaffolds were implemented as two separate assays 

(Figure 21). In the first assay, serum-free media and late addition of exogenous 

plasminogen enabled evaluation of cell-mediated fibrinolysis. This assay for cell-mediated 

fibrinolysis demonstrated our capability to evaluate changes to the fibrinolytic system 

through label free evaluation of brightfield images. However, evaluation of this assay with 

conventional IPF therapeutics showed no significant change in fibrin degradation with 
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established drugs. This demonstrated insufficiency of this assay in evaluating fibrosis, as 

well as insufficiency of IPF therapeutics at addressing contribution of fibrinolytic system 

to fibrosis. 

The second assay evaluated remodeling into collagen-dense fibrous matrix. Serum 

supplemented media in addition to a higher cell-seeding density and larger assay volume 

enabled concurrent fibrinolysis and collagen deposition (Figure 21).  With these modified 

conditions, the fibroblast-laden fibrin scaffold effectively formed a fibrotic mass that could 

be quantified as a readout of fibrosis. This readout demonstrated effects for a variety of 

therapeutic compounds with diverse mechanisms. These results illustrated that therapeutic 

stimuli targeted at fibrinolysis had an effect on fibrotic remodeling besides just their 

degradation of the fibrin matrix. Drugs that targeted the anti-fibrinolytic environment and 

persistence of the fibrin matrix resulted in altered collagenous remodeling that affected the 

final size of the contracted assay. These findings provide novel insight into the contribution 

of aberrant fibrinolysis on fibrotic remodeling, and this newly established experimental 

model can facilitate future in vitro studies of fibrotic remodeling. 

5.1.2 Context within the complexity of the lung 

Respiratory function requires maintenance of a complex biological environment 

that enables efficient gas exchange. Lung architecture is optimized to meet this demand 

through thin barrier membranes, substantial tissue elasticity, and a high surface area to 

volume ratio (Figure 22). In order to maintain this environment, various cell types are 

involved in coordinated remodeling processes that continually degrade and deposit 

components of the ECM. Resident interstitial fibroblasts constitute much of this activity in 



 104 

 

 

Figure 22. Lung structure and cellular composition: (a) Lungs require significant structural 
organization in order to optimize gas exchange function. The hierarchical structures accomplish this 
through thin barrier membranes, substantial tissue elasticity, and a high surface area. (b) The 
provisional extracellular matrix forms following tissue damage, and contains substantial cellular 
heterogeneity. Immune cells include predominantly monocytes, macrophages, neutrophils, dendritic 
cells, and eosinophils. 

healthy tissue; however, several other cell types are involved in remodeling following 

tissue damage. During the wound repair process, differentiated myofibroblasts are 

predominantly responsible for ECM repair. These myofibroblasts can originate from 

circulating fibrocytes, epithelial cells (through epithelial mesenchymal transition), or 

resident interstitial cells [247]. The model system presented in this dissertation has 

exclusively been implemented with pulmonary interstitial fibroblasts. Due to heterogeneity 
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in remodeling behavior due to cell lineage and origin, the contribution of fibroblast and 

myofibroblasts to pathological remodeling varies by fibroblast source. 

 Airway epithelial cells also play a significant role in regulation of remodeling. In 

addition to their role in recovery of the epithelial layer after injury, epithelial cells use 

chemical and mechanical signaling to help coordinate activity of various growth factors 

and cytokines, including TGF-β1 [248]. The effects of epithelial regulation on remodeling 

by fibroblasts and myofibroblasts helps to minimize space occupied by the interstitial 

matrix, with the epithelial and endothelial basement membranes fusing together. This 

allows for minimal distance and efficient gas exchange across the alveolar–capillary barrier 

[249]. When epithelium is damaged, it initiates the coagulation cascade in addition to 

releasing pro-inflammatory and pro-fibrotic factors [250]. This environment recruits 

immune cells and fibroblasts to the injury site in order to initiate the wound healing process. 

Additionally, crosstalk between epithelium and fibroblasts regulates altered collagen 

production in wounded and diseased lungs [251]. Because the fibrin remodeling assay 

starts with a fibroblast-laden fibrin scaffold, it bypasses the steps of coagulation and 

cellular invasion. Altered initial conditions involving thrombin, fibrinogen, serum, or cell 

concentrations in the assay may replicate certain aspects of altered epithelial activity; 

however, inclusion of airway epithelial cells in the fibrin remodeling assay would be 

necessary to more fully evaluate the effects of their chemical and mechanical signaling on 

fibroblastic remodeling. 

