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SUMMARY

Mixed integer non-linear optimization (MINLO) problems are usually NP-hard. Al-

though obtaining feasible solutions is relatively easy via heuristic or local search methods,

it is still challenging to guarantee the quality (i.e., the gap to optimal value) of a given fea-

sible solution even under mild assumptions in a tractable fashion. In this thesis, we propose

efficient mixed integer linear programming based algorithms for finding feasible solutions

and proving the quality of these solutions for three widely-applied MINLO problems.

In Chapter 1, we study the sparse principal component analysis (SPCA) problem. SPCA

is a dimensionality reduction tool in statistics. Comparing with the classical principal com-

ponent analysis (PCA), the SPCA enhances the interpretability by incorporating an addi-

tional sparsity constraint in the feature weights (factor loadings). However, unlike PCA,

solving the SPCA problem to optimality is NP-hard. Most conventional methods for SPCA

are heuristics with no guarantees such as certificates of optimality on the solution-quality

via associated dual bounds. We present a convex integer programming (IP) framework to

derive dual bounds based on the `1-relaxation of SPCA. We show the theoretical worst-case

guarantee of the dual bounds provided by the convex IP. Based on numerical results, we

empirically illustrate that our convex IP framework outperforms existing SPCA methods in

both accuracy and efficiency of finding dual bounds. Moreover, these dual bounds obtained

in computations are significantly better than worst-case theoretical guarantees.

Chapter 2 focuses on solving a non-trivial generalization of SPCA – the (row) sparse

principal component analysis (rsPCA) problem. Solving rsPCA is to find the top-r leading

principal components of a covariance matrix such that all these principal components share

the same support set with cardinality at most k. In this chapter, we propose: (a) a convex

integer programming relaxation of rsPCA that gives upper (dual) bounds for rsPCA, and;

(b) a new local search algorithm for finding primal feasible solutions for rsPCA. We also

show that, in the worst-case, the dual bounds provided by the convex IP are within an

xvi



affine function of the optimal value. We demonstrate our techniques applied to large-scale

covariance matrices.

In Chapter 3, we consider a fundamental training problem of finding the best-fitting

ReLU concerning square-loss – also called “ReLU Regression” in machine learning. We

begin by proving the NP-hardness of the ReLU regression. We then present an approxi-

mation algorithm to solve the ReLU regression, whose running time is O(nk) where n is

the number of samples, and k is a predefined integral constant as an algorithm parameter.

We analyze the performance of this algorithm under two regimes and show that: (1) given

an arbitrary set of training samples, the algorithm guarantees an (n/k)-approximation for

the ReLU regression problem – to the best of our knowledge, this is the first time that an

algorithm guarantees an approximation ratio for arbitrary data scenario; thus, in the ideal

case (i.e., when the training error is zero) the approximation algorithm achieves the glob-

ally optimal solution for the ReLU regression problem; and (2) given training sample with

Gaussian noise, the same approximation algorithm achieves a much better asymptotic ap-

proximation ratio which is independent of the number of samples n. Extensive numerical

studies show that our approximation algorithm can perform better than the classical gradi-

ent descent algorithm in ReLU regression. Moreover, numerical results also imply that the

proposed approximation algorithm could provide a good initialization for gradient descent

and significantly improve the performance.

xvii



CHAPTER 1

USING `1-RELAXATION AND INTEGER PROGRAMMING TO OBTAIN DUAL

BOUNDS FOR SPARSE PCA

This chapter is based on a joint work with Santanu S. Dey, Rahul Mazumder, and Guanyi

Wang, [1].

1.1 Introduction

Principal component analysis (PCA) is one of the most widely used dimensionality reduc-

tion methods in data science. Given a data matrix

X =


− x>1 −

...

− x>M −

 ∈ RM×d

with M samples and d features in each sample; and each feature is centered to have zero

mean, PCA seeks to find a principal component direction v ∈ Rd with ‖v‖2 = 1 that

maximizes the variance of a weighted combination of features. Formally, this PC direction

can be found by solving

max
‖v‖2=1

v>Av (PCA)

where A := 1
M
X>X = 1

M

∑M
m=1 xmx

>
m is the sample covariance matrix. An obvious

drawback of PCA is that all the entries of v̂ (an optimal solution to PCA) are (usually)

nonzero, which leads to the PC direction being a linear combination of all features – this

impedes interpretability [2, 3, 4]. In biomedical applications for example, when X corre-

sponds to the gene-expression measurements for different samples, it is desirable to obtain

1



a PC direction which involves only a handful of the features (e.g, genes) for interpreta-

tion purposes. In financial applications (e.g, A may denote a covariance matrix of stock-

returns), a sparse subset of stocks that are responsible for driving the first PC direction

may be desirable for interpretation purposes. Indeed, in many scientific and industrial ap-

plications [5, 6, 7], for additional interpretability, it is desirable for the factor loadings to

be sparse, i.e., few of the entries in x̂ are nonzero and the rest are zero. This motivates

the notion of a sparse principal component analysis (SPCA) [6, 3], wherein, in addition

to maximizing the variance, one also desires the direction of the first PC to be sparse in

the factor loadings. The most natural optimization formulation of this problem, modifies

criterion with an additional sparsity constraint on x leading to:

λk(A) := max
‖v‖2=1,‖v‖0≤k

v>Av (SPCA)

where ‖v‖0 ≤ k is equivalent to allowing at most k components of x to be nonzero.

Many heuristic algorithms for SPCA have been proposed in the literature that use

greedy methods [3, 8, 9, 10], alternating methods [11] and the related power methods [12].

However, conditions under which (some of) these computationally friendlier methods can

be shown to work well, make very strong and often unverifiable assumptions on the prob-

lem data. Therefore, the performance of these heuristics (in terms of how close they are to

an optimal solution of the SPCA problem) on a given dataset is not clear.

Unlike the PCA problem, the SPCA problem is known to be NP-hard [13, 14]. Chan

et al. [13] study the computational complexity of solving Sparse PCA approximately. The

authors (1) present an efficient algorithm to achieve an d−1/3-approximation; (2) show

that SPCA is NP-hard to approximate within (1 − ε) for some constant ε > 0; (3) show

Small-Set Expansion (SSE) hardness for any polynomial-time constant factor approxima-

tion algorithm, (4) give a “quasi-quasi-polynomial” gap for the standard SDP relaxation.

Chowdhury et al. [15] present three polynomial-time approximation algorithms for SPCA

2



which provides “sparse” solutions (may not satisfies the sparsity constraint) with provable

bounds. In contrast, Papailiopoulos et al. [16] introduce a combinatorial algorithm for

SPCA by examining a finite set of vectors in a low-dimensional eigen-subspace ofA. This

combinatorial algorithm returns a primal feasible solution of SPCA in timeO(drank(A)) with

provable approximation guarantees that depend on the eigenvalues ofA.

Since SPCA is NP-hard, there has been exciting work in the statistics community [17,

18] in understanding the statistical properties of convex relaxations (e.g., those proposed

by [19] and variants) of SPCA. It has been established [17, 18] that the statistical per-

formance of estimators available from convex relaxations are sub-optimal (under suit-

able modeling assumptions) when compared to estimators obtained by (optimally) solv-

ing SPCA—this further underlines the importance of creating tools to be able to solve

SPCA to optimality.

Our main goal in this paper is to propose an integer programming framework that al-

lows the computation of certificates of optimality via dual bounds, which make limited re-

strictive/unverifiable assumptions on the data. Dual bounds also translate to suitable guar-

antees in statistical performance of the estimator—see for example, [20][Theorem 4] for

results pertaining to approximate solutions for sparse regression settings1. To the best of

our knowledge, the only published methods for obtaining dual bounds of SPCA are based

on semidefinite programming (SDP) relaxations [21, 22, 10, 23] (see Appendix A.1 for

the SDP relaxation) and spectral methods involving a low-rank approximation of the ma-

trix A [16]. Both these approaches however, have some limitations. The SDP relaxation

does not appear to scale easily (using off-the-shelf solver Mosek 8.0.0.60) for matrices with

more than a few hundred rows/columns, while applications can be significantly larger. In-

deed, even a relatively recent implementation based on the Alternating Direction Method

of Multipliers for solving the SDP considers instances with size d ≈ 200 [24]. The spectral

methods involving a low-rank approximation of A proposed in [16] have a running time

1In [20], estimators with certificates on dual bounds translate to simple modifications of error bounds that
correspond to the global solution of the original nonconvex estimator.
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of O(dr) where r is the rank of the matrix—in order to scale to large instances, no more

than a rank 2 approximation of the original matrix seems possible. The paper [25] presents

a specialized branch and bound solver2 to obtain solutions to the SPCA problem, but their

method can handle problems with d ≈ 100 – the approach presented here is different, and

our proposal scales to problem instances that are much larger.

The methods proposed here are able to obtain approximate dual bounds of SPCA by

solving convex integer programs and a related perturbed version of convex integer pro-

grams that are easier to solve. The dual bounds we obtain are incomparable to dual bounds

based on the SDP relaxation, i.e. neither dominates the other, and the method appears to

scale well to matrices up to sizes of 2000× 2000.

1.2 Main results

In this paper, we use bold upper case letters such as A,X to denote symmetric matrices.

The (i, j)-th component of matrixA is denoted as [A]ij orAij in short. We use bold lower

case letters such as v,x for vectors, and denote the i-th component of a vector v as [v]i or

vi in short. We use upper case letter I for set of indices. Given a vector where v ∈ Rn and

I ⊆ [d], we let vI ∈ Rd to be the vector:

[vI ]i :=

 vi i ∈ I

0 i /∈ I

We use the usual notation ‖ · ‖1, ‖ · ‖2 for `1, `2 norm respectively for a given vector.

Let ‖ · ‖0 be the `0 norm which denotes the number of non-zero components. Given a

set S, we denote conv(S) as the convex hull of S; given a positive integer d we denote

{1, . . . , d} by [d]; given a matrixA, we denote its trace by tr(A). Given d scalars v1, . . .vd,

diag(v1, . . . ,vd) is the d× d matrix whose diagonal elements are vi’s and the off-diagonal

terms are equal to 0.

2This paper is not available in the public domain at the time of writing this paper.
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In SPCA, the constraint ‖v‖2 = 1, ‖v‖0 ≤ k implies that ‖v‖1 ≤
√
k. Thus, one

obtains the so-called `1-norm relaxation of SPCA:

opt`1 := max
‖v‖2≤1,‖v‖1≤

√
k
v>Av. (`1-relax)

The relaxation `1-relax has two advantages:

(a) As shown in 1 below, `1-relax gives a constant factor bound on SPCA,

(b) The feasible region is convex and all the nonconvexity is in the objective function.

We build on these two advantages: our convex IP relaxation is a further relaxation of `1-

relax (together with some implied linear inequalities for SPCA) which heavily use the fact

that the feasible region of `1-relax is convex. We require to use IP methods and construct

the convex IP, since the objective of `1-relax is non-convex. Thus, we use a combination of

`1-relax and IP methods to obtain strong dual bounds.

We note that `1-relax is an important estimator in its own right [7, 6] – it is commonly

used in the statistics/machine-learning community as one that leads to an eigenvector of

A with entries having a small `1-norm (as opposed to a small `0-norm). We emphasize

that `1-relaxation has never been used to computationally obtain dual bounds for SPCA.

Indeed, to the best of our knowledge there has been no systematic study of the theoretical

and empirical computational properties of the `1-relaxation vis-à-vis SPCA.

The rest of this section is organized as follows: In 1.2.1, we present the constant factor

bound on SPCA given by `1-relax, improving upon some known results. In Section 1.2.2,

we present the construction of our convex IP and prove results on the quality of bound

provided. In Section 1.2.3, we discuss perturbing the original matrix in order to make

the convex IP more efficiently solvable while still providing reasonable dual bounds. In

Section 1.4, we present results from our computational experiments.
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1.2.1 Quality of `1-relaxation as a surrogate for the SPCA problem

The following theorem is an improved version of a result appearing in [26] (Exercise

10.3.7).

Theorem 1. The objective value opt`1 is upper bounded by a multiplicative factor ρ2 away

from λk(A), i.e., λk(A) ≤ opt`1 ≤ ρ2 · λk(A) with ρ ≤ 1 +
√

k
k+1

.

Proof of Theorem 1 is provided in Section 1.3. While we have improved upon the

bound presented in [26], we do not know if this new bound is tight. The approximation

ratio 1 +
√

k
k+1

from Theorem 1 yields an almost 100% gap (see formal definition of gap

in Section 4) in the worst case. From a practitioners’ viewpoint, a 100% gap is obviously

far from ideal and would not be considered as “solving” the problem. However, as we shall

see in Section 4, the `1-relaxation does provide very good dual bounds in many instances.

Moreover, as stated above the approximation ratio of 1 +
√

k
k+1

is the best we can prove;

however this bound may be significantly away from the actual bound.

Theorem 1 has implications regarding existence of polynomial-time algorithms to ob-

tain a constant-factor approximation guarantee for `1-relax. In particular, the proof of The-

orem 1 implies that if one can obtain a solution for `1-relax which is within a constant

factor, say θ, of opt`1 , then a solution for SPCA problem can be obtained, which is within a

constant factor (at most θρ2 ≈ 4θ) of λk(A). Therefore, the `1-relaxation is also inapprox-

imable in general.

1.2.2 From `1-relaxation to convex integer programming model

A classical integer programming approach to finding dual bounds of SPCA would be to go

to an extended space involving the product of v-variables and include one binary variable

per v-variable in order to model the `0-norm constraint, resulting in a very large number of
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binary variables. In particular, a typical model could be of the form:

max tr(AV )

s.t.
∑n

j=1 zi ≤ k, z ∈ {0, 1}d

‖v‖2 ≤ 1, vi ∈ [−zi, zi], ∀ i = 1, . . . , d1 v>

v V

 � 0, rank

1 v>

v V

 = 1

.

It is easy to see that such a model is challenging due to (a) d binary variables (b) “quadratic”

increase in number of variables (V ) and (c) the presence of the rank constraint. Even with

significant progress, it is well-known that solving such problems beyond d being a few

hundred variables is extremely challenging [27, 28]. Indeed, instances with an arbitrary

quadratic objective and bound constraints cannot be generally solved (exactly) by modern

state-of-the-art methods as soon as the number of variables exceed a hundred or so [29, 30,

31, 32, 33].

This is how we address the challenges discussed above.

1. d binary variables (a): the feasible region of `1-relax is a convex set. Therefore, we

do not have to include binary variables to model the `0-norm constraint. We will use

`1-relax as our basic relaxation.

2. Quadratic increase in number of variables (b) and rank constraint (c): We do not

use the V variables to model the quadratic objective. Instead we upper bound the

quadratic objective using piecewise linear function via integer programming tech-

niques.

In other words, since the feasible region of `1-relax is a convex set and takes care of

challenge (a), we model/upper bound the objective function using IP techniques to deal

with challenges (b) and (c). Specifically, we follow the following procedure:

step-0: By spectral decomposition, let A =
∑d

i=1 λiwiw
>
i where (λi)

d
i=1, (wi)

d
i=1 are unit
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norm orthogonal eigen-pairs. Then the objective function of `1-relax is:

d∑
i=1

λi(v
>wi)

2.

step-1: Given any thresholding parameter λTH, the eigenvalues of A can be split into two

sets based on that thresholding parameter λTH,

I+ := {i : λi > λTH} and I− := {i : λi ≤ λTH}.

Thus the objective function can be represented as a sum of λTH and two parts that

depend on the index sets defined above,

λTH +
∑
i∈I+

(λi − λTH)(v>wi)
2 +

∑
i∈I−

(λi − λTH)(v>wi)
2.

Note that the first term is convex and the second term is concave. Since the objective

is a maximizing, we need to deal with the first term. This idea of splitting the objec-

tive function into convex and concave part is a well-studied approach for attacking

non-convex quadratic objective functions. See for example [34, 35] for use of some

similar ideas.

step-2: For each index i ∈ I+, replace v>wi with a single continuous variable gi, and set

θi := max{v>wi : ‖v‖2 ≤ 1, ‖v‖0 ≤ k}.

Then for each gi with i ∈ I+, construct a piecewise linear upper approximation ξi for
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g2
i with gi ∈ [−θi, θi] using the following piecewise linear approximation (PLA) set,

PLA :=


(g, ξ, η) :

gji = a>j vi, (j, i) ∈ [d]× [r],

gji =
∑N

`=−N γ
`
jiη

`
ji

ξji =
∑N

`=−N
(
γ`ji
)2
η`ji(

η`ji
)N
`=−N ∈ SOS-II

,


where the (SOS-II) denotes the special ordered sets of type 2 constraints [36] as

follows: for any i and j,

SOS-II :=


(
η`ji
)N
`=−N :

∑N−1
`=−N z

`
ji = 1

z`ji ∈ {0, 1} ∀ ` = −N, . . . , N − 1

η`ji + η`+1
ji ≤ z`ji ∀ ` = −N, . . . , N − 1

η`ji ≥ 0 ∀ ` = −N, . . . , N


.

step-3: For index set I−, since λi − λTH < 0 for all i ∈ I−, we obtain a convex constraint

∑
i∈I−
−(λi − λTH)(v>wi)

2 ≤ s

Therefore, a convex integer programming problem is obtained as follows:

max λTH +
∑

i∈I+(λi − λTH)ξi − s =: optconvex-IP

s.t. ‖v‖2 ≤ 1, ‖v‖1 ≤
√
k

gi = v>wi, gi ∈ [−θi, θi], ∀ i = 1, . . . , d gi =
∑N

j=−N γ
j
i η

j
i , ξi =

∑N
j=−N(γji )

2ηji

(η−Ni , . . . , ηNi ) ∈ SOS-2, i ∈ I+∑
i∈I+

(
ξi − θ2i

4N2

)
+
∑

i∈I− g
2
i ≤ 1∑

i∈I− −(λi − λTH)g2
i ≤ s

(Convex-IP)
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Notations and explanations of Convex-IP model:

`1 constraints: The first row of constraints ‖v‖2 ≤ 1, ‖v‖1 ≤
√
k.

Variable gi: The second row of constraints gi = v>wi, gi ∈ [−θi, θi], ∀ i = 1, . . . , d

transfers the product terms v>wi into a single variable for each i ∈ [d].

Variable ξi: The third bracket of constraints

 gi =
∑N

j=−N γ
j
i η

j
i , ξi =

∑N
j=−N(γji )

2ηji

(η−Ni , . . . , ηNi ) ∈ SOS-2, i ∈ I+

forms ξi as a piecewise-linear upper approximation of g2
i based on a classic integer

programming technique–SOS-2. Let 2N + 1 be the number of splitting points of the

domain [−θi, θi] of variable gi, where the set of splitting points (γji )
N
j=−N satisfy

−θi = γ−Ni < . . . γ0
i (= 0) < . . . < γNi = θi.

Without any prior information of the optimal solution, we partition the set [−θi, θi]

equally to minimize the (worst-case) upper bounds, i.e., by letting (γji )
N
j=−N ←(

j
N
· θi
)N
j=−N be the value of j th splitting point. See Section A.3 for details.

Quadratic constraints: The forth row of constraints does the following: Since wi’s are

orthonormal, then ‖v‖2 ≤ 1 implies ‖gi‖ ≤ 1 for all i = 1, . . . , d. Together with ξi

representing g2
i , we can obtain the implied inequality:

∑
i∈I+

ξi +
∑
i∈I−

g2
i ≤ 1 +

∑
i∈I+

θ2
i

4N2

The second term in the right-hand-side reflects the fact that ξi is not exactly equal

to g2
i , but only a piecewise linear upper bound of g2

i . Note that the exact value of

the second term in the right-hand-side also depends on the way one splits the set
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[−θi, θi], the value
∑

i∈I+
θ2i

4N2 in above formula is obtained via splitting [−θi, θi]

equally, which can be shown as the minimum upper bounds without any prior idea of

the optimal solution v of SPCA or `1-relax. See the proof in Section A.3 for details.

This constraint (cutting-plane) is not necessarily needed for a correct model – it is

used since it helps improving the dual bound of the LP relaxation and significantly

improves the running-time of the solver.

Convex constraint: The final constraint

∑
i∈I−
−(λi − λTH)g2

i ≤ s (convex-constraint)

is a convex constraint which can be obtained in step-3 where v>wi is replaced by a

variable gi.

Therefore, we arrive at the following result:

Proposition 1.2.1. The optimal objective value optconvex-IP of Convex-IP is an upper bound

on the SPCA problem.

Proposition 1.2.1 is formally verified in Appendix A.2.

Next combining the result of Theorem 1 with the quality of the approximation of the

objective function of `1-relax by Convex-IP, we obtain the following result:

Proposition 1.2.2. The optimal objective value optconvex-IP of Convex-IP is upper bounded

by

OPTconvex-IP ≤ ρ2λk(A) +
1

4N2

∑
i∈I+

(λi − λTH)θ2
i .

A proof of Proposition 1.2.2 is presented in Appendix A.3.

Finally, let us discuss why we expect Convex-IP to be appealing from a computational

viewpoint. Unlike typical integer programming approaches, the number of binary variables
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in Convex-IP is (2N + 1) · |I+| which is usually significantly smaller than d. Indeed,

heuristics for SPCA generally produce good values of λ, and in almost all experiments we

found that |I+| � n due to the choice of thresholding parameter λTH. Moreover, N is a

parameter we control. In order to highlight the “computational tractability” of Convex-IP,

we formally state the following result:

Proposition 1.2.3. Assuming the number of splitting points N and the size of set I+ is

fixed, the Convex-IP problem can be solved in polynomial time.

Note that the convex integer programming method which is solvable in polynomial

time, does not contradict the inapproxamability of the SPCA problem, since optconvex-IP is

upper bounded by the sum of ρ2λk(A) and a term corresponding to the sample covariance

matrix.

1.2.3 Improving the running time of Convex-IP

Perturbation of the covariance matrixA:

In practice, we do the following (sequence of) perturbation on covariance matrix A to re-

duce the running time of solving convex IP. Again let λ (obtained from some heuristic

method) be a lower bound on the λk(A), letA =
∑d

i=1 λiwiw
>
i be the spectral decompo-

sition ofA with λ1 ≥ . . . ≥ λd ≥ 0.

1. Set parameter λ̄ := max{λi : λi ≤ λTH}. To be concise, we assume λ̄ < λTH.

However, when λ̄ = λTH = max{λi : λi ≤ λTH}, one can apply Algorithm 1 to

obtain a matrix Ā � A such that none of the eigenvalues of Ā equals λTH. We

then replace A by Ā. Let λ̄1, . . . , λ̄n be the eigenvalues of (the updated) Ā and let

λ̄ := max{λ̄i : λ̄i ≤ λTH}, we obtain that λ̄ < λTH for Ā.

2. Perturb the covariance matrix A =
∑n

i=1 λiwiw
>
i to get Ā =

∑
i∈I+ λiwiw

>
i +∑

i∈I− λ̄wiw
>
i . Note that the objective value optconvex-IP(Ā) in Convex-IP is an upper
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Algorithm 1 Perturbation ofA
Input: Sample covariance matrixA and threshold λTH.
Output: A perturbed sample covariance matrix Ā with distinct eigenvalues such that Ā �
A and none of the eigenvalues of Ā equals λ.

1: Compute eigenvalue decomposition of A as A = W>ΛW with Λ =
diag(λ1, . . . , λn), and sort all distinct distinct eigenvalues in Λ as

λi1 > · · · > λTH = λij > · · ·λip ≥ 0, where p ≤ n.

2: Set ∆λ← min{λij − λij+1
| j = 1, . . . , p− 1} as the minimum eigen-gap.

3: Set perturbed diagonal Λ̄← Λ + diag
(
i−1
n
ε | i = n, . . . , 1

)
with ε = 1

2
∆λ.

4: return Ā← V >Λ̄V .

bound on optconvex-IP(A). This is because if (v, g, ξ, η, s) is a feasible solution of

Convex-IP model, then the objective function value of Convex-IP corresponding to

Ā is at least as large as that ofA. ReplaceA by Ā.

3. Therefore, the convex constraint
∑

i∈I− −(λi − λTH)g2
i ≤ s in Convex-IP can be

replaced by
∑

i∈I− −(λ̄− λTH)g2
i ≤ s, i.e.,

∑
i∈I− g

2
i ≤ s

λTH−λ̄
.

4. Let (x̄, ḡ, ξ̄, η̄, s̄) be an optimal solution for Convex-IP. Since the convex constraint

achieves equality for any optimal solution of Convex-IP, i.e., (a)
∑

i∈I− −(λTH −

λ̄)ḡ2
i = s̄ together with (b)

∑n
i=1 ḡ

2
i =

∑
i∈I− ḡ

2
i +

∑
i∈I+ ḡ

2
i ≤ 1 and (c) 1 ≤∑

i∈I+ ξ̄i +
∑

i∈I− ḡ
2
i ≤ 1 + 1

4N2

∑
i∈I+ θ

2
i imply the following inequalities:

1− s̄

λTH − λ̄
≤
∑
i∈I+

ξ̄i ≤ 1 +
1

4N2

∑
i∈I+

θ2
i −

s̄

λTH − λ̄
,

∑
i∈I+

ḡ2
i ≤ 1− s̄

λTH − λ̄
.
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Thus a simplified convex IP corresponding to the perturbed covariance matrix is:

max λTH +
∑

i∈I+(λi − λTH)ξi − s =: optpert-convex-IP

s.t. ‖v‖2 ≤ 1, ‖v‖1 ≤
√
k

gi = v>wi, gi ∈ [−θi, θi], i ∈ I+ gi =
∑N

j=−N γ
j
i η

j
i , ξi =

∑N
j=−N(γji )

2ηji

(η−Ni , . . . , ηNi ) ∈ SOS-2, i ∈ I+

1− s
λTH−λ̄

≤
∑

i∈I+ ξi ≤ 1 +
∑

i∈I+
θ2i

4N2 − s
λTH−λ̄∑

i∈I+ g
2
i ≤ 1− s

λTH−λ̄

c>|v| ≤ b(c)

(Pert-Convex-IP)

where the quadratic constraints in Pert-Convex-IP are updated based on the discussion

above and the final constraint c>|v| ≤ b(c) represents the cutting planes that we add, see

Proposition 1.2.5 for details.

Proposition 1.2.4. The optimal objective value optPert-Convex-IP is upper bounded by

OPTPert-Convex-IP ≤ ρ2λk(A) + ρ2(λ̄− λmin(A)) +
1

4N2

∑
i∈I+

(λi − λTH)θ2
i .

Note that in Pert-Convex-IP, we do not need the variables gi, i ∈ I− which greatly

reduces the number of variables since in general |I+| � n. In practice, we note a signifi-

cant reduction in running time, while the dual bound obtained from Pert-Convex-IP model

remains reasonable. More details are presented in Section 1.4.

Refining the splitting points

Since the Pert-Convex-IP model runs much faster than the Convex-IP model, we run the

Pert-Convex-IP model iteratively. In each new iteration, we add one extra splitting point

describing each ξi function. In particular, once we solve the Pert-Convex-IP model, we add

one splitting point at the optimal value of gi.

14



Cutting planes

Proposition 1.2.5. Let v ∈ Rd be any feasible solution of SPCA. Let |vi1| ≥ |vi2| ≥ · · · ≥

|vid−1
| ≥ |vid |. Then let c be the cut:

cij =

 |vij | if j ≤ k

|vik | if j > k.
(1.1)

Also let b(c) := ‖(ci1 , ci2 , ci3 , . . . , cik)‖2. The inequality

c>v ≤ b(c), (1.2)

is a valid inequality for SPCA.

The validity of this inequality is clear: If v is a feasible point of SPCA, then the support

of v is at most k and ‖v‖2 ≤ 1. Therefore, c>v ≤ ‖(ci1 , ci2 , ci3 , . . . , cik)‖2 = b(c). Notice

that this inequality is not valid for `1-relax. Also see [37]. We add these inequalities at the

end of each iteration for the model where the seeding x for constructing v is chosen to be

the optimal solution of the previous iteration.

1.3 Proof of Theorem 1

Given a vector v ∈ Rd, we denote the jth coordinate of v as vj , and for some J ⊆ [d] we

denote the projection of v onto the coordinates in the index set J as vJ . Define

Sk := {v ∈ Rd | ‖v‖2 ≤ 1, ‖v‖0 ≤ k}, (1.3)

Tk := {v ∈ Rd | ‖v‖2 ≤ 1, ‖v‖1 ≤
√
k}. (1.4)

Note that any v ∈ Tk can be represented as a nonnegative combination of points in Sk,

i.e., v = v1+· · ·+vdd/ke and vi ∈ Sk for all i. Here we think of each vi as a projection onto
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some unique k components of v and setting the other components to zero. Let yi = vi

‖vi‖2 ,

then yi ∈ Sk. Now we have, v =
∑dd/ke

i=1 ‖vi‖2 · yi, and therefore

1∑dd/ke
i=1 ‖vi‖2

v =

dd/ke∑
i=1

‖vi‖2∑dd/ke
i=1 ‖vi‖2

· yi. (1.5)

Thus, if we scale v ∈ Tk by ‖v1‖2 + . . . + ‖vdd/ke‖2, then the resulting vector belongs

to conv(Sk). Since we want this scaling factor to be as small as possible, we solve the

following optimization problem:

min ‖v1‖2 + . . .+ ‖vdd/ke‖2 : v = v1 + . . .+ vdd/ke; vi ∈ Sk, i ∈ [dd/ke]. (Bound)

Without loss of generality, we assume that v ≥ 0 and v1 ≥ v2 ≥ · · · ≥ vd ≥ 0. Let

v = v̄1 + . . . + v̄dd/ke where v1, . . . ,vdd/ke ∈ Sk is an optimal solution of (Bound). The

following proposition presents a result on an optimal solution of (Bound).

Proposition 1.3.1. Let I1, . . . , Idd/ke be a collection of supports such that: I1 indexes the

k largest (in absolute value) components in x, I2 indexes the second k largest (in absolute

value) components in x, and so on. Then I1, . . . , Idd/ke is an optimal set of supports for

(Bound).

Proof. We prove this result by the method of contradiction. Suppose we have an optimal

representation as v = v̄1 + · · · + v̄dd/ke — and without loss of generality, we assume

that ‖v̄1‖2 ≥ · · · ≥ ‖v̄dd/ke‖2. Let Ī1, . . . , Īdd/ke be the set of supports of v̄1, . . . , v̄dd/ke

respectively, where we assume that the indices within each support vector are ordered such

that

(vĪj)1 ≥ (vĪj)2 ≥ · · · ≥ (vĪj)g

for all j ∈ {1, . . . , dd/ke} (note that g = k if j < dd/ke).

Let Īp be the first support that is different from Ip, i.e., Ī1 = I1, . . . , Īp−1 = Ip−1

and Īp 6= Ip. Let Ipq be the first index in Ip that does not belong to Īp with q ≤ k since
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‖Īp‖0 = k. Therefore, Ipq must be in Īp′ where p′ > p. Note now that by construction of

I and our assumption on Ī , we have that (vIp)q ≥ (vĪp)q ≥ (vĪp)k. Now we exchange the

index Ipq in Īp′ with Īpk in Īp. We have:

√
‖vĪp‖2

2 + ((vIp)q)2 − ((vĪp)k)2 +
√
‖vĪp′‖2

2 + ((vĪp)k)2 − ((vIp)q)2 ≤ ‖vĪp‖2 + ‖vĪp′‖2,

(1.6)

which holds because ‖vĪp‖2 ≥ ‖vĪp′‖2 and ((vIp)q)
2 − ((vĪp)k)

2 ≥ 0.

Now repeating the above step, we obtain the result.

Based on Proposition 1.3.1, for any fixed v ∈ Tk, we can find out an optimal solution

of (Bound) in closed form. Now we would like to know, for which vector v, the scaling

factor ‖v1‖2 + . . . + ‖vdd/ke‖2 will be the maximized. Let ρ be obtained by solving the

following optimization problem:

ρ = maxv ‖vI1‖2 + · · ·+ ‖vIdd/ke‖2

s.t. v = vI1 + · · ·+ vIdd/ke

‖v‖2
2 = ‖vI1‖2

2 + · · ·+ ‖vIdd/ke‖2
2 ≤ 1

‖v‖1 = ‖vI1‖1 + · · ·+ ‖vIdd/ke‖1 ≤
√
k

v1 ≥ · · · ≥ vn ≥ 0.

(Approximation ratio)

Then we obtain

Tk ⊆ ρ · Conv (Sk) . (1.7)

Although the optimal objective value of Approximation ratio is hard to compute exactly,

we can still find an upper bound.

