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SUMMARY

In this dissertation we take a trans-disciplinary approach, notably using Operations Re-

search, Geographic Information Systems and Strategic Management to build hybrid frame-

works. By using such techniques in unison, we aim to create robust frameworks that con-

sider a wide range of factors.

This dissertation focuses on hyperconnected fresh supply chains, particularly focus-

ing on local food supply chains with additional exploration into quick service restaurants

and fresh cut flowers. Local food systems are becoming increasingly important as con-

sumers are shifting towards traceability and sustainability of their food. Additionally, dur-

ing COVID-19 we saw the negative effects of depending on a global food supply chain,

as many countries limited imports and exports during the pandemic. We build market

expansion and logistics frameworks to manage local food systems and strengthen their in-

frastructure.

In local food supply chains, though sustainability is considered, perishability is not

typically a concern as the time from farm-to-fork usually spans 24-48 hours. However,

outside of local systems, fresh supply chains must consider both perishability and sustain-

ability. We propose a new framework that allows companies to assess their supply chains

from a big picture perspective to find improvements to better their sustainability.

In Chapter 1, we provide background information on fresh supply chain systems and

introduce each of the chapters. In Chapter 2, we propose a market deployment framework

which outlines a company’s dynamic expansion plan. We apply our framework to a case

study of a platform which enables local food supply chains by connecting farmers directly

to restaurants. In Chapter 3, we provide a Hybrid OR & GIS methodological framework

to the Dynamic (Mobile) Hub Location Problem in the context of a small-scale local food

supply chain network. In Chapter 4, we address the increasing corporate pressure to be

environmentally sustainable through the creation of a framework which allows companies

xvii



to assess and improve the sustainability within their supply chain. we apply our framework

to case studies concerning fresh cut flowers and quick service restaurants. Lastly, Chapter

5 summarizes our contributions to fresh supply chain frameworks and identifies potential

areas for future research.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Background

Fresh supply chains have been brought to light in the recent COVID-19 pandemic. Food

was being dumped at the farm, but there were shortages in the grocery stores [1]. This was

largely due to the fact that so much of the world relies on global food supply chains. Global

food supply chains allow for consumers to have variety all year long as seasonal items can

be produced in opposite hemispheres during off seasons. This is a major benefit of Global

supply chains. However, food supply chains often must have temperature controlled trans-

portation which is energy intensive and releases a large amount of CO2 into the atmosphere

[2]. In fact, food refrigeration accounts for 15% of global fossil fuel consumption and 40%

of greenhouse gas effects [3]. There are also large amounts of food wasted, in fact 30-40%

[4] is lost within the supply chain and 40% of those losses are occurring post-harvest [5].

One solution to this problem is the use of Local Supply Chains. Researchers argue

whether the emissions are in fact less in Local Food supply chains rather than Global Sup-

ply Chains due to economies of scale [6]. However, there are clear benefits to local supply

chains. For one, refrigeration is not needed, or greatly reduced as food generally travels

from ground-to-fork within 24-48 hours [7]. This eliminates the fossil fuel consumption

needed for refrigeration. Also, there is little to no waste as local supply chains are often on

demand, such that a strawberry is not picked unless there is a customer already assigned

to it. Additionally, local supply chains are better integrated into the communities in which

they live, making diversion of any remaining goods easier. These goods can be diverted to

food terminals, farmers markets and food banks relatively easily within a local system[8].

However, local supply chains often lack proper infrastructure and their logistics systems
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can be improved. In this dissertation, we build market expansion and logistics frameworks

to manage local food systems and strengthen their infrastructure.

We also acknowledge that Global Supply Chains are not being eliminated anytime

soon. They are still incredibly important and help increase the variety of diets worldwide.

We also propose a new framework that allows companies to assess their national and global

fresh supply chains from a big picture perspective to find improvements to better their sus-

tainability.

1.2 Introduction

This thesis contributes novel frameworks that utilize transdisciplinary approaches to Fresh

Supply Chain and Logistics Problems via Operations Research, GIS and Strategic Man-

agement. These fresh supply chain frameworks help build market deployment roadmaps,

sustainable logistics strategies and assign hub location in local supply chains. Our study

helps to provide solution approaches that are directly implementable in Industry.

In Chapter 2, we propose a market deployment framework which outlines a com-

pany’s dynamic expansion plan. We build a complementary solution approach that is made

up of Executive Factors, Market Ranking, Optimization and Heuristic Models with Dy-

namic Capabilities. This framework results in a series of alternative solution roadmaps that

identify which markets should be deployed in each time phase over a given time horizon.

We apply our framework to a case study of a farm-to-table platform which enables local

food supply chains by connecting farmers directly to restaurants.

In Chapter 3, we provide a Hybrid OR & GIS methodological framework to the Dy-

namic (Mobile) Hub Location Problem in the context of a small-scale local food supply

chain network. In our hybrid approach, we formulate our network as a p-hub median prob-

lem alongside the use of Kernel Density Analysis for hub placement in the network in the

case of p = 1. We evaluate our hub effectiveness within a local food supply network through

a comparison between historical distribution flows (without a mobile hub), expected sta-
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tionary hub routes and expected mobile hub routes (both via TSP Heuristics utilizing real

road distance).

In Chapter 4, we address the increasing corporate pressure to be environmentally sus-

tainable. Fresh supply chains face special considerations with decay and loss of quality in

perishable products that can occur in transit. We provide a framework that both suppliers

and purchasers can utilize to improve the sustainability of their supply chain. We employ

customer segmentation, decay & quality modeling, and life cycle assessment (LCA) to help

companies rethink their logistics strategies to better align with environmentally sustainable

practice. In this chapter, we apply our framework to case studies concerning fresh cut flow-

ers and quick service restaurants.

Lastly, Chapter 5 summarizes our contributions to fresh supply chain frameworks and

identifies potential areas for future research.
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CHAPTER 2

STRATEGIC MARKET DEPLOYMENT PLANNING: FARM-TO-TABLE

PLATFORMS

This chapter introduces a data-driven market deployment planning methodology towards

applicability in the context of farm-to-table logistics platforms. Our framework contains a

mix of qualitative and quantitative approaches, including semi-structured interviews, opti-

mization, heuristics, dynamic planning, clustering, executive factors, and weighted linear

combination, to create a market deployment process. Our methodology produces alterna-

tive roadmaps that can be directly used by companies to plan their expansion.

A portion of work presented in this chapter has been published in the Proceedings of the

Institute of Industrial and Systems Engineers Annual Conference under the following ref-

erence:

• Strategic Market Deployment: Farm-to-Table Logistics Platforms. I.T. Sanders, J.

Zhao B. Montreuil. Forthcoming in Proceedings of the 2019 Institute of Industrial

and Systems Engineers Annual Conference (IISE 2019).

2.1 Introduction

In a technology driven era, start-ups have gained more momentum in the marketplace, par-

ticularly user based platforms. As startups develop, they need to plan growing their user

base through expansion [9]. We propose a novel data-driven market deployment plan-

ning methodology for guiding budding start-up platforms to plan their expansion. Partic-

ularly, we examine farm-to-table logistics platforms whose expansion must consider both

the downstream side of markets, such as urban agglomerations with restaurants, institu-
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tions, and households demanding fresh and local food, and their upstream side consisting

of farms producing and selling fresh and local food.

Food supply chains have gained traction moving towards sustainability and trans-

parency. Consumers are demanding more information from restaurants [10]. Where did

the food come from? Are the products genetically modified? What is the carbon foot-

print of my food [10]? In turn, restaurants have increased responsibility for the raw sup-

plies they purchase [11]. One way to shift supply chains towards sustainability is through

smaller local supply chains. Local supply chains are generally known to be sustainable, no-

tably helping to reduce emissions by eliminating long-distance transport and minimizing

”food miles” [7]. Local food supply chains also bring more money into rural communities,

helping producers and disrupting the large scale supply chains controlled by giant food dis-

tributors [12].

We apply our planning process to the food supply chains within the restaurant sec-

tor. Our use case focuses on Farm’d, a start-up logistics platform, which connects farmers

to chefs allowing for direct shipment of goods without middlemen. Through enabling the

expansion of Farm’d, we create local fresh supply chains countrywide. These local supply

chains reduce the cost of transporting food to restaurants, enabling a higher profit margin

for both farmers and restaurants. By keeping distribution local, carbon footprints are re-

duced through less emissions and use of fewer resources. Combining these benefits, we

help to create a more sustainable fresh supply chain.

In entirety, we used a mix of qualitative and quantitative approaches including semi-

structured interviews, optimization, heuristics, dynamic planning, clustering, executive

factors, and weighted linear combination to create a market deployment process. To our

knowledge there are no current approaches for market selection that use all of these tools

in combination and this kind of strategic market deployment has not been studied for farm-

to-table platforms. We provide a framework that can be directly followed in industry and

applied by companies for their own expansion.
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2.2 Literature Review

2.2.1 Semi-Structured Interviews

Semi-Structured interviews are a common research technique to gather qualitative data.

They have been used in both operations management and food studies and ”are well suited

to generate in-depth insights” [13]. Semi-structured interviews consist of a series of in-

terviews, generally in groups, focusing on open ended questions to gain information and

insights through discussion. Hendry et al, gain insights on how local food supply chains

prepare for and respond to threats and opportunities stemming from constitutional change,

building resilience through semi-structured interviews [14]. Hill used semi-structured in-

terviews to study the use of electronic data interchange for supply chain coordination in

the food industry [15]. Teller et al. conducted semi-structured interviews with food waste

experts to gain insight on the relationship between retail store operations and food waste

[13]. We use semi-structured interviews to help determine Executive Factors.

2.2.2 Market Deployment

Once a company has established itself successfully in its first market, there comes a time

when its leaders must decide how to grow it. Often, this is done through market selection

and expansion. By selecting geo-markets carefully for stability and increased market po-

tential, firms can increase their likelihood of success [16]. Following the outline in Fish and

Ruby [17], international market selection is broken down into three processes: (1) market

screening, (2) market identification, and (3) market selection [18, 19]. Market screening

reduces the set of potential markets by eliminating candidates that do not fit certain criteria.

Market identification pinpoints markets that best fit the company’s objectives. Market se-

lection picks the final candidates to be used in expansion. Anderson used the approaches of

market share estimation, market grouping and market ranking to assess different markets

[19]. Using this combination of quantitative approaches can provide the decision makers
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with more comprehensive results to use in decision making processes [19].

2.2.3 Market Grouping/Clustering

Market grouping uses clustering to bunch markets for deployment. It has previously been

used by Kimiagari in a hybrid modeling approach to market deployment planning for natu-

ral disaster relief [9]. Market grouping has also been used by Papadopoulos as a quantitative

market approach for potential market assessment [20]. In the context of farm-to-table plat-

forms, it makes sense to base groupings on ”megaregions,” as coined by the Regional Plan

Association [21]. Megaregions are are clustered networks of American cities, which are

currently estimated to contain a total population exceeding 237 million [21]. Megaregions

share some or all of the following factors [21]:

1. Environmental systems and topography

2. Infrastructure systems

3. Economic linkages

4. Settlement and land use patterns

5. Culture and history

There are 11 megaregions identified by the Regional Plan Association including the

Arizona Sun Corridor, Cascadia, Florida, Front Range, Great Lakes, Gulf Coast, Northeast,

Northern California, Piedmont Atlantic, Southern California and Texas Triangle. These

megaregions can be seen in Figure 2.1.

2.2.4 Executive Factors and Market Ranking

Executive factors are defined by Kimigiari as influencing factors that determine market

demand [9]. They arise from statistical data and can be used for assessing market attrac-

tiveness. Other quantitative methods for market selection have also used executive factors
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Figure 2.1: US Megaregions as defined by the Regional Plan Association
Source: Regional Plan Association

including Zschocke et al., Papadoupolous and Denis and Golsefid et al [22, 20, 23]. Pa-

padopoulous used executive factors to help determine market rankings for optimal market

expansion [20]. However, current literature does not provide details on the collection of

Executive Factors, most seem to come from the author’s individual research efforts rather

than a systematic method. We propose an organized system to gather and assess Execu-

tive Factors through semi-structured interviews with experts as described in 2.2.1 and use

weighted linear combination to ascertain the final rankings.

2.2.5 Weighted Linear Combination

Albino states the relevance for of the use of spatial aspects in supply chains, particularly at

the local level due to an emphasis on the relationship between energy and environmental

aspects with economic aspects [24]. Weighted Linear Combination (WLC) is a spatial

technique [25]. It is a type of suitability analysis which is used for problems involving

multi-attribute decision making (MADM). Every attribute is considered a criterion and
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carries a weight based upon importance, the results are multi-attribute spatial features with

total scores [25]. WLC is commonly used for location intelligence, for example, Mahini

and Gholamalifard use WLC to select landfill locations [26]. WLC use has also been

expanded for selection of logistics hub locations in the Czech Republic by Ruda and in

Iran by Shahparvari et al. [27, 28]. We explore using Executive Factors in combination

with Weighted Linear Combination for Market Rankings.

2.2.6 Local Food Supply Chains

As consumers are demanding more information from restaurants [10]: Where did the food

come from? Are the products genetically modified? What is the carbon footprint of my

food [10]? In turn, restaurants have increased responsibility for the raw supplies they pur-

chase [29]. One way to shift supply chains towards sustainability is through smaller local

supply chains. Local supply chains are generally known to be sustainable, notably helping

to reduce emissions by eliminating long-distance transport and minimizing ”food miles”

[7, 12]. They also increase transparency as routes are shorter and it is easier to track prod-

uct all the way from origin to destination. Local food supply chains also bring more money

into rural communities, helping producers and disrupting the large scale supply chains con-

trolled by giant food distributors [7]. They are known to give fairer prices to customers,

a reduced environmental impact, and greater traceability [6]. They can also bring tourism

which can bring economic benefits to the communities [30].

Recently there has also been a shift towards global food security concerns calling

for improved traceability, and decreased food poverty [31]. Global supply chains also face

risk from political, environmental and health disruptions [31]. Also, in the current case

of COVID-19, infrastructure was broken down for large-scale food supply chains. It has

become harder to source food globally due to health and safety restrictions. The World

Economic Forum advised consumers for the “post-COVID need” to support “local food

systems with shorter, fairer and cleaner supply chains that address local priorities.” [32].
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2.2.7 Optimization and Heuristic Solution Methods

Optimization has been historically used to aid in market selection. Bhutta, Chang and Chen

use linear programming, Ou and Kuo use fuzzy analysis, Zschocke uses game theory and

Golsefid and Marchi use hybrid modeling [33, 34, 35, 36, 22, 23, 37]. The complexity

and solution algorithms associated with optimization can be challenging, but if models

are correctly formulated, optimization can be be a strong tool to aid in Market Selection.

Heuristic methods, may not solve to optimality, but can capture some factors that can be

difficult to build into an optimization model.

2.2.8 Dynamic Capabilities

Dynamic Capabilities enable the creation and implementation of effective business models

[38]. Teece defines dynamic capabilities as a firm’s ability to integrate, build and reconfig-

ure internal competencies to address, or in some cases, bring about change in the business

environment [39]. Over time, a market deployment plan must adapt as the business environ-

ment changes. Shane and Delmar stated that a key issue with previous market deployment

models is that they do not consider planning across a time horizon [40]. We address this

by building a dynamic model that accounts for continuous potential change in growth over

time and fluctuating markets.

2.3 Case Study Context

The businesses providing the marketplace and logistics platforms enabling food supply

chains between farms and restaurants, such as the Atlanta-based startup, Farm’d, whose

case is outlined in this paper, have ambition to profitably enable direct local fresh supply

chains in multiple markets. They have the goal of spreading to multiple markets across a

specific time window.

