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SUMMARY 

With exponentially decreasing prices of photovoltaics, the adoption of volatile and 

non-dispatchable sources into the grid has increased. While, these technologies provide 

avenues for grid independence and system resiliency improvements, the operation and 

control architecture in place, prevents the scalability of these approaches. Reliance on high 

speed communication and complex computations to handle these fast phenomena 

introduces points of failure and dramatically decreases the controllability and resiliency of 

the system. Fast volatility and line congestions across the network are challenging to 

control using this central control architecture that relies on full visibility, low-latency 

communications and complex centralized algorithms. Moreover, the adoption of these 

sources at the grid-edge has also ensured that the number of independent asset owners on 

the system has also been on the rise. It will be challenging to scale the existing market 

mechanisms to allow stable operation of such multi-agent and geographically dispersed 

systems. Yet, it is critical to manage supply-demand imbalances in real-time through 

market dynamics. 

The objective of the proposed research is to develop a decentralized grid 

architecture to manage the physical and transactive aspects of power systems. The 

proposed research showcases fast localized grid control solutions in the form of hybrid 

transformers to manage physical phenomenon like congestion and voltage volatility. This 

ensures that all the additional flexibility can be leveraged from a traditionally passive 

network by making it more active using intelligent devices. Furthermore, a decentralized, 

communication-free and topology-agnostic real-time pricing mechanism is proposed to 
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enable collective stabilization even under wide variations in available generation. The 

architecture is designed to operate around global rules and globally available signals 

making it highly robust and resistant to communication failures. This framework allows all 

connected agents to participate in a real-time market platform and transact energy to ensure 

that supply-demand balances are maintained collectively. Thus, an architecture is presented 

where the transactive and physical grid constraints are handled in a decoupled fashion 

while being integrated through the physics of the network. The architecture provides a 

robust mechanism to operate highly volatile, multi-agent grid structures in a resilient 

fashion. 
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CHAPTER 1. INTRODUCTION 

The power infrastructure has undergone significant changes over the last few 

decades. Over the years, the grid has transitioned from a ‘small, localized generator’ 

paradigm seen in the Pearl street era, to one that is characterized by large concentrated 

points of generation from where power is delivered over elaborate, long and highly meshed 

transmission networks. Lower levelized costs of energy (LCOEs) through bulk generation 

and the ability to leverage load diversity have led to this change. However, as these 

structures became more elaborate new challenges arose in the form of control and 

coordination requirements. The advent of improved sensing and communication platforms 

in the form of phasor measurement units (PMUs) and advanced metering infrastructure 

(AMI) made it possible to gain visibility and exercise some control over these structures 

using complex algorithms like Optimal Power Flow (OPF) and Security Constrained 

Economic Dispatch (SCED). Further with partial deregulation, an electricity market 

structure was established in some places to allow producers, utilities and Independent 

System Operators (ISOs) to manage grid transactions, making energy a tradable 

commodity in addition to it being a service. 

However, this has resulted in a control and operation paradigm that relies on a top-

down centralized approach, is extremely hierarchical and relies on complex computations 

in a few centralized locations along with dispatched generation to realize stable operation. 

The current infrastructure succeeds in managing grid operations with relatively limited 

market participants, slow dynamics, complex computations and low-latency 

communications However, there are certain key trends and disruptions that could be 
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challenging to address using existing grid management principles. These disruptions are 

already beginning to create points of stress from a flexibility, resiliency, reliability and 

scalability perspective. The disruptions strongly point to the need for a complete overhaul 

in the grid control and operation architecture and new perspective on what a grid as a 

service entails in the future. A discussion about some of the key disruptors as well as the 

accompanying set of challenges is presented next. 

1.1 Unprecedented Adoption of Volatile Renewable Energy Sources 

A key development of consequence is the exponential decline in costs of PV, wind 

and energy storage systems. This cost decline has ensured that the LCOEs of these 

technologies are lower, even at much smaller capacities as compared to the `centralized 

bulk generation' approach [1], [2]. Fig. 1.1(a) [1] illustrates this trend.  With no 

requirements for coordinated fuel logistics, and the modular nature of these systems, these 

technologies have become viable candidates to meet clean energy mandates and energy 

independence goals. Consequently, a rapid uptake in the adoption of these  

Figure 1.1 (a) Decreasing LCOEs of renewable energy sources (b) Increase in adoption of PV based 

sources at the residential, commercial and utility scale 

(a) (b)
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Distributed Energy Resources (DERs) on a household level as well as at utility scale is 

being seen. Fig. 1.1 (b) [3] shows the exponential increase in PV deployment as the utility and 

residential level. Microgrids are being deployed with a PV dominant resource mix as a measure 

to attain energy independence and boost resilience. The grid of the future is poised to be one 

characterized by huge amounts of distributed generation [4]. However, the non-dispatchable 

nature of these DERs and the associated volatility makes operation of PV dominant grid 

structures extremely challenging.  

An operation paradigm where ‘generation-follows-load’ is utilized to address load 

changes and disturbances in modern grid structures. System operators have employed an 

approach where PV penetration is treated as a disturbance. Operators often rely on corrective 

dispatch procedures to stabilize the system. This offsets the burden of balancing the supply and 

demand to the utility or ISO. Fig. 1.2 shows the time varying nature of PV outputs and typical 

load curves. With very few points of operation where the supply and demand balances are 

naturally met, operating PV dominant grids of the future is going to be extremely challenging. 

Storage could be deployed in such networks to balance supply-demand ratios. However, this 

could prove to be an expensive solution to deal with these issues. Relying on supply side 

flexibility alone to address these imbalances is going to be inadequate in these futures DER 

Peak PV Output

Peak Load

Figure 1.2 Wide variation between peak load and PV output patterns 
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dominant grid structures.  This shows that there need to be mechanisms that can fundamentally 

alter the way load is consumed to facilitate stable operation. Challenges associated with 

addressing supply-demand imbalances in grid structures with rapidly varying resource 

availability need to be addressed to enable stable operation future grids. 

The ‘Duck curve’ seen in CAISO territory and shown in Fig.1.3 (a) is an example of 

grid balancing challenges in PV dominant environments [5]. DERs like PV also introduce 

voltage volatility on to the grid. Fig 1.3 (b) shows the observed volatility on a distribution 

feeder [6]. Legacy voltage control devices like OLTCs and capacitor banks only succeed in 

exerting discrete amounts of control. Moreover, these devices were never designed to operate 

with the frequency seen in volatile grid structures. Thus, addressing volatility on PV rich grids 

becomes another significant challenge. 