Immune cells are also important in the remodeling of lung tissue due to their role 

in accommodating protection from infection and injury without considerably affecting 

tissue structure and function. Various cell types coordinate tissue repair responses that 
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entail inflammation for removal of potential threats, proper wound closure, and 

regeneration to maintain and restore healthy tissue. These cell types include monocytes, 

macrophages, neutrophils, dendritic cells, and eosinophils; which each have unique roles 

at certain stages of the wound healing process [252]. Activated macrophages play a 

particularly important role in remodeling due to their production of inflammatory cytokines 

and growth factors. Positive feedback loops between macrophages and fibroblasts promote 

augmented collagen production in wound healing and fibrosis [253]. By overlooking the 

effects of macrophages in our model, their contributions to the remodeling process are 

neglected. 

In vitro models necessarily simplify the cellular heterogeneity and micro-

environment from in vivo biological systems. In order to enable high-throughput 

adaptation, model systems must balance sophistication with ease of fabrication. By 

focusing specifically on fibroblast-mediated remodeling of fibrin, the assay developed in 

this thesis recapitulates aspects of wound healing related to fibrinolysis, collagen 

accumulation, and matrix contraction. Future implementations of this assay may 

incorporate additional cell types and modified microenvironments in order to address 

questions involving cellular interaction and mechanical feedback. However, in vitro assays 

will always neglect many of the interactions present in vivo. There are simply too many 

diverse feedback loops between cells, tissues, and organs. Animal models are also often 

insufficient to evaluate pathophysiology and therapeutic effects due to differences in 

enzymatic profiles and differences in pathologic mechanism in the animal model. Although 

the fibrin remodeling assay does provide convincing and intriguing results; specific 
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research question need to focus on mechanisms specific to fibroblast-matrix interactions 

and remodeling. 

5.1.3 Fibrin remodeling as a model for IPF 

Coordinated fibrinolysis and collagen deposition are necessary for restoration of 

tissue function after injury, and these processes are significantly dysregulated in IPF. The 

model system presented in this dissertation enables label-free phenotypic evaluation of the 

fibrin remodeling by fibroblasts. Despite the consensus that dysregulated coagulation and 

fibrinolysis contribute to IPF pathogenesis, current FDA-approved therapies have no 

significant effect on regulation of fibrinolysis [254, 255]. 

The fibrin remodeling assay enables specific questions about fibroblast-mediated 

fibrinolysis and collagen deposition in the fibrin-rich provisional ECM. Our fibrinolysis 

assay from Chapter 3 demonstrated that the IPF therapeutics nintedanib and pirfenidone 

have no significant effects on fibrin degradation. Then, in Chapter 4 we demonstrated that 

stimuli targeting the fibrinolytic system can have a significant impact on fibrosis formation. 

This approach of phenotypically evaluating drug effects on fibrin remodeling enabled 

demonstration of significant decreases in fibrotic remodeling with significantly lower 

concentrations of pirfenidone than prior studies. However, the drug ifenprodil still showed 

no significant effects on remodeling. This therapeutic is currently in stage 3 clinical trials, 

showing promising effects on IPF patients. Prior studies indicate that systemic interactions 

or crosstalk with other cell types may be responsible for ifenprodil’s mechanism in IPF. 

Demonstrating remodeling effects with ifenprodil may therefore require a more 

sophisticated in vitro model in order to demonstrate its effects. 
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Future implementations of this fibrin remodeling assay may focus on enabling other 

cell types to contribute to therapeutic effects. In particular, alveolar epithelial cells and 

alveolar macrophages play an important role in IPF pathogenesis. The epithelium acts as 

both a physical and immunological barrier against the environment, but dysregulated 

epithelial cells in the IPF lung experience loss of barrier permeability and injury in the 

absence of external stimulus. This altered behavior affects cytokine production, 

inflammation, and myofibroblast activation in the fibrotic lung [250]. In addition to 

dysregulated epithelium, overactive macrophages in IPF have demonstrated excessive 

expression of inflammatory cytokines and growth factors. This creates a positive feedback 

loop between macrophages and fibroblasts, resulting in increased collagen production 

[253]. Drug effects on epithelial cells and macrophages are therefore an important 

consideration in evaluating IPF therapeutics. 