Under stringent venture capital investment and cash flow constraints, such businesses
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have to smartly plan their deployment beyond their original startup market [9]. At this

phase of their development, Farm’d did not have the in-house talent to plan their own

expansion, as would other startups in this phase of infancy. This paper introduces a data-

driven methodology, which takes in a desired time frame and list of goal markets and

produces instructions, or “roadmaps” as coined by Kimiagari, for where to deploy in which

time frame [9]. We call this methodology a market deployment process. Specifically, this

process uses two distinct solution approaches to produce a series of alternative roadmaps

consisting of sets of markets targeted for deployment at each phase of development of the

business. Our process allows for Farm’d and other growing businesses to generate feasible

market deployment roadmaps to meet their growth, profit and risk management goals.

The first step in creating the deployment model is to determine strategic intents of the

company at hand. In this case, the goal of the startup was to expand to the 66 most populous

metropolitan statistical areas (MSA’s) of the U.S.A. over a 4-year planning horizon. An

MSA has a central core of people with neighboring communities that are strongly integrated

with the core [41]. For example, Atlanta-Sandy Springs-Roswell is an MSA where Atlanta

is the central hub and Sandy Springs and Roswell are neighboring communities. In each

year of the planning horizon, the startup is to deploy into a set of cities. Market penetration

is defined as the percentage of the available market that a company has captured. In the

first year, a deployed city will have low market penetration that will increase with time as

the company acquires more customers.

The market deployment planning process produces multiple alternative roadmaps.

A roadmap outlines the cities that will be deployed in each time period and are assumed

to remain active in the time periods after deployment. Below, in Table 2.1, is a sample

roadmap that includes 8 cities over 4 years. In Year 4, New York is planned to have a

higher market penetration than Boston since its market will have been active for a longer

period of time.
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Table 2.1: Sample deployment roadmap

2.4 Methodology

We use a mix of qualitative and quantitative approaches to build our model. We start with

semi-structured interviews to learn about what is important to successful markets which

house F2T platforms. In this project, we combined qualitative approaches with data driven

quantitative approaches to build a framework for each of these processes. For example, in

market screening we use quantitative approaches in order to remain objective and to pre-

process a large amount of potential markets.A summary of the methodology can be seen in

the figure below:

Figure 2.2: Outline of Methodology for production of market deployment roadmaps
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2.4.1 Semi-Structured Interviews

In order to collect data to determine executive factors and their weights we conducted a

series of semi-structured interviews with subject matter experts (SME’s). There were 2

main stages of interviewing: the first stage included open ended discussions to gather data,

the second stage was dedicated to refine the factor candidates and later assign appropriate

factor weights. In the first stage, the interviewees were each invited to a round table dis-

cussion. The questions seen in Table 2.2 were used to start the discussion but we allowed

for the interviewees to direct the flow of the conversation. There were 3 round table dis-

cussions in the first phase, and each round table brought up the same factors of influence,

with minor deviations in details.

Since independent round tables often identify the same important factors, this can help

validate and triangulate the data. After the round tables, individual interviews were sched-

uled for follow up. They were provided Table 2.3 to look at the summary of factors identi-

fied.

The semi-structured interviews ended with one final round table with as many represen-

tatives from each of the original three round tables as possible. These SME’s were tasked

with assigning weights to the executive factors that they had originally identified as can be

seen in Table 2.4.

2.4.2 Weighted Linear Combination

Next we use Weighted Linear Combination or WLC. When facing a problem involving

multi-attribute decision making, WLC can be used. Every attribute that is considered is

called a criterion. Each criterion has an assigned weight based on its importance. This pro-

cess results in multi-attribute spatial features with final scores [25]. We use a combination

of the Executive Factors and weights found in the semi-structured interviews to score and

rank the MSA’s. An MSA with a rank of one is the most desirable MSA, and an MSA with

a rank of 66 is the least desired MSA.
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Table 2.2: Semi-Structured Interview Outline

In our application, we conduct WLC based on weights and Executive factors selected dur-

ing the Semi-Structured Interviews. For each MSA calculate the score:

score =
n∑

i=1

Ei ∗ wi s.t.
n∑

i=1

wi = 1 (2.1)

Ei is the score of an MSA for the ith executive factor, n is the total number of Executive

Factors. All values Ei are all normalized to hold a value between 0 and 100 and the sum of

all weights wi is equal to 1.
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Table 2.3: Results from Round Table Discussions

Table 2.4: Finalized Executive factors, components and data sources

In the case an Executive Factor Ei is made up of more than one component:

Ei =
m∑
j=1

Ci,j ∗ wi,j s.t.
m∑
j=1

wi,j = 1 (2.2)

Such that Cj is the score of the jth component, m is the total number of components

making up Ei, and wj is the weight of component j. The sum of component weights for

each Executive Factor must add to 1. Using Equation 2.1 and Equation 2.2 should result

in a a final score between 0 and 100 for each MSA. A score of 100 indicates a location

best suited for a market where as a score of 0 represents the worst. The MSA’s can then be

ranked using these scores. We save these rankings are they are used for both the heuristic

and optimization model. A table of the variables in Equation 2.1 and Equation 2.2 are seen

below in Table 2.5:

2.4.3 External Factors

There were some key factors that were not directly put into the ranking method as executive

factors. They were saved for the market selection step since most were hard to quantify
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Table 2.5: WLC Criterion

and scenario based. Thus, knowledgeable decisions were made based on our preliminary

ranking in combination with the following external factors. These factors were worked into

the optimization model and/or the heuristic as a constraint or multiplier.

Megaregions

From discussions during the Semi-Structured Interviews, it became clear that market de-

ployment roadmapping should exploit the overall configuration of the MSA’s across the

U.S.A. into 12 megaregions, as defined in America2050 as shown in Figure 2.1 [41]. Once

the platform was deployed in one city of a megaregion, it would be easier to deploy into

other cities in that megaregion due to the connectivity through the interstate system as well

as a base of suppliers that could serve neighboring markets. Also, once deployment in a

megaregion’s cities was launched, it was similarly easier to deploy in cities of neighboring

megaregions. To counter the above, the longer the venture waited before it penetrated and

built critical mass in an MSA and a megaregion, the more it opened the door to compe-

tition. This factor is captured in the second version of the heuristic through an adjustable

multiplier.
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Population

Population was not used in the rankings because it would artificially skew our results in

favor of large cities. It would have been inconceivable for the executive team of the farm-to-

chef platform to launch the deployment in a large city such as New York early in the market

deployment roadmap, due to both capital constraints and minimal deployment maturity.

Targeted MSA’s were thus grouped in four categories in terms of population size where M

represents million: > 10 M (Tier 1), 5-10 M (Tier 2), 1-5 M (Tier 3), and 500 K to 1 M

(Tier 4) [42]. Depictions of these tiers can be seen in Figure 2.3 and Table 2.6.

Table 2.6: Definition of Population Tiers by MSA

This allowed for the generation of roadmaps assuming various levels of the venture’s

capacity in which they could concurrently deploy in multiple cities of diverse population

size within the same year. This capacity was generally increasing with venture maturation.

The heuristic and optimization model take this factor in to consideration through capacity

constraints. For example, a constraint could enforce that no Tier 1 or 2 cities be picked in

the first time phase and a maximum of 12 MSA’s are chosen in the first time phase. Similar

constraints were generated for each time phase. Alternative roadmaps can have differing

constraints to test several scenarios.
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Figure 2.3: Percent of MSA’s in Different Tiers

2.4.4 Cost and Revenue Equations

We generate cost and revenue equations based on the important components of the company

at hand. In order to build these equations, we took what we learned in the Semi-Structured

interviews and followed up to make sure our formulations aligned with the company profit

model.

2.4.5 Solution Approaches

We choose to do two complementary solution approaches. One solution requires the for-

mulation of an optimization model, the other is a heuristic model based on the ranking

we created in the previous section. We then expand upon the initial Heuristic to include a

proximity factor that considers previous deployments. In both approaches we use the same

constraints and evaluate the models using the same Cost and Revenue Functions.
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2.5 Application of Methodology

2.5.1 Semi-Structured Interviews

In order to collect data to determine pertinent market ranking factors and their weights, we

conducted a series of semi-structured interviews with subject matter experts (SME’s). The

12 SME’s selected for interviews have different expertise, but each is relevant to market

deployment of farm-to-table platform. The SME’s include a Food Sourcing Manager, a

Logistics Practitioner, a Business Strategy Consultant, a Farmer, a Restaurant Owner, a

Marketing Manager, a Food Data Analyst, a Platform CEO and Academics in the fields of

marketing and supply chain.

Since the all of the independent round tables identified the same important factors,

this can help validate and triangulate the data. After the round tables, individual interviews

were scheduled for follow up. They were provided Table 2.7 to look at the summary of

factors identified.

Table 2.7: Results from Round Table Discussions: Factors and Definitions

The semi-structured interviews ended with one final round table with representatives

from each of the original three round tables (not everyone could attend due to scheduling).

These 6 SME’s were tasked with assigning weights to the executive factors that they had

originally identified as can be seen in Table 2.8.
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Table 2.8: Executive Factors, Components, Scale and Data Source

2.5.2 Definition of Executive Factors

Restaurants

Since the platform provides matches farmers to restaurants, it is important that there are

enough restaurants in the market. To measure this, we calculated the number of full service

restaurants (FSR) and number of FSR’s per capita within 15 miles of a MSA center. These

factors were combined into one group so that concentration and pure volume are both

considered. This data was captured through use of the Web Miner. The Web Miner pulls

restaurant location information from Google maps for the most recent restaurant data. This

data was not available by MSA but by city. For an MSA with multiple cities, the total

number of restaurants was calculated as the sum of restaurants within 15 miles of individual

cities. In the Atlanta-Sandy Springs-Roswell MSA example, the total number of restaurants

was calculated by adding together the FSR’s within 15 miles of Atlanta’s MSA center plus

the FSR’s within 15 miles of Sandy Spring’s MSA center plus the number of FSR’s within

Roswell’s MSA center and then the overlap was subtracted from that total.

20



Wealth

We were not only interested in the amount of restaurants, but the success of these restau-

rants. As GDP increases the standard of living for that population also increases. With more

disposable income, consumer spending on FSR’s also increases. It has been shown that

there is a statistically significant positive correlation between GDP and sales of FSR’s [43].

The more sales a FSR has, the more supply they must purchase, which creates an increased

demand for the platform, thus in our ranking we use the factors GDP and GDP/capita for

each MSA retrieved from the U.S. Bureau of Economic Analysis [44]. Once again, we

combined two similar factors into one group so that concentration and pure volume are

both considered.

Locavore Index

Since this platform focuses on local supply chains, we wanted to try to quantify the desire

for local meat and produce in a given market as presented in the semi-structured interviews.

To do this we made use of the ”Locavore Index” by state. The 2018 Locavore Index was

researched and compiled by Strolling of the Heifers, a non-profit food advocacy group [45].

Most of the raw data came from the USDA and Census. The index was calculated as the

weighted average ranking in all of the component categories. The weighting is as follows

and can be seen in Table 3 farmers markets per 100,000 people (15%); Consumer Supported

Agriculture (CSA’s) per 100,000 people (15%); Farm to School (product of participation

rate and budget percentage) (10%); Food Hubs per 100,000 people (5%); direct sales per

capita (20%); USDA local food grants per capita (25%); and hospitals sourcing food locally

(10%).

Agriculture Production Value

We not only needed to measure the consumer market, but also the market supply. To

measure this we used the USDA’s dataset, ”Agriculture Production Value by State” [46].
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Table 2.9: Locavore Index Components

The initial data set included dozens of entries per state that tracked and measured several

metrics that were not pertinent to this project, like cattle death rate. Thus, we pruned the

metrics that were not useful. We also eliminated commodities that are not edible, such as

cotton. The remaining commodities mainly fell into the following categories: cattle, hogs,

chickens, food fish, milk, vegetable total, etc. Lastly, we subtracted any exports as this

project focused on local supply chains. The MSA’s were then ranked based on their state’s

agricultural production value of these categories. If an MSA has a city in more than one

state, the state of the central hub city is selected. Also, since a state can have more than one

MSA, we allow for ties in this category. For example, Dallas-Fort Worth-Arlington and

Houston-The Woodlands-Sugar Land are both ranked 9th in agriculture production value.

Logistics (Drivers)

Logistics is also an important factor in opening a new market. The platform provides

logistics services to connect delivery drivers to farms and restaurants. Therefore, truck

driver availability and affordability is critical to the platform. We measured this through

data gathered from the Bureau of Labor Statistics [47]. We use average truck driver salary

per hour data to help estimate the affordability of logistics in an MSA. We also used the

number of people employed as truck drivers per 1000 jobs in each MSA to estimate the

availability of truck drivers.

22



Traffic

A driver’s environment is also significant. To capture the conditions of an MSA’s trans-

portation system we used INRIX’s traffic scorecard [48]. The INRIX 2017 Global Traffic

Scorecard provides an evaluation of urban travel and traffic health for over a thousand cities

around the world. The analysis was based on the average number of hours a driver spends

in traffic in a year, and INRIX congestion index, the percentage of time spent in congestion

during peak hours, etc. This project focused on number of hours spent in traffic to eval-

uate a MSA’s transportation system. If an MSA had multiple cities, the one with largest

population would be selected to determine the hours spent in traffic.

2.5.3 Weighted Linear Combination

Using the Executive Factors and weights we obtained from the Semi-Structured Interviews

we get Table 2.10 below:

Table 2.10: Final Executive Factors, Components and associated Weights

We apply these weights to Equation 2.1 and Equation 2.2 for each MSA resulting in

a score. We then rank them based on the score. The original ranking can be seen in

Table 2.11.
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Table 2.11: Original Rankings of MSA’s

2.5.4 Cost and Revenue Equations

To estimate the success of each roadmap for the optimization model, the following revenue

and cost estimation models were used. These are all pre-computed. First, in Equation 2.3,

the restaurant market penetration rate is based on time since the platform has been deployed

in MSA m and the anticipated growth rate. Then in Equation 2.4, revenue is calculated by

estimating the average amount of revenue each restaurant would spend on food in the plat-

form and multiplying that by the current restaurant market penetration rate. This is then

multiplied by the rate which the platform charges. Note that the percent food share, Fmt

and the speed of growth factor, gmt, are different for each MSA and are based on Execu-

tive Factor scores for the Locavore Index, Restaurants, and Supply. The value for average

percent of a restaurants revenue spent on food is largely similar across the industry and the

value of p was gathered through the Semi-structured interviews.

rm = restaurant revenue per state · GDP of MSA m
GDP of corresponding state

Amt = is MSA m is deployed at time t? 0 - no, 1 - yes

p = avg. percent of a restaurant’s revenue spent on food
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Rmt = Total revenue in MSA m at time t

PR
mt = percent market penetration of restaurants in MSA M at time t

z = the percentage cut of revenue for farms

Fmt = percent food share, how much of a Restaurant’s food cost is spent on the platform

in MSA m at time t

gmt = [1.5, 2, 2.5] speed of growth factor for MSA m at time t, three options for speed:

slow, medium and fast

PR
mt =

gmt

100
·
∑
t

Amt (2.3)

Rmt = rm · p · Fmt · PR
mt · (1− z) (2.4)

To calculate cost, we estimate the market penetration of the farms (Equation 2.5) and restau-

rants based on time since the platform has been deployed in MSA m and the anticipated

growth rate. We add together the delivery costs based on the average number of drops

per farm and per restaurant over the course of a year. Acquisition costs are also added in

each period to account for the new farms and restaurants acquired. Drop and stop costs

are different for each MSA based on Executive Factor scores in Traffic and Drivers. An

additional fixed cost associated with the initial deployment of a MSA is also added based

on the Executive Factor of Wealth and external factor of population. This total cost can be

seen in Equation 2.6.

