
EMBODIMENT IN COMPUTER SCIENCE LEARNING: HOW SPACE,
METAPHOR, GESTURE, AND SKETCHING SUPPORT STUDENT LEARNING

A Dissertation
Presented to

The Academic Faculty

By

Amber Solomon

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

Georgia Institute of Technology

May 2021

© Amber Solomon 2021

EMBODIMENT IN COMPUTER SCIENCE LEARNING: HOW SPACE,
METAPHOR, GESTURE, AND SKETCHING SUPPORT STUDENT LEARNING

Thesis committee:

Dr. Betsy DiSalvo, Co-Advisor
School of Interactive Computing
Georgia Institute of Technology

Dr. Mark Guzdial, Co-Advisor
Electrical Engineering and Computer Sci-
ence
University of Michigan

Dr. Ashok Goel
School of Interactive Computing
Georgia Institute of Technology

Dr. Wendy Newstetter
School of Interactive Computing
Georgia Institute of Technology

Dr. Ben Shapiro
College of Education and Human Devel-
opment
Georgia State University

Dr. David Uttal
School of Education and Social Policy
Northwestern University

Date approved: April 12, 2021

ACKNOWLEDGMENTS

Too many to thank... TBD

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . x

List of Figures . xi

Summary . xiv

Chapter 1: Introduction . 1

1.1 Research Motivation . 5

1.2 Research Goals and Questions . 7

1.2.1 Research Agenda . 8

1.3 Dissertation Overview . 10

1.4 Positionality . 11

Chapter 2: Setting the Context of Recursion . 13

2.1 Recursion in Programming—Recursive Invocation 14

2.2 Recursive Execution . 15

2.3 Learning Recursion . 20

2.4 Mental Models of Recursion . 21

Chapter 3: Conceptual Framework . 25

iv

3.1 Embodiment . 25

3.2 Metaphor . 27

3.2.1 Metaphors support Understanding and Reasoning 29

3.2.2 Metaphorical Construals . 31

3.3 Gestures . 32

3.3.1 Gestures Defined . 33

3.3.2 Gesture Can Reveal What a Learner Knows 33

3.3.3 Gesture Production Can Support Learning 34

3.3.4 Seeing Gesture Can Support Learning 34

3.3.5 The Connection Between Gesture and Learning 34

3.3.6 Gesture Taxonomy . 35

3.4 Tool Use: Sketching . 35

Chapter 4: Related Work . 39

4.1 Complexities of Learning to Program . 39

4.2 Embodiment and CS Learning . 41

4.3 Metaphors . 43

4.4 Gesture . 46

4.4.1 A Gesture Taxonomy in Computing Education 48

4.4.2 An Exploratory Observational Study 48

4.4.3 The Types of Gesture in a Computing Classroom 50

4.4.4 Discussion . 57

4.4.5 Conclusion . 58

v

4.5 Sketching . 59

Chapter 5: Embodied Representations in Computing Education: How Gesture,
Metaphor, and Sketching Support Teaching Recursion 61

5.1 Introduction . 61

5.1.1 Motivation . 62

5.2 Background . 63

5.3 Method . 64

5.3.1 Data Sources . 64

5.3.2 Data Analysis . 65

5.4 Case Studies . 66

5.4.1 Case Study 1: Gesture . 66

5.4.2 Case Study 2: Metaphors and Sketching 68

5.5 Discussion and Conclusion . 70

Chapter 6: ”On the Reality of Teaching Programming”: Interpreting Embodi-
ment in CS Classrooms . 75

6.1 Introduction . 75

6.2 Multimodality and Communicating Information 78

6.3 Methods . 80

6.3.1 Data Collection . 81

6.3.2 Data Analysis . 82

6.4 Reflexivity . 87

6.5 Findings . 87

6.5.1 Gesture Production . 88

vi

6.5.2 Metaphors . 90

6.6 Case Studies . 94

6.7 Discussion . 106

6.7.1 Pedagogical Function . 107

6.7.2 Challenges with Interpretation . 108

6.7.3 Designing Metaphors . 110

Chapter 7: How Students Use Conceptual Blends, Metaphors, and Embodi-
ment to Make Sense of Computation 112

7.1 Introduction . 112

7.2 Conceptual Blending . 113

7.3 Methods . 116

7.3.1 Participant Recruitment and Compensation 117

7.3.2 The Course . 118

7.3.3 Participants . 119

7.3.4 Data Collection . 120

7.3.5 Dyad Protocol . 121

7.3.6 Interview Questions . 122

7.4 Data Analysis . 123

7.4.1 Case Selection . 123

7.4.2 Coding Gestures . 124

7.4.3 Metaphor . 125

7.4.4 Parsons problems . 126

7.4.5 Sketches . 126

vii

7.4.6 Segmentation . 127

7.4.7 Tradeoffs and Limitations . 128

7.5 Findings . 130

7.5.1 Overview of the Problems . 130

7.5.2 Gestures . 137

7.6 Case Studies . 141

7.6.1 Case Study 1 . 141

7.6.2 Case Study 2 . 146

7.6.3 Case Study 3 . 152

7.7 Discussion and Implications . 156

7.7.1 Sense-Making Resources . 156

7.7.2 Sketching and Gesture . 157

7.7.3 Learning Implications . 158

Chapter 8: Conclusion and Implications . 160

8.1 Implications . 162

8.1.1 Learning Implications . 162

8.1.2 Conceptual Framework . 163

8.1.3 Pedagogical Implications . 164

8.2 Contributions . 165

8.3 Future Work . 166

Appendices . 168

Appendix A: Demographic Survey . 169

viii

Appendix B: Dyad Student Sketches . 177

Appendix C: Code Trace for Each Problem . 182

References . 184

ix

LIST OF TABLES

2.1 Most commonly used conceptual models. Table adapted from [50]. 17

2.2 Mental models of recursion. Adapted from [50] 22

5.1 A summary of the embodied representations teachers used. 71

6.1 Professors’ demographics and video information 83

6.2 List of Some Metaphors . 93

7.1 Moves and Descriptions . 127

7.2 Different kinds of metaphorical construals. 140

x

LIST OF FIGURES

2.1 The code for the function factorial. 15

2.2 Non-tail end execution . 16

2.3 A representation of a stack in CS. The first image shows elements pushing
into the stack. The second image shows elements popping out of the stack. . 17

2.4 A representation of a flow chart of the factorial function 18

2.5 A representation of a code trace of the factorial function 19

2.6 Copies and looping mental models of the factorial function [55] 23

4.1 Code for a non-tail end recursive function. 41

4.2 A student using deictic gestures while they trace a program’s control flow. . 52

4.3 A student using a metaphoric gesture while they described a loop. 56

5.1 The professor uses metaphoric and deictic gesture to describe a list. At the
top of this figure is a typical conceptualization of a list. Talk marked with
an asterisk (*) co-occurred with the gestures shown in the image. 67

5.2 The professor uses metaphoric gesture while describing the tree and chil-
dren nodes. Talk marked with an asterisk (*) co-occurred with the gestures
shown in the image. 68

5.3 The professor uses metaphoric gesture while describing the tree and chil-
dren nodes. Talk marked with an asterisk (*) co-occurred with the gestures
shown in the image. 69

xi

5.4 The professor sketching a code trace while using embodied language. The
professor’s talk indicating embodied language are noted: stepping out±,
diving in¢, ontological metaphor° . 71

6.1 The approach to determine if a word or utterance is a metaphor [160]. . . . 86

6.2 Teachers’ gestures while describing memory and the call stack. Talk marked
with an asterisk (*) co-occurred with the gestures shown in the image. . . . 89

6.3 Professor making a cyclical gesture. 95

6.4 Professor uses iconic gesture while describing searching through a phone
book. 97

6.5 The professors code, with the three lines the student refers to in a white box. 103

7.1 Diagram of a Generic Conceptual Blend. There are two input spaces that
are “blended” into the third, blended space. 116

7.2 Problem 1 . 131

7.3 Problem 2 . 133

7.4 The solution to problem 2 is adding the line in the square. 134

7.5 Problem 3 . 135

7.6 The solution to Problem 3. 136

7.7 Lee uses noniconic gesture to describe recursion. Talk marked with an
asterisk (*) co-occurred with the gestures shown in the image. 139

7.8 Aru’s blend to predict when the recursive process ends. Note, the parts in
blue is the base case blend. 143

7.9 Diagram of exponents blend. 145

7.10 Aru’s stacking gesture. Talk marked with an asterisk (*) co-occurred with
the gestures shown in the image. 146

7.11 Diagram of when the base case should terminate. The diagram in blue is
the blend about variables. 149

xii

7.12 Diagram of when to put lines of code blend. 151

7.13 Diagram of ”to the left” blend. 153

7.14 Diagram of ”get N back” blend. 155

C.1 Code trace for problem 1. 182

C.2 Code trace for problem 2. 183

C.3 Code trace for problem 3. 183

xiii

SUMMARY

Several recent studies in computing education research (CER) have found spatial think-

ing may be influential in learning computer science (CS). Correlational studies have demon-

strated that psychometrically assessed spatial skills predict performance in introductory CS

courses [1, 2, 3]. However, it’s hard to explain these results. There is not an obvious match

between the logic for computer programming and the logic for thinking spatially. CS is

not imagistic or visual in the same way as other STEM disciplines, since students can’t see

bits or loops. Margulieux suggests that spatial skill is a predictor of success in some STEM

disciplines because problem solving in those disciplines requires spatial reasoning about

some object [4]. For example, Kozhevnikov and colleagues found that in physics, spatial

ability is related to solving kinematics problems, particularly predicting the motion of an

object [5].

The goal of this dissertation is to document how space influences appears in CS learn-

ing. Embodiment is a theoretical framework which I use to document the ways space and

embodied representations (i.e., gesture, sketching, and metaphor) appear while students

make sense of computation and express computational ideas. The implication is that peo-

ple make meaning from their body-based, lived experiences, not just through their minds

[6], even for computing in its virtual nature.

However, the contributions of the body in sense-making is understudied in CER. Some

research has suggested that embodiment is simply pedagogical; it provides a way to explain

computing concepts [7, 8]. Other research has taken a disembodied view of CS learning.

Dijkstra was antagonistic towards using metaphor and body-based experiences to teach and

learn CS. He argued that attempting to link what was familiar to computation is ”hopelessly

inadequate” [9]. More recently, Cao and collaborators conducted an experiment to deter-

mine if analogies were ”valuable” for CS learning. They conclude that analogies are not

valuable for long term learning or knowledge transfer and present inconclusive evidence

xiv

that analogies are valuable for short term learning [10].

In this dissertation, I describe three studies. In the first study, I conducted a grounded

analysis of a set of naturalistic video recordings of university professors teaching recur-

sion in their classrooms. I wanted to understand how teachers use space in CS classrooms.

Therefore, I looked for spatial representations, including iconic gestures, spatial language

and spatial metaphors, and artifacts, such as sketches or diagrams. While conducting this

analysis, I noticed an interesting relationship between space and embodiment. The ges-

tures the teachers created about computation seemed to be enacted metaphors; that is,

the gestures seemed to act out a metaphor. Similarly, the teachers used spatial language

(e.g., then, it goes down here; then, I jump up to the if-statement) while describing a code

trace and used interesting language, such as calls, runs, and bound, to refer to function

invocation, program execution, and variable assignment, respectively. However, all these

are metaphors. The computer is not going down or calling anything, but teachers used

metaphors and physicality to represent the abstract. Moreover, teachers metaphorically

construe themselves as executing lines of code or constructing an agent who does that.

Embodiment seems to play a central role in the ways teachers communicate information

and meaning. This study sets forth the conceptual framework of the kinds of embodiment

used to analyze the rest of the work.

In the second study, I considered learning by reflecting on how teachers communicate

and structure learning opportunities—as a way to understand what students need to inter-

pret in order to learn. Using the same data corpus from the first study, I sought to under-

stand how well students could use or interpret the representations the teachers created and

communicated. I focused this examination on gestures and metaphors, as only one teacher

created a sketch. In my entire data corpus, embodiment was the only representation that

the teachers used to make computation, physical. I found that while embodiment could

have pedagogical significance, the ways teachers use it could be a source of confusion and

add to the list of difficulties that make learning to program hard. Teachers randomly switch

xv

perspectives, refer to lines of code as if they exist in the real world, and create gestures

that are either communicating important information or could also be nonsense. Professors

use metaphors, such as calls and runs, without explicitly stating what they mean. The em-

bodiment, specifically metaphors, do not seem to be intentionally designed for explanatory

power.

In the final study, I video recorded 10 dyads of college students while they solve re-

cursive problems. While conducting another grounded analysis, I found that the students

creatively constructed different metaphors and overlaid metaphors to make sense of com-

putation. I used conceptual blending as a theoretical framework to describe the ways in

which they blended multiple metaphors that allowed them to make sense of computation,

to reason about the behavior of code and make predictions or explanations. I conclude by

making a case that it is not about designing an everlasting representation that always helps

one understand this concept. It is about finding a cognitive toehold on understanding this

problem right now.

xvi

CHAPTER 1

INTRODUCTION

As humans, we live in a physical world. We live in a space. We often think about space

in ways that we might not realize. Spatial reasoning has been found to be influential in

learning algebra, biology, and other science, technology, engineering, and math (STEM)

subjects [11]. Recently, studies have found that spatial ability may be influential in learning

computer science (CS).

Correlational studies have demonstrated that psychometrically assessed spatial ability

predict performance in introductory CS courses [1, 2, 3]. Cooper et al. found a correlation

between students’ spatial ability scores and their ability to learn to program [1]. They

also found that when students with low socioeconomic status (SES) were given spatial

skills training, it improved their CS knowledge just as much as higher-SES students did

[1]. Recently, Bockmon et al. replicated and extended Cooper et al.’s study and found that

students’ performance on spatial ability assessments and a CS content instrument improved

when they received spatial skills training [12].

Inspired by Cooper et al.’s study [1], my colleagues and I sought to understand the

variables that might mediate or explain why low-SES students typically perform worse in

CS classes. We found that scores on spatial ability tests were a better mediating variable to

explain CS performance than students’ past access to computing experiences was [2].

However, explaining these results is difficult. As Uttal and Cohen said, correlation is

not causation, and these correlations could be due to several reasons unrelated to spatial

skills [13]. Nonetheless, the results are intriguing when put into conversation about the po-

tential implications of how students make sense of computation and the types of reasoning

they might use to do so. If we were confident about the relationship, we could teach CS

differently, which might improve success and retention in CS.

1

However, it’s hard to explain these results. There is not an obvious match between the

logic for computer programming and the logic for thinking spatially. CS is not imagistic

or visual in the same way as other STEM disciplines, since students can’t see bits or loops.

Spatial abilities and STEM performance are highly correlated, but that makes sense because

STEM is a highly visual space. CS is not inherently visual; it is a science of the artificial.

This means that CS is something that was designed and not inherited from nature [14].

Margulieux suggested that spatial ability is a predictor of success in some STEM disci-

plines because problem solving in those disciplines requires spatial reasoning about some

object [4]. For example, Kozhevnikov and colleagues found that in physics, spatial ability

is related to solving kinematics problems, particularly predicting the motion of an object

[5].

I define spatial ability as the ability to use space to both ”think with” and ”think

through.” Therefore, spatial ability is a problem-solving activity, helping one reason about

and make sense of phenomena. It also serves communicative functions. It gives us a lan-

guage or way to talk about phenomena and gives us a way to jointly make meaning and

collaborate.

To think more deeply about this problem, in this dissertation, I documented how space

appears in CS learning. My dissertation is naturalistic and inductive, as little is known

about how space influences CS learning. Embodiment is a theoretical framework that I

use to document the ways in which space and embodied representations (i.e., gestures,

sketching, and metaphors) appear while students make sense of computation and express

computational ideas. The implication is that people make meaning from their body-based,

lived experiences and not just through their minds [6], even in a discipline such as comput-

ing, which is virtual in nature.

While looking for space, I recognized the importance of embodiment and metaphor,

which was different than the CEd literature might expect. For example, teachers use the

following spatial language when describing a code trace: then, it goes up here before going

2

back down to the if-statement. The code is not actually going anywhere, but physicality

and embodiment are used to explain the abstract concept.

Embodiment as a theoretical framework offers two related novel ways to investigate the

relationship between space and computation. First, embodiment encourages investigations

into how students use their bodies and body-based experiences to make the digital physi-

cal, which has implications for understanding how and through what mechanisms students

make sense of computation. Research in STEM education has found that students often

externalize or offload their spatial thinking using embodied representations; this embodi-

ment offers students a way in to manage and think with the abstract [15]. For example,

Enyedy and colleagues documented a case of a student slipping on linoleum, which later

helped them reason about how the speed of an object increases [16]. Similarly, Roschelle

describes students using metaphors, like pulling, to reason about acceleration [17].

However, the contributions of the body to sense-making are understudied in computing

education research (CER). Some research has suggested that embodiment is simply peda-

gogical; it provides a way to explain computing concepts [7, 8]. Other studies have taken

a disembodied view of CS learning. Dijkstra was notably antagonistic toward the use of

metaphors and body-based experiences to teach and learn CS. He argued that attempting to

link what was familiar to computation is “hopelessly inadequate” [9]. More recently, Cao

and collaborators conducted an experiment to determine whether analogies were valuable

for CS learning. They concluded that analogies are not valuable for long-term learning or

knowledge transfer, and they presented inconclusive evidence that analogies are valuable

for short-term learning [10].

Second, using embodiment moves the focus of analysis outside the head. Moving out-

side the head allows us to interrogate the practices and sociocultural contexts that help

students with understanding and reasoning. Interrogating practices has direct implications

for pedagogy; this process gives us the opportunity to explore how we might design learn-

ing environments that better leverage students’ lived experiences.

3

Moreover, moving outside the head gives us different ways to think about the rela-

tionship between space and computation. Situative theories suggest that spatial abilities

involve the ability to use space in order to solve problems and are mediated by the social

interactions and tools afforded within a specific context [18]. Perhaps students use their

understanding of space to comprehend or imagine constructs in CS.

However, CER has only looked inside the head to understand the relationship between

space and computation. Researchers have proposed models that explain the relationship

between spatial skills and learning CS at the cognitive level [3, 4]. Marguiliuex proposed

the spatial encoding strategy theory, which focuses on the ability to create and represent

mental encodings of information [4]. Looking inside the head is only a partial and contin-

gent understanding of the relationship between spatial skills and learning CS [19]. We need

many avenues of investigation if we want a complete understanding of how spatial skills

operate in learning CS.

I investigated learning through two avenues. The first is as a sense-making, problem-

solving activity, and the second is as a meaning-making and social process between teachers

and students. In some ways, I was inspired to understand what was actually happening in

these classrooms and how students are actually learning and what mediates or supports that

learning.

This dissertation comprises three studies, each providing insight into how students or

teachers use embodiment to make sense of computation or communicate computation. The

first used grounded theory to analyze a video corpus of CS professors teaching recursion to

their class. From this study, I developed a conceptual framework of the different kinds of

embodiment teachers used. The second study used the same video corpus as the first study

and hypothesized about how well students can interpret the teacher’s embodiment to sup-

port their learning. The final study described the ways in which students use embodiment

and conceptual blends to make sense of computation. It analyzed pairs of students as they

solved recursive problems.

4

To consider a discrete problem space, I study recursion. Recursion is one of the few top-

ics in CER that has been studied intensively compared with other programming constructs

and concepts and understanding recursion conceptually and, to an extent, implementing a

recursive call require an understanding of different CS concepts, including function invo-

cation, return statements, stacks, and memory allocation,

1.1 Research Motivation

My research uses qualitative methods to investigate how embodiment appears and influ-

ences CS learning. To study embodiment, I will examine how embodied representations

(i.e., gestures, sketching, and metaphors) support CS learning. These representations were

the most salient in computing classrooms and in students’ problem solving. This qualitative

approach was inspired by two different perspectives.

The first perspective was inspired by a statement made by computing education re-

searcher Ben Shapiro. Shapiro argued that curriculum, programming languages, repre-

sentations, assessments, and so on are all designed, socially negotiated, and situated [20].

Shapiro’s argument was that we cannot understand CS learning without comprehending

these designed, sociocultural, and sociopolitical contexts. This, in some ways, turns many

CS learning problems and solutions into design challenges.

CS is not inherently visible; we do not inherit it from nature. Studies on students’ and

teachers’ usage of representations in CS classrooms agree that visual representations are

important in CS education because they create something tractable for students to develop

conceptual understandings with [21, 22, 23].

I became interested in representations with two past projects that sought to make CS

visible. The first was a project in which we used studio pedagogy and augmented reality

(AR) to make CS visible [24]. We wanted to know whether it is possible to create a non-

defensive CS classroom environment by making students’ work visible. We found that

the CS classroom culture can be reoriented from having a defensive climate to adopting a

5

culture that supports a community of learners when students’ work is made visible. We

hypothesize that by making students’ work visible (literally on the walls of an AR-enabled

design studio), we allow students to use their spatial and social skills in order to engage

differently with learning CS.

My second interest (described in more detail in Chapter 4) came from a study in which

I developed a conceptual framework to support future learning and teaching studies that

incorporate gesture studies in programming contexts [25]. I observed a high school CS

class and matched the gestures that students created to an existing taxonomy of gestures

from mathematics education. In particular, I introduced how gesture has been used to study

teaching and learning, with a focus on one discipline (mathematics), as well as critically

reviewed and interpreted the concepts that may be most relevant to programming contexts

and discussed the unique challenges programming contexts present to studies of gesture.

I offered an initial gesture taxonomy for computing education and suggested a research

agenda to incorporate analyses of gestures in computing education.

Research on the representations available in activities and learning found that represen-

tations influence and structure how one attends to information and the cognitive processes

used in the activity [26, 27, 28]. The representations help us remember, understand, rea-

son, and communicate about the properties of and relations between objects represented

in space. Moreover, findings in many scientific disciplines suggest that the usage of these

representations is central to the learning of the discipline and its practice, helping one rep-

resent their knowledge and reason about abstract relationships [27]. Representations affect

not only how much we know but how we know it.

It could be that CS might not be inherently spatial but spatialized because of how ab-

stractions are represented. Liben argued that when a concept is abstract, it has a nonspatial

referent, and as soon as that concept is given a form or location in space, it becomes spatial

[29, 30]. She indicated that this also suggests that sometimes, the aspects of inherently

nonspatial concepts can be spatialized.

6

The second perspective came from my interest in culture and systems of power. Re-

search that focuses solely on correlations misses the complexities and nuances of how

different people use spatial thinking [31, 32, 33, 34, 35]. Systematically minoritized and

marginalized people tend to score lower on spatial ability assessments than white and Asian

males do [36, 37, 38]. These same groups are also systematically underrepresented in CS.

This correlation has started to be used to explain why such groups do not succeed in CS

classrooms. We need to be careful and thoughtful about how we think about and analyze

space; otherwise, we will create more gatekeepers to keep systematically underrepresented

people out of CS.

Ramey reminded us that correlational studies using psychometric assessments typi-

cally only represent one small sliver of the diverse array of spatial thinking [31, 32]. She

suggested that by using only these exogenous methods of assessing spatial thinking and

learning, we are substantially missing the richness of what students are actually doing.

Ramey described how endogenous accounts of spatial thinking are more asset based and

are beneficial for capturing the spatial thinking and learning of marginalized and minori-

tized students, who typically underperform on psychometric assessments; however, they

may still use spatial thinking [34, 33].

Taken together, these two perspectives led me to focus on theoretical pluralism [18,

19, 39]. No single theoretical framework will answer all the questions. Theoretical plu-

ralism allows for a complete picture of how CS learning appears. Aside from examining

correlations, we need many avenues of investigation.

1.2 Research Goals and Questions

As previously mentioned, the goal of this dissertation is to document how space influences

and appears in CS learning. Specifically, my work aims to create a data-grounded theory of

how teachers use embodiment to communicate and explicate computation and how students

use embodiment to solve problems and make sense of computation.

7

I draw on constructivist, situative, and distributed learning theories to frame my inves-

tigation of space in CS learning [40, 41, 42, 43, 44, 45]. This framing involves certain

assumptions about the nature of thinking and learning. From constructivism, I draw the

notion that students are active agents in the construction of their knowledge. Students build

their own unique representations and incorporate and connect new information with their

preexisting knowledge. From situative theories, I consider learning to be situated within

particular sociocultural contexts and activities. I also consider learning to be a social, com-

municative process and a process of consent into disciplinary practices. From distributed

learning perspectives, I draw on the notion that thinking and learning are distributed pro-

cesses involving the mind, body, other people, representations, objects, and other artifacts

and tools available to someone within a specific context.

I use a grounded theory approach for data collection and data analysis. Grounded theory

is a methodological approach for collecting data, analyzing data, and developing theory

[46, 47, 48]. In a grounded approach, one iteratively collects data to develop theories and

codes that data with the aim of developing a theory that fits the data. I have three guiding

methodological principles inspired by this grounded approach. The first one is to ask basic

questions. Before making broad claims about how students make sense, the factors that

mediate learning, and the skills and types of reasoning that matter, basic questions must

be answered. The second principle is to analyze multiple settings. The third principle is

to analyze multiple perspectives, including perspectives of teachers and students and what

resources they use.

1.2.1 Research Agenda

Conceptual Framework of the Kinds of Embodiment Teachers Use

I conducted a grounded analysis of a set of naturalistic video recordings of university

professors teaching recursion in their classrooms. I wanted to understand how teachers

use space in CS classrooms. Therefore, I looked for spatial representations, including

8

iconic gestures, spatial language and spatial metaphors, and artifacts, such as sketches or

diagrams. While conducting this analysis, I noticed an interesting relationship between

space and embodiment. The gestures the teachers created about computation seemed to

be enacted metaphors; that is, the gestures seemed to act out a metaphor. Similarly, the

teachers used spatial language (e.g., then, it goes down here; then, I jump up to the if-

statement) while describing a code trace and used interesting language, such as calls, runs,

and bound, to refer to function invocation, program execution, and variable assignment,

respectively. However, all these are metaphors. The computer is not going down or calling

anything, but teachers used metaphors and physicality to represent the abstract. Moreover,

teachers metaphorically construe themselves as executing lines of code or constructing

an agent who does that. Embodiment seems to play a central role in the ways teachers

communicate information and meaning. This study sets forth the conceptual framework of

the kinds of embodiment used to analyze the rest of the work.

A Critical Analysis of How Well Students Might be Able to Interpret Teachers’

Embodiment

In this study, I considered learning by reflecting on how teachers communicate and

structure learning opportunities—as a way to understand what students need to interpret

in order to learn. Using the same data corpus from the first study, I sought to understand

how well students could use or interpret the embodiment the teachers created and com-

municated. I focused this examination on gestures and metaphors, as only one teacher

created a sketch. In my entire data corpus, embodiment was the only representation that

the teachers used to make computation, physical. I found that while embodiment could

have pedagogical significance, the ways teachers use it could be a source of confusion and

add to the list of difficulties that make learning to program hard. Teachers randomly switch

perspectives, refer to lines of code as if they exist in the real world, and create gestures

that are either communicating important information or could also be nonsense. Professors

use metaphors, such as calls and runs, without explicitly stating what they mean. The em-

9

bodiment, specifically metaphors, do not seem to be intentionally designed for explanatory

power.

Students Use of Conceptual Blends and Embodiment to Support Their Sense-

Making

Finally, I video recorded 10 dyads of college students while they solve recursive prob-

lems. While conducting another grounded analysis, I found that the students creatively

constructed different metaphors and overlaid metaphors to make sense of computation. I

used conceptual blending as a theoretical framework to describe the ways in which they

blended multiple metaphors that allowed them to make sense of computation, to reason

about the behavior of code and make predictions or explanations. I conclude by making a

case that it is not about designing an everlasting representation that always helps one un-

derstand this concept. It is about finding a cognitive toehold on understanding this problem

right now.

The analyses conducted are largely linguistic. I present my findings in the style of de-

tailed episodes; this work is meant to be descriptive and interpretive. I provide my findings

as episodes not only to present evidence to readers but also to enable them to come to their

own conclusions, which might be contradictory to the ones I make. Moreover, as this work

is interpretative, I do not provide exhaustive lists or categorizations.

1.3 Dissertation Overview

Chapter 2 provides a brief overview of recursion and literature review about what CSEd

currently knows about how students learn recursion.

Chapter 3 unpacks the conceptual framework guiding data collection, analysis, and

writing, and rationale for using these guiding theories.

Chapter 4 surveys the relevant literature in CER of the complexities associated with

learning to program and sheds light on how little is known about embodiment in CSEd.

Chapter 5 presents a conceptual framework of the different forms of embodied repre-

10

sentations found in CS teaching.

Chapter 6 considers how professors orchestrate opportunities for learning, how well

a student might be at interpreting teacher’s embodiment and considers what might make

interpretation more fluid.

Chapter 7 describes how students use embodiment and metaphor to make sense of com-

putation. Specifically, I use conceptual blending as a theoretical framework to describe how

students overlay multiple metaphors to make predictions about code behavior and explana-

tions.

Chapter 8 summarizes the findings and implications, and avenues for future work.

This dissertation is written in the style of a multiple manuscripts dissertation. Each

analysis chapter describes data analysis and collection, and reviews any relevant literature

unique to the chapter.

1.4 Positionality

Because of the qualitative research approach and the fact that the work is meant to be

descriptive and inductive, some background, positionality, and reflexivity about myself will

help contextualize the findings in this dissertation. I was raised in an upper middle-class

Black household. I have bachelor’s and master’s degrees in computer science. Because I

am a computer scientist, this work was done from an insider perspective. It did make it

difficult for me to identify some metaphors or to even describe some metaphors because

that language for me is just what it is—it is not a metaphor. Someone without an outsider

perspective may do a better job with that. However, being an insider made it easier for

me to understand what people were talking about and to see meaning in some gestures.

Because of this, I could easily be adding extra meaning to things than I meant to.

I also believe that if we are not actively accounting for systems of oppression, whatever

we do will end up constructing and reimagining them. This means that equity issues do

not work in a silo. If one is not actively trying to make something anti-racist, it will default

11

to being racist. The same holds true for other systems of oppression. Therefore, I try

my best to use equitable methodological approaches and equitable ways of understanding

what learning is. For example, I consider when I was an undergraduate, I had trouble

understanding many of the metaphors my professors used in my CS classrooms and some

metaphors made me uncomfortable. While that issue is pedagogical, it is also an issue of

equity, specifically inequitable communicative practices used by teachers.

12

CHAPTER 2

SETTING THE CONTEXT OF RECURSION

In one of Dijkstra’s infamous keynotes, he mentioned that he was surprised that so many

of his students had difficulty coping with the concept of recursion because he knew “that

the concept of recursion was not difficult” [49]. However, recursion is a notoriously tricky

programming concept for students to learn and teachers to teach. Decades of CER have

consistently found recursion to be one of the concepts that students struggle with the most

and where they have incomplete or incorrect understandings of the concept. Students typi-

cally have difficulty constructing viable mental models of recursive functions [50, 51, 22],

and computing teachers have the daunting responsibility of scaffolding students’ devel-

opment of viable mental models of recursion [52, 53]. Without a viable mental model,

students cannot accurately reason about recursive functions. Accordingly, how students

learn to “think recursively” [54] and the best practices for teaching recursion have been

subjects of CER for decades.

In this chapter, I describe findings about the difficulties that students have with learning

recursion. I first explain what recursion is, describing some concepts relevant for under-

standing it. I then describe results about the viable and non-viable mental models that stu-

dents typically form about recursion. Next, I tell a specific conceptual model (a stack-based

notional machine) that teachers typically use to describe recursive invocation. I conclude

by presenting an example of a recursive invocation.

None of this research has ever considered embodiment. In later chapters, I describe the

ways in which teachers’ use of embodiment could make learning recursion difficult and

how embodiment makes recursion physical.

In this dissertation, the discussion of recursion applies to programming languages un-

der the imperative paradigm, which includes C++, Java, and Scratch. While imperative

13

languages might be considered the most authentic in professional practice, they could limit

the applicability of my findings.

2.1 Recursion in Programming—Recursive Invocation

A common definition of recursion is a function or subroutine that invokes itself. Invoking

a function or function invocation is a command to the computer to execute a set of actions.

While this definition might seem like an endless cyclical loop, a well-defined recursive

solution should never be infinite. Recursion is a technique used to break down a difficult

problem into smaller subproblems that are easier to manage. Each subroutine should never

solve the same problem. At some point, the smaller problem should be so simple that it can

be solved easily, which ends a recursive invocation.

To clarify this, I describe a typical problem used to introduce recursion to students,

which is calculating the factorial of a number (e.g., 5! [5 x 4 x 3 x 2 x 1 = 120]). 5!

is the same as 5 * 4!. 4! is the same as 4 * 3! and so on. The smaller problem that is

easier to solve is (n-1)!. Therefore, the factorial of some value n (or n!) can be obtained by

multiplying n times (n-1)!. The smallest instance of that problem is 0! or 1!.

Figure 2.1 is an example of the function factorial that computes the factorial of an

inputted value in code. Although the complexity and structure of a recursive function can

vary, a recursive solution is typically expressed using an if-else statement, which tells the

computer to execute lines of code if a specified condition is true. In this example, the if-

statement (if number = 0) defines the base case or the stopping criterion that terminates

the recursive invocation. The base case should produce a trivial result without recurring.

Again, the base case is the smallest instance of the problem, which is 0! or 1!.

The else statement is the recursive case, which is the recursive invocation in which the

function breaks down the problem to solve part of the original problem [55]. A recursive

function can have multiple base cases and recursive cases.

Recursion can range in complexity. The factorial function is an example of a tail-

14

Figure 2.1: The code for the function factorial.

recursive invocation, which means that there are no lines of code following the recursive

invocation. Another type is the non-tail end, which has lines of code after the recursive call,

and these lines of code are executed after the recursive execution terminates.Figure 2.2 is a

representation of typical non-tail end execution.

2.2 Recursive Execution

In this section, I describe the mechanisms behind a recursive execution, that is what hap-

pens when a computer executes the set of actions. To understand execution, I first describe

a stack-based notional machine.

Researchers have described several strategies teachers use to help scaffold students’ de-

velopment of recursive mental models. Wu et al. explain that it is a teacher’s responsibility

to present instructor defined conceptual models to help facilitate the learning of recursion

and help students develop their own viable mental models [52]. Wu et al. described the

most widely used models, reported in Table 2.1 [52].

Teachers might also use a specific kind of conceptual model in computer science edu-

cation (CSEd), known as a notional machine. It is widely accepted in CER, that teachers

need to scaffold students’ mental models of a notional machine.