Injections of massive amounts of power at the grid edge on meshed transmission, sub 

transmission and distribution networks also create line congestion issues and unexpected power  

flow patterns. Bidirectional power flows are becoming commonplace in distribution   

networks with high PV penetration and are quite challenging to address from a grid operator’s 

perspective.  Control over power flows and congestion relief across the system has traditionally 

Figure 1.3 (a) California 'Duck curve' [6] (b) Feeder Voltage volatility with high DER penetrations [7] 

(a) (b) 
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been exercised by using low-latency communications to retrieve states, recalculating power 

flow, optimizing control and altering generator dispatch patterns or through topology 

reconfiguration [7]. However, as generation centers move towards to the grid-edge, it becomes 

extremely challenging to derive optimal dispatch procedures. With millions of active agents 

on the system that may be geographically dispersed, the complexity of running centralized 

computations to decipher these new set points would be enormous. Further, with faster 

phenomenon being observed, the requirements of ultra-low latency communications to 

continuously exert said centralized control would drive up infrastructure costs and necessitate 

a major upgrade on existing systems. Finally, the need to ensure centralized grid operations in 

the event of communication failures or cyber attacks raises an extra layer of complexity that is 

rarely addressed. 

1.2 Lack of Scalability for Multi-owner and Massively Multi-agent Systems 

In traditional vertically integrated grid structures, a majority of the sources are owned 

by few participating entities in the form of Generating companies (GenCos) or ISOs 

ensuring that proper coordination from a physical power delivery perspective as well as 

from a transactive perspective can be managed centrally. Even managing the grid with 

these limited entities is significantly challenging; often requiring complex SCED 

procedures and low-latency communications to issue appropriate commands to 

participants.  

With sources being privately owned, the number of asset owners at the grid edge 

have increased by a tremendous amount. Along with the increase in grid edge sources, the 

adoption of smart home devices has enabled prosumers to optimize and manage their 

consumption patterns. This has led to vastly different net consumption patterns compared 
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to those seen historically and has made real-time grid stabilization based on forecasts very 

challenging for grid operators. Performing central calculations to issue set points to these 

rapidly growing grid edge entities in a volatile setting is extremely challenging. These new 

independent agents often don’t receive any signals from the grid operator to promote 

collective grid stabilization.  

The transactive architecture in place is based on an auction-based approach. 

Locational Marginal Prices (LMPs) and Distribution LMPs (DLMPs) are popular 

transactive mechanisms to achieve real-time pricing but strongly rely on real-time 

knowledge of system topologies and real-time states [8]. These mechanisms work well 

with a limited number of players, a small set of asset owners and slower coordination 

mechanisms, but, are challenging to scale. The communication framework required to 

coordinate such an auction-based market structure with millions of active agents would be 

highly complex and prone to failure. Moreover, the existing architecture does not possess 

adequate mechanisms to enable collective stabilization of such volatile structures using 

demand-side participation methods. 

Yet, in such PV rich grid structures where the system can rapidly swing between 

modes of resource abundance and resource scarcity, demand-side participation and demand 

flexibility are key requirements to sustain stable operation. Demand side mechanisms in 

place today rely on leveraging a very limited amount of flexibility to avoid overloads on 

limited time horizons. Some utilities and system operators have instituted programs to issue 

dynamic prices to end agents. However, none of these mechanisms effectively create a 

scalable marketplace for millions of agents that will become commonplace at the grid edge. 
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It is important to build a marketplace that allows supply-demand imbalances to be 

settled in real-time for these geographically dispersed, massively multi-agent systems. 

Moreover, the market structure needs to enable every agent to perform arbitrage and 

demand scheduling while ensuring that every agent is actively incentivized to support the 

grid and improve the net resiliency. This would be key to stabilizing supply-demand 

imbalances using both the supply and demand side flexibility in PV dominant grids. 

1.3 Resiliency and Cost of Control 

The issue of grid resiliency has been brought to the forefront in recent times and has 

served as a primary motivator for most grid enhancement programs. Resiliency is an 

important measure of the robustness of a grid control and operation architecture. Resiliency 

encompasses the reliability, resistance to failure, recovery time and flexibility of the system 

[9]. Both from a physical and transactive perspective, today’s grid infrastructure has some 

resilience issues. Control over physical power flows over today’s highly meshed systems 

is often centrally coordinated using complex algorithms to alter dispatch patterns. This 

framework relies on the ability to send low-latency control signals to all dispatchable 

sources to control flows as well as supply-demand imbalances. Similarly, the transactive 

layer relies on complete information of system topology and system states to determine 

nodal prices. An architecture that depends so heavily on the communication layer to sustain 

operation in real-time is prone to failure in the event of any communication infrastructure 

damage. With increasing High Intensity Low Frequency (HILF) events in the form of 

hurricanes, tornadoes, earthquakes and cyber-physical attacks on the system the fragility 

of the current architecture becomes apparent and a need for a more robust architecture is 

felt [10].  
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Resiliency also encompasses the ability of a system to fragment and continue 

operation in the event of any damage. This requires the control and operation architecture 

to be based on fractal rules of operation. DERs at the grid edge can, in principle, restore 

and supply broken fragments of the grid in case of a HILF event. In fact, the Department 

of Energy’s (DOE’s) recent push into the Resilient Energy Community (RECs) based 

approaches is an indication that this approach would provide tremendous value [11]. Fig. 

1.4 shows an illustration of such a concept.  However, the system architecture and control 

strategy do not support the possibility of operating portions of the grid without the presence 

of the main grid [12]. This is owing to the extreme dependence on centralized 

 communication and control mechanisms prevalent in the grid today. As a result, the 

resiliency of the existing paradigm under failure modes is extremely low [13] with long 

recovery times post contingency. Power restoration in Puerto Rico took eleven months 

following the mass destruction caused by Hurricane Maria in 2017. With widespread, 

Figure 1.4 Microgrids as a measure for resilience improvement [11] 
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catastrophic damage and impassable roads, repairs and logistics pose a big challenge [14]. 