Lemma 1.3.1. The objective value ρ of Approximation ratio is bounded from above by

1 +
√

k
k+1

.
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Proof. First consider the case when d ≤ 2k. In this case, dd/ke ≤ 2. Consider the

optimization problem:

θ = max u+ v

s.t. u2 + v2 ≤ 1

If we think of ‖vI1‖2 as u and ‖vI2‖2 as v, then we see that the above problem is a relaxation

of Approximation ratio and therefore θ =
√

2 is an upper bound on ρ. Noting that
√

2 ≤

1 +
√

k
k+1

for all k ≥ 1, we have the result.

Now we assume that d > 2k and consequently dd/ke > 2. From Approximation ratio,

let ‖vI1‖1 = t and ‖vI1‖2 = γ. Based on the standard relationship between `1 and `2 norm,

we have

γ ≤ t ≤
√
kγ.

Since each coordinate of vI2 is smaller in magnitude than the average coordinate of vI1 ,

we have

‖vI2‖2 ≤

√(
‖vI2‖1

k

)2

k =
t√
k
. (1.8)

Also note that an alternative bound is given by

‖vI2‖2 ≤
√

1− γ2.

Using an argument similar to the one used to obtain (1.8), we obtain that

dd/ke∑
i=3

‖vIi‖2 ≤
dd/ke−1∑
i=2

√(
‖vIi‖1

k

)2

k =
1√
k

dd/ke−1∑
i=2

‖vIi‖1 ≤
√
k − t√
k

.
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Therefore we obtain

dd/ke∑
i=1

‖vIi‖2 = ‖vI1‖2 + ‖vI2‖2 +

dd/ke∑
i=3

‖vIi‖2 ≤ γ + min

{
t√
k
,
√

1− γ2

}
+ 1− t√

k
.

(Upper-Bound)

Now we consider two cases:

1. If t√
k
≥
√

1− γ2, then Upper-Bound becomes γ +
√

1− γ2 + 1 − t√
k
. Since γ ≥

t√
k
≥
√

1− γ2, γ satisfies γ ≥ 1√
2
. Moreover we have that t ≥ γ, t ≥

√
k(1− γ2).

Since γ ≤
√
k(1− γ2) iff γ ≤

√
k
k+1

we obtain two cases:

γ +
√

1− γ2 + 1− t√
k
≤

 γ +
√

1− γ2 + 1−
√

1− γ2 if γ ∈
[

1√
2
,
√

k
k+1

]
γ +

√
1− γ2 + 1− γ√

k
if γ ∈

[√
k
k+1

, 1
]

≤

 1 +
√

k
k+1

1 +
√

k
k+1

(1.9)

where (i) the first inequality holds when γ =
√

k
k+1

, (ii) the second inequality holds

since the function f(γ) = γ+
√

1− γ2+1− γ√
k

achieves (local and global) maximum

at point γ =
√

k+1−2
√
k

2k+1−2
√
k

which is less than
√

k
k+1

for k = 1, 2, . . ., thus f(γ) ≤

max
{
f
(√

k
k+1

)
, f(1)

}
= 1 +

√
k
k+1

for part γ ∈
[√

k
k+1

, 1
]
.

2. If t√
k
≤
√

1− γ2, then Upper-Bound becomes γ + 1. Note now that γ√
k
≤ t√

k
≤√

1− γ2, implies that γ satisfies γ ≤
√

k
k+1

. Therefore, 1 + γ ≤ 1 +
√

k
k+1

.

Therefore, this upper bound holds.

Now we show Theorem 1 holds.

Proof. Proof of Theorem 1. Since Tk ⊆ ρ ·Conv (Sk) with ρ ≤ 1+
√

k
k+1

and the objective

function is maximizing a convex function, we obtain that λk(A) ≤ opt`1 ≤ ρ2 ·λk(A).
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1.4 Numerical experiments

In this section, we report results on our empirical comparison of the performances of

(Convex-IP) method, (Pert-Convex-IP) method and the (SDP) relaxation method.

1.4.1 Hardware and Software

All numerical experiments are implemented on MacBookPro13 with 2 GHz Intel Core i5

CPU and 8 GB 1867 MHz LPDDR3 Memory. Convex-IPs were solved using Gurobi 7.0.2.

SDPs were solved using Mosek 8.0.0.60.

1.4.2 Obtaining primal solutions

We used a heuristic, which is very similar to the truncated power method [11], but has some

advantages over the truncated power method. Given v ∈ Rd, let Ik(v) be the set of indices

corresponding to the top k entries of v (in absolute value).

We start with a random initialization v0 such that ‖v0‖2 = 1, and set I0 ← Ik(A
1/2v0)

whereA1/2 is the square root ofA. In the ith iteration, we update

I i ← Ik(A
1/2vi), vi+1 ← arg max

‖v‖2=1

v>AIiv (1.10)

where AI ∈ Rd×d is the matrix with [AI ]i,j = [A]i,j for all i, j ∈ I and [AI ]i,j = 0

otherwise. It is easy to see that v1,v2, . . . satisfy the constraint ‖v‖0 ≤ k. Moreover, since

A is a PSD matrix, (vi+1)>Avi+1 ≥ (vi)>Avi for all i. Therefore, in each iteration, the

above heuristic method leads to an improved feasible solution for the (SPCA) problem.

Our method has two clear advantages over the truncated power method:

• We use standard and efficient numerical linear algebra methods to compute eigenval-

ues of small k × k matrices.

• The termination criteria used in our algorithm is also simple: if I i = I i
′ for some

20



i′ < i, then we stop. Clearly, this leads to a finite termination criteria.

In practice, we stop using a stopping criterion based on improvement and number of itera-

tions instead of checking I i = I i
′ . Details are presented in Algorithm 2.

Algorithm 2 Primal Algorithm
Input: Sample covariance matrix A, cardinality constraint k, initial vector v0.
Output: A feasible solution v̂ of SPCA, and its objective value.

1: Start with an initial (randomized) vector v0 such that ‖v0‖2 = 1 and ‖v0‖0 ≤ k.
2: Set the initial current objective value Obj← (v0)>Av0.
3: Set the initial past objective value õbj← 0.
4: Set the maximum number of iterations be imax.
5: while obj− õbj > ε and i ≤ imax do
6: Set õbj← obj.
7: Set I i ← Ik(A

1/2vi).
8: Set xi+1 ← arg max‖v‖2=1 v

>AIiv.
9: Set obj← (vi+1)>Avi+1.

10: end while
11: return v̂ as the final v obtained from while-loop, and obj.

We use the values of ε = 10−6 and imax = 20 in our experiments in Algorithm 2. We

repeat this algorithm with multiple random initializations. We repeat 20 times and take the

best solution. We emphasize that Algorithm 2 may not lead to a global solution of (SPCA).

Our Algorithm may also be interpreted as a version of the “alternating method” used

regularly as a heuristic for bilinear programs as the sparse PCA problem can be equivalently

rewritten as max{v>Au : ‖v‖2 = ‖u‖2 = 1, ‖v‖0 ≤ k, ‖u‖0 ≤ k}. We have compared

our primal method to two standard heuristics for finding primal feasible solutions of the

sparse PCA problems in the literature: truncated power method (TPM, [38]), generalized

power method (GPM, [12]) with `0-penalty. The performances of all these methods are

quite similar to our method (in terms of primal solutions) on the real instances; see details

in Appendix A.8.
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1.4.3 Implementation of Convex-IP model and Pert-Convex-IP model

Deciding λTH, N

1. Deciding λ: The size of the set {i : λi > λTH} denoted by Ipos plays an important

role for the computational tractability of our method. So our algorithm inputs an

initial value, I ini
pos . From the primal heuristic, we obtain a lower bound LBprimal on

λk(A). Let λi1 ≥ λi2 ≥ · · · ≥ λin be the eigenvalues of A. If λi
Iini

pos
< LBprimal, then

we set λTH := λi
Iini

pos
. On the other hand, if λi

Iini
pos
> LBprimal, then let l be the smallest

index such that λil > LBprimal and we set λTH := λil .

2. Deciding N : In practice, θi was found to be significantly smaller than 1. So we used

a value of N = 3 in all our experiments.

Final details

A total time of 7200 seconds were given to each instance for running the convex IP (any

extra time reported in the tables is due to running time of singular value decomposition and

primal heuristics). We have run all our experiments with k = 10, 20. For the (Convex-IP)

method, we use: (I ini
pos, N) = (10, 3). For the (Pert-Convex-IP) method, let “iter” be the

maximum number of iterations. We used three settings in our experiments:

(I ini
pos, N, iter) ∈ {(5, 3, 10), (10, 3, 3), (15, 3, 2)} .

The overall algorithms using the Pert-Convex-IP model and the Convex-IP model are pre-

sented in Appendix A.6.

1.4.4 Data Sets

We conduct numerical experiments on two types of data sets. Details of these two types of

data sets are presented in Appendix A.7.
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• Artificial data set: Tables 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 present results for artificial/synthetic

datasets.

• Real data set: Tables 1.10, 1.11, 1.12 show results for real data sets.

1.4.5 Description of the rows/columns in the tables

Note that the labels for each of the columns in Tables 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11,

1.12 are as follows:

• Case: The first part is a name. ‘Case 1’ or ‘Case 2’ denotes the instance num-

ber. The second part is the format (size, cardinality) which denotes the number of

columns/rows of the A matrix and the right-hand-side of the `0 constraint of the orig-

inal SPCA problem.

• LB: denotes the lower bound on the SPCA problem obtained from the (heuristic)

Algorithm 2 in Section 1.4.2.

• #-λ: denotes the size of set {i |λi > LB} where λi are the eigenvalues of the covari-

ance matrix. One should notice that #-λ usually does not equal to Ipos, since Ipos can

be pre-determined based on threshold parameter λTH.

• Convex-IP-`0, Pert-Convex-IP0: denote the (Convex-IP) and the (Pert-Convex-IP)

models.

• SDP: denotes the semidefinite programming relaxation solved using Mosek. In Ap-

pendix A.9, we compare the dual bounds by alternative methods [39] to solve the

SDP-relaxation for the real instances. Our conclusion based on our implementation

of other algorithms is that when Mosek solves the instance, the best dual bound is

obtained from Mosek. For some slightly larger instances, other algorithms might pro-

duce dual bounds. Usually, these dual bounds are extremely poor in quality. More-

over, these other methods do not scale up to instances with d ≥ 1000. Therefore, we
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have chosen to present results only from Mosek in Tables 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,

1.10, 1.11, 1.12; and the remaining results are relegated to Appendix A.9.

• UB: denotes the upper bound obtained from current dual bound method (i.e., Convex-

IP-`0, Pert-Convex-IP0, SDP).

• gap: denotes the approximation ratio (duality gap) obtained by the formula gap :=

UB−LB
LB .

• Time: denotes the total running time—we present the overall running time due to sin-

gular value decomposition, heuristic method to obtain primal solutions, and solvers

(Gurobi, Mosek) used to solve integer programming (set to terminate within 7200

seconds).

The three rows corresponding to Pert-Convex-IP, corresponds to experiments with three

settings: (Ipos, N, # iter) = {(5, 3, 10), (10, 3, 3), (15, 3, 2)} .

1.4.6 Conclusions and summary of numerical experiments

Based on numerical results reported in Tables 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12

we draw some preliminary observations:

1. Size of instances solved:

• SDP: Because of limitation of hardware and software, the SDP relaxation method

does not solve instances with input matrix of size greater than or equal to

300× 300.

• Convex-IP: The convex IP shows better scalability than the SDP relaxation and

produces dual bounds for instances with input matrix of size up to 500× 500.

• Pert-Convex-IP: The perturbed convex IP scales significantly better that the

other methods. While we experimented with instances up to size 2000× 2000,
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we believe this method will easily scale to larger instances, when k = 10, 20

with (Ipos, N) being chosen appropriately.

2. Quality of dual bound:

• SDP vs Best of {Convex-IP, Pert-Convex-IP}: While on some instances SDP

obtained better dual bounds, this was not the case for all instances. For example,

on the ‘controlling sparsity’ random instances and both the real data sets Eisen-

1 and Eisen-2, SDP bounds are weaker.

• Convex-IP vs Pert-Convex-IP: If the convex IP solved within the time limit,

then usually the bound is better than that obtained for Pert-Convex-IP. In other

cases, Pert-Convex-IP performs better as it is easy to solve and usually solves

within 1 hour.

• Overall gaps for Best of {Convex-IP, Pert-Convex-IP}: Except for the ran-

dom instances of type ‘controlling sparsity’ of size 1000×1000, and Lymphoma

data set, in all other instances at least one method had a gap less that 10%.

• Cardinality 10 vs Cardinality 20: When the cardinality budget is allowed to

increase, based on our numerical results, we can see that the running time of

our (Convex-IP) and (Pert-Convex-IP) methods do not change a lot, since the

parameter of cardinality k of (Convex-IP) and (Pert-Convex-IP) method only

influences the linear constraint ‖v‖1 ≤
√
k, which is more robust to changes

in the value of the cardinality k than typical cardinality constraint in integer

programming.

3. Gap results under different splitting points (parameter N ): We compare the per-

formances of the Pert-Convex-IP0 method under distinct parameters of initialization

splitting points with (Ipos, Nini, # iter) = (5, 1, 1), (5, 3, 1), (5, 5, 1), see Table 1.1.

We present results with just one round of iterations to clearly understand the effect

of number of splitting points. We observe that the gap decreases when the number
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of splitting points increases. On the other hand, the running time increases with the

number of splitting points incereasing. However increasing splitting points from 3 to

5 does not significantly improve the bounds.

Table 1.1: Gap results under different splitting points

Name(d, k) \ (Ipos, Nini, # iter) LB (5, 1, 1) (5, 3, 1) (5, 5, 1)
gap % Time gap % Time gap % Time

Eisen-1 (79, 10) 17.335 2.619 2.7 0.588 3.0 0.329 3.1
Eisen-2 (118, 10) 11.718 13.245 5.7 4.736 7.2 4.207 7.8
Colon (500, 10) 2641.229 30.652 72 27.755 73 27.673 76

Lymphoma (500, 10) 6008.741 52.412 95 43.956 83 43.587 86
Reddit (2000, 10) 1052.934 8.548 1628 4.136 1450 3.999 1488

4. Comparison between `1-relaxation and original sparsity constraint: To further

illustrate why we prescribe the use of `1 relaxation to obtain dual bounds of SPCA,

we compare the following two models: (1) The (Pert-Convex-IP) model used in

the paper; (2) The same “perturbed convex IP” where the `1 constraint is replaced

by a cardinality constraint (with the introduction of binary variables), denoted as

(Model-with-`0).

max λTH +
∑

i∈I+(λi − λTH)ξi − s =: optpert-convex-IP

s.t. ‖v‖2 ≤ 1∑d
i=1 zi ≤ k, − zi ≤ vi ≤ zi, zi ∈ {0, 1}, i ∈ [d]

gi = v>wi, gi ∈ [−θi, θi], i ∈ I+ gi =
∑N

j=−N γ
j
i η

j
i , ξi =

∑N
j=−N(γji )

2ηji

(η−Ni , . . . , ηNi ) ∈ SOS-2, i ∈ I+

1− s
λTH−λ̄

≤
∑

i∈I+ ξi ≤ 1 +
∑

i∈I+
θ2i

4N2 − s
λTH−λ̄∑

i∈I+ g
2
i ≤ 1− s

λTH−λ̄

c>|v| ≤ b(c)

(Model-with-`0)

We tested on the real-life data for k = 10 and k = 20 in Table 1.2, Table 1.3. All

parameters are same as the paper that used in the Section 4.5 (except for number of
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iterations which is 1 here).

Table 1.2: Gap Comparison for Real Instances with Cardinality k = 10

Name(d, k) \ (Ipos, Nini, # iter) Model (5, 3, 1) (10, 3, 1) (15, 5, 1)

gap % Time gap % Time gap % Time

Eisen-1 (79, 10) (Pert-Convex-IP) 0.588 2.8 0.796 3.8 0.865 10
(Model-with-`0) 0.392 8.6 0.525 99 0.588 685

Eisen-2 (118, 10) (Pert-Convex-IP) 4.736 6.6 2.364 27 5.349 2610
(Model-with-`0) 4.48 86 2.321 2105 1.971 5935

Matrix CovColon (500, 10) (Pert-Convex-IP) 27.755 90 2.364 27 5.349 2610
(Model-with-`0) 4.48 86 2.321 2105 11.51 7288

Matrix LymphomaCov (500, 10) (Pert-Convex-IP) 43.956 87 23.662 355 17.863 4224
(Model-with-`0) 47.93 7305 39.431 7289 39.526 7309

Reddit (2000, 10) (Pert-Convex-IP) 4.136 1867 3.446 1831 3.523 3726
(Model-with-`0) 5.826 8765 8.867 8638 10.356 8542

Table 1.3: Gap Comparison for Real Instances with Cardinality k = 20

Name(d, k) \ (Ipos, Nini, # iter) Model (5, 3, 1) (10, 3, 1) (15, 5, 1)

gap % Time gap % Time gap % Time

Eisen-1 (79, 20) (Pert-Convex-IP) 0.559 3.2 0.813 20 0.886 1016
(Model-with-`0) 1.298 7204 2.985 7204 5.519 7229

Eisen-2 (118, 20) (Pert-Convex-IP) 1.837 6.5 1.18 46 1.087 443
(Model-with-`0) 2.65 8062 4.223 7211 3.664 7205

Matrix CovColon (500, 20) (Pert-Convex-IP) 17.014 75 6.528 372 6.066 7275
(Model-with-`0) 18.539 7268 12.903 7271 12.737 7273

Matrix LymphomaCov (500, 20) (Pert-Convex-IP) 24.042 91 14.498 214 11.811 3349
(Model-with-`0) 26.622 7288 24.381 7302 35.286 8831

Reddit (2000, 20) (Pert-Convex-IP) 4.286 4652 4.288 1677 4.776 4274
(Model-with-`0) 7.139 8708 9.647 8546 12.157 8560

Based on the Table 1.2 1.3, following conclusions can be obtained:

(a) For instances with relative small size (≤ 500): the upper bounds (UB) ob-

tained from (Model-with-`0) is a slightly better than the upper bounds (UB)

from (Pert-Convex-IP), but the running time used for (Model-with-`0) is much

longer than (Pert-Convex-IP).

(b) For instances with relative large size (≥ 500): both the upper bounds and the

running time obtained from (Pert-Convex-IP) method are significantly better
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than those obtained from (Model-with-`0). In another words, the (Pert-Convex-IP)

is more scalable.

(c) Effect of k: We see that for k = 20 the performance of (Pert-Convex-IP)

method is even more dramatically better than that of (Model-with-`0). In fact,

now (Pert-Convex-IP) beats (Model-with-`0) on quality of bound and time even

for small (≤ 500) instances. Indeed, this is another nice property of the `1-

relaxation, namely it handles larger values of k more robustly.

1.4.7 Tables for numerical experiments
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Table 1.4: Spiked Covariance Recovery - Cardinality 10

Case LB #-λ Convex-IP-`0 Pert-Convex-IP0 SDP
gap % Time gap % Time gap % Time

Case 1 (200, 10) 511.95 1 0.005 380 0.007 76 0.001 1277
0.005 230
0.005 1605

Case 2 (200, 10) 592.45 1 0.003 469 0.006 615 0.002 1458
0.006 236
0.005 325

Case 1 (300, 10) 414.04 1 0.027 1692 0.03 642 - -
0.029 407
0.027 796

Case 2 (300, 10) 568.56 1 0.011 1067 0.016 82 - -
0.014 493
0.012 942

Case 1 (400, 10) 478.24 1 0.025 2598 0.04 793 - -
0.03 610
0.03 1495

Case 2 (400, 10) 426.91 1 0.037 3374 0.06 181 - -
0.05 846
0.04 2137

Case 1 (500, 10) 256.82 1 0.164 7525 0.21 1345 - -
0.18 1512
0.17 3279

Case 2 (500, 10) 551.74 1 0.029 7196 0.04 152 - -
0.04 725
0.03 1694

Case 1 (1000, 10) 315.16 1 - - 0.57 1147 - -
0.52 776
0.53 3633

Case 2 (1000, 10) 383.44 1 - - 0.34 2745 - -
0.32 403
0.34 3643
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Table 1.5: Spiked Covariance Recovery - Cardinality 20

Case LB #-λ Convex-IP-`0 Pert-Convex-IP0 SDP
gap % Time gap % Time gap % Time

Case 1 (200, 20) 516.756 1 2.05 493 0.008 746 - -
0.073 3116
0.573 7214

Case 2 (200, 20) 593.651 1 0.98 1847 0.005 323 - -
0.006 5992
0.102 7215

Case 1 (300, 20) 499.92 1 0.70 1848 0.018 745 - -
0.021 4799
0.399 7230

Case 2 (300, 20) 600.553 1 1.13 1771 0.014 530 - -
0.013 2964
0.272 7232

Case 1 (400, 20) 483.995 1 2.74 6398 0.034 1186 - -
0.168 7262
0.832 7255

Case 2 (400, 20) 428.275 1 1.92 7426 0.045 576 - -
0.074 6965
0.53 7251

Case 1 (500, 20) 294.35 1 1.19 7027 0.162 1341 - -
0.165 6087
1.285 7294

Case 2 (500, 20) 571.15 1 1.96 4628 0.039 1862 - -
0.2 1935

1.215 3360
Case 1 (1000, 20) 414 1 - - 0.53 3133 - -

0.50 2760
0.50 5844

Case 2 (1000, 20) 391.795 1 - - 0.311 4756 - -
0.74 3596

2.906 7516
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Table 1.6: Synthetic Example - Cardinality 10

Case LB #-λ Convex-IP-`0 Pert-Convex-IP0 SDP
gap % Time gap % Time gap % Time

Case 1 (200, 10) 5634.143 3 11.884 7205 0.14 38 0.10 1092
0.15 16
0.15 186

Case 2 (200, 10) 7321.23 3 1.703 7205 0.13 23 0.09 1086
0.13 13
0.12 47

Case 1 (300, 10) 4157.46 3 51.072 7210 0.27 83 - -
0.29 21
0.27 486

Case 2 (300, 10) 5135.50 3 65.275 7210 0.23 62 - -
0.22 59
0.23 58

Case 1 (400, 10) 6519.37 3 55.308 7219 0.22 98 - -
0.23 23
0.22 349

Case 2 (400, 10) 5942.05 3 45.396 7218 0.36 56 - -
0.42 29
0.41 364

Case 1 (500, 10) 5125.86 3 65.98 7230 0.38 149 - -
0.38 44
0.37 132

Case 2 (500, 10) 5545.85 3 48.328 7230 0.39 50 - -
0.38 30
0.38 231

Case 1 (1000, 10) 5116.08 3 NaN - 0.58 257 - -
0.57 128
0.57 1373

Case 2 (1000, 10) 6946.12 3 NaN - 0.39 323 - -
0.36 129
0.34 1167
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Table 1.7: Synthetic Example- Cardinality 20

Case LB #-λ Convex-IP-`0 Pert-Convex-IP0 SDP
gap % Time gap% Time gap % Time

Case 1 (200, 20) 11222.152 2 0.779 7205 0.041 2391 - -
0.042 2178
0.466 3707

Case 2 (200, 20) 14588.507 2 0.503 7205 0.032 1285 - -
0.036 2772
0.479 7212

Case 1 (300, 20) 8282.32 3 13.336 7212 0.089 2745 - -
0.159 1386
1.523 7227

Case 2 (300, 20) 10233.583 3 4.182 7210 0.078 1835 - -
0.07 99

0.817 7229
Case 1 (400, 20) 12976.349 3 55.172 7219 0.08 2563 - -

0.105 5278
4.288 7248

Case 2 (400, 20) 11809.325 2 45.209 7219 0.082 4257 - -
0.084 6934
0.08 485

Case 1 (500, 20) 10218.591 3 65.637 7231 0.13 3882 - -
0.142 6568
2.067 7288

Case 2 (500, 20) 11032.377 3 48.034 7229 0.114 6603 - -
0.138 2753
4.88 7280

Case 1 (1000, 20) 10193.919 3 - - 1.38 303 - -
1.358 1707
0.24 3257

Case 2 (1000, 20) 13867.929 3 - - 0.691 318 - -
0.674 1927
0.18 8807
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Table 1.8: Controlling Sparsity - Cardinality 10

Case LB #-λ Convex-IP-`0 Pert-Convex-IP0 SDP
gap % Time gap % Time gap % Time

Case 1 (200, 10) 706 1 0.14 925 2.9 117 0.42 1360
2.6 340
2.6 3663

Case 2 (200, 10) 680 1 0.14 1195 3.53 176 1.2 1148
3.38 372
3.53 3672

Case 1 (300, 10) 972 1 1.4 1958 3.91 135 - -
3.81 453
3.70 3635

Case 2 (300, 10) 976 1 1.1 3007 3.79 278 - -
3.48 1558
3.69 3772

Case 1 (400, 10) 1239 1 1.3 7207 4.21 769 - -
3.96 699
3.96 3699

Case 2 (400, 10) 1207 1 1.6 7206 3.56 221 - -
3.48 1894
3.40 3697

Case 1 (500, 10) 1498 1 2.1 12180 5.21 1026 - -
4.74 2881
4.81 3661

Case 2 (500, 10) 1498 1 2.1 13917 4.14 251 - -
4.07 1039
4.01 3783

Case 1 (1000, 10) 3948 1 - - 59.7 2206 - -
53.3 8318
49.5 3600

Case 2 (1000, 10) 4002 1 NaN - 58.1 3270 - -
51.0 8356
47.6 3600
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Table 1.9: Controlling Sparsity - Cardinality 20

Case LB #-λ Convex-IP-`0 Pert-Convex-IP0 SDP
gap % Time gap % Time gap % Time

Case 1 (200, 20) 1341.432 1 0.97 277 0.01 1434 - -
0.009 4726
0.735 2554

Case 2 (200, 20) 1287.45 1 1.63 332 0.009 887 - -
0.008 2847
1.22 1971

Case 1 (300, 20) 1839.578 1 1.25 1019 0.551 1932 - -
0.636 4854
7.027 7280

Case 2 (300, 20) 1849.485 1 0.192 2217 0.19 897 - -
0.796 7229
4.287 7226

Case 1 (400, 20) 2339.441 1 1.45 907 2.140 4343 - -
5.47 7265

9.847 7248
Case 2 (400, 20) 2273.785 1 2.34 3106 3.572 3059 - -

5.864 5164
10.537 7249

Case 1 (500, 20) 2870.013 1 2.34 2773 3.376 6013 - -
4.077 10870
5.572 7285

Case 2 (500, 20) 2832.149 1 2.37 3015 3.539 5011 - -
5.087 7293
5.063 7283

Case 1 (1000, 20) 7535.996 1 - - 31.656 7851 - -
27.151 721
25.326 7518

Case 2 (1000, 20) 7759.88 1 - - 29.393 311 - -
25.230 809
23.433 7510
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Table 1.10: First six sparse principal components of Pitprops

Cardinality LB Convex-IP-`0 Pert-Convex-IP SDP
gap % Time gap % Time gap % Time

Cardinality 5 3.406 3.2 0.40 6.0 0.34 1.5 3.70
Cardinality 2 1.882 1.4 0.23 3.6 0.34 0 2.49
Cardinality 2 1.364 3.8 0.30 7.6 0.85 1.0 2.69
Cardinality 1 1 1.8 0.75 3.5 1.02 0 2.40
Cardinality 1 1 2.2 0.30 3.6 0.61 0 2.42
Cardinality 1 1 1.2 0.30 2.1 0.51 0 2.32
Sum of above 9.652 2.5 2.28 4.8 3.67 0.7 16.02

Table 1.11: Biological and Internet Data - Cardinality 10

Case LB #-λ Convex-IP-`0 Pert-Convex-IP0 SDP
gap % Time gap % Time gap % Time

Eisen-1 (79, 10) 17.33 1 0.3 4.6 0.12 63 2.2 15
0.17 113
0.4 412

Eisen-2 (118, 10) 11.71 1 1.4 96 4.10 69 2.0 52
2.13 139
1.70 385

Colon (500, 10) 2641 1 14.7 9000 27.7 708 - -
9.58 1181
6.89 353

Lymphoma (500, 10) 6008 3 20.7 3723 41 610 - -
21 1526
17 2808

Reddit (2000, 10) 1052 1 NaN - 3.59 5663 - -
2.142 8584
3.615 4318
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Table 1.12: Biological and Internet Data - Cardinality 20

Case LB #-λ Convex-IP-`0 Pert-Convex-IP0 SDP
gap % Time gap % Time gap % Time

Eisen-1 (79, 20) 17.719 1 1.30 742 0.062 450 2.37 13
0.102 7928
0.333 7205

Eisen-2 (118, 20) 19.323 1 2.02 64 1.309 283 2.28 53
0.502 904
1.294 7206

Colon (500, 20) 4255.694 1 15.3 7230 16.537 4510 - -
5.77 2931
5.89 7286

Lymphoma (500, 20) 9082.158 2 18.7 7239 22.569 1677 - -
12.3 1442

11.81 3721
Reddit (2000, 20) 1119.046 1 - - 4.256 7920 - -

4.288 1677
4.776 4274
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CHAPTER 2

SOLVING ROW-SPARSE PRINCIPAL COMPONENT ANALYSIS VIA CONVEX

INTEGER PROGRAMS

This chapter is based on a joint work with Santanu S. Dey, Marco Molinaro, and Guanyi

Wang, [40].

2.1 Introduction

In this chapter, we consider a non-trivial generalization of SPCA problem – the row-sparse

PCA (rsPCA) problem (see, for example [41]) defined as follows: Given a sample covari-

ance matrix A ∈ Rd×d, a sparsity parameter k (≤ d), the task is to find out the top-r

k-sparsity principal components V ∈ Rd×r (r ≤ k),

arg max
V >V =Ir, ‖V ‖0≤k

Tr
(
V >AV

)
, (rsPCA)

where the row-sparsity constraint ‖V ‖0 ≤ k denotes that there are at most k non-zero rows

in matrix V , i.e., the principal components share global support. Let

F := {V |V >V = Ir, ‖V ‖0 ≤ k}

denote the feasible region of rsPCA and let optF(A) denote the optimal value of rsPCA for

sample covariance matrixA.

2.1.1 Literature review

Existing approaches for solving the sparse PCA problem or its approximations can be

broadly classified into the five categories.
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In the first category, instead of dealing with the non-convex sparsity constraint directly,

the papers [3, 4, 42, 43, 44, 45, 46, 47] incorporate additional regularizers to the objec-

tive function to enhance the sparsity of the solution. Similar to LASSO for sparse linear

regression problem, these new formulations can be optimized via alternating-minimization

type algorithms. We note here that the optimization problem presented in [3] is NP-hard

to solve, and there is no convergence guarantee for the alternating-minimization method

given in [4]. The papers [42], [43], [44], [45], [46], [47] propose their own formulations

for sparse PCA problem, and show that the alternating-minimization algorithm converges

to stationary (critical) points. However, the solutions obtained using the above methods

cannot guarantee the row-sparsity constraint ‖V ‖0 ≤ k. Moreover, none of these methods

are able to provide worst-case guarantees.

The second category of methods work with the convex relaxations of sparsity constraint.

A majority of this work is for solving rsPCA for the case where r = 1. The papers [21, 10,

23, 22, 48, 49] directly incorporate the sparsity constraint (for r = 1 case) and then relax

the resulting optimization problem into some convex optimization problem — usually a

semi-definite programming (SDP) relaxation. However, SDPs are often difficult to scale

to large instances in practice. To be more scalable, [1] proposes a framework to find dual

bounds of sparse PCA problem using convex quadratic integer program for the r = 1 case.

A third category of papers present fixed parameter tractable exact algorithms where the

fixed parameter is usually the rank of the data matrixA and r. The paper [16] proposes an

exact algorithm to find the global optimal solution of rsPCA with r = 1 with running-time

of O(drank(A)+1 log d). Later the paper [50] gives a combinatorial method for sparse PCA

problem with disjoint supports. They show that their algorithm outputs a feasible solution

within (1 − ε)-multiplicative approximation ratio in time polynomial in data dimension

d and reciprocal of ε, but exponential in the rank of sample covariance matrix A and r.

Recently [51] provides a general method for solving rsPCA exactly with computational

complexity polynomial in d, but exponential in r and rank(A). The paper [51] states that
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the results obtained are of theoretical nature for the low rank case, and these methods may

not be practically implementable.

A fourth category of results is that of specialized iterative heuristic methods for finding

good feasible solutions of rsPCA [52, 53, 12, 54, 55, 11, 16] for the r = 1 case. These

methods do not come with worst-case guarantees. Moreover, to the best of our understand-

ing, there is no natural way to generalize these methods for solving rsPCA when r > 1.