15

Figure 2.2: Non-tail end execution

Recursive execution is invisible, and the code does not make it evident how recursive

execution happens. For example, in the previously mentioned figure with a non-tail end

recursive function, it’s not evident that after the recursive execution finishes, all the lines

of code after the recursive statement get executed. Therefore, having a working notional

machine or mental model of recursion helps students have a better understanding, reason

about, and conceptualize how a recursive function executes. Notional Machines are repre-

sentations that highlight, “those things that are important to look at, or that do something

that makes apparent otherwise invisible behavior which, if un-noticed or misunderstood,

would cause the learner to go hopelessly wrong” [56].

Notional machines can vary in complexity but, one a simple version is to use an analogy

to describe some programming construct or concept. For example, students are typically

taught that recursive execution works like a stack (See Figure 2.3). In CS, a stack is a

16

Table 2.1: Most commonly used conceptual models. Table adapted from [50].

Concrete Conceptual Model Abstract Conceptual Model

Counting using nested Russian dolls
Recurrence relations using
factorial as an example

Design recursive algorithms using a block diagram
tracing technique Identify base and recursive cases

Verify recursive algorithms using a block diagram
tracing technique

Design and verify recursive
algorithms using induction

metaphor that represents a kind of data structure of a collection of elements. Stacks work as

LIFO (last in, first out) and have two main functionalities: (1) pushing, or adding elements

into the stack, and (2) popping, or removing elements in the stack. A similar analogy for

a stack is to think about stacking plates, each plate goes on top of each other, with the first

plate at the bottom and the last plate placed at the very top. When we take plates off the

stack, we start by taking the topmost plate - or last plate added - in the stack.

Figure 2.3: A representation of a stack in CS. The first image shows elements pushing into the
stack. The second image shows elements popping out of the stack.

A recursive solution cyclically iterates and evaluates each smaller problem and then

combines the results. In a recursive execution, every subroutine “has its own private, fixed

working space” [57]. Similarly, then, each subroutine is “pushed” onto the stack halting

execution until the base case is executed, terminating the recursive execution. At which

point, each subroutine is “popped” off the stack and continues execution.

17

There are different notional machines to represent recursive execution. For example,

Wilson et al. describe a “lesser-used” notional machine, algebraic substitution, ”when a

function is applied to arguments (the ”actual parameters”), first the arguments are evalu-

ated, then all instances of the function’s formal parameters are replaced with their argument

values. The resulting program is then evaluated using these concrete values” [22]. Since

stack was the only notional machine used in my research, I will focus primarily on the

stack-based notional machine.

To illustrate the execution process, Figure 2.4 is a representation of how the computer

interprets and executes the invocation factorial(5) using a stack-based notional machine.

For this code trace, a computer invoked the factorial function with a value of 5 - factorial

(5). Simply put, see Figure 2.4, the computer first checks to see if the input value is equal to

n. If it is, the function returns 1, stopping the recursive invocation. However, if the value is

not equal to n, then the same function is invoked again, but with one less than the original,

input value.

Figure 2.4: A representation of a flow chart of the factorial function

If the computer executes factorial(0), the function returns 1 and never hits the recursive

case.

Each invocation forms its own execution frame that is placed onto the stack, see Fig-

18

ure 2.5. With recursion, the computer waits for return values coming from other execution

frame. These other frames are higher up the stack. When the last item on the stack finishes

execution, that context generates a return value. This return value gets passed down as a

return value from the recursive case to the next item.

Figure 2.5: A representation of a code trace of the factorial function

1. The computer invokes factorial() with 5 as the argument passed. The base case is

false, so the recursive case is executed. The invocation factorial (5 - 1) is placed into

the stack and suspended.

2. The computer invokes factorial() a second time with 4 ((n - 1)) as the argument

passed. The base case is false, so the recursive case is executed. The invocation

factorial (4 - 1) is placed into the stack and suspended.

3. The computer invokes factorial() a third time with 3 ((n - 1)) as the argument passed.

19

The base case is false, so the recursive case is executed. The invocation factorial (3 -

1) is placed into the stack and suspended.

4. The computer invokes factorial() a fourth time with 2 ((n - 1)) as the argument passed.

The base case is false, so the recursive case is executed. The invocation factorial (2 -

1) is placed into the stack and suspended.

5. The computer invokes factorial() a fifth time with 1 ((n - 1)) as the argument passed.

The base case is false, so the recursive case is executed. The invocation factorial (1 -

1) is placed into the stack and suspended.

6. The computer invokes factorial() a sixth time with 0 ((n - 1)) as the argument passed.

Now, the base case is true, so return 1.

At this point, the computer has decreased the argument by one on each function call

until the condition to return 1 is met.

1. From here the last invocation completes, so that function returns 1.

2. Next value is 2, so the return value is 2. (1×2).

3. Next value is 3, so the return value is 6, (2×3).

4. Next value is 4, (4×6). 24 is the return value to the next context.

5. Finally, value is 5, (5×24) and we have 120 as the final value.

2.3 Learning Recursion

Learning to write and trace recursive functions is challenging for multiple reasons [55],

including that people do not naturally think recursively and that there are no obviously

recursive real-world experiences or analogies that students can draw upon to understand

recursion. Another reason is that most students have not “previously encountered neither

20

the concept nor its associated vocabulary” [50]. Computing education, programming lan-

guages, and software development all rely on metaphors. The terms “recursion” and “func-

tion” are conceptual metaphors used to name abstractions [58]. Many of these difficulties

with teaching and learning resulting from the run-time phenomena of recursive procedures

are not visible and are also difficult to describe. Pirolli and Anderson argued that this re-

sults from the lack of everyday analogies that can bridge the digital world with the analog

world and from most students not having previously encountered either the concept or its

associated vocabulary [54].

Arguably, one of the main challenges is that students have trouble understanding re-

cursive execution because the code and computer hide the execution of a recursive func-

tion, which is a difficult process to describe [55]. To write and trace a recursive function,

students must understand the following concepts: function invocations, function returns,

parameter name reuse, and a function calling itself. Students are expected to just trust

the hand-waviness or magic of recursive invocation. In a survey of students’ and tutors’

perceived difficulty with programming concepts, Milne and Rowe concluded that “these

concepts are only hard because of the student’s inability to comprehend what is happening

to their program in memory, as they are incapable of creating a clear mental model of its ex-

ecution” [59]. Likewise, George argued that students have trouble understanding recursion

largely because they fundamentally do not understand subroutine execution, “don’t under-

stand what really happens when a function is called, they don’t have the proper foundation

required to build an understanding of recursion” [60].

2.4 Mental Models of Recursion

Studies have found that even after substantial training, students still lack an understanding

of the mechanism of recursive execution. When describing why students get recursive

problems wrong, research typically attributes it to students having an undesired mental

model. Researchers who identified error patterns in students’ recursion evaluation traces

21

attributed the errors to students’ maladaptive mental models of recursion [55]. Mental

model theory tells us that people construct and refine mental models to reason about and

predict events happening in the world. However, mental models do not necessarily reflect

events accurately or completely because of a person’s own biases and misunderstandings.

Researchers have explored the different mental models that both experts and novices

have developed about recursion [53, 61, 55]. Kahney’s list of mental models of recursion

is arguably the most well-known and cited in computing education scholarship [53]. Kah-

ney’s work has since been extended by Gotschi et al., who identified the mental models that

were likely to lead to a correct understanding of recursion [61]. Table 2.2 lists the different

mental models and the descriptions of each.

Table 2.2: Mental models of recursion. Adapted from [50]

Kahney found that experts have a model of recursion that “defines recursion as a pro-

22

cess that is capable of triggering new instantiations of itself, with control passing forward

to successive instantiations and back from terminated ones,” referred to as the copies model

[53]. This mental model is in line with the description of the factorial invocation and exe-

cution described in the previous section, in which each invocation creates its own execution

frame that is halted or suspended until the base case is invoked.

However, students typically have flawed models of recursion, such as the looping model,

in which recursion is considered synonymous with iteration or looping. In this model, a

recursive invocation does not create its own frame; instead, the same frame is repeated but

with different values [55]. The process is repeated until the base case is invoked. Chao et

al. described this model as flawed because it typically results in a lack of understanding of

the passive flow, that is, the process that happens after the base case is invoked [55].

Figure 2.6 was adapted from Chao et al. and illustrates the copies and looping mental

models using the aforementioned factorial function [55].

Figure 2.6: Copies and looping mental models of the factorial function [55]

23

However, Chao and colleagues argued that attributing error patterns to mental models

implies that mental models are “relatively stable, integrated knowledge structures,” when

we know that students can fluently switch between mental models while working on the

same problem [55]. Using diSessa’s knowledge in pieces as a theoretical framework, Chao

argued that students rely on loosely coordinated knowledge elements to dynamically con-

struct mental models of recursion. Moreover, Sanders et al. found that about half of the

students who used the copies mental model on one task switched to a different mental

model on another task [62]. Unlike those of experts, students’ mental models are not static.

Bettin argued that “learning is a messy process: we work to adapt models, gain new infor-

mation, connect that information, and often forget, misremember, or misapply other infor-

mation” [63]. A sign of expertise is the formation of stable mental models: “By contrast,

experts’ mental models are more stable and accurate, and draw on general principles rather

than superficial characteristics. A challenge of programming education is to facilitate the

evolution of students’ models so that they have these features” [64].

24

CHAPTER 3

CONCEPTUAL FRAMEWORK

This chapter provides details about the conceptual framework that I use to analyze how

embodiment influences and appears in CS learning. As previously mentioned, this concep-

tual framework was developed from a grounded analysis of space in CS learning. In some

ways, finding a relationship with space and embodiment should have been expected. In

STEM education literature, the relationship between embodiment and spatial thinking has

been documented. For example, DeLiema and Steen describes how students use gesture to

offload their spatial thinking [65]. In a literature review about how embodiment could be

used to teach spatial thinking, DeSutter and Stieff describe how, “the body and embodied

knowledge to represent and think spatially has also been identified among expert STEM

professionals engaged in their discipline [66]. Ethnographic studies of scientists engaged

in authentic practice have found that complex spatial ideas are often conveyed using repre-

sentational gesture-based and body-based metaphors” [66].

In the rest of this chapter, I first describe embodiment as it is used in this dissertation.

I then describe three different embodied representations that I used to investigate embodi-

ment. These representations were the most salient in my research.

3.1 Embodiment

Embodied perspectives on cognition and learning (e.g., [67, 68, 69] have developed with

the insight that we cannot study cognition as a phenomenon that is isolated in individual

human minds. Instead, cognition has to be regarded as interaction between body and mind

and between individuals and their material and social environments. Indeed, Almjally and

colleagues argue that such perspectives have provided useful insight for STEM learning,

where disciplines depend on, “representational systems that require sensory encoding, such

25

as data visualization, and rely on high abstraction, such as mathematical formulae or pro-

gramming code” [70]. Research in mathematics and science learning has highlighted the

affordances that body-based strategies may provide for teaching and learning [6, 28, 71, 72,

73]. Moreover, there is evidence that adopting embodied approaches, such as using object

manipulation or gesturing in education, can not only enhance a student’s ability to connect

the abstract to the concrete, but also improve memory and cognitive skills, such as strategic

or spatial cognition and the reasoning abilities used in problem-solving [74, 75].

However, there is a lack of consensus on the ways ”embodiment,” ”embodied,” and

even ”embodied cognition” are used. For example, in a 2012 special edition of the Journal

of Learning Sciences, Stevens describes two more orienting perspectives of embodiment

[6]. The first is the conceptualist perspective, which comes from cognitive linguistics. This

approach assumes that we all have shared experiences and thereby have common mental

schema: “ideas are organized in conceptual systems grounded in physical, lived reality” [6].

The second is the interactionist perspective, which came about from studying cognition and

learning within specific sociocultural and sociomaterial contexts. This perspective under-

stands, “the body as an interactively organized and public resource for thinking, learning

and joint activity,” that produces meanings and actions through diverse means, including

tool use, gesture, pointing, prosody, intonation, physical orientation, gaze and talk” [6].

In general, embodiment implies that the mind is not the sole source of knowledge, but

we make meaning about the world from our body-based, lived experiences [6]. This means

that the body and body-based experiences are active in meaning-making, sense-making,

and, importantly, including tool use, gesture, pointing, prosody, intonation, physical ori-

entation, gaze, and talk. Furthermore, learning is seen as “depend[ing] crucially on our

bodies, especially our sensorimotor apparatus, which enables us to perceive, move, and

manipulate” [75].

In this dissertation, I define embodiment to encompass three different aspects of body-

based meaning [75]:

26

1. the grounding of the abstract domains within concrete domains and “the embedding

of the body in a deeply situated sense-act-process loop to make and represent mean-

ing” [75]

2. the physical body and its sensorimotor capabilities

3. the use of the tools to extend the body’s capabilities

Such aspects manifest in many embodied representations, including metaphors, ges-

tures, sketching, winking, changes in voice intonation, and facial expressions. However, I

investigate embodiment by examining how teachers and students use embodied representa-

tions, specifically metaphor, gesture, and sketching. Besides being the most salient, I chose

to focus on those three because of their practical applications for pedagogy [75]. That is,

one can easily design a metaphor for explanatory power, for example, but cannot replicate

more fine-grained embodiment.

3.2 Metaphor

Since the mid-twentieth century, philosophers have shown that metaphors permeate all

discourse, are fundamental to human thought, and are pedagogical tools. Similarly, one of

the most important revelations is that metaphor is not merely a linguistic phenomenon but

also a fundamental principle of thought and action: ”Metaphors aren’t just ways of talking,

they are ways of thinking” [76]. Similarly, researchers have been attracted to the potential

contribution of metaphors for learning.

Lakoff and Johnson proposed Metaphor Theory, where they argued that we use metaphors

to talk, reason, and think about abstract domains like space, time, love, and mathematics.

Metaphors concretize abstract entities, by mapping the abstract “space” to something con-

crete [77]. Metaphors make “apprehending” abstract concepts “accessible” to students

through comparison with familiar, bodily experienced concrete concepts.

27

Embodiment is a central assumption of Metaphor Theory. Lakoff and Núñez state that

language, specifically conceptual metaphor, is a product of embodied thought: “much of

what is ‘abstract’. . . concerns coordination of meanings and sense-making based on. . .

forms of metaphorical thought. Abstract reasoning and cognition are thus genuine, em-

bodied processes” [77]. For a mental representation to be “embodied” in the sense most

commonly invoked by metaphor researchers, it must be instantiated at least in part by a

simulation of prior or potential bodily experiences, within modality-specific components

of the brain’s input and output system.

To grasp abstract concepts, we project embodied or sensory motor reasoning onto them.

Affection, for example, is frequently understood in terms of physical warmth: “”She was

cool to him”; ”he gradually warmed to her”; ”they had the hots for each other.”

Lakoff and Nunez claim that the mathematics we used to describe as disembodied is

in fact embodied [67]. Humans use their bodies, mind, and brain to both form and under-

stand mathematics. All mathematical content resides in embodied ideas and many of the

most basic, as well as the most sophisticated, mathematical ideas are metaphorical. Their

argument is that all mathematical concepts arise as metaphors where mathematical ideas

are ways of ‘mathematicising’ ordinary ideas and these metaphors are in turn grounded in,

or based on, our embodiment.

They argue that our understanding of algebraic variables is similar to our understanding

of pronouns: ”Whoever did this was sick” should be compared to ”If X + 2 = 7, then

X = 5”. Empirically they demonstrate some of their insights by discussing the gestures

mathematicians typically use to explain their ideas. Therefore, not only categorization is

grounded in (shaped by) the body, but so is cognition in general, including spatial and

social cognition, problem solving and reasoning, and natural language.

Moreover, metaphors may indicate how we conceptualize different mathematical con-

cepts. For example, “take away” and “break” or “count up” and “next” may indicate how

we conceptualise numbers as collections of objects or as points along a path [67].

28

Of particular interest here is that many metaphors involve mappings from concrete do-

mains to abstract domains such as time, cause, depression, and love for which no (or little)

experience-based schematic structure can be described. This phenomenon extends to the

language of science and mathematics. Amin found different metaphors implicit in the sci-

entific use of the term energy, including construing energy as a substance transferred from

one entity to another, energy as a whole object composed of parts, forms of energy were

construed as containers, and others [78].

Metaphors involve the mapping between two conceptual domains.

1. The first domain is the source domain, or the conceptual domain from which we draw

metaphorical expressions.

2. The second domain is the target domain, or the conceptual domain that we try to

understand.

Wilbers and Duit argue that from a constructivist point of view, this mapping or simi-

larity is constructed and dependent on prior experience with source and target [79]. They

describe how this mapping could create difficulties for student learning. Moreover, under-

standing metaphors can be difficult. Metaphors should arguably be framed as cultural tools;

they are products of specific sociocultural environments and are historically constructed.

if a teacher generates a metaphor or analogy, the target domain is as well known

to them as is the source domain. The student is instead totally ignorant of

the scientific concepts that are communicated. Therefore, the teacher’s use of

the metaphor or analogy is presumably different from the student’s: while the

teachers construct the similarities, the students have to search for them.

3.2.1 Metaphors support Understanding and Reasoning

The question that emerges from such analyzing metaphors is the extent to which the metaphors

are resources for understanding and reasoning. Metaphors have been acknowledged for

29

their capacity to help with learning abstract concepts. Manches [80] argues that despite

metaphor theory critiques, it has offered an explanation for our ability to think and reason

about abstract concepts and has provided a valuable theoretical framework for examining

the conceptual underpinnings of abstract concepts, notably in science (e.g., thermodynam-

ics [81, 82]).

Similar to analogies (see [83]), metaphors involve mappings between a source domain

(e.g., movement) and target domain (e.g., time). Both analogies and metaphors express

comparisons and highlight similarities, but they do this in different ways. The key differ-

ence, according to Brookes and Etkina, is that analogies suggest the source domain is like

the target domain (e.g., life is like a box of chocolates) [81]. Whereas a metaphor suggests

the source domain is the target domain (e.g., they are a shining star). In a study about

physicist uses of metaphors, Brookes and Etkina say that physicists need to assert some-

thing more than ”is like” they need ”is” in their reasoning process [81]. They conclude that

“is” is a fundamental trait of how knowledge is generated and represented in physics.

Moreover, Brookes and Etkina add that metaphors encode analogies, which supports

reasoning about a problem or a solution. Physicists are able to use these metaphorical

systems to reason productively about a particular situation or problem. For example, the

electron is a wave metaphor can be used productively to explain the Heisenberg uncertainty

principle: “I often think of it. . . in terms of Fourier transforms and the reciprocity between

the bandwidth of the channel and the length of the signal pulse that can be detected” [81].

Duit argues that metaphors compare without doing so explicitly [84]. They describe this

point using the metaphors of calling education “sheep herding” or a teacher “the captain of

the ship.” Taken literally, these utterances are “absurd,” but metaphorically, the utterances

grounds our understanding and “provoke anomaly” and “surprise.”

They continue that the “surprise” or “anomaly” aspect of metaphors is what makes them

significant in the learning process: ”Something happens to us when we first read a fresh

metaphor. We are reorganizing our patterns of previously organized meaning” [84].

30

Metaphors allow new perspectives and help us to see the familiar in totally new ways.

Duit uses the argument from Gowin to explain this surprise and anomaly. Gowin describes

the metaphor ”A paintbrush is a kind of pump,” which is, initially, a surprising statement

because it provokes thought and causes one to construct an analogical relations that gives

the statement meaning [85]. This ”generative power” of metaphors makes them potentially

valuable tools in conceptual change learning. They provide what is essential to this aspect

of learning, namely making it easier to restructure the already known and familiar.

In similar vein, in Roschelle’s seminal research on convergent conceptual change, Roschelle

describes students using a pulling metaphors to construct their explanation of acceleration

(i.e., “acceleration pulls the tip of the velocity vector”) [17]. This use of pulling contrasts

with the common misconception “force as a mover,” which specifies force as directly re-

lated to change of position. The key transformation of conceptual structure for successful

students was the redirection of pulling from “acceleration pulls the particle” to “acceler-

ation pulls the tip of velocity” a transformation of a “misconception” into an explanation

that is more compatible with the interpretation of acceleration in scientific practice.

3.2.2 Metaphorical Construals

Dreyfus et al. provided evidence that experts and learners talk and reason about emergent

processes as if they were material substances [86]. Ackermann refers to this as perspective-

taking to be a body-based activity, necessary for acquiring a deeper understanding [87].

Ackerman uses the language of “diving in,” or situating oneself to become part of the

phenomena, and “stepping out” of the phenomena, which helps someone reflect on their

experiences, forming more abstract insights.

In their seminal work, Ochs et al. found that scientists were, “taking on the perspective

of (empathizing with) some object being analyzed and by involving themselves in graphic

(re)enactments of the physical events” [88]. Ochs et al. described these linguistic constructs

“where the participants moved between a normative scientific description of a phenomenon

31

to more personal 1st person description as liminal worlds, because they were episodes in

which objective facts were blended together with subjective reasoning from a first-person

perspective [88]. These liminal worlds created a qualitatively different set of resources

from which to reason and were found to be productive in model and theory building.”

From a pedagogical perspective, some work has referred to these metaphorical constru-

als as ’role-playing’ [75]. Some roleplay involves students pretending to be other actors,

like scientists or politicians in order to better understand the perspective of another haman.

However, another kind of roleplay, the kind referred to in this dissertation, has students play

as entities to simulate, “the processes of natural phenomena and clarify students’ interpre-

tation of these phenomena” [89]. Roleplay is used as an analogy, which involves students

actively reinterpreting information. This enables students to generate a deeper understand-

ing and draw on their own experiences to make sense of new information. Aubusson and

colleagues state that the key feature of roleplay lies in its ability to help students develop

and create viable mental models, which can then be used to create theories to explain phe-

nomena [89].

3.3 Gestures

Gesture has been studied to understand its role in teaching and learning in several domains

(e.g., mathematics, physics) with a research lens informed by embodied cognition, learning

sciences, and educational psychology. In this paper we focus on the study of gestures from a

learning sciences and educational psychology perspective with an emphasis on disciplinary

education research in mathematics. We limit our focus first, because mathematics offers the

tightest connection to computing and second, because the literature on the use of gestures

in learning is expansive, and thus our limited focus helps set boundaries for this initial

exploration of gesture research to computing education.

32

3.3.1 Gestures Defined

While there is a common perception of gestures, within the learning literature character-

istics of gestures have been described to establish a shared understanding. Gestures are

defined as visible, external representations of what people are thinking [90]. They are

spontaneous hand movements produced when talking [91]. Yet, while gestures are hand

movements, not all hand movements are gestures [92]. Gestures can be distinguished from

other hand movements by four characteristics [92, 93, 94]:

1. Gestures begin from a position of rest, move away from this position, and

then return to rest.

2. Gestures have a peak structure, also referred to as the stroke, which is

generally recognized as a moment of accented movement to denote the

function of meaning of a movement.

3. The stroke phase is preceded by a preparation phase and succeeded by a

recovery phase in which the hand and arm move back to their rest posi-

tion. Consequently, gestures have a clear beginning and ending.

4. Gestures are often symmetrical.

3.3.2 Gesture Can Reveal What a Learner Knows

Gestures have been found to be beneficial for instruction and understanding student knowl-

edge. Gestures produced while students explain their reasoning provides unique insight

into their thought processes [95]. For example, Novak and Goldin-Meadow describe a

child who believes that the amount of water changes when it is poured from a tall, thin

container into a short, fat container which indicates the child does not understand the con-

cept of conservation of liquid quantity [95]. The child justified their belief by saying, “this

one is taller than this one,” while making a C-shaped gesture to indicate the narrow width

of the tall container, followed by a wider C-shaped gesture to indicate the larger width of

33

the short container. The child is highlighting one dimension of the containers in speech

(height), but his hands make it clear that he is beginning to think about a second dimen-

sion (width). Their gesture is conveying different information than their words. When

someone produces different information in gesture than in speech, it reveals that they know

more than they say. The information a learner conveys uniquely in gesture is often implicit

knowledge, not yet accessible to explicit understanding [28].

3.3.3 Gesture Production Can Support Learning

Gesture may provide an avenue through which learners can consider new ideas. Broaders

et al. found that children told to gesture added novel strategies to their repertoires that were

found only in gesture [96]. These children were also more likely to profit from instruction

in math. After the lesson (when they were no longer gesturing), the children were able to

solve math problems on a paper-and-pencil test that they could not solve before the lesson.

3.3.4 Seeing Gesture Can Support Learning

A number of studies have identified that students are more likely to profit from instruction

when a teacher gestures [97, 98, 99]. Ping et al. found that children who received instruc-

tion with gesture improved more than children who did not [100]. This might be because

of gesture’s ability to ground the abstract language of the lesson to the concrete physical

environment and gesture’s ability to convey ideas through “its representational form” [100,

99]. Physical environment refers to the setting for the interaction, the interlocutors, the

focal tasks, and the representations, tools, technological resources, and social dimensions

[101].

3.3.5 The Connection Between Gesture and Learning

Previous research suggests gesture promotes learning by engaging motor systems and en-

couraging students to link abstract concepts. Gesture enhances spoken communication.

34

Ping found that the effects of gesture on learning stem from its capacity to engage the

motor system [102]. Gesturing thus supports learning because it is a type of action. Yet, a

gesture is a representational action and not an action on objects, which is typically intended

to carry out specific functions. This difference is responsible for gesture’s unique effects on

learning. Action on objects leads to shallow learning since it tends to lead people to think

that their learned actions are relevant only to those objects [103]. This may hinder general-

ization by focusing learners on details that get in the way of transfer. In contrast, gesture,

which occurs apart objects, provides a “physical distance,” which facilitates abstraction

and generalization to new contexts yet still engages motor systems. This distinction is

what improves learning [104]. Gesture leads to deeper and more flexible learning.

3.3.6 Gesture Taxonomy

Taxonomies of gesture classify gesture based on certain functions or models of gesture

production [105, 106, 107]. McNeill’s taxonomy is widely used in gesture studies on

educational issues and is considered applicable to gestures “in any type of discourse or any

content area” [92, 101]. For our analysis, we will use McNeill’s taxonomy as a framework.

McNeill’s taxonomy outlines four types of gesture: (1) deictic, or pointing gestures

that indicate objects or locations, (2) iconic, which are gestures that depict semantic con-

tent directly via the shape or motion trajectory of the hand(s), (3) metaphoric, which depict

semantic content via metaphor, and (4) beat, which are motorically simple, rhythmic ges-

tures that do not express semantic content but that instead align with the prosody of speech

[108]. Using mathematics as a domain, we will explore each of these types of gestures in

more depth.

3.4 Tool Use: Sketching

Embodiment is also used to address the manipulation of objects. Objects are, “those things

that are nameable, identifiable, stable, and can persist through time, such as pencils and

35

cars”. Tools are a specific kind of object employed to alter or interact with other objects.

However, as Ibrahim-Didi et al. argue, tool use as a form of embodiment is largely over-

looked [75]. One type of tool use I consider in this dissertation is sketching, which was the

only kind of tool use found in my data corpus.

Experimental psychologist James Gibson developed the ecological approach towards

embodiment, which suggests that the body serves as a mediator between perception and

action; both perception and action are influenced by the environment [69]. Affordances

are important to this conceptualization, which are opportunities or possibilities for action

placed in the environment; tools can serve as an affordance. For example, a graspable object

with a rigid sharp edge affords cutting and scraping (a knife, a hand axe, or a chopper).

Gibson had the following to say about tool use:

The embodiment of objects and tools may be defined as the sense that those

objects and tools has become “part of us” in a similar way that our limbs or

our fingers are parts of us. Most of the literature concludes that people can

extend the borders of the physical body to temporarily incorporate different

prosthetics, such as rubber hands, into their body image (i.e., their conscious

beliefs regarding their bodies; and certain external objects, such as tools, into

their body schema (i.e., their unconscious knowledge of their bodies and its

capacities. They are a sort of extension of the hand, reflecting the capacity to

attach something to the body. The possibilities they afford are not restricted

to motor or user-centered actions (graspable, portable; i.e., actions “on” them)

but can also concern mechanical or tool-centered actions. ”The short answer is

that in addition to altering our sense of where our body ends each tool reshapes

our ”enactive landscape’ – the world we see and partly create as active agents.

With a tool in our hands we selectively see what is tool relevant; we see tool

dependent affordances;”

Cognitive scientist David Kirsh explains that that tool use and embodiment are en-

36

tangled: ”. . . interacting with tools changes the way we think and perceive – tools, when

manipulated, are soon absorbed into the body schema, and this absorption leads to funda-

mental changes in the way we perceive and conceive of our environments” [109]. Kirsh

continues that tools become extensions or parts of our body and “body schema” [109].

This theory of tool use gives us another perspective to the importance of sketching in

CS learning. While we typically only consider sketching to offload or distribute cognition,

Kirsh [109] and Wright [110] suggest that the act of sketching might serve another purpose,

that is thinking with a distorted model and embodying whatever is being sketched.

Fundamentally, the use of these tools change our perceptions and our capabilities of

conceptions. Kirsh uses examples of dancers marking and mechanics sketching a model

[109]. Specifically, to both of these examples, he argues that whether marking or sketching

a model, these people are creating ”imperfect models” that provide cognitive support for

their reasoning and doing. It helps them explore/consider principles ideas better than using

an ”undistorted” model.

Kirsh argues that working with an “imperfect model” is advantageous because the cre-

ator gets to model only what they want to reason about and think with. Important to his

argument is that with imperfect models, what is sketched or marked highlights the aspects

the person is paying most attention to and the aspects they want to think about, which

primes thinking. He asserts that, ”Accuracy is not important, flow is.”

Wright uses the metaphor of ”play” to explain the relationship between drawing and

embodiment [110]. Through play, children portray and embody different thoughts, emo-

tions, and actions.

Similarly, Sherin has described how it when analyzing sketches its important to analyze

the process and not just the final sketch [111]. Research on how students construct sketches

to problem solve and generate solutions, has shown that students’ sketches both reflect their

understanding of the domain and scaffolds the problem-solving process. Sherin suggests

that these self-constructed sketches reflect someone’s underlying conceptions [111]. The

37

process of generating and revising sketches also helps scaffold the problem-solving pro-

cess, by helping students figure out the next steps of a problem. These sketches, then,

reveal a student’s mental model that can be assessed to understand the problem-solving

strategy they used [111].

This dissertation illustrates how students and teachers use embodied representations in

the form of metaphor, gesture, and sketching to make sense of computation and to support

student conceptual learning. We propose that to better understand CS learning and quality

CS teaching, further exploration of how body-based strategies are effectively is needed.

However, embodiment is largely understudied within CER.

38

CHAPTER 4

RELATED WORK

In this chapter, I motivate why embodiment might support CS learning. There are a number

of factors that contribute to making CS difficult. One of the most commonly reported is that

CS has no physicality, and students need a way into the digital world of computation. In this

dissertation, I describe how embodiment makes the abstract more tractable, which lends it

to something students can use to “think with” and “think through.” However, embodiment

is understudied in CS learning. For example, research in CEd has considered metaphors to

only have a minimal impact on learning or to only serve as a simple, teaching tool.

Besides reviewing the literature in CER, this chapter’s goal is to highlight how little is

known about embodiment in CER, which also motivates my methodological approach and

basic research questions.

4.1 Complexities of Learning to Program

According to CEd researcher Sorva,

“sometimes a novice programmer ‘doesn’t get’ a concept, or ‘gets it wrong’ in

a way that is not a harmless (or desirable) alternative interpretation. Incorrect

and incomplete understandings of programming concepts result in unproduc-

tive programming behavior and dysfunctional programs. Unfortunately, mis-

conceptions of even the most fundamental programming concepts, which are

trivial to experts, are commonplace among novices and challenging to over-

come” [64].

Programming is a fundamental activity in computer science. However, learning to pro-

gram is hard. Concepts in computing are ”precisely defined” and implemented. Students

39

need to reach ”particular ways” of understanding what constructs and concepts do, e.g., the

flow of execution, variable assignment, what a variable is [64, 112]. This is complicated

by, as Arawjo argues, programming languages are cultural tools with complex syntaxes and

were designed and created in basements for professional use and not to support learning

[113].

The difficulties associated with learning to program are well documented. Du Boulay

argues that students find the concepts of programming too hard to grasp, do not under-

stand the key properties of their program, and do not know how to control them by writing

code [114]. In this thesis, I focus on one of the most common and difficult challenges to

overcome: students having to deal with hidden, internal changes of the computer.

Computer programs have both static and dynamic forms. Sorva argues that the static

form is visible in code, but the dynamic form is hidden [64, 112]. Nearly all misconceptions

are results of aspects of constructs that are not readily visible, but hidden within the execu-

tion time [64]. Sorva defines a “misconception” by lumping together the concepts “miscon-

ceptions,” “partial understandings,” “student-constructed rules,” “difficulties,” “mistakes,”

and “bugs” [64].

In a survey about the difficulty of programming concepts, Milne and Rowe found that

concepts like pointers and memory were difficult because “these concepts are only hard

because of the student’s inability to comprehend what is happening to their program in

memory, as they are incapable of creating a clear mental model of its execution” [59]. It is

reasons like this that consistently makes recursion one of the most difficult topics to learn.

Consider this example of a non-tail end recursive function (see Figure 4.1). Students

have to be able to make sense of the behavior (how the code works) and function (the goal

of the code) of recursive code, but the hidden, internal changes makes that difficult. For

example, consider the following code snippet, an example of simple non-tail end recursion.

In this example, after the recursive execution ends, the rest of “recursiveFunction” still

has to execute. Students typically have a misconception that after the recursive execution

40

Figure 4.1: Code for a non-tail end recursive function.

is done, then that function is done and does not have to execute the remaining lines. Over-

coming this misconception requires an understanding of execution frames, program state,

the order in which frames execute, and where the recursive process is both virtually and

physically, which the code does not make apparent.

Colburn and Shute distinguishes the kind of abstraction required in computer science

versus mathematics [58, 115]. Whereas in mathematics, abstraction is about information

neglect - or ignoring unnecessary parts to solve a problem, in computer science abstraction

is about information hiding. Programmers create lines of code to instruct a compiler, but

those lines of code do not show the complex calculations and operations that are actually

happening. Computer programmers use abstraction to hide the material machine behind

increasingly complex layers of code, layers which become a stack of abstractions, the lower

ones hidden by the more complex layers on top. Students need a “way in” into the digital

world of computation, and teachers need to scaffold that “way in.”

4.2 Embodiment and CS Learning

The relationship between learning CS and embodiment is not immediately obvious. In

physics learning, embodiment can be a natural and intuitive approach for students to learn

the subject matter [116]. Euler and colleagues describe how students can metaphorically

role play in processes like pushing each other on carts [116]. They describe how embodied

41

learning allows students to, ”relate their bodily intuitions to objects in otherwise physically

nonintuitive domains” [116].

There have been interventions like the MoveLab [117] and CS Unplugged [118] that

exploit the relationship between body movements and computational thinking to motivate

and engage systemically marginalized students to learn computational thinking. However,

Manches et al. argue that these interventions have not explained why embodiment might

support CS learning beyond motivation and engagement [80].

