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SUMMARY

The objective of my research is to propose and demonstrate Machine Learning (ML)

applications of wireless power transfer and identification technology. Several works de-

scribe the implementation of a ML strategy based on 1) the use of Neural Networks (NN)

for real-time range-adaptive automatic impedance matching of Wireless Power Transfer

(WPT) applications, 2) the Naive Bayes algorithm for the prediction of the drone’s po-

sition, thus enhancing the WPT efficiency, and 3) the Support Vector Machine (SVM)

classification strategy for read/interrogation enhancement in chipless RFID applications.

The ML approach for the effective prediction of the optimal parameters of the tunable

matching network, and classification range-adaptive transmitter coils (Tx) is introduced,

aiming to achieve an effective automatic impedance matching over a wide range of relative

distances. A novel WPT system consisting of a tunable matching circuit and 3 Tx coils

which have different radius controlled by trained NN models is characterized. A proof-of-

concept WPT platform which allows the accurate prediction of the drone’s position based

on the flight data utilizing ML classification using the Naive Bayes algorithm is also given.

A ML-based approach for classification and of detection tag IDs has been presented, which

can perform effective transponder readings for a wide variety of ranges and contexts, while

providing high tag-ID detection accuracy. A SVM algorithm was trained using measure-

ment data, and its accuracy was tested and characterized as a function of the included

training data. In summary, this research sets a precedent, opening the door to a rich and

wide area of research for the implementation of ML methods for the enhancement of WPT

and chipless RFID applications.

xvii



CHAPTER 1

INTRODUCTION AND BACKGROUND

In early 1889, Nikola Tesla invented the Tesla coils [1], which can transfer power wire-

lessly based on the magnetic resonance and near-field coupling of resonators, as shown in

Figure 1.1. Compared to the traditional method of wire-powered, wireless power transmis-

sion introduces many benefits as follows: 1) Hassle from the connecting cable is removed,

which can be user-friendly. 2) Smaller devices without the attachment of batteries can be

designed and fabricated. 3) Without having regularly plug or unplug, it provides better

product durability for contact-free devices. 4) It may not be cost-effective to replace the

batteries or connect the cables when it is costly, hazardous, or infeasible. Starting from

this, numerous research on wireless power transfer (WPT) began. WPT can be radiative or

non-radiative, depending on the energy transfer mechanisms. Radiative WPT, based on the

electromagnetic waves, adopts RF/microwave typically radiation as a medium to deliver

energy in the long-range with low power region. Non-radiative WPT is based on the cou-

pling of the magnetic field between two coils within the distance of the coils’ dimension

for power transmission and characterized by near-field range.

1.1 Non-radiative Wireless Power Technology

1.1.1 MRC System Architectures

Before the evolution of resonant coupling, inductive coupling technique for wireless

charging was the most common and popular technology [2]. This technique can be very

efficient when the primary and secondary coils are placed closely to each other (transmis-

1



(a)

Figure 1.1: University of Illinois student Steve Ward and Fermilab senior technician Jeff
Larson developed twin Tesla coils capable of emitting 12 feet (4 meters) of sparks. (Image:
c© Fermilab)

sion distance limited to few centimeters) and carefully aligned, which means the magnetic

coupling between two coils must be large enough to operate properly. However, inductive

coupling techniques are only suitable for high power transmission within a very short range

since the transmission efficiency between two coils is easily affected by the variations of

angular, axial, and lateral misalignment in the inductive coupled system.

The potential breakthrough in WPT is the development of the highly resonant tech-

niques using a magnetic field to transfer energy over a mid-range distance of 2 meters by

the MIT team [3]. This technology is referred to as “magnetic resonance”, and it is often

contrasted to “inductive” for its ability to efficiently transfer power over a range of distances

and with misalignment. The theory of resonant coupled WPT is based on the principle that

two resonators tuned at the same resonant frequency can effectively transfer energy with

greater efficiency at a longer power transmission distance compared to inductive coupling

techniques. The power transmission in resonant coupled WPT system can be done either

by using loosely coupled or strongly coupled coils. Actually, the high quality (Q) factor

2



of coils makes the energy coupling strong which can successfully compensate for the effi-

ciency degradation caused by the low couplings. The Q factor of the antenna is described

by equation (1.1)

Q = L/r (1.1)

when L is the inductance of coil antenna and r is the resistance of coil.

Diverse Magnetic Resonance Coupling (MRC) system architectures are utilized in the

near-field WPT, which can facilitate the impedance matching to optimize the system trans-

fer characteristics. The WPT system with two-coil resonators has been established with the

analysis of mutual coupling between two resonant circuits [4] and [5]. The WPT system

architectures with three and four coils also have been proposed, which can optimize the

transfer characteristics with additional adjustment freedom degrees. A three-coil architec-

ture was introduced in [7] based on Coupled Mode Theory (CMT), using the fundamental

principle underlying their physical mechanism, which is similar to the known Electromag-

netically Induced Transparency (EIT) process. This system architecture can improve the

transfer power with an assumption had been made that the mutual inductance M23 and M34

could be adjusted simultaneously in Figure 1.2-(b). The four-coil architecture reported in

[3], which involves a power driving coil, a sending resonator, a receiving resonator, and

a load coil, provides three mutual coupling coefficients M12, M23 and M34 as shown in

Figure 1.2-(c). These mutual coupling coefficients can be utilized to maximize the power

transfer when it can meet the condition: (M12 ·M34)/M23 = 1. Several works [8], [9], have

transformed the analysis using electric circuit theory while the CMT is used in [3].

Moreover, the WPT system architecture with multi-relay coils [10]-[11] can not only

extend the transfer distance without change of efficiency but improve system energy effi-

3



(a)

(b)

(c)

Figure 1.2: (a) Equivalent circuit model of the two-coil WPT system. (b) Equivalent circuit
model of the three-coil WPT system. (c) Equivalent circuit model of the four-coil WPT
system [6].

ciency. One of the systems with multi-relay coils has been studied in [10], considering the

analysis of the transfer characteristics of the system based on CMT, and it is shown that ef-

ficiency is improved in the cases of not only a coaxially but also a perpendicularly arranged

intermediate system [11]. Recently, wireless domino-resonator systems have been inves-

tigated [12]-[13], which are flexible systems that allow the coil-resonators to be placed in

various domino forms arranged coaxially, non-coaxially, and circularly as shown in Fig-

ure 1.3. By using meta-material, an artificial arrangement of identical unit cells, for WPT

4



system architecture [14], they are able to improve the mutual coupling strength and, there-

fore, power efficiency. Besides, a WPT system with multi-transmitter and multi-receiver

coils [15] has been proposed that can improve the overall efficiency of power transfer by

increasing the number of receiver coils.

(a) (b)

(c) (d)

Figure 1.3: (a) Coaxially and perpendicularly arranged intermediate-resonator system [11].
(b) Circular domino-resonator system [16]. (c) Straightly domino-resonator system [13].
(d) The use of metamaterials and array of coupled resonators [14].
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1.1.2 Impedance Matching

The impedance matching of a WPT system using MRC has become a critical challenge

in order to maintain a reasonable PTE for time-varying configurations. Various MRC sys-

tem architectures are utilized in the near-field WPT, which can facilitate impedance match-

ing to optimize the system transfer characteristics. At this point, the frequency splitting

phenomenon is a key issue that happens in the over coupled area with multi-coil systems,

such as multi-relay coils, multi-transmitter coils, and multi-receiver coils, related to the

power transfer efficiency and capability of the WPT system. In other words, there will be

an impedance mismatch between the resonator impedance and load impedance by chang-

ing the distance, orientation, or misalignment. To overcome this issue, the adaptive fre-

quency tracking procedures [17], [18] have been used which can achieve maximum power

delivery, but only operating in a wide bandwidth which is typically outside of the narrow

industrial, scientific, and medical frequency bands. As the importance of robustness against

distance variation in the WPT system becomes greater, the authors [19], [20] proposed an

impedance matching technique based on the characteristic of changing the distance be-

tween the coils physically. By adjusting the relative distances or angles between adjacent

coils based on the optimal coupling factor between the source and the internal resonator

[19], a high-efficiency WPT system is achieved without any lossy matching network. The

adaptive system [20] with the reconfigurable resonant coil system, which consists of a se-

ries of subcoils that use switches to control the number of turned-on subcoils, increased

the efficient transfer range. Similarly, an analytic design method for impedance-matched

WPT systems using an arbitrary number of coils by applying flexible coil positioning has

been proposed in [21]. Moreover, [22] recently proposed the digital programmable trans-

mitter coils to maximize system efficiency in WPT systems when a receiver coil is given.
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In [23] and [24], a tunable matching circuit was designed for a range-adaptive WPT system

with switching capacitors to obtain wide tunability from the impedance matching circuit.

When the input impedance of a WPT system changed with the distance, a tunable match-

ing circuit can be used to match the variable impedance with the distance. The L-type or

inverted L-type matching network placed in the transmitter side is used in [23], and the

π-type network placed in both the transmitter and receiver sides is used in [24] with the

number of relays, inductors, and capacitors for switching. Besides, a range-adaptive WPT

system utilizing multi-loop topology uses a tunable matching network composed of var-

actors in [25]. In previously reported work [26], we utilized the Genetic Algorithm (GA)

to optimize the matching circuit design over a wide range of impedances, and therefore,

WPT efficiency is potentially high. Recently, an automatic impedance matching technique

based on the feedforward-backpropagation (BP) neural network has been proposed [27] to

maintain a PTE at a reasonable level. However, these are limited in the effective ranges as

a consequence of their unexpected variation of the transfer distance or load impedance.

For the application, WPT systems can be used not only over a short-range in offices

and homes to charge different electric devices such as smartphones, PCs, tablets, and audio

players [28] but over a mid-range to charge electric trams and vehicles [29]. Additionally,

the importance of WPT systems for moving objects such as a human body for biomedical

applications and the Unmanned Aerial Vehicle (UAV) is increasing. In biomedical appli-

cations, the capsule type of power supply for diagnosis gastroenterologists [30] and other

implantable devices under the human skin [31] has been studied. Also, the WPT systems

for UAV applications can improve the battery lifetime to extend the working range without

changing the battery, which is used in monitoring crops [32], for example.

