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SUMMARY

Fish swimming is characterized by its astonishing versatility: from fast bursts

and sharp turns to fast and efficient cruising. By adjusting their flexible body and

tail through muscle activation, fish are capable of harnessing various changing flow

conditions. Motivated by this adaptability, researchers and engineers have striven to

apply the same principles to their robotic fish designs. Robotic fish have historically

started as intricate designs comprised of complex networks of actuators and relatively

rigid surfaces. More recently, simpler swimmers consisting of flexible heaving or

pitching plates have emerged. These moving elastic plates represent fish locomotion

to a certain level of abstraction. In spite of the apparent simplicity of such bio-

inspired swimmers, their motion inherently depends on a complex interplay between

the three-dimensional elastic plate motion and the flow of the surrounding viscous

fluid.

In this work, we numerically investigate the problem of bio-mimetic locomotion us-

ing a fully-coupled three-dimensional fluid-structure interaction computational frame-

work. The bio-inspired propulsor is modeled as a thin elastic plate oscillating in a

Newtonian fluid. The computational model consists of the lattice Boltzmann method

coupled to either finite differences or the lattice spring method. We systematically

explore the impact of several design parameters on the propulsor’s swimming perfor-

mance, including the effects of non-uniform properties, flow regime, aspect and mass

ratios as well as the actuation mechanism itself.

We find that the driving mechanism and frequency of the elastic swimmer is

a key design parameter. When comparing conventional heaving with more recent

muscle-like actuation, we find critical differences in bending patterns. These critical

differences in bending patterns in turn are associated with an improved performance

of conventional heaving over muscle-like actuation. Although conventional heaving is

xvi



found to outperform muscle-like actuation, we find that the swimming performance

can be further enhanced by combining novel and conventional. This hybrid actuation

strikes a formidable balance between propulsion and energetic performance. More-

over, we demonstrate that the hybrid actuation can easily regulate various swimming

metrics as needed in real life scenarii.

As illustrated by the diversity of fin mechanical properties observed in nature

across species, the thickness, and ultimately the distribution of bending stiffness in

the fin, is primordial to generate highly efficient propulsion. Thickness distribution is

also a key concept in understanding various types of swimming adopted by different

types of aquatic animals. Using arguments based on wave theory, we show that

tapered swimmers display particularly advantageous features over a wide range of

driving frequencies. Furthermore, we demonstrate that plate metrics known a priori

accurately allow to estimate the propulsive performance of the swimmer without

recurring to computationally intensive simulations. This estimation is achieved with

an evolutionary approach based on simple principles such as mating pools, mutations

and survival of the fittest.
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CHAPTER 1

INTRODUCTION

1.1 Background

Fish are capable of reaching and maintaining efficient and fast swimming under

severely changing conditions as well as performing quick turning manoeuvres. To

propel, fish pass waves down their elastic body and fins. As a consequence, the mo-

tion of individual fins is inherently complex and three-dimensional [1]–[4]. Natural

selection and millions of years of evolution have resulted in highly efficient, if not

optimal, mechanical systems. This incredible performance has inspired researchers

and scientists to incorporate fish-like motion in their designs. Such designs are par-

ticularly tailored for autonomous underwater vehicles (AUVs) for which autonomy,

and therefore efficiency, is primordial. Sample applications of AUVs include marine

exploration, in-vivo study of fish populations, remote sensing, among others.

Most fish generate propulsion by bending their body to create a backward-travelling

or standing wave extending to their caudal fin. This swimming type is referred to as

body and/or caudal fin (BCF) mode. Other types of fish rely on the motion of their

median and/or paired fins (MPF) [5]. BCF mode is generally associated to higher

swimming velocities while MPF mode results in slower swimming but enhanced ma-

noeuvring. Most fish use the BCF mode for general cruising while MPF mode serves

as stabilization and precise manoeuvring. We illustrate the fin nomenclature in figure

1.1. Both BCF and MPF swimming modes can be further sub-categorized into undu-

lating or oscillating swimming modes; however, we will mainly focus on BCF modes.

Indeed, when considering bio-mimetic design, the multiple fins involved in the MPF

mode result in a significant complexity when compared to the BCF mode. Thus, the
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Median fin

Caudal fin

Thrust Drag

Lift

Figure 1.1: Generic fin and force nomenclature.

BCF mode reduces the number of degrees of freedom of the robotic design.

Various types of BCF swimming can be categorized by the extent to which the

body is involved in generating the propulsion. On the left-most part of this spectrum

as shown in figure 1.2, undulatory BCF is best illustrated by anguilliform types of

fish such as eels. In anguilliform swimming, the entire body bends to generate a

travelling wave. Directly next to anguilliform mode, subcarangiform and carangiform

modes also rely on significant bending of the body to generate a mix of travelling and

standing waves to generate thrust. However, the fraction of the body used is reduced

when compared to anguilliform mode. On the right-most side of BCF swimming

diagram, thunniform and ostraciiform modes are associated with almost rigid bodies

and standing waves generated by the caudal fin. Thunniform mode of swimming is

particularly characterized by high swimming velocity and efficiency in calm water.

As demonstrated by the thunniform swimming mode, it is necessary to understand

the underlying physics of a single fin oscillating in a viscous fluid [6]–[15]. As the

fin oscillates in a viscous fluid, its deformation is subjected to inertia, elastic and

hydrodynamic forces, resulting in complex dynamic bending patterns. In turn, the
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Figure 1.2: Categorization of fish swimming. Adapted from [5]. ©1999 IEEE.

fin imposes its own motion on the surrounding fluid resulting in complex vortex

structures. This interplay leads to a challenging coupling between the fin deformation

and the unsteady hydrodynamic loading. The fin bending strongly depends on the

oscillation frequency and its proximity to the resonance frequencies. At resonance,

the fin deformation is amplified which may potentially result in higher swimming

performance.

Early designs of bio-inspired robotic fish include passive rigid to moderately elastic

caudal fins actuated by a complex set of strings and servomotors [16], [17]. More

recent designs successfully incorporated flexibility through sets of linked rigid parts

coupled to servomotors [18]–[21]. However, such designs not only lack in manoeuvring

and swimming efficiency [12], [13] but also result in high design complexity.

Recently, smart material have been gaining traction for their use in bio-inspired

design and particularly their capacity to implement robotic fish designs to higher

levels of bio-mimicry without the cumbersome complexity of conventional motor-

based designs [14], [15], [22]. Smart materials include, but are not limited to, ionic-
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Figure 1.3: Macro-fiber composite material (SSDSL group at Georgia Tech)

polymer metal composites (IPMC) [22]–[26], shape-memory alloys (SMA) [27]–[29],

and piezoelectric materials [30]–[32]. Among smart materials, piezoelectric materials

have gained increasing interest. In particular, macro-fiber composites (MFC) strike

a balance between deformation and actuation levels. Furthermore, MFCs (figure 1.3

tremendously simplify designs as well as offer noiseless operation [33]. Despite their

promising features, there is not systematic work on understanding their hydrodynamic

performance. Therefore the hydrodynamic regime at which such materials should be

used to yield efficient locomotion is yet unclear.

Given the intrinsic complexity of bio-mimetic locomotion, researchers turned to

simplified models to investigate the performance of fins oscillating in a fluid. Lighthill

[34]–[36] and Wu [37] independently laid out the analytical foundation of elongated

and slender body theory. Their work is based on the two-dimensional inviscid flow

induced by oscillating beams. Lighthill suggested that the mean thrust generated

by a swimmer depends solely on the tip kinematics and mass ratio of the body.

More recent work [38], [39] constructs approximate solutions of cantilevered beams

oscillating in inviscid fluids. These analytical solutions provide tremendous insight

on the hydrodynamic of elastic fins actuated under water. However, viscosity effects
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cannot be neglected for fins of moderate sizes. Therefore, it is necessary to rely on

experiments and numerical simulations to thoroughly investigate the hydrodynamics

of such fins. For instance, Ramananarivo et al. [40] experimentally studied the

free swimming of anguilliform swimming and related the swimming mode to the

hydrodynamic damping. However, experimental investigations are typically limited

by equipment and cost. In turn, numerical simulations are an attractive solution for

exploring the wide parameter space of oscillating swimmers and understanding the

underlying physics.

Aureli et al. [41] used a two-dimensional numerical model to probe the effects

of viscosity on the resonance oscillations of a cantilevered beam. They found that

increasing the driving frequency and amplitude results in a vortex shedding which in

turn is responsible for non-linear hydrodynamic damping. Moreover, the authors used

the results from their parametric study to derive a reduced order model. However,

this work is not able to capture three-dimensional vortex shedding which accounts

for a significant part of the drag acting on the swimmer. By comparing a numerical

model to experimental data, Facci [42] extended Sader’s model to three-dimensional

fluid-solid coupling for small deformations and relatively low Reynolds number (Re <

100). They performed a thorough parametric study on dimensionless numbers such

as the Reynolds and Keulegan-Carpenter number as well as the aspect ratio for a

cantilevered plate. They found that three-dimensional effects are not negligible for

plates of low aspect ratio (wide). This is due to a change in distribution of added mass

forces resulting from vortex shedding. Conversely, they found that three-dimensional

considerations have very limited impact on the hydrodynamic damping. With this

approach, they suggested enhancing the reduced order model developed by Aureli

et al. by integrating three-dimensional effects. With the help of experiments and

a high Reynolds number model, Alben et al. [9] proved the existence of resonance

peaks in the free swimming velocity of an elastic oscillating plate. In addition, their
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model predicts that the plate velocity is proportional to the plate length to the power

−1/3 and plate flexibility to the power 2/15. Using experiments, Quinn et al. [43]

demonstrated that for constrained plates, these resonance peaks in free swimming

velocity occur for discrete values of the effective flexibility which is defined as a

dimensionless number measuring the ratio of added mass to bending forces. Hoover

et al. [44] further confirmed these findings with three-dimensional simulations of free

swimming flexible plates.

Borazjani et al. [45] investigated the hydrodynamics of carangiform locomotion

by simulating experimentally-measured prescribed kinematics of a three-dimensional

mackerel-like body in a viscous fluid. They showed that for this configuration the

propulsive efficiency is an increasing function of the Reynolds number. Their work

suggested that the topology of the wake is principally a function of the Strouhal

number. More recently, Bhalla et al. [46] developed an adaptive grid mathematical

framework for the simulation of rigid, deforming or elastic bodies in a Newtonian

fluid. They showcase several test cases, including the three-dimensional flow around

a knifefish with prescribed kinematics. Representing the fish locomotion through a

single fin is a common level of abstractions to probe the fully-coupled hydrodynamics

of elastic plates with substantial deformation. Previous work showed that resonance

oscillations result in enhanced propulsion as well as demonstrated that elasticity is

a key parameter to optimize fin performance. For instance, Dai et al. [47] showed

that an elastic plate generates significantly more thrust than a rigid plate at the same

Strouhal number. Eloy [48] developed an optimization procedure based on a reduced

order model to argue that undulatory swimming is, from an evolutionary stance, a

logic consequence of minimizing energy cost. Yeh et al. [49]–[51] used fully-coupled

three-dimensional simulations to show that elastic swimmers could be operated at a

regime of maximum propulsion near the first natural frequency or maximum efficiency

away from the resonance. Moreover, the authors considered the impact of tapered
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structures which were shown to outperform fins with uniform thickness in terms of

efficiency for a wide range of actuation frequencies.

1.2 Research Objectives

Due to the daunting size of the parameter space, researchers have focused on partic-

ular aspects of fish swimming in order to improve the design of existing and future

underwater vehicles. While these studies provide tremendous insights for under-

standing efficient underwater swimming, there is still uncharted territory that is to

be explored. For instance, most of aforementioned work focuses on a form of heaving,

pitching or combination of the two at the leading edge of the swimmer. Although

heaving or pitching is a valuable level of abstraction to represent fish swimming, the

diversity of fish locomotion is rather broad. The need to understand other forms of

actuation source is particularly valuable due to the development of new smart ma-

terials which allow to increase the level of bio-mimicry. As a consequence of their

recent development, the impact of resulting kinematics on robotic fish swimming is

not fully understood and the literature lacks a systematic investigation on the impact

of aforementioned “conventional” actuation methods such as heaving in comparison

to the actuation of smart materials such as MFCs.

While fish in nature display anisotropic inhomogeneous fin properties, the majority

of previous studies have only considered flexible plates with homogeneous mechani-

cal properties. Conversely, plates with inhomogeneous properties have not yet been

systematically studied and specifically their impact on the swimming performance.

Furthermore, the relationship between mechanical properties and fish swimming mode

remains unclear.

Experimental work is usually limited by the equipment itself and cost. As a conse-

quence, numerical simulations are of particular interest to understand the underlying

physics of bio-inpired swimmers. Despite the progress in computational modeling,
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the simulation of a three-dimensional fish in a viscous fluid remains a tremendous

challenge. A various amount of simplifications are generally used including but not

limited to inviscid flow, rigid or quasi-rigid geometry or prescribed body kinematics.

Accordingly, the amount of work using fully-coupled three-dimensional numerical

simulations in the literature is limited.

This work aims to investigate three different aspects of bio-inspired locomotion

applicable to robotic swimmers : (1) to systematically quantify how smart material

based actuation performs versus conventional external actuation and their effect on

the hydrodynamics of elastic plates; (2) to probe the effects of combining internal and

external actuation patterns; (3) to understand the effects of non-uniform mechanical

properties on the swimming mode and its impact on propulsion performance. To

answer these questions, we develop and validate a fully-coupled three-dimensional

fluid-structure interaction (FSI) model of an elastic plate plunging in a viscous fluid.

The fluid solver is based on the lattice Boltzmann method (LBM) while the solid

solver uses finite differences (FD) or the lattice spring method (LSM). The solvers are

fully-coupled through dynamic and kinematic boundary conditions at the interface.

1.3 Thesis Structure

The rest of this dissertation is organized as follows. Chapter 2 describes the FSI model

as well as presents validation for several test cases. Chapter 3 presents the results of

the systematic investigation of an internal versus an external actuation method. In

chapter 4, we present the results of combining previously opposed actuation methods.

Chapter 5 describes the impact of non-uniform mechanical properties on the swim-

ming performance. Finally, chapter 6 summarizes the results laid out in this work as

well as discusses the outlook of this research.
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CHAPTER 2

FLUID–STRUCTURE INTERACTION (FSI) MODEL

Our computational model is based on a fully coupled solver simulating the three-

dimensional hydrodynamics of an elastic plate submerged into an incompressible New-

tonian fluid. On the fluid side, we capture the mechanics using the Lattice–Boltzmann

Method (LBM), while the solid mechanics is solved using a finite differences (FD) or

lattice spring method (LSM) formulation. LBM and FD/LSM are fully coupled at

the fluid-solid boundaries using a two-way coupling procedure [52], [53]. Our cou-

pling procedure is highly parallelizable, scalable, and time efficient when compared

to traditional FSI procedures. While LBM does not require slow matrix inversions,

FD and LSM allow simple and elegant modeling of complex solid behavior.

2.1 Lattice–Boltzmann Method (LBM)

The lattice Boltzmann method is based on the solution of the discrete Boltzmann

equation. The computational domain is discretized using a cubic lattice of equally

spaced nodes. At each node, the flow is characterized by a velocity distribution

function fi(r, t) that represents the density of fluid particles at position r propagating

at velocity c in the direction i at time t. The macroscopic quantities characterizing

the flow, such as the density ρ, momentum ρu and stress Π are retrieved by taking

moments of the distribution functions given by

ρ =
∑
i

fi , ρu =
∑
i

fici , Π =
∑
i

fici ⊗ ci . (2.1)

We use D3Q19 lattices that maintains 19 directions of the distribution functions in

three spatial dimensions. The time evolution of the distribution functions is computed
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by integrating the discrete Boltzmann equation

fi(r + ci∆t, t+ ∆t) = fi(r, t) + Ωi . (2.2)

Here Ωi is the collision operator and represents the change in fi due to instantaneous

fluid “particle” collisions at each node. We use a dual relaxation time collision op-

erator [54] which increases the accuracy at the fluid-solid boundaries and stability

for a larger range of Reynolds numbers compared to single relaxation time collision

operators. The post-collision distribution function is computed as

fi(r, t) + Ωi = ai

ρ+
ρu · ci
c2
s

+

(
ρu⊗ u+ Π∗

neq

)
:
(
ci ⊗ ci − c2

sI
)

2c4
s

 . (2.3)

Here cs = ∆x√
3∆t

is the speed of sound and the non-equilibrium momentum flux Π∗
neq

is given by

Π∗
neq

= (1 + λ) Πd

neq︸ ︷︷ ︸
deviatoric

+
1

3
(1 + λν)

(
Π
neq

: I
)
I︸ ︷︷ ︸

spherical

(2.4)

where Πd

neq
is the traceless part of Π−Π

eq
and λ and λv are the two relaxation param-

eters in the LBM closure. They relate to the shear and bulk viscosities respectively

as

µ = −ρc2
s∆t

(
1

λ
+

1

2

)
(2.5)

ζ = −ρc2
s∆t

(
2

3λν
+

1

3

)
. (2.6)
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Furthermore the weights ai depend on the distribution velocity |ci| as

ai =


1/3, if |ci| = 0

1/18, if |ci| = 1

1/36, if |ci| =
√

2

. (2.7)

The LBM algorithm elegantly consists in two steps : collision and advection.

1. At each lattice node we compute the post-collision distribution function;

2. Based on the respective velocity direction ci we propagate the function to the

neighboring lattice node.

2.1.1 Turbulence modeling

In order to model the flow accurately at higher Re at reasonable computational cost,

we adopt a large eddy simulation (LES) approach. In the LES approach, eddy motions

of fluid with length scales bigger than the computational grid are computed while sub-

grid scales are modeled. One of the most popular subgrid model is the Smagorinsky

subgrid scale (SGS) model. The filtered LBM equation for LES is written as

f i(r + ci∆t, t+ ∆t) = f i(r, t) + Ωi (2.8)

where · indicates grid filtering. The effect of the subgrid scales is captured by an eddy

viscosity

νt = C∆
2|S| (2.9)

where Sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain rate tensor, |S| =

√
2SijSij, ∆ = ∆x = ∆y =

∆z is the filter width equal to the lattice spacing and C is the Smagorinsky constant.

