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SUMMARY

Deep neural networks (DNNs) have made remarkable improvements in intelligent tasks

such as image and speech recognition. However, the energy-efficiency of DNNs is highly

limited by moving the data back and forth between the memory and the processor in

von Neumann-based hardware. To overcome this bottleneck, compute-in-memory (CIM),

where the computation is done at the location of the data storage, has been proposed to

accelerate the computation. Emerging non-volatile memory (eNVM) based crossbar ar-

ray has been proposed to implement the vector-matrix multiplication (VMM), the most

compute-intensive operation in DNNs. The objective of this thesis work is to investigate

the ferroelectric and metal-insulator phase transition devices for neuromorphic computing.

This research first focused on doped HfO2 based ferroelectric field-effect transistor (Fe-

FET)s for synaptic devices. For the first time, this work proposed a 3D vertical chan-

nel NAND-like FeFET array architecture feasible for both in-situ training and inference.

To address the challenge of erase-by-block in 3D NAND-like structure, we proposed and

experimentally demonstrated the drain erase scheme to enable the individual cell pro-

gram/erase/inhibition, which is necessary for in-situ training. The drain erase experimental

conditions were characterized on 22nm fully-depleted silicon-on-insulator (FESOI) and

28nm high-k metal gate (HKMG) FeFET devices from GlobalFoundries. Then a 3D tim-

ing sequence of single-cell weight update was designed and verified through 3D-array level

SPICE simulation. Finally, the VMM operation was validated in 3D-array for inference.

To achieve multi-level states for analog in-memory computing, the ferroelectric thin

film needs to be partially switched. We identified a new challenge of ferroelectric par-

tial switching, namely “history effect” in minor loop dynamics. A testing protocol was

established to measure the real-time polarization response corresponding to the voltage

sequence applied with the virtual ground measurement method. Furthermore, a similar

programming protocol was designed to tune the intermediate channel conductance states
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in 28nm FeFET. The experimental characterization of both ferroelectric capacitor (FeCap)

and FeFET validated the history effect, suggesting that the intermediate states programming

condition depends on the prior states that the device has gone through. To gain physical

insights into the minor loop dynamics, a phase-field model was constructed based on the

time-dependent Landau-Ginzburg model to understand the origin. Even though the device

may have the same polarization state that is externally observable, its internal domain con-

figuration varies depending on its history. Such history effect was then incorporated into

the FeFET based neural network simulation to analyze its negative impact on the training

accuracy. Then a possible strategy was proposed to mitigate its negative impact.

A neuromorphic system consists of both synapses and neurons. Apart from using Fe-

FET as a synaptic device, using the metal-insulator phase transition device, as a neuron

was also explored experimentally. A crossbar array that structurally resembled a column of

weights in the neural network was fabricated, where one neuron was connected with mul-

tiple synapses in parallel for on-chip integration. Instead of using complex complementary

metal–oxide–semiconductor (CMOS) neuronal circuit, a NbOx threshold switch was inte-

grated at the edge of the crossbar array as a compact oscillation neuron, which converts the

weighted sum to an oscillation frequency. When the input vectors were loaded into multiple

rows of the array, the oscillation frequency was measured to be proportional to the analog

column current. This was the first experimental demonstration of an integrated crossbar

array with both synapses and neurons, paving the path to fully parallel computation and

processing using emerging device technologies for neuromorphic computing.

One promising application for FeFET+NbOx neuromorphic system is to implement

quantum error correction (QEC) circuitry at 4K. Quantum computers are built with qubits.

In a classical system, a bit would have to be in one state or the other. However, quantum

mechanics allows the qubit to be in a coherent superposition of both states simultaneously,

a property that is fundamental to quantum mechanics. Quantum computers have the po-

tential to tackle computational-hard problems. However, a qubit is known to be fragile and
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will lose its coherence with thermal noises. Therefore, the physical qubits need to be kept

at ultra-low temperature (at 20 milli-Kelvin). And QEC is essential for fault-tolerant quan-

tum computing. It is challenging to individually connect each physical qubit (at 20 milli-

Kelvin) to a room temperature controller due to interconnect complexity. It is thus highly

desirable to operate the QEC at 4K. In this work, we proposed implementing the surface

code QEC circuitry with FeFET+NbOx recurrent neural network accelerator in cryogenic

temperature. Cryo-NeuroSim, a device-to-system modeling framework that calibrated the

transistor and interconnects parameters with experimental data at cryogenic temperature

was developed to benchmark the performance of the FeFET+NbOx neuromorphic system.

In summary, this thesis work explored the building blocks of neuromorphic system

with emerging semiconductor devices from fundamental device physics, to array-level op-

erations, and potential applications at system-level.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation for Neuromorphic Computing with Non-volatile Memory

Deep neural networks (DNNs) have made significant improvements in intelligent tasks such

as image classification, speech recognition and natural language processing. However, the

accuracy of DNNs exclusively relies on complex models with hundreds of millions of con-

nections and a large amount of training data. For example, one of the representative DNNs

algorithms, VGG-16 network [1] needs 138M parameters and 15.5G floating-point pre-

cision multiply-and-accumulate (MAC) operations to classify one 224 × 224 input image

and these numbers become higher for even deeper neural networks. With the rising demand

for data size, moving the data back and forth between the memory and the processor in von

Neumann-based hardware becomes a bottleneck for the energy-efficiency of conventional

hardware accelerators for DNNs . Compute-in-memory (CIM) where the computation is

directly performed within memory can avoid data communication between memory units

and processing units, thus accelerating the DNNs inference and training [2].

In recent years, resistive memory based crossbar array has been proposed to perform

the weighted sum and weight update operations in the neural network, which are the

most computation-intensive operations in the DNNs. As shown in Figure 1.1, in the CIM

paradigm, the input vector (e.g. activations from the previous layer) will activate multiple

rows of the memory array by voltage, the analog current along the columns will represent

the weighted sum as the output vector, thus achieving parallel weighted sum computing

and accelerate the computing. Towards neuro-inspired computing, various memory candi-

dates such as static random-access memory (SRAM)[3] and emerging non-volatile memory

(eNVM) including phase-change memory (PCM) [4, 5] and resistive random-access mem-
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Figure 1.1: (a) The weight matrix between two layers in the neural network. (b) The
crossbar array structure to implement the weight sum operation in the neural network

ory (RRAM) [6, 7, 8, 9] have been explored for application in both inference and in-situ

training. Prototype CIM systems with SRAM [3] have been demonstrated at the array-level.

Nevertheless, the high leakage power of SRAM limits its application for edge devices.

PCM is among the most developed with promising performance such as high switching

speed (≤100 ns) and endurance (≤109 cycles) [10]. Geoffrey W. Burr et.al [4] demon-

strated a PCM based multi-layer perceptron consisting of one input layer (528 input neu-

ron), two hidden layers (250 and 125 hidden neurons respectively) and one output layer (10

output neurons) for MNIST handwritten digit classification. Because of the asymmetry be-

tween SET and RESET programming of PCM, synapses were implemented with two PCM

cells (2S2R). However, due to the nonlinearity and asymmetry of PCM devices, the train-

ing accuracy was limited to 82.2 %. To improve the PCM based neuron network, device

engineering is needed. W. Kim et.al [5] demonstrated a confined PCM device that offered

low resistance drift and 1000 programmable states. By utilizing a 3-layer fully-connected

neural network with 528-200-10 neurons, MNIST simulations yielded high accuracy 95 %.

Apart from PCM, RRAM was also actively explored as a candidate for synapse. In 2015,
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Prezioso et al. [6] demonstrated the experimental implementation of a 12 × 12 transistor

free RRAM crossbar array to a single-layer perceptron. The implemented neuron network

consisted of 10 inputs and 3 outputs. The network was trained for the classification of

3 × 3 binary images. The black/white of each pixel was mapped to the 9 input voltage.

With one more constant bias input voltage, 10 inputs were fed into the crossbar array row

input. Each weight was implemented by a pair of cells so that the negative weights could

be represented. This network was trained in-situ and could achieve perfect classification

after 23 training epoch on average. Apart from analog synaptic, binary eNVM was also

explored. S. Yu et al.[11] demonstrated a binary neuron network (BNN) on a 16Mb binary

RRAM MARCO chip with 130nm complementary metal–oxide–semiconductor (CMOS)

technology. The training was performed off-chip through software. Then the weight was

quantized to 1-bit and programmed to RRAM array for inference. Even with the non-

perfect bit yield and endurance, this network achieved ∼ 96.5 % training accuracy. This

methodology was also applicable to other binary memories such as SRAM and PCM. The

BNN needs more synapses cell than the analogue synapses resulting in lower array effi-

ciency. However, it avoids nonlinear weight update problems in analogue synapses, thus

getting higher accuracy. Two-terminal eNVMs can form a simple crossbar array but will

suffer from the sneak path issue. While the two-terminal selectors can potentially solve this

problem, the technology for the two-terminal selector is still premature[12]. Therefore, the

two-terminal memory device needs to integrate with one transistor to form a 1T1R array,

diminishing the density benefit.

However, these embedded memory technologies typically have MB-level capacity which

is insufficient to hold GB-level weights of large-scale DNNs. Compared to the two-terminal

devices, the three-terminal transistor structure separates the write and read path, thus avoid-

ing the sneak path issue. Therefore, there are approaches using the charge-trap-transistor

[13], 2D NOR Flash [14], 2D NAND Flash [15], or even 3D NAND/AND Flash [16, 17].

H.T. Lue et al.[17] proposed design methods to implement 3D NAND Flash into a high-
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density, high-bandwidth and low power nonvolatile compute-in-memory accelerator for

DNNs. This design used a single-level cell as the weight synapse to gain high reliability

and error tolerance. Although the device is in single-level cell (SLC) operation in both

weight and input, the “shifter and adder” design can produce 4bit resolution, with the cost

of more cells. Because of the invincible high-density of 3D-NAND over other memory

devices, even though the binary single-level weight needs more cell to achieve multi-bit

resolutions, it could still provide a very low cost and low power solution. This 3D-NAND

network can support a heavy network of VGG16. VGG16 requires a large number of weight

(138M in 4bit Input 4bit Weight) and a huge MAC (15.5G in 4bit Input 4bit Weight). 6.5Gb

3D NAND cell is needed for VGG16 computing. However, due to the high write voltage

and long write latency, Flash-based solutions are only applicable for inference instead of

in-situ training where the weights are frequently updated.

To this end, doped HfO2 based ferroelectric field-effect transistor (FeFET) shows great

potential as the synaptic device for neuro-inspired computing[18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28]. Doped HfO2 based FeFET operates similarly as Flash with tunable threshold

voltage, but its lower write voltage (∼3V) and shorter write latency (∼50ns) [29, 30, 31]

overcome the aforementioned shortcomings of Flash. We will discuss the details in the

next subsection.

1.2 Ferroelectric Device for Synaptic Device

FeFET has reignited research interests since the discovery of ferroelectricity in silicon

doped HfO2 (Si: HfO2) after post-deposition annealing [32]. T.S.Boscke et al. [32] demon-

strated ferroelectric behavior in the films of SiO2 doped hafnium oxide. It also reported the

TiN capping before annealing is needed for the formation of the ferroelectric crystallinza-

tion phase. Another commonly used doped HfO2 material is Hf1-xZrxO2 (HZO) due to its

lower annealing temperature [33, 34]. J. Müller et al. [35] demonstrated the implementa-

tion of ferro-HfO2 into device structure similar to the DRAM or HKMG transistors getting
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Figure 1.2: FeFET’s threshold voltage can be tuned by partial polarization switching of
ferroelectric HZO gate stack. The tunable channel conductance is used to map the multi-
bit weights in the neural network.

1 transistor 1 cap and ferroelectric field-effect transistor. Doped HfO2 enables the transfer

of ferroelectric based devices into mainstream CMOS platforms due to its silicon process-

ing compatibility and scalability [35]. The integrations of Si: HfO2 to the foundry standard

28nm high-k metal-gate (HKMG) CMOS flow and 22nm planar fully-depleted silicon-

on-insulator (FDSOI) platform have been demonstrated [30, 31]. M.Trentzsh et al. [30]

demonstrated FeFET with functionality on larger memory arrays embedded into a foundry

standard 28nm super low power HKMG CMOS flow. A fully functional 64 kbit FeFET

array was demonstrated. The memory window is 1V. In the following year, S. Dünkel et al.

[31] demonstrated the implementation of FeFET into a leading edge 22nm FSDOI CMOS

technology. 1.5V memory window was achieved in ultra scaled FeFET with 0.025 µm 2

cell size. Besides its superior CMOS compatibility and scalability, scaled FeFET at ad-

vanced technology node also holds the advantages of short write latency (<50ns) and low

write energy (∼fJ/bit) [29, 30, 31] since the switching of the FeFET is field-driven on the

gate where the drain current is minimal, thus making the FeFET a promising candidate for

ultra-dense, low-leakage and fast storage memory candidate.

To this end, ferroelectric transistors have been intensively explored as synaptic devices
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in the research community[18, 19, 20, 21, 22, 23, 24, 26]. The FeFET is structured by

inserting a thin layer of ferroelectric thin film (e.g. Si: HfO2, Zr: HfO2 or HZO) to the

gate stack of a conventional metal-oxide-semiconductor field effect transistor (MOSFET).

By applying a sufficiently high voltage pulse to the gate of the FeFET that results in a

voltage drop across the ferroelectric layer being larger than its coercive voltage (Vco), the

polarization direction of the ferroelectric can be set to either assist in the inversion of the

channel or to enhance its accumulation state. This results in a polarization-dependent shift

of threthold voltage, thus tunable channel conductance if being read-out by a fixed gate

voltage. The multi-level states of the channel conductance could map the multi-bit weights

in the neural network.

Another important requirement for training synaptic device is the endurance of the de-

vice, considering the weight is frequently updated during training. The 28nm HKMG Fe-

FET reported 105 endurance cycles [30], while K. Chatterijee et al. reported endurance

of more than 107 cycles of FeFET [36]. Take the MNIST dataset for example, there are

60k images for the batch-based training. If we assume the number of training images

in one batch size is 100, and the training takes 100 epochs, device will need to update

60k/100×100= 6×104 cycles at most, but not every cycle the device is going to be written

due to the sparsity of the weight gradients. Practically, our simulation result shows max-

imum 1,109 cycles are updated for MNIST dataset in a 6-bit weight precision, which is

within the reported endurance range of the FeFET[28]. It should be noted that the result is

from quantized 6-bit weight training, the weight update is less frequent than the floating-

point weight training. In addition, the weight update relies on the partial switching thus the

endurance cycling could be potentially more relaxed than the full switching in the digital

memory application. Considering the improved endurance as reported by K. Chatterijee et

al. [36], FeFET could be sufficiently reliable to train even larger-scale dataset.

Table 1.1 summarized the recent papers reporting synaptic devices using FeFETs. H.