The final category of papers are those that present algorithms that perform well under

the assumption of a statistical-model. Under the assumption of an underlying statistical-

model, the paper [56] presents a family of estimators for rsPCA with so-called ‘oracle

property’ via solving semidefinite relaxation of sparse PCA. The paper [57] analyzes a co-

variance thresholding algorithm (first proposed by [58]) for the r = 1 case. They show

that this algorithm correctly recovers the support with high probability for sparse param-

eter k within order
√
M , with M being the number of samples. This sample complexity,

combining with the lower bounds results in [59, 60], suggest that no polynomial time algo-

rithm can do significantly better under their statistical assumptions. There are also a series

of papers [41, 61, 62, 63, 64] that provide the minimax rate of estimation for sparse PCA.

However, all these papers require underlying statistical models, thus do not have worst-case

guarantees in the model-free case.

2.1.2 Our contributions

In this paper, we generalize the approach taken in the paper [1]. Note that this generaliza-

tion is significantly non-trivial going from the case of r = 1 to greater values of r.

Convex relaxations of feasible region F (Section 2.2): Note that the objective function

of rsPCA is that of maximizing a convex function. Therefore, there must be at least one

extreme point of the feasible region F that is an optimal solution. Hence, it is important to

approximate the convex hull of the feasible region well. We present two convex relaxations:
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• The first convex relaxation, denoted as CR1, uses the operator norm ‖ · ‖2→1 as a

proxy for row sparsity (see Section 2.1.3 for a definition). This relaxation is proven

to be within a multiplicative ratio (blow up factor) of O
(√

ln(r)
)

of the convex hull

of the feasible region F , i.e., any point in this convex relaxation scaled down by a

factor of ≈
√

ln(r) is guaranteed to be in conv(F). Thus, this result establishes that

CR1 is essentially a very good approximation of the convex hull of F .

To prove this result we use a novel matrix sparsification procedure that samples rows

based on a weighting given by the Pietsch-Grothendieck factorization theorem [65].

The derivation of CR1 and the analysis of its strength is presented in Section 2.2.1.

• Since the norm ‖ · ‖2→1 is known to be NP-hard to compute [66], we also present and

analyze a simpler convex relaxation of F which is second order cone representable,

which we denote as CR2. We show that CR2 is within a multiplicative ratio of

O (
√
r) of the convex hull of the the feasible region F . This result for CR2 general-

izes the main theoretical result in [1] for the case r = 1. The derivation of CR2 and

the analysis of its strength is presented in Section 2.2.2.

Upper bounding the objective function of rsPCA (Section 2.3): In order to handle

the non-concavity of the objective function of rsPCA, we consider the natural approach to

upper bound the objective function by piecewise linear functions which can be modeled

using binary variables and special ordered sets (SOS-2) [67]. Together with the convex

relaxations obtained in the previous section we arrive at a convex integer programming

relaxation for rsPCA.

Moreover, we prove the following affine guarantee on the quality of the upper bound

obtained by solving this convex integer program: letting ubCRi be the optimal solution of

this convex integer program using CRi as convex relaxation of F , we have

optF(A) ≤ ubCRi ≤ multiplicative-ratio-i · optF(A) + additive-term, for i ∈ {1, 2},
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where multiplicative-ratio-1 = O (ln(r)), multiplicative-ratio-2 = O (r), and additive term

depends on r and the parameters used in piecewise linear approximation of the objective

function. In other words, the multiple term in the affine guarantee depends on the quality

of the convex relaxation of the feasible region and the additive term in the affine guarantee

depends on the quality of the approximation of the objective function.

New greedy algorithm (Section 2.4): We also present an efficient greedy heuristic for

finding good solutions to our problem. The starting point is that we can view rsPCA as:

maxS⊆[d],|S|=kf(S) where, f(S) :=
(
maxV ∈Rd×r |V >V =Ir,supp(V )=STr

(
V >AV

))
.

Clearly solving rsPCA reduces to the selection of the correct subset S. Therefore, it is

natural to design an algorithm where we iteratively search for an improving choice of S in

a neighborhood of a given value of S. A natural procedure is to remove and add one index

to S in order to maximize the function f , namely move to the set

S̃ = argmaxT :|S∩T |≥k−1f(T ), (2.1)

and repeat if S̃ 6= S. A naive idea of solving (2.1) is by computing the objective values

of all k(d − k) neighborhoods supports, using eigenvalue decomposition. However, this

approach is not practical. For example, if the size of the covariance matrix d = 500 and the

sparsity parameter k = 30, then in each iteration, we have to compute 14100 eigenvalue

decomposition of matrix of size 30× 30.

Our main contribution here is to design a significantly faster heuristic by solving a

proxy for (2.1). In our proposed algorithm, in each iteration instead of k(d− k) eigenvalue

decompositions, we will only compute one eigenvalue decomposition.
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Numerical experiments (Section 2.5): Based on the above, we obtain the following

“complete scheme”:

• Use random and some other reasonable starts as choices of a starting support, and

run the improving heuristic to produce good feasible solutions.

• Solve a convex integer program (in practice, we use CR2 with some preprocessing

of data to obtain both strength and speed, together with some other simple dimension

reduction techniques) to obtain dual bounds.

Step (1) above produces good feasible solutions, and step (2) produce good dual bounds to

verify the quality of the feasible solutions found in Step (1).

Numerical results are reported to illustrate the efficiency of our method (both in terms

of finding good solutions and proving their high quality via dual bounds) and comparison

to SDP relaxation and other benchmarks are presented.

We note that a preliminary version of this paper was published in [68]. The current

version has many new results, in particular CR1 and results on its strength are completely

new, and the numerical experiments have also been completely revamped.

2.1.3 Notation

We use regular lower case letters, for example α, to denote scalars. For a positive integer

n, let [n] := {1, . . . , n}. For a set S ⊆ Rn and a ρ > 0 denote ρ · S := {ρx : x ∈ S}.

We use bold lower case letters, for example a, to be vectors. We denote the i-th compo-

nent of a vector a as ai. Given two vectors, u,v ∈ Rn, we represent the inner product of u

and v by 〈u,v〉. Sometimes it will be convenient to represent the outer product of vectors

using ⊗, i.e., given two vectors a, b ∈ Rn, a⊗ b is the matrix where [a⊗ b]i,j = aibj . We

denote the unit vector in the direction of the jth coordinate as ej .

We use bold upper case letters, for exampleA, to denote matrices. We denote the (i, j)-

th component of a matrix A as Aij . We use supp(A) to denote the support of non-zero
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rows of matrix A. We use regular upper case letters, for example I , to denote the set of

indices. Given any matrixA ∈ Rn×m and I ⊆ [n], J ⊆ [m], we denote the sub-matrix ofA

with rows in I and columns in J as AI,J . For I ∈ [m], to simplify notation we denote the

submatrix ofA ∈ Rm×n corresponding to the rows with index in I asAI (instead ofAI,[n]).

Similarly for i ∈ [m], we denote the ith row of A as Ai,? (or Ai in short). For J ∈ [n]

again to simplify the notation, we denote the submatrix of A ∈ Rm×n corresponding to

the columns with index in J as A?,J (instead of A[m],J ), and for j ∈ [n], we denote the j th

column ofA asA?,j .

For a symmetric square matrix A, we denote the largest eigen-value of A as λmax(A).

Given A,B ∈ Rn×n, two symmetric matrices, we say that A � B if B −A is a positive

semi-definite matrix. Given U ,V ∈ Rm×n, we let 〈U ,V 〉 =
∑m

i=1

∑n
j=1UijVij to be

the inner product of matrices. We use 0p,q to denote the matrix of size p × q with all

entries equal to zero. We use ⊕, as a sign of direct sum of matrices, i.e., given matrices

A ∈ Rp×q,B ∈ Rm×n,

A⊕B :=

 A 0p,n

0m,q B

 .

The operator norm ‖A‖p→q of a matrixA ∈ Rm×n is defined as

‖A‖p→q := maxx∈Rn,‖x‖p=1‖Ax‖q.

We sometimes refer ‖A‖2→2 as ‖A‖op. Note that ‖A‖op is the largest singular value ofA.

The Frobenius norm of a matrixA is denoted as ‖A‖F .
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2.2 Convex relaxations of F

2.2.1 Convex relaxation 1 (CR1)

In the vector case, i.e. r = 1 case, a natural convex relaxation forF is to control the sparsity

via the `2 and `1 norms, namely to consider the set {v ∈ Rd | ‖v‖2 ≤ 1, ‖v‖1 ≤
√
k}

(see [1]). It is easy to see that this is indeed a relaxation in the case r = 1: if v ∈ F , then

by definition 〈v,v〉 = 1 and so ‖v‖2 = 1, and since v is a k-sparse vector we get, using

the standard `1-vs-`2-norm comparison in k-dimensional space, ‖v‖1 ≤
√
k · ‖v‖2 =

√
k.

Here we consider the following generalization of this relaxation for any r:

CR1 :=

{
V ∈ Rd×r : ‖V ‖op ≤ 1, ‖V ‖2→1 ≤

√
k,

d∑
i=1

‖Vi,?‖2 ≤
√
rk

}
.

Thus we now use both the `2→1 norm and the sum of the length of the rows of V to take the

role of the `1-norm proxy for sparsity (by convexity of norms both constraints are convex).

While is it not hard to see that this is a relaxation of F , we further show that it has a

provable approximation guarantee.

Theorem 2. For every positive integers d, r, k such that 1 ≤ r ≤ k ≤ d the convex

relaxation CR1 satisfies

F ⊆ CR1 ⊆ ρCR1 · conv (F)

for ρCR1 = 2 + max{6
√

2π, 18
√

log 50r}. In particular ρCR1 = O(
√

log r).

Remark 2.2.1. One can replace in CR1 the constraint ‖V ‖op ≤ 1 by the constraint

 Ir −V

−V Ir

 � 0,

which is the convex hull of the Stiefel manifold {V : V >V = Ir} [69].
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Proof of first inclusion in Theorem 2: F ⊆ CR1

Consider a matrix V in F ; we show that it satisfies the 3 constraints of CR1. First, observe

that

‖V ‖op = maxx∈Rn,‖x‖2=1‖V x‖2

= maxx∈Rn,‖x‖2=1

√
〈V x,V x〉

= maxx∈Rn,‖x‖2=1

√
〈x,V >V x〉 = 1.

Therefore, we obtain that for V ∈ F , we have ‖V ‖op ≤ 1.

For the second constraint, by definition of ‖·‖2→1 it is equivalent to verify that ‖V x‖1 ≤
√
k for all x ∈ Rr such that ‖x‖2 ≤ 1. Since V is k-row-sparse, V x is a k-sparse vector

and hence by `1- vs `2-norm comparison in k-dim space we get ‖V x‖1 ≤
√
k · ‖V x‖2 ≤

√
k, where the last inequality follows ‖V x‖2 ≤ ‖V ‖op for all x satisfying ‖x‖2 ≤ 1.

For the third constraint of CR1, since ‖V ‖op ≤ 1 each column of V , i.e., V?,j has a

2-norm of at most 1, and since there are r columns we have:

r ≥ ‖V ‖2
F =

d∑
i=1

‖Vi,?‖2
2.

Since V is k-row-sparse, at most k of the terms in the right-hand side is non-zero. Then

again applying the `1- vs `2-norm comparison in k-dim space we get

d∑
i=1

‖Vi,?‖2 ≤
√
k ·
√∑

i

‖Vi,?‖2
2 .

Combining the displayed inequalities gives
∑d

i=1 ‖Vi,?‖2 ≤
√
rk, and so the third con-

straint of CR1 is satisfied.
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Proof of second inclusion in Theorem 2: CR1 ⊆ ρCR1 · conv(F)

We assume that k ≥ 40, otherwise r ≤ k < 40 and the result follows from Theorem 5. We

prove the desired inclusion by comparing the support function of these sets (Proposition

C.3.3.1 of [70]), namely we show that for every matrix C ∈ Rd×r

max
V ∈CR1

〈C,V 〉 ≤ ρCR1 · max
V ∈conv(F)

〈C,V 〉. (2.2)

It will suffice to prove the following sparsification result for the optimum of the left-

hand side.

Lemma 2.2.1. Assume k ≥ 40. Consider C ∈ Rd×r and let V ∗ be a matrix attaining the

maximum on the left-hand side of (2.2), namely V ∗ ∈ arg maxV ∈CR1〈C,V 〉. Then there

is a matrix V with the following properties:

1. (Operator norm) ‖V ‖op ≤ 1 + max{
√

18π, 6
√

log 50r}

2. (Sparsity) V is k-row-sparse, namely ‖V ‖0 ≤ k

3. (Value) 〈C,V 〉 ≥ 1
2
〈C,V ∗〉.

Indeed, if we have such a matrix V then V
‖V ‖op belongs to the sparse setF and has value

〈C, V
‖V ‖op 〉 ≥

1
2·(1+max{

√
18π, 6

√
log 50r}) · 〈C,V

∗〉, showing that (2.2) holds.

For the remainder of the section we prove Lemma 2.2.1. The idea is to randomly

sparsify V ∗ while controlling for operator norm and value. A standard procedure is to

sample the rows of V ∗ with probability proportional to their squared length (see [71] for

this and other sampling methods). However these more standard methods do not seem

effectively leverage the information that ‖V ∗‖2→1 ≤
√
k.

Instead, we use a novel sampling more adapted to the `2→1-norm based on a weighting

of the rows of V ∗ given by the so-called Pietsch-Grothendieck factorization [65]. We state

it in a convenient form that follows by applying Theorem 2.2 of [72] to the transpose.
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Theorem 3 (Pietsch-Grothendieck factorization). Any matrix V ∈ Rd×r can be factorized

as V = WT of size T ∈ Rd×r, W ∈ Rd×d, where

• W is a nonnegative, diagonal matrix with
∑

iW
2
ii = 1

• ‖T ‖op ≤
√
π/2 · ‖V ‖2→1.

So first apply this theorem to obtain a decomposition V ∗ = WT . Notice that this

means the ith row of V ∗ is just the ith row of T multiplied by the weight Wii. Define the

“probability”

pi :=
k

6

(
W 2

ii +
‖V ∗i,?‖2∑
i′ ‖V ∗i′,?‖2

)
,

and the truncation p̄i = min{pi, 1} to make it a bonafide probability.1 We then randomly

sparsifyV ∗ by keeping each row iwith probability p̄i and normalizing it: define the random

matrix Ṽ := W̃T , where W̃ is the random diagonal matrix with

W̃ii := εi
Wii

p̄i
,

and εi (the indicator that we keep row i) takes value 1 with probability p̄i and 0 with

probability 1− p̄i (and the εi’s are independent). Since EW̃ = W notice this is procedure

is unbiased: EṼ = V ∗.

We first show that Ṽ satisfies each of the desired items from Lemma 2.2.1 with good

probability, and then use a union bound to exhibit a matrix that proves the lemma.

1For some intuition: The first term parenthesis in pi controls the variance of W̃ii, which is Var(W̃ii) ≤
W 2

ii

pi
≤ 6

k ; the second term controls the largest size of a row of Ṽ , which is ‖Ṽi,?‖2 ≤ ‖
V ∗i,?
pi
‖2 ≤

6
k

∑
i′ ‖V ∗

i′,?‖2, which is at most 6 because V ∗ ∈ CR1.
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Sparsity. The number of rows ‖Ṽ ‖0 of Ṽ is precisely
∑d

i=1 εi, whose expectation is at

most

d∑
i=1

pi =
k

6

(∑
i

W 2
ii + 1

)
=

k

3
.

Employing the multiplicative Chernoff bound (Lemma B.1.1) we get

Pr

(
‖Ṽ ‖0 > k

)
≤
(

2e

6

)k
<

1

50
, (2.3)

where the last inequality uses that k ≥ 40.

Operator norm. Let I be the indices i where pi ≤ 1 (so p̄i = pi), and Ic = [d] \ I

(so p̄i = 1 and hence Ṽi = V ∗i ). From triangle inequality we can see that ‖Ṽ ‖op ≤

‖ṼI‖op + ‖ṼIc‖op. Moreover,

‖ṼIc‖op = ‖V ∗Ic‖op ≤ ‖V ∗‖op ≤ 1,

where the first equality is because the rows of ṼIc are exactly equal to the rows of V ∗Ic and

the first inequality is because deleting rows cannot increase the operator norm, and the last

inequality because V ∗ ∈ F . Combining these observations we get that ‖Ṽ ‖op ≤ ‖ṼI‖op +

1, and so we focus on controlling the operator norm of ṼI . We do that by applying a

concentration inequality to the largest eivengalue of the PSD matrix (ṼI)
>ṼI ; the following

is Theorem 1.1 of [73] plus a simple estimate (see for example page 65 of [74]).

Theorem 4. Let X1, . . . ,Xn ∈ Rr×r be independent, random, symmetric matrices of

dimension r. Assume with probability 1 each Xi is PSD and has largest eigenvalue

λmax(Xi) ≤ R. Then

Pr

(
λmax

(∑
i

Xi

)
≥ α

)
< r · 2−α/R
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for every α ≥ 6λmax(E
∑

iXi).

In the following part, to be concise, without specific description, given any matrix V ,

for any index i ∈ [d] or subset I ⊆ [d], let Vi := Vi,? be i-th row of V and VI := VI,? be

the submatrix of V as stated in notation.

First notice that indeed (ṼI)
>ṼI can be written as a sum of independent PSD matrices:

(ṼI)
>ṼI =

∑
i∈I

Ṽi ⊗ Ṽi =
∑
i∈I

W̃ 2
ii (Ti ⊗ Ti) =

∑
i∈I

εi
W 2

ii

p2
i

(Ti ⊗ Ti). (2.4)

To estimate the max eigenvalue of the expected matrix, λmax(E (ṼI)
>ṼI), by definition of

pi we have E εi
W 2
ii

p2i
≤ 6

k
and hence

E (ṼI)
>ṼI �

∑
i∈I

6

k
(Ti ⊗ Ti) �

6

k

∑
i

(Ti ⊗ Ti) =
6

k
T>T .

By the guarantee of the Pietsch-Grothendieck factorization ‖T ‖op ≤
√
π/2 ‖V ∗‖2→1 and

since V ∗ ∈ CR1 we have ‖V ∗‖2→1 ≤
√
k, so applying these bounds to the previous

displayed inequality gives

λmax

(
E (ṼI)

>ṼI

)
≤ 6

k
λmax(T>T ) =

6

k
‖T ‖2

op ≤ 3π.

To control the R term in Theorem 4 we look at the first equation in (2.4) and notice that for
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i ∈ I

λmax

(
Ṽi ⊗ Ṽi

)
= λmax

((
εi
pi
V ∗i

)
⊗
(
εi
pi
V ∗i

))
≤ λmax

(
1

p2
i

(V ∗i ⊗ V ∗i )

)
=
‖V ∗i ‖2

2

p2
i

≤ 36(
∑

i′ ‖V ∗i′ ‖2)2

k2

≤ 36,

where the last inequality uses the fact V ∗ ∈ CR1 and hence
∑

i′ ‖V ∗i′ ‖2 ≤
√
rk ≤ k.

Then applying Theorem 4 withXi = Ṽi⊗Ṽi,R = 16 and α = max{6·3π, 36 log 50r}

we get

Pr
(
‖ṼI‖op ≥

√
α
)

= Pr
(
λmax((ṼI)

>ṼI) ≥ α
)
<

1

50
.

Recalling we have ‖Ṽ ‖op ≤ 1 + ‖ṼI‖op, this gives that

‖Ṽ ‖op > 1 + max{
√

18π, 6
√

log 50r} happens with probability at most
1

50
. (2.5)

Value. We want to show that with good probability 〈C, Ṽ 〉 ≥ 1
2
〈C,V ∗〉. We use through-

out the following observation: for each row i we have 〈Ci,V
∗
i 〉 ≥ 0, since the set CR1

is symmetric with respect to flipping the sign of a row and V ∗ maximizes 〈C,V ∗〉 =∑
i〈Ci,V

∗
i 〉.

Since EṼ = V ∗, we have E〈CI , ṼI〉 = 〈CI ,V
∗
I 〉 and

Var(〈CI , ṼI〉) =
∑
i∈I

Var(〈Ci, Ṽi〉) =
∑
i∈I

Var
(
εi
pi
〈Ci,V

∗
i 〉
)
≤
∑
i∈I

〈Ci,V
∗
i 〉2

pi

≤ 6
∑

i′ ‖V ∗i′ ‖2

k
·
∑
i∈I

〈Ci,V
∗
i 〉2

‖V ∗i ‖2

≤ 6 ·
(

max
i∈I

〈
Ci,

V ∗i
‖V ∗i ‖2

〉)
· 〈CI ,V

∗
I 〉,
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where the second inequality uses the definition of pi and the last inequality uses that∑
i′ ‖V ∗i′ ‖2 ≤

√
rk ≤ k (since V ∗ ∈ CR1). Moreover, since V ∗i

‖V ∗i ‖2
also belongs to CR1,

the optimality of V ∗ guarantees that 〈Ci,
V ∗i
‖V ∗i ‖2

〉 ≤ 〈C,V ∗〉, and so we have the variance

upper bound

Var(〈CI , ṼI〉) ≤ 6 · 〈C,V ∗〉2.

Using the fact that 〈CIc , ṼIc〉 = 〈CIc ,V
∗
Ic〉 and the one-sided Chebychev inequality (Lemma

B.1.2) we get

Pr

(
〈C, Ṽ 〉 ≤ 1

2
〈C,V ∗〉

)
= Pr

(
〈CI , ṼI〉 ≤ 〈CI , V

∗
I 〉 −

1

2
〈C,V ∗〉

)
≤ 6

6 + 1
4

= 1− 1

25
.

(2.6)

Concluding the proof of Lemma 2.2.1. Taking a union bound over inequalities (2.3),

(2.5), and (2.6), we see that with positive probability Ṽ satisfies all items from Lemma

2.2.1. This shows the existence of the desired matrix V and concludes the proof.

2.2.2 Convex relaxation 2 (CR2)

Since an optimization problem involving the semi-definite constraint V >V � Ir (equiv-

alent to ‖V ‖op ≤ 1) and the `2→1-norm constraint ‖V ‖2→1 ≤
√
k may be challenging to

solve in practice we consider the following further relaxation involving second-order cone

constraints:

CR2 :=


V ∈ Rd×r :

‖V?,j‖2
2 ≤ 1 ∀j ∈ [r]

‖V?,j1 ± V?,j2‖2
2 ≤ 2 ∀j1 6= j2 ∈ [r]

‖V?,j‖1 ≤
√
k ∀j ∈ [r]∑d

i=1 ‖Vi‖2 ≤
√
rk


.
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This set is a relaxation of CR1 obtained by considering the constraint maxx:‖x‖2≤ ‖V x‖2 =

‖V ‖op ≤ 1 only for the vectors x = ej and x = 1√
2
(ej1 ± ej2), and considering the con-

straint maxx | ‖x‖2≤ ‖V x‖1 = ‖V ‖2→1 ≤
√
k only for the vectors x = ej . In particular

this shows that CR2 is a relaxation of CR1 and hence a relaxation of F . Moreover, we

show that it still gives a guaranteed approximation to this set.

Theorem 5. For every d, r, k positive integers such that 1 ≤ r ≤ k ≤ d, we have

conv(F) ⊆ CR2 ⊆ ρCR2 · conv(F),

where ρCR2 ≤ 1 +
√
r.

Proof. Since we argued above that CR2 is a relaxation of F it suffices to show the second

inclusion CR2 ⊆ (1 +
√
r) conv(F). So consider any V ∈ CR2, and we will show

V ∈ (1 +
√
r) conv(F).

Since the sets F and CR2 are symmetric to row permutations, assume without loss

of generality that the rows of V are sorted in non-decreasing length, namely ‖V1‖2 ≥

‖V2‖2 ≥ . . . . Decompose V based on its top-k largest rows, second top-k largest rows,

and so on, i.e., let V = V 1 + · · ·+ V dd/ke with V p ∈ Rd×r and

supp(V 1) = {1, . . . , k} =: I1 , . . . , supp(V dd/ke) = {d− (dd/ke − 1)k, . . . , d} =: Im.

For each p = 1, . . . , dd/ke we have ‖‖V p/‖V p‖op‖0 ≤ k and ‖‖V p/‖V p‖op‖op = 1, thus

V p/‖V p‖op ∈ F . Observe that:

V = V 1 + · · ·V dd/ke = ‖V 1‖op
V 1

‖V 1‖op
+ · · ·+ ‖V m‖op

V dd/ke

‖V dd/ke‖op
(2.7)

⇒ V∑dd/ke
p=1 ‖V p‖op

=

(
‖V 1‖op∑dd/ke
p=1 ‖V p‖op

)
V 1

‖V 1‖op
+ · · ·+

(
‖V dd/ke‖op∑dd/ke
p=1 ‖V p‖op

)
V dd/ke

‖V dd/ke‖op︸ ︷︷ ︸
∈conv(F)

.
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Notice that ‖V 1‖op ≤ 1, since ‖V ‖op ≤ 1 and zeroing out rows cannot increase the

operator norm, and also by standard relationship between ‖ · ‖2 and ‖ · ‖F we have:

‖V p‖op ≤
√∑

i∈Ip
‖Vi‖2

2.

Furthermore, we can bound the norm of each of these rows of V p by the average of the

rows of V p−1, since the rows of V are sorted in non-decreasing length. Employing these

bounds we get

dd/ke∑
p=1

‖V p‖op = ‖V 1‖op +

dd/ke∑
p=2

‖V p‖op

≤ 1 +

dd/ke∑
p=2

√(∑
i∈Ip−1 ‖Vi‖2

k

)2

· k

= 1 +
1√
k
·
dd/ke∑
p=2

∑
i∈Ip−1

‖Vi‖2

≤ 1 +
1√
k

d∑
i=1

‖Vi‖2 ≤ 1 +
√
r (2.8)

where the final inequality holds since the constraint
∑d

i=1 ‖Vi‖2 ≤
√
rk is in the descrip-

tion of CR2.

Combining inequalities (2.7) and (2.8) we have

V ∈

dd/ke∑
p=1

‖V p‖op

 · conv(F) ⊆ (1 +
√
r) · conv(F).

concluding the proof of the theorem.
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2.3 Upper (dual) bounds for rsPCA

Based on results in the Section 2.2, we can set-up the following optimization problem:

optCRi := max
V ∈CRi

Tr
(
V >AV

)
. (CRi-Relax)

The following is a straightforward Corollary of Theorem 2 and Theorem 5is:

Corollary 2.3.1. optF ≤ optCRi ≤ ρ2
CRioptF for i ∈ {1, 2}.

The challenge of solving CRi-Relax is that the objective function is non-convex. In-

deed, for r = 1 case, Corollary 2.3.1 provide constant multiplicative approximation ratios

to rsPCA. Thus inapproximability results on solving rsPCA with r = 1 from [75, 14] im-

plies that solving CRi-Relax to optimality is NP-hard. Therefore we construct a further

relaxation of the objective function.

2.3.1 Piecewise linear upper approximation of objective function

Let A =
∑d

j=1 λjwjw
>
j be the eigenvalue decomposition of sample covariance matrix A

with λ1 ≥ · · · ≥ λd ≥ 0. The objective function then can be represented as a summation

Tr
(
V >AV

)
=

d∑
j=1

λj

r∑
i=1

(w>j vi)
2

where vi denotes the ith column of V such that V = (v1, . . . ,vr). Set auxiliary variables

gji = w>j vi for (j, i) ∈ [r]× [d]. Let wj ∈ Rd satisfy

|[wj]j1| ≥ . . . ≥ |[wj]jk | ≥ . . . ≥ |[wj]jd |,

and let

θj =
√

[wj]2j1 + · · ·+ [wj]2jk

54



be the square root of sum of top-k largest absolute entries of wj . Since vi is supposed to

be k-sparse, it is easy to observe that gji is within the interval [−θj, θj].

Piecewise linear approximation: To relax the non-convex objective, we can upper ap-

proximate each quadratic term g2
ji by a piecewise linear function based on a new auxiliary

variable ξji via special ordered sets type 2 (SOS-II) constraints (PLA) as follows,

PLA([d]× [r]) :=


(g, ξ, η) :

gji = w>j vi (j, i) ∈ [d]× [r]

gji =
∑N

`=−N γ
`
jiη

`
ji (j, i) ∈ [d]× [r]

ξji =
∑N

`=−N
(
γ`ji
)2
η`ji (j, i) ∈ [d]× [r](

η`ji
)N
`=−N ∈ SOS-II (j, i) ∈ [d]× [r]


where for each (j, i) ∈ [d]× [r],

(
η`ji
)N
`=−N is the set of SOS-II variables, and

(
γ`ji
)N
`=−N is

the corresponding set of splitting points that satisfy:

γ−Nji︸︷︷︸
=−θj

≤ · · · ≤ γ0
ji︸︷︷︸

=0

≤ · · · · ≤ γNji︸︷︷︸
=θj

which split the region [−θj, θj] into 2N equal intervals. See Figure 2.1 for an example.

j = N
ji

N + 1
ji ... 0 = N

ji ... N 1
ji j = N 1

ji

Feasible region of gji

0.00

0.05

0.10

0.15

0.20

0.25

Va
lu

e 
of

 g
2 ji
 a

nd
 

ji

g2
ji =

N

= N
ji ji

ji =
N

= N
( ji)2

ji

Figure 2.1: The quadratic function g2
ji is upper approximated by a piecewise linear function

ξji by SOS-II constraints for all (j, i) ∈ [d]× [r].
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By using PLA, we arrive at the following convex integer programming problem,

ubCRi := max
∑d

j=1 λj
∑r

i=1 ξji

s.t. V ∈ CRi

(g, ξ, η) ∈ PLA([d]× [r])

(CIP)

where CRi is the convex set defined in Section 2.2.1 or Section 2.2.2 for i ∈ {1, 2} re-

spectively, and PLA is the set of constraints for piecewise-linear upper approximation of

objective. Note that we say this is a convex integer program since SOS-II is modelled using

binary variables.

2.3.2 Guarantees on upper bounds from convex integer program

Here we present the worst-case guarantee on the upper bound from solving convex integer

program in the form of an affine function of optF .

Theorem 6. Let optF be the optimal value of rsPCA. Let ubCRi be the upper bound obtained

from solving the convex integer program using CRi convex relaxation of F for i ∈ {1, 2}.

Then:

optF ≤ ubCRi ≤ ρ2
CRi · optF +

d∑
j=1

rλjθ
2
j

4N2︸ ︷︷ ︸
additive term

, for i ∈ {1, 2}.

Proof. Based on the construction for CIP, the objective function Tr
(
V >AV

)
satisfies

d∑
j=1

λj

r∑
i=1

(w>j vi)
2 =

d∑
j=1

λj

r∑
i=1

g2
ji.

By Corollary 2.3.1, we have

max
V ∈CRi

(
V >AV

)
= max

V ∈CRi

d∑
j=1

λj

r∑
i=1

g2
ji ≤ ρ2

CRi · optF ,
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for i ∈ {1, 2}. Note that gji ∈ [−θj, θj] and we have split the interval [−θj, θj] evenly via

splitting points (γ`ji)
N
`=−N such that γ`ji = `

N
· θj . For a given j ∈ [d] and i ∈ [r], by the

definition of SOS-II sets, let gij = γ`
∗
ji η

`∗
j,i + γ`

∗+1
ji η`

∗+1
j,i , ξji = (γ`

∗
ji )

2η`
∗
j,i + (γ`

∗+1
ji )2η`

∗+1
j,i

and η`∗j,i + η`
∗+1
j,i = 1 for some `∗ ∈ {−N, . . . , N − 1}. Thus we have:

ξji − g2
ji =

(
(γ`

∗

ji )
2η`
∗

j,i + (γ`
∗+1
ji )2η`

∗+1
j,i

)
−
(
γ`
∗

ji η
`∗

j,i + γ`
∗+1
ji η`

∗+1
j,i

)2

= (γ`
∗

ji )
2η`
∗

j,i + (γ`
∗+1
ji )2η`

∗+1
j,i − (γ`

∗

ji )
2(η`

∗

j,i)
2 − (γ`

∗+1
ji )2(η`

∗+1
j,i )2 − 2γ`

∗

ji η
`∗

j,iγ
`∗+1
ji η`

∗+1
j,i

=
(
γ`
∗+1
ji − γ`∗ji

)2
η`
∗

ji η
`∗+1
ji =

θ2
j

N2
η`
∗

ji η
`∗+1
ji ≤

θ2
j

4N2
.