TR
m = total number of restaurants in MSA m

T F
m = total number of farms in MSA m

fm = fixed cost to deploy in MSA m (Sales force, marketing costs)

sFm = cost per Farm stop in MSA m

P F
mt = percent market penetration of farms in MSA m at time t
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sRm = cost per Restaurant drop in MSA m

aRmt = acquisition cost for a restaurant in MSA m at time t

aFmt = acquisition cost for a farm in MSA m at time t

DF
mt = average number of stops per farm/year

DR
mt = average number of drops per restaurant/year

Cmt = total cost of MSA m at time t

P F
mt =

√
gmt − 0.5

100
·
∑
t

Amt (2.5)

Cmt = sRm(T
R
m ·PR

mt·DR
mt)+s

F
m(T

F
m ·P F

mt·DF
mt)+a

F
mt·T F

m(P F
mt−P F

m(t−1))+a
R
mt·TR

m(PR
mt−PR

m(t−1))+fm

(2.6)

Now that we have calculated the cost and revenue components, we calculate the estimated

induced profit of the platform at time t:

Expected Induced Profit at time t =
∑
m

Rmt − Cmt (2.7)

2.5.5 Solution Approaches

We choose to do two complementary solution approaches which are both dynamic. One

solution requires the formulation of an optimization model, the other is a heuristic model

based on the ranking. We then expand upon the initial Heuristic to include a proximity

factor that considers previous deployments. In both approaches we use the same constraints

and evaluate the models using the same Cost and Revenue Functions.
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Optimization Model

Decision Variables:

Amt = whether a MSA m is actively deployed at time t, 1 if currently active, 0 otherwise

Dmt = whether MSA m is FIRST deployed at time t, 1 if first deployed in this time phase,

0 otherwise

Parameters:

M = M1 ∪M2 ∪M3 ∪M4 where M is the set of all MSA’s and Mv is a set of all MSA’s

in tier v

blvt = lower bound of number of deployed MSA’s in tier v at time t

buvt = upper bound of number of deployed cities in tier v at time t

max
∑
t∈T

∑
m∈M

(Rmt − Cmt) · Amt (2.8a)

s.t.
∑
t

Dmt ≤ 1 ∀ m ∈M (2.8b)

∑
t′∈T, t′≤t

Dmt′ = Amt ∀ m ∈M and t ∈ T (2.8c)

Am(t−1) ≤ Amt ∀ m ∈M and t ∈ T (2.8d)

blvt ≤
∑

m∈Mv

Dmt ≤ buvt ∀ t ∈ T, v ∈ {1, 2, 3, 4} (2.8e)

Amt and Dmt are binary ∀ m ∈M and t ∈ T (2.8f)

Above in objective (2.8a) we optimize for profit by subtracting cost from revenue and mul-

tiplying it by an indicator variable which tells us whether a MSA m is deployed in time t.

Constraint (2.8b) ensures that a MSA can only start deployment in one time phase. Con-

straint (2.8c) ensures that a MSA cannot be actively deployed before an initial deployment

is made by Dmt′ . Constraint (2.8d) ensures that if a MSA is active it indeed stays active
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and does not shut down. Constraint (2.8e) ensures that an appropriate amount of cities

from each tier are deployed in each time phase. (Each MSA is assigned to a tier based on

its population.) This is to prevent too much capital being spent in the first few time periods,

and to prevent taking on large cities before a solid reputation is built.

We solve the optimization model through the use of CPLEX within Python. Due to

the pre-processing, the optimization model solves very quickly, in less than one minute.

Original Heuristic Model

In the Original Heuristic Model we are using the rankings as input, and setting population

constraints based on tiers. In each time phase we take our ranked list of MSA’s, starting

with Rank 1, and see if it fits the constraints. If it does, we deploy in that time phase, if not

we go to the next Ranked MSA and check constraints. We repeat until we have either filled

all possible positions set by the constraints or we have iterated through the entire list of

MSA’s. This heuristic is solved via Python and solves in less than one minute. An outline

can be seen in Figure 2.4

Figure 2.4: Outline for Original Heuristic
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Heuristic Model with Proximity Factor

In the Heuristic Model with Proximity Factor we follow the same logic, however we rerank

at the end of every time phase. We take the list of MSA’s that were deployed in the first time

phase and make note of their respective megaregions. Now we take the list of remaining

MSA’s that have not been deployed. We take their initial Executive factor total score and

multiply it by a proximity factor IF an MSA has been deployed in the same megaregion

previously. We use this new score to determine the rankings and the process is repeated.

This heuristic is solved via Python and solves in less than one minute. An outline can be

seen in Figure 2.5.

Figure 2.5: Outline for Heuristic with Proximity Multiplier

2.6 Results

There are three main categories of results to compare: the output of the optimization model,

the initial output of the heuristic and the output of the heuristic with an added proximity

factor. These three outputs can be seen as Market Deployment Roadmaps in Figure 2.6,

Figure 2.7, and Figure 2.8.
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2.6.1 Roadmap generated by the Optimization Model

The roadmap created from the optimization model, Figure 2.6, values slow growth with

only one MSA pursued in the first time phase. Notably, the Phase 1 opening is an MSA that

is not categorized within a megaregion. The second time phase shows moderate growth,

spread across the country, with concentrations in the Northeast and California. The 3rd

time phase hosts the majority of market openings. The 4th time phase is much smaller

and only hosts 7 openings. This method chooses to exclude certain MSA’s that are not

profitable resulting in a roadmap that only features 45 of the original 66 MSAs.

2.6.2 Roadmap generated by Initial Heuristic

This roadmap, Figure 2.7, generally follows a more hyperconnected deployment, with the

majority of openings occurring in the 4th time phase. In the first two time phases, MSA’s

in different megaregions are deployed across the country. In the third and fourth time

phases there is expansion within each of the clustered megaregions and some reach into

new megaregions. Note that there is no Phase 1 deployment into the Gulf Coast, Texas

Triangle, Southern California Megaregions. There is also no Phase 1 deployment into the

Piedmont Atlantic Region, however this megaregion already has the ”Phase 0” deployment

of the original starting MSA of Atlanta.

2.6.3 Roadmap Generated by Heuristic Model with a 0.5 Proximity Factor

This roadmap, Figure 2.8, also features a hyperconnected deployment by megaregion, with

the majority of openings happening within the 4th time phase. In the first two time phases,

MSA’s in different megaregions are deployed across the country. In the third and fourth

time phases there is expansion within each of the clustered megaregions and some reach

into new megaregions. Note that there is no Phase 1 deployment into the Florida, Gulf

Coast, Southern California and Cascadia Megaregions. There is also no Phase 1 deploy-

ment into the Piedmont Atlantic Region, however this megaregion already has the ”Phase
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0” deployment of the original starting MSA of Atlanta.

Figure 2.6: Roadmap for deployment generated by Original Optimization Model where
some MSA’s were not selected.

2.6.4 Comparison of Roadmaps in the Northeast Megaregion

In Figure 2.9 we can see the roadmaps produced by each of the models within the Northeast

Megaregion. We can clearly see which MSA’s were not chosen in the Optimization model

and can also see the differences in phases of deployment for each of the MSA’s.

2.6.5 Sensitivity Analysis of Proximity Factor on Profit

We conducted a sensitivity analysis on the Proximity Factor used in the third model, looking

at the expected profit as related to the magnitude of the factor. Since the proximity factor

is not included within the Cost and Revenue equations, due to complexity, it follows that

there is no association between magnitude of Proximity Factor and expected profit as seen

in Figure 2.10.
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Figure 2.7: Roadmap for deployment generated by the initial Heuristic Model

2.6.6 Comparison of Expected Profit

In Table 2.12 we display the expected profits for each roadmap as generated by the same

Revenue and Cost Equations. Since we saw that Optimization model did not pick MSA’s

as they were not profitable, we wanted to see the impact of removing those MSA’s from the

Heuristic inputs. As seen in the table, it drastically improves the expected profit. However,

we must take into account that we only consider the first four time phases, it is possible that

these non-profitable MSA’s become profitable in future phases.

Table 2.12: Expected Profits resulting from Roadmaps
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Figure 2.8: Roadmap for time-phased deployment generated by the Heuristic Model with
a Proximity Factor of 0.5

Figure 2.9: Roadmaps from each Methodology for the Northeast Megaregion
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Figure 2.10: When adjusting the Heuristic with different PF’s we see no association be-
tween PF and Profit
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2.7 Discussion of Results

Between the two different solution methodologies, there are two distinct patterns. The opti-

mization methodology leads to a map that generally forms in clusters starting at the second

time phase. In most cases, MSA’s that are generally close together begin deployment in

the same time phase. However, in the two roadmaps generated by the Heuristic (Initial,

and with Proximity Factor 0.5) we see more of a hyperconnected network. Once an MSA

is deployed in a given Megaregion we see steady deployments in that region growing in

each phase. There are fewer clusters of MSA’s in the same region all deploying in the same

time phase. Specifically, once we add in a Proximity Factor to the Heuristic Model we see

the removal of the third time phase cluster within the MSA’s in the state of Texas. This is

expected as the proximity factor aids the model in creating more growth spread over time.

Another interesting feature is the difference in profits as seen in Table 2.12. Though

the Heuristic with the Proximity Factor achieves a lower profit margin, we must consider

that the cost and revenue equations do not capture the cost benefits of proximity. This fact

is proven in Figure 2.10. The proximity of deployed MSA’s give potential for shared sup-

pliers, better reputation and connection through interstate which can impact profit. These

benefits can be hard to capture in Cost and Revenue Equations which is why we pursued a

complementary solution approach. It allowed us to generate roadmap solutions that were

focused on different aspects. This portfolio of roadmaps gives decision makers more op-

tions and information so that they can make informed decisions for their own companies.

2.8 Conclusion

In this chapter, we have introduced a data driven market deployment planning methodology

for marketplace and logistics platform startups in the farm-to-table industry that combines

qualitative and quantitative approaches. We applied our methodology of ranking and se-

lection and have shown the profitability through the use case of a farm-to-chef platform
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startup. Our results show that our methodologies are profitable and that each roadmap has

different benefits. Semi-structured interviews, optimization, dynamic planning, cluster-

ing, executive factors, scenario-based analysis and weighed linear combination were used

to create a novel profitable market deployment process. To our knowledge, there are no

current approaches for market selection that use all of these tools in combination. By com-

bining qualitative and quantitative methods we were able to create a new holistic approach

to provide a better framework for new business platforms looking to expand.

In this use case, our process can enable local food supply chains that are sustainable.

This helps grow local economies, reduce carbon footprints and support underpaid farmers.

This model was also deployed by the F2T Atlanta based platform and one of the roadmaps

created was selected for their own expansion. The generalized decision making process

we presented can be modified to aid other businesses in creating their market deployment

strategies in many fields.

In this research we did not consider the differentiation in available products in dif-

ferent regions and seasons. This was not considered since the current customers of the

platform define their menus around what products are in season in their local area. How-

ever, as the platform expands, the customer base may change and may be more particular

about the products they require. Future research could incorporate product differentiation

seasonality into the model, considering the origins of products (meat, produce, dairy). The

research could also extend to cases where there is demand for fresh food grown in farms

not necessarily in the same market, and downstream growth in a market’s demand depends

on multi-category food supply offering from farms.

In a different stream, future work could examine resiliency in supply chain networks

that can be generated through Market Deployment Frameworks. The company should be

able to use the generated frameworks to expand over time with confidence. Supply chain

collaboration, supplier selection and supply chain network design all play a part in generat-

ing supply chain resilience [49]. Resiliency of local food systems have garnered attention
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in other fields [50, 51] but limited work from an operations and supply chain manage-

ment perspective [52]. In future work, we hope to expand into the further study of product

segmentation among suppliers and the impact it has on supply chain resiliency.
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CHAPTER 3

REDUCING TRANSPORT MILES THROUGH THE USE OF MOBILE HUBS: A

CASE STUDY IN LOCAL FOOD SUPPLY CHAINS

This chapter examines the use of mobile hubs in local food supply chains and proposes

a combined operations research and spatial methodology for mobile hub suitability and

location analysis, specifically using using kernel density, the p-hub median problem and

weighted linear combination.

The work presented in this chapter has been published in the Proceedings of the 54th

Hawaii International Conference on System Sciences under the following reference:

• I.T. Sanders and B. Montreuil, ”Reducing Transport Miles Through the Use of Mo-

bile Hubs: A Case Study in Local Food Supply Chains,” Proceedings of the 54th

Hawaii International Conference on System Sciences (HICSS-54 2021). ISBN 978-

0-9981331-4-0.

3.1 Introduction

Food supply chains have gained traction moving towards sustainability and transparency.

Consumers are demanding more information from restaurants. Where did the food come

from? [10] Are the products genetically modified? What is the carbon footprint of my

food? In turn, restaurants have increased responsibility for the raw supplies they purchase

[11]. One way to shift towards sustainability and transparency is through local food supply

chains. They are generally known to be sustainable, notably helping to reduce emissions

by eliminating long-distance transport and minimizing ”food miles” [7]. Local food supply

chains also bring more money into rural communities, helping producers and disrupting the
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large-scale supply chains controlled by giant food distributors [12].

Local food supply chains have not gone unnoticed by the business world. There has

been an increased presence of marketplace and logistics platforms enabling direct connec-

tion between farms and restaurants. However, these startups often do not have the time or

capital to invest in logistics infrastructure which leads to non optimized routing.

A lack of logistics infrastructure is not unique to local food supply chains. It is

present in many supply chain and logistics systems. For example, infrastructure can be

destroyed by disaster [53]. In other cases, a lack of infrastructure investment and planning

can threaten supply chain efficiency [54]. Local community interest and involvement in

neighborhood logistics has blossomed. Government and industry have begun to consider

local needs in resource allocation and decision-making processes [28]. This interest has

pushed companies to consider ventures within local supply chains.

Also, in the current case of COVID-19, infrastructure was broken down for large-

scale food supply chains. It has become harder to source food globally due to health and

safety restrictions. The World Economic Forum advised consumers for the “post-COVID

need” to support “local food systems with shorter, fairer and cleaner supply chains that

address local priorities.” [32]

Logistics are essential to these supply chains and directly affect supply chain per-

formance [55]. The use of logistics centers as inter modal distribution hubs has become

increasingly popular. These logistics centers often serve multiple purposes including but

not limited to: distribution, consolidation, storage, infrastructure nodes, materials handling

and customs checkpoints [56].

Particularly in food supply chains, food hubs have grown in prominence. As de-

fined by the USDA, a food hub is “a business or organization that actively manages the

aggregation, distribution and marketing of source-identified food products, primarily from

local and regional producers to strengthen their ability to satisfy wholesale, retail and in-

stitutional demand” [8]. These hubs serve as a meeting points and points of sale for both
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producers and consumers. Local food supply chains stand to benefit from the use of a hub

that is made up of characteristics drawn from both logistics and food hubs. However, local

food supply chain hubs do not need as many features as traditional logistics and food hubs.

Simplicity is key. This study aims combine attributes of logistics hubs and food hubs in

order to define important characteristics needed for a mobile food logistics hub.

In this case, we examine a Farm-to-Table (F2T) platform which owns no physical

assets and secures the services of drivers who own their own vehicles. The drivers are paid

via a daily salary, which is formulated considering the number of stops, volume of goods,

and are paid a bonus if they are able to deliver all their goods on time. Since the drivers

own their vehicles, they are self-incentivized to take the most efficient routes.

Currently, the F2T platform does not use any hubs. The hired drivers travel directly

from supply points (farms) to demand points (restaurants). There is no systematic organi-

zation to the assignment of drivers to routes or stops and it is done manually by an analyst

at the company. Since most restaurants order goods from multiple farms, some products

(that have the same destination) may be delivered by different drivers. This has led to

several restaurants receiving multiple deliveries in one day which is inconvenient for the

restaurants. For each delivery, the restaurant employees must spend some time greeting

the driver and providing oversight and direction. The clients also expect to get deliveries

by 3pm to allow adequate preparation for their dinner customers. Unfortunately, the F2T

platform was seeing late delivery instances in up to 27% of its restaurant clients.