Dijkstra argues that computers represent ‘radical novelty,’ meaning computers are “too

novel to be represented by analogy or anthropomorphization” [9]. For that reason, students

should not rely on embodiment to make sense of computation. There is some truth to

Dijkstra’s statement; CS is different. Colburn and Shute describe computer science as a

peculiar discipline concerned with creating its own subject matter [115]. According to

Leron and Zazkis, mathematicians and computer scientists talk about a recursive process

as progressing in different directions [119]. A mathematician takes an ”upward” approach

or considers ”the base case” as the start point. They compute the factorial of a number as

1!, then 2!, then 3!, etc. A computer scientist takes a ”downward” approach or considers

”the base case” as the ending point. They compute the factorial using the knowledge they

know (n-1)!, which can help them compute (n-2)!, until they reach 1!.

However, this novelty furthers the case for embodiment, or needing ways to make com-

puting tractable and physical. Consider Papert, who argued that body-syntonicity, or using

the knowledge and sense of one’s body, contributed to learning Logo because it helped

students make the abstract concrete [120]. Papert noticed children identified with the Tur-

tle they were programming by bringing their “knowledge about their bodies and how they

move into the work of learning formal geometry” [120]. What Papert argues suggests that

embodiment for learning CS is not only a problem-solving strategy, but grounds the ab-

stract, and forms a representation that students can then think with and think through.

In this dissertation, I describe how embodiment helps students make sense of abstrac-

42

tions, by giving them something physical to think with and think through. Important to my

argument, is that students and teachers rely on metaphors of physicality and space to de-

scribe and conceptualize abstractions. Moreover, I describe how teachers’ use embodiment

to explicate computation; however, they’re use of embodiment may lead to confusion.

Part of the reason why embodiment has not been considered is because learning is

typically framed from a cognitive perspective, as an individual act. In this research, I

consider learning in CS to likely involves communication, negotiation, and interpretation.

4.3 Metaphors

Our study of metaphor in CS classrooms is different from recent research on the role of

language in CS learning. Current CER typically investigates the ways programming syn-

tax (e.g. for and while) creates barriers or misconceptions for both native and non-native

English speakers [121, 122]. In my work, I do not consider programming syntax. Both my

work and work on translanguaging are interrelated and collectively can provide powerful

frameworks that support student learning.

CER typically considers metaphors and analogies as synonymous. Therefore, in this

section, I also discuss the literature on analogies and CS learning.

Most of the studies dealing with the relevance of metaphors and analogies in CEd con-

ceptualise metaphors and analogies as tools for teaching CS or have considered them unim-

portant. Some of this research has interviewed teachers to explain the kinds of metaphors

they use to explain specific concepts. For example, Sanford and colleagues interviewed

CS teachers about the kinds of metaphors they use in classrooms to explain programming

concepts [8]. Although their findings are likely analogies, they produced a laundry list

of metaphors, including describing functions as verbs or pointers as zombies. Given that

metaphors eventually “break down,” they asked teachers to assess “how far they could

push their metaphors.” They conclude that metaphors serve as good teaching tools, but that

teachers are not aware of the limits of their constructed metaphors.

43

Other research has designed specific metaphors to teach computing concepts. Perez-

Marı́n and colleagues used a methodology called MECOPROG using metaphors, such

as, recipe/program, pantry/memory, and boxes/variables, to teach computational thinking

[123]. Following an empirical experiment, they found that coupling the use of metaphors

with a block-based programming environment (e.g., Scratch) has the potential to improve

computational thinking knowledge acquisition in primary education.

Similar to my research, these avenues of research are also exploratory, however whereas

my studies are naturalistic and observational, their work either designs a metaphor or asks

teachers to describe the metaphors they use. Because my work is naturalistic, I found the

kinds of impromptu, spurious metaphors teachers use.

Another strand of research in CEd does not think metaphors serve an actual purpose for

learning to program or are primary culprits for students forming misconceptions [10, 124,

125]. Cao et al. conducted an experiment to understand if the analogies instructors use were

effective [10]. They determined effectiveness by looking at whether analogies supported

either near or far transfer using. They found small evidence that analogies were only useful

for short-term learning and found no significant difference for long term learning and ability

to transfer.

One of the reasons metaphors are chastised is because they “break down.” Halasz and

Moran describe that some features of an analogy may be useful for understanding com-

puter concepts while other features may be irrelevant, which they argue adds to the diffi-

culty of understanding concepts [124]. As Bettin argues this is a true statement, but not

an argument against metaphor [63]. Bettin describes that when metaphor and analogy are

grounded in elaboration activities and situated appropriately in context, we have already

noted its effectiveness. In some ways, metaphors “breaking down” misses the point, be-

cause the metaphors still supports learning and it still helps students “gives them a foot in”

to make sense of computation. Bettins’ argument does a better job of treating learning as a

progression.

44

Moreover, this work has a flawed understanding of how learning works. In Chapter 7, I

studied how students actually learn and what they are actually doing, and metaphors served

a great purpose. Metaphors provide a language to talk about abstractions, to help students

reason and predict, and make sense.

Lastly, two papers have hypothesized that metaphors are likely how we conceptualize

computing concepts.

Using Papert’s notion of body-syntonicity, Watt argues that embodiment may be ”im-

portant in the way we conceptualize certain computing concepts,” communicating knowl-

edge, and mediating learning to help students understand, comprehend, programming con-

cepts [126]. Watt argues that we think about programs and programming languages as psy-

chological entities: ”After all, programs do things — they behave as if they have goals, the

very components of Wellman’s simple desire psychology” [126]. He concludes, then, that

syntonic programming should make it easier for people to understand how and why pro-

grams do what they do, “because people can identify with those programs, and see things

from their point of view” [126]. Important is that metaphors are ”at the heart of the way

that people grasp” programming concepts - and even programming languages, ”conceptual

metaphors might be the very mechanisms that we use to make sense of, reason about, and

communicate computing concepts (similar to claims in mathematical cognition)” [126].

Building from this notion that metaphors underpin conceptualization of computing con-

cepts, Manches and colleagues conducted a study where they analyzed the representational

(or metaphoric) gestures college students produced while explaining CS1-level concepts

(loops, algorithms, and conditional statements) [80].

In their structured interviews, they video recorded participants and asked them the fol-

lowing question: “Can you explain your understanding of loops/algorithms/conditional

statements?” They found participants drew upon two overarching metaphors when explain-

ing computation. The first was computing constructs as physical objects (“in which par-

ticipants simulated manipulating physical objects (e.g., pinching) when referring to range

45

of computing constructs”). They also found gestures that “refer to a range of comput-

ing constructs including but not limited to: data, code, process, input, execution, output,

conditions.” The second was computing processes as motion along a path, “whereby par-

ticipants moved their hands along one of three bodybased axes when referring to temporal

sequences.”

4.4 Gesture

Besides Manches and colleagues study on embodied metaphors in CS learning (described

in the previous section) [80], my past study is the only other study that has sought to

understand gesture production in CS learning [25].

Gestures, or spontaneous hand movements produced when talking, constitute a perva-

sive element of human communication and reflect human cognition [92]. While we often

think of gestures that are used for emphases (e.g., head nods for the affirmative or head

shakes for negative statements), they can also be visible, external representations of what

people are thinking [127].

Gestures are an integral part of communication about concepts in the classroom. Teach-

ers routinely gesture along with their speech. Gestures may play an important role in com-

municating knowledge to learners [101]. Students routinely gesture as they talk about the

concepts they are learning. In a number of other academic disciplines, gestures have been

identified as important aspects of understanding learning and improving learning.

For example, gestures produced during instruction and teacher-student interaction shed

light on the mechanisms involved in learning from instruction [101]. Additionally, ges-

tures externalize aspects of speakers’ knowledge, helping learners manage the ”working

memory demands of mathematical thinking and explanation” [72]. In mathematics, under-

standing how gestures are used helps understand performance, instruction, assessment, and

learning. Alibali et al. suggest that the study of gesture in mathematics helps explain why

certain types of problems are more difficult than others, identify assessment methods that

46

accurately gauge knowledge, design more effective learning environments, select appropri-

ate methods for instruction, and understand why learners have greater success with some

instructional methods than with others [101].

Moreover, in learning sciences literature we find a number of analyses of people’s inter-

action and conversation which include gesture [128, 129]. Some work uses gesture studies

to provide insights to internal sense making [130], while other work seeks to incorporate

multi-scalar analyses of gesture and movement to inform the production of social learning

contexts and the design of learning experiences [131]. However, in computing education

research there are few instances where the gestures of teachers or students are considered

in analysis, but it is a promising direction for future work. Computing education might be

able to draw on gesture research to provide similar insights to explain student behavior and

provide insights into design of interventions.

We develop a conceptual framework to support future studies of learning and teaching

that incorporate gesture studies in programming contexts. In particular, this paper intro-

duces how gesture has been used to study teaching and learning, with a particular focus

on one discipline (mathematics); critically reviews and interprets what concepts may be

most relevant to programming contexts; and discusses what unique challenges program-

ming contexts present to studies of gesture. We ground our explanation of the possible

role of gestures by introducing examples from an observational study where we observed

novice students learning to program. This paper concludes by suggesting potential avenues

for future research in computing education that incorporate analyses of gesture in studies

of teaching and learning.

Our contributions are from the lens of a scholarship of integration, where we consider

how well the current gestures and learning literature integrates with issues in learning in

computing. We offer an initial gesture taxonomy for computing education and suggest a

research agenda to incorporate analyses of gesture in computing education.

47

4.4.1 A Gesture Taxonomy in Computing Education

While the previous work outlined above describes how gesture has been influential on

understanding learning and teaching in mathematics there has been little or no focused

work on describing how exploring gesture can help us understand computing education and

learning. In the following sections we present an observational study of novices learning to

program followed by an analysis of the type of gestures produced by teacher and students’

interactions. Our aim in doing so is to make an initial exploration of gestures in computing

education research and to set the stage for future studies.

Computing is characterized by the notional machine that cannot be perceived directly

through the senses. Concrete and abstract have different conceptualizations in computing

versus other abstract domains like mathematics. Mathematics typically has many lived

experiences that one can draw upon to reason and understand. For instance, a gesture

of a slope of a line can still be used through experiencing a slope of walking on a hill.

However, in computing, concepts often do not have real-world, concrete counterparts. If

one were to theoretically gesture a loop, what it represents in concrete is unknown. There

is potentially a difference between pointing in computing versus in mathematics, and there

may be gestures that have the same meaning and serve the same function. In the next

sections, we ground the discussion of gestures in computing education and connect it the

previous taxonomies through examples seen in a classroom observation study. We conclude

with a discussion of the gaps in our knowledge about gesture in computing education.

4.4.2 An Exploratory Observational Study

We recently conducted an exploratory observational study of novice students learning to

program in a classroom. The goal of this study was to gain an initial understanding of the

type of gestures students and teachers produce in computing classrooms to help in building

a taxonomy of computing gestures that could be used to facilitate learning.

During the Spring of 2017, the first author spent 90 minutes teaching an introductory

48

high school programming course once a week for 12-weeks. The curriculum for these

12-weeks included content on variables, if and if-else statements, while statements, and

conditional statements. Class was in an alternative high-school which serves students who

had challenges in traditional academic learning environments. There were eight students:

six males and two females, seven Black students and one Hispanic student. Students had

varying level of math skills and were taking either Algebra 1 or Geometry. None had

experience with Calculus.

Each class period, students worked on different Scratch projects, ranging from music

video creation to creating a game based on a social justice issue. We often had students

work in groups of two or three and present their work for peer student critiques.

We taught them variables in a lecture. Students individually completed a worksheet

about variable manipulation and declaration and then the class discussed the answer to each

question on the worksheet. We taught conditionals, if-statements, and loops by having

students convert their favorite lyrics to code. The students wrote the “code” on a white

board and had to explain it to the class. We would also write “code” on a white board and

would have students explain it.

At the end of the 12-weeks, we conducted 15-minute structured interviews with each

student where we had them tell us the output of eight pieces of code. Each piece of code

covered different computing topics (variables, if-statements, and while loops). We had

students explain their responses since explanations tend to be a rich source of gesture data.

The first author took observation notes at the end of each class period. Observation

notes were taken using a two-column approach, with observations in one column and cor-

responding reflections added after the session in another column. When students were ob-

served making gestures, we wrote a description of a gesture and its accompanying speech.

The observation and gesture notes were analyzed to identify types of gestures, how they

might map to existing taxonomies of gestures, and the student knowledge they might con-

vey.

49

In the Fall of 2017 we worked with the same students, conducting a 4-day programming

workshop. This gave us an opportunity to observe certain gestures and ask for further

explanations based upon questions from our first pass at analysis.

We are not presenting a study that tests a hypothesis or evaluates an intervention. Our

data cannot be independently verified, and at best, we can say our analysis is a plausible

interpretation. However, for an initial study, this level of observation and reporting is rea-

sonable to provide foundational work in this under-researched space. We are noting what

gestures we saw and connecting them to existing taxonomies. With more precise method-

ology and data collection (e.g., videotaping interactions), future studies could produce data

that could be more rigorously analyzed.

4.4.3 The Types of Gesture in a Computing Classroom

In this section, we present the different types of gestures we observed in the computing

classroom that comprised our study. We then describe how these gestures were used dur-

ing instruction within this context and also what these gestures potentially revealed about

student knowledge.

Deictic

As described previously, deictic gestures, or pointing gestures, point to establish the loca-

tion of an object [108]. In mathematics, these gestures reflect the grounding of cognition

in the physical environment [101].

In our study, deictic gestures may also reflect the grounding of cognition and may help

uncover students’ understanding of code execution. Computing teachers often face the

challenging task of helping their students see connections between different ideas, events,

or lessons. When explaining concepts to students, we would gesture by pointing to the lines

of code we were referring. These gestures seemed to help guide students’ attention to those

inscriptions; for example, we indicated that a variable was being manipulated in different

50

spaces, causing the value of that variable to change by pointing to each line of code.

In mathematics, pointing to these inscriptions while providing explanations helped link

the teacher’s verbal stream to its referents and ground the cognition. This may also be the

case in computing. Grounding makes information conveyed verbally more accessible to

students, thus fostering students’ learning of content and scaffolding students’ understand-

ing [132]. In computing, these deictic gestures seem to help show process: what the code is

doing (or at least what the person thinks it is doing) during execution. Thus, when teachers

use deictic gestures, it may help scaffold students understanding of the way code executes.

Students also used deictic gestures. During interviews, some students gestured while

they tried to understand the control flow (see Figure Figure 4.3). Most students that did

not gesture while trying to figure out the code were not able to correctly predict the output.

These gestures may help students trace code, helping students reason about answers. These

types of gesture may serve as a problem-solving function, helping to bring about strategies

for reasoning. Examining student’s gestures while they problem solve, may help reveal

misconceptions and how well they understand code execution.

Square brackets indicate the words that accompany each gesture. Gestures are num-

bered below the bracketed corresponding speech and described in detail below the speech

transcript.

Teacher: So, tell me what you think the output is

Student: Well, it will [check if this is the case] and since

1

it’s not, it won’t do this and [will go straight here]. I

2

think the cat will say ”yes.”

1. Right index finger points to first line of the if-statement

2. Right index finger then points to the line after the conditional statement

51

Figure 4.2: A student using deictic gestures while they trace a program’s control flow.

Iconic

As we previously discussed, iconic gestures represent concrete ideas and are used to con-

vey information about the size, shape, or orientation of the object of discourse [133]. In

mathematics, iconic gestures manifest mental simulations of action and perception [101].

In computing, iconic gestures also seem to manifest simulations of action and percep-

tion and can help to understand the different conceptual models that students are forming.

In mathematics, these gestures are produced when someone thinks and speaks about math-

ematical ideas. Alibali et al. suggest these gestures may be intentionally produced to

facilitate thinking about such ideas or to communicate such ideas [101]. In computing,

these gestures seemed to help facilitate communication and simulate actions.

Students would often have to present their work to the class. Before presentations, we

would give a brief lecture on how to talk about code, telling them not to say what each line

was doing, but to just generally say “my code does this, and I used this if statement, for

52

example, to do it.” During presentations students often used iconic gestures to help them

talk about their code.

Student 1: My code rotates the cat a certain number of times depending on where it is.

My code first figures out where the cat is and depending on the location, [it keeps

going until...]

1

Student 2: My code rotates the cat a certain number of times depending on where it is. To

do this, [I have this variable, then I have an if statement that says if the cat is here...]

2

1. Made circular gestures with both hands to show understanding of repetition.

2. Used right index finger to point to each line.

In that example, we noticed students who did not use iconic gestures, and who in-

stead used deictic gestures, talked about their code at a low, code-focused level. Chu and

Kita describe the shift from pointing gestures to iconic gestures shows a change in an in-

ternalization of action strategy, which had become less tied to concrete actions and thus

more abstract [134]. Students’ gestures might match how abstracted their knowledge is.

Understanding how gestures transform over time, could have implications for formative

assessment.

Metaphoric

Metaphoric gestures, as illustrated earlier, are similar to iconic gestures; however, they

represent an abstract, and not concrete, idea [92]. In mathematics, metaphoric gestures

reflect conceptual metaphors that underlie mathematical concepts [101, 135].

In computing metaphoric gestures might help communicate abstract concepts and might

uncover misconceptions a student has about a concept that could be difficult to understand

or even notice through other means.

53

Computing instructors have the challenge of helping novice students build strategies

and mental models. Like in mathematics classrooms, computing teachers often use various

teaching methods to do this, including using metaphors to teach abstract concepts [136].

Metaphors provide a strategy for understanding, by mapping abstract concepts to familiar,

real-world concepts [8].

We often used metaphoric gestures when describing concepts to our students. During

the lecture on variables, we described it as “some type of object that holds something.” We

used a gesture forming our hand into a cup, suggesting the metaphor of a variable as a cup,

capable of holding something.

One feature about metaphors is they have limitations: “A feature of many metaphors

is that when their mappings are pushed beyond their user’s intended limits, they eventu-

ally break down” [8]. The metaphors used to describe computing concepts might lead to

misconceptions about computing concepts. There have been catalogs of misconceptions

students have about computer behavior and basic programming constructs [137]. One of

the examples of a misconception alludes to the conceptual metaphor students use to un-

derstand the concept: “students commonly consider classes to be containers for objects”

[137]. Teachers use of metaphoric gesture might communicate unintended misconceptions

to students.

Teacher to the class: Does anybody know what a variable is?

Student: Uhhh, I guess something that changes.

T: Well, yeah that’s what variable means, and I guess that relates, but what about a variable

in programming?

Class: blank stares

T: A variable is some [type of object that holds something].

1

It’s like a container. If there’s some value or data you want to store or keep for later, you

put it in a variable.

54

1. Right hand forms a cup, while left hand goes inside the ”cup.”

Students also used metaphoric gestures when describing their code. A student was

having trouble building a game. We noticed the student was using a loop and asked the

student to explain that code segment (see Figure Figure 4.3). They described a loop as “a

loop,” similar to a roller coaster loop.

It is helpful for instructors to know the misconceptions of students in order to provide

appropriate help. Metaphoric gestures may reveal the underlying conceptual metaphors

students have which can reveal uncovered misconceptions. This may also help reveal where

their misconceptions come from if they have a conceptual metaphor that does not map well

to the computing term.

In the example (Figure Figure 4.3), although their definition of loop seems correct, the

students metaphorical gesture potentially reveals a misconception they have about loops.

Thinking of a loop as a roller coaster loop is correct in that both types of loops have a start

and end point. The student, however, might not completely understand a loop conceptually.

Their gesture moving backwards (or from right to left) could suggest a misconception of

state changes.

Teacher: Wait, tell me about this. What is this doing?

Student: Oh that’s for if they still have lives they can keep playing the game. [It’s a loop,

so it’s like a loop, it repeats].

1

1. Right index finger moves in several loop-de-loops, going from right to left.

55

Figure 4.3: A student using a metaphoric gesture while they described a loop.

Beat

As discussed previously, beat gestures are the simplest type of gestures - a simple “kinetic

realization of the underlying pulse” [133]. Beat gestures do not depict specific content

but are just gestures timed to important content words. Beat gestures are talked about in

mathematics, but do not convey semantic content and thus have no meaning.

We did not see beat gestures in our observations. However, we can imagine what a beat

gesture might mean in computing education.

In computing, beat gestures could be used to represent iterative process across a se-

quence of data. Novice computing students have difficulties understanding memory-related

concepts because they are abstract [59, 114, 138]. Teachers could use these gestures as a

visualization for showing data or memory in some space. A teacher might produce beat

gestures when they talk about iterating through an array or other collection. While the

teacher talks about iterating through each index, the teacher may “point” to each index in

56

space. The pace of the gesture may indicate the iteration where a function or body of the

loop is being applied to each element of the data.

4.4.4 Discussion

We were challenged to fit into McNeil’s taxonomy the gestures that computing teachers

and students produced in our study. There were obvious instances where the taxonomy

fit. For instance, when people were pointing to text, the gesture was obviously deictic.

Many of these gestures could technically fit into different types. The mapping of McNeil’s

taxonomy is not one to one with computing.

We see two particular challenges to developing a gesture framework for computing

education. First, deictic gestures ground cognition by connecting thought to real world

objects. While a deictic gesture does direct attention and ”place (cognition) in the real

world,” it is hard to say what grounding means when pointing in computing. In math, if a

teacher points to a 3, students have multiple sense of the number “3” to use in grounding

to the real world, e.g., any set with three elements, the numeral 3, the word “three,” a

picture of three things, and so on. Wilensky has argued that abstraction to concreteness is

a spectrum, and concreteness reflects the number of ways in which someone can reference

the concept [139]. In computing, if a teacher points to a variable or a line of code, there

is no physical or real-world counterpart to help that make sense. If the point of deictic

gesture is to connect the abstract to the concrete, we in computing have very little concrete

to reference. There are lines of code on the screen, and there are behaviors in the world.

Second, what we categorized as a beat gesture could also be a deictic gesture. If we

are pointing to data (even a spatial, gestural sense of data), we are technically pointing to

something in a location. There are gestures that appear in computing education that do not

fit cleanly into the taxonomy.

We suggest that the complexity arises because we in computing are referencing both

process and data. The deictic gestures that we observed seemed to more often refer to

57

process. The producer of the gesture most often was describing the way code flows or

executes. Beat gesture may be more commonly used to reference data elements, but at a

pace that represents process.

We were similarly challenged to distinguish between metaphoric gesture and other ges-

ture types like iconic and beat. We had to loosen our definition of concrete versus abstract.

Instead, we focused on what information was being conveyed. There is a duality of com-

puting because computer programs can be characterized by their physical implementations

on physical devices (i.e., there is a physical device that is running the program) and their

conceptual implementations in programmers’ minds which does not necessarily know or

care where the physical device is located [140]. Programmers’ create conceptual imple-

mentations metaphors, e.g., like imagining a “server farm” or “cloud” where the program

is being executed. Many of the gestures produced while explaining concepts, could in

fact be metaphoric gestures. But the metaphors may not lend themselves to mapping to

gestures, e.g, the challenge of pointing at ”the cloud.”

By including gesture in our analysis of computing education, we believe that we add

a new perspective to our research, and we may be able to expand the roles that gestures

play. Computing is different than other disciplines because of how we play with concrete

and abstract, with process and data. Gestures are important to cognition, so they can help

us gain new insights into cognition and learning. But the role of gesture may be different

in computing than in mathematics (or other STEM disciplines), which gives us a unique

lens on gesture. The study of gesture in computing education gives us an opportunity to

advance our own knowledge and that of the learning sciences, too.

4.4.5 Conclusion

In this research, we are starting to explore gesture in computing education. Our goal is to

identify connections to relevant literature on gesture, raise important questions for comput-

ing education, and generate interesting hypotheses for future testing. From our analysis, we

58

saw gesture potentially used as a problem-solving strategy, as a way to communicate one’s

understanding, and a way to communicate abstract concepts. Devlin suggests computing is

about constructing, manipulating, and reasoning about abstractions [141]. Studying gesture

in computing could help us understand how students reason about abstract ideas and help

us understand the different strategies students use to make sense of computing. By study-

ing gesture, we might develop better ways of presenting and communicating knowledge to

novices and better understand how novices are communicating their misconceptions and

understandings to teachers. Likewise, the study of gesture could lead to new instructional

practices that lead to more effective learning.

4.5 Sketching

Findings in CER have argued that sketching a code trace leads to greater success. Sorva

defines tracing as, ‘analyzing its execution to determine what operations occur and how its

state changes” [142]. This research has argued that sketching leads to success because it

both offloads and distributes cognition and makes some information more salient.

Research by Fincher and colleagues [143] and Cunningham et al. [21] reveal that

some students often draw pictures, sketch code traces, or perform calculations when pro-

gramming or solving programming-related problems. Holliday and Luginbuhl conducted

a study to evaluate how well having students construct diagrams about the execution of

object-oriented execution can serve as an assessment tool [144]. They found a correlation

between “a student’s ability to draw visual representations of objects in a program’s heap

and their comprehension of the material”. They concluded that students that can diagram

what is happening in memory suggests that they can more easily and deeply understand the

meaning of the program.

Likely, one of the most influential studies on sketches in CER was conducted by the

Leeds Working Group [145]. They conducted a multi-institutional, multinational study

where they categorized and analyzed the drawings and sketches students created on test

59

sheets. They created a taxonomy of sketches, where they describe which sketches are

likely more helpful for answering a problem correctly.

Cunningham et al. replicated the Leeds Working Group study and created a catego-

rization of the sketches students make when tracing code [21]. They found that students

who did not sketch did not perform as well, and concluded that sketching is “a technique

to distribute cognition and manage cognitive load” in CS. Interestingly, she suggests that

“students who have a good understanding of the notional machine are more likely to sketch

than students who don’t.”

Cunningham et al. defined a sketch in computing as the following: ”a programmer’s

written visualizations of program state or any other computing process” [21]. Sketches,

and by extension, sketching, is typically considered a mechanism to manage cognitive load.

However, when viewed as a body-based activity, sketching is an effective activity for rea-

soning because it acts as ”an external mediating structure” [109]. The act of creating the

externalization primes someone’s thinking, and the ”aspects” a person chooses to sketch

highlights their subject of reasoning.

In this dissertation, I focus on sketching, that is, I focus on the process of drawing or

creating a code trace, and not on the final product, unlike past studies in CER. While we

typically view sketching as just off-loading cognition, my work has us rethink the process

of sketching, and not the final product. By focusing on sketching, I analzye as a way to

embody process. This shows a better way of how sketching primes students to think about

“what comes next” “what happens next” “where does the code go”.

60

CHAPTER 5

EMBODIED REPRESENTATIONS IN COMPUTING EDUCATION: HOW

GESTURE, METAPHOR, AND SKETCHING SUPPORT TEACHING

RECURSION

5.1 Introduction

I conducted a grounded analysis of a set of naturalistic video recordings of university pro-

fessors teaching recursion in their classrooms. I wanted to understand how teachers use

space in CS classrooms. Therefore, I looked for spatial representations, including iconic

gestures, spatial language and spatial metaphors, and artifacts, such as sketches or dia-

grams. While conducting this analysis, I noticed an interesting relationship between space

and embodiment. The gestures the teachers created about computation seemed to be en-

acted metaphors; that is, the gestures seemed to act out a metaphor. Similarly, the teachers

used spatial language (e.g., then, it goes down here; then, I jump up to the if-statement)

while describing a code trace and used interesting language, such as calls, runs, and bound,

to refer to function invocation, program execution, and variable assignment, respectively.

However, all these are metaphors. The computer is not going down or calling anything,

but teachers used metaphors and physicality to represent the abstract. Moreover, teach-

ers metaphorically construe themselves as executing lines of code or constructing an agent

who does that. Embodiment seems to play a central role in the ways teachers communicate

information and meaning. This study sets forth the conceptual framework of the kinds of

embodiment used to analyze the rest of the work.

A version of this chapter was published in the International Conference on Learning

Sciences (ICLS) 2020.

61

5.1.1 Motivation

Understanding how teachers teach is essential to understand how students learn. Peter

Burton highlighted this when he suggested computing education research (CER) should

be critical of the modalities between ”what actually gets taught; what we think is getting

taught; what we feel we’d like to teach; what would actually make a difference” [146].

Recently, other computing education researchers have expanded this view, contending that

CER needs to move beyond individualistic theories of cognition to explain teaching and

learning [39]. Otherwise, we miss important details that describe how teachers orches-

trate available resources to scaffold students’ understanding and what ”knowledge students

utilize to make sense of the problem-solving activities in computer programming” [39].

In this chapter, we critically reflected on the current practice of instruction, using em-

bodiment as a lens to analyze teaching practices. To understand how the teaching of com-

puting is embodied is to know how embodied representations support the reasoning in-

volved when thinking computationally and expressing computational ideas. Evidence tells

us that embodied representations (i.e., gesture, embodied language like perspective-taking

and conceptual metaphors, and tool use) are pervasive in computing classrooms, which

suggests that embodiment may be central to both the learning and teaching of computing

[21, 25]. However, in CER, we have little discussion about how instructors use their bodies

when teaching the skills involved in ”doing and learning” computing. Learning and the

practice of computing are not ”purely intellectual activities, isolated from social, cultural,

and contextual factors” [39], but are dependent on our bodily-grounded experiences and

opportunities.

We investigated the following research question: What embodied representations do

teachers use while teaching in computing classrooms? Answering that question is the first

step towards understanding how embodied representations can support students’ reasoning

and learning in computing classrooms. To answer the question, we present two case stud-

ies where we studied the teaching of recursion in computing classrooms to understand how

62

teaching was embodied during instruction. We selected recursion because the difficulties

with learning the topic are well documented in computing education literature, and it is a

topic that is generally agreed upon that every computing student should know [55]. Draw-

ing from contemporary theories of embodied cognition [6, 87, 109], we used grounded

theory to analyze a set of naturalistic video recordings of undergraduate computing pro-

fessors teaching recursion to their class. We paid particular attention to how the professor

used embodied representations - i.e., gesture, embodied language, and tool use - to support

the learning of recursion. We contribute a conceptual framework of the types of embodied

representations teachers use in computing education, which we elicited from the two case

studies. The paper concludes by suggesting how these uses of embodiment in teaching

recursion may impact student learning.

5.2 Background

In general, embodiment implies that the mind is not the sole source of knowledge, but we

make meaning about the world from our body-based, lived experiences [6]. Using embod-

iment in the analysis of teaching practices, therefore, shifts the unit of analysis from the

individual’s mind, to an activity that is culturally and historically situated. Teachers are us-

ing embodiment to express computation, even if not intentionally (e.g., through gestures).

Teachers cannot help but use embodiment because they are themselves embodied, and stu-

dents are watching them. Students are sensing the motion and gesture, even if teachers

are not intentionally using gesture and other embodiment. Consider Seymour Papert, who

argued that body-syntonicity, or using the knowledge and sense of one’s body, contributed

to learning Logo because it helped students make the abstract concrete [120]. Moreover,

interventions like the MoveLab and CS Unplugged exploit the relationship between body

movements and computational thinking to motivate and engage underrepresented students

to learn computational thinking [117, 118]. However, CER has yet to view classroom in-

struction of computing as an embodied activity. As a consequence, computing education

63

theory is missing a significant part of how educators support student reasoning and learn-

ing (even if the educators are unaware of it consciously). We need exploratory, ground-up

research to develop theory to think about the relationship between teaching and embodi-

ment, and its impacts on learning. We contribute a conceptual framework to understand

the embodiment in computing instruction. We focus on three embodied representations:

gesture, embodied language, and tool use. These representations were the most salient in

computing classrooms and have practical implications for pedagogy.

5.3 Method

As previously mentioned, I present my findings in the style of detailed episodes; this work

is meant to be descriptive and interpretive. I provide my findings as episodes not only to

present evidence to readers but also to enable them to come to their own conclusions, which

might be contradictory to the ones I make. Moreover, as this work is interpretative, I do not

provide exhaustive lists or categorizations.

5.3.1 Data Sources

The video data that was analyzed in this study was collected as part of an exploratory study

about how spatial representations (i.e., gesture, spatial language, and visualizations) appear

in computing teaching in classrooms. In total, we gathered 227 minutes of video data from

four undergraduate professors. We emailed professors at universities that are allowed to

video record their classrooms, scoured MOOCs, and online video databases to create our

video corpus. We received or looked at 33 videos. Because the study was based upon who

responded and who was able to send us video recordings, it potentially provides a skewed

view of what happens in computing classrooms. This is a limitation for two reasons. First,

all professors were middle-aged white men at universities in the United States of America.

Second, professors in the videos are known as excellent computer science teachers. How-

ever, this sample is representative of teachers and teaching practices that are rewarded by

64

institutions – these professors were all tenured at prestigious computer science departments

– and modeled by others. Each course was taught in a different imperative language. All

the courses were ”conventionally structured” [50], with Socratic-style lectures in an audi-

torium classroom and practical laboratory work in another session. The videos show only

the professor, but some student voices are intelligible. For this paper, we review two of the

instructional moments related to recursion from two instructors. These two were selected

because they were the most salient examples of embodied representations. The two cases

offer us concrete examples in which to talk about a conceptual framework that can be used

to think about embodiment in computing education. Our goal is not to make any confir-

matory or nonconfirmatory claims about intentionality or if the students understood the

embodied representations but to document the use of and to provide an initial conceptual

framework of the embodied representations used in computing teaching.

5.3.2 Data Analysis

The video data were analyzed using grounded theory [46]. For each recording, we first

reviewed and transcribed the entire recording to get familiar with the content of the video,

and then created a timestamped content log for each recording. A micro ethnographic ap-

proach to data reduction was used to ’tag’ moments that we believed indicated the teacher’s

use of embodied representational content. We identified those moments from our content

logs. We then created multimodal transcripts of the moments produced in style inspired by

Goodwin [147]. These tagged moments were first analyzed inductively to form our theoret-

ical understanding of the ways teaching was embodied during instruction. Afterward, we

reanalyzed the codes and classified them deductively as iconic, noniconic, or deictic ges-

tures, embodied language, or tool use. Two researchers played back the videos within video

analysis software repeatedly with and without sound to pay attention to when and what type

of gesture was produced. Deictic was any pointing gesture, iconic was any gesture with a

concrete referent, and noniconic, to refer to gestures that could be metaphoric, or repre-

65

sent abstractions and computation, or could be nonsense or a communicative gesture, like

a thumbs up or okay sign. We studied the transcripts to identify utterances containing on-

tological metaphors and perspective-taking, i.e. when the teacher used first or third person.

Tool use was anytime a professor created a sketch of a code trace. Note, only one professor

in our corpus created a sketch. For an in-depth data analysis, for each representation please

see Chapter 6.