Thus, an increased emphasis should be laid on improving the resiliency of systems against 

these events, in addition to hardening them against failure modes. 

Another key consideration when evaluating the resiliency of the system is the 

recovery time associated with failure modes. A recent DOE report outlines the vulnerability 

of Large Power Transformers (LPTs) [15]. These devices are typically rated to handle 

upwards of 100MVA of power making them extremely critical to the power grid. With a 

significant portion of the LPT fleet reaching the end of their stipulated component life there 

have been growing concerns about the impacts of LPT failures. Recent instances of 

physical attacks on LPTs [16] and the slow recovery process associated with fixing or 

replacing these damaged units has created an increased awareness for this issue. LPTs 

designs are highly customized owing to specific field requirements. Owing to this, the 

design and manufacturing process is significantly different for each customer.  

Transportation of these units is often extremely challenging owing to the large form 

factor. Moreover, the unit needs to be disassembled to enable transportation. Specialized 

railcars and road trucks are required to transport these devices. Differing permit regulations 

in each state make the process even more challenging. In addition to this a crew of 

personnel from different law enforcement agencies is required to co-ordinate safe 

transportation on roads. Once the LPT arrives on site, assembling the bushings, filling oil 

and bringing it online adds to the lead time. The whole process from the acceptance of the 

tender to commissioning takes about a year [15]. Long lead times coupled with 

transportation delays make procuring LPTs a lengthy process. Thus, in the event of any 

failure to these key components, the time to recovery for the system is extremely high. This 
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points to the need for embedding features and flexibility in the architecture to sustain 

operation during such events. By minimizing the mean time to failure, the resilience of the 

system can be dramatically improved. 

However, it stands to reason that resiliency is to be achieved at a modest cost. While 

the most redundant solution to achieving maximum resiliency is simply duplicating 

components, this is often quite expensive. Thus, any potential solution needs to be able to 

showcase, all the above attributes at a cost that is acceptable. Moreover, the added control 

solution needs to be one that doesn’t create more points of failure on the system. 

1.4 Research Scope 

For future DER dominant grid structures, certain requirements emerge out of this 

discussion. With multiple owners, mixed local objectives, fragility of operating 

architectures and fast disturbances to the system, it becomes necessary to implement a 

highly resilient, flexible and scalable architecture that can manage the transactive and 

physical attributes in a more integrated and decentralized fashion while being agnostic to 

technology migration, communication failures and topology.  Physical phenomenon and 

constraints like congestion of power flow corridors and voltage volatility need to be 

addressed. Similarly, with millions of geographically dispersed active prosumers, a multi-

agent system is created, with each asset owner wanting to transact power and meet their 

own local objectives.  

Existing transactive and physical control solutions are centralized, rely on low-

latency communications, often require detailed knowledge of network topologies and are 

often highly coupled. The computation and communication requirements associated with 
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scaling current technologies would prove to be a bottleneck in operating these grid 

structures. Thus, the future grid architecture will have to be one that can enable stable 

operation in real-time by adding flexibility to the passive physical grid while incorporating 

a decentralized marketplace to allow collective stabilization of power balance constraints 

for this multi-owner paradigm with minimal reliance on centralized coordination or 

communication. 

Two distinct issues emerge from this discussion. The first one involves meeting 

physical constraints in real-time such as congestion and ensuring that voltage profiles are 

managed. The second issue involves achieving a scalable transactive framework for all 

sources and loads to address supply-demand balances in real-time – the real goal of an 

energy market. The solutions proposed in this research focus on utilizing simple rules and 

global signals across the system to minimize the dependence on central communication 

and coordination. A localized grid control solution in the form of hybrid transformers is 

presented in this research. The solution shows the ability to exert control over power flows 

and aids in voltage management while improving the net resiliency of the system. This 

allows enormous control over grid flows in otherwise passive meshed networks.  

Furthermore, a decentralized communication-free and topology-agnostic real-time 

pricing mechanism is also presented to enable collective stabilization of supply demand 

balances. Moreover, by managing physical and power balance constraints in a 

decentralized fashion based on local parameters, the architecture could break apart into 

smaller fractals while relying on the marketplace to provide signals conveying energy 

constraints to sustain operation at varying levels of degradation.  
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The solutions and technologies aiding this realization are designed to minimize costs 

and allow this architecture to be deployed in environments where energy access is a 

priority. An architecture is proposed here where congestion and voltage issues are dealt 

with autonomously while letting individual agents transact the fundamental quantity -

power, in a viable marketplace to extract maximum elasticity out of the system.  

1.5 Outline of Chapters 

A literature survey on the current state of the grid architecture is presented in Chapter 

2. An overview of numerous control techniques to manage physical grid parameters like 

voltage levels and line congestion is presented. State of the art transactive mechanisms to 

leverage demand elasticity are also highlighted. The chapter highlights the vulnerability of 

state-of-the-art grid architectures and highlights the lack of scalability of existing control 

principles for future grids. A modular and cost-effective control solution to address 

physical grid constraints is presented in the form of Hybrid Transformers in Chapter 3. The 

efficacy of this solution is shown through numerous simulation studies. Chapter 4 presents 

a novel frequency dependent transactive architecture that allows supply-demand balances 

to be addressed in real-time without the need for central coordination or low-latency 

communication. The approach shows great value in managing PV dominant grid structures. 

A simulation platform is developed and presented in Chapter 5 to allow such multi-agent 

grid architectures with edge intelligence to be analyzed. Chapter 6 showcases the efficacy 

of these solutions in managing both the physical and transactive elements of the system in 

real-time, in an integrated fashion. Finally, the conclusions, contributions and future work 

are highlighted in Chapter 7.  
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CHAPTER 2. STATE OF THE ART GRID CONTROL 

ARCHITECTURE 

This chapter provides an overview of the current grid architecture and control 

mechanisms. A review of the overall architecture in terms of different layers of control is 

presented first. Section 2.1 then focuses on aspects and challenges associated with 

controlling the physical layer of the grid architecture. This delves into issues associated 

with transmission capacity, management of power flows, congestion control as well as 

voltage management. A comprehensive review of physical grid control techniques is 

provided in Section 2.2. Similarly, existing measures to incentivize demand side flexibility 

are elaborated in Section 2.3.  Following a review of the existing control techniques a 

discussion is presented that details attributes and requirements of future grid architectures 

in Section 2.4. 