We explore integrating mobile hubs into such a F2T logistics network to help solve

some of the unique requirements of a logistics system for a local food supply chain. A

mobile hub in this case, is a movable, refrigerated trailer cooled at a food safe tempera-

ture that can be picked up by a pickup truck and moved on command. The mobile hub

will be manned by one driver who will serve as security and organize the products by cus-

tomer/planned route. This driver owns the vehicle and is paid at approximately the same

rate as a delivery driver. Examples of mobile hubs can be seen in Figure 3.1. In this initial
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exploration, we study a mobile hub with the ability to be moved from day to day but not

within a day. Drivers will pick up products from supply points (farms) and bring them to

the mobile hub. There will then be a secondary set of delivery drivers. These drivers pick

up the products necessary for their customers/planned route from the hub, and deliver the

products from the hub to the end destinations (restaurants).

Figure 3.1: Mobile hubs of different sizes

Unlike large food distribution systems, in local food supply chains, customer de-

liveries are not on a regular schedule and vary by day. Therefore, a stationary hub may

not be best. Due to the fluctuating nature of the daily customers, this study aims to test

the feasibility of mobile hubs. To ensure success of such a mobile hub, location is of the

utmost importance. The hubs must be placed strategically for accessibility, transportation

efficiency and service coverage. These hubs serve as both consolidation and distribution

points for delivery drivers that can change location based on daily demand.

The work that has been done in hub location has focused on large scale supply chains

often with large geographical areas, thousands of customers, and thousands of suppliers.

These papers must consider several hubs to cover the intended customer coverage area.

They often must make several assumptions and estimations for simplicity of calculation

due to the size of the system. However, in local supply chains customer coverage is much

smaller. Local supply chains are often defined by consumers and policy makers to only
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cover a radius of 100 - 400 miles [57]. Due to the small number of suppliers and cus-

tomers, we are able to consider exact road distance in most circumstances whereas most

hub location solutions use route length estimation variants. We also consider details such

as service constraints (on time delivery) and congestion in a large scale metropolitan area

which have not been considered by many in literature.

Previous research efforts in hub location focus on solely using OR efforts or solely

using GIS efforts, there are very few combined approaches. We are able to create a novel

combined framework that uses both OR and GIS techniques to effectively identify po-

tential mobile hub locations. We make use of integer programming formulations, kernel

density and weighted linear combination to select mobile hub locations. We strengthen our

contribution by considering real transportation costs and service measures in addition to

evaluating our results through a comparison to historical route data. We answer Campbell

and O’Kelley’s call for research ”directed at more realistic problem variants” and their call

for the study of environmental implications of flow consolidation [58]. We also build on

the small set of papers that address dynamic (mobile) hub location and the set that address

small networks.

The paper is structured as follows: 3.2 reviews literature in hub location and kernel

density. Section 3.3 presents the case study context. Section 3.4 introduces the method-

ologies for hub location selection in a condensed form. Section 3.5 expands upon 3.4

and provides the details of the methodology. Section 3.6 provides the application of the

Methodology to the case study. Section 3.7 displays the results and Section 3.8 provides a

discussion of said results. Section 3.9 presents conclusions of the study and presents areas

for future research.

3.2 Literature Review

There are two equally regarded main tracks of hub location research as outlined by

Campbell and O’Kelly in their literature review of the past 25 years of hub location research

42



[58]. One track approaches Hub Location Problems with an Operations Research (OR)

lens, focusing on robust mathematical formulations, including effective cuts and strong

lower bounds often highlighting computation times. While providing computational in-

sights, these OR style approaches often do not explore the interpretation of the impacts

on real-life logistical results. The second track approaches hub location problems with a

Geographic Information Systems (GIS) lens. These studies focus on spatial analysis and

often involve the use of real-life data and study the societal impact of their logistics and

transportation strategies. Campbell and O’Kelly argue that both of these lenses are ”vital

and have contributed to the the impressive progress” made in Hub Location Research [58].

However, the efforts within these lenses are often siloed and there is little interdisci-

plinary work done to make use of both OR and GIS in a combined approach for hub location

research. We hope to expand on this sparse literature by presenting a hybrid methodology

that combines established hub location techniques from both OR and GIS with a practical

implementation.

3.2.1 Hub Location Definition

Hub location problems share several key characteristics as outlined by Campbell and O’Kelly

[58]. Our problem has each of these distinguishing features and can therefore be catego-

rized as a Hub Location Problem.

1. Demand assigned via flows between OD pairs and not individual points.

2. Flows can go through hubs.

3. Hubs are facilities to be placed.

4. There is some benefit (or requirement) of routing flows through hubs.

5. There is an objective who’s outcome is dependent on the placement of the hub facil-

ities and their associated routing of flows.
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3.2.2 Operations Research Approaches to the Hub Location Problem

One of the earliest facility location models that could be categorized as Hub Location

Research was formulation of the P-Median Location Problem (PMLP) by Hakimi [59]. In

this problem, Hakimi defined origin-destination (OD) flows within ”a communication net-

work such as a telephone interconnecting system ...[where] all traffic flows (messages)

within the network must arrive at the center S before they are processed and then sent to

their proper destination” [59]. Here, S serves as a hub within the network as it fits the

definition we presented in the previous section. The problem searches for the location of

p hubs which minimize the average distance between the hubs and each customer. Soon

after, Goldman was able to extend node optimality of Hakimi’s models [60]. Two decades

later, Campbell defined a hub location analogue to the the the PMLP as the p-hub median

problem (PHMP) [61]. In this work, Campbell defines the PHMP: Given a set of demands,

locate p-hub facilities at candidate sites to minimize the total transportation cost to serve

the demand [61]. Several other works have applied and/or built upon Hakimi and Camp-

bell’s work including Groothedde et al., Marin et al., and Daskin and Maass. [62, 63, 64].

There have also been many other MIP formulations studied [65, 66, 67]. In our work, we

apply the Integer Programming formulation by Campbell with the parameters set to fit our

case study [61].

Another line of modeling done within Operations Research for the hub location prob-

lem is continuous approximation modeling for many-to-many networks. In such models,

demand is handled as continuous over a planar service region. In solutions, origins and

destinations can be allocated to multiple hub locations. Daganzo has done a majority of the

work in this field and an overview of the method is seen in [68]. Continuous approxima-

tion as applied to logistics systems can be seen in work by [69, 70]. Though this method

can provide near optimal solutions, it is built for larger instances and performs better in

larger cases rather than smaller instances [70]. This has been demonstrated in [71, 72, 73].

Since our case study involves a small instance, we choose to use an Integer Programming
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formulation (in combination with Kernel Density), as described in the previous paragraph,

as opposed to a continuous approximation approach.

3.2.3 Geographic Information Systems Approaches to the Hub Location Problem

GIS has seen more varied approaches including gravity models and spatial interaction

models [58]. A popular type of GIS model used is a weighted linear combination (WLC)

[25]. It is a type of suitability analysis which is used for problems involving multi-attribute

decision making (MADM). Every attribute is considered a criterion and carries a weight

based upon importance, the results are multi-attribute spatial features with total scores [25].

WLC is commonly used for location intelligence, for example, Mahini and Gholamalifard

use Weighted Linear Combination (WLC) to select landfill locations [26]. WLC use has

also been expanded for selection of logistics hub locations in the Czech Republic by Ruda

and in Iran by Shahparvari et al. [27, 28].

Shahparvari et al. discuss five main Spatio-structural criteria that are important in

WLC for logistics hub location: Transportation Infrastructures, Geophysical Conditions,

Socio-Economic Infrastructures, Environmental Limits and Geo-political Conditions [28].

Transportation Infrastructures is defined as access to a transportation network, in our case,

interstates and roads. Geophysical Conditions are defined as areas that have suitable land

surface and landform. Socio-Economic Infrastructures focus on the ability to access skilled

manpower. Environmental limits encompass vegetation cover, soil types, and temperature.

Geo-Political Conditions consider proximity to political boundaries [28]. Some of these

criteria do not apply to local system mobile hubs (Environmental Limits, Geo-Political

Conditions, and Socio-economic Infrastructures), but some may prove useful and should

be considered (Transportation Infrastructures and Geophysical Conditions) as seen in the

following paragraphs.

Local food is defined as food purchased within 275 miles or the same State where it

was produced by the Food Safety Modernization Act, enacted in January 2011 [57]. Geo-
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political conditions, or the proximity to political boundaries, are negligible here as a small

geographic area is highly likely to have uniform conditions. Environmental limits, such

as vegetation cover, and soil types are also insignificant as mobile hubs do not need to be

built and will remain on asphalt. As a mobile hub is a one-man operation and there is not a

need for a large number of skilled workers. Socio-economic infrastructures such as access

to skilled workers, therefore, are also inconsequential.

The last two criteria, Geophysical Conditions and Transportation Infrastructures are

important to a mobile hub. The mobile hub’s main goal follows the same goal as the

logistics hub location problem: to pick a site that offers the greatest customer coverage

while offering the lowest possible transportation cost [74]. Access to transportation infras-

tructure, in this case, highways and interstates, are especially important, thus showing the

importance of Transportation Infrastructures [56, 75]. Geophysical conditions usually per-

tain to topography and disaster risk [76]. However, for this case, it concerns the availability

of a flat parking space for the mobile hub. This is not a given commodity at every location

since many restaurants are located in extremely urban areas without nearby parking.

Beyond WLC, we also see systematic descriptive and explanatory models to capture

flow in works like Olsson and Fotheringham [77, 78]. There has also been work done

connecting the spatial interaction framework with the location allocation model [79]. No-

tably, GIS methodologies often provide a degree of accuracy that can’t be captured in a

MIP model [26]. Historical routes with actual road-traveled distances can be used, rather

than rough approximations. Albino states the relevance for of the use of spatial aspects in

supply chains, particularly at the local level due to an emphasis on the relationship between

energy and environmental aspects with economic aspects [24].

3.2.4 Dynamic (Mobile) Hubs

There has been little research done on Dynamic hub location, where the hub is chang-

ing locations over time and the majority of work has been done through OR approaches.
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Gelareh and Nickel studied public transport hub networks that do not require a fully inter-

connected set of hubs and include multiple time periods and operating and closing costs of

hubs [80]. Contreras et al. used branch and bound in addition to a Lagrangean relaxation to

solve multi period uncapacitated multiple allocation hub location problems where the hubs

were fully interconnected [81]. Faugere et al. study mobile hubs in the context of parcel

delivery [82]. They show that mobile hubs are valuable when demand is consistent and

are even more valuable when demand is variable. The flexibility offered by mobile hubs

allow for network adjustments based on variations in demand patterns. Faugere et al. also

show the positive impact of mobile hubs on environmental sustainability of the systems

[82]. However, all of these models consider multiple hubs in large logistics systems. To

our knowledge, there is no literature on the application of Mobile Hubs in small instances,

such as local supply chain networks.

3.2.5 Kernel Density

Kernel Density is a commonly used GIS technique which aggregates sample points

into geographic units, often known as rasters, to model spatial occurrences. This aggrega-

tion of points into a raster is known as a smoother density estimator. The first paper that

dealt with such a probability density estimation with a general kernel estimator was Rosen-

blatt [83]. A Kernel Density Estimator, helps visualize an unknown probability density

function for a series of topological sample points in order to predict future points.There

are several variations of the Kernel Density Estimator, one of the most commonly used

in GIS is quartic kernel function described by Silverman [84]. Kernel Density has seen

numerous applications. For example, when using a naive Bayes classifier to estimate the

class-conditional densities of data, it can improve prediction accuracy [85]. Kernel density

has also been used to build effective hot spot maps, most notably in analyzing crime den-

sity for the purpose of community planning [86]. It has also been used in public planning

efforts to predict fire incidents and ambulance demand [87, 88].
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3.2.6 Combined Approaches

In literature, we see a lack of combined approaches that consider both OR and GIS.

However, there are two new papers that show promise in using a combined method. Belu

et al. propose a spatial model for optimal placement of logistics hubs in a predefined eco-

nomic area, through the use of linear programming [89]. They consider variables such as

the point coordinates, served population, number of served townships and average delivery

time. More recently, Rodriguez et al. demonstrate the usefulness of a combined approach

by combining a simulation-optimization approach with a spatio-temporal arrival process

for facility location and vehicle assignment for firefighters [90]. They combine a Kernel

Density Estimator and a Markov-Mixture of Erlangs of Common Order model.

3.2.7 Review

Although there has been over 25 years of work done on Hub Location problems, there

are improvements to be made. Most work has either been done solely within OR or solely

within GIS. Even though ”both aspects are vital and have contributed to the impressive

progress in the field,” there has been little combined work [58]. Kernel Density has long

been used in other applications but has only been recently applied to hub location problems

[90]. There is also a call for more research to be directed at more realistic problem variants

especially ones that include transportation costs and service measures [58]. In existing

application papers, there is very little research done on small instances or in local supply

chains. Campbell and O’Kelly also call for more work done on Dynamic Hub Location

and the incorporation of environmental assessment into hub location problems, especially

considering flow consolidation [58]. In this work we address these limitations by creating

a hybrid OR and GIS model that utilizes Kernel Density. We apply our methodology to a

real case study concerning hub location within a local food supply chain system considering

transportation costs, service measures and the environmental impact of consolidation.

This implementation demonstrates the impact of the solution approach within the in-
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tricacies of local food supply chains. Specifically, we utilize the OR approaches of a MIP

formulation of the p-hub median problem and TSP heuristics, complemented with the GIS

methods of Kernel Density, Suitability Analysis and Network Analysis.

Most solution approaches to hub location problems depend on Euclidean distance [58],

by using a GIS solver we are able to utilize real road distance, providing a degree of accu-

racy not previously achieved. This is possible due to natural small size of instances for a

local supply chain system.

3.3 Case Study Context

We explore the location analysis of a mobile hub within a logistics system for a

startup Farm-to-Table (F2T) platform that enables local food supply chains. We partic-

ularly look at an Atlanta based F2T platform that connects suppliers (farms), directly to

customers (restaurants), surpassing middlemen. The F2T platform secures the services

of drivers to deliver between suppliers and customers on a contract basis. This platform

induces logistics that must consider both the downstream side of markets, such as urban

agglomerations with restaurants, institutions, and households demanding fresh and local

food, and their upstream side consisting of farms producing and selling fresh and local

food. There are four main types of orders in the system: subscription type (where orders

are known well in advance), orders with a week advance notice, orders with one-day ad-

vance notice, and same-day orders. The majority of orders are not same-day orders, so

routes can be planned daily and in advance. Unlike large food distributors, the customer

list (for farms and restaurants) is not the same each day. The restaurants and farms are

all located in the state of Georgia, since this is a local food supply chain. A map of the

restaurants and farms can be seen in Figure 3.2.

In this particular case, we are looking at a system where the platform has no phys-

ical assets and secures the services of drivers who own their own vehicles. The drivers are

paid via a daily salary, which is formulated considering the number of stops, volume of
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Figure 3.2: Farm-to-Table Farms and Restaurants

goods, and are paid a bonus if they are able to deliver all their goods on time. Roughly,

each hired driver is given the same number of stops per day. Since the drivers own their

vehicles, they are self-incentivized to take the most efficient routes because they are re-

sponsible for their own gas, mileage to their vehicle and the time at which their workday

ends. The combination of these factors imply that the drivers are motivated to maintain

efficiency and timeliness for their routes. They are therefore aligned with the overall goal

of using mobile hubs to reduce the time and length of routes.

Currently the F2T platform does not use any hubs. The hired drivers travel directly

from supply points (farms) to demand points (restaurants). There is no systematic organi-

zation to the assignment of drivers to routes or stops and it is done manually by an analyst

at the company. A typical logistics timeline for a F2T can be seen in Figure 3.3 and an

approximation of routing can be seen in Figure 3.4.