5.4 Case Studies

In this section, we present two case studies in the style of vignettes to illustrate how gesture,

embodied language, and tools were used by two computing instructors.

5.4.1 Case Study 1: Gesture

This series of excerpts highlight the ways the professor used gestures and other embodied

representations, while collaboratively writing a recursive program. The class is a more

advanced introductory course and taught in Scratch. There was a table in the classroom

that the teacher sat at with their computer connected to a projector. During the 23-minute

video excerpt analyzed for this case study, the professor is reviewing recursion for the

class’s upcoming midterm. The professor has the class participate in a “group programming

session,” where the professor, in real-time, writes the code for a game on the computer,

which is then projected for students to see. The professor asks the students to help him

figure out the code. While describing the rules of the game, the professor projects a diagram

of a tree (see Figure 5.2.A) for students to see and uses a hand gesture that resembles the

tree diagram. A tree is a type of data structure, and it is a standard convention to state

that a tree has “children” nodes. The professor tells the students that they have to write

three functions: (1) a function that generates a new position, (2) a function that returns

a value from a list, and (3) a recursive function that iterates through the list. Then, the

professor takes down the diagram of the tree, opens the Scratch programming environment,

66

and begins writing code.

The professor quickly writes the first function since it only had one line of code. To

write the second function, the professor asks the students how “they might get some value

from the list.” Figure 1 is the transcript of a clip of this interaction, which shows the instruc-

tor using a noniconic gesture that represents a list (a type of data structure, see Figure 5.1.A

and Figure 5.1.B) and a series of deictic gestures to provide a visual of each element in

the list as if he is iterating through the list (see Figure 5.1.C). The professor “points” to

different locations in space as if he were pointing to different chunks of data in the list. The

intention of that gesture seems to be to help students reason about the logic for the pro-

gram. The noniconic and deictic gestures seem to provide the instructor’s mental model of

a list, which could help students conceptually understand the functionality of a list. Con-

sequently, the gestures appear to provide a concrete example that a student could use to

reason about how the function might work. Frequently, conceptual models of lists show a

linear array of “chained” boxes (see Figure 5.1), and his movements seemed to mimic this

conceptualization.

Figure 5.1: The professor uses metaphoric and deictic gesture to describe a list. At the top of this
figure is a typical conceptualization of a list. Talk marked with an asterisk (*) co-occurred with the
gestures shown in the image.

After writing the code for the second function, the professor describes the logic for the

recursive function. First, the professor describes the base case. While repeating the series

67

of deictic gestures of iterating through a list, he asked the students, “When are you done?

If not at a leaf node, end of list, then these things happen.” These gestures could connect

“being done,” the base case, with the list reaching a specific state, which provides a vi-

sual representation that could help students understand when the recursive invocation ends.

Next, the professor describes the recursive case, saying, “they need to understand what chil-

dren the tree has.” Figure 5.2 is the shortened transcript of this interaction. The professor

used the same noniconic gesture that resembled the tree diagram – without projecting the

tree diagram – by raising his arms and placing his hands in a circle as if showing a specific

node’s placement in the tree. He then moves his left hand, followed by his right hand, as

if he were traversing a tree to get to another node (see Figure 5.2.B and Figure 5.2.C).

Repeating the series of gestures and gesturing “traversal” appears to help students recall

the knowledge they need to solve the problem and could help with learning recursion by

making visible the recursive function execution.

Figure 5.2: The professor uses metaphoric gesture while describing the tree and children nodes.
Talk marked with an asterisk (*) co-occurred with the gestures shown in the image.

5.4.2 Case Study 2: Metaphors and Sketching

This sequence of excerpts highlights an instructor’s use of embodied language and tools

when defining recursion and tracing a recursive function. The class is an advanced intro-

ductory course and taught in C++. The teacher had a podium with a computer and stylus,

and a connected projector. During this 17-minute video clip, the professor is introducing

68

recursion to the students. First, the professor describes recursion with an analogy of look-

ing up a set of words in a dictionary in combination with a visual-gestural narrative that

acts out the analogy, seen in Figure 5.3. The professor points to the palm of his hand as

if he was reading from the dictionary (see Figure 5.3.A), then uses a sweeping gesture

to indicate looking up the definition of other words that were part of the definition of the

first word (see Figure 5.3.B). Then, the professor describes recursive solutions with the

ontological metaphors “powerful” and “elegant:”

The contrasting metaphors invoke feelings of strength, influence, and daintiness. Most

recursive solutions are considered “good code,” since they have considerably fewer lines

of code than solutions that use for-loops yet are functionally the same. The embodied

representations and analogy appear to invite the students to use their lived experiences to

understand, functionally, how recursion operates, and when recursion is appropriate to use

in a code solution.

Figure 5.3: The professor uses metaphoric gesture while describing the tree and children nodes.
Talk marked with an asterisk (*) co-occurred with the gestures shown in the image.

Next, the professor has the class participate in a group programming activity to rewrite

a function to use a recursive solution instead of a looping solution. The function, printStars,

69

produces ‘n’ number of stars. After writing the solution, the instructor sketches a trace of

the recursive execution. The sketch of the code trace allows someone to “see” the process

of a recursive execution. Figure 5.4 is a segment from the interaction. The professor writes

a “5” above the statement (int n) to show the students that the parameter ‘n’ has a starting

value of 5. Then, he draws an arrow next to the statement if (n == 1) to show the students

that the program will begin by evaluating that condition. After determining the condition

is false, he draws the output – a star. He then underlines the recursive invocation, em-

phasizing the function invoking itself (Figure 5.4.A). Notice the professor uses embodied

language: “Then it says “... “now I have to call.” The statement, “then it says,” suggests

the professor is using perspective-taking, by stepping out and giving the recursive invoca-

tion “agency.” Then, the professor switches perspective, “now I have to call,” as if he is

diving into the code, experiencing the invocation. The professor also uses a common type

of ontological metaphor, personification, when he states that “he” has to “call” the recur-

sive invocation, similar to calling someone over the phone. Next, the professor draws an

arrow that points back to the function while saying, “so it makes it call this function again”

(see Figure 5.4.B). Again, the professor uses personification and perspective-taking, but

this time to “show” a function invoking itself. Then, the professor crosses out the ‘5’ and

draws a ‘4’ (see Figure 5.4.C). Cunningham et al. refer to this sketching technique as the

crossout method. They suggest that it “demonstrates that previous values are no longer

accessible by a strike-through” [21], which is an excellent way to depict to students a func-

tion reusing a parameter: a concept students typically have trouble understanding when

learning recursion.

5.5 Discussion and Conclusion

We described two case studies to show how computing instructors use embodied repre-

sentations - in the form of gestures, embodied language, and tool use - to teach recursion.

Table 7.1 is a summary of the embodied representations found. We contribute a conceptual

70

Figure 5.4: The professor sketching a code trace while using embodied language. The professor’s
talk indicating embodied language are noted: stepping out±, diving in¢, ontological metaphor°

framework of the kinds of embodied representations teachers use in computing classrooms

as the first step towards understanding how embodiment supports student learning. Next,

we hypothesize two questions that are important for future research to consider: (1) Which

of these embodied representations are intentional, and which are not? (2) What is the effect

on student learning?

Table 5.1: A summary of the embodied representations teachers used.

The goal of a computing instructor is to help students form viable mental models of

how the computer works. However, to form viable mental models, learners must under-

stand abstract concepts that cannot be perceived directly through the senses. Herb Simon

argued that computing is a science of the artificial, something ”designed” and not inherited

from nature [14]. For example, the discipline relies on metaphors based on lived experi-

ences, e.g., naming procedures or subroutines a function, to name the abstractions [115].

Computing education researcher Ben Shapiro argues that because computing is a science

71

of the artificial, we cannot understand learning about computing without interrogating the

practices and sociocultural contexts that help students with understanding and reasoning

[20]. Our findings indicate why it is important to use embodiment as a lens to under-

stand learning in computing education: the embodied representations are likely some of

the few resources students can use to understand the abstract. We know that students at-

tend to ”shallow features.” Movement, gesture, language choice, and tool use are features

we might expect a novice to attend to because they do not know enough about what is not

important to attend to.

If we assume that students are attending to these embodied representations, then they

likely affect student learning. We discuss two ways the embodied representations possibly

supported student learning. In case study 2, we identified instances of embodied represen-

tations in the professor’s language and tool use when he sketched a code trace. Research

about program comprehension indicates that it is hard for students to form mental models

of code execution because they do not understand statement sequencing [50]. Therefore,

one interpretation is that the embodied representations supported students’ formation of

viable mental models by ”concretizing” statement sequencing and letting students ”sym-

bolically live the experiences” of function invocation. Sketches, then, could have helped

concretize statement sequencing in two ways. First, the teacher’s sketch of a code trace

showed his mental model of recursive invocation by drawing the critical ”aspects” that stu-

dents need to know to understand statement sequencing [109]. Second, the act of sketching

could prime students to make predictions and think about what happens next. Research

in science education shows that students often find it helpful to identify with individual

elements in a model, and then view phenomena from the perspective of this element [87].

Using embodied language likely ”immersed” students into the function invocation - as if

they were physically in it - helping them envision statement sequencing.

In Case Study 1, we described an instance of the professor using both deictic and noni-

conic gestures to describe the functionality of a list and to ’act out’ iterating through a list.

72

The professor likely used embodiment to make salient the critical aspects of a list, i.e., iter-

ation, which provided a utility for and the knowledge needed for students to reason about

the logic. Moreover, noniconic gestures typically depict concepts that are challenging to

describe in words and are ”shaped” by particular objects. Scopelitis et al. argue that, “the

gesturing hands can be employed as tools to build a representational object that both the

speaker and the hearer act upon in order to achieve a shared understanding of a complex

concept” [148]. Therefore, when the teacher used noniconic gestures, they were likely em-

bodying and sharing their mental model of a list, which gave students something concrete

with which to reason.

Teachers are using embodiment to express computation, whether they are conscious of

doing that or not. There are things professors are doing in the classroom that are calculated

and purely pedagogical content knowledge, and other things that are less conscious and

about personal communication styles. For example, the dictionary analogy and accompa-

nying gesture described in Case Study 2 may be a strategy that has been refined over time.

It seemed that the analogy was carefully crafted. The ontological metaphor - ”this calls

the function” – could be intentional because ”calling” is a standard convention to describe

function invocation [58], but could not be intentional for communicating meaning. In other

words, the terminology is likely so automatized for the teacher, that they are not intentional

for conveying embodied meaning. The gesture of a list described in Case Study 1 may not

be intentional but produced spontaneously to help students’ reason. Asking questions about

intentionality is essential for criticality and reflectivity of exactly what teachers are commu-

nicating by using these embodied representations. Research that has studied the effects of

scripted gesture on mathematical learning has generally shown positive learning outcomes.

If computing instructors were more intentional in their use of embodied representations,

then we may see learning gains.

The analysis presented in this paper is the first step towards understanding how embodi-

ment might affect understanding and opportunities for learning about computing. Our study

73

points toward a need for a more in-depth investigation of the ways teachers and students

use embodied representations and its effects on student learning.

74

CHAPTER 6

”ON THE REALITY OF TEACHING PROGRAMMING”: INTERPRETING

EMBODIMENT IN CS CLASSROOMS

6.1 Introduction

In this chapter, I analyzed computer science (CS) learning by looking at how teachers use

embodiment to communicate and structure learning opportunities in order to understand

what students need to interpret to learn. Over 30 years ago, ACM Turing awardee Edsger

W. Dijkstra argued that “really” teaching computer science is “cruel” [9] and that “comput-

ers represent a radical novelty” that simply cannot be understood by metaphor or analogy.

To truly understand CS, students must be prevented from attempting to interpret computa-

tion in terms of their daily life and physical selves. We now know that Dijkstra’s suggestion

is not just that teaching CS is cruel but that it is impossible. All learning is a process of

building on existing knowledge [44], and it all begins from our experience of our physical

bodies, including that of computer scientists.

However, his speech has likely contributed to Computing Education Research (CER)

and the practice of Computing Education (CEd) neglecting the body’s contributions of

metaphor and embodiment can make to learning and comprehension of CS. Therefore we

have missed out on opportunities to understand what resources support learning, which

teaching practices are successful for learning or cause confusion, how do students make

sense of computation, etc.

In the previous chapter, I found that professors use embodiment and physicality to

explain computation. For example, a professor used a series of gestures to describe the

functionality of a list and “act out” iterating through the list. Professors suggest to the class,

“Let’s run the code,” and tell students, “Now, we jump to here in the code.” Embodiment is

75

likely one of the few resources students can use to understand the abstract.

Research on the multimodal practices of teachers found that language and gesture sup-

port learning, comprehension, and conceptual understanding [26, 149, 150, 151]. Multi-

modality refers to the “full range of communicational forms” that students or teachers use

to construct and communicate meaning [75]. A speaker’s embodiment facilitates the lis-

tener’s comprehension of speech, particularly when the speech is “highly complex” [28,

101]. In other words, in domains like CS where concepts cannot be directly experienced,

teachers’ use of embodiment likely creates a representation that students can use to achieve

a conceptual understanding.

Just as CS teachers use embodiment to communicate meaning (even if not intention-

ally), students will interpret and interact with those embodied ideas within activity systems

that are socially, culturally, and historically constructed and dependent on their lived ex-

periences[152]. Therefore, students will likely use the embodied communication of their

teachers when trying to understand complex programming concepts, such as recursion.

However, the use of embodiment may be central to CS classrooms, but it only supports

learning if students have the competency or literacy to interpret such embodiment. Con-

sider in our example, would students even understand that the gestures “acted out” are

adding elements to a list, and would they be able to attend to perspective-taking?

The challenge with interpretation is that students’ comprehension may be challenged by

instructional discourse that presents new concepts and uses unfamiliar terms. As students

encounter new words, new ways of using language, and new distinctions, they must learn

to grapple and reconcile with the “otherness” [153]. When a CS teacher says, “I’m here in

the code,” they do not mean that they are physically inside the program. Rather, they are

using a metaphor that is commonly understood by computer scientists.

I hypothesized how embodiment can create opportunities for learning and, simulta-

neously, make learning CS difficult because the representations are never surfaced, never

explored, and never explained. I study embodiment by analyzing the ways embodied rep-

76

resentations (i.e., gesture and metaphor) appear and influence CS learning. Drawing from

contemporary theories of embodied cognition (e.g., [6, 87, 109]), I used grounded theory

to analyze a set of naturalistic video recordings of undergraduate computing professors

teaching recursion to their class. I paid particular attention to how the professor used em-

bodied representations - i.e., gesture and metaphor - to support the learning of recursion.

We selected recursion because the difficulties with learning the topic are well documented

in computing education literature, and it is a topic that is generally agreed upon that every

computing student should know [55].

To consider what information and understanding are transported by the use of embodi-

ment to facilitate student learning, I considered the following research questions:

1. How do embodiment and metaphor function as teaching and learning tools about

recursion?

2. How do CS teachers describe and gesture about recursion during instruction?

3. How does a teacher use talk and gesture to convey CS knowledge?

These explicit questions about the embodiment of concepts help structure what teachers

are striving to teach or communicate and how the embodiment may or may not achieve

those learning goals. The first step toward examining the embodiment of teachers is through

identifying the kinds of gestures teachers use (because different types of gestures serve

different purposes) and the different ways teachers use metaphor. In this chapter, I did not

consider sketches since only one professor in my corpus created a sketch (as described in

the previous chapter).

This work is about explicating how we teach CS, where we are unnecessarily making

it more difficult (by not surfacing our metaphors or by not designing our embodied rep-

resentations), and the unconscious construction of barriers for those who do not think in

just this one way like a computer scientist. Studying the ways teachers use these embodied

representations reveals opportunities for teachers to communicate to students in ways that

77

better support learning [154]. Issues of equity and social justice are both implicit and ex-

plicit for understanding how classroom communicative practices impact CS learning. CS

classrooms are cultural and social spaces. Therefore, social inequities are easily perpet-

uated by the use of communicative practices that privilege students with certain forms of

knowledge. Participation is political. Given that CS is a science of the artificial, if we can

identify these sources, then we can design and think about better ways to design or make

“real” CS phenomena.

These insights likewise extend our understanding of how metaphors are useful for CS

learning, what resources students use, and how they make sense of computation. Re-

searchers have surveyed professors to understand the kinds of metaphors teachers use while

teaching. However, instead of surveying professors, I observed them and found that they

use different metaphors. Likely, the metaphors I described in this chapter are more au-

thentic because they are naturalistic. It is possible that surveying teachers derives more

intentional, thoughtful metaphors, but I was able to capture the metaphors that are created

on the fly.

After presenting the data collection and data analysis, I present the findings and case

studies. The findings are meant to be descriptive and interpretable and are not exhaustive

lists. I conclude with the argument that interpretation and learning CS are difficult because

of the embodiment and metaphors used. We consider the implications of this argument

specifically to assert that we need to do a better job of designing our metaphors and em-

bodiment.

6.2 Multimodality and Communicating Information

The discussion of embodiment suggests that embodied representations are multimodal and,

therefore, communicate meaning. An important strand of research has investigated the

ways representations are used in classrooms to best support and facilitate learning [26, 75].

This research has investigated topics ranging from the ”semiotic potential” of representa-

78

tions, how students exploit representations to support meaning-making, and the pedagog-

ical challenges with dealing with representations. Significantly, this research has led to

a multimodal perspective on learning and an assertion that representations actively medi-

ate and shape knowing and reasoning and play a defining rather than a supporting role in

understanding.

Multimodal theories explain that different representations are communicating different

but important information. To learn with the representations, students need to coordinate

and fluently transfer between the representations. This research has argued that making-

meaning with representations involves the simultaneous abilities to ”think with” and ”think

through” a representation. Meaning-making is defined along three dimensions [26]:

1. Students developing the ability to recognize, use, and construct accounts of domain-

specific phenomena

2. Knowledge-building is considered the use of material and symbolic practices for

inquiry

3. Reasoning is enhanced by the process of students’ constructing and interpreting rep-

resentations

Ibrahimi and colleagues argue that the two processes of ’thinking with’ and ’thinking

through’ multimodal representations require a deep understanding of the contribution of

embodiment within meaning making [75]. They illustrate this point with the example of

a teacher explaining day and night. They gestured by spinning their finger around while

describing the number of hours required for Earth’s rotation. They suggest that the combi-

nation of the gesture and speech provides a sense of pace that is not communicated through

only speech. The different representations offer different affordances, that when combined

and ensembled, allow different forms of meaning to emerge. They conclude that an exami-

nation of how the body acts as a representational resource is needed to fully understand the

ability it has to enhance teaching and student learning.

79

The challenge with coordinating and using the representations teachers create is that

students need to be able to interpret the representations.

Interpretation requires students to determine the referent. Peirce explains that there are

three things involved whenever there is a representation [155]:

1. The referent or whatever is represented

2. The referring expression that represents the referent

3. The interpretation that links the referring expression to the referent

Therefore, if a teacher gestures or uses a metaphor, students need to be able to answer,

”to what are they referring,” to interpret it. Complicating interpretation is the fact that it

is an inherently contextualized activity: “students must understand the relation between

the representation and the domain that it represents and must understand the representation

within the confines and definitions within the domain” [26]. Ainsworth continues that

interpreting is a particularly difficult task since this understanding must ”be forged upon

incomplete domain knowledge” [26].

6.3 Methods

The goal of this work is to document teachers’ embodiment and hypothesize about how

easy or difficult it is for students to interpret. I was interested in understanding how

teachers communicate information about recursion and what where communication might

break down. Specifically, to consider interpretation, I consider what kind of gestures and

metaphors were used, how they were used, and what might have guided the teacher in using

them. This allows us to understand what knowledge is communicated and through what

mechanisms to facilitate students conceptual understanding

Based on research from McCauley, I operationalized learning of recursion along three

dimensions: (1) comprehension, or describing recursion and recursive solutions, (2) eval-

uation, or tracing a recursive solution, and (3) construction, or writing a recursive solution

80

[50]. Moreover, because I’m focusing on those dimensions, it allows us to make more

general claims about how teachers use embodiment to support CS learning.

I present the findings in the style of detailed episodes; this work is meant to be descrip-

tive and interpretive. Furthermore, because of the nature of this work, I do not provide

exhaustive lists or categorizations.

6.3.1 Data Collection

Data Sources

Similar to Lewis’s 2014 ICER paper, I am not testing a hypothesis, but using a grounded

approach to identify how embodiment was used by teachers in classrooms [156]. The

methodological approach was influenced by learning sciences research that argues “the

contributions of embodied representations to teaching and learning is found within practical

work in teaching” [75]. Therefore, the data corpus consists of naturalistic video recordings

of teachers as they teach recursion to their students. The recordings were filmed during

typical class time.

In total, I gathered 227-minutes of video data from six undergraduate professors. I

emailed professors at universities that are allowed to video record their classrooms, emailed

CEd researchers in industry or at data companies, scoured MOOCs, and online video

databases to create our video corpus. In all, I received or examined 33 videos.

Since this study was dependent upon those who responded and those who were able

to send us video recordings, it provides a potentially skewed view of what happens in

computing classrooms. This is a limitation for two reasons: First, all the professors were

middle-aged white or Asian males teaching at different universities in the United States of

America. Second, the professors in the videos are known as excellent computer science

teachers. However, this sample is representative of teachers and teaching practices that are

rewarded by institutions – these professors were all tenured at prestigious computer science

departments – and modeled by others. Each course taught a different imperative language,

81

and all of them were “conventionally structured” [50], consisting of Socratic-style lectures

conducted in an auditorium and practical laboratory work in other sessions. The videos

show only the professor, but some students’ voices are intelligible.

Moreover, because I did not create these video recordings, it was not possible to dictate

the framing of the video or what was in focus. However, the framing does provide insight

into the aspects that other people think should be given importance. I was also unable to

collect artifacts from the classes or interview the professors and, therefore, cannot make

any claims regarding intentionality.

Videos

While all of the classes were typical college-level length (50-60 minutes), not all the profes-

sors spent the entire time teaching recursion. Some professors did not trace any recursive

functions or focused only on generation. Table 6.1 is a breakdown of the videos, detailing

the demographics of the professor, how long each video was in minutes and how much

of that time the professor spent teaching recursion, what other lessons/topics they taught

if they taught more than just recursion, and what they taught about recursion, and how

long the lesson about recursion was. I personally identified the professors’ race/ethnicity

and gender. Therefore, I used certain labels, such as “Asian-passing” and “white-passing,”

in the event that they do not identify as Asian or white. I also included the label “male-

presenting.”

6.3.2 Data Analysis

Case Selection

After the data was collected, data analysis began by viewing all the videos from start to

end. Content logs were created for all video data, where special attention was paid to any

interesting details and episodes. These included instances where the teachers used unusual

language to describe a concept, where they referred to the code as “it,” and where spatial

82

Ta
bl

e
6.

1:
Pr

of
es

so
rs

’d
em

og
ra

ph
ic

s
an

d
vi

de
o

in
fo

rm
at

io
n

Pr
of

es
so

r
D

em
og

ra
ph

ic
s

To
pi

cs
Ta

ug
ht

in
L

es
so

n
L

en
gt

h
of

V
id

eo
(i

n
m

in
ut

es
)

Ti
m

e
Sp

en
t

Te
ac

hi
ng

R
ec

ur
si

on
Pa

rt
s

Ta
ug

ht

P1
w

hi
te

-p
as

si
ng

m
al

e-
pr

es
en

tin
g

re
cu

rs
io

n
46

m
in

ut
es

46
m

in
ut

es
co

m
pr

eh
en

si
on

,
ge

ne
ra

tio
n,

ev
al

ua
tio

n

P2
w

hi
te

-p
as

si
ng

m
al

e-
pr

es
en

tin
g

re
cu

rs
io

n
an

d
di

ct
io

na
ri

es
48

m
in

ut
es

33
m

in
ut

es
co

m
pr

eh
en

si
on

,
ge

ne
ra

tio
n

P3
w

hi
te

-p
as

si
ng

m
al

e-
pr

es
en

tin
g

re
cu

rs
io

n
46

m
in

ut
es

46
m

in
ut

es
co

m
pr

eh
en

si
on

,
ge

ne
ra

tio
n

P4
w

hi
te

-p
as

si
ng

m
al

e-
pr

es
en

tin
g

al
go

ri
th

m
s;

re
cu

rs
io

n;
se

ar
ch

;s
or

t
88

m
in

ut
es

11
m

in
ut

es
co

m
pr

eh
en

si
on

,
ge

ne
ra

tio
n

P5
w

hi
te

-p
as

si
ng

m
al

e-
pr

es
en

tin
g

re
cu

rs
io

n
52

m
in

ut
es

37
m

in
ut

es
ge

ne
ra

tio
n

P6
A

si
an

m
al

e-
pr

es
en

tin
g

ob
je

ct
-o

ri
en

te
d

pr
og

ra
m

m
in

g;
re

cu
rs

io
n;

in
he

ri
ta

nc
e

58
m

in
ut

es
7

m
in

ut
es

co
m

pr
eh

en
si

on
,

ge
ne

ra
tio

n,
ev

al
ua

tio
n

83

language and extensive gesture sequences were used. The language was eventually coded

as metaphors. I then created multimodal transcripts for 15% of the episodes.

Next, I chose two contrasting cases for each dimension (comprehension, evaluating, and

construction) to begin hypothesizing about the kinds of embodiment that were used and

their purpose. These contrasting cases focused on (1) gesture production – an instructor

who gestured more than another – (2) and language use – an instructor who used more

interesting language than another. It became clear that instructors used embodiment to

fulfil similar objectives and purposes and used similar types of embodiment. It also became

apparent that how much an instructor gestured seemed to vary with each individual.

Then, for each of these cases, I coded the data, beginning with the transcripts. I began

by conducting line-by-line coding. After discussions with the research team, we decided

to use embodiment as a framework. We then concluded by coding the rest of the data set,

iterating on the codebook as needed. The rest of this section describes the coding process.

The cases presented in this chapter were chosen because they showcased examples of

teachers creating extensive sequences of gestures and using heavily metaphorical language.

Coding Gestures

I used the methods specified by Trafton et al. [157, 158] and Stieff and Raje [159] to

analyze teachers’ gesture production. Using Trafton et al.’s framework, I identified four

kinds of gestures: (1) beat, (2) deictic, (3) iconic, and (4) non-iconic.

Beat gestures were “typically brief, motorically simple gestures” [157], including ges-

tures that go along with rhythmic language, communicative gestures (e.g., thumbs up), and

personal gestures (e.g., touching one’s nose). Gestures were denoted as deictic if “there

was a directed, explicit pointing action, usually involving a finger or forearm, and a pur-

poseful direction toward a display or item in the environment” [157], including pointing to

a specific location, thing, or line of code, and typically followed by a demonstrative (this

or that). Iconic gestures were any gestures that “acted out” a concrete sequence; specifi-

84

cally, these were gestures “that had a strong relationship to the semantics of the utterance,

or ‘acted out’ what was said” [157]. Lastly, non-iconic gestures included gestures that

could not be placed into any of the other categories, “were a mix of metaphoric gestures

and non-codable gestures (they were not iconics, beats or deictic gestures)” [108]. Some

scholars have argued for just collapsing iconic and metaphoric gestures into one category,

but we decided to keep them separate. Some of these gestures seemed to “act out” abstract

concepts, like process. Knowing a teacher’s intentionality, such as asking them what they

thought a gesture meant and understanding their underlying metaphors and mental models

of constructs and syntax, could help parse it out.

I used a two-step gesture coding scheme. I first reviewed the video recordings with

the sound off and tagged every occurrence of a gesture. Following this, I reviewed the

recordings a second time with the sound turned on and the concurrent transcripts. During

the second viewing, I classified each gesture using the taxonomy previously described.

Coding Metaphor

I used grounded theory to code the transcripts of three videos [46]. I began analysis by

line-by-line coding and looked for any noteworthy patterns in the data. As I was initially

interested in spatial language and metaphors, I paid extra attention to spatial words (e.g.,

here, before, etc.) and spatial metaphors. During this first pass, I also coded concepts that

were “interesting,” particularly words or phrases that we felt “seemed spatial” (e.g., calls,

returns, etc.) or any language that seemed anthropomorphic or could be used to personify.

On the basis of this initial coding, I identified dozens of codes related to an emergent theme

of how professors use embodiment while teaching.

After discussions, we noticed that many of the words seemed to be metaphorical and

anthropomorphized code. After a literature review, we began to notice that all the codes we

tagged were about embodiment, specifically in relation to metaphor use and perspective-

taking. After the literature review, we then reiterated our codes by tagging metaphors and

85

other categories as different kinds of metaphors (personification, whatever the other ones

were). In addition, I tagged any time the professor used different pronouns that seemed

to refer to the computer; this eventually became the categories actor-perspective and code-

perspective.

To determine whether or not the words or utteraneces were metaphors, I used a coding

scheme described by Jeppson et al. and the Pragglejaz Group which provides explicit

criteria for categorizing a word as metaphorical [82, 160]. This method is a list of steps to

determine whether a lexical unit (word or phrase) is a metaphor (see Figure 6.1).

Figure 6.1: The approach to determine if a word or utterance is a metaphor [160].

Segmentation

To make claims about what purpose embodiment might serve or the goal behind its use,

I segmented the data inspired by a discourse analysis or a move analysis. A discourse

analysis methodology can be used to unpack the intent, as a move is considered to be a

86

distinct shift in focus or a change in topic or purpose. A move has a goal or intentionality

and moves the unit of analysis away from an utterance.

This focus segmented teachers’ talk into chunks that delimit units of speech produced

according to what that speech is doing in the interaction.

Categories of teachers’ moves were developed and refined by two researchers using an

iterative process that involved an analysis of the nature and intent of teachers’ statements.

Each move was assigned to an existing code or to a new code as necessary. Where there

was disagreement or ambiguity, the researchers discussed this and decided whether the

utterance warranted a new category or pointed to a need for clarification or expansion of

meaning within an existing category. The coding categories were refined to the point where

all utterances would fit within the coding system.

6.4 Reflexivity

Lewis argued that researchers should make their epistemological assumptions clear when

reporting on qualitative analyses. We are computer scientists from different cultural back-

grounds [156]. Admittedly, the first author, an upper-middle class Black woman, is person-

ally invested in this topic because she almost left CS since she could not understand many

of the metaphors and analogies or some of them were offensive and racist. As computer

scientists, this research was conducted from an insider perspective. This made identifying

metaphors difficult because we have consented to being indoctrinated into the practices,

including the ways language is used. However, our insider status did make it so that we

could glean meaning from some types of gestures, that someone with an outsider status

may not be able to do.

6.5 Findings

Our analysis yielded several findings related to how teachers use embodiment and the kinds

of embodiment used. Across all the data analyzed of teachers teaching recursion in class-

87

rooms, I found 1136 instances of embodiment demonstrated through metaphor and gesture.

In the rest of this section, I describe the different types of gestures and metaphors teachers

used when teaching recursion. In the next section, I present three vignettes to illustrate how

gestures and metaphors were used by teachers.

6.5.1 Gesture Production

I computed the frequency of the type of gestures produced. As expected, beat were the most

common type of gesture (61.8% of all gestures coded), followed by noniconic (18.0%), then

deictic (11.3%), and last, iconic (8.8%).

Deictic Gesture

As previously mentioned, deictic gestures are pointing gestures. Typically, all teachers

used deictic gestures to orient and point to information when explaining or communicating

ideas. One teacher used a series of deictic gestures to trace a code execution. It should be

noted that only two professors traced a code execution; the other professor that did trace

sketched the code trace (described in the previous chapter). As a pedagogical function,

deictic gesture seemed to orient student attention to salient features, thereby “refining and

qualifying” the information communicated through other modes.

Iconic Gesture

As stated in the previous section, iconic gestures are gestures that “act-out” a concrete

referent. These gestures appeared when teachers used a concrete analogy or example when

trying to define or explain what recursion is conceptually. For example, one of the teachers

compared recursion to employing “simpleton” workers who are only able to accomplish

one thing. The teacher then made a series of gestures where they “acted out” a worker

counting the number of people in a row. Another example is of the professor who used the

analogy that recursion is like looking up words in a dictionary (see Chapter 5). They used a

88

series of gestures through which they imitated a person searching for words in a dictionary.

Noniconic Gesture

As stated before, noniconic gestures refer to gestures that could be metaphoric, or repre-

sent abstractions and computation, or could be nonsense. As previously indicated, I differ-

entiated between iconic and noniconic gestures by assuming that iconic gestures refer to

something concrete.

The professors primarily used noniconic gestures when referencing computation. For

example, Figure 6.2 illustrates a series of gestures that a professor made that seem to

be about “the call stack.” He cups his hands as if to show the chunks of memory in the

stack and concludes the gestures by pulling his hands apart as if showing the entire stack.

As a pedagogical function, noniconic gesture seemed to provide something “concrete” for

students, which then gave them something to reason and hypothesize with and about.

Figure 6.2: Teachers’ gestures while describing memory and the call stack. Talk marked with an
asterisk (*) co-occurred with the gestures shown in the image.

These gestures make us question what it means to ‘act out’ recursion or computation.

Are they acting out the program (the actions defined by the programmer)? Are they acting

out the Python interpretation (e.g., how the stack pops in recursion)? The processor’s action

89

(e.g., where different variables are in memory)? There are so many layers to an executing

program, and the teacher is likely trying to explicate a level that the student is confused

about or is getting in the way of success.

Lastly, we found five professors used an oscillating, cyclical gesture, where the profes-

sor would use either one hand or both hands in a cycling manner. This gesture was used

in conjunction with utterances like ”recursion keeps repeating again, and again, and again”

or “...dealing with recursion and its mind blowing cyclicity.” The one professor (P2) that

did not use this gesture did not talk about the recursive’s cyclical nature. We describe this

gesture in more detail in the next section.

6.5.2 Metaphors

We differentiated analogies from metaphors because we consider the two to serve different

purposes. According to Brookes and Etkina [81], the critical difference is that analogies

suggest the source domain is like the target domain (e.g., life is like a box of chocolates),

whereas a metaphor suggests the source domain is the target domain (e.g., they are a shin-

ing star). In a study about the use of metaphors by physicists, Brookes and Etkina states

that when physicists need to assert something, they need is more than is like in their rea-

soning process [81]. The author concludes that “is” represents a fundamental trait of how

knowledge is generated.

Metaphors, such as calls, prints, and runs, do not seem to be metaphors. Professors

used these frequently throughout their classes like they were just common knowledge and

everyday words. They are likely dead metaphors or metaphors that are so common and

widely accepted that they have lost their original metaphorical connotation.

I found that professors used metaphors and physicality to represent computation or

computational processes. Table 6.2 displays a list of some of the metaphors identified. Ev-

ery professor used these metaphors. However, only one professor (P2) used the metaphors

bounds, reduces, and unwinds.