2.1 Grid Control Architecture -Status Quo 

The grid control architecture seen today is a complex multi-layer one with each layer 

tackling a key aspect of operation. These layers also operate on various time scales 

depending on the requirements on the control mechanism. Primarily, it is possible to think 

of the grid architecture as falling into 3 main layers – device and system layer, control and 

measurement layer and the market layer. An overview of the layers and time scales of 

operation is shown in Fig. 2.1.  
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2.1.1 Overview of grid control layers 

The primary layer and often the most visible one is the device and physical layer. 

This layer encompasses the physical power infrastructure including miles of transmission 

lines [17], points of voltage change in the form of transformers, generators and consumers. 

These devices are the ones responsible for energy delivery.  

The advent of the digital age enabled an augmented layer in the form of control and 

measurement to be implemented. This layer consists of devices and control mechanisms to 

regulate the flow of power as well as capture valuable data about power flows and 

consumption patterns from the grid. Advanced Metering Infrastructure (AMI) was a key 

driver in deploying smart measurement devices at the grid edge to allow utilities and 

system operators visibility into individual consumer’s load consumption pattern as well as 

achieve billing management remotely[18]. A wide range of applications such as data 

analytics about consumption patterns, network topology estimation and outage 
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management have been facilitated using this added visibility [19]–[22]. The power flows 

across the grid depend highly on magnitudes and phase angles of voltage vectors at 

different flow points. This information is critical to analyzing system flows and ensuring 

that the network continues to operate smoothly without running into line congestion issues. 

The advent of phasor measurement units (PMUs) was instrumental in providing points of 

visibility across the network to enable centralized estimation of system flows [23], [24]. 

These units are GPS synchronized to allow extraction of phase angle differences across a 

bulk network.  

Energy management systems (EMS) were developed as a platform for power flow 

management and grid estimation based off of PMUs. Utilizing detailed system models and 

measurements from PMUs and AMI meters, supervisory control and data acquisition 

(SCADA) systems are able to embed EMS platforms and deliver numerous functionalities. 

SCADA systems run a complete power flow based on measurements (every 10-30 

seconds), to provide an estimate of the system state to the operator [25]. This allow real-

time monitoring of network conditions, provides a measure of grid stability, allows 

contingency scenarios to be calculated, and allows optimizations to be performed to 

coordinate dispatch points for sources [26]. Automatic generation control (AGC) is 

embedded into every generating unit to allow precise control over the power being 

delivered. Independent System Operators (ISOs) often take charge of using SCADA and 

EMS mechanisms to ensure that network is operating without congestion patterns and that 

supply-demand balances are being met in real-time [27]. This involves re-dispatching all 

participating sources in order to ensure smooth operation.  
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From a transactive perspective, the electric grid is a natural monopoly. The National 

Energy Policy Act of 1992 allowed for the creation of a wholesale marketplace for 

electricity through deregulation in some parts of the US [28]. Deregulation has ensured that 

numerous entities participate in this multi-layer electricity infrastructure. The objective of 

this reform was to promote competition and ensure that the market would be driven to a 

point where energy was being delivered at the cheapest price point to consumers.  Today, 

an ecosystem of participants in the generating companies (GenCos), transmission 

companies (TransCos) and distribution companies (DisCos) all participate in an energy 

market. There are numerous time scales and planning horizons implemented. Each of these 

rely on tight coordination between all involved entities. Using a long-term forecast, some 

power purchase agreements and forward contracts may be set up [29], [30]. These are 

implemented to hedge against some uncertainty using bulk generation sources [31], [32]. 

Investment decisions involving future source mixes and long-term infrastructure placement 

are typically carried out several months or years ahead. On a daily basis, a dispatch 

procedure is settled based on a load forecast using a Security Constrained Economic 

Dispatch (SCED) or Security Constrained Optimal Power Flow (OPF) algorithm [33]–

[36]. These procedures may be performed again on an hourly basis based on expected 

hourly deviations from day-ahead predictions. SCED and SCOPF algorithms use either 

load forecasts or actual measured load data from PMUs and AMI units, and real-time 

information about the current system topology, to compute system flows and optimize 

generation costs or system losses.  EMS and SCADA systems embed SCED and SCOPF 

algorithms to allow periodic redispatch procedures (AGC) even on an intra-day basis.  
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The operation and control mechanisms in place today are primarily governed by the 

market layer. It is important to note that the core functionality of the grid under normal 

operating conditions, remains transportation of power without running into network 

constraints while ensuring that supply-demand balances are met using market principles. 

Thus, these complex, layered, grid management principles can be condensed and divided 

into two main layers -the physical layer that manages parameters like voltage and 

congestion, and the transactive layer that enables a marketplace for all independent asset 

owners. While, today’s architecture is significant in functionality and efficiency, there are 

some key challenges. 

2.1.2 Fragility of today’s grid architecture 

 

It is apparent to see that the ‘Achilles heel’ of the modern grid operation paradigm is 

the dependence on continuous communication and centralized computations. Each of the 

layers mentioned in the previous discussion depend heavily on accurate knowledge of the 

current system topology and precise information about system states. System operators are 

Figure 2.2 Existing control and coordination paradigm 
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tasked with utilizing low-latency communications to periodically retrieve load patterns 

using AMI and PMU data, synchronize the readings, run complex SCED or SCOPF 

procedures and issue control signals (AGC or network reconfiguration) to stabilize the 

system. Fig. 2.2 illustrates this control principle. Loss of measurements from certain 

locations could severely hamper the entire control architecture. Konstantinou et.al have 

shown the effects of GPS spoofing cyber-attacks and the resulting destabilization of the 

system in question [37]. The 2015 Ukraine blackout is an example of such a coordinated 

cyber-attack [38]. Even in cases without malicious intent, loss of GPS signals in PMU units 

or damage to communication systems can severely hamper wide area monitoring system 

in place today [39].  