Since most restaurants order goods from multiple farms, some products (that have the
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Figure 3.3: Sample timeline with no hub

Figure 3.4: Sample map and routes including farms and restaurants but no hub

same destination) may be delivered by different drivers. This has led to several restaurants

receiving multiple deliveries in one day which is inconvenient for the restaurants. This

can be seen in Figure 3.4, where restaurants in green and yellow are receiving more than

one delivery each day. For each delivery, the restaurant employees must spend some time

greeting the driver and providing oversight and direction. As confirmed by the structured

interviews in Chapter 2, one delivery is highly preferred for restaurant clients. The clients

also expect to get deliveries by 3pm to allow adequate preparation for their dinner cus-

tomers. Unfortunately, the F2T platform was seeing late delivery instances in up to 27% of

its restaurant clients.
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We explore integrating mobile hubs into a F2T logistics network to help solve some

of the unique requirements of a logistics system for a local food supply chain. A mobile

hub in this case, is a movable, refrigerated trailer cooled at a food safe temperature that can

be picked up by a pickup truck and moved on command. A picture of such a hub can be

seen in Figure 3.1. The mobile hub will be manned by one driver who will serve as security

and organize the products by customer/planned route. This driver owns the vehicle and is

paid at approximately the same rate as a delivery driver. In this initial exploration, we study

a mobile hub with the ability to be moved from day to day but not within a day. Drivers will

pick up products from supply points (farms) and bring them to the mobile hub. There will

then be a secondary set of delivery drivers. These drivers pick up the products necessary

for their customers/planned route from the hub, and deliver the products from the hub to

the end destinations (restaurants). A visualization of this can be seen in Figure 3.5

Figure 3.5: Logistics Daily timeline with hub

The mobile hub addresses the problem of multiple deliveries through consolida-

tion. That is, all of the supply (products from the different farms) will be brought to the

mobile hub such that a driver can pick up all of the ordered products for a restaurant and

make a single delivery to each customer. This can be seen in Figure 3.6 where we add a hub

and there are no longer restaurants with multiple deliveries in one day like in Figure 3.4.

We address the second problem, of late deliveries, by improving routing. First, we require

supply points (farms) to have goods ready for pickup at a set time allowing for consolida-

tion at the hub before 12 pm. Second, we hire several hub-to-demand point drivers with
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a limited number of stops to ensure on time delivery. Also, since the mobile hub can be

moved from one location to another on different days with no additional cost, this could

help address the fluctuating nature of the daily customers. If more customers are concen-

trated south of the city one day, the hub could be located in the south. Conversely, if more

customers are concentrated north of the city, the hub could be located in the north.

Figure 3.6: Sample network with farms, restaurants and a hub

In this analysis, we limit the potential hub locations to existing F2T restaurant

customers. This was done because existing customers demonstrated interest and could be

granted a discount on their purchases in exchange for participation. Permission to park the

hub at these restaurants was granted with minimal effort, whereas, parking in non-customer

locations would likely involve permits and bureaucracy.

To summarize, in this problem, there is a large pool of on-demand carriers, with time

windows for both pickups at farms and for deliveries at restaurants. The set of customers

is not consistent on a day to day basis and fluctuates. We also have strict service require-

ments and penalties for late delivery. Each restaurant order can contain multiple products
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from multiple farms, with potential transport incompatibilities between purchased prod-

ucts, calling for consolidation. We also study the environmental impact of consolidation

implementation. We explore the use of a mobile hub that can serve as a consolidation and

distribution point and be relocated as necessary from day to day to fit these constraints.

This idea of a mobile hub aligns with the idea of Hyperconnectivity which stems

from the Physical Internet (PI) and aims to improve the economic, environmental, societal

efficiency and sustainability of the way physical objects are moved, deployed, realized, sup-

plied, designed, and used. PI is a global hyperconnected logistics system that enables asset

sharing and consolidation across numerous parties and modes. Hyperconnectivity allows

for efficient and seamless information, transaction, and material flow across stakeholders

throughout the supply chain [91].

3.4 Methodology Summary

We present two alternative methodologies. The Methodology for Selection of Mobile Hub

Location(s) presents our hybrid methodology for selecting a Mobile Hub throughout the

week. In a non-traditional manner, we use the P-hub median model to narrow down the

candidate hubs instead of using it as the final selection model. In our results we hope to

show that the model can be used for this purpose, in combination with other techniques, to

provide efficient results.

A summary visual representation can be seen in Figure 3.7, further details are seen

in the following section. To demonstrate that this application is effective, we use Stationary

Hub Algorithm to select the stationary hub for comparison. Stationary Hub Algorithm uses

a more traditional application of the P-hub median model such that it selects the one hub

that minimizes the distance traveled from the hub to the demand points.
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Figure 3.7: Outline of Methodology for Mobile Hub Location

3.4.1 Methodology for Selection of Mobile Hub Location(s)

1. Consider all potential hub locations which are current restaurant customers. We only

consider current customers to eliminate the need to deal with applying for parking

permits or other documentation.

2. Use kernel density on historical data to identify customer hot spots. Identify all

demand points that fall within a predetermined range of the centroids of the hot

spots. These serve as the new set of candidate hubs. This helps drastically reduce

the number of candidate hubs to be used in p-hub median problem (next step) to be

solved in a reasonable amount of time (minutes or hours vs. days).

3. Formulate the problem as a p-hub median discrete facility location problem. We do

this to identify the remaining hubs that minimize the total transportation cost.
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4. Solve the p-hub median problem using a computational solver for a predetermined

number of hubs, p.

5. Use a Weighted Linear Combination to further reduce the number of candidates

based on required suitability. Here, we address some important variables like avail-

ability of parking. To collect this data at an earlier stage (with many more candidates)

would have been extremely time consuming. Therefore, it is done later in the process

when there are fewer candidates for which to collect data.

6. Use TSP heuristics to determine the effectiveness of each of the remaining candidate

hubs.

3.4.2 Methodology for Selection of One stationary Hub

In the secondary methodology we propose a shorter methodology. We use a more tradi-

tional application of the P-hub median model such that we set p = 1 and select the one hub

that minimizes the distance traveled from the hub to the demand points. We then evaluate

it using TSP heuristics. For the detailed algorithm, please see Section 3.6.6.

3.5 Methodology

3.5.1 Kernel Density (Steps 1 and 2 of Mobile Hub Methodology)

Kernel Density is a method that estimates the probability density function of a random vari-

able. In this case, we are studying demand points, which are (x,y) geographic coordinates

(restaurant orders/deliveries). We are making inferences about future points based on a data

sample. Since we are looking at geographic data demand points, we aggregate by a grid,

or raster. The generic kernel density estimator can be written as follows in Equation 3.1:

f̂(x;H) =
1

n · h

n∑
i=1

K(
x−Xi

h
) (3.1)
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Here, f̂ is the smoothed probability mass for a data point Xi in a geographic area (deter-

mined by the kernel), and K is the kernel estimator [84]. The function arguments are x

which is the unobserved demand point, and H which is commonly called the bandwidth

estimator, window width or smoothing parameter, based on author preference. This band-

width estimator determines the smoothness of the kernel. Lastly, to make sure that the

probability mass f̂ remains 1, we divide by n [84, 90]. There are several types of kernel

functions, including but not limited to Uniform, Triangular Epanechnikov, Quartic, Tri-

weight , Gaussian and Cosinus as seen in the Table 3.1 [90].

Table 3.1: Popular forms of Kernel Density Estimators

Source: https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCALCOPIES/AV 0405/MISHRA/kde.html

Quartic Kernel Functions are most commonly used in GIS, and are the form that we

use. In order to calculate the bandwidth, we use an adapted version of Silverman’s Rule

built for two dimensions [84].

We use kernel density to identify customer hot spots, or areas where total number

of demand points are expected to be high. We then identify demand points which fall

within these high frequency regions. The original data set had hundreds of hub candidate
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locations. Using kernel density, we can lessen the number of hub candidates such that

computation time to solve the P-hub Median problem is reduced. Since we use real route

data to solve the p-hub median, it is important to have a relatively small number of points

such that solving can be down within an hour.

3.5.2 The P-hub Median Problem

The p-hub median problem is defined by Campbell: Given a set of demands (OD pair

flows), locate p-hub facilities at candidate sites to minimize the total transportation cost

to serve demand. The total transportation cost is the demand weighted sum of costs for

serving all OD pairs [58]. To protect the interests of the F2T platform that was used for

this study, we do not exactly define the transportation cost here. However, generally, the

transportation costs are the rate in which the hired drivers are paid. The drivers are paid

via a daily salary, which is formulated considering the number of stops, volume of goods,

and are paid a bonus if they are able to deliver all their goods on time. The bonus is not

included in the cost equation used in the formulation. The basic formulation of the p-hub

median problem can be seen below as defined by Campbell [61]:

Decision Variables:

Xijkm = Fraction of flow from location (origin) i to location (destination) j is routed via

hubs at locations k and m in that order

Yk = 1 if location k is a hub 0 otherwise

Zik = 1 if location i is allocated to the hub at location k and 0 otherwise

Parameters:

Wij = Flow from location i to location j

Cij = Standard cost per unit from location i to location j
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Cijkm = cik + cmj + αckm

min
∑
i

∑
j

∑
k

∑
m

Wij ·Xijkm · Cijkm (3.2a)

s.t.
∑
k

Yk = p (3.2b)

0 ≤ Yk ≤ 1 and integer ∀ k (3.2c)

0 ≤ Xijkm ≤ 1 ∀ i, j, k,m (3.2d)∑
k

∑
m

Xijkm = 1 ∀ i, j (3.2e)

Xijkm ≤ Yk ∀ i, j, k,m (3.2f)

Xijkm ≤ Ym ∀ i, j, k,m (3.2g)

The objective function adds together all of the transportation costs over all OD pairs. Con-

straint 3.2b establishes exactly p hubs. Constraint 3.2c restricts Yk to be 0 or 1. Constraint

3.2d limits the range of Xijkm. Constraint 3.2e ensures that the flow for every OD pair is

routed via a hub pair. Constraints 3.2f and 3.2g assure that flows are routed via hub loca-

tions [61].

In this step, we further reduce the number of hubs by selecting p hubs that minimize

the transportation cost. We acknowledge that this is not a traditional application of the

p-hub median problem, as it is usually used for final hub selection. However, we hope to

show that it can be a powerful tool for hub reduction in our combined methodology.

3.5.3 Weighted Linear Combination

The next technique we use is called Weighted Linear Combination or WLC. When facing

a problem involving multi-attribute decision making, WLC can be used. Every attribute

that is considered is called a criterion. Each criterion has an assigned weight based on its

importance. This process results in multi-attribute spatial features with final scores. The

higher the score, the more suitable the area [25]. We are using WLC to help reduce the
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number of hub candidates and select the best hub locations.

We focus on three attributes, Geophysical Conditions, Transportation Infrastructures

and Population Density are important to a mobile hub. The mobile hub’s main goal follows

the same goal as the logistics hub location problem: to pick a site that offers the greatest

customer coverage while offering the lowest possible transportation cost [74]. Access to

transportation infrastructure, in this case, highways and interstates, are especially impor-

tant, thus showing the importance of Transportation Infrastructures [56, 75]. Geophysical

conditions in this case, concerns the availability of a flat parking space for the mobile hub.

This is not a given commodity at every location since many restaurants are located in ex-

tremely urban areas without nearby parking. Population density is important to capture

the foot traffic and vehicle congestion in an area. For ease of access to the mobile hub for

delivery drivers, we want areas of lower density. Areas of higher density may make it hard

for transfers between drivers to take place. Population density has previously been shown

as a useful attribute by Merchan, Snoeck and Winkenbach to discriminate areas of interest

for local road networks [92].

In our application, we conduct WLC based on distance to interstate, availability of

parking and population density. For all rasters with centroid coordinates (x, y) :

score = I(x,y) ∗ wi + P(x,y) ∗ wp +D(x,y) ∗ wd (3.3)

I , P , and D values are all normalized to hold a value between 0 and 100 and the sum of

wi + wp + wd = 1 resulting in a a final score between 0 and 100. A score of 100 indicates

a location best suited for a hub where as a score of 0 represents the worst. A table of the

variables in Equation 3.3 are seen below in Table 3.2:
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Table 3.2: WLC Criterion

3.6 Application of Methodology

3.6.1 Mapping Potential Hub Locations

In order to test our methodology, we apply it to the our Farm-to-Table case study. Following

Step 1 of the Methodology section, as discussed in the case study, we choose to only use

current restaurant customers as potential hub locations. This allows us to avoid applying

for parking permits and any other bureaucracy that may pop up in other locations. A map

of these candidate locations can be seen in Figure 3.2.

3.6.2 Kernel Density

Following step 2 of the methodology, next, we conducted Kernel Density Analysis. Ar-

cMap version 10.7.1 (ESRI) was used to geocode 123,556 destinations that received de-

liveries between Oct 15, 2018 and Nov 18, 2019. We calculated the bandwidth using a

formula adapted from Silverman’s Rule of thumb as seen below [84, 93]:

bandwidth = 0.9 ∗min(SD,

√
1

Dm ∗ ln(2)
) ∗ n−0.2 (3.4)

Here, SD is the standard distance, a statistic which measures the degree to which fea-

tures are dispersed around a geometric mean center, Dm is the median distance (weighted)

from the mean center and n is the number of points in the sample. This resulted in a
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bandwidth of .05 decimal degrees. We then input this value into a quartic kernel density

estimator, which is commonly used in GIS, adapted from Equation 3.1.

The kernel density map seen in the Figure 3.8 was colored according to the Jenks

natural breaks classification. The distribution and density of destinations were mapped for

the full set of data obtained, as well as each of the distinct weekdays for a singular week

during the year. we were able to identify 41 feasible hub locations. The 41 candidate hubs

were plotted on top of the kernel density map for each weekday of a singular week. The

results from the kernel density analysis indicated that for every day of the week, the esti-

mated concentration of the restaurants that required deliveries were in the central region of

Atlanta.

3.6.3 Formulation as p-hub median problem

Next, following Step 3 of the Methodology, we created a formulation of the p-hub median

problem. We use the basic formulation defined in 3.2 of the Methodology section, and

adjust the parameters to fit our case study. We set p=10 to reduce the number of candidate

hubs (input 42 hubs). The total transportation cost is the demand weighted sum of costs

for serving all OD pairs. To protect the interests of the F2T platform that was used for

this study, we do not exactly define the transportation cost here. However, generally the

transportation costs are the rate in which the hired drivers are paid. The drivers are paid

via a daily salary, which is formulated considering the number of stops, volume of goods,

and are paid a bonus if they are able to deliver all their goods on time. The bonus is not

included in the cost equation used in the formulation. Following step 4 of the methodology,

we solved our formulation through the use of the Network Analyst solver within ArcMap

version 10.7.1 (ESRI). It solved this case within one hour.

Figure 3.8 depicts the 10 candidate hubs overlaid on the Kernel Density Map. Most

hubs are located in Downtown and Midtown Atlanta with some in restaurant heavy suburbs

such as Roswell. The ten candidate consolidation hubs are illustrated as blue circles on
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kernel density maps which estimate density of deliveries for each day of the week between

Monday, September 9, 2019 & Friday, September 13, 2019, and for all deliveries recorded

between Oct 15, 2018 & Nov 18, 2019. Locations with the highest estimated density are in

highlighted in red, and areas with lowest estimated density are Dark Green.

Figure 3.8: Kernel Density of Deliveries over a year with hub candidates

3.6.4 Weighted Linear Combination (WLC)

Next, following Step 5 of the Methodology, we use weighted linear combination to further

reduce the number of candidate hubs. We gathered the weights for each of these crite-

rion shown in Table 3.3 during our semi-structured interviews discussed in Chapter 2 and

associated data sources are listed in Table 3.3.
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Table 3.3: WLC Criterion with weights

These weights served as input into Equation 3.3. The category scores I , P , and D are

calculated by taking data from the sources listed in Table 3.3 and normalizing the data to

a value between 0-100. This equation results in a score from 0-100 for every raster. We

solve this using the weighted overlay tool within ArcMap version 10.7.1 (ESRI) where each

criterion is its own feature layer. After which, we identify the four hub location candidates

with the highest WLC scores. These candidates are considered the finalists and are then

evaluated using TSP heuristics.