90

These are metaphors because none of these actions are actually happening. A variable

is not bound to anything, and a function does not actually run or print. Metaphors anthro-

pomorphize computation, which suggests that computation has behaviors, intentionalities,

and goals. For example, a variable keeps changing until it gets to one. This metaphor sug-

gests that code has agency and directionality, that is, the code can go to some destination.

I also found that a teacher use spatial metaphors while describing a code trace (e.g., so it

goes to here). The spatial metaphors describe where the recursive process is both virtually

and physically - or where in the lines of code.

In this regard, metaphors serve three pedagogical functions:

1. Students can rely on their physical and lived-experiences to make sense of computa-

tion.

2. Metaphors provide a language for which to talk about abstractions.

3. They provide a way for students to conceptualize and reason about abstractions and

their behaviors.

As previously stated, Professor P2 used the metaphors different metaphors when refer-

ring to variable assignment and recursive process, bound and unwinds. The use of these

metaphors could be cultural; although the professor taught at a school in the U.S., the

professor is Canadian.

The professor said, “This variable is bound to 3,” whereas the other professors ex-

pressed the same idea by saying that a variable is “equal to” or “gets” a certain value.

Likewise, the professor referred to the recursive process that happens before the base case

is executed as unwinding while other professors referred to it as cyclical and repetitive.

It should be analyzed how the use of different metaphors might lead to different con-

ceptualizations. Maybe using a metaphor, such as bound, could be a better way to describe

variable assignment, as saying “equals to” tends to lead to misconceptions about the con-

cept. A “binding” suggests that a thing is confined to something, which may be more

91

effective at helping students realize that reassigning the value of a variable does not add to

its initial value.

However, this example highlights two important findings associated with metaphors.

First, metaphors are cultural. A student can only use a metaphor, like bounds, if they have

a similar referent as that of the professor. Second, many of the metaphors have a limited

scope; they only describe one aspect of recursion or computation. Bounds might highlight

variable reassignment, but it does not necessarily suggest that variables can only have a

single value. These metaphors are not necessarily completely wrong, but teachers need to

be aware of their limitations and how they might be confusing.

Metaphorical Construals

The analysis led to the identification of two unique relationships formed between the pro-

fessor and code. I found the professor switched (sometimes fluently) between an actor-

perspective (e.g., “then we go here” or “then I go here”) and a code-perspective (e.g., “then

it goes here”). Pedagogically, this allows the teacher to “blend” “subject with object” to

engage more deeply with code or logic, as way to reason and hypothesize about process

and logic.

The actor-perspective included the pronouns you, me, we, and I. It was not obvious

who the professor referred to when using those pronouns, therefore we included them in

the same category.

The code-perspective included the pronoun it. Again, it was not obvious who the pro-

fessor referred to when using this perspective. In some moments, the professor seemed to

refer to process, in another the function.

I describe these issues further in later case studies.

The use of different perspectives creates this metaphorical construal of the computer or

process as having agency. Professors used these metaphorical construals when they tried to

help students understand the code’s logic. As a teaching tool, students can ‘role-play’ as if

92

Table 6.2: List of Some Metaphors

Metaphor Reference Example

bound
variable
assignment

“So n is bound to 4.”

“that value, right there, of 3.
So 3 is now bound to n.”

call
function
invocation

“We know that functions
can call other functions,
but functions can call
themselves, oftentimes,
to create some sort of useful
effect.”

reduces to
variable
changing

“Well that call to fact of 1.
So that reduces to return
2 times 1. And who called
for that?”

unwinding;
unwraps recursive process

“so long as I have what I call
a base case, a way of stopping
that unwinding of the problems,
when I get to something I can
solve directly.”

run
execute a set
of instructions

“and then run V and let me show
you the Vblock it says turn left 45
move 25 steps up and then choose
a random item from that shapes list
and run it so this part is kind of a
preview of things you’ll see later
because”

return
stop execution of
current subroutine

“from position p okay okay so this
is going to return a list of all the
arrows all the moves you’ve got so”

prints display output
“It’s just going to print something.
But it is going to take input,
like a number n”

93

they were doing the action and reason about logic using their own lived-experiences.

Professors also used different perspectives while doing a code trace as a way to navigate

code. This was sometimes combined with spatial metaphors, which seemed more like a

spatial strategy. That is a way to structure space and embody a code trace.

6.6 Case Studies

In this section, I present three case studies in the style of vignettes to illustrate how gesture

and metaphor were used to explain computing concepts. The three case study vignettes

are from two different professors (P4 and P6). The aim is to understand what guides the

teacher’s use of gestures and metaphor and what information is being communicated.

Case Study 1: Metaphors to Explain Recursion. In this case, the intent is to show

how a professor uses metaphors through words and gestures to help students understand

recursion conceptually. Specifically, we highlight the many learning opportunities the pro-

fessor creates, but how they also may, unintentionally, be conveying recursion as a loop

through their use of embodiment. The goal is for students to form viable mental models

of recursion. However, the metaphor and gestures used by the professor, arguably, convey

recursion as cyclical. From our observations of CS classrooms, the professor uses typical

pedagogy, introducing concrete examples, comparing recursion to iteration, and defines

recursion typically.

The class is a data structures and algorithms course taught using Python programming

language. The teacher stood at a lectern in the front of the class with a laptop connected

to a projector. On the opposite side of the podium is a large television screen. From this

11-minute class we describe a 4-minute video clip. In this clip the professor is introducing

recursion to the students. The professor asks the class to ”go back to week 1,” when they

discussed a phone book application, ”with a programming construct that, at the time, we

highlighted and called a loop.”

Instead of immediately discussing recursion, the professor introduces a concrete exam-

94

ple. He walks away from the podium towards the TV screen with pseudo code of the phone

book algorithm. He points to the code and says,

”we highlighted and called a loop, go back to line 3. So that you can do some-

thing again and again. This is an example of what’s called iteration,where to

iterate just means to loop again and again.”

This utterance co-occurred with a noniconic gesture (see Figure 6.3), with the professor

moving his hand in an oscillating, circular motion, where the hand rotates or traces a circu-

lar movement when he says ”iterate.” A common pedagogical technique professors use is

to compare recursion to iteration, and transform iteration to recursion.

Figure 6.3: Professor making a cyclical gesture.

This circular movement is a gesture that we observed in all of the videos. Professors

use this circular movement throughout their lesson when referring to function invocation,

the cyclical nature of recursion, or, in this case, iteration. As previously stated, noniconic

gesture are likely good learning aids because they can replicate movement, or “simulate ac-

tion.” Specifically, when students attend to these types of gestures, a shared space is created.

95

Therefore, this gesture may be a representation of the ways that the professor envisions in-

vocation, recursion, loops, functionally, work, and by using them, he is sharing his mental

model of those programming constructs with the class. However, these gestures only have

a meaning if they are ”meaningfully connected to the physical action being learned are less

likely to help”.

But motivating these gestures is likely a certain mental model, an underlying metaphor.

As a gesture, it could easily be seen as a random hand movement, just going along with the

rhythm of his talk. But if we think about how ”loops”, ”function invocation,” or ”recursion”

are modeled as typically something cyclical like a loop, then that sort of gesture could be

the teacher’s mental models. But, for a novice student learning recursion for the first time,

this gesture may be difficult to extract a meaning from. Understanding embodiment may

require a way of ”seeing” that is accepted in a community of practice.

Moreover, the use of this gesture to represent three different constructs, could easily

conflate the meaning. If a student were to understand them, seeing the gesture used to

explain different programming constructs can make it as though all the concepts are the

same or closely related.

The professor continues with the lesson saying,

”there’s an opportunity to design this algorithm not only differently, but per-

haps better, right?... and get rid of this iteration and see if I can’t solve the

problem more elegantly, if you will, a better design.”

The professor uses an ontological metaphor, ”elegant”, making a value judgment about

what constitutes ”good code.” Using this metaphor also personifies recursive solutions,

as if a block code could be ”pleasing and graceful in appearance or style”, and making

comparisons between recursion and iteration, that for real computer scientist, recursion is

conventionally and culturally a better form of iteration.

The professor gives an example,

96

”I’m telling you, if you want to search for Mike Smith in a phone book of this

size, mm-mm. Search for Mike Smith in a phone book of this size. And then

the next step of that algorithm becomes search for him, in a phone book of this

size, this size, when you keep halving the problem.”

Figure 6.4 demonstrates how this speech is more communicative when it is augmented

with gestures. In this example, the professor uses physical space in his iconic gestures to

communicate different meanings. He first places his hands far apart to show length when

saying

”if you want to search for Mike Smith in a phone book of this size”.

Figure 6.4: Professor uses iconic gesture while describing searching through a phone book.

97

Then he moves his hands closer to show a shorter length: ”mm-mm. Search for Mike

Smith in a phone book of this size.” He then takes a step to the left, but keeps his hands in

the same position: ”And then the next step of that algorithm becomes search for him.”

He continues to shrink the space between his hands, pulling them closer together.

Students may not realize that the professor just gave an effective example of a central

tenet for recursion, which is to decompose a problem into simpler, more easily to solve

problems. Potentially, such “acting out” may be a good learning aid, since novice students

typically write recursive algorithms that do not have terminating conditions, or a base case

[161]. The gestures added richness to his example.

The professor concludes this example, by telling students that this

”is an example of a technique in programming called recursion, whereby you

implement a program or an algorithm or code that, in a sense, calls itself.”

The statement, a program or an algorithm or code that in a sense calls itself, is lay-

ered with embodiment. In our data corpus, every teacher defined recursion as ”a pro-

gram/function that calls itself.” It’s a common phrase; even anecdotally, textbooks use the

same phrase and so do we. But, what exactly does it mean to ”call itself”? The statement

personifies recursion by referring to ”itself” and suggesting that a function or code can

make a call. How can a function have agency or intentions?

Moreover, call is metaphor used to describe function invocation, but what exactly does

it mean to ”call something” and where did that term even come from? Code, then, can’t

just be lines on a paper if teachers are requiring you to be in it or calling it. We call things

to communicate with others that are at a distance from us. In contrast, we speak or whisper

to listeners who are near us. Why would a function that is referencing itself need to call

it? Why would it be distant from itself? What work does the phrase “in a sense” do in this

utterance? Perhaps the professor is aware that he’s drawing on a metaphor, and uses that

phrase to mean “I am not speaking in a literal sense here.”

The student must be able to interpret these metaphors and gestures being used by the

98

teacher in order to comprehend the instruction. Educators are in the position of beginning

to understand the kinds of foci that can facilitate understanding CS classroom practice. To

help educators we need to develop a catalogue of the common metaphors that happen in

the CS classroom and then to uncover how students make, or do not make, sense of these

communication methods.

Case Study 2: Writing a Recursive Function. In this case, I intend to show how

a professor uses embodiment, specifically perspective-taking, while writing a recursive

function. Professors switch between perspectives as if they’re role-playing different roles.

They likely use perspective-taking to help students develop an embodied understanding of

the logic of the code to write a recursive function. In other words, they are trying to help

students form analogies based on their lived-experiences to reason about the code’s logic.

This is a good approach since, as Pirolli argues, students need a template or analogy to write

recursive programs [54]. However, teachers do not coordinate between the roles which can

hinder students from forming an embodied understanding.

This 12-minute video clip is the same professor and class session from the first case.

The professor asks the class how they might write a program that prints a pyramid, like the

one from the 1985 Nintendo game, Super Mario Brothers. Recall that in this classroom,

there is a lectern connected to a projector and a large monitor.

The professor writes the algorithm to produce a pyramid using iteration. He then walks

towards the monitor that is displaying an image of the pyramid from Super Mario Broth-

ers. He begins to ”decompose the problem” by describing the pattern he notices about the

pyramid:

”there’s this common structure, right? And if we look at the pyramid in iso-

lation, what is the definition of a pyramid of height 4? Well, arguably, it’s a

pyramid of height 3 plus 1 additional row. What’s the definition of a pyramid

of height 3? Well, it’s a pyramid of height 2 plus 1 additional row... That’s a

recursive definition of just a physical object or a virtual object.”

99

The professor is using a concrete example to explain the recursive case.

He then identifies the base case,

”Now, at some point, I need a special case, at least one height. What is a

pyramid of height 0? Nothing, right? So long as you have a so-called base case,

where you manually say, oh, in that specific case, just don’t do anything, and

you don’t recursively call yourself again and again, we can use this principle

of code calling itself.”

Again, the professor makes the same cyclical gesture when he says ”recursively,” pos-

sibly sharing his mental model of recursion. The professor also uses perspective-taking,

acting as though he is the recursive solution when talking about the logic of code, and

giving the agency to the class when talking abstractly about the code, concept-based. He

is trying to create an embodied understanding of recursion by attempting to relate it to

lived-experiences. He’s using his own experiences and judgments (i.e., how would he do

something) to justify the logic of the recursive function. He’s trying to identify with the

program.

He walks back to the lectern and begins writing a recursive solution to draw a pyramid:

”My goal now is not to just use nested loops, but to define a bigger pyramid in terms of

a small pyramid.” He simultaneously uses his hands to gesture something shrinking when

saying ”bigger” and ”smaller”, a way to show a problem decomposing. He asks the class,

”How do I draw a pyramid of size 4 in English?” A student responds, ”Draw a pyramid of

the size 4 minus 1.”

The professor responds:

Yeah, draw a pyramid of size 4 minus 1, or a pyramid of size 3. So how do I

express this in code? Well, wonderfully in code, this is super simple, h minus

1. That will draw me a pyramid of height h minus 1, or 3 in this specific case.

Now, it’s not done the program, right? I can’t possibly just compile this and

expect it to work because this seems like it’s just going to call itself endlessly.

100

Notice, the professor switches between perspectives, saying “that will draw me a pyramid”

to “now, it’s not done the program.” Every professor switched between perspectives fluently

and with no discernable systematicity.

It’s not clear what roles the professor is role-playing or asking the students to role play.

In this quote, the professor seems to role play as someone who owns the code, when earlier

he was the code and then the students were the code. Meanwhile the “it” seems to represent

the recursive process. The professor writes the code: draw(h-1). Then he says the code is

”obviously not right, because this seems like it’s just going to call itself endlessly”, again

using the same cyclical gesture and code-perspective.

The professor then has the class consider the base case.

Well, what’s a pyramid of size 3, 2, 1, 0, negative 1, negative 2, right? It would

go on endlessly if I just blindly subtract 1. So I need that base case. Under

what circumstances should I actually not draw anything? (inaudible student

response) Yeah. So maybe if h equals equals 0, you know what? Just return.

Don’t do anything, right? I need a base case, a hard-coded condition that says

stop doing this, this mind-bending cyclicity again and again.

Again, the professor is trying to help students reason about the logic when a recursive

invocation should terminate, using their own lived experiences. He switches between per-

spectives with no discernable understanding why or what role one should play. In the same

instance (“it would go on endlessly if I just blindly subtract 1), “it” is the recursive process

and now the professor is the code.

Teachers using embodied experiences and perspective-taking is typically considered a

valuable approach because it helps students make sense of new information by relating

it to their pre-existing and lived experiences. For example, Ibrahim-Didi and colleagues

describe cases of teachers very purposefully coordinating different perspectives and roles

for students to play to form an embodied understanding of how day turns to night [75].

However, in our corpus no CS teacher was purposeful with perspective-taking. For CS, this

101

is especially challenging since students don’t naturally think recursively. No student will

naturally think a pyramid’s height is one plus an additional row. Therefore, students likely

need systematicity in perspective-taking to help them form an analogous example to write

recursive functions.

Every professor in the data corpus used perspective-taking to explain code logic. This

suggests that this is likely a practice passed from one professor to another. Nobody has

considered how professor’s use perspective taking while teaching, likely because CER has

not used embodiment as a theoretical lens.

Case Study 3: Tracing a Recursive Invocation. In this case study, we identify how

a professor used embodiment to trace a recursive invocation. Specifically, we address (1)

the professor’s use of perspective-taking and deictic gestures to orient the class and help

them navigate code and (2) the professor’s use of perspective-taking to role play as dif-

ferent elements in the notional machine. Tracing, or simulating the program execution, is

a fundamental skill in computer programming that supports the comprehension of a task.

Sorva argues that novices need concrete tracing, where one tracks specific values and how

those values change [64].

The professor in this case study is a different professor from the previous two case

studies. This professor was one of two in our data corpus that provided a detailed trace of

a recursive invocation. Both professors did so out of response to students’ questions.

During this 4-minute video clip, the professor is introducing recursion to the students.

The class is a data structures and algorithms course and taught in Python. The teacher stood

at a podium with a laptop connected to a projector.

The professor asks the students to recall an in-class exercise from the first week, telling

them that it was actually about recursion. Similar to the professor in the first case study,

this professor gives the following definition of recursion:

”But recursion is this idea of... We can have functions, functions that are run-

ning code. But, functions can also call themselves. We know that functions

102

can call other functions, but functions can call themselves, oftentimes, to cre-

ate some sort of useful effect.”

The professor goes straight into an example to calculate the factorial of some number.

McCauley argues that many teachers use factorial as a simple example of a recursive algo-

rithm [50]. Factorial is an abstract conceptual model that Wu argues helps students form

viable mental models of recursion [52].

On his computer, the professor types the code to calculate the factorial of some arbitrary

value using recursion, a function with three lines of code. While writing the code, he uses

the same oscillating gesture while uttering, ”And so the recursive idea that I can use here

is the factorial of some value n.”

The professor asks if any students have questions, and one student asks, “The last three

lines, you don’t really need them, right?” Figure 6.5 is an image of the professors code,

with the three lines the student refers to in a white box.

Figure 6.5: The professors code, with the three lines the student refers to in a white box.

The student clearly has an “odd” mental model of recursion, likely misinterpreting what

“a function that calls itself” means. Likely realizing that the student does not understand

recursive execution, the professor begins a code trace.

103

So you do need these three lines, and the reason is this is handling the logic of

what the function is doing. So the first thing my function is doing is checking

to see if I’ve hit my base case. If I’m calculating the factorial of 1, I’m just

going to pre-program into my function the answer to that is 1. But if I’m trying

to calculate the factorial of anything else–presumably something larger than

1– but you should probably add checks to handle things less than that, then to

calculate the factorial of 5, for example, I’m going to take the number 5 and

multiply it by whatever I would get by taking the factorial of 4 of n minus 1.”

In the professor’s explanation, he primarily uses an actor-perspective, referring to him-

self as doing the actions. However, his role changes. At some points, the professor is the

owner of the code, at other points the professor is the code, and at another point the pro-

fessor is the process, he seems to be playing the role of variable (I’m going to take the

number 5 and multiply it). Even “you” is the code at some point.

It could be that the professor is playing different roles in program state. To trace, a

programmer must keep track of the program state. Perkins et al. describe the program state

includes the elements of the notional machine: “variables, objects, references, function

activations, and so on” [162]. As a teaching tool, switching between these roles seems

promising, because it could help students understand the ways these different elements

change during execution.

After that explanation, the professor asks again if any students have any more questions.

One student asked, ”How does the computer know what the factorial n minus 1 is?”

Likely realizing that the students still do not understand how recursive functions exe-

cutes, the professor continues the code trace. The professor states, ”So now we’re running

factorial one more time,” repeating the oscillating gesture. Notice the professor is using

an actor-based perspective; acting like him and the class are the computer. He also uses

metaphor, acting as if the function, factorial, can run. Running is an extension of the body.

Something that people and animals do. How is it, then, that an abstract concept can run.

104

The professor continues: ”How does the computer know what the factorial of n minus

1 is? It calls the function again.” Here, the professor uses call a metaphor we discussed in

the first case study. However, notice the fluent - and random - transition from actor-based

to code-based; a way to ”step-out” and give the computer agency.

Then, the professor switches perspective again, ”So now we’re running factorial one

more time. We’re calculating factorial of 4. That’s not one 1. We’re going to return 4

times the factorial of 3.” Co-occurring with this perspective-taking was a series of deictic

gestures. The professor used his mouse to highlight each line of code he was referring to.

Pointing directed the ”visual attention” of class to the specific lines of code.

Notice the professor uses the metaphors ”we’re going to return 4 times the factorial of

3.” First, is the metaphor return, which is meant to imply halting a subroutine and giving

some values back. However, return could be based on a number of metaphors. Second,

notice the metaphor ”we’re going to. . . ” which seems to have a double meaning. First, it

seems to be construed as a spatial metaphor suggesting both physical and virtual execution

(that is, the actual line of code and where the code is in the process; this is where they are

headed and this is where they are).

The professor continues: “So now, we’re calculating the factorial of 3, which is 3 times

the factorial of 2, which is 2 times the factorial of 1 and the factorial of 1, as these if

conditions on lines 9 and 6 will indicate, is just going to be 1.”

In an emergent pattern, the professor uses a deictic gesture and an actor-based perspec-

tive when describing the functionality at a code-level. The deictic gesture ”grounds” the

code - making it real - suggesting the student is ”here” in the code. However, code is only

supposed to be instructions for the computer (computer-human interaction). By ”ground-

ing” the code, it provides markers that students can use to navigate code and understand

where ”they are” in an invocation. However, if students can take the perspective of code,

then it can’t just be something on a page.

While the professor did not switch between an actor and code perspectives as often as

105

the professor in Case Study 2, we saw that the professor still randomly switched roles. In-

terestingly, each of the roles the professor played as were essential elements in the program

state that the student needs to keep track of to trace code. However, students likely need to

coordinate between these different roles. Tytler and colleagues found that when teachers

were purposeful with role play, each role gave students a different perspective and under-

standing [149]. If students need to keep track of different elements to trace, they likely

need to coordinate them. Roleplaying as the different roles, when done purposefully, could

be a great way to help students coordinate those different roles.

6.7 Discussion

In this chapter, I analyzed CS learning by looking at how teachers use embodiment to

communicate and structure learning opportunities. The goal of the study was to hypothe-

size about what students need to interpret to learn. Taken together, the findings and case

studies expound our understanding of how teachers use embodiment to structure learning

opportunities in programming classrooms.

Although I hypothesized that students may not understand teachers’ metaphors and ges-

tures, I do not know this for certain. To confirm this hypothesis, more studies are needed

on what students attend to, teachers’ intentionality, and CER needs more taxonomies. For

example, a student learning recursion might be able to easily interpret a metaphor, such as

calls, while the same metaphor might be hard for a student who is new to learning pro-

gramming to interpret. Moreover, maybe students don’t realize that teachers are switching

perspectives. Regardless, there’s no harm in teachers being purposeful with how they use

their embodiment. It will likely only increase explanatory power. Furthermore, there is still

value in being reflective and critical about what teachers are doing in classrooms.

To conclude this chapter, I will reflect on the pedagogical and theoretical significance

of the findings. Specifically, I will argue that embodiment and metaphor are critical parts

of CS learning, and by ignoring them, we miss the opportunity to design our metaphors

106

and embodiment for ease of understanding and explanatory power. We need to correct this

mistake and embrace the design and use of metaphors in CS learning and teaching.

6.7.1 Pedagogical Function

In CS, we teach things that have no visible embodiment. Nobody looks at memory val-

ues to understand arrays, objects, or linked lists. Within this context, CS teachers have

the complex task of determining how to embody things that have no perceptual embodi-

ment. Furthermore, they need to select and sequence a range of representations to scaffold

students’ learning about “the virtual world” [115].

We opened this paper with a reference to Dijkstra’s infamous speech in which he con-

sidered it childish, “shallow,” and “paralyzing” to compare computational processes to

physical things instead of understanding them for what they are (i.e., “the radical nov-

elty”). Instead, Dijkstra argued for a replacement metaphor in which we ignore our past

understandings because they are “wholly incomplete” [9].

Dijkstra’s position was partially correct; computers do represent radical novelty. How-

ever, as Smith and colleagues argued, the replacement metaphor sought by Dijkstra—which

calls for the “simple addition” of new expert knowledge and the deletion of faulty miscon-

ceptions—oversimplifies the changes involved in learning a complex subject matter [163].

Various theories of learning tell us that learning requires engagement and reconciliation

with our past understandings and that the insights gained from this process become the

foundation for how we gain and construct new knowledge. With appropriate instruction,

students’ past understandings can serve as anchors for knowledge building.

Teachers’ embodiment is naturally occurring, unintentional, and communicates mean-

ing. Teachers cannot help but use embodiment because they are themselves embodied.

Students are likely attending to and processing these sequences of complex multimodal

representations [26, 27, 75, 152]. Using physical experiences is normal and expected, ac-

cording to Watt, because it helps people understand a program or computation by allowing

107

them to “identify with certain programs and see things from [the program’s] point of view”

[126]. For example, we found that teachers used embodiment and physicality to communi-

cate meaning about computation. They talked about computation as if programs, functions,

and processes can do things, and they stated that the programs behave as if they have goals

and agency and can even make calls and run.

CS teachers’ embodiment could serve a pedagogical function. For example, in Case

Study 1, the professor used perspective-taking and a series of gestures as if they were role-

playing looking through a phone book as a way to help students reason about how recur-

sion works. The gesture added ”richness” or additional information by acting out the logic.

Moreover, professors fluently switched between actor and code perspectives. According to

research on data science education, different self-to-object relationships support meaning-

making in different ways, including shaping the kinds of questions, interpretations, and

conclusions one makes [164, 165]. Role playing that uses perspective taking may equip

students to ask questions about the recursive process, such as what happens after the recur-

sive execution stops and how the parameters of the recursive invocation change.

Each representation offers unique ways of understanding abstractions, and the use of

multiple representations likely provides students with ways of accessing concepts. Mul-

timodal theories tell us that interpreting embodiment takes the acts of coordinating and

moving between many different representations to create understanding. Students must de-

velop the ability to interpret representations; however, they may be unable to do so because

of a confusing embodiment.

6.7.2 Challenges with Interpretation

I argue that the metaphors contribute to making teachers embodiment difficult to interpret.

Metaphors operate at so many levels. I found different kinds of metaphors, including (1)

metaphorical construals, (2) spatial metaphors used to describe both virtual process and

physical location, (3) metaphors used to describe function invocation, process, variable as-

108

signment, etc, and (4) metaphors that underlie gestures about computation. Metaphors give

teachers a language through which to talk about computation; in other words, metaphors

give physicality to abstractions. Metaphors seem to be neutral descriptions; however, re-

cent research on spoken language and translanguaging in CER has indicated that this may

not be the case [121, 122]. Metaphors may add to the difficulty of learning to program

and understanding concepts, such as recursion. In the rest of this section, I consider how

metaphors might lead to challenges with learning.

I found that teachers use complex, layered, and disassociated embodiment. The state-

ment, “a function that calls itself,” is a typical way to define recursion. However, that

seemingly simple statement is layered with embodiment. Teachers are anthropomorphiz-

ing a function by suggesting that it can call itself. Students need to be able to reconcile

with that.

I also found that metaphors are likely historically and socioculturally constructed; that

is, they have been appropriated and given precise technical meanings that are often closely

related but not identical to their everyday meanings. For example, CS is inundated with

metaphors that are constantly used in non-CS talk, such as runs, prints, and calls. Teachers

use these metaphors fluently without any definition. However, it is likely that precise verbal

definitions cannot be produced for these metaphors and a domain-specific literacy or a way

of “seeing” is required for students to be able to interpret them.

Moreover, professors use so many metaphorical construals and constructions that, as

evidenced from STEM learning literature, serve a significant purpose in teaching and un-

derstanding abstract domains, but CS teachers use them haphazardly: they switch between

perspectives and roles with no systematicity and without explicitly stating they are. Thus,

whether or not the embodiment and metaphor used in these cases can really help students

learn abstract concepts in CS needs to be investigated.

Even the gestures about computation may be difficult to interpret. Unlike institution-

alized gestures, like pointing to a person or a thumbs up, noniconic gestures referring to

109

computation are likely not as familiar. These gestures are likely communicating mean-

ing about computation and visualizing abstractions, but they also could be communicating

misconceptions or nonsense. These gestures likely have an underlying metaphor as a ref-

erent that students need to determine to use for understanding. Manches and syntonicity

dude theorized that metaphors underpin the way that individuals conceptualize computing

constructs and structure their thinking and reasoning. Our findings support this claim. For

example, in the stack example presented in the findings, the teacher might literally be think-

ing about a stack (as in a stack of plates), which could be the underlying metaphor that is

the referent.

The differences between students’ and teachers’ metaphorical understandings of com-

putation could make it difficult for teachers to communicate. As indicated above, professors

use metaphorical construals and constructions that help in teaching and understanding ab-

stract domains but use these without any intentional design. Students are embodied with

their own pre-existing knowledge. Teachers, on the other hand, operate within sociocultural

contexts where they have already learned and know these concepts and have acclimated and

consented to them. Teachers need to be more thoughtful with using metaphors and explain

as carefully as possible what they mean by a word and how it differs from its meaning in

non-CS discourse.

6.7.3 Designing Metaphors

The different kinds of metaphors mentioned in the previous section suggest design on

different levels. The first two kinds of metaphors (metaphorical construals and spatial

metaphors) suggest teachers should be intentional with how they design lesson plans and

the roles they want themselves and students to play. In the rest of this section, I consider

how to design for the latter two kinds of metaphors (metaphors about computation and that

underlie gesture).

Sfard argues that ”the choice of a metaphor is a highly consequential decision. Different

110

metaphors may lead to different ways of thinking and to different activities” [166]. Paechter

said, ”We may say, therefore, that we live by the metaphors we use” [167].

CER should further examine the metaphors or metaphorical constructions that we use to

teach CS. We can then consider what conceptions underpin our thinking about computation.

By bringing these to the surface, we can determine what works and what does not (i.e., what

causes misconceptions, misunderstandings, and difficulties; what do students understand

and why).

Bettin’s research that describes a framework for designing analogies to describe pro-

gramming concepts reminds us that designing metaphors for constructs such as recursion

is not straightforward [63]. There are multiple processes in which teachers try to motivate

understanding/belief in the learner when it comes to recursion:

1. The same function is called repeatedly.

2. Previous function invocations cannot complete until the invocations already made

have been resolved.

3. The base case provides a result that allows resolution to begin.

Likely, each of these processes requires their own understanding. There may be some more

processes we are trying to indicate in modeling recursion.

We need to make sure the relations within that metaphor can satisfy each of these pro-

cedures as their own isolated case. If we can ensure a well-formed metaphorical structure

for each process that uses a related source domain, that source domain can be more broadly

considered as a holistic representative metaphor.

111

CHAPTER 7

HOW STUDENTS USE CONCEPTUAL BLENDS, METAPHORS, AND

EMBODIMENT TO MAKE SENSE OF COMPUTATION

7.1 Introduction

In this chapter, I analyzed 10 problem-solving sessions in which students in pairs collab-

oratively solved problems on recursion. The goal was to document the ways space and

embodied representations (i.e., gesture, sketching, and metaphor) appear while students

make sense of computation and express computational ideas. Sense-making is defined as

”the process of structuring the unknown by placing stimuli into some kind of framework

that enables us to comprehend, understand, explain, attribute, extrapolate, and predict”

[168, 169].

I investigated two research questions:

1. How does embodiment appear or emerge from the pairs’ problem-solving process?

2. How do students make use of embodiment to make sense of and reason about com-

putation, in the context of problem-solving?

I critically reflect on how students learn to program, how students problem solve, and

what might support their learning. I use the construct of a conceptual blend to explain

how students do these mappings [170]. Conceptual blending is a general model for the

integration of concepts and the creative construction of meaning. It’s an in-the-moment

metaphor, perhaps the connection of an invisible computational concept to an aspect of the

physical world. It may not be a great long-term metaphor, but it advances sense-making

by enabling the student programming to draw upon their knowledge of metaphors and the

physical world to gain insight on a computational problem.

112

This finding is in contrast to prior CEd research that argued metaphors and analogies

only served pedagogical purposes and were not ”valuable” for CS learning [10]. How-

ever, that research does not contend with learning to program as a messy process. I found

that students are trying to navigate these spaces and use whatever tools or resources - like

metaphors - are available to them to make sense.

The next section is an overview of the conceptual blending theoretical framework and

how it is used in the study. Then, I describe the methods used to collect and analyze the data

and present the results of the study. I describe each problem and give a general overview

of how the student pair solved the problem, including the types of metaphors used and

sketches they invented. Afterwards, I present episodes from detailed analyses.

I conclude by discussing the implications for teaching and CEd research. Specifically,

I make the case that while it is true that designing a forever-representation may help stu-

dents understand a concept, they may be more helped by finding a cognitive toe-hold on

understanding the problem in the moment.

7.2 Conceptual Blending

Because of the larger role that metaphor played in the students’ explanations, I chose con-

ceptual blending, a slightly more elaborated theory of metaphor, that would help us ana-

lyze the multiple metaphors and the embodiment students used. Conceptual blending is

a general model for the integration of concepts and the creative construction of meaning.

Conceptual blending is useful for us to describe students’ cognitive processing because it

provides a language and diagramming style to describe students’ emergent meaning in the

problem-solving process. Students blended resources like the code with their past experi-

ences that result in a metaphor or analogy that they used to reason or ”think with.” Students

also complexly layered and blended multiple metaphors to make predictions or explana-

tions. These metaphors reference different constructs like process, execution, variables

changing, or the stack.

113

Fauconnier and Lakoff contended that conceptual blending and metaphor theories can

and should be seen as extensions of one another or complimentary [171]. Lakoff and

Johnson’s metaphor theory proposes that metaphors arise when one domain, or target, is

cognitively structured in terms another domain, or source [67]. The mapping allows aspects

of the source domain to be transferred to the target domain.

Fauconnier and Turner presented conceptual blending as a refinement of Lakoff and

Johnson’s two-domain model. One key difference is that the conceptual metaphor theory

mainly deals with “entrenched metaphors,” where structuring one domain using another is

stable and long term (e.g., war is the domain to understand love in the metaphor love is

a battlefield). Conceptual blending focuses on local mappings between constructs. These

mappings might not extend to entire domains and might be relatively short-lived. Since we

cannot assume the metaphors students create in my corpus are entrenched and as they are

not likely to be a part of the everyday lexicon, the conceptual blending framework allows

greater flexibility in modeling what students are doing.

They proposed that people think in “mental spaces,” which are used instead of source

and target domains. Mental spaces, or source domains, are concepts that we use in our

conversations at a specific moment. We pull in, or integrate, different mental spaces that

provide us information to think about and talk about the subject. These mental spaces will

often overlap, creating combinations of these spaces, thus creating blended spaces.

Conceptual blending has been used to explain how students layer multiple levels of

analogies to learn abstract ideas [172] and model different ways that students reason about

the propagation of wave pulses [173].

Enyedy and colleagues used conceptual blending to examine how a student maps her

own experience onto a ball to simulate the physics of force and friction [174]. More re-

cently, in CEd, Silvis et al. used conceptual blending to analyze kindergarten students

learning to program robots and examined ”how they navigated programming’s represen-

tational infrastructure” [175]. They found that children drew on embodied experiences of

114

how objects move to program robot routes. They conclude that construing code should be

viewed as a conceptual blending.