The filtered strain rate tensor can be evaluated by taking finite differences of the
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velocity field or from non-equilibrium moments [55]. It relates to the non-equilibrium

stress tensor Πij,neq as

Sij = − 1

2ρc2
sτw

Πij,neq (2.10)

Πij,neq =
∑
k

ckickj

(
f

neq

k

)
(2.11)

where τw = 1
2

+ 1
c2s∆t

(νt + ν0) is the total relaxation time, ν0 and νt are the molecular

and turbulent viscosity respectively. By combining these equations we can compute

τw as

τw =
1

2
+

1

c2
s∆t

ν0 +
c2
s

2

√τ 2
0 ∆t2 +

2∆tC2∆2|Π
neq
|

c4
s

− τ0∆t

 (2.12)

2.2 Thin Plate Model

2.2.1 Finite Differences (FD)

2.2.1.1 Isotropic Homogeneous Plate

In this subsection we consider an istropic homogeneous plate. The plate elastic de-

formation is modeled using the Kirchhoff-Love assumptions [56] with the x, y, and z

components of plate displacement respectively defined as

u(x, y, z) = −z∂w
∂x

(x, y) ,

v(x, y, z) = −z∂w
∂y

(x, y) ,

w(x, y, z) = w(x, y, 0) = w(x, y) .
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For a differential plate element of size dx and dy, the forces and moments acting on

the element are given by

∂Mx

∂x
+
∂Mxy

∂y
= Qx , (2.13)

∂Mxy

∂x
+
∂My

∂y
= Qy , (2.14)

∂Qx

∂x
+
∂Qy

∂y
+ q(x, y, t) = ρsh

∂2w

∂t2
. (2.15)

Here, Qx, Qy and Mx, My are the shear forces and bending moments in the respective

direction, Mxy is the twisting moment and q is the transverse load acting on the plate.

For an isotropic material, the bending moments are given by

Mx = −D
(
∂2w

∂x2
+ ν

∂2w

∂y2

)
, (2.16)

My = −D
(
∂2w

∂y2
+ ν

∂2w

∂x2

)
, (2.17)

Mxy = −D(1− ν)
∂2w

∂x∂y
. (2.18)

where D = Eh3

12(1−ν2)
is the bending stiffness of the plate, which is constant considering

an isotropic plate with constant thickness. By combining Eqs. 2.13–2.18, we obtain

an equation for the transverse displacement of the elastic plate

ρsh
∂2w

∂t2
= q(x, y, t) +

(
Nx

∂2w

∂x2
+Ny

∂2w

∂y2
+Nxy

∂2w

∂x∂y

)
−D∇4w − γ∇4∂w

∂t
. (2.19)

Here, ∇4 is the bilaplacian operator, γ ≥ 0 is the Kelvin-Voigt damping coefficient

Nx, Ny, Nxy are the in-plane shearing forces and ν is the Poisson ratio. In discretized

form (with γ = 0), with explicit central finite differences in time and space, equation
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2.19 yields

ρh

∆t2
(
wn+1

i,j − 2wn
i,j + wn−1

i,j

)
= qni,j + wn

i+2,j

(−D
∆x4

)
+ wn

i−2,j

(−D
∆x4

)
+ wn

i,j+2

(−D
∆y4

)
+ wn

i,j−2

(−D
∆y4

)
+wn

i+1,j+1

(
− 2D

∆x2∆y2
+

Nn
xyi,j

4∆x∆y

)
+ wn

i−1,j+1

(
− 2D

∆x2∆y2
−

Nn
xyi,j

4∆x∆y

)
+wn

i+1,j−1

(
− 2D

∆x2∆y2
−

Nn
xyi,j

4∆x∆y

)
+ wn

i−1,j−1

(
− 2D

∆x2∆y2
+

Nn
xyi,j

4∆x∆y

)
+wn

i,j

[
−D

(
6

∆x4
+

8

∆x2∆y2
+

6

∆y4

)
−

2Nn
xi,j

∆x2
−

2Nn
yi,j

∆y2

]
+wn

i+1,j

[
4D

(
1

∆x4
+

1

∆x2∆y2

)
+
Nn

xi,j

∆x2

]
+wn

i−1,j

[
4D

(
1

∆x4
+

1

∆x2∆y2

)
+
Nn

xi,j

∆x2

]
+wn

i,j+1

[
4D

(
1

∆y4
+

1

∆x2∆y2

)
+
Nn

yi,j

∆y2

]
+wn

i,j−1

[
4D

(
1

∆y4
+

1

∆x2∆y2

)
+
Nn

yi,j

∆y2

]
.

(2.20)

To constrain the plate stretching during the deformation we impose the inextensibility

condition. This condition is enforced numerically by introducing a differential arc-

length ds2 = dx2 + dw2 that is numerically approximated as

xi+1 = xi +

√
∆s2 − (wi+1 − wi)2 . (2.21)

The PDE can be rewritten as

ρsh
∂2w

∂t2
= q(x, y, t)+

(
Nx

∂2w

∂x2
+Ny

∂2w

∂y2
+Nxy

∂2w

∂x∂y

)
+L (w,D) (x, y, t)−L

(
∂w

∂t
, γ

)
(x, y, t) .

(2.22)

Here L is an operator defined as L : (u1, u2) 7−→ −u2∇4u1. The PDE is completed

with appropriate boundary conditions on the displacement, moments and forces.
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w(0, y, t) = B ∧ ∂w
∂x

(0, y) = 0 : clamped root,

Mx(L, y) = 0 ∧ Vx(L, y) = 0 : free tip,

My(x, 0) = 0 ∧ Vy(x, 0) = 0 : free side,

My(x,w) = 0 ∧ Vy(x,w) = 0 : free side.

Here, B = A(t) for the externally actuated plate, whereas in the case of the internally

actuated plate, B = 0. Furthermore, Vx(x, y) = Qx(x, y)+ ∂Mxy

∂y
(x, y) is the equivalent

shear force, which was introduced by Kirchhoff [57] to reduce the number of boundary

conditions to two. The corner reaction is defined as

R = 2Mxy(x, y) = −2D(1− ν)
∂2w

∂x∂y

∣∣∣∣
x,y

. (2.23)

2.2.1.2 Isotropic Inhomogeneous Plate

For an inhomogeneous isotropic material the PDE modeling the behavior of the plate

is identical to eq. (2.22) with the exception of the operator L defined as

L : (u1, u2) 7−→ − u2∇4u1 −
(
∂2u2

∂x2
+ ν

∂2u2

∂y2

)
∂2u1

∂x2
−
(
∂2u2

∂y2
+ ν

∂2u2

∂x2

)
∂2u1

∂y2

− 2
∂3u1

∂x3

∂u2

∂x
− 2

∂3u1

∂y3

∂u2

∂y
− 2

∂3u1

∂x∂y2

∂u2

∂x
− 2

∂3u1

∂x2∂y

∂u2

∂y

− 2(1− ν)
∂2u2

∂x∂y

∂2u1

∂x∂y
.

(2.24)

Here the thickness, stiffness and Kelvin-Voigt damping factor are functions of x and

y. We solve the plate equation of motion with relevant boundary conditions using

finite differences. The time and space discretization is based on a central finite dif-
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ference scheme with ghost nodes at the boundaries. This choice of the discretization

results in a 13 points stencil for the displacement and 9 points stencil for the stiff-

ness/damping. The undamped (γ(x, t) = 0) PDE for the isotropic inhomogeneous

plate 2.24 discretized with central finite differences gives

ρi,jhi,j

∆t2

(
wn+1

i,j − 2wn
i,j + wn−1

i,j

)
= wn

i+2,j

(
Di−1,j − 2Di,j −Di+1,j

2∆x4

)
+ wn

i−2,j

(
Di+1,j − 2Di,j −Di−1,j

2∆x4

)
+wn

i,j+2

(
Di,j−1 − 2Di,j −Di,j+1

2∆y4

)
+ wn

i,j−2

(
Di,j+1 − 2Di,j −Di,j−1

2∆y4

)
+wn

i+1,j

[
4Di,j

(
1

∆x4
+

1

∆x2∆y2

)
− Di+1,j − 2Di,j +Di−1,j

∆x4

−ν Di,j+1 − 2Di, j +Di,j−1

∆x2∆y2
+ (Di+1,j −Di−1,j)

(
1

∆x4
+

1

∆x2∆y2

)]
+wn

i−1,j

[
4Di,j

(
1

∆x4
+

1

∆x2∆y2

)
− Di+1,j − 2Di,j +Di−1,j

∆x4

−ν Di,j+1 − 2Di, j +Di,j−1

∆x2∆y2
+ (Di−1,j −Di+1,j)

(
1

∆x4
+

1

∆x2∆y2

)]
+wn

i,j+1

[
4Di,j

(
1

∆y4
+

1

∆x2∆y2

)
− Di,j+1 − 2Di,j +Di,j−1

∆y4

−ν Di+1,j − 2Di, j +Di−1,j

∆x2∆y2
+ (Di,j+1 −Di,j−1)

(
1

∆y4
+

1

∆x2∆y2

)]
+wn

i,j−1

[
4Di,j

(
1

∆y4
+

1

∆x2∆y2

)
− Di,j+1 − 2Di,j +Di,j−1

∆y4

−ν Di+1,j − 2Di, j +Di−1,j

∆x2∆y2
+ (Di,j−1 −Di,j+1)

(
1

∆y4
+

1

∆x2∆y2

)]
+wn

i+1,j+1

[
− 2Di,j

∆x2∆y2
+
Di−1,j −Di+1,j +Di,j−1 −Di,j+1

2∆x2∆y2
−(1− ν)

Di+1,j+1 −Di+1,j−1 −Di−1,j+1 +Di−1,j−1

8∆x2∆y2

]
+wn

i−1,j+1

[
− 2Di,j

∆x2∆y2
+
Di+1,j −Di−1,j +Di,j−1 −Di,j+1

2∆x2∆y2
+(1− ν)

Di+1,j+1 −Di+1,j−1 −Di−1,j+1 +Di−1,j−1

8∆x2∆y2

]
+wn

i+1,j−1

[
− 2Di,j

∆x2∆y2
+
Di−1,j −Di+1,j +Di,j+1 −Di,j−1

2∆x2∆y2
+(1− ν)

Di+1,j+1 −Di+1,j−1 −Di−1,j+1 +Di−1,j−1

8∆x2∆y2

]
+wn

i−1,j−1

[
− 2Di,j

∆x2∆y2
+
Di+1,j −Di−1,j +Di,j+1 −Di,j−1

2∆x2∆y2
−(1− ν)

Di+1,j+1 −Di+1,j−1 −Di−1,j+1 +Di−1,j−1

8∆x2∆y2

]
+wn

i,j

[
−Di,j

(
6

∆x4
+

8

∆x2∆y2
+

6

∆y4

)
+2 (Di+1,j − 2Di,j +Di−1,j)

(
2

∆x4
+

2ν

∆x2∆y2

)
+2 (Di,j+1 − 2Di,j +Di,j−1)

(
2

∆y4
+

2ν

∆x2∆y2

)]
.

(2.25)

2.2.2 Lattice Spring Method (LSM)

Just as FD is an efficient discretization of PDEs on regular geometries, it becomes

significantly more complex to use this framework on complex geometries. On the

other hand, the lattice spring method (LSM) is tailored to study the solid mechanics

of complex geometrical shapes. It has been widely used to model large deforma-
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k i j

kb

ks

Figure 2.1: Schematics of a triangular lattice in LSM. The mass node i is connected
to neighboring nodes j, k ∈ J1; 6K by a series of stretching and torsional springs with
respective constants ks and kb. Stretching springs connect every ij pair while torsional
springs are placed at node i are defined for every colinear triplet kij (6 stretching
springs and 3 torsional springs for this unit cell). The dashed contour delimits the
Voronoi region of the element.

tions of elastic materials. One of the main advantages of LSM when compared to

the finite elements method (FEM) is its inherent simplicity in both formulation and

computation. While FEM require the inversion of large matrices, LSM requires sig-

nificantly less computational effort. In LSM, instead of discretizing solid mechanics

equations directly on elements, volumes or points, a continuous solid is discretized

by a network of masses and springs. The mapping of the discrete network properties

(mass and stiffness constant) to macroscopic quantities (total mass, bending stiffness,

etc.) depends intrinsically on the type of lattice network used. For instance, it has

been shown that discrete triangular lattices recover the macroscopic properties of an

isotropic material. Additional springs or forces can be added to modify the macro-

scopic behavior of the network. Applying the conservation of momentum to the mass

points gives a set of differential equations modeling the motion of the nodes.

Figure 2.1 illustrates a triangular lattice unit. Node i is linked to N (i) = 6

regularly spaced neighboring nodes by Hookean springs with spring constant ks. The
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dashed contour delimits the Voronoi region of the element associated to node i. The

energy due to stretching at node i is given by

Us =
ks
2

N (i)∑
j=1

(∥∥ri − rj∥∥− req)2
(2.26)

where ri is the position of node i, req is the equilibrium length of the spring connecting

nodes i, j, ‖·‖ is the Euclidian norm and N (i) is the direct neighborhood to node i

(here N (i) = 6). The total stretching force acting on node i can be found by taking

the gradient of the energy with respect to node i

F stretch,i =
∂Us
∂ri

= −ks
N (i)∑
j=1

∥∥ri − rj∥∥− req∥∥ri − rj∥∥ (
ri − rj

)
. (2.27)

Such an equilateral triangular network with constant spring constants leads to isotropic

mechanical properties. Young’s modulus E can be retrieved from the network prop-

erties as E = 2√
3
ks and the Poisson ratio ν is constant ν = 1

3
[58]. This constant

Poisson ratio is one of the limitation of “vanilla” LSM but it is easily overcome by

changing the shape of the network or adding springs. To model the bending of the

plate, torsional springs are added at node i.

A bending unit is defined as a colinear triplet ijk where nodes j and k are sym-

metric with respect to node i. For instance, on figure 2.1 there are three bending

units ijk. A torsional spring is placed for each bending unit in a unit cell. Once

more, assuming a constant torsional spring constant kb, the energy due to bending

can be computed as

Ub =
kb
2

B(i)∑
j,k=1

[cos θijk − cos θ0] (2.28)

where B(i) are the bending units associated to the unit cell at node i, θ0 = π is the

equilibrium angle and θijk is the angle between edges ij and ik. Once more, the force
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can be found by taking the gradient of the bending energy and we have

F bend,j = − kb∥∥ri − rj∥∥ ‖ri − rk‖
[
ri − rk −

cos θijk∥∥ri − rj∥∥2

(
ri − rj

)]
, (2.29)

F bend,k = − kb∥∥ri − rj∥∥ ‖ri − rk‖
[
ri − rj −

cos θijk

‖ri − rk‖2 (ri − rk)
]
, (2.30)

F bend,i = −
(
F bend,j + F bend,k

)
. (2.31)

For a triangular lattice, such torsional springs lead to a constant bending stiffness

D = 3
√

3
4
kb [58]. In addition to the stretching and torsional springs, the LSM network

is completed with dashpots between each node in order to mitigate high mode oscil-

lations that might destabilize the FSI coupling. The damping force is proportional to

the relative velocity between nodes so that the overall momentum is conserved. This

force can be expressed as

F damping,i =
αd∥∥ri − rj∥∥2

[(
vi − vj

)
·
(
ri − rj

)] (
ri − rj

)
(2.32)

where αd is a damping coefficient that can be tuned to stabilize computations. The

sum of stretching, bending and damping forces can be regrouped as the internal forces

acting on the network F int. Therefore the total force acting on node i is given by

F tot,i = F int,i +F ext,i, where F ext,i is the sum of external forces acting on node i such

as the fluid forces. By applying Newton’s second principle, the equation of motion

for node i is defined as

mi
dvi
dt

= F tot,i (2.33)

where mi is the mass of node i. The equations of motion can be integrated in time

explicitly or implicitly. The explicit integration is significantly less computationally

intensive however explicit integration with LSM has many shortcomings with regards
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to FSI. The explicit integration leads to a condition on the time step ∆t < ∆xLSM

cp

where ∆xLSM is the lattice spacing, cp =
√

K+4G
3ρs

is the celerity of P-waves, K and G

are the bulk and shear modulus respectively. In addition to the conditional stability,

explicit LSM suffers from spurious instability when ∆xLSM < ∆xLBM . The latter

condition is specially detrimental for the spatial accuracy of the solid solver. Another

important shortcoming of explicit LSM comes from a limit in density ratios. Indeed,

a weak coupling between the fluid and solid solver leads to poor stability for higher

density ratios.

On the other hand, an implicit integration of the equation of motion overcomes

both shortcomings of the explicit integration. However, the implicit integration is not

trivial and can be computationally intensive as it necessarily involves the inversion of

a matrix at each time step. Let us rewrite the equation of motion discretized in time

with a first order implicit scheme

rn+1
i − rni

∆t
= vn+1

i (2.34)

mi
vn+1
i − vni

∆t
= F n+1

tot,i . (2.35)

Equations 2.34 and 2.35 form a set of non-linear equations which can be solved using

the Newton-Raphson method or a quasi-Newton method. Fortunately this problem

can be simplified by adopting a semi-implicit stance where the linear part of the

stretching force and the fluid forces are integrated implicitly while the non-linear

part of the stretching and the bending forces are integrated explicitly. This semi-

implicit approach does not lead to an unconditional stability however it alleviates

significantly the limitations of the explicit integration [59], [60]. A straightforward

manipulation of 2.27 shows that the total stretching force at node i can be split in a
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linear and non-linear part as

F stretch,i = −ks
N (i)∑
j=1

(
ri − rj

)
− ks

N (i)∑
j=1

req∥∥ri − rj∥∥ (ri − rj) = F linear
stretch,i + F non-linear

stretch,i .