Mulaosmanovic et al. [19] proposed using FeFET integrated with 28nm HKMG technology
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Table 1.1: Representative prototypes of ferroelectric transistor-based synapses

Reference [18] [19] [20] [21] [22] [23] [24]

Synapse
1T-
1FeFET

FeFET MFISFET
Ferro
Fin-
FET

IGZO
FeFET

WOx

channel
FeFET

2T-
1FeFET

# of states 32 - 32 32 64 16 64/128
Pulse
scheme

non-
identical

non-
identical

non-
identical

identical
non-
identical

non-
identical

identical

Weight
update
voltage(V)

-3.8
∼4.45

-4∼5
-1.92
∼2.47
(FeCap)

-3.2
∼3.7

-3.6
∼4.3

-3 ∼3.1 3.3

Weight up-
date pulse
width

75ns 1µs∼1ms 50µs 100µs 10ms 5µs 5ns

Device
Size(W/L)

0.6/20
µm

0.5/0.5
µm

-
250/120
nm

- 20/5µm 4/2 µm

Gmax/Gmin 45 - - 5.5 14.4 - 26

Recognition
Accuracy

MNIST
∼90%

-
MNIST
∼84.34%

MNIST
∼80%

MNIST
∼91.1%

-

MNIST
∼97.3%
CIFAR-
10
∼87%
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and a resistive element connected between gate the drain as a synaptic unit. The graduate

modulation of the FeFET’s conductance through the switching of ferroelectric hafnium ox-

ide was explored to mimic the update of the weighted synapse for a spike-timing-dependent

plasticity (STDP) process. S. Oh et al. [20] proposed a HfxZr1-xO (HZO)-based ferroelec-

tric synaptic device with multi-levels states of remnant polarization that is equivalent to

multi-levels conductance states. In this work, TiN/HZO/TiN ferroelectric capacitor (Fe-

Cap) stack was fabricated and characterized. Three types of pulse scheme (A: identical

pulse; B: increasing pulse width; C: increasing programming voltage scheme ) were used

to modulate the polarization state of the FeCap. The results indicated that scheme C was

beneficial for obtaining multi-level remnant polarization in ferroelectric-based synaptic de-

vices. Moreover, symmetric and linear conductance changes were obtained in a simulation

for metal-ferroelectric-insulator-silicon field-effect transistor (MFISFET) during potenti-

ation and depression. And the simulation of a neuron network consisting of 528 inputs,

250 neurons hidden layer 1, 125 neurons hidden layer 2 and 10 outputs was performed

using MNIST dataset. As a result, the neural network simulation showed 84.34 % pat-

tern recognition accuracy. M.Jerry et al. [18] proposed FeFET analog synapses for DNN

training. 5-bit FeFET synsapse with symmetric potentiation and depression characteris-

tics was demonstrated. To achieve symmetric potentiation and depression weight update,

non-identical pulsed with different pulse amplitude was chosen to program the cell. The

programming pulses has 75ns pulse width and pulse amplitude ranges from -3.8V to 4.45V.

This work benchmarked the FeFET based synaptic devices using 2 layer multilayer per-

ceptron (MLP) neural network with a circuit-level macro model, NeuronSim [37]. The

MNIST dataset was trained and 90% accuracy was achieved. There are various approaches

explored with alternative device structure or materials for ferroelectric synaptic transistors,

that include highly scalable junctionless ferroelectric FinFET synapse [21], nanoscale fer-

roelectric thin film transistor (FeTFT) with IGZO as oxide channel [22], and back-end-of-

line process compatible FeFET with tungsten oxide (WOx) as the channel [23]. However,
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the recognition accuracy for a single ferroelectric transistor still suffers from degradation

due to weight-update asymmetry/nonlinearly and limited bit precision. X. Sun et al. [24]

proposed a 2-Transistor-1-FeFET based synaptic weight cell design that exploits hybrid-

precision for in-situ training and inference. In the design, 2 transistors (1 PMOS and 1

NMOS) were used to modulate the gate biasing. This work proposed a novel approach

where the ”volatile” gate voltage of FeFET was mapped to the least significant bits (LSBs)

for symmetric/linear update during the training, and ”non-volatile” polarization states of

FeFET was mapped to the most significant bits (MSBs) for inference purpose. The 2T-

1FeFET design can achieve 98.3% learning accuracy with the slight nonlinearity FeFET,

which is close to the software accuracy∼ 98.5%. For the more complex CIFAR-10 dataset,

the training accuracy ∼87% while the software baseline is ∼90%. A follow-up work [38]

discussed the details of the array-level operations of this 2T-1FeFET based design and

performed the circuit-level benchmark against another hybrid precision synapse based on

2PCM+3T1C[39]. The system-level benchmark results show that 2T-1FeFET synaptic cell

could reduce the training latency and energy significantly compared to 2PCM+3T1C synap-

tic cell. It is expected that the area and performance of 2T-1FeFET based design could be

further improved if the FeFET could be scaled to the sub-50nm regime while maintaining

2-bit MSBs.

1.3 Metal-Insulator Phase Transition Device for Neuron Device

The aforementioned memory devices based crossbar or sudo crossbar array has been pro-

posed to implement the vector matrix multiplication (VMM). When the input vector (volt-

age) is fed into the crossbar array, the weighted sum current will sink to the neuron node

at the end of the column. Typically, the column current needs to be digitized through

integrated-and-fire neuron or analog-to-digital converter (ADC) [40]. However, such cir-

cuits are complex and occupy a much larger silicon footprint than the column pitch of

the crossbar array, therefore the neuron circuit needs to be shared among multi-columns,
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Figure 1.3: Typical I-V characteristics of NbOx

thereby reducing the computation parallelism. Recently, NbOx has attracted much atten-

tion due to its Metal-Insulator-Transition(MIT) characteristic with potential application as

the selector or oscillation neuron [41, 42, 43, 44]. NbOx based compact threshold switch

devices could potentially get rid of the complex CMOS neuron circuit, resulting in∼12.5×

reduced area based on the prior circuit-level simulation study [45].

1.3.1 Threshold Switching Mechanism in NbOx

NbOx belongs to the strong correlated oxides, where the oxide switch between an insulating

state and metallic state with the external stimulus either thermally or electrically[46]. In

the majority research reports, disordered amorphous Nb2O5 is deposited and sandwiched

between two metal electrode. Then the an electroforming process needs to be performed

to reduce region of material to Nbx. The material is initially in the insulating phase. As the

external stimulus reaches a certain threshold value a critical temperature (Tc) or a critical

threshold voltage (Vth), a sharpe phase transition happens and the resistance of the material

drops 2-5 orders of magnitude. When the stimulus is removed, the system reverts back to

the insulating phase. The typical I-V characteristic of the NbOx is shown in Figure 1.3.

There are several research effects in explaining the mechanism of threshold switching
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behavior in NbOx. M. Pickett et al. [47] proposed that the switching was through localized

Joule heating induced thermally driven insulator-to-metal phase transition. It assumed a

cylindrical conducting filament composed of two phase. The inner part consists of a metal-

lic phase with low resistance, the outer part has an oxide phase with high resistance[47].

As the current flow through it, the inner metallic core with high current density will in-

crease the temperature due to Joule heating. When the temperature exceeded the transition

temperature of about 1070K, a fraction of outer oxide phase turneds into metallic phase,

thus reducing the resistance overall device resistance. M. Pickett et al.[47] demonstrated

the model fitted well with the linear plot of the quasi-state current-voltage(I-V) character-

istic. However, logarithmic I-v plot revealed the deviations between model and measure-

ment. Alternatively, the Poole-Frenkel assisted thermal runaway process with combination

of self-heating and exponential temperature and electric field dependence was proposed to

explain the switching mechanism [48, 49]. S. Slesazeck et al.[48] demonstrated that the

negative slope of the negative differential resistance current-voltage characteristics can be

reproduced quite nicely by the Poole–Frenkel conduction mechanism in combination with

a moderate Joule heating and an external serial resistance. This work used 1D analyti-

cal model, while C. Funck et al. [49] demonstrated a multidimensional simulation of the

threshold switching in NbO2. The model correctly predicted the experimentally observed

threshold I-V characteristic, inclusive of features such as the narrow opening of the hystere-

sis and the magnitude of current on/off ratio. Alternatively, there were also reports argued

that the nature of metal-insulator transition in NbO2 was driven by the second-order transi-

tion of the Peierls type[50, 51]. A. Hara et al. [50] demonstrated the density function theory

calculations of crystalline NbO2 polymorphs that supported Peierls mechanism. M. wahila

et al. [51] proved this theory with synchrotron x-ray spectroscopy and density functional

theory study of crystalline epitaxial NbO2 thin film thin films. The spectroscopy study re-

vealed a second-order, temperature-dependent Peierls transition driven by the weakening

of Nb dimerization without significant electron correlations.
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Figure 1.4: Circuit configuration of an oscillation neuron node with threshold switch de-
vices and resistive synaptic weight.

1.3.2 NbOx Based Oscillation Neuron

To implement the neuron node in the neural network with NbOx, the circuit diagram is

shown in Figure 1.4. Initially, the NbOx is at OFF-state, when the input voltage (VDD)

is applied, the parasitic capacitor will be charged. According to the voltage divider rule,

the neuron node should be charged up to VDD ×ROFF/ (ROFF+ RRRAM). If the node volt-

age is larger than the threshold voltage, the NbOx will be turned on and its resistance will

be reduced to RON. Then the neuron node voltage will be reduced, resulting in capaci-

tor discharging. The neuron node voltage will be discharged down to VDD ×RON/ (RON+

RRRAM). Similarly, if this discharged voltage is less than hold voltage (Vhold), the NbOx

will be turned off. Thus the neuron node voltage oscillates between Vhold and Vth. The

switching frequency is expected to be proportional to the weighted sum current. In this

way, the output analog current can be converted to the number of oscillation spike at the

neuron output.

12



Prior works have explored the feasibility of the implementation of NbOx as the neu-

ron device. K. Moon et al. demonstrated the nanoscale Mo/PCMO based synapses de-

vices and NbOx based MIT neuron devices for the neuromorphic system [41]. With the

connected Mo/PCMO resistive synapse and NbOx threshold switching device, the neuron

node demonstrated oscillation behavior. When the resistance of the Mo/PCMO resistive

synapse increased, the oscillation frequency decreased. L. Gao et al. [52] proposed using a

metal-insulator-transition device to function as a compact oscillation neuron, achieving the

same functionality as the CMOS neuron but occupying a much smaller area. Pt/NbOx/Pt

devices were fabricated, exhibiting the threshold switching I-V hysteresis. When the NbOx

device was connected with an external resistor (i.e., the synapse), the neuron started a self-

oscillation. P. Y. Chen et al. [45] systematically studied the feasibility of using NbOx as a

compact oscillation neuron in the RRAM synaptic array. A Verilog-A behavior model of

MIT device was built to capture the switching characteristics with parameters of RON, ROFF,

Vth and Vhold. The impact of the MIT device parameter has been systematically studied.

Compared to the CMOS neuron, oscillation neuron showed ≥ 12.5× reduction of area at

single neuron node level, and showed a reduction of ∼4% total area, ≥30% latency, ∼5×

energy and ∼40× leakage power at 128×128 array level, demonstrating its advantage for

neuro-inspired computing.

1.4 Research Objective and Contribution

Previous studies have shown that FeFET offers great potential as a synaptic device for deep

neural network implementation. However, there remain challenges that may prevent Fe-

FET synaptic usage at a large scale array. Firstly, in-situ training of the weights on the

FeFET array requires independent program/erase on individual cells. The program/erase

of individual cells in most current design needs positive and negative gate voltage without

considering the body influence since all the cell as bulk devices shared the same body po-

tential. Reis et al. [53] proposed to solve the problem by introducing the column-wise body
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Figure 1.5: Illustration of the history effect in ferroelectric partial switching: Two mi-
nor loops are simulated by the Preisach model: smaller red (S0→S2→S1) and larger blue
(S0→S3→S2→S1). Both paths have the transition from S2 to S1. However, the smaller red
minor loop takes less voltage (Vc<VD).

concept, which means separating the body in each column. However, this way may increase

the array area and fabrication complexity. To avoid using negative bias scheme and body

separation issue, this thesis proposed an all-positive-voltage scheme based on drain–erase

that could ground the body all the time without changing of fabrication procedure and

realize individual cell’s independent erase/program even in a NAND-like array[26, 25].

Another primary challenge for using FeFET for the synaptic device is the history effect

in intermediate state programming. The multi-level states of the channel conductance could

map the multi-bit weights in the deep neural network. The weight update rule in the neural

network generally requires that the weight of each synapse can be modulated incrementally,
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indicating that the ferroelectric device follows the minor loop instead of the saturation loop

in the polarization-voltage (P-V) hysteresis. In this work, we identify a new challenge of

deterministically tuning FeFET into multi-level states, namely “history effect” in minor

loop dynamics[27, 28]. Figure 3.1 shows the simulated two different minor loop paths:

a smaller one (S0→S2→S1) and a lager one (S0 → S3→S2→S1). Both paths have the

transition from S2 to S1. However, the smaller loop takes less voltage than the larger loop

for the same S2 to S1 transition, and the only difference is that prior to S2, the larger loop has

gone through S3. This suggests that partial polarization switching has a history effect that

the switching voltage not only depends on its current state but also its history. Such history

effect may be detrimental to the multi-level states tuning since additional information such

as the history path of the device is needed to accurately tune the device to the target state.

This means additional storage is needed thus complicating the peripheral circuit design. To

our best knowledge, so far there is no experimental validation on the history effect and the

Preisach model is phenomenological without deep physical insights. For the first time, we

experimentally demonstrated the history effect in both our in-house fabricated FeCap and

industry-grade 28nm FeFET. Then we will explain the minor loop history effect through

a physics-based phase-field domain switching dynamic model. Furthermore, we evaluated

the negative impact of history effect on in-situ training of a neural network.

Apart from using the FeFETs as synaptic devices, this thesis also investigated the fea-

sibility of integrating the NbOx devices as oscillation neuron in the neuromorphic system.

This work demonstrated a crossbar array that structurally resembled a column of the neural

network, where one neuron was connected with multiple synapses in parallel for on-chip in-

tegration[54]. Instead of using a complex CMOS neuronal circuit, we integrated a threshold

switch at the edge of the crossbar array as a compact oscillation neuron, which converted

the weighted sum to an oscillation frequency. When the input vectors were loaded into

multiple rows of the array, the oscillation frequency was measured to be proportional to

the analog column current. This was the first experimental demonstration of an integrated
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crossbar array with both synapses and neurons, paving the path to fully parallel computa-

tion and processing using emerging device technologies for neuromorphic computing.