When we talk about conceptual blending, we are referring to the blending of multiple,

disparate spaces or concepts into a brand-new concept or idea. A blended mental space

arises from mappings between entities in the two spaces, and the blended space can (and

often does) include entities and relationships from one or both spaces. The blended space,

which is a hybrid of the mental spaces, has new, emergent meaning not found in any single

mental space.

An example of a conceptual blend that we will discuss later is when students making

sense of a recursive function realized that it computed an exponent. That observation did

not permanently change their definition of exponent. Not all recursive functions compute

an exponent. But in that moment, when the students realized that this specific function

computed the integer two raised to some power, they made forward progress in their sense-

making. They understood something useful in that moment for that function. Maybe the

students could forever after think about exponentiation as a recursive process – it doesn’t

really matter. It’s a useful conceptual blend that connects a known process (mathematical

exponentiation) to a computational domain (this particular recursive function) to support

sense-making.

For my purposes, conceptual blending is a useful theoretical framework for a few rea-

sons. First, it provides a useful language and diagramming style to present our findings:

specifically, an explanatory mechanism for how people can bring together (or blend) seem-

ingly disparate spaces to describe how students make sense and gain new insights. Figure

Figure 7.1 is a typical diagram, where there are two inputs, or mental spaces, and a third

blended space.

Second, because conceptual blending is often considered a “refinement” of the metaphor

theory that considers how multiple spaces blend, it allows us to understand what resources

are readily available and how they will likely be used to help students make sense of a con-

115

Figure 7.1: Diagram of a Generic Conceptual Blend. There are two input spaces that are “blended”
into the third, blended space.

cept. It enables us to understand how multiple resources, embodiment, and metaphors are

layered. As Sorva stated, when dealing with computation, one’s confusion is about the in-

visible. Embodiments and metaphors allow one to reify the notional machine [64]. Concep-

tual blending is then a tool that explains how the embodiment, metaphor, and computation

interweave to help students develop understanding and efficacy in solving computational

problems. One can see not only the blend but also how it is coordinated.

Third, conceptual blending focuses on the moment-to-moment understandings. Blends

are considered generative and creative and yield new ways to think about a source domain.

Blends are adaptive, and not just memorized set responses. Surprisingly, only one paper in

CER has used conceptual blending as a theoretical framework.

7.3 Methods

In this study, I video recorded student dyads as they collaboratively solve recursive prob-

lems. This study is largely qualitative, because I was interested in documenting how em-

bodiment and space supports students problem solving. I present the findings in the style

of detailed episodes; this work is meant to be descriptive and interpretive.

Dyadic research has been used extensively in education scholarship to understand how

students co-construct knowledge and work collaboratively; a similar style of study in CER

116

are studies on pair programming [17, 176]. CSEd researchers typically use structured inter-

views to study the different problem-solving and tracing strategies students use. The crucial

difference between individual and dyadic interviews consists of the interaction between

participants in dyadic interviews, allowing participants to “co-construct” their version of

the topic. Learning is a social process and, thus, should be analyzed as such.

Specifically, I chose to conduct a dyad study because I am working under the assump-

tion that students were more likely to create explanations to each other than with a student-

researcher pairing. Explanations are likely to be a rich source of embodied data – gestures,

sketches, and language. For example, gestures are communicative, and, therefore, students

are more likely to gesture if they are trying to communicate ideas to someone else.

Furthermore, because of the COVID-19 pandemic, data was collected remotely. How-

ever, I do not consider the effects of virtual learning. I also do not analyze this data for

collaboration, nor did I not setup the study to facilitate collaboration. I only set up the

study to facilitate communication.

7.3.1 Participant Recruitment and Compensation

I recruited participants from two undergraduate programming courses, CS 1331 and CS

1332, offered at Georgia Tech via email sent by the course instructor.

The following is the body of the email:

You are invited to participate in a research project studying how people learn

to program. You will be paired with another student of your choosing (both

students must currently be enrolled in CS 1332/CS 1331) while you both col-

laboratively solve some programming problems. If you choose to participate,

you will, individually, receive a 25 Amazon gift card. The interview should last

no longer than 75-minutes, and it will be video-recorded. The interviews will

take place on campus and scheduled at your convenience. If you are interested,

please fill out the following form, and a researcher will be in contact.

117

Please note, we only need 10 students (or 5 pairs).

(link to demographic survey and the pre-knowledge test)

Participating in the study will have no bearing on your standing in the class,

and your instructor will not know who participated.

Participants were compensated with a 25 Amazon gift card.

7.3.2 The Course

The courses CS 1331 and CS 1332 were chosen because I wanted to see if students’ use

of embodied representations might differ based on how much recursion they were taught.

I was originally interested in comparing the use of representations between students that

were and were not formally introduced to recursion. The purpose was to make claims

about how representations transform as one gains knowledge, to see if teachers influence

students’ use of representations, and hypothesize about the kinds of thinking and reasoning

students use at different levels of understanding. We might expect students who did not

know much about recursion to create their own representations, while students who know

recursion likely used the same representations as teachers. However, I did not find any

evidence that representation use differed.

CS 1331 Intro to Object Oriented Programming: CS 1331 is for CS majors and

non-majors, and is the second required course for CS majors. The Georgia Tech catalog

description of the course describes the course as: “Introduction to techniques and methods

of object-oriented programming such [as] encapsulation, inheritance, and polymorphism.

Emphasis on software development and individual programming skills.” The course uses

a typical lab-centric structure with one hour of lecture three times a week and two hours

of lab or recitation once a week. In this course, recursion was taught towards the end of

the semester. The instructor over this course argued that it is expected that students are

introduced to recursion in this course, and will learn it in the next course. This course is

taught using the Java programming language.

118

CS 1332 Data Structures and Algorithms: CS 1332 is the third course for CS ma-

jors and minors to take. The Georgia Tech catalog description of the course describes

the course as: “Computer data structures and algorithms in the context of object-oriented

programming. Focus on software development towards applications.” The course uses a

typical lab-centric structure with one hour of lecture three times a week and two hours of

lab or recitation once a week. In this course, recursion was taught towards the end of the

semester. In this course, recursion was reviewed within the first week of class. I should

note that the instructor of this course believes that students should know recursion before

entering this course and expected them to learn recursion in 1331. This course is taught

using the Java programming language.

7.3.3 Participants

As previously stated, participants were students who were currently enrolled in either CS

1331 or CS 1332.

There were a total of 10 dyads (20 students): five dyads of students in CS 1331 and five

dyads of students in CS 1332. Students self-selected which partner they wanted to work

with. Therefore, all pairs had previously interacted with their partner prior to the study. I

required that participants knew each other because I was working under an assumption that

pairs that knew each other would be more likely to be more adventurous, talk, etc. This

restriction did limit the number of students I could choose from. For example, most racially

minoritized and gendered participants that volunteered for the study said they didn’t know

anyone else to work with in the course. Therefore, I could not include them in the study.

The students that volunteered are likely to be some of the “better” performing students.

Moreover, these are students who have consented to learning programming, including the

practices. Because of the school they are at, these are also students who likely come from

upper-middle class upbringings and who are “good” at school. They likely had high GPAs

in high school and high SAT scores.

119

7.3.4 Data Collection

I emailed interested students a knowledge assessment that included demographic questions

about their formal and informal programming experience, the high school and college com-

puting courses they have taken, and their motivation to pursue CS. Demographic questions

were at the end of the assessment. There were three multiple choice questions about recur-

sion taken from SCS1, a validated assessment of computer science performance. Because

there was a wide variety of experience, I wanted to assess their skill and competency,

knowledge to have a sense of what they’re willing to do and can do. Furthermore, Parker

et al. used item response theory on the SCS1 and have data about past use, so we know if

students’ performance on the three questions were above or below the average [177].

Sessions lasted between 60 to 90 minutes. Because of the pandemic, sessions were

conducted remotely. Each session was conducted using Bluejeans (video communication

software) and InVision (an online collaborative whiteboard). BlueJeans allowed students

to see each other while solving the problems. During sessions, students were to work with

their video cameras and microphones turned on. I turned both of mine off so as not to

disturb the students. InVision is an online collaborative whiteboard that allows someone to

track and see what someone else is doing in real time. InVision allows someone to draw

and type, and tracks ones mouse movements. Therefore, if another student is using their

mouse, their partner can see where that student is pointing to. I used this functionality as a

proxy for pointing gesture.

I had one computer that was used to screen record the InVision application to capture

students while they sketched and to see what they were referring to or pointing to. I used

Bluejeans audio recording functionality to capture the video call. Students worked from

their own setups.

120

7.3.5 Dyad Protocol

During the interview, participants talked aloud while collaboratively solving a series of

recursion problems. I modeled my protocol after the works of Colleen Lewis [178], who

used a grounded approach to study students learning recursion, and Michelene Chi [179]

and Jeremey Roschelle [17], who used dyads to understand collaborative learning.

First, I explained the study and answered any questions the participants had. I explained

to the participants that I was interested in understanding how they thought about the prob-

lem and their process, and wanted them to talk to each other as they solved the problems. I

stressed that I was not concerned about the final solution and that getting an answer wrong

was not a reflection of them. I also told them this study was not related to their course,

would not impact their grades, and the teachers would not know who signed up for the

study.

Since most of the dyads had never used InVision, they were given some time to use the

software. I had them work on a fun, straightforward exercise that was similar to Picktionary,

that gave them the opportunity to get used to drawing and typing in the software.

During the collaborative session, I asked students to help and encourage each other

to solve the problems. Participants were presented with an InVision board with all the

problems. They were directed when to move on to the next problem. They were asked

to read the directions out loud first, and then proceed to solve the problem. The only

restriction I gave the students was that they could not use a compiler.

When solving problems, there was one time that I had to prompt students to talk. They

remained silent for an extended period of time, I prompted them to continue talking by

saying “talk to each about what you’re thinking?” are you thinking?” Although most pairs

didn’t ask me any clarifying questions, some pairs did ask if they were allowed to do

something, for example if they could write their own code or if they could change the code

however they felt like. My response each time was to do whatever they felt was appropriate.

After a student solved a problem, I asked follow-up questions to attempt to understand

121

their reasoning better. For example, occasionally I repeated back a statement the participant

had said while solving the problem and asked what was meant by that statement. Similarly,

I occasionally identified an element of a representation created by the participant and asked

what that element meant or represented or asked them to explain their drawings. I also

asked students to explain their solutions or to trace the problem and their solutions. The

students were told after each problem whether their answer was correct or incorrect.

Originally, I had planned to not tell them whether the answer to a question was correct

or incorrect and was permitted to move onto the next problem regardless of whether he or

she had answered the question correctly. But, during my first set of participants, I quickly

realized that some students in CS need validation otherwise their morale goes down very

quickly. One participant kept mentioning how “stupid” or “dumb” they felt and didn’t feel

like they could solve any problems correctly, so I started telling students whether or not they

got the correct answer just to keep morale alive. I also said other encouraging things during

the session like, “you’re doing great”, and other compliments, which seemed to matter for

a lot of students and seemed to perk them up while going through all the problems.

7.3.6 Interview Questions

There were three questions (described in more detail in a later section). The first question

was a tracing question, the second question asked students to modify a program, and the

last question was a Parson’s Problem or a code writing question. I asked both writing and

tracing problems because it’s unknown how or if students used embodied representations.

The questions were written in Java, the same programming language in both courses.

I created these questions with the help of the CS 1331 and 1332 instructors and teaching

assistants. The teaching assistants are undergraduates, but they help put together all coding

tests and assignments. I worked with them so to ensure that students would have relevant

knowledge to solve the problems, to make sure the instructions to the problems were pre-

sented in the language students were familiar with, and to ensure that the problems were

122

non-trivial to the students in CS 1332, but approachable by the students in CS 1331.

Interview Questions

1. What made you interested in taking this class?

2. Have you taken any other classes, gone to any workshops, or camps that focus on

programming or working on your computer at school or other places? How was this

class similar or different than those?

3. Let’s talk about recursion.

• How do you define recursion?

• Why use recursion?

• Do you like recursion?

• When would you use recursion?

• What sort of resources did you use to learn recursion?

• Where did you learn recursion?

7.4 Data Analysis

7.4.1 Case Selection

I had two streams of video for each dyad: videos for gestures and videos for sketches. I

audio transcribed each video. In total, there were 622-minutes of codable data.

I began the analysis by watching the recordings (both the gesture and sketching videos)

of each pair while they solved the first problem. I was looking for embodiment, and I used

the framework I developed from the professor study as the starting point. I made notes

for each pair, including some interesting gestures and utterances, as well as described their

sketches and whether they sketched.

123

Next, I turned that information into an Excel spreadsheet. I wrote categories in the top

row of the sheet based on the quotes and high-level points, with the first column comprising

each of the pairs. I went through the data and noted whether a pair performed any of the

categories. This allowed me to discern any emerging patterns of interest. After some

discussion, I went back and did the same exercise for the rest of the problems. I then

organized the Excel spreadsheet according to the pairs that got the question right or wrong.

This activity highlighted three specific episodes from three dyads and highlighted emerging

patterns and behaviors. There was one episode per problem.

Each episode is described in the case studies in later sections. Each episode represents

behavior that was out of the norm. The first episode described was the only pair that got

that problem wrong. The second episode described included students that used metaphors

in intriguing ways compared to the rest of the pairs. The third episode described included a

pair who did not follow the typical behaviors of the other pairs that got the problem correct.

For each of the three dyads, I first analyzed the rest of their videos to see if there were

commonalities in the ways they solved all the problems. I then described what students

needed to know to solve the problem and what was the reason for including that problem.

For two of the three problems, I then analyzed four pairs (two who got the problem wrong

and two who got the problem right). For the other problem, I selected two pairs who got

the problem correct (for this problem only one pair got it wrong). I created multimodal

transcripts for each pair. I did this to develop hypotheses to understand the three episodes

of interest. It was clear that pairs that got the problem correct displayed similar patterns.

Likewise, pairs that got the problem wrong displayed similar patterns.

I then proceeded to code all the video data.

7.4.2 Coding Gestures

I used the methods specified by Trafton et al. [157] and Stieff and Raje [159] to analyze

students’ gesture production. Using Trafton et al.’s framework, we identified four kinds of

124

gestures: (1) beat, (2) deictic, (3) iconic, and (4) non-iconic.

Beat gestures were “typically brief, motorically simple gestures” [158], including ges-

tures that go along with rhythmic language, communicative gestures (e.g., thumbs up), and

personal gestures (e.g., touching one’s nose). Gestures were denoted as deictic if “there was

a directed, explicit pointing action, usually involving a finger or forearm, and a purposeful

direction toward a display or item in the environment,” including pointing to a specific loca-

tion, thing, or line of code, and typically followed by a demonstrative (this or that). Iconic

gestures were any gestures that “acted out” a sequence; specifically, these were gestures

“that had a strong relationship to the semantics of the utterance, or ‘acted out’ what was

said.” Lastly, non-iconic gestures included gestures that could not be placed into any of the

other categories, “were a mix of metaphoric gestures and non-codable gestures (they were

not iconics, beats or deictic gestures)” [157]. Some scholars have argued for just collapsing

iconic and metaphoric gestures into one category, but we decided to keep them separate.

Some of these gestures seemed to “act out” processes or constructs. Knowing a teacher’s

intentionality, such as asking them what they thought a gesture meant and understanding

their underlying metaphors and mental models of constructs and syntax, could help parse

it out.

I used a two-step gesture coding scheme. I first reviewed the video recordings with

the sound off and tagged every occurrence of a gesture. Following this, we reviewed the

recordings a second time with the sound turned on and the concurrent transcripts. During

the second viewing, I classified each gesture using the taxonomy previously described.

7.4.3 Metaphor

I used grounded theory to code the transcripts of three videos. I began analysis by open

coding, in which I looked for any noteworthy patterns in the data. During this first pass, I

coded concepts that were “interesting,” particularly words or phrases that we felt “seemed

spatial” (e.g., calls, returns, etc.) or any language that seemed anthropomorphic or could

125

be used to personify.

To determine whether or not the words were metaphors, I used a coding scheme fol-

lowed by Jeppson et al. and the Pragglejaz Group which provides explicit criteria for

categorizing a word as metaphorical [82, 160]. This method has a checklist to determine

whether a lexical unit (word or phrase) is a metaphor.

I then performed axial coding on those metaphors. At this stage, I realized that many

metaphors were complex and made up of multiple other metaphors. From here, I used

conceptual blending as a theoretical framework to explain how the multiple metaphors

were combined and layered.

7.4.4 Parsons problems

Parsons problems are typically done with machine learning, similar to path analysis type

concerns. As I am focused on sense-making, I wanted to understand students’ goals, such

as what they were trying to do or what they were trying to make sense of. I began by coding

each move five dyads made. For example, I coded when they dragged over each piece and

which piece. I then went through and coded where each piece was being dragged into (i.e.,

inside of an if-statement, outside of an if-statement, etc.). I then performed axial coding

to establish what the students were trying to accomplish with each move (e.g. if they were

trying to write the base case).

7.4.5 Sketches

When analyzing sketches, I was interested in the process and what students chose to repre-

sent, to make inferences about how sketches supported learning. I used these two coding

methods. I first coded each time a student drew something and what they drew. I then did

axial coding to understand what students were trying to “think with.” For the second coding

method, I also used an existing taxonomy to categorize each sketch as a way to focus on

what information they were conveying [21, 145].

126

7.4.6 Segmentation

To make claims about what purpose embodiment might serve or the goal behind its use, I

conducted a discourse analysis, specifically, a move analysis. I used a discourse analysis

methodology to unpack the intent of the students’ embodiment. I considered a move to be

a distinct shift in focus or a change in topic or purpose.

This adjustment segmented students’ conversation into chunks that delimit units of

speech produced according to what that speech is doing in the interaction.

Categories of students’ moves were developed and refined by two researchers using an

iterative process that involved an analysis of the nature and intent of a students’ statement.

Each move was assigned to an existing code or to a new code as necessary. Where there was

disagreement or ambiguity, the researchers discussed this and decided whether the move

warranted a new category or pointed to a need for clarification or expansion of meaning

within an existing category. The coding categories were refined to the point where all

utterances would fit within the coding system.

Table 7.1: Moves and Descriptions

127

7.4.7 Tradeoffs and Limitations

Students Attending to Embodiment

I was interested in understanding if students attended to their professors embodiment, to

begin hypothesizing about textitwhere or the source of some types of embodiment. Past

research on sketching has argued that students reject teachers’ sketching styles, instead

choosing to follow the styles of the teaching assistant. Anecdotally, one professor men-

tioned to me that they didn’t believe students paid attention to her gestures because stu-

dents had too much to pay attention to in classrooms. However, some of the metaphors and

gestures we describe students using are similar to the ones reported in previous chapters

on teachers. We need more research on what students attend to in CS classrooms. Before

the pandemic, I was observing both the classrooms and recitations to see how the professor

and teaching assistants, respectively, taught recursion. However, because of the pandemic,

I was no longer able to observe the recitations and classrooms and had to wait a semester

to collect data. Therefore, the observation data I did collect was not used in this study. This

study was also done completely virtual.

Participants

I had three sets of all-female dyads, three sets of all-male dyads, and two sets of fe-

male–male dyads. As previously stated, the dyads were self-chosen. While this created

a dynamic that was great for interaction, some obvious toxic masculinity instances arose

where the female participants would say something and quickly be dismissed by male par-

ticipants, or the female participants would consistently ask their male partner if taking a

certain action was okay.

128

Gesture

Because data collection was remote, I was not able to get much nuance about gesture.

However, I was able to get the “bigger” gestures, or the salient gestures one makes when

they’re trying to communicate information. Furthermore, I tried to answer more robust

questions about gesture and sketching, such as why would a student choose a gesture over

a sketch.

Technology

I used the BlueJeans and inVision applications. Both applications allowed me to see the

participant and gave them space to work in collaboration remotely. In BlueJeans, you can

choose between three modes, and I chose the mode where the speaker takes up the screen,

while the other participants are smaller in the corner. I did this so that I could get a bigger

picture of the gesture and could get the student in the frame. The other modes cut off a part

of the other persons on screen. The selected mode focuses on the student who is talking,

so it is not clear what the other student is doing. However, in the other modes, the image

cuts off parts of their bodies. Moreover, inVision allowed space for students to collaborate

in real-time. Students could see where the other students’ mouse was, but only if they were

using a mouse. Some students used a tablet, so the other students could not see where they

were pointing.

This made it difficult to analyze pointing gestures since there were some instances

where I could not accurately count how often they pointed. Moreover, it did not capture

the nuance of big gestures, but the things most salient and what was most viewable came to

the top. It must be noted that when you are conscious of it, you make your gesture bigger.

129

7.5 Findings

In this section, I present the results of my analysis. First, I describe the three interview

problems and give an overview of how pairs solved the problems, including what concep-

tual blends they created, metaphors used, and sketches.

Then, I describe what types of gestures and metaphors appeared consistently throughout

all problem-solving sessions.

To contextualize these findings, I conclude by presenting three detailed analysis of one

pair solving each problem.

See appendix for code trace for each problem.

7.5.1 Overview of the Problems

Problem 1 - A Tracing Question

Directions: The call mystery(5) returns what value? Write your answer anywhere.

The first question, after the warm-up question, asked students to calculate the value

of mystery(5). The invocation to mystery(5) generates an invocation to mystery(4) and

multiplies the result of that by 2. This process is repeated and the value of the variable n is

repeatedly multiplied by 2. In layman’s terms, n is an exponent and this function calculates

2 to the whatever inputted power, n. The correct answer from this set of calculations is 32.

This question was designed to be easy to solve. It was modeled after the recursive

example of calculating the factorial of some value n.

Students need to know the following about recursion to solve this problem:

1. Single variable changing (state change)

2. When the recursive process terminates

3. What order recursive invocations execute

130

Figure 7.2: Problem 1

Pairs Problem Solving. Only one dyad got the first problem wrong. I analyze that

dyad in detail in Case Study 1.

All pairs started by tracing the problem. Most pairs realized the function was simply

calculating two to the power of whatever value was passed in. Only one pair did not realize

that the solution was two to the power of five. They traced the entire solution and got the

correct answer, nevertheless.

Every pair drew a sketch. See Appendix for a list of all dyad’s sketches for each prob-

lem. Two groups created sketches that kept track of how many times the recursive invoca-

tion was executed. Since this problem was two raised to the power of five (2 x 2 x 2 x 2

x 2), technically only tracking the number of times the invocation executes would have led

131

to the right answer. These two pairs also did not realize the answer was two raised to the

power of five until after they sketched their traced the code.

The other pairs sketched what would be “in” the stack. That is, they sketched the

recursive invocation as an equation, and then went back and filled in the answers to the

invocation. Interestingly, the pairs represented the value returned from an execution differ-

ently. Some pairs simply used an equal sign with the value next to it. Another pair drew

a box and placed the value inside it to represent the execution on pause. I also noted that

some pairs used arrows between each invocation. This seemed like a metaphor to hide

the highly complex processes happening as well as the processes that were not necessarily

important to think about for this answer.

Problem 2 - Modify the Program

Directions: As is, the code produces the following output with the call mystery(2010):

2010 201 20 2

Change the code to get the following output with the call mystery(2010): 2010 201 20

2 20 201 2010

Your solution must be recursive. Write your response anywhere. You don’t have to

rewrite the code.

This question asked students to change the code to get the new, desired output. As is,

the invocation to mystery(2010) checks whether the inputted value n is less than 10. Since

it is not, the value n, or 2010, is printed and the computer invokes mystery(201). This

process continues until the inputted value is less than 10, at which point the variable n is

printed one last time, and the recursive execution terminates.

The solution to this problem is to add a “System.out.println(n)” statement after the

recursive statement.

To solve this problem, students need to know about non-tail end recursion. Specifically,

students need to know that lines of code after the recursive statement are “held” or “paused”

132

Figure 7.3: Problem 2

until the recursive invocation executes and terminates:

1. Execute outstanding operations (operations after the recursive execution terminates)

2. Stack stores operations

If students do not have that understanding, this problem could be difficult. The code

does not make evident that processes can happen after the recursive statements.

Pairs Problem Solving. Three dyads got this problem wrong. The dyads that did get

this problem correct, did so fairly quickly.

Interestingly all the groups that got the answer correct mentioned needing to “get back”

133

Figure 7.4: The solution to problem 2 is adding the line in the square.

specific values (or get back something). “Get back” was a metaphor that referenced two

important aspects of the stack: (1) the stack stores values and (2) the stack executes state-

ments after the recursive call. When asked how they came up with the solution, they all

said they had a similar example and referenced the stack.

Many of the groups started by tracing the code. Two pairs started by looking for patterns

in the output and code to see if they had an analogous problem. Both groups then decided

to trace the code and eventually solved the problem correctly.

Two pairs sketched a code trace to check that their solution was correct. They drew

sketches that were primarily just the output.

The three groups that got the answer wrong used a metaphor that they need to “reach”

or “keep” some value. In two of the pairs, one student mentioned they needed to “get

134

back” values, and described solutions where they put something after the “else” statement.

However, the other student in the pair in both dyads quickly dismissed the idea. All their

solutions concerned with “storing” values, which involved adding a data structure to “store”

or “keep” values and a statement to multiply the inputted value to “get” the value. They did

not know or realize that a recursive process typically “stores” values in a stack.

Problem 3 - Parson’s Problem (Writing Question)

Figure 7.5: Problem 3

This was a Parson’s Problem, which is, “a type of code completion practice problem in

which the learner must place blocks of mixed up program code in the correct order” (Solv-

ing Parsons Problems Versus Fixing and Writing Code). Parson’s Problems are considered

proxies for writing code problems, but they are generally considered easier to solve.

The invocation to mystery(5, 1) first prints an “*” then generates an invocation to mys-

tery(5, 4). A “*” is repeatedly printed on the same line, until an invocation to mystery(5,

6). A “” is printed on the same line, a new line is created, and then the computer invokes

135

Figure 7.6: The solution to Problem 3.

mystery(4,1). This process is repeated until the invocation mystery(1,1).

Students must understand the following to solve this problem:

1. Multiple,concurrent recursive processes

2. Multiple variables changing (state change)

3. When to print

4. When the recursive process terminates

5. What order recursive invocations execute

Pairs Problem Solving. Six pairs got this problem wrong. Two pairs created a sketch

to trace their code to check if their solution was correct. sketches.

136

All the students started by figuring out the base or terminating case. Most pairs sug-

gested they figured out the base case by looking for the “easiest” statement or the one with

a value. Interestingly, all pairs initially assumed that the variable “n” was the number of

stars and the variable “i” was the number of “s.” However, in reality, those variables stood

as a counter to keep track of the number of recursive invocations. Students who were un-

able to solve the problem never made the shift from that understanding of the variables

representing the “s” and “*s”. Instead, they continuously tried to fix the code under their

current understanding. Two pairs created an “else–if” statement and another pair gave up

altogether and just started to write their own code. I argue that this problem is likely an

example of issues with writing Parsons Problems. This problem is an example of what hap-

pens when the metaphor or analogy underlying a program is misaligned with the metaphor

or analogy students would choose to write a program. Many dyads said this problem was

difficult for them because it was “like reading someone else’s code.”

I found students used metaphors to talk about the structure of the code (e.g., “closing” or

“wrapped” as if it is some encased object). Some dyads even suggested that their programs

should “do things inside” a conditional. This metaphor could refer to structurally placing

code in the body of a condition or to execute lines of code in the body of a conditional.

7.5.2 Gestures

Beat Gestures

In total, 72.9% of the gestures coded were beat gestures, like a nervous tick. Students

touched their hair and face, flicked their hands, etc. They stood completely still while

trying to understand what the code was doing or whenever they were confused, evidenced

by the confused faces they made.

137

Deictic (Pointing) Gestures

In total, 3.5% of the gestures coded were deictic gestures. Students used their index fingers

or mouse to point to lines of code. They either pointed to lines of code so that the other

student would know what they were referring to or trace a function execution. It is likely

that number is not representative of how often students used deictic gesture. For example,

I could see a student using deictic gesture through the reflection of his eyeglasses, but the

gestures were not captured in the recording.

Noniconic Gestures

In total, 22.4% of the gestures coded were noniconic gestures. These types of gestures were

made when students made an explanation. These gestures were coded as noniconic because

it wasn’t clear if they were gesturing the metaphor they used to conceptualize computation

or nonsense.

In the next two sections, I describe two types of noniconic gestures that multiple stu-

dents used.

Stacking Gesture. Students gestured when they (1) defined a stack or (2) explained

how a stack operates.

With the first gesture (defined a stack), students would take one hand, palm facing down

and move that hand up while stopping in mid-air points. This could be a representation of

the stack itself. Pausing on different spots in the air could be the execution frames or

different chunks of data in the stack.

With the second, described in Case Study 1, students motioned “popping” elements out

of the stack and “pushing” elements into the stack. Recall from the chapter on recursion

that stacks have two main functionalities: (1) Pop, that removes an element in the stack,

and (2) Push, that adds an element into the stack.

Students would take one hand and motion as if tapping something. This gesture still

could emulate the execution frames, but also seems to show elements getting “pushed” or

138

added into a stack. Moreover, students made a ”popping” out gesture when referring to

taking things out of a stack. The students would flick their hand back and forth.

Recursive Gesture. At the beginning of each session, I asked students to independently

define recursion. Students made different gestures about recursion based on what aspect of

recursion they explained. Recall that recursion has multiple aspects that students need to

know: (1) base case, (2) repeating, (3) when it terminates, etc. Some students tried their

best to define recursion by including all of those processes.

Most students referred to recursion as repeating itself. Similar to the professors de-

scribed in previous chapters, those students used an oscillating, circular gesture.

Figure 7.7 is a depiction of Lee explaining recursion to me. When Lee says the line, “I

guess whenever a block of code repeats itself”, she makes the oscillating, circular gesture.

She then pinches her hands together while dragging them out into a line, while saying,

“but it calls it,” and then uses both hands to create an enclosed space while saying, “as

like a separate thing,” presumably a separate invocation. Her hand flattens as she moves it

from left to right, stopping at random points in space, while saying, “it passes it through

again” a literal embodiment of “passing” something through something. Interestingly, the

gesture seemed to communicate Lee’s understanding. She seemed to rely on the gestures

to communicate when she couldn’t figure out the words to use.

Figure 7.7: Lee uses noniconic gesture to describe recursion. Talk marked with an asterisk (*)
co-occurred with the gestures shown in the image.

139

Metaphors

In this section, I describe the kinds of metaphors students used fluidly throughout the entire

session.

Metaphors as An Agent. Students used different pronouns to metaphorically construct

”the computer” (see Table 7.2).

Students would frequently switch between the pronouns, and there did not appear to be

any systematicity to it or conscious choices.

In a previous chapter, we described teachers doing this as perspective-taking and role-

playing and the pedagogical affordances.

Table 7.2: Different kinds of metaphorical construals.

Metaphors to Describe the Base Case and Recursive Process. Similar to Lewis

[178], we found two types of metaphors students used to describe the state that satisfies the

base case. They describe them as Base-Case-State-is-a-Destination and Base-Case-State-

is-a-Goal. In both instances, students use “physical language” to describe the state that

satisfies the base case. Students use spatial metaphors that also give a sense of direction-

ality. However, Base-Case-State-is-a-Destination describes the state that satisfies the base

140

case as if it were a physical location or destination. Base-Case-State-is-a-Goal describes

the state that satisfies the base case as a goal. Students use language which suggests that

there is intentionality.

We found that students would frequently switch between the two, and there didn’t seem

to be any systematicity or purposefulness when deciding which to use. They might be

unsure of which metaphors are useful in structuring their experience [17].

Moreover, students used the same language to describe a recursive process, including

state changes, keeping track of position, connecting to this metaphor of striving. The dis-

tinction I make is the metaphors to describe the base case is about describing the goal, and

the metaphors to describe recursion is about describing the journey (see Table ???).

Metaphor to Describe a Variable Changing. While tracing an invocation, many

dyads used the metaphor “become” when talking about a variable changing, which sug-

gests transformation.

7.6 Case Studies

7.6.1 Case Study 1

This episode emphasizes the following points:

1. students use embodiment and metaphor to construe abstractions using physical no-

tions

2. Using a blend incorrectly

In this 5-minute episode, Aru and Marilyn solve the first problem. Aru is a second-year

industrial engineering major, and Marilyn is a second-year computer science major. Both

students are in CS 1332.

This episode was chosen for two reasons. First, it is a good example of, generally,

dyads’ progression through solving the first problem. Second, analyzing this dyad allows

investigations into how an exponentiation blend was constructed. Third, they were the only

141

pair that got the first problem wrong. Therefore, we can also examine how a blend might

be productive or ”correct,” but still lead to the wrong answer. Analyzing this pair allows

the opportunity to understand the mistakes students might make when relying too heavily

on a metaphor or conceptual blend, without really focusing on understanding the code.

Although the pair got this first problem wrong, they demonstrated a good understanding

of recursion throughout the session. The pair correctly solved the other two problems,

had organized problem-solving strategies, and offered thoughtful explanations for their

solutions.

Both students worked on the problems using tablets with styluses and used a separate

computer for the video call. Therefore, it was easy for them to create intelligible sketches,

but I could not tell if they were pointing to something, what they were pointing at. Aru

and Marilyn had their computers in front of them, making their heads through their torsos

visible.

After Marilyn reads aloud the instructions to the first problem, Aru and Marilyn sat in

silence for 10-seconds. It’s unclear what they were doing during this time. They could have

traced, looked for patterns, etc.

Aru looks up from her tablet to her computer screen with a slight smile on her face

and waits for Marilyn to look at her computer screen. Aru is looking for some signal or

embodiment to engage.

Aru constructs a blend to predict when the recursive execution ends: ”And so I guess it

will keep going into the else clause until it gets to N equals zero.” The blend contains the

following elements:

1. ”it” is the subject, a metaphorical construal of a computer with agency, or the pro-

gram, or the programmer’s intent reified as the program?

2. ”keep going into” is a spatial metaphor that describes directionality, or where the

process is going virtually,

142

3. ”until it gets to N equals zero” is a metaphor Lewis refers to as ”Base-Case-State-is-

a-Destination,” where participants describe the state that satisfies the base case as a

destination or a location. This metaphor is also a blend containing the elements of a

construal of the computer, temporal metaphor, and the code.

4. and the code (else-statement)

Aru’s statement blends to create an elaborated metaphor of the computer’s recursive

process as if it is something one has to steer it to stop. This extended metaphor provides a

sense that a computer is moving the process forward.

Figure 7.8: Aru’s blend to predict when the recursive process ends. Note, the parts in blue is the
base case blend.

Marilyn continues Aru’s point ”Yeah. So, it would be two times mystery zero, and then

just keep multiplying by two.”