7



1.2 Radiative Wireless Technology

RFID technology is a rapidly growing wireless technology used to track and identify

objects using HF, UHF, and RF waves automatically [33]. HF RFID systems are short-

range systems based on inductive coupling between the reader and tag antenna through a

magnetic field. UHF and microwave RFID systems are long-range systems that use electro-

magnetic waves propagating between the reader and tag antennas. With the RFID reader,

which is known as an interrogator, the RFID transponder, the data encoded and transmitted

by RFID tag [34]. However, the cost of traditional tags with a silicon integrated circuit

or chip is typically high for many applications involving low-cost items despite featuring

significant advantages such as longer reading distances, high capacity of data storage, and

the ability to read multiple tags simultaneously. The design and fabrication of applica-

tion specific integrated circuits (ASICs) needed for RFID are the major component of their

cost, which is the main challenge to their adoption. To address this challenge, a printable

chipless RFID tag [35], which uses materials that reflect a portion of the reader’s signal

back, with a unique return signal that can be used as an identifier, was developed by using

low-cost conductive inks. Mainly, printable chipless RFIDs are a particularly appealing

solution in contexts where cost is one of the most relevant constraints, as reported in [35].

1.2.1 Chipless RFID

Different technologies for data encoding in chipless RFID tags can be classified based

on the information encoding techniques: time domain reflectometry (TDR)-based tags and

spectral signature-based (frequency-based) tags. In the time domain techniques, different

types of methods are used; Surface Acoustic Wave (SAW), On-Off Keying (OOK) mod-

ulation, and Pulse Position Modulation (PPM). Printable TDR-based chipless tags encode

8



Figure 1.4: Chipless RFID tag including the receiving and transmitting UWB antennas,
reprint from [38].

information by following the backward echoes of the pulse sent from the reader [36]. After

that, the tag sends echo pulses to the reader after a short time and with some time delays,

which is called the backscattered signal. Some advantages include; long reading range

[37], orientation-independent to the reader, and robustness to environmental clutter.

Typically, chipless-RFID tags are based in the frequency domain, implemented with

multi resonant elements tuned at different, and predefined, frequencies, and are equipped

with a transmitting and receiving antenna cross-polarized to communicate wirelessly with

the reader, as shown in Figure 1.4. As depicted in Figure 1.5, such antennas are used

for the reception of the interrogation signal and the transmission of the spectral signature

of the tag. The frequency signature-based tag, which is one of the methods used for

communicating the stored tag-ID data, encodes the resonances in the frequency domain

and then transforms the frequency spectrum of an interrogation signal transmitted by an

RFID reader to communicate the data bits contained in the tag. Since the tag-ID detection

process is challenging with the characteristics of the data for decoding the tag-ID data, the

importance of several detection techniques for the accurate and robust extraction of data

bits has been increased.
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Figure 1.5: Complete block diagram of the chipless RFID tag operation principle, reprint
from [39].

In [40]-[41], to improve upon the fixed threshold levels derived from the calibration

tag applied to identify and detect the tag-ID, the moving average technique is added in ad-

vance. The concept of signal space representation for the detection of tag-ID is introduced

and developed in [42]. This approach is capable of estimating the resonant properties of a

chipless tag without using calibration tags and without additional signal processing up to

a distance of 30 cm. Phase response information of a chipless RFID tag is used for detec-

tion of the tag-ID in [43] by representing in a set of prolate spheroidal wave functions. A

hybrid coding technique by combining phase deviation and frequency position encoding is

proposed in [44] with the metallic strip resonators. This work demonstrated the possibility

of using more than one physical dimension to control two coding parameters. Recently,

the chipless RFID tag detection technique utilizing a pattern recognition approach to verify

document originality was proposed [45]. In their system, there is no need to use particular

tags and substrates if the backscatter signal is strong enough under the test. To better un-

derstand, a comparison of the chipless RFID tag-ID detection techniques in the frequency

domain is shown in Table 1.1.
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Table 1.1: CHIPLESS RFID TAG-ID DETECTION TECHNIQUES IN FREQUENCY DOMAIN

I

Reference Tag type Detection Technique
Frequency Distance

(GHz) (cm)

[40] Spiral resonator Threshold detection 1.9-2.5 10

[46] Multi-spiral resonator
Threshold detection

2-10 5-40
with moving average

[47] Multi-patch resonator
Signal space

0-8 up to 30
representation (SSR)

[43] Spiral resonator
Second derivative

3.9-4.5 10
of the phase response

[44] Metallic strip resonator
Phase deviation and

2.5-7.5 up to 50
frequency positioning encoding

[45] Alphabetic
Frequency scanning

57-64 10-16
pattern recognition

1.3 Machine Learning Strategy

Over the past decade, ML algorithms have been deployed in many applications such

as prediction, forecasting, diagnostics, etc. New problems to utilize ML are allowed by

rapidly increasing processor speed and access to huge-scale data sets. As this rise of ML

applications continues, it is useful for large and wide datasets with similar or closely re-

lated. Also, ML algorithms that have been trained to identify specific information can

achieve this in considerably less time rather than a manual analysis which is impractical

and inefficient. Thus, when exposed to a large dataset, ML enables applications to deter-

mine the best course of action or procedure that will deliver the best result in the shortest

time by detecting the pattern and using historical and real-time data. By taking this ad-

vantage of the ML techniques, solutions to the problems of Wireless power transfer and

identification technologies are explored.
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1.4 Thesis Outline

This thesis is organized in the following way:

1. Chapter 2 provides the background of ML classification techniques by addressing

their processes and relative advantages in detail.

2. Chapter 3 demonstrates ML applications for the WPT systems, including the auto-

matic real-time range-adaptive impedance matching network.

3. Chapter 4 presents the design and performance of ML application for the WPT sys-

tems in UAV localization.

4. Chapter 5 demonstrates ML applications for the chipless RFID system in read/interrogation

enhancement.

5. Chapter 6 discusses the conclusion and contribution.
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CHAPTER 2

MACHINE LEARNING STRATEGY

As discussed briefly in the previous chapter, ML techniques have been successfully

applied to numerous challenging problems having drastically improved the efficiency of

the designed systems and the design of machines. Commonly, there are two types of ML

algorithms: “supervised” learning and “unsupervised” learning, and specific groupings are

shown in Figure 2.1. One algorithm of learning called “supervised” is useful in cases where

instances are given with a known dataset (the training dataset) corresponding to the certain

dataset in which prediction can later be made [48]. In other words, “supervised” learning

requires that the data used to train the algorithm is already labeled with correct answers

while “unsupervised” learning uses neither classified nor labeled data to group unsorted

information according to similarities, patterns, and differences with no prior training. The

trained model first is trained to produce a function of supervised learning algorithm and

then uses a test dataset to validate the model. Based on the training dataset containing in-

stances, classification could identify which of a set of categories a new instance belongs.

Typically, the majority of practical ML uses “supervised” when instances are given with

known labels corresponding to correct output. The analysis of the trained data and pro-

duced a function of “supervised” learning algorithm, which operates with two main tasks,

regression and classification, can be used for mapping new instances.
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Figure 2.1: Different groupings of machine learning.

2.1 Classification

Many classification methods have been widely applied to numerous challenging prob-

lems to make predictions or calculated suggestions based on large amounts of data. Clas-

sification methods aim at identifying the category of a new observation among a set of

categories on the basis of a labeled training set. From the literature [49], five potential clas-

sification approaches were identified: Decision Trees (DT), k-Nearest Neighbor (k-NN),

Linear Discriminant Analysis (LDA), Naive Bayes, and Support Vector Machine (SVM).

Their processes and relative advantages and disadvantages are detailed below.

2.1.1 Decision Trees

The DT is a widely used method for classification and regression problems that is based

on the form of a tree structure [50], as shown in Figure 2.2. It breaks down a dataset

into smaller subsets while at the same time, an associated decision tree is incrementally

developed from three nodes, namely root node, internal node, and leaf node. As described

in [51], a decision tree is a structure in which each root node presents the entire sample and
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this further gets divided into two or more homogeneous sets, each internal node represents

a “test” on an attribute, and each branch represents the outcome of the test. Each leaf

node represents a class label. Tree-based methods typically empower predictive models

with the advantages of being simple to understand and interpret while providing relatively

inaccurate outcomes with instability. This method is easy to understand and interpret which

closely mimics the human decision-making process. Also, DT is very suitable for a non-

parametric model with no assumptions about the shape of data despite the fact that it tends

to overfit easily.

Figure 2.2: Basic structure of a DT, reprint from [52].

2.1.2 k-Nearest Neighbor

The k-NN algorithm is one of a simple instance-based learning algorithm for prospec-

tive statistical classification [53]. When an instance with an unknown class is presented for

evaluation, the algorithm computes its k closest neighbors, and assign the class by voting

among those k neighbors. To determine which of the k instances in the training dataset are

most similar to a new input a distance measure is used. For real-valued input variables, the

most popular distance measure is Euclidean distance (2.1). Euclidean distance is calculated
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as the square root of the sum of the squared differences between feature vectors A=(x1, x2,

x3,...,xN ) and B=(y1, y2, y3,...,yN ) where N is the dimensionality of the feature space.

distance(A,B) =

√√√√ 1

N

N∑
i=1

(xi − yi)2 (2.1)

As we increase the value of k, the predictions become more stable due to majority voting

and averaging to make more accurate predictions. Figure 2.3 shows the basic example of

Figure 2.3: k-NN Classification, reprint from [54].

k-NN classification. The test sample (inside circle) should be classified either to the first

class of blue squares or to the second class of red triangles. If k = 3 (outside circle), it

is assigned to the second class because there are 2 triangles and only 1 square inside the

inner circle. If for example k = 5, it is assigned to the first class (3 squares vs. 2 triangles

outside the outer circle). k-NN is called “lazy learner” because it does not learn anything

in the training period. In other words, it does not derive any discriminative function from

the training data resulting in much faster speed than other algorithms that require training.
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2.1.3 Linear Discriminant Analysis

The LDA is a dimensionality reduction technique that is commonly used for supervised

classification problems [55]. DA makes predictions by finding linear combinations of pre-

dictor variables that best separate the groups of observations, called discriminant functions.

Suppose there are k different groups, each assumed to have a multivariate normal distribu-

tion with mean vectors µk(k = 1, 2, .., k) and common covariance matrix
∑

. The actual

mean vector and covariance matrices are almost always unknown; the maximum likelihood

estimates are used to estimate these parameters. The idea of LDA is to classify observations

xi to the group k, which minimizes the within-group variance.

k = arg mink(xi − µk)T
∑−1(xi − µk) (2.2)

LDA works when dealing with categorical independent variables for each observation are

continuous quantities under the assumption that there must be a statistically significant

difference in the mean vectors between groups, and the number of observations in each

group must be greater than the number of predictors. If any one of these assumptions is not

met, the results may be unreliable.

