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Università degli Studi di Enna “Kore”

Prof. Alexander Lerch
School of Music
Georgia Institute of Technology

Date approved: Feb. 24, 2021



A thousand roads lead a man forever toward Rome.

Alain de Lille



For my parents



ACKNOWLEDGMENTS

I want to express my sincere gratitude to my advisor and mentor, Prof. Chin-Hui Lee,

for offering me the opportunity to join the human language technology lab and leading me

to research in the fast-evolving field of automatic speech processing. As my advisor, he

lends his insights on many complex problems. As a mentor, he is patient and guides me

through setbacks. I am deeply indebted to him for his advice and kindness.

I also want to thank my co-advisor, Prof. Sabato Marco Siniscalchi. I am immensely

thankful for his guidance and encouragement during my study. As an experienced re-

searcher, he helped me brainstorm many ideas, plan my experiments, and proof-read my

writing. I am deeply affected by his diligence at work and attention to detail. I will always

cherish the memories of many discussions and hang-outs we had together.

I am also grateful to my committee members, Prof. David Anderson, Prof. Elliot Moore

II, and Prof. Alexander Lerch, for serving on my thesis reading committee. Prof. Anderson

and Prof. Moore provided many helpful feedbacks after my proposal. Prof. Moore also

kindly offered me to use his computing resources for my experiments.

I was fortunate to work with a team of talented lab mates at Georgia Tech. Dr. You-

Chi Cheng shared his internship experience with me. Dr. I-Fan Chen helped me furnish

the voice tag package. Dr. Zhen Huang provided many useful tips in my job searching.

Dr. Kehuang Li coached me to maintain the server cluster. Dr. Wei Li, Qi Jun, Hu Hu,

Chao-Han Huck Yang, and Yongliang He collaborated with me on several projects.

I had the opportunity to collaborate with some industrial researchers both during semesters

and during the summers. Each project rewarded me with invaluable experience. I want to

thank Dr. Pongtep Angkititrakul, Dr. Zhe Feng, Mr. Peter Eastty, Dr. Chao Weng, Dr.

Joshua Atkins, Dr. Jason Wung, Dr. Ramin Pishehvar, Dr. Ming Lei, Dr. Zhijie Yan,

Yongtao Jia, Linzhang Wang. My life at the lab is also enjoyable and memorable because

of the visiting scholars, including Dr. Yong Xu, Dr. Ji Wu, Dr. Jing Zhang, Dr. Fengpei

v



Ge, Dr. Hu Chen, Dr. Haifeng Sun, Dr. Bo Wu, Dr. Yi Lin, Dr. Quandong Wang, Dr. Gang

Chen, Leonard Loo Tiang Kuan, Meri Tan and friends at CSIP, Sam Li, Dr. Meng Zhong,

Dr. Kyle Xu, Dr. Zhen Wang, Dr. Yuting Hu, Dr. Le Liang, Dr. Hao Ye, Ziyan He, and

Helen Li. Finally, I want to thank Pat Dixon, Raquel Plaskett, Dr. Daniela Staiculescu, and

Tasha Torrence for their great administrative support.

Lastly, I want to thank my parents for their support and encouragement during my study

away from home. I’m grateful for my friends, Huaidong Yang, Ruxiu Liu, Congshan Wan,

Li Wang, Yuan Gao, Yingdan Wu, Qiming Zhang, and Xiaoyao Liu for being part of my

life in Atlanta.

vi



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Speech enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Classical signal processing techniques . . . . . . . . . . . . . . . . 8

2.1.2 Deep learning methods . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Progressive speech enhancement . . . . . . . . . . . . . . . . . . . 20

2.2 Characterization of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Speech transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Mean-variance normalization . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Exemplar-based methods . . . . . . . . . . . . . . . . . . . . . . . 28

vii



2.3.3 Multi-layer perceptrons . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Generative models . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 A high-level description of the proposed progressive enhancement approach
with intermediate noisy speech target . . . . . . . . . . . . . . . . . . . . . 30

Chapter 3: Characterization of Additive Noises . . . . . . . . . . . . . . . . . . . 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Noise in speech enhancement . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Enhancement quality and improvement depending on noise types . . 37

3.2 On the criteria to select intermediate targets . . . . . . . . . . . . . . . . . 39

3.2.1 Simple noise with high PESQ score . . . . . . . . . . . . . . . . . 43

3.2.2 Noise shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 4: Indirect Speech Enhancement with Supervised Learning . . . . . . . 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Matching feature statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Effects of noise in feature normalization in speech enhancement . . 51

4.2.2 Deviation of mean in normalizing speech in difficult noise types . . 54

4.2.3 Deviation of variance in normalizing speech in difficult noise types . 57

4.2.4 Mean-variance matching . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.5 Histogram equalization . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



4.2.6 Experiments and discussions . . . . . . . . . . . . . . . . . . . . . 62

4.3 Speech conversion with DNN mapping . . . . . . . . . . . . . . . . . . . . 66

4.3.1 DNN training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Experiments and discussions . . . . . . . . . . . . . . . . . . . . . 68

4.4 Interference of multiple noise sources . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Framework of indirect enhancement with two noise sources . . . . . 72

4.4.2 Experiments and discussions . . . . . . . . . . . . . . . . . . . . . 73

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 5: Indirect Speech Enhancement with Latent Space Learning . . . . . . 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Representational learning via auto-encoder . . . . . . . . . . . . . . . . . . 80

5.2.1 Latent space of speech features using PCA . . . . . . . . . . . . . . 82

5.2.2 Use of nonlinear auto-encoders to convert speech features . . . . . . 87

5.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Dictionary-based indirect speech conversion and enhancement . . . . . . . 102

5.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2 Experiments and discussions . . . . . . . . . . . . . . . . . . . . . 105

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 6: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Summary of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Noise characterization . . . . . . . . . . . . . . . . . . . . . . . . 111

ix



6.2.2 Indirect enhancement via supervised learning . . . . . . . . . . . . 112

6.2.3 Indirect enhancement via representational learning . . . . . . . . . 113

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.1 Theoretical characterization of noise types . . . . . . . . . . . . . . 114

6.3.2 Noisy speech with multiple sources . . . . . . . . . . . . . . . . . 115

6.3.3 Disentanglement of latent feature . . . . . . . . . . . . . . . . . . . 115

6.3.4 Explorations of different deep architectures for speech transformation115

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendix A: Derivation of mean deviation in the normalization of LPS feature . 117

Appendix B: Derivation of the variance deviation in the normalization of LPS
feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendix C: Definition of colored noise . . . . . . . . . . . . . . . . . . . . . . 121

Appendix D: Description of Nonspeech noise . . . . . . . . . . . . . . . . . . . 125

Appendix E: Description of Noisex92 noise . . . . . . . . . . . . . . . . . . . . 126

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

x



LIST OF TABLES

3.1 PESQ on Noisex92 noise types . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 PESQ of conversion using simple noise as the intermediate targets . . . . . 43

3.3 Comparison of MSE of direct and indirect methods on the 1st quantile of
noisy speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Effects of spectral shapes on the suitability as intermediate targets . . . . . 45

3.5 MSE comparison between volvo and ovlov noise . . . . . . . . . . . . . . . 46

3.6 Effects of bandwidth of conversion targets . . . . . . . . . . . . . . . . . . 47

3.7 Effects of stationarity of conversion targets . . . . . . . . . . . . . . . . . . 48

4.1 PESQ score with and without matching statistics . . . . . . . . . . . . . . . 64

4.2 KLD between other noise and volvo in a hidden layer . . . . . . . . . . . . 66

4.3 Progressive indirect enhancement with volvo intermediate noise . . . . . . . 71

4.4 MSE between various learning pairs . . . . . . . . . . . . . . . . . . . . . 71

4.5 3dB babble noise mixed with various colored noise at 3dB. The intermedi-
ate target is babble for Path 1 and the corresponding colored noise for Path
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 3dB factory noise mixed with various colored noise at 3dB. The interme-
diate target is factory1 for Path 1 and the corresponding colored noise for
Path 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Babble and colored noise at various SNR . . . . . . . . . . . . . . . . . . . 76

4.8 Factory1 and colored noise at various SNR . . . . . . . . . . . . . . . . . . 76

xi



5.1 Effects of stationarity of conversion targets . . . . . . . . . . . . . . . . . . 87

5.2 PESQ after enhancing using different depths of auto-encoders . . . . . . . . 96

5.3 PESQ after enhancing using different bottleneck width . . . . . . . . . . . 97

5.4 PESQ of converted speech at various SNR levels . . . . . . . . . . . . . . . 97

5.5 Results of noise aware training . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Results of domain adversarial auto-encoder . . . . . . . . . . . . . . . . . 100

5.7 Effect of spectral compression in exemplar conversion . . . . . . . . . . . . 106

5.8 Effect of codebook size in NMF conversion . . . . . . . . . . . . . . . . . 108

5.9 NMF-based conversion on various SNR levels . . . . . . . . . . . . . . . . 109

xii



LIST OF FIGURES

2.1 Suppression vs. a priori SNR, ξk, of a Wiener filter . . . . . . . . . . . . . 12

2.2 Suppression vs. a posterior SNR, γk, of an MLE, spectral subtraction, and
a Wiener filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Comparison of the suppression gain between an MMSE and a Wiener filter 14

2.4 Progressive speech enhancement by SNR . . . . . . . . . . . . . . . . . . 21

2.5 SNR affecting the results of automatic speech processing systems . . . . . . 22

2.6 Progressive learning in speech enhancement . . . . . . . . . . . . . . . . . 31

2.7 Relocation of noise in the time domain . . . . . . . . . . . . . . . . . . . . 32

2.8 Relocation of noise in the frequency domain . . . . . . . . . . . . . . . . . 33

2.9 Framework of indirect speech enhancement . . . . . . . . . . . . . . . . . 33

2.10 The existence of intermediate targets . . . . . . . . . . . . . . . . . . . . . 36

3.1 PESQ of 100 types of Nonspeech noise . . . . . . . . . . . . . . . . . . . . 38

3.2 Spectrograms of samples noises. Top row contains difficult noise types.
Middle row contains simple noise types. Bottom row shows the outliers . . 40

3.3 Spectral shape of clean speech and some easy noise. Long-term average
speech spectrum shown in red. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 k-means clustering with t-SNE projection on 115 noise types . . . . . . . . 42

3.5 Long term average spectra of speech, volvo, and ovlov . . . . . . . . . . . . 46

3.6 Non-stationary examples of volvo-like noise . . . . . . . . . . . . . . . . . 48

xiii



4.1 Framework of indirect speech enhancement . . . . . . . . . . . . . . . . . 50

4.2 PCA projections of normalized features for different noises . . . . . . . . . 53

4.3 The observed mean deviation agrees with the estimated mean deviation . . . 56

4.4 The observed variance deviation agrees with the estimated variance deviation. 58

4.5 Deviation from zero mean (left) and unit variance (right) between simple
and difficult noise samples. White is an example of difficult noise and volvo
is an example of simple noise. . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Comparison of feature distribution by SNR and by noise . . . . . . . . . . 64

4.7 Effect of histogram equalization on feature distribution . . . . . . . . . . . 65

4.8 Effect of histogram equalization in hidden layers . . . . . . . . . . . . . . . 66

4.9 DNN architecture for feature mapping and joint training . . . . . . . . . . . 68

4.10 Conversion and enhancement of speech in babble noise . . . . . . . . . . . 69

4.11 Conversion and enhancement of speech in pink noise . . . . . . . . . . . . 70

4.12 Conversion and enhancement of speech in white noise . . . . . . . . . . . . 70

4.13 Effect of conversion on feature distribution . . . . . . . . . . . . . . . . . . 71

4.14 Indirect enhancement of multiple interferences . . . . . . . . . . . . . . . . 73

4.15 Average power spectrum density of speech and various colored noise . . . . 77

5.1 First 9 latent speech bases extracted from clean and noisy speech . . . . . . 84

5.2 First latent white noise basis . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Conversion of noisy speech from white noise into pink and volvo with PCA 86

5.4 PCA vs Deep AE in manifold learning. . . . . . . . . . . . . . . . . . . . . 88

5.5 Use auto-encoders to convert noisy speech into simpler noise . . . . . . . . 90

5.6 Architecture of noise aware speech conversion . . . . . . . . . . . . . . . . 91

xiv



5.7 Use domain adversarial auto-encoders to convert noisy speech into simpler
noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Architecture of vector quantized auto-encoder . . . . . . . . . . . . . . . . 94

5.9 Conversion quality with respect to data size in auto-encoders . . . . . . . . 98

5.10 Size of codebook and dimension of codebook features . . . . . . . . . . . . 101

5.11 Dynamic range compression with exponentiation factor, ρ . . . . . . . . . . 104

5.12 Comparison between AE and NMF converted speech . . . . . . . . . . . . 107

5.13 Comparison between different codebook composition . . . . . . . . . . . . 108

C.1 Spectrograms and PSDs of some colored noise . . . . . . . . . . . . . . . . 124

E.1 Spectrograms and PSDs of Noisex92 noise . . . . . . . . . . . . . . . . . . 129

E.1 Spectrograms and PSDs of Noisex92 noise (cont.) . . . . . . . . . . . . . . 130

xv



LIST OF ACRONYMS

AE autoencoder

ASR automatic speech recognition

CASA computational auditory scene analysis

CDF cumulative distribution function

CMVN cepstral mean variance normalization

CNN convolutional neural network

DFT discrete Fourier transform

DNN deep neural network

FFT fast Fourier transform

GAN generative adversarial network

GMM Gaussian mixture model

HMM hidden Markov model

IRM ideal relative mask

KLD Kullback–Leibler divergence

LPS log power spectrum

LSTM long short-term memory

MLE maximum likelihood estimators

MLP multilayer perceptron

MMSE minimum mean square error

MSE mean squared error

NMF non-negative matrix factorization

OLA overlap-add

xvi



PCA principal component analysis

PESQ Perceptual Evaluation of Speech Quality

PLP perceptual linear prediction

PSD power spectrum density

RASTA representations relative spectrum

RBM restrictive Boltzmann machine

ReLU rectified linear units

SE speech enhancement

SNR signal-to-noise ratio

STFT short-time Fourier transform

SVD singular value decomposition

SVM support vector machine

t-SNE t-distributed stochastic neighbor embedding

TF time-frequency

VAD voice activity detector

VAE variational auto-encoder

VQ vector quantization

WSJ Wall Street Journal

xvii



SUMMARY

Noise presents a severe challenge in speech communication and processing systems.

Speech enhancement aims at removing the inference and restoring speech quality. It is an

essential step in a speech processing pipeline in many modern electronic devices, such as

mobile phones and smart speakers. Traditionally, speech engineers have relied on signal

processing techniques, such as spectral subtraction or Wiener filtering. Since the advent of

deep learning, data-driven methods have offered an alternative solution to speech enhance-

ment. Researchers and engineers have proposed various neural network architectures to

map noisy speech features into clean ones. In this thesis, we refer to this class of mapping

based data-driven techniques collectively as a direct method in speech enhancement. The

output speech from direct mapping methods usually contains noise residue and unpleasant

distortion if the speech power is low relative to the noise power or the background noise

is very complex. The former adverse condition refers to low signal-to-noise-ratio (SNR).

The latter condition implies difficult noise types. Researchers have proposed improving

the SNR of speech signal incrementally during enhancement to overcome such difficulty,

known as SNR-progressive speech enhancement. This design breaks down the problem of

direct mapping into manageable sub-tasks. Inspired by the previous work, we propose to

adopt a multi-stage indirect approach to speech enhancement in challenging noise condi-

tions. Unlike SNR-progressive speech enhancement, we gradually transform noisy speech

from difficult background noise to speech in simple noise types.The thesis’s focus will

include the characterization of background noise, speech transformation techniques, and

integration of an indirect speech enhancement system.

xviii



CHAPTER 1

INTRODUCTION

1.1 Overview

Single-channel speech enhancement aims at recovering clean speech from a mixture of

interfering speech, background noise, and channel distortions [1]. Many classic speech

enhancement techniques, such as spectral subtraction [2, 3] and Wiener filtering [4, 5],

rely on an accurate estimation of the noise spectrum, usually calculated as a smoothed

average of past observations during speech pauses. However, when the noise spectrum is

non-stationary, an accurate estimation cannot be reliably obtained. Adaptive methods [6,

7, 8] partially alleviates this issue by recursively averaging the noise’s short-time spectrum.

More recently, data-driven methods based on deep neural network (DNN) have achieved

an impressive improvement in terms of perceptual quality and intelligibility, especially

in some non-stationary noise conditions [9, 10, 11]. The DNN-based approach finds a

non-linear function to map noisy speech features into enhanced features. Unlike many

classical methods, this approach does not assume that speech or noise follows a particular

distribution or independent. Authors of [9, 10] showed that the DNN-based approach was

more effective in handling non-stationary noise compared to statistical models, such as

minimum mean square error (MMSE) short-time spectral amplitude estimator [12], and

rendered enhanced speech with better quality.

Many conventional speech enhancement algorithms have noted that non-stationary noise

is typically more challenging to handle than stationary noise [8]. The disparity in speech

enhancement performance in different backgrounds is also observed in DNN-based speech

enhancement systems [13]. A direct mapping, such as the DNN in [10], does not address

the variability of noise types or different signal-to-noise ratio (SNR) conditions. On the
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other hand, an indirect approach decomposes the process of regression-based mapping into

smaller tasks. Notable examples include [14, 15] in which the authors designed a series

of sub-tasks to improve the SNR in a noisy speech signal incrementally. In the SNR-

progressive learning paradigm, each sub-network explicitly learns an intermediate target

with slightly higher SNRs. The authors of [14, 15] first mapped speech in acoustically chal-

lenging environments to a partially de-noised signal. Next, it was refined to clean speech in

subsequent stages. The authors showed that this approach consistently outperformed direct

mapping, especially in low SNR environments.

Instead of gradually improving the SNR in speech, we could consider replacing the

background noise types to remove the noise with greater ease. In this indirect framework

of enhancement, we first convert speech in challenging acoustic conditions, such as loud

machinery or interfering speakers, to speech in less destructive noise, such as an office or

home. Since speech in an office or home environment is simpler to be handled than speech

in machinery or babble, we could refine it to clean speech with better quality. When the

original acoustic environment is complicated, for example, an environment with multiple

noise sources, the indirect approach can be extended to establish multiple intermediate

representations with different background noise in the process.

Furthermore, the indirect approach based on noise type conversion is different from

SNR-based progressive learning in [14, 15]. In their work, the authors of [14, 15] assumed

that higher SNR in the signal corresponded to better speech quality. Hence, they designed

SNR-based progressive learning to improve the SNR in each stage, which naturally led to

an incremental improvement of speech quality. In contrast, there is no obvious criterion to

gauge the difficulty level of noise types, even though one could find some noise conditions

more disruptive to speech communication in daily life. Previous work [2, 12] have often

cited non-stationarity of the background noise as a key factor responsible for the quality

degradation. However, the discussion of noise characteristics sensitive to DNN-based en-

hancement is somewhat limited in the literature. Hence, we need a detailed characterization

2



of additive noise and its interaction with speech. We will use such knowledge to calibrate

noise types and determine suitable intermediate targets in the proposed framework of indi-

rect speech enhancement.

After anchoring the intermediate targets for noisy speech in difficult noise types, we

design a noisy speech transformer that converts difficult speech to simpler speech. It is fol-

lowed by a refinement module that maps the simpler speech to clean speech. An ideal noisy

speech converter in this indirect approach should replace the background noise while keep-

ing speech unchanged. Nonetheless, speech suppression and artifacts are usually inevitable

[16]. We need to consider a trade-off between speech distortion and noise transforma-

tion to achieve optimal conversion and enhancement. Another issue with converter design

is the availability of converted samples as training targets. Data-driven methods such as

DNN-based mapping [10] often require a large amount of aligned data. Techniques devel-

oped with stronger assumptions of signal properties, such as vector quantization (VQ) [17],

Gaussian mixture model (GMM) [18], and non-negative matrix factorization (NMF) [19],

are usually less parameterized, so less or no aligned data is required to train these models.

We will evaluate some of the methods above, too.

The third issue in converter design is integrating each sub-task into an overall speech

enhancement system. The authors of SNR-progressive learning [14] adopted smaller DNNs

to perform each conversion stage, so the networks could be easily concatenated and jointly

optimized. On the other hand, it is not straightforward to combine a sample-level converter

with a frame-level refinement module. As a result, all these factors need to considered

when designing the conversion and refinement steps in our indirect approach.

Thanks to substantial interest in voice conversion, music morphing, and hearing-aid

design, an extensive collection of waveform or spectral conversion techniques have been

proposed, including the aforementioned VQ, GMM, NMF, DNN, unit selection [20], and

frequency warping [21]. We will select and compare various conversion techniques that

best address the various issues in indirect speech enhancement.
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1.2 Main contributions

This thesis aims to investigate the feasibility of a multi-stage speech enhancement approach

by gradually replacing background noise in noisy speech. The contributions of our work

are summarized as follows:

Our first contribution is the characterization of additive noises in the context of speech

enhancement. In Chapter 3, we consider the frequency and temporal properties of noise

signals and empirically evaluate their effects on speech enhancement. We also show how

adverse noise conditions cause feature mismatch as a result of improper normalization.

Our second contribution is the design of speech transformation techniques using super-

vised learning. Chapter 4 presents our first architecture of the indirect approach to speech

enhancement. We transform source noisy speech into intermediate target speech by match-

ing their feature distribution or frame-level details. Experimental studies also demonstrate

that we can extend the proposed method to handle multiple noise sources.

Our third contribution is the design of indirect speech enhancement and speech transfor-

mation when no parallel utterances are available for supervised learning. In Chapter 5, we

leverage upon representation learning to discover hidden structures of speech and noise in

noisy speech mixtures. The latent representation allows us to manipulate speech and noise

separately by replacing background noise in the latent space. This operation accomplishes

speech transformation, a critical step in our indirect speech enhancement framework.

Lastly, we conducted thorough experiments to validate the proposed framework of in-

direct speech enhancement. We use the knowledge derived from Chapter 3 to select rea-

sonable intermediate targets. The speech transformers in Chapter 4 and Chapter 5 are

combined with refinement modules to perform indirect multi-stage speech enhancement.

Our experimental results show that the indirect approach can yield performance gain over

direct mapping in challenging acoustic conditions.
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CHAPTER 2

BACKGROUND

2.1 Speech enhancement

When speech is corrupted by background noise, speech enhancement can recover clean

speech for better quality and intelligibility. We consider the following additive noise model

in this thesis. The additive noise model assumes that the noise-corrupted speech or noisy

speech, y[n], is the sum of the clean speech signal, x[n], and the additive interference, d[n].

In Equation 2.1, we assume that the speech and noise are additive and uncorrelated.

y[n] = x[n] + d[n]. (2.1)

Converting the signal into the frequency domain offers the following advantages:

• Filters at different frequencies or frequency bands can be designed and handled inde-

pendently from one another. Therefore, there is significant flexibility in dealing with

colored noise, which generally possesses prominent frequency characteristics.

• Most of our knowledge and understanding of speech production and perception are

related to frequencies.

• Thanks to fast Fourier transform (FFT)s, the implementation of frequency-domain

filters is generally very efficient.