Aru: All right. Marylyn, do you want to read them? Marylyn: Yeah. ”The call

mystery five returns what value? Write your answer anywhere.” Aru: Cool.

143

(silence). And so I guess it will keep going into the else clause until it gets to

N equals zero. Marylyn: Yeah. So it would be two times mystery zero, and

then just keep multiplying by two. Aru: Yeah. If we write it out like... Ah.

Ew. M of four. And then, M of four equals... Oh, yeah. And then... M of...

equals two times M of three. Yeah. And then two times M of one. Marylyn:

Ah. Okay. Yeah. So this is two, four, eight, 16. Aru: Yeah.

After they decided how the code works, Aru then invents a notional system to illustrate

the recursive process. Their sketch as Cunningham states, seems more concerned with the

code’s functionality rather than the code’s behavior. Aru begins by writing 2 * m(4). Aru’s

writing is in purple, and Marilyn’s writing is in red). Interestingly, Marilyn jumps in to

complete the sketch and writes 2 * m(5) and an arrow above Aru’s sketch. Notice two

points. First, Marilyn likely believes she is ”correcting” Aru’s mistake by adding an extra

recursive invocation and an arrow; the recursive execution does not start at 2 * m(5), but at

2 * m(4) like Aru first wrote. After Marilyn wrote that, Aru agreed that she made a mistake

or was wrong by replying ”oh, yeah”. Second, Marilyn finished Aru’s initial sketch with

no prior conversation during this session about how to draw the sketch. The sketch is a

notation that makes sense between the two. There is likely some shared understanding,

which could be a shared metaphor or analogy.

They continue drawing each invocation and arrow until the base case executes. Then,

starting at the end, Marilyn goes back and writes the output for each execution. She writes

an equal sign followed by the computed value. For the last invocation executed, Madeline

writes the value ”64” and then ”26, ”suggestingsherealizesthatthisfunctioncalculatestwotothepowerofn, orsomedeterminedvalue.

Another blend happened during this session. This blend that led them to use exponents

as an analogy to explain the behavior of the code. This conclusion is evidenced by Madeline

writing 2 to the power of 6, and later in the session, Aru says,”Well I thought it was a little

counterintuitive. We thought the base case is zero instead of one, because since it’s mystery

five, you would be like, ”Oh, it’s two to the fifth power.” But we’re calculating two to the

144

sixth power, because the base case is zero.” when I asked them what was difficult about

solving this problem.

The blend consists of the following elements:

1. mathematical knowledge, these students likely have some level of mathematical so-

phistication

2. the code, specifically the recursive statement and the base case

3. Process - implicit in the blend, but represents the repetition

At the end of the session, I asked them what was difficult about the problem. Aru

explains, ”Well I thought it was a little counterintuitive. We thought the base case is zero

instead of one, because since it’s mystery five, you would be like, ”Oh, it’s two to the fifth

power.” But we’re calculating two to the sixth power, because the base case is zero.” This

likely might be an incorrect ”running” of two blends: the exponent and the termination

blend. The execution does stop at ”two to the fifth power,” but they erroneously believed

that the if statement suggests that there is an added recursive invocation.

Figure 7.9: Diagram of exponents blend.

I asked the students to explain their sketch and why they chose that representation.

Aru’s response to the question, ”I guess when I’ve learned about recursion, my teachers

145

usually talked about a stack, so you keep putting the newer call on top, and then do them

from the top down.” Aru is likely describing a problem-solving strategy or even a notional

machine.

While saying that, Aru takes her right hand, palm facing down and gestures a repeated

slapping motion as if something is getting added to the stack. She then uses that same

hand and repeatedly flicks it back as if taking away from the stack (see Figure 7.10). Her

gestures are a typical depiction of adding items onto the stack and taking items off the

stack. This provides even more evidence to the claim that students gesture the metaphor

they think about when thinking about abstractions. It is only through the speech-gesture

coordination that we can make sense of the notion that the stack pops and pushes elements.

Notice, she never actually finishes her statements, but relies on her hand motions to fill in

the blanks.

Figure 7.10: Aru’s stacking gesture. Talk marked with an asterisk (*) co-occurred with the gestures
shown in the image.

This explanation also helps make sense of the process they represented in their sketch.

The equation represents each recursive execution, the arrow is a metaphor that hides this

complicated process of recursion that they don’t need to think about, and the equals sign

what happens after each recursive invocation.

7.6.2 Case Study 2

This example highlights the following points:

1. Different blends used while solving a parson’s problem

146

2. Blends added to other blends

3. Using an ”agent” to think through logic

4. Less productive blends

In this 16-minute episode, Audrey and Kartik solve the third problem. They were both

second-year CS majors taking CS 1331.

Both students used one computer for both the video call and to solve the problems.

Therefore, it was difficult for them to create intelligible sketches, but this configuration did

allow me to determine if they were pointing to something and what they were pointing at.

Their computer cameras were positioned so that I could see them from their chests and up.

Audrey and Kartik struggled throughout the interview and got the first problem right.

Kartik, specifically, rarely finished a statement and frequently interrupted Audrey. At the

end of interview, Kartik stated, ”because of the class, I lost hope in my coding skills.”

The students created multiple blends, and I will focus on a few.

Without saying anything, Audrey drags the if (n ¡ 1) statement and asks Kartik to con-

firm that the statement is the base case. Audrey then drags the return statement and places

it under the if (n ¡1) statement. This order of execution checks to see if some value n is

less than 1; if it is, the method terminates. Audrey could be determining which statement is

the base case by looking for the ”easiest” or simplest statement, a strategy the other dyads

admitted to using. The dyads were taught a general rule of thumb for writing a recursive

solution is it should have an if-else statement, where the if-statement is the base case, and

the base case usually has a number. All the dyads started by assembling the base case. One

dyad said, “let’s start with the base case because that’s usually the right thing to do,” which

suggests that might have a template or known pattern for writing recursive functions.

Audrey asks Kartik, again, if he thinks what she has put together is correct. At this

point, I interrupted them to tell Kartik he muted his microphone.

Kartik suggests that they ”hold onto” the return statement, hinting that he either has

147

some misunderstandings about the functionality of the base case or that he has misconcep-

tions about return statements.

Kartik drags the mystery(n-1) statement into the base case while saying, ”So, this is

obviously the code that’s going to work when n minus 1 is there, you get what I’m saying?”

Audrey responds, ”I think it’s, N is the number of stars... So, if it’s less than zero, star is

less, I think it should end, don’t you think?”

Kartik agrees and suggests that they create an else-statement and move the return state-

ment to the else-statement. Realizing that Kartik doesn’t understand her point, Audrey

replies, ”Looks like a smaller than sign here. Like this one has as smaller than sign so

it’s like if there’s zero stars left to put, I think it should end, right?” Notice how she con-

structs an agent (“it”). Frederickson, referencing the seminal work of Ochs and colleagues,

refers to the use of pronouns as the “metaphoric construal of pronouns,” but argues that this

creates an agent where students can then use to reason with, make predictions, come up

with explanations, etc. Similarly, it allows students to use a ”narrative discourse,” that is

anthropomorphize abstractions and talk about ”the agent” using everyday experiences.

Audrey has constructed two blends. The first is to understand what the variables n and

i represent. This blend consists of the arguments for the invocation, the variables, and the

output, to assume that n is the number of stars and i is the number of hashtags. This is a

fair assumption this early on. The first row of the output has five stars and one hashtag, and

the arguments for the function invocation are five and one.

The second blend is to predict when the base case should terminate. The second blend

contains the following elements:

1. the blend about the two variables

2. the code (specifically the conditional)

3. ”it” - the computer

4. ”left to put” - a metaphor for output

148

Audrey uses the metaphor ”left to put” to reference the output. Notice how Audrey

also uses the metaphorical construction of the computer (”it”) as a way to help her reason.

Between the blend and ”the agent,” Audrey can talk about the logic of the code using her

body.

Figure 7.11: Diagram of when the base case should terminate. The diagram in blue is the blend
about variables.

After arranging the code for what should happen if (i ¡= n), Kartik suggests they ”do

the diagram,” or sketch a code trace. Audrey realizes they still have one statement to place

and decides to rearrange the code, moving everything the if-statement inside of the else

statement, outside of it, and creates a new else statement. She begins to drag the mystery

)i+1) over, before Kartik retorts, “Okay. Hold on. If N is less than one, then that means

that there’s-”

Audrey then says, “That’s the last possible thing, I think. So, it’s okay if we don’t have

an else and it will return. So, you don’t need an else for that because I think you use the

else for the other thing.” Notice, here, that when Audrey ran the ”base case” blend, she

149

was able to reason and create an explanation for why the else-statement was unnecessary.

Notice, here, Audrey switches between “we” and “it.” She uses “we” as if they (humans)

own the code and “it” (the computer) as doing the action, or returning. Audrey then uses

the pronoun “you”. Who is ”you” here? Kartik? Or is ”you” actually ”we”? Ochs et al.

refer to this as an indeterminate construction in which an “extreme form of subjectivity in

which the distinction between the scientist as subject and the physical world as object is

blurred.” They argue that an indeterminate construction plays an important role in scientists

collaboration, by helping scientists achieve a mutual understanding and “arrive at a working

consensus.”

Audrey then says, ”Can I put this here? I think after it prints that, it should stop. And

then I put this one under this so that it will be done after.” When she says ”Can I put this

here,” she drags the return statement back into the if (n ¡ 1) statement. When she says, ”I

think after it prints that,” she uses her mouse to point to the ”” in their sketch. Audrey is

using the previously defined blend to determine when the recursive execution terminates.

Audrey placed the statement mystery (i + 1) underneath mystery (n - 1).

She constructs a new blend to help her think about where to place a line of code, ”And

then I put this one under this so that it will be done after.” In this blend, she layers spatial

and temporal metaphors to describe where the recursive process is both physically (in code)

and virtually. This blend contains the following elements:

1. ”this one under this” - spatial metaphor about physical location, that is where to

physically put the line of code

2. ”will be done after” - a spatial and temporal metaphor; that describes the order in

which the execution happens and

3. ”it” - the computer

This seems like a nonsensical statement, but these are all factors Audrey needs to con-

sider when deciding where to put a line of code.

150

Figure 7.12: Diagram of when to put lines of code blend.

After tracing the code, they can’t seem to figure out the purpose of the else-statement.

Audrey says, ”I think we should move this,” and drags the if (n ¡ 1) statement next to the

else statement to create an else-if statement. Kartik responds, ”Else if ... Oh, that is smart.

That is smart. I’ll give you that.” Audrey responds, ”Do we still have the return? Do you

think that would make it stop completely? Because I get confused about that.” They were

never able to understand the purposes of the multiple recursive statements, likely because

they did not correctly blend what the different variables represented. Creating an else-if

statement seemed to be their way of just getting rid of the else statement.

This pair never got to the right answer. Conceptual blending theory might suggest why,

specifically the pair was not able to correctly “blend” their knowledge. The students never

understood the purpose of the variables n and i. The entire time, they continued to believe

that those variables were for the number of stars and number of hashtags. The blend about

what the variables represent did not include one key aspect, that there are two recursive

statements that change the values of the variables. Both recursive statements are happening

concurrently. The students struggled to understand why both recursive statements were

needed. They did, however, try to use the knowledge that everything after the recursive

invocation still executes.

151

7.6.3 Case Study 3

In this example, I highlight the following points:

1. Shifting blends from a less productive blend to a more productive blend

2. Sketching as embodiment and helping to construct a blend

3. Blends help generate solutions

In this 12-minute episode, Vishva and Aniketh solve the second problem. They were

both second-year CS majors taking CS 1331.

This episode was chosen because, as previously stated, this pair was the only dyad that

took time to solve this problem. Therefore, it allows us to investigate how students try

different metaphors or embodied tools until one eventually works.

Both students used the one computer for both the video call and to solve the problems.

Therefore, it was difficult for them to create intelligible sketches, but I could mostly tell if

they were pointing to something and what they were pointing at. Their computer cameras

were positioned so that I could see them from their chests and up.

They begin by mumbling the directions to themselves. Vishva asks, ”what’s different?”

before answering his question with ”this,” while drawing a line next to the added output.

He did not immediately realize the change in output. Aniketh then suggests they start by

tracing, ”let’s first see how this works.”

Vishva responds, ”Oh, by the way, this gets everything that’s to the left. So this is

what changes it. This, this.” While saying this, Vishva draws an arrow under the recursive

statement to show Aniketh what line he is referencing. Figure ??? is a transcript of the

sketch. Visha’s writing is in blue, and Aniketh’s writing is in green. Vishva continues

sketching, writing the invocation’s output horizontally, and placing arrows between each

outputted value. Like the sketch in Episode 1, the arrow seems to be a metaphor to represent

this complex and unknown underlying recursive process. Aniketh jumps in to complete

Vishva’s sketch, suggesting he agrees that the line of code ”gets everything to the left.”

152

Vishva justifies that the line ”gets everything to the left,” when he asks Aniketh to

remember a problem they had to solve in class. Visvha is searching for a pattern or an

analogous problem to make sense of the code, rather than trying to understand the behavior

of the code.

Vishva constructed a blend to map between the structure and function. That is, he

constructed a blend to make sense of the output of the code. The blend seems to include

the following spaces:

1. a past problem

2. ”it” - a metaphorical construal of the computer

3. code, specifically the modulus (%) sign

The resulting blend is a spatial metaphor, ”gets everything to the left,” that could suggest

the solution is related to digits or characters in a string.

Figure 7.13: Diagram of ”to the left” blend.

As they ”run the blend,” Vishva and Aniketh suggest a potential solution. They suggest

to ”store” the value, a metaphor to refer to saving a value so that it can be used later. They

continue that they can ”get the values to store” by adding lines of code that multiplies

instead of divides a value to get ”the lost value.” When they ”run the blend” we begin

to see where their construction ”breaks apart.” The metaphor ”to the left” does focus on

153

the direction in which a process is happening, which is important to understand to solve

this problem. However, this metaphor doesn’t highlight that values are already ”stored”

in a recursive execution. This metaphor ignores the role of the stack, which is to ”store”

something. There’s no frame of reference that those values are already accessible.

Aniketh, clearly not satisfied with any of their options, suggests that they trace the code,

a switch in strategies. They create a sketch of the code trace, focusing now on the behavior

of the code. Similar to the dyad in Episode 2, they use the metaphor ”becoming” to describe

a variable changing. Figure ??? is a transcript of the sketch. The first row represents the

current value, the second row represents what value the variable n currently is (which is

the same as the first row), and the third column represents how the value changes after the

recursive invocation executes. Their new sketch is vertical, which follows the conventions

of typical stack representations.

While referencing the sketch, Vishva says, ”So the main issue is that we can’t use

recursion to get N back,” while drawing an arrow from the bottom-most ”n,” to the ”n”

immediately above it. Here Vishva begins to shift blends. When Vishva says, ”get N back”

he is still using a temporal metaphor, and still referring to storing a value. Aniketh agrees,

”Yeah. How do you get this one back? How can you get this number back? How can you

get this one back, specifically? Uhmmm, I don’t know,” while drawing a square around the

”1” in ”201.”

The blend ”get N back” includes the spaces:

1. sketch (vertical)

2. The code

3. the computer

However, this blend starts to help Vishva think about the stack. These students were

struggling with understanding the output of the code, and because they constructed a blend,

154

they thought about a metaphor that relates to the stack. This blend helps them talk in typical

notions of the stack, that is access this notion of values stored.

Figure 7.14: Diagram of ”get N back” blend.

Vishva suggests that they ”should be printing out the things that are lower,” where lower

could be a metaphor to reference where in the stack some value is placed, or a reference to

the actual output and the values after the first ”2,” suggesting he still hasn’t quite grasped

at the idea of ”getting back.” He seems to be using the metaphor “get back” in a temporal

sense, as in “getting” a value back. Aniketh responds that they need a return statement.

While Aniketh justifies why they should use a return statement, he comes up with the

correct solution, ”Wait, what’s my number N? No, return N should be it. Because return...

Because that’s the final case, right? That’s the term... I mean, you return to the previous

call occurred down here, right? But this thing here, this guy here, oh yeah, so just add

a print statement right underneath here. Dude, it’s pretty simple I think. You just add a

print statement here. And if else. So if you put a return N here, so that you don’t keep ...

well, actually I don’t even think you need a return statement, as a matter of fact. Yeah, you

actually don’t need a return statement. Just put another print statement right here. That’s

it.”

He gestures a cyclical motion that either conveys an infinite loop or is just to help him

get the words out. While he explains, he realizes that they don’t actually need a return

155

statement, and all they need is a print statement.

7.7 Discussion and Implications

Taken together, the three cases and findings presented above expound our understandings

of how students make sense of computation and problem solve. The findings indicate that

students use different kinds of embodiment to make sense of computation. To close, I

reflect on the different sense-making resources students use and the learning implications.

7.7.1 Sense-Making Resources

Metaphors and Conceptual Blends

In this chapter, I used conceptual blending as a theoretical framework, which helped ana-

lyze learning and problem-solving as a moment-to-moment, in-situ activity. I found that

students seem to be ”fishing” or trying different kinds of embodiment or different blends

until they have exhausted all choices or come up with a solution. Students may use a series

of pointing gestures to trace the code and then create a blend. They may realize that the

blend is not helping them solve the problem, and then they might try sketching a code trace

before constructing another blend.

I found that students use metaphors to construe abstractions using physical notions.

A base case is something that has to be ”reached,” or a variable ”becomes” a different

value. The sheer frequency of metaphors that used physical language suggests that reason-

ing might be grounded in the physical.

Moreover, I found that students construct blends that often include multiple metaphors.

These metaphors represent different abstractions, their past work, the code, and metaphori-

cal agents. These blends produce a metaphor or an elaborated metaphor that helps students

reason about, make predictions, and explain the behavior and functionality of code.

Students use a specific type of metaphorical construct, where students granted some

indeterminate object (like the computer or the computer process) agency, or the students

156

were a proxy for the computer. Students talk as if they or some agent were executing lines

of code. Jeppsson et al. describe that this metaphorical construal gives students something

to ”think with” [82]. The agent helps the student reason about an action (or execution) by

priming students to ask questions like, ”what happens next?”

Our findings on metaphors and blends have three implications: (1) programming con-

cepts are likely understood primarily through metaphors or a blend of multiple metaphors,

(2) metaphors support reasoning, (3) metaphors provide a language for students to talk

about abstractions.

7.7.2 Sketching and Gesture

I also found that students embody code execution when drawing a sketch of a code trace or

using their pointer figure to trace.

Sketching provides an “imperfect” model, or a simplified version, of an object or pro-

cess under study [180]. Students’ sketch the details they want to reason about; they even

used symbols such as arrows and equal signs to metaphorically represent more complex

problems and situations of process and stack execution. Students used sketching to keep

track of program state, drawing how a variable changes or how the elements are popped

off the stack. Our findings indicate that the process of sketching is more than just cognitive

off-loading [21], but supports students’ reasoning by allowing them to ask questions like

“What happens next?”

Although I did not have much gesture data, there is evidence that students used gesture

to do a code trace, which means gesture likely supports reasoning. However, whereas a

sketch of a code trace can be used to track program state, a gesture of a code trace can

only track process; that is where the execution is and where the execution is going. Kirsch

argued that gestures are a type of mental image, and mental images hold the same benefits

as imperfect models. Gestures are “fast and flexible,” so a gesture of code trace may be

more convenient to think with than sketching a code trace. However, a gesture can only

157

show a limited amount of information.

Lastly, I described instances of gestures that were hard to classify. Students used non-

iconic gestures when giving an explanation. The gesture seemed to “embody” or enact

certain features about computation. In some instances, the gestures seemed to take on

a complimentary representational function, by visualizing aspects students had difficulty

talking about. In this sense, these gestures are not only communicative, but seem to be a

student’s attempt at creating a shared understanding.

7.7.3 Learning Implications

Students Likely Need to Blend Knowledge

Next, we consider the implications of the findings for learning programming. According to

Wittman, the conceptual blending framework views the process of learning as combining

knowledge from several different mental spaces [173]. A conceptual blend is an activity

that leads to knowledge integration, which is the basis for conceptual understanding. Davis

describes knowledge integration at its most basic level as “the process of linking scientific

ideas together to develop a robust, coherent, conceptual understanding.”

In Case Study 2, Audrey and Kartik created less productive blends, likely because they

could not correctly blend or integrate their knowledge (table reference here). Consequently,

it suggests that blends are more productive for sense-making when the blend does work by

connecting disparate spaces. That is, a blend is less productive when it seems unlikely to

promote knowledge integration processes and “more productive” when it is more likely to

foster knowledge integration processes.

Silvis argued that coding should be construed as conceptual blending [175]. Silvis’s

framing does a better job of considering the messiness and creativity of problem-solving

and sense-making in learning to program. For example, it seems surprising that students

would overlay multiple metaphors (e.g., Blend A, B, etc.). However, trying to figure out

where to put a line of code or when the base case executes are dubiously simple. In reality,

158

students have to consider multiple implications. To figure out where to put a line of code,

students have to consider where to physically put a line of code and how that choice affects

the recursive process. The result is a blend - like Blend C - that seems nonsensical but is a

clever attempt by students to handle these disparate spaces.

Accessing Knowledge

Our findings suggest different ways to help students access knowledge they already have

so that they can apply it. Vishva’s and Aniketh’s problem-solving session in Case Study

3 suggests that the process of blending is complex, and students blend their knowledge in

many different ways. Aniketh and Vishva constructed different blends to try to come up

with solutions about accessing specific information or data. These students were eventu-

ally able to get the problem correct, suggesting they had the required knowledge, but were

not able to initially blend their knowledge in productive ways. They were struggling to

understand the output of the code, and then they created these blends that help them realize

they do in fact know about stacks. They thought about that metaphor because they con-

structed a blend. Blending theory suggests that these students’ difficulties do not seem to

be not necessarily from a lack of knowledge, but rather from less productive blending of

the knowledge of past examples, the structure of the code, etc.

Challenges with Learning to Program

Our findings suggest another reason why learning to program is such a complex and dif-

ficult activity. We found students construct multiple blends to make sense of different

parts of computation. For example, in Case Study 2, students constructed a blend to predict

when the recursive invocation stops, what different variables represent, what an if-statement

might mean, the behavior of the code, etc. Moreover, some blends become parts of larger,

more complicated blends. Students need to manage the multiple metaphors and blends, and

we should consider ways to facilitate or to help students manage.

159

CHAPTER 8

CONCLUSION AND IMPLICATIONS

I started this investigation motivated by the recent findings in CER that there are correla-

tions between spatial ability assessments and CS performance. While the correlations may

be due to several reasons, the implications that, in CS education, we use space to make

sense of and learn about abstractions was intriguing. Inspired by Gauvain [18] and Kafai

[19], I argued that CER needed theoretical pluralism to understand how space influences

CS learning. Theoretical pluralism does not suggest that one theoretical perspective is bet-

ter than the other but that only looking at one is incomplete: it doesn’t give us a complete

understanding of how phenomena operate within a context. Typically, CER has treated

learning as a solo activity, pulling heavily from only cognitivist learning theories. In this

dissertation, I treated learning as distributed, social, and communicative. This framing

structured how I investigated space in CS learning.

This thesis was naturalistic and inductive because little was known about how students

use space to support CS learning. Inspired by research in the learning and cognitive sci-

ences, I used qualitative methods to investigate CS learning through two main avenues: (1)

how teachers use space while explicating computation and (2) how students use space to

problem solve. Consistent with research in STEM education - specifically science, mathe-

matics, and physics - I found a close tie with embodiment and space. Specifically, teachers

and students use embodiment to create representations of abstract concepts.

In the first study (Chapter 5), I used grounded theory to analyze a set of naturalistic

video recordings of undergraduate computing professors teaching recursion to their class.

While looking for space, I found an interesting relationship between how teachers use the

body and their body-based experiences to help students understand recursion. However,

CER has yet to explore how instructors use embodied actions and ideas when teaching the

160

skills involved in ”doing and learning” computing. For example, I described an instance

of a professor using a series of gestures to ”act out” adding elements to a data structure. I

also described how a teacher used sketching, perspective-taking, and spatial metaphor to

conduct a code trace. I contributed a conceptual framework of the kinds of embodied rep-

resentations teachers use in computing classrooms as the first step towards understanding

how embodiment supports student learning.

In the second study (Chapter 6), I used the same data corpus from the first study to

understand how teachers communicate about computation and how well students can inter-

pret it. In this study, I found that metaphor likely plays a central role in CS learning and

new challenges that likely contribute to making learning to program difficult. Specifically,

metaphors are how teachers conceptualize computation; they use metaphors to describe ab-

stractions, create metaphorical construals of agents, and their gestures about computation

seem to be based on a metaphor. I argued that students need to interpret this embodiment

since it is one of the few resources teachers are likely using to make computation and the

notional machine physical. Teachers used gestures that could be about computation, but, as

I argued, students could only interpret those gestures if they had similar metaphors. More-

over, professors explained that recursion is ”when a function calls itself,” layering multiple

metaphors and acting as if a function has agency and human behaviors. Professors traced

code with utterances like ”then I go here and check if it’s less than 1,” which requires stu-

dents to reconcile with code as not just lines of text on a screen. Lastly, professors use

perspective-taking, which asks students to role-play as different characters. However, pro-

fessors switch between perspectives with no systematicity, and they never make it clear

what role the student should be playing. I concluded that the embodiment professors used

is not a product of intentional design, and CER needs to think about intentionally designing

embodiment for explanatory power.

In the final study (Chapter 7), I video recorded 10 student dyads while they solved re-

cursive problems to describe how students use embodiment while problem solving to make

161

sense of computation. I used conceptual blending as a theoretical framework. Students

create these complex statements that overlay multiple metaphors to make predictions or ex-

planations. Each of these metaphors is about different abstractions. While these statements

seem complex, students have to blend multiple metaphors to think about computation. For

example, students created this elaborated blend about when the base case terminates, in-

cluding metaphors about the recursive process, when the process stops, and the condition

for stopping. However, those are all factors students need to consider when thinking about

when the recursive process ends.

8.1 Implications

8.1.1 Learning Implications

Across all three studies, I found different kinds of metaphor:

1. Metaphors like “calls” and “runs” might be categorized as dead metaphors. A metaphor

has become so widely used and accepted, that it’s original roots or relationship to its

original metaphor is “dead” and has become standard language.

2. There are metaphors that result from a conceptual blend that are used in a specific

context, at a specific moment to help someone reason and predict about the behavior

of code.

3. There are metaphors that use physical language to describe abstractions (e.g., “it goes

here” and “variable n is bound to 0”).

4. There are metaphorical - and indeterminate - construals of the computer.

5. Lastly, there are metaphors that seem to underlie gestures about computation. It

seems that when someone gestures, they are gesturing their underlying metaphor.

CER has typically only considered metaphors to be a pedagogical tool. However,

Watt [126] and Manches et al. [80] argue that embodiment offers a different perspec-

162

tive on metaphors in computing cognition. Rather than just making abstract concepts more

tractable, metaphors may be important in the way certain computing concepts are conceptu-

alized. That is, metaphors are likely how we make sense of, reason about, and communicate

computing concepts (similar to claims in mathematical cognition).

Their assertions, however, were only hypothetical. In my dissertation, I inductively

found a relationship between metaphor, space, and CS learning. Teachers and students

use metaphors to communicate and understand computation. Teachers describe function

invocation as if a function can “call” something. Moreover, students talk about variables

changing as if a variable can “become” a new value. Students and teachers talk about

computation using physicality.

In summation, CS learning is layered with metaphors. Metaphors might be how com-

putation is conceptualized, how computation is described, and one of ways we make sense

of computation.

8.1.2 Conceptual Framework

The conceptual framework used to analyze data was based on the grounded analysis con-

ducted in the first study (Chapter 5).

After conducting the third study (Chapter 7) and using conceptual blending as a theo-

retical framework to explain students’ use of metaphor, teacher’s use of some metaphors

might be better represented as a conceptual blend. Consider when a student asks a question

for clarification, the metaphors teachers use as a response are likely a conceptual blend.

Conceptual blend more accurately accounts for the ad-hoc, impromptu metaphors or ex-

planations teachers create.

The conceptual framework should be refined and iterated upon by analyzing different

contexts. Specifically, teacher-student contexts, whole classrooms that consider both the

teacher and the students, or even student and teaching assistant (TA) dynamics - it is com-

mon for students to practice coding in separate labs outside of class time ran by the TA.

163

Regardless, this conceptual framework presents the first to try to attempt to link space,

embodiment, and computation.

8.1.3 Pedagogical Implications

As previously stated, Dijkstra and other CEd researchers have argued against the use of

embodiment and metaphor. Dijkstra considered it childish to compare computational pro-

cesses to physical things instead of understanding them for what they are (i.e., “the radical

novelty”) [9].

However, I found that embodiment and metaphor are critical parts of CS learning, and

by ignoring them, we missed the opportunity to design our metaphors and embodiment for

ease of understanding and explanatory power. We ought to correct this mistake and em-

brace the design and use of metaphors in CS learning and teaching. These are similar ar-

guments made by CEd researchers who study culturally-relevant pedagogy and non-native

English speakers. They argue that programming syntax and languages follow western epis-

temologies and likely contribute to people in places like the Global South not succeeding

in CS.

Previous work in STEM education has demonstrated that using different metaphors can

lead people to reason differently about notions such as energy, time, emotion, or electric-

ity [86, 82]. These findings are based on a body of work that argued for and found the

importance of linguistic framing in reasoning. For example, in science education, many

researchers who focus on developing learners’ conceptual understanding of energy have

emphasized the advantages of using a substance metaphor for energy. Conceptualizing en-

ergy as a substance is helpful because it tacitly brings along many useful properties in terms

of accounting for the transfer and conservation of energy.

CS learning should consider that level of thoughtfulness when using metaphors.

164

8.2 Contributions

This dissertation provides some of the first empirical evidence on how space is used in

CS learning. This dissertation applied learning theories and used methods that had not

previously been applied to computer science education. Through this application, I also

extend the learning theories to the domain of computer science. The outcomes of this

research make theoretical, methodological, and practical contributions.

1. Documenting how space appears in CS learning and using the embodiment as a the-

oretical framework. This dissertation presents one of the first studies in computing

education to describe how students and teachers use space and embodiment to de-

scribe the different kinds of embodiment students use. Moreover, while sketching

has been studied in CER, this is one of the first studies to consider sketching as a

type of embodiment, which frames sketching as “thinking through action.” But do-

ing so allowed us to analyze the things that students are likely “thinking” to make

sense of computation.

2. A better understanding of how students learn computation and what resources sup-

port that learning. While some research has studied metaphor and analogy, it has

only thought about them as a pedagogy. In this dissertation, I provide evidence that

metaphors are likely central to students’ understanding of computation. Moreover, I

describe different kinds of metaphors, from the ones students construct, to the ways

the discipline has described them.

3. Introduced conceptual blending to CER. I present one of the first studies in CER to

use conceptual blending as a theoretical framework. As such, I was able to identify

some of the sense-making practices and resources students use to understand com-

putation. Moreover, I presented a diagramming style researchers in CEd can use to

describe the relations amongst different elements.

165

4. New considerations for what makes learning computing hard. As previously stated,

CER has not considered the contributions of the body for learning and communicat-

ing knowledge. While studying teachers, I found teachers used complex and layered

embodiment that likely requires similar metaphors to make sense of it. Moreover, in

the final study with students, I found students create multiple blends to make sense

of and make predictions about concepts like (e.g., when does the base case terminate,

what do variables represent). These blends are complex and students have to manage

multiple blends.

5. Methodological. I present one of the first dyad studies in CER.This is a valuable

contribution to our understanding of what is learned in CS classrooms and how that

learning happens. Moreover, this analysis of learning can provide a template for the

systematic study of types of thinking and learning in CS such as spatial thinking.

8.3 Future Work

The contributions of this work have opened significant future pathways for continued re-

search and exploration.

1. How might the methods or findings be adapted to investigate spatial thinking

in CS learning? As previously mentioned, I was initially intrigued by the correla-

tions between spatial skills assessments and CS performance. In other disciplines,

researchers used qualitative methods to study this phenomenon and examined the

representations made available to learners.

2. In-situ analyses. Although I analyzed videos of CS teachers teaching in classrooms,

I did not analyze what students were doing in those settings. Collecting data in labs or

recitations where students are taught by teaching assistants would provide richer data

about how embodiment appears and influences CS learning. This could eventually

lead to taxonomies and more specific design interventions.

166

3. Teachers’ Intentionality and What do Students Attend to. In my dissertation, I

make many claims about how and why teachers use embodiment and its importance

for learning. However, these are just hypotheses. Future work should consider teach-

ers’ intentionalities and what students attend to. This research might continue video

recording professors, but then ask them to explain what they meant by using this

metaphor, explain this gesture. Moreover, future work should consider the source of

students’ gestures and metaphor use. In the final study, students used similar gestures

and metaphors to the ones teachers used. However, some past research has argued

that students don’t attend to what teachers are doing.

4. How does embodiment change using different notional machines of recursion

or just studying different programming concepts? This study only looks at em-

bodiment using recursion and stack-based notional machine. How might embodi-

ment change looking at different computing constructs or even looking at different

notional machines of recursion? With this, we can have a better understanding of

which types of embodiment are better at facilitating information.

5. Sociocultural context. My dissertation uses embodiment as a theoretical frame-

work to explore how students learn. Central to my argument is that learning in CS

is a joint sense-making process mediated by communicative practices, including em-

bodied representations. Issues of equity and social justice are implicit and explicit

for understanding how classroom communicative practices impact CS learning. CS

classrooms are cultural and social spaces. Therefore, social inequities are easily per-

petuated by using communicative practices that privilege students with certain forms

of knowledge.

167

Appendices

APPENDIX A

DEMOGRAPHIC SURVEY

169

170

171

172

173

174

175

176

APPENDIX B

DYAD STUDENT SKETCHES

177

178

179

180

181

APPENDIX C

CODE TRACE FOR EACH PROBLEM

Figure C.1: Code trace for problem 1.

182

Figure C.2: Code trace for problem 2.

Figure C.3: Code trace for problem 3.

183

REFERENCES

[1] S. Cooper, K. Wang, M. Israni, and S. Sorby, “Spatial skills training in in-
troductory computing,” in Proceedings of the eleventh annual international
conference on international computing education research, 2015, pp. 13–20.

[2] M. C. Parker, A. Solomon, B. Pritchett, D. A. Illingworth, L. E. Marguilieux,
and M. Guzdial, “Socioeconomic status and computer science achievement:
Spatial ability as a mediating variable in a novel model of understanding,”
in Proceedings of the 2018 ACM Conference on International Computing
Education Research, 2018, pp. 97–105.

[3] J. Parkinson and Q. Cutts, “Investigating the relationship between spatial
skills and computer science,” in Proceedings of the 2018 ACM Conference
on International Computing Education Research, 2018, pp. 106–114.