Finally, this thesis explored the possible application of FeFET+NbOx based neuron net-

work accelerator as the quantum error correction circuit[55]. Even at deep cryogenic tem-

perature 20 milli-Kevin, the qubit is fragile, therefore a feedback loop is needed to perform

the quantum error correction (QEC). This work proposed implementing the surface code

QEC circuitry with CIM based recurrent neural network accelerator. It is highly desirable

to operate the QEC at 4K to minimize the thermal heat transfer between the physical qubits

and the peripheral control circuitry. Prior study has demonstrated the FeFET characteristic

under 4K[56]. This work investigated the cryogenic behavior of NbOx. Furthermore, we

incorporated the measured results with the FeFET cryogenic behavior and evaluated a neu-

romorphic system using FeFET as resistive synapses and NbOx as oscillation neurons at 4K

with SPICE simulation. Then the QEC circuitry with FeFET and NbOx was benchmarked.

1.5 Overview of the Thesis

In summary, this thesis addressed the key challenges of FeFET synaptic device including

the drain-erase scheme for individual cell weight update and the physical origin of history

effect and its influence on neuron network training. Then it investigated the feasibility of

integrating the NbOx devices as oscillation neuron in the neuromorphic system. Finally

one promising application of this system: quantum error correction circuit was explored.

Chapter 1 gives an overview of the background of the work in this thesis, including

the motivation of the neuromorphic computing system, the current status and challenges of

FeFET synaptic device and NbOx based oscillation neuron.

Chapter 2 presents a 3D vertical channel NAND-like ferroelectric transistor (FeFET)

array architecture feasible for both in-situ training and inference. To address the challenge

of erase-by-block in a 3D NAND-like structure, we proposed and experimentally demon-

strated the drain erase scheme to enable the individual cell program/erase/inhibition, which
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is necessary for in-situ training. The experimental conditions were characterized on 22nm

FDSOI and 28nm HKMG FeFET devices from GlobalFoundries. A 3D timing sequence

of single-cell weight update was designed and verified through 3D-array level SPICE sim-

ulation. Finally, the VMM operation was validated in 3D-array.

Chapter 3 presents the history effect in the ferroelectric material. In order to validate

the history effect in the ferroelectric material. A two-terminal metal-ferroelectric-metal

ferroelectric capacitor structure was fabricated and characterized by a new testing protocol

to experimentally measure different transition paths in ferroelectric capacitors (FeCap).

We also designed a similar testing protocol to examine the history effect on the 28nm

HKMG FeFET devices from GlobalFoundries. To gain physical insights into the minor

loop dynamics, we constructed a phase-field model based on the time-dependent Landau-

Ginzburg model. We modeled such history effect into the FeFET based neural network

simulation and analyze its negative impact on the training accuracy and then propose a

possible mitigation strategy.

Chapter 4 demonstrates an integrated crossbar array with resistive synapses and oscil-

lation neurons. A crossbar array that structurally resembled a column of weights in the

neural network was fabricated, where one neuron was connected with multiple synapses

in parallel for on-chip integration. Instead of using a complex CMOS neuronal circuit, we

integrated a threshold switch at the edge of the crossbar array as a compact oscillation neu-

ron, which converted the weighted sum to an oscillation frequency. When the input vectors

were loaded into multiple rows of the array, the oscillation frequency was measured to be

proportional to the analog column current. This was the first experimental demonstration

of an integrated crossbar array with both synapses and neurons, paving the path to fully

parallel computation and processing using emerging device technologies for neuromorphic

computing.

Chapter 5 explores the application of possible application of the FeFET+NbOx based

neuron network accelerator as the quantum error correction circuit. To serve this purpose,

17



we utilized the technology parameters from the experimental data of 28nm CMOS in refer-

ence [57]. Then we presented a cryogenic characterization of Pt/NbOx/Pt threshold switch-

ing devices. Finally, we incorporated these cryogenic models into NeuroSim [58], a widely

used benchmark tool for neural network accelerators, to benchmark the performance of the

whole system.

Chapter 6 summarizes the results and contribution of this thesis. Future work is also

proposed in this chapter.
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CHAPTER 2

DRAIN ERASE SCHEME IN FERROELECTRIC FIELD EFFECT TRANSISTOR

2.1 Motivation

CIM with eNVM can accelerate the DNNs by parallelizing VMM operations in the analog

domain. To this end, SRAM [3] and eNVM such as PCM [4, 5] and RRAM [7, 8, 9] have

been explored for both in-situ training and inference. However, these embedded memory

technologies typically have MB-level capacity. State-of-the-art DNNs need GB on-chip

memory, requiring much higher density than the embedded NVMs available today. For

example, ResNet-18 network [59], one of the representative DNNs needs 11 million pa-

rameters. Alternatively, 3D NAND flash based solutions are proposed to implement DNNs

leveraging their mature fabrication technology and ultra high-density[17]. However, Flash

cell’s high operating voltage and long write time make it inappropriate for in-situ training

where the weights need to be updated frequently.

Alternatively, FeFET is recently proposed as a promising candidate as a multilevel

synaptic device for in-situ training on-chip [18, 24]. The structure of FeFET is like the

Flash memory except that the floating gate or charge trapping layer is replaced by the fer-

roelectric thin film. A 4-layer 3D vertical channel FeFET prototype has been experimen-

tally demonstrated [60]. Therefore, FeFET can potentially be integrated in 3D NAND-like

structure with high density while maintain low programming power, which can be an ideal

candidate for the resistive synaptic memory device in the CIM based DNNs accelerator.

However, one grand challenge remains to use 3D NAND FeFET for in-situ training, which

is the block-erase nature of the NAND array. In the DNNs training operation, each weight

needs to be updated independently, which means the conductance the synaptic devices

can be independently increased or decreased. This means the conventional substrate-erase
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scheme in NAND array is not applicable as it will erase the entire block.

In this work, we proposed a 3D NAND-like FeFET array architecture feasible for both

in-situ training and inference. We proposed and experimentally demonstrated the drain-

erase scheme to enable the individual cell’s program/erase/inhibition, which is necessary

for individual weight update in in-situ training. Then we focused on the array-level design

for drain-erase scheme. For simplicity, the individual cell operation on a 2D FeFET array

was discussed first, as the proposed 2D drain-erase scheme could be extended to 3D with

a carefully designed timing sequence. The biasing scheme of 2D NAND array were both

designed to show individual cell’s erase/program with the drain-erase scheme. Finally, the

VMM operation was simulated in 3D NAND-like FeFET array for inference.

2.2 Device Characterization

Figure 2.1(a) shows the 2D NAND FeFET array’s circuit diagram. A NAND cell string

consists of FeFET transistors and two select CMOS transistors (string select transistor and

ground select transistor). FeFETs in the same column are connected in series forming a

string. Select transistors are connected to the top and bottom of the string to isolate FeFET

cells from the bit line (BL) and common source line (CSL), respectively. The gates of all

the cells in the same row are connected through the same word line (WL). Cells that share

the same WL or source/drain terminals should be carefully thought over as they could be

possibly disturbed. During the write operation, the cell’s bias condition can be categorized

into four modes: program mode, erase mode, program-inhibition mode and erase-inhibition

mode (as shown in Figure 2.1(b)).

For example, to erase one individual cell (Cell A) in the NAND array as shown in Fig-

ure 2.1(a) through the drain side, the voltage of drain side should be increased by increasing

the voltage of BL1. Thus the upper transistors need to be turned on with WL voltage larger

than Verase+Vth to pass the Verase to the selected cell A. The cell D is in program-inhibition

mode as it receives high voltage on its gate, it might be programmed if the channel gate to
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Figure 2.1: Proposed drain-erase scheme in NAND array. (a) Erase operation for an in-
dividual cell A. (b) Cell program, erase, program inhibition and erase inhibition operation
modes that are of considerations in this work.

channel potential difference is high. To inhibit it from being programmed, BL2 needs to

be biased at inhibition voltage Vinhibit to raise the channel potential. Cell C is in the erase-

inhibition mode as it receives Vinhibit on its drain side. To avoid it from being erased, Vinhibit

should not be too high. These two inhibition conditions need to be considered in erase and

program scheme. The following subsections will focus on the single cell’s bias condition

characterization.

A. Drain-Erase Testing and Discussion

To calibrate the appropriate bias conditions for a single cell’s drain-erase, we performed

measurement on GLOBALFOUNDRIES 22nm FDSOI FeFET[31] and 28nm HKMG Fe-

FET[30]. The device characterization was done by Keysight B1500A and B1530A. The

gate and drain pads were connected to the remote-sense and switch unit (RSU) that can

switch between the pulse measurement unit (PMU) and the source measurement unit (SMU).

The source and body were connected to the SMUs. Figure 2.2(a) shows the typical drain-
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Figure 2.2: (a) FeFET gate, drain and source node waveform for drain-erase
scheme condition testing. (b) Experimental demonstration of 22nm FDSOI FeFET
(W/L=170nm/24nm)’s ID-VG curve after applying different amplitude of drain-erase pulses
(VD=1V∼3V, VG=0, VS=1.5V and pulse width=10µs).

erase testing waveform. A 3V/1s gate pulse was applied first to fully program the FeFET

cell to the same programmed state by PMU. Then different amplitude of drain-erase pulses

were applied to the drain side (VD=1V∼3V, pulse width = 10 µs) by PMU. Meanwhile,

during the erase operation, gate and body were grounded and source was biased at 1.5V

by SMU. After the erase operation, the cell ID-VG curve was acquired in read operation

by sweeping the gate voltage from -0.1V to 0.1V, while applying 50mV to the drain and

grounding source and body by SMU. Figure 2.2(b) shows a progressive decrease of ID

with increasing drain pulse amplitude.

To systematically study the trend of drain-erase scheme, we varied the pulse width from

1µs to 10ms and swept the pulse amplitude from 1V to 3V and change the VS bias between

1.5 V and ground during the drain-erase operation. 2D phase map of the transistor drain

current in read operation when VG=0V, VD=50mV, and VS/VB=0V for both FDSOI and

HKMG FeFETs after different drain-erase conditions were obtained as shown in Figure 2.3.

For FDSOI FeFET, the drain-erase was quite effective when the source was biased to 1.5V,

showing an on/off current ratio ∼104 (Figure 2.3(a)). The 2D current map showed that

ID decreased with the increasing drain-erase pulse amplitude and pulse width. Therefore,

multi-level conductance state could be achieved with different erasing conditions. How-
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Figure 2.3: Phase map of the FDSOI/HKMG FeFETs drain current measured at (VG/VS/VB

=0, VD=50mV) after applying drain-erase pulses with different amplitude, pulse width
and source bias. (a) FDSOI transistor (W/L=170nm/24nm)’s drain-erase operation
when biasing VS=1.5V could achieves effective on/off ratio ∼104. (b) FDSOI transis-
tor(W/L=170nm/24nm)’s drain-erase operation when biasing VS=0V could only achieve
on/off ratio ∼10. (c) FDSOI transistor (W/L=1000nm/70nm)’s drain-erase operation when
biasing VS=1.5V could achieve on/off ratio∼104.(d) HKMG FeFET(W/L=500nm/32nm)’s
drain-erase operation when biasing VS=1.5V only achieves on/off ratio ∼ 10.

ever, if the source was grounded, on/off current ratio was reduced to ∼10 (Figure 2.3(b)).

Grounding the source pulls down the channel potential and reduces the effectiveness of

drain-erase. For bulk HKMG FeFET, even the source was biased at 1.5V during drain-

erase, the on/off ratio was still low ∼10 (Figure 2.3(d)). To exclude the potential influence

of transistor’s W and L size to the erase effect, larger size FDSOI (W/L=1000nm/70nm)

transistor was also characterized and showed effective drain-erase on/off ratio (∼104) as

shown in Figure 2.3(c). Therefore, the discrepancy of this different drain-erase effective-

ness was mainly from the geometry difference between two kinds of transistors (FDSOI

vs. bulk).

FDSOI FeFET could obtain higher channel potential due to the accumulated hole con-

centration in a more confined channel geometry. Therefore, a larger electric field across

the gate-oxide stack is more effective to flip the ferroelectric thin film. This result is en-

couraging as the 3D vertical channel FeFET also has a confined channel geometry, thus the

drain-erase was expected to be feasible.
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Figure 2.4: Experimental demonstration of the gate programming for FDSOI FeFET
(W/L=170nm/24nm). ID-VG curve measured after applying programming pulses with dif-
ferent pulse amplitude (VG=0∼3V/10 µs) while (VD=0, VS=0).

B. Gate-Program Scheme Testing and Discussion

Similar to the drain-erase setup, Figure 2.4(a) shows the typical gate-program testing wave-

form. Firstly, a -3V/1s gate pulse was applied to fully erase the FeFET cell to the same

erased state. Then different amplitude of gate-program pulses were applied to the gate

(VG=1V∼3V, pulse width = 10 µs) while grounding the drain, source, and body. After the

program operation, the cell ID-VG curve was acquired in read operation by sweeping the

gate voltage from -0.1V to 0.1V, while applying 50mV to the drain and grounding source

and body. Figure 2.4(b) shows that the ID increases with the program voltage increase.

To achieve effective fully program, the programming voltage larger than 2.4V works fine

when the pulse width was 10 µs.

C. Program-Inhibition Scheme Testing and Discussion

In this sub-section, the disturbance to the neighboring cells during the write operation was

characterized. Figure 2.5(a) shows the typical program-inhibition testing waveform (e.g.

for cell D in Figure 2.1). A -3V/1s gate pulse was applied first to fully erase the FeFET

cell to the same erased state. Then different amplitude of drain voltage pulses were applied
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Figure 2.5: Experimental demonstration of the programming-inhibition for FDSOI Fe-
FET. ID-VG curve measured after applying 3.2 V to the gate and applying different pulse
amplitude (VD=0∼3V/10 µs) to the drain while (VB=0, VS=1.5V/VS=0).(d)Experimental
demonstration of the continuous programming disturbance for FDSOI FeFET in program-
inhibition mode. Cycle number(CN) ranges from 1 to 106.

to drain side (VD=0V∼3V, pulse width = 10 µs) while gate was biased at 3.2V. The source

node was biased at 1.5V or ground by SMU. Figure 2.5(b)-(c) shows the ID-VG curve after

applying different amplitude of drain pulses (VD=1V∼2.8V, pulse width = 10 µs).

When the source was biased at 1.5V during the inhibition operation, the cell would re-

main in the erased state when the VD was larger than 1V as shown in Figure 2.5(b). How-

ever, when the source was grounded, the state will be disturbed and could not remain in the

erased state during the inhibition operation. As shown in Figure 2.5(c). The source ground

may pull the channel voltage down and the gate voltage may flip the ferroelectric film in

this case. Therefore, to make sure the program inhibition was fine , source biased to 1.5V

was needed. Moreover, the write disturbance happens multiple times during the compute-

in-memory training. We continued to test the device’s program-inhibition behavior under
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the disturbance of multiple identical programming pulses as shown in Figure 2.5(d). The

cell state degradation was negligible under 106 disturbance cycles.