2.1.4 Support vector machine

The SVMs have been applied to various classification problems such as development

prediction models with high success [56]. The SVM essentially constructs a set of (N − 1)

dimensional hyperplanes in N -dimensional space to separate data points into groups used

for classification, as shown in Figure 2.4. When given a training dataset of n points of

the form −→x n, yn where the yi are either 1 or -1 indicating the class to where the point −→x i
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Figure 2.4: Basic concept of SVM classification.

belongs, any hyperplane can be written as the set of points −→x satisfying −→w · −→x − b = 0

where −→w is the normal vector to the hyperplane and the parameter b/
−−→
||w|| determines the

offset of the hyperplane. In this respect, the optimal separating hyperplane for which the

margin is maximum is essential to place unseen test points far away from the hyperplane

or in the margin. By employing a polynomial kernel function (2.3) of a hyperplane, the

points x in the d-dimensional feature space that are mapped into the hyperplane are defined

by a relation such as
∑

i aik(xi, x) making it easy to compute the similarity in the original

space.

k(xi, xj) = (xTi · xj + c)d (2.3)

The final decision function is given by (2.4) for new predictions, which takes a dataset as

input and gives a decision as output.

f(x) = sign

n∑
i

(aiyi)k(xi, xj) + b (2.4)
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The SVM classifiers are trained on the entire training set using the optimized parameters

and evaluated for their performances on the test sets with kernel scales, which is the free

parameter invariant and independent of the input dimension. Several types of the kernel

functions with different kernel scales can be used in the training process, depending on the

applications.

2.1.5 Naive Bayes Classification

Naive Bayes is a simple yet effective and commonly-used, machine learning classifier.

It is a probabilistic classifier that makes classifications using the Maximum A Posteriori

(MAP) decision rule in a Bayesian setting that can also be represented using a straight-

forward Bayesian network. Also, the Naive Bayes algorithm predicts the various sets of

probabilities based on the condition values in particular classes. The Bayes theorem pro-

vides a way of calculating the posterior probability, P (Ck|x), from the prior probability of

class, P (Ck), the likelihood which is the probability of predictor given class, P (x|Ck), and

the prior probability of predictor P (x).

P (Ck|x) =
P (Ck)P (x|Ck)

P (x)
(2.5)

P (x|Ck) =
n∏

i=1

P (xi|Ck) (2.6)

P (x|Ck) is the conditional probability of seeing the evidence x if the hypothesis Ck is

true. For any unseen test data, the method computes the posterior probability of that sam-

ple belonging to each class, then classifies the test data according to the largest posterior
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probability, as shown in equation (2.7).

y = arg max
k∈{1,2,...,K}

P (Ck)
n∏

i=1

P (xi|Ck) (2.7)

Naive Bayes classification is a particularly appealing method in contexts where speed is

one of the most relevant constraints. However, there is a limitation with the real-world

application of this classifier because of the assumption that all features are independent

which is not usually the case.

2.2 Neural Network Classification

Artificial Neural networks (ANNs) represent powerful machine learning-based tech-

niques, inspired by the neurons in the human brain as shown in Figure 2.5, that are designed

to recognize patterns or underlying relationships in a set of data. They consist of the input

layer, multiple hidden layers, and an output layer connected with every node. The layers

between the input layer and output layers are known as hidden layers, as the training data

does not show the desired output for these layers. A given node takes the weighted sum of

its input and passes it through a non-linear activation function,

z = f(b+ x · w) = f(b+
n∑

i=1

xiwi) (2.8)

where xi is input parameter, wi is weight factor, and b is bias which is an additional param-

eter used to adjust the output along with the weighted sum of the inputs to the neuron. An

NN turns out to be well-suited to modeling high-level abstractions across a wide array of

disciplines and industries including computer vision, speech recognition, machine transla-

tion, and even in activities that have traditionally been considered as reserved to humans
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Figure 2.5: Neural network classification, reprint from [57].

[58]. The main advantage of an NN lies in its ability to outperform nearly every other

ML classification algorithms, but this goes along with the disadvantages that users don’t

know how and why an NN came up with a certain output, known as “black box” nature,

compared to other interpretable algorithms.

Overall, there is no one ML classification approach or one solution that caters to all

types of problems. In other words, it is hard to know which algorithm will work best

because the type and kind of data and application play a crucial role in the algorithm is

performance. It is common to consider the ML algorithms identified as potentially useful

approaches, throw your data into them, run them all in either parallel or serial, and at

the end evaluate the performance of the algorithms to select the best one. So it becomes

more important to explain why a certain mode is best suited in a particular situation, and

Figure 2.6 demonstrates the typical trend of interpretability comparison between the ones

that are most relevant to the use cases under consideration in this work among the many

other algorithms.
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Figure 2.6: The model interpretability comparison between ML classification methods,
reprint from [59].
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CHAPTER 3

A REAL-TIME RANGE-ADAPTIVE IMPEDANCE MATCHING UTILIZING A

MACHINE LEARNING STRATEGY BASED ON NEURAL NETWORKS

3.1 Introduction

As reviewed in chapter 1, the impedance matching of a WPT system using MRC has

become a critical challenge in order to maintain a reasonable Power Transfer Efficiency

(PTE) for time-varying configurations. Several approaches of impedance matching have

been proposed [60], [61] and [26] regarding the distance between the receiver (Rx) and

transmitter (Tx) as PTE varies significantly with distance. However, these are limited in

the effective ranges as a consequence of their unexpected variation of the transfer distance

or load impedance. In this chapter, an alternative approach is proposed that takes advantage

of a novel method based on a feedforward NN technique, thus addressing the shortcomings

of the aforementioned impedance matching approaches while retaining high PTE. As a

proof-of-concept, one receiver coil, three selective transmitter coils and a matching circuit

with tunable capacitors are first designed and measured. Then, an ML approach utilizing

NN algorithms that can construct the mapping relationship is presented to improve the

capability of the WPT system.
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3.2 WPT Application

3.2.1 Matching Circuit Design and Fabrication

A matching circuit topology consisting of 3 consecutive L-type series inductors and

shunt capacitors with p-i-n diode switches was used in [26], and it was fabricated on a 1.5

mm thick substrate, RO4003C, which features a dielectric constant (εr) of 3.38, provided

by Rogers Cooperation. The simplified schematic of this matching circuit is shown in

Figure 3.1-(a), and a fabricated prototype is shown in Figure 3.1-(b).
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(a)

(b)

Figure 3.1: Simplified schematic of the automatic matching circuit.

To overcome the limited capability of this static topology to provide an acceptable PTE

over a wide range of transmitter-receiver distances, one variable capacitor from Murata

electronics is employed in this design enabling a superior characteristic of matching cir-
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cuit compared with previous work and allowing for on-demand tuning utilizing the results

from the proposed machine learning approach. These tunable capacitors typically achieve

capacitance values that can vary by applying voltage to their electrodes in the range of 100

pF-200 pF (0-5 V) for Cvar.1 and Cvar.2, 30 pF-60 pF (0-3 V) for Cvar.3 and operate

appropriately at 13.56 MHz with the limited range of values. As experimental verification

of the variability of the capacitance values is shown in Figure 3.2.

(a) (b)

(c)

Figure 3.2: Simulated and Measured capacitance variability of (a) Cvar.1 (b) Cvar.2 (c)
Cvar.3.
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In order to determine the optimal matching circuit topology with those tunable capaci-

tors, the impedance matching coverage of multiple topologies, π-type and L-type segments

of multiple sections (1 to 3 consecutive stages) with each section comprising of a series in-

ductor, a shunt capacitor, and a switch were simulated with respective matching impedance

coverage ranges shown in Figure 3.3. The impedance matching coverage was verified for a

range of the capacitance values of Cvar.1 (100-200 pF), Cvar.2 (100-200 pF), and Cvar.3

(30-60 pF) in steps of 10 pF. The reason for using 10 pF steps of the capacitance values is

to satisfy the practical control module constraints in a system implementation. Since the

power transfer to the load can be maximized when the input impedance of the matching

circuit looking from port.2 (Z22) in Figure 3.1 is the complex conjugate of the Rx-Tx coil

topology impedance input (Zc), each fixed inductor value of L1, L2, L3, and the use of ca-

pacitor among Cvar.1, Cvar.2, and Cvar.3 were first optimized to minimize the reflection

coefficient Γ = (Z∗c − Z22)/(Z∗c + Z22) from the simulated coil configuration (Rx-Tx1,

Rx-Tx2, and Rx-Tx3) impedance values (Zc) at distances of 10, 15, and 20 cm. The 3 con-

secutive stage L-type topology was chosen to provide wide impedance matching coverage

and satisfy the practical constraints such as the loss associated with the lumped circuit com-

ponents. With this proposed method, a wide range of impedance coverage can be realized

though the variation of the input impedance Zin. For the inductance values of L1, L2, and

L3, the fixed inductor values 1432 nH, 610 nH and 1484 nH were optimized correspond-

ing to the values of capacitance’s tunable ranges in simulations utilizing Advanced Design

System (ADS) 2016. For the fabrication of a proof-of-concept prototype of the matching

circuit, a 1.5-mm-thick substrate from RO4003C provided by the Rogers Cooperation and

inductors with fixed values of 1500 nH and 560 nH provided by the Coilcraft 0603HL

series were used.
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(a) (b)

(c) (d)

Figure 3.3: (a) Simulated input impedance values of π-type matching circuit with Cvar.1
and Cvar.2. (b) Simulated input impedance values of 1 L-type matching circuit with Cvar.1.
(c) Simulated input impedance values of 2 L-type matching circuit with Cvar.1 and Cvar.2.
(d) Simulated input impedance values of 3 L-type matching circuit with Cvar.1, Cvar.2, and
Cvar.3.
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3.2.2 Receiver and Selective Transmitters Configurations

Both receiver and transmitter coils are open-type helical coils which have a self-resonance

frequency of 13.56 MHz. For proof-of-concept purpose, each coil is designed with given

radius (r=5 cm for the Receiver, 10, 15 and 20 cm for the transmitters) to resonate at the

same frequency by optimizing the number of turns and the gap between each coil wires us-

ing the CST studio 2016 integral solver. Simulated and measured results for the reflection

coefficient of one receiver coil are shown in Figure 3.4. A multi transmitter coil topology is

employed to reduce the variation in the input impedance of the WPT system with respect to

the distance. In order to maximize the coil-to-coil efficiency, it was found that the optimal

radius of Tx is approximately equal to the distance of coil-to-coil [22], thus we obtain the

analytically derived (3.1)

rTx = d (3.1)

when rRx << rTx. Based on their analysis, the overall geometrical design for Rx and Tx

coils is controlled by the key parameters summarized in Table 3.1.