(2.36)

Therefore we can rewrite equation (without damping for simplicity) 2.35 as

vn+1
i = vni +

∆t

mi

(
F linear,n+1

stretch,i + F non-linear,n
stretch,i + F n

bending,i + F n+1
fsi,i

)
. (2.37)

The linear part of the stretching force a step n + 1 can be computed with a first-

order Taylor expansion F linear,n+1
stretch,i = F linear,n

stretch,i + ∂F
∂ri

∆rn+1
i where ∆rn+1

i = rn+1
i − rni =(

vni + ∆vn+1
i

)
∆t. The matrix H = ∂F

∂ri
can be seen as a Jacobian (with respect to

the force) or Hessian matrix (with respect to the energy). The computation of H is

straightforward [61], [62]

Hij = ks,ij , i 6= j (2.38)

Hii = −
N (i)∑
j=1

ks,ij . (2.39)

The Hessian matrix can also be seen as the discretization of the Laplace-Beltrami

operator on an equilateral triangular mesh [63]. We can now regroup terms in eq.

2.37

(
I − ∆t2

mi

H

)
∆vn+1

i =
∆t

mi

(
F n

int,i + F n+1
fsi,i +H vni ∆t

)
. (2.40)

Equation 2.40 now forms a system of linear equations which can be solved directly

or iteratively. This is an expensive problem as H is a 3N × 3N matrix where N is
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Figure 2.2: Computational setup schematics. Both the coarse (black) and fine (blue)
boxes enclose the solid plate which lies into the fine mesh.

the total number of nodes. Fortunately, as long as the network parameters mi and

ks are constant, the matrix
(
I − ∆t2

mi
H
)

stays constant throughout the computation.

Therefore, the matrix and its inverse can be computed once at the start of the compu-

tation. Besides, due to the structure of the network, ks,ij the spring constant between

nodes i and j is non-zero if and only if j ∈ N (i) therefore
(
I − ∆t2

mi
H
)

is sparse. The

matrix inversion is carried out iteratively by using the conjugate gradient method for

sparse matrices from the Eigen framework [64].

2.3 Computational Setup

The computational domain consists into two boxes centered around the plate. The

solid plate lies into the inner most box, referred to as the fine grid where the spacing is

∆x,f = ∆y,f = ∆z,f = 1. The outer most box, referred to as the coarse grid where the

grid spacing is ∆x,c = ∆y,c = ∆z,c = 2, encloses both the fine grid and the solid plate.

The swimmer of length L = 50 LBM units lies one body-length away from the fine

mesh’s −x–plane and equidistant from the y and z planes. The computational domain

is made large enough so that the wake dissipates before reaching the boundaries.
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2.4 Boundary Conditions

The coarse and fine grids are coupled through a multi-step procedure. The boundary

conditions on the coarse grid are either periodic or a pressure boundary condition.

At the fluid-solid boundary we apply no-slip and no-penetration conditions using a

linearly interpolated bounce-back scheme. The distribution functions propagating

into the plate are reflected back into the opposite direction while taking into account

the position and velocity of the intersecting point on the solid surface. The momentum

resulting from the reflection of the distribution function is then transferred to the

plate. This momentum transfer is represented by an equivalent force redistributed

to the surrounding solid nodes using a weighted average based on distances while

conserving normal and tangential forces on the boundary. This fluid-solid coupling

procedure has been previously extensively validated and used to study diverse fluid-

structure interaction problems [49], [65]–[70].

When integrating the equation of motion discretized with either FD or LSM, the

treatment of F fsi is critical for the stability and computational cost of the model.

For instance, an explicit integration also known as weak coupling results in a lesser

computational load at the cost of stability. A weak coupling falls short when the

structure is too light compared to the fluid. On the other hand, an implicit (or

strong) coupling results in a significantly more stable model at the cost of a heavier

computational load [71]–[73].

2.5 Validation

2.5.1 Homogeneous Plate

We validate the FD solid solver by modeling static deflection of a cantilevered plate

due to a load applied at the free end. The numerical solution is compared with the

deflection of an Euler-Bernoulli beam with a bending stiffness EI described using the
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following boundary-value problem

∀s ∈]0; 1[, θ′′(s) = −q0L
2

EI
cos θ(s) , (2.41)

θ(0) = 0 , θ′(1) = 0 . (2.42)

Here, q0 is the load, s is the arc length coordinate, L is the length of the beam and θ

is the beam angle. The equation is solved using a fourth-order Runge-Kutta scheme.

In figure 2.3, the beam solution is compared to our FD solution for various loads.

We find close agreement between the finite differences results and the Runge-Kutta

solution with tip deflections reaching up to 70% of the beam length for a mesh of 20

nodes in the length and 11 nodes in the width.

2.5.2 Inhomogeneous Beam & Plate

We mirror the same approach to validate the tapered plate solver. We first consider

a beam of varying thickness h : x 7−→
[
rh + (1− rh) xL

]
h0
rh

and therefore bending

stiffness EI : x 7−→ Eh3(x)w
12

. Here h0 and rh = h0/hL are respectively the thickness

at the root and the ratio of the thickness at the root and the tip, called tapering

ratio. The PDE modelling the deflection of an end-loaded inhomogeneous beam then

becomes

∀s ∈]0; 1[,

(
EI(s)

EI0

θ′(s)

)′
= −q0L

2

EI0

cos θ(s) , (2.43)

θ(0) = 0 , θ′(1) = 0 . (2.44)

Here EI0 is the bending rigidity at the root and q0 is the load. In order to compare

our plate solver to a beam solution we set the Poisson ratio ν = 0. Even though the
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Figure 2.3: (a) Bending deformation of the end-loaded cantilevered plate with aspect
ratio AR = 2 and a non-dimensional load q0L

2/EI = 0.2. The finite difference
solution using 20 node mesh deviates less than 1% from the non-linear BVP solution.
(b) Static deflection of the end-loaded cantilevered plate with aspect ratio AR = 2
as a function of the non-dimensional load q0L

2/EI. The comparison between the
non-linear Runge–Kutta and the finite differences solutions shows good agreement
including for moderate to high deformation levels. The linear analytical solution only
valid for relatively small loads.
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beam is inhomogeneous, as it is clamped at the root and under a concentrated load

at the tip, we expect the bending moment to vary linearly from the root to zero at

the tip. Once again the FD solution shows good agreement with the Runge-Kutta

solution for moderate tip deflection (up to 10% of the length), including the bending

moment following the linear analytic profile as can be seen in figure 2.4a.

We also compare the FD scheme to an actual 3D simulation using Comsol, a

commercial software based on the finite elements (FE) method. In the plate setup,

the bending stiffness becomes D = Eh3

12(1−ν2)
and we define D0 the stiffness at the tip.

Once more, we show good agreement between the FD and FE solutions for both the

deflection and bending moment (figure 2.4b). However, in the 3D case, i.e. with a

non-zero Poisson ratio, the evolution of the bending moment near the root (x = 0)

shows that there are non-negligible 2D effects due to the clamped boundary condition.

2.5.3 Trapezoidal Plate

To validate LSM, we consider the static deflection of a non-rectangular cantilevered

plate of length L and stiffness D under a load q0L/D0 = 0.15. The LSM results

are once more compared to Comsol. The trapezoidal geometry is characterized by

the ratio of the width at the root and tip of the plate wr

wt
= 0.25 as well as the

aspect ratio AR = L
wr

= 2.5. The plate is discretized in LSM with N = 231 nodes

and a equilibrium length req = 2.325 LBU. In Comsol, the plate is discretized with

Ne = 2623 elements and quadratic polynomials. The resulting centerline deflection

is shown in figure 2.5. We find good agreement between LSM and Comsol for the

trapezoidal plate with less than 2% deviation which demonstrates LSM’s capability

to model elastic plates of various shape.
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Figure 2.4: Static deflection under a non-dimensional load (a) q0L
2/EI0 = 0.1 of

a fully tapered end-loaded cantilevered beam (ν = 0) using finite differences and
a Runge-Kutta scheme and (b) hybrid uniform and tapered cantilevered plate (ν =
0.31) under a non-dimensional load q0L

2/D0 = 0.1 using finite differences and Comsol.
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Figure 2.5: Centerline static deflection under a non-dimensional load q0L/D0 = 0.15
of a trapezoidal cantilevered plate using LSM and Comsol.
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Figure 2.6: Externally (base excited) actuated plate bending patterns at resonance.
Numerical results are shown by the solid lines, whereas experimental data is shown
by the symbols. The plate tip displacement is δt = 0.01L, the aspect ratio is AR = 2,
and Re = 1000.
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Figure 2.7: Oscillating cylinder computational setup schematics. Here, only the fine
grid is represented.

2.5.4 Coupled FSI

2.5.4.1 Laminar flow

To further quantify the accuracy of our model we compare our numerical solution to

underwater experiments. In this configuration the plate is homogeneous and actuated

at the root with an external harmonic amplitude A(t) = A0 sin(ωt) leading to a tip

deflection δt/L = 0.01. We perform the computation for 20 periods to reach a steady

state and compare to the experimental measurements. In figure 2.6 we show good

agreement between the numerical solution and experiments with little discrepancy.

2.5.4.2 Turbulent flow

We validate the LES turbulence model by comparing the draft an lift coefficients of

an oscillating cylinder of diameter D and length L in an external flow. The cylinder

oscillates harmonically in the direction transverse to the flow with an amplitude A0 =

0.3D and period τ so that the motion of the cylinder w is given by w(t) = A0 sin 2πt
τ

.

The physics of this problem is governed by the Reynolds number ReD = U0D
ν

= 104

where U0 is the free stream velocity, the Strouhal number StD = D
τU0

and the cylinder

blockage ratio β = D
L

= 0.1. The domain represented in figure 2.2 consists of a fine

grid of size 30D× 20D× 4D and a coarse grid of size 60D× 10D× 2D. It is periodic

in the direction of the cylinder’s length to model an infinite cylinder.
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Figure 2.8: Evolution of the (a) mean drag and (b) magnitude of lift coefficients for
an oscillating cylinder with amplitude A0 = 0.3D and Re = 104.
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Figure 2.9: Vorticity contours for ωτ = ±20 for an oscillating cylinder with amplitude
A0 = 0.3D, StD = 0.17 and Re = 104.

To benchmark our model, we compare the mean drag and magnitude of lift coef-

ficient Cd = Fx
1
2
ρU2

0D
and Cl = Fz

1
2
ρU2

0D
to DNS [74] and experimental results [75] for a

set of StD. Gopalkrishnan [75] showed that both the drag and lift coefficients present

a sharp increase for StD ∼ 0.2. In figure 2.8a we show that the results from our

LB-LES model captures the global trend of the experimental data. The LES is able

to capture the local increase in Cd near StD = 0.2 however it underestimates the

mean drag for lower StD. Similarly, in figure 2.8b our results show that the LB-LES

model can capture the global trend of the lift coefficient specially near StD = 0.2 but

it tends to overestimate the lift at lower StD.

In figure 2.9 we show the vortex structure generated in the wake of the cylinder. As

expected in this configuration the wake is made of alternating rotating and counter-

rotating vertices shedding away from the cylinder. Overall, the agreement between the

LES and experimental measurements demonstrates the model’s capacity to capture

turbulent effects with moving boundaries.
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2.6 System Parameters

Let us consider a thin elastic plate with length L, width W , and uniform thickness

h � L yielding an aspect ratio AR = L/W . The plate oscillates periodically in

an incompressible Newtonian fluid of density ρ = 1 LB units and dynamic viscosity

µ. In every study the plate is actuated at a constant period τ = 2000 LB units

and therefore constant angular frequency ω. The fluid regime is characterized by

the Reynolds number Re = ρUcLc

µ
. Here, we choose the length of the plate as the

characteristic length Lc = L and the characteristic velocity Uc = L
τ
. Furthermore,

the dynamic response of the submerged structure heavily depends on the mass ratio

χ = ρW
ρsh

. Additionally, we define a characteristic force Fc = 1
2
ρWLU2

c and power

Pc = 1
2
ρWLU3

c .

The dynamic response of an oscillating elastic plate is a function of the proximity

of the driving frequency to the plate resonance frequency. The resonance frequency

depends on the properties of the plate material as well as the fluid surrounding the

plate. In vacuum and by neglecting internal dissipation (structural damping), small

deflections of a beam with bending rigidity D and mass per length Ml = ρsWh can

be modelled by

Ml
∂2w

∂t2
+D

∂4w

∂x4
= 0 . (2.45)

This problem can be solved using Fourier decomposition [76] yielding the natural

frequencies ωn,vac given by

ωn,vac =
λ2
n

L2

√
D

Ml

, (2.46)

where λn is an eigenvalue of the problem, n ∈ N∗ and the first vibration mode, n = 1,

is of interest in this work. The natural frequency, corresponding to the condition

when the response and excitation are in quadrature of phase, yields the maximum tip
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deflection. In the lightly damped problem, such as the vacuum case, the resonance

frequency is approximately the natural frequency. Fluid displaced by the oscillating

plate acts as an additional mass altering the dynamics of the plate. When the added

mass is significantly greater than the plate mass, the effective linear mass due to the

displaced fluid can be used instead of the plate mass. This leads to a dimensionless

effective flexibility D∗ = (ρWf 2L5/D)
1
2 representing the ratio of added mass forces

to internal bending forces [43].

When the plate is driven to oscillate in a fluid, the resonance frequency defines

the oscillation regime maximizing the tip deflection. Fluid viscosity affects the forced

resonance frequency, although for low fluid damping the resonance frequency overlays

with the natural (undamped) frequency. Note that [43] and [44] have shown for

elastic plates that the maxima of the thrust and tip deflection occur for the same

effective flexibility. Thus, the values of D∗ corresponding to the maximum thrust

match the forced resonance frequency. We also note that experimentally the frequency

sweep is performed by varying the actuation frequency. In our numerical simulations,

however, the actuation frequency is constant, whereas the stiffness is varied to alter

the proximity of the oscillating plate to the resonance frequency.

To quantify the variation of the stiffness (equivalent to a varying frequency) we

define the stiffness ratio r =
√

D1

D
which to the first order approximates the fre-

quency ratio r ' ω
ω1,vac

, where D1 is the bending stiffness that yields the first natural

frequency. Therefore, for r = 1 the plate is actuated at its first natural frequency.

In the case where the plate is constrained horizontally to oscillate in place, we

characterize the performance of the plate by computing the period-averaged forces

F i and power P as F i = 1
τ

∫ t+τ
t

F (t) · eidt and P = 1
τ

∫ t+τ
t
P(t)dt. Here ei is the

orthonormal basis vector, P(t) = F (t) · v(t) is the instantaneous power and v is the

instantaneous velocity. We then define a propulsion efficiency as η = Fx/Fc

P/Pc
.

When the plate is let free swimming, the period-averaged thrust is null by def-
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Figure 2.10: Picture of (a) an MFC laminate and (b) close-up schematic of a repre-
sentative volume element showing the interdigitated electrodes, piezoelectric fibers,
and epoxy matrix embedded in Kapton film. (c) Bimorph cantilevers with two dif-
ferent aspect ratios (each made from two MFC laminates for bending actuation).
(d) Mechanical base excitation (external actuation) setup and (e) electrical (internal)
actuation setup. (f) Close-up view of an MFC bimorph cantilever.

inition. Therefore we characterize the swimming performance by computing the

period-averaged swimming velocity U and power P . We then define an economy

ε = U/Uc

P/Pc
= UFc

P . The higher the economy, the further the plate travels for the same

power input.

2.7 Experimental Setup

The experimental test samples, setup details and pictures are provided by Dr. Alper

Erturk’s SSDSL group at Georgia Tech.

The experimental test samples (piezoelectric cantilevers) and the overall setup

details are shown in figure 2.10 along with close-up views of the relevant components.

The flexible piezoelectric structures were built by vacuum bonding a pair of the iden-

tical custom-made waterproof MFC laminates using high strength epoxy (3M DP460)

to fabricate bimorph structures. Electrical wires were soldered to the electrodes of

the MFCs and the joint was fully waterproofed by multiple layers of liquid electrical

tape (Star Brite Liquid Electrical Tape). Two different excitation mechanisms of
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input energy are applied to create persistent oscillations of the cantilevers: electrical

(internal) actuation and mechanical (external) base excitation.

First, in the piezoelectric actuation, the bimorphs were placed into an aluminum

clamp attached to a rigid mount to create a cantilevered structure and electrically

connected to a pair of high voltage amplifiers (Trek PA05039). Linear electrical

actuation experiments were conducted with the sample in a vacuum chamber to

characterize the dynamics of the structure in the absence of fluid loading. To do so,

electrical noise bursts were sent to the piezoelectric bimorphs while the mechanical

response at the tip of the cantilever was measured using a Laser Doppler Vibrometer

(LDV) (OFV-5000 with an OFV-505 sensor head). Once the linear response was

well characterized along with in vacuo structural damping, frequency sweeps were

conducted around the first resonant frequency to measure the amplitude-dependence

between the piezoelectric bimorph and the surrounding fluid. Later, the structure

was submerged underwater to a depth of 25 centimeters to avoid surface effects.

Linear electrical actuation experiments were repeated under water, being careful to

divide the measured tip velocity underwater by the index of refraction of water to

determine the true velocity of the structure. By comparing the dynamics of the

structural modes from the in vacuo and underwater experiments, empirical linear

inertia coefficients were extracted from the data. Once the linear tests were complete,

the nonlinear response of the structure was again measured via frequency sweeps

underwater centered around the first resonant frequency of the underwater structure.

For mechanical external actuation experiments, the bimorphs (along with the alu-

minum clamps) were fixed onto the testing platform of an APS-113 long-stroke shaker

which was connected to an APS-125 amplifier. For the sake of the characterization

of the dynamic response of the bimorphs under mechanical external actuation, linear

vacuo tests were again conducted in a vacuum chamber to have a reference for obtain-

ing the inertia coefficient. An LDV was used for obtaining the absolute tip velocity
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AR L(mm) W (mm) h(mm) ρs(kg.m
−3) EI(N.m2) χ

2 88.5 43.5 6.1 360 0.0163 20
4 83.5 21.5 6.1 360 0.087 10

Table 2.1: Experimental parameters

of the bimorphs, and at the same time, another LDV was implemented to collect

the velocity-to-actuation voltage input frequency response from the fixed-end of the

bimorphs. After the in vacuo reference experiments, the bimorphs were immersed in

water along with an aluminum bar that one of its ends was attached to the shaker.