D. Erase-Inhibition Scheme Testing and Discussion

Figure 2.6(a) shows the typical erase-inhibition testing waveform. First, a 3V/1s gate pulse

was applied to fully program the FeFET cell to the same programmed state. Then the drain

pulses with different amplitude were applied to the gate. In the Figure 2.6(b) situation,

the drain receives a voltage and the gate was grounded, which corresponds to the erase-

inhibition in the NAND array (e.g. for cell C in Figure 2.1). The inhibition voltage needs

to be applied to the BL to prevent the upper passing cell (e.g. for cell D in Figure 2.1)

from being programmed, meanwhile, the lower cell (e.g. for cell C in Figure 2.1) receives

a Vinhibit on its drain, the Vinhibit should not be too high to erase the cell that shares the same

WL (ground) with the cell to be erased.

The testing result showed that the cell was not disturbed when the drain to gate volt-

age difference was smaller than 2V. This erase-inhibition was easy to understand since

the ferroelectric film needs enough voltage to switch, even if the drain side potential was

high which results in high channel potential, increasing the gate voltage could reduce the

channel to gate voltage difference. Then the electric field across the ferroelectric film was

not enough to erase the cell. Moreover, we continued to test the device’s erase-inhibition

behavior with different number of identical erasing disturbance pulses as shown in Fig-

ure 2.6(d).

E. Conclusion

In summary, we experimentally demonstrated the effectiveness of drain-erase scheme on

GLOBALFOUNDRIES 22nm FDSOI FeFET, which is the key technique to enable indi-

vidual cell’s program/erase in a NAND-like array. The experimental testing results suggest

that only FDSOI or similar structure that has confined channel geometry are suitable for the
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Figure 2.6: Experimental demonstration of the erase-inhibition for FDSOI FeFET. ID-VG

curve measured after apply different pulse amplitude to the drain while (VB=0, VS=1.5V
or 0V, VG=0V or VD/2).(d)Experimental demonstration of the countinuous erasing distur-
bance for FDSOI FeFET in erase-inhibition mode. Cycle number(CN) ranges from 1 to
106.
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Figure 2.7: Individual cell’s program (a) and (b) erase scheme in the 2D NAND array with
drain-erase scheme. Cell (1,1) is the selected cell.

drain-erase scheme. The drain-erase scheme can effectively obtain ∼104 on/off ratio with

an appropriate source bias. Meanwhile, the gate program, program-inhibition and erase-

inhibition mode were also characterized. The program-inhibition result shows that when

the cell receives high voltage on the gate, it could be inhibited from being programmed by

increasing the drain voltage. Similarly, when the cell receives high voltage on the drain,

it could be inhibited from being erased by increasing the gate voltage. The experimental

conditions obtained in this section will be used as a guideline to design a 3D NAND-like

FeFET array for in-memory computing in next section.

2.3 FeFET 3D-NAND Achietechture for In-memory Computing

2.3.1 Individual Cell’s Erasure/Programming in 2D FeFET Array

The designed individual cell’s program and erase scheme for 2D NAND array is shown

in Figure 2.7. Cell A is the selected cell to be programmed, and its WL is biased at a

programming voltage (3V) and select BL1 is grounded. Cell C shares the same WL with

Cell A. To inhibit Cell C from being programmed, the drain of Cell C should be boosted to

Vinhibit=1.5V from unselected BL2. All the upper FeFET’s gates are biased at 1.7V larger
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than (Vinhibit+Vth) to pass the BL2’s 1.5V the drain to cell C. All the lower FeFETs’ gates

are biased at 1.5V to prevent lower layer cells to be programmed. Other cells would not

have enough voltage difference to be disturbed. As shown in Figure 2.7(b), Cell A is the

selected cell to be erased by applying 3V to the drain while its gate is grounded. All the

upper FeFET’s gates are biased at 3.2V larger than (Verase+Vth) to pass BL1’s 3V to the

drain of Cell A. All the lower FeFETs’ gates are biased at 1.5V to prevent lower layer cells

to be programmed or erased. GSL needs be closed so that the source of Cell A would be

floating. Then the source voltage could be pre-charged to 1.5V first and remain 1.5V during

erase operation which is a key important parameter in achieving successfully erase.

2.3.2 3D FeFET Array Structure for In-Memory Computing

To accommodate the high demands for the memory storage in DNNs, we proposed a 3D

vertical channel NAND-like FeFET array architecture feasible for both in-situ training and

inference. Figure 2.8 shows the circuit schematic of a 3D NAND-like FeFET array ar-

chitecture. The top and bottom layers are select string transistors and ground select tran-

sistors. The gates of select string transistors in the same row (x-direction) are connected

to the same string select line (SSL). All the gates of the bottom layers are connected by

the ground select line (GSL). The middle are all vertical channel FeFETs, forming pillars

in the z-direction. In each block, all the pillars in the y-direction share the same bit-line

(BL), while all the gates of FeFETs in the same layer (x-y plane) are connected to the same

word-line (WL) at the edge of the plane. Figure 2.8 (c) shows that the BLs among different

blocks are connected, while the WLs are independent among blocks. When performing

VMM operation, the input vector is applied to WLs of multiple blocks from the x-direction

to activate one layer, and BL currents are summed up along the y-direction from multiple

blocks as the output.
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Figure 2.8: (a) The weight matrix between two layers in a neural network. (b) The circuit
diagram and bias scheme of 3D NAND-like FeFET array for VMM operation within one
block. The weights are mapped to the multilevel channel conductance of the FeFETs that
are connected in the same x-y plane. (c) The schematic of 3D FeFET array consisting of
multiple blocks. Input voltage vector is applied to WLs of the selected layer in different
blocks from the x-direction. The weighted sum is computed by reading out currents along
BLs that shared among blocks in the y-direction. VMM is done in a layer-by-layer fashion.

2.3.3 Simulation on 3D FeFET Array

To evaluate the feasibility of the drain-erase scheme to the 3D NAND-like FeFET array.

The BSIM model was modified to fit the experimental programmed/erased FeFET’s ID-VG

curve ( Figure 2.9) and then was used for SPICE simulation for the 3D array. ID-VG is fitted

well when the VG≥0, and in our proposed schemes, FeFET always sees a positive or zero

gate voltage. Therefore, the model is accurate in the region of interests. To illustrate the

timing diagram, the naming of each line and node involved in the 3D programming/erase

scheme is marked in Figure 2.9.

It should be noted that for all the SPICE simulations, all the cell states (either pro-

grammed state or erased state) do not change during the simulation as our model do not

capture the actual switching. We only build the model to extract the node voltage and calcu-

late the gate to channel voltage difference to evaluate whether the cell will be programmed,

erased or disturbed with proper biasing.
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Figure 2.9: (a)FeFET’s ID-VG curve fitted with modified BSIM model. ID-VG fitted well
when the VG≥0, and in our proposed schemes, FeFET always sees a positive or zero gate
voltage.(b)3D NAND-like FeFET array bias scheme for individual cell’s erase/program
scheme. Cell A is the selected cell.

Figure 2.10: (a) 3D FeFET array timing diagram for Cell A’s erase. (b) 3D FeFET array
timing diagram for Cell A’s program.
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A. 3D-NAND FeFET Individual Cell’s Erase Scheme

To erase Cell A, SelBL should be 3V, UnselWL will be biased at 3.2V to pass the 3V

through and SelWL should be 0V. In a vertical x-z plane, Cell B, Cell C and Cell D’s write

disturbance situation is similar as a 2D NAND array. In the 3D NAND array, the conditions

of Cell A’, Cell B’ and Cell D’ need to be considered since the cell in the same x-y plane

share the same WL as the gate. Cell A’ have the same gate voltage with Cell A, and the

corresponding BL for the Cell A’ is the same as that of Cell A. Cell A’ receives 0V at

its gate, therefore, the UnselSSL must be off to prevent Cell A’ from being erased. Thus,

during the erase operation, the top SSL transistors and bottom GSL transistors of pillar A’-

B’ and pillar C’-D’ will be closed. The channel potential of pillar A’-B’ and pillar C’-D’

mainly depends on its initial voltage before the SSL turns off, which should be boosted

to Vinhibit before erase operation to prevent Cell A’/C’ from being erased and prevent Cell

B’/D’ from being programmed.

Considering the write disturbance, the erase sequence should be as follows(Figure 2.10):

setting BLs/WLs, turning on SSLs for channel charging, unselected SSLs clamping, se-

lected BL setup and grounding selected WL. To validate this scheme, a SPICE circuit

simulation was performed with a 3D netlist for the array in transient mode to check the

node voltage in each timing point (Figure 2.11). The voltage waveform in Figure 2.11(b)

proves that only Cell A’s drain is ∼3V and the source is ∼1.5V. According to the above

simulation, Cell A could be successfully erased. This simulation also verifies that all the

other cells will not be disturbed due to insufficient node voltage differences.

B. 3D-NAND FeFET Individual Cell’s Program Scheme

To program the selected Cell A, its WL should be biased at 3V and its channel should be

0V by grounding the select BL and turn on all the upper passing transistors. Therefore, Cell

C, A’, and C’ all receive 3V gate voltage. To prevent those cells from being programmed,

their source and drain should be biased at Vinhibit. For Cell C, Vinhibit could be applied by
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Figure 2.11: SPICE transient simulation of the 3D FeFET array erase scheme showing
(a) WL/SSL/BL setup and (b) the source and drain node voltage of different cells marked
in Figure 2.9, only Cell A is erased.SPICE transient simulation of the 3D FeFET array
program scheme showing (c) WL/SSL/BL setup and (d) the source and drain node voltage
of different cells marked in Figure 2.9, only Cell A is programmed.
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Figure 2.12: Proposed drain-erase scheme in NAND array. (a) Erase operation for an
individual cell A. (b) Cell program, erase, program inhibition and erase inhibition operation
modes that are of considerations in this work.

unselected BL and passing through upper passing transistors. However, the unselect SSLs

should be turned off to prevent select BL voltage (0V) being passed to the drain of Cell

A’ thereby programming Cell A’. Therefore, the source and the drain voltage of A’ and

C’ need to be pre-charged to Vinhibit through activating all the SSLs and setting the BL at

Vinhibit.

As shown in Fig Figure 2.10(b), considering the write disturbance, the programming

sequence should be as follows: BLs/SSLs setup, turning on WLs for channel charging,

turning off unselected SSLs, grounding selected BLs and raising the selected WL to pro-

gram voltage. Similarly, 3D array-level SPICE simulation was performed to validate that

only Cell A receives 3V at the gate and 0V at the drain and source for effective gate pro-

gramming, while other cells will not be disturbed (Figure 2.11).

C. 3D-NAND FeFET Vector-Matrix-Multiplication

After successful programming/erase, 3D NAND-like array could be used for VMM in a

layer-by-layer computation mode similar as 3D NAND Flash based design in [11]. The

limiting factor of the VMM accuracy is the series channel resistance in passing transistors

along the pillar. To test the weighted sum accuracy, the number of on-state in each column
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in a x-y plane varies while all the other unselected cells are in off-state. Simulated BL

current from a 128(BLs)×128(blocks)×(4-layer or 8-layer) array is shown in Figure 2.12.

The BL current is in a good linear relationship with the number of on-state cells. However,

compared to a single-layer (2D case), read-out current is reduced due to the voltage drop

on passing transistors in 3D array, the reduced BL current could be compensated by the

periphery. Scalability towards large-scale 1024×1024×(8-layer) 3D array is explored in

Figure 2.12.

2.4 Conclusion

In this work, 3D NAND-like FeFET array was proposed for both in-situ training and infer-

ence. We experimentally demonstrated the effectiveness of drain-erase scheme on Glob-

alFoundries’ 22nm FDSOI FeFET, which was the key technique to enable individual cell

program/erase for independent weight-update. The experimental testing results suggests

that only FDSOI or similar structure that has confined channel geometry are suitable for

the drain-erase scheme. The drain-erase shceme can effectively obtain ∼104 on/off ratio

with an appropriate source bias. Meanwhile, the gate program, program-inhibition and

erase-inhibition mode were also characterized. The experimental conditions were used as

a guideline to design a 3D NAND-like FeFET array for in-memory computing. With the

extracted BSIM model and specially designed timing sequence, the individual cell pro-

gram/erase and VMM operations were successfully demonstrated through 3D array-level

SPICE simulations. This work provided the design guidelines of engineering FeFET for

in-memory computing.
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CHAPTER 3

INVESTIGATING FERROELECTRIC MINOR LOOP DYNAMICS AND

HISTORY EFFECT

3.1 Motivation

Recently, multi-level FeFETs have been reported for multilevel cell (MLC) data storage

[61, 62] and analog synapses for neuro-inspired computing [18, 24]. By applying a suffi-

ciently high voltage pulse to the gate of the FeFET that results in a voltage drop across the

ferroelectric layer being larger than its coercive voltage (Vco), the polarization direction of

the ferroelectric can be set to either assist the inversion of the channel or to enhance its accu-

mulation state. This results in a polarization-dependent shift of the threshold voltage(Vth).

To achieve multi-level states, the ferroelectric thin film needs to be partially switched. As

a result, it follows the minor loop instead of the saturation loop of the polarization-voltage

(P-V) hysteresis. Multi-domain Preisach model has been proposed to empirically model

the partial switching [63].

In this work, we identified a new challenge of deterministically tuning FeFET into

multi-level states, namely “history effect” in minor loop dynamics. Figure 3.1 shows the

simulated two different minor loop paths: a smaller one (S0→S2→S1) and a lager one

(S0 → S3→S2→S1). Both paths have the transition from S2 to S1. However, the smaller

loop takes less voltage than the larger loop for the same S2 to S1 transition, and the only

difference is that prior to S2, the larger loop has gone through S3. This suggests that partial

polarization switching has a history effect that the switching voltage not only depends on

its current state but also its history. Such history effect may be detrimental to the multi-

level states tuning since additional information such as history path of the device is needed

to accurately tune the device to the target state. This means additional storage is needed
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Figure 3.1: Illustration of the history effect in ferroelectric partial switching: Two mi-
nor loops are simulated by the Preisach model: smaller red (S0→S2→S1) and larger blue
(S0→S3→S2→S1). Both paths have the transition from S2 to S1. However, the smaller red
minor loop takes less voltage (Vc<VD).
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thus complicating the peripheral circuit design.

To our best knowledge, so far there is no experimental validation on the history effect

and the Preisach model is phenomenological without deep physical insights. For the first

time, we experimentally demonstrated the history effect in both our in-house fabricated

ferroelectric capacitor (FeCap) and industry-grade 28nm FeFETṪhen we will explain the

minor loop history effect through a physics-based phase-field domain switching dynamic

model. Furthermore, we will evaluate the negative impact of history effect on in-situ train-

ing of a neural network.