Because speech is a non-stationary signal in general, its temporal and spectral character-

istics could vary over time. We can nevertheless assume that speech is stationary within

a short analysis window, typically 10-30ms. We define the short-time N -point discrete
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Fourier transform (DFT) [22] of the noisy speech signal, Y (m, k):

Y (m, k) ,
∞∑

l=−∞

y[l]w[mR− l]e
−2jπlk
N . (2.2)

In Equation 2.2, y[l] is the speech signal, and w[l] is a window function of length N , such

as a Hamming window [23] or a Hann window [24]. The hop size is R samples. The frame

index, m, is the location of the analysis window. The frequency index, k, corresponds to

the frequency at 2πk/N , k = 0, 1, ..., N − 1. We can define the short-time DFT of clean

speech and the noise in the same manner. Thus, Equation 2.1 in the short-time frequency

domain is

Y (m, k) = X(m, k) +D(m, k). (2.3)

In its polar form, the DFT coefficients can be expressed as

Y (m, k) = |Y (m, k)|ej∠Y (m,k), (2.4)

where |Y (m, k)| is the magnitude and ∠Y (m, k) is the phase. The power spectrum, Py(k),

can be defined as

Py(k) = E
[
|Y (m, k)|2

]
, (2.5)

where the expectation is taken over the observed signal for a unit duration. The power

spectrum of clean speech, Px(k), and that of noise, Pd(k), can be defined similarly. From

the power spectra, we can define two SNR quantities frequently used in the derivation of

spectrum estimators: the a priori SNR, ξk, and the a posteriori SNR, γk

ξk =
Px(k)

Pd(k)
, (2.6)

and

γk =
Py(k)

Pd(k)
. (2.7)
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The a priori SNR, ξk, represents the oracle SNR at the frequency bin, k, whereas the a

posterior SNR, γk, is the observed SNR at bin, k, in the noisy speech.

Because the authors of [25, 26] have shown that the phase spectrum does not affect in-

telligibility and it is less critical for speech quality, most works focus only on the restoration

of the magnitude spectrum. Speech enhancement can then be formulated as an estimation

of the clean magnitude spectrum, |X̂(m, k)|, from the noisy speech magnitude spectrum,

|Y (m, k)|. To convert the DFT of X̂(m, k) back to waveforms, we perform the inverse

DFT and overlap-add (OLA) algorithm [27].

The performance of a speech enhancement system can be evaluated subjectively and

objectively. In a subjective test, human listeners are asked to rate the quality of enhanced

speech or identify intelligible words. These tests do not generally yield reliable conclu-

sions on their own. They need to be combined with appropriate statistical tests to assess if

a speech enhancement system can improve speech quality [28]. Furthermore, they are time-

consuming and costly. In contrast, objective metrics are efficient and reliable if the metrics

maintain a high correlation with subjective listening. Some commonly seen metrics include

the log spectral distortion [29], weighted-slope spectral distance [30], segmental SNR [31],

and Perceptual Evaluation of Speech Quality (PESQ) [32]. Among these objective mea-

sures, PESQ yielded the highest correlation with subjective assessments [33]. It ranges

from -0.5 to 4.5, with higher scores indicating better speech qualities. It will serve as the

main evaluation metric in this thesis.

Due to the importance of speech enhancement, the topic has received much attention

in the speech community. The classical methods fit into three main categories. Spectral

subtraction algorithms, first proposed by Weiss in the time domain [34] and Boll in the

frequency domain [3], are the most intuitive to understand. They assume noise is additive,

and one can obtain an estimate of clean speech by subtracting the noise spectrum estimated

during speech pauses. The second primary class includes the statistical model-based algo-

rithms. These algorithms consider speech enhancement in a statistical estimation frame-
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work. They assume that the DFT coefficients of noisy speech depend on the DFTs of clean

speech. The task is to find an estimator of the DFT coefficients of the clean signal. Notable

algorithms include Wiener filtering [5], speech/non-speech detection [35], and MMSE es-

timators [12]. The last class, subspace algorithms, is based on linear algebra theory. These

algorithms assume that clean speech is confined to a subspace of noisy speech. Vector de-

composition techniques, such as singular value decomposition (SVD), can be exploited to

separate the speech and noise subspaces. This line of work was pioneered by Dendrinos

[36] and later by Ephraim and Van Trees [37]. The speech community has also studied and

developed other approaches based on multilayer perceptron (MLP) [38, 39], GMM [40],

principal component analysis (PCA) [41], mask estimation [42], NMF [43], support vector

machine (SVM) [44], and more recently, DNN [9, 10, 45]. In the rest of the section, we will

briefly review the three major classes of noise enhancement algorithms’ basic principles.

2.1.1 Classical signal processing techniques

Spectral subtraction

Spectral subtraction, first proposed in [3], is one of the most intuitive and heuristic meth-

ods. This class of algorithms exploits the assumption that background noise is additive

and stationary. In its most basic form, one first obtains an estimate of the noise spectrum

during speech pauses using a voice activity detector (VAD). Since noise is assumed to be

stationary, its spectrum does not change at the next speech onset. We recover the clean

speech spectrum by subtracting the noise spectrum from the noisy speech spectrum. We

then update the estimate of the noise spectrum at the next speech pause. To recover speech

waveform from the frequency domain, one performs inverse DFT and OLA in reconstruc-

tion. The following equation summarizes the principle of spectral subtraction

|X̂(m, k)| = |Y (m, k)| − |D̂(m, k)|. (2.8)
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In Equation 2.8, |D̂(m, k)| and |X̂(m, k)| denote the estimated noise spectrum and clean

speech spectrum at frequency bin, k, respectively.

Alternatively, spectral subtraction can also be formulated with the power spectrum in-

stead of the magnitude spectrum

|X̂(m, k)|2 = |Y (m, k)|2 − |D̂(m, k)|2. (2.9)

We can rearrange the terms in Equation 2.9 and make substitutions with a priori and a

posteriori SNR

|X̂(m, k)| =
√
|Y (m, k)|2 − |D̂(m, k)|2

=

√
Py(k)− P̂d(k)

Py(k)
|Y (m, k)|

=

√
ξk

ξk + 1
|Y (m, k)|

=

√
γk − 1

γk
|Y (m, k)|. (2.10)

In linear systems, the factor in front of |Y (m, k)| is known as the system’s transfer function.

In the context of speech enhancement, it is also referred to as the suppression gain [16].

Hence, the suppression gain, H(k), for spectral subtraction is

H(k) =

√
ξk

ξk + 1
=

√
γk − 1

γk
. (2.11)

Spectral subtraction is straightforward to understand and implement. It is also an effi-

cient algorithm as it only requires one forward computation in the subtraction [16]. Because

the clean speech magnitude estimate, |X̂(m, k)|, must stay positive, one must exercise cau-

tion in applying Equation 2.8. An easy solution is to apply a half-wave rectifier on the
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difference spectrum

|X̂(m, k)| =


√
|Y (m, k)|2 − |D̂(m, k)|2, if |Y (m, k)|2 ≥ |D̂(m, k)|2

0. otherwise
(2.12)

Equation 2.12 ensures that the estimated speech magnitude always stays non-negative.

Nevertheless, the nonlinear truncation of negative values creates short and unrelated peaks

in the speech spectrum. After converting the signal back to the time domain, these peaks

translate to tones with frequencies varying from frame to frame. Such distortions are com-

monly referred to in the literature as musical noise [2]. They are particularly noticeable

during an unvoiced speech where the speech power is relatively low. Some studies have

reported that musical noise can be perceptively more disruptive to human listeners than the

original background noise [16]. For this reason, much research has gone into finding ways

to reduce musical noise.

A notable example of works in this area is spectral oversubtraction by Berouti [2]. It

was motivated by the observation that some peaks in the difference spectrum, |Y (m, k)| −

|D̂(m, k)|, were broadband, whereas others were narrowband. By subtracting an ampli-

fied noise spectrum controlled by an augmentation factor, one could reduce the broadband

peaks’ magnitude. Oversubtraction also levels deep valleys in the spectrum by applying a

spectral floor when speech was absent. Berouti conducted thorough empirical studies to

evaluate the choice of the augmentation factor and spectral floor level.

The oversubtraction method was further extended by Lockwood et al. in [46]. They

modified the augmentation factor so that it depended on the frequency. The modification

was motivated by the observation that much real-world noise affected different frequency

regions unevenly. Thus, larger values should be subtracted from frequency bands with low

SNR; smaller values should be subtracted from bands with high SNR.

The effectiveness of spectral subtraction methods has been studied extensively. Most

studies concurred that this class of algorithms improves speech quality but not speech in-
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telligibility [47, 48]. Its adverse effect on speech intelligibility can be explained by the

occasional elimination of low-power speech region due to inaccurate noise estimation. It

remains an open question if more advanced noise estimation techniques can improve speech

intelligibility in spectral subtraction methods.

Wiener filters

Another well-known class of speech enhancement algorithms is derived from the Wiener

filtering [4] by minimizing the mean squared error (MSE) between the filtered output and

the desired response. Recall the short-time DFT coefficients defined in Equation 2.2. The

desired output is the clean signal, X(m, k). The frequency response of the Wiener filter is

denoted as H(k). Hence, the filtered output is H(k)Y (m, k). One can then define an error

signal, E(m, k) for each frequency bin, k, at each frame, m, as

E(m, k) = X(m, k)−H(k)Y (m, k). (2.13)

The Wiener filter minimizes the energy of the error signal in Equation 2.13

Ĥ(k) = arg min
H(k)

E
[
|E(m, k)|2

]
= arg min

H(k)

E
[(
X(m, k)−H(k)Y (m, k)

)∗(
X(m, k)−H(k)Y (m, k)

)]
, (2.14)

In the equation above, ∗ is the complex conjugate.

We could determine the minimizer of the error signal’s energy by taking its derivative

with respect to H(k) and set it to zero. The solution to the Wiener filter in the frequency

domain is

Ĥ(k) =
E
[
X(m, k)2

]
E
[
Y (m, k)2

] =
Px(k)

Py(k)
=
Py(k)− Pd(k)

Py(k)
. (2.15)

In Equation 2.15, the power spectrum density (PSD) of the clean signal, Px(k), is generally

not available. It is approximated by Py(k) − Pd(k) by assuming the speech and the noise
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Figure 2.1: Suppression vs. a priori SNR, ξk, of a Wiener filter

are uncorrelated.

The Wiener filter in the frequency domain can also be written in terms of the a priori

and a posteriori SNR as

Ĥ(k) =
ξk

ξk + 1
=
γk − 1

γk
(2.16)

It can be seen from Equation 2.16 that 0 ≤ Ĥ(k) ≤ 1. When ξk → ∞, i.e., SNR is high,

Ĥ(k) ≈ 1, which means there is no noise suppression. On the other hand, when ξk → 0,

i.e., SNR is low, Ĥ(k) ≈ 0, suggesting complete attenuation of the spectrum. In [16], the

author plots the suppression gain of a Wiener filter with respect to the a priori SNR, ξk,

replicated in Figure 2.1. There is almost no suppression at ξk > 10dB. For SNR below

-5dB, attenuation becomes linear with respect to the SNR.

Compared to spectral subtraction, Wiener filtering is more aggressive in de-noising.

The filtered clean signal’s power is always lower than the oracle clean signal’s power,

which attributes to speech attenuation in a Wiener filter [49].

Statistical model-based methods

In this framework, the DFT of noisy speech serves as a set of measurement that depends on

some unknown parameters, which are the DFTs of clean speech. We need to estimate these

unknown parameters given the observation of noisy speech. Literature in estimation theory
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Figure 2.2: Suppression vs. a posterior SNR, γk, of an MLE, spectral subtraction, and a
Wiener filter

has provided us tools to derive these estimators, including maximum likelihood estimators

(MLE) [35] and Bayesian estimators [16]. A major difference between these nonlinear

estimators is that MLE assumes the parameters of interest are deterministic but unknown,

whereas the Bayesian estimators assume that the parameters are random variables.

The MLE of the magnitude spectrum of clean speech is [16]

|X̂(m, k)| = 1

2
|Y (m, k)|+ 1

2

√
γk − 1

γk
|Y (m, k)|. (2.17)

The author in [16] compared the suppression gain of spectral subtraction, Wiener filter, and

MLE in Figure 2.2. The suppression gain of an MLE is plotted in solid line. Compared to

spectral subtraction and the Wiener filter, it suffers from insufficient attenuation because of

the noisy speech residue, 1
2
|Y (m, k)|. It is thus rarely used by itself [16].

The MMSE estimator, introduced by Ephraim and Malah, shares a similar motivation

as the Wiener filter. When formulating the Wiener filter in Equation 2.13, we attempt to

minimize the error signal of the complex spectrum. In order to derive the optimal mag-

nitude estimator, Ephraim and Malah proposed to minimize the MSE, E(k), between the
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(a) γ − 1 = 20dB (b) γ − 1 = 0dB

Figure 2.3: Comparison of the suppression gain between an MMSE and a Wiener filter

ground truth, |X(m, k)|, and the estimated magnitude, |X̂(m, k)|:

E(k) = E
[
(|X(m, k)| − |X̂(m, k)|)2

]
. (2.18)

In their subsequent work, Ephraim and Malah further suggested minimizing the MSE be-

tween the log-magnitude spectra because they could be more subjectively meaningful [50]

E(k) = E
[
(log |X(m, k)| − log |X̂(m, k)|)2

]
. (2.19)

The derivation of the solutions to the optimal estimators in Equation 2.18 and Equation 2.19

was relatively involved. The closed-form solutions can be found in [12, 50]. The suppres-

sion gains depend on both ξk and γk. We can compare the suppression gain of an MMSE

estimator with that of a Wiener filter. Figure 2.3 shows the suppression gain of an MMSE

estimator (solid), and a Wiener filter (dotted) plotted against the a priori SNR, ξk. Fig-

ure 2.3a shows that when the a posteriori SNR is high, the MMSE gain is similar to that of

the Wiener filter. When the a posteriori SNR is low in Figure 2.3b, we could tell that the

MMSE estimator is not as aggressive as the Wiener filter. This behavior could help reduce

speech distortion in adverse conditions.

The authors of [12, 51] compared the performance of an MMSE with spectral subtrac-
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tion, Wiener filter, and MLE. They found that there was no perceptible musical noise if the

a priori SNR was estimated correctly. It also resulted in less speech distortion compared

to Wiener filters. The cause for the effective suppression of musical noise was discussed in

detail by Cappe [52]. He discovered that the suppression relied on a reliable estimation of

the a priori SNR, ξk, more so than the a posteriori SNR, γk. Consequently, the suppression

in the MMSE estimator will not change abruptly from frame to frame. On the other hand,

algorithms like spectral subtraction relied more heavily on the estimation of the a posteiori

SNR, which might change rapidly between frames. Hence, MMSE yielded a smoother

transition and avoided undesirable musical noise.

Subspace methods

Another major class of classical speech enhancement technique is derived from linear alge-

bra theory. The subspace methods seek to decompose noisy speech into a signal subspace

and a noise subspace. The signal subspace could be retrieved by nulling the noise subspace

using algebraic tools, such as SVD or eigenvector-eigenvalue factorization [53].

After arranging speech samples into a matrix, Y, one can estimate the speech matrix,

X, using either the least square approach with low-rank modeling or the minimum variance

approach. The least-square approach [16] is formulated as

X̂LS = arg min
X̂

||X̂−X||F , (2.20)

where ||.||F is the Frobenious norm of a matrix. The solution is given as the truncated SVD

of Y with presumed rank, r

X̂LS = UyΣyVy
H =

r∑
j=1

σjujvj
H . (2.21)

In the equation above, the superscript, H , is the Hermitian transpose of a matrix.

The minimum variance approach determines transfer matrix, H, such that reconstruc-
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tion error is minimized [54, 55]

Ĥ = arg min
H

||YH−X||2F . (2.22)

The estimator is given as

X̂MV = UyΣMVVy
H =

r∑
j=1

σ2
j − σ2

σj
ujvj

H , (2.23)

where σ is the variance of noise. One can observe that both estimates share the same vectors

but use different estimates for singular values.

The first use of SVD in speech enhancement appeared in [36]. The authors assumed

that larger singular vectors with larger values corresponded to speech vectors. He demon-

strated it to be a practical algorithm for noise reduction at high SNR. At low SNR (around

0dB), there was perceptible musical noise [56, 57]. Subsequent work showed that a higher

rank, r, is required for unvoiced speech than for voiced speech [16]. The minimum vari-

ance approach was also less sensitive to the choice of r than the least square approach [56].

Authors of [51] also found that subspace methods generally did not improve speech qual-

ities as much as statistical methods, such as the log-MMSE estimator, but some [37, 58]

could outperform log-MMSE in terms of speech intelligibility.

2.1.2 Deep learning methods

The use of MLP as nonlinear filters to predict the clean spectrum dated back to the 1990s

[38, 39, 59, 60]. An MLP is an extension of Rosenblatt’s perceptron [61] by inserting

hidden layers between the input and output layers. The MLP is parameterized by weights

and biases. The weights, W, are matrices connecting adjacent layers. The bias, b, is added

to each layer’s output to model any linear shift in the data distribution. Forward propagation

through a layer, j, is a matrix product between the layer’s input, vj , and the weight matrix

in that layer, Wj . The output, vj+1, is then added to the corresponding bias, bj . Generally,
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an element-wise nonlinear operation such as sigmoid or rectified linear units (ReLU) [62]

function is also inserted between hidden layers to prevent the MLP from degenerating into

a linear operation. Forward propagation in a layer is with a ReLU activation is expressed

as

vj+1 = ReLU(Wjvj + b). (2.24)

The weights and biases are initialized randomly. The predicted output can be computed

layer by layer, according to Equation 2.24. At the last output layer of an M -layer MLP, the

prediction vM can be compared with the ground truth, u, with an appropriate loss function.

In the case of speech enhancement, MSE loss is most widely used [10].

LMSE =
1

N
||vM − u||22 =

1

N

N∑
i=1

(vi − ui)2. (2.25)

Here the dimension of the output and the ground truth is assumed to be N . By computing

the gradient of each parameter in the network with respect to the chosen loss function, we

could perform iterative updates on the parameters to reduce the overall loss. The gradients

of lower layers that are not directly connected to the output can be computed using the chain

rule. This principle is known as back-propagation [63]. With stochastic gradient descent,

the parameters are updated by a small amount in the negative direction of the gradient.

This update lowers the loss after each iteration. This gradient descent step is the most basic

procedure in the optimization of MLP [64]. After successive updates of the parameters, the

loss would decrease and converge, when the network training is complete. Past research

[65, 66] has shown that MLPs are universal approximators that can describe a wide variety

of functions if they have sufficient width per hidden layer.

During the early stages of the application of MLPs in enhancement, the neural networks

typically have relatively small sizes. Each layer has fewer than 200 neurons. There is also

no consensus on the best features or targets for the mapping. Time-domain waveforms

were used directly in [38, 39]. Log spectral features were adopted in [67]. In [68], the
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author estimated the instantaneous SNR of spectrograms to suppress noise. However, the

frequency resolution was low, and the system was unable to handle noise with sharp spectral

peaks. In general, neural networks back then were usually shallow in terms of the number

of layers and small in terms of the number of hidden neurons per layer. One of the major

limitations of an MLP is its lack of closed-form solutions. The error surface of the loss

function is generally not convex. Hence, there is no guarantee that a local minimum found

by the gradient descent algorithms is a global minimum. Furthermore, MLPs with too

many layers cannot be trained (in the sense of reducing the training loss) because of the

vanishing gradient problem [69]. It refers to the phenomenon that the gradients become so

small at layers close to inputs that the parameters could not be updated. As a result, most

of the early work relied on the use of single-layer MLPs. Understandably, the complex

nonlinear relationship was tough for a small network to approximate. The performance of

speech enhancement with shallow networks was unsatisfactory.

In [70], Hinton, et al. first used restrictive Boltzmann machine (RBM)s to train MLPs

layer-wise without labels greedily. This unsupervised pre-training step yielded better ini-

tialization for parameters in each layer. This procedure allowed DNNs with layers of pre-

trained RBMs to be fine-tuned [70]. It also alleviated the vanishing gradient problem using

other nonlinear activation, such as ReLU in place of sigmoid function [62]. Gradually

even pre-training was no longer considered necessary if a large amount of training data is

available.

Inspired by the break-through of MLPs in automatic speech recognition (ASR), speech

enhancement based on DNN flourished in subsequent years. In [71, 72], DNNs were used

to perform binary classification of sub-bands of noisy speech into speech or noise dom-

inated bins. The classification results were used as ideal binary masks to recover clean

speech, similar to masks in computational auditory scene analysis (CASA) [73]. The au-

thors postulated that neural networks could learn more discriminative features than spectral

features. Afterward, they concatenated the DNN’s output to an SVM to estimate the mask.
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Their design was a tandem system where DNNs were used mainly for feature extraction,

and other classification algorithms were required to make the final classification decision.

However, researchers soon experimented with stacking DNNs on top of other DNNs to

create more “all-neural” models [74]. Authors of [75] used a deep de-noising auto-encoder

in place of RBM to pre-train a DNN. They mapped noisy speech features directly to clean

features.

Concurrently, authors of [9] framed speech enhancement as a regression task to map

the log power spectrum (LPS) of noisy speech to clean speech. Unlike [75], the DNN in

[9] was a standard MLP with RBM pre-training. Multiple frames were concatenated as

inputs to include more temporal information, which significantly helped the enhancement

quality. Experimental results showed improved speech quality in terms of both subjective

and objective measures over traditional methods. Notably, the deep learning-based models

could more effectively handle non-stationary noise and yielded enhanced waveforms with

little music noise commonly found in traditional techniques. A primary reason for the

systems’ effectiveness in [9] could be attributed to its use of a large volume of noise types

and SNR conditions to simulate noisy speech during training.

Subsequent research directions included the use of other neural network models, such

as convolutional neural network (CNN) [76], fully convolutional networks [77], and long

short-term memory (LSTM) [78]. DNN with skip connections between non-consecutive

layers were investigated to obtain better enhancement quality [79]. A myriad of work

explored the suitability of other learning targets besides spectral features, such as ideal

relative mask (IRM) [75, 76], phase-sensitive mask [80], and complex IRM [81]. More

recently, direct mapping of speech waveforms in the time domain has also been attempted

[11, 82]. The use of adversarial learning, such as speech enhancement generative adver-

sarial network (GAN) [83, 84], also led to many new approaches to deep learning-based

speech enhancement.
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2.1.3 Progressive speech enhancement

Researchers have observed that speech quality improvement with a DNN-based speech

enhancement system is not uniform across SNR levels [15] and noise types [13]. Noisy

speech in lower SNR still contains many noticeable noise residues and artifacts after en-

hancement. This observation is in line with our intuition since lower SNR implies more

severe distortion in the input signal. Hence more details have to be recovered. The perfor-

mance gap between speech in different background noise further suggests that noise types,

just as SNR, could be classified into difficult versus simple groups.

The work in [14, 15] pioneered a multi-stage indirect approach to speech enhancement.

In their progressive learning framework [14], the authors divided direct mapping between

noisy and clean speech with a DNN into multiple stages. The signal gained higher SNR as

it propagated through the system. To enforce SNR gains in the neural network, the authors

provided explicit learning targets at intermediate SNR levels as secondary labels in selected

hidden layers. It effectively decomposed the neural network into a sequence of smaller

networks, which only needed to handle simpler tasks in each stage due to smaller SNR

differences. Smaller neural networks with constrained learning capability were stacked in

[85] to approximate a larger teacher network’s performance. The stacked smaller networks

also showed gradual improvement in speech quality as noisy speech propagated through

the sequential model. This process is shown in Figure 2.4, where a noisy speech in babble

noise at 0dB is gradually enhanced to 5dB, 10dB, and ultimately to an estimate of the clean

speech.

The work in [14, 15] has inspired several more studies pursuing progressive learning in

speech enhancement. In [86], the author divided the enhancement task into two sub-tasks:

suppression of additive noise and dereverberation. They then combined the sub-tasks into

an overall enhancement task. The system in [86] had three branches, one for each sub-task.

Each task had three difficulty levels guided by different intermediate targets. For example,

the dereverberation task had intermediate targets of gradually weaker reverberation. The

20



(a) Noisy speech at 0dB (b) Noisy speech at 5dB

(c) Noisy speech at 10dB (d) Clean speech

Figure 2.4: Progressive speech enhancement by SNR

suppression task’s intermediate targets were noisy speech in incremental SNR. The third

task combined the intermediate outputs from the previous two sub-tasks and the original

noisy speech. It used pre-enhanced features from simpler tasks to enhance the original

difficult speech.

Following the progressive learning paradigm, authors in [87] examined the intermediate

outputs and offered some analysis in each enhancement block’s behavior in the pipeline.