Dispatch has traditionally worked well with the `top-down architecture' with limited 

participants and predictable load patterns. With generation centers moving towards to the 

grid-edge, and growing numbers of asset owners, it becomes extremely challenging to 

derive optimal dispatch procedures for all participating agents. The volatility introduced 

by non-dispatchable DERs like PV further complicates this issue. In contrast to the 

traditional dispatch procedures where the capacity limits are known, the available capacity 

fluctuates significantly in PV rich areas - sometimes in the millisecond time frame. Often, 

an independent asset owner may choose to not participate in the power pool making 

estimation of available capacity from the grid edge even more challenging. The central 

computation-based approach where every grid state is retrieved before recalculating 

dispatch or controls fails to cope against fast phenomenon and the growing number of 

participants seen in today’s systems. Moreover, the reliance on low-latency communication 

also introduces numerous points of failure and resiliency concerns. Yet it is inevitable that 
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future grid structures will largely be dominated by volatile PV-based sources. Microgrids 

are being deployed with volatile sources in developing economies. The cost of 

communication systems becomes an issue when deploying grids in such environments. 

Moreover, the challenges associated with managing supply-demand imbalances and 

volatility are accentuated in these settings. Centralized approaches would not be scalable 

in such settings.  

System operators rely on accurate load forecasts to generate baseline dispatch 

procedures and alter them periodically. However, with DERs severely altering the way 

energy is consumed, it becomes challenging to forecast optimal procedures. AGC signals 

are issued at best in the 5-15-minute time frame to address congestion leaving the system 

vulnerable to fast phenomenon introduced by volatile sources [40]. The market layer is 

designed to optimize the cost of operation, but it completely fails to leverage any form of 

demand elasticity. Prosumers and consumers are abstracted form the dynamics and only 

exposed to flat-rate prices in most marketplaces. Yet, demand flexibility is key to 

stabilizing these highly volatile PV dominant grids of the future. 

Numerous approaches have been proposed in literature to deal with certain aspects 

discussed above. To reduce the dependence on communication with centralized control 

locations, graph-theoretic stabilization mechanisms are being explored in literature. 

Vaccaro et.al have explored the use of consensus algorithms at the community level to 

achieve economic dispatch [41]. This architecture relies on communication of some key 

parameters between neighbors or peers in a system to achieve a common goal. Zhang et.al 

have proposed an architecture in [42] that relies on exchanging power mismatches between 

agents to achieve economic dispatch in a decentralized fashion. However, the architecture 
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is based on the election and presence of a leader node on the connected graph that becomes 

the root node for the consensus algorithm. The number of nodes that can be elected as 

leaders limit the reconfigurability of the architecture and the make the entire architecture 

prone to failure if any cyber-attack occurs on the designated leader node at any instance in 

time.  Most of these approaches rely on knowledge of topology, incremental costs, plant 

capacities or other source and participant parameters. While some centralized 

communication and coordination can be avoided by using peer-to-peer or cloud-to-agent 

approaches, the entire architecture is crippled in the event of damage to any communication 

infrastructure. Moreover, in areas where the agents are geographically dispersed, the 

communication requirements of a peer-to-peer model are similar to those seen in 

centralized architectures. 

Loia et.al have also proposed a decentralized voltage management approach which 

also relies on radio-based communication with adjacent agents and control devices [43]. 

The idea of using mechanisms in the market layer to aid grid stabilization have been 

explored in literature as well. Virtual power plants and their role in the energy market is 

considered in [44]. Decentralized trading architectures have been presented by Hijgenaar 

et.al in [45]. Some blockchain based adaptations to achieve a decentralized transactive 

marketplace have been shown in [46]–[48]. This approach assumes high speed 

communication with the cloud for all associated agents. Demand-side participation and 

decentralized market implementations have largely been ignored while focusing on 

reaching economic dispatch using source-side controls. Transactive energy platforms are 

being explored in literature to allow stabilization of supply-demand imbalances and 

volatility using collective supply and demand participation [49]–[51]. However, these 



 21 

approaches again rely on either a graph-theoretic approach or centralized market clearing, 

compromising their resilience Approaches using HEMS systems to provide some demand 

response have been investigated in [52]–[54]. Thus, while key developments have been 

made to reduce the reliance on centralized computations and coordination, no holistic and 

robust solution is available to manage future grids.   

An integrated structure to achieve autonomous decongestion while facilitating power 

trading between all associated agents has seldom been realized. To achieve resiliency 

improvements, the grid control principles need to be scalable, and agnostic to system size 

and topology while stabilizing the system in a decentralized fashion. Thus, a truly fractal 

approach is required towards designing control architectures for future grids where the 

system could break into smaller sub-grids but still operate using the same control principles 

[55]. The research presented in this document highlights a framework and a set of solutions 

to achieve decentralized control over transactive and physical grid aspects in a resilient 

fashion. The next subsection provides an overview of existing control techniques that are 

used to control system flows. 

2.2 State-of-the-art Congestion Relief and Voltage Support Mechanisms 

As the grid has evolved over the last few decades, reliability and redundancy have 

been severely enforced, to ensure a robust physical infrastructure. This has resulted in a   

highly meshed grid architecture. It has been shown that meshing power networks has 

significant advantages in terms of minimizing transmission losses [56]. While meshing has 

largely been prevalent on bulk systems, large urban centers are also implementing such 



 22 

architectures at the low voltage level to maximize reliability. Mega cities like New York,  

Los Angeles and a few cities in Germany have employed novel meshed low voltage 

architectures where multiple megawatts of power are transported at distribution voltages 

in underground networks.  Fig. 2.3 (a) and 2.3(b) show a generalized overview of bulk 

meshed grids[57] as well as newer low voltage meshed grid structures [58].  

However, control of power flows and voltage profiles across such networks is 

extremely challenging. Line congestion occurs when the state of the grid is characterized 

by one or more violations of the current carrying limits of transmission links. 

Unprecedented DER adoption at the grid-edge further accentuates this issue. Unexpected 

power flow patterns and line congestion patterns are seen as a result of this. Severe voltage 

volatility is also observed on feeders with heavy PV penetration. Dynamic grid control 

becomes a necessity in such environments. Congestion management and control over 

power flows has generally been exercised in two ways. The first involves a centralized 

Figure 2.3 Illustration of meshed grid structures at the (a) bulk power level (IEEE 30 bus system) (b) 

low voltage level [57,58] 

(a) (b) 
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approach where sources are redispatched to alter power flows patterns or the topology of 

the network is altered to affect power flows. The second approach involves deploying 

distributed controllable solutions to affect power flows on certain corridors. An overview 

of both these control techniques along with their associated challenges is presented in this 

subsection. A review of commonly used voltage control solutions is presented as well. 