Therefore, the objective function in CIP satisfies

d∑
j=1

λj

r∑
i=1

ξji ≤
d∑
j=1

λj

r∑
i=1

g2
ji +

d∑
j=1

rλjθ
2
j

4N2
≤ ρ2

CRi · optF +
d∑
j=1

rλjθ
2
j

4N2
,

which completes the proof.

2.4 Lower (primal) bounds for rsPCA

As mentioned in the introduction, we can view rsPCA as

maxS⊆[d],|S|=kf(S) where, f(S) :=
(
maxV ∈Rd×r |V >V =Ir,supp(V )=STr

(
V >AV

))
,

(2.9)

and hence solving rsPCA reduces to selecting the correct support set S. Thus, a natu-

ral algorithm is the 1-neighborhood local search that starts with a support set S and re-

moves/adds one index to improve the value f(S). The main issue with this strategy is that

it requires an expensive eigendecomposition computation for each candidate pair i/j of in-

dices to be removed/added in order to evaluate the function f . Here we propose a much

more efficient strategy that solves a proxy version of this local search move that requires

only 1 eigendecomposition per round.
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For that we rewrite the problem as follows. Given a sample covariance matrix A, let

A1/2 be its positive semi-definite square root such that A = A1/2A1/2. Observe that

‖A 1
2 −V V >A 1

2‖2
F = Tr(A)− Tr(V >AV ), and therefore we may equivalently solve the

following problem:

minV ∈Rd×r
∥∥A1/2 − V V >A1/2

∥∥2

F
s.t. V >V = Ir, ‖V ‖0 ≤ k. (SPCA-alt)

Therefore, SPCA-alt can be reformulated into a two-stage (inner & outer) optimization

problem:

minS⊆[d], |S|≤k minVS f̄(S,VS) s.t. V >S VS = Ir

where

f̄(S,M ) := ‖(A1/2)S −MM>(A1/2)S‖2
F + ‖(A1/2)SC‖2

F (2.10)

and SC := [d] \ S.

In order to find a solution with small f̄(S,VS) again we use a greedy swap heuristic

that removes/adds one index to S. However, we avoid eigenvalue computations by keeping

M = VS fixed and finding an improved set S ′ (i.e., with f̄(S ′,M) ≤ f̄(S,M )), and only

then updating the term M ; only the second needs 1 eigendecomposition of ASt,St . We

describe this in more detail, letting St and V t
St

be the iterates at round t.

Leaving Candidate: In the t-th iteration, given the iterates St−1 and V t−1
St−1

from the pre-

vious iteration, for each index j ∈ St−1, let ∆out
j be

∆out
j := ‖A1/2

j ‖2
2 −

∥∥∥A1/2
St−1
− VSt−1V

>
St−1

A
1/2
St−1

∥∥∥2

F
.

Then let jout := arg minj∈St−1
∆out
j be the candidate to leave the set St−1.
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Entering Candidate: Similarly, for each j ∈ SCt−1 define ∆in
j as

∆in
j := ‖A1/2

j ‖2
2 −

∥∥∥(A1/2)Sjt−1
− VSt−1V

>
St−1

(A1/2)Sjt−1

∥∥∥2

F
,

where Sjt−1 := St−1 − {jout}+ {j}. Then let j in := arg maxj∈SCt−1
∆in
j .

Update Rule: If ∆out
jout ≥ ∆in

jin the algorithm stops. Otherwise we perform the exchange

with the candidates above, namely set St = St−1 − {jout} + {j in}. In addition, we set

V t
St

to be the minimizer of min{f(St,M) : M>M = Ir}; for that we compute the

eigendecomposition ASt,St = UStΛStU
>
St

of ASt,St and set V t
St

= (USt)?,[r] to be the

eigenvectors corresponding to top r eigenvalues. The complete pseudocode is presented in

Algorithm 3.

Algorithm 3 Modified greedy neighborhood search
Input: Covariance matrixA, sparsity parameter k, number of maximum iterations T Out-
put: A feasible solution V for rsPCA.

1: Initialize with S0 ⊆ [d].
2: Compute eigendecomposition of AS0: AS0,S0 = US0ΛS0U

>
St

, VS0 = (US0)?,[r]
3: for t = 1, . . . , T do
4: Compute the leaving candidate jout := arg minj∈St−1

∆out
j

5: Compute the entering candidate j in := arg maxj∈SCt−1
∆in
j

6: if ∆in
jin > ∆out

jout then
7: Set St := St−1 − {jout}+ {j in}
8: Compute the eigenvalue decomposition (A1/2)St = UStΛStU

>
St

9: Set V t
St

= (USt)?,[r]
10: else
11: Return the matrix V where in rows St−1 equals V t−1

St−1
(i.e., VSt−1 = V t−1

St−1
)

and in rows SCt−1 equals zero
12: end if
13: end for

We observe that even though our procedure works only with a proxy of the original

function f of the natural greedy heuristic, it still finds support sets S that monotonically

decrease this objective function.
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Theorem 7. Algorithm 3 is a monotonically decreasing algorithm with respect to the ob-

jective function f , namely f(St) < f(St−1) for every iteration t.

Proof. By optimality of V t
St

we can see that f(St) = f(St,V
t
St

) for all t. Thus, letting

Gt := Ik − V t
St

(V t
St

)> to simplify the notation, we have

f(St−1) = f(St−1,V
t−1
St−1

) =
∥∥Gt (A1/2)St−1

∥∥2

F
+
∑
j∈SCt−1

∥∥(A1/2)j
∥∥2

2

=
∥∥∥GtA

1/2
St

∥∥∥2

F
+
∑
j∈SCt

∥∥∥A1/2
j

∥∥∥2

2
+ ∆in

jin −∆out
jout︸ ︷︷ ︸

>0

>
∥∥∥GtA

1/2
St

∥∥∥2

F
+
∑
j∈SCt

∥∥∥A1/2
j

∥∥∥2

2

= f(St,V
t
St) = f(St).

2.5 Numerical experiments

In this section we conduct computational experiments on fairly large instances to illustrate

the efficiency of our proposed methods and to asses their qualities both in terms of finding

good primal solutions and proving good dual bounds. We also compare our dual bound

against that obtained from an SDP relaxation and from another baseline.

2.5.1 Methods for comparison

Methods for dual bounds

In order to generate dual bounds we implemented a version of our convex integer pro-

gramming formulation (CIP), adding several enhancements like reduction of the number of

SOS-II constraints and cutting planes in order to improve its efficiency (see [1] for related

ideas for the case of r = 1). This implemented version is called CIP-impl, and is described

in detail in Appendix B.2. For all experiments we use N = 40 as the level of discretization
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for the objective function in CIP-impl. (For large instances we additionally use a dimension

reduction technique, which we discuss later.)

We compare our proposed dual bound with the following two baselines:

• Baseline 1: Sum of diagonal entries of sub-matrix:

Baseline1 :=Aj1,j1 + · · ·+Ajk,jk , whereAj1,j1 ≥ Aj2,j3 ≥ · · ·Ajd,jd .

Note the sum of Aj1,j1 , . . . ,Ajk,jk is equal to sum of eigenvalues of sub-matrix in-

dexed by {j1, . . . , jk} inA, then Baseline-1 can be viewed as an upper bound for the

optimal value of rsPCA. Moreover, Baseline-1 is tight when we have r = k.

• Baseline 2: The semi-definite programming relaxation:

SDP := max
P

Tr (AP ) , s.t. Id � P � 0, Tr(P ) = r, 1>|P |1 ≤ rk.

Note that this is an SDP relaxation of rsPCA obtained by lifting the variables V into

the product space P = V V >.

Parameter for primal algorithm (lower bounds)

To obtain good feasible solutions we implemented the modified greedy neighborhood search

(Algorithm 3) proposed in Section 2.4. For each instance we run this algorithm 400 times,

where each time we pick the initial support set S0 as a uniformly random subset of [d] of

size k. We allow a maximum of d iterations. The objective function value corresponding

to the best solution from the 400 runs is declared as the lower bound.

2.5.2 Instances for numerical experiments

We conducted numerical experiments on two types of instances.
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Artificial instances

These instances were generated artificially using ideas similar to that of the spiked covari-

ance matrix [57] that have been used often to test algorithms in the r = 1 case. An instance

Artificial-kA is generated as follows.

We first choose a sparsity parameter kA ≤ d
2

(which will be in the range [30]) and the

orthonormal vectors u1 and u2 of dimension kA given by

u>1 =

(
1√
kA
, . . . ,

1√
kA

)
, u>2 =

(
1√
kA
,− 1√

kA
, . . . ,

1√
kA
,− 1√

kA
,

)
.

The block spiked covariance matrix Σ ∈ Rd×d is then computed as

Σ := Σ1 ⊕Σ2 ⊕ Id−2kA
,

where Σ1 := 55u1u
>
1 +52u2u

>
2 ∈ RkA×kA

,Σ2 := 50IkA ∈ RkA×kA
. Finally, we sampleM

i.i.d. random vectorsx1, . . . ,xM ∼ N(0d,Σ) from the normal distribution with covariance

matrix Σ and create the instanceA as the sample covariance matrix of these vectors:

A :=
1

M

(
x1x

>
1 + · · ·+ xMx>M

)
.

In our experiments we use d = 500 (thus generating 500×500 matrices) andM = 3000

samples. Our experiments will focus on the cases r = 2 and r = 3 and we note that in

these instances the optimal support set with cardinality kA is different for both choices of

r.

Real instances

The second type of instances are four real instances using the colon cancer dataset (Cov-

Colon) from [76], the lymphoma dataset (Lymph) from [77], and Reddit instances Red-

dit1500 and Reddit2000 from [1]. Table 2.1 presents the size of each instance.
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Table 2.1: Real instances

name CovColon Lymph Reddit1500 Reddit2000

size 500× 500 500× 500 1500× 1500 2000× 2000

2.5.3 Software & hardware

Software & Hardware: All numerical experiments are implemented on MacBookPro13

with 2GHz Intel Core i5 CPU and 8GB 1867MHz LPDDR3 Memory. The (CIP-impl)

model was solved using Gurobi 7.0.2. The Baseline-2 model was solved using Mosek.

2.5.4 Performance measure

We measure the performances of CIP-impl and the baselines based on the primal-dual gap,

defined as

gap :=
ub− lb

lb
.

Here ub ∈ {ubimpl (ubsub-mat in Section 2.5.6),Baseline-1,Baseline-2} denotes the dual

bound obtained from CIP-impl or baselines. The term lb denotes the primal bound from

the primal heuristic.

2.5.5 Numerical results for smaller instances

First we perform experiments on smaller instances of size 100 × 100. These instances

were constructed by picking the submatrix corresponding to the top 100 largest diagonal

entries from each instance listed in Section 2.5.2. We append a “prime” in the name of the

instances to denote these smaller instances, e.g., Artificial-kA’ and CovColon’.

Time limits. We set the time limit for CIP-impl to 60 seconds and imposed no time limit

on SDP. (We note that on these smaller instances SDP terminated within 600 seconds.) We
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also did not impose a time limit on the primal heuristic, and just note that it took less than

120 seconds on all smaller instances.

The gaps obtained by the dual bounds using CIP-impl, Baseline1, and SDP on these

instances are presented in Tables 2.2 and 2.3.

Table 2.2: Gap values for smaller artificial instances with size 100× 100

name \ param: (r, k) (2, 10) (2, 20) (2, 30) (3, 10) (3, 20) (3, 30)

Artificial-10’ CIP-impl 0.031 0.0004 0.0003 0.04 0.0005 0.0004
100× 100 Baseline1 3.523 4.309 4.403 2.108 2.625 2.689

SDP 0.032 0.0004 0.0003 0.043 0.0005 0.0003
Artificial-20’ CIP-impl 0.027 0.011 0.007 0.026 0.011 0.006

100× 100 Baseline1 3.58 7.838 8.251 2.094 4.942 5.216
SDP 0.02 0.014 0.008 0.027 0.014 0.006

Artificial-30’ CIP-impl 0.071 0.022 0.015 0.074 0.023 0.012
100× 100 Baseline1 3.503 7.614 11.68 2.066 4.814 7.508

SDP 0.03 0.021 0.02 0.051 0.026 0.014

Table 2.3: Gap values for smaller real instances with size 100× 100

name \ param: (r, k) (2, 10) (2, 20) (2, 30) (3, 10) (3, 20) (3, 30)

CovColon’ CIP-impl 0.12 0.119 0.094 0.127 0.124 0.104
100× 100 Baseline1 0.063 0.117 0.132 0.052 0.086 0.098

SDP 0.674 0.688 0.663 1.244 1.186 1.052
Lymp’ CIP-impl 0.329 0.272 0.269 0.225 0.296 0.32

100× 100 Baseline1 0.095 0.277 0.392 0.049 0.178 0.297
SDP 0.529 0.449 0.362 0.943 0.695 0.567

Reddit1500’ CIP-impl 0.155 0.139 0.126 0.129 0.109 0.025
100× 100 Baseline1 0.695 0.396 0.99 1.197 0.811 1.294

SDP 0.265 0.294 0.242 0.175 0.146 0.033
Reddit2000’ CIP-impl 0.029 0.014 0.011 0.092 0.054 0.011
100× 100 Baseline1 0.876 1.426 1.794 0.638 1.075 1.333

SDP 0.106 0.062 0.036 0.160 0.084 0.034

Observations:

• In Table 2.2 we see that for the relatively easy artificial instances both CIP-impl and

SDP find quite tight upper bounds.
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• In Table 2.3 we see that for real instances SDP is substantially dominated by both

CIP-impl and Baseline1.

Overall, on the 42 instances, the dual bounds from CIP-impl are best for 28 instances, the

dual bounds from Baseline-1 are best for 9 instances, and the dual bounds from SDP are

best for 9 instances. Since the computation of Baseline-1 scales trivially in comparison to

solving the SDP, and since SDP seems to produce dual bounds of poorer quality for the

more difficult real instances — in the next section we discarded SDP from the comparison.

2.5.6 Larger instances

Sub-matrix technique for largeer instances

In order to scale the convex integer program CIP-impl to handle the larger matrices, that

are now up to 2000× 2000, we employ the following “sub-matrix technique” to reduce the

dimension.

Given a sub-matrix ratio parameter ρsub ≥ 1 satisfying dρsubke ≤ d, let S := {j1, . . . , jdρsubke},

where Aj1,j1 ≥ · · · ≥ Ajdρsubke,jdρsubke
, be the index set of the top-dρsubke largest diagonal

entries ofA. Consider the blocked representation of the sample covariance matrixA:

A =

AS,S AS,SC

A>S,SC ASC ,SC

 ,

where SC := [d] \ S. Then the optimal value optF satisfies

optF = max
V ∈F

Tr(V >AV )

= max
V ∈F

Tr
(
(VS)>AS,SVS

)
+ 2 Tr

(
(VS)>AS,SCVSC

)
+ Tr

(
(VSC )>ASC ,SCVSC

)
. (submatrix-tech)

The first and third term have straight forward upper bounds. Now we need to consider the
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problem of finding an upper bound on Tr
(
(VS)>AS,SCVSC

)
.

Let S∗ be the global optimal row-support set of rsPCA. Then

Tr
(
(VS)>AS,SCVSC

)
= Tr

((VS∩S∗)
> (VS\S∗)

>

)AS∩S∗,SC∩S∗ AS∩S∗,SC\S∗

AS\S∗,SC∩S∗ AS\S∗,SC\S∗


VSC∩S∗
VSC\S∗




= Tr
(
(VS∩S∗)

>AS∩S∗,SC∩S∗VSC∩S∗
)
.

Since V >V = Ir, then we have V >S∩S∗VS∩S∗ + V >SC∩S∗VSC∩S∗ = Ir. Thus it is sufficient

to consider the following optimization problem:

2 max
V 1,V 2

Tr
(
(V 1)>AS∩S∗,SC∩S∗V

2
)

s.t. (V 1)>V 1 + (V 2)>V 2 = Ir,

We show in Proposition B.2.2, proved in the appendix, that the above term is upper bounded

by
√
r · ‖A(S∩S∗),(SC∩S∗)‖F .

Therefore, letting k̃ := |S ∩ S∗| be the cardinality of the intersection, we can upper

bound the right-hand side of (submatrix-tech) as

optF ≤ ubCIP(AS,S; k̃) +
√
r · ‖AS∩S∗,SC∩S∗‖F + Baseline-1(ASC ,SC ; k − k̃),

where the first term ubCIP(AS,S; k̃) is the optimal value obtained from CIP-impl with co-

variance matrix AS,S and sparsity parameter k̃ (if k̃ < r, then reset k̃ = r), and the the

third term is the value of Baseline-1 obtained fromASC ,SC with sparsity parameter k − k̃.

Since S∗ is unknown, then the second term can be further upper bounded by

‖AS∩S∗,S∗\S‖F ≤
√∥∥∥Ak−k̃

{j1},SC

∥∥∥2

2
+ · · ·+

∥∥∥Ak−k̃
{jk̃},SC

∥∥∥2

2
=: ub(S; k̃;SC ; k − k̃),
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where

‖Al
{j},SC‖

2
2 := A2

j,i1
+ · · ·+A2

j,il
with |Aj,i1| ≥ · · · ≥ |Aj,il | ≥ . . . for all i ∈ SC ,

and j1, . . . , jk̃ are indices satisfying:
∥∥∥Ak−k̃

j1,SC

∥∥∥2

2
≥ · · · ≥

∥∥∥Ak−k̃
jk̃,S

C

∥∥∥2

2
≥ · · · .

Since k̃ is also not known, we arrive at our final upper bound ubsub-mat by considering

all of its possibilities:

optF ≤ k
max
k̃=0

{
ubCIP(AS,S; k̃) +

√
r · ub(S; k̃;SC ; k − k̃) + Baseline-1(ASC ,SC ; k − k̃)

}
︸ ︷︷ ︸

=:ubsub-mat

.

Times for larger instances

We set a more stringent time limit of 20 seconds for each CIP-impl used within the sub-

matrix technique, since a number of these computations are required to compute ubsub-mat.

Again we did not set a time limit for the primal heuristic, an just note its running times as

a function of the matrix size on Table 2.4.

size 500× 500 1500× 1500 2000× 2000

running time ≤ 20 min ≤ 100 min ≤ 120 min

Table 2.4: Running time for primal heuristic

Results on larger instances

We compare the gap obtained by the upper bound ubsub-mat (CIP-impl plus sub-matrix tech-

nique) and compare it against that obtained by Baseline1 on the artificial and real instances

with original sizes. These are reported on Tables 2.5 and 2.6.

On the spiked covariance matrix artificial instances we see that our dual bound ubsub-mat

is typically orders of magnitude better than Baseline1, and is at most 0.35 for all instances.

These results also illustrate that the sub-matrix ratio parameter can have a big impact on
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the bound obtained by the sub-matrix technique.

On the real instances, we see from Table 2.6 that on instances CovColon and Lymph

our dual bound ubsub-mat performs slightly better than Baseline1, and the gaps are overall

less than 0.45 (except instance Lymph with parameters (2, 50)). However, on instances

Reddit1500 and Reddit2000 our dual bound ubsub-mat vastly outperforms Baseline1 on all

settings of parameters. We remark that these are the largest instances in the experiments,

which attest the scalability of our proposed bound.

Table 2.5: Gap values for artificial instances.

name \ param: (r, k) (2, 10) (2, 20) (2, 30) (3, 10) (3, 20) (3, 30)

Artificial-10 ρsub = 1.5 0.527 0.151 0.25 0.366 0.1 0.169
500× 500 ρsub = 2 0.079 0.15 0.249 0.064 0.1 0.169

ρsub = 2.5 0.079 0.15 0.248 0.064 0.099 0.168
ρsub = 5 0.071 0.145 0.241 0.056 0.099 0.293
ρsub = 10 0.026 0.002 0.002 0.03 0.003 0.003
Baseline1 3.522 4.309 4.403 2.101 2.625 2.688

Artificial-20 ρsub = 1.5 2.397 0.566 0.268 1.629 0.384 0.186
500× 500 ρsub = 2 0.455 0.179 0.266 0.317 0.127 0.185

ρsub = 2.5 0.606 0.178 0.265 0.463 0.126 0.184
ρsub = 5 0.097 0.176 0.261 0.078 0.124 0.346
ρsub = 10 0.073 0.014 0.009 0.139 0.013 0.008
Baseline1 3.58 7.838 8.251 2.097 4.942 5.216

Artificial-30 ρsub = 1.5 3.515 0.595 0.65 2.071 0.406 0.425
500× 500 ρsub = 2 3.509 0.721 0.314 2.068 0.512 0.211

ρsub = 2.5 2.304 0.709 0.312 1.586 0.511 0.209
ρsub = 5 0.474 0.225 0.305 0.365 0.158 0.468
ρsub = 10 0.231 0.026 0.017 0.349 0.154 0.014
Baseline1 3.519 7.626 11.68 2.074 4.82 7.508

2.6 Conclusion

In this paper, we proposed a scheme for producing good primal feasible solutions and dual

bounds for rsPCA problem. The primal feasible solution is obtained from a monotonically

improving heuristic for rsPCA problem. We showed that the solution produced by this al-
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Table 2.6: Gap values for real instances.

name \ para: (r, k) (2, 10) (2, 20) (2, 30) (3, 10) (3, 20) (3, 30)

CovColon ρsub = 1.5 0.054 0.112 0.128 0.05 0.08 0.092
500× 500 ρsub = 2 0.051 0.107 0.126 0.062 0.076 0.09

ρsub = 2.5 0.05 0.104 0.124 0.066 0.089 0.088
ρsub = 5 0.094 0.113 0.143 0.11 0.122 2.349
ρsub = 10 1.787 1.709 1.645 3.321 3.124 3.015
Baseline1 0.063 0.118 0.133 0.049 0.086 0.097

Lymph ρsub = 1.5 0.09 0.27 0.41 0.064 0.174 0.315
500× 500 ρsub = 2 0.078 0.267 0.406 0.103 0.171 0.312

ρsub = 2.5 0.104 0.264 0.403 0.155 0.194 0.309
ρsub = 5 0.236 0.268 0.388 0.2 0.296 2.698
ρsub = 10 2.105 1.738 1.548 4.489 3.894 3.447
Baseline1 0.095 0.277 0.413 0.049 0.18 0.319

Reddit1500 ρsub = 1.5 0.687 0.95 0.8 0.39 0.625 0.677
1500× 1500 ρsub = 2 0.683 0.94 0.749 0.387 0.617 0.632

ρsub = 2.5 0.672 0.937 0.727 0.377 0.614 0.611
ρsub = 5 0.426 0.47 1.068 0.346 0.393 1.307
ρsub = 10 0.384 0.927 1.075 0.316 1.222 1.343
Baseline1 0.695 0.962 1.199 0.396 0.635 0.848

Reddit2000 ρsub = 1.5 0.845 1.408 0.76 0.556 1.026 0.667
2000× 2000 ρsub = 2 0.837 1.4 0.664 0.549 1.019 0.585

ρsub = 2.5 0.827 1.396 0.601 0.541 1.016 0.538
ρsub = 5 0.456 0.436 1.52 0.395 0.381 1.311
ρsub = 10 0.298 0.866 2.234 0.266 1.289 1.41
Baseline1 0.876 1.426 1.775 0.582 1.041 1.326

gorithm are of very high quality by comparing the objective value of the solutions generated

to upper bounds. These upper bounds are obtained using second order cone IP relaxation

designed in this paper. We also presented theoretical guarantees (affine guarantee) on the

quality of the upper bounds produced by the second order cone IP. The running-time for

both the primal algorithm and the dual bounding heuristic are very reasonable (less than 2

hours for the 500 × 500 instances and less than 3.5 hours for the 2000 × 2000 instance).

These problems are quite challenging and on some instances, we still need more techniques

to close the gap. However, to the best of our knowledge, there is no comparable theoretical

or computational results for solving model-free rsPCA.
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CHAPTER 3

APPROXIMATION ALGORITHMS FOR TRAINING ONE-NODE RELU

NEURAL NETWORKS

This chapter is based on a joint work with Santanu S. Dey, Guanyi Wang, and Yao Xie,

[78].

3.1 Introduction

Training neural networks with the ReLU activation function is a very important problem

in machine learning. One common practice is to minimize the `2-norm empirical risk

loss. Among all possible neural networks, the simplest version is the one-node (single

neuron) neural network with the ReLU activation function. Thus, as a first step towards

understanding the theoretical properties of this fundamental problem, we study the training

of the basic neural network: a single node with the rectified linear unit function (ReLU)

as its activation function (see Figure 3.1). Formally, we consider the following problem.

Given a set of n training samples {(Xi, Yi)}ni=1 ∈ Rd × R, where Xi denotes the ith input

sample, and Yi denotes the ith output sample, the task is to minimize the empirical risk

function defined as follows:

min
(β,β0)∈Rd×R

1

n

n∑
i=1

(
max{X>i β + β0, 0} − Yi

)2
, (ReLU-regression)

to be concise, let

X :=


− X>1 −

...

− X>n −

 ∈ Rn×d, Y :=


Y1

...

Yn

 ∈ Rn,
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the above optimization problem ReLU-regression can be represented as

min
(β,β0)∈Rd×R

1

n
‖max{Xβ + β01,0} − Y ‖2

2.

[Xi]1 [Xi]2 [Xi]d

Figure 3.1: Single node neural network with ReLU activate function.

The neural network training problem, ReLU-regression, can be viewed as performing

nonlinear regression, which is the perspective shared by seminal works [79, 80, 81]. A

series of existing literatures [80, 82, 83, 84, 85] also study this problem from other per-

spectives. However, it remains an intriguing question regarding what is the algorithmic

complexity of training neural networks from data, and if it is NP-hard (which we prove in

this paper), whether one can find a good polynomial-time approximate algorithm with good

approximation ratio? Whether we can improve the widely used heuristic algorithms using

insights gained from developing polynomial time complexity algorithms? Partial answers

to the above questions have been provided in this regard in the literature (which we will

discuss and contrast as we develop our theoretical results). However, complete answers are

yet to be revealed. One caveat we would like to remind readers is that the phrase complexity

of training a neural network has been used in various contexts, for instance:

• In [86], the goal is to achieve a reliable (agnostic) learning of the ReLU neural net-

work, i.e., finding a feasible solution that satisfies the constraints on false-positive
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rates and the so-called expected loss.

• In [87], two metrics are considered: the sampling complexity, the number of samples

needed to learn a particular class of function; and the statistical query complexity, the

number of queries that any statistical algorithm needs to achieve an error tolerance,

which is inversely proportional to the input dimensionality.

Note that all the above metrics are different from algorithmic or computational complexity.

In this paper, we aim to answer the fundamental question of computational complexity

for training neural networks. Here, the term computational complexity means the amount

of computational effort needed to solve the related optimization problem ReLU-regression,

and therefore developing efficient algorithms (in the sense of computational complexity)

with worse-case guarantees. We show that training a one-node ReLU network by solv-

ing ReLU-regression is NP-hard. Besides showing the NP-hardness, we also present a

polynomial-time approximation algorithm with a performance guarantee to solve the prob-

lem. Key features of our results are:

1. We present a polynomial-time approximation algorithm to solve ReLU-regression

via its convex approximations. This is in contrast to most existing results [88, 89, 90,

91, 92, 93, 94, 95, 85, 96, 84, 97, 98, 83, 81], which study the gradient descent (GD),

stochastic gradient descent (SGD) or their variants, and show those algorithms can

find locally or globally optimal solutions under some ground truth statistical model.

2. Our algorithm comes with performance guarantees for arbitrary data. Most results

in the literature provide additive guarantees, in comparison to the multiplicative ap-

proximation guarantee that we can show for our algorithm.

3. Under reasonable statistical models for data, we show that the approximation ratio

of our algorithm can be improved dramatically to a constant factor by removing the

scaling dependence on the sample size and the dimension (i.e., independent of sample

size and the dimension).
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4. Our approximate algorithm does not require special initialization, (for example, the

tensor initialization in [99] and the randomized initialization in [100]); we also do

not need special initialization when proving the theoretical results.

5. We present extensive numerical comparisons with existing results. Our results show

that our algorithm can also be utilized as a good initialization for GD/SGD based

methods and achieve a significant performance gain than just using GD/SGD with

random initialization.

An interesting ingredient of our proof is that we find solving ReLU-regression can be

viewed as a variant of the classic best subset selection problem in statistics [101, 102,

103]. We refer to it as active subset selection, which also motivates us to develop the

approximation algorithm.

The rest of the paper is organized as follows. Section 3.2 presents our theoretical re-

sults and highlights comparison with related results in the literature. Section 3.3 presents

numerical results. Section 3.4 concludes the paper with discussions. Section C contains all

proofs.

3.2 Theoretical Results

Training a one-node neural network as defined in ReLU-regression is a non-convex opti-

mization problem, which is expected to be challenging to solve. However, not all non-

convex problems are “difficult” (i.e., NP-hard): for example, the classical principal com-

ponent analysis problem is non-convex but can be solved in polynomial-time.

Here, we analyze the optimization problem ReLU-regression in two scenarios:

1. Arbitrary data (model-free). In this case, we do not make any assumption about

training sample. We would like to find optimal values of β, β0 for the minimization

problem ReLU-regression. We want to answer the following questions: Is this prob-

lem NP-hard? Are there good approximation algorithms and how well they perform
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in the worst scenarios?

2. Assuming an underlying statistical model for data. In this case, we assume that

the training sample is of the form: (1) Xi’s are i.i.d. sampled from a “reasonable”

distribution, (2) Yi = max{0,X>i β∗ + β∗0} + ε, where ε is a Gaussian noise and

(β∗, β∗0) being the true parameters. We show that the same approximation algorithm

described above for arbitrary data also works well in this case.

3.2.1 Training ReLU-regression With Arbitrary Data

Given an arbitrary fixed sample set {(Xi, Yi)}ni=1, we study ReLU-regression in terms of

the computational complexity.

Our first result formalizes the fact that we expect solving ReLU-regression to be chal-

lenging.

Theorem 8 (NP-hardness). The ReLU-regression problem is NP-hard.

Insight for Theorem 8. The NP-hardness result is shown by proving that the subset sum

problem can be polynomially reduced to the ReLU-regression problem. The main tech-

nique is constructing two types of quadratic auxiliary function whose global minima can

be used to obtain a feasible solution for any given subset sum problem or to show that a

given subset sum problem is infeasible. See Appendix C.2 for a proof.

Comparison with related results in the literature. We study training ReLU neural networks

from the perspective of NP-hardness when the input data are fixed and given, whereas

• [104] studies a problem of training two-layer (d+1) nodes neural network with ReLU

as the activation and shows that the training problem is NP-hard. Here, we show that

an even more simplified structure, namely, a neural network with one node, is NP-

hard.
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• There are some recent works have also studied the theoretical aspects of learning

ReLUs with simple structure [82, 86, 104]. Moreover, [84] independently gives

another NP-hardness reductions. 1

Based on NP-hardness result in Theorem 8, it is natural to seek an efficient approxi-

mation algorithm with multiplicative performance bound. We first introduce some basic

notions that explain the design of the algorithm. Note that in ReLU-regression, we do not

assume Yi ≥ 0 holds for every i ∈ [n]. Under this formulation, if there exists i such that

Yi < 0, then the optimal objective function cannot be 0. Without loss of generality, we

assume that the index set with respect to all positive output samples has indices from 1 to

m, i.e., I+ := {i ∈ [n] : Yi > 0} = {1, . . . ,m} (= [m]), and the index set with respect to

all non-positive output samples is I− := {i ∈ [n] : Yi ≤ 0} = {m + 1, . . . , n}. We can

represent the ReLU-regression problem by writing the summation as two parts:

min
(β,β0)∈Rd×R

‖max{0,Xβ + β01} − Y ‖2
2

= min
(β,β0)∈Rd×R

∑
i∈{1,...,m}

(max{0,X>i β + β0} − Yi)2 + φ(β, β0)
(3.1)

where φ(β, β0) :=
∑

i∈{m+1,...,n}(max{0,X>i β + β0} − Yi)2 is the loss contributed from

samples with non-positive responses. We can readily verify that:

Proposition 3.2.1. The second term of (3.1), φ(β, β0), is convex.

The first term of (3.1) can be further represented as a two-phase optimization problem

as follows:

min
(β,β0)∈Rp×R

‖max{0,Xβ + β01} − Y ‖2
2

=

(
min
I⊆[m]

(
min

(β,β0)∈P (I)
fI(β, β0)

))
+ φ(β, β0).