Similarly, linear mechanical actuation tests were done to characterize the dynamics of

the bimorphs to characterize fluid loading effects. Finally, large-amplitude frequency

sweeps were conducted in the frequency range centered around the first resonant fre-

quency obtained from the prior tests. Note that to keep the oscillation level at the

fixed-end of the bimorphs constant within the entire range of frequency sweeps, the

velocity signals obtained from the second LDV were sent into a controller to create a

closed-loop feedback control system as required in nonlinear vibration experiments.

Typical characteristic velocities lead to a Reynolds number in the range between 102

and 104.
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CHAPTER 3

EFFECTS OF ACTUATION METHODS

3.1 Introduction

In this chapter, we investigate the fundamental effects of two different actuation meth-

ods on the hydrodynamics of an elastic plate. We consider two different configurations

of the plate actuation. In the first configuration, referred to as an externally actu-

ated plate, the elastic plate is actuated at its root with a harmonic plunging pattern

given by A(t) = A0L sinωt, where ω is the angular velocity, A0 is the dimensionless

root displacement amplitude, and t is time as shown in figure 3.1. In the second

configuration, referred to as an internally actuated plate, the plate is driven by a

harmonic internal bending moment given by M(t) = M0DL/W sinωt with M0 being

the dimensionless moment amplitude in the y direction. In the internally actuated

configuration the plate root is clamped and fixed in place. Furthermore, the plate is

actuated at resonance r = 1 to yield the highest tip deflection. We systematically

investigate the kinematics, forces and flow patterns for both actuation methods. We

show that the different actuation methods yield different kinematics that in turn re-

sults in significantly different hydrodynamic loading and performance. We show that

the performance of the actuation methods drastically differs between low and high

tip deflections. We demonstrate that, particularly at high tip deflection, externally

actuated plates outperform internally actuated plates in both thrust and efficiency.

In this chapter, Re = 1000 unless specified otherwise.
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Figure 3.1: Schematics of rectangular elastic plates with (a) external and (b) internal
actuation methods in the global and local reference frames. The externally actuated
plate is driven at the root by harmonic oscillations with an amplitude A(t). The
internally actuated plate is driven by a time-dependent distributed internal bending
moment M(t).

3.2 Frequency Response

In figures 3.2 and 3.3, we present simulation results and experimental data for inter-

nally and externally actuated plates oscillating in water with a moderate tip deflection

δt/L = 0.01. Close agreement between the simulations and experiments confirms the

ability of our coupled FSI solver to properly model such oscillations. Figure 3.2 shows

the Bode diagrams for plates with external and internal actuation. The phase ∆θ

is computed as the lag between the root and tip displacements for the externally

actuated plate. In the case of the internally actuated plate, ∆θ is computed as the

lag between the tip displacement and the input internal moment.

As the driving frequency approaches the resonance frequency of the plate, the tip

velocity magnitude and, therefore, tip displacement reach a maximum (figure 3.2a).

The resonance frequency can therefore be identified by inspecting the root mean

square tip velocity Vtip frequency response. On the other hand the natural frequency

can be identified by investigating the phase difference between the driving source (root

displacement or internal moment) and the tip deflection. At the natural frequency

the driving source and tip displacement are in quadrature of phase (figure 3.2b). For

relatively small amplitude δt/L = 0.01, the natural and resonance frequency coincide,
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Figure 3.2: Frequency response function for (a) the tip velocity Vtip and (b) the
phase for δt/L = 0.01, χ = 5 and AR = 2. The numerical results are shown by
the lines, whereas the experimental data is shown by the symbols. The resonance is
characterized by a quadrature of phase ∆θ = π/2 between the root and the tip.
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Figure 3.3: (a) Plate bending pattern and (b) bending curvature κ for the externally
actuated plate at resonance. (c) Plate bending pattern and (d) bending curvature
κ for the internally actuated plate at resonance. Numerical results are shown by
the solid lines, whereas experimental data is shown by the symbols. The plate tip
displacement is δt/L = 0.01, the aspect ratio is AR = 2, χ = 5 and Re = 1000.

confirming that the plate oscillates in the linear regime.

3.3 Plate Deformation

We focus on the hydrodynamics of resonance oscillations. In figure 3.3, we show

experimental and computational snapshots illustrating the plate bending pattern and

corresponding plate curvature κ(x) = z′′(x)/
[
1 + z′2(x)

]3/2
for the internally and

externally actuated plates. The plate aspect ratio is AR = 2 and the actuation

in both cases yields δt/L = 0.01. In the case of an external actuation, the plate

deformation in the z–direction grows monotonically along the plate length with the

maximum at the plate free end (figure 3.3a). Such deformation is typical for resonance

oscillations. This is confirmed by inspecting the plate curvature (figure 3.3b). The
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curvature monotonically decreases towards the plate tip from the maximum value at

the root. The application of the external force at the root yields the most significant

plate bending that gradually decreases towards the tip where the curvature is zero,

indicating that near the tip the plate remains straight during the entire oscillation

cycle.

The resonance deformation of an internally actuated plate (figure 3.3c) is notice-

ably different from that of an externally actuated plate. In the case of the internal

actuation, the tip of the plate displays a non-zero curvature during most of the oscil-

lation cycle (figure 3.3d). Interestingly the maximum curvature occurs at the plate

root for both types of actuation. As we discuss below, the difference in the deforma-

tion patterns between externally and internally actuated plates have a drastic effect

on the plate hydrodynamics and the generated hydrodynamic forces.

We further compare the plate bending patterns for the two actuation methods

in figure 3.4, where we show the simulated time histories of the plate deflection, the

plate rotational angle and the plate curvature. The instantaneous tip deflection dt(t)

and center of mass displacement dcg(t) are shown in figure 3.4a. The solid lines refer

to the externally actuated case while the dotted lines refer to the internally actuated

plate. The maximum tip deflection occurs at about t/τ = 0.5 for both the plates,

since the plates oscillate at resonance. In the case of the externally actuated plate

the center of mass and the tip displacement have a phase lag of ∆θ = π/4, while the

internally actuated plate center of mass and tip are in phase.

In figure 3.4b, we present the time history of the local plate angle α at the plate

center of mass and tip. For the external actuation, we find that the angle is in

phase at both locations. Therefore at the maximum tip displacement, the angle is

positive yielding a slope that effectively transfers the fluid backwards and minimizes

the relative motion between the plate and the fluid. On the other hand, for the

internally actuated plate, the local angle shifts along the length of the plate so that
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Figure 3.4: Time history of (a) the instantaneous deflection at the tip dt and at
the center of mass dcg, (b) the angle at the tip αt and at the center of mass αcg,
and (c) the curvature at the tip κt and at the center of mass κcg for numerically
simulated internally and externally actuated plates with aspect ratio AR = 2, χ = 5
and Re = 1000 at resonance.
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at the tip the angle and the deflection are out of phase. This change along the length

results in relative motion between the plate and the fluid leading to a greater vorticity

generation as we discuss below.

In figure 3.4c, we show the time history of the plate local curvature κ at the center

of mass and at the tip. The externally actuated plate maintains zero curvature at

the tip during the entire oscillation period, whereas the curvature at the center of

mass is maximized at the maximum plate deflection. For the internal actuation case,

the magnitude of the curvature does not decrease with the distance from the root as

it happens for the externally actuated plate. Figure 3.4c shows that the curvature

magnitude changes insignificantly between the center of mass location and the trailing

edge. Furthermore, the maximum curvature at the tip coincides with the maximum

input bending moment to satisfy the respective boundary condition.

3.4 Flow Field

In figure 3.5, we show surfaces of constant vorticity magnitude generated at reso-

nance by externally and internally actuated plates as predicted by our simulations.

Vorticity is generated as a result of the relative motion of the plate with respect to

the surrounding fluid and, therefore, is the most significant along the trailing edge

(TEVs) and the side edges (SEVs) of the plate. During each stroke the combina-

tion of SEVs and TEVs forms a characteristic horseshoe shaped set of vortices that

are periodically shed from the oscillating plate. The horseshoe vortices sharing com-

mon features are generated by plates with both modes of actuation. However, there

are also important differences in the emerging flow structures associated with their

distinct bending patterns.

Several theoretical and experimental studies highlight the key role of reverse Kar-

man streets for propulsion [77]–[79]. Both actuation patterns lead to the generation of

sets of vortices with opposite rotation direction. In both instances, counterclockwise
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Figure 3.5: Contours of normalized vorticity ωτ = ±10 of the numerically sim-
ulated (a-d) externally actuated plate and (e-h) internally actuated plate with
AR = 2, χ = 5, Re = 1000, and tip deflection δt/L = 0.25 at resonance at times
t/τ = 0.25, 0.5, 0.75, 1, respectively. Vortices represented in red are rotating counter-
clockwise while vortices represented in blue are rotating clockwise.

44



vortices are shed at the top while clockwise rotating vortices are shed at the bottom.

The sign of these vortices creates a jet flowing away from the tip of the plate. This

configuration leads to the production of a net thrust. For the lowest actuation levels

tested, the sign of these vortices flip which corresponds to a net drag force on the

plate [17], [77]–[80].

When considering the external actuation, the plunging motion of the plate leading

edge produces a leading edge vortex (LEV), however its strength is relatively weak

compared to SEVs and TEV. Since the plate is actuated in a quiescent fluid, the

LEVs shed close to the root and do not interact in the wake with TEVs and SEVs.

Therefore, we do not anticipate they play an important role in the thrust production

for this setup. Furthermore, SEVs extend along the entire plate length from the

root to the tip. In the case of the internal actuation, the root is immobilized. As a

result, the internally actuated plate does not produce LEVs, whereas significant SEVs

develop only at halfway distance from the root to the tip. Thus, one can expect the

externally actuated plate that displaces more fluid during each strokes would generate

more vorticity compared to the internally actuated plate with comparable trailing

edge displacement.

To further characterize the flow field, figure 3.6 shows simulation snapshots of the

flow field around oscillating plates with different actuation types. The glyph demon-

strates the alternating vortical structure shed at the tip of the plate. A downstroke

generates counter-clockwise vortices, as shown in figures 3.6b, 3.6c, 3.6f, and 3.6g,

whereas the upstroke generates clockwise vortices, as shown in figures 3.6a, 3.6d,

3.6e, and 3.6h. The interaction of the vortices creates a jet in the x-direction leading

to a net thrust. We note that these flow structures are consistent with the literature

[42].

We quantified the vorticity generated by each actuation method by computing

the normalized enstrophy E = ω · ω τ 2. Enstrophy is a measure of the intensity of
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Figure 3.6: Normalized velocity magnitude ||U ||/U0 of the numerically simulated (a-
d) externally and (e-h) internally actuated plate with AR = 2, χ = 5, Re = 1000,
and tip deflection δt/L = 0.25 at resonance at times (a-d) t/τ = 0.25, 0.5, 0.75, 1,
respectively.
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Figure 3.7: Time history of the normalized bulk enstrophy Ebulk for numerically sim-
ulated internally and externally actuated plates with AR = 2, χ = 5, Re = 1000, and
tip deflection δt/L = 0.25 at resonance.

viscous dissipation [81]. In figure 3.7, we show the time evolution of the volume av-

eraged enstrophy over one period of plate oscillations. For both plates the enstrophy

displays similar time dependent behavior with two peaks. However, the locations of

the peaks are somewhat different. Compared to the plates with external actuation,

the peaks for the internally actuated plate shifted towards the ends of the upstroke

and the downstroke at, t/τ = 0.2 and t/τ = 0.7, respectively. Figure 3.7 also shows

that throughout most of the oscillation period, the internally actuated plate gener-

ates noticeable greater enstrophy and, therefore, viscous dissipation compared to the

externally actuated plate.

We find that, for the externally actuated plate, the maximum viscous dissipation

coincides with the maximum tip deflection, whereas the minimum enstrophy corre-

sponds to zero tip deflection (figure 3.4a). In the case of the internally actuated plate,

however, enstrophy production is related to the plate curvature at the trailing edge.
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Indeed, comparing figure 3.4c and figure 3.7, we find that the maxima of enstrophy

are close to the maxima of tip curvature at t/τ = 0.25 and t/τ = 0.75, while the en-

strophy minima coincide with zero tip curvature at t/τ = 0.5 and t/τ = 1. Thus, the

“cupping” exhibited by the internally actuated plate is a major contributor causing

the increased enstrophy production and, therefore, viscous dissipation.

3.5 Hydrodynamic Performance

To further investigate the difference between the two actuation methods, we examine

time evolution of the hydrodynamic force generated by the plates. In figure 3.8a,

we show the simulation results for the instantaneous lift force Fz over one oscillation

period. The input refers to the prescribed motion at the root and the internal moment

for the externally and internally actuated plates, respectively. We normalize the forces

by the characteristic force based on the plate length. The externally and internally

actuated plates yield comparable maximum lift. The maximum occurs close to π/2

coinciding with the phase of the maximum plate displacement at resonance. The

mean lift force is zero due to the symmetry of the periodic oscillations.

The thrust force Fx generated by the plates is presented in figure 3.8b. The peak-

to-peak amplitude of the thrust force is similar for both cases. The difference is,

however, that the externally actuated plate generates a significantly greater period-

averaged thrust compared to the internally actuated plate. The figure shows that

there is almost a two fold difference in the value of the net thrust between the exter-

nally and internally plates. We relate this difference to the bending patterns shown in

figure 3.3, where the negative angle at the tip or “cupping” of the internally actuated

plate yields a plate shape that is ineffective for propelling fluid backwards. Thus,

the externally actuated plate yields substantially greater thrust than the internally

actuated plate with the same tip displacement.

To further validate our model, we show on figure 3.9 a comparison between the
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Figure 3.8: Time histories of (a) the lift force and (b) the thrust force for numerically
simulated internally and externally actuated plates with AR = 2, χ = 5, Re = 1000
and tip displacement δt/L = 0.25 at resonance.

49



0 0.5 1 1.5 2
−5

−2.5

0

2.5

5

Num. : δt/L = 0.14 δt/L = 0.088

Exp. : δt/L = 0.12 δt/L = 0.088

Time, t/τ

L
if
t
fo
rc
e,
F
z
/F

c

(a)

0.5 1 1.5 2 2.5
−0.5

−0.25

0

0.25

0.5

Num. : δt/L = 0.14 δt/L = 0.088

Exp. : δt/L = 0.12 δt/L = 0.088

Time, t/τ

T
h
ru
st

fo
rc
e,
F
x
/F

c

(b)

Figure 3.9: Time histories of (a) the lift force and (b) the thrust force measured
numerically (solid lines) and experimentally (dashed lines) for internally actuated
plates with AR = 2, χ = 5 and Re = 1000 at resonance.
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instantaneous thrust and lift forces measured experimentally and numerically for

internally actuated plates for δt/L = 0.14 and δt/L = 0.088. Although there is a

slight deviation in the minimum thrust amplitude with experiments when t/τ ' 1.5,

we find good agreement between the experimental measurements and the numerical

simulations for both the instantaneous lift and thrust.

In figure 3.10a, we plot the dependence of the mean thrust force on the tip de-

flection δt for the externally and internally actuated plates with two different aspect

ratios. Overall, the normalized thrust increases with the tip deflection. Furthermore,

we find good agreement with experimental results for several tip deflection tested.

For relatively small δt/L (up to about 0.05) that roughly corresponds to the linear

regime of the plate oscillations, the increase is almost linear with δt (see inset in figure

3.10a). For larger values of δt, the thrust scales as δ3
t indicating the influence of the

non-linear effects. For the two aspect ratios tested, the externally actuated plates

generate greater thrust compared to the internally actuated plates. This suggests

that externally actuated plates outperform internally actuated plates independently

of the aspect ratio given that they have similar trailing edge displacements.

Furthermore, for both the external and internal actuation methods, we find that

wider plates with AR = 2 produce greater thrust than more narrow plates with

AR = 4. This difference can be attributed to the effect of SEVs [51], [82]. It was

shown using scaling arguments that SEVs increases with the tip displacement, but not

the plate width. Therefore, for the same tip displacement a wider plate experiences

a lower adverse effect of SEVs and generates more thrust per plate unit width.

The power consumption by the internally and externally actuated plates is shown

in figure 3.10b as a function of the tip deflection δt. The power input increases

monotonically with the tip deflection for both actuation methods. For small deflection

amplitudes δt/L < 0.05, the power P increases proportionally to δ2
t , whereas for

larger δt, the power increases as δ3
t (see inset in figure 3.10b). We find that the wider
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Figure 3.10: Dependence of (a) the normalized thrust F x/Fc, (b) input power P/Pc,
and (c) efficiency ηc on the tip deflection magnitude δt. The simulation results are
for Re = 1000, χ = 5 and two aspect ratios AR = 2 and AR = 4.
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plates require greater power input per unit width compared to the narrow plates

independently of the actuation method. This is consistent with the higher thrust

produced by the wider plates (figure 3.10a) and can be related to larger amount of

fluid displaced by such plates per unit width. Furthermore, we find that externally

actuated plates require greater input power to oscillate with the same tip deflection

as internally actuated plates. This can be in part attributed to the additional power

required by externally actuated plate to displace fluid near the oscillating plate root

compared to the internally actuated plate with clamped root. Indeed, even at small

levels of actuation the LEVs and SEVs have comparable sizes (figure 3.5).

To further characterize the hydrodynamic performance of oscillating plates, we

compute the thrust efficiency η = Fx/Fc

P/Pc
in figure 3.10c as a function δt. We find that

the efficiency is maximized for smaller δt, but rapidly decreases with increasing δt

within the linear regime. In the non-linear regime, the efficiency varies slightly with

δt. Indeed, in the linear regime F x ∝ δt and P ∝ δ2
t resulting in η ∝ 1/δt. For greater

δt characterized by non-linear oscillations, both F x and P scale with δ3
t , which in

turn results in η nearly independent of δt. Comparing the externally and internally

actuated plates, we find that the externally actuated plates exhibit higher efficiency

than the internally actuated plates, except for the lowest tip deflection conditions.