They found that earlier blocks working with signals in lower SNR took care of the more

noticeable distorted areas of the spectrum. The network did this by establishing a pattern

of what was distortion and what was not. They also noted that the network mainly focused

on the spectrum valleys where SNR was low. The later modules softened the spectrum

in order to produce slow spectral magnitude changes. This operation avoided undesirable

auto-generated distortions, such as annoying musical noise. However, it could also cause

an over-softening effect in the final spectrum output.

The design of the progressive learning pipeline in [88] focused more on using efficient
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(a) Word error rate vs. SNR (b) Speaker accuracy vs. SNR

Figure 2.5: SNR affecting the results of automatic speech processing systems

models for parallelism and real-time learning. They promoted parameter sharing because

of similar functionalities of enhancement blocks among different stages and the demand for

small models. Moreover, a more parameter efficient model, convolutional-recurrent neural

network, was used instead of LSTM in their work.

These methods fall under the umbrella of curriculum learning [89] in which a bigger or

tougher task is dissected into simpler sub-tasks hoping that each smaller task can be better

designed and trained for overall better performance. The experiments in [14, 15, 86] have

confirmed that progressive learning is a useful technique in highly adverse conditions with

low SNR or high reverberation.

2.2 Characterization of noise

Low SNR poses problems for speech processing systems. In Figure 2.5, one could tell

low SNR drastically increases the word error rates on an ASR system [90]. Similarly, low

SNR also adversely affects the accuracy of speaker identification [91]. Even though the

effects are different across noise types, the overall trend showing degrading performance

with respect to lower SNR is consistent.
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The difficulty of noise types cannot be interpreted straightforwardly. The source of ad-

ditive noise is ubiquitous in everyday acoustic environments, such as traffic noise outdoors,

babble noise in a meeting room, and even electrical noise in microphones. Due to high

variabilities, the discussion on the interaction between general noise types and speech in

speech enhancement is limited.

Noisex92 [92] highlighted the drastic performance differences on a noise masking rec-

ognizer among noise types but did not extend the discussion into the properties of each

noise contributing to their performance. A particular noise type, car environment, was

discussed in [93] using a harmonic noise model. Even though it was designed for a spe-

cific noise type, the analysis-synthesis framework using harmonic noise models could be

extended to other similar noise. Authors of [94] adopted a post-processing step after tra-

ditional speech enhancement (SE) methods to cope with factory-like noise with a high

burst of energy in stationary noise. In [95], the authors noted that white likely reduced

the dynamic range of cepstral coefficients within frames. The difficulty of recognizing

each phoneme was assessed in [96]. The authors reported that consonants, including ”s,

sh, zh (as in vision),” were resistant to noise, including speech-shaped noise, babble noise,

or white noise. These fricatives occupied the high-frequency bands that were less cor-

rupted by the aforementioned noise. Other consonants did not have a steady classification

accuracy due to different noise types reported in each work [97, 98, 99]. In [100], the

author acknowledged the importance of designing noise-aware hearing aids for speech en-

hancement. It used energy-based features to first identify the presence of speech under the

assumption that the background noise remained wide-sense stationary in a sustained noise

environment. The deviation in the input speech signal’s energy level was computed for

stationary, non-stationary, and semi-stationary noise to perform classification.

The authors of [101] attempted noise classification in a limited scope and utilized this

classification result in a DNN-based enhancement. First, a VAD isolated speech-absent

frames. Then a GMM-based classifier determined the noise type. They found that the noise
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specific enhancement model achieved better objective speech quality than noise agnostic

systems. Most recently, authors of [102] applied different noise types from Noisex92 [103]

corpus to analyze how the spectrum of each noise affected formant shifts. They found

that wideband noise, such as white noise, consistently has a greater distortion on formant

locations than narrowband noises, such as volvo car noise across between 5 to 15 dB.

In order to develop more noise resistant features, researchers have proposed various

pre-processing steps throughout the decades. Unfortunately, those methods only work best

when noise follows a presumed pattern. For example, researchers in [104] proposed the

use of cepstral mean normalization to remove the mean value from all cepstral vectors.

This technique is effective in counteracting the effect of channel distortion, but not additive

noise. Representations relative spectrum (RASTA) proposed in [105] attempted to suppress

constant additive noise in every log spectral component of the short term spectrum. This

method has been extended to mel and perceptual linear prediction (PLP) features [106]. Its

effectiveness was demonstrated in [107]. Nevertheless, it is impractical in sub-word models

due to its high memory usage. In summary, these feature pre-processing steps are effective

in filtering out steady noise but less useful in real-world non-stationary noise environments.

The separation of noise interference from the speech is also a topic of study in the field

of auditory scene analysis. Human listeners tend to separate and group audio objects be-

fore identification [108]. The clues for clustering and separating include onset-offset time,

temporal dynamics of amplitudes and frequencies, and spatial locations. More formally,

auditory scene analysis parses auditory inputs into perceptual objects representing either

physical sources or temporal sound patterns, such as melodies, which contribute to sound

waves reaching the ears [109]. CASA is the study of auditory scene analysis by compu-

tational means [73]. Some advances in CASA include Bayesian principles [110], neural

models [111], and temporal coherence models [112].

Although there have been limited efforts to quantify the effects of noise in speech en-

hancement systems, its effects on speech perception have received more attention. In [113],
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the authors observed that people were less sensitive to acoustic stimuli, including noise or

artifacts near high energy regions in speech, such as formant peaks. When listening to

speech in a noisy environment, human listeners could reduce the noise effect by a mask-

ing mechanism. The phenomenon, called noise masking, has been exploited in the design

of speech coding and enhancement systems [114, 115, 116]. Artifacts, such as quantiza-

tion noise, were masked by formant peaks, hence became inaudible to human ears [117].

Speech coders were designed with perceptually weighted error criterion [115, 118], which

placed more emphasis on spectral valleys where the noise was more noticeable than at

spectral peaks. Noise floor normalization [113] was applied after filterbank analysis and

log operation to modify the noisy speech spectra so that the system became more resistant

against variations in background noise. The noise floor was chosen such that only bands

with energy higher than the threshold were considered in the classification process. Subse-

quent work used a global noise threshold [114]. It has also been shown that the technique

could be applied to a hidden Markov model (HMM) in speaker-dependent digit recognition,

where improvement was achieved in low SNRs [119].

2.3 Speech transformation

As both enhancement and conversion require a transformation from source speech to tar-

get speech, many techniques applicable to speech enhancement are also suited for speech

transformation. Voice conversion is a popular topic studied under the umbrella of speech

transformation [120]. It generally attempts to modify a source speaker’s speech signal to

that of a target speaker while maintaining the linguistic contents intact. Even though voice

conversion is not required or even desired in enhancement systems, some techniques that

transform the speech spectrum could be modified to apply speech enhancement. The simi-

larities stem from the fact that both speech enhancement and voice conversion traditionally

require analysis and synthesis of the speech signal. Transformation is performed at a frame

level by establishing a mapping between spectral features. The transformed magnitude

25



spectrum and phase spectrum are then synthesized to reconstruct the speech waveform.

Indirect speech enhancement, which will be introduced on a high level in the next sec-

tion, outputs speech in another background noise as intermediate outputs. This conversion

process mimics some aspects of voice conversion, which also modify some speech signal

characteristics. In the next section, we will survey some typical voice conversion methods

that can be applied to speech enhancement and transformation.

2.3.1 Mean-variance normalization

Though not used as a speech transformation technique by itself, mean-variance normaliza-

tion of speech vectors has found many uses as a feature pre-processing step in many tasks,

including recognition, enhancement, and speaker identification [121]. The linear trans-

form works with many types of speech features, including but not limited to power spectral

density [122], the cepstral features [123], line spectral pairs[124], and perceptual linear pre-

diction [125]. It shifts and scales speech features to an appropriate range for downstream

processing. It is an effective technique to ensure the training and test data follow a similar

distribution. This adjustment makes the overall speech recognition or enhancement more

robust against changing noise conditions [49].

In its most basic form, mean normalization subtracts the mean statistic from each utter-

ance. The resulting feature vector will have zero mean in each feature dimension. Variance

normalization standardizes each feature dimension’s variance to 1 by dividing the feature

vector by the estimated standard deviation. If required, it is done after the mean normaliza-

tion. The validity of mean normalization of cepstral features lies in the fact that the channel

effect becomes linear in the cepstral domain. For example, distortion at the microphone can

be modeled as linear filtering on the signal. The distortion varies depending on the transfer

function of the electronics in the microphones, the distance between the speaker and the

microphones, and the room acoustics. After removing the sampled mean from the feature,

the effect of such channel distortion can be reduced. Unlike mean normalization, cepstral
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variance normalization lacks a physical interpretation [49]. Still, many empirical studies

have confirmed its usefulness in scaling the speech feature vectors to a better range [126].

Histogram equalization extends the idea of mean-variance normalization to higher mo-

ments [127]. Similar to mean and variance normalization, feature transformation is also

performed in each dimension. However, a target histogram has to be determined before-

hand. A unit Gaussian distribution can be selected when no prior information is available

[49]. Several studies have found that though more complicated, histogram equalization

does not yield a significant performance boost over simple mean-variance normalization

[126].

Works in this field also include selections of different feature types, speech tasks, and,

most importantly, methods to estimate the desired mean and variance statistics. Three

cepstral mean variance normalization (CMVN) techniques are proposed and compared

in [128]. The authors concluded that the long-term average is better than the short-term

average and maximum likelihood estimate with respect to the model parameters. SNR

dependent cepstral normalization was first introduced in [129]. It applied an additive cor-

rection dependent on the instantaneous SNR of the signal. The algorithm was simple and

effective, but it required environment-specific training. Fixed codeword-dependent cep-

stral normalization was subsequently developed to provide greater recognition accuracy

than the SNR dependent normalization [130]. It was further extended into multiple fixed

codeword-dependent cepstral normalization. It exploited the simplicity and effectiveness

of fixed codeword normalization, yet it did not need environment-specific training. Lastly,

authors of [131] and [132] studied online and recursive normalization to enable feature

normalization in real-time speech processing.

In most literature above, mean-variance normalization is performed on clean speech or

noisy speech. Speech in different backgrounds does not receive special attention regarding

applying different normalization statistics depending on the environment. This thesis will

consider the effects of noise on feature normalization and adjust its use for indirect speech
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enhancement.

2.3.2 Exemplar-based methods

This class of methods assumes converted speech, X̂tgt, can be decomposed as a linear sum

of a set of exemplars, ti

X̂tgt =
∑
i

witi. = wTT. (2.26)

Each exemplar, ti, is a row in the matrix, T. The weight of each exemplar, wi, form the

weight vector, w. The weights are computed to minimize the distance between the source

and target features. It is desired for w to be sparse as too many non-zero weights may cause

the combined features to be over-smoothed. Since either the magnitude or power spectrum

is guaranteed to be non-negative, assuming the weights are non-negative too, one can use

NMF to solve the sparse weights iteratively [19, 133]. Its robustness in noisy environment

might be of additional interest in a noisy speech transformation.

Exemplar-based voice conversion echoes the methods based on unit selection. Unit

selection considers two costs: a target cost that measures the distance between converted

vectors and a concatenation cost, representing the distortion after joining the sequence.

It could synthesize converted speech with a more natural tone. The challenging job of

choosing the optimal selection sequence is performed with dynamic programming, such as

Viterbi decoding [134].

Exemplar-based methods are known for the high quality of reconstructed speech [19].

This property makes it attractive for indirect speech enhancement as speech quality is an

important metric in assessing a speech enhancement system. We will explore the use of

exemplars to perform speech transformation in this thesis.

2.3.3 Multi-layer perceptrons

The use of MLP in speech enhancement has been surveyed in subsection 2.1.2. The same

tool has also seen its application in voice conversion. Both GMM and MLP can model
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nonlinear transformations. A GMM models it with a weighted combination of class-based

linear transformations, where the weights are the posterior probabilities. An MLP uses

nonlinear activation functions in hidden layers to realize nonlinear mapping. Its first use

in voice conversion was in [135] by only transforming the formants. More follow-ups

involving MLPs include the work in [136, 137, 138].

MLPs and similar deep neural networks have seen growing interest in the community

of speech enhancement in general. As discussed in section 2.1, it has demonstrated to be

very effective in handling some noise that used to be difficult for traditional methods. The

application of MLPs in speech transformation is very similar to their application in speech

enhancement, as they can both be framed as mapping of spectral features. Hence, we can

still employ MLPs in feature transformation in indirect speech enhancement.

2.3.4 Generative models

Recently, generative models, including variational auto-encoder (VAE) [139, 140] and

GAN [141], have also been applied to speech conversion. Authors of [142] implemented

non-parallel voice conversion with a VAE. Its benefit included unaligned corpora, which

were usually more cost-effective to gather than parallel corpora. The encoder network

learned speaker-independent phonetic representations, and the decoder learned to recon-

struct speech from the target speaker. It relied on the assumption that a VAE could decouple

the speaker and phonetic representations. It also assumed that the decoder could blend the

two representations to synthesize a new frame. In order to better understand how a VAE

can perform voice conversion, Hsu et al. explored feature disentanglement in [143]. They

observed that vector arithmetic in latent spaces allowed speech attributes, such as a speaker

or tonal information, to be manipulated. The modified latent representation could then be

transformed into converted speech. This disentanglement property is relevant to speech

enhancement and transformation as we only wish to transform the background noise while

maintaining phonetic content unchanged.
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Another class of generative models is based on GAN. The original GAN paper [141] let

two neural networks, known as the generator and the discriminator, play a zero-sum game.

The discriminator was trained to differentiate the generator’s outputs and ground truths,

whereas the generator was trained to fool the discriminator by generating outputs similar

to the ground truths. Cycle-GAN [144] built on this idea to use two pairs of generators

and discriminators to transform features from a source domain to a target domain back and

forth. The authors argued that an additional cycle consistent loss enforced the generated

features to stay in a low dimensional manifold shared by desirable targets. It was first

applied in voice conversion in [145, 146] to learn the forward and inverse mapping from

a source to a target speaker. They found converted feature sequences to be near natural

in terms of global variances and modulation spectra. A subjective evaluation showed that

the converted speech quality was comparable to traditional methods that required parallel

data. Star-GAN [147] was an extension of Cycle-GAN that enabled one-to-many mapping

among a group of speakers. Even though the applications of the aforementioned generative

models are relatively broad, we will be able to exploit techniques including feature disen-

tanglement and adversarial loss in indirect speech enhancement, which will be introduced

in the next section.

2.4 A high-level description of the proposed progressive enhancement approach with

intermediate noisy speech target

When speech enhancement is too difficult due to low SNR or challenging noise, it is often

not easy to obtain good enhancement results in a single step. The unsatisfactory quality

is due to the highly non-linear relationship in high dimensional speech features. Prior

works [14, 15] described in subsection 2.1.3 decomposed the problem of overcoming a

large SNR gap with direct enhancement into a series of tasks with smaller SNR gaps. The

assumption was that the smaller tasks were more manageable to learn for neural networks.

When combined, the benefit of reduced difficulty outweighed distortions generated in each
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Figure 2.6: Progressive learning in speech enhancement

sub-task.

We could visualize the incremental improvement in SNR along the path in the center in

Figure 2.6. The raw signal is denoted as the summation of the clean signal, x, and noise,

n, scaled by an SNR factor. Instead of mapping from the noisy speech, x + 10−SNR1n, to

the clean speech, x, directly, the first sub-task only learns to improve the signal to SNR2,

where SNR2 is higher than SNR1. The first stage’s outputs are used as inputs to the next

stage, again to learn a signal at even better SNR at SNR3. Eventually, the clean signal, x,

can be recovered. Each stage’s results can boost learning in subsequent stages since they

receive pre-enhanced features at higher SNR.

When the authors of [14, 15] improves the speech SNR incrementally, the global av-

erage SNR in the signal improves. In other words, the improvement is better across all

time samples and all frequency ranges after each sub-task. We can formulate progressive

learning on a more local scale. Consider the example of the following contaminated speech

signal in Figure 2.7. The noisy speech in the middle panel and the bottom panel both have

the same average SNR, but it is evident that the bottom signal will be a simpler task for an

enhancement system since it only needs to trim the noise dominated segment. The signal

in the middle requires speech enhancement to separate speech from the overlapping noise,

which is a harder task.
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Figure 2.7: Relocation of noise in the time domain

A similar example can be illustrated in the frequency domain. In Figure 2.8, the signal

on the left is contaminated by white noise at 0dB. The noise on the right is band-limited, but

the overall SNR is kept at 0dB, too. A speech enhancement for the left signal must learn to

find a good regressive mapping for all frequency bins. The signal on the right only requires

the system to concentrate on making predictions in the corrupted bands. One could argue

that even for speech signals at the same SNR, the tasks’ difficulties are unequal depending

on the relationship between speech and noise. While some noises are harder to handle, as

in Figure 2.7 center and Figure 2.8 left, other noises are simpler, as in Figure 2.7 bottom

and Figure 2.8 right.

These examples motivate us to design sub-tasks in progressive learning along a different
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Figure 2.8: Relocation of noise in the frequency domain

Figure 2.9: Framework of indirect speech enhancement

route. Specifically, we can design each sub-task to modify background noise into a simpler

type. Schematically, along the right path in Figure 2.6, the original noise, n, in the noisy

input speech, x + 10−SNR1n, is replaced by a simpler noise, n2, in the first sub-task. Its

output is fed into subsequent tasks to obtain speech in even simpler conditions. Eventually,

clean speech, x, is recovered after multiple intermediate stages. We refer to this flow as

indirect speech enhancement via conversion to intermediate targets. The system is indirect

as opposed to direct mapping using a black-box DNN for speech feature mapping. For each

sub-task, the outputs are intermediate because subsequent tasks use them for enhancement.

To accomplish each sub-task, we need to convert speech in one noise background into a

simpler noise.

To better formulate indirect speech enhancement, we simplify the progressive path via
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noise type conversion to Figure 2.9. We use Xi and Yi to denote instances of clean and

noisy speech features in the figure. The bottom path represents a direct mapping between

noisy and clean speech, which is a DNN-based speech enhancement network, F . When

trained with the MSE loss criterion, the task of direct enhancement is formulated as

F̂ = arg min
F

∑
i

||Xi − F (Yi)||22. (2.27)

The optimal parameter set, F̂ , is found by iteration updates with back-propagation.

The indirect method comprises at least a conversion step and a refinement step, shown

with the upper path in Figure 2.9. The conversion step is accomplished by a converter, G.

With an appropriate intermediate target, Zi, the conversion step and the enhancement step

seek to find Ĝ and Ẑi such that

Ĝ = arg min
G

∑
i

||Zi −G(Yi)||22,

Ẑi = arg min
Zi

∑
i

||Xi − F ′(Zi)||22,
(2.28)

assuming MSE is still chosen as the loss criterion. Here, the refinement network, F ′, could

be the same network as the direct enhancement, F , or it could be adapted to specific noisy

speech, Zi. The indirect approach jointly finds G, Zi, and F ′ such that the combined loss∑
i ||Zi−G(Yi)||2+λ||Xi−F ′(G(Yi))|| is minimized. λ is a weight coefficient that reflects

the ratio of errors from each step.

Progressive learning requires us to identify simple and difficult noise conditions. This

step can either be done based on the noise signal’s characteristics or some prior enhance-

ment results. A detailed discussion on noise types will be discussed in Chapter 3. To

illustrate the existence of intermediate targets, we use an example in Figure 2.10. The

noisy input and its output from a pre-trained speech enhancement system are on the left.

There is considerable residual noise in high-frequency bands. During the neural network
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training, one uses MSE between the predicted output and the clean label as loss to back-

propagate and update the network parameters. Instead of updating the network parameters,

we can use the error gradients to modify the inputs to minimize the loss. In particular, we

find an “optimized input,” Ŷ , such that

Ŷ = arg min
Y

||X0 − F (Y0))||22, (2.29)

where Y0 is the original input, and X0 is the ground truth. Just as in regular network

training, the error surface may not be convex, but one can still use gradient methods to

iteratively find Ŷ such that ||X0 − F (Ŷ )||22 < ||X0 − F (Y0)||22. One such Ŷ after updating

20 iterations of updates is shown on the top right corner in Figure 2.10. Even though it

is far from being a clean signal, its enhanced result, F (Ŷ ), shown on the bottom right, is

much better than the original output, F (Y0). Thus, the signal, Ŷ , could be a good example

of an intermediate target for this input. The previous example suggests how to derive the

intermediate targets, but it implies that intermediate targets exist, at least for a fixed neural

network model. We will discuss how to obtain intermediate targets in Chapter 3.

We also need to ensure that there are practical ways of obtaining suitable intermediate

targets. Furthermore, there exist good speech conversion techniques for noise type con-

version. These targets are essential in supervised training for the neural networks in each

sub-task. In offline training, we could synthesize these training targets using clean speech

and the chosen noise type, just like how we simulated paired data for direct training [9].

Since the training is offline, we could create a large amount of paired data this way. Chap-

ter 4 and Chapter 5 will further explore data simulation procedures. In Chapter 4, we will

explore a more traditional simulation of paired training data, whereas Chapter 5 discusses

speech transformation with unsupervised learning.

The design of the sub-tasks, i.e., the conversion steps, are essential too. In Chapter 4,

we will explore the use of direct mapping between difficult and simple speech. These direct
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Figure 2.10: The existence of intermediate targets

mapping methods can be boosted by additional techniques such as multi-task training and

noise-aware training. The conversion module is also concatenated with the refinement

module for joint training. In Chapter 5, we consider speech transformation based on latent

space methods. We consider the acoustic space made up of speech bases and noise bases.

Noisy speech conversion can then be formulated as a change of basis in the acoustic space

or the latent space. We could also leverage upon representation learning to find a structured

representation of speech and noise. Such latent structures enable us to replace the difficult

noise background with simpler ones. Lastly, the converters are integrated with refiners to

create a complete indirect speech enhancement system.
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CHAPTER 3

CHARACTERIZATION OF ADDITIVE NOISES

3.1 Introduction

3.1.1 Noise in speech enhancement

Noise is known to affect speech perception in human communication. Different types

of noise have different impacts on the quality and intelligibility of speech. In [148], the

authors noted that speech-shaped noise, such as babble, could mask out speech. This types

of noise made speech less intelligible. The effects of non-stationary noise were discussed

in [149, 150]. Noise can also degrade an ASR system’s performance, as it results in feature

mismatch [151] or model mismatch [152]. The [153], the authors highlighted how babble

and speech-shaped noise could obscure the F2 formant in vowel sounds. Intelligibility was

also heavily compromised with additive noise, and many conventional speech enhancement

methods have failed to improve it [51]. Moreover, most of the previous studies considered

a handful of noise types, such as babble and white noise, or do not address the performance

gap of ASR or SE systems due to different noise backgrounds. In the rest of the chapter,

we will demonstrate large performance gaps among various types of noise. We will next

discuss noise characteristics and how they affect feature pre-processing. Lastly, we conduct

empirical studies to validate our proposed categorization of simple and difficult noise.

3.1.2 Enhancement quality and improvement depending on noise types

We use PESQ introduced in Chapter 2 to evaluate the quality before and after a DNN speech

enhancement system. Based on the enhancement results, we demonstrate that differences

in quality exist for different noise types. The differences include the final PESQ scores

after enhancement and the extent of improvement. In other words, speech in different
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Figure 3.1: PESQ of 100 types of Nonspeech noise

backgrounds reaches different qualities after enhancement. Moreover, the improvements

in PESQ score from unprocessed speech to enhanced speech are also not the same across

different noise types.

An enhancement system based on DNN is trained following the procedure in [10]. One

hundred types of noise from the Nonspeech corpus [154] are used in training. The same 100

types of noise and 15 additional types from Noisex921 [103] are used to evaluate the DNN’s

performance with the PESQ score. PESQ is a standard that automates the assessment of

speech quality. It mimics a mean opinion score as if a human listener rates the enhanced

speech. Its score range is from -0.5 to 4.5. Higher scores correlate to better perceived

quality. More details on PESQ can be found in [32].

From Figure 3.1 and Table 3.1, the difference in enhancement quality is noticeable.