To improve the robustness of the both coil structures, laser cut acrylic boards were use

as support fixtures. The extracted S-parameters from the simulations will serve a standard

Table 3.1: PARAMETERS OF THE RX AND TX COILS FOR THE PROPOSED WPT SYSTEM

Receiver Transmitters
Rx Tx1 Tx2 Tx3

Self-resonance Frequency (MHz) 13.56
Copper Wire Radius (mm) 0.5

Radius (cm) 5 10 15 20
Number of turns 27 10 6 4.5

Pitch (mm) 2
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Figure 3.4: Simulated and measured the reflection coefficient of one receiver coil.

(a) (b)

Figure 3.5: (a) Fabricated Rx coil. (b) Distance between Rx and Tx1.

dataset for the NN training presented in the next section. A photograph of the fabricated 3

Tx coils in both stacked and aligned placement are shown in Figure 3.8.

In order to confirm the effectiveness of this approach, several open type helical coils

with different radius were designed on CST studio 2016 using the integral solver. The ex-
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(a) (b)

Figure 3.6: (a) Stacked fabricated 3 Tx coils. (b) Aligned fabricated 3 Tx coils with
switches.

tracted S-parameters from the simulations will serve a standard dataset for the NN training

presented in next section. A photograph of the fabricated Rx and Tx coils are shown in

Figure. 3.6. Each switch introduces a selectivity of the transmitter coils by utilizing a re-

lay, TQ2-L2-4.5V from Panasonic Electric works, with an resistance of less than 50 mΩ.

In order to confirm the effectiveness of this approach, the reflection coefficient (S11) was

simulated according to the coil-to-coil (Rx-Tx1, Rx-Tx2, and Rx-Tx3) distance at 10-25

cm as shown in Figure 3.7. 10 cm is the minimum possible center to center separation

distance between Rx-Tx coils since the thickness of the support fixtures are 10 cm for Rx

and 8 cm for Tx coils. The multi transmitter coil topology can be effectively used in the

range-adaptive WPT system in addition to use of the proposed tunable matching circuit.

3.2.3 Mutual Inductance of the Selective Tx

Mutual inductance of the selective Tx coils is one of the challenging issues of this multi

selective coil configuration, which is the interaction of one coil magnetic field on another

coil as it induces a voltage in the adjacent coil. The mutual inductance that exists between
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Figure 3.7: Simulated reflection coefficient (S11) with respect to Rx-Tx distances.

the two coils can be greatly increased by positioning or by increasing the number of turns of

either coil as would be found in a transformer, as given in (3.2) where µ0 is the permeability

of free space, µr is the relative permeability of the soft iron core, N is the number of coil

turns, A is in the cross-sectional area in m2, and l is the length of the coil in meters.

M =
µ0µrN1N2A

l
(3.2)

Figure 3.8 shows the simulated reflection coefficient when three coils are in stacked place-

ment with the calculated mutual inductance M21=M12= 4.94 uH, M13=M31= 2.89 uH,

M23=M32= 4.11 uH, and in aligned placement with the calculated mutual inductanceM21=M12

= 6.74 uH, M13=M31= 4.69 uH, M23=M32= 5.77 uH. Since strong mutual inductance be-

tween 3 coils in both conditions is desired for the practical scenario, each parameter of the
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coil is re-optimized to resonate at 13.56 MHz considering the status of the switch with their

placement as shown in Figure 3.9.

(a)

(b)

Figure 3.8: (a) Simulated reflection coefficient (S11) when three coils are in stacked place-
ment. (b) Simulated reflection coefficient (S11) when three are in aligned placement.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: (a) Simulated reflection coefficient (S11) after re-optimization when the Tx1’s
switching status “ON”. (b) Tx coil schematic when the Tx1’s switching status “ON”. (c)
Simulated reflection coefficient (S11) after re-optimization when the Tx2’s switching status
“ON”. (d) Tx coil schematic when the Tx2’s switching status “ON”. (e) Simulated reflec-
tion coefficient (S11) after re-optimization when the Tx3’s switching status “ON”. (f) Tx
coil schematic when the Tx3’s switching status “ON”.
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3.3 Machine Learning Approach

As discussed in the chapter 2, NNs represent powerful machine learning-based tech-

niques, inspired by the neurons in the human brain, that are designed to recognize patterns

or underlying relationships in a set of data. These networks turn out to be well-suited to

modeling high-level abstractions across a wide array of disciplines and industries. The

MATLAB NN toolbox was used to construct suitable NNs with optimal structure parame-

ters.

3.3.1 Optimize the Hyperparameters of the Neural Network

In an ML strategy, the hyperparameters are the variables which determine the network

structures and how the network is trained. NNs can have many hyperparameters which are

usually set before the training process, such as the number of hidden layers, the number of

epochs, and the training function. Hidden layers are the layers between the input layer and

output layer, where artificial neurons take in a set of weighted inputs and produce an output

through an activation function. It is a typical part of nearly any NN in which engineers

simulate the types of activity that go on in the human brain. While stacking many hidden

layers allows us to learn more complex relationships in the data, such an approach is also

more prone to potentially overfitting data. Also, a validation dataset is a dataset of samples

used to provide an unbiased evaluation of a model fit on the training dataset while tuning

model hyperparameters. The difference between the validation dataset and the test dataset

is that the validation dataset is used to compare competing models, whereas the test dataset

is used to evaluate the model by providing the standard. Here, we calculated the Mean
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Square Error (MSE) (3.3)

MSE =
1

n

n∑
i

(yi − ŷi)2 (3.3)

between the desired NN output yi and the NN output ŷi, to compare the performance of the

trained network with two different hyperparameters: 1) the number of hidden layers and

2) the three training functions (The Levenberg-Marquardt, Bayesian Regularization, and

Scaled conjugate gradient). The number of epochs is also one of the hyperparameters of

gradient descent that controls the number of complete passes through the training dataset.

In other words, an epoch is one learning cycle where the learner sees the whole training

dataset. A sufficient number (1000) was used along with each network to avoid having

the training MSE stuck in a minimum. Figure 3.10-(a) shows the calculated MSE of the

validation data corresponding to the number of hidden layers and Figure 3.10-(b) shows

the MSE of the test data corresponding to the number of hidden layers from 5 to 15. In Fig-

ure 3.10-(b), the MSE for the Bayesian Regularization function is always zero because of

the function that performs Bayesian regularization backpropagation disables the validation

stops by default. In other words, this function does not require a validation dataset at the

point of checking validation to see if the error on the validation set gets better or worse as

training goes on. Since the value of MSE is good when it close to 0, the number of hidden

layers used for the NN should be 10 for this application with the Levenberg-Marquardt and

Bayesian Regularization functions. We use the following data partitioning methods which

have been suggested in most of the related articles: 70% of the entire dataset is used for

training, 15% of the entire dataset for validation, and 15% of the entire dataset for testing.
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Figure 3.10: (a) Mean Square Error (MSE) of the test data. (b) Mean Square Error (MES)
of the validation data.
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3.3.2 Feedforward Neural network with Backpropagation

The feedforward NNs, also called the deep feedforward network, is one of the deep

learning models. To approximate some function f(x) through the feedforward NN, when

x is input, the feedforward NN defines a mapping function y = f(x; θ) and determines the

parameters θ which gives the best function approximation results [62]. Also, the backprop-

agation method provides a NN with a set of input values for which the correct output value

is known beforehand.

Figure 3.11: The schematic of the feedforward neural network with backpropagation.

In this network as shown in Figure 3.11, the information moves in both directions from

the input layers with an associated weight factor (w) to the output layers while the hidden

layers are usually used for improving mapping ability. In this work, we propose a WPT

scheme with three cascading L-type impedance matching networks based on a feedforward

NN, which is a similar approach to that used in [27]. They developed a mapping relation-

ship between the impedance of the equivalent load (Zeq = Req + jXeq) and a matched

capacitor set composed of (C1, C2) in their Γ-type of matching network. In this work, in

consideration of each switch connected to each L-type of matching network, the final out-
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put set is composed of (C1, C2, C3). The dataset for training to produce a function of the

network consists of the distribution of |S11| matched by the NN within a range of 0 to 20 Ω

for Req and -50 to 50 for Xeq with 1 interval (in total 220 datasets). The reason for the use

of these dynamic variation ranges of the impedance is based on the consideration of match-

ing range of from small to large variation. In previous work, we proposed the advanced

approach using a shallow NN to classify patterns. Through classification, an automated

system declares that the input object belongs to a particular category. 220 sets of output

parameters, which represent capacitance values (C1, C2, C3) from the above-trained model,

act as an input to select the proper single transmitter coil among Tx1, Tx2, Tx3. After that,

trained classifier can recognize the three categories associated with each input parameter.

In this work, the selection of proper transmitter coils among Tx1, Tx2, Tx3 is also included

as an output parameter set in consideration of further implementation.

3.4 Implementation and Performance evaluation

3.4.1 Implementation of the Proposed System

Firstly, the trained feedforward NN model is built by the process of the previous section.

In order to predict the capacitance values and classify the type of transmitter, a training

process using the feedforward NN was implemented. We implemented the trained NN by

extracting layer/output weight factors from the MATLAB simulation as the development

of the network on Arduino would be the slower process in terms of training time. Before

matching, the initial input impedance of Rx-Tx at 13.56 MHz was measured by a vector

network analyzer and plotted in Figure 3.12.

To verify the fabricated three transmitters and their selectivity, Figure 3.12 also shows

measurement results when one of three transmitter coils was manually selected to achieve
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Figure 3.12: (a) Measured reflection coefficient (S11) with Rx-Tx1. (b) Measured reflection
coefficient (S11) with Rx-Tx2. (c) Measured reflection coefficient (S11) with Rx-Tx3.

impedance matching only utilizing the proposed matching circuit depending on each coil-

to-coil distance. From the figures, it can be said that classified output parameters, capaci-

tance values (C1, C2, C3), are not accurate at a certain distance because the matched capac-

itor set was trained with a single transmitter as mentioned in section (3.3.2). This may be

the reason why the S11 is high at 15 cm in Figure 3.12-(a), and at 14 cm in Figure 3.12-(c).

These errors can be prevented by using selective multi transmitters. As discussed in [22],

most of each region has a significant improvement according to the coil-to-coil distance

such as of Rx-Tx1 at 10-14 cm, Rx-Tx2 at 15-19 cm and Rx-Tx3 at 20-25 cm. Finally, the

performance of the proposed approach using combinations of the selective multi transmit-

ters which are controlled automatically, will be discussed in the next section.
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3.4.2 Operation Test and Performance Evaluation

To verify the prediction capability for each capacitance value of the impedance match-

ing circuit and the selection capability for multi transmitters, the performance of the entire

real-time range-adaptive matching system was tested. The configuration is shown in Fig-

ure 3.13.