This is because at small δt the efficiency of the externally actuated plate is reduced

due to the plunging motion at the root that dissipates energy but does not contribute

to the thrust. For larger values of δt, externally actuated plates outperform internally

actuated plates with the same aspect ratio. The reduced efficiency of internally

actuated plates is associated with the trailing edge curvature disrupting the flow and

generating an increased level of vorticity, as shown in figure 3.7. We also find that

wider plates are more efficient than narrow plates for the entire range of δt. This is

due to the lower contribution of SEVs into the overall energy budget of the wider

plates.
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3.6 Reynolds Number Effects

In figure 3.11, we use simulations to probe the effect of the flow regime by varying the

Reynolds number for the two actuation methods. Here, we consider plates with two

values of tip deflections and AR = 2. In figure 3.11a, we show that the normalized

thrust does not change significantly with Re. As demonstrated by [35], at high enough

Re the thrust is mainly defined by the tip kinematics, supported by nearly constant

thrust for higher Re. Conversely at lower Re, the tip kinematics do not fully define

the thrust production. This trend persists for both types of actuation, although the

externally actuated plates produce greater thrust.

In figure 3.11b, we show the evolution of the normalized power with Re. As the

Reynolds number increases the normalized power decreases and remains constant at

higher Re. This behavior can be attributed to the increase of viscous dissipation

associated with a lower Re. To generate the same tip deflection, the plate requires

more power when the viscous effects are more significant. For both tested tip deflec-

tions, the internally actuated plates consume less power compared to the externally

actuated plates.

The change of the hydrodynamic efficiency of the plates with Re is shown in figure

3.11c. Over the entire range of Re we tested, the externally actuated plates outper-

form the internally actuated plates. The difference in efficiency is more significant

for the lower tip deflection amplitude. This indicates that as the viscous effects be-

come more important, the hydrodynamic efficiency is more sensitive to the difference

in bending patterns of the internally and externally actuated plates. Conversely, at

higher Reynolds number, the hydrodynamic efficiency converges to a constant value.

This behavior is consistent with the potential flow solution predicting that the effi-

ciency is set by the tip kinematics.
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Figure 3.11: Dependence of (a) the normalized thrust F x/Fc, (b) input power P/Pc,
and (c) efficiency ηc on the Reynolds number Re. The simulation results are for
δt/L = 0.15, δt/L = 0.25, χ = 5 and AR = 2.
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3.7 Inertia Coefficient

When the plate oscillates in fluid, the volume of displaced fluid acts as an additional

mass altering the dynamics of the plate. This added mass shifts the natural frequency

of the plate to lower values [83]. This effect can be characterized using an inertia

coefficient cm = 4
πχ

(
ω2
1,vac

ω2
1,f
− 1
)

[84]. For a given mass ratio, the inertia coefficient

is a function of the frequency ratio alone. For small enough amplitudes, the inertia

coefficient only depends on the plate aspect ratio, we refer to this regime as the linear

regime. However, as the amplitude increases, non-linear hydrodynamic effects make

the inertia coefficient a function of the aspect ratio and the tip amplitude [85]. We

can rewrite equation 2.46 with an additional mass per areaM due to the fluid moved

by the plate as

ω1,f =
λ2

1

L2

√
D

σs +M . (3.1)

By comparing the two definitions, we can obtain

ω2
1,vac

ω2
1,f

= 1 +
M
σs

.

For plates with moderate and high aspect ratios, the added mass can be expressed as

M = π
4
ρwcm = π

4
χσscm, with cm being the inertia coefficient. We therefore evaluate

the inertia coefficient as follows

cm =
4

πχ

(
ω2

1,vac

ω2
1,f

− 1

)
. (3.2)

In figures 3.12a and 3.12b, we show the inertia coefficient cm for plates with,

respectively, AR = 2 and AR = 4 as a function of the tip deflection δt. We find close

agreement between the experiments and simulations in spite that they use different

values of the mass ratio χ. As shown in the inset in figure 3.12a, the inertia coefficient
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Figure 3.12: Dependence of inertia mass coefficient on the tip deflection in the linear
oscillation regime of internally and externally actuated plates for Re = 1000, χ = 5
and aspect ratios (a) AR = 2 and (b) AR = 4. The left inset in (a) shows the
dependence of the inertia coefficient on the mass ratio for δt/L = 0.01. The right
inset in (a) and inset in (b) show the inertia coefficient for non-linear range of plate
oscillations. In (a) and (b), the lines represent simulation results while the symbols
represent experimental data.
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is nearly independent of χ for χ > 2.5. This explains good agreement between

simulations and experiments in figures 3.12a and 3.12b, where the simulations are

performed with χ = 5, whereas the experimental plates are respectively characterized

by χ = 20 and χ = 10.

Our experiments are limited to relatively small tip deflections about δt = 0.05. In

the simulations, we explore significantly wider range of δt shown in the insets in figures

3.12a and 3.12b. We find that the inertia coefficient plateaus with the increasing tip

deflection, consistent for both types of actuation. Although it can be expected that

the inertia coefficient is a sole function of the aspect ratio and the tip amplitude, our

results show that the actuation method strongly affects cm. Not only cm increases

with the tip amplitude, but also the difference between cm for two actuation methods

increases with δt. For larger δt, the inertia coefficient for the externally actuated

plate systematically exceeds cm of the internally actuated plate. This result is in

agreement with the hydrodynamic loading acting on the plate shown in figure 3.10.

The externally actuated plate produces greater hydrodynamic forces and, therefore,

is characterized by a higher inertia coefficient than the internally actuated plate.

In figure 3.13, we show the inertia coefficient cm and normalized mean thrust

F x/F Lighthill for the wider plate AR = 2 in the non-linear regime (δt/L = 0.05) as

a function of Re. The dot-dashed line is drawn from potential flow theory. In this

figure the mean thrust is normalized by the mean thrust predicted by the inviscid

theory. Our results show that as Re increases the numerical results asymptotically

approach the analytical inviscid solution. As Re increases viscous effects become less

prominent and affect a region closer to the plate. Ultimately, in the limit of Re −→∞

the inertia coefficient asymptotically reaches unity.

Simulation results are compared to Lighthill’s inviscid theory which relies solely

on tip kinematics to predict the mean thrust. Mirroring the behavior of cm, as Re

increases simulation results approach the analytical prediction asymptotically. In
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Figure 3.13: Dependence of the inertia coefficient and mean thrust on the Reynolds
number for δt/L = 0.05 and χ = 5. The dot-dashed line represents the analytical
results from Lighthill’s theory in the inviscid limit.

agreement with Lighthill’s prediction, simulation results show that in the inviscid

limit, the tip kinematics almost completely characterize the thrust generated by the

plate.

3.8 Summary

We systematically investigate and compare the hydrodynamics of elastic plates os-

cillating in an incompressible Newtonian fluid subjected to two distinct actuation

methods. We probe the resonance oscillations in linear and non-linear regimes of

an externally actuated plate and a plate with an internal actuation. We pinpoint

the critical differences in their bending patterns leading to different hydrodynam-

ics performances. Specifically, the internally actuated plates display “cupping” of

the trailing edge due to a non-zero plate curvature induced by the internal bend-

ing moment. Furthermore, internally actuated plates exhibit a phase change of the
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plate angle along the plate length. Conversely, externally actuated plates have a zero

curvature at the tip and an in-phase plate angle along the entire plate length. We

show that this difference in bending pattern between internally and externally ac-

tuated plates leads to greater vorticity production by internally actuated plates and

therefore enhances the viscous dissipation.

We find that for the same level of trailing edge displacement externally actuated

plates outperform internally actuated plates in terms of the generated thrust and

consumed power. Furthermore, plates with external actuation are more efficient than

plates with internal actuation with exception of the smaller tip amplitudes, in which

the efficiency of the externally actuated plates is limited due to the root displacement.

For both actuation methods, we find that wider plates outperform more narrow plates

due to the adverse effects of the side edge vortexes. Additionally, we also probe the

effect of the actuation method on the plate inertia coefficient and find that the inertia

coefficient is insensitive to the mass ratio for ratios greater than 2.5. In the linear

oscillation regime, both actuation methods are characterized by similar values of

the inertia coefficient. However, for larger tip deflections, the inertia coefficient of

the externally actuated plate significantly exceeds that of internally actuated plates,

which is related to the greater hydrodynamic forces experienced by the externally

actuated plates. Thus we show that the inertia coefficient is not only a function of

the aspect ratio and tip deflection, but also the actuation pattern.

We show that in the range 500 < Re < 4000, the Reynolds number has minor

influence on the thrust generated by the plate. We find that the plate kinematics

defining the thrust production does not change significantly in this Re range. Con-

versely, Re impacts the power and, therefore, hydrodynamic efficiency of the plate.

At lower Re, viscous effects increase the input power that, in turn, negatively af-

fects the efficiency. Increasing Re also leads to a decrease of the inertia coefficient

that converges to unity for higher Re. This behavior is consistent with analytical
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solution for an inviscid fluid. We find that these trends prevail for both actuation

method. Nevertheless, for lower Re the dependence of the plate hydrodynamics on

the actuation method is more critical.

The results of our study provide useful guidelines for designing efficient biomimetic

underwater robotic vehicles that utilize internally actuated propulsors such as piezo-

electric actuators. Piezoelectric actuators are highly attractive due to a high degree

of control over the bending pattern including a combined twisting-bending motion,

large amplitude actuation, silent operation, and the ease of interaction into robotic

swimmers. Our study points to the need for improving the efficiency of internally

actuated propulsors to match or exceed the efficiency achievable with externally ac-

tuated elastic fins.
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CHAPTER 4

HYBRID ACTUATION

4.1 Introduction

In this chapter we investigate how simultaneously actuating a thin elastic plate in-

ternally and externally can improve the propulsion performance. The aspect ratio

is fixed AR = 2.5. The external actuation is imposed at the plate base leading to

harmonic heaving oscillations A(t) = A0L sin (ωt), where A0 is the dimensionless

heaving amplitude. The plate internal actuation is due to a distributed harmonic

bending moment M(t) = M0D
L
W

sin (ωt+ φ), where M0 is the dimensionless moment

amplitude and φ is the phase lag between the external and internal actuation (Figure

4.1). Note that M0 represents the magnitude of static tip deflection of the plate due

to the distributed bending moment. The external and internal actuation share the

same angular frequency ω = 2π/τ . We set ω = ωres leading to a Reynolds number

Re = 1000, with ωres being the fundamental resonance frequency of the plate in fluid

[76]. To explore the hydrodynamics of combined actuation, we fix the external actu-

ation amplitude A0 = 0.1 while varying the internal moment amplitude M0 and the

phase lag φ. As a reference configuration of the propulsor, we use an externally actu-

ated plate with A0 = 0.1 characterized by the constrained plate efficiency ηr,c = 0.234,

free swimming efficiency ηr,f = 0.632, velocity Ur/Uc = 0.6, thrust Fr/Fc = 0.312,

and power Pr/Pc = 1.333. This reference configuration allows us to directly compare

the performance of propulsors with combined actuation with that of an externally

actuated propulsor.

We find that the hybrid combined actuation significantly outperforms either single

actuation methods in both propulsion and efficiency. This enhanced performance is
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Figure 4.1: (a) Schematic of an oscillating elastic plate with length L, width w, and
thickness h � L. The plate is actuated by a heaving motion at the base a(t) and
by a distributed internal bending moment m(t). (b) Plate actuation signals with a
phase lag φ.

due to the hybrid actuation’s capacity to maintain relatively high thrust output while

minimizing viscous losses. This balance is associated to moderately high tip displace-

ment accompanied by a relatively low center of mass displacement. Furthermore, we

show that the phase lag between the actuation signals allows to directly control the

propulsion and energetic regimes.

4.2 Hydrodynamic Performance

Figure 4.2a shows the variation of the thrust F x for the constrained plate and the

swimming velocity U for the free swimming plate with the phase φ. We find that

these two propulsion metrics are strongly correlated indicating that either can be

used to characterize the plate propulsion. The propulsion is maximized when the

external actuation and the internal actuation are nearly in phase at φ = π/12, and

is minimized when the actuation signals are in phase opposition about φ = 11π/12.

Compared to the externally actuated reference case, the combined actuation with

M0 = 0.1 doubles the propulsion, whereas using M0 = 0.05 increases the propulsion

by about 50%. The propulsion with combined actuation increases to nearly 7 times

of the reference case with M0 = 0.65 (see the inset in figure 4.2a). For M0 > 0.5 the
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Figure 4.2: (a) Normalized thrust F x/Fr, velocity U/Ur and (b) power as a function
of the phase difference between the internal and external actuation φ. The inset in
(a) shows the maximum and minimum values of F x/Fr as a function of M0. The
horizontal dashed lines show the (a) thrust and (b) power for internally actuated
plates with M0 = 0.1 (the red lines) and M0 = 0.05 (the blue lines).
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free end cupping negatively affects the swimming performance of combined actuation

decreasing the propulsion. When the plate is actuated out of phase the combined

actuation can reduce the propulsion to nearly zero. Note that the internal actuation

alone with, respectively, M0 = 0.1 and M0 = 0.05 yields thrust that is only about

50% and 10% of that of the externally actuated plate. Thus, the combined actuation

not only enables wide control over the propulsion, but can yield propulsion that

significantly exceed the sum of the propulsion of the plates with separate external

and internal types of actuation.

As shown in figure 4.2b the power exhibits dependence on φ that is similar to

that of the propulsion. The combined plate yields up to twice as much power as

the externally actuated plate for M0 = 0.1 and up to 50% more for M0 = 0.05. In

comparison, the internally actuated plate yields 50% less power for M0 = 0.05 and

80% less for M0 = 0.05. Similarly to the propulsion, we can infer the power scales

almost linearly with the internal moment when combined with the external actuation.

The power is maximized at φ = π/6 and minimized at φ = π. The maximum power

of the plate with combined actuation significantly exceeds the cumulative power of

plates with separate external and internal actuation. Furthermore, the combined

actuation can greatly reduce P compared to the externally actuated plate.

The trailing edge displacement dt is a major parameter that controls the plate

propulsion [77]. Figure 4.3a shows the propulsion metrics as a function of dt. We

find that there is a direct relationship between the velocity and thrust data and

the trailing edge displacement. This direct relationship between the propulsion and

tip displacement explains the mechanism modulating the propulsion by the phase

lag; when the external and internal actuation are in phase (φ = π/12), the tip dis-

placement and therefore the propulsion is maximized. Conversely when the internal

actuation is countering the external actuation, the tip displacement (φ = 11π/12) and

therefore the propulsion is minimal. Interestingly, the data for externally actuated
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Figure 4.3: (a) Dependence of the thrust F x and velocity U on the amplitude of the
tip displacement dt for M0 = 0.1. (b) Dependence of the power P on the amplitude
of the plate center of mass displacement dCM for M0 = 0.1. The solid lines with
symbols show the constrained external (diamonds) and internal (triangles) actuation
with different amplitudes of A0 and M0.
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plates with different actuation amplitudes closely matches the results for the plate

with combined actuation. On the contrary, internally actuated plates with varying

M0 yield significantly lower performance than the combined actuation for comparable

tip displacements. This is consistent with previous results [86] and can be attributed

to the sub-optimal bending pattern of internally actuated plates. Thus, in the case of

combined actuation the phase φ controls the tip displacement which in turn defines

the propulsion characteristics.

As shown in figure 4.3b, the power P scales with the displacement of the plate’s

center of mass dCM . The power consumption is minimized with the reduced center

of mass (CM) displacement and gradually increases with increasing dCM . The plates

with the combined actuation and the external actuation show similar dependencies,

whereas the internally actuated plate requires a slightly greater power for the same

CM deflection. At low center of mass displacement, the combined and single actuated

plates yield minimal power consumption. Although the power consumption mono-

tonically increases with the center of mass displacement in every case, the internal

actuation once more stands out. For the same center of mass displacement the in-

ternally actuated plate consumes more power than both the external and combined

actuation. The inherent difference once again lies in the slightly different kinematics

generated by the internally and externally actuated plates [86]. The direct relation-

ship between CM and power further clarifies the mechanism allowing the combined

actuation to modulate the power consumption. Whenever the external and inter-

nal actuation are in phase, the combined actuation yields significantly more center

of mass displacement which in turns translates into more power input. Conversely,

when the actuation methods are in phase opposition, the center of mass displacement

is minimized which in turn minimizes the power input. Note that dt and dCM for

the plates with combined actuation are maximized when the external and internal

actuation act in phase φ = 0 and minimized when they are in phase opposition φ = π.
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Figure 4.4: (a) Normalized constrained efficiency ηc/ηc,r and free swimming efficiency
ηf/ηf,r as a function of the phase difference φ. The inset shows the maximum efficiency
as a function of M0. The horizontal dashed lines show the efficiency of internally
actuated plates with M0 = 0.1 (the red lines) and M0 = 0.05 (the blue lines). (b)
Dependence of the efficiencies ηc and ηf on the ratio between the center of mass
and tip deflections dCM/dt for M0 = 0.1. The solid lines with symbols in (b) show
the constrained external (diamonds) and internal (triangles) actuation with different
amplitudes of A0 and M0.
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In figure 4.4a we show the efficiencies ηc and ηf for, respectively, constrained and

free swimming plates with combined actuation. Both these parameters reveal a similar

dependence on φ. More importantly, the efficiency can significantly exceed the value

characterizing the plate with the external actuation. The maximum efficiency of the

combined actuation is about 25% greater than that of the externally actuated plate.

The phase difference φ = 4π/3 leading to this actuation regime is nearly independent

of M0. The enhancement of the efficiency is maximized when M0 ' 0.075 as shown in

the inset in figure 4.4a. When M0 < 0.04, the efficiency decreases below the reference

value. In this M0 range, the increased power due to the internal actuation outweighs

its benefit for the propulsion. For greater M0, the internal actuation translates into

a significant increase of the plate efficiency up to M0 ' 0.1. Further increase of M0

yields a less efficient propulsion due to the tip cupping.

The efficiency represents the ratios of the propulsion metrics and the power. Since

the propulsion and the power are proportional to, respectively, dt and dCM , in figure

4.4b we plot ηc and ηf as a function of dCM/dt. Indeed we find that the data for

the plates with combined actuation clusters closely showing a decreasing trend with

increasing dCM/dt. Thus, for an efficient propulsion the bending patterns need to

have low dCM and high dt, whereas plate oscillations in which dCM increases with

respect to dt result in less efficient propulsion. For plates with independent internal

and external actuation, we find that dCM/dt changes only slightly with the amplitude

since at resonance the bending pattern weakly depends on the oscillation amplitude.