Figure 3.1 shows the enhancement results on the 100 types of noise used in the training set.

The greatest improvement is over 0.95 for noise n086, indicated by the longest red bar. On

the other hand, noise n054 is adversely affected by the enhancement network, showing a

1Details of Nonspeech and Noisex92 noise can be found in Appendix D and E respectively.
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Table 3.1: PESQ on Noisex92 noise types

Types white buccan2 pink factory1 buccan1
Before 2.10 2.16 2.15 2.17 2.01
After 2.09 2.19 2.22 2.30 2.37

Spectrogram
Types hfchan desops f16 desengine babble
Before 1.90 2.33 2.15 2.16 2.22
After 2.42 2.44 2.45 2.46 2.52

Spectrogram
Types m109 factory2 machinegun leopard volvo
Before 2.57 2.57 2.79 2.71 3.65
After 2.76 2.93 2.95 3.01 3.57

Spectrogram

drop of 0.25 score. The noise conditions also do not achieve the same level of quality after

enhancement. The best noise type, n054, achieves a PESQ score of 3.7, whereas the PESQ

for the worst noise, n086, is only 2.6. There is a gap over 1.0 in perceptual quality. Similar

differences exist for unseen noise in Table 3.1. Noise, such as hfchan, witnesses the greatest

improvement (greater than 0.5), but noise, such as white and volvo, barely improves.

3.2 On the criteria to select intermediate targets

In section 2.4, the intermediate targets are chosen such that the distortion of either the

conversion or the refinement stage is relatively small. When the intermediate target is

selected to be close to the source noise type, the conversion is relatively easy, but the

refinement needs to handle a difficult task. On the other hand, a simpler noise type as the

intermediate target will ease the refinement task. In the rest of the section, we argue that a
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(a) n086 (b) n010 (c) white

(d) n054 (e) n099 (f) volvo

(g) machinegun (h) n047 (i) n079

Figure 3.2: Spectrograms of samples noises. Top row contains difficult noise types. Middle
row contains simple noise types. Bottom row shows the outliers

simpler noise type should be chosen instead of a hard noise type as an intermediate target.

Visual inspection of the spectrograms shown in Figure 3.2, partially re-affirms our prior

understanding of the nature of noise. We expect steady and narrowband noise to be eas-

ier to be handled than non-stationary and wideband noises. Base on the PESQ score, we

could infer that noise, including n086, n010, and white, are all relatively difficult. Their

spectrograms show varying temporal characteristics and widebands in the signals. Simple

noise types, such as n054 and volvo, on the other hand, have stable temporal variations

and are generally band-limited. Such observations are in agreement with past literature [8,

155]. However, we also notice that there are a few outliers. Non-stationary noise, such as

machinegun, n047, and n079, are unexpectedly good both before and after enhancement.

Despite their non-stationary temporal characteristics, these noise types have long-term av-
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Figure 3.3: Spectral shape of clean speech and some easy noise. Long-term average speech
spectrum shown in red.

erage spectra that only obscure part of the speech spectra, as shown in Figure 3.3. As

a result, when input features of the speech enhancement network are short-time spectral

features, only a small fraction of the frequency bins are dominated by noise, effectively

simplifying the enhancement task.

Such a proposition is primarily based on our prior knowledge about noise-robustness

from experience. We examine similarities and differences among noise types by lever-

aging upon clustering. Each waveform in our noise corpus is segmented into 5-second

chunks. Each segment will be one observation sample. Welch’s method [156] is then

used to compute the PSD estimate of the sample since averaged periodograms represent

approximately uncorrelated estimates of the true PSD with reduced variability. Figure 3.4

shows the t-distributed stochastic neighbor embedding (t-SNE) visualization [157] of k-

means with three clusters colored with red, green, and blue. Comparing the clustering

result with the PESQ scores in Table 3.1, we could tell that the green cluster comprises the

“best-performing” noise types, including volvo, machinegun, and leopard. The red cluster

contains challenging noise types. The blue cluster represents noise with medium difficulty.

The clustering result shows that simple noise shares some common traits as discovered by

the k-means algorithm. Such traits may include their band-limitedness, stationarity, and

other characteristics, such as the overall spectral shapes. We will verify each attribute’s

effects by converting noisy speech to intermediate targets with or without these attributes.

We adopt an empirical approach to determine what characteristics make the noise sim-

ple and suitable as an intermediate target. The enhanced system is implemented with a
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Figure 3.4: k-means clustering with t-SNE projection on 115 noise types

DNN in [9], which remains fixed for this study. It consists of 3 hidden layers of 2048 nodes

with sigmoid activation. The input features are 11 consecutive frames of LPS features. The

window length of framing is 512 at a frame rate of 256. We train the enhancement network

to map noisy LPS features into a single frame of clean LPS features. Both the inputs and

the targets are normalized by global mean and standard deviation per feature dimension.

The noisy utterances are synthesized using train si84 part of the Wall Street Journal (WSJ)

corpus [158] mixed with the Nonspeech noise corpus [154]. The total size of the training

speech is 32 hours. The 333 testing utterances are from the test eval92 directory of the WSJ

corpus. In testing, both Nonspeech and Noisex92 noises are used to create the matched and

mismatched test set.
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Table 3.2: PESQ of conversion using simple noise as the intermediate targets

Intermediate
Target

Quality
Nonspeech Noisex92

Avg 1st quant 4th quant Avg 1st quant 4th quant

direct 2.99 2.99 2.80 3.22 2.57 2.26 3.10
n079 3.55 3.01 2.86 3.18 2.57 2.22 3.06
n099 3.55 3.00 2.84 3.17 2.52 2.18 3.05
volvo 3.57 3.05 2.90 3.21 2.58 2.28 3.09
n047 3.67 2.84 2.88 3.14 2.60 2.28 3.07
n054 3.75 2.89 2.76 3.06 2.50 2.20 2.98

3.2.1 Simple noise with high PESQ score

Since n054 and volvo have high PESQ scores, they can be considered simple noise, and

good candidates as intermediate targets.To confirm if the PESQ scores are a good way to

select intermediate targets, we design experiments to perform indirect enhancement with

speech in noise types with high PESQ scores as intermediate targets. In order to simulate

the intermediate target speech, we add the target noise to clean speech to synthesize noisy

speech in a desirable background. The conversion of noisy speech from the original noise

background to the intermediate target is done with a DNN that maps the LPS features. A

general enhancement system will then refine the converted speech. The DNN is trained to

minimize MSE loss between original and converted speech.

Table 3.2 compares the PESQ of two test sets using the direct and indirect approaches

with a list of intermediate targets considered as simple noise based on enhancement quality.

When noisy speech in a noise type receives a PESQ score higher than 3.5, it is considered

simple and used as an intermediate target. The original PESQ score is labeled as “Quality”

in column 2 in Table 3.2. In addition to the overall average PESQ of each test set, two sub-

sets are created in each test to evaluate the performance of best and worst noise conditions.

They are labeled as the first and fourth quantiles in Table 3.2. Such grouping helps ana-

lyze the effects of conversion on both simple and challenging noise conditions. The first

quantile consists of about a quarter of noise types with the worst performance, whereas
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Table 3.3: Comparison of MSE of direct and indirect methods on the 1st quantile of noisy
speech

Noise
Nonspeech Noisex92

PESQ Direct Convert Refine PESQ Direct Convert Refine
direct 2.80

380

- - 2.26

550

- -
n079 2.86 100 340 2.22 110 340
n099 2.84 190 10 2.18 200 10
volvo 2.90 140 90 2.28 140 90
n047 2.88 50 410 2.28 80 410
n054 2.76 80 170 2.20 150 170

the fourth quantile contains noise types with the best performance. One could argue that

the first quantile is the difficult noise conditions, and the fourth quantile represents easy

conditions.

We could draw several conclusions from Table 3.2. First, a good performance on the

baseline DNN does not guarantee that a noise type can be used as an effective target for

conversion. In the case of noise type n054 and n047, despite their relatively high quality

of 3.75 and 3.67 when evaluated with DNN, using them as intermediate targets does not

improve the overall performance, indicated by the bottom two rows in Table 3.2. Second,

even though the overall improvement from 2.99 to 3.05 is small in volvo noise, the benefits

are more pronounced for noise types within the first quantile, where the improvement is

from 2.80 to 2.90 when volvo is the intermediate target. A similar trend could be observed

for other noise types. Conversion is generally not useful for simple noisy types in the fourth

quantile, as the PESQ score all drops after conversion, and is more useful for difficult

conditions in the first quantile. Third, the indirect approach with DNN-based conversion

does not address the domain mismatch problem. Comparing the results in the Nonspeech

test set and that in the Noisex92 test set, one could tell that the improvement is much

smaller. This difference might be because the converter is also implemented with a similar

DNN trained on the same features. Consequently, it also suffers a similar domain mismatch

problem.

To explain why the indirect approach works for challenging noise, we can compute the
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Table 3.4: Effects of spectral shapes on the suitability as intermediate targets

Noise
Nonspeech Noisex92

Avg 1st quant 4th quant Avg 1st quant 4th quant
direct 2.99 2.80 3.22 2.57 2.26 3.10
volvo 3.05 2.90 3.21 2.58 2.28 3.09
ovlov 2.82 2.69 2.98 2.44 2.20 2.87

distance between noisy features and clean targets. Likewise, we could compute the distance

between conversion targets with respect to noisy and clean speech. MSE can be used as a

distance metric. It is a rough measure of the difficulty of neural network-based mapping.

In Table 3.3, we could see that the sum of the MSE of conversion and refinement stage is

generally lower than the MSE of direct enhancement. For example, in the case of volvo

noise on the Nonspeech test set, the average MSE is 380 between the original noisy speech

and clean targets. However, converting to volvo only needs to overcome an average MSE of

140, followed by another 90 in the refinement. The sum of the two stages is lower than the

MSE of direct enhancement. This smaller MSE could help explain the benefits of indirect

enhancement.

3.2.2 Noise shape

Instead of selecting intermediate targets solely based on their performance on the baseline

DNN system, one could choose targets based on some signal attributes. We invert the

spectrum of volvo by modulating the signal by ejπn to create an artificial noise, named

ovlov so that the two share the same bandwidth, stationarity, and instantaneous energy. The

long term average spectra of clean speech, volvo, and ovlov noise are shown in Figure 3.5.

The experimental result of converting noisy speech to both volvo and ovlov is listed

in Table 3.4. It is evident that ovlov is less an ideal target than volvo in terms of the

quality after conversion, as its PESQ score of 2.82 and 2.44 on the Nonspeech and Noisex92

test set are lower than that of volvo noise. As Figure 3.5 suggests, the spectrum of volvo

lies beneath that of speech in most frequency bins. This energy distribution reduces the
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Figure 3.5: Long term average spectra of speech, volvo, and ovlov

Table 3.5: MSE comparison between volvo and ovlov noise

Direct Conversion Refinement Indirect
volvo 3300 2700 490 3200
ovlov 3300 4100 1300 5400

spectral mismatch between the target and clean speech. In terms of MSE loss, it is clear

that ovlov noise is both harder to convert to and harder to refine due to its contrasting

spectral shape from speech. In other words, a good intermediate target should exhibit

spectral shapes that generally lie beneath the speech spectrum. This idea echoes the psycho-

acoustic weighting used in conventional speech enhancement and speech coding [49, 117],

where more emphasis is placed on spectral valleys to minimize distortions in these regions.

In this case, the target noise should have low energy at frequencies where the speech is

weak. Otherwise, the dominant noise in weak speech regions will make the subsequent

refinement task difficult.
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Table 3.6: Effects of bandwidth of conversion targets

Passbands
/Hz

Nonspeech Noisex92
Avg 1st quant 4th quant Avg 1st quant 4th quant

- 2.99 2.80 3.22 2.57 2.26 3.10
0-50 3.04 2.89 3.20 2.58 2.27 3.09

0-100 3.02 2.88 3.17 2.62 2.38 3.09
0-200 2.91 2.79 3.03 2.56 2.33 2.99
0-500 2.80 2.71 2.90 2.49 2.27 2.86

100-200 2.96 2.81 3.10 2.58 2.34 3.01
200-400 2.80 2.70 2.92 2.48 2.26 2.86

3.2.3 Bandwidth

To study the effects of the bandwidth of intermediate noise type, we filter white noise with

low-pass or band-pass filters with specific passbands to create artificial noise with desir-

able bandwidths. We also shift the narrowband noise’s peak to investigate the effects on

the location of the spectral peaks of various noise. In the first series of experiments, the

passbands gradually increase from 50 Hz up to 500 Hz. The trend in Table 3.6 indicates

that the performance degrades steadily above 100 Hz. This result confirms our early obser-

vation that wideband noise tends to be difficult for enhancement, and intermediate targets

should be band-limited. In the second experiment, the peak of the noise spectrum is shifted.

By comparing the rows of (0-100) vs. (100-200) and (0-200) vs. (200-400), we could con-

clude that the noise occupying lower frequency bands are more suitable for conversion

targets. Such a result could be explained by the speech spectrum with higher energy in

lower frequency bands, hence easier to mask the noise.

3.2.4 Stationarity

The last signal attribute to examine is the stationarity of the conversion targets. To maintain

a fair comparison with another noise with similar bandwidth and spectral shape, we intro-

duce non-stationarity to the volvo noise by creating interleaving patterns in its temporal

envelop, as shown in the second and third spectrograms in Figure 3.6. The performance of
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(a) volvo (b) volvo2 (c) volvo3

Figure 3.6: Non-stationary examples of volvo-like noise

Table 3.7: Effects of stationarity of conversion targets

Noise
Nonspeech Noisex92

Avg 1st quant 4th quant Avg 1st quant 4th quant
direct 2.99 2.80 3.22 2.57 2.26 3.10
volvo 3.05 2.90 3.21 2.58 2.28 3.09

volvo2 3.07 2.92 3.24 2.59 2.27 3.10
volvo3 3.05 2.90 3.21 2.58 2.29 3.08

using each variation of volvo noise is given in Table 3.7. Contrary to our prior assumption

that non-stationary noise is typically harder than stationary ones, the results in Table 3.7 do

not reveal a significant difference among the three noise types for either test set. This result

agrees with the earlier observation of non-stationary noise types with good performance,

such as machinegun, n047, and n079 in Figure 3.2. It also suggests that stationarity is a

less crucial factor when evaluating intermediate targets.

We can conclude through a series of experiments that a good performance on the base-

line DNN is insufficient to guarantee that a noise type is suitable as an intermediate target.

Simple noise should ideally have a long-term average spectrum that lies below clean speech

spectrum. A band-limited signal that resides in low-frequency regions tends to have bet-

ter performance over wide-band signals or signals occupying higher frequency bands. Its

stationarity is less relevant as a conversion target.
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3.3 Summary

In this chapter, we discuss the difficulty of processing speech input when background noise

is present. Noise generally degrades the quality of perceived speech and hinders our ability

to comprehend its content. The same issue exists for speech enhancement or ASR systems.

We highlight the disparity in difficulties of enhancing speech in different background noise.

The differences can be observed in terms of both the gain in the PESQ scores, as well as the

final quality. We then attempt to cluster background noise into simple and difficult groups

based on their spectral and temporal characteristics. Out of the many signals characteris-

tics, we find the average spectrum shape and bandwidth most relevant when evaluating its

difficulty in enhancement applications. Both of these factors are satisfied if the long-term

average speech spectrum can effectively mask the noise. Such knowledge would aid us in

finding suitable intermediate targets for indirect speech enhancement.
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CHAPTER 4

INDIRECT SPEECH ENHANCEMENT WITH SUPERVISED LEARNING

4.1 Introduction

In Chapter 3, we have identified noise characteristics that determine if the speech in that

noise can be easily enhanced. Such a simple noise could be a suitable intermediate target

in our indirect approach to SE. Once we have selected an intermediate target, we need

to design other components in the progressive enhancement framework. Specifically, we

define a conversion step, during which original noisy speech is converted to speech in less

difficult noise. It is followed by a refinement step responsible for recovering final clean

speech using the intermediate speech as an input. This process is depicted in the upper path

of Figure 4.1. In comparison, the direct approach is shown in the lower path.

In this chapter, we will first outline a speech conversion technique by matching statistics

of speech features. This step is inspired by the observation in Chapter 3 that improper

feature normalization leads to degrading enhancement performance. The next approach

is based on a frame-level mapping. The motivation behind the frame-level mapping is to

leverage the universal approximation theory of neural networks [159] to perform feature

transformation. Lastly, we extend the indirect approach to handle noisy conditions with

Figure 4.1: Framework of indirect speech enhancement
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multiple noise sources. We show that the noise interferences can be removed sequentially

to achieve indirect enhancement.

4.2 Matching feature statistics

This section first shows the effects of noise in feature normalization, which is crucial in

DNN-based speech enhancement. An adverse condition arises when difficult noise at low

SNR affects both mean and variance normalization. For the mean standardization, there

will be a deviation from the global mean statistics. The deviation creates an offset from

0 in normalized features. The offset is greater at frequency bands with more dominant

noise power. As a result, for speech in simple noise, mean normalization translates feature

vectors to almost zero. However, the more difficult noisy speech will not be centered

at 0 as its mean is far from the global mean. Similarly, for difficult noise, feature after

variance normalization will also not have unit variance at bands with more noise power.

Consequently, This results in a mismatch between input distribution in training and testing.

To alleviate such deviation, we propose to apply a transformation to match the statistics of

normalized features of a difficult noise to that of a simpler noise. To achieve this goal, we

will investigate the use of mean-variance matching and histogram equalization algorithms.

4.2.1 Effects of noise in feature normalization in speech enhancement

Feature normalization, or feature standardization, refers to the practice of scaling input

features to the same range so that they have similar magnitudes. Min-max scaling could

be used if lower and upper bounds of the feature values are known [160]. The normalized

feature will be constrained in the range of [−1, 1] or [0, 1]. This is commonly seen in image

processing where pixel values are finite after digitization, as in [0, 255] for a 8-bit gray-scale

image. LPS is a commonly used feature in SE [16]. It is defined as

XLPS = log
(
X(m, k)∗X(m, k)

)
= 2 log |X(m, k)|, (4.1)
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where X(m, k) is the short-time DFT of the m-th frame at frequency bin, k. One can

see that such features are not bounded. This property makes min-max scaling difficult.

Features like LPS can be normalized with z-score normalization instead [161]. Z-score

normalization can be defined as the following linear transform

X̄LPS =
XLPS − µLPS

σLPS
, (4.2)

where µLPS and σLPS are the mean and standard deviation of feature, XLPS , accumulated

over the frames in each dimension.

As a result of z-score normalization, each feature dimension’s mean will be 0, and the

standard deviation will be 1. Theoretically, this linear transform is not essential as the linear

operation can be captured by the input layer in a DNN. However, practical reasons exist for

the benefits of feature normalization. Optimizers such as stochastic gradient descent could

converge faster. Without feature normalization, the error surface could become elongated,

and a global learning rate will make learning in some dimensions very slow [159]. In

speech enhancement, both input and target features are standardized to possess zero-mean

and unit-variance [10]. An inverse linear transform of Equation 4.2 is performed after DNN

prediction to reconstruct LPS in the original scale.

We wish to understand the effects of normalization on the LPS features depending on

the background noise. The LPS features used in our enhancement experiments have 257

dimensions. We rely on dimension reduction techniques to find their projections for visu-

alization. The two-dimensional projections of the normalized LPS features are obtained

with PCA. Figure 4.2 shows the distribution of these projected speech vectors in a few

noise types, including white, pink, and volvo noise after normalization. One could observe

that the normalized noisy speech vectors in different noise have dissimilar distributions.

Specifically, noisy speech vectors in white and pink noise drift away from the center. Their

clusters are also more compressed compared to that of volvo.
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Figure 4.2: PCA projections of normalized features for different noises

Intuitively, clean speech can be considered a simple noise since it can be reconstructed

with high fidelity. We understand that different speech sounds, including vowels and con-

sonants, have very different spectra. Vowels possess formant peaks and mostly occupy

lower frequency bands. Consonants, such as stops and fricatives, are noise-like and occupy

high-frequency bands [162]. Thus, it is instinctive to expect clean speech features to spread

apart because different vowels and consonant sounds have very different spectra. By com-

paring volvo and white, we can infer that volvo is a simpler noise type because it is more

spread out as clean speech does. On the other hand, speech in white or pink noise always

has a noise background. The noise background can be considered as a marker that makes

noisy speech features alike. Hence, the projections speech features in pink or white noise

are more tightly clustered. To better understand such a difference, we will discuss how

different noise affects the normalization of the LPS feature in the next section.
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4.2.2 Deviation of mean in normalizing speech in difficult noise types

To understand why speech in different noise backgrounds follows different distributions

after the z-score normalization defined in Equation 4.2, we will show that the normalization

of LPS features suffers from mean and variance deviation if the overall SNR level is low or

the noise type is difficult.

Recall the additive noise model after short-time Fourier transforms. The complex spec-

trum of noisy speech at frame index, m, and frequency bin, k, is

Y (m, k) = X(m, k) +D(m, k) (4.3)

= |X(m, k)|ej∠X(m,k) + |D(m, k)|ej∠D(m,k). (4.4)

|X(m, k)| and |D(m, k)| are the clean speech and noise magnitudes. ∠X(m, k) and ∠D(m, k)

are their phases. Since z-score normalization is applied to each dimension independently,

we will drop the frequency indicator, k, in the discussion below. We denote |Y (m, k)| as

Ym. The same for Xm and Dm.

The instant power spectrum is computed as

Y 2
m = Y ∗mYm (4.5)

= (Xmej∠X(m) +Dmej∠D(m))(Xme−j∠X(m) +D(me−j∠D(m)) (4.6)

= X2
m +D2

m + 2XmDmcos(∠X(m)− ∠D(m)). (4.7)

Let φXD = ∠X(m) − ∠D(m) denote the difference of phase angle, and let ξm = Xm
Dm

be the instantaneous SNR. We can take the logarithm of both sides of Equation 4.5 to derive

the noisy LPS,

log Y 2
m = log

(
X2
m +D2

m + 2XmDmcos(∠X(m)− ∠D(m))
)

(4.8)

= logX2
m +W (ξm, φXD), (4.9)
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where

W (ξm, φXD) = log
(

1 +
D2
m

X2
m

+
2DmcosφXD

Xm

)
. (4.10)

To perform feature normalization, we need to compute the global mean and variance of

clean LPS features. The mean of the clean LPS in each dimension is defined as

µLPS = E
[

logX2
m

]
. (4.11)

Similarly, the variance of the LPS in each dimension is defined as

σ2
LPS = Var(logX2

m) = E
[
(logX2

m − µLPS)2
]
. (4.12)

We want to show that the normalized feature will not be centered at 0 or have unit

variance after normalization by Equation 4.2 for difficult noise types, which could help us

understand the translation and compression of noisy speech features in pink and white noise

in Figure 4.2.

If the normalized features are zero-centered, the expectation of the noisy LPS features

must equal to the global mean. However, if they are not equal, there will be a deviation.

We define the deviation in mean as

∆µ = E
[

log Y 2
m

]
− µLPS. (4.13)

By expanding W (ξm, φXD) in Equation 4.10 by Taylor expansion and assuming φXD fol-

lows a uniform distribution in −π to π, we can show that

∆µ ≈


E
[
2 cosφXD

ξm

]
, if ξm →∞

−2E
[

log ξm
]
. if ξm → 0

(4.14)

The derivation of Equation 4.14 can be found in Appendix A. We can interpret the
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result in Equation 4.14 depending on ξm. When the signal is in high SNR, there are a lot of

time-frequency (TF) bins with high ξm. Similarly, if noise is effectively masked by speech,

i.e., it fits the criterion of a simple noise, most TF bins have high ξm, the deviation after

mean normalization can be approximated as E
[
2 cosφXD

ξm

]
. As ξm → ∞, the deviation, ∆µ

approaches 0. Hence, for high SNR or simple noise, there is little deviation in the mean.

This is the case of speech in volvo noise in Figure 4.2.