1Note that [84] proposed a different approach for the hardness reduction. Moreover, the publication date
of [84] on arXiv is later than the time that we submitted the arXiv version of our paper. We cite paper [84]
for completeness.
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Note that for any given subset I ⊆ [m], i.e., I+, we use P (I) to denote the feasible region

of β, and use fI(β, β0) to denote the objective function corresponding to P (I) as follows

P (I) :=

(β, β0) :
X>i β + β0 > 0, i ∈ I

X>i β + β0 ≤ 0, i ∈ [m]\I

 ,

fI(β, β0) :=
∑
i∈I

(X>i β + β0 − Yi)2 +
∑

i∈[m]\I

Y 2
i .

Henceforth, let I ⊆ [m] be the active set where for each i ∈ I , we have the corresponding

sample (Xi, β0) satisfies X>i β + β0 > 0, and define the index set IC = [m]\I be the

inactive set. The original ReLU-regression problem can be interpreted as a two-phase

optimization problem. For any given I ⊆ [m], the inner-phase optimization problem

z∗(I) := min
(β,β0)∈P (I)

fI(β, β0) + φ(β, β0),

is convex over (β, β0). We will show that only a polynomial (rather than exponentially)

number of distinct I’s need to be examined, which is a basis of our approximation algo-

rithm.

To obtain the approximation guarantees, we first consider an “unconstrained version”

of the optimization problem corresponding to z∗(I), for the ease of presentation. Define

σ : R× R+ 7→ R:

σ(x, y) =

 (x− y)2 if x > 2y

y2 if x ≤ 2y,

where

σ(X>i β + β0, Yi)

 = (max{0,X>i β + β0} − Yi)2 ifX>i β + β0 ≤ 0 orX>i β + β0 ≥ 2Yi,

> (max{0,X>i β + β0} − Yi)2 otherwise.
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σ is convex, as illustrated in Figure 3.2. Let

fσI (β, β0) :=
∑
i∈I

(X>i β + β0 − Yi)2 +
∑

i∈[m]\I

σ(X>i β + β0, Yi)

be a convex upper approximation of fI(β, β0). Thus,

zσ(I) := min
(β,β0)∈Rd×R

fσI (β, β0) + φ(β, β0)

is a convex upper approximation of z∗(I). Let zopt and (βopt, βopt
0 ) be the globally optimal

value.

zopt := min
(β,β0)

‖max{0,Xβ + β01} − Y ‖2
2,

(βopt, βopt
0 ) := arg min

(β,β0)

‖max{0,Xβ + β01} − Y ‖2
2.

We have that

Iopt :=
{
i ∈ [m] : X>i β

opt + βopt
0 > 0

}
,

[m]\Iopt :=
{
i ∈ [m] : X>i β

opt + βopt
0 ≤ 0

}
,

are the corresponding active, inactive set of (βopt, βopt
0 ), respectively. Hence zσ(I) satisfies:

Proposition 3.2.2. For any I ⊆ [m], zopt ≤ zσ(I). Moreover, there exists an I ⊆ [m] such

that zopt = zσ(I).

Proof of Proposition 3.2.2 can be found in Appendix C.3. Thus, we can use the upper

bound zσ(I) instead of z∗(I) to design the algorithm, which we present below.

Insight for Algorithm 4. Recall the definition of the active set, the challenge part for solving

ReLU-regression is to determine the optimal active set Iopt, i.e., the set of indices i ∈ Iopt,
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Figure 3.2: Function σ(x, y) with y = 1.

X>i β
opt+βopt

0 > 0. Since the objective is to minimize the `2 square loss, then given any fea-

sible solution (β, β0), by definition, the ith row will contribute
(
max{0,X>i β + β0} − Yi

)2

to the objective value. Suppose that the given (β, β0) satisfies X>i β + β0 ≤ 0. Then, for

some i ∈ [m] such that 0� Yi, the ith row contributes a large value to objective. Therefore,

we observe that the greater the Yi, the more likely that the index i belongs to the active set.

However, there are usually some “bad indices” with large Yi but are not in the active set.

Thus, in Step 6 and 7 of Algorithm 4, we set a parameter k ∈ N+, and enumerate all these

possible “bad indices” with cardinality less than or equal to k. More specifically, the first

“bad index” i1 plays a role as a threshold that removes the samples {(X`, Y`)}i1`=1, i.e.,

the samples with small Yi; and the rest i2, . . . , ij picks out the “bad indices” with large Yi

but not in the active set. That is to say, we select an active set I , and “believe” that each

sample {(Xi, Yi)}i∈I in the active set are exactly on the non-zero part of ReLU function,

see Figure 3.3. Thus an inactive set with cardinality i1 + (k − 1) is removed from the

sample set. This is a key intuition that leads to our approximate algorithm, Algorithm 4,

which essentially explores a polynomial number of such active subsets with the property

that larger the value of Yi, the more likely the corresponding index i belongs to the set.

Clearly, for each j = 1, . . . , k, there are
(
m
j

)
distinct subsets {i1, . . . , ij} in {1, . . . ,m}.

For each picked j indices i1, . . . , ij , Algorithm 4 requires to solve a convex optimization
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Figure 3.3: Intuition of active set selection.
Algorithm 4 Generalized Approximation Algorithm
Input: A set of n samples {(Xi, Yi)}ni=1, a positive-label index set I+ = {1, . . . ,m} such
that 0 < Y1 ≤ Y2 ≤ · · · ≤ Ym, a negative-label index set I− = {m + 1, . . . , n}, a fixed
integer k ≥ 1.
Output: A feasible (n/k)-approximate solution (β, β0) for the ReLU-regression problem.

1: for j = 1, . . . , k do
2: Pick j distinct indices i1, . . . , ij such that 0 ≤ i1 < . . . < ij ≤ m.
3: Set the inactive set based on i1, . . . , ij with cardinality i1 + (j − 1) as follows:{

{1, . . . , i1} ∪
(⋃j

`=2{i`}
)

for j ≥ 2,

{1, . . . , i1} for j = 1.

4: Set the active set I to be the complement of the inactive set as:

I :=

(
j−1⋃
`=1

{i` + 1, . . . , i`+1 − 1}

)
∪ {ij + 1, . . . ,m} ⊆ I+.

5: For each active set, solve the following convex optimization problem:

(βI , βI0)← arg min
(β,β0)

fσI (β, β0) + φ(β, β0),

zσ(I)← min
(β,β0)

fσI (β, β0) + φ(β, β0).

6: Repeat for all possible choices of i1, . . . , ik.
7: end for
8: return (β̂, β̂0) which corresponds to the minimum zσ(I) among all the I’s examined.

problem, thus the total running time of Algorithm 4 is

(
k∑
i=1

(
n

i

))
T = O

(
nkT

)
,
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where T is the running time of solving a convex optimization problem

(βI , βI0)← arg min
(β,β0)

fσI (β, β0) + φ(β, β0).

Thus, Algorithm 4 is a polynomial-time algorithm.

Theorem 9 (Approximation Ratio). Algorithm 4 is an (n/k)-Approximation Algorithm,

i.e., if zapprox is the objective value of the (β̂, β̂0) returned from Algorithm 4, and zOPT is

the globally optimal value of ReLU-regression, then:

zOPT ≤ zapprox ≤ n

k
zOPT.

Insight for Theorem 9. The proof idea of proving this theorem is to show that, even in the

worst-case, the top-k “bad indices” will be partitioned into the correct set, which helps to

guarantee the multiplicative approximation ratio. See Appendix D for details.

Comparison with results in the literature:

• Theorem 4.1 in [82] showed that there exists an algorithm to solve the 2-layer ReLU

DNNs in time O(2wnpwpoly(n, d, w)) with number of samples n, dimension of input

d, maximum width of ReLU network w. We want to point out that the running time

grows exponentially in the dimension of input data Xi. In contrast, our algorithm

guarantees to find out an approximate solution within polynomial time. The numer-

ical results reported in later sections demonstrate the efficiency and the scalability

for high dimensional instances. Although Algorithm 1 in [82] is designed to find

global optimality, the computational complexity O(2wndwpoly(n, d, w)) makes their

algorithm intractable for high dimensional instances.

• In [84], Manurangsi and Reichman show that minimizing the squared training error

of a one-node neural network is NP-hard to approximate within the factor (nd)1/(log log(nd))O(1)

(in fact, m samples {(Xi, Yi)}mi=1 in [84]’s setting is equivalent to nm samples in our
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setting based their polynomial-time reduction). There is a significant gap between the

upper bound from Algorithm 4 and this lower bound. The reason why there exists a

significant gap is still an open question. Either there exist some other reductions with

greater approximation ratio, or there exists a better polynomial algorithm to solve the

ReLU regression problem with a smaller approximation ratio, or both are possible.

An important consequence of Theorem 9 is the following. Below, we say that the

ReLU-regression problem is realizable, when there exists a true solution (β∗, β∗0) with

zero objective value.

Corollary 3.2.1 (Realizable case). When the ReLU-regression problem is realizable, The-

orem 9 implies that Algorithm 4 gives a polynomial-time approach that solves the ReLU-

regression problem exactly.

Comparison with results in the literature.

• Kakade et al. [94] proposed the GLM-tron and L-Isotron algorithm to optimize the

generalized linear and single index models with isotonic regression. Kakade et al.

showed that: the fixed design error (prediction error) obtained from GLM-tron al-

gorithm and L-Isotron is upper bounded by O(
√

log(n/δ)/n), O([log(n/δ)/n]1/3),

respectively with constant δ ∈ (0, 1) and n the number of samples. In contrast to

the thesis, Kakade et al. first assumed the underlying statistical model for input sam-

ples, and second required the boundedness of its “activation function” (i.e., u in [94])

within [0, 1].

• In [84], the authors observed that the realizable case can be solved using LP. This

observation could also be viewed in Corollary 3.2.1. Since it is sufficient to consider

the set of samples with positive-response Yi > 0, when the number of positive-

response samples is greater than dimension d, the exact solution β∗ can be obtained

by solving the convex problem minβ
∑

i∈{i:Yi>0}(X
>
i β − Yi)2.
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• Soltanolkotabi in [83] and Kalan et al. in [85] studied the problem of learning one

node ReLU neural network with i.i.d. random Gaussian distribution observation sam-

ples via gradient descent (GD) method and stochastic gradient descent (SGD) method

in the realizable case. Soltanolkotabi showed that the gradient descent, when starting

from the origin, converges at a linear rate to the true solution (with additive error)

when the number of samples is sufficiently large. Kalan et al. in [85] discussed

the stochastic version that mini-batch stochastic gradient descent when suitably ini-

tialized, converges at a geometric rate to the true solution (with additive error). In

contrast, our Algorithm 4 does not need to assume the data is i.i.d. random Gaussian,

and the results hold in general. Finally, the SGD method requires a close enough

initialization, which is not required by Algorithm 4.

3.2.2 Training ReLU-regression With Underlying Statistical Model

Now we consider the scenario when samples are generated from an underlying statistical

model specified as follows. Assume a training sample set {(Xi, Yi)}ni=1 ∈ Rd×R generated

from a “true” statistical model as follows:

Definition 3.2.1. Statistical Model. Each output Yi is generated based on the following

model,

Yi = max{0,X>i β∗ + β∗0}+ εi, i = 1, . . . , n,

whereβ∗, β∗0 are unknown and fixed true parameters, which may be distinct from
(
βopt, βopt

0

)
as the optimal solution of ReLU-regression. We further assume that β∗, β∗0 belongs to a

convex compact set Θ ⊆ Rp × R. For i = 1, . . . , n, Xi, εi are i.i.d. random variables that

are generated from some underlying distributions N ,D, respectively. Finally, we assume

the distribution N satisfies the following properties:

1. EX∼N [X] = 0d, and VarX∼N (X) = Σ.
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2. Unique Optimal Property: Let SuppN ⊆ Rd be the support of distribution N . For

any (β∗, β∗0) ∈ Θ, there exists d+ 1 vectors v1, . . . ,vd,vd+1 ∈ SuppN such that

v>i β
∗ + β∗0 > 0, ∀i = 1, . . . , d, d+ 1,

and in addition, (v1, 1), . . . , (vd, 1), (vd+1, 1) ∈ Rd+1 are linearly independent. This

property is used to ensure that the global optimal solution is unique and can be

identified from ReLU.

3. D is a Gaussian distribution with zero mean and variance γ2.

To be concise, define ∆2 as

∆2 := VarX∼N (X>β∗ + β∗0) = (β∗)>Σβ∗.

Connections with Thresholding Methods. Let Syn(β, β0) be the objective function used in

Algorithm 4 with parameter k = 1 as follows:

Syn(β, β0) :=
1

n
·
[ ∑

i∈I(y)

σ(X>i β + β0, Yi) +
∑

i∈I+\I(y)

(X>i β + β0 − Yi)2

+
∑
i∈I−

(max{0,X>i β + β0} − Yi)2

]
,

where I+ = {i : Yi > 0}, I− = {i : Yi ≤ 0}, and I(y) = {i : 0 < Yi ≤ y} for some

y > 0. By setting thresholding parameter y = Yi1 , we have {0, 1, . . . , i1} corresponds

to I(y) and {i1 + 1, . . . ,m} corresponds to [m] \ I(y). As we change the thresholding

parameter y, we are essentially picking different values of ii.

To derive the main results in this setting, we follow a few steps. First, using classical

results in ([105], p.40) and [106], we obtain
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Proposition 3.2.3. As n→∞, the objective function

Syn(β, β0)→ EX∼N ,ε∼D
[
ψy(X

>β + β0, Y )

]
,

for almost every sequence {(Xi, Yi)}ni=1, where

Yi = max{0,X>i β∗ + β∗0}+ εi,

and the auxiliary function ψy(·, ·) is

ψy(X
>β + β0, Y )

:=


σ(X>β + β0, Y ) if 0 < Y ≤ y,

(X>β + β0 − Y )2 if y < Y,

(max{0,X>β + β0} − Y )2 if Y ≤ 0.

Proposition 3.2.4. Assume the statistical model specified above. As n → ∞, the least

square estimator (βopt, βopt
0 ) obtained from solving the ReLU-regression problem is strongly

consistent, i.e., they converge to the true parameter (β∗, β∗0) almost surely. Moreover, as

n→∞,

1

n

n∑
i=1

(
max{0,X>i β + β0} − Yi

)2

→ EX∼N ,ε∼D
[(

max{0,X>β + β0} − Y
)2
]
,

and

min
(β,β0)∈Θ

EX∼N ,ε∼D
[(

max{0,X>β + β0} − Y
)2
]

= EX∼N ,ε∼D
[(

max{0,X>β∗ + β∗0} − Y
)2
]

= γ2.
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Combining Proposition 3.2.3 and Proposition 3.2.4, we obtains the following asymp-

totic bound for Algorithm 4:

Theorem 10 (Asymptotic Bound). Assume the statistical model specified above. Let zasy

be the optimal value of the asymptotic objective function EX∼N ,ε∼D
[
ψy(X

>β + β0, Y )
]

for all y > 0, i.e.,

zasy = min
y≥0

min
(β,β0)∈Θ

EX∼N ,ε∼D
[
ψy(X

>β + β0, Y )
]
,

then

γ2 ≤ zasy ≤ 3γ2

2
+

2 + 2∆2

√
2π

γ.

Insight for Theorem 10. On a high-level, the optimal value of the asymptotic objective

function can be represented as a sum of several easy-to-verify conditions. Then we give

upper bounds for each of the conditions simultaneously to achieve the final result. Proof is

given in Section C.5.

Note that the upper bound for the asymptotic optimal value zasy only depends on the

variance ∆2 and γ2. Therefore, when the sample set is generated from the underlying

statistical model 3.2.1, we have the following corollary:

Corollary 3.2.2 (Asymptotic Approximation Ratio). Assume the statistical model specified

above. As n → ∞, the solution obtained from Approximation Algorithm 4 provides an

asymptotic multiplicative approximation ratio

ρ ≤ 3

2
+

2 + 2∆2

√
2π

1

γ
,

which is independent of the sample size n. Moreover, this guarantee can be achieved by

only computing Syn(β, β0) with y = 0.

We note the following. As the variance of the noise tends to zero, the multiplicative
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approximation ratio ρ obtained in Corollary 3.2.2 goes to infinity. However, since the

upper bound of zasy is in the order O(γ), zasy will also tend to zero.

Comparison with results in the literature: Recently, there is a large number of results that

discuss how to use the SGD type algorithms to achieve locally or globally optimal solution

efficiently, when there is an underlying statistical model:

• The pioneer work [93] gave a fast, greedy algorithm that can find a fairly good set

of parameters quickly based on good initialization using “complementary priors” in

a reasonable time. Later, [107] gave empirical evidence that simple two-layer neu-

ral networks have good sample expressivity in the over-parameterized case. These

earlier works did not provide theoretical guarantees.

• Kalai and Sastry [95] proposed an isotron algorithm that provably learns single index

models (SIM) in polynomial time. Comparing with our work, the asymptotic result in

this paper does not require the realizable assumption yi = u(w ·xi) for the idealized

SIM problem.

• Oymak et al. [108] focused on minimizing a least-squares objective subject to a

constraint defined as the sub-level set of a penalty function and is a related version

of the ReLU-regression problem. The authors show the convergence guarantee of

the gradient projection algorithm, which can be viewed as a work that gives a non-

asymptotic empirical risk. Note that the objective function of the ReLU-regression

problem is `2-norm of ReLU activation instead of the linear function in [108].

• Soltanolkotabi in [83] and Kalan et al. [85] focus on the case with zero noise.

• Kakade et al. [94] provided efficient algorithms for learning the generalizations of

linear regression with provable guarantees on the predict error. Compared to ReLU-

regression, their guarantees request additional assumptions on the underlying statis-

tical model and the ground truth.
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• Brutzkus and Globerson in [88] showed that when there is no noise and when the in-

put is Gaussian distributed, a one-hidden-layer neural network with ReLU activation

function can be trained exactly in polynomial time with gradient descent.

• Du et al. in [89] showed that without any specific forms of the input distribution, (1)

(stochastic) gradient descent with random initialization can learn the convolutional

filter in polynomial time, and (2) its convergence rate depends on the smoothness of

the input distribution function. Later, Du et al. in [90] showed that: learning a one-

hidden-layer ReLU neural network, (1) with a specific randomized initialization, the

gradient descent converges to the ground truth with high probability, (2) the objective

function does have a spurious local minimum (i.e., the local minimum plays a non-

trivial role in the dynamics of gradient descent). Note that these two papers [90, 89]

need a proper initialization to achieve their results.

• Goel et al. in [92] proposed an algorithm – Convotron, which captures commonly

used schemes from computer vision to learn on-hidden-layer neural networks with a

leaky ReLU activate function. The authors show that the convotron algorithm prop-

erly recovers the unknown weight vector under some distributional conditions with-

out special/random initialization scheme or tuning of the learning rate. In contrast to

our work, their convergence results depend on the “no bias” property of their leaky

ReLU function and distributions to be symmetric about the original, which may be

restricted in practice.

• Zhang et al. in [99] studied the problem of learning one-hidden-layer neural networks

with ReLU activation function, where the inputs are sampled from standard Gaussian

distribution and the outputs are generated from a noisy teacher network of width

K. The authors show that: gradient descent with tensor initialization can linearly

converge to the ground-truth parametersW ∗ with an additional additive error ε, when
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the sample size satisfies

N ≥ max

 ε−2dpoly(W ∗, K),

log(1/ε)d log dpoly(W ∗, K)

 ,

in Theorem 4.2 (linear convergence) and Lemma 4.5 (tensor initialization) in [99]

simultaneously. Moreover, the additive distance statistical error ε for parameter W

in [99] leads to an additive error for the optimal value of the asymptotic objective

function, which cannot be bounded by the multiplicative ratio proposed in Theorem

3 of our paper.

• Laurent et al. [109] studied the loss surface of neural networks equipped with a hinge

loss criterion and ReLU or leaky ReLU nonlinearities. Moreover, the authors prove

that global minima with zero loss must be trivial, while minima with nonzero loss

are necessarily non-differentiable for many fully connected networks. This global

minima results can also be viewed in our paper. If the global minima have zero

loss, the optimization problem is realizable, which can be solved to global optimality

within polynomial time; while global minimization does not equal zero, the ReLU-

regression problem is NP-hard to solve.

We also review concurrent papers [110, 100, 111, 112] focusing on non-asymptotic popu-

lation risk bounds for the completeness of literature survey.

• In [110], Wang et al. present a stochastic gradient descent (SGD) algorithm, which

provably trains a one-hidden-layer ReLU neural network to achieve global optimality

on the task of binary classification with a hinge loss objective function. In contrast,

we focus on the `2-norm empirical loss for the ReLU-regression problem.

• Cao and Gu [100] proposed a novel algorithm called approximate gradient descent

for training CNNs. The authors show that with high probability, the proposed al-

gorithm with random initialization grants a linear convergence to the ground-truth
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parameters up to a statistical precision. The authors show that the convergence re-

sult holds for monotonic and Lipschitz continuous activation functions. The authors

point out that the proposed sample complexity beats existing results and matches the

information-theoretic lower bound for learning one-hidden-layer CNNs with linear

activation functions. The sample complexity guarantee for this work is better than

the sample complexity given from [92], but request additional Gaussian distribution

for input samples.

• In [111], Diakonikolas et al. gave a constant-factor approximation algorithm for

ReLU assuming the underlying distribution satisfies some weak concentration and

anti-concentration conditions, and obtain a polynomial-time approximation scheme

for any subgaussian distribution. The authors prove that: when samples are i.i.d.

from some isotropic log-concave distribution, for additive error ε, sample dimen-

sion d, there is an algorithm that uses Õ(d/ε2) samples, runs in time Õ(d2/ε2), and

achieves population risk O(opt) + ε with high probability on a convex surrogate for

the empirical risk, where opt denotes the optimal population risk for ReLU regres-

sion. This work focuses on finding parameter w for population risk with additive

approximation guarantee. Since opt� 1 is assumed for the optimal parameter, then

in contrast, the population risk O(opt) + ε proposed above may lead to non-constant

multiplicative approximation ratio.

• In [112], Frei et al. studied the learning problem of a single neuron with gradient de-

scent in the agnostic PAC learning setting. The authors show that: when there is no

relationship between labels y and samples x (agnostic learning), the gradient descent

achieves O(opt)+ ε population risk in polynomial time; when labels y takes the form

y = σ(w>x) + ξ for zero-mean sub-Gaussian noise ξ (teacher learning), the popula-

tion risk guarantees for gradient descent improve to opt+ε. Similarly, this work gives

an additive population risk guarantee for ReLU regression problem. Therefore, since
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opt � 1 is assumed for the optimal parameter, then the population risk O(opt) + ε

proposed above may lead to non-constant multiplicative approximation ratio.

3.3 Numerical results

In this section, we present numerical examples using simulated data to compare our algo-

rithm with three other methods: (1) the sorting method (a simplified version of Algorithm 4

which we describe below in this section), (2) sorting followed by an iterative heuristics, (3)

gradient descent methods, (4) sorting followed by gradient descent methods, (5) stochastic

gradient descent methods. All numerical experiments are implemented on MacBookPro13

with 2 GHz Intel Core i5 CPU and 8 GB 1867 MHz LPDDR3 Memory. Each optimization

step of the sorting method (Algorithm 4) and each optimization step of the iterative method

(Algorithm 9 in Appendix C) are solved using Gurobi 7.0.2 in python 3.5.3.

3.3.1 Simulated examples

We perform numerical experiments in the following settings.

1. Given a vector µ ∈ Rd, and a positive semidefinite matrix Σ ∈ Rd×d, the true

solution β∗ is generated from the Gaussian distribution N(µ,Σ). Specifically, β∗ in

Figure [C.2, C.3, 3.4] are generated from N(0.5 · 0d, 10 · Id).

2. Both training set and testing set contain n samples. For each sample (Xi, Yi) ∈

Rd×R in training set, the observation sampleXi = (Xij)
d
j=1 is generated by setting

Xij = 1,Xij = −1 with probability P/2 and Xij = 0 with probability 1 − P ,

independently. In the rest of this sections, we refer to P = P({Xij = 1} ∪ {Xij =

−1}) as the level of sparsity. Moreover, in the realizable case we perturbed the data

to guarantee that the globally optimal solution is unique. Assume that β∗i 6= 0 for all

i ∈ [d]. The first d samplesXi are obtained asXi ← ei · sgn(β∗i ) for all i = 1, . . . , d

in the training set, in which ei ∈ Rd is a vector with one on its ith component and
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zero otherwise, and sgn(x) equals to one when x > 0 and equals to zero otherwise.

3. Note that the constant term β∗0 can be achieved via adding one dimension with value

one to each Xi. To simplify, we decide to use β∗0 = 0. The response variable Yi is

thus computed as Yi = max{0,X>i β∗} + εi with εi ∼ N(0, ρσ), where σ and ρ are

set in the following way:

σ: the sample variance σ is computed based on the following procedures:

Zi ← X>i β
∗, ∀ i = 1, . . . , n;

Z̄ ← 1
n

∑n
i=1 Zi;

σ2 ← 1
n

∑n
i=1(Zi − Z̄)2.

ρ: We measure noise level in terms of signal-to-noise ratio in decibels (dB). Con-

sider the dB values being {6, 10, 20, 30,∞}. The value of Signal-to-Noise

(SNR) ratio ρ is given by

dB := 10 log10

σ2

ρ2σ2
∈ {6, 10, 20, 30,∞},

which corresponds to

ρ ≈ {0.5, 0.32, 0.1, 0.032, 0}.

4. For each sample (X̃i, Ỹi) ∈ Rd×R in the testing set, we generate X̃i, Ỹi in the same

way as the training set.

3.3.2 Algorithms for comparison

In this section, we briefly describe algorithms for comparison in numerical experiments.

91



Sorting Method (Sorting)

The sorting method is a simplified version of Algorithm 4 with parameter k = 1. To reduce

the running time, instead of running i1 for all values ranging from 1 to n, we limit the

values of i1 to be a subset (see Section C.6.1 for details).

Sorting method followed by an Iterative Method (Sorting + Iter)

A natural algorithm which iteratively improve the solution is the following. Fix I and

minimize fσ(I). Examine the solution and update the choice of I , so that fσ and f ∗

match the current solution. Repeat until a stopping criteria is meet. See Algorithm 9 in

Section C.6.2 for details. We use this heuristic to improve the solution obtained from

the Sorting method. After obtaining a feasible solution β̂sorting, we set the initial point of

iterative heuristic to be β̂sorting.

Gradient Descent (GD)

The gradient descent method used in numerical experiments is presented in Section C.6.3,

see Algorithm 10. Given an initialization β0 ← 0p, set βt to be the updated solution

obtained in (t− 1)th iteration. The gradient 1
n
∇βL(βt) used in the tth iteration is given by

1

n

n∑
i=1

(max{0,X>i βt} − Yi)(1 + sgn(X>i β
t))Xi,

where L(β) =
∑n

i=1(max{0,X>i β} − Yi)2.

Sorting followed by Gradient Descent Method (Sorting + GD)

Similar to the method using sorting followed by gradient descent, here we run sorting

algorithms and use the result to initialize GD.
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Stochastic Gradient Descent Method (SGD)

Here we initialize β0 using zero vector, for both SGD and GD. The only difference between

SGD and GD is that: in tth iteration, we uniformly pick a mini-batch Bt of size m from the

set of samples {(Xi, Yi)}ni=1 at random, and then obtain the gradient used in the tth iteration

as

1

m

∑
i∈St

(max{0,X>i βt} − Yi)(1 + sgn(X>i β
t))Xi.

See Algorithm 11.

3.3.3 Performance metrics

The solutions β̂ obtained from the above methods are evaluated in terms of their prediction

error, objective value, recovery error, generalization error. The formal definitions are:

• Prediction Error:

PE :=
n∑
i=1

(
max{0,X>i β̂} −max{0,X>i β∗}

)2

where {Xi, Yi}ni=1 is the training sample.

• Objective Value: Note that the prediction error defined above is not the objective

value obtained by solving the optimization problem. In practice, when β∗ is un-

known, the prediction error cannot be achieved exactly. Thus, we use the objective

value (Obj)

Obj :=
n∑
i=1

(
max{0,X>i β̂} − Yi

)2

as an alternative.
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• Recovery Error: The recovery error measures the distance between the solution β̂

we obtained and the ground truth β∗:

RE := ‖β̂ − β∗‖2.

• Generalization Error: The generalization error measures how good the solution β̂ is

when using the objective function with respect to testing set, i.e.,

GE :=
n∑
i=1

(
max{0, X̃>i β̂} − Ỹi

)2

,

where {X̃i, Ỹi}ni=1 is the testing data.

To compare with the objective function value (which is not divided by n), here the predic-

tion error and generalization error are not divided by the training sample size n.

3.3.4 Notation and parameters

Numerical results are presented in Figure 3.4 of this section, the rest of figures and tables

are listed in the Appendix C. Below we present notations and the parameters that used for

numerical experiments:

• Each line presented in Figure [C.2, C.3, 3.4] represents the average of the measures

or running time obtained from 20 instances under the same settings.

• For the Sorting Method (Algorithm 8), N (the number of splits) used is 10.

• For the Sorting (Algorithm 8) + Iterative Method (Algorithm 9), N (the number of

split) is set to 10, and let β̂sorting be the solution obtained from Sorting Method, then

the parameters of Iterative Method are set to be:

({(Xi, Yi)}ni=1,β
0, T )← ({(Xi, Yi)}ni=1, β̂

sorting, 20)
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where β0 denotes the starting point, T denotes the maximum number of iterations.

• For the Gradient Descent Method (Algorithm 10), the parameters are set to be

({(Xi, Yi)}ni=1,β
0, T, ε, η0, γ, α)← ({(Xi, Yi)}ni=1,0p, 1000, 0.01, 1, 0.03, 0.6)

where β0 denotes the starting point, T denotes the maximum number of iterations, ε

is a termination criteria parameter, η0 denotes the initial stepsize, γ, α are parameters

used to adjust step size in each iteration.

• For the Sorting (Algorithm 8) + Gradient Descent Method (Algorithm 10), N (the

number of split) is set to be 10, and let β̂sorting is as above, and the parameters of the

Gradient Descent Method are set to be:

({(Xi, Yi)}ni=1,β
0, T, ε, η0, γ, α)← ({(Xi, Yi)}ni=1, β̂

sorting, 1000, 0.01, 1, 0.03, 0.6).

• For the Stochastic Gradient Descent Method (Algorithm 11), parameters are set to

be:

({(Xi, Yi)}ni=1,β
0, T, ε, η0, γ, α,m)← ({(Xi, Yi)}ni=1,0p, 1000, 0.01, 1, 0.03, 0.6, b0.1nc).

3.3.5 Summary of numerical experiments

Based on the results reported in Figure [C.2, C.3, 3.4] and Tables in Appendix C.8, some

preliminary conclusions can be draw as follows:

• Prediction Error: The empirical prediction error compares as

PEsorting ≤ PEsorting + iter ≈ PEsorting + GD ≈ PEGD ≤ PESGD
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Figure 3.4: Numerical Results of sample size (d, n) = (50, 1000) and β∗ ∼ N(0.5 · 1p, 50 · Ip)
with sparsity {0.1, 0.25, 0.5, 0.75, 0.9}.
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where the differences between PEsorting + iter,PEsorting + GD,PEGD are relative smaller

than the differences between PEsorting,PEsorting + iter and PEGD,PESGD. These empirical

results show that the when the output samples {Yi} follows the correct underlying

model (which may not be for some real applications), the sorting method performs

well in practice.

• Objective Value: In most of the cases, objective value satisfies

Objsorting + iter ≈ Objsorting + GD ≈ Objsorting ≈ ObjGD ≤ ObjSGD.

The difference between the SGD method and the GD method is large in general

since SGD cannot always find out the local minimum solution in a reasonable time.

The gaps between the GD method and the rest three methods (Sorting, Sorting +

GD, Sorting + Iter) are relatively larger than the differences within the rest three

methods. The objective value of the sorting method, when the standard deviation of

noise grows, increases most. The sorting + iterative method and sorting + gradient

descent method performs almost the same for objective value, which implies that: (1)

using iterative method after the sorting really benefits the optimization (comparing

with sorting method with smaller objective value); (2) initializing with β̂sorting will

improve the performances of GD.

• Recovery Error: When the noise variance is small, the recovery error satisfies that

REsorting ≤ REsorting + iter ≈ REsorting + GD ≈ REGD ≤ RESGD.

As the standard deviation of noise increases, the recovery error obtained from the

gradient descent method will not increases as much as the rest three types of methods

and finally becomes the best at the point with ρ = 0.32.
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• Generalization Error: The performances of generalization error are very similar to

the performances of prediction error. Hence the sorting + iterative method has the

strongest generalization power.

• Running Time: Empirically, the running time of the sorting method, sorting + iter

method, sorting + GD method, and the SGD method satisfies the following:

T SGD ≤ T sorting ≤ T sorting + iter ≈ T sorting + GD

in most of cases. One possible result of the least running time of the SGD method

is that SGD cannot find out the local minimum and stops early with fewer iterations.