Note that for the plates with internal actuation only, dCM/dt is relatively small

compared to externally actuated plates and about the same value as the lowest dCM/dt

obtained with the hybrid actuation. Nevertheless, these propulsors show a low effi-

ciency due to the sub-optimal tip bending. Thus, having low dCM/dt is insufficient for

efficient locomotion. In figure 4.5, we show the efficiency as a function of the ratio θ/β

between the tip angle at the maximum velocity θ and the base angle β = arctan ωA0L
U

.
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function of the angle ratio θ/β.

Note that for the constrained plate, β is ill-defined since U = 0, therefore we assume

that the cruising velocity can be approximated by the tip velocity U ' Vt and as a

consequence β = arctan ωA0L
Vt

. For efficient swimming, θ/β should be in the range

between 0.5 and 1 [87]. Indeed, as θ/β increases, the tip of the plate aligns with the

flow which in turn leads to a more favorable distribution of the hydrodynamic forces.

Conversely when θ > β, propulsion turns inefficient due to flow separation occurring

before the plate’s tip. We find that the externally actuated plates and the plates with

hybrid actuation showing high efficiency are indeed close to the efficient θ ' β range.

The internally actuated plates, on the other hand, have θ/β that are much lower than

the optimum range confirming that the low efficiency is due to the bending pattern

with a sub-optimum tip angle.

Overall, the propulsor performance is enhanced when both the efficiency and

propulsion are maximized. In figure 4.6 we show the relationship between the ef-

ficiency and the propulsion. For the plate with the external actuation, the efficiency

decreases with increasing propulsion. Thus, one needs to compromise with either hav-
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ing a propulsor that maximizes its efficiency or propulsion. Although the internally

actuated plate performs poorly compared to the plate with the external actuation,

the plate with a combination of the external and internal actuation yields a propulsors

that significantly outperforms the externally actuated plate by both characteristics

simultaneously, as indicated by the green ellipse in figure 4.6. Note that the com-

bined actuation yields up to 60% greater propulsion for the same efficiency and is

25% more efficiency for the same propulsion output compared to the plate with the

external actuation.

4.3 Bending Patterns

In figure 4.7, we examine the bending pattern and the hydrodynamics of plates with

combined actuation at the maximum efficiency (φ = 4π/3), maximum propulsion

(φ = 0) and minimum power (φ = 11π/12). At the maximum propulsion the palate

exhibits a typical bending pattern for actuation at resonance that maximizes the tip
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Figure 4.7: Bending pattern of a plate with combined actuation at the (a) maximum
thrust (φ = 0), (b) maximum efficiency (φ = 4π/3) and (c) minimum power (φ =
11π/12).
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deflection (Figure 4.7a). At the maximum efficiency the bending pattern develops a

dip near the middle of the plate reducing the displacement of the center of mass. At

minimum power, the plate deflection is almost null along the entire length. In fact,

in this configuration the actuation methods compensate each other almost perfectly.

Consequently the plate deflects almost like a heaving rigid plate. This configuration

minimizes the power consumption but in turn does not yield any significant propul-

sion.

The tip and CM displacements over an oscillation period are shown in figure 4.7c.

For φ = 0 the tip and CM move by nearly 50% more than for φ = 4π/3. Furthermore,

for φ = 4π/3 the CM and tip are not in-phase which suggests higher bending mode

contributions.
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4.4 Flow Field

The difference in bending patterns results in different flow patterns generated by the

oscillating plates with a significantly higher vorticity at φ = π/12 than at φ ' 4π/3

and even more so than at φ = 11π/12. Indeed, when the actuation signals are in

phase opposition not only the tip displacement is minimal, which results in poor thrust

performance, but the CM as well. The minimal CM displacement is directly associated

to lesser SEV generation. Conversely, when the actuation signals are in phase the

high tip displacement yields significant thrust, however the important generation of

SEV results in lower efficiency. When φ ' 4π/3, there is substantial tip displacement

accompanied with moderate SEVs, this in turn results in a highly efficient propulsion.

We use the mean enstropy E to quantify the vorticity generated by the plates

[86]. We find that E is roughly proportional to dCM (Figure 4.7e), indicating that

the magnitude of CM displacement dictates to a large extent the amount of vorticity

produced by the plate. The plates with solely internal and external actuation generate

E similar to that of the combined actuation plate. Furthermore, when E is plotted

against the power P (Figure 4.7f), we find that the data for all actuation methods

collapse into a single curve. Thus, the power is indeed proportional to amount of

enstropy, which in turn is defined by the center of mass displacement.

4.5 Summary

In summary, we find that the hybrid internal-external actuation can be used to reg-

ulate the hydrodynamic performance of a propulsor by changing the phase difference

between the actuation signals while maintaining high efficiency outperforming propul-

sors with a single actuation method. Our results suggest that the propulsion directly

scales with the magnitude of the tip displacement, whereas the power is proportional

to the displacement of the center of mass of the propulsor. The hybrid actuation
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Figure 4.9: Contours of the normalized vorticity ωτ = 10 for (a) the maximum thrust,
(b) the maximum efficiency and (c) the minimum power.
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provides a unique way to regulate the balance between these two metrics, thereby

yielding a propulsor with overall superior propulsion and efficiency performance.

77



CHAPTER 5

TAPERED ATTACHMENTS

5.1 Introduction

In previous chapters, we investigated the performance of externally and internally ac-

tuated plates as well as combined actuation methods for homogeneous elastic plates.

Fish fins have undergone tremendous change in shape, function and mechanical prop-

erties through evolution. As a consequence, it is fundamental to understand the

relationship between fin properties and hydrodynamic performance. In this chapter

we consider internally and externally actuated plates augmented with a tapered pas-

sive attachment. The thickness, and therefore bending stiffness, is selected as a design

parameter against which we measure the swimmer performance.

We study the swimmer performance at varying driving frequencies and thickness

tapering and compare it against the performance of a uniformly thick plate. Our

results show that the tapering is a critical design parameter for both the propulsion

and swimming efficiency. Through wave theory arguments we characterize the effects

of the thickness tapering and demonstrate that the nature of the wave propagation has

a direct effect on the swimming performance. Furthermore, we demonstrate that the

hydrodynamic performance scales directly with specific plate metrics. These metrics,

inferred from our fully-coupled three dimensional model are then utilized in a simpler

propulsor model which, coupled with an optimization procedure, allows us to explore

an important part of the vast parameter space at a lower computational cost.
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5.2 Fish Motion

From anguilliform fish whose motion is based on travelling waves to ostraciiform fish

mainly using standing waves to propel, fish locomotion can be categorized by the

type of wave propagation. In between, subcarangiform and carangiform fish use a

combination of standing and travelling wave to achieve optimal swimming [88]. Gray

[89] analyzed films of fish swimming in a tank and drew several qualitative conclusions

from their study including a description of wave mechanisms creating forward thrust.

Following this categorization of fish locomotion, Lighthill [34] showed that the nature

of the propagating wave directly affects the swimming efficiency.

While fish use their muscles to dynamically change parameters such as the wave

number, amplitude, velocity, or the ratio of standing to travelling wave [90], man-

made devices are limited in generating and controlling complex bending patterns.

Although travelling waves can improve the propulsion efficiency in fish locomotion, it

is not trivial to generate travelling waves in a finite-sized swimmer. When a travelling

wave is generated at one end of a plate, the reflection at the other end creates a

backward-propagating wave. The summation of these two identical waves propagating

in opposite directions creates a standing wave. However, it has been shown that there

are several ways to generate a travelling wave in a finite-sized structure including

active [91] and passive [40] solutions. Inspired by natural fish fin tapering, we use a

novel passive approach to enhance propulsor hydrodynamics using tapered structures

and the acoustic black hole effect.

5.3 Tapered Propulsor

We consider a homogeneous plate of constant thickness hh and stiffness Dh with

a tapered attachment of varying thickness h and stiffness D. The homogeneous

part of the plate is either internally actuated with a distributed bending moment
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Figure 5.1: Schematics of the (a) internally and (b) externally actuated plate with a
tapered attachment.

M(t) = M0D
L
W

sinωt or passive and driven by a heaving motion A(t) = A0L sinωt

at the root. We illustrate these configurations in figure 5.1 where M0 = 0.1 is the

dimensionless moment and A0 = 0.1 is the dimensionless heaving amplitude. The ta-

pered attachment is completely passive in both instances, all sources of displacement

come from either the motion of the internally actuated part or the external actua-

tion. We additionally define Lh and Lt, respectively, the uniform and tapered section

lengths so that Lh + Lt = L. The plate thickness can be expressed as a continuous

piecewise-differentiable function (h ∈ C∞pw).

h : x 7−→

hh, for x ∈ [0;Lh]

ht(x), for x ∈]Lh;L]
. (5.1)

Here ht is a general C∞ function setting the “shape” of the tapering. Five distinct

cases are selected and referred to as : uniform, linear, parabolic convex, parabolic

concave, and exponential. The corresponding functions are given by
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∀x ∈ ]Lh;L] , ht(x) =



hh, uniform

hh
rh

[
rh + (1− rh)x−Lh

Lt

]
, linear

α
(
x−Lh

Lt

)2

+ β
(
x−Lh

Lt

)
+ γ, parabolic

hh exp
(
−x−Lh

Lt
ln rh

)
= hhr

−x−Lh
Lt

h , exponential

. (5.2)

Here, rh = h(0)/h(L) is the ratio of the root to the tip thickness referred to as the

tapering ratio. In the case of the parabolic tapering, additional control parameters

are defined as


α = hh

(
1− 1

rh

)
+ θ

β = 2hh

(
1
rh
− 1
)
− θ

γ = hh

(5.3)

where θ is the slope at the tip. In this case we define two distinct parabolic cases:

the convex and concave parabolic shape as seen in figure 5.2. By examining the plots

of the tapering shapes tested, we can sort each case from the less steep (closer to

uniform) to the steepest in the following order : uniform, parabolic concave, linear,

parabolic convex and finally exponential.

5.4 Acoustic Black Hole Theory

Mironov [92] showed that for tapered beams for which the thickness decreases follow-

ing h : x 7−→ εxn, n ∈ N∗, the wave number goes to infinity, and consequently the

phase and group velocity go to zero. When the wave number goes to infinity, any

wave propagating needs an infinite time to reach the zero-thickness tip, resulting in a

region where waves are trapped. This region is called an acoustic black hole (ABH)

due to the analogy with celestial black holes. In practice, manufacturing a beam or
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Figure 5.2: Plate (a) thickness and (b) stiffness distribution along the length for
rh = 5, Lh/L = 0.5 and several shapes normalized by the uniform section’s properties.
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plate with a zero-thickness tip is neither possible nor desirable due to physical limita-

tions and structural integrity. When the plate thickness does not exactly reach zero,

reflections occur at the end of the plate thus greatly weakening the acoustic black hole

effect. Krylov [93] showed that applying absorbing thin layers to the beam surface

compensated the loss of the ABH effect. In the literature, ABH devices have mainly

been studied for their application to vibration control [94], [95], sound radiation con-

trol [96] and energy harvesting [97]. In this work we propose a new innovative way

to take advantage of the ABH effect to enhance propulsion.

Consider a flexural wave propagating in a tapered plate of thickness h, the local

wave number, phase, group velocities and total transit time from 0 to L are respec-

tively given by



k(x) =
(

12ρω2

Eh2(x)

) 1
4 −−→

h→0
∞

cp(x) = ω
k

=
(
Eω2

12ρ

) 1
4 √

h(x) −−→
h→0

0

cg(x) = ∂ω
∂k

= 2
(
Eω2

12ρ

) 1
4 √

h(x) = 2cp(x) −−→
h→0

0

T0→L =
∫ L

0
dx
cg(x)
−−→
h→0

∞

. (5.4)

From these expressions it is clear that a decreasing thickness leads to a decrease in the

phase and group velocities and an increase in the wave number and total transit time.

In the limiting case of a zero tapering at the tip, the wave number and total transit

time become infinite and both velocities become zero. An infinite transit time means

that waves are trapped at the end of the plate. In the realistic case where the tapering

does not go to zero, we show in figure 5.3a the total transit time needed for a wave

originating at the root to reach the tip. Evidently with a non-zero thickness the total

transit time is finite; however, it increases with both the stiffness ratio and steepness

of the tapering shape. For instance, with a tapering ratio rh = 5 the total transit time

increases by approximately 20− 25% for attachments of any tapering shape. Most of
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the ABH theory presumes regularity conditions on the thickness, namely the Wentzel-

Kramers-Brillouin-Liouville-Green (WKBLG) condition [98]–[102] assumes that the

local wave number varies slowly over a distance of the order of the wavelength

1

k2

dk

dx
� 1 . (5.5)

In figure 5.3b, we plot the smoothness criterion for the linear and exponential

tapering shapes covering a wide range of stiffness ratios. As expected, the interface

between the plate and the tapered attachment displays a sharp jump in smoothness

since the thickness is not differentiable at this point. In other words, the further the

attachment deviates from uniform the less smooth the transition is. A poor smooth-

ness could mean reflections at the interface between the plate and the attachment

which could defeat the purpose of using the attachment. The main goal of this study

is to investigate how impeding wave reflections at the free end using the ABH effect

can affect the locomotion and improve the overall propulsion efficiency. In sections 5.5

to 5.9 we consider an internally actuated plate with tapered attachments. Conversely,

in section 5.10 we examine the effects of the actuation method by considering both

internally and externally actuated plates with tapered attachments. In this chapter,

the mass ratio χ = 5, overall length L = 50 LBU, aspect ratio AR = 2.5 and Reynolds

number Re = 2000 are fixed.

5.5 Dynamic Response

Figure 5.4 shows the Bode diagram of the immersed internally actuated plate with

a passive attachment of different tapering shapes and fixed tapering ratio rh = 5.

The solid markers represent the response of the uniform thickness part (internally

actuated) of the plate while the empty makers represent the tapered (passive) part.

Per definition, r = 1 corresponds to the resonance as shows the phase difference
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Figure 5.4: Bode diagram of the internally actuated plate with several tapered passive
attachments for rh = 5 and Lh/L = 0.5. Solid and empty markers respectively show
the tapered and uniform end RMS velocity and phase difference.

∆φ = π/2 on the phase plot. The phase difference ∆φ, defined as the phase difference

between the input signal and the tip root mean square (RMS) velocity, is expected

to asymptotically reach π or 0 away from resonance.

If we first examine the tip velocity (empty markers), we find that most attach-

ments behave similarly near resonance (r = 1) with a characteristic local maximum.

Furthermore, the parabolic concave attachment yields similar levels of tip velocity

before and at resonance. Beyond that case, our results show that the “steeper” the

tapering shape is, the higher the tip velocity at resonance. For instance, at resonance

the exponential tapering yields almost twice as much tip velocity as the uniform plate.
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More generally, our results indicate that the tip velocity gradually increases with the

“steepness” of the tapered attachment. Off-resonance, any sort of tapering results

in significant deviation from the uniform reference case. Indeed, past the resonance

a uniform plate has its tip velocity and displacement significantly decrease, while in

the case of a tapered attachment the decrease is attenuated. Again, the steeper the

tapering the more attenuation until the limiting case of the exponential attachment,

where the tip velocity monotonically increases even past the resonance. Moreover,

our results clearly show a trend where the increase in tip velocity occurs at much

lower frequency ratio r than that of the uniform plate. The uniform plate tip velocity

decreases past r > 3 while even the parabolic concave and linear tapered attachments

display a slight increase for r ' 2.5. The velocity at the interface between the uniform

and tapered section (solid markers) mirrors the tip behavior with a slight difference,

the linear and parabolic concave attachment curves are almost overlapping with the

reference case.

For a uniform plate, ∆φ is expected to abruptly change between 0 and π around

the resonance, with the slope being a function of the overall damping. Interestingly,

if we consider the tapered plate tip (empty markers), all phase lag curves overlap

with minor discrepancies. Conversely, the phase difference at the interface between

the uniform and tapered sections (solid markers) starts deviating and plateauing as

the stiffness ratio increases for all tapering shapes; the steeper the tapering, the

earlier the deviation from the uniform behavior. Overall, it appears that the dynamic

response of the plate strongly depends on the tapering shape. Moreover, it evolves

gradually with the thickness shape. It follows the “steepness” order from section

5.3: the parabolic concave attachment emulates the uniform attachment the closest,

followed by the linear, parabolic convex, and finally exponential shape. Following the

scaling laws derived in chapters 3 and 4, we can expect a significant improvement of

the thrust performance, especially for the off-resonance frequencies.
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5.6 Hydrodynamic Forces

In figure 5.5a we plot the thrust as a function of the stiffness ratio for an internally

actuated plate with several tapered attachments and rh = 5. As a reference case,

we first examine the uniform passive attachment. We find that the thrust mirrors

the tip velocity, it is maximized at resonance (F x/Fc ' 0.025) and rapidly decreases

off-resonance. By examining all tapered attachments at resonance (r = 1), our results

demonstrate that the steeper the thickness the more thrust generated with an overall

maximum yielded by the exponential attachment (F x/Fc ' 0.11). Both parabolic

concave and linear tapering mirror the uniform plate behavior with respect to the

stiffness ratio; a local maximum at the resonance and a rapid decrease off-resonance.

However, for all tapered attachments there is an increase off-resonance which is not

observed for the uniform attachment. The thrust produced by the exponential and

parabolic convex tapering significantly differs from all the other attachments. In the

case of the exponential attachment, the local maximum thrust does not occur near

the first resonance frequency, rather the thrust steadily increases with the stiffness

ratio until it reaches a maximum (F x/Fc ' 0.2) off resonance for r ' 1.8. Similarly

for the parabolic convex attachment, the maximum thrust (F x/Fc ' 0.1) is found for

r = 2.4.

To understand the disparity in thrust generation we examine the maximum dis-

placement dt and dh over a period at the tip of the tapered and uniform sections of

the plate in figure 5.5b. A larger tip displacement translates into more fluid displaced

backwards and therefore a higher thrust production. For both the tapered and uni-

form parts, the maximum displacement mirrors the thrust behavior, dt and dh are

locally maximized near r = 1 with the exception of the exponential tapered attach-

ment for which dt increases steadily even past resonance. Note that the displacement

of the linear and parabolic attachments similarly deviates from the uniform plate at
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Figure 5.5: (a) Thrust and (b) maximum displacement at the tip of the tapered and
uniform part of the internally actuated plate for several tapering shapes, rh = 5 and
Lh/L = 0.5. Empty and solid markers in (b) respectively show the tapered and
uniform end tip displacement.
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high r with a pronounced increase.