When the signal is in low SNR, there are many TF bins with low ξm. Speech in difficult

noise has many TF bins with low ξm, too. In these scenarios, ∆µ can be approximated as

−2E
[

log ξm
]
. This implies that the deviation depends on ξm. When there are many TF

bins with low SNR, or when some instantaneous SNRs are very low, the deviation will be

significant.

(a) red noise (b) purple noise

Figure 4.3: The observed mean deviation agrees with the estimated mean deviation

Next, we rely on simulation to verify the results in Equation 4.14. An utterance of

clean speech is separately mixed with red noise and purple noise to create two segments of

recordings. The details of red and purple noise can be found in Appendix C. Because the

spectrum of red noise is more similar to that of speech, it can be better masked by speech

than purple noise. On the other hand, purple noise contains energies at speech spectral
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valleys. Our analysis in Chapter 3 suggests that speech in red noise is simpler than speech

in purple noise. We would expect speech in red noise to suffer less from mean deviation,

whereas speech in purple noise will experience significant deviation.

We compute the estimated mean deviation of speech in red noise using the first condi-

tion in Equation 4.14. The estimated deviation of speech in purple noise is estimated using

the second condition in Equation 4.14. We also measure the actual deviation and denote it

as “observed.” The estimated and observed deviation for each noise are plotted in orange

and blue, respectively in Figure 4.3.

For red noise shown in Figure 4.3a, both the observed and the estimated deviation

are very close to 0, suggesting little mean deviation for this simple noise. As a result,

normalized features will be effectively centered around 0. This behavior is desirable as it

matches the distribution of centered features in training the SE DNN.

For purple noise shown in Figure 4.3b, both the theoretical prediction and the empirical

observation show that the deviation increases at higher frequency bins. This agreement is

expected as purple noise has a larger power density in higher frequency ranges. The result

confirms that the mean deviation depends on −2E[log(ξm)], where ξm is generally very

low in high-frequency bins for purple noise.

4.2.3 Deviation of variance in normalizing speech in difficult noise types

We consider the difference between the variance of noisy speech feature, Var(log Y 2
m), and

the global variance, σ2
LPS = Var(logX2

m)

∆σ2 = Var(log Y 2
m)− Var(logX2

m) (4.15)

If ∆σ2 is around 0, then the noisy speech feature will have unit variance after normalization.

Otherwise, the feature will not be scaled to a desirable range. If ∆σ2 < 0, normalizing

the noisy speech feature with σ2
LPS will over-compress the features, resulting in tightly
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clustered features, such as speech in pink and white noise in Figure 4.2.

We can simplify the expression in Equation 4.15 depending on ξm. We leave the details

to Appendix B and present the final results directly

∆σ2 ≈


E
[
2 cosφ2XD

ξm

]
, if ξm →∞

Var(logD2
m)− Var(logX2

m). if ξm → 0

(4.16)

The results in Equation 4.16 can be interpreted as follows. At high SNR or in simple

noise, ξm → ∞. Then the deviation of variance is negligible as E
[
2 cosφ2XD

ξm

]
→ 0. This

corresponds to volvo noise in Figure 4.2. In contrast, for speech in difficult noise or at

low SNR, the deviation depends on how different the noise spectrum is from the speech

spectrum. This corresponds to pink and white noise in Figure 4.2.

(a) red noise (b) purple noise

Figure 4.4: The observed variance deviation agrees with the estimated variance deviation.

We also examine the agreement of the estimated deviation and the observed values.

The same speech in red and purple noise from the previous section is reused for our mea-

surement. We plot the results in Figure 4.4. Both the estimated and observed deviation is

very small for red noise in Figure 4.4a. This small deviation suggests that the normalized

feature will have unit variance and be scaled properly. For purple noise in Figure 4.4b,
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the deviation is significant in both our prediction and measurement. Furthermore, the de-

viation is negative, suggesting that the noisy speech LPS has a smaller variance than the

global variance. As a result, the normalized feature will have a variance of less than 1. This

explains the tight clusters for difficult noise types in Figure 4.2.

Over-compression of normalized features makes the features more tightly clustered and

less separable. In a classification task such as recognition, the densely clustered feature

vectors leave less margin for a DNN to find decision boundaries. In a regression task such

as enhancement, the features are less distinguishable, generating a smeared spectrogram in

reconstruction.

The analysis above shows that noise can affect feature normalization in speech en-

hancement. Difficult noise makes the normalized features not centered at zero and over-

compressed. The offset and the shift introduce a mismatch between the normalized features

during testing time. In the next section, we will discuss some techniques to address such a

mismatch in the indirect enhancement pipeline.

4.2.4 Mean-variance matching

Mean-variance normalization is a linear transformation of input features so that the shifted

and rescaled features possess desirable mean and variance. Mean normalization in the cep-

stral domain, as reviewed in Chapter 2, removes the convolutional effects of the channel

if the channel is assumed to be stationary. Though lacking a physical interpretation, vari-

ance normalization is still widely adopted in DNNs to allow more efficient convergence of

back-propagation [159]. The training process converges faster due to improved numerical

conditions of the optimization. Normalization also ensures that the default initialization of

network layer weights is appropriate [160].

The rationale behind matching the normalized statistics is to enforce the training and

testing features to follow a similar distribution [163]. When training a DNN, normalization

statistics can be adjusted to account for variations in features. The adjustment ensures that
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training features are all normalized properly to zero mean and unit variance. When testing

or enhancing an utterance in difficult noise types, we cannot perfectly normalize the input

features due to the factors analyzed in the previous section. Hence, we wish to change the

distribution of input features into another distribution that can be normalized properly, such

as speech in simple noise. We name this process mean-variance matching. Even though

speech features are converted, there is no need to transform features frame by frame. We

are only interested in matching the mean and the variance of the transformed features.

In order to match the mean and variance statistics of noisy speech, we first estimate

these statistics from simple and difficult speech, respectively. Speech in difficult noise is

denoted as the source domain with subscript S. Speech in simple noise is denoted as the

target domain with subscript T . We could estimate the mean and variance statistics in either

domain reliably by accumulating sufficient frames of speech. Let the dimension-wise mean

and variance of speech features in the target domain be µT and σ2
T , respectively. The mean

statistics in each feature dimension is estimated by averaging all frames, XTi

µT =
1

M

M∑
i

XTi . (4.17)

The variance is estimated over observed frames in the target domain

σ2
T =

1

M − 1

M∑
i

(XTi − µT )2. (4.18)

The mean, µS , and variance, σ2
S , of speech in the source domain are estimated in a

similar manner. The standard deviation, σS and σT , are the square roots of their respective

variances. With these mean and standard statistics available, two simple affine transforma-

tions will translate and scale speech feature vectors in the source domain, XS , to match the

distribution of that in the target domain, XT , in each feature dimension.

X̂T =
XS − µS

σS
σT + µT . (4.19)
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The transformed speech X̂T shares a distribution more similar to that of a simple noise.

Hence, it is reasonable to expect the transformed speech to yield better enhancement results

over the directly enhanced speech.

4.2.5 Histogram equalization

Clean speech features are more Laplacian than Gaussian [164]. Hence, matching the low

order statistics, including mean and variance, does not necessarily match the overall distri-

bution. If more data is available, we could obtain reliable estimates of higher-order statis-

tics, allowing us to match higher moments of the speech vectors. Histogram equalization

is one such technique [127] by matching all moments. Like mean-variance normalization,

a one-to-one transformation is also created for each utterance in the difficult noisy speech

domain to the simpler domain. The target distribution is the distribution of speech fea-

ture vectors from an appropriate intermediate target environment. The distribution in each

dimension is estimated by accruing sufficient features in the simple noise. For LPS fea-

ture, XT , from the target domain, we approximate the distribution by its probability mass

function, fT (i), which represents the fraction of LPS values at level i

fT (i) = Prob(X = i) =
ni
n
, (4.20)

where ni is the count of values at level i out of n total observations. Since the range of

LPS features is unbounded, we have to estimate its extreme values. We can then specify a

proper range for i. The cumulative distribution function (CDF), FT (i), can be obtained by

summing fT (i)

FT (i) =
i∑

j=−∞

Prob(X = j). (4.21)

The CDF for speech in the source domain, FS(i), can be obtained in the same way for

the source feature, XS . It is shown that we can first apply FS to XS to obtain a uniform

distribution [49]. Subsequently, the inverse CDF, F−1T , will transform the original feature,
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XS , to possess the same distribution as XT . Hence, the overall transformation process is

X̂T = F−1T

(
FS(XS)

)
. (4.22)

The refinement module processes the transformed speech next for final enhancement. It

is nevertheless important to note that since more observations are required to obtain accu-

rate estimates of the exact distribution, many utterances must be collected for histogram

equalization to be accurate. We will evaluate the data size requirement in the next section.

4.2.6 Experiments and discussions

In the following experiments, clean speech from the WSJ0 corpus [158] is mixed with bab-

ble, pink, and white noise from Noisex92 [103] to synthesize noisy speech. We first show

that speech in difficult noise, such as white noise, suffers from mismatched normalization.

Chapter 3 discussed that the average power spectrum density of volvo noise is masked by

speech, but white noise is not. Thus, we could consider volvo a simple noise and white a

difficult noise. Figure 4.5 compares the mean and variance of noisy speech in white noise

(blue) and volvo noise (red). The yellow curves are the references: 0 for the mean and 1

for the variance. While the statistics of speech in volvo noise (red) hover above and below

the reference, the statistics of white noise (blue) are consistently off from the reference.

It suggests that the speech in white noise is likely sampled from a different distribution

from the data used to compute the reference. Hence, its enhancement result is likely to be

unsatisfactory.

Besides comparing the mean and variance, we also examine the overall distribution. To

better visualize the shift in distribution due to noise, we first compare the distribution of in-

put features subject to different SNR levels. Unlike noise, SNR has a natural interpretation

in relation to the noisy environment’s adversity, so it is easier to lend us insights into its

influence. A random dimension in the clean input feature vector is selected, and its distribu-
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Figure 4.5: Deviation from zero mean (left) and unit variance (right) between simple and
difficult noise samples. White is an example of difficult noise and volvo is an example of
simple noise.

tion is shown in purple in Figure 4.6a. The clean feature, denoted as ref, is shown in purple.

At 5dB white noise, the feature shifts to the yellow distribution. As the SNR level further

decreases, the distributions at 0dB and -5dB are shown in red and blue, respectively. It is

straightforward to notice that the more adverse the condition is, i.e., the lower the SNR, the

further apart the distribution is from the reference. It confirms our assumption that lower

SNR results in a larger deviation in normalized features.

With this intuition, we next examine the shift of the distribution of noisy speech in

different background noise at 0dB, shown in Figure 4.6b. Speech in volvo (blue histogram)

is chosen as the reference since it is considered a simple noise. The yellow histogram is

speech in babble noise. The purple and orange histograms belong to speech in pink and

white noise, respectively. Since white noise shows the greatest deviation from the simple

noise, it should be the most challenging noise type, just as speech in -5dB is the most

challenging SNR condition in Figure 4.6a. This observation is consistent with the quality

assessment with PESQ. The first column in Table 4.1 tabulates the PESQ score of speech

in volvo, babble, pink, and white noise at 0dB. Since speech in white noise shows larger

variation from the reference than babble, its PESQ score is also the lowest, as expected.

The improvement of direct enhancement is limited in babble noise. There is no gain
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(a) By SNR (b) By Noise

Figure 4.6: Comparison of feature distribution by SNR and by noise

PESQ raw direct
mean-variance
normalization

histogram
equalization

volvo 3.20 3.25 - -
babble 1.81 2.12 1.99 2.03
pink 1.63 1.70 2.07 2.16
white 1.56 1.48 2.07 2.16

Table 4.1: PESQ score with and without matching statistics

for speech in white noise. We apply mean-variance normalization as described in subsec-

tion 4.2.4 to babble, pink, and white speech. The PESQ results in Table 4.1 show that it is

a good solution to very challenging noisy speech, such as speech in pink and white. After

applying mean-variance normalization, the feature mismatch decreases. Enhancement of

the transformed speech yields a PESQ score of 2.07 for speech in both noise types, a large

improvement from 1.70 and 1.48, respectively. Mean-variance normalization is ineffective

with babble noise. The reason could be that babble is only moderately difficult, as its mis-

match is not as serious as pink and white noise, as indicated in Figure 4.6b. Hence, if the

mean and variance are not estimated reliably, the distortion is likely to outweigh matching

statistics’ benefits.

Next, we examine the results with histogram equalization. Figure 4.7 displays the ef-

fect of histogram equalization. The source domain is speech in white noise (blue). The
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Figure 4.7: Effect of histogram equalization on feature distribution

target domain is speech in volvo noise (orange). Even though the two have very different

distributions, we can apply the transformation described in Equation 4.22. The result of

histogram equalization is shown in yellow in Figure 4.7. The transformed features follow

a similar distribution as speech in volvo noise. Applying speech enhancement on the trans-

formed feature further improves speech quality after mean-variance normalization. The

last column in Table 4.1 shows that the PESQ score of speech in pink and white noise can

be further enhanced to 2.16. Hence, indirect speech enhancement with matching feature

statistics is an effective strategy for difficult noise environments.

The effect of histogram equalization can be better understood by analyzing the distribu-

tion of latent variables inside the neural network before and after the feature transformation.

We sample a random node at the middle layer of the enhancement DNN for volvo, babble,

white, and pink noisy speech. Figure 4.8a displays the distribution of each noise type.

Similar to Figure 4.6b, the distributions in the latent layer also show a recognizable trend

reminding us of that in input features. Specifically, speech in pink and white noise (pink
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(a) Without equalization (b) With equalization

Figure 4.8: Effect of histogram equalization in hidden layers

babble pink white
No equalization 1.23 4.75 6.85

With equalization 0.05 0.13 0.20

Table 4.2: KLD between other noise and volvo in a hidden layer

and red color) are more mismatched from volvo (blue color) than babble noise (yellow

color) because they are more challenging. After histogram equalization, the distributions

become more alike in Figure 4.8b. The Kullback–Leibler divergence (KLD) between the

hidden representation of noisy speech and volvo speech has also been greatly reduced, as

shown in Table 4.2. As a result, the PESQ scores of enhanced speech are more comparable

in the last column of Table 4.1, regardless of the original noise type.

4.3 Speech conversion with DNN mapping

In the previous section, we only match the overall distribution of the noisy speech features

to that of a simpler noisy speech. It is effective when the overall distribution can be accu-

rately estimated. We use simple linear transformations with mean-variance normalization

because we only need to estimate a few statistics. When we can simulate more data, or

use a more complicated model, we could perform indirect enhancement by transforming
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speech in difficult noise to speech in simple noise frame by frame. In this section, we focus

on this frame-based conversion technique using DNNs.

4.3.1 DNN training

We implement the conversion stage in Figure 4.1 with a DNN. Let the original noisy speech

in difficult noise condition be x1[n] + d1[n], where x1[n] is clean speech and d1[n] is back-

ground noise. x1[n] could be from a new speaker’s speech not included in the training

corpus. The intermediate target noise, d2[n], is chosen based on the factors discussed in

Chapter 3. Segments of silence are selected from x1[n] + d1[n] to filter out just the noise

segments. Next, clean speech from a speech corpus, x2[n], is mixed with both the original

noise, d1[n], and the target noise, d2[n]. This creates parallel training pairs, x2[n] + d1[n]

and x2[n]+d2[n]. They are parallel because the underlying clean speech is matched sample

by sample, hence frame by frame after short-time Fourier transform (STFT).

During the training of the converter DNN, the input to the DNN is the LPS feature of

speech in difficult noise, X2 + D1. The label is the LPS of speech in intermediate target

noise, X2 +D2. Then we train the parameters of the neural network using stochastic gradi-

ent descent to minimize the MSE loss. During conversion, intermediate speech is predicted

by feed-forward speech features of original noisy speech features through the DNN. We

then expand the converted features to include multiple context windows by concatenating

adjacent frames. The concatenated features are fed into the refinement network for com-

plete the process of indirect enhancement. This process is depicted pictorially on the left

side in Figure 4.9.

The second stage, denoted as refinement, can be further fine-tuned. When used with

converted features, it only needs to enhance speech in the specific noise environment.

Hence, the refinement network can be a specific purpose, not a general-purpose enhancer.

It is possible because the intermediate target is selected beforehand. We can be fine-tune

the refinement DNN d to map X2 +N2 to X2 following the same DNN training procedure.
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Figure 4.9: DNN architecture for feature mapping and joint training

The top-right block in Figure 4.9 shows this process.

Lastly, the two stages in indirect enhancement can be jointly optimized. The refinement

DNN is stacked on top of the converter. A context-expansion layer that extends a frame

to neighboring frames is inserted between those two networks. The joint system’s input

is noisy speech feature, X2 + N1, and the target label is the clean speech feature, X2.

The whole system is fine-tuned to minimize the MSE between predicted output and clean

targets with a gradient descent optimizer.

4.3.2 Experiments and discussions

We evaluate the same noisy speech, i.e., speech in babble, pink, and white noise, as dis-

cussed in section 4.2. We select speech in volvo noise as the intermediate target for each

environment in the indirect approach. The converter and the refinement DNNs are sepa-

rately trained using the techniques described in the previous section. Both networks are

3-layer DNN with a width of 2048 in each layer. The nonlinear activations between lay-

ers are sigmoid functions. We also perform joint training by concatenating the converter
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(a) raw (b) converted (c) enhanced

Figure 4.10: Conversion and enhancement of speech in babble noise

and the refinement and training the combined system at a lower learning rate. The PESQ

scores of various direct and indirect systems in different noise conditions are tabulated in

Table 4.3. The 95% confidence levels are appended after each score value. The column

labeled as “direct” shows that direct enhancement is difficult for speech in pink and white

noise, as the PESQ scores are still below 2.0 after direct enhancement. The proposed DNN

mapping method, labeled as “indirect,” is better than the mean-variance normalization in-

troduced in section 4.2. It is because the feature mapping method matches the features

frame by frame. On a detailed level, noise is substantially removed, and speech distortion

is minimized. More importantly, it is also effective with speech in moderately challenging

noise, such as babble, as the PESQ score all improve to above 2.4.

Figure 4.10, Figure 4.11, and Figure 4.12 present speech examples of indirect enhance-

ment with a DNN in babble, pink, and white noise. In each figure, the three spectrograms

correspond to the noisy speech without processing (raw), converted with a DNN (con-

verted), and post-enhanced (enhanced). First, most of the original noise has been removed

after the conversion stage, as the original noise is no longer visible in the converted spec-

trograms at the center. The converted features facilitate the refinement stage, so that the

enhanced spectrograms show no visible residue noise.

The last two columns in Table 4.3 illustrate the effect of joint training vs. direct adap-

tation. For all three noise types, the indirect method with joint training, labeled as “indirect
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(a) raw (b) converted (c) enhanced

Figure 4.11: Conversion and enhancement of speech in pink noise

(a) raw (b) converted (c) enhanced

Figure 4.12: Conversion and enhancement of speech in white noise

refined” outperforms direct adaptation, labeled as “direct refined.” We could explain the

improvement by comparing the MSE between various learning targets in Table 4.4. For

example, direct enhancement from white noise to clean speech needs to reduce an MSE

gap of 4.53. If volvo is selected as the intermediate target, the first stage needs to close an

MSE gap of 4.40, and the second stage only has a gap of 1.29. That makes either stage a

simpler task for a DNN to learn. We could draw the same conclusions for babble and pink

noise in Table 4.4.

4.4 Interference of multiple noise sources

In many real-world situations, multiple noise sources may exist during a conversation. In

the simple additive noise model introduced in Chapter 3, the corrupted speech, y, can be
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raw direct
MV

matching indirect
direct

refined
indirect
refined

babble 1.81± 0.05 2.11± 0.05 1.99± 0.05 2.47± 0.05 2.56± 0.05 2.62± 0.04
pink 1.63± 0.05 1.69± 0.09 2.07± 0.05 2.43± 0.05 2.50± 0.04 2.54± 0.04
white 1.56± 0.06 1.48± 0.09 2.07± 0.05 2.45± 0.05 2.49± 0.05 2.60± 0.05

Table 4.3: Progressive indirect enhancement with volvo intermediate noise

(a) Before transformation (b) After transformation

Figure 4.13: Effect of conversion on feature distribution

modeled as a linear combination of clean speech, x, and noise, di, scaled by its SNR factor,

γi. The respective SNR is SNRi = 10log10
1
γi

= −10log10γi

y = x+
∑
i

γidi. (4.23)

If noise sources are independent, the overall SNR is approximately

SNR = 10log10
1∑
i γi

= −10log10

∑
i

γi. (4.24)

babble pink white
noisy-clean 2.54 3.94 4.53

noisy-intermediate 2.16 3.71 4.40
intermediate-clean 1.29 1.29 1.29

Table 4.4: MSE between various learning pairs
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In direct DNN-based speech enhancement, we could generally consider the mixture

of noise a single source of interference, i.e., d =
∑

i γini, so noisy speech, y = x + d,

is mapped to clean speech, x, directly. To achieve better performance of DNN-based en-

hancement, we want the noise acoustic space to be broad [10]. It implies that the training

data must contain superpositions of noise, too. However, the combination of noise types in-

creases exponentially as the noise database grows. It is not easy to enumerate and simulate

all such combinations during direct training. The indirect approach to enhancement offers

an alternative solution by removing only one interference every time, thus simplifying the

task for each stage.

4.4.1 Framework of indirect enhancement with two noise sources

In this section, we consider speech mixed with two noise sources. It serves as a starting

point to discuss speech in multiple noise sources. When two loud noise interferences exist

in speech, the overall SNR is low if noise sources are independent. The overall low SNR

level makes direct mapping difficult. Eliminating only one noise source each time is simpler

because the SNR gap is smaller than removing all noise at once. Furthermore, a single noise

often only corrupts part of the speech spectrum, so a neural network can still rely on the

rest of the signal spectrum in prediction.

After each stage, one noise source is removed from the mixture. This process is re-

peated until no noise source exists or clean speech has been recovered. An example pro-

cess involving two noise sources, d1 and d2, is presented in Figure 4.14. The original noisy

speech consists of speech in two interferences, n1 and n2. Direct mapping attempts to trans-

form the noisy speech, x + n1 + n2, to x in a single step, as shown on the left. There are

two options for the indirect path. The first path, shown in the middle in Figure 4.14, uses

x + n1 as the intermediate target. In this case, noise n2 is removed first. The intermediate

speech is subsequently enhanced to clean speech, x. The other option is to remove n1 first.

We could visualize this path on the right in Figure 4.14. The order of removal of the two
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Figure 4.14: Indirect enhancement of multiple interferences

interferences has been switched.

In general, either path should yield an improvement over direct enhancement, as shown

in section 4.3. Nevertheless, one path is preferable to the other based on the noise character-

istics of n1 and n2. We could apply the same analysis in Chapter 3 to select the appropriate

intermediate stage. Figure 4.14 assumes that n1 is a more difficult noise, since the mapping

from x + n1 to x incur a larger loss. In contrast, n2 is a simpler noise. If Path 1 is chosen,

the second transformation from x + n1 to x will remain difficult. The distortion in DNN

mapping might overshadow the benefit of incremental improvement. We split the task with

commensurate difficulties along Path 2, which ensures that each sub-task becomes easier

to learn.

4.4.2 Experiments and discussions

In the following experiments, we assume that there are only two noise sources in the noisy

speech. Furthermore, we assume that we can obtain isolated recordings of both noise

types. This scenario could arise when we detect a new noise source in an environment

where we have already collected some audios before. For instance, we have previously

recorded the background noise in a mechanic shop. We also have babble noise in our noise

database. When we need to enhance speech mixed with both babble and machine noise in
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a mechanic shop, we could apply the indirect approach proposed in the previous section.

In our experiment, two different noise sources are added to clean speech to simulate noisy

speech in such an environment. Clean speech is sampled from the WSJ corpus [158]. The

first interfering noise is either babble or factory1 noise from Noisex92 [119] corpus. The

second interference is a colored noise, including brown, gray, blue, pink, purple, and white.