For the GD method with zero initialization, as the size of instances increases, the

running time increases faster than the rest four methods. Moreover, the sparsity

level, in empirical, has a significant impact on the running time of the GD method.

• Overfitting: In simulation results, the sorting+iter algorithm has the lowest objective

value and recovery error, whereas the sorting algorithm has the lowest prediction

error. We believe that the sorting+iter algorithm is overfitting in some of the cases,

while the sorting algorithm is not.

3.4 Conclusions and discussions

After showing that that ReLU-regression is NP-hard, we presented a polynomial-time ap-

proximation algorithm for this problem. We showed that for arbitrary data, our algorithm

gives a multiplicative guarantee of (n/k) where n is the number of samples, and k is a

fixed integer. An important consequence of this result is that in the realizable case, ReLU-

regression can be solved in polynomial time. Under a statistical model for training sample,

where the data comes from the output of a single node with Relu function with the output

being perturbed with Gaussian noise, we can show that the algorithm guarantees are in-

dependent of n. To the best of our knowledge, these are the best theoretical performance
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guarantees for the solving ReLU-regression, especially in the realizable case and in the

case of the statistical data model.

We performed extensive numerical experiments and showed that, in particular, initial-

izing SGD with the output of our approximation algorithm can improve performance in

prediction and recovery error, especially when the signal-to-noise ratio is high based on

Figure 3.4. In our opinion, this is a crucial empirical observation in the following sense.

There is value in coming up with specialized approximation algorithms for various non-

convex problems, for which we intend to use gradient descent. The reason is that such

approximate algorithms, with theoretical guarantees, provide a good warm-start for SGD,

usually a requirement for the SGD algorithm to work well in predict and recovery error for

ReLU-regression.

Moreover, we do not want to claim that the sorting algorithm performs better than

the SGD-type algorithms (like SVRG or SAGA). Instead, we would like to point out that

the solution obtained from the sorting algorithm can be viewed as an initial point with

theoretical guarantees even in the model-free case, compared to some other widely-used

initialization technique (e.g., method of moments).

Many open questions remain. In the case of the arbitrary training sample model, there

is a big gap between the multiplicative guarantee of (n/k) and known lower bound of

(nd)1/(log log(nd))O(1) . In the statistical model, we conjecture that our approximate algorithm

is optimal, i.e., performance guarantees cannot be improved. Proving or disproving this

conjecture is essential. Another important direction of research is to extend these results to

multi-node networks.
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APPENDIX A

APPENDICES FOR CHAPTER 1

A.1 SDP relaxation

The SPCA problem is equivalent to a nonconvex problem:

max v>Av

s.t. ‖v‖2 = 1, ‖v‖0 ≤ k
⇔

max tr(AV )

s.t. tr(V ) = 1, ‖V ‖0 ≤ k2,V � 0, rank(V ) = 1

Further relaxing this by replacing its rank and cardinality constraints with 1>|V |1 ≤ k

gives the standard SDP relaxation:

max tr(AV )

s.t. tr(AV ) = 1,1>|V |1 ≤ k,V � 0.
(SDP)

A.2 Proof of Proposition 1.2.1

Proof. Proof of Proposition 1.2.1: Let v∗ = (v∗i )
d
i=1 be an optimal solution of SPCA.

Then set

g∗i ← (v∗)>wi, i ∈ [d],(
(ηji )

∗)N
j=−N ←

(
(ηji )

∗)N
j=−N ∈ SOS-2 and

∑N
j=−N γ

j
i (η

j
i )
∗ = g∗i , i ∈ I+,

ξ∗i ←
∑N

j=−N(γji )
2ηji , i ∈ I+,

s∗ ←
∑

i∈I− −(λi − λ)g∗i .

We claim that the above solution (v∗, g∗, ξ∗, η∗, s∗) is a feasible solution for (Convex-IP)

due to the following two parts. First, note that the above setting directly satisfy all the

constraints in (Convex-IP) except the constraint
∑

i∈I+ ξi +
∑

i∈I− g
2
i ≤ 1 + 1

4N2

∑
i∈I+ θ

2
i .
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Second, for the exception constraint, based on the size of the discretization and the structure

of SOS-2 constraints, we have ξ∗i ≤ (g∗i )
2 + 1

4N2 θ
2
i for i ∈ I+ which implies that exception

constraint also holds.

Moreover, the objective value of feasible solution (v∗, g∗, ξ∗, η∗, s∗) is

λTH +
∑
i∈I+

(λi − λTH)ξ∗i − s∗ ≥λTH +
∑
i∈I+

(λi − λTH)(g∗i )
2 − s∗

=λ+
∑
i∈I+

(λi − λTH)((v∗)>wi)
2 +

∑
i∈I−

(λi − λ)((v∗)>wi)
2

=λTH +
d∑
i=1

(λi − λTH)((v∗)>wi)
2.

Note that the optimal solution v∗ of SPCA has property ‖v∗‖2 = 1 and
∑d

i=1wiw
>
i = Id.

Then λTH +
∑d

i=1(λi − λTH)((v∗)>wi)
2 = (v∗)>Av∗ = λk(A). Therefore, optconvex-IP ≥

λk(A).

A.3 Proof of Proposition 1.2.2

Proof. Proof of Proposition 1.2.2: Let (v̄, ḡ, ξ̄, η̄, s̄) be an optimal solution for Convex-IP.

Its optimal value then satisfies the following:

optconvex-IP = λTH +
∑
i∈I+

(λi − λTH)ξ̄i − s̄

= λTH +
∑
i∈I+

(λi − λTH)
(
ξ̄i − ḡ2

i + ḡ2
i

)
− s̄

= λTH +
∑
i∈I+

(λi − λTH)
(
ξ̄i − ḡ2

i

)
+
∑
i∈I+

(λi − λTH)ḡ2
i − s̄.

Since variable s satisfies
∑

i∈I− −(λi − λTH)g2
i ≤ s, to maximize the objective function, s̄

should be equivalent to
∑

i∈I− −(λi − λTH)ḡ2
i , then the above formula can be represented
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as

λTH +
∑
i∈I+

(λi − λTH)
(
ξ̄i − ḡ2

i

)
+
∑
i∈I+

(λi − λTH)ḡ2
i − s̄

= λTH +
∑
i∈I+

(λi − λTH)
(
ξ̄i − ḡ2

i

)
+
∑
i∈I+

(λi − λTH)ḡ2
i +

∑
i∈I−

(λ− λTH)ḡ2
i

=
∑
i∈I+

(λi − λTH)
(
ξ̄i − ḡ2

i

)
+

(
λTH +

d∑
i=1

(λi − λTH)ḡ2
i

)
. (A.1)

By previous results, λTH +
∑n

i=1(λi − λTH)ḡ2
i = v̄>Av̄. Note that due to the `2−norm

constraint ‖v‖2 ≤ 1 and the `1−norm constraint present in (Convex-IP) problem, we have

v̄ ∈ Tk = {v ∈ Rd : ‖v‖2 ≤ 1, ‖v‖1 ≤
√
k} ⊆ ρ · Conv (Sk). Therefore v̄>Av̄ is upper

bounded by the value ρ2 · λk(A).

To upper bound the first term in (A.1), since gi =
∑N

j=−N γ
j
i η

j
i , ξi =

∑N
j=−N(γji )

2ηji

for i ∈ I+ and the SOS-2 construction enforces that there are at most two active continuous

SOS-2 variables ηji , η
j+1
i such that ηji + ηj+1

i = 1 with ηji , η
j+1
i ≥ 0 and the other SOS-2

variables are all zeros, then

ξi − g2
i =

N∑
j=−N

(γji )
2ηji −

(
N∑

j=−N

γji η
j
i

)2

= (γji )
2ηji + (γj+1

i )2ηj+1
i −

(
γji η

j
i + γj+1

i ηj+1
i

)2
for ηji , η

j+1
i active

= (γj+1
i − γji )2ηji (1− η

j
i ) via ηji + ηj+1

i = 1

≤ max
j=−N,...,N−1

(γj+1
i − γji )2 · 1

4

where in all possible partition of [−θi, θi], the evenly partition of [−θi, θi] achieves the

minimum value of maxj=−N,...,N−1(γj+1
i − γji )2 =

θ2i
N2 . Hence (A.1) can be upper bounded
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as follows:

optconvex-IP =
∑
i∈I+

(λi − λTH)
(
ξ̄i − ḡ2

i

)
+

(
λTH +

d∑
i=1

(λi − λTH)ḡ2
i

)
≤ 1

4N2

∑
i∈I+

(λi − λTH)θ2
i + ρ2 · λk(A).

A.4 Proof of Proposition 1.2.3

Proof. Proof of Proposition 1.2.3: Given the threshold λTH, the number of splitting points

N , the size of set Ipos = |{i : λi > λTH}|, for each i ∈ {i : λi > λTH}, there are at most

2N possible choices of active SOS-2 variables, i.e.,

ηji , η
j+1
i > 0, for j = −N, . . . , 0, . . . , N − 1.

Thus there are at most (2N)|Ipos| choices of active SOS-2 variables for a Convex-IP prob-

lem. For a fixed value of active SOS-2 variables, the Convex-IP problem reduces to be a

continuous convex optimization problem which can be solved exactly within polynomial

time, say T . Thus the Convex-IP can be solved within (2N)|Ipos| · T .

A.5 Proof of Proposition 1.2.4

Proof. Proof of Proposition 1.2.4: Based on Proposition 1.2.2, we have

optPert-Convex-IP ≤ ρ2λk(Ā) +
1

4N2

∑
i∈I+

(λi − λTH)θ2
i .
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Note that Ā−A =
∑

i∈I−(λ̄− λi)wiw
>
i . Therefore,

ρ2λk(Ā) = ρ2λk
(
A+ (Ā−A)

)
≤ ρ2λk(A) + ρ2λk(Ā−A)

≤ ρ2λk(A) + ρ2(λ̄− λmin(A)).

A.6 Convex-IP Method and Pert-Convex-IP Method

Algorithm 5 presents all the details of the convex IP solved. Algorithm 6 presents all the

details of the Pert-Convex-IP solved.

Algorithm 5 Convex-IP Method
1: Input: Sample covariance matrix A, sparse parameter k, size of set Ipos, splitting

parameter N .
2: Output: Lower and upper bound of SPCA or `1-relax based on the choice of θ.
3: function CONVEX-IP METHOD(A, k, Ipos, N )
4: Set lower bound and warm starting point

(LB, v̄)← HEURISTIC METHOD(A, k,v0).

5: Set parameter λIpos+1 ≤ λTH ≤ LB if possible, otherwise set λTH ← LB.
6: Set splitting points γji as above based on N and the choice of θ, see Section 1.2.2

[1.2.2] .
7: To warm start, add additional splitting points based on the point v̄.
8: Add cutting-plane (1.2) to the model based on the choice of θ.
9: Run Convex-IP problem.

10: Set UB← Convex-IP if running to the optimal, or the current dual bound obtained
from Convex-IP.

11: return LB, UB.
12: end function
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Algorithm 6 Pert-Convex-IP Method
1: Input: Sample covariance matrix A, sparse parameter k, size of set Ipos, splitting

parameter N , maximum number of iterations iter.
2: Output: Lower and upper bound of SPCA or `1-relax based on the choice of θi.
3: function PERT-CONVEX-IP METHOD(A, k, Ipos, N, iter)
4: Set lower bound and warm starting point (LB, v̄) ←

HEURISTIC METHOD(A, k,v0).
5: Set parameter λIpos+1 ≤ λTH ≤ LB if possible, otherwise set λ← LB.
6: Set parameter λ̄ := max{λi : λi ≤ λTH} < λTH if possible.
7: Set splitting points γji as above based on N and the choice of θi, see Section 1.2.2

[1.2.2].
8: To warm start, add additional splitting points based on the point v̄.
9: while current iteration does not exceed the maximum number of iterations iter or

time limit is not up do
10: Run Pert-Convex-IP problem.
11: Set UB← Pert-Convex-IP if running to the optimal, or the current dual bound

obtained from Pert-Convex-IP.
12: Set v̂ ← current feasible solution obtained from Pert-Convex-IP.
13: Add additional splitting points based on solution obtained in solving Pert-

Convex-IP problem.
14: Add cutting-plane (1.2) to the model based on the choice of θi.
15: end while
16: return LB, UB.
17: end function

A.7 Description of Data Sets

A.7.1 Artificial Data Sets

We first conduct numerical experiments on three types of artificial data sets, denoted as the

spiked covariance recovery from the paper [16], the synthetic example from the paper [4],

and the controlling sparsity case from the paper [21]. A description of each of these three

types of instances is presented below:

Spiked covariance recovery

Consider any covariance matrix Σ, which has two sparse eigenvectors with dominated

eigenvalues and the rest eigenvector are unconstrained with small eigenvalues. Let the first

106



two dominant eigenvectors v1,v2 of Σ be:

[v1]i =


1√
10

i = 1, . . . , 10,

0 otherwise
, [v2]i =


1√
10

i = 11, . . . , 20,

0 otherwise
, (A.2)

with the eigenvalues corresponding to the first two dominant eigenvectors be λ1 � 1 and

λ2 � 1, and the remaining eigenvalues be 1. For example, in our numerical experiments,

set Σ← 399 · v1v
>
1 + 299 · v2v

>
2 + I .

We have four distinct settings under the spiked covariance recovery case. Let d be the

number of features, i.e., the size of the sample covariance matrix of our numerical cases.

Let M be the number of samples we generated. We set d = {200, 300, 400, 500, 1000}

and M = {50}. Therefore, under each setting of d, we generate M random samples

xn ∼ N(0,Σ), and get our sample covariance matrix Σ̂ = 1
50

∑50
n=1 xnx

>
n . In Table 1.4,

for each setting, we repeat the experiment for 2 times (case 1, case 2), and compare the

dual bounds obtained from all three methods.

Synthetic Example

Given d, let d1, d2, d3 ∈
{
dd

3
e, bd

3
c
}

such that d1 + d2 + d3 = d. Let 0p×q be the matrix of

all zeros with size p× q. Let 1p be the vector of all ones with length p. Then:

Σ =


290 · 1d11>d1 + Id1 0d1×d2 −87 · 1d11>d3

0d2×d1 300 · 1d21>d2 + Id2 277.5 · 1d21>d3
−87 · 1d31>d1 277.5 · 1d31>d2 582.7875 · 1d31>d3 + Id3

 . (A.3)

In our experiments, we set d = {200, 300, 400, 500, 1000}, and generate M = 50 sam-

ples such that xn ∼ N(0,Σ). Again, the sample empirical covariance matrix is Σ̂ =

1
50

∑50
n=1 xnx

>
n . In Table 1.6, for each setting of d, we generate two instances (case 1, case

2) for numerical experiments, and compare dual bounds obtained from all three methods.
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Controlling Sparsity

Like the spiked covariance recovery case, the covariance matrix Σ of controlling sparsity

case can also be represented as the summation of a term generated by sparse eigenvector

with dominated eigenvalue and the remaining part with small eigenvalues. Generate a

d× d matrix U with uniformly distributed coefficients in [0, 1] which can be seen as white

noise. Let v ∈ {0, 1}d be a sparse vector with ‖v‖0 ≤ k. We then form a test matrix

Σ = U>U+σvv>, where σ is the signal-to-noise ratio and is set to 15. In our experiments,

we set d = {200, 300, 400, 500, 1000} and generate M = 50 samples xn ∼ N(0,Σ) for

n = 1, . . . , 50. Therefore the sample empirical covariance matrix is Σ̂ = 1
50

∑50
n=1 xnx

>
n .

In Table 1.8, for each setting of d, we repeat the experiment twice (case 1, case 2), and

compare dual bounds obtained from all three methods.

A.7.2 Real Data Sets

We conduct numerical experiments on three types of real data sets, the benchmark pitprops

data from [113], biological data from [114, 16, 11] and large-scale data collected from

internet.

Pitprops Data

The PitProps data set in [113] (consisting of 180 observations with 13 measured variables)

has been a standard benchmark to evaluate algorithms for sparse PCA.

Based on previous work, we also consider the first six k−sparse principal components.

Note the i-th k−sparse principal component vi is obtained by solving

arg max
‖v‖2=1,‖v‖0≤k

v>Aiv

where A1 ← A and Ai ← (I − vi−1(vi−1)>)Ai−1(I − vi−1(vi−1)>) for i = 2, . . . , 6.

Table 1.10 lists the six extracted sparse principal direction with sparse parameter k be
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5− 2− 2− 1− 1− 1.

Biological Data

In Table 1.11 we present numerical experiments on four biological data sets. The first two

biological data sets (Eisen-1, Eisen-2) are from [11]. The Colon cancer data set is from

Alon et al. (1999). The Lymphoma data set is from Alizadeh et al. (2000).

Large-scale Internet Data

In Table 1.11 we also present numerical experiments on internet dataset. This dataset is

constructed out of textual posts shared on the popular social media Reddit. Based on prior

work [115, 116], the archive of all public Reddit posts shared on Google’s Big Query was

utilized to obtain a set of 3292 posts from the subreddit r/stress from December 2010 to

January 2017. The r/stress community allows individuals to self-report and disclose their

stressful experiences and is a support community. For example, two (paraphrased) post

excerpts say: “Feel like I am burning out (again...) Help: what do I do?”; and “How do I

calm down when I get triggered?”. The community is also heavily moderated; hence these

3292 posts were considered to be indicative of actual stress. [116].

Then on this collected set of posts, standard text-based feature extraction techniques

were applied per post, starting with cleaning the data (stopword elimination, removal of

noisy words, stemming), and then building a language model with the n-grams in a post

(n=2). The outcomes of this language model provided us with 1950 features, after includ-

ing only the top most statistically significant features. Additionally, the psycholinguistic

lexicon Linguistic Inquiry and Word Count (LIWC) [117] was leveraged to obtain features

aligning with 50 different empirically validated psychological categories, such as positive

affect, negative affect, cognition, and function words. These features have been extensively

validated in prior work to be indicative of stress and similar psychological constructs [118].

Our final dataset matrix comprised 3092 rows, corresponding to the 3092 posts, and 2000
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features in all.

The purpose of testing the sparse PCA technique on this dataset is to identify those

features that are theoretically guaranteed to be the most salient in describing the nature of

stress expressed in a post. In turn, these salient features could be utilized by a variety of

stakeholders like clinical psychologists, and community moderators and managers to gain

insights into stress-related phenomenon as well as to direct interventions as appropriate.

The finalA matrix can be found on the website:

https://www2.isye.gatech.edu/ sdey30/publications.html

A.8 Comparison with Existing Primal Heuristics for Lower Bounds

In this section, we compare our method Algorithm 2 for obtaining good primal feasible

solutions with two standard heuristics methods for sparse PCA in the literature: truncated

power method (TPM, [38]), generalized power method (GPM, [12]) with `0-penalty. See

Table A.1 for a comparison on all the real instances. As we can see, all the methods produce

Table A.1: Compare with existing primal methods

Instance
SPCA-Primal (Our method) TPM GPM

LB Time LB Time LB Time
Pitprops k = 5 3.406 0.1 3.406 0.0 3.406 0.1
Eisen-1 k = 10 17.335 0.0 17.335 0.0 17.335 2.3
Eisen-2 k = 10 11.718 0.0 11.718 0.0 11.605 4.1
CovColon k = 10 2641.228 0.4 2641.228 0.4 2641.228 59.7
Lymp k = 10 5911.412 0.3 5911.412 0.2 5753.563 81.4
Reddit k = 10 1052.020 7.4 1052.020 4.5 1052.020 1881.4

solutions with more or less the same objective function values.

A.9 Comparison with Existing Methods for Dual Bounds

In this section, we compare the performance of our convex integer program method with

(1) Mosek, in our experience one of the best commercial implementations of SDP solvers;

and (2) two variants of the approach presented in [39], which uses the main idea of [119].

110



The variants are listed as follows:

A.9.1 Dual Alternating Direction Augmented Lagrangian (DADAL) Method

Dual Alternating Direction Augmented Lagrangian (DADAL) method [39] can be used

to find out the upper bounds of the SDP problem. In order to use the freely available

implementation, the DADAL method requires the remodeling of the original problem into

the following standard format:

min〈A,V 〉 s.t A(V ) = b, V � 0.

Thus to find the dual bounds of the sparse PCA with covariance matrix of size d, we

need to (1) add additional auxiliary variables for inequality constraints, (2) reformulate the

variables into a p.s.d. matrix. For the step-(1), the original sparse PCA problem can be

formulated in the following fashion:

min 〈−A,V 〉 (SDP-equality)

s.t. 〈Id,V 〉+ µ1 = 1

〈Id2 , diag(Y )〉+ µ2 = k

〈E+
ij ,V ⊕ diag(Y )〉+ γ+

ij = 0, ∀ ij

〈E−ij ,V ⊕ diag(Y )〉+ γ−ij = 0, ∀ ij

V , diag(Y ), diag(γ+), diag(γ−), diag(µ) � 0

where ⊕ is the direct sum of two matrices, i.e.,A⊕B :=

A 0

0 B

, the matrix diag(Y )

is a short notation of diag(vec(Y )) with vec(Y ) the vectorization of matrix Y , and the
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matrix E+
ij ,E

−
ij are

E+
ij :=

Eij 0

0 −diag(vec(Eij))

 , E−ij :=

−Eij 0

0 −diag(vec(Eij))

 , ∀i, j ∈ [d]× [d]

with Eij ∈ Rd×d the standard basis matrix (i.e., the component (i, j) equals to 1, and the

rest components equal to 0). Rewrite the variables of SDP-equality into a p.s.d. matrix

Ṽ :=



V

diag(Y )

diag(γ+)

diag(γ−)

µ


∈ R(d+3d2+2)×(d+3d2+2).

For the step-(2), the SDP-equality can be further transferred into the standard SDP format

as follows:

min 〈−A⊕ 0d2 ⊕ 0d2 ⊕ 0d2 ⊕ 02, Ṽ 〉 (standard-SDP)

s.t. 〈Id ⊕ 0d2 ⊕ 0d2 ⊕ 0d2 ⊕ diag(1, 0), Ṽ 〉 = 1

〈0d ⊕ Id2 ⊕ 0d2 ⊕ 0d2 ⊕ diag(0, 1), Ṽ 〉 = k

〈(E+
ij +E+

ij )⊕ (diag(vec(Eij)) + diag(vec(Eji)))⊕ 0d2 ⊕ 02, Ṽ 〉 = 0, ∀i ≥ j

〈(E−ij +E−ij )⊕ 0d2 ⊕ (diag(vec(Eij)) + diag(vec(Eji)))⊕ 02, Ṽ 〉 = 0, ∀i ≥ j

Ṽ � 0

with the size of variable matrix d+3d2+2 and the number of linear constraints 2+d×(d+1).

The code of DADAL method is downloaded from the author’s [39] homepage 1.

1https://www.math.aau.at/or/Software/
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A.9.2 A Variant of DADAL Method for SPCA (DADAL-SPCA)

In this subsection, we designed a DADAL-SPCA method (which uses the main ideas of

the DADAL method) that works specifically for the sparse PCA problem. As we have seen

above, using the standard code of DADAL involves increasing dimension to (d+ 3d2 + 2)2

which appears to be quiet inefficient for solving the standard SDP relaxation of sparse PCA.

Therefore we alternatively pursued the following approach: Consider the primal and dual

SDP relaxation of sparse PCA,

minV ,Y 〈−A,V 〉 =: Primal

s.t. 〈I,V 〉 ≤ 1 (µ1 ≥ 0)

〈11>,Y 〉 ≤ k (µ2 ≥ 0)

Y ≥ V (γ+ ≥ 0)

Y ≥ −V (γ− ≥ 0)

V � 0 (Z � 0)

max − µ1 − µ2k =: Dual

s.t. µ1I + γ+ − γ− −A−Z = 0

µ211> − γ+ − γ− = 0

Z � 0

µ1, µ2,γ
+,γ− ≥ 0

with its augmented Lagrangian

Lσ(µ,γ,Z;V ,Y ) := − µ1 − µ2k + 〈M1,X〉+ 〈M2,Y 〉 −
σ

2
‖M1‖2

F −
σ

2
‖M2‖2

F ,

whereM1,M2 are defined as

M1 := µ1I + γ+ − γ− −A−Z,

M2 := µ211> − γ+ − γ−.
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We initializeV 0,Y 0,Z0 as follows: Compute eigenvalue decomposition ofA = WΛAW
>,

let w1 be the leading eigenvector ofW with respect to the largest eigenvalue. Set

V 0 ← w1w
>
1 ,

Y 0 ← |V 0|,

Z0 ← 0,

along with the starting augmented Lagrangian parameter σ0. In (k+ 1)-th iteration, update

each variable based on the following rule which is similar as the DADAL method proposed

in [39].

µk+1,γk+1 ← arg max
µ≥0,γ≥0

Lσk(µ,γ,Zk;V k,Y k)

Zk+1 ←
(
−V

k

σk
+ µk+1

1 I + (γ+)k+1 − (γ−)k+1 −A
)
�0

Xk+1 ← − σ ·
(
−V

k

σk
+ µk+1

1 I + (γ+)k+1 − (γ−)k+1 −A
)
�0

Y k+1 ← |V k+1|

Update σ based on Algorithm 1 in [39]

where (A)�0, (A)�0 denote the positive semi-definite, negative semi-definite part of sym-

metric matrixA. That is: LetA = WΛAW
> be its eigenvalue decomposition. Represent

ΛA = Λ+
A + Λ−A where [Λ+

A]ii = max{[ΛA]ii, 0} and [Λ−A]ii = min{[ΛA]ii, 0}, then

(A)�0 :=WΛ+
AW

>,

(A)�0 :=WΛ−AW
>.

Remark A.9.1. The way we update our dual variables (and primal variables) in each

iteration, there is no guarantee that the dual variables satisfy the equality constraints in
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the dual, namely,

M1 := µ1I + γ+ − γ− −A−Z = 0,

M2 := µ211> − γ+ − γ− = 0.

Therefore, it is not true that we can always obtain exact dual bounds from every iteration.

We store the dual bounds of iterations where the equality constraints are satisfied within a

tolerance of 0.01, i.e.,

‖M1‖F + ‖M2‖F ≤ 0.01.

Moreover, after the final iteration, we add one more step by solving the following linear

program,

µfinal,γfinal := arg maxµ,γ − µ1 − µ2k

s.t. µ1I + γ+ − γ− −A−Zfinal = 0,

µ211> − γ+ − γ− = 0,

µ1, µ2,γ
+,γ− ≥ 0,

(final-dual)

where Zfinal � 0 is the dual variable obtained in the final step of DADAL-SPCA. It is easy

to observe that (µfinal,γfinal,Zfinal) is a dual feasible solution, and therefore a dual bound

can be obtained from this dual feasible solution.

Stopping criteria: The stopping criteria includes three conditions. Meeting any of the

criteria stops the DADAL-SPCA algorithm.

1. The maximum number of iteration is set to be 200.

2. The stopping criteria quantity δ proposed in Algorithm 1 [39] is set to be 0.001, i.e.,

at the end of each iteration, we compute the primal and dual infeasibility errors as
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follows:

rP :=
max{Tr(X)− 1, 0}+ max{〈11>,Y 〉 − k, 0}

1 +
√

1 + k2
,

rD :=
‖M1‖F + ‖M2‖F

1 + ‖A‖F
,

and set δ := max{rP , rD}.

3. Since there is no closed form solution of the following updating step:

µk+1,γk+1 ← arg max
µ≥0,γ≥0

Lσk(µ,γ,Zk;V k,Y k),

we use commercial solver Gurobi (called via Python) to solve this quadratic pro-

gramming sub-problem in each iteration. For small instances (i.e., d < 500, Pit-

props, Eisen-1, Eisen-2), the total time limit given for Gurobi solver is 3600 seconds

(1 hour); and for middle-size instance (i.e., d = 500, CovColon, Lymp), the total

time limit given for Gurobi solver is 7200 seconds (2 hours), and for large instance

(i.e., d = 2000, Reddit), the total time limit given for Gurobi solver is 18000 seconds

(5 hours).

Algorithm 7 is the pseudocode of finding dual bounds using DADAL-SPCA.

Algorithm 7 Dual Bound DADAL-SPCA
1: Input: Covariance matrixA, sparsity parameter k, maximum number of iteration Tmax,

total time limit for solver Ttotal, starting Lagrangian augmented parameter σ0.
2: Output: Dual bound of sparse PCA.
3: function DUAL BOUND METHOD(A, k, Tmax, Ttotal)
4: Compute eigenvalue decomposition onA, let w1 be its leading eigenvector.
5: Initialize V ← w1w

>
1 ,Y ← |V |,Z ← 0d×d, (µ1, µ2)← (0, 0),γ± ← 0d×d.

6: Run DADAL-SPCA with stopping criteria described above with starting La-
grangian augmented parameter σ0 ∈ {0.001, 0.01, 0.1, 1}, and return UBDADAL-SPCA.

7: Solve final-dual for a dual bound UBfinal-dual.
8: return UB← min{UBfinal-dual, UBDADAL-SPCA}.
9: end function
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A.9.3 Numerical Results for Existing Methods for Dual Bounds

The gap obtained by DADAL-SPCA as described above with various values of σ0 is re-

ported in Table A.2.

Table A.2: DADAL-SPCA under different starting augmented Lagrangian parameter σ0.

Instance \ σ0 LB
σ0 = 0.001 σ0 = 0.01 σ0 = 0.1 σ0 = 1

gap % Time gap % Time gap % Time gap % Time
Pitprops k = 5 3.406 3.96 6 1.79 5 1.70 2 1.64 3
Eisen-1 k = 10 17.33 2.23 270 2.19 225 11.07 294 39.10 288
Eisen-2 k = 10 11.71 2.32 1053 2.37 610 2.08 898 2.12 897
CovColon k = 10 2641 14.16 7492 13.51 7281 19.05 7369 26.82 7301
Lymp k = 10 6008 29.67 7339 34.79 7331 46.84 7367 59.09 7373
Reddit k = 10 1052 - O.M. - O.M. - O.M. - O.M.

The “Time” column in Table A.2 denotes the total running time used for the DADAL-

SPCA method. We can see that the “Time” of CovColon, Lymp reported in Table A.2 are

greater than time limit for solver, since additional time are required to implement the other

four updating steps in each iteration. The out of memory (O.M.) for Reddit instance is due

to the memory limitation to load Reddit instance d = 2000 for the update step

µk+1,γk+1 ← arg max
µ≥0,γ≥0

Lσk(µ,γ,Zk;V k,Y k).

We tried to solve the final-dual linear program for Reddit instance, but the LP did not solve

in 5 hours. (This LP has order d2 variables, whereas the number of variables of convex

integer program is order dIposN and IposN � d in this instance.)

To complete the comparison, we also list the comparison between our model in paper

and DADAL, DADAL-SPCA, Mosek in Table A.3.

Based on Table A.3, we observe that the SDP-relaxation solved by Mosek produces the

best bounds for the small instances (Pitprops, Eisen-1, Eisen-2), while DADAL-SPCA is

able to produce bounds for Pitprops, Eisen-1, Eisen-2, CovColon, and Lymp. However, as

we can see, except for Pitprops, the best dual bounds are obtained by solving convex IP

model of this paper.
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Table A.3: Compare with existing SDP methods

Instance LB
Model-in-Paper DADAL [39] DADAL-SPCA (best) Mosek
gap % Time gap % Time gap % Time gap % Time

Pitprops k = 5 3.406 3.26 0.4 82.43 593 1.64 3 1.52 5
Eisen-1 k = 10 17.33 0.115 63 - O.M. 2.19 225 2.19 15
Eisen-2 k = 10 11.71 1.71 385 - O.M. 2.08 898 1.96 52
CovColon k = 10 2641 2.37 28 - O.M. 13.51 7281 - O.M.
Lymp k = 10 6008 17.86 4225 - O.M. 29.67 7339 - O.M.
Reddit k = 10 1052 2.24 8584 - O.M. - O.M. - O.M.
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APPENDIX B

APPENDICES FOR CHAPTER 2

B.1 Additional concentration inequalities

We need the standard multiplicative Chernoff bound (see Theorem 4.4 [74]).

Lemma B.1.1 (Chernoff Bound). Let X1, . . . , Xn be independent random variables taking

values in [0, 1]. Then for any δ > 0 we have

Pr

(∑
i

Xi > (1 + δ)µ

)
<

(
e

1 + δ

)(1+δ)µ

,

where µ = E
∑

iXi.

We also need the one-sided Chebychev inequality, see for example Exercise 3.18 of [74].