This behavior in tip displacement and ultimately thrust can be explained by re-

examining uniform plates. For a uniform plate the gap between the first and second

mode is about 6 times the first natural frequency. By definition, when driven at

resonance, any actuation source is amplified by the plate which results in a maxi-

mum displacement and therefore thrust output as seen for the uniform attachment.

Conversely, off-resonance the output is significantly smaller which explains the sud-

den drop in tip displacement shown in figure 5.5b. At first mode resonance, the tip

displacement is locally maximal and it decays away from resonance with the rate

depending on the mass ratio and fluid damping. Similarly, at the second mode res-

onance, the tip displacement displays another local maximum, and so on for higher

modes. However, if the distance between resonance modes frequencies could be re-

duced, the tip displacement would not decay as significantly as it does for a uniform

plate. Therein lays the advantage of tapered attachments : the mass and stiffness

gradient results in a shift of higher mode resonance to lower frequencies which in

turn yields in an overlap of the resonance bands [103]. This overlap translates into a

reduced decrease of the tip displacement, ultimately leading to a steady increase with

frequency for the exponential tapering. Consequently, our results show that adding

tapering increases the displacement and therefore thrust of the plate, especially off-

resonance.

5.7 Bending Patterns

By definition, at resonance, the first harmonic is selected and amplified by the plate;

therefore, a travelling wave generated at the root should reflect at the tip to create

a standing wave. However, a uniform plate driven off-resonance yields a mix of

travelling and standing waves due to the richer nature of the spectrum. Furthermore,

the non-uniform damping along the length of the plate due to viscous forces results
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Figure 5.6: Instantaneous bending patterns of the internally actuated plate for the
(a) uniform and (b) exponential passive attachment at resonance (r = 1) for rh = 5
and Lh/L = 0.5.
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Figure 5.7: Bending and curvature patterns of the internally actuated plate for the
(a-b) uniform and (c-d) exponential tapered attachments off-resonance (r = 2) for
rh = 5 and Lh/L = 0.5.

in a variation of the waves generating at the root as they travel down towards the tip

and back to the root [40]. Due to the presence of other harmonics in the signal and

varying damping, the superposition of the input wave and its reflection does not yield

a pure standing wave. In figure 5.6a we show the instantaneous bending patterns for

the internally actuated plate with a uniform passive attachment at resonance. As

expected, at resonance the reflection at the tip creates a standing wave characterized

by oscillations in phase at every point of the plate. Conversely, in figure 5.6b the

internally actuated plate with an exponential passive attachment yields a noticeably

different bending pattern. Although the plate is actuated at resonance, the dynamic

response combines travelling and standing waves. Due to the ABH effect, the tapered

attachment impedes waves from reflecting at the tip and thus results in a mix of

standing and travelling waves.

92



We further address the tip displacement behavior off-resonance by examining

instantaneous bending patternsn as shown in figure 5.7a and 5.7c, and curvature

κ(x) = z′′(x)/
[
1 + z′2(x)

]3/2
profiles in the tapered passive attachment, in figure 5.7b

and 5.7d, for both the uniform and exponential attachments off-resonance (r = 2.0).

Both bending patterns in figures 5.7a and c are characteristic of off-resonance oscilla-

tions, a mix of travelling and standing waves resulting in non-overlapping curves. In

agreement with results shown in figure 5.5b, the exponential attachment yields about

four times more tip displacement than the uniform attachment as seen by comparing

the displacement envelopes. Moreover, beyond the difference in maximum displace-

ment, the choice of the attachment significantly impacts the form of the envelope as

formally measured by the curvature in figures 5.7b and 5.7d.

By directly comparing the attachments, our results show that not only the ampli-

tude of the curvature in the exponential attachment is about four to five times higher

than in the uniform counterpart but the distribution of the curvature along the at-

tachment differs significantly. For the uniform attachment, the maximum curvature

is obtained at the interface between the plate and the attachment (x/L = 0.5) with

a maximum κmaxL ' 0.18 while the exponential attachment displays a maximum

κmaxL ' 1.5 around x/L ' 0.8. Due to the low bending stiffness at the tip, the

same internal moment input leads to a larger curvature and therefore deformation in

the tapered attachment compared to the uniform attachment. Moreover, the steeper

the change in thickness the higher the curvature and deformation along the length

of the attachment, which explains the increased thrust production shown in figure

5.5a. Note that for passive attachments the curvature at the tip is zero. The curva-

ture at the tip of the exponential attachment slightly deviates from zero due to the

approximation of the derivatives at the tip.
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5.8 Standing Wave Ratio

In order to formally quantify the amount of travelling to standing waves resulting

from the addition of a tapered attachment, we define a travelling to standing wave

ratio (SWR). There are several ways to formally identify the SWR, practically its

computation is based on fitting a Hilbert transform onto an ellipse in the complex

plane [104]. We show in figure 5.8 the dependence of the SWR with the frequency

ratio. We find that steeper tapering leads to a higher SWR. Furthermore, as the

frequency ratio increases the SWR also increases with the rate depending on the ta-

pering shape. For the exponential and parabolic convex shapes it reaches maxima

for r = 1.6 and r = 2.4. Past these frequencies, the SWR decreases with a similar

rate for both tapering shapes. We speculate that a similar phenomenon occurs for

the less “steep” tapering shapes at higher frequencies. Although it is less “steep”,

the parabolic convex yields a slightly higher SWR (0.92) than the exponential taper-
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ing (0.85). Similarly, the SWR due to linear tapering increases steadily and nearly

surpasses the exponential SWR for r > 2.5, the maximum r considered in the simula-

tions. These observations indicate that the higher tapering the sharper the increase

in SWR, however the maximum value is not directly defined by the tapering sharp-

ness. This can be explained by the lower smoothness of the exponential tapering

with respect to the parabolic convex tapering. Nevertheless, the significant increase

in SWR shows that tapered plates of non-vanishing thickness are an effective solution

to maintain travelling waves in structures of finite size. Additionally, the shape of the

tapering is an effective way to tune the SWR of the plate.

5.9 Hydrodynamic Efficiency

We first investigate the effects of the different tapered attachments on the power

input P . In figure 5.9a we plot the normalized power input as a function of r for

different tapering shapes and rh = 5. Once again every case displays a pattern

similar to the uniform attachment, local maximum at the resonance with a decrease

off resonance. While the uniform attachment yields P/Pc ' 0.1 for r = 1, every

tapered attachment results in a higher power input at resonance. For instance, the

exponential attachment yields more than four times the power input of the uniform

attachment. Indeed, as seen by examining the bending patterns (figures 5.6 and 5.7)

tapered attachments result in not only a higher tip displacement but generally a

larger deformation envelope. A larger envelope in turn leads to an increased viscous

dissipation resulting in additional power consumption.

In figures 5.5, 5.8 and 5.9a we quantified the effect of tapered attachments on the

thrust and the power input. Therefore we now quantify the hydrodynamic efficiency of

the plate. In figure 5.9b we plot the efficiency as a function of r for several attachments

and rh = 5. In the case of the uniform passive attachment the efficiency decreases

until it reaches a local minimum for r ' 1.7. The efficiency then increases sharply
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Figure 5.9: (a) Power consumption and thrust efficiency for internally actuated plates
with several tapered passive attachments for rh = 5 and Lh/L = 0.5.
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with a local maximum at r ' 2 followed by a steep decrease. Overall in the case of the

uniform passive attachment the actuation frequency needs to be accurately tuned to

optimize the efficiency. For every tapered attachment tested, the efficiency is close to

the minimum at the first resonance with the magnitude similar to that of the uniform

plate. However, tapered attachments outperform the uniform attachment for the past

resonance frequencies. For instance, the parabolic convex attachment yields η ' 0.55

for r = 2.4 or approximately 1.4 times the efficiency of the uniform attachment at

its best. Interestingly the parabolic convex, while it is not the “steepest” tapering,

outperforms the exponential attachment not only in the range of high-efficiency but

also in peak efficiency.

This disparity in “steepness” and performance can be explained by re-examining

the smoothness criterion of each attachment (figure 5.3c). Indeed among all shapes,

the parabolic concave and convex attachments have the smoothest transition at the

interface. A sharp jump at the interface might lead to spurious modes and reflections

affecting the overall efficiency. Additionally, across most tapering shapes the efficiency

is maximized when SWR ∼ 0.5 − 0.8 which is comparable to results from Cui et al.

[88].

5.10 Scaling Metrics

To this point, we observed and evaluated the swimming performance and various

hydrodynamic metrics versus the frequency ratio r. Similarly to chapter 4, we inves-

tigate the effects of the passive tapered attachment on the relationships established

between plate kinematics and the thrust, power, and efficiency. Furthermore, we in-

vestigate the impact of the tapering ratio rh and actuation method on the performance

of the plate.

In figure 5.10a we plot the relationship between the thrust and the tip displacement

for various tapering shapes and two tapering ratios. Our results show a clear trend
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Figure 5.10: (a) Relationship between the thrust output, frequency ratio and tip
displacement for internally actuated plates with a passive tapered attachment for
rh ∈ {2.5, 5} and Lh/L = 0.5. (b) Relationship between the thrust output, frequency
ratio and tip displacement for externally and internally actuated plates with several
tapered passive attachments for rh ∈ {2.5, 5} and Lh/L = 0.5.
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Figure 5.11: Illustration of the instantaneous displacement area Ad.

between F x and dt. Similarly to chapter 3, the thrust scales directly with the tip

displacement F x ∼ d3
t , independently of the tapering of the passive attachment or

the tapering ratio rh. The steeper the tapering, the higher the tip displacement and

therefore the higher the thrust output.

In figure 5.10b we consider the effects of the actuation method by plotting F x as

a function of dt for internally and externally actuated plates with a tapered passive

attachment. Once more, the thrust scales directly with this metric, as can be seen in

the log log inset F x ∼ d3
t , independently of the actuation method. Furthermore, the

externally actuated plate with a passive tapered attachment produces significantly

more thrust than the plate actuated internally with the same attachment. This

observation confirms the results observed for the completely uniform plate in chapter

3 in which we concluded that externally actuated plates generated significantly more

thrust than internally actuated plates due to a difference in bending patterns. Overall,

we can establish a first metric, maximizing the tip displacement, that is needed for

optimizing the performance of a tapered propulsor.

Nevertheless, maximizing the tip displacement alone leads to poor performance
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due to a saturation at high tip displacements (fluid is not pushed in the propulsion

direction) as well as poor energetic performance. As a consequence, a second metric is

needed that can be related to the power consumption. In chapter 4, our results showed

that the power scaled directly with the center of mass displacement. This criterion

was inferred from examining the vortex structure generated by the oscillating plate.

A lower enstrophy (measure of vorticity) accompanies a lower power consumption,

that is due to lower losses through viscous dissipation. In chapter 4 we directly related

the enstrophy, and therefore viscous dissipation, to the lesser relative motion between

the fluid and the plate. Here, the mass gradient in the tapered tail shifts the center of

mass depending on the tapering shape and tapering ratio. Therefore, instead of using

the center of mass displacement, we examine the period-maximum area displaced by

the plate Ad,m computed as

Ad(t) =
1

L2

L∫
0

[w(x, t)− w(0, 0)] dx (5.6)

Ad,m = max
t
Ad(t) (5.7)

where z is the displacement of the plate along the centerline as illustrated in figure

5.11. For instance, consider the limiting case of a rigid plate. It produces limited

thrust, however the power input is minimal as is Ad,m. The lower Ad,m, the lower

the relative motion between the fluid and the plate which is conjectured to result in

a lower power consumption.

In figure 5.12a we plot the mean power as a function of the maximum displace-

ment area. The results indicate that the “steeper” the tapering shape the greater the

power is. Similarly, the higher the taper ratio rh, the more power. As hypothesized,

there is a direct relationship between the power and the displacement area P ∼ A3
d,m,

as shown by the log log inset. The lower the displacement area, the lower is the power
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Figure 5.12: (a) Relationship between the power, frequency ratio and maximum
displacement area for internally actuated plates with a passive tapered attachment
for rh ∈ {2.5, 5} and Lh/L = 0.5. (b) Relationship between the power, frequency
ratio and maximum displacement area for externally and internally actuated plates
with several tapered passive attachments for rh ∈ {2.5, 5} and Lh/L = 0.5.
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and vice versa. Therefore, minimizing the maximum displacement area is equivalent

to minimizing the power input. In figure 5.12b we investigate the impact of the actu-

ation method by plotting the power as a function of the maximum displacement area

for internally and externally actuated plates augmented with passive tapered attach-

ments. Our results demonstrate that the power scales directly with the maximum

displacement area independently of the actuation method. However, similarly to the

phenomena observed in chapter 3, the power of internally actuated plates differs from

the external counterpart. Indeed, while for internally actuated plates P ∼ A3
d,m, we

find that P ∼ Ad,m for externally actuated plates. However, in the range tested, the

same Ad,m results in lower power consumption for internally actuated plates when

compared to externally actuated plates. Conversely in chapter 3, we found that fully

internally actuated plates without tapered attachments required slightly more power

for similar plate kinematics. This observation demonstrates that passive tapered at-

tachments can significantly enhance the energetic performance of internally actuated

plates.

Maximizing the efficiency is then a trade-off between maximizing the tip displace-

ment and minimizing the displacement area. In figure 5.13 we plot η as a function

of Ad,m/dt. We find that the efficiency is strongly correlated to Ad,m/dt. The lower

this ratio, the higher the efficiency. A lower Ad,m results in lower power while a

high dt translates into high propulsion. The first resonance frequency is an excellent

candidate to maximize the tip displacement as the resonance is defined by the maxi-

mum tip displacement. However, if we reason in terms of Ad,m, then the first mode

bending is not optimal. Indeed, the first mode bending patterns are characterized by

monotonically increasing (or decreasing) displacement along the length of the plate.

This in turn, results in a maximum Ad,m since every position of the plate contributes

to the integration with the same sign. Therefore, although first mode is interest-

ing when considering thrust, it has a poor energetic performance as demonstrated in
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Figure 5.13: Efficiency as a function of the ratio of displacement area to tip displace-
ment Ad,m/dt for internally actuated plates with a passive tapered attachments for
rh ∈ {2.5, 5} and Lh/L = 0.5.

figures 5.12, 5.9a and 5.9b. Conversely, at higher frequencies, the incorporation of

higher modes in the bending patterns may decrease the displacement area with sec-

tions of the plate compensating for the displacement of others therefore resulting in

lower relative motion between the fluid and solid. However, off-resonance actuation

results in lower tip displacement which is why the uniform plate is not performing

particularly well. Nevertheless, in the case of a tapered attachment, the displacement

off-resonance is amplified due to the overlap between first mode and higher mode res-

onance frequencies thereby creating a region of high tip displacement and low Ad,m
which results in high efficiency as seen in figure 5.9b. Therein lays the advantage

of tapered attachments, the stiffness and mass gradient allows maximizing the tip

displacement while maintaining relatively low Ad,m levels off-resonance.

This conclusion is visually striking when examining the flow field and more par-

ticularly the vorticity generated by the plates with tapered attachments. In figures

5.14 we show the vorticity fields generated by internally actuated plates with three
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Figure 5.14: Normalized vorticity contours ωτ = 20 of the numerically simulated
internally actuated plate with passive (a-b) exponential, (c-d) parabolic concave and
(e-f) parabolic convex tapered attachments at maximum thrust and efficiency respec-
tively for rh = 5 and Lh/L = 0.5.
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different types of passive tapered attachments. In figure 5.14a, we show the vor-

ticity generated by the exponential tapered attachment at maximum thrust output.

Due to the high tip displacement (figure 5.5) the plate produces a significant thrust;

however, the significant side edge vortical structures demonstrate the poor energetic

performance of this configuration. As can be seen by comparing the vorticity levels

generated by the other attachments (5.14c and e), a high dt is accompanied by a

large Ad,m, which results in significant P . On the other hand, when we compare the

vorticity contours at maximum efficiency (5.14b, d and f), the parabolic convex and

concave attachments strongly stand out. The parabolic convex generates significantly

more thrust due to a higher dt with comparable Ad,m as illustrated by the comparable

amount of SEV.

To further discriminate the performance between tapered attachments, we can rely

on wave arguments. A “steeper” tapering leads to more time for the waves generated

at the root to reach the tip of the tapered attachment, which is measured through

the SWR. In figure 5.15a we plot the efficiency as a function of the SWR. There are

two clear trends, at low SWR the spread of efficiency is significant, especially for

the uniform attachment. Conversely, the efficiency scales directly with the SWR for

SWR > 0.25. Indeed, when the SWR is low, any of the thrust, power or efficiency

do not result from the acoustic black hole effect. For instance, if we consider the

uniform passive attachment, the thrust, power and efficiency are mainly functions

of the frequency ratio. Since the frequency ratio does not affect the SWR for the

uniform and less pronounced tapering shapes, the SWR is not a good measure of the

efficiency for these cases. On the other hand, as soon as the acoustic black hole effect

is not negligible, the SWR is a good metric to predict high efficiency. At high enough

SWR, the efficiency scales as η ∼ SWR0.15. This is further confirmed on figure 5.15b

where we plot the relationship between η and the SWR for internally and externally

actuated plates. In both instances, the SWR ratio remains an accurate measure of
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the efficiency. Additionally, in opposition to the uniform plate in chapter 3, here the

efficiency is not a strong function of the actuation method. This further demonstrates

that the ABH is the principal mechanism defining the hydrodynamic performance.

To summarize, optimizing the swimming performance requires maximizing the tip

displacement, minimizing the displacement area and maximizing the SWR.

5.11 Optimization

To optimize the performance, the swimmer should maximize the efficiency and propul-

sion. Therefore, let us formally define the multi-objective function J =
(
−ηc − F x

)t
.