Figure 3.13: Block diagram of the proposed real-time range-adaptive impedance matching
WPT system.

Initially, the S11 signal is measured by utilizing a directional coupler, ZEDC-15-2B

from Mini-Circuits and the RF detector IC, LTC5507 from the Linear Technology Coop-

eration. Then, the output dc voltage is measured by utilizing an analog-to-digital (ADC)

converter in the microcontroller module, not only to calculate the matched capacitor set but

to predict the single transmitter through the NN. Finally, the arduino PWM signal is used

to drive the voltage to adjust the capacitance values and control the switch in the trans-

mitter selection. In order to verify the validity of the proposed WPT system, the received

power at different separation distances was measured by using a real-time spectrum ana-

lyzer, RSA3408 from Tektronix Inc., with a tunable matching circuit and multi Tx coils.
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The S-parameters of the matched state automatically chosen by the trained NN model at

different coil separation distances are measured by utilizing a vector network analyzer, and

the extracted value of S21 is used to calculate the PTE expressed in (3.4).

PTE = |S21|2 × 100(%) (3.4)

To verify and validate the proposed approach, Figure 3.14 shows the calculated PTE at

each distance in the range of 10 to 25 cm compared with (1) using only one specific Tx

coil and (2) with selective Tx coils under the condition of the similar matching approach

in [22]. After matching through the trained NN model, the input impedance matching is

improved over the entire separation distance range. By utilizing the selective Tx coils, the

PTE was more stable and able to avoid the sudden drop at a certain range in both different

environments (Case 1: Combined using the manually measured result of the tunable match-

ing circuit, and the multi transmitter coils, respectively. Case 2: Automatically measured

results of the entire real-time range adaptive system). Especially at distances 12, 13, 14, 16,

18, 19 and 22 cm, the capacitance values and selected single transmitter coil extracted from

the trained NN model results in significant improvement by employing the selective trans-

mitter coils controlled by the trained NN as shown in Figure 3.16. Moreover, the proposed

approach achieves a PTE around 90% for ranges within 10 to 25 cm.
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Figure 3.14: (a) The PTE without the selective Tx versus with the selective Tx in Case 1.
(b) The PTE without the selective Tx versus with the selective Tx in Case 2.
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(a) (b)

Figure 3.15: Smith chart of the input impedance values of the system in angular misalign-
ment at 10, 15, and 20 cm in: (a) -30◦ along φ angle. (b) +30◦ along φ angle.
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Figure 3.16: Transmitter selectivity.
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Table 3.2: COMPARISON OF REPORTED RANGE-ADAPTIVE WPT SYSTEMS

|S11| measurement
Tx-Rx Type of

Tuning method
Algorithm

Operation
for

structure matching circuit type/speed
range(cm) over

automatic matching 80% of PTE

[23]
Directional coupler Two L-type network Relays Decent search

9-21
rectifier resonators in Tx (Switching capacitors) with scaling,<1.5s

[24] Rectifiers
Four π-type network

Switching capacitors
Parasitic and

10-22
resonators in both Tx and Rx conjugate match, -

[25]
Directional coupler Four Shunt network

Relays
Searching algorithm,

10-40
rectifier resonators in both Tx and Rx

(Switching capacitors)
<1.2s

varactors, multi-loop

[26]
Directional coupler Two Cascading 6 L-type p-i-n diodes Genetic algorithm,

10-16
RF detector IC resonators network in Tx (Switching capacitors) <0.064s

[27]
Directional coupler Four Γ-type Stepper motors Neural network,

0-20
RF detector IC resonators network in Tx for capacitors <0.063s

This Directional coupler Two Cascading 3 L-type
Tunable capacitors

Neural network,
10-25

work RF detector IC resonators network in Tx
p-i-n diodes

<0.063s
multi-coil Tx
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In an angular coil misalignment environment, the plane of the Tx coil is tilted to form

an angle in the range -30◦ < φ < 30◦ at 10, 15, 20 cm as shown in Figure 3.13, and the

system input impedance matching is improved as shown in the Smith chart in Figure 3.15.

It can be easily seen that the matching results by the proposed method, even in an angular

coil misalignment environment, are concentrated at the center of the Smith chart, which is

close to target impedance 50 Ω.

In order to identify the performance of the range-adaptive impedance matching system

and show the limitation of existing techniques, the comparison is shown in Table 3.2. Com-

pared with the previous work utilizing GA [26], a significant improvement in the operation

range while retaining high PTE was confirmed, with fewer circuit components that would

otherwise have caused inevitable losses. Compared to the WPT systems configuration in

[25] which employed the variable capacitances for the tunable matching circuit and selec-

tive multiloop to reduce the variation of the input impedance, the proposed WPT system

utilizing the NN is more suitable for applications requiring speed which is the major limita-

tion for real-time operation. Moreover, this work reveals the remarkable PTE enhancement

over the entire separation distance range that can be achieved with the selective multi trans-

mitters when compared with [27] in addition to the tunable matching circuit utilizing the

NN algorithm.

3.5 Conclusion

This work describes the implementation of a machine learning strategy based on the NN

for real-time range-adaptive automatic impedance matching of WPT applications [63]. In

this chapter, range-adaptive impedance matching of WPT system utilizing NN algorithms

was demonstrated. The implementation of the feedforward NN and pattern recognition
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techniques for real-time range-adaptive automatic impedance matching of WPT applica-

tions can, not only, predict the capacitance value of the matching circuit under a specific

environment, but can also select one of Tx coils which maximize Rx-Tx power transfer

efficiency up to 95%. In addition, the proposed model is generalizable to contexts such

as misalignment of Rx-Tx coils and a wide range of operation distances. The work re-

ported here could greatly enhance the state-of-the-art real-time range-adaptive automatic

impedance matching techniques in the WPT system.
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CHAPTER 4

DESIGN OF A NOVEL WIRELESS POWER SYSTEM USING MACHINE

LEARNING TECHNIQUES FOR DRONE APPLICATIONS

4.1 Introduction

In recent years, WPT has been increasingly required for many purposes from research

and industrial communities, especially in applications of wireless charging systems for

moving objects, such as automotive vehicles [64] and UAVs [65]. In particular, the global

market for commercial applications of drone technologies is currently estimated at about

$2billion, which will definitely balloon in the next decades. ML has become a major field

of research in order to handle more and more complex detection problems [66]. With

ML techniques, new state-of-the-art models can be developed by training a model instead

of implementing an explicitly programmed feature detector. This work proposes a novel

WPT platform that predicts the drone’s behavior based on the flight data utilizing machine

learning techniques incorporating Naive Bayes algorithms. The choice of Naive Bayes

“classification” is due to its characteristics that are simple to implement and flexible enough

to cover different types of measured data.

This chapter is organized as follows. Section 4.2 first demonstrates the measurement

of the design and characterization of the proposed WPT system prototype, and Section 4.3

discusses the application of machine learning techniques based on the measurement data,

and evaluates the WPT system performance.
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4.2 WPT Platform Design and Characterization

The proposed WPT system consists of the transmitter array on the ground and a receiver

on the drone as shown in Figure 4.1. A set of proof-of-concept measurements is performed

for 2x2 to 4x4 transmitter arrays operating at 13.56 MHz. For both transmitter and receiver

charging coils, we used an off-the-shelf planar coil from Wurth electronics with the spec-

ifications shown in Table 4.1 including the resonant frequency of 13 MHz, which can be

adjusted to 13.56 MHz by connecting a tuning capacitor. N-channel single gate RF MOS-

FET transistors were employed for the switching of every individual transmitter coil and

were controlled by a voltage source. The prototype is shown in Figure 4.2.

Figure 4.1: The proposed WPT system with an on-drone receiver and an on-the-ground
transmitter array.

In order to accurately characterize the movement of the receiver coil on the drone, for a

proof-of-concept topology, we utilized a 0.75 inch styrofoam 9-position (9-square) grid that
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(a) (b)

Figure 4.2: (a) Off-the-shelf charging coil. (b) Prototype of 2x2 transmitter array.

Table 4.1: TRANSMITTING AND RECEIVING COIL SPECIFICATIONS

Parameters Transmitter and Receiver

Inductance (µH) 12
Saturation Current (A) 6

Q-factor 33
DC resistance (Ω) 0.16

Self-resonant freq (MHz) 13

was placed on top of the transmitter array and then the S-parameters of the WPT topology

were measured by placing the receiver coil on top of all 9 squares for all combinations of the

4 switches of the 2x2 transmitter array. The S-parameters of the topology were measured

using a VNA, ZVA8 from Rohde&Schwarz, with a total 144 (4 switch, 9 positions) cases

measured at the distances of 1inch, 1.25, 1.5 and 1.75 inch. The measurement setup is

shown in Figure 4.3, the PTE is calculated as |S21|x100%, and the distribution of power

transfer efficiency at each three distance are shown in Figure 4.4. From the preliminary

measurements, the fabricated prototype exhibited relatively short operation range and low

maximum power transfer efficiency. These are expected to be caused by the relatively small

diameter of coils used for the array and low quality factor of the resonators. However, the
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Figure 4.3: Illustration of the measurement setup.

system can be easily scaled to achieve higher operation range and the design of resonators

can be improved to have a higher maximum power transfer efficiency.
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Figure 4.4: (a) Distribution of power transfer efficiency at 1 inch. (b) Distribution of power
transfer efficiency at 1.25 inch. (c) Distribution of power transfer efficiency at 1.5 inch. (d)
Distribution of power transfer efficiency at 1.75 inch.

52



4.3 Machine Learning Approach

Machine Learning has been successfully applied to numerous challenging problems and

has drastically improved the efficiency of the designed systems and the design of machines.

The learning is called “supervised” if instances are given with known labels correspond-

ing to correct outputs [67]. The analysis of the trained data and produced an function of

supervised learning algorithm can be used for mapping new instances.

4.3.1 Classification: Naive Bayes Algorithm

In this section, we evaluate the performance of the classification algorithm: Naive

Bayes classifier. Classification is the supervised learning where a training set of correctly

identified past observations is available [68], an approach that has been used in the past

in fraud detection, market segmentation, and machine vision. The Naive Bayes algorithm

is one of the classification algorithms that are simple and versatile and work very well in

practice, as presented in chapter 1. Also, the Naive Bayes algorithm predicts the various

sets of probabilities based on the condition values in a particular class. Bayes theorem pro-

vides a way of calculating the posterior probability, P (Ck|x), from the prior probability of

a class, P (Ck), the likelihood which is the probability of predictor given class, P (x|Ck),

and the prior probability of predictor P (x).