Lemma B.1.2 (One-sided Chebychev). For any random variable X with finite first and

second moments

Pr

(
X ≤ EX − t

)
≤ Var(X)

Var(X) + t2
.

B.2 Techniques for reducing the running time of CIP

In practice, we want to reduce the running time of CIP. Here are the techniques that we

used to enhance the efficiency in practice.

B.2.1 Threshold

The first technique is to reduce the number of SOS-II constraints. Let λTH be a threshold

parameter that splits the eigenvalues {λj}dj=1 of sample covariance matrixA into two parts
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J+ = {j : λj > λTH} and J− = {j : λj ≤ λTH}. The objective function Tr
(
V >AV

)
satisfies

Tr
(
V >AV

)
=
∑
j∈J+

(λj − λTH)
r∑
i=1

g2
ji +

∑
j∈J−

(λj − λTH)
r∑
i=1

g2
ji + λTH

d∑
j=1

r∑
i=1

g2
ji,

in which the first term is convex, the second term is concave, and the third term satisfies

λTH

d∑
j=1

r∑
i=1

g2
ji ≤ rλTH (threshold-term)

due to
∑d

j=1

∑r
i=1 g

2
ji ≤ r. Since maximizing a concave function is equivalent to convex

optimization, we replace the second term by a new auxiliary variable s and the third term

by its upper bound rλTH such that

Tr
(
V >AV

)
≤
∑
j∈J+

(λj − λTH)
r∑
i=1

g2
ji − s+ rλTH (threshold-tech)

where

s ≥
∑
j∈J−

(λTH − λj)︸ ︷︷ ︸
≥0

r∑
i=1

g2
ji (s-var)

is a convex constraint.

We select a value of λTH so that |J+| = 3. Therefore, it is sufficient to construct

a piecewise-linear upper approximation for the quadratic terms g2
ji in the first term with

j ∈ J+, i.e., constraint set PLA([J+]× [r]). We thus, greatly reduce the number of SOS-II

constraints fromO(d× r) toO(|J+| × r), i.e. in our experiemnts to 3r SOS-II constraints.

B.2.2 Cutting planes

Similar to classical integer programming, we can incorporate additional cutting planes to

improve the efficiency.
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Cutting plane for sparsity: The first family of cutting-planes is obtained as follows:

Since ‖V ‖0 ≤ k and v1, . . . ,vr are orthogonal, by Bessel inequality, we have

r∑
i=1

g2
ji =

r∑
i=1

(w>j vi)
2 = w>j V V

>wj ≤ θ2
j , (sparse-g)

r∑
i=1

ξji ≤ θ2
j

(
1 +

r

4N2

)
. (sparse-xi)

We call these above cuts–sparse cut since θj is obtained from the row sparsity parameter k.

Cutting plane from objective value: The second type of cutting plane is based on the

property: for any symmetric matrix, the sum of its diagonal entries are equal to the sum

of its eigenvalues. Let Aj1,j1 , . . . ,Ajk,jk be the largest k diagonal entries of the sample

covariance matrixA, we have

Proposition B.2.1. The following are valid cuts for rsPCA:

d∑
j=1

λj

r∑
i=1

g2
ji ≤ Aj1,j1 + · · ·+Ajk,jk . (cut-g)

When the splitting points {γ`ji}N`=−N in SOS-II are set to be γ`ji = `
N
· θj , we have:

∑
j∈J+(λj − λTH)

∑r
i=1 ξji − s+ gλTH ≤ Aj1,j1 + · · ·+Ajk,jk +

∑
j∈J+

r(λj−φ)θ2j
4N2

g ≥
∑d

j=1

∑r
i=1 g

2
ji.

(cut-xi)
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Implemented version of CIP

Thus the implemented version of CIP is

max
∑

j∈J+(λj − λTH)
∑r

i=1 ξji − s+ rλTH

s.t V ∈ CR2

(g, ξ, η) ∈ PLA′

(s-var), (sparse-g), (sparse-xi), (cut-g), (cut-xi)

(CIP-impl)

B.2.3 Submatrix technique

Proposition B.2.2. Given any matrixX ∈ Rm×n, let θ be defined as

θ := 2maxV 1∈Rm×r,V 2∈Rn×r 2Tr
(
(V 1)>XV 2

)
s.t. (V 1)>V 1 + (V 2)>V 2 = Ir,

then θ ≤
√
r‖X‖F

Proof.

max
V 1,V 2

2Tr
(
(V 1)>XV 2

)
s.t. (V 1)>V 1 + (V 2)>V 2 = Ir,

⇔ max
V 1,V 2

Tr

(V 1)> (V 2)>
) 0 X

X> 0


V 1

V 2


 s.t. (V 1)>V 1 + (V 2)>V 2 = Ir,

⇔ max
V

Tr

V >
 0 X

X> 0

V
 s.t. V >V = Ir.
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Note that the final maximization problem is equal to

max
V

Tr

V >
 0 X

X> 0

V
 s.t. V >V = Ir

≤
r∑
i=1

λi


 0 X

X> 0


 ,

Next we verify that the eigenvalues of

 0 X

X> 0


are ± singular values ofX: LetX = UΣW>. In particular, note that:

 0 UΣW>

WΣU> 0


 ui

wi

 =

 UΣei

WΣei

 = σi(X)

 ui

wi

 0 UΣW>

WΣU> 0


 ui

−wi

 =

 −UΣei

WΣei

 = −σi(X)

 ui

−wi

 .

Therefore, we have

r∑
i=1

λi


 0 X

X> 0


 =

r∑
i=1

σi(X) ≤
√
r‖X‖F .
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APPENDIX C

APPENDICES FOR CHAPTER 3

C.1 Proof of Proposition 3.2.1

Proof. Since

φ(β, β0) =
∑

i∈{m+1,...,n}

(max{0,X>i β + β0} − Yi)2,

then it is sufficient to show that (max{0,X>i β + β0} − Yi)2 is convex for each i = m +

1, . . . , n. Let θ(x) = (max{0, x} − Yi)
2 = (max{0, x})2 + Y 2

i − 2Yi max{0, x} with

Yi < 0. Note that θ(x) is convex over x ∈ R. Let L(β, β0) = X>i β + β0 be an affine

function. Then (max{0,X>i β + β0} − Yi)2 = θ(L(β, β0)) is convex.

C.2 Proof of Theorem 8

In order to prove Theorem 8, we show that the subset sum problem can be polynomially

reduced to a special case of ReLU-regression problem. We begin a definition of the subset

sum problem.

Definition C.2.1. Subset sum problem: Given p non-negative integers a1, . . . , ad, the sub-

set sum problem is to find out whether there exists a subset S ⊆ [d] such that
∑

i∈S ai =

1
2

∑d
i=1 ai.

Note that the subset sum problem is equivalent to find out a feasible solution x ∈ {0, 1}d

such that
∑d

i=1 aixi = 1
2

∑d
i=1 ai. Therefore, the following {±1}−subset sum problem is

still NP-hard.

Definition C.2.2. {±1}−subset sum problem: Given d nonnegative integers a1, . . . , ad,

the {±1}−subset sum problem is to decide if there exists a solution x ∈ {±1}d such that
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∑d
i=1 aixi = 1

2

∑d
i=1 ai.

Proposition C.2.1. The decision problem {±1}−subset sum problem is in NP-complete.

Proof. Clearly, {±1}−subset sum problem is in NP. In order to show that {±1}−subset

sum problem is in NP-complete, we show that the instance of subset sum corresponding

to (a1, . . . , ad) is feasible if and only if the {±1}−subset sum instance (a1, . . . , ad, ad+1)

with ad+1 =
∑d

i=1 ai is feasible.

Clearly if the subset set instance is feasible, then there exists a subset S ⊆ [d] such that∑
i∈S ai = 1

2

∑d
i=1 ai. Then setting xi = 1 for i ∈ S ∪ {d+ 1} and xi = −1 for i ∈ [d] \ S

gives us:
∑d+1

i=1 aixi = 1
2

∑d+1
i=1 ai.

On the other hand if the {±1}−subset sum is feasible, there exists some xi ∈ {−1, 1}d+1

such that
∑d+1

i=1 aixi = 1
2

∑d+1
i=1 ai. First observe that xd+1 cannot be −1 since then we

would have that
∑d

i=1 aixi = 2
∑d

i=1 ai. Thus, we have that
∑d

i=1 aixi = 0 implying that

there exists S ⊆ [d] such that
∑

i∈S ai = 1
2

∑d
i=1 ai.

Now we show the equivalence between {±1}−subset sum problem and a special case

of ReLU-regression problem. Consider the following auxiliary function θ(x, β0) defined

as:

(max{0, x+ β0} − 1)2 + (max{0,−x+ β0} − 1)2

(See Figure C.1). For a fixed x, let g(β0) = minx θ(x, β0). Let τ(β, β0) be

τ(β, β0) :=

(
max

{
0,

p∑
i=1

aiβi + β0

}
− 1

2

p∑
i=1

ai

)2

+

(
max

{
0,

p∑
i=1

2 · aiβi + β0

}
−

p∑
i=1

ai

)2

.
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Figure C.1: Function θ(x, β0)

We construct our affine ReLU-regression problem as follows:

min
β,β0∈Rd+1

τ(β, β0) +
d∑
i=1

θ(e>j β, β0) +

(
max{0, β0}+ 10d

)2

. (ReLU)

Observe that solving (ReLU) is equivalent to training a ReLU-regression where the data

samples are:

1. X1 = [a1, . . . , ad], Y1 = 1
2

∑d
i=1 ai

2. X2 = [2 · a1, . . . , 2 · ad], Y1 =
∑d

i=1 ai

3. X2i+1 = ei, Y2i+1 = 1,X2i+2 = −ei, Y2i+2 = 1 for i ∈ {1, . . . , d}.

4. X2d+3 = 0, Y2d+3 = 10d.

Now we verify Theorem 8 by showing that the {±1}−subset sum problem iff the training

error in solving (ReLU) is d+ 100d2.

Thus

• Suppose the {±1}−subset sum problem with non-negative parameters a1, . . . , ad
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has a feasible solution x ∈ {±1}d such that
∑d

i=1 aixi = 1
2

∑d
i=1 ai. Let β = x and

β0 = 0, we have that the objective function value of (ReLU) is d+ 100d2.

• Suppose the {±1}−subset sum problem does not have a feasible solution. Let β, β0

be the optimal solution to (ReLU). Then, observe that

g(β0) =

 2β2
0 − 4β0 + 2 if β0 ≥ 1−

√
2

2

1 if β0 ≤ 1−
√

2
2

(≤ 1
2
)

We consider four cases:

1. β0 ≥ 1−
√

2
2

: In this case

τ(β, β0) + d · g(β0) + (max{0, β0}+ 10d)2

≥ 0 + d(2β2
0 − 4β0 + 2) + (β0 + 10d)2

= (2d+ 1)β2
0 + 16dβ0 + 2d+ 100d2

> d+ 100d2.

2. 0 < β0 ≤ 1−
√

2
2

: In this case

τ(β, β0) + d · g(β0) + (max{0, β0}+ 10d)2

≥ 0 + d× 1 + (β0 + 10d)2

> d+ 100d2

3. β0 < 0: Note that 1
2

∑d
i=1 ai > 0 and therefore τ(β, β0) = 0 iff β0 = 0. In

particular in this case τ(β, β0) > 0. Therefore, we have τ(β, β0) + d · g(β0) +

(max{0, β0}+ 10d)2 > 0 + d · 1 + 100d2.

4. β0 = 0: In this case, observe that the objective function value τ(β, β0) +∑d
i=1 θ(e

>
j β, β0)+(max{0, β0}+10d)2 is greater than 0+d ·1+100d2. How-
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ever, for equality to hold in the above inequality, we must have θ(e>j β, β0) = 1

for j ∈ [d] and τ(β, β0) = 0, which implies we must have βj ∈ {−1, 1} and∑d
i=1 aiβi = 1

2

∑d
i=1 ai. However since there is no solution to the {±1}−subset

sum problem, we obtain that τ(β, β0) +
∑d

i=1 θ(e
>
j β, β0) + (max{0, β0} +

10d)2 > 0 + d · 1 + 100d2.

C.3 Proof of Proposition 3.2.2

Proof. Rewrite

‖max{0,Xβ + β01} − Y ‖2
2 =

m∑
i=1

(max{0,X>i β + β0} − Yi)2 + φ(β, β0).

Note that Yi > 0 for all i ∈ [m], then we have:

(max{0,X>i β + β0} − Yi)2 ≤ (X>i β + β0 − Yi)2

(max{0,X>i β + β0} − Yi)2 ≤ σ(X>i β + β0, Yi)

holds for all i ∈ [m]. Since for any I ⊆ [m]

m∑
i=1

(max{0,X>i β + β0} − Yi)2 + φ(β, β0)

≤
∑
i∈I

(X>i β + β0 − Yi)2 +
∑

i∈[m]\I

σ(X>i β + β0, Yi) + φ(β, β0),

then taking minimum on both side implies min(β,β0)∈Rp×R ‖max{0,Xβ + β01} − Y ‖2
2 ≤

zσ(I).

Moreover, recall Iopt is the active set corresponding to a globally optimal solution
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(βopt, βopt
0 ) as defined above. We have:

zσ(Iopt) ≤
∑
i∈Iopt

(X>i β
opt + βopt

0︸ ︷︷ ︸
≥0

−Yi)2 +
∑

i∈[m]\Iopt

σ(X>i β
opt + βopt

0︸ ︷︷ ︸
<0

, Yi) + φ(βopt, βopt
0 )

=
∑
i∈Iopt

(X>i β
opt + βopt

0 − Yi)2 +
∑

i∈[m]\Iopt

Y 2
i + φ(βopt, βopt

0 )

= zopt.

Combine with zopt = ‖max{0,Xβ+β01}−Y ‖2
2 ≤ zσ(Iopt), we have zopt = zσ(Iopt).

C.4 Proof of Proposition 3.2.2

Proof. Recall that (βopt, βopt
0 ) is a globally optimal solution, and zopt is the globally optimal

value of ReLU-regression. Let Iopt =
{
i : X>i β

opt + βopt
0 > 0

}
⊆ [m] be the active set

corresponds to (βopt, βopt
0 ). Based on the input condition of Algorithm 4, the response

samples {Yi} satisfies:

0 < Y1 ≤ Y2 ≤ . . . ≤ Ym.

Given k as a predefined integral parameter, pick k indices i1, i2, . . . , ik such that 0 ≤ i1 <

. . . < ik ≤ m, from Algorithm 4, let

[m]\Î :={1, . . . , i1} ∪

(
k⋃
`=2

{i`}

)

be the inactive set, and

Î :=

(
k−1⋃
`=1

{i` + 1, . . . , i`+1 − 1}

)
∪ {ik + 1, . . . ,m}

be the active set.

Suppose Iopt is of size |Iopt| ≥ m − k + 1, let {s`}d`=1 with d ≤ k − 1 be the set of
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increasingly-sorted indices that are not in Iopt. Let j = d + 1 ≤ k, set i1 = 0, i` = s`−1,

for all ` = 2, . . . , j. Then we see that Algorithm 4 would discover the optimal solution and

thus solve the ReLU-regression problem exactly. Therefore, henceforth we assume that

|Iopt| ≤ m− k.

Now pick i1, . . . , ik as the largest increasingly-sorted indices that not in Iopt. Therefore

we have: (1) Î ⊆ Iopt, (2)
⋃k
`=1{i`} ⊆ [m]\Iopt, and (3) ik−1 ∈ Iopt if ik−1 6= ik−1, these

three conditions further implies that

Iopt\Î ⊆ {1, . . . , i1 − 1}.

Since the approximation algorithm examines this solution, we will use this “solution” to

obtain an upper bound on the quality of solution produced by the Algorithm.

Thus the objective value zσ(Î) is further upper bounded as follows:

zσ(Î) = min
(β,β0)∈Rd×R

∑
i∈Î

(X>i β + β0 − Yi)2 +
∑

i∈[m]\Î

σ(X>i β + β0, Yi) + φ(β, β0)

≤
∑
i∈Î

(X>i β
opt + βopt

0︸ ︷︷ ︸
≥0

−Yi)2 +
∑

i∈Iopt\Î

σ(X>i β
opt + βopt

0︸ ︷︷ ︸
≥0

, Yi)

+
∑

i∈[m]\Iopt

σ(X>i β
opt + βopt

0︸ ︷︷ ︸
<0

, Yi) + φ(βopt, βopt
0 )

=
∑
i∈Î

(X>i β
opt + βopt

0 − Yi)2 +
∑

i∈Iopt\Î

σ(X>i β
opt + βopt

0 , Yi)

+
∑

i∈[m]\Iopt

Y 2
i + φ(βopt, βopt

0 ).

Split Iopt\Î into the following two parts:

Ĩ+ :=
{
i ∈ Iopt\Î : X>i β

opt + βopt
0 > 2Yi

}
,

Ĩ− :=
{
i ∈ Iopt\Î : 2Yi ≥X>i βopt + βopt

0 ≥ 0
}
,
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the second term of above equals to:

∑
i∈Iopt\Î

σ(X>i β
opt + βopt

0 , Yi) =
∑
i∈Ĩ+

(X>i β
opt + βopt

0 − Yi)2 +
∑
i∈Ĩ−

Y 2
i .

Therefore,

zσ(Î) ≤
∑
i∈Î∪Ĩ+

(X>i β
opt + βopt

0 − Yi)2 +
∑

i∈Ĩ−∪([m]\Iopt)

Y 2
i + φ(βopt, βopt

0 ). (UB)

Since Iopt = Î ∪ Ĩ+ ∪ Ĩ−, then the globally optimal value of ReLU-regression can be

represented as

zopt

=
∑
i∈Iopt

(X>i β
opt + βopt

0 − Yi)2 +
∑

i∈[m]\Iopt

Y 2
i + φ(βopt, βopt

0 )

=
∑
i∈Î∪Ĩ+

(X>i β
opt + βopt

0 − Yi)2 +
∑
i∈Ĩ−

(X>i β
opt + βopt

0 − Yi)2 +
∑

i∈[m]\Iopt

Y 2
i + φ(βopt, βopt

0 ).

Note {i1, . . . , ik} is a subset of [m]\Iopt based on our choice i1, . . . , ik, then define the term

D as:

D :=
∑
i∈Î∪Ĩ+

(X>i β
opt + βopt

0 − Yi)2 +
∑

i∈[m]\Iopt

Y 2
i + φ(βopt, βopt

0 )

︸ ︷︷ ︸
≥
∑k
j=1 Y

2
ij

. (D-ineq)

Since UB and zopt can be represented as:

(UB) := D +
∑
i∈Ĩ−

Y 2
i , zopt := D +

∑
i∈Ĩ−

(X>i β
opt + βopt

0 − Yi)2
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then the approximation ratio ρ guaranteed by Algorithm 4 is upper bounded as follows:

ρ :=
zσ(Î)

zopt ≤
(UB)

zopt =
D +

∑
i∈Ĩ− Y

2
i

D +
∑

i∈Ĩ−(X>i β
opt + βopt

0 − Yi)2
≤
D +

∑
i∈Ĩ− Y

2
i

D
≤ n

k

where the final inequality holds because of the following: with {Yi}mi=1 increasingly-sorted,

the term
∑

i∈Ĩ− Y
2
i can be upper bounded by

∑
i∈Ĩ− Y

2
i ≤ |Ĩ−| · Y 2

i1
by Ĩ− ⊆ {1, . . . , i1 − 1},

≤ |Ĩ−|
k
·
∑k

j=1 Y
2
ij

by Yij ≥ Yi1 for all j ∈ [k],

≤ |Ĩ−|
k
·D by previous inequality of D,

≤ n−k
k
·D by Ĩ− ⊆ Iopt, |Iopt| ≤ n− k,

then replacing
∑

i∈Ĩ− Y
2
i by n−k

k
·D gives the final approximation ratio.

C.5 Proof of Theorem 10

We first verify Proposition 3.2.3 and Proposition 3.2.4. Proposition 3.2.3 is a consequence

of the following result:

Theorem 11 (Mickey, 1963). Let g be a function on X × Θ where X is a Euclidean

space and Θ is a compact set of Euclidean space. Let g(x, θ) be a continuous function

of θ for each x ∈ X and a measurable function of x for each θ. Assume assume that

|g(x, θ)| ≤ h(x) for all x ∈ X and θ ∈ Θ, where h is integrable with respect to a probabil-

ity distribution function F on X . If x1, x2, . . . is a random sample from F then for almost

every sequence {xt}

1

n

n∑
t=1

g(xt, θ)→
∫
g(x, θ)dF (x)

uniformly for all θ ∈ Θ.

Proof. of Proposition 3.2.3 Let ψy(Xβ + β0, Y ) be defined as in Proposition 3.2.3. Let
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X = Rp × R be a Euclidean space, and let Θ be the same convex compact set in As-

sumption 3.2.1. We have ψy(Xβ + β0, Y ) is a continuous function of (β, β0) for each

(X, Y ) ∈ X and a measurable function of (X, Y ) for each (β, β0) ∈ Θ. Moreover, since

Θ is a convex compact set, then there exists a constant dΘ > 0 such that |θi| ≤ dΘ for all

i = 0, 1, . . . , d. Define function h(X, Y ) as

h(X, Y ) = 2

(
d∑
i=1

|[X]i| · dΘ + dΘ

)2

+ 2Y 2

where [X]i denotes the ith component of X for i = 1, . . . , d. Thus we have h(X, Y ) ≥

|ψy(Xβ + β0, Y )| holds for all (X, Y ) ∈ X and (β, β0) ∈ Θ, where h(X, Y ) is inte-

grable with respect to a probability distribution N × D on X . Since all the conditions in

Theorem 11 holds, Proposition 3.2.3 holds.

Proposition 3.2.4 is a consequence of the following result:

Theorem 12 (Jennrich, 1969). Under the statistical model: yt = f(xt, θ0) + εt for all

t = 1, . . . , n when xt is ith “fixed” input vector and {εt} are i.i.d. distributed errors with

zero mean and same finite unknown variance. Any vector θ̂n ∈ Θ which minimizes the

residual sum of squares

Sn(θ) :=
1

n

n∑
t=1

(f(xt, θ)− yt)2

is said to be strongly consistent of θ0 (i.e., θ̂n → θ0 almost surely as n → ∞) under the

following condition: Dn(θ, θ′) convergence uniformly to a continuous function D(θ, θ′)

and D(θ, θ0) = 0 if and only if θ = θ0 where

Dn(θ, θ′) =
1

n

n∑
t=1

(f(xt, θ)− f(xt, θ
′))2.

Proof. of Proposition 3.2.4 Based on Theorem 11, with the similar proof of Proposi-

133



tion 3.2.3, we have:

1

n

n∑
i=1

(
max{0,X>i β + β0} −max{0,X>i β∗ + β∗0}

)2

︸ ︷︷ ︸
=:Dn((β,β0),(β∗,β∗0 ))

→ EX∼N ,ε∼D
[(

max{0,X>β + β0} −max{0,X>β∗ + β∗0}
)2
]

︸ ︷︷ ︸
=:D((β,β0),(β∗,β∗0 ))

uniformly for almost every sequence {Xi, Yi}. Moreover, a direct consequence of the sec-

ond property of distributionN (Unique Optimal Property) implies thatD((β, β0), (β∗, β∗0)) =

0 if and only if (β, β0) = (β∗, β∗0). Thus, since all conditions of Theorem 12 hold, Propo-

sition 3.2.4 holds.

Proof. of Theorem 10 The optimal value of the asymptotic objective function from sorting

algorithm can be upper bounded by replacing optimal solution with the true parameter β∗

as follows:

min
β∈Θ

EX∼N ,ε∼D[ψy(X
>β + β0, Y )] ≤ EX∼N ,ε∼D[ψy(X

>β∗ + β∗, Y )],

where EX∼N ,ε∼D[ψy(X
>β∗ + β∗0 , Y )] can be split into the sum from (T1) to (T7):

EX∼N ,ε∼D
[
ψy(X

>β∗ + β∗0 , Y )
]

= E
[
Y 2 | 0 < Y ≤ y, 0 <X>β∗ + β∗0 ≤ 2Y

]
· P(0 < Y ≤ y, 0 <X>β∗ + β∗0 ≤ 2Y ) (T1)

+ E
[
Y 2 | 0 < Y ≤ y,X>β∗ + β∗0 ≤ 0

]
· P(0 < Y ≤ y,X>β∗ + β∗0 ≤ 0) (T2)

+ E
[
(X>β∗ + β∗0 − Y )2 | 0 < Y ≤ y, 2Y <X>β∗ + β∗0

]
· P(0 < Y ≤ y, 2Y <X>β∗ + β∗0)

(T3)

+ E
[
(X>β∗ + β∗0 − Y )2 | y < Y, 0 <X>β∗ + β∗0

]
· P(y < Y, 0 <X>β∗ + β∗0) (T4)

+ E
[
(X>β∗ + β∗0 − Y )2 | y < Y,X>β∗ + β∗0 ≤ 0

]
· P(y < Y,X>β∗ + β∗0 ≤ 0) (T5)

+ E
[
ε2 | Y ≤ 0,X>β∗ + β∗0 ≤ 0

]
· P(Y ≤ 0,X>β∗ + β∗0 ≤ 0) (T6)

+ E
[
ε2 | Y ≤ 0, 0 <X>β∗ + β∗0

]
· P(Y ≤ 0, 0 <X>β∗ + β∗0). (T7)
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Since term (T1) - (T7) can be reformulated as follows:

(T1) = E[Y 2 | 0 < Y ≤ y, 0 <X>β∗ + β∗0 ≤ 2Y ] · P(0 < Y ≤ y, 0 <X>β∗ + β∗0 ≤ 2Y ),

(T2) = E[ε2 | 0 < Y ≤ y,X>β∗ + β∗0 ≤ 0] · P(0 < Y ≤ y,X>β∗ + β∗0 ≤ 0),

(T3) = E[ε2 | 0 < Y ≤ y, 2Y <X>β∗ + β∗0 ] · P(0 < Y ≤ y, 2Y <X>β∗ + β∗0),

(T4) = E[ε2 | y < Y, 0 <X>β∗ + β∗0 ] · P(y < Y, 0 <X>β∗ + β∗0),

(T5) = E
[
(X>β∗ + β∗0 − ε)2 | y < ε,X>β∗ + β∗0 ≤ 0

]
· P(y < ε,X>β∗ + β∗0 ≤ 0),

(T6) = E
[
ε2 | Y ≤ 0,X>β∗ + β∗0 ≤ 0

]
· P(Y ≤ 0,X>β∗ + β∗0 ≤ 0),

(T7) = E
[
ε2 | Y ≤ 0, 0 <X>β∗ + β∗0

]
· P(Y ≤ 0, 0 <X>β∗ + β∗0),

note that (T1) is upper bounded by y2, (T2) + (T3) + (T4) + (T6) + (T7) ≤ Var(ε) = γ2,

and by Lemma C.5.1 (proved below) and setting y = 0,

zasy ≤ EX∼N ,ε∼D[ψ0(X>β∗ + β∗0 , Y )] ≤ γ2 +
γ2

2
+

2 + 2∆2

√
2π

γ.

To lower bound zasy, note that ψy(X>β∗ + β0, Y ) ≥
(
max{0,X>β∗ + β0} − Y

)2 holds

for any (β, β0) ∈ Θ and any (X, Y ) ∈ X , and by Proposition 3.2.4, the optimal value

of asymptotic version of ReLU-regression problem is γ2, thus z∗ is lower bounded by γ2.

Combine lower and upper bounds together, we have

γ2 ≤ zasy ≤ 3γ2

2
+

2 + 2∆2

√
2π

γ.

Lemma C.5.1. Assume the underlying statistical model 3.2.1 holds, we have

(T5) ≤ γ2

2
+

2 + 2∆2

√
2π

γ.

Proof. Assume the underlying statistical model 3.2.1, we haveX>β∗+β∗0 satisfies E[X>β∗+
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β∗0 ] = β∗0 ,Var(X>β∗ + β∗0) = (β∗)>Σβ∗ = ∆2, thus (T5) is upper bounded by

E
[
(X>β∗ + β∗0 − ε)2 | y < ε,X>β∗ + β∗0 ≤ 0

]
· P(y < ε,X>β∗ + β∗0 ≤ 0)

=

∫
v∈R
u∈R

(u− v)2fdudv · P(y < ε,X>β∗ + β∗0 ≤ 0) (∗)

where f := f(ε = v,X>β∗ + β∗0 = u |y < ε,X>β∗ + β∗0 ≤ 0) is the conditional joint

density function of variables ε,X>β∗ + β∗0 . Then

(∗) =
∫
v>y
u≤0

(u2 − 2uv + v2)f(ε = v)f(X>β∗ + β∗0 = u)dudv

=

∫
v>y

f(ε = v)dv ·
∫
u≤0

u2f(X>β∗ + β∗0 = u)du

− 2

∫
v>y

vf(ε = v)dv ·
∫
u≤0

uf(X>β∗ + β∗0 = u)du

+

∫
v>y

v2f(ε = v)dv ·
∫
u≤0

f(X>β∗ + β∗0 = u)du

where

∫
u≤0

u2f(X>β∗ + β∗0 = u)du ≤ ∆2,

−1−∆2 ≤
∫
u≤0

uf(X>β∗ + β∗0 = u)du ≤ 1 + ∆2,∫
u≤0

f(X>β∗ + β∗0 = u)du ≤ 1.

Suppose the noise ε follows Gaussian distribution N(0, γ2), then

(∗) ≤
∫
v>y

f(ε = v)dv ·∆2 + 2

∫
v>y

vf(ε = v)dv ·
(
1 + ∆2

)
+

∫
v>y

v2f(ε = v)dv · 1

=
1

2
erf
(

y√
2γ

)
·∆2 +

2√
2π
e
− y2

2γ2 γ ·
(
1 + ∆2

)
+

(
1√
2π
yγe

− y2

2γ2 +
γ2

2
erfc

(
y√
2γ

))
· 1

≤ ∆2y√
2πγ

+
2 + 2∆2

√
2π

γe
− y2

2γ2 +
1√
2π
yγe

− y2

2γ2 +
γ2

2
e
− y2

2γ2
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where the final inequality holds since

erf(z) :=
2√
π

∫ z

0

e−t
2

dt ≤ 2z√
π
, erfc(z) := 1− erf(z) ≤ e−z

2

.

Since the above inequality holds for any y ≥ 0, then set y = 0, we have

(∗) ≤ γ2

2
+

2 + 2∆2

√
2π

γ.

C.6 Methods for Comparison in Numerical Experiments

C.6.1 Sorting Method

The sorting method that used in Section 3.3.2 is a special case of Algorithm 4 which follows

Algorithm 8. The above sorting method is a special case of Algorithm 4 with parameter

Algorithm 8 Sorting Method
Input: Set of sample points {(Xi, Yi)}ni=1 ∈ Rd × R, integer 1 ≤ T ≤ n.
Output: A feasible solution β̂.

1: Without loss of generality, sort {Yi}ni=1 as Y1 ≤ Y2 ≤ . . . ≤ Yn.
2: for t = 0, 1, . . . , T do
3: Set It ← {b t

N
nc+ 1, . . . , N} ⊆ {1, . . . , T} for t = 0, 1, . . . , T − 1, and IT ← ∅.

4: Set βt ← arg minβ∈Rp f
σ
It(β).

5: Compute the objective value of the ReLU-regression with βt as

optt ←
n∑
i=1

(max{0,X>i βt} − Yi)2.

6: end for
7: return β̂ where β̂ is a feasible solution with the minimum optt.

k = 1 and subset

{i} =

 {b
t
T
nc} if t = 1, . . . , T

∅ if t = 0
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which implies the term corresponds to b t
T
nc-th index in the objective function of ReLU-

regression is not in the quadratic part (i.e., not active) but in the σ function part.

C.6.2 Appendix: Iterative Method

Given any feasible solution β of the ReLU-regression problem, let the iterative set I(β)←

{i ∈ [n] : X>i β > 0} be the set of indices that in the linearity part of ReLU function

max{0,X>i β}. The iterative method that used in Section 3.3.2 follows Algorithm 9. The

Algorithm 9 Iterative Heuristic
Input: Set of sample points {(Xi, Yi)}ni=1 ∈ Rd × R, initial feasible solution β0 ∈ Rd,
maximum number of iterations T .
Output: A feasible solution β̂.

1: Initialize t = 0.
2: Set the past iterative set set I−1 ← ∅.
3: Set the initial iterative set set I0 ← I(β0) := {i ∈ [n] : X>i β

0 > 0}
4: Denote the iterative set in tth iteration be It.
5: while t < T and It 6= It−1 do
6: Set βt+1 ← arg minβ∈Rd f

σ
It(β).