A detailed description of each noise can be found in the appendices. For each noisy-clean

pair, we compute the mean squared difference of their LPS features.The difference allows

us to gauge the distance between the conversion or enhancement pairs. We conduct and

compare indirect enhancement along both paths in Figure 4.14.

In Table 4.5, the noise sources are babble noise and a colored noise. Both noise sources

are scaled to 3dB, so the overall SNR between the clean speech and the interference is 0dB.

As the SNR is relatively low, the raw audio has PESQ scores below 2.0, which is in the

row labeled as “raw PESQ” in Table 4.5 and Table 4.6. The direct enhancement achieves

some improvement. On average, audio quality can be improved to 2.52, shown in the row

labeled “direct PESQ” in the same table.

In comparison, the indirect approach along either path shows further improvement over

the direct approach. The results are labeled “path1 PESQ” and “path2 PESQ” in Table 4.5

and Table 4.6. Along Path 1, the noise from Noisex92 is always the intermediate tar-

get. That means speech in babble is the intermediate target in Table 4.5, and factory1 is

the intermediate target in Table 4.6. Along Path 2, speech in the corresponding colored

noise listed in the table is the intermediate target. On average, either path achieves an

improvement of about 0.1 in PESQ score over direct enhancement, which is perceptually

significant. The last column of Table 4.5 shows that direct enhancement achieves a score

of 2.52 on average. The indirect approach along either path achieves a score of 2.61 or

2.59. The improvement could be explained by simpler sub-tasks. In general, each stage

in the proposed indirect path has a lower MSE compared to the direct task. Nonetheless,

we have argued that it is better to choose sub-tasks with comparable difficulty. We could
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Brown Gray Blue Pink Purple White Average
direct MSE 8.0 8.9 22.0 16.1 22.3 22.1 16.6
path1 MSE 0.4 8.2 0.8 8.2 8.2 8.2 4.1 8.2 8.7 8.2 8.0 8.2 5.0 8.2
path2 MSE 2.6 3.6 2.8 4.6 0.8 21.7 0.5 16.2 1.5 21.4 0.5 22.6 1.4 15.0
raw PESQ 1.99 1.99 1.72 1.74 1.80 1.59 1.81

direct PESQ 2.70 2.68 2.47 2.39 2.48 2.37 2.52
path1 PESQ 2.75 2.77 2.55 2.50 2.62 2.44 2.61
path2 PESQ 2.80 2.74 2.51 2.45 2.61 2.41 2.59

Table 4.5: 3dB babble noise mixed with various colored noise at 3dB. The intermediate target is babble
for Path 1 and the corresponding colored noise for Path 2.

Brown Gray Blue Pink Purple White Average
direct MSE 13.7 13.9 22.9 17.8 23.4 22.4 19.0
path1 MSE 0.2 14.7 0.2 14.7 3.1 14.7 1.4 14.7 3.4 14.7 3.0 14.7 1.9 14.7
path2 MSE 6.1 3.6 5.2 4.6 1.1 21.7 1.1 16.2 1.8 21.4 0.7 22.6 2.7 15.0
raw PESQ 1.88 1.89 1.68 1.68 1.74 1.56 1.74

direct PESQ 2.64 2.66 2.44 2.4 2.49 2.35 2.50
path1 PESQ 2.68 2.77 2.54 2.49 2.60 2.50 2.61
path2 PESQ 2.79 2.81 2.52 2.53 2.58 2.40 2.61

Table 4.6: 3dB factory noise mixed with various colored noise at 3dB. The intermediate target is factory1
for Path 1 and the corresponding colored noise for Path 2.

confirm this claim in Table 4.5. For example, in the first column under brown noise, Path 2

contains two sub-tasks with similar MSE, 2.6 and 3.6. The two sub-tasks along Path 1 are

more dissimilar in terms of difficulty, with MSE values of 0.4 and 8.2, respectively. The

PESQ score along Path 2 (2.80) is higher than that along Path 1 (2.75). For white noise,

the MSE difference indicates that Path 1 is preferred. The PESQ scores show that Path 1

has higher scores of 2.44 over 2.41 along Path 2. Thus, when we need to design an indirect

path that allows us to choose the order of intermediate targets, it will be more favorable to

select intermediate targets that result in sub-tasks with comparable difficulties.

The same experiment is repeated by replacing the first noise source from babble to

factory1, which has more high-frequency components than babble. In Table 4.6, the results

show a similar trend as the previous experiment. For simpler noise types such as brown

and gray, it is better to choose Path 2 as brown and gray are simpler than babble. Brown
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PESQ Babble/Brown Babble/White
SNR/dB 1.25 6 3 3 6 1.25 1.25 6 3 3 6 1.25

raw 1.89 1.99 2.16 1.67 1.59 1.54
direct 2.62 2.71 2.87 2.37 2.37 2.44

indirect 2.72 2.80 2.94 2.46 2.44 2.54
improvement 0.83 0.81 0.78 0.79 0.85 1.0

Table 4.7: Babble and colored noise at various SNR
PESQ Factory1/Brown Factory1/White

SNR/dB 1.25 6 3 3 6 1.25 1.25 6 3 3 6 1.25
raw 1.77 1.88 2.08 1.61 1.56 1.54

direct 2.53 2.64 2.81 2.34 2.35 2.40
indirect 2.68 2.79 2.92 2.43 2.50 2.50

improvement 0.91 0.91 0.84 0.82 0.94 0.96

Table 4.8: Factory1 and colored noise at various SNR

and gray noise are easily masked by speech, as evident from the power spectral estimate

shown in Figure 4.15. The red curves show the average PSD of speech, and the blue

curves represent those of various colored noise. The average spectrum of brown and gray

are effectively masked by speech, whereas other colored noise is not. For the rest of the

more difficult types, speech in factory1 noise becomes relatively easy. It is thus a more

appropriate intermediate target. In conclusion, for indirect enhancement of multiple noise

interference, it is better to convert to speech in simpler noise that can be effectively masked

by speech, which is consistent with the analysis in Chapter 3.

In the next experiment, we adjusted the two noise source mixing ratio while maintaining

the overall SNR level at 0dB. We want to know if intermediate targets’ choice would still be

the same as a result of changes in relative SNRs of each interference. Table 4.7 shows the

result of noisy speech when babble is mixed with brown or white noise. Table 4.8 repeats

the experiment by replacing babble with factory1 noise. The second rows in both tables

specify the mixing ratio of two interferences: 1.25dB/6dB, 3dB/3dB, and 6dB/1.25dB. In

terms of relative energy, the two noise are mixed at 3:1, 1:1, and 1:3, respectively. The

overall SNR remains still at 0dB.

By inspecting the first three columns in Table 4.7 and Table 4.8, we could see that the
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(a) Brown (b) Gray (c) Blue

(d) Pink (e) Purple (f) White

Figure 4.15: Average power spectrum density of speech and various colored noise

improvement is greater when babble or factory1 has lower SNR than brown noise because

babble or factory1 is harder than brown. A lower SNR in a harder noise makes the noisy

speech more difficult overall. Consistent with our results in earlier sections, we find that

the indirect approach is more effective when it is corrupted by difficult noise. Following the

same argument, we can see the reversed trend for white noise. Namely, larger improvement

is seen when babble or factory1 noise is at higher SNR. That is because white noise is a

more difficult noise type than babble or factory1. Hence, noise power from each source

should be considered together with noise types to select intermediate targets in indirect

speech enhancement.

4.5 Summary

In this chapter, we discussed several approaches to realize indirect speech enhancement by

focusing on designing the conversion step. A crucial factor for the degrading performance

of speech in some difficult environments is the different feature distribution. It creates a

mismatch between the feature used in training and testing. We demonstrate that difficult

noise types cause the features to be normalized improperly, which results in a mismatch
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between the features in training and testing. The first method in this chapter uses mean-

variance normalization or histogram equalization to reduce the mismatch. Reducing the

mismatch in the feature space also translates to a reduced mismatch in hidden activations

in DNNs, which explains the improvement with indirect speech enhancement.

If more paired data is available for supervised learning, one can convert original noisy

features into speech features in a simple noise frame by frame using regression-based map-

ping, such as a DNN. Compared to only matching the distribution, the mapping method

reduces distortion in spectral details and yields better enhancement quality. It outperforms

the normalization method in terms of perceptual quality scores.

Lastly, indirect speech enhancement can be effectively applied when multiple noise

interferences are present. In this scenario, noise can be progressively removed from the

mixture one by one. It is better than direct enhancement, which removes all noise at once.

We performed an analysis of task difficulties by measuring the MSE gap between input

and output features. The MSE gap confirms that it is useful to decompose difficult learning

tasks into simpler sub-tasks. Empirical evidence also shows that it is more useful to convert

speech in simple noise as intermediate targets.

78



CHAPTER 5

INDIRECT SPEECH ENHANCEMENT WITH LATENT SPACE LEARNING

5.1 Introduction

In Chapter 3, we developed a few guidelines to find noise types suitable as intermediate

targets. Nonetheless, it is possible that speech in that intermediate target is difficult to

collect or synthesize. For instance, the amount of target noise collected is too little to

synthesize any meaningful training data set, or an online adaptation system does not offer

enough time to collect data and train a converter separately. Hence, in this chapter, we

explore ways to perform noisy type conversion with unsupervised learning when there are

no direct learning targets of speech in the desirable noise background.

Representational learning is one such tool we can utilize. Given enough unlabeled

training data, a good representation learning could discover a structured representation of

features in a latent space. Features in the latent space lie on a manifold, a continuous

non-intersecting surface [159]. Manifolds have some interesting properties, such as feature

disentanglement and latent vector arithmetic. Feature disentanglement aims to extract dif-

ferent aspects of the latent representation features. We wish to decompose the noisy speech

into speech features, noise features, and SNR features in our application. Subsequently,

latent vector arithmetic enables us to manipulate the latent space components by replacing

some attributes while keeping the rest fixed, thus accomplishing conversions. Afterward,

the re-synthesis step would combine the new latent features and create a converted output.

In the rest of the chapter, we will introduce various forms of autoencoder (AE) that

are very popular in representational learning [159]. Since nonlinearities in deep AE make

them harder to analyze, we start discussing linear models, allowing us to understand the

latent structure better. Then we will see linear models fall short of extracting structured
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latent features. Modifications are required by building deeper architecture and imposing

latent constraints. We will follow the analysis by a series of experiments to show that we

can convert noisy speech from difficult noise into simpler ones for indirect enhancement

using unsupervised learning.

5.2 Representational learning via auto-encoder

AEs have been popular in unsupervised learning as a tool to perform feature extraction

or dimension reduction [159]. More recently, its use has extended beyond deterministic

mappings to describe probabilistic distributions, such as generating modeling. A basic AE

consists of an encoding block and a decoding block. Let x stand for an input feature vector.

In speech enhancement, it is usually an LPS vector. The encoding block, Fenc, transforms

x to a latent representation, h, which is generally much more compact and structured

h = Fenc(x). (5.1)

In its most common form, an AE is under-complete. The latent layer, h, also commonly

referred to as the bottleneck layer, has a smaller dimension than the input. It enforces data

compression in the encoding process. The decoding block, Gdec, has to learn to reconstruct

the original feature at the output layer from the compact latent representation, h. The

following equation describes the whole process of auto-encoding

x̂ = Gdec(h) = Gdec(Fenh(x)). (5.2)

An AE is often trained with MSE loss to minimize the difference between original inputs

and reconstructed outputs

Fenc, Gdec = arg min
F,G

∑
i

LMSE(xi, x̂i) (5.3)
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where the reconstruction loss, LMSE , is the standard MSE

LMSE(xi, x̂i) = ||xi −Gdec(Fenh(xi))||22 (5.4)

Compared to reconstructed outputs, we are usually more interested in the latent represen-

tation as features are more saliently organized in this low dimensional subspace.

The most basic AE could be modified to include additional constraints in the bottleneck

layer, h. For example, a regularization loss of weight, λ, could be added to Equation 5.3 to

enforce sparsity in the latent space

Fenc, Gdec = arg min
F,G

∑
i

(
LMSE(xi, x̂i) + λ||Fenc(xi)||21

)
. (5.5)

De-noising AE is another variation that minimizes the loss in Equation 5.6, where δxi

is a small perturbation in input features to promote more robust feature extraction and

reconstruction. This property makes it a handy tool in feature selection. Its training finds

two networks, Fenc and Gdec, that optimize the following loss

Fenc, Gdec = arg min
F,G

∑
i

LMSE(xi, Gdec(Fenc(xi + δxi))). (5.6)

The exact realization of Fenc and Gdec can take many forms depending on the applica-

tions. Usually, some nonlinear transformations are included in Fenc such that Gdec ◦ Fenc

does not degenerate into a linear multiplication. In the case the whole AE is linear, it is

similar to PCA. Both can be used in dimension reduction and feature extraction. In the next

section, we will first use a linear model to analyze the issue of unsupervised noisy speech

conversion.
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5.2.1 Latent space of speech features using PCA

In a linear AE, Fenc and Gdec are simply two matrices in Equation 5.3. Then the recon-

structed output could be written as

x̂ = Gdec(Fenc(x)) = GdecFencx, (5.7)

where Gdec and Fenc are the matrices instantiating the decoder and the encoder, respec-

tively. It draws a close parallel with PCA. By collecting many speech feature, x, we could

create an observation matrix, X, where each row corresponds to a feature vector. The fea-

ture matrix, X, is first centered by removing its mean in each dimension, X̄. Then we can

perform PCA on the centered matrix, X̃ = X−X̄, to obtain an orthonormal loading matrix,

V. It is the same matrix, V, if SVD is performed on X̃ = UΣVT 1. It is straightforward

to see that the hidden representation, H, is

H = X̃V = UΣ, (5.8)

and the reconstruction, X̂, is

X̂ = X̃VVT = UΣVT . (5.9)

If a lower dimension, R, is desired, some columns of V could be discarded. Alternatively,

define a column-trimming matrix, D, such that

D =

[
e1, e2, ..., eR,0, ...,0

]
, (5.10)

1VT = V−1 is an orthogonal matrix.
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where ei is an indicator vector with only the ith position as 1 and 0 everywhere else. A

total of R dimensions will be selected. In this case, the lossy reconstruction would be

X̂ = X̃(VD)(VD)−1, (5.11)

where (VD)−1 is the pseudo-inverse of VD since rank(VD) < rank(V).

The ideal binary mask, M, discussed in Chapter 2 indicates whether a time-frequency

bin is dominated by speech or noise energy. It is usually multiplied element-wise to the

feature matrix, X, to filter out noise dominated bins. In a linear AE such as PCA, the

binary classification of speech and noise bins leads to masking in latent representations. In

particular, the latent speech and noise are respectively

Hspeech = M⊗ X̃VD, (5.12)

and

Hnoise = (1−M)⊗ X̃VD, (5.13)

where ⊗ is the element-wise product.

To better understand this result, we use the following toy example: Let m = [1, 1, 0, 0]

be a four-dimensional vector. The mask vector means the first two dimensions are dom-

inated by speech and the last two by noise. The feature vector, x̃ = [x1, x2, x3, x4], is a

frame of centered feature vector in R4. Each xi is a frequency bin. Assume the AE has a

bottleneck width of 3, so the truncation matrix, D can be written as D = [e1, e2, e3, 0]. V

is the encoding/loading matrix with column vectors, v1,v2,v3, and v4. Combining VD

creates [v1,v2,v3]. Then noisy speech in the latent space is x̃VD

Hnoisy = x̃VD =

[
4∑
i=1

x1vi1,
4∑
i=1

x2vi2,
4∑
i=1

x3vi3

]
.
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(a) speech (b) speech+white noise

Figure 5.1: First 9 latent speech bases extracted from clean and noisy speech

Since the mask, m, only keeps the lower two dimensions of x as speech

Hspeech = m⊗ x̃VD =

[
2∑
i=1

x1vi1,
2∑
i=1

x2vi2,
2∑
i=1

x3vi3

]
,

and noise is the upper two dimensions

Hnoise = (1−m)⊗ x̃VD =

[
4∑
i=3

x1vi1,
4∑
i=3

x2vi2,
4∑
i=3

x3vi3

]
.

The equations above show that encoding with a linear AE is similar to selecting and com-

bining speech and noise bases in the loading matrix, V.

We perform SVD on the centered feature matrix of speech to get V. The first nine

columns corresponding to the first nine singular values are selected and plotted in Fig-

ure 5.1a. We only select nine because other singular values are considerably smaller. First,

we can tell these nine bases resemble the PSD of various speech activities. For example, the

first basis resembles the long-term average PSD. The second base contains stronger high-

frequency components, reminding us of the spectrum of some consonant sounds. Bases

from four to nine seem to suggest some formant patterns.

Next, we plot the first nine bases of speech in white noise in Figure 5.5b. Comparing
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Figure 5.2: First latent white noise basis

Figure 5.1a and Figure 5.5b, we are almost able to see a one-to-one correspondence be-

tween the bases extracted from noisy speech and those extracted from the clean speech.

Their overall shapes of each basis are very similar. A notable difference between those two

is the bases in Figure 5.5b have stronger high-frequency perturbations, which is due to the

contribution of white noise. We visualize this contribution by plotting the most significant

latent vector of white noise in Figure 5.2. Unsurprisingly, this basis resembles the flat spec-

trum of white noise. It also contains high-frequency components visible in Figure 5.5b.

This visualization helps us better understand our earlier argument that speech bases and

noise bases span the latent space in a linear AE.

The analysis above hinted to us on performing noisy speech conversion with an AE.

Since the latent representation is a superposition of the speech bases and noise bases in the

latent space, one can replace the bases to obtain different noisy speech reconstruction. In

particular, let Ỹ be the centered observation matrix of noisy speech in another noise and

Ỹ = UYΣYVY
T , we can then perform a basic noise type conversion

Ŷ = X̃VVY. (5.14)
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Figure 5.3: Conversion of noisy speech from white noise into pink and volvo with PCA

First, the encoder, V, transforms noisy speech in the source domain into a latent represen-

tation. This latent representation can be decomposed into speech and noise subspaces. The

decoder, VY, is calculated from the noisy speech in a target noise domain. It corresponds

to speech and another noise subspace. It will transform the latent weights into speech in

another noise. Figure 5.3 presents a sample result of conversion using this technique.

A potential issue with this approach is the permutation of bases in different loading

matrices. We cannot guarantee that the bases are ordered in the same way after performing

SVD. Due to the different effects of noise on speech, this order may change from noise to

noise, which could create misaligned weights and bases. As a result, this technique would

not work well when the noise types are too different, as dissimilar noise types are likely

to shuffle the order of bases. For example, in Figure 5.3, since both white noise and pink

noise are wide-band noise, the conversion of noisy speech from white noise (left) to noisy

speech in pink noise (bottom center) results in less distortion compared to conversion from

white noise to volvo (bottom right). By measuring the MSE between the converted speech

and their ground truth in Table 5.1, we can confirm that conversion to very different noise

is indeed very tough with this approach.

This leads us to explore deep and nonlinear architectures in subsequent sections for
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Table 5.1: Effects of stationarity of conversion targets

source noise white white
target noise pink volvo

MSE to ground truth 3.7 16.7

noisy speech conversion.

5.2.2 Use of nonlinear auto-encoders to convert speech features

A deep AE also consists of an encoder and a decoder. Nonlinear activation layers are usu-

ally inserted after each linear layer to prevent linear transformations from collapsing into

a single matrix multiplication. Deep networks have a lot more representational power than

shallow networks. As pointed out in [165, 166], some functions can be expressed by deep

networks that cannot be approximated by shallower ones, unless the shallow networks are

impractically wide. Thus, depth exponentially reduces the number of parameters required

to represent a function and lowers the demand for training data. From a compression point

of view, deeper auto-encoders can achieve better compression results than their shallow

counterparts [167]. In practice, one could pre-train a deep network with layers of shallow

networks, and stack them to create a deeper AE.

Due to its stronger representational power, a deep AE is more general than PCA to

discover latent structures in data. As a linear transform, PCA projects features onto a

hyper-plane in lower dimensions. For many problems, the input data may not have a linear

representation. For example, in Figure 5.4, the latent data dwell on a nonlinear manifold

that cannot be described by a hyper-plane. It shows the need for nonlinear transformations

in AEs.

Noisy speech conversion based on deep AEs can be formulated as discussed below. For

two domains, src and tgt, we assume that the encoders, Fenc, and decoders, Gdec, in the

source and target domain have been well trained. Hence,

Xsrc ≈ Gsrc(Fsrc(Xsrc)), (5.15)
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Figure 5.4: PCA vs Deep AE in manifold learning.

and

Xtgt ≈ Gtgt(Ftgt(Xtgt)). (5.16)

By assuming Fsrc(Xsrc) = Ftgt(Xtgt), we can generate converted feature, X̂tgt, with

X̂tgt = Gtgt(Fsrc(Xsrc)). (5.17)

There is much freedom in designing the architecture of a deep AE as one could ex-

plore encoder and decoder of different depth and width. Depth-wise, both the encoder and

decoder can be a concatenation of several nonlinear transformations. The layers can also

consist of dense, convolutional, or recurrent layers. Width-wise, even though the encoder

and the decoder are usually connected by a bottleneck layer, which is much thinner than

the rest of the network, one could design over-complete auto-encoders with a wide bottle-

neck layer [159]. Regardless of the specific architecture, the network parameters are still

obtained via back-propagation by the same rule in Equation 5.3.

However, the number of parameters in the auto-encoder could increase if the model
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gets large. It could be problematic if there are relatively little data but many parameters

to estimate. In such cases, the model may only “memorize” the specific inputs seen in

the data set and fails to generalize to new features. We could address the problem with

regularization, such as using L1 loss to enforce sparsity in Equation 5.5. With the additional

L1 loss, the decoder must rely on a small fraction of neurons in the bottleneck layer to

reconstruct its output, effectively limiting the bottleneck width.

An alternative way to promote sparsity and discourage memorization is to include a

term of KLD. It requires us to pre-select a sparsity constant, ρ, which incorporates our

prior belief of how often a neuron in the latent layer should activate. ρ follows a Bernoulli

distribution. The computation of ρ is discussed in detail in [159]. By minimizing the KLD

between the prior distribution, ρ, and empirical observation, ρ̂, we accomplish constraining

the neurons in the bottleneck layer to activate only occasionally. The modified loss is

Fenc, Gdec = arg min
F,G

∑
i

(
LMSE(xi, Gdec(Fenc(xi))) +

∑
j

KLD(ρ||ρ̂j)
)
. (5.18)

where j is a neuron in the latent layer.

We could use AEs to perform representational learning on speech features. Afterward,

we can convert speech in difficult noise to speech in intermediate targets to achieve indirect

speech enhancement. Figure 5.5 shows an example converter. We use the unlabeled audio

features to train the source AE. The audio features are from a source domain, which typi-

cally should be speech in difficult noise conditions. A similar set-up is used to train an AE

in the target domain, which corresponds to speech in simpler noise. After two separate sets

of AE are trained, we could perform conversion by replacing the source decoder with the

target decoder. The conversion is possible if both the source and target encoders encode

noisy speech into the same latent space. Additionally, both decoders must decode from the

same latent space. It is a strong assumption. We will validate or challenge this assumption

by examining a series of factors in the experimental section.
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(a) Train AE in the source domain (b) Train AE in the target domain

(c) Convert from source domain to target domain

Figure 5.5: Use auto-encoders to convert noisy speech into simpler noise

Noise aware conversion

In the first part of this chapter, we have shown that conversion with a linear AE is similar

to changing bases with a decoder. In a nonlinear AE, we can include target domain noise

vectors to give the decoder more explicit information to perform the conversion. It allows

the encoder to concentrate on learning latent representations of speech since the decoder

can rely on additional input of noise vector in its reconstruction. A set-up of “noise-aware

conversion” following this design is presented in Figure 5.6.