2.2.1 Centralized Control over Power Flows 

In vertically integrated structures, the generation units, transmission corridors and 

the distribution network were typically administered and managed by a single entity. 

Congestion would occur as a phenomenon on a sporadic basis and the operator would have 

to resort to altering generation dispatch pattern using AGC to change grid flows. One of 

the most powerful algorithms in terms of addressing this phenomenon has been the Optimal 

Power Flow (OPF) algorithm [36]. The problem typically consists of an objective function 

that is being minimized while enforcing certain constraints. The function being minimized 

could be the net generation cost or the cumulative transmission losses. Typically, in today’s 

electricity markets with multiple participants and bidding entities, the generation cost is 

often the quantity being minimized. The constraints often embed the security requirements 

of the grid structure. These could include voltage regulation requirements as well as the 

line capacity constraints. OPF algorithms are finding their place in control centers as parts 

of their SCADA or EMS systems.  

Since, congestion is a spatial and temporal phenomenon that arises in real-time, 

based on loading variations or contingencies, it needs to be addressed in a timely manner 

on an intra-day basis. In the pre-congestion time frame, dispatch points for all generating 
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units are a result of the respective generator bids as well as the market dispatch procedure. 

However, when a congestion pattern is observed on the state of the grid, a new OPF 

problem specifically targeted towards reaching an optimal grid state needs to be solved. 

This iterative algorithm first imports system states by retrieving them over low-latency 

communications and computes a base case power flow solution. Once, an estimate for the 

complete system state is obtained, an optimization routine is used to derive a feasible 

solution under given constraints. An example of a formulation [59] is summarized in (1). 

Objective function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐶𝑔(∆𝑃𝑔)Δ𝑃𝑔                                                                                                         (1)
𝑁𝑔
𝑔  

Subject to 

 ∑ ((𝐺𝑆)Δ𝑃𝑔) + 𝐹𝑘
0 ≤ 𝐹𝑘

𝑚𝑎𝑥                                                                                                  (1𝑎)𝑁𝑙
𝑔  

𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔 ≤ 𝑃𝑔

𝑚𝑎𝑥                                                                                                                      (1𝑏) 

𝑃𝑔 − 𝑃𝑔
𝑚𝑖𝑛 = Δ𝑃𝑔

𝑚𝑖𝑛                                                                                                                     (1𝑐) 

Δ𝑃𝑔
𝑚𝑖𝑛 ≤ Δ𝑃𝑔 ≤ Δ𝑃𝑔

𝑚𝑎𝑥                                                                                                              (1𝑑) 

Δ𝑃𝑔
𝑚𝑎𝑥 = 𝑃𝑔

𝑚𝑎𝑥 − 𝑃𝑔                                                                                                                   (1𝑒) 

Where, 

Δ𝑃𝑔         -  Required adjustment in real power outputs  

𝐺𝑆(Δ𝑃𝑔) – Line flow sensitivities to generation set points  

𝐶𝑔           - Price bids from participating generators  

𝐹𝑘
0          - Base case power flow for branch k  

𝐹𝑘
𝑚𝑎𝑥     – Line loading limit for a given link  
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𝑁𝑔         - Number of participating sources  

𝑁𝑙          - Number of active transmission links  

𝑃𝑔
𝑚𝑖𝑛 𝑎𝑛𝑑 𝑃𝑔

𝑚𝑎𝑥 – Limits on generator outputs  

 The formulation presented above can be embedded with higher complexity 

depending on other constraints that may need to be embedded. The problem highlighted in 

(1) can be solved using a linear programming approach. Generator sensitivities are 

typically embedded in the form of power transfer distribution factors (PTDFs) [60]. The 

OPF formulation then generates a feasible solution that contains real power adjustments 

that need to made to take the system back to a non-congested state. These signals are issued 

in the form of AGC signals to bias governor operations of generating units. This ensures 

that all units dispatch the required power set points at a 60Hz point on their droop curves. 

Further complexity can be added by accounting for a few contingency cases. Thus, a new 

class of algorithms in the form of security constrained optimal power flow (SCOPF) 

algorithms can be realized. Actual power flow equations are however, quadratic. This 

makes the OPF problem a quadratically constrained quadratic program (QCQP). The 

problem is generally nonconvex and NP-hard making it challenging to solve. Numerous 

approaches to solve OPF problems have been proposed in literature using the second order 

cone program (SOCP) [61] as well as other semidefinite program methodologies (SDP) 

[62]. A popular approximation used in most EMS and SCADA systems today is the DC 

optimal power flow (DC OPF) methodology [63]. This method relies on linearization of 

power equations to reduce the complexity of conventional OPF problems[64].  
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 Topology reconfiguration is another solution that is used to change system flows. 

Reconfiguration of power networks relies on operating tie line switches and sectionalizers 

in a pattern that alters the net power flow across the system[65]. Reconfiguration has been 

used a measure to reduce losses on meshed distribution network. Reconfiguration for 

congestion management is known to be a nonlinear complex combinatorial optimization 

problem. These problems have been solved using Genetic algorithms and particle swarm 

optimization based solutions in literature [66], [67]. Much like the OPF based approach, 

reconfiguration also relies on establishing visibility using measurements from PMUs over 

low latency communications and performing complex optimizations centrally.  

 Both solutions involve complete knowledge of system topologies and low-latency 

communications to issue commands. Altering the dispatch patterns impacts the transactive 

layer of the system and adds a congestion cost component to the system. The centralized 

solutions presented in this section focus on utilizing a communication loop with a 

centralized entity to address congestion issues. With power flows becoming unpredictable 

owing to rapid deployment of PV and wind, rapid dynamic congestion management 

becomes extremely necessary. Moreover, OPF problems work well with limited 

participants in a market structure. The computational complexity requirements to 

accommodate millions of prosumers with their own constraints using today’s centralized 

approaches will be astronomical. This ensures that the scalability of centralized congestion 

management solutions in future DER heavy grids is limited owing to the computational 

and communication requirements.  
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2.2.2 Distributed Power Flow Control Solutions 

Centralized solutions presented in Section 2.2.1 assume that the network is entirely 

passive. This makes it necessary to change source setpoints to change power flows. These 

approaches involve using algorithmic frameworks to affect control at the generator level. 