P (Ck|x) =
P (Ck)P (x|Ck)

P (x)
(4.1)

P (x|Ck) =
n∏

i=1

P (xi|Ck) (4.2)
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P (x|Ck) be the conditional probability of seeing the evidence x if the hypothesis Ck is

true. For any unseen test data, the method computes the posterior probability of that sam-

ple belonging to each class, then classifies the test data according to the largest posterior

probability, as shown in equation (4.3).

y = arg max
k∈{1,2,...,K}

P (Ck)
n∏

i=1

P (xi|Ck) (4.3)

4.3.2 Performance Evaluation

In this work, the classification model is trained using Naive Bayes algorithms and then

tested and validated using test data. For classification and prediction, the variables height,

switching status of 4 transmitter coils, and each measured power transfer efficiency are

assigned as “Predictor” in this learning. The number of receiver positions is assigned “Re-

sponse” that will return a vector of the predicted class label for the predictor data, based

on the trained Naive Bayes classification model. Consequently, the possible position of

a moving receiver can be successfully predicted with a probability trend similar to actual

measurement results. In Figure 4.5, the best and worst predictions are plotted by compari-

son with original data and predicted position at two operation distances. Not only at these

four switching states, but at all switching states, the 3 positions having the highest achieved

power transfer efficiency in descending order are selected and predicted. The prediction

results show that the classification method provides great performance for predicting the

receiver’s position with obvious trends. As depicted in Figure 4.6, where the switching

number means the state of 4 transmitter coils (24 = 16), the error rate varies from 0.09%

up to 45% and the average value is 19.07%, 20.75%.
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(a) (b)

(c) (d)

Figure 4.5: (a) Best prediction when the switching status “off-on-on-off” at 1 inch height
(b) Worst prediction when the switching status “on-on-off-off” at 1 inch height (c) Best pre-
diction when the switching status “off-on-off-off” at 1.25 inch height (d) Worst prediction
when the switching status “on-on-on-on” at 1.25 inch height
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Figure 4.6: (a) Error bar at 1 inch height (b) Error bar at 1.25 inch height

4.4 Conclusion and Future work

In this chapter, the design of the WPT system combined with route prediction utilizing

machine learning techniques for drone applications was proposed [69]. The position of
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moving objects such as the drone can be predicted by introducing the Naive Bayes clas-

sification. The future works are 1) to expand the transmitter array and make automatic

switching utilizing the Arduino Uno micro-controller unit by switching automatically 2)

to extend the operation range and improve power transfer efficiency by a modified mea-

surement environment. Moreover, integrating the designed system with a more practical

environment for drone applications to implement a WPT platform.
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CHAPTER 5

READ/IDENTIFICATION ENHANCEMENT OF CHIPLESS RFIDS USING

MACHINE LEARNING TECHNIQUES

5.1 Introduction

Printable chipless RFIDs are a particularly appealing solution in contexts where cost is

one of the most relevant constraints, as reported in [35]. However, these are very limited in

reading range (a few meters) as a consequence of their linear operation and their sensitivity

to interference. Cross-talk between reader antennas and environmental clutter interfer-

ence can however be de-embedded but this approach cannot account for large contextual

changes in the vicinity of the tag and reader. Also, the most commonly used tag detection

techniques require the knowledge of signal processing methods or the careful and manual

tuning of parameters including background subtraction, time gating, continuous wavelet

transform, and match filtering in the reader side to process backscattered signal and extract

the tag’s data. Here, the author proposes an alternative approach that takes advantage of

the immense pattern classification capabilities of modern machine learning techniques. For

pattern classification, the SVM classification is used not only to make the reliable predic-

tion but also reduce redundant information. Especially, this technique provides an excellent

performance when dealing with high-dimensional input data by taking advantage of the fact

that due to its generalization properties the performance of SVM does not depend on the

dimensions of the space. The SVMs also obtained results comparable with those obtained

by other classification methods utilizing machine learning strategy. Using these, it is pos-

sible to forego the aforementioned calibration approaches while retaining accurate reading
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capabilities. In order to demonstrate this, a set of 2-bit chipless RFID tags with two T-

shaped resonators encoding two distinct bits were first printed and their properties were

described and measured. Then, a ML approach is devised, presented and implemented.

Finally, the superiority of the machine learning approach is quantitatively demonstrated

before a conclusion is drawn.

5.2 Experimental system overview

(a) (b)

Figure 5.1: (a) Inkjet printed chipless RFID tags. (b) Details showing the two T-shaped
resonators encoding 2 bits.

5.2.1 Chipless RFID tag design and characterization

Four proof-of-concept chipless RFID topologies with two T-shaped resonant elements

encoding all possible 2-bit combinations were inkjet-printed with silver nano particle on

a PET substrate using a prototyping DMP2830 Dimatix inkjet printer. These topologies,

shown in Figure 5.9, form the basis for the set of measured data that will then be used

to train the ML algorithm. Each vertical microstrip line introduces a different stop-band
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resonance at approximately 3.45 and 5.7 GHz that can be used as IDs representing logic

‘00’, ‘01’, ‘10’ and ‘11’. The measured S21 values of all four tags are shown in Figure 5.2,

and demonstrate the proper operation of the tags. The overall geometrical design for a

T-shaped resonator is controlled by the key parameters summarized in Table 5.1 for each

design of resonator.

Table 5.1: DESIGN PARAMETERS

Length(L) Width(W) Tline 1(T1) Tline 2(T2)

Tag ‘00’ 40 mm 0.5 mm None None
Tag ‘01’ 40 mm 0.5 mm None 13 mm
Tag ‘10’ 40 mm 0.5 mm 8 mm None
Tag ‘11’ 40 mm 0.5 mm 8 mm 13 mm
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Figure 5.2: Wire measurement S21 results for the Tags ‘00’,‘01’, ‘10’ and ‘11’.

Only the magnitude and phase information of the transmission coefficients (S21), which

serve as the channel transfer functions between the reader antennas at discrete frequencies,
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were interested and used in the training.

5.2.2 Measurements

The proposed chipless RFID system consists of the transmitter reader/tag antennas,

receiver reader/tag antennas and resonator tag attached to a styrofoam block in a realistic

environment as shown in Figure 5.3. The Tx and Rx antennas were cross-polarized to

enhance cross-talk isolation. The S-parameters of the system were measured using a vector

network analyzer (VNA), ZVA8 from Rohde&Schwarz, with a total of 816 measurements

varying in the range of interrogation distances 5 cm up to 50 cm (in step of 2 cm), in

orientation (from -40◦ to +40◦ along phi(φ) angle, from -40◦ to +40◦ along theta(θ) angle)

with consideration of the tag radiation pattern between reader and tag antennas as shown

in Figure 5.4, and in the presence of clutter in the space separating the tag and the reader

antennas (80 cases out of the 816). To emulate the clutter, a paper box was used with the

size of (28 cm x 25 cm x 5.6 cm) and was always placed in the middle of the distance

between the tag and the reader antennas. In other words, each tag underwent a total of

204 measurements varying the: 1) range of distances: 23, 2) orientation of angle: 160

from 5 cm to 50 cm in step of 5 cm, and 3) presence of clutter: 21 from 10 cm (start

from 10 cm take the thickness of a paper box into account) to 50 cm in step of 2 cm.

Measured S-parameters from 1 to 10GHz with 0.018 GHz interval (in total 500 points per

measurement) were saved. The final size of dataset (816 x 500) for training was determined

based on different aspects such as training speed, complexity of classification, and so on.
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Figure 5.3: Illustration of the measurement setup of the chipless RFID system.

(a) (b)

Figure 5.4: (a) Measurement setup. (b) Measurement setup from reader side.

5.3 Machine Learning Approach

Machine Learning techniques have been widely applied to numerous challenging prob-

lems to make predictions or calculated suggestions based on large amounts of data. One

algorithm of learning called “supervised” is useful in cases where instances are given with
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a known dataset (the training dataset) corresponding to certain dataset in which prediction

can later be made [48]. The trained model first is trained to produce a function of supervised

learning algorithm and then uses a test dataset to validate the model. Based on the training

dataset containing instances, classification could identify in which of a set of categories a

new instance belongs. Several studies have been done for RFID-related applications uti-

lizing machine learning techniques. The SVM classification has been used for personal

healthcare application to collect and process multichannel data [70] and for learning-based

self-localization to refine an estimation of a robot’s location [71]. By applying numerous

RFID applications, machine learning techniques provide tremendous benefits in terms of

the predicted RFID tag detectability and the learning-based localization.

S21 magnitude / phase 

data at 1GHz 

S21 magnitude / phase 
data at 10GHz 

! Tag

ID

f(x)

Trained model

500 
points

Figure 5.5: Proposed SVM tag ID detection.

In this application, we developed the SVM prediction model employing kernel tricks

[72] with cross-validation to evaluate the accuracy. This SVM techniques were chosen

because they have been applied to various classification problems such as development

prediction models with high success [56]. The SVM essentially constructs a set of (N − 1)

dimensional hyperplanes in N -dimensional space to separate data points into groups used

for classification, as shown in Figure 2.4. When given a training dataset of n points of

the form −→x n, yn where the yi are either 1 or -1 indicating the class to where the point −→x i
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belongs, any hyperplane can be written as the set of points−→x satisfying−→w ·−→x−b = 0 where

−→w is the normal vector to the hyperplane and the parameter b/
−−→
||w|| determines the offset

of the hyperplane. In this respect, the optimal separating hyperplane for which the margin

is maximum is essential to place or locate unseen test points far away from the hyperplane

or in the margin. By employing a polynomial kernel function (5.1) of a hyperplane, the

points x in the d-dimensional feature space that are mapped into the hyperplane are defined

by a relation such as
∑

i aik(xi, x) making it easy to compute the similarity in the original

space.

k(xi, xj) = (xTi · xj + c)d (5.1)

The linear kernel function, if c = 0 (and d = 1), was finally used here. The final decision

function given by (5.2) for new predictions which takes a dataset as input and gives a

decision as output.

f(x) = sign
n∑
i

(aiyi)k(xi, xj) + b (5.2)

The SVM classifiers are trained on the entire training set using the optimized parameters

and evaluated for their performance on the test sets with kernel scale 5, which is the free

parameter invariant and independent of the input dimension. Several types of the kernel

functions with different kernel scale that were used in the training process are discussed in

the next section. As mentioned in the previous section, the measured S21 parameters from

1 GHz to 10 GHz with 0.018 GHz interval (in total 500 points per measurement) were used

as input data for the training process as shown in Figure 5.5. The targeted output of the

algorithm was set as the meaningful parameter for practical chipless RFID use contexts:
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Table 5.2: COMPARISON ACCURACY OF THE DIFFERENT TRAINED MODELS

Decision Boosted
k-nn SVM

trees trees

Magnitude data 59.6 73.7 67 89.6
Phase data 56 64.4 52.5 74

Magnitude & Phase data 60.7 76.7 55.7 86.2

namely, the IDs of the tags.