3.6.5 TSP Heuristics

Now, in order to complete the last step (6) of the Methodology, we must calculate proposed

routes for each of the hubs and sum the distances to assess which hub(s) result in the least

distance traveled. Here we are presented with the vehicle routing problem (VRP), that is,

given multiple vehicles and multiple delivery locations, what is the optimal assignment of

routes in order to deliver to all customers efficiently. This a generalization of the Traveling

Salesman Problem (TSP), that is, given multiple delivery locations and one vehicle what

is the optimal route such that the vehicle starts and ends at the origin point and reaches all

delivery locations [94].

For the purpose of the study, we simplify the presented VRP with a variation of the

TSP where a return to the origin is not needed. This is done because we face a complex

problem with strict service requirements, and we are dealing with a dense metropolitan

area. VRP’s often fail in large city networks, therefore we use a TSP heuristic. TSP’s have

also been historically successfully used in hub location problems to find routes among
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nodes assigned to a given hub [95].

We assume that route of the hub (origin) to delivery locations is covered by one driver

for all the buyers of the day. We use this generalization to simplify the problem because

the VRP is very computationally complex and has been shown to be very difficult to solve

whereas solving the TSP is considerably easier in most cases [94]. We solve for a variation

of TSP which does not require the driver to return to the origin therefore solving for the

route such that the driver starts at the hub and delivers to all customers. In order to simulate

having multiple drivers, we added a small 5-mile buffer to the total distance for each driver

that would have been assigned that day. That is - on each day we have the same number

of drivers that the company used when they were not using mobile hubs to serve as a fair

comparison. For example, if in the historical data 4 drivers were used on May 1st, 4 drivers

would have to be used (from hub to restaurant) in the mobile hub analysis. The buffer for

each of the drivers is to account for the small distance from the hub to the driver’s first stop

(hub – restaurant) that falls along that long TSP route.

To solve this TSP heuristic, we use the New Route Analysis function within ArcMap

version 10.7.1 (ESRI) was used to generate hub-to-restaurant routes for the remaining can-

didate hubs, for a randomly selected week of historical data. To efficiently execute this,

the stops were allowed to reorder with hub location preserved as the starting point. The

New Route Analysis function is effectively solving the variation of the TSP where return to

origin in not required as discussed earlier. Next, farm-to-hub distances were calculated us-

ing closest facility analysis for each day of the week. Here, it is assumed that farm-to-hub

distances for each day are being covered by a separate driver (from each farm) to the hub in

this initial exploration to ensure pickup within the correct time horizon. The farm-to-hub

distance was added to the hub-to-restaurant distance for a final distance total for each hub.

The distances for the final candidate hubs can be seen in the Results section.

The final hub selections were made by selecting the daily hub that resulted in the least

distance traveled based on that day’s customers. Using this technique, one hub (roaming)
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was selected for each day of the week for the final selection. In order to calculate the ef-

ficiency of these hubs, we compare the distance traveled by drivers with and without hubs

by using historical routing data collected by the F2T.

3.6.6 Stationary Hub Algorithm

To build a comparison between the above Mobile Hub and a Stationary Hub, we create

an Stationary Hub Location Selection algorithm that utilizes kernel density and the p-hub

median problem to determine the location of one stationary hub. This algorithm can be

seen below:

Algorithm - First follow steps 1-4.

1. Consider all potential hub locations (current restaurant customers), as analogous to

Step 1 of the Mobile Hub Methodology.

2. Use kernel density on historical data to identify customer hot spots. Identify all

demand points that fall within a predetermined range of the centroid of the hot spots.

These serve as the candidate hubs. This is analogous to Steps 2 in the Mobile Hub

Methodology. We do this to reduce the candidates that serve as input into the P-hub

Median problem.

3. Formulate the problem as a p-hub median discrete facility location problem. Analo-

gous to Step 3 of the Mobile Hub Methodology.

4. Solve the p-hub median problem using a computational solver for a predetermined

number p = 1. Analogous to Step 4 of the Mobile Hub Methodology.

If selected hub does not satisfy all suitability constraints as given in step 5 of Methodology

for Selection of Mobile Hub Location(s) (Here we give the minimum thresholds that the

top 4 hubs reached in each of the 3 criterion):
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1. Remove selected hub from candidates.

2. Repeat Step 4 of the algorithm

Else:

Use TSP heuristics to determine the effectiveness of the selected Mobile Hub.

END

At the conclusion of the run of this algorithm, we are left with one mobile hub and its

assigned drivers and routes.

3.6.7 Comparison of Methodologies

At this stage, we selected our final hub candidates for each methodology and evaluated

them based on historical sample data over several days. We compared historical routes that

had no hubs, to routes made using (3.4.1) Methodology for Selection of One stationary

Hub, to routes made using (3.4.2) Methodology for Selection of Mobile Hub locations.

Routes generated using 3.4.1 and 3.4.2 were created using TSP heuristics.

3.7 Results

We tested our methodology on one random week from the year. Through our methodol-

ogy we were able to select hub locations and compare real and estimated route distances.

Table 3.4 shows the selections of mobile hubs throughout the sample week where the un-

derlined numbers indicate the chosen hub for that day. These hubs are selected by the least

distance traveled for that particular day. Hubs 2 and 4 were chosen twice, Hub 3 once and

Hub 1 chosen zero times. Table 3.5 shows the associated estimated distances for each day

with the selected stationary hub location. This hub is the same as Hub 2 in Table 3.4. Ta-

ble 3.6 shows the historical distances traveled throughout the selected week via the F2T.

Table 3.7 displays information from both Historical routes and Estimated Mobile
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Hub Routes. First, it displays historical information: the number of drivers needed, the

number of restaurants served, the number of farm pickups, volume of orders, and historical

distance. Next, it shows the estimated distances for deliveries using the mobile hub. To

calculate the total distance, we add together the total distance traveled from the individual

farms-to-hub, the distance traveled from the hub-to-restaurants, and the driver-to-hub dis-

tance (which we added to the TSP variant value in order to better estimate the VRP value).

This chart shows the demand variability from day to day, as well as comparison of miles

traveled, which varied.

Table 3.8 depicts the change in the number of stops and the change in distance from

the historical distance traveled to the calculated estimated distance traveled with the use

of a hub. Every day a hub is used, there is a reduction in the number of stops. In all but

one day, Thursday, there is a reduction in the amount of distance traveled with an average

reduction of 7.46% and a range from -17.4% to +2.2%.

Table 3.9 Shows the comparison between route distances of each methodology and

includes the Driver-to-hub buffer. When compared to the historical routes, the stationary

hub shows a 0.5% increase in road distance, the mobile hub shows a 5.4% decrease in total

distance traveled.

Table 3.10 displays the percentage of deliveries that were late historically, and then

expected in both the mobile hub and stationary hub scenarios. We see that there is a sig-

nificant drop in late deliveries with the stationary hub and then no late deliveries with the

mobile hub.

In Figure 3.9, the optimal hub for each day of the week is shown by a colored dot

along with their associated route. This map shows the routes before they are broken down

into separate drivers by the heuristic. This shows that two candidate hubs were able to

serve as hubs on multiple days. Deliveries on Mon, Sept 9 & Thurs, Sept 12 and Tues, Sept

10 & Fri, Sept 13 share the same hubs. Figure 3.10 shows the hub location and associated

rout with Sept 11th. Wednesday had more stops than any other day throughout this sample
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week.

Table 3.4: Estimated Delivery distance in Miles for Mobile Hub Candidates without Buffer

Table 3.5: Estimated Delivery distance in Miles for Stationary Hub Candidate without
Buffer

Table 3.6: Historical route distances

Table 3.7: Comparison of Historical Routes to Estimated Mobile Hub Routes
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Table 3.8: Change in Number of Stops and Distances between Historical Routes and Mo-
bile Hub Estimated Routes

Table 3.9: Comparison of Route Distances (including buffer) between the three method-
ologies

Table 3.10: Comparison of Late Deliveries between the three methodologies
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Figure 3.9: Change in Number of Stops and Distances between Historical Routes and
Mobile Hub Estimated Routes

Figure 3.10: Change in Number of Stops and Distances between Historical Routes and
Mobile Hub Estimated Routes
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3.8 Discussion of Results

When selecting one hub location from the final four options for each of the five days, both

Monday and Thursday had the same location for a hub (Client 1) and Tuesday and Friday

had the same ideal location for a hub (Client 2). This may indicate that since a lot of the

restaurants are clustered near each other, there is a very likely chance that the same hubs

will be utilized on a frequent basis. This is ideal for drivers when they pick up products

from the hub location because they would essentially be alternating between a few loca-

tions regularly, although the days may change.

Demand varies on different days of the week and the routes become more efficient

when the hubs can move based on demand. This can be seen in the different distances

traveled for all hubs in Table 3.5. This indicates that consolidation was not the only factor

in reducing the mileage. Each hub provides consolidation, but the location of each hub is

different, indicating that there is importance to the location of the hub, demonstrating the

added value of having a mobile rather than stationary hub. When using the stationary hub,

shown in Table 3.5, there is actually a slight increase in mileage. However, though there

was in increase in mileage there was a drastic decrease in the percentage of late deliveries

as seen in Table 3.10.

Table 3.8 indicates that there is a reduction in stops in all cases since we are consol-

idating orders such that no restaurant receives more than one shipment a day. There are

the same number of stops in both the Mobile Hub scenario and the Stationary Hub sce-

nario. The consolidation seen when using a hub drastically reduces the time drivers spend

unloading, as a single drop off typically takes between 5-10 minutes. This also helps cut

down on the distance traveled in the mobile hub scenario. We notice that in almost all cases

distance is reduced when adding the mobile hub. In the case where distance is not reduced,

we hypothesize this is due to wide farm-spread for that day.

These preliminary results indicate mobile hub use could serve as a valid way to re-
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duce mileage and stops. Mobile hubs also provide a more sustainable system as emissions

are directly related to distance traveled. A reduction in mileage will result in a reduction

in emissions. Reducing the number of stops can also provide a reduction in emissions as

vehicles often need to be kept running even when a delivery is being made. The hub system

is also more cost-effective as the overall number of stops is reduced, lessening the number

of drivers needed to be hired.

We also demonstrate that there is a clear difference between the use of a stationary

hub and the use of a mobile hub. In our experiment we see that mobile hubs lead to fewer

miles traveled, and fewer late deliveries, in comparison to a stationary hub. Also, in the

case study, a mobile hub does not cost any more than a stationary hub. Our results show

clear benefits to not only using a hub, but clear benefits to using a mobile hub.

3.9 Conclusion

Though we used a small sample size for testing, we believe our results are important for

small local supply chains. We have addressed the call in literature for the use of ”more

realistic transportation costs and service measures” in more realistic problem variants by

using a case study where service (on time delivery) is consistently measured and incredibly

important [58]. We also expand on the growing field of dynamic hub location solution ap-

proaches using a hybrid OR and GIS model. Through our analysis we have shown that us-

ing a mobile hub can reduce miles traveled, number of stops on a route, and the percentage

of late deliveries. This is not only good for the F2T company, but also for the environment;

transportation accounts for 28.9% of the US’s Greenhouse gas emissions [96]. Any reduc-

tion in transportation helps reduce such emissions. We have also shown how to incorporate

the use of real routing data into hub location analysis.

We have demonstrated how to use a hybrid methodology for hub location selection,

in the case of a local supply chain with a small network where traditional approaches may

not be as strong. We are also able to build a model that focuses on real distance traveled
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and makes fewer estimations and assumptions than is usually done in literature for larger

supply chains. We understand that there are limitations to this study. We do make assump-

tions in the estimation of hub routes. Future research could study the feasibility of creating

a VRP heuristic for such routing.

In further research, we hope to show the statistical significance of these reductions

through t-testing on a larger set of days with a cost analysis of the hubs used. Mobile hubs

could change the way local supply chains operate. Instead of warehouses with large foot-

prints, mobile hubs only take up a spot in a parking lot. They are especially useful in supply

chains where demand is not constant and origin-destination pairs are variable. The num-

ber and location of mobile hubs are flexible, such that they can be assigned on the day of

delivery and could even move throughout the day based on changing demand. Additional

research could also investigate the impact of time sensitivity, such as accounting for pre-

ferred and detrimental delivery times at client locations, as well as synchronicity impacts

of arrival and departure times at the hub on overall performance.

This work can also be expanded beyond our F2T case study, notably in other local

supply chains where there a lack of literature. Mobile hubs could also be used in local

disaster relief. Relief supplies often come from many different areas and need to be dis-

tributed to various locations daily. In this example, there is also a fluctuating nature in the

customers and their locations, which makes it a candidate for mobile hub use. Another

application could also be for food waste. Many restaurants have leftover food at the end of

the day. We could use this model to deliver leftover food to homeless shelters, schools or

those in need. Our research shows that there is potential in this area of study, and we hope

more work is done in the future.
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CHAPTER 4

SUSTAINABLE SUPPLY CHAIN DESIGN FRAMEWORKS FOR FRESH

PRODUCTS

4.1 Introduction

As consumers are shifting towards sustainability, companies are facing increased pressure

to be sustainable themselves. According to Harvard Business Review ”Business leaders

need to start treating carbon emissions as costly, because they are or soon will be, and

companies need to assess and reduce their vulnerability to climate-related environmental

and economic shocks” [97]. Companies often do not know where to start to improve sus-

tainability efforts. We create a framework that can be carried out by analysts at a company

in a short time span (on the order of a month). This short timeframe is cheaper for the

company and provides a good first effort to show validity before a company invests in a

more substantial sustainability effort. In this chapter, we provide an introductory concep-

tual framework for integrated use of Customer Segmentation and Life Cycle Assessments

to help shape fresh supply chain and logistics design. This framework can help identify

weaknesses within the supply chain and pinpoint improvements that can be made for a

shift toward more sustainable practices.

We focus our efforts on two main fresh industries, the quick service restaurant in-

dustry and the fresh cut flower industry. Though seemingly different, both industries deal

with perishable goods and are facing pressure to increase sustainability. An EY report

shows that 81% of consumers feel strongly that organizations should help improve the en-

vironment. Within the Quick Service Restaurant Industry, Heikke Cosse of Aegon Asset

Management stated ”global fast-food brands need to take concrete action to manage supply-

chain emissions and water impacts... firms that fail to meet this challenge face regulatory
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and reputational risks that put their long term financial sustainability under threat” [98].

These industries are also interestingly tied together through the growing market for edible

flowers which crosses the boundaries of both food and horticulture [99].

Creating a true sustainable system may need reorganization at a base level and re-

thinking of practices that have been done for decades. We propose a three-prong system

to examine the state of a company’s supply chain and identify improvements that can be

made to increase sustainability through: the creation or adaptation of a perishability or de-

cay model, customer segmentation analysis for logistics, and Life Cycle Assessment (LCA)

Calculations.

We then provide two case studies to test different aspects of the three prong system.

The first is Incorporating Decay and Customer Segmentation into Logistics Decisions in

the Fresh Cut Flower Industry. The second is Conducting Customer Segmentation and

LCA to Fries for a QSR.

4.2 Literature Review

4.2.1 Life Cycle Assessments

Life Cycle Assessments, or LCA, is a standardized methodology for investigating the en-

vironmental impact of a product, process or system [100] by objectively identifying and

measuring inputs and outputs of energy and material usage and the associated environmen-

tal impacts such that efforts can be made to reduce the impact [101]. LCA’s have been

used to assess and measure impact in many fields including but not limited to wine [102],

potatoes [103], fruits [104], edible flowers [99] and cut flowers [105]. Literature studying

applications LCA’s for supply chain management (SCM) is limited [106, 107]. Blass calls

for increased interaction between LCA and SCM [107]. We hope to demonstrate how to

effectively use LCA in Supply Chain Design for sustainability.

Most Life Cycle Assessments use lengthy data collection, interviews and time spent

in the field. This is perfect for in depth analysis and provides a great deal of accuracy. How-
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ever, not all companies have resources, or want to use the resources, to conduct an in depth

LCA. However, there is incredible value in conducting rough estimate LCA’s to identifies

weak points in the supply chain. These rough LCA’s may include a data from a variety of

public sources that serve as estimations for the actual supply chain data. We propose the

use of rough LCA’s in combination with other strategies to help companies quickly identify

areas of improvement for better sustainability.