However, a large number of hardware devices have been proposed in literature to make the 

passive network more flexible and active. These solutions ensure that grid flows can be 

altered in scenarios with congestion by reconfiguring physical characteristics of the meshed 

grid itself. These hardware solutions allow active control over meshed passive networks. 

Since, these solutions are located in sparse locations across meshed structures, they will be 

referred to as distributed solutions in this document. Some of the methods as well as their 

attributes will be summarized in this subsection. An overview of the principle behind 

distributed power flow controllers will be presented first followed by some technologies 

that enable the same. 

2.2.2.1 Distributed Power Flow Controllers - Principle 

Figure 2.4 Power flows over a two-bus system 

The power flow across any given corridor is a function of the voltage magnitudes 

across the link, the phase angles as well as the impedance of the corridor itself. Consider a 

two-bus system shown in Fig. 2.4. The power flow across the link is governed by equations 

(2) and (3). Here, |𝑉1| and |𝑉2| are the magnitudes of the voltage phasor at both ends of the 

|𝑉1|  1 |𝑉2|  2
 

   1    2
𝑃12   12
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line and  1 and  2 are their respective phase angles.   represents the impedance of the 

transmission corridor. 

𝑃12 =
|𝑉1||𝑉2|

 
sin( 1 −  2)                                                (2) 

                                        12 =
(|𝑉1|

2 − |𝑉1||𝑉2| cos( 1 −  2))

 
                                            (3) 

The equations show that the amount of power flow across any given link can be 

controlled by affecting changes on the phase angle between the sending and receiving end 

of the link or the apparent impedance itself. Any device that can achieve these attributes 

would show promise in addressing congestion patterns in a distributed fashion. Fig. 2.5 

shows such a power flow control device that can add a voltage at a certain magnitude in 

series with the sending end voltage. Fig. 2.5 also shows the resultant phasor diagram for 

such a system. Here 𝑉𝑝𝑓𝑐 represents the additional voltage phasor that is injected by the 

series power flow control device. As a consequence, the resultant sending voltage is 

|𝑉1
′|  1′. Thus, with an added power flow control device on the like, the active power flow 

equation becomes that shown in equation (4).  

Figure 2.5 Power flow variation over a two bus system with a power flow controller (pfc) 

                                                  𝑃12′ =
|𝑉1

′||𝑉2| sin( 1
′ −  2)

 
                                                     (4) 

|𝑉1|  1 |𝑉2|  2
 

   1    2𝑃12′

𝑉𝑝𝑓𝑐 |𝑉1′|  1′

|𝑉1|  1

𝑉𝑝𝑓𝑐

|𝑉1′|  1′
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Most distributed power flow control devices use this principle. Some of these power 

flow control devices are presented next. 

2.2.2.2 Phase Shifting Transformers (PSTs) 

Phase shifting transformers (PSTs) have been used traditionally as a power flow 

control device in meshed grids. These devices were designed to accommodate changes in 

power flows that were observed on a seasonal basis[68]. PSTs are mechanical devices that 

utilize a series of winding and taps to synthesize a fractional out-of-phase voltage that can 

be injected to change power flows. The out-of-phase component and its magnitudes are a 

result of the inherent phase shifts between delta and wye winding connections on a 

transformer as well as the taps on them. Fig. 2.6 shows a schematic of a typical PST [69].  

Figure 2.6 Phase shifting transformers [69] 
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While, these devices do add some flexibility their response times are not adequate 

for real-time control. The tap settings are controlled mechanically, and they often degrade  

through continuous operation. This ensures that PSTs are inadequate to address fast 

congestion phenomenon on future DER-heavy grids. The presence of limited tap settings 

significantly complicates the real-time optimization algorithms. Thus, slow dynamics and 

degradation due to rapid switching ensures that these solutions have limited effect of 

addressing congestion issues in future DER heavy grids. Thyristor controlled phase shifting 

transformers (TSPSTs) have been developed to ensure faster response times [70]. 

However, problems associated with thyristor control and fault management in series 

injection windings  have ensured that these technologies are not being widely adopted in 

the current power infrastructure [71].   

2.2.2.3 Fully rated High-Voltage Direct Current (HVDC) Links 

VSC 1 VSC 2

Vdc 1 p.u converters1 p.u converter

1 p.u tranformer1 p.u tranformer

Complete P,Q control
 

Figure 2.7 HVDC (fully rated back-to-back) General Schematic 

Power electronics-based approaches have shown great merit for dynamic grid 

control. Flexible AC Transmission systems (FACTS)-based solutions like HVDC were 

originally utilized to transfer power over large distances. In addition to the efficiency of 

transmission, these links also enable controllable power flows. HVDC links involve two 
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fully rated converter units that enable transmission of power over a DC link. HVDC in 

itself does have its own set of challenges. Investment requirements for converter stations, 

poor power factors, reactive power compensation requirements and harmonic management 

issues make these solutions challenging to implement [72], [73]. While HVDC does make 

transporting power over large lengths possible, the controllability over any given link can 

be achieved by any fully rated back-to-back (FRBTB) link. Fully rated implies that all 

components are rated at 1 p.u which is the rating for the desired link. 

HVDC-light is one such realization where a controllable link is created by using two 

sets of voltage source converters (VSCs) in a FRBTB configuration with a DC link in 

between [74]. Fig. 2.7 shows a generalized schematic of an HVDC FRBTB 

implementation. The BTB units are accompanied by two coupling transformers on either 

side of the link. Since the link is asynchronous, a completely controllable corridor can be 

realized to alter active and reactive power flows in a bidirectional fashion. Today, HVDC-

light has been implemented in numerous locations in Sweden, China, Denmark, Australia 

and North America [75].    

However, from an economic perspective an HVDC FRBTB implementation involves 

building a completely new corridor. This involves long execution times and high 

investment costs. Elaborate planning studies need to be conducted to size the link and its 

attributes correctly. Another key factor to analyze with these solutions is resiliency. When 

considering the HVDC FRBTB implementation, failure of any one component hampers 

the operation of the entire unit. Since, the link involves two coupling transformers, two 

fully rated VSC converters and a DC link capacitor, the probability of failure is quite high. 

Damage to any one component, would cripple the entire link in addition to losing any added 
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controllability achieved. Fully rated approaches are also more expensive as all components 

need to be rated to handle nominal and fault currents for the entire link. 