5.3.1 Performance evaluation

In order to detect the tag IDs, a training process using the proposed SVM classifica-

tion with the measurement data previously described was implemented. The best SVM

classifier achieved an accuracy of 98.3% when magnitude information of the measured

transmission coefficient (S21) were used for training process. It should be stressed that the

reported reading success rates are those obtained for raw data, without any cross-talk or

environmental-clutter removal calibrations. The total dataset was divided into 80% of the

dataset to train the model and 20% of the dataset to test the performance of the trained

model using k-fold cross validation which is a statistical method used to estimate the skill

of of trained models. In other words, 163 datasets were taken out from the total dataset that

had not been used for the training to demonstrate the robustness of the chipless RFID mea-

surement approach, especially in challenging contexts such as those used here with large

antenna crosstalk, close-by clutter and, thereby, difficult to extract tag IDs.

To identify the effect of the methods of different classification known as decision trees,

boosted trees and k-nn with the SVM, each classification process was repeated and explored

separately with different data sets composed with magnitude, phase and combined infor-

mation of the measured transmission coefficient (S21). Table 5.2 shows the result that the
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Table 5.3: COMPARISON ACCURACY OF THE DIFFERENT KERNEL METHODS IN SVM

Linear Quadratic Cubic Gaussian

Kernel scale 1 89.6 90.5 90.2 56.8
Kernel scale 3 98 85.7 81.8 35.5
Kernel scale 5 98.3 88.1 83.7 24.2
Kernel scale 7 95.8 85.6 84.9 65.5

Figure 5.6: Confusion matrix for SVM I.

accuracy from training increases up to 89.6% even for the measurements at longer ranges

when we use the SVM method with the dataset composed of magnitude data. Also, sev-

eral kernel functions were explored including linear, quadratic, cubic and Gaussian using

different kernel scale. Results obtained show that a linear kernel method based on kernel

scale 5 outperforms the other methods for detecting tag’s IDs with an accuracy of 98.3%

as shown in Table 5.3. In this context, the algorithm demonstrates a remarkable perfor-

mance for detecting tag’s IDs. The confusion matrix using magnitude data for SVM with

kernel scale 5, known as an error matrix in the field of machine learning classification is

shown in Figure 5.6. The confusion matrix allows more detailed analysis and visualization

of the performance of the trained model with SVM. It can be easily seen that the overall
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classification is 98.3% and above 98% for all different tag IDs.

One can use different detection techniques [73]-[74] to identify chipless RFID tag IDs

based on frequency-domain information, as reviewed in Table 5.4. To verify the fabricated

chipless RFID tag IDs and show the limitations of existing techniques, the standard chipless

RFID tag detection technique known as time-gating was used: its results are shown in

Figure 5.7-(a) and (b), for distances of 10 cm and 30 cm. The process of time-gating

follows the steps proposed in [73]. The frequency response of the tag ‘10’ at a tag-reader

distance at 10 cm—with a 3-4 ns time window—were readily obtained. However, at a

distance 30 cm, the technique was unable to reliably detect the tags, as shown with the

example of ID ‘10’ in Figure 5.7-(b), then compared to the wire measurement S21 result

for the tag ‘10’. In addition to the tag ‘10’, the frequency response of the tag ‘01’ at a

tag-reader distance at 10 cm were obtained utilizing the time-gating method, as depicted

in Figure 5.7-(c). Still, at a distance 30 cm in a different orientation +40◦ along theta(θ)

angle, the technique was unable to detect the tags, as shown in Figure 5.7-(d).
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Table 5.4: CHIPLESS RFID TAG DETECTION TECHNIQUES IN FREQUENCY DOMAIN II

Tag type
Detection Freq Distance

Calibration
Anechoic Presence

Technique (GHz) (cm) chamber of object

[73] Dual-band Time-gating 2.5-5 10-25
background

Yes No
subtraction

[46] Multi spiral Amplitude & phase variation 2-2.5 5-40
use

Yes No
reference tag

[47] Multi spiral
Signal space

2-3.5 up to 50
windowed

Yes No
representation signal

[75] Alphabetic
Frequency scanning,

57-64 10-16
background

Not clear No
pattern recognition subtraction

[76] Dual L-type dipole Short-time Fourier transform 3-10 25 None
Inside &

No
outside

[74]
Concentric Time-gating / free-space

2-8 up to 50 None No No
rectangular loop antenna response subtraction

This T-shaped SVM classification 0-10 5-50 None No Yeswork

By contrast our SVM-based technique achieved better than 98% read rates at that dis-

tance even in different orientations, without requiring the knowledge of the distance and,

therefore, of the time-gating delay. This work reveals the remarkable read/interrogate en-

hancement that can be achieved with this technique, without any required knowledge of the

environment, and in practical conditions varying by operating distance and orientation.
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Figure 5.7: (a) Wire measured and time-gated signal for Tag ‘10’ at distance 10 cm. (b)
Wire measured and time-gated signal for Tag ‘10’ at distance 30 cm. (c) Wire measured
and time-gated signal for Tag ‘01’ at distance 10 cm. (d) Wire measured and time-gated
signal for Tag ‘01’ at distance 30 cm in orientation +40◦ along theta(θ) angle.
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5.4 Chipless RFID System for Robust Detection in Real-world Implementation

This work also describes a novel method based on a ML classification approach for

highly accurate and robust identification of chipless RFID applications in a real environ-

ment. For this purpose, effective transponder reading is achieved not only for a wide vari-

ety of ranges and contexts but also for different commercial objects attached to the chipless

RFID tag, while providing tag-ID detection accuracy of up to 98.5%. A vertically po-

larized UWB monopole transmitting tag antenna, four tags encoding the four 2-bit IDs,

and a horizontally polarized UWB receiving tag antenna were also inkjet-printed onto a

flexible low-cost PET substrate and interrogated without cross-talk or clutter interference

de-embedding at ranges from 2 cm up to 50 cm, with different objects attached to the tag

(non-conductive, aluminum can, and plastic bottle filled with water), and with and without

the presence of scattering objects in the vicinity of the tags and reader. Several ML clas-

sification techniques are also explored, DT, k-NN, LDA, and SVM using the information

of the measured transmission coefficients (S21). Finally, an SVM method outperforms the

other methods displaying reading accuracies 98.5%. A depolarizing chipless RFID tag [77]

and a cross-polar orientation insensitive chipless RFID tag [78] were proposed to ease the

detection of items in a real environment such as tagging the objects which have high re-

flective and high absorptive materials. However, these are limited in the reading range with

the need of specialized tag design, and additional calibration/detection techniques such as

background subtraction are required. Here, based on the above work [79], the first ML

application for the enhanced accuracy with robust detection of chipless RFIDs regardless

of the wide variety of the ranges and contexts, the tag’s types, materials attached to the tag,

is proposed.
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5.4.1 Chipless RFID Tag design

The same chipless RFID tag topologies with two T-shaped resonant elements encoding

all possible 2-bit combinations were used. To verify the detuning of the tag’s resonator

when changing the material to be attached, S21 values of all four tags were first simulated

with a non-reflective object and highly reflective objects (aluminum can, plastic bottle filled

with water). Simulation utilizing ANSYS HFSS shows that they get detuned when they are

attached to highly reflective objects as shown in Figure 5.8. Without any required analysis

of the effect of the microwave propagation on different material on the tag response, the

superiority of the ML approach making detection of tag ID placed on conductive objects is

quantitatively demonstrated. For practical implementations, a horizontally polarized UWB

monopole receiving tag antenna, a T-shaped resonator, and a vertically polarized UWB

transmitting tag antenna are fully printed and connector-free. The receiving and trans-

mitting tag antennas are cross-polarized in order to minimize interference between the in-

terrogation signal and the re-transmitted encoded signal containing the spectral signature.

Photographs of the chipless RFID tag and antennas printed on PET substrate are shown in

Figure 5.9.
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Figure 5.8: (a) Simulated S21 values of the tag ‘00’ with respect to attached materials. (b)
Simulated S21 values of the tag ‘10’ with respect to attached materials. (c) Simulated S21

values of the tag ‘01’ with respect to attached materials. (d) Simulated S21 values of the
tag ‘11’ with respect to attached materials.
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Figure 5.9: Inkjet printed chipless RFID tags and antennas.

5.4.2 Measurements and Data Collection with a variety of objects

Overall, the measurement setup is similar to that used in the previous section. The

proposed chipless RFID system consists of the transmitter reader/tag antennas, receiver

reader/tag antennas and resonator tag attached to different material objects (plastic box,

aluminum can, and a plastic bottle filled with water) at a height of 8 cm from the ground,

in a realistic environment as shown in Figure 5.10 and Figure 5.11. The Tx and Rx an-

tennas were cross-polarized to enhance cross-talk isolation and placed on the sponge, a

thickness of 4 cm. The S-parameters of the system were measured using a VNA, ZVA8

from Rohde&Schwarz, with a total of 612 measurements varying over a range of interro-

gation distances from 2 cm to 50 cm (in steps of 3 cm), with the tag placed are different

objects. We also considered the radiation pattern between the reader and tag antennas, and

the presence of clutter in the space separating the tag and the reader antennas. To emulate

the clutter, a paper sheet and a copper sheet were used of size 18 cm x 20 cm and was al-

ways placed in the middle of the distance between the tag and the reader antennas as shown

in Figure 5.12-(b),(c).
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(a) (b) (c)

Figure 5.10: (a) Tag attached to the plastic box. (b) Tag attached to the aluminum can. (c)
Tag attached to the plastic bottle filled with water.

Figure 5.11: Measurement setup from reader side.
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Table 5.5: SPECIFIED COMPOSITION OF THE DATASET PER TAG

No clutter Paper sheet Copper sheet

Plastic box 17 17 17
Aluminum can 17 17 17

Bottle filled with water 17 17 17

153 51 51 51

In other words, each tag underwent a total of 153 measurements varying the: 1) range

of distances, 2) object materials, and 3) presence of clutter, and detailed measurement setup

specified in Table 5.5. Measured S-parameters from 1 to 10 GHz with 0.018 GHz interval

(in total 500 points per measurement) were saved. The final size of the dataset (612 x 500)

was determined for training based on different aspects such as training speed, complexity

of classification, and so on. Only the S21, which serves as the channel transfer function

between the reader antennas at discrete frequencies, were used in the training. To acquire

the 612 measurement dataset faster, the MATLAB Instrument Control Toolbox is used to

communicate with a VNA directly for collecting and analyzing data, visualizing the results,

and automating test without having to save and import it into MATLAB at a later time.