4.2.2 Food Quality

Food quality is a feature that can describe value and or safety of a food product. Shelf life

is a common measure of food quality, indicating how long food can remain on the shelf

until spoiled. Most often food quality declines over time. Food quality is an important

factor to measure in transit because the cost of low quality food. Poor quality food can

lead to food-borne illness. Food borne illnesses annually cost the population of the U.S.

alone over 50 billion dollars [108]. Food borne illness is often caused by food not being

stored at the right temperature. Quality of food is largely impacted by the temperature in

which it is stored. The impact of changes in temperature on food can be estimated through

exponential functions as shown in [109, 110, 111, 112]. However, temperature control of

food is very expensive. Temperature control requires a lot of energy and therefore releases

a large amount ofCO2 emissions [2]. Food refrigeration contributes to 15% of global fossil

fuel consumption and 40% of greenhouse effects [3]. When moving towards sustainability,

it is important to consider the use of refrigeration and whether it is being done efficiently.

4.2.3 Flower Quality

Cut flower quality is equivalently an important feature in flower supply chains. However,

unless they edible, low cut flower quality does not pose the same risk as low quality food.

Cut flower quality is often measured by shelf life or vase life. Different authors provide

different definitions of these terms. In this chapter, shelf life refers to the lifetime of a
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flower once it is cut on a farm to the time it wilts. We define vase life to be the lifetime a

flower has once it reaches its end customer and sits in a vase with water. There have been

several studies that study the reasons for reduced shelf life [113, 114, 115] and some that

study the impact of transportation on shelf life [116, 117, 118]. However, unlike the many

studies that build functions for food to estimate shelf life [109, 110, 111, 112], there are no

models present in literature to estimate shelf life or vase life of cut flowers. This may be

due to the fact that flower quality does not impact human health. There also have not been

many papers concerning fresh cut flower transit in the last 10 years. We propose a simple

cut flower decay model built from data in [119] and validate it using data drawn from [116].

The methodology to build this model can be duplicated for other products.

4.2.4 Transportation Planning for Perishable Goods

Transportation planning for perishable goods is a well studied field, and focuses mainly

on optimization of delivery routes, and delivery time. Many incorporate food quality into

their models. Rijgersberg builds a simulation model concerning the safety and distribution

of iceberg lettuce [120]. Dabbene solved a perishable distribution planning model through

a heuristic approach [121, 122]. Others expand to include factors like harvest time, hori-

zontal collaboration, and temperature respectively [123, 124, 125]. However, there were

few articles which considered customer segmentation as a factor to be considered in Trans-

portation Planning, and we hope to show its importance.

4.2.5 Customer Segmentation

Customer Segmentation is widely studied in marketing. Customers often have different

valuations towards the same kind of products with same quality [126]. Herbon studies

a customers sensitivity to freshness and age of a perishable product relative to price [127,

128]. Chew studies dynamic pricing for perishable products that have multi period lifetimes

[129]. However, this sensitivity to Customer Segmentation is largely only studied at the
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pricing and inventory level, not at the transportation level. We seek to show a framework

for how customer segmentation can influence transportation modeling.

4.2.6 Summary

There is currently a lack of literature that addresses supply chain sustainability from a

big picture perspective and incorporates LCA, customer segmentation and perishability

models. We answer Blass’s call for increased interaction between LCA and SCM [107]

through the creation of a supply chain assessment framework that can be quickly used by

companies to address potential improvements for sustainability in supply chain design.

4.3 Methodology

An outline of the Methodology we used for assessment can be seen in Figure 4.1 below:

Figure 4.1: Outline of Sustainable Supply Chain Design Framework

4.3.1 Step 1: Create or find a perishability function for your products

30-40% of food is wasted in the United States [4] and 40% of those losses occur post har-

vest [5]. Therefore, it is important to understand the perishability rate and shelf life of

products. Both of these components can help set constraints for transportation. Perishabil-

ity is largely dependent on temperature [126], which is important to consider when different

modes of transportation have different environments. Here, it is possible that you are ship-

ping goods too quickly and the added cost does pay off in the end. These are considerations
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that must be weighed. You can find such perishability/decay models in literature or create

your own as we do in the Cut Flower Case Study in Section 4.5.1.

4.3.2 Step 2: Assess Customer Segmentation

Customers often have different valuations towards the same kind of products with same

quality [126]. Can you determine the different buckets your customers can be grouped

into? You can determine Customer Segments by discussing with your marketing depart-

ment and/or combing over past sales receipts. For example, if you are a fruit seller you may

notice that the jam company that buys your fruit does not require it to be as fresh as the cus-

tomer who uses the fruit in decorative pieces like a fruit arrangement. In fact, a strawberry

with a 7 day shelf life is not worth any more than one with a 2 day shelf life to the jam seller

but holds a great deal of difference to the fruit arranger. Does your supply chain network

capture this difference? How can you change your network to capture this? Perhaps use the

cheaper shipping vendor for the Jam customer as shelf life is not as important of a factor.

Are there new customer segments you have not addressed that could help reduce product

waste? These are the questions one must consider when looking at customer segmentation

for logistics. We assess customer segmentation in the fresh cut flower case study.

4.3.3 Step 3: Conduct Life Cycle Assessments of products

According to Carnegie Mellon, an LCA is a ”way to investigate, estimate, and evaluate the

environmental burdens caused by a material, product, process, or service throughout its life

span.” By conducting LCA’s you can help evaluate both where the most money is being

spent and where you are generating the most emissions. It can help easily identify where

sustainability improvements can be made. Conducting a Life Cycle Assessment does not

have to include a several month long process. Life Cycle Assessments can be as simple or

as complicated as the user desires. Most literature focuses on creating LCA’s that are very

detailed and very accurate, however, this can be time and cost prohibitive. Simple LCA’s
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can be done by using public data in combination with one or two interviews with those in

the field. We explore the creation of such an LCA in the Quick Service Restaurant case

study.

4.3.4 Step 4: Examine areas for improved sustainability

In this last step, take what you have learned from the previous steps and identify some

improvements that can be made in your supply chain framework. Based on your situation,

you can go for low cost improvements or you could go for high impact improvements. The

steps we provided allow the user to see their big picture supply chain network. It can give

you enough information to determine which approach to take. For example, perhaps the

life cycle assessment was very useful, this could indicate that maybe you should expand

the assessments to other products or conduct a more detailed and accurate assessment.

4.4 Case Study: Applying LCA in a Quick Service Restaurant Environment

In this case study, we address how to conduct a rough LCA calculation of a Quick Service

Restaurant product. Particularly we are looking at fries at a Quick Service Restaurant.

4.4.1 Introduction

Quick Service Restaurants (QSRs) have begun to react to consumer pressure through the

creation of climate strategies. These climate strategies often include initiatives to track

food transit and understand the impact of different meals and ingredients. For example,

Chipotle recently announced the release of their Real Foodprint initiative [130]. Chipotle’s

Real Foodprint “measures your impact on the planet, one ingredient at a time.” Now, in

a customer’s app receipt they can see “the positive impact [they’re] making on the planet

by choosing Chipotle’s real, responsibly sourced ingredients versus conventional ones,” in

categories like water, carbon emissions, antibiotics, and soil health. Other QSR’s are more

direct in their initiatives. For example, Panera Bread partnered with Cool Food to disclose
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the exact amount of carbon emissions for many of their menu items [131].

However, many QSR’s have yet to create a climate strategy. One of these restaurants

is the QSR we examine in this case study. Though climate strategies can be daunting, a

simple way to start is through a Life cycle assessment (LCA) calculation of a menu item.

An LCA is a “way to investigate, estimate, and evaluate the environmental burdens caused

by a material, product, process, or service throughout its life span” [Carnegie Mellon].

Carnegie Mellon defines environmental burdens to be “the materials and energy resources

required to create the product, as well as the wastes and emissions generated during the

process.” In this paper, we explore an initial LCA calculation for the QSR’s fries.

4.4.2 Problem Statement

What are the total estimated CO2 emissions for this QSR’s fries, from the farm to the hands

of the end consumer?

We address this question through a process based LCA calculation of the entire fry sup-

ply chain by utilizing data from existing literature and reliable web sources.

Boundary of Analysis

Some assumptions and decisions were made in order to complete the LCA calculation in a

reasonable time frame. First, we choose to focus on carbon emissions and have limited dis-

cussion on other wastes. This strategy was chosen in order to provide a definitive measur-

able output that can be compared to other QSR’s disclosures. We only consider processes

that contribute 5% or more to the overall supply chain, which was generally approximated

based on available data. Next, we choose to do our calculation for a local Atlanta QSR

restaurant location with the assumption that the potatoes are being sourced from Idaho. We

also approximate distances traveled to the nearest 25 miles for ease of calculation.
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4.4.3 Past Potato LCA Calculations

While there have been many environmental impact papers written about different food

products, there are only a handful that address potatoes [103, 132], and even fewer that

discuss French Fries specifically [133]. The most descriptive and complete study found was

completed by Mouron et al. focusing on Swiss French Fries. They compared the impact

of French fries to fresh potatoes in Switzerland, finding that 1 kg of French fries cause 3-5

times more environmental impact than the same weight of fresh potatoes. They noted that

the frying process was the main “hot spot” in the supply chain for highest proportion of

total environmental impact. Due to the comprehensiveness of this paper, we decided to use

it as a baseline for comparison of our own LCA calculation [133].

4.4.4 Data

In order to complete our own LCA calculation, we pull data from the literature sources

addressed in the previous section (excluding Mouron et al.) in combination with a few

supplemental online sources. The majority of our data is drawn from Haverkort & Hillier’s

article in Potato Research which mainly supports the Agricultural Production and Whole-

saler segments of the supply chain. We also draw information from Food Research Interna-

tional, the EPA, Corrugated.org and Curtin University of Technology. The sources of each

component of the supply chain can be seen in the figures in the Methods section

4.4.5 Method

We complete a process based LCA calculation by using data from a number of sources.

First, we outlined the entire Fry food supply chain. This image was adapted from the one

created by Mouron et al. and information to populate it was gathered through informal

interviews with different actors within the supply chain [133]. Note that the names of

the centers are blacked out for confidentiality reasons. The inputs can be seen in the first

column preceding the red arrows. The middle column outlines the processes
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Figure 4.2: Estimated QSR Fry Supply Chain

involved and the right most column indicates transportation between different compo-

nents of the supply chain. Using this chart, we break our calculations into 6 main com-

ponents, Agricultural Production, the Wholesaler, Processing, Cold Distribution Storage,

Store Locations and transportation. Each component is made up of one or more subcompo-

nents for which we calculate the CO2 emissions. In our case we convert input data into kg

of CO2 emissions/ 1lb of fries which is approximately the size of a large fry at at a QSR.

4.4.6 Impact Calculation

Agricultural Production

The first step in the process is Agricultural production. This includes everything from

the planting of the potato seed to the harvesting and storage. The Potato Research article

provides CO2 emissions in kg/metric ton, so we convert this to lb/lb and then kg/lb for the

final total component [132].

From this, we found that the subcomponent with the highest contribution was the Fer-

tilizer & Biocides category due to their fumes. After our calculation we compared to our
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Figure 4.3: Breakdown of Agriculture Production Carbon Emissions

reference document (Mouron et al.) and foodemissions.com and found that our answer was

in the same ballpark.

Figure 4.4: Comparison of our results to other CO2 calculations

Wholesaler

The next step in the process was the wholesaler. Since the wholesaler simply stores the

goods, there was little emissions produced in this step. There were two main sub compo-

nents germicides to prevent the potatoes from rotting and energy needed to run the build-

ings. This data was also pulled from the Potato Research Article, so we converted from

kg/metric ton to lb/lb and the total is converted to kg/lb.

Figure 4.5: Breakdown of Wholesaler Carbon Emissions

Processing

The next step was processing. We broke this into 3 subcomponents: Frying oil, Energy

and Packaging. We cut out washing, peeling and cutting because we could not find reliable
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data for these processes. However, we expect them to be low, as more water is used for

planting and even that was a negligible amount. In order to calculate the contribution of the

Frying Oil, we took data from the EPA about the actual frying process (.0009 kg/lb) and

the emissions of the oil itself from a paper done by Curtin University of Technology (.800

kg/lb). The frying process produces so few emissions because it happens within minutes.

We estimated the oil used to fry one potato based on a review of several online recipes. We

found that the larger the number of potatoes fried, the less amount of oil per potato needed

so we estimated that a processing setting would use half the amount of oil per potato as

compared to in restaurant due to the large batch volume occurring in processing plants.

The building energy usage is the same as in the previous step. And lastly, we calculate

processing by estimating the size/weight of a box (proportion of a larger box) needed for 1lb

of potatoes and calculated the emissions using corrugated.org’s carbon footprint calculator.

Figure 4.6: Breakdown of Processing Carbon Emissions

Cold Distribution Storage

In cold distribution storage, we calculated the amount of emissions produced from cold

storage of the fries. We took data from an article in Food Research International which told

us the KW h/year used for 1 frozen chamber of 910 m2. We then estimated the volume of

one lb of fries and assumed that they would stay in cold storage for one week on average

based on the information we received in interviews. We then estimated the amount of

emissions used by that number of Kw/h using the Greenhouse Gas Equivalencies Calculator

provided on the EPA’s website.
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Figure 4.7: Breakdown of cold storage Carbon Emissions

Store Locations

For store location we use three main subcomponents of Frying Oil, Energy and Packaging.

We calculate frying oil in the same manner that we did in processing except we assume that

twice the oil per lb of potato is needed since they are being fried in much smaller batches.

We assume the energy usage is the same as before. We realize that a restaurant likely uses

a different amount of energy than a plant. However, since we were not able to find this

information publicly, and the amount of energy was small we used the same data as used

in previous steps. Lastly, we calculated the emissions of the fry holder. We first calculated

the weight of the fry holder and then used corrugated.org’s carbon footprint calculator.

Figure 4.8: Breakdown of individual QSR Store Location Carbon Emissions

Transportation

The final calculation was estimating the emissions produced in transportation throughout

the supply chain. This included farm-to-wholesaler, processor-to-cold distribution and

cold-distribution to stores. There was no calculation of wholesaler-processing because

both the wholesaler and processor for the QSR were owned by the same company and the

buildings were adjacent, requiring no transportation. The data used was taken from the

EPA’s 2014 Emission Factors for Greenhouse Gas Inventories. Distances were calculated
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assuming that the potatoes were sourced from Idaho and the cold distribution warehouse

was located within 25 miles of the QSR store location. The QSR saves a lot of emissions by

transporting their fries long haul by train. Trains produce far fewer emissions than trucks

do.

Figure 4.9: Breakdown of individual QSR Store Location Carbon Emissions

4.4.7 Results

When we add together the results from each of the 6 components, we find that each pound

of fries produces 2.60 kg of CO2 as seen below:

Figure 4.10: Total emissions for QSR Fries

We acknowledge that this is a rough estimate of what the total Carbon Emissions would

be for the QSR French Fry supply chain. We chose to focus on carbon emissions, other

wastes that could have been examined in this LCA including rotten potatoes at the farm,

food scraps at the restaurant, wastewater, and goods damaged in transportation. However,

our results present a reasonable number for total emissions born from relatively reliable

data sources.
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Discussion

Based on our comparative research it seems like our final number for French fry carbon

emissions does fall within the right ballpark when compared to Mouron et Al. and Pendo-

Verlag [133].

Figure 4.11: French fry emissions calculation comparison

However, it is interesting that Mouron’s value is so small, especially since they were

able to capture wastewater in their calculation. We were surprised that the French fry

oil contributed the most to emissions. Our expectation was that the highest proportion of

emissions would be generated by transportation and cold storage. With this information,

it would be interesting to do further studies focusing on the cooking oil and comparing

different types of cooking oil. Since it is by far the largest contributor, a change in cooking

oil could drastically change the carbon emissions of the fries.