3.2 Device Characterization

3.2.1 FeCap Measurement on History Effect

To investigate the minor loop and partial switching dynamics, two-terminal metal-ferroelectric-

metal (MFM) capacitor structure as shown in Figure 3.2 (a) was fabricated in Georgia Tech

cleanroom. The substrate 4-inch wafer is heavily p-type doped with a low resistivity of

approximately 0.01 0.05 ·cm. First, three layers of TiN(20nm), Hf1-xZrxxO2(HZO,10nm)

and TiN (20nm) thin films were deposited in sequence by Fiji G2 plasma-enhanced atomic

layer deposition (PEALD) without breaking vacuum at 250°C substrate temperature. Dur-

ing the HZO deposition, the TDMA-Hf, TDMA-Zr, and oxygen plasma were used as Hf

precursor, Zr precursor, and oxygen source, respectively. The concentrations of Hf and

Zr ratio was controlled by alternating deposition of a different number of cycles of HfO2

and ZrO2. Hf0.5Zr0.5O2 and Hf0.5Zr0.5O2 were deposited in this study. The rapid thermal

annealing (RTA) at 450 °C for 30 seconds was done in N2 atmosphere for HZO crystal-

lization after the ALD deposition of the entire stack. Then 100 nm of Al was deposited by

electron beam evaporation as the top pad. MFM capacitor active area (50 µm×50 µm) was

defined by lithography and followed by wet etching of the top Al and TiN. The ferroelectric

characteristics of the MFM devices were measured by aixACCT TF Analyzer 3000 tester.

As shown in Figure 3.2(b), the typical P-V hysteresis curve arising from ferroelectricity is
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Figure 3.2: (a) Fabrication process flow and FeCap device structure. (b) P-V loop measure-
ment of both Hf0.5Zr0.5O2 and Hf0.5Zr0.5O2 of the MFM stack by aixACCT TF Analyzer
3000.

observed for HZO-based FeCap.

To measure customized arbitrary waveform, we established a testing protocol to mea-

sure the real-time polarization response corresponding to the voltage sequence applied

based on the virtual ground method [64]. The measurement setup is shown in Figure 3.3(a).

The voltage input (Vin) signal was provided by the pulse generator to the top electrode of

the MFM capacitor. The bottom electrode of the MFM was connected to the inverting input

of the operational amplifier (Op-Amp). A second Op-Amp was used as a unity-gain buffer

for impedance matching. The output voltage (Vout) was measured by an oscilloscope. The

charge passing through the inverter input node reflected the polarization changes for the

MFM capacitor. The integrating capacitor (Ci) integrated the current flow through it. The

final polarization changes of the MFM capacitor can be obtained through the following
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equation:

P = −Vout ∗ Ci
AreaFE

(3.1)

There were two sets of voltage pulse sequence as shown in Figure 3.3(b) applied to the

FeCap corresponding to a larger (blue) and smaller (red) P-V loop. In both waveforms,

a 3.2V/1ms rectangle pulse and a -3.2V/1ms rectangle pulse were applied consecutively

to initialize the MFM loop at the same starting point (fully switched to negative polariza-

tion, corresponding to S0), followed by triangular pulses to program the cell to different

intermediate states. The larger loop has three consecutive 1ms triangular pulses V1, V2

and V3 to program the cell to go through the path S0→S3→S2→S1. The smaller loop has

two consecutive triangular pulses V1’ and V2’ to program the cell to go through the path

S0→S2→S1.

In our testing protocol, for the larger loop, we predefined the value for V1, V2 and

V3, and then applied the waveform to the cell while recording the real-time P-V loop.

Then we extracted the value of polarization charges P1, P2 and P3 for state S1, S2 and

S3, respectively. For the smaller loop, we swept the voltage value of the triangle pulse to

get V1’ so that the cell’s polarization reached the same P2 after the first triangular pulse,

which meant a transition from S0 to S2. Similarly, the amplitude of V2’ that program the

cell from S2 to S1 can be obtained. Both loops were designed to have the transition path

S2→S1, while the S2’s prior state was different. We varied the pulse amplitudes for V2

and V3. The characterization has been performed on both Hf0.5Zr0.5O2 and Hf0.8Zr0.2O2

as shown in Figure 3.3(c-e) and Figure 3.3(f-g), respectively. The measured results show

that for the same transition from polarization state S2 to S1, the switching voltage was

different depending on its prior paths. For example, in Figure 3.3(c), to switch the remnant

polarization (Pr) for S2 ∼0.7 µm/cm2 to Pr for S1 ∼ -4.8 µm/cm2, the larger blue loop

needed a voltage -1.5V while the smaller red loop needed a voltage -1.19V. Similar trends

were consistently observed for other Pr values for S2 and S1 in Figure 3.3 (d-e) and for
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Figure 3.3: (a) Measurement setup of FeCap for dynamic P-V hysteresis minor loop. (b)
Triangle pulses with different pulse amplitude applied to the HZO FeCap with similar mi-
nor loop paths as in Fig.1 on both (c-e) Hf0.5Zr0.5O2 and (f-h) Hf0.8Zr0.2O2 MFM capacitors.
The measured results show that for the same transition from state S2 to S1, the switching
voltage is different, depending on the prior path that the device has gone through. (c-e)
are testing results from the same capacitor device with different pulse amplitudes. (f-h) are
testing results from the same capacitor device with different pulse amplitudes. Such history
effect is observable in multiple devices (not a random variation effect).
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Figure 3.4: (a) Triangle pulses with different pulse direction compared to Figure 3.3. (b-d)
P-V hysteresis minor loop measured on the same Hf0.5Zr0.5O2 FeCap.

different HZO composition in Figure 3.3 (f-g).

Moreover, a similar history effect was observed as we changed the pulse direction and

the pulse width as illustrated in the P-V minor loop measured on Hf0.5Zr0.5O2 FeCap in

Figure 3.4 and Figure 3.5, respectively. Figure 3.4 shows that potentiation from S2 to S1

also has different positive voltages (larger loop needs a larger voltage). Figure 3.5 shows

that with shorter pulses applied, depression from S2 to S1 also has different negative volt-

ages. Figure 3.5 also shows that when the triangular pulse width is reduced, the polariza-

tion changes are correspondingly reduced. It can be observed that for small pulse width

(PW<100µs) the polarization increased when the pulse was rising to 3V, and it continued

to increase slightly when the pulse was falling to 0V. This trend is different from 1ms pulse

cases, where the polarization increased when the pulse was rising and decreased when the

pulse was falling. This observation could be explained by the domain dynamics model

[65]. An HZO thin film contains many domains and each domain’s polarization can be

flipped up or down when the electric field across the domain exceeds its coercive field.

Meanwhile, the flipping takes a finite time. If the pulse width is too short, only part of the

domains are flipped. As observed in Figure 3.5, when the voltage was swept back from 3V
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Figure 3.5: (a) Triangle pulses with different pulse width (PW=100µs, 50 µs and 10µs)
compared to Figure 3.3. (b-d) P-V hysteresis minor loop measured on the same Hf0.5Zr0.5O2

FeCap.

to 0V, the polarization still increases. This means the domains are not fully flipped when

the voltage was rising from 0V to 3V when the pulse width is too short. Partially flipped

domains continue to flip if their coercive field is lower than the applied voltage during the

sweep back. On the other hand, if the pulse width is long enough, the domains could be

flipped fully with only increasing voltage from 0V to 3V as shown in Figure 3.3.

These experimental results obtained on FeCap were consistent across the different ma-

terial compositions, switching polarization and pulse widths, validating that the history

effect predicted by the Preisach model as shown in Figure 3.1. It should be pointed out that

such history effect is reproducible on multiple FeCap devices we measured.

3.2.2 FeFET Measurement on History Effect

We also designed a similar testing protocol to examine the history effect on the 28nm

HKMG FeFET devices from GlobalFoundries [30]. The W/L of the tested FeFET is

100nm/200nm, which represents a much-scaled dimension than that of the FeCap fabri-

cated in-house. Three sets of gate/drain voltage waveforms were designed to switch the

FeFET to different intermediate states and then read out the channel conductance as shown
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Figure 3.6: Three sets of waveforms designed to program the 28nm FeFET to different
states and then read the channel conductance. Comparing the larger loop and smaller loop
case 1, the voltage needed to switch from S2 to S1 is different. Comparing the larger
loop and smaller loop case 2, when the cell is in S2, if applying the same programing
voltage (V2”=V3), the final state is different (S1’6=S1). Such history effect is consistently
reproducible in multiple devices (not a random variation effect).
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in Figure 3.6. Similar to the FeCap measurement, a -3V/1ms initialization rectangle pulse

is applied to the gate of FeFET to erase the cell to the fully erased state in all the cases.

To make sure all the initialization pulse could reach the same erased state, we read the de-

vice’s drain current versus gate voltage (ID-VG) curve after initialization pulse. To exclude

the polarization relaxation’s impact on FeFET testing, we waited for the same time (10s) to

read the cell after the write pulse goes away. For the lager loop case, three predefined write

rectangle pulses with amplitude positive V1/10µs, negative V2/10µs, negative V3/10µs as

shown in Figure 3.6(a) were applied to the gate to program the cell’s state from S0 to S3,

then from S3 to S2, and from S2 to S1. After each write pulse, the drain current versus

gate voltage (ID-VG) curve of the FeFET was recorded by sweeping the gate voltage using

a triangle pulse with a fixed drain voltage=50mV. Therefore, the channel conductance (G)

could be defined as ID/VD when VG=0.5V. It should be noted that we do not consider the

charge trapping effect during the testing since each device in our test set-up only endured

tens of cycles, thus the charge trapping effect is not prominent.

For the smaller loop cases as shown in Figure 3.6(b-c), we aimed to achieve the same S2

state by using a single positive rectangle pulse. In this testing, we treat the devices as in the

same state if their ID-VG curves are similar (in other words, their channel conductance G

are similar within 10% difference). We tuned the write pulse amplitude (V1’ in smaller loop

case 1 and V1” in smaller loop case 2) so that the resulting channel conductance is close to

the S2’s channel conductance in the larger loop. In the smaller loop case 1, we continued

to find the negative V2’ pulse that can change the device conductance from S2 to S1. In

smaller loop case 2, after the cell reached S2, we applied the pulse V2” that was equal to

V3 in the large loop, leading to a different final state S1’. To summarize, the devices under

test had the transition paths in the following three cases: 1) S0 to S3(V1), S2(V2) and S1(V3)

in larger loop case; 2) S0 to S2(V1’) to S1(V2’) in smaller loop case 1; 3) S0 to S2(V1”)

to S1’(V2”=V3) in smaller loop case 2. If we compare the measured results in the larger

loop (Figure 3.6(d)) and smaller loop case 1 (Figure 3.6(e)), the voltage needed to switch
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from the same S2 ( 5.76 µS) to S1 ( 0.21 µS) are different. The larger loop needs -2.8V,

while the smaller loop case 1 needs -2.5V. If we compare the measured results in the larger

loop (Figure 3.6(d)) and smaller case 2 (Figure 3.6(f)), when the cell is in the same state S2

( 5.76 µS) and receives the same voltage (V2”=V3=-2.8V), the final state is different. The

larger loop’s final state is S1=0.21 µS while the smaller case 2’s final state is S1’=11.2 nS.

We repeated such measurements for several other states, e.g. S2 ( 1.84 µS) and S1( 19.8 nS)

in Figure 3.6(g-i), and S2 ( 4.3 µS) and S1( 36.6 nS) in Figure 3.6(j-l), and similar trends

were observed.

These experimental results on FeFET suggest that it is challenging to deterministically

tune the synaptic device conductance to the desired intermediate state given predefined

voltage pulse, as the actual transition depends on the prior states that the device has done

through. The history effect predicted by the Preisach model as shown in Figure 3.1 is thus

validated in FeFET. It should be pointed out that such history effect is reproducible on

multiple FeFET devices we measured.

3.3 FeFET Switching Dynamics

Prior study has demonstrated the partial domain switching still exists in nanoscale FeFET

devices with W/L =80/30nm, enabling the multi-level cell (MLC) for memory application

[66]. Therefore, to achieve multi-level conductance states for FeFET, the ferroelectric thin

film will be partially switched, which means working on the minor loop in the P-V hystere-

sis. As experimentally demonstrated in the previous section, partial switching between in-

termediate states depends on the prior path [27]. Though the multi-domain Preisach Model

[63] can emulate the minor loop empirically, it lacks a physical explanation of the history

effect. To gain deeper insights into the minor loop dynamics, we constructed a phase-

field model based on the time-dependent Landau-Ginzburg framework (TDLG) [65]. The

ferroelectricity in the HZO thin film mainly originates from the stability of the polar or-

thorhombic (o) phase, with the polarization (P) direction along the c-axis of the o-phase
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[67]. We assume that the c-axis is perpendicular to the film surface (z-axis). The nor-

malized representation of the TDLG equation can be calculated by the following equation

[65]:

ρ
dPn
dt

= −Eapp
n −Kn∇2Pn + α̂Pn + β̂P 3

n + γ̂P 5
n (3.2)

Here, Pn(= PZ/Pco)and Eapp
n (= Eapp/Eco) are normalized polarization and applied

E-field. Eco is the microscopic coercive field of a single domain. Pco is the domain polar-

ization when E = Eco. We assume that a ferroelectric thin film contains many domains.

Within each domain, the polarization is uniform and coercive field (Eco) is uniform. Each

domain will follow the dynamic of the equation (1). Firstly, a single domain (30nm×30nm)

switching dynamics can be illustrated as shown in Figure 3.7. When the domain is ini-

tially pointing down with a negative polarization and then receives a positive electric field,

the domain will gradually be flipped up following a nucleation process. In the HZO thin

film, Eco varies among domains caused by domain-to-domain variation[68]. The Eco varia-

tion follows a Gaussian distribution. Considering the coercive field distribution, the α̂, β̂, γ̂

values in the equation Equation 3.2 are determined by the following equations.

γ̂ = −0.5(En,coP
2
nr − 3En,co)

(P 2
nr − 1)2

(3.3)

α̂ = γ̂ − 3

2
En,co (3.4)

β̂ = −2γ̂ − 1

2
En,co (3.5)

where, En,co is the normalized E-field with a random variable follows Gaussian distribution

(mean = 1 and standard deviation = 0.125[65]). The key parameters for HZO and equations

of the simulation are shown in Table 3.1.
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Figure 3.7: Single domain switching dynamics. (a) A sequence of rectangular pulses (En =
0.8, PW=0.1µs) was applied to a single domain. (b) Transient average polarization. (c)
Polarization distribution at different time points.