The multi-objective optimization problem is then defined as

min
x∈S
g(x)≤0

h(x)=0

J (x) (5.8)

where S is the set of feasible features and g and h are constraints. To evaluate J

requires solving the FSI problem for each individual x. This approach would be

very costly computationally. Rather than solve the full FSI problem, we can take

advantage of the knowledge on the scaling of the propulsion metrics with the plate’s

kinematics. Although the criteria presented in this chapter allow to estimate princi-

pal swimming metrics, we do not anticipate the tip displacement, displacement area

and SWR to completely characterize the swimming performance. One can consider

additional criteria such as the tip angle. Fortunately, additional criteria can be eas-

ily incorporated with the following optimization framework. Let us reformulate this

problem as

min
x∈S
g(x)≤0

h(x)=0

G (x) (5.9)
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where G ∈ Rm is another multi-objective function and m is the number of objec-

tives. Here G = (−dt Ad,m − SWR)t is defined solely from the metrics previously

established. Although at first glance it appears this optimization problem is more

complex than the previous one with more criteria to optimize, G can be significantly

cheaper to evaluate than J . Indeed, rather than solving the full FSI problem, the

plate kinematics can be computed with a simplified one-dimensional model. For an

isotropic rectangular plate, the plate displacement can be approximated by the cen-

terline displacement, in which case the reduced accuracy is compensated by the ability

to explore a wide parameter space. The best design candidates are then validated by

the three-dimensional model to confirm their performance a posteriori.

The one-dimensional model is based on the FD discretization of the Euler-Bernoulli

beam equation

Ml
∂2w

∂t2
= − ∂2

∂x2

(
EI (x)

∂2w

∂x2

)
− 1

2
ρWCd

∂w

∂t

∣∣∣∣∂w∂t
∣∣∣∣ (5.10)

where EI : x 7−→ EWh3

12
, Cd is a drag coefficient inferred from the three-dimensional

model and h is constructed as in equation 5.1. Finally, since this is a multi-objective

optimization problem different weights can be attributed to different criteria. Here,

we keep the same unitary weight for each criterion.

5.11.1 Genetic Algorithm

An evolutionary genetic algorithm (EGA) is particularly tailored for this multi-

objective optimization problem given the size of the parameter space. First, let us

briefly discuss the principle of EGA. EGAs rely on mechanisms that mimic biological

evolution such as crossover, mutation and selection. In the context of EGAs, features

are referred to as genes. We select the tapering shape, tapering ratio, tip slope (for

the parabolic cases), tapered length and frequency ratio as genes. Each gene can be
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constrained to a feasible range. We define the following gene constraints



hshape ∈ {uniform, linear, parabolic, exponential}

rh ∈ [0.1, 10]

θ ∈ [−0.5, 0.5]

Lh ∈ [0, 1]

r ∈ [0.1, 10]

. (5.11)

The vector containing the genes of an individual is called a chromosome C = (hshape rh θ Lh r)
t.

Any generic EGA follows this template :

1. Generate an initial population : Pµ = {x1, . . . , xµ} set of individuals with chro-

mosome Ci

2. Generate λ offspring forming the set P̃λ = {x̃1, . . . , x̃µ}. Each offspring x̃ is

generated as follows :

(a) Select ρ parents from Pµ

(b) Recombine ρ parents to form an offspring

(c) Mutate parts of the offspring’s chromosome

3. Select new parent population from the offspring P̃λ and parent Pµ population

(µ+ λ evolution strategy)

4. Repeat from step 2 until termination criterion fulfilled.

Selection is one of the most critical parts of an EGA. Before giving more details on

the selection strategy, let us introduce a few additional concepts. In single-objective

optimization, the superiority of a solution is easily determined by evaluating the ob-

jective function and comparing the cost function for an individual. In multi-objective
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Figure 5.16: Illustration of Pareto dominance

optimization, the fitness of a solution is determined by dominance. An individual x1

dominates another individual x2 (x1 � x2) if any of the objectives cannot be improved

without worsening at least one of the other objectives or in mathematical terms:


∀ i ∈ J1;mK , Gi (x1) ≤ Gi (x2)

∃ j ∈ J1;mK \ Gj (x1) < Gj (x2)

(5.12)

The set D formed of all non-dominated points is called the Pareto optimal set. The

boundary defined by this set is called the Pareto front. We illustrate this concept in

figure 5.16, if the goal is to minimize both f1 and f2 there is no global optimum but

rather a set of solutions dominating any other feasible solution.

The goal of EGA is to best approach this Pareto front (PF). Here we used the

NSGA-II [105] (non-dominated sorting genetic algorithm), a fast elitist algorithm,

through the DEAP framework [106]. In an elitist algorithm, elites (best individuals)
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Parameter Symbol Value
Number of generations Ngen 101 − 104

Size of the population Npop 10− 102

Number of individuals to select for next gen. µ Npop

Number of offspring generated at each gen. λ Npop

Probability of crossover pcross 0.5
Probability of mutation pmut 0.4
Standard deviation of mutation σmut 0.1

Table 5.1: Genetic algorithm parameters

have a chance to be carried over each generation. Furthermore, NSGA-II preserves

diversity through a mechanism called crowding distance. EGA parameters are sum-

marized in table 5.1.

In this section we will only consider externally actuated plates with tapered at-

tachments. Regarding the other simulation parameters, the mass ratio χ = 5, overall

length L = 50 LBU, aspect ratio AR = 2.5, Reynolds number Re = 2000 and actu-

ation amplitude A0/L = 0.05 are fixed. In figure 5.17 we plot the different Pareto

fronts found by the EGA for various generations in the dt−Ad,m− SWR space. The

three-dimensional nature of the decision space somewhat impedes the interpretation

of the EGA results.

To alleviate this problem, we show projections of the decision space in figures

5.18a and 5.19a. In figure 5.18a we plot dt as a function of Ad,m. The results from

the multi-objective optimization shows an interesting trend. One would expect that

a high dt is inherently tied to a high Ad,m. Indeed, this candid observation can be

observed in the EGA results across diverse generations. For a limited number of

iterations, the EGA struggles to find candidates with high dt while minimizing Ad,m.

The majority of the population plateaus around dt/L = 0.05 with a relatively low

Ad,m ' 0.7. Nevertheless, there is one individual yielding significant tip displacement

(dt/L = 0.1) for a low displacement area (Ad,m = 0.2). As the number of generations

increases, the number of individuals in the region of high dt and low Ad,m = 0.2
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Figure 5.17: Pareto fronts resulting from the EGA in the dt − Ad,m − SWR space
across various generations for externally actuated plates.

increases significantly with more than 50% of the population yielding dt/L > 0.1 and

Ad,m . 0.5. In figure 5.18b we plot the thickness profile of three of the best individuals

in the Ad,m−dt plane in addition to a sub-optimal candidate as a reference. The best

individuals share common characteristics in their genome: a high tapering ratio 5 <

rh < 7 in conjunction with steeper tapering shapes (exponential and parabolic convex)

as well as a high frequency ratio r > 3. Interestingly, the individual sub-performing

has a very similar genome, with only two significant deviations. Namely, the tapered

length is almost twice as important as the optimal cases but more importantly the

frequency ratio is three to four times smaller.

Let us cast aside thickness and wave theory arguments for a moment. First mode

bending (r ≤ 1) can maximize the tip displacement at resonance (r = 1); however,

due to the nature of the bending patterns, it is inherently impossible to minimize

the displacement area. Indeed, for first mode bending the plate displacement along

the length increases (or decreases) monotonically along the length with a maximum
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Figure 5.18: (a) Pareto fronts resulting from the EGA in the Ad,m − dt plane across
various generations for externally actuated plates. Insets show bending patterns of
individuals 1 to 4. (b) Thickness profile of corresponding individuals.
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at the tip; therefore, every segment of the plate adds up when integrated without

compensation. As a consequence the displacement area Ad,m is maximum. This

simple argumentation explains why the majority of individuals generated by the EGA

have frequency ratios greater than 1, the tip displacement can be maximized but at

the cost of maximizing the displacement area which we characterized as inefficient

with our scaling laws.

Now, let us consider the effects due to the change in thickness. As shown in figure

5.5, plates with a decreasing stiffness effectively shift the higher mode resonance

to lower frequencies which leads to an overlap of neighboring modes. This overlap

results in a tip displacement increase off-resonance when compared to uniform plates

and even a global maximum in the case of the exponential tapering shape. The

bending patterns resulting from higher mode complexion are characterized by a non-

monotonic variation of the displacement along the length, which in turn leads to a

lower maximum displacement area, as can be seen in the patterns of individuals 1 to

4 in the insets in figure 5.18.

In figure 5.19a we plot the results of the EGA in the dt − SWR plane. For lower

number of generations, the EGA maximizes the SWR however the tip displacement

is limited. As the number of generations increases, the EGA manages to find indi-

viduals with higher tip displacement while maintaining a higher SWR. The insets in

figure 5.19a show the bending patterns associated to particular individuals generated

by the EGA. For instance, individual 1 from the tenth generation is a good candidate

with a relatively high tip displacement (dt/L = 0.11) and SWR (SWR = 0.75). Gen-

erally, higher SWR candidates such as individuals 1, 2 and 4 display similar bending

patterns. As can be seen in figure 5.19b, all individuals have similar thickness profiles

with the exception of individual 4 which displays a change of convexity. Nonetheless,

the tapering ratio as well as the tapered length are comparable across all cases. Once

more, the main differentiator is the frequency ratio r. Individuals 1, 2 and 4 (higher
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Figure 5.19: (a) Pareto fronts resulting from the EGA in the dt − SWR plane across
various generations for externally actuated plates. Insets show bending patterns of
individuals 1 to 5. (b) Thickness profile of corresponding individuals.
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Figure 5.20: Comparison of various EGA individuals’ performance (black half circles)
versus non-optimized population in the ηc − F x plane for externally actuated plates.

SWRs) have a moderate frequency ratio 1.3 < r < 3.1, while poorer performers have

higher r (r > 4.3). This observation is consistent with our previous simulations, the

SWR increases with frequency ratio but there is a maximum at moderate r ' 2− 3

depending on the tapering shape and ratio. Past this value the SWR decreases as

the plate is closing to the second mode resonance.

So far, a one-dimensional model was optimized with modeled FSI. Although

the optimization process is based on scaling laws derived from fully-coupled three-

dimensional results, it is necessary to verify a posteriori the applicability of this

simplified approach. In figure 5.20 we plot the efficiency as a function of the thrust

for externally actuated plates with passive tapered attachments of various tapering

shapes and some of the best individuals from the EGA. Although the EGA evaluates

individuals with a modeled FSI, it produces highly efficient individuals producing

significant thrust compared to the fully coupled FSI sequential approach. Moreover,

individual 1 from the EGA actually outperforms every other data point with ηc = 0.4

and F x/Fc = 0.2. Overall, We draw a conclusion similar to our previous sequential
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approach, however only a fraction of the parameter space could be explored. Here,

solving this well-posed optimization problem further demonstrates that the balance

between the tip displacement and displacement area, a key to achieve efficient propul-

sion, is intrinsically linked to the thickness tapering.

5.12 Summary

In summary, we find that elastic plates with passive tapered attachments can be tuned

to offer a significant performance increase in both thrust and efficiency. We find that

this enhanced performance is intrinsically connected to the nature of the wave propa-

gating in the plate. We formally characterized this propagation through the standing

wave ratio. Our results show that uniformly thick plates yield standing waves (low

standing wave ratio) for a wide frequency range. By studying fish locomotion, stand-

ing wave-based propulsion is known to be generally less efficient than travelling wave

propulsion. However, by introducing a tapering in the passive attachment, the plate

can be tuned to shift from purely standing waves to almost purely travelling waves,

especially for off-resonance actuation, thereby significantly increasing the propulsion

efficiency. Indeed, the mass and stiffness gradients in the tapered attachment result in

a shift of higher mode resonance to lower frequencies. Without the stiffness and mass

gradients, the thrust and power input are low for post-resonance frequencies due to

a minimal tip displacement. In the case of tapered attachments, the first and second

resonance bands overlap which in turn increases the off-resonance tip displacement.

The steeper the tapering, the more pronounced the overlap is. Therefore, not only

the energetic performance but also the thrust can both be optimized past the first

mode resonance which results in highly efficient propulsion.

Furthermore, by exploring the consequent parameter space we demonstrate that

the thrust and power directly scale with the tip displacement and maximum displace-

ment area, respectively. The thrust scaling can be seen as a direct consequence of
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Lighthill’s theory [35] who showed that the thrust is completely characterized by the

tip kinematics for the oscillation of a beam in an inviscid fluid. However, we show

that this observation holds true for plate oscillating in a viscous fluid at moderate

Re. Accordingly, the efficiency defined as the ratio of the thrust and power is found

to scale directly with the ratio of maximum displacement area to tip displacement

Ad,m/dt, the lower this ratio the higher is the efficiency.

Deriving these scaling laws is primordial to evaluating propulsor designs at low

computational cost. Indeed, the cost of evaluating the performance of a plate can-

didate with a fully-coupled three-dimensional FSI simulation prevents a thorough

exploration of the vast parameter space. However, by solving a simpler problem and

using the knowledge inferred by fully coupled simulations through scaling laws, the

cost of evaluating the fitness of a propulsor significantly decreases with an insignificant

decrease of the accuracy. As a proof of concept, we show that a simple 1D tapered

beam model associated to an evolutionary genetic algorithm allows for efficient and

accurate exploration of the parameter space. The accuracy of this process is vali-

dated a posteriori by evaluating candidates with the full-fledged three-dimensional

approach. With this simple approach, the EGA is able to find designs outperforming

every counterpart obtained through the conventional “blind” approach.
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CHAPTER 6

CONCLUDING REMARKS AND OUTLOOK

In this work, we used a three-dimensional fully-coupled fluid-structure interaction

framework to study the hydrodynamics of a bio-inspired propulsor. The bio-inspired

propulsor, which represents the motion of a fish fin to certain level of abstraction, is

modeled by an elastic plate oscillating in a Newtonian fluid. We conducted several

studies with different actuation methods, non-uniform properties, various Reynolds

numbers, mass and aspect ratios, to probe how to maximize certain swimming met-

rics such as the propulsion and efficiency and to develop an understanding of the

underlying physics.

We first investigated the effects of two different actuation methods: an external

actuation based on conventional heaving propulsors and an internal actuation based

on a muscle-like activation. This internal moment represents the functioning of macro-

fiber composites, a smart material based on piezo-electric actuators which has been

found to offer great balance between actuation and deformation levels. We identified

differences in the bending patterns yielded by these two actuation methods. Namely,

the internal actuation results in a cupping towards the tip of the plate which we

formally characterized by examining the plate curvature. This cupping results in

less fluid pushed backwards which in turns yields less thrust. Moreover, the cupping

generates more viscous dissipation resulting in an overall less efficient propulsion. We

further explored the effects of the flow regime by varying the Reynolds number. We

found that the propulsion efficiency is an increasing function of the Reynolds number.

In addition to differences in swimming metrics, we found that the actuation methods

have a direct impact on the inertia coefficient, an empirical coefficient defined by

Morison [84] and used to design flexible structures immersed in a fluid. While the
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inertia coefficient is known to be a function of the Reynolds number, mass and aspect

ratio, we showed that it is a strong function of the actuation method which is a critical

result for the design of underwater swimmers.

After systematically studying the impact of these two actuation methods on the

propulsor performance, we probed the effects of combining the external and internal

actuation. Results showed that the principal swimming metrics could be modulated

by introducing a phase lag between the external and internal actuation signals. More-

over, we found that the performance of the combined actuation significantly outper-

forms either internal or external actuation in both propulsion and efficiency. This

enhanced performance is due to the unique capacity of the hybrid actuation to bal-

ance the tip and center of mass, which are found to directly scale with the propulsion

and power respectively.

Finally, we investigated the effects of non-homogeneous mechanical properties by

adding passive tapered attachments to internally and externally actuated plates of

constant thickness. Our results showed that augmenting a uniform plate with a ta-

pered passive attachment significantly enhances the thrust and efficiency performance

over a wide range of driving frequencies. The thrust was found to be maximized by the

exponential passive attachment with up to six times the nominal value of a uniform

plate while driven at 1.7 times the first resonance frequency. Similarly, the efficiency

was found to be maximum for a parabolic convex tapered attachment driven at 2.4

times the first resonance frequency. We found that the enhanced performance is di-

rectly linked to two concepts. First, the mass and stiffness gradient in the tapered

attachment results in a shift of higher mode resonance frequencies which in turn yields

an overlap between first and second mode resonance. This overlap leads to higher tip

displacement and thrust while maintaining a low maximum beat area, a measure of

the virtual mass displaced by the plate and found to scale directly with the power.

In addition to this consideration, we found the plate performance to be intrinsically
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characterized by the nature of the waves propagating in the plate. Indeed, travelling

wave-based propulsion has been known to be more efficient than its standing wave

counterpart. We formally demonstrated that this observation is due to a well-known

acoustic phenomenon, the acoustic black hole. The stiffness gradient in the tapered

attachment results in an increased time for waves generated at the root of the plate

to reach the tip of the tapered attachment. This in turn results in non-overlapping

incident and reflected waves which is how travelling waves are maintained. In order

to efficiently explore the colossal parameter space, we derived scaling laws from our

fully-coupled FSI model to feed into a simpler beam model coupled to an evolutionary

genetic algorithm. With this simple approach, the EGA succeeded in finding plate

designs outperforming every candidate found by the sequential “blind” approach at

a significantly lower computational cost.

The results from this research are important for the design of small to moderate

scale bio-inspired swimmers using elastic elements to create propulsion. Although

several strategies were explored for improving propulsion and swimming efficiency,

an investigation of strategies to perform turning maneuvers is still far from being

completed. Indeed, the ability to change the direction of the force resultant makes

smart materials, and particularly MFCs, a great candidate to achieve fast and efficient

turning. Furthermore, in this work we solely focused on steady-state propulsion, an

important part of fish swimming lays on fast bursts, which are inherently transient

phenomena, such a C-starts. Furthermore, our numerical model is confined to solely

represent the swimmer fins, the inclusion of the swimmer body needs to be considered

for better understanding of swimmer propulsion. Although our results apply mainly

to the design of simple bio-inspired propulsors, they provide insight on why fish in

nature rely on various swimming modes as well as non-homogeneous properties and

their impact on the waves propagating through their elastic bodies.
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tions en séries dont les divers termes sont assujétis à satisfaire à une même
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