When comparing the emission of the fries to other QSR menu items we also find that

the QSR’s fries are on-par with its competitors. Figure 4.12 compares the final CO2 emis-

sions between a sampling of Cool Food Menu items found on Panera’s current menu and

the QSR’s fries. Even though the oil used in frying contributed to a higher CO2 emissions

final number, we still find it to be comparable to vegetarian options found at Panera.

4.4.8 Conclusion

In conclusion, we were able to answer our problem statement by calculating a process-

based LCA for the selected QSR’s fries. The number of emissions calculated was on par

with comparative literature for French fries and fell within reasonable bounds for similar
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Figure 4.12: Comparison of carbon emissions of Different QSR menu items

menu items found at other QSR’s. However, the biggest takeaway from this study was

discovering that the largest contributor to emissions for the waffle fries was oil. Further

research should delve into this further and figure out why oil produces such a high amount

of carbon emissions. It may also be interesting to compare cooking methods and study

whether baking fries results in a change in emissions. In a broader context, this study

shows that it is possible to calculate a rough LCA on a short timeline (on the order of one

month). It can also be used to identify areas for emissions reductions and improvement.

This study format can be duplicated to fit other products to conduct rough estimate LCA

calculations using public and limited interview data.

4.5 Case Study: Incorporating Decay and Customer Segmentation into Logistics

Decisions in the Fresh Cut Flower Industry

4.5.1 Vase Life Decay/Perishability Model for Fresh Cut Roses

The ability to predict vase life in transit is useful for several reasons. Knowledge of vase life

allows us to select transportation routes, which are cost effective and fall within conditions

that result in a sellable flower. Knowledge of vase life can also affect pricing of flowers

within stores and from wholesalers. Since there is no current flower decay/perishability

function in relation to temperature, we created our own, using existing data found in horti-

culture literature [119, 116]. We created a table to identify vase life acceleration or decel-
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eration at certain temperatures for fresh cut roses. The table is based data from Celikel’s

work [119] and then it is tested on data from Leonard’s work [116] for validity. From this

table, we are able to see that the vase life deterioration is suggested to be generally linear

from 0° to 12.5°. For temperatures above 15° there is less data, but it is seen that the decay

grows from linear to exponential. Once the temperature exceeds 20 degrees the rate of the

decay can be upwards of 5 Vase Life Days/Day. This follows similarly to perishability

models used in food [109, 110, 111, 112].

Rates below are based on Temperature and Postharvest Performance of Rose (Rosa

hybrida L.‘First Red’) and Gypsophila (Gypsophila paniculata L. ‘Bristol Fairy’) Flowers

by F.G. Çelikel M.S. Reid for the Rose [119].

Table 4.1: Rose Vase Life decay rate as a function of Temperature

Rates were tested with data from Postharvest Performance of Selected Colombian Cut

Flowers after Three Transport Systems to the United States by Ria T. Leonard, Amy M.

Alexander, and Terril A. Nell [116] for one day transist, three day transit and seven day

transit. We simply apply our rates for the time spent at each temperature and we get the

result seen in Figure 4.13. As shown in the graph, there is less than one day difference in

each mode of transport between the prediction and the actual value showing the promise of

our simple decay model.

This vase life predictor is can be used strategically when applied to customer segmen-

tation in logistics.
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Figure 4.13: Comparison of Rose Vase Life Calculations between the results from our
Decay model and the actual results from Leonard [116]

4.5.2 Flower Customer Segments and Their Supply Chain Impact

We use customer segmentation to address the different customers within the Fresh cut

flower market place. Upon analysis, we realized that we need to eliminate the assump-

tion that fresh food/products have to be shipped fast. As seen in the sections below, some

customers do not need flowers to last for a long time. We can use this information to adjust

logistics planning to save money.

Classical categorizations of flower customers are typically made up of the following

groups: individual consumers, businesses and government agencies. Our in-depth exam-

ination of customers has revealed that a different classification can be achieved through

characterizing why and how customers buy flowers. This has led us to build a functional

customer categorization made up of spot customers, events customers, and subscription

customers. This classification has profound impact on the understanding of flower demand

and supply chains, for example challenging the generally accepted premise that fresh flower

delivery must be fast.
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Spot Customers

First, consider a customer who purchases flowers spontaneously, upon occasions such as a

birthday, a date or Mothers’ Day. This customer represents what we call a spot buyer. Such

a customer will likely step into a flower store on the day of the occasion and purchase the

flowers. A spot customer may alternatively order online for same-day or next-day delivery.

The majority of spot customers likely do not buy flowers regularly. For spot customers,

flowers are usually a gift or a treat for an individual or group of people (such as an office).

Therefore, they generally want their purchased flowers to last a long time before decaying.

Hence, both retail stores and online retailers have to be keen in insuring that they provide

their spot customers with fresh flowers with a long vase life.

In order to fulfill spot customer demand, it is important that individual stores ensure

that they have adequate stock of the desired flowers. To determine these desired flow-

ers they must take into consideration their customer base and the impact of seasons and

holidays. For example, around Valentine’s Day they would want to make sure that they

have a surplus of roses. Spot customers are likely to purchase during holidays. Thus, it

is important for stores such as florist shops to have the ample stock of flowers signature

to any upcoming holidays. There is also high uncertainty associated with spot customer

demand and flower stores typically have low storage capacity. These factors lead to a need

for securing fast replenishment sources in the case that flower stores near stockout on high

demand days.

Spot customers ordering flowers from online retailers generally require fast delivery,

either for the same day or next day. In order to minimize delivery lead-time and cost, on-

line retailers should have access to nearby flower stock. For example, they could exploit

stock in a nearby fulfillment center or at a neighboring florist shop. As online retailers are

bound to have numerous spot customers, it is important for them to secure sufficient stock

of flowers demanded by spot customers. Ample stock is necessary to guarantee that they

maintain high service levels, notably in terms of flower availability. This also creates a
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secondary source of spot customer induced demand for flower stores serving as proximity

fulfillers for online retailers.

Event Customers

Now consider what we call an event customer, one who is buying flowers for events such

as weddings and ceremonies. Generally, such a customer orders routinely through an

event/wedding planning business or through their functions within a large organization. In

the case of a wedding or other special event, the events customer often wants special types

of flowers, and significant amounts of each to create bouquets and arrangements. Such a

customer is rarely impulsive and would plan the special events and their flower needs far

in advance. They would buy the required flowers through regular sources such as national,

local or online wholesalers and distributors.

In terms of the flowers themselves, events customers usually only need them to last a

few days at the most, often the single day of the event. Furthermore, the customer is bound

to prefer a fully bloomed flower to a still not yet fully opened flower as it is more majestic.

The combination of advanced flower ordering and limited vase life requirements induces

quite different supply chain requirements than in the case of spot customers. There is no

inherent need for fast delivery from source to the location prescribed by the event customer,

and there is no strong pressure to minimize the time from flower cutting in the field or the

greenhouse and the time it reaches the customer specified location, as long vase life is not

a key requirement. This said, it is paramount for the supply chain to take high care of the

flowers through its storage, handling and transport in order for them to remain top quality.

Subscription Customers

Finally, consider customers who are subscription based, who like to have fresh flowers

automatically delivered every week or every 2 weeks for example. We simply call these

subscription customers. Some of these want the same type of flowers, or combination of
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flowers year long. They are the simplest to serve, as long as there is a yearlong harvesting

supply of these flowers, as they are highly stable and predictable. Some other subscription

customers will more likely prefer changes across the year, adapting to seasons and avail-

ability of flowers. These are somewhat less predictable yet may offer more flexibility, with

the most flexible being those who permit the supplier decide on the set of flowers among a

predetermined portfolio, allowing the supplier to advantage of seasonality and low-prices

inducing overproduction relative to market needs.

As with events customers, subscription customers provide a luxury of supply chain

time. Since these are consistent customers, the flowers may also be ordered far in advance

by the supplier at low bundled prices. If the supplier knows that Customer X wants flowers

every Friday, it can plan the shipment ahead of time, and will not need a rush order. Also,

if they are receiving flowers every week, then the life span of the provided flowers before

decay needs not be more than a week once it hits their doorstep.

4.5.3 Application of Customer Segments to Logistics Strategies

In the previous section, we discussed different customer segments and their needs. We can

apply these needs to differentiated logistics plans as seen below. In each of these cases

we are looking at the supply chain of fresh cut roses which have an expected shelf life of

around 21 days from the cut at the farm to it wilting at the end customer. In each of these

cases we identify the expected vase life, and then from there determine the allowance for

days the roses spend in transit.

Spot Customers

Spot customers are what most consider traditional customers who order online for next day

delivery or stop in a store to pick up some flowers. Of the three customer types they likely

have the longest expectation for Vase life. In Figure 4.14, we see an overview of a spot

customer that purchases roses in a flower shop.
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Figure 4.14: Overview of breakdown of logistics for a spot customer

Now if we focus on the component of supply chain transit, we see two examples of

transit that could occur within the flexibility of the 1-12 days spent in supply chain transit

in Figure 4.15.

Figure 4.15: Spot Customer flower shop purchase potential supply chain transit

Event Customers

Event customers often make their purchases well in advance and only need a vase life for

the span of the event. Of the three customer types, they likely have the shortest expectation

for Vase life. In Figure 4.16 we see an overview of an event customer.
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Figure 4.16: Overview of breakdown of logistics for a event customer

Now if we focus on the component of supply chain transit, we see two examples of

transit that could occur within the flexibility of the 1-16 days spent in supply chain transit

in Figure 4.17.

Figure 4.17: Event flower shop purchase potential supply chain transit

Subscription Customers

Subscription customers have flowers delivered on a recurrign basis. For these customers,

it is most important that the vase life lasts until the next delivery. In Figure 4.18 we see an

overview of a subscription customer that has a weekly subscription.

Now if we focus on the component of supply chain transit, we see an example of transit

that could occur within the flexibility of the 1-13 days spent in supply chain transit for a

weekly subscription customer in Figure 4.19.
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Figure 4.18: Overview of breakdown of logistics for a subscription customer

Figure 4.19: Weekly Subscription Customer potential supply chain transit

4.5.4 Conclusion

In this case study, we are able to create a decay formula that can be used in conjunction

with customer segmentation to rethink cut flower logistics. By opening our mindset to

realizing the fresh deliveries do not always need to be fast, there are more transportation

opportunities. Instead of using fast truck or air transit, it may be cheaper and more energy

efficient to look at other modes of transportation like by sea, rail or long haul truck shipping

based on the customer segment. This can potentially improve sustainability of transit.

4.6 Conclusion

In this chapter we have proposed a three-prong system to examine the state of a com-

pany’s supply chain and identify improvements that can be made to increase sustainability

through: the creation or adaptation of a perishability or decay model, customer segmenta-

tion analysis for logistics, and Life Cycle Assessment (LCA) Calculations. We were able
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to test each of these prongs through well defined case studies. We apply the LCA calcu-

lation to a case study concerning a QSR’s fries. We then use customer segmentation and

decay modeling to shape logistics strategies for the fresh cut flower industry. Through both

of these case studies we demonstrate how this framework can be applied across different

fresh industries.

This strategy can be applied to companies who quickly want to assess their supply

chains and look for changes to improve sustainability. It provides a framework that can

generate questions and help analysts understand their supply chains at a big picture level.

The Atlanta QSR that was examined in the french fry case study, presented our analysis in

a board meeting at the corporate level to help support a new sustainability initiative within

the company. Their case was successful. The case study concerning fresh cut flowers was

used by an international logistics provider to help restructure the way they thought about

flower transit. These two examples demonstrate the usefulness of our methodology to com-

panies in industry. We provide a framework that can be used as a first step in building an

effort to address sustainability.

In future work we would like to see applications of some of the methodologies dis-

cussed in this work directly into routing algorithms. For example, adding customer segmen-

tation and decay to the vehicle routing problem to better assign vehicles reducing waste. We

would also like to see routing focused on sustainability, where routing is a multi-objective

model for cost and emissions with incorporation of LCA and decay modeling. A first ap-

plication area could be the fresh cut flower industry, as there has been little improvement

in routing efforts in the last 10 years.
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CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

5.1 Summary of Contributions and Results

In this dissertation we have presented a series of frameworks to manage fresh supply chains

and improve their infrastructure. By utilizing methodology from Operations Research, GIS

and Strategic Management, we build hybrid models that are able to accurately capture the

intricacies within Fresh Supply Chains. We have applied each of our methodologies to case

studies within local food, quick service restaurant and the fresh cut flower industries. Our

methodologies have been implemented by companies ranging from startups to fortune 500

companies, illustrating their usefulness and importance.

In our chapter on market deployment, we build a framework that companies can use

to plan their market expansion. We start from the bottom up by using semi-structured in-

terviews to capture the input of leaders across the supply chain. This is important because

in most papers that use executive factors, the authors create the factors themselves, leav-

ing themselves open to missed factors. We then create a unique complementary solution

approach which utilizes both optimization and heuristic methods which provide alternative

roadmaps to be considered by the decision maker. In both of our models we are able to

capture dynamic model across a time horizon which is not commonly done in market de-

ployment models. Our model was applied by a farm-to-table Atlanta based platform and

one heuristic roadmaps was implemented.

In our chapter on mobile hubs, we build a framework for selecting effective dynamic

hub location. In this hub location problem we address a small local system, with service

(time) requirements, and real transportation costs. This addresses a gap in literature for

models that consider systems with ”more realistic transportation costs and service mea-
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sures.” We also explore a smaller network for which traditional hub location models do

not work as well. Our model was applied to a farm-to-table Atlanta based platform and a

mobile hub was implemented and lead to cost savings and service improvements.

In our chapter on Sustainable Supply Chain Design, we address the industry need for

a model to assess the current state of fresh supply chains analytically and identify areas for

improvement in sustainability goals. Fresh supply chains have the unique added character-

istic of perishability that many other supply chains do not have. We create a framework,

that incorporates a decay model, customer segmentation and LCAs, that can be done within

a month and provide a base for more sustainability efforts to take place within the company.

We explored a case study on fresh cut flowers where we built a decay model and used it in

combination with customer segmentation to address improvements that could be made in

logistics strategies. We also conducted a case study analyzing a Quick Service Restaurant

which looked at using LCAs to identify areas that could be improved for better sustain-

ability. Our model has been implemented by both a Fortune 500 QSR and an international

logistics provider.

In summary, this dissertation has addressed the two main types of fresh supply chains.

One that does not need to consider perishability, local supply chains, and one that does -

national or international supply chains. In Chapters 1 and 2 we address the needs of local

fresh supply chains and create frameworks to improve their infrastructure. In Chapter 3, we

create a framework to be used by established larger fresh supply chains to quickly assess

areas to improve for better sustainability.

5.2 Future Research

5.2.1 Market Deployment

• Incorporation of product differentiation seasonality into the model, considering the

origins of products (meat, produce, dairy).
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• Extension to cases where there is demand for fresh food grown in farms not neces-

sarily in the same market, and downstream growth in a market’s demand depends on

multi-category food supply offering from farms.

• Examine resiliency in supply chain networks that can be generated through Market

Deployment Frameworks by focusing on supply chain collaboration, supplier selec-

tion and supply chain network design.

5.2.2 Mobile Hubs

• Show the statistical significance of stop and distance reductions through t-testing on

a larger set of days with a cost analysis of the hubs used.

• Investigation of the impact of time sensitivity, such as accounting for preferred and

detrimental delivery times at client locations, as well as synchronicity impacts of

arrival and departure times at the hub on overall performance.

• Application of work to other local supply chains such as local disaster relief or dis-

tribution of left over food at the restaurant level.

5.2.3 Sustainable Supply Chain Design

• Applications of some of the methodologies discussed in this work like LCA and

decay modeling, directly into routing algorithms like the vehicle routing problem,

specifically studying waste.

• Development of Multi-objective models considering cost and emissions with incor-

poration of LCA and decay modeling, especially within the fresh cut flower industry,

as there has been little improvement in routing efforts in the last 10 years.

• Analysis of the performance of this model in other industries within Fresh Supply

Chains.
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