Table 3.1: KEY PARAMETERS IN THE SIMULATION

Symbol Value Description

Eco 1.05 MV/cm Microscopic coercive field
En Eapp/Eco Normalized applied E-field
Pco 15 µC/cm2 Domain polarization when E=Eco
Pn PZ/Pco Normalized domain polarization
ρ 26 Ω· m Kinetic coefficient
ρn ρ ∗ Pco/Eco Normalized kinetic coefficient
Kn 1 Normalized domain interaction parameter

α̂ γ̂ − 3
2
En,co Normalized landau coefficients

β̂ −2γ̂ − 1
2
En,co Normalized landau coefficients

γ̂ −0.5(En,coP 2
nr−3En,co)

(P 2
nr−1)2

Normalized landau coefficients
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Figure 3.8: Multi-domain switching dynamics. (a) Coercive field distribution. (b)-(d)
Corresponding polarization map after applying En=1 for a period of time t=25ns, 35ns,
45ns.

Figure 3.9: (a) Distribution of normalized coercive field (Eco) for HZO thin film.
(b)Applied write pulse sequences. (c) Corresponding polarization map after applying two
pulse sequences: larger loop (S0→S3→S2→S1) and smaller loop (S0→S2→S1), showing
different internal domain configurations for the same S2 (Pavg=-0.47). To switch from S2

to S1 (Pavg=-1.56), the larger loop needs normalized field -0.8 while the smaller loop needs
-0.745

We simulated multi-domain switching dynamics as shown in Figure 3.8. We considered

a 300nm × 300nm thin film area containing 100 domains (assuming each domain size is

30nm× 30nm on average [69]). The coercive field is uniform within each domain and

varies among domains as shown in Figure 3.8(a). Firstly, we simulated the P response after

a single normalized E-field pulse. Figure 3.8(b-d) show the P distribution evolution over

time when there is E-field across the ferroelectric thin film. The domains with the smaller

coercive field will be flipped first.

Then we designed a sequence of voltage pulses that could partially flip the ferroelectric

domains to different intermediate states. As shown in Figure 3.9(b), we simulated two
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Figure 3.10: Illustration of the history effect using distributions of Eco in multi-domains.
S2 in large loop has the same average P, but more number of harder domains (with larger
Eco), thus it is harder to switch from S2 to S1.

sets of sequences of voltages pulses similar to experimental characterization on FeCap

structure in Figure 3.3 so that the polarization state will follow two paths: (1) A larger

loop (S0→S3→S2→S1) (2) A smaller loop (S0→S2→S1). In the first path, the sequence

of normalized E-field (Eapp
n ) is 1, -0.75, -0.8. After each pulse, the polarization state and

corresponding average polarization value is S3 (Pavg=0.8304), S2 (Pavg=-0.4704) and S1

(Pavg=-1.5639). In the second path, it started from the same S0, and the positive E-field

needed to switch to S2 is 0.9285. After S2, the negative E-field needed to switch to a

similar S1 (Pavg=-1.5627) is -0.745. The simulated polarization response shows that even

the externally observable average polarization is the same (e.g. Pavg=-1.56 for S2), the

internal domain distribution is different depending on its prior path. The E-field needed to

switch from S2 to S1 is also different: the larger loop needs Eapp
n =-0.8, while the smaller

loop needs Eapp
n =-0.745.

To sum up, we could explain this history effect with the distribution of Eco in multi-
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domains as shown in Figure 3.10. In the ferroelectric thin film, it contains many domains

with different microscopic coercive fields. The electric field needed to flip domains varies.

When an E-field is applied, the easier domain (with a smaller coercive field) will flip first.

In the larger loop, more amount of harder domains are flipped after it reached S3. The

transition from S3 to S2 only flipped some easier domains. Then the S2 to S1 transition needs

to flip more amounts of harder domains, thus requiring larger E-field (E3). In the smaller

loop, it only flipped easier domains when it reached S2 from the initial state, resulting

in subsequent lower E-field (E1) from S2 to S1. In other words, for the same externally

observed polarization (Pavg=0 for S2, as 6 domains up and 6 domains down), its internal

distribution is different: for S2 in the larger loop, harder domains are pointing down, while

for S2 in the smaller loop, easier domains are pointing down. Therefore, the E-field to flip

from S2 to S1 depends on such internal distribution of domains.

3.4 Neural Network in-situ Training

As demonstrated experimentally and theoretically, the history effect exists in the ferroelec-

tric minor loop dynamics. Even starting from the same initial state and applying the same

voltage pulse, the device (if operating on the minor loop) can transition to different final

states depending on its history. It is important to investigate such history effect on the

neural network in-situ training, which requires the FeFET to switch between intermediate

states. To simulate in-situ training with the history effect, the phase-field model described

above will be too slow when it is incorporated into the iterative training (with tens of thou-

sands of images repeated by hundreds of epochs). Therefore, the Preisach model is used

here as it could well capture the history effect. The Preisach model is calibrated with our

experimental data on a FeCap minor loop switching as shown in Figure 3.11. It reproduced

the two loops (S0→S3→S2→ S1) and (S0→S2→ S1). To simulate the FeFET in a time-

efficient manner, the Preisach model is coupled with the MOS cap model of a transistor

thus determining the FeFET threshold voltage and channel conductance [63].
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Figure 3.11: P-V minor loop experimental data fitted using Preisach model for simulating
the history effect.

Figure 3.12: (a) Weight matrix between two layers in a neural network can be mapped to
a 1T-1FeFET pseudo-crossbar array for vector-matrix multiplication. (b) Neural network
training framework including history effect. FeFET compact model simulates the FeFET
conductance changes corresponding to the gate pulses input and neural network training
module calculates
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A fully connected multilayer perceptron (MLP) network is chosen for the study. The

weight matrix between two layers in the MLP can be mapped to a 1T-1FeFET pseudo-

crossbar array [18] using a parallel read-out scheme for vector-matrix multiplication as

shown in Figure 3.12(a). The tunable threshold voltage in FeFET could modulate the

channel conductance, thus mapping the weights in the neural network. We developed a

Python-based training framework as shown in Figure 3.12(b). The FeFET compact model

takes the programming voltage on its gate as input. According to the voltage divider rule,

VG = VFE + VMOS (3.6)

where the VG is the gate voltage, VFE is the voltage dropped on the ferroelectric layer and

VMOS is the voltage dropped on the MOS capacitor. We also have the charge conservation

equation:

QFE(VFE) = QMOS(VMOS) (3.7)

Therefore, when the programming voltage is applied to the cell, the QFE − V FE relation

(essentially ferroelectric P-V) needs to satisfy the equation:

VG = VFE +QFE/CMOS (3.8)

It should be noted that when the programming voltage is removed, then Equation 3.8 could

be rewritten as:

0 = VFE +QFE/CMOS (3.9)

Equation 3.9 defines a “FET Load-Line”. Finally, the QFE , VFE need to satisfy the

Preisach model and Equation 3.8 and Equation 3.9. As shown in Figure 3.13 (a), when the

QFE−VFE curve intersects the “FET Load-Line”, the gate voltage is 0. The corresponding

QFE is the “static P(VG=0)”. Then the “static P(VG=0)” value can be used to calculate the
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threshold voltage shifting thus calculating the channel conductance assuming the first-order

transistor model in the linear region. Therefore, as long as the “static P(VG=0)” is known,

we could get the conductance value. After that, in the neural network training, all the con-

ductance needs to be linearly mapped to 64 states for 6-bit weight. For each device, we store

its history path and use the Presaich Model to predict the QFE vs. VFE path. Therefore, the

history effect is taken into account during the weight potentiation/depression characteris-

tics. Then the calculated weight is transferred to the neural network training module for the

feedforward inference on-chip and backward propagation (possibly by software). During

the weight update, each synapse has its current weight Wi,c, after each training iteration,

the weight update ∆Wi is calculated based on stochastic gradient descent (SGD) algorithm

and the new weight Wi,c+∆Wi is mapped to the corresponding conductance state of the

FeFET, where the program/erase voltage is to be determined. Without considering the his-

tory effect, the program/erase voltage is determined based on the current state only (as a

look-up table to record the non-identical pulse scheme and its corresponding conductance

states as used in prior work [18]). Here the look-up table is defined by applying continuous

program pulses towards the highest conductance state in one direction, and then by apply-

ing continuous erase pulses towards the lowest conductance state as shown in Figure 3.13

(a). Under this assumption, it only considers the case that the device only switches along

the saturation loop (not along any minor loop). This look-up table approach is only valid

when the weight is monotonically increasing or decreasing, which is obviously not true in

the real weight update.

In the actual FeFET in-situ training, considering the history effect, the look-up table

approach may overestimate the voltage needed to switch between intermediate states as

shown in Figure 3.13 (b). Since the increment weight update method uses the loop-up table

to decide the voltage needed to program to a different state, as shown in Figure 3.13 (a) the

loop-up table approach has all the switching voltage defined on the saturation loop, which

is the largest loop. Then the increment weight update without calibrating the history effect
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Figure 3.13: (a) “Loop-up table” approach for weight update if considering the monoton-
ically increasing/decreasing weight only. (b) Diagram for incrementally update method
without calibrating the history effect. (c) Diagram for fully-erased first and then program
to target state.
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Figure 3.14: In-situ training accuracy of MNIST dataset using FeFET. If the weight is being
continuously updated using incremental minor loops without calibrating the history effect,
the accuracy is only 91%. By employing the fully erase-first method, the training accuracy
can be recovered to the software baseline 97%.

will always apply voltage larger or equal to the needed programming voltage. If the weight

is being continuously updated without calibrating the history effect, the accuracy is only

91% on the MNIST dataset as shown in Figure 3.14. One solution to mitigate the history

effect is always fully erasing the FeFET to the ground state every time before program-

ming to the desired intermediate state as shown in Figure 3.13 (c). In this way, FeFET

follows the saturation loop only and the training accuracy increases to 97%, approaching

the software baseline as shown in Figure 3.14. However, the fully erase-first method will

need additional pulses, which means longer training time and more energy consumption.

From our simulation, we estimated additional 1.7× energy consumption in the entire weight

update process. Meanwhile, the fully erase-first method will need both erase and program

per weight update, thus the endurance requirement of the device in will be approximately

twice of the incremental weight update method. It should be noted that this simulation

framework assumes the FeFET model without considering the device-to-device variation,

cycle-to-cycle variation, wake-up and fatigue effect since the main idea is to explore the

impact of the history effect. However, in the practical operations, all other non-ideal effects
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need to be considered as discussed in [70, 58].

3.5 Conclusion

In conclusion, the TiN/HZO/TiN MFM capacitors were fabricated for P-V minor loop dy-

namics investigation. We established a testing protocol to measure the real-time polariza-

tion response corresponding to the voltage sequence applied with the virtual ground mea-

surement method. Furthermore, we designed a similar programming protocol to tune the

intermediate channel conductance states in 28nm FeFET.Therefore, we experimentally val-

idated the history effect in both FeCap and FeFET, suggesting that the intermediate states

programming condition depends on the prior states that the device has gone through. Then,

a physics-based phase-field multi-domain switching model was used to understand the ori-

gin of the history effect in ferroelectric partial switching. The history effect could affect

the distribution of the polarization in each domain. Even though the externally observable

average polarization is the same, the internal domain coercive field distribution results in

different electric fields to flip the same amount of domains. We further incorporated the

history effect into the FeFET based neural network in-situ training and analyzed its nega-

tive impact on training accuracy. By employing the fully-erased method, the accuracy can

be recovered to the software baseline at the expense of additional energy consumption and

latency.
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CHAPTER 4

INTEGRATED CROSSBAR ARRAY WITH RESISTIVE SYNAPSES AND

OSCILLATION NEURONS

4.1 Motivation

The crossbar array with resistive memories has been proposed to implement the vector-

matrix multiplication(VMM) [2], the most dominating operation in DNNs. When the input

vector (voltage) is fed into the crossbar array, the weighted sum current will sink to the

neuro node at the end of the column. Typically, the column current needs to be digitized

through integrate-and-fire neuron or analog-to-digital converters (ADCs)[40]. However,

such circuits are complex and occupy a much larger silicon footprint than the column pitch

of the crossbar array, therefore the neuron circuit needs to be shared among multi-columns,

thereby reducing the computation parallelism. Recently, NbOx has attracted much attention

due to its Metal-Insulator-Transition characteristic with potential application as the selector

or oscillation neuron [71, 41, 42, 43]. NbOx based compact threshold switch devices could

potentially get rid of the complex CMOS neuron circuit, resulting in ∼12.5× reduced area

based on the prior circuit-level simulation study[45]. However, a single neuronal device

with off-chip discrete load resistor has only been experimentally demonstrated so far [41,

52]. In this work, we aim to integrate the neuronal device with the crossbar array on a

single-chip to demonstrate the parallel computation along the BL.

4.2 Fabrication

The schematic diagrams of the fabrication were shown in Figure 4.1. The Pt/ NbOx/Pt

devices were fabricated in the cross-point structure with an active area of 10 × 10 µm2.

Firstly, Pt/Ti (25nm/3nm) was deposited by e-beam evaporation and patterned through lift-
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Figure 4.1: (a) The TiN BE lines were formed. (b) The HfO2 layer was deposited by ALD
on the entire wafer. (c) The Pt ME line used to monitor the oscillation was located across
the 12 TiN BE lines. Up to this step, the Pt/HfO2/TiN resistive memories with were formed
at each cross-point. The (d) NbOx and (e) Pt TE line were sequentially deposited by sputter
and evaporation at the end of the Pt ME line, resulting in vertically stacked NbOx based
threshold switch at the edge of the crossbar array. (f) Finally, the HfO2 layer on top of the
BE pads was etched for bottom contact.
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Figure 4.2: Optical microscopic images of the 12 × 1 array consisting of 10 × 10 µm2

sized resistive memories and 10 × 10 µm2 sized threshold switch.

off. Then a blanket NbOx thin film (15nm) was deposited by reactive sputtering with Nb

target in an O2/Ar gas mixture in the ratio of 1/10 with the chamber pressure at 4mTorr,

plasma power at 250W, and substrate temperature at 100◦C.The Pt (25nm) top electrode

was formed on the top of NbOx by e-beam evaporation and lift-off. The bottom electrode

pads were exposed by optical lithography and wet etching of the NbOx layer.

4.3 Device Characterization

First, the quasi-DC current-voltage (I-V) characteristics of the resistive memory and thresh-

old switch in the array were evaluated using a probe card connected to a switching matrix.

Prior work has done the X-ray photoelectron spectroscopy (XPS) analysis of the HfO2

based resistive memory[72]. The result shows that oxygen vacancies due to non-bridging

oxygen ions were observed in the HfO2 film. After an initial forming at about 5 V, when the

BE pad was biased at a positive voltage and ME pad is ground, the oxygen vacancies were

driven towards the Pt ME under the electric field, which resulted in a conductive filament

throughout the HfO2 layer [73]. This process led the resistive memory to switch to a low

resistance state (LRS) as shown in Figure 4.3a. On the other hand, the negative voltage

between the BE pad and ME pad caused the oxygen vacancies to escape from the filament.
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Figure 4.3: The quasi-DC I-V traces of the (a) Pt/HfO2/TiN resistive memory and (b) Pt/
NbOx/Pt threshold switch in the array.