5.4.3 Performance Characterization of tag detection

The cubic kernel function, if c = 0 (and d = 3), outperforms the other classification

techniques, and several types of the kernel functions that were used in the training process

are explored in this section.

In order to detect the tag IDs, a training process using the several classification algo-

rithms with the measurement data previously described was implemented. Each classifica-

tion process was repeated and explored separately with different data sets composed with

magnitude, phase, real part, imaginary part, and combined information of the measured S21.
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(a) (b) (c)

Figure 5.12: (a) No object between the tag and the reader antennas. (b) Paper sheet between
the tag and the reader antennas. (c) Copper sheet between the tag and the reader antennas.

Table 5.6: COMPARISON ACCURACY OF THE DIFFERENT TRAINED MODELS

Decision Trees k-NN LDA SVM

Magnitude 43.5 52.3 70.3 70.6
Real 28.9 38.9 58.8 42.2

Magnitude & Phase 86.9 97.2 98.2 98.5
Real & Imaginary 79.9 96.6 97.2 90.3

In such way, the accuracy of detection increases due to the wealth of information available

to the algorithm from the multidimensional dataset constructed from the concatenation of

the combined information. The investigations were carried out using multidimensional in-

formation generated from various possible combinations of all or subsets of magnitude,

phase, real, and imaginary information of S21 which form the hybrid features. Results, pre-

sented in Table 5.6, based on these combined features show indeed a substantial improve-

ment in the algorithm prediction resulting in significant enhancement in tag ID detection.

Table 5.6 shows that the LDA classifier achieved an accuracy of 98.2% when magnitude

and phase information of the measured S21 were used for training process. Moreover, k-
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Table 5.7: ACCURACY WITHOUT SPECIFIED COMPOSITION OF THE

DATASET

No object Paper Sheet Copper Sheet

SVM LDA SVM LDA SVM LDA
Plastic box 67.1 69.5 67.6 68.9 74.8 79.4

Aluminum can 69.1 68.4 70.6 68.6 75.2 76.1
Bottle filled

67.6 69.9 68.9 67.8 75.7 75.2
with water

Average Error rate 31.4 31.27 23.93

NN classifier also exhibits high accuracy of reading success rates above 96% for raw data,

without any cross-talk or environmental-clutter removal calibrations. For SVM classifica-

tion, several kernel functions are explored including linear, quadratic, cubic and Gaussian

functions. Results obtained show that a cubic kernel method outperforms the other meth-

ods for detecting tag’s IDs with an accuracy of 98.5%, as also shown in Table 5.6. In this

context, the algorithm demonstrates a remarkable performance for detecting tag’s IDs com-

parable with those obtained by other classification methods. The confusion matrix using

magnitude and phase data for cubic SVM, known as an error matrix in the field of machine

learning classification, is shown in Figure 5.13. That matrix allows more detailed analysis

and visualization of the performance of the trained model with SVM. It can be easily seen

that the overall classification is 98.5% and the individual classification is above 97% for all

different tag IDs.

5.4.4 Detection Results in Different Context

One of the fundamental motivations for this research was to create a practical chipless

RFID tag reading system, which can ease the detection of items in a real environment such

as not only tagging the objects which have high reflective and high absorptive materials
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but the presence of scattering objects in the vicinity of the tags and reader. To verify the

effect of the material and the presence of objects, extracted dataset of specific composition

(17*4=68) from the whole dataset has not been used for the training. In other words, 68

datasets were taken out from the total dataset that have not been used for the training to

demonstrate the effect of the specific dataset. As Table 5.7 clearly shows that the accu-

racy changes with the material behind the tag and the presence of objects, the accuracy can

improve tag ID detection, especially without the data of challenging contexts such as the

presence of copper sheet between the reader and tag antennas. After training with 544 mea-

sured data points while leaving 68 others with the proposed SVM and LDA classification,

the trained model displayed the lowest error rate of around 23.93%, as shown in Table 5.7,

for measurement data sets with a copper sheet that were not included in the training. It can

be said that dataset composed of measurement with copper sheet has more impact on clas-

sification capability than other factors. Although the tag ID detection accuracy decreased

up to 12% with the highly reflective object between the reader and tag antennas, over 97%

of accuracy achieved utilizing combined features discussed in the part (5.4.3), suppressing

the effect of the environment and highly reflective objects.

To further understand the ability of the trained model to read chipless RFID tag IDs ac-

cording to the distance at 5-50 cm, the detection and actual ID values of each different test

sets were analyzed. Each test sets composed of 12 measurement configurations at constant

ranges of 5-50 cm in step of 3 cm, but with changing attached materials or types of objects

were taken out from the total dataset. Since the amount of original data used for the train-

ing was relatively independent between each measurement sets, extracted test sets from the

measured data are essential to verify the prediction capability. Another reason to create the

test set from measured data that has not been used for the training before in this application
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Figure 5.13: Confusion matrix for SVM II.

is to demonstrate the robustness of the chipless RFID measurement approach, especially in

challenging contexts such as that used here with large antenna crosstalk, close-by clutter

and, thereby, difficult to extract tag IDs. After training with 1200 (600 of magnitude data

and 600 of phase data) measured datasets while leaving 24 (12 of magnitude data and 12

of phase data) others at each distance for testing with the proposed SVM classification, the

trained model displayed an accuracy above 90% during self-testing within 40 cm except

for the case of the datasets with the copper sheet object close-by, as shown in Figure 5.14,

for datasets that were not included in the training. For example, 100% of accuracy in Fig-

ure 5.14 is calculated where the trained model correctly detects 24 tag’s IDs among 24 cases

of the test dataset. This work also reveals the remarkable read/interrogate enhancement that

can be achieved with this technique, without any required knowledge of the environment,

and in dynamic cluttered environments without the need for additional calibration.
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Figure 5.14: (a) Detection accuracy with different material attached to the tag at different
distances. (b) Detection accuracy with different object between reader and tag antennas at
different distances.
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5.5 Conclusion

In this chapter, the implementation of a specific machine learning technique, SVM

classification, to detect the chipless RFID tag IDs was demonstrated. Besides, high reading

accuracies (above 97%) were achieved without environmental calibration, even in the cases

of different orientations and with the presence of objects between the reader and tag anten-

nas. The proposed detection model is very scalable and generalizable to context for a large

number of tags, with a much higher number than the 2 bits used here, and with additional

influence factors.

The polarization dependence is one of the challenging issues of the chipless RFID sys-

tem, especially when placed different material objects such as highly reflective or absorp-

tive. In this work, the first application of such concepts for the enhanced accuracy detection

of chipless RFIDs is proposed for robust reading ability in the real environment and regard-

less the material of objects (highly reflective and absorptive) attached to the tag without the

additional processes such as background subtraction technique, calibration for the specific

material, and use of any featured tag.

Moreover, this approach effectively achieves the improvement in terms of reading range,

robustness to orientation change and environmental clutter. While most of the TDR-based

tags were a technical success in above mentioned, SAW RFID tags have limitation be-

cause SAW tags could only implement a limited set of unique ID numbers. By exploration

of tag’s performance with the proposed method utilizing ML classification for denser bit

implementations as the topic of future efforts, this research opens up a large number of

applications in which it is fundamental to support long read range, high data capacity and

high resistance to environmental conditions.
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CHAPTER 6

CONTRIBUTION AND CONCLUSION

6.1 Conclusion

In this thesis, the research on ML applications of wireless power transfer and identi-

fication technology was examined. The primary goal of this research was to develop the

implementation of a ML strategy based on 1) the NNs for real-time range-adaptive au-

tomatic impedance matching of WPT applications, 2) the Naive Bayes classifier for the

prediction of the drone’s position, thus enhancing the WPT efficiency, and 3) the SVM

classification strategy for read/interrogation enhancement in chipless RFID applications.

Chapter 2 provides the preliminary background of ML classification techniques by ad-

dressing their processes and relative advantages in detail.

Chapter 3 demonstrates ML applications for the WPT systems, including the automatic

real-time range-adaptive impedance matching network. This approach for the effective

prediction of the optimal parameters of the tunable matching network and selection range-

adaptive transmitter coils (Tx) is introduced in this dissertation aiming to achieve an effec-

tive automatic impedance matching over a wide range of relative distances. We propose a

WPT system consisting of a tunable matching circuit and 3 Tx coils which have different

radius controlled by trained NN models. Also, a prototype of the entire real-time range-

adaptive automatic impedance matching system is built and characterized. Finally, the

proposed approach achieves a PTE around 90% for ranges within 10 to 25 cm, is reported.

Chapter 4 presents the design and performance of ML application for the WPT systems

in UAV localization utilizing drones with machine learning techniques. Research on drones
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is currently a fast-growing field with great potential in many ubiquitous applications. The

wireless power transfer system with the fixed operation frequency at 13.56 MHz is applied

to a 1-coil receiver on the drone, with an array of transmitter coils on the ground. This

work presents an approach where the data is considered “classified” using machine learning

techniques, which allows the accurate prediction of the drone’s position, thus enhancing the

wireless power transfer efficiency.

Chapter 5 demonstrates ML applications for the chipless RFID system in read/interrogation

enhancement. A novel ML-based approach for classification and of detection tag IDs has

been presented which can perform effective transponder readings for a wide variety of

ranges and contexts while providing tag-ID detection accuracy of up to 98.3%. Four tags

encoding the four 2-bit IDs were inkjet-printed onto a flexible low-cost PET substrates and

interrogated without cross-talk or clutter interference de-embedding at ranges up to 50 cm,

with different orientations in the vicinity of the tags and reader. A SVM algorithm was then

trained using 816 measurements and its accuracy was tested and characterized as a function

of the included training data. Finally, the excellent performance of the approach, displaying

reading accuracies ranging from 89.6% to 98.3%, is reported. Also, a vertically polarized

UWB monopole transmitting tag antenna, four tags encoding the four 2-bit IDs, and a hor-

izontally polarized UWB receiving tag antenna were inkjet-printed onto a PET substrates

and interrogated without cross-talk or clutter interference de-embedding at ranges from 2

cm up to 50 cm, with different objects attached to the tag (non-conductive, aluminum can,

and a plastic bottle filled with water), and with and without the presence of scattering ob-

jects (paper sheet and copper sheet) in the vicinity of the tags and reader. Finally, a SVM

method outperforms the other methods displaying reading accuracies 98.5%.

These efforts set a precedent, opening the door to a rich and wide area of research

83



for the implementation of ML methods for the enhancement of WPT and chipless RFID

applications.
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