The first encoder, Fs, takes noisy speech, x + d, as input. The encoder then maps the

noisy speech to the bottleneck, Fs(x + d). The second encoder Ht only encodes noise

information, which outputs the noise bottleneck, Ht(d). By giving the decoder, Gt, the

noise information, Ht(d), more explicitly, the first encoder Fs do not need to encode the

noise, thus creating a speech bottleneck with better speech representation. We will examine

if better speech representation in the latent layer would facilitate better reconstruction and

conversion, which could lead to better enhancement results.
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Figure 5.6: Architecture of noise aware speech conversion

Domain adversarial auto-encoder

The set-up in noise-aware AEs allows a speech encoder only to encode speech, but it may

not impose enough constraints to enforce such behavior. Since the task during training is

only to re-synthesize noisy speech, a speech encoder may still encode speech and noise

together. We can impose additional constraints on speech encoding with a domain adver-

sarial loss.

Introduced in [168], domain adversarial training extracts latent features indiscrimina-

tive to domain knowledge, such as background noise information. A domain classifier is

appended after a latent layer to classify from which domain the features come. To achieve

better classification accuracy, the domain classifier encourages latent features to be more

discriminative. In other words, speech features from the source noise domain would be

more separable from the features in the target noise domain. It is exactly opposite from

what we need for background noise conversion since we do not wish to encode domain

information after the speech encoder. We could reverse the phenomenon by adding a gradi-

ent reversal layer [168] between a latent bottleneck layer and the domain classifier. When

training a domain adversarial auto-encoder (DAAE) in the forward pass in Figure 5.7a,

the gradient reversal layer functions as an identity. The domain classifier predicts whether

noisy speech is from the source or the target domain. Its loss function is the binary cross-
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(a) Forward pass in training the DAAE (b) Backward pass in training the DAAE

(c) Convert from source domain to target domain

Figure 5.7: Use domain adversarial auto-encoders to convert noisy speech into simpler
noise

entropy function that is typically used in classification tasks [168]

Lxent = −qs log(q̂s)− (1− qs) log(1− q̂s). (5.19)

In the above equation, qs = 1 when the feature is from the source domain, and qs = 0

when the feature is from the target domain. q̂s is the output from the domain classifier.

During back-propagation, the domain classifier is updated with standard DNN training.

The gradient after the gradient reversal unit will be multiplied by a negative constant before

entering the bottleneck layer, as shown in Figure 5.7b. Since the gradient is reversed,

optimization with gradient descent becomes gradient ascent. Hence, subsequent updates in

lower layers of DAAE will maximize the domain confusion. The adversarial mechanism

makes the bottleneck features indiscrimative of domain information.
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Let Dcls be the domain classifier. The modified objective function of this system is

Fenc, Gdec, Dcls = arg min
F,G,D

∑
i

(
LMSE(xi, Gdec(Fenc(xi))) + λLxent(qi, Dcls(Fenc(xi)))

)
,

(5.20)

where LMSE and Lxent are the reconstruction loss and the classification loss defined in

Equation 5.4 and Equation 5.19, respectively. qi is the ground truth domain label. Since the

gradient reversal unit is parameter-free, and it automatically adjusts the gradient in back-

propagation, the adversarial loss is not apparent in the loss function in Equation 5.20. Dur-

ing conversion in Figure 5.7c, we still replace the source decoder with the target decoder.

Unlike a vanilla AE, the latent features are less indiscriminative, so it contains less infor-

mation from the source domain, which helps the target decoder reconstruct noisy speech in

the target domain.

Vector quantized auto-encoder

Inspired by VQ [169], we could use a set of fixed bases so that the AEs in source and target

domains share the same span. Specifically, the encoder’s output, Z = Fenc(X), will be

quantized to a fixed code, Z′, in the codebook, C, given some distance metric, such as the

euclidean distance. The decoder will then map the quantized code, Z′, back to X

Z′ = arg min
c∈C

||Fenc(X)− c||22. (5.21)

We present a frame-based VQAE system in Figure 5.8. Each frame of acoustic feature,

X, in the source noise background, will be quantized after the VQ block. It will be decoded

with the target decoder to reconstruct speech features in the target noise background. The

benefit of the usage of a fixed codebook is clear. Since the auto-encoders from both source

and target domains are trained with the same codebook, the encoded activations now reside

in the same latent space. Furthermore, there is no more issue with permutation as the code-

book is fixed. Compared to conventional AE, VQAE also has some drawbacks. As the VQ
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Figure 5.8: Architecture of vector quantized auto-encoder

block discretizes latent codes in Figure 5.8, the decoding output will be less smooth. The

non-smoothness will contribute to distortions in reconstruction, making the reconstructed

speech less natural. Secondly, the quantization step involves arg min, which is not differ-

entiable. It breaks down back-propagation when updating the parameter weights in an AE.

Lastly, the codebook must be carefully designed to facilitate encoding in both the source

and target domain.

To address the first issue, we choose a relatively large codebook to reduce quantization

loss. At the extreme, there could be as many codebook entries as the number of acoustic

frames. It is equivalent to no quantization, effectively eliminating quantization loss. For a

speaker-dependent system, the codebook size can be greatly reduced, as we do not need to

consider speaker variability. As there are few practical guidelines for setting the codebook

size, this quantity can be determined empirically.

There are several workarounds about the issue of differentiability of arg min’s opera-

tion. Sub-gradient or finite difference methods could be used to approximate the gradient

flow. Another way to overcome the difficulty is to replace arg min, a hard assignment, with

soft decisions, for example, the softmax function [159]. Compared to the original VQ,

modified VQ with soft decisions allows the latent representations to reside in a continuous

subspace. It will help reconstructed features to be more smooth.
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5.2.3 Experimental results

This section evaluates speech transformation with methods proposed in section 5.2. The

original noisy speech is the source domain, and the intermediate target speech is the target

domain. AEs in the source and the target domain are first separately trained, after which

we obtain a pair of encoder and decoder in the source domain and the other pair in the

target domain. During conversion, the source encoder first generates latent codes of the

original noisy speech. The latent codes are then fed through the decoder in the target

domain to achieve speech transformation. The transformed speech is subsequently used as

intermediate inputs to a general-purpose enhancement model described in Chapter 2. We

perform speech transformation on a low-level spectral feature, i.e., LPS. In the following

experiments, 257-dimensional LPS features of noisy speech are encoded into latent codes

by encoders. The decoder output is also 257-dimensional LPS. We evaluate the quality of

the final output with the PESQ.

We sample three noise types from the Noisex92 database: white, pink, and babble noise.

White noise is wide-band, whereas pink noise is more band-limited. Babble noise is non-

stationary. For all three types of noise in the source domain, we choose volvo noise as the

target domain due to its characteristics , as discussed in Chapter 3.

In the rest of the section, we will evaluate and analyze factors that affect the proposed

unsupervised conversion technique’s performance, including neural network architecture,

SNR dependency, size of the data set, noise-aware training, domain adversarial training,

and vector quantized training.

Network architecture

In subsection 5.2.2, we have argued that deep auto-encoders can learn the underlying struc-

ture in noisy speech better than linear models due to their greater depth and width. To

investigate the effects of auto-encoders’ different depths, we gradually increase the number

of nonlinear layers. Table 5.2 presents the results for all three types of noisy speech at
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Direct depth=0 depth=1 depth=2 depth=3
white 1.48 1.83 1.94 1.95 1.91
babble 2.12 2.04 2.09 2.15 2.17
pink 1.70 1.92 2.03 2.05 2.03

average 1.77 1.93 2.02 2.05 2.04

Table 5.2: PESQ after enhancing using different depths of auto-encoders

0dB. The noise types, white and pink, are very difficult for the enhancement network, so

the PESQ score of direct enhancement is only 1.48 and 1.7, respectively. Enhancing the

converted features with a linear auto-encoder (d=0) improves the performance of these two

challenging noise types considerably (1.48 to 1.83 for white noise and 1.70 to 1.92 for pink

noise) but lowers the quality of speech in babble noise (2.12 to 2.04). As we include more

nonlinear layers in the AEs, the quality improves for all three noise types with one or two

nonlinear layers (d=1 and d=2). For instance, PESQ of noisy speech in white improves

from 1.48 to 1.95. It suggests that nonlinear networks can extract features better than linear

networks, as we expected. Adding more nonlinearity beyond two layers is not beneficial,

as the quality drops slightly at d=3 (from 1.95 to 1.91 for white noise). It could attribute to

the difficulty in training deeper models due to vanishing gradient and the vulnerability of

over-fitting of over-parameterized models.

Transitional AEs employ narrow bottleneck layers to compress features into more suc-

cinct representations in a latent space. However, our focus is on the speech and noise

component’s disentanglement in the latent space. Hence, a wider bottleneck layer, such

as an over-complete AE, could allow the encoders to find a better structure for speech and

noise separately. For an AE with only one nonlinear layer, we vary the nonlinear layer’s

width from 64 to 1024. When the width is larger than the feature dimension (257), the auto-

encoder is over-complete. The results are presented in Table 5.3. For each of the three noise

types, PESQ of enhanced speech improves as the bottleneck width grows up until 512. For

example, PESQ of speech in white noise improves from 1.48 up to 2.13. When the latent

layer is too narrow, compression in the latent space results in high reconstruction loss, thus
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Direct 64 128 256 512 1024
white 1.48 1.76 1.94 2.09 2.13 2.13
babble 2.12 1.95 2.09 2.12 2.16 2.13
pink 1.70 1.84 2.03 2.15 2.20 2.18

average 1.77 1.85 2.02 2.12 2.17 2.15

Table 5.3: PESQ after enhancing using different bottleneck width

Non-conversion Conversion
babble pink white average babble pink white average

-5 1.7 1.24 1.08 1.34 1.62 1.70 1.71 1.68
0 2.12 1.7 1.48 1.76 2.12 2.15 2.09 2.12
5 2.51 2.16 1.99 2.22 2.54 2.50 2.42 2.49

Table 5.4: PESQ of converted speech at various SNR levels

lowering the reconstruction quality. However, if the latent layer is too wide, such as 1024

nodes, there is a risk for an AE to memorize input features instead of extracting meaningful

representations. Hence, an intermediate width of 256 or 512 is more appropriate for our

application.

SNR dependency

The analysis in Chapter 3 and the results in Chapter 4 show that enhancement through

intermediate conversion is more beneficial at low SNR conditions. We are also interested

in learning its performance at various SNR levels for unsupervised speech conversion. For

the following experiments, a simple AE with one nonlinear layer is used for the three

noise environments mentioned before. The results are shown in Table 5.4. Comparing the

columns labeled as “average” between non-conversion and conversion, we could observe

the improvement of speech quality across all SNR levels. For example, PESQ improves

from 1.76 to 2.12 when speech is at 0dB. The trend is also in line with previous results in

Chapter 4 as the improvement is more noticeable for the most difficult noise type (white)

compared to the simpler noise type (babble). The gain is also more pronounced when

noise is at a lower SNR. For instance, PESQ improves from 1.34 to 1.68 at -5dB with an

improvement of 0.34. In contrast, the gain reduces to 0.25 for environments at 5dB, shown
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in the last row in Table 5.4.

Training data size

A primary reason for the degradation of DNN-based enhancement is domain mismatch in

an unseen deployment environment. The proposed method adopts unsupervised learning

to perform speech conversion, making it a reasonable candidate for system adaptation in

mismatched conditions. In the following experiments, the target domain AE in volvo noise

is trained with 10 minutes of speech by a speaker. The source domain AE, which depends

on the environment at the deployment stage, is trained with varying number of utterance

from 1 to 40. Each utterance is 10 seconds long on average. Figure 5.9 shows that very

Figure 5.9: Conversion quality with respect to data size in auto-encoders

few utterances are required to achieve conversion with decent improvement for challeng-

ing noise, such as white and pink. The improvement is quite noticeable with even just one

utterance for white noise. The performance steadily grows as more utterances are avail-

able. Figure 5.9 shows that a less challenging environment, such as babble noise, requires

many more utterances to be effective. It is better not to perform conversion if there are

insufficient utterances to train the AE as it will lead to performance degradation. When 40

utterances are used to train the source encoder, all three noise environments converge to

similar performances.
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Direct No noise information Noise aware
white 1.48 2.09 2.17
babble 2.12 2.12 2.12
pink 1.70 2.15 2.20

average 1.77 2.12 2.16

Table 5.5: Results of noise aware training

Constraints on the latent space

Previous experiments concluded the effectiveness of using deep AEs to perform speech

conversion in indirect speech enhancement, particularly in challenging noise and SNR con-

ditions. Next, we seek to analyze the addition of constraints on the latent space that helps

an encoder better separate speech and noise representation.

Noise aware training, as proposed in Figure 5.6, aims at providing explicit domain

information for the AE to better disentangle speech from noise in the latent space. An

encoder receives noise LPS features in addition to noisy speech features. It may help the

encoder identify the noise components in noisy speech. For fairness, we keep the latent

layer’s dimension fixed to compare results from the previous section. Because speech is

generally more non-stationary with greater spectral variation, more neurons are required

for its projections than background noise. In the following experiment, we use 246 neurons

for speech and 10 for noise.

Table 5.5 compares the conversion results with and without noise aware training. There

are incremental improvements for white (2.09 to 2.17) and pink noise (2.15 to 2.20), but

the improvement is less significant for babble noise. We think that white and pink noise

have stable long-term average spectra, whereas babble as a non-stationary noise possesses

a varying spectrum. Hence, it is harder for the encoder to capture its varying spectral

characteristics.

Domain adversarial auto-encoder (DAAE), as described in Figure 5.7, is investigated

next. By encouraging the latent representation to be indiscriminative of the source and

target domain, the latent space in both AEs becomes similar. It would allow the target
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Direct AE DAAE
white 1.48 2.09 2.17
babble 2.12 2.12 2.13
pink 1.70 2.15 2.17

average 1.77 2.12 2.14

Table 5.6: Results of domain adversarial auto-encoder

domain decoder to replace the source decoder without creating a mismatch between the

latent bases. Table 5.6 discusses the result of DAAE. Compared to simple AE, DAAE

achieves additional gain in enhancement quality (from 2.12 to 2.14), thanks to the more

shared latent space.

VQAE is similar to DAAE in using a common set of bases in the latent space. DAAE

promotes shared bases by penalizing latent features with domain-dependent information.

This specification is more explicit in VQAE, as the encoded representation is restricted to

be one of the entries in the codebook in the case of hard VQ or a linear combination of them

in soft VQ. Since we are converting noisy speech into speech in target noise domain by us-

ing a decoder trained in target domain, the decoder must be able to recognize the quantized

codes after encoding. Thus, we design a codebook by quantizing a basic AE’s latent codes.

K-means algorithm is a straightforward method to group the latent vectors into clusters. A

problem with K-means is that it requires a pre-defined number of clusters. Furthermore,

Euclidean metric used in K-means tends not to perform well in high dimensions [170, 171].

It is not easy to obtain good cluster centroids that can be used as codebook entries in high

dimensions. As discussed in the narrow bottlenecks experiments in Table 5.3, reconstruc-

tion is also not good if the dimension is too low. Thus, we vary the latent feature dimension

(8,32, and 128) and the number of codebook entries (10,50, and 500) for each noise type.

We present the results in Figure 5.10.

For each noise condition in Figure 5.10, the results are group by the size of codebooks

(10,50, and 500). Within each group, the blue, orange, and the gray bar correspond to latent

vectors of dimension 8, 32, and 128, respectively. We first note that the trend is uniform
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(a) White (b) Babble (c) Pink

Figure 5.10: Size of codebook and dimension of codebook features

across all three noise types. K-means works well on low-dimensional vectors, but the

reconstruction of 257-dimensional LPS from 8-dimensional latent code is difficult. Hence,

the blue bars corresponding to using only eight codebook entries show the worst conversion

in Figure 5.10. As the latent dimension grows to 32 or 128, the conversion quality improves,

indicated by the higher gray and orange bars over blue bars in Figure 5.10. Hence, the

benefit of better feature reconstruction outweighs the challenges of K-mean clustering for

VQAE in high dimensional space.

Another trade-off to consider is the size of the codebook. With a small codebook, an

encoder has an easier job fitting an acoustic feature to a code vector. However, the quan-

tization error could be too large, resulting in unsatisfactory reconstruction. The results in

Figure 5.10 suggests that a larger codebook size is more favorable than a smaller codebook.

A codebook size of 50 or 500 outperforms that of size 10. It corresponds to a wide output

layer of the encoder. A risk of using a wide softmax layer in the encoder is low activation

in all dimensions without significant peaks. It could be rectified by adding a multiplier β

larger than 1 to softmax. A sharper softmax of degree β is defined as

ξ(βv) =
exp(βv)∑
i exp(βv)

. (5.22)

The modification above allows us to use wide softmax layers, hence a large codebook for

more faithful reconstruction. In summary, the above experiments show that VQAE can

101



be an effective technique to perform unsupervised speech conversion for indirect speech

enhancement.

5.3 Dictionary-based indirect speech conversion and enhancement

In section 5.2, we encode noisy speech from the source domain into a latent representation,

implicitly decomposed into speech and noise components. The target noise component

replaces the source noise component to perform background noise replacement. By keep-

ing the speech component unchanged, the reconstructed speech is expected to maintain the

same speech content but in the target noise environment.

There are no constraints on the latent layer that enforce the disentanglement of speech

from noise in a vanilla AE. Three techniques, namely noise-aware training, domain adver-

sarial loss, and vector quantized auto-encoder, have been proposed in section 5.2 to impose

some constraints on the latent layer to promote separation. This section will further de-

velop a technique akin to VQAE by using an explicit codebook to represent speech and

noise activation in a latent space.

5.3.1 Problem formulation

The additive noise model of speech introduced in Chapter 2 assumes that speech mixture

is the sum of the speech subspace and the noise subspace. In the frequency domain, the

speech subspace can be written as XWX , where X is a codebook of speech bases, and WX

are the activation weights. Similarly, the noise subspace for noise type, A, is DAWDA . The

codebooks, X and DA, are collections of basis vectors that span speech and noise acoustic

spaces. The weights vectorsWX andWDA represent the activation in the latent space. Then

the mixed noisy speech,Y , is the sum of these two subspaces

Y =

[
X DA

]WX

WDA

 3 WX ,WDA ≥ 0. (5.23)
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By constraining the weights, WX and WDA , to be non-negative, we can use NMF to solve

for the activation weights since the magnitude spectra are always non-negative. Solving

Equation 5.23 for the weights, WX and WDA , can be interpreted as encoding the noisy

speech, Y , into latent activations. The codebooks are equivalent to encoder weights.

The converted speech, Ŷ , can be reconstructed as

Ŷ =

[
X DB

]WX

WDA

 . (5.24)

To replace background noise type while keeping speech contents intact, we must keep the

speech subspace unchanged. Hence in Equation 5.24, both X and WX stay the same.

We further assume that the noise activation is the same, so the same weights, WDA , is

used. Only the noise basis is replaced by the target noise space, DB, to convert the noise

subspace. It is analogous to employing a decoder from the target noise domain when using

AEs to perform noisy speech conversion.

As the codebook is usually over-complete to ensure as much acoustic variation could

be captured as possible, the activation weights are usually constrained to be sparse. Let P

be the combined codebook,
[
X DA

]
, and W be the combined weights. The activation

weights, W , are computed by minimizing the following loss, LNMF [19]

LNMF = KLD(Y, PW ) + λ||W ||1. (5.25)

L1 norm is used in place of L0 norm since it is computationally tractable and promotes

sparsity. It is shown in [172] that the weight vectors, WX and WDA , can be computed

iteratively as

W ← W ⊗
P T Y

PW

P T + λ
. (5.26)

where⊗ and− are element-wise product and division. At deployment, spectral features are

converted according to Equation 5.24. The spectral features are then taken with logarithm
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Figure 5.11: Dynamic range compression with exponentiation factor, ρ

to convert into LPS. It can then be normalized and enhanced by a downstream enhancer.

The raw magnitude features exhibit a large dynamic range between high-intensity and

low-intensity frames. LPS features use the logarithm to compress the dynamic range but

forgo non-negativeness. The large dynamic range may be problematic as exemplars of high

intensity could easily overshadow those with less energy. In this application, we introduce

a spectral exponentiation factor, ρ, to compress the range. The magnitude spectrum is

compressed as Y ρ. The effect of this exponentiation factor can be visualized in Figure 5.11.

By selecting a value of ρ less than 1, high energy and low energy regions will be more

comparable, hence have a more even contribution in reconstruction. To incorporate the

exponentiation factor, Equation 5.23 and Equation 5.24 can be updated as follows

Y ρ =

[
X DA

]ρ WX

WDA

 , (5.27)
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and

Ŷ =

([
X DB

]ρ WX

WDA

)1/ρ

. (5.28)

5.3.2 Experiments and discussions

codebook construction

Three codebooks need to be constructed: the speech exemplars, X , the noise exemplars

from the source domain, DA, and the noise exemplars from the target domain DB. The

speech codebook, X , is a collection of feature frames sampled from a specific speaker in a

clean environment. The target domain is an intermediate noise type selected according to

the criteria in Chapter 3. Its exemplars, DB, could be collected as a training step. The noise

exemplars from the source domain, DA, can be sampled from speech silence in a recording

using a voice activity detector. The number of noise exemplars from the source and target

domain must be the same. There are no other steps in the training phase of the converter.

Codebooks and hyper-parameters, such as ρ, have been pre-defined. During the testing

time, the activation weights are first randomly initialized. We perform iterative updates

to minimizing the loss in Equation 5.25, according to Equation 5.26. Lastly, we achieve

conversion to the target domain by multiplying the activation weights with the combined

codebook in the target noise domain, according to Equation 5.28. The converted speech is

used as an intermediate noisy speech to be further processed by a speech enhancer.

Spectral compression factor, ρ

Figure 5.11 shows that the exponentiation of the spectral magnitude by ρ < 1 can reduce the

dynamic range, hence allowing exemplars with low energy to be included. We examine how

compression affects the conversion quality. PESQ scores with respect to the compression

factor, ρ, in the range of 0.2 to 1.0, are tabulated in Table 5.7.

The default value of 1.0 means no spectral compression. It presents a significant im-
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Direct AE
NMF

ρ 1.0 0.8 0.6 0.4 0.2
white 1.48 2.09 2.23 2.28 2.34 2.30 1.00
babble 2.12 2.12 2.35 2.41 2.45 2.37 1.01
pink 1.70 2.15 2.27 2.17 2.27 2.29 0.97

average 1.77 2.12 2.28 2.29 2.35 2.32 0.98

Table 5.7: Effect of spectral compression in exemplar conversion

provement from direct enhancement. On average, PESQ improves from 1.70 to 2.27. It is

also better than unsupervised conversion with an AE (2.15). A major reason for the better

quality of NMF-based reconstruction over AE-based reconstruction is the use of speech

exemplars in the feature domain and large codebook size, which significantly improves the

quality of reconstructed speech. Evident from Figure 5.12, the source domain’s speech

(white noise) is shown on the top left. Speech in volvo noise is the intermediate target. The

oracle converted speech in volvo noise is shown on the top right for reference. The AE con-

verted speech on the bottom left still has significant noise residue from the source domain

because the encoder still encodes noise from the source domain. As a result, the converted

speech still contains white-like background noise. The exemplar-based approach, shown

on the bottom right, uses a completely different set of exemplars from the target domain

for reconstruction. Consequently, the reconstructed speech will only be spanned by feature

vectors in the domain of volvo noise. Its output will be much closer to the oracle output in

Figure 5.12b. Furthermore, we also observe that dynamic range compression helps achieve

better conversion. Table 5.7 shows that moderate compression at ρ = 0.6 achieves the over-

all best conversion quality. We compute the standard deviation of the activation weights

of W in Equation 5.26. When there is no spectral compression, i.e., ρ = 1.0, the standard

deviation of the activation is 0.0173, compared to 0.0132 for ρ = 0.6. It implies that the

activation is less uniform at large values of ρ. Only a few high energy exemplars are chosen

for reconstruction. A more uniform selection at low ρ allows more exemplars to be selected

and creates a smoother reconstruction.

106



(a) Speech in the source domain (b) Speech in the target domain

(c) AE-coverted speech (d) NMF-converted speech

Figure 5.12: Comparison between AE and NMF converted speech

Exemplar dimensions

Since there is no compression or quantization in exemplar-based conversion, the code-

book’s size must be much greater than the codebook used in AE-based conversion. In this

section, we examine the effect of the size of the codebook of exemplars.