The LRS was switched to a high resistance state (HRS) by rupture of the conductive fila-

ment. We then programmed all the resistive memories to LRS along the BL. The median

value of the LRS resistances (RLRS) was about 58 kΩ at 1.8 V due to a self-compliance

behavior in the LRS, as shown in grey lines in Figure 4.3b. The observed self-compliance

behavior has been explained as the chemically mixed layer at the HfO2 and TiN interface

serves as an internal resistor [74] to limit the current flowing through the formed filament.

Meanwhile, the ME was used as a common ground for both resistive memory and

threshold switch. Applying a positive voltage to the TE thus triggered a threshold switching

behavior of the NbOx layer after a forming process at about 4 V. As shown in Figure 4.3b,

when the voltage swept from 0V to 3V with a 100 µA current compliance, an abrupt in-

crease in current was observed at the threshold voltage ( Vth) of about 2 V. While sweeping

the voltage back from 2V to 0V, the current abruptly decreased to off-current at the hold

voltage ( Vhold) of 1.5 V.
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Figure 4.4: (a) n Vinput pulses were provided to the BE pads. (b) – (d) The oscillations with
different frequencies were observed depending on the number of Vinput pulses applied in
parallel

4.4 Array Level Demonstration

Then we continued to characterize the array level performance. The input voltage (Vinput)

pulses (6 V, 180 µs) were applied to the BEs in parallel, as shown in Figure 4.4. The Vinput

pulse was addressed to only one of the BEs, and the remaining BEs were floating. The Vinput

multiplied by the 1/RLRS at the selected resistive memory was expected to be observed as

a read-out current along the BL at the grounded TE via the NbOx. An oscillation was

monitored in real time at the ME while the read-out current was flowing. Initially, the

NbOx is at OFF-state, when the input voltage (VDD) is applied, the parasitic capacitor will

be charged. According to the voltage divider rule, the neuron node should be charged up

to VDD ×ROFF/ (ROFF+ RRRAM). If the node voltage is larger than the threshold voltage, the
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NbOx will be turned on and its resistance will be reduced to RON. Then the neuron node

voltage will be reduced, resulting in capacitor discharging. The neuron node voltage will be

discharged down to VDD ×RON/ (RON+ RRRAM). Similarly, if this discharged voltage is less

than Vhold, the NbOx will be turned off. Thus the neuron node voltage oscillates between

Vhold and Vth. The reversible transition of the threshold switch repeatedly induced the back

and forth of the voltage charging and discharging, causing the oscillation with a frequency

of 110 kHz in the range of Vhold of 1.5 V and Vth of 2 V. More importantly, as Vinput

number increased, a larger read-out current corresponding to the equivalently reduced total

RLRS was shown in the BL. This resulted in the steadily increased frequencies, as shown in

Figure 4.4b, c, and d. It can be further described analytically by solving the equation based

on Kirchhoff’s Law on the configuration. The charging time trise and discharging time tfall

are expressed as the following equations[45]:

trise = RriseC × log
V DD

Rrise
RRRAM

− V hold

V DD
Rrise

RRRAM
− V th

= RriseC × logArise

(4.1)

tfall = RfallC × log
V DD

Rfall
RRRAM

− V hold

V DD
Rfall

RRRAM
− V th

= RfallC × logAfall

(4.2)

Therefore, the trise is proportional to the RLRS, while the tfall is constant and small due to the

small Ron, causing the oscillation of the voltage to have an asymmetric triangular waveform

and the oscillation frequency to be determined mainly by the trise. Note that the charging

and discharging are both driven by the first-order RC circuit response. When the number

of the resistive memories is small, the charging is slow. The charging can be faster when

more resistive memories are involved.
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Figure 4.5: (a) The oscillation frequency as a function of the number of Vinput applied in
parallel when varying the sizes of the threshold switch. (b) The I-V curve and (c) the
oscillation behaivor of the 5 × 5 µm2 sized threshold switch.

Figure 4.6: (a) The oscillation frequency as a function of the number of Vinput applied in
parallel when varying the sizes of the resistive memory. (b) The RLRS as a function of the
size of the resistive memory extracted from multiple devices.
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We also investigated how the frequency and amplitude of the oscillation varied with the

sizes of the resistive memory and the threshold switch for future optimization as shown in

Figure 4.5. As shown in Figure 4.5(a), the oscillation was observed when 3 to 7 resistive

memories were involved in the weighted sum for a smaller-sized threshold switch (5 × 5

µm2). In addition, the dependence of the frequency as a function of the number of the

resistive memories seemed to be less prominent in smaller threshold switch size. It can

be explained by the enlarged vth and Vhold of the smaller threshold switch, as shown in

the I-V curve (Figure 4.5b). Through XPS analysis, the deposited NbOx film was found

to have a mixture of NbO2 and Nb2O5 phases and non-bridging oxygen ions [52]. Thus,

trap-related conduction through the NbOx becomes dominant in the off-state prior to the

threshold switching [75]. As the area of the NbOx is reduced, the number of defects is

decreased, which implies that the current drivability in the off-state is lowered. Instead,

larger voltage is required to provide electrical or thermal driving force for the transition.

Considering the same C and RLRS, the trise based on the equation Equation 4.1 was found to

be primarily affected by a logarithmic function representing the ratio of the vth to Vhold. The

calculated value of the logarithmic function at the small threshold switch was roughly twice

due to the increased oscillation’s magnitude. This was in good agreement with the exper-

imental results (Figure 4.5c), which showed approximately two times slower frequency in

the 5 × 5 µm2 sized threshold switch than the 10 × 10 µm2. Furthermore, since the vth was

increased, the Roff measured at the vth was lowered. It means that more resistive memories

should be needed to meet the criteria for the oscillation. Therefore, the changed switching

parameters such as vth and Roff of the threshold switch have affected the frequency and

the criterion (Roff > RLRS > Ron) for the oscillation. Meanwhile, adjusting the size of the

resistive memories could shift the oscillation frequency range (Figure 4.6a). As the self-

compliance behavior of the resistive memories can be attributed to the interfacial resistance

between TiN BE and HfO2 layer, the RLRS exhibited an area dependency, as shown in Fig-

ure 4.6b. In the 1 × 1 µm2 sized resistive memory, the summed RLRS from the small number
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of the resistive memories was too large to be placed in between the Roff and Ron. Therefore,

the oscillation was observed when 4 to 9 resistive memories participated in the weighted

sum (Figure 4.6a). The on/off ratio of 20 in our NbOx based threshold switch was small,

so that only a limited range of the weighted sum could be identified. Adding a tunneling

oxide to NbOx may increase the on/off ratio to > 102 [76]. In addition, when the threshold

switching is demonstrated by other mechanisms such as lone-pair electrons of chalcogen

atoms [77] or self-dissolvable filament formation [78], the on/off ratio of 103 ∼ 1010 can

be achieved. Therefore, we expect that the weighted sum in a relatively larger crossbar

array with tens to hundreds of synaptic cells can be success represented by distinguishable

oscillation frequency, if appropriate device engineering is further applied. In prior bench-

mark [45], the weighted sum task can be performed by the oscillation neuron with energy

5 times less than the CMOS integrate and fire neuron circuit, which also consumes a lot of

energy by generating output pulses proportional to the weighted sum. As the neuron be-

comes compact, the number of BLs shared by a single neuron can be reduced, throughput

could be further improved.

4.5 Conclusion

We demonstrated the parallel weighted sum operation in the 1-D 12× 1 crossbar array with

integrated synaptic devices and neuronal device that structurally emulated a part of the neu-

ral network. The synaptic weight was stored in each HfO2 resistive memory, which enabled

a highly dense array to accelerate the vector-matrix multiplication. We then showed that

the compact NbOx based threshold switch processes the sum of the weights from the 12

× 1 synaptic array by representing the oscillation frequency due to the phase transition

mechanism.
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CHAPTER 5

CRYOGENIC APPLICATION OF FEFET+NBOX BASED NEURON NETWORK

ACCELERATOR - QUANTUM ERROR CORRECTION

5.1 Motivation

In previous chapters, we have investigated the challenges and prospects to use the Fe-

FET as resistive synaptic devices and use NbOx as oscillation neurons. In this chapter,

we will explore the one potential application of FeFET+NbOx based neuron network ac-

celerators: quantum error correction circuitry. Quantum computers are built with qubits

that are based on superconducting Joseph Junction [79] or silicon spin [80]. Quantum al-

gorithms have the potential to tackle computational-hard problems (e.g. optimization and

cryptography). However, the qubit is known to be fragile and will lose its coherence with

thermal noises. Therefore, the qubit needs to be operated at extremely low temperature,

i.e., 20 milli-Kelvin. Even at the deep cryogenic temperature, quantum error correction is

essential to achieve fault-tolerant quantum computation to protect information from errors

decoherence and other quantum noise.

For fault-tolerant quantum computing, millions of error-prone physical qubits are needed

to generate thousands of high quality logical qubits. It is challenging to individually con-

nect each physical qubit to a room-temperature controller due to interconnect complexity.

It is thus highly desirable to operate the QEC at 4K to minimize the thermal heat transfer

between the physical qubits and the control circuitry via extensive wire cabling as shown

in Figure 5.1. This well motivated the recent research on cryo-CMOS at 4K [81]. Silicon

prototype chips capable of microwave pulse generation and sensing have been taped-out in

28nm [82]. To our best knowledge, QEC circuitry implementation is less studied so far.

Surface code [83] is one of the most popular QEC protocols. A primary component of
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Figure 5.1: Schematic of a quantum computer system across the various temperature stages,
where the quantum error correction (QEC) is done by control processor at 4K. Embedded
memories are required for QEC.

surface code is a decoder that can be efficiently implemented by a recurrent neural network

accelerator [84]. Faster processing of QEC could enable more computation cycles within

the finite coherent time of qubits and minimizing QEC circuitry’s energy consumption is

also important to save the cooling power for 4K. As is know, the FeFET are of great inter-

ests to build the neuron network and the cryogenic performance of FeFET is charactedrized

in prior work[85].

In this work, we proposed implementing the surface code QEC circuitry with compute-

in-memory (CIM) based recurrent neural network accelerator in cryogenic temperature.

We utilized the technology parameters from the experimental data of 28nm CMOS in ref-

erence [57], and then we incorporate these cryogenic models into NeuroSim [58], a widely

used benchmark tool for neural network accelerators, to benchmark the performance of the

whole system.
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Figure 5.2: Diagram of the surface code. (a) N physical data qubits are arranged on a
d×d square lattice (d is the distance of the code). (b) Measurements are performed by
entanglement of data qubits with an ancilla qubit, followed by a measurement of the ancilla
in the computational basis (|0〉 and|1〉).

5.2 LSTM Network for Surface Code

A logical qubit in the surface code includes two types of physical qubits, namely, the data

qubits, which store quantum information and cannot be measured, and the ancilla qubits,

which can be measured to find errors on the data qubits. As illustrated in Figure 5.2,

the physical qubit includes d × d lattice of data qubits, where d is the distance of the

code. Each square corresponds to a correlated measurement of the stabilizer operator:

Sα = σaα⊗σbα⊗σcα⊗σdα here α=z in the green squares and α=x in the pink squares through

entangling the corner data qubits with the insider ancilla qubit. The bit-flip or phase-flip

of the data qubit will result in the measurement sign changes in the stabilizer measurement

which is so-called syndrome increments. The core computation in the surface code is

through a “decoder” that takes the error syndrome in the ancilla qubit as input and produce

an error probability for the logical qubit as output. Note that not only the data qubit will

have an error rate, the ancilla qubit or the measurement process may also have an error.

Therefore the error correction is not only related to one-time measurement, it needs to

measure multiple T cycles to consider all the error probabilities. Therefore, the recurrent
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Figure 5.3: Architecture of the recurrent neural network (RNN) for surface code decoder.
The measured ancilla qubits syndrome increment is fed into the decoder, finally the decoder
generates the logical qubit parity probability.

neural network could be used to address this time-dependent process. One special type

of recurrent neural network, the long short-term memory (LSTM) network, is capable of

learning such temporal dependency and well suited for this purpose.

The LSTM network contains two paths (Figure 5.3). The upper path takes the syndrome

increments of ancilla qubit as the input, estimating the probability of bit-flip errors during

T cycles. The lower path takes the final data qubit measurement as the input, estimating

its error probability and making any adjustment to the final parity measurement. We use

LSTM cell with 64 hidden states, the LSTM unit cell structure is shown in Figure 5.4. The

final output of the network gives the logical qubit parity state probability. The logical qubit

is initialized as a |1〉) state and hold for T cycles, then measured and decoded. The decoder

needs to determine whether a logical bit-flip occurs during T cycles. The probability that

the decoder makes the correct answer after consecutive T cycles give the logical qubit

fidelity.

During the training, the measurement cycle T is in the range of 10 to 20. The training

dataset is generated using the physical qubit BER=1% [84]. The software training shows

that the network could achieve 99.69%/99.86% fidelity for surface code distance=3/5 (Fig-

ure 5.5). We also used the trained network to test the logical qubit fidelity over longer
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Figure 5.4: Architecture of the LSTM cell. The data in the LSTM cell go through four
fully connected layers with VMM operation, followed by the pointwise operations.

Figure 5.5: Training Fidelity vs. training epoch when the surface code distance equals 3
and 5 with physical qubit BER=1%
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Figure 5.6: Training fidelity vs. measurement cycles (software baseline) with different
code distances while physical qubit BER=1%

measurement cycles up to 500 cycles. When the measurement cycle increases, the fidelity

decreases (Figure 5.6). Assuming physical qubit BER=1%, the logical error decay rate per

cycle is 0.249% for distance 3 and 0.187% for distance 5. The larger the code distance

(thus more redundancy), the better tolerance to errors.

5.3 Cryogenic Benchmark on FeFET+NbOx based QEC

In the hardware implementation, both in the LSTM cell (Figure 5.4) and the evaluation

cell, vector-matrix multiplication (VMM) could be mapped to a CIM array. The channel

conductance of the FeFET can be mapped to the weight in the neuron network. Apart from

the memory array, the peripheral circuitry such as BL switch matrix, WL/RS switch matrix

and neuron circuit is also considered.

5.3.1 Cryogenic behavior of 28nm CMOS

The peripheral circuit consists of CMOS transistors. To benchmark the system-level perfor-

mance, the device technology parameters such as on-current and off-current under different

73



Figure 5.7: Measured ID-VG fitted with the model from [57] for NMOS/PMOS transistors
at different temperatures.