7: Set It+1 ← I(βt+1).
8: Set t← t+ 1.
9: end while

10: return β̂ where β̂ is the final feasible solution obtained in the loop.

iterative heuristic method guarantees the decreasing of objective value in each iteration,

i.e., minβ∈Rd f
σ
It(β) ≤ minβ∈Rd f

σ
It+1(β) for t = 0, 1, 2, . . .. Moreover, the algorithm 9

terminates in finite number of iterations.

C.6.3 Appendix: Gradient Descent Method

The gradient descent method that used in Section 3.3.2 and 3.3.2 is Algorithm 10. Note that

the outer while-loop follows a standard gradient descent method with gradient 1
n
∇βL(βt)

and stepsize ηt, and the inner while-loop uses a back search method that guarantee the

decreasing of objective value in each outer iteration.
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Algorithm 10 Gradient Descent Method
Input: Set of sample points {(Xi, Yi)}ni=1 ∈ Rd × R, initial feasible solution β0 ∈ Rd,
maximum number of iterations T , termination criteria parameter ε > 0, initial stepsize
η0 > 0, stepsize parameter γ > 0, back track parameter α ∈ (0, 1).
Output: A feasible solution β̂.

1: Initialize t = 0, L−1 ← +∞, L(β0)←
∑n

i=1(max{0,X>i β0} − Yi)2.
2: Set βt as the solution obtained in tth iteration.
3: Set ηt as the stepsize used in tth iteration.
4: Set L(β)←

∑n
i=1(max{0,X>i β} − Yi)2.

5: while t < T and L(βt−1)− L(βt) > ε do
6: Set temporary solution β̄ be β̄ ← βt − ηt · 1

n
∇βL(βt).

7: while L(β̄) ≥ L(βt) do
8: Update ηt ← α · ηt
9: Update β̄ ← βt − ηt · 1

n
∇βL(βt).

10: end while
11: Set βt+1 ← β̄.
12: Set ηt ← η0

1+γt
.

13: Set t← t+ 1.
14: end while
15: return β̂ where β̂ is the final feasible solution obtained in the loop.

C.6.4 Appendix: Stochastic Gradient Descent Method

The stochastic gradient descent method used in this paper is presented below. This algo-

rithm follows a similar updating rule of the gradient descent method (Algorithm 10), the

only difference is that in each iteration, the stochastic gradient descent method uniformly

picks a mini-batch of size m from the given set of samples {Xi}ni=1.

C.7 Main Computational Results, Continued

Figure [C.2, C.3] are the continued numerical results that presented in section 3.3.4 which

compare the performance metrics (prediction error, recovery error, generalization error) for

various noise levels. Detailed realizable cases in Appendix C.8 provide an empirical result

of the performances of the methods for comparison. Below we present the notations that

used in each table:

• The first column of each Table in Appendix C.8 is a tuple of 4 elements (d, n, ρ; index)
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Algorithm 11 Stochastic Gradient Descent Method
Input: Set of sample points {(Xi, Yi)}ni=1 ∈ Rd × R, initial feasible solution β0 ∈ Rd,
maximum number of iterations T , termination criteria parameter ε > 0, initial stepsize
η0 > 0, stepsize parameter γ > 0, back track parameter α ∈ (0, 1), size of mini-batch
1 ≤ m ≤ n.
Output: A feasible solution β̂.

1: Initialize t = 0, S0 uniformly picked from {1, . . . , n} with size m, L−1 ← +∞,
L0 ←

∑
i∈S0(max{0,X>i β0} − Yi)2.

2: Set βt as the solution obtained in tth iteration.
3: Set ηt as the stepsize used in tth iteration.
4: Set St as the mini-batch of size m in tth iteration.
5: Set L(S,β)←

∑
i∈S(max{0,X>i β} − Yi)2.

6: while t < T and L(St−1,βt−1)− L(St,βt) > ε do
7: Set St+1 uniformly from {1, . . . , n} with size m.
8: Set temporary solution β̄ be β̄ ← βt − ηt · 1

m
∇βL(St+1,βt).

9: while L(β̄) ≥ L(βt) do
10: Update ηt ← α · ηt
11: Update β̄ ← βt − ηt · 1

m
∇βL(St+1,βt).

12: end while
13: Set βt+1 ← β̄.
14: Set ηt ← η0

1+γt
.

15: Set t← t+ 1.
16: end while
17: return β̂ where β̂ is the final feasible solution obtained in the loop.
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which represents the dimension of β, the number of training samples, the ratio used

for noise εi, and the index of the instance with such settings respectively.

C.8 Realizable Cases

Note that in realizable cases, since the observation samples {Xi}ni=1 are constructed to

guarantee the full column rank, i.e., the globally optimal solution is unique, then finding a

solution with 0 prediction error is equivalent to achieving 0 recovery error. In Figure [C.3c,

3.4c, 3.4g], the averages of the recovery errors of realizable cases are not zero, however

their corresponding prediction errors are very small, this may happen when the methods

cannot find out the globally optimal solutions. The details of realizable cases are presented

in Table [C.1, C.2, C.3, C.4, C.5, C.6, C.7, C.8, C.9, C.10, C.11, C.12, C.13, C.14, C.15].

Table C.1: Realizable Case d = 10, n = 200, sparsity = 0.1 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(10, 200, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.373 0.265 1.803 0.601
(10, 200, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.181 0.163 1.433 0.408
(10, 200, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.107 0.108 0.241 0.155
(10, 200, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.32 0.241 1.805 0.541
(10, 200, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.21 0.181 5.446 0.915
(10, 200, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.176 0.179 0.356 0.248
(10, 200, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.154 0.16 5.439 0.754
(10, 200, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.131 0.118 0.257 0.17
(10, 200, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.205 0.173 1.0 0.377
(10, 200, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.137 0.128 0.216 0.16
(10, 200, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.73 0.535 43.452 2.669
(10, 200, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.227 0.641 0.342
(10, 200, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.207 0.177 0.925 0.36
(10, 200, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.193 0.167 0.706 0.305
(10, 200, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.251 0.227 0.492 0.278
(10, 200, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.669 0.486 1.787 0.65
(10, 200, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.385 0.302 1.607 0.615
(10, 200, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.325 0.244 0.44 0.279
(10, 200, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.494 0.32 1.141 0.503
(10, 200, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.182 0.165 0.323 0.199
(10, 200, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.186 0.16 0.329 0.228
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(t) Generalization error

Figure C.2: Numerical Results of sample size (d, n) = (10, 200) and β∗ ∼ N(0.5 · 1d, 10 · Id)
with sparsity {0.1, 0.25, 0.5, 0.75, 0.9}
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Figure C.3: Numerical Results of sample size (d, n) = (20, 400) and β∗ ∼ N(0.5 · 1d, 20 · Id)
with sparsity {0.1, 0.25, 0.5, 0.75, 0.9}
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Table C.2: Realizable Case d = 10, n = 200, sparsity = 0.25 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(10, 200, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.065 0.075 0.935 0.254
(10, 200, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.046 0.053 0.066 0.064
(10, 200, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.058 0.065 0.185 0.108
(10, 200, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.051 0.058 0.096 0.077
(10, 200, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.06 0.28 0.14
(10, 200, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.045 0.052 0.038 0.046
(10, 200, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.082 0.086 0.106 0.097
(10, 200, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.038 0.047 0.038 0.047
(10, 200, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.034 0.044 0.042 0.047
(10, 200, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.127 0.114 0.313 0.172
(10, 200, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.052 0.06 0.057 0.06
(10, 200, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.039 0.048 0.027 0.035
(10, 200, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.053 0.063 0.089 0.081
(10, 200, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.058 0.063 1.51 0.31
(10, 200, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.059 0.066 0.135 0.092
(10, 200, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.044 0.052 0.109 0.082
(10, 200, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.039 0.049 0.055 0.056
(10, 200, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.036 0.047 0.049 0.057
(10, 200, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.04 0.094 0.069
(10, 200, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.041 0.051 0.059 0.06

Table C.3: Realizable Case d = 10, n = 200, sparsity = 0.5 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(10, 200, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.008 0.016 0.051 0.035
(10, 200, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.018 0.013 0.021
(10, 200, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.028 0.015 0.022
(10, 200, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.018 0.007 0.014
(10, 200, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.019 0.027 0.022 0.029
(10, 200, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.009 0.017 0.005 0.012
(10, 200, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.014 0.023 0.036 0.033
(10, 200, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.012 0.02 0.035 0.03
(10, 200, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.009 0.015 0.008 0.013
(10, 200, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.016 0.024 0.009 0.016
(10, 200, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.012 0.02 0.013 0.017
(10, 200, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.009 0.016 0.008 0.012
(10, 200, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.015 0.023 0.012 0.019
(10, 200, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.011 0.018 0.012 0.02
(10, 200, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.019 0.027 0.019 0.023
(10, 200, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.017 0.026 0.006 0.014
(10, 200, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.013 0.008 0.012
(10, 200, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.021 0.03 0.016 0.025
(10, 200, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.011 0.019 0.034 0.034
(10, 200, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.014 0.023 0.013 0.02
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Table C.4: Realizable Case d = 10, n = 200, sparsity = 0.75 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(10, 200, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.011 0.007 0.012
(10, 200, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.008 0.007 0.01
(10, 200, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.007 0.024 0.02
(10, 200, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.009 0.002 0.005
(10, 200, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.013 0.011 0.015
(10, 200, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.009 0.003 0.007
(10, 200, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.008 0.033 0.022
(10, 200, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.01 0.006 0.01
(10, 200, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.007 0.01 0.012
(10, 200, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.011 0.002 0.006
(10, 200, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.012 0.009 0.014
(10, 200, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.011 0.022 0.02
(10, 200, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.011 0.004 0.008
(10, 200, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.009 0.008 0.014
(10, 200, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.012 0.01 0.013
(10, 200, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.011 0.004 0.009
(10, 200, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.01 0.013 0.013
(10, 200, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.011 0.013 0.013
(10, 200, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.009 0.003 0.006
(10, 200, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.009 0.015 0.008 0.012

Table C.5: Realizable Case d = 10, n = 200, sparsity = 0.9 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(10, 200, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.007 0.009 0.011
(10, 200, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.007 0.007 0.009
(10, 200, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.004 0.011 0.011
(10, 200, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.004 0.019 0.016
(10, 200, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.011 0.059 0.024
(10, 200, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.004 0.005 0.008
(10, 200, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.004 0.006 0.009
(10, 200, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.007 0.002 0.005
(10, 200, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.008 0.009 0.011
(10, 200, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.005 0.008
(10, 200, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.011 0.013 0.012
(10, 200, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.005 0.004 0.006
(10, 200, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.006 0.007 0.009
(10, 200, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.006 0.004 0.007
(10, 200, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.005 0.004 0.007
(10, 200, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.001 0.003
(10, 200, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.009 0.001 0.004
(10, 200, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.007 0.004 0.006
(10, 200, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.013 0.008 0.01
(10, 200, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.008 0.009 0.01
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Table C.6: Realizable Case d = 20, n = 400, sparsity = 0.1 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(20, 400, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.277 0.147 0.343 0.153
(20, 400, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.336 0.179 0.715 0.258
(20, 400, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.212 0.121 0.503 0.187
(20, 400, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.358 0.169 0.558 0.206
(20, 400, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.263 0.141 0.616 0.21
(20, 400, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.392 0.189 1.385 0.348
(20, 400, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.269 0.145 0.369 0.164
(20, 400, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.339 0.171 0.45 0.196
(20, 400, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.515 0.237 0.86 0.306
(20, 400, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.354 0.177 0.568 0.222
(20, 400, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.518 0.238 0.843 0.293
(20, 400, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.334 0.176 1.108 0.315
(20, 400, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.368 0.184 0.611 0.232
(20, 400, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.432 0.217 1.237 0.346
(20, 400, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.461 0.211 0.99 0.304
(20, 400, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.338 0.171 0.357 0.168
(20, 400, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.445 0.212 0.615 0.244
(20, 400, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.469 0.224 0.776 0.29
(20, 400, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.275 0.151 0.35 0.161
(20, 400, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.417 0.205 1.337 0.349

Table C.7: Realizable Case d = 20, n = 400, sparsity = 0.25 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(20, 400, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.044 0.035 0.06 0.04
(20, 400, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.035 0.031 0.083 0.047
(20, 400, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.086 0.063 0.121 0.072
(20, 400, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.057 0.093 0.06
(20, 400, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.054 0.043 0.089 0.052
(20, 400, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.039 0.034 0.042 0.037
(20, 400, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.057 0.044 0.133 0.064
(20, 400, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.073 0.054 0.067 0.049
(20, 400, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.094 0.062 0.185 0.087
(20, 400, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.078 0.058 0.128 0.071
(20, 400, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.052 0.198 0.085
(20, 400, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.046 0.097 0.059
(20, 400, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.066 0.048 0.079 0.051
(20, 400, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.065 0.049 0.075 0.052
(20, 400, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.064 0.048 0.069 0.048
(20, 400, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.057 0.106 0.063
(20, 400, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.082 0.057 0.119 0.067
(20, 400, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.068 0.051 0.152 0.076
(20, 400, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.073 0.055 0.158 0.082
(20, 400, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.048 0.039 0.092 0.052
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Table C.8: Realizable Case d = 20, n = 400, sparsity = 0.5 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(20, 400, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.015 0.017 0.018 0.016
(20, 400, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.015 0.016 0.01 0.011
(20, 400, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.019 0.019 0.015 0.014
(20, 400, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.019 0.019 0.025 0.019
(20, 400, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.023 0.022 0.023 0.019
(20, 400, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.013 0.015 0.011 0.013
(20, 400, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.026 0.025 0.106 0.044
(20, 400, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.024 0.023 0.027 0.022
(20, 400, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.029 0.027 0.01 0.014
(20, 400, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.017 0.018 0.01 0.012
(20, 400, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.018 0.019 0.026 0.02
(20, 400, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.013 0.015 0.028 0.021
(20, 400, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.016 0.017 0.023 0.018
(20, 400, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.012 0.015 0.013 0.015
(20, 400, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.02 0.021 0.019
(20, 400, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.013 0.015 0.011 0.012
(20, 400, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.017 0.017 0.01 0.012
(20, 400, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.027 0.053 0.031
(20, 400, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.011 0.013 0.009 0.01
(20, 400, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.017 0.017 0.01 0.011

Table C.9: Realizable Case d = 20, n = 400, sparsity = 0.75 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(20, 400, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.008 0.005 0.006
(20, 400, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.017 0.017 0.03 0.019
(20, 400, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.008 0.009 0.008
(20, 400, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.011 0.014 0.013 0.011
(20, 400, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.01 0.016 0.013
(20, 400, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.008 0.01 0.009 0.008
(20, 400, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.007 0.013 0.01
(20, 400, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.006 0.005 0.006
(20, 400, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.011 0.013 0.022 0.015
(20, 400, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.012 0.02 0.014
(20, 400, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.012 0.014 0.03 0.019
(20, 400, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.008 0.01 0.013 0.01
(20, 400, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.012 0.008 0.009
(20, 400, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.012 0.014 0.021 0.015
(20, 400, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.008 0.01 0.025 0.015
(20, 400, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.007 0.017 0.012
(20, 400, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.009 0.007 0.008
(20, 400, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.01 0.013 0.011
(20, 400, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.008 0.01 0.01 0.01
(20, 400, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.008 0.007 0.007
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Table C.10: Realizable Case d = 20, n = 400, sparsity = 0.9 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(20, 400, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.005 0.005 0.005
(20, 400, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.005 0.018 0.011
(20, 400, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.006 0.005 0.006
(20, 400, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.007 0.01 0.007
(20, 400, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.009 0.022 0.014
(20, 400, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.009 0.004 0.005
(20, 400, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.007 0.007 0.008
(20, 400, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.006 0.004 0.005
(20, 400, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.007 0.015 0.01
(20, 400, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.007 0.005 0.005
(20, 400, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.007 0.006 0.006
(20, 400, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.008 0.013 0.009
(20, 400, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.007 0.015 0.01
(20, 400, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.007 0.005 0.006
(20, 400, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.006 0.006 0.005
(20, 400, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.004 0.005
(20, 400, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.005 0.01 0.008
(20, 400, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.007 0.008 0.007
(20, 400, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.008 0.006 0.006
(20, 400, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.009 0.011 0.009

Table C.11: Realizable Case d = 50, n = 1000, sparsity = 0.1 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(50, 1000, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.417 0.118 0.571 0.137
(50, 1000, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.438 0.12 0.479 0.127
(50, 1000, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.479 0.128 0.689 0.15
(50, 1000, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.472 0.126 0.705 0.153
(50, 1000, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.585 0.153 0.707 0.165
(50, 1000, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.349 0.105 0.474 0.122
(50, 1000, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.647 0.162 0.875 0.188
(50, 1000, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.516 0.14 0.534 0.138
(50, 1000, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.502 0.137 0.673 0.158
(50, 1000, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.525 0.136 0.591 0.142
(50, 1000, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.596 0.147 0.84 0.174
(50, 1000, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.467 0.126 0.533 0.132
(50, 1000, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.732 0.169 0.94 0.187
(50, 1000, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.417 0.116 0.533 0.129
(50, 1000, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.527 0.142 0.609 0.15
(50, 1000, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.465 0.13 0.538 0.141
(50, 1000, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.148 0.895 0.178
(50, 1000, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.518 0.137 0.797 0.172
(50, 1000, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.509 0.134 0.65 0.15
(50, 1000, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.505 0.132 0.656 0.149
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Table C.12: Realizable Case d = 50, n = 1000, sparsity = 0.25 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(50, 1000, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.032 0.091 0.035
(50, 1000, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.088 0.037 0.079 0.033
(50, 1000, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.072 0.032 0.079 0.032
(50, 1000, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.106 0.043 0.145 0.048
(50, 1000, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.069 0.031 0.076 0.032
(50, 1000, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.076 0.033 0.113 0.039
(50, 1000, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.106 0.042 0.115 0.042
(50, 1000, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.083 0.036 0.093 0.036
(50, 1000, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.085 0.035 0.095 0.037
(50, 1000, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.065 0.03 0.067 0.03
(50, 1000, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.074 0.033 0.067 0.028
(50, 1000, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.079 0.034 0.067 0.029
(50, 1000, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.072 0.032 0.102 0.037
(50, 1000, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.114 0.045 0.132 0.046
(50, 1000, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.085 0.036 0.1 0.037
(50, 1000, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.082 0.035 0.133 0.045
(50, 1000, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.084 0.036 0.086 0.035
(50, 1000, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.084 0.036 0.093 0.037
(50, 1000, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.091 0.037 0.09 0.036
(50, 1000, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.079 0.034 0.09 0.034

Table C.13: Realizable Case d = 50, n = 1000, sparsity = 0.5 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(50, 1000, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.032 0.018 0.038 0.017
(50, 1000, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.014 0.01 0.02 0.012
(50, 1000, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.018 0.012 0.057 0.019
(50, 1000, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.023 0.014 0.025 0.014
(50, 1000, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.029 0.016 0.041 0.017
(50, 1000, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.026 0.015 0.026 0.013
(50, 1000, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.023 0.013 0.019 0.011
(50, 1000, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.023 0.013 0.028 0.013
(50, 1000, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.026 0.015 0.036 0.015
(50, 1000, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.019 0.011 0.018 0.01
(50, 1000, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.016 0.011 0.026 0.013
(50, 1000, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.015 0.017 0.01
(50, 1000, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.022 0.014 0.037 0.016
(50, 1000, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.021 0.013 0.036 0.015
(50, 1000, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.023 0.014 0.037 0.017
(50, 1000, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.025 0.014 0.023 0.013
(50, 1000, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.016 0.011 0.011 0.008
(50, 1000, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.019 0.012 0.041 0.015
(50, 1000, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.016 0.046 0.019
(50, 1000, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.031 0.017 0.034 0.016

149



Table C.14: Realizable Case d = 50, n = 1000, sparsity = 0.75 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(50, 1000, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.005 0.006 0.004
(50, 1000, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.009 0.007 0.011 0.006
(50, 1000, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.009 0.007 0.01 0.006
(50, 1000, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.009 0.007 0.013 0.007
(50, 1000, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.009 0.006
(50, 1000, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.011 0.008 0.008 0.005
(50, 1000, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.008 0.006 0.009 0.006
(50, 1000, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.008 0.007 0.006 0.005
(50, 1000, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.008 0.006
(50, 1000, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.006 0.005
(50, 1000, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.006 0.005
(50, 1000, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.007 0.006
(50, 1000, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.007 0.014 0.007
(50, 1000, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.005 0.015 0.007
(50, 1000, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.005 0.013 0.006
(50, 1000, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.008 0.005
(50, 1000, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.006 0.008 0.006
(50, 1000, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.014 0.007
(50, 1000, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.008 0.025 0.01
(50, 1000, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.007 0.011 0.006

Table C.15: Realizable Case d = 50, n = 1000, sparsity = 0.9 with β∗ ∼ N(0.51d, 10Id)

Settings Sorting Sorting + Iter Sorting + GD GD SGD
Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery Prediction Recovery

(50, 1000, 0.0; 1) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.004 0.01 0.005
(50, 1000, 0.0; 2) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.006 0.005 0.004
(50, 1000, 0.0; 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.004 0.007 0.004
(50, 1000, 0.0; 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.004 0.005 0.003
(50, 1000, 0.0; 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.004 0.008 0.005
(50, 1000, 0.0; 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.01 0.005
(50, 1000, 0.0; 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.005 0.013 0.006
(50, 1000, 0.0; 8) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.004 0.011 0.005
(50, 1000, 0.0; 9) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.004 0.01 0.005
(50, 1000, 0.0; 10) 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.003 0.011 0.006
(50, 1000, 0.0; 11) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.005 0.008 0.005
(50, 1000, 0.0; 12) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.01 0.005
(50, 1000, 0.0; 13) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.009 0.005
(50, 1000, 0.0; 14) 0.0 0.0 0.0 0.0 0.0 0.0 0.002 0.003 0.009 0.005
(50, 1000, 0.0; 15) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.005 0.013 0.006
(50, 1000, 0.0; 16) 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.005 0.01 0.005
(50, 1000, 0.0; 17) 0.0 0.0 0.0 0.0 0.0 0.0 0.006 0.005 0.01 0.005
(50, 1000, 0.0; 18) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.004 0.016 0.007
(50, 1000, 0.0; 19) 0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.006 0.007 0.005
(50, 1000, 0.0; 20) 0.0 0.0 0.0 0.0 0.0 0.0 0.004 0.004 0.005 0.004
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[70] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Springer
Science & Business Media, 2012.

[71] R. Kannan and S. Vempala, “Randomized algorithms in numerical linear algebra,”
Acta Numerica, vol. 26, p. 95, 2017.

[72] J. A. Tropp, “Column subset selection, matrix factorization, and eigenvalue opti-
mization,” in Proceedings of the twentieth annual ACM-SIAM symposium on Dis-
crete algorithms, SIAM, 2009, pp. 978–986.

[73] ——, “User-friendly tail bounds for sums of random matrices,” Foundations of
computational mathematics, vol. 12, no. 4, pp. 389–434, 2012.

[74] M. Mitzenmacher and E. Upfal, Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university
press, 2017.

[75] S. O. Chan, D. Papailliopoulos, and A. Rubinstein, “On the approximability of
sparse PCA,” in Conference on Learning Theory, 2016, pp. 623–646.

[76] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J.
Levine, “Broad patterns of gene expression revealed by clustering analysis of tumor

156



and normal colon tissues probed by oligonucleotide arrays,” Proceedings of the
National Academy of Sciences, vol. 96, no. 12, pp. 6745–6750, 1999.

[77] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald,
J. C. Boldrick, H. Sabet, T. Tran, X. Yu, et al., “Distinct types of diffuse large b-
cell lymphoma identified by gene expression profiling,” Nature, vol. 403, no. 6769,
p. 503, 2000.

[78] S. S. Dey, G. Wang, and Y. Xie, “Approximation algorithms for training one-node
relu neural networks,” IEEE Transactions on Signal Processing, vol. 68, pp. 6696–
6706, 2020.

[79] A. Toriello and J. P. Vielma, “Fitting piecewise linear continuous functions,” Euro-
pean Journal of Operational Research, vol. 219, no. 1, pp. 86–95, 2012.

[80] A. Magnani and S. P. Boyd, “Convex piecewise-linear fitting,” Optimization and
Engineering, vol. 10, no. 1, pp. 1–17, 2009.

[81] Z. Yang, Z. Wang, H. Liu, Y. C. Eldar, and T. Zhang, “Sparse nonlinear regression:
Parameter estimation under nonconvexity,” ICML’16 Proceedings of the 33rd In-
ternational Conference on International Conference on Machine Learning, vol. 48,
pp. 2472–2481, 2016.

[82] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding deep neural net-
works with rectified linear units,” arXiv preprint arXiv:1611.01491, 2016.

[83] M. Soltanolkotabi, “Learning ReLUs via gradient descent,” in Advances in Neural
Information Processing Systems, 2017, pp. 2007–2017.

[84] P. Manurangsi and D. Reichman, “The computational complexity of training relu
(s),” arXiv preprint arXiv:1810.04207, 2018.

[85] S. M. M. Kalan, M. Soltanolkotabi, and A. S. Avestimehr, “Fitting relus via sgd
and quantized SGD,” arXiv preprint arXiv:1901.06587, 2019.

[86] S. Goel, V. Kanade, A. Klivans, and J. Thaler, “Reliably learning the relu in poly-
nomial time,” in Conference on Learning Theory, PMLR, 2017, pp. 1004–1042.

[87] L. Song, S. Vempala, J. Wilmes, and B. Xie, “On the complexity of learning neural
networks,” in Advances in neural information processing systems, 2017, pp. 5514–
5522.

[88] A. Brutzkus and A. Globerson, “Globally optimal gradient descent for a convnet
with gaussian inputs,” in Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, JMLR. org, 2017, pp. 605–614.

157



[89] S. S. Du, J. D. Lee, and Y. Tian, “When is a convolutional filter easy to learn?”
arXiv preprint arXiv:1709.06129, 2017.

[90] S. S. Du, J. D. Lee, Y. Tian, B. Poczos, and A. Singh, “Gradient descent learns
one-hidden-layer CNN: Don’t be afraid of spurious local minima,” arXiv preprint
arXiv:1712.00779, 2017.

[91] S. Goel, V. Kanade, A. Klivans, and J. Thaler, “Reliably learning the ReLU in
polynomial time,” arXiv preprint arXiv:1611.10258, 2016.

[92] S. Goel, A. Klivans, and R. Meka, “Learning one convolutional layer with overlap-
ping patches,” arXiv preprint arXiv:1802.02547, 2018.

[93] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[94] S. M. Kakade, V. Kanade, O. Shamir, and A. Kalai, “Efficient learning of gen-
eralized linear and single index models with isotonic regression,” in Advances in
Neural Information Processing Systems, 2011, pp. 927–935.

[95] A. T. Kalai and R. Sastry, “The isotron algorithm: High-dimensional isotonic re-
gression.,” in COLT, Citeseer, 2009.

[96] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational efficiency of
training neural networks,” in Advances in neural information processing systems,
2014, pp. 855–863.

[97] S. Mei, Y. Bai, and A. Montanari, “The landscape of empirical risk for nonconvex
losses,” The Annals of Statistics, vol. 46, no. 6, pp. 2747–2774, 2018.

[98] M. Raginsky, A. Rakhlin, and M. Telgarsky., “Non-convex learning via stochastic
gradient langevin dynamics: A nonasymptotic analysis,” in Conference on Learn-
ing Theory (COLT), 2017.

[99] X. Zhang, Y. Yu, L. Wang, and Q. Gu, “Learning one-hidden-layer relu networks
via gradient descent,” in The 22nd International Conference on Artificial Intelli-
gence and Statistics, PMLR, 2019, pp. 1524–1534.

[100] Y. Cao and Q. Gu, “Tight sample complexity of learning one-hidden-layer convo-
lutional neural networks,” in Advances in Neural Information Processing Systems,
2019, pp. 10 612–10 622.

[101] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, “The elements of statistical
learning: Data mining, inference and prediction,” The Mathematical Intelligencer,
vol. 27, no. 2, pp. 83–85, 2005.

158



[102] D. Bertsimas, A. King, and R. Mazumder, “Best subset selection via a modern
optimization lens,” The annals of statistics, vol. 44, no. 2, pp. 813–852, 2016.

[103] T. Hastie, R. Tibshirani, and R. J. Tibshirani, “Extended comparisons of best sub-
set selection, forward stepwise selection, and the LASSO,” arXiv preprint arXiv:
1707.08692, 2017.

[104] D. Boob, S. S. Dey, and G. Lan, “Complexity of training ReLU neural network,”
arXiv preprint arXiv:1809.10787, 2018.

[105] M. Mickey, P. Mundle, D. Walker, and A. Glinsk, “Test criteria for Pearson type
III distributions.,” CEIR INC BEVERLY HILLS CALIF, Tech. Rep., 1963.

[106] R. I. Jennrich, “Asymptotic properties of non-linear least squares estimators,” The
Annals of Mathematical Statistics, vol. 40, no. 2, pp. 633–643, 1969.

[107] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep
learning requires rethinking generalization,” arXiv preprint arXiv:1611.03530, 2016.

[108] S. Oymak, B. Recht, and M. Soltanolkotabi, “Sharp time–data tradeoffs for lin-
ear inverse problems,” IEEE Transactions on Information Theory, vol. 64, no. 6,
pp. 4129–4158, 2017.

[109] T. Laurent and J. Brecht, “The multilinear structure of relu networks,” in Interna-
tional Conference on Machine Learning, PMLR, 2018, pp. 2908–2916.

[110] G. Wang, G. B. Giannakis, and J. Chen, “Learning relu networks on linearly separa-
ble data: Algorithm, optimality, and generalization,” IEEE Transactions on Signal
Processing, vol. 67, no. 9, pp. 2357–2370, 2019.

[111] I. Diakonikolas, S. Goel, S. Karmalkar, A. R. Klivans, and M. Soltanolkotabi, “Ap-
proximation schemes for relu regression,” arXiv preprint arXiv:2005.12844, 2020.

[112] S. Frei, Y. Cao, and Q. Gu, “Agnostic learning of a single neuron with gradient
descent,” arXiv preprint arXiv:2005.14426, 2020.

[113] J. Jeffers, “Two case studies in the application of principal component analysis,”
Applied Statistics, pp. 225–236, 1967.

[114] A. d’Aspremont, F. R. Bach, and L. E. Ghaoui, “Full regularization path for sparse
principal component analysis,” in Proceedings of the 24th international conference
on Machine learning, ACM, 2007, pp. 177–184.

[115] S. Bagroy, P. Kumaraguru, and M. De Choudhury, “A social media based index
of mental well-being in college campuses,” in Proceedings of the 2017 CHI Con-

159



ference on Human Factors in Computing Systems, ser. CHI ’17, Denver, Colorado,
USA: ACM, 2017, pp. 1634–1646, ISBN: 978-1-4503-4655-9.

[116] K. Saha and M. De Choudhury, “Modeling stress with social media around inci-
dents of gun violence on college campuses,” Proc. ACM Hum.-Comput. Interact.,
vol. 1, no. CSCW, 92:1–92:27, Dec. 2017.

[117] J. W. Pennebaker, M. E. Francis, and R. J. Booth, “Linguistic inquiry and word
count: LIWC 2001,” Mahway: Lawrence Erlbaum Associates, vol. 71, no. 2001,
p. 2001, 2001.

[118] Y. R. Tausczik and J. W. Pennebaker, “The psychological meaning of words: LIWC
and computerized text analysis methods,” Journal of language and social psychol-
ogy, vol. 29, no. 1, pp. 24–54, 2010.

[119] S. Burer and R. D. Monteiro, “Local minima and convergence in low-rank semidef-
inite programming,” Mathematical Programming, vol. 103, no. 3, pp. 427–444,
2005.

160


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Notations
	Summary
	1 | Using L1-relaxation and integer programming to obtain dual bounds for sparse PCA
	Introduction
	Main results
	Proof of Theorem 1
	Numerical experiments

	2 | Solving row-sparse principal component analysis via convex integer programs
	Introduction
	Convex relaxations of F
	Upper (dual) bounds for rsPCA
	Lower (primal) bounds for rsPCA
	Numerical experiments
	Conclusion

	3 | Approximation Algorithms for Training One-Node ReLU Neural Networks
	Introduction
	Theoretical Results 
	Numerical results
	Conclusions and discussions

	Appendices
	A | Appendices for Chapter 1
	B | Appendices for Chapter 2
	C | Appendices for Chapter 3

	References