In the first experiment, we focus on the first three columns listed under NMF in Ta-

ble 5.8. The combined codebook has a fixed size of 5000 entries, and we adjust the propor-

tion of speech and noise exemplars. Intuitively, speech exhibits greater variability, requiring

more dimensions in the latent space. Surprisingly, we find the opposite to be true. The first

three columns under NMF shows that as speech dimensions decrease and noise dimensions

increase, the conversion quality improves. We could understand this unexpected observa-

tion by comparing the converted speech using different compositions of speech and noise
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Direct
AE NMF

Speech
256

4000 2500 1000 500 1000 1000 1000
Noise 1000 2500 4000 2000 2000 4000 8000
white 1.48 2.09 2.17 2.34 2.55 2.38 2.42 2.55 2.17
babble 2.12 2.12 2.36 2.49 2.51 2.40 2.48 2.51 2.54
pink 1.70 2.15 1.98 2.27 2.48 2.34 2.31 2.48 2.56

average 1.77 2.12 2.17 2.37 2.51 2.37 2.40 2.51 2.42

Table 5.8: Effect of codebook size in NMF conversion

(a) Speech exemplar = 1k, noise exemplar = 4k (b) Speech exemplar = 4k, noise exemplar = 1k

Figure 5.13: Comparison between different codebook composition

exemplars. The converted speech using 4000 speech exemplars and 1000 noise exemplars

are shown in Figure 5.13a. Compared to the result obtained using 1000 speech exemplars

and 4000 noise exemplars in Figure 5.13b, the former spectrogram still contains much

residue noise. The residue noise exist as vertical stripes during speech silence. A relatively

large number of noise exemplars are required to decompose the background noise in the

source domain for challenging noise conditions. A large number of noise exemplars also

help the decoder render more natural background noise. On the other hand, speech compo-

nents are unchanged in the conversion process. Hence, less resolution may be needed. As a

result, the NMF-based speech transformation favors larger dimensions for noise exemplars.

In the second experiment, we attempt to investigate a reasonable range for the size of

both the speech and noise codebook for optimal conversion quality. By comparing the

fourth (500/2000) and the fifth (1000/2000) column under NMF in Table 5.8, we could tell
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Non-conversion Conversion
babble pink white average babble pink white average

-5 1.70 1.24 1.08 1.34 2.00 2.18 2.23 2.14
0 2.12 1.70 1.48 1.76 2.36 2.48 2.55 2.46
5 2.51 2.16 1.99 2.22 2.64 2.69 2.76 2.70

average 2.11 1.70 1.52 1.77 2.33 2.45 2.51 2.43

Table 5.9: NMF-based conversion on various SNR levels

that a reasonably large codebook size is required to represent speech well, as 500 speech

exemplars are not rich enough to decompose the speech subspace. The last three columns

in Table 5.8 show that an overly large codebook could also adversely affect the conversion

quality. As the codebook grows, many similar exemplars are included in the codebook.

These repeated or similar exemplars do not bring more improvement in conversion quality.

On the other hand, it slows down the iterative optimization significantly. In our experiment,

the configuration of 1000 speech exemplars and 4000 noise exemplars provides the best and

most efficient conversion and subsequent enhancement quality.

SNR dependency

Lastly, we demonstrate the NMF-based conversion is effective at many SNR levels. Ta-

ble 5.9 shows that the proposed conversion scheme achieved noticeable improvement at

many SNR levels for all three noise types. It is also important to note the improvement is

larger on pink and white noise than babble noise since the first two are more difficult with

lower PESQ scores.

5.4 Summary

This chapter focuses on indirect enhancement by converting noisy speech from a source

noise domain to a target noise domain without explicit mapping targets used in Chapter 4.

This situation will be handy when noisy-clean speech pair is not available. The princi-

ple behind unsupervised speech conversion is to decompose noisy speech into speech and
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noise subspaces, known as representational learning. We applied two classes of techniques

to solve this problem, auto-encoders, and matrix decomposition. With AEs, we find la-

tent representations of speech and noise in a bottleneck layer. With NMF, we construct

weight matrices representing the activity of speech or noise exemplars. In either case, the

speech and noise subspaces are assumed to be separable in the latent space. We could

then replace the noise subspace of the source noise with that of the target noise to accom-

plish speech conversion and indirect speech enhancement. Various techniques designed

to promote greater disentanglement of speech and noise subspace are discussed, including

noise-aware training, domain-adversarial training, and vector-quantized training. Conver-

sion based on these AE models has been shown to improve the overall enhancement qual-

ity for the noise types investigated. Several factors that affect the performance, including

width, depth, and SNR levels, are also discussed. The AE models cannot completely disen-

tangle the speech and noise subspace. They leaves considerable noise residue in converted

speech and degrades the enhancement quality. NMF addresses this concern by explicitly

using different noise bases for source and target domains. Consequently, it achieves con-

version with much less residue noise. A downside of NMF-based conversion is its long

latency due to its iterative optimization. It is less ideal for applications such as online adap-

tation. A possible solution could incorporate exemplars in VQAE to achieve both good

conversions with high-resolution exemplars and fast inference in neural networks.
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CHAPTER 6

CONCLUSIONS

6.1 Summary of research

This thesis proposes an indirect approach to speech enhancement by leveraging upon the

framework of curriculum learning [89] described in Chapter 2. Conventional DNN-based

enhancement systems [9] trained using data-driven techniques generally do not distinguish

different noise environments. As a result, the performance is unsatisfactory in adverse

acoustic conditions with mismatched noise at low SNR. We recognize the difficulty in

enhancing such noisy speech directly and propose to divide the process into simpler sub-

tasks. In the indirect set-up, we first transform noisy speech features into speech in another

background noise that is easier to be processed. This step does not require all background

noise to be removed at once. The residue noise will be eliminated in subsequent refine-

ment stages. Since each stage is only responsible for partially enhancing the speech, the

sub-tasks can be designed with greater flexibility to address the issues at every step. We

empirically demonstrate that the indirect method yields substantial performance gains over

direct methods in traditionally adverse acoustic environments for each of the proposed

methods.

6.2 Contributions

6.2.1 Noise characterization

We introduce the indirect approach to speech enhancement in section 2.3. Compared to di-

rect approaches, our indirect approach offers more benefits in challenging noise conditions

due to simpler sub-tasks. It requires us to first identify applicable scenarios with adverse

noise conditions. Next, we could select an intermediate speech target after calibrating the
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difficulty levels of noise types. Our first contribution is the clustering and classification

of additive noise into simple or difficult noise types in the context of enhancement with

empirical validation. Consistent with previous studies, we confirm that wideband noise

is more difficult to enhance than narrowband noise. However, we also discover that non-

stationarity does not pose a significant challenge since dynamic noise can be approximated

with pseudo-stationary noise at a frame level, given the frame rate is relatively high. This

observation also corroborates the advantage of DNN-based speech enhancement over tra-

ditional statistical methods in handling non-stationary noise. We identify that the long term

average PSD of noise to be a reasonable indicator of the difficulty of additive noise. In

general, simple noise can be masked by the average speech spectrum. On the other hand,

difficult noise has high energy at spectral valleys. We also show that difficult noise ad-

versely affects speech enhancement is improper normalization because of its mismatched

feature statistics. Enhancement experiments are conducted on simulated noisy speech in

various noise conditions to evaluate how the aforementioned factors affect enhancement

quality.

6.2.2 Indirect enhancement via supervised learning

After identifying the intermediate stages, we proposed several techniques of speech trans-

formation. The first proposed technique transforms difficult noisy speech by normalizing

its feature statistics to an easier noise type. It is motivated by the observation that speech

features in more challenging noise conditions follow a different distribution from clean

speech. This difference also translates to different activations in hidden and output layers

of a DNN. Feature normalization and histogram matching could reduce such mismatches.

We conducted experiments to show that it is an effective technique to handle very difficult

noise. For moderately challenging noise, the improvement is not as noticeable.

When parallel training pairs can be synthesized or recorded, we may perform mapping

on a frame-level to achieve speech transformation with greater effectiveness. We use DNNs
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to map speech features to a target domain frame by frame while minimizing the MSE loss.

This supervised learning approach can mostly alleviate the problem of domain mismatch.

Experimental findings confirm that it is also effective for moderately challenging noisy

conditions, as it reduces speech distortion in the conversion process. We further extend this

technique to handle interferences from several sources. When multiple noise sources are

present, the indirect approach can be leveraged to remove the disturbance progressively.

In this multi-stage set-up, the noise mixture is considered a difficult noise condition, as it

possesses complex temporal and frequency structures. After each stage, one noise type is

removed from the noisy speech. We remove the noise sources progressively, until the clean

speech is recovered. By comparing and evaluating the operating order, we determine that

it is generally better to remove the more challenging noise upfront. Such knowledge would

help speech engineers develop the speech enhancement pipeline in practical situations.

6.2.3 Indirect enhancement via representational learning

This thesis’s third contribution includes various speech transformation techniques without

requiring parallel data to train speech converters. It is achieved by discovering underly-

ing structures in noisy speech features in a latent space. Even though speech and noise

acoustic features are not linearly separable, we take advantage of auto-encoders and dictio-

nary learning to transform speech features into a latent space where they become separable.

We could then replace the noise sub-space from the original domain with that from a tar-

get domain while keeping the speech sub-space unchanged. Subsequently we synthesize

converted speech by combining the speech sub-space and the target noise sub-space. We

explore latent structures using auto-encoders and dictionary-based learning. With auto-

encoders, source encoders transform input speech features into latent vectors. We impose

constraints on the latent space to promote greater separability of the speech and noise. With

the dictionary-based method, we utilize NMF to determine the activation weights of a set

of over-complete speech and noise exemplars. Speech conversion could then be conducted
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by changing the set of noise bases. We evaluate the validity of the proposed techniques

with a series of experiments on simulated data. We observe that the dictionary-based meth-

ods can convert noisy speech with greater fidelity because of the use of over-complete

exemplars. However, its iterative procedure may make it unsuitable for some online or

resource-constraint applications.

6.3 Future work

This thesis attempts to develop a noise-aware strategy in deep learning-based speech en-

hancement models. By recognizing that the acoustic environment is challenging, we re-

sort to the proposed indirect approaches to decompose speech enhancement into multiple

stages. Unlike SNR, which has a clear relationship with the enhancement difficulty, noise

types do not possess such natural interpretation and have not received widespread study.

As an initial step, much analysis and validation are performed empirically. To this end,

some potential directions for future investigation can be suggested.

6.3.1 Theoretical characterization of noise types

We identified several factors that make some noise environments more difficult to enhance

than the rest in Chapter 3 using an experimental approach. However, the acoustic conditions

can be very diverse, and it is impractical to enumerate and archive all of them. Hence, it is

desirable to develop a more theoretical understanding of the interaction of noise and speech

in the context of speech enhancement. Our attempts in subsection 4.2.1 is a starting point

to explain how difficult noise affect feature normalization, but we expect the interaction

between noise and speech goes beyond the input space. As the community gradually gains

more insights into the inner workings of deep models, it is reasonable to study how deep

models treat the noise types differently in the context of speech enhancement.
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6.3.2 Noisy speech with multiple sources

This thesis only addresses the interference of additive noise in a single channel. In reality,

disturbance in speech could occur due to echo, reverberation, competing speakers on top

of additive noise. In some commercial smart speakers, the audio is generally processed in

multiple stages [173], where each stage only handles one aspect of the interferences. How-

ever, there is still room to explore which interference should be processed first. It would be

useful for future researchers to relate the degree of degradation of each interference to the

order of its removal in the enhancement process.

6.3.3 Disentanglement of latent feature

Disentanglement of the latent features helps us achieve unsupervised speech transformation

in this application, and helps speech researchers understand structures of speech in deep

learning in general. By developing methods to separate speech features by some desirable

traits, such as phonemes, gender, speaker, tone, and emotion, we can apply this technique

to many other speech-related tasks, including speech recognition, speaker identification,

and emotion classification.

6.3.4 Explorations of different deep architectures for speech transformation

Deep model-based speech enhancement has received much attention in the speech com-

munity in the last decade. More advanced models and features have been proposed in

the literature, such as the use of complex ratio mask to include phase prediction [174],

raw waveform enhancement [175], and models combining beamforming techniques [176].

Since few of these models focus on noise-aware training, we expect the proposed indi-

rect approach to benefit these advanced models. It is nevertheless non-trivial to scale the

proposed work to multi-channel or complex models. It warrants further investigations to

extend our proposed framework to these recent developments.
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APPENDIX A

DERIVATION OF MEAN DEVIATION IN THE NORMALIZATION OF LPS

FEATURE

The mean deviation, ∆µ, is defined in Equation 4.13. Substitute the definition of µLPS in

Equation 4.11 into Equation 4.13

∆µ = E
[

log Y 2
m

]
− E

[
logX2

m

]
= E[W (ξm, φXD)].

(A.1)

When SNR is high, i.e., ξm →∞, we can further show that the first order Taylor series

expansion of W (ξm, φXD) is

W (ξm, φXD) ≈ 2 cosφXD
ξm

. (A.2)

Hence,

E[W (ξm, φXD)] = E[
2 cosφXD

ξm
] ≈ 0. (A.3)

When SNR is low, i.e., ξm → 0,

W (ξm, φXD) ≈ −2 log(ξm) + 2ξm cosφXD. (A.4)

Furthermore, we assume the phase difference follows a uniform distribution, i.e., φXD ∼

U(−π, π]. Hence for low SNR,

E[W (ξm, φXD)] = E[−2 log(ξm) + 2ξm cosφXD] ≈ −2E[log(ξm)]. (A.5)
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APPENDIX B

DERIVATION OF THE VARIANCE DEVIATION IN THE NORMALIZATION OF

LPS FEATURE

The variance deviation, φσ2 , is defined in Equation 4.15. We attempt to simplify it as

φσ2 = Var(log Y 2
m)− Var(logX2

m)

= Cov
(

log Y 2
m − logX2

m, log Y 2
m + logX2

m

)
= Cov

(
W (ξm, φ),W (ξm, φ) + 2 logX2

m

)
= 2Cov

(
logX2

m,W (ξm, φ)
)

+ Var(W (ξm, φ))

= 2E
[

logX2
mW (ξm, φ)

]
− 2E

[
logX2

m

]
E
[
W (ξm, φ)

]
...+ E[W (ξm, φ)2]−

(
E[W (ξm, φ)]

)2
,

(B.1)

where φ = ∠X(m, k) − ∠D(m, k) represents the phase difference. The results in Equa-

tion B.1 can be simplified depending on if ξm is high or low.

High SNR (ξm →∞)

When the SNR is high, we know that E[W (ξm, φ)] ≈ E[2 cosφξm
]
≈ 0 from Equation A.3.

We assume that logX2
m and φ are independent. This allows us to simplify the first term

in Equation B.1:

2E
[

logX2
mW (ξm, φ)

]
≈ 2E

[
logX2

m

2 cosφ

ξm

]
(B.2)

= 4E
[

cosφ
]
E
[ logX2

m

ξm

]
(B.3)

= 0 (B.4)
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The second term, −2E
[

logX2
m

]
E
[
W (ξm, φ)

]
, and the last term,

(
E[W (ξm, φ)]

)2 are 0

too, because we can make the substitution in Equation A.3.

For the third term,

E[W (ξm, φ)2] =

∫ ∞
0

∫ π

−π
f(ξm, φ)W (ξm, φ)2dφdξ

≈
∫ ∞
0

∫ π

−π
f(ξm, φ)

(
2 cosφ

ξ

)2

dφdξ

=

∫ ∞
0

f(ξ)

(
1

2π

∫ π

−π

4 cos2 φ

ξ2
dφ

)
dξ

= E
[ 2

ξ2

]
. (B.5)

Substituting these results back to Equation B.1, we can find that

∆σ2 ≈ 0 (B.6)

when most ξm are high SNRs.

Low SNR (ξm → 0)

When most ξm are in low SNR, W (ξm, φ)] ≈ −2 log ξm = logD2
m − logX2

m by Equa-

tion A.5. We can simplify E[W (ξm, φ)2] by making the substitution above,

E[W (ξm, φ)2] =

∫ ∞
0

∫ π

−π
f(ξm, φ)W (ξm, φ)2dφdξm

≈
∫ ∞
0

∫ π

−π
f(ξm, φ)

(
− 2 log ξm + 2ξm cosφ)2dφdξ

=

∫ ∞
0

f(ξ)

(
1

2π

∫ π

−π
4 log2 ξm − 8ξm log ξm cosφ+ 4ξ2m cos2 φdφ

)
dξm

= E
[
− 4 log2 ξm + 2ξ2

]
(B.7)
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We can then simplify Equation B.1 when SNR is low

∆σ2 = 2E
[

logX2
mW (ξm, φ)

]
− 2E

[
logX2

m

]
E
[
W (ξm, φ)

]
...+ E[W (ξm, φ)2]−

(
E[W (ξm, φ)]

)2
≈ 2E

[
logX2

m(logD2
m − logX2

m)
]
− 2E

[
logX2

m

]
E
[

logD2
m − logX2

m

]
− 4E

[
log2(Xm/Dm)

]
+ 2E

[X2
m

D2
m

]
− E2

[
logD2

m − logX2
m

]
= E[log2D2

m]− E2[logD2
m]−

(
E[log2X2

m]− E2[logX2
m]

)
+ 2E[ξ2]

= Var(logD2
m)− Var(logX2

m) + 2E[ξ2]

≈ Var(logD2
m)− Var(logX2

m).

(B.8)

If many TF bins have low SNR, 2E[ξ2] ≈ 0. The deviation in variance is approximated as

the difference in the variance of the noise spectrum and that of the speech spectrum.
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APPENDIX C

DEFINITION OF COLORED NOISE

The naming convention of noise originated from white noise, which has a flat power spec-

trum in linear frequency axis. It is called white as an analogy to the white light which is

assumed to have a flat power spectrum of the electromagnetic waves in the visible light

range. The other colors are named to loosely reflect a similarity with the visible light

spectrum of the corresponding color. In other words, the spectrum of a pink noise would

translate into pink light if the audio frequency axis were to change into electromagnetic

frequency axis of appropriate frequency ranges. Their spectrogram and PSDs are included

at the end of this appendix.

C.1 White noise

White noise has a flat spectrum over linear frequency in Hz. Consequently, the signal

has uniform PSD in the linear frequency axis. Digital white noise can be generated by

randomly and independently selecting samples.

C.2 Gray noise

Gray noise is a perceptually weighted white noise as human’s hearing is not linear due to

biases in equal loudness contour. Hence, the spectrum in each frequency range is modified

to give the listener the perception of equal loudness across all frequencies.

C.3 Pink noise

Pink noise has a PSD inversely proportional to frequency. Its power density falls off at

10dB per decade or 3dB per octave [177]. It is also known as 1/f noise as its PSD, S(f),

121



follows

S(f) ∝ 1

f
. (C.1)

It is commonly detected in flicker noise in electronics, astronomical physics and neurobi-

oligy [178].

C.4 Red noise

Red noise has a PSD inversely proportional to the square of frequency. Its power density

falls off faster than that of pink noise at 6dB per octave

S(f) ∝ 1

f 2
. (C.2)

Red noise can be generated with temporal integration of white noise. It is also known as

Brownian noise, as it is the type of noise generated in a Brownian motion or random walk.

C.5 Blue noise

Blue noise, a.k.a. azure noise, can be considered as the complement of pink noise. Its PSD

rolls up 3dB per octave as its PSD is proportional to frequency, provided the frequency

range is finite

S(f) ∝ f. (C.3)

It has been observed in Cherenkov radiation and used in dithering.

C.6 Purple noise

Purple noise, a.k.a. violet noise, is the counterpart of red noise. Its PSD rolls up 6dB per

octave since its PSD is proportional to f 2

S(f) ∝ f 2. (C.4)
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Just as red noise can be generated from integration of white noise, purple noise can be

obtained by differentiating the white noise. It has been observed in acoustic thermal noise

of ocean water [179] and applied to dithering in digital audio.

C.7 Black noise

Sometimes it is used to denote the absence of any frequency, hence black.
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Figure C.1: Spectrograms and PSDs of some colored noise

(a) White (b) Gray

(c) Pink (d) Red

(e) Blue (f) Purple
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APPENDIX D

DESCRIPTION OF NONSPEECH NOISE

The noise types in the Nonspeech were collected by Hu and Wang in [154]. It includes 100

types of commonly seen noise. They are classified into the following categories by their

noise name from n001 to n100.

• n001-n017: Crowd noise

• n018-n029: Machine noise

• n030-n043: Alarm and siren

• n044-n046: Traffic and car noise

• n047-n055: Animal sound

• n056-n069: Water sound

• n070-n078: Wind

• n079-n082: Bell

• n083-n085: Cough

• n086: Clap

• n087: Snore

• n088: Click

• n088-n090: Laugh

• n091-n092: Yawn

• n093: Cry

• n094: Shower

• n095: Tooth brushing

• n096-n097: Footsteps

• n098: Door moving

• n099-n100: Phone dialing
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APPENDIX E

DESCRIPTION OF NOISEX92 NOISE

This page catalogues the Noisex92 noise used in the study. They were typically noise

measured in field by the speech research unit at Institute for Perception-TNO, Netherlands,

United Kindom in Feb., 1990. Except high frequency channel, white, and pink, other audio

was recorded by 1/2” B&K condensor microphone on digital audio tapes with anti-aliasing

filter but no pre-emphasis at a sampling rate of 19.98 kHz with a bit depth of 16 bits [180].

The spectrograms and PSD of each noise type can be viewed at the end.

E.1 Babble

The source of this babble was 100 people talking in a canteen environment. The room is

over 2m wide. Individual voices is barely intelligible. The sound level was 88 dBA.

E.2 Buccaneer1,Buccaneer2

They are also referred to as cockpit noise in some other literature. Buccaneer1 was recorded

when a Buccaneer jet was traveling at 190 knots at an altitude of 1000 ft without airbrakes.

The sound level was 109 dBA. Buccaneer2 was recorded when the jet was traveling at 450

knots at 300 ft. The sound level was 116 dBA.

E.3 Destroyer Engine Room, Destroyer Operation Room

They were recorded on a destroyer. The sound level was 101 dBA and 70 dBA respectively.
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E.4 F16

It is another noise recorded in the cockpit of a fighter jet. The microphone was placed at the

co-pilot’s seat in a two-seat F-16 traveling at a speed of 500 knots at an altitude between

300 and 600 ft. The sound level was 103 dBA.

E.5 Factory1, Factory2

Factory1 was recorded near plate-cutting and electrical welding equipment and Factory2

was recorded in a car production hall. Factory2 has a narrow energy band.

E.6 Hfchan

The noise is extracted from a high frequency radio channel after demodulation.

E.7 Leopard, M109

The Leopard noise was created by a Canadian Leopard 1 tank moving at 70 mph. The

sound level was 114dBA at recording. M109 was another tank noise. An M109 self-

propelled howitzer traveling at 19 mph was recorded. The sound level was 100dBA.

E.8 Machinegun

It was a non-stationary burst noise from firing repeatedly from a 0.5 calibre machine gun.

E.9 Pink

The definition follows the same in Appendix A. The recording was acquired by sampling a

high-quality analog noise generator.
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E.10 Volvo

It was narrowband signal. The sound of a Volvo 340 automobile traveling at 70 mph in the

fourth gear on a tarmacked road in rainy weather was recorded.

E.11 White

The definition follows the same in Appendix A. The recording was acquired by sampling a

high-quality analog noise generator.
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Figure E.1: Spectrograms and PSDs of Noisex92 noise

(a) Babble (b) Buccaneer1

(c) Buccanner2 (d) Destroyer engine

(e) Destroyer room (f) F16

(g) Factory1 (h) Factory2
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Figure E.1: Spectrograms and PSDs of Noisex92 noise (cont.)

(i) High frequency channel (j) Leopard tank

(k) M109 tank (l) Machinegun

(m) Pink (n) Volvo

(o) White
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