VDD conditions in different temperatures is needed. The 28nm CMOS transistor parame-

ters are calibrated with experimental data [57] at cryogenic temperature as low as 4K. We

use the modified virtual source model to fit the experimental ID-VG characteristics of the

bulk NMOS/PMOS transistors in 300K, 77K and 4K (Figure 5.7). As expected, subthresh-

old slope (SS) becomes steeper but Vth increases in lower temperature. For short channel

devices with L=30nm, the on-current in low temperature is similar or even smaller than

the room temperature, because the low-field mobility in low temperature reduces in short-

channel transistors as observed in prior work [86]. For the circuit delay, the on-current (Ion)

is one of the key parameters. If without threshold voltage (Vth) engineering, operating off-

the-shelf transistors at low-temperature will have higher latency than the room temperature.

To achieve better speed, a higher on-current is preferred. As observed fromFigure 5.7, the

SS slope in the lower temperature is steeper so that the Vth could be reengineered towards a

negative direction so that the on-current can increase under the same supply voltage while

still maintaining reasonable leakage off-current (Ioff). The device threshold voltage can be

modulated by engineering fabrication processes like doping concentration and metal work

function.

Therefore, transistors need to re-optimized for cryogenic computing by Vth engineering
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Figure 5.8: ID-VG simulation result of NMOS and PMOS (W/L=100nm/30nm) with engi-
neered threshold voltage Vth so that the Ioff remains the same as room temperature while Ion

increases.

(e.g. doping, metal workfunction) so that Ioff stays the same level as its 300K counterpart.

As shown in Figure 5.7. After the Vth engineering, the Ion increased while the Ioff remains

the same as room temperature. It should be noted that this reengineered device is dedicated

for low temperature, its leakage current in room temperature is too large. We simulated

the transistor characteristics after engineering in different temperatures through HSPICE.

The on-current changes with temperature NMOS/PMOS are shown in Figure 5.8. The

NMOS transistor on-current increased monotonically when the temperature reduced, while

the PMOS reaches the maximum current at 77K.

5.3.2 Cryogenic behavior of NbOx based threshold switching devices as oscillation neurons

We continue to investigate the cryogenic performance of NbOx. The Pt/NbOx/Pt devices

were fabricated in the cross-point structure with an active area of 10× 10 µm2. Firstly, Pt/Ti

(25nm/3nm) was deposited by e-beam evaporation and patterned through lift-off. Then a

blanket NbOx thin film (15nm) was deposited by reactive sputtering with Nb target in an

O2/Ar gas mixture in the ratio of 1/10 with the chamber pressure at 4mTorr, plasma power

at 250W, and substrate temperature at 100◦C .The Pt (25nm) top electrode was formed

on the top of NbOx by e-beam evaporation and lift-off. The bottom electrode pads were
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Figure 5.9: Measured I-V threshold switching characteristics of the Pt/NbOx/Pt device
in different temperatures down to 4K. The inset shows the schematic of the fabricated
Pt/NbOx/Pt device.

exposed by optical lithography and wet etching of the NbOx layer.

The device was characterized in LakeShore CRX-4K cryogenic probe station using

Keysight B1500 semiconductor device analyzer. Figure 5.9 shows the measured threshold

switching I-V characteristics of the Pt/NbOx/Pt devices in different temperatures ranging

from 4K to 290K. In all the temperature range, as the voltage swept from 0V to 1V with

a 0.2mA current compliance, an abrupt increase in current was observed at the threshold

voltage (Vth). While sweeping the voltage back from 1V to 0V, the current abruptly de-

creased to off-current at the hold voltage (Vhold). This shows that NbOx still has exhibited

the threshold behavior at 4K. To investigate the NbOx’s application as an oscillation neu-

ron, we further extract its OFF-state resistance (ROFF) and switching voltages. The NbOx

will operate between Vhold and Vth during the oscillation, the OFF- Resistance of NbOx at

0.7V is extracted as shown in Fig. Figure 5.10. The ROFF is reduced as the temperature

increases from 4K to 290K. Previous work[48] showed that the conduction mechanism

for Pt/NbOx/Pt below the threshold voltage is mainly through Frenkel-Poole conduction.

When the temperature decreases, the thermal excitation of electrons from traps into the

conduction band reduces, thus increasing the resistance. The Vth and Vhold in different
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Figure 5.10: The temperature dependence of NbOx OFF-state resistance. The resistance is
read at 0.7V.

Figure 5.11: Temperature dependence of the threshold voltage (Vth) and hold voltage
(Vhold) extracted from the current–voltage characteristic of Fig. Figure 5.9.

77



temperatures are shown in Fig. Figure 5.11.

Both Vth and Vhold decrease when the temperature increases. The switching voltage

almost decreases linearly with the temperature increasing from 4K to 290K, which agrees

with the NbOx switching behavior around the room temperature range (242K to 380K)

observed in the previous study[48]. Finally, we fit the log(ROFF) -T, Vth -T ,and Vhold -

T curves with linear regression and sweep the temperature to obtain ROFF, Vth and Vhold

parameters in different temperatures for SPICE simulation.

We continue to evaluate the neuromorphic systems using FeFET as resistive synapses

and NbOx as oscillation neurons in different temperatures through SPICE simulation. Then

we considered the cryogenic behavior for FeFET as studied in ref.[85]. The channel con-

ductance in CIM system is calculated by ID/VD when the VG=0.1V, VD=1V. As demon-

strated in [85], the drain current(when VG=0.1V, VD=1V) for the FeFET in programmed

state (low resistant state) remains the same as the temperature decrease from the 300K to

4K, while the drain current(when VG=0.1V, VD=1V) for the FeFET in erased state (high

resistant state) reduced 10 times. In system evaluation, we assume Ron=200KΩ for FeFET

in 300K and 4K. Meanwhile, we assume the typical on/off ratio for FeFET in 300K is 103

[87]. Therefore, the Roff=200MΩ in 300K and Roff=2000MΩ in 4K.

As shown illustrated in the Figure 5.3 and Figure 5.13 to implement the LSTM cell in

with FeFET array, the weight matrix size is 72x64 for the first LSTM and 128x64 for the

second LSTM. Therefore, the FeFET memory array size should be 72 rows by 64 columns

and 128 rows by 64 columns for LSTM cell. Therefore for the 72 rows by 64 columns

array, the resistance in each columns can be treated as 72 resistor connecting in parallel. In

each column, the system can be simplified as one column resistor(Rcol) connected to one

NbOx cell as shown in the Figure 5.12(a). For simplicity, we assume half of the cell is in the

programmed state and half of the cell is in the erased state. The column resistor and NbOx

are connected in series and there is a parasitic capacitor at the neuron node. The parasitic

capacitor is set to be 20fF in simulation, representing the column parasitic capacitance from
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Figure 5.12: ID-VG simulation result of NMOS and PMOS (W/L=100nm/30nm) with en-
gineered threshold voltage Vth so that the Ioff remains the same as room temperature while
Ion increases.

the FeFET array[45]. Therefore, Rcol=5.5KΩ. During the SPICE simulation, the NbOx is

modelled with a Verilog-A behavior model that captures the switching characteristics with

parameters such as the resistance in the ON/OFF state (RON/ROFF), the threshold voltage

(Vth), and the hold voltage (Vhold)[45]. The intrinsic transition time between ON/OFF state

is set to be 10ps [45]. Figure 5.12 (b)-(C) shows the simulation results of the output voltage

waveform for 300K and 4K. When the square pulse is fed into the input, the output neuron

waveform oscillates. It shows that the oscillation amplitude is between the Vhold and Vth

and it decreases when the temperature increases. Therefore, the oscillation amplitude is

mainly determined by Vhold and Vth. The oscillation amplitude modulation depends on

NbOx device optimization such as NbOx film thickness tuning[88] and device structure

engineering[76]. The oscillation frequency is not only related to the array RC product but

also the Vhold to Vth window.

5.3.3 Cryogenic benchmark of FeFET+NbOx based CIM system

Through the Hspice simulation, the neuron node oscillation process power consumption

can be simulated. Now we benchmark the performance of FeFET+NbOx QEC circuitry

in 4K. The entire LSTM network with multiple FeFET-CIM arrays and all the peripheral

circuits are built with NeuroSim [58], a widely used simulator for neural network accel-
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Figure 5.13: Hardware acceleration of VMM in a neural network with FeFET-based
compute-in-memory (CIM).

erators as shown in Figure 5.13. The FeFET-CIM array is in the psudo-crossbar fashion.

The read select (RS) is used to fetch in the input volatge, while weighted sum current will

be summed in the source line (SL). QEC is performing inference during runtime. For an

entire decoding process, the input will be fed into LSTM cell in a time sequence. For a

distance=3 decoder, in each time step, 8 ancilla qubit syndrome increments are fed into

the first LSTM cell as the new inputs. While in the LSTM, the input will be concatenated

with its 64 hidden states and formed 72 size inputs and fed into four fully connected layer

simultaneously in forget gate, input gate, and output gate to perform VMM operation. Here

four 72×64 arrays are needed for the first LSTM cell. After VMM operation, the output

needs to go through pointwise operation which needs digital adder or multiplier, then the

output goes to next LSTM layer. Similar operation happens in the next LSTM layer except

that the input size increases to 128, because the hidden states are concatenated with the

output of LSTM layer. Therefore, four 128×64 arrays are needed for the second LSTM

layer. The final LSTM layer’s output after T cycles will fed into the evaluation layer with

64 neurons. One 64×64 array and one 64×1 array is needed for the evaluation layer. Mean-

while the lower path of the network takes the final syndrome increment calculated from

data qubit and the last output of LSTM as input of an evaluation layer with 64 neurons.

To summarize, implementing the surface code for one logical qubit requires 7KB memory.

Our benchmark considers both VMM in FeFET+NbOx arrays and other digital logic.
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Table 5.1: Benchmark for FeFET+NbOx based Surface Code decoder at 4K

NbOx Neuron CMOS Neuron reduction
Area(µm) 11446 16848 32%

Latency(ns) 156.3 158.6 1%
Dynamic Energy(pJ) 120.6 734.4 6X

With the modified Cryo-NeuroSim tool, we benchmarked the FeFET based CIM accel-

erator performance. The result for one LSTM cell for processing one cycle data is shown

in Table 5.1. For comparison, we also benchmark the result for CMOS ADC as neuron

circuit. This result is promising. From the array’s point of view, the oscillation neuron does

not gain many benefits in latency (synapse array area + peripheral neuron area) because

the total latency is still dominated by other peripherals circuits such as multiplier, sigmoid

function for look up table and adder. However, the NbOx compact structure helps reduce

the area and energy consumption. It shows the NbOx Neuron array could achieve 32%

area reduction and 6X energy reduction compared to the normal CMOS analogue to digital

neuron.
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CHAPTER 6

CONCLUSION AND OUTLOOK

6.1 Summary of contribution

This thesis investigated the prospects and challenges of the neuromorphic computing sys-

tem with FeFET as synaptic a device and NbOx as a neuron device. The contribution of

this thesis include:

1. A 3D-NAND like FeFET array structure was proposed to accelerate the vector-

matrix multiplication (VMM), one of the most computation intensive operation in neural

networks. To utilize the high density 3D-NAND like FeFET array structure for neuromor-

phic computing, block-erase nature of the NAND array make it challenging for individual

cell’s program/erase in the 3D-NAND array which is essential for in-situ training. In this

work, we proposed the drain-erase scheme to erase the cell by raising the channel voltage

through the drain side. To enable the individual cell program/erase, we experimentally

demonstrated the feasibility of on GLOBALFOUNDRIES 22nm FDSOI FeFET. Mean-

while, the gate program, program-inhibition and erase-inhibition mode were also charac-

terized.

2. The experimental conditions obtained were then used as a guideline to design a

3D NAND-like FeFET array operation. 3D timing sequence of the weight update rule

was designed and verified through 3D-array level SPICE simulation. Finally, the VMM

operation was simulated in 3D NAND-like FeFET array for DNN inference.

3. This thesis identified a new challenge of deterministically tuning FeFET into multi-

level states, namely “history effect” in minor loop dynamics. To measure customized arbi-

trary waveform, a testing protocol was established to measure the real-time polarization re-

sponse corresponding to the voltage sequence applied based on the virtual ground method.
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For the first time, the history effect was validated experimentally in both our in-house fab-

ricated ferroelectric capacitor (FeCap) and industry-grade 28nm FeFET.

4. A physics-based phase-field domain switching dynamic model was built to under-

stand the origin of the history effect in ferroelectric partial switching. The history effect

could affect the distribution of the polarization in each domain. Even though the externally

observable average polarization is the same, the internal domain coercive field distribution

results in different electric fields to flip the same amount of domains.

5. Then the history effect was incorporated into the FeFET based neural network in-

situ training and analyzed its negative impact on training accuracy. To simulate the history

effect impact on in-situ training, a python platform is built. The experimental data of the

history effect was used to calibrate the Preisach model. The Preisach model is coupled

with the MOS cap model of a transistor thus determining the FeFET threshold voltage and

channel conductance. A fully connected multilayer perceptron (MLP) network is chosen

for the study. The result showed that the accuracy will be degraded without calibrating the

history effect during draining. By employing the fully-erased method, the accuracy can

be recovered to the software baseline at the expense of additional energy consumption and

latency.

6. For the first time, the experimental fabrication and characterization of parallel weighted

sum operation in the 1-D 12 × 1 crossbar array with integrated synaptic devices and neu-

ronal device that structurally emulated a part of the neural network was demonstrated.

7. For the first time, cryogenic characterization of Pt/NbOx/Pt threshold switching de-

vices down to 4K was presented. Threshold switching behaviour was still observed when

the temperature is cooled to 4K.

8. The potential application of FeFET+NbOx neuromorphic system as quantum error

correction circuitry was explored. Cryo-NeuroSim, a device-to-system modeling frame-

work that calibrates the transistor and interconnects parameters with experimental data at

cryogenic temperature was developed to benchmark the performance of the FeFET+NbOx
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neuromorphic system.

6.2 Future work

This thesis presented a comprehensive study that provides a solid foundation for more

exciting future works in several directions.

With respect to FeFET, the non-ideal effect of FeFET such as retention and endurance

impact on the accuracy of the CIM array can be a future direction. The retention effect

will introduce the channel conductance drifting during the inference, which will result in

computation errors. Similarly, the endurance effect will influence the accuracy of training.

With respect to the FeFET drain erase scheme, our design is based on the ideal case that

all the FeFET is ideal. However, there is variation of threshold voltage in FeFET, especially

in the vertical 3D-NAND array. In the fabrication process, the cell in different layer could

not achieve the same channel width. The designing window needs to take the variation

into consideration. Future work could investigate the device variation effect on 3D-NAND

FeFET system.

With respect to FeFET history effect, the fully erase method could mitigate the negative

influence of the history effect. However, it will result in more programming energy and

latency. Device level design that reduces the history effect might be a future direction. For

example, introducing a multi-gate device that individually controls certain domains. In this

way, all the domains under the certain gate are fully switched, thus eliminating the history

effect.

With respect to NbOx, device optimization is needed to lower the Vth and Vhold value

while maintaining enough Vth-Vhold window. The research direction can be device opti-

mization for NbOx.
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