While most drugs evaluated in Chapter 4 demonstrated altered remodeling activity 

with only fibroblasts, many of these compounds have established effects on other cell 

types. Nintedanib and pirfenidone have both been shown to minimize epithelial to 

mesenchymal transition in small airway epithelium and reduce the production of 

inflammatory cytokines in macrophages [256-259]. Other compounds from Chapter 4 have 

similarly demonstrated therapeutic effects on cell types besides their remodeling effects on 

fibroblasts and myofibroblasts. Co-culture adaptations of this fibrin remodeling assay may 

integrate epithelial cells or macrophages in order to more broadly evaluate additional 

contributions to fibrotic remodeling in IPF. 
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5.2 Future Directions 

5.2.1 High-Throughput Screening for COVID-19 Therapeutics 

Findings from this thesis have already been used to support application of this assay to 

evaluate potential COVID-19 therapeutics. The pathophysiology of SARS-COV 2 is still 

largely unknown, but fibrin remodeling appears to play a major role in resolution of severe 

infections. Damage to alveolar epithelial cells by SARS-COV 2 and accompanying 

bacterial infection cause edema and subsequent coagulation to form fibrin clots in the lungs 

[260]. This can create a positive feedback cycle of fibrin formation, myobroblast activation, 

collagen production, and stiffening of the lungs that can cause additional epithelial damage. 

By implementing this assay to find therapeutics that minimize fibrotic remodeling of fibrin, 

we may be able to suggest prophylactic drugs that lessen the extent of damage during 

severe stages of COVID-19. Our efforts to evaluate FDA drug libraries for fibroblastic 

remodeling may help determine therapies that can help improve remodeling of fibrin clots 

in the lungs to minimize permanent damage in the lungs. 

However, fibrin remodeling is only a small aspect of COVID-19 pathogenesis. 

Immune response is vital to clearance of the virus, and persistence of the fibrin matrix may 

play a role in containing immune cells as they fight the virus. Additionally, non-plasmin 

signaling of the fibrinolytic system may be involved in generation of the cytokine storm 

[261]. An overly fibrinolytic environment could therefore inadvertently contribute to 

increases in inflammatory cytokines, with potentially damaging systemic effects. 

Other important aspects of covid-19 pathogenesis are beyond the scope of this 

assay. Questions involving differences in immune response, severity of cytokine storm, 
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and development of systemic damage require alternative model systems for evaluation. 

Other in vitro models, animal models, and human data are necessary to address these 

unanswered questions regarding COVID-19 pathogenesis and treatment. 

5.2.2 Evalution of Nox4 Inhibitor for IPF 

Our lab also has an ongoing grant to evaluate a novel Nox4 inhibitor for its effects 

on fibrotic remodeling with in vitro models of fibrosis. Both direct and indirect 

mechanisms linking reactive oxygen species and TGF-β1 pathways have been identified 

as potential pathogenic contributors in IPF; however, no current IPF therapeutics use this 

as a target [262]. Additionally, these pathways target some of the age-specific changes in 

ROS metabolism that correlate with IPF. Preliminary experiments with hydrogen peroxide 

in our cell-mediated fibrinolysis indicated that fibrin degradation in our system is sensitive 

to ROS, so we hope to see alleviations in fibrotic remodeling in response to this novel Nox4 

inhibitor. This application may require adaptations of the fibrin remodeling assay that 

evaluate remodeling over longer periods of time. Dynamic culture conditions may also be 

implemented to evaluate interventional therapy that is introduced after assays are already 

on a pathogenic trajectory. 

5.2.3 Co-culture models 

In order to evaluate additional contributors to the multifactorial process of ECM 

remodeling of the lungs, it will be interesting to evaluate co-culture models in this assay. 

In particular, epithelial cells and macrophages have been shown to alter fibroblast 

phenotypes in the context of fibrotic remodeling. Preliminary experiments with small 

airway epithelial cells in the fibrin scaffolds demonstrated immediate fibrin degradation 
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regardless of stimulus. Endothelial cells are known to be particularly pro-fibrinolytic, 

producing high amounts of tPA [263]. Future adaptations of this experiment may add 

different amount of intact or damaged epithelial cells to fibroblast-laden assays in order to 

evaluate contributions of epithelium and damaged epithelium to fibrotic remodeling. 

Macrophages will also be included in co-culture assays in order to evaluate the effects of 

macrophage-secreted factors on remodeling. However, in sophisticated co-culture models, 

the additional elements of variability can make assay results more difficult to interpret. In 

order to differentiate between conditions, these models need to be geared towards specific 

questions. Co-culture models may be uniquely geared towards evaluating cellular invasion, 

differentiation, and synergistic drug effects involving positive feedback mechanisms or 

crosstalk. Future adaptations of fibrin remodeling assays may introduce unique capabilities 

which can address unanswered questions about fibrosis pathogenesis and treatment. 
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APPENDIX A. SUPPLEMENTAL INFORMATION 

A.1  Supplemental fibrinolysis 

 

 

Appendix Figure A-1. Brightness correction for live cell imaging: The Incucyte S3 (Essen 

Biosystems) automatically adjusts image brightness to maintain white balance, with no 

option to manually fix the relevant settings. In order to compensate for this automated 

adjustment of images, brightfield micrographs were re-scaled so that the background was 

consistent between images. This adjustment was necessary for the volume evaluation in 