[4] L. E. Margulieux, “Spatial encoding strategy theory: The relationship be-
tween spatial skill and stem achievement,” in Proceedings of the 2019 ACM
Conference on International Computing Education Research, 2019, pp. 81–
90.

[5] M. Kozhevnikov, M. A. Motes, and M. Hegarty, “Spatial visualization in
physics problem solving,” Cognitive science, vol. 31, no. 4, pp. 549–579,
2007.

[6] R. Stevens, “The missing bodies of mathematical thinking and learning have
been found,” Journal of the Learning Sciences, vol. 21, no. 2, pp. 337–346,
2012.

[7] T. J. Cortina, “Reaching a broader population of students through” unplugged”
activities,” Communications of the ACM, vol. 58, no. 3, pp. 25–27, 2015.

[8] J. P. Sanford, A. Tietz, S. Farooq, S. Guyer, and R. B. Shapiro, “Metaphors
we teach by,” in Proceedings of the 45th ACM technical symposium on Com-
puter science education, ACM, 2014, pp. 585–590.

[9] E. W. Dijkstra et al., “On the cruelty of really teaching computing science,”
Communications of the ACM, vol. 32, no. 12, pp. 1398–1404, 1989.

[10] Y. Cao, L. Porter, and D. Zingaro, “Examining the value of analogies in in-
troductory computing,” in Proceedings of the 2016 ACM Conference on In-
ternational Computing Education Research, 2016, pp. 231–239.

184

[11] N. S. Newcombe, “Picture this: Increasing math and science learning by im-
proving spatial thinking.,” American Educator, vol. 34, no. 2, p. 29, 2010.

[12] R. Bockmon, S. Cooper, W. Koperski, J. Gratch, S. Sorby, and N. Carolina,
“A CS1 Spatial Skills Intervention and the Impact on Introductory Program-
ming Abilities,” no. 3, pp. 766–772, 2020.

[13] D. H. Uttal and C. A. Cohen, “Spatial thinking and stem education: When,
why, and how?” In Psychology of learning and motivation, vol. 57, Elsevier,
2012, pp. 147–181.

[14] H. A. Simon, The sciences of the artificial. MIT press, 2019.

[15] S. M. Weisberg and N. S. Newcombe, Embodied cognition and stem learn-
ing: Overview of a topical collection in cr: Pi, 2017.

[16] N. Enyedy, J. Danish, and D. DeLiema, “Constructing and deconstructing
materially-anchored conceptual blends in an augmented reality collaborative
learning environment,” 2013.

[17] J. Roschelle, “Learning by collaborating: Convergent conceptual change,”
The journal of the learning sciences, vol. 2, no. 3, pp. 235–276, 1992.

[18] M. Gauvain, “The development of spatial thinking in everyday activity,” De-
velopmental Review, vol. 13, no. 1, pp. 92–121, 1993.

[19] Y. Kafai, C. Proctor, and D. Lui, “From theory bias to theory dialogue: Em-
bracing cognitive, situated, and critical framings of computational thinking
in k-12 cs education,” in Proceedings of the 2019 ACM Conference on Inter-
national Computing Education Research, 2019, pp. 101–109.

[20] A. J. Ko, Dagstuhl trip report: Learning and teaching programming lan-
guage semantics, Jul. 2019.

[21] K. Cunningham, S. Blanchard, B. Ericson, and M. Guzdial, “Using tracing
and sketching to solve programming problems: Replicating and extending an
analysis of what students draw,” in Proceedings of the 2017 ACM Conference
on International Computing Education Research, 2017, pp. 164–172.

[22] P. Tunnell Wilson, K. Fisler, and S. Krishnamurthi, “Evaluating the trac-
ing of recursion in the substitution notional machine,” in Proceedings of
the 49th ACM Technical Symposium on Computer Science Education, 2018,
pp. 1023–1028.

185

[23] G. L. Herman and N. G. Ave, “The Affordances and Constraints of Diagrams
on Students ’ Reasoning about State Machines,” pp. 173–181, 2017.

[24] A. Solomon, V. Oguamanam, M. Guzdial, and B. DiSalvo, “Making cs learn-
ing visible: Case studies on how visibility of student work supports a com-
munity of learners in cs classrooms,” in Proceedings of the 2019 ACM Con-
ference on Innovation and Technology in Computer Science Education, 2019,
pp. 161–167.

[25] A. Solomon, M. Guzdial, B. DiSalvo, and B. R. Shapiro, “Applying a gesture
taxonomy to introductory computing concepts,” in Proceedings of the 2018
ACM Conference on International Computing Education Research, 2018,
pp. 250–257.

[26] S. Ainsworth, “DeFT : A conceptual framework for learning with multiple
representations . Learning and Instruction , 16 , 183-198 This is a prepubli-
cation version of Ainsworth , S . (2006). Deft : A conceptual framework for
DeFT : A Conceptual Framework For Considering Learning with Multiple
Representations,” no. April, pp. 183–198, 2020.

[27] K. D. Gutiérrez, T. Sengupta-Irving, and J. Dieckmann, “Developing a math-
ematical vision,” Language and mathematics education: Multiple perspec-
tives and directions for research, pp. 29–71, 2010.

[28] M. W. Alibali and S. GoldinMeadow, “Gesture-speech mismatch and mech-
anisms of learning: What the hands reveal about a child’s state of mind,”
Cognitive psychology, vol. 25, no. 4, pp. 468–523, 1993.

[29] L. Liben, “Embodiment and children’s understanding of the real and repre-
sented world,” Developmental perspectives on embodiment and conscious-
ness, pp. 191–224, 2008.

[30] L. Liben, “Representational development and the embodied mind’s eye,”
Body in mind, mind in body: Developmental perspectives on embodiment
and consciousness, pp. 191–224, 2008.

[31] K. E. Ramey and D. H. Uttal, “Making sense of space: Distributed spatial
sensemaking in a middle school summer engineering camp,” Journal of the
Learning Sciences, vol. 26, no. 2, pp. 277–319, 2017.

[32] K. E. Ramey, R. Stevens, and D. H. Uttal, “Steam learning in an in-school
makerspace: The role of distributed spatial sensemaking.,” in Proceedings
of the 13th International Conference of the Learning Sciences, London, UK,
vol. 1, 2018.

186

[33] S. Vossoughi, M. Escudé, F. Kong, and P. Hooper, “Tinkering, learning &
equity in the after-school setting,” in annual FabLearn conference. Palo Alto,
CA: Stanford University, 2013.

[34] R. Stevens, “Learning as a members’ phenomenon: Toward an ethnographi-
cally adequate science of learning,” Yearbook of the National Society for the
Study of Education, vol. 109, no. 1, pp. 82–97, 2010.

[35] R. R. Stevens, “Divisions of labor in school and in the workplace: Comparing
computer and paper-supported activities across settings,” The Journal of the
Learning Sciences, vol. 9, no. 4, pp. 373–401, 2000.

[36] S. C. Levine, M. Vasilyeva, S. F. Lourenco, N. S. Newcombe, and J. Hutten-
locher, “Socioeconomic status modifies the sex difference in spatial skill,”
Psychological science, vol. 16, no. 11, pp. 841–845, 2005.

[37] M. C. Linn and A. C. Petersen, “Emergence and characterization of sex dif-
ferences in spatial ability: A meta-analysis,” Child development, pp. 1479–
1498, 1985.

[38] N. S. Newcombe and T. F. Shipley, “Thinking about spatial thinking: New
typology, new assessments,” in Studying visual and spatial reasoning for de-
sign creativity, Springer, 2015, pp. 179–192.

[39] E. Deitrick, R. B. Shapiro, M. P. Ahrens, R. Fiebrink, P. D. Lehrman, and
S. Farooq, “Using distributed cognition theory to analyze collaborative com-
puter science learning,” in Proceedings of the eleventh annual International
Conference on International Computing Education Research, 2015, pp. 51–
60.

[40] J. S. Brown, A. Collins, and P. Duguid, “Situated cognition and the culture
of learning,” Educational researcher, vol. 18, no. 1, pp. 32–42, 1989.

[41] E. Hutchins, “Distributed cognition,” International Encyclopedia of the So-
cial and Behavioral Sciences. Elsevier Science, vol. 138, 2000.

[42] J. Hollan, E. Hutchins, and D. Kirsh, “Distributed cognition: Toward a new
foundation for human-computer interaction research,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 7, no. 2, pp. 174–196, 2000.

[43] J. G. Greeno, A. M. Collins, L. B. Resnick, et al., “Cognition and learning,”
Handbook of educational psychology, vol. 77, pp. 15–46, 1996.

[44] M. S. Donovan, J. D. Bransford, and J. W. Pellegrino, “How people learn,”
Retrieved March, vol. 8, p. 2006, 1999.

187

[45] L. S. Vygotsky, Mind in society: The development of higher psychological
processes. Harvard university press, 1980.

[46] K. Charmaz and L. L. Belgrave, “Grounded theory,” The Blackwell encyclo-
pedia of sociology, 2007.

[47] K. Charmaz, Constructing grounded theory: A practical guide through qual-
itative analysis. sage, 2006.

[48] M. Muller, “Curiosity, creativity, and surprise as analytic tools: Grounded
theory method,” in Ways of Knowing in HCI, Springer, 2014, pp. 25–48.

[49] E. W. Dijkstra, Computing science: Achievements and challenges.

[50] R. McCauley, S. Grissom, S. Fitzgerald, and L. Murphy, “Teaching and learn-
ing recursive programming: A review of the research literature,” Computer
Science Education, vol. 25, no. 1, pp. 37–66, 2015.

[51] A. Settle, “What’s motivation got to do with it? a survey of recursion in the
computing education literature,” 2014.

[52] C.-C. Wu, “Conceptual models and individual cognitive learning styles in
teaching recursion to novices,” 1993.

[53] H. Kahney, “What do novice programmers know about recursion,” in Pro-
ceedings of the SIGCHI conference on Human Factors in Computing Sys-
tems, ACM, 1983, pp. 235–239.

[54] P. Pirolli, “A cognitive model and computer tutor for programming recur-
sion,” Human-Computer Interaction, vol. 2, no. 4, pp. 319–355, 1986.

[55] J. Chao, D. F. Feldon, J. P. Cohoon, and J. Chao, “Dynamic Mental Model
Construction : A Knowledge in Pieces-Based Explanation for Computing
Students ’ Erratic Performance on Recursion Dynamic Mental Model Con-
struction : A Knowledge in Pieces-Based Explanation for Computing Stu-
dents ’ Erratic Performance on Recursion,” Journal of the Learning Sciences,
vol. 27, no. 3, pp. 431–473, 2018.

[56] S. Fincher, J. Jeuring, C. S. Miller, P. Donaldson, B. du Boulay, M. Hauswirth,
A. Hellas, F. Hermans, C. Lewis, A. Mühling, et al., “Notional machines
in computing education: The education of attention,” in Proceedings of the
Working Group Reports on Innovation and Technology in Computer Science
Education, 2020, pp. 21–50.

188

[57] E. W. Dijkstra, “Recursive programming,” Numerische Mathematik, vol. 2,
no. 1, pp. 312–318, 1960.

[58] T. R. Colburn and G. M. Shute, “Metaphor in computer science,” Journal of
Applied Logic, vol. 6, no. 4, pp. 526–533, 2008.

[59] I. Milne and G. Rowe, “Difficulties in learning and teaching programming—views
of students and tutors,” Education and Information technologies, vol. 7, no. 1,
pp. 55–66, 2002.

[60] C. E. George, “Experiences with novices: The importance of graphical rep-
resentations in supporting mental mode.,” in PPIG, Citeseer, 2000, p. 3.

[61] T. Götschi, I. Sanders, and V. Galpin, Mental models of recursion, 1. ACM,
2003, vol. 35.

[62] I. Sanders, V. Galpin, and T. Götschi, “Mental models of recursion revisited,”
in Proceedings of the 11th annual SIGCSE conference on Innovation and
technology in computer science education, 2006, pp. 138–142.

[63] B. C. Bettin, “The stained glass of knowledge: On understanding novice men-
tal models of computing,” 2020.

[64] J. Sorva, “Notional machines and introductory programming education,” ACM
Transactions on Computing Education, vol. 13, no. 2, pp. 1–31, 2013.

[65] D. DeLiema and F. Steen, “Thinking with the body: Conceptual integration
through gesture in multiviewpoint model construction,” Language and the
Creative Mind. Borkent, Michael, Barbara Dancygier, and Jennifer Hinnell,
editors. Stanford, CA: CSLI Publications, 2013.

[66] D. Desutter, “Teaching students to think spatially through embodied actions
: Design principles for learning environments in science , technology , engi-
neering , and mathematics,” 2017.

[67] G. Lakoff and M. Johnson, “Conceptual metaphor in everyday language,”
The journal of Philosophy, vol. 77, no. 8, pp. 453–486, 1980.

[68] L. W. Barsalou, “Grounded cognition,” Annu. Rev. Psychol., vol. 59, pp. 617–
645, 2008.

[69] J. J. Gibson, The ecological approach to visual perception: classic edition.
Psychology Press, 2014.

189

[70] A. Almjally, K. Howland, and J. Good, “Investigating children’s spontaneous
gestures when programming using tuis and guis,” in Proceedings of the In-
teraction Design and Children Conference, 2020, pp. 36–48.

[71] M. W. Alibali, M. J. Nathan, M. S. Wolfgram, R. B. Church, S. A. Jacobs, C.
Johnson Martinez, and E. J. Knuth, “How teachers link ideas in mathemat-
ics instruction using speech and gesture: A corpus analysis,” Cognition and
instruction, vol. 32, no. 1, pp. 65–100, 2014.

[72] M. W. Alibali, “Gesture in spatial cognition: Expressing, communicating,
and thinking about spatial information,” Spatial cognition and computation,
vol. 5, no. 4, pp. 307–331, 2005.

[73] F. S. Azevedo and M. J. Mann, “Seeing in the dark: Embodied cognition
in amateur astronomy practice,” Journal of the Learning Sciences, vol. 27,
no. 1, pp. 89–136, 2018.

[74] T. Kopcha and C. Ocak, “Embodiment of computational thinking during col-
laborative robotics activity,” 2019.

[75] K. Ibrahim-Didi, M. W. Hackling, J. Ramseger, and B. Sherriff, “Embodied
strategies in the teaching and learning of science,” in Quality teaching in
primary science education, Springer, 2017, pp. 181–221.

[76] S. W. Gilbert, “An evaluation,” vol. 26, no. 4, pp. 315–327, 1989.

[77] G. Lakoff and M. Johnson, “M.(1980). metaphors we live by,” ChicagoLon-
don: University of ChicagoPress, 1985.

[78] T. G. Amin, “Conceptual metaphor meets conceptual change,” Human De-
velopment, vol. 52, no. 3, pp. 165–197, 2009.

[79] J. Wilbers and R. Duit, “On the micro-structure of analogical reasoning: The
case of understanding chaotic systems,” in Research in science education-
past, present, and future, Springer, 2002, pp. 205–210.

[80] A. Manches, P. E. McKenna, G. Rajendran, and J. Robertson, “Identifying
embodied metaphors for computing education,” Computers in Human Be-
havior, vol. 105, p. 105 859, 2020.

[81] D. T. Brookes and E. Etkina, “Using conceptual metaphor and functional
grammar to explore how language used in physics affects student learning,”
Physical Review Special Topics - Physics Education Research, vol. 3, no. 1,
2007.

190

[82] F. Jeppsson, J. Haglund, T. G. Amin, and H. Strömdahl, “Exploring the Use
of Conceptual Metaphors in Solving Problems on Entropy Exploring the Use
of Conceptual Metaphors in Solving Problems on Entropy,” vol. 8406, 2013.

[83] D. Gentner, “Structure-mapping: A theoretical framework for analogy,” Cog-
nitive science, vol. 7, no. 2, pp. 155–170, 1983.

[84] R. Duit and M. Education, “The role of analogies and metaphors in learning
science,” no. November 1991, 2015.

[85] D. Gowin, “Metaphors and conceptual change: Once more with feeling,”
Proceedings of the International Seminar Misconceptions in Science and
Mathematics, 1983.

[86] B. Dreyfus, A. Gupta, and E. Redish, “Applying conceptual blending to model
coordinated use of multiple ontological metaphors,” Conceptual metaphor
and embodied cognition in science learning, pp. 80–106, 2018.

[87] E. Ackermann, Perspective-taking and object construction: Two keys to ...

[88] E. Ochs, P. Gonzales, and S. Jacoby, “
when i come down im in the domain state”: Grammar and graphic represen-
tation in the interpretive activity of physicists,” Interaction and Grammar,
pp. 328–369, 1996.

[89] P. Aubusson, S. Fogwill, R. Barr, and L. Perkovic, What happens when stu-
dents do simulation-role-play in science?

[90] S. Goldin-Meadow, S. C. Levine, E. Zinchenko, T. K. Yip, N. Hemani, and
L. Factor, “Doing gesture promotes learning a mental transformation task
better than seeing gesture,” Developmental science, vol. 15, no. 6, pp. 876–
884, 2012.

[91] S. Goldin-Meadow, “How gesture promotes learning throughout childhood,”
Child development perspectives, vol. 3, no. 2, pp. 106–111, 2009.

[92] W.-M. Roth, “Gestures: Their role in teaching and learning,” Review of edu-
cational research, vol. 71, no. 3, pp. 365–392, 2001.

[93] A. Kendon, “Did gesture have the happiness to escape the curse at the confu-
sion of babel,” Nonverbal behavior: Perspectives, applications, intercultural
insights, pp. 75–114, 1984.

191

[94] ——, “Gesticulation and speech: Two aspects of the process of utterance,”
The relationship of verbal and nonverbal communication, vol. 25, no. 1980,
pp. 207–227, 1980.

[95] M. Novack and S. Goldin-Meadow, “Learning from gesture: How our hands
change our minds,” Educational psychology review, vol. 27, no. 3, pp. 405–
412, 2015.

[96] S. C. Broaders, S. W. Cook, Z. Mitchell, and S. Goldin-Meadow, “Making
children gesture brings out implicit knowledge and leads to learning.,” Jour-
nal of Experimental Psychology: General, vol. 136, no. 4, p. 539, 2007.

[97] R. B. Church, S. Ayman-Nolley, and S. Mahootian, “The role of gesture in
bilingual education: Does gesture enhance learning?” International Journal
of Bilingual Education and Bilingualism, vol. 7, no. 4, pp. 303–319, 2004.

[98] M. Perry, D. Berch, and J. Singleton, “Constructing shared understanding:
The role of nonverbal input in learning contexts,” J. Contemp. Legal Issues,
vol. 6, p. 213, 1995.

[99] L. Valenzeno, M. W. Alibali, and R. Klatzky, “Teachers’ gestures facilitate
students’ learning: A lesson in symmetry,” Contemporary Educational Psy-
chology, vol. 28, no. 2, pp. 187–204, 2003.

[100] R. M. Ping and S. Goldin-Meadow, “Hands in the air: Using ungrounded
iconic gestures to teach children conservation of quantity.,” Developmental
psychology, vol. 44, no. 5, p. 1277, 2008.

[101] M. W. Alibali and M. J. Nathan, “Embodiment in mathematics teaching and
learning: Evidence from learners’ and teachers’ gestures,” Journal of the
learning sciences, vol. 21, no. 2, pp. 247–286, 2012.

[102] R. M. Ping, S. Goldin-Meadow, and S. L. Beilock, “Understanding gesture:
Is the listener’s motor system involved?” Journal of Experimental Psychol-
ogy: General, vol. 143, no. 1, p. 195, 2014.

[103] N. M. McNeil and D. H. Uttal, “Rethinking the use of concrete materials in
learning: Perspectives from development and education,” Child development
perspectives, vol. 3, no. 3, pp. 137–139, 2009.

[104] M. A. Novack, E. L. Congdon, N. Hemani-Lopez, and S. Goldin-Meadow,
“From action to abstraction: Using the hands to learn math,” Psychological
Science, vol. 25, no. 4, pp. 903–910, 2014.

[105] D. Efron and S. van Veen, Gesture, race and culture. 1972.

192

[106] P. Ekman and W. V. Friesen, “The repertoire of nonverbal behavior: Cate-
gories, origins, usage, and coding,” semiotica, vol. 1, no. 1, pp. 49–98, 1969.

[107] B. Rimé and L. Schiaratura, “Gesture and speech.,” 1991.

[108] D. McNeill, Hand and mind: What gestures reveal about thought. University
of Chicago press, 1992.

[109] D. Kirsh, Embodied cognition and the magical future of interaction ...

[110] S. Wright, “Drawing and embodiment,”

[111] B. L. Sherin, “How students understand physics equations,” Cognition and
instruction, vol. 19, no. 4, pp. 479–541, 2001.

[112] J. Sorva, “Visual program simulation in introductory programming educa-
tion,”

[113] I. Arawjo, “To write code: The cultural fabrication of programming notation
and practice,” Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, 2020.

[114] B. Du Boulay, “Some difficulties of learning to program,” Journal of Educa-
tional Computing Research, vol. 2, no. 1, pp. 57–73, 1986.

[115] T. Colburn and Æ. G. Shute, “Abstraction in Computer Science,” no. June,
pp. 169–184, 2007.

[116] E. Euler, E. Rådahl, and B. Gregorcic, “Embodiment in physics learning: A
social-semiotic look,” Physical Review Physics Education Research, vol. 15,
no. 1, p. 010 134, 2019.

[117] K. Desportes, M. Spells, and B. Disalvo, “The movelab,” Proceedings of the
47th ACM Technical Symposium on Computing Science Education, 2016.

[118] G. Aranda and J. P. Ferguson, “Unplugged programming: The future of teach-
ing computational thinking?” Pedagogika, vol. 68, no. 3, 2018.

[119] U. Leron and R. Zazkis, “Computational recursion and mathematical induc-
tion,” For the Learning of Mathematics, vol. 6, no. 2, pp. 25–28, 1986.

[120] S. Papert, “Mindstorms: Children, computers, and powerful ideas,” The En-
glish Journal, vol. 71, no. 8, p. 60, 1982.

193

[121] A. G. Soosai Raj, K. Ketsuriyonk, J. M. Patel, and R. Halverson, “Does native
language play a role in learning a programming language?” In Proceedings
of the 49th ACM technical symposium on computer science education, 2018,
pp. 417–422.

[122] S. Vogel, “Translanguaging about, with, and through code and computing:
Emergent bi/multilingual middle schoolers forging computational literacies,”
2020.

[123] D. Pérez-Marın, R. Hijón-Neira, A. Bacelo, and C. Pizarro, “Can computa-
tional thinking be improved by using a methodology based on metaphors and
scratch to teach computer programming to children?” Computers in Human
Behavior, vol. 105, p. 105 849, 2020.

[124] F. Halasz and T. P. Moran, “Analogy considered harmful,” in Proceedings of
the 1982 conference on Human factors in computing systems, 1982, pp. 383–
386.

[125] Y. Qian and J. Lehman, “Students’ misconceptions and other difficulties in
introductory programming: A literature review,” ACM Transactions on Com-
puting Education (TOCE), vol. 18, no. 1, pp. 1–24, 2017.

[126] S. Watt, “Syntonicity and the psychology of programming.,” in PPIG, 1998,
p. 10.

[127] M. W. Alibali, S. Kita, and A. J. Young, “Gesture and the process of speech
production: We think, therefore we gesture,” Language and cognitive pro-
cesses, vol. 15, no. 6, pp. 593–613, 2000.

[128] P. Seedhouse, “Conversation analysis and language learning,” Language teach-
ing, vol. 38, no. 4, pp. 165–187, 2005.

[129] M.-S. Seo and I. Koshik, “A conversation analytic study of gestures that en-
gender repair in esl conversational tutoring,” Journal of Pragmatics, vol. 42,
no. 8, pp. 2219–2239, 2010.

[130] E. M. Crowder, “Gestures at work in sense-making science talk,” The Journal
of the Learning Sciences, vol. 5, no. 3, pp. 173–208, 1996.

[131] B. R. Shapiro and R. Hall, “Making engagement visible: The use of mondrian
transcripts in a museum,” in, Philadelphia, PA: International Society of the
Learning Sciences., 2017.

194

[132] M. J. Nathan, “An embodied cognition perspective on symbols, gesture, and
grounding instruction,” Symbols and embodiment: Debates on meaning and
cognition, vol. 18, pp. 375–396, 2008.

[133] F. Vafaei, “Taxonomy of gestures in human computer interaction,” 2013.

[134] M. Chu and S. Kita, “The nature of gestures’ beneficial role in spatial prob-
lem solving.,” Journal of Experimental Psychology: General, vol. 140, no. 1,
p. 102, 2011.

[135] R. Núñez, “Do real numbers really move? language, thought, and gesture:
The embodied cognitive foundations of mathematics,” in 18 unconventional
essays on the nature of mathematics, Springer, 2006, pp. 160–181.

[136] T. R. Colburn and G. M. Shute, “Metaphor in computer science,” Journal of
Applied Logic, vol. 6, no. 4, pp. 526–533, 2008.

[137] T. Sirkiä and J. Sorva, “Exploring programming misconceptions: An analysis
of student mistakes in visual program simulation exercises,” in Proceedings
of the 12th Koli Calling International Conference on Computing Education
Research, ACM, 2012, pp. 19–28.

[138] A. Ebrahimi, “Novice programmer errors: Language constructs and plan com-
position,” International Journal of Human-Computer Studies, vol. 41, no. 4,
pp. 457–480, 1994.

[139] U. Wilensky, “Abstract meditations on the concrete and concrete implications
for mathematics education,” in Constructionism, I. Harel and S. Papert, Eds.,
Norwood, NJ: Ablex, 1991, pp. 193–203.

[140] T. Colburn and G. Shute, “Type and metaphor for computer programmers,”
Techné: Research in Philosophy and Technology, 2017.

[141] K. Devlin, “Require,” Communications of the ACM, vol. 46, no. 9, p. 37,
2003.

[142] J. Sorva, “Notional Machines and Introductory Programming Education,”
vol. 13, no. 2, 2013.

[143] S. Fincher, J. Jeuring, C. S. Miller, B. Boulay, C. Lewis, and A. Petersen,
“Notional Machines in computing education : The education of attention
What is a Notional Machine,”

195

[144] M. A. Holliday and D. Luginbuhl, “Cs1 assessment using memory diagrams,”
in Proceedings of the 35th SIGCSE technical symposium on Computer sci-
ence education, 2004, pp. 200–204.

[145] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm, R.
McCartney, J. E. Moström, K. Sanders, O. Seppälä, et al., “A multi-national
study of reading and tracing skills in novice programmers,” ACM SIGCSE
Bulletin, vol. 36, no. 4, pp. 119–150, 2004.

[146] P. Burton, “Kinds of language, kinds of learning,” ACM SIGPLAN Notices,
vol. 33, no. 4, pp. 53–61, 1998.

[147] C. Goodwin, “The co-operative, transformative organization of human action
and knowledge,” Proceedings of the 14th ACM international conference on
Multimodal interaction - ICMI 12, 2012.

[148] S. Scopelitis and R. Stevens, “Made by hand: Gestural practices for the build-
ing of complex concepts in face-to-face, one-on-one learning arrangements,”
2010.

[149] R. Tytler, V. Prain, and P. Hubber, “Deakin Research Online,” pp. 83–107,
2013.

[150] R. Tytler, K. Murcia, C.-T. Hsiung, and J. Ramseger, “Reasoning through
representations,” in Quality teaching in primary science education, Springer,
2017, pp. 149–179.

[151] M. Hackling, K. Murcia, and K. Ibrahim-Didi, “Teacher orchestration of
multimodal resources to support the construction of an explanation in a year
4 astronomy topic,” Teaching Science, pp. 7–15, 2013.

[152] S. Vossoughi, A. Jackson, S. Chen, W. Roldan, and M. Escudé, “Embodied
pathways and ethical trails: Studying learning in and through relational his-
tories,” Journal of the Learning Sciences, vol. 29, no. 2, pp. 183–223, 2020.

[153] R. Barwell, “Formal and informal mathematical discourses: Bakhtin and vy-
gotsky, dialogue and dialectic,” Educational Studies in Mathematics, vol. 92,
no. 3, pp. 331–345, 2015.

[154] M. L. Franke, E. Kazemi, and D. Battey, “Mathematics teaching and class-
room practice,” Second lfaJU!/wak aflI.eseurch on Mathematics Tcachillg
ali, pp. 225–256, 2007.

[155] C. S. Peirce, R. S. Robin, et al., “Charles s. peirce papers,” 1963.

196

[156] C. M. Lewis, “Exploring variation in students’ correct traces of linear recur-
sion,” in Proceedings of the tenth annual conference on International com-
puting education research, ACM, 2014, pp. 67–74.

[157] J. G. Trafton, S. B. Trickett, and F. E. Mintz, “Connecting internal and ex-
ternal representations: Spatial transformations of scientific visualizations,”
Foundations of Science, vol. 10, no. 1, pp. 89–106, 2005.

[158] J. G. Trafton, S. B. Trickett, C. A. Stitzlein, L. Saner, C. D. Schunn, and S. S.
Kirschenbaum, “The relationship between spatial transformations and iconic
gestures,” Spatial cognition and computation, vol. 6, no. 1, pp. 1–29, 2006.

[159] M. Stieff and S. Raje, “Expert algorithmic and imagistic problem solving
strategies in advanced chemistry,” Spatial Cognition & Computation, vol. 10,
no. 1, pp. 53–81, 2010.

[160] P. Group, “Mip: A method for identifying metaphorically used words in dis-
course,” Metaphor and Symbol, vol. 22, no. 1, pp. 1–39, 2007.

[161] B. Haberman and H. Averbuch, “The case of base cases: Why are they so
difficult to recognize? student difficulties with recursion,” in Proceedings of
the 7th annual conference on innovation and technology in computer science
education, 2002, pp. 84–88.

[162] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and R. Simmons, “Condi-
tions of learning in novice programmers,” Journal of Educational Computing
Research, vol. 2, no. 1, pp. 37–55, 1986.

[163] J. P. Smith III, A. A. DiSessa, and J. Roschelle, “Misconceptions recon-
ceived: A constructivist analysis of knowledge in transition,” The journal of
the learning sciences, vol. 3, no. 2, pp. 115–163, 1994.

[164] J. A. Roberts, “Connecting visitors to data: Exploring tools for mediating
learning talk at an interactive museum exhibit,” Ph.D. dissertation, University
of Illinois at Chicago, 2016.

[165] J. Roberts and L. Lyons, “Examining spontaneous perspective taking and
fluid self-to-data relationships in informal open-ended data exploration,” Jour-
nal of the Learning Sciences, vol. 29, no. 1, pp. 32–56, 2020.

[166] A. Sfard, “On two metaphors for learning and the dangers of choosing just
one,” Educational researcher, vol. 27, no. 2, pp. 4–13, 1998.

[167] C. Paechter, “Metaphors of space in educational theory and practice,” Peda-
gogy, culture and society, vol. 12, no. 3, pp. 449–466, 2004.

197

[168] D. Ancona, “Framing and acting in the unknown,” S. Snook, N. Nohria, & R.
Khurana, The Handbook for Teaching Leadership, pp. 3–19, 2012.

[169] K. E. Weick, K. M. Sutcliffe, and D. Obstfeld, “Organizing and the process
of sensemaking,” Organization science, vol. 16, no. 4, pp. 409–421, 2005.

[170] G. Fauconnier and M. Turner, “Conceptual integration networks,” Cognitive
science, vol. 22, no. 2, pp. 133–187, 1998.

[171] G. Fauconnier and G. Lakoff, “On metaphor and blending,” Cognitive Semi-
otics, vol. 5, no. 1-2, pp. 393–399, 2009.

[172] N. S. Podolefsky and N. D. Finkelstein, “Analogical scaffolding and the
learning of abstract ideas in physics : An example from electromagnetic
waves,” pp. 1–12, 2007.

[173] M. C. Wittmann, B. Hall, and O. Me, “Using conceptual blending to describe
emergent meaning in wave propagation,” vol. 1, pp. 659–666, 2010.

[174] N. Enyedy, M. Hall, L. Angeles, J. A. Danish, N. R. Ave, D. Deliema, M.
Hall, and L. Angeles, “Constructing and Deconstructing Materially-Anchored
Conceptual Blends in an Augmented Reality Collaborative Learning Envi-
ronment,” vol. 1, pp. 192–199, 2013.

[175] D. Silvis, V. R. Lee, J. Clarke-midura, J. Shumway, and J. Kozlowski, “Blend-
ing Everyday Movement and Representational Infrastructure : An Interaction
Analysis of Kindergarteners Coding Robot Routes,” pp. 98–105, 2020.

[176] R. G. Hausmann, M. T. Chi, and M. Roy, “Learning from collaborative prob-
lem solving: An analysis of three hypothesized mechanisms,” in Proceedings
of the Annual Meeting of the Cognitive Science Society, vol. 26, 2004.

[177] M. C. Parker, M. Guzdial, and S. Engleman, “Replication, validation, and
use of a language independent cs1 knowledge assessment,” in Proceedings
of the 2016 ACM conference on international computing education research,
ACM, 2016, pp. 93–101.

[178] C. M. Lewis, “Applications of out-of-domain knowledge in students’ reason-
ing about computer program state,” Ph.D. dissertation, UC Berkeley, 2012.

[179] H. Jeong and M. T. Chi, “Construction of shared knowledge during collabo-
rative learning,” 1997.

[180] E. Etkina and A. Warren, “Physics Instruction,” no. December 2013, 2006.

198

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Research Motivation
	Research Goals and Questions
	Dissertation Overview
	Positionality

	2 | Setting the Context of Recursion
	Recursion in Programming—Recursive Invocation
	Recursive Execution
	Learning Recursion
	Mental Models of Recursion

	3 | Conceptual Framework
	Embodiment
	Metaphor
	Gestures
	Tool Use: Sketching

	4 | Related Work
	Complexities of Learning to Program
	Embodiment and CS Learning
	Metaphors
	Gesture
	Sketching

	5 | Embodied Representations in Computing Education: How Gesture, Metaphor, and Sketching Support Teaching Recursion
	Introduction
	Background
	Method
	Case Studies
	Discussion and Conclusion

	6 | "On the Reality of Teaching Programming": Interpreting Embodiment in CS Classrooms
	Introduction
	Multimodality and Communicating Information
	Methods
	Reflexivity
	Findings
	Case Studies
	Discussion

	7 | How Students Use Conceptual Blends, Metaphors, and Embodiment to Make Sense of Computation
	Introduction
	Conceptual Blending
	Methods
	Data Analysis
	Findings
	Case Studies
	Discussion and Implications

	8 | Conclusion and Implications
	Implications
	Contributions
	Future Work

	Appendices
	A | Demographic Survey
	B | Dyad Student Sketches
	C | Code Trace for Each Problem

	References