Figure 12. Here, upper images show original brightfield and lower images show 

adjustments made using an automated script in Python 3. These corrected images were 

used for analysis in Figure 12 D-F. Scale bars are 1mm. 
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Appendix Figure A-2. Comparison of control conditions: Overlapping conditions from 

different experiments were compared according to cell passage number. All assays shown 

used 1 μl of fibrin with 1000 fibroblasts and plasminogen added at 24 hours, with no 

additional stimuli. Respective conditions come from IPF therapeutic comparison in Figure 

14 (IPF p5), TGF-β1 response in Figure 13 (NHLF p3), NHLF therapeutic comparison in 

Figure 14 (NHLF p5), cell number effect in Figure 13 (NHLF p6), plasminogen timing in 

Figure 11 (NHLF p12P), and volume consistency in Figure 12 (NHLF p12V). Passage 

numbers were compared by time-course pixel intensity (a) and time to 50% degradation 

(b). (ad, ae, af, be, bf, ce, cf = P < 0.01 by post-hoc Tukey test) 
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Appendix Figure A-3. Description of Supplemental Video 1 - Fibrinolysis: This video 

demonstrates degradation of fibroblast-laden fibrin scaffolds with plasmin and 

plasminogen added at 24 hours. With active plasmin, the matrix degrades almost 

immediately; however, plasminogen is delayed due to the necessity for plasminogen to be 

activated by cellular activity. Graphs below each micrograph illustrate changes in average 

pixel intensity as determined by our automated image processing approach. Micrographs 

were taken by the Incucyte S3 with 4x objective. 
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A.2  Supplemental ECM remodeling 

 

Appendix Figure A-4. Area validation and time-course pixel intensity: (a) In order to 

validate the automated output from the assay mask generator, final assay sizes were 

compared between the automated image processing approach and ImageJ. This comparison 

showed no significant differences between alternate determinations of final contracted 

assay area. (b) Leading up to contraction, image brightness within the masked region was 

evaluated for different TGF-β1 concentrations. While initial slopes appeared similar 

between conditions, the lines for time course pixel intensity diverged after 12-24 hours. 
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Appendix Figure A-5. Multi-step contraction and double sigmoid fit: Many conditions 

with higher concentrations of TGF-β1 or serum contracted in a multi-step process. (a) The 

single sigmoid had relatively low R2 values, so an alternative approach (b) using a double 

sigmoid was used for improved fit. This enabled more accurate determination of maximum 

slope. 

 

 

 

 

 



 117 

 

 

Appendix Figure A-6. Serum concentration and seeding density effects: (a, b) Time-

course changes in assay area show the effects on assay contraction of FBS concentration 

on the left and fibroblast seeding density on the right. Fitting of sigmoidal functions to each 

experimental replicate enabled extraction of 50% contraction time (in days) (c, f) and 

maximum slope (d, g). Note that the disparity between apparent slope and maximum slope 

for 8% serum (a, d) is detailed in Appendix Figure A-2. (e, h) Final contracted area was 

also determined for each condition, shown in mm2. (Statistical significance:  ab, bc, ef = P 

< 0.05; de = P < 0.01) 
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Appendix Figure A-7. Consistency in response between cell lines: (a, b) Histologic 

sections show final contracted assays for NHLF B and IPF B with picrosirius red staining. 

For each example, color brightfield images are shown on the left with fluorescent images 

on the right. Scale bars are 250μm. Time-course changes in assay area show the effects of 

cell line variability on assay contraction with no TGF-β1 (c) and with 2 ng/ml TGF-β1 (d). 

Dotted lines indicate conditions with the IPF therapeutic nintedanib. (e, f) Final contracted 

area was also determined for each condition. (Statistical significance:  ab, cd = P < 0.01) 
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Appendix Figure A-8. Response to therapeutic stimuli: (a, b) Time-course changes in 

assay area show the effects of various therapeutic stimuli on NHLF (left) and IPF 

fibroblasts (right) in the absence of TGF-β1. (c, d) Parallel conditions to the upper graphs 

show the effects of these therapeutics with addition of 2 ng/ml TGF-β1. (e, f) Final 

contracted area was also determined for each condition, indicated in mm2. (Statistical 

significance:  ab, de = P < 0.01;  bc, df = P < 0.05) 
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Appendix Figure A-9. Description of Supplemental Video 2 – ECM Remodeling: This 

video demonstrates altered remodeling of fibroblast laden fibrin scaffolds with different 

concentrations of TGF-β1. Higher concentrations result in delayed contraction and larger 

final size of the contracted matrix. Graphs below each micrograph demonstrate the image 

processing output of area masks for each time point. Micrographs were taken by the 

Incucyte S3 with 4x objective. 
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