2.2.2.4 Unified Power Flow Controller (UPFC) 

UPFCs are another FACTS-based approach towards adding controllability to system flows. 

Rather, than embed a fully asynchronous link with FRBTB converters, the UPFC approach 

embeds the fractional control approach elaborated in Section 2.2.2.1. Fig. 2.8 shows a

V_conv

V_shunt

VSC 1 VSC 2

Vdc

0.1 p.u. converters

VbusVs

Vbus

Vs

V_conv

Fractionally-rated back-to-back converters
  

generalized schematic of the approach. The configuration involves a back-to-back (BTB) 

converter set that takes a fractional voltage from the line side and synthesizes a fractional 

voltage of controllable magnitude and phase [76]. This synthesized fractional voltage is 

injected in series with the line voltage thereby allowing power flow control based on the 

principles discussed in Section 2.2.2.1. The shunt transformer allows the voltage to be 

stepped down for the line-side converter unit whose sole purpose is to regulate the DC link 

voltage and regulate VARs. The series converter unit then synthesizes the fractional 

voltage which is injected in series by utilizing the series transformer. Since, the entire 

approach is based off the fractional injection approach, the sizing requirements as well as 

converter and device ratings can be reduced significantly. Compared to the FRBTB 

Figure 2.8 Unified Power Flow Controller (UPFC) 
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approach discussed earlier, UPFCs are much cheaper for the same level of control. In 

addition to active and reactive power flow control, UPFCs can also improve voltage 

profiles by injecting an in-phase series voltage component. The first UPFC installation in 

the U.S was carried out in Kentucky in 1998 [77].  

Since, the entire UPFC topology can be bypassed, failure modes associated with the 

BTB unit do not cripple the entire link. However, the series transformer does have to fully 

rated for current since it is a series component. Series transformers in UPFC systems need 

to be rated to handle full fault currents making them prohibitively expensive [78]. Further, 

failure modes associated with the series transformer can cripple the entire link along with 

the loss of controllability. Additional complexity and costs have limited the adoption of 

UPFCs into today’s systems. 

2.2.2.5 Distributed Series Impedance (DSI) 

 

Figure 2.9 Distributed Series Impedance [79] 

While adding fractional series voltage components on the line can add controllability, 

so can altering the apparent impedance. As discussed in Section 2.2.2.1, the impedance 
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term plays a key role in determining the power flow across a link. DSI modules aim to 

augment existing corridors with switching impedance changes to achieve the same. Fig. 

2.9 shows an example of a DSI implementation [79]. The setup consists of a single turn 

series transformer, an inductor and a capacitor. The inductor can be switched on the line 

using the thyristor control circuit. This allows the impedance characteristics of the line to 

be controlled dynamically. Moreover, the number of modules can be scaled to increase or 

decrease controllability on any given corridor. Smart Wires has a DSI product that has 

shown tremendous potential in terms of delaying transmission expansion, aiding better 

utilization of existing assets and providing congestion relief [80]. 

2.2.3 Voltage Control Solutions 

One of the key challenges with heavy DER penetration is managing local voltage 

profiles. Problems associated with over voltages on feeders with heavy PV based DERs 

are visible today [81], [82]. A range of voltage control solutions have been proposed to 

address the same. An overview of some legacy as well as advanced solutions will be 

presented next. 

2.2.3.1 On-Load Tap Changers (OLTCs) 

OLTCs are a legacy technology to achieve control local voltage profiles. Much like 

the PSTs, OLTCs are designed to accommodate slow variations in voltage owing to 

seasonal voltage changes. Fig. 2.10(a) shows a schematic of an OLTC [83]. Fig. 2.10(b) 

shows an image of a commercial OLTC [84]. The technology is based on discrete taps that  
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are created on the secondary or primary winding of a conventional transformer to alter the  

turns ratio by switching between different combinations. The switching action is typically 

done mechanically. 

The technology is limited in terms of speed owing to the mechanical motions it must 

go through. Rapid volatility seen in DER heavy grids would have to be addressed by rapidly 

switching these devices. However, the mechanical nature limits their real-time usability. 

OLTCs in today’s grids are having to switch far more than they were designed for [85]. 

Moreover, the delays in switching actions often imply that the phenomenon to be addressed 

has often passed before the switching action is completed.   

 

Figure 2.10 (a) OLTC Schematic (b) Commercial OLTC Product [84] 

(a) (b) 
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2.2.3.2 Mechanically Switched Capacitor Banks 

Another approach towards providing voltage support involves using capacitor banks. 

By switching in a set of capacitors into the system depending on the local voltage reactive 

power support can be provided. Control set points for these devices may also be issued by 

a centralized DMS entity using a volt-var optimization algorithm. This aids in improving 

the local voltage profile. Fig. 2.11 (a) shows a schematic of a capacitor bank with 4 steps. 

This allows discrete amounts of reactive power to be introduced on the system. Fig. 2.11 

(b) shows a commercial capacitor bank [86]. These devices are widely adopted in today’s 

distribution grids. 

However, much like the OLTCs, switched capacitor banks are mechanically 

controlled limiting their response time. Further, the discrete steps limit the amount of 

regulation that can be added. Decaying ring wave transients and inrush phenomenon 

associated with the switching actions make these devices seem less robust [87]. 

 

 

Discrete Steps for VAR support

Figure 2.11 (a) Mechanically Switched Capacitor bank (b) Commercial Switched capacitor bank (Eaton) [86] 

(a) (b) 
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2.2.3.3 Thyristor Controlled Reactors (TCRs) and Switched Capacitors (TSC) 

𝑖   𝑖   
 𝐶

    

 

Figure 2.12 (a) TCR Schematic (b) TSC Schematic 

FACTS based approaches have shown promise in addressing some of the issues 

associated with capacitor banks. TSCs and TCRs consist of a capacitor and reactor 

connected in shunt through a pair of thyristors. By controlling the thyristor firing angle, the 

effective capacitance or reactance inserted into the system can be controlled [88], [89]. Fig. 

2.12 (a) and (b) show general schematics for TCRs and TSCs respectively. 

TCRs and TSCs provide discrete control and allow the reactive power inserted to be 

finely controlled. However, these approaches have been known to introduce undesirable 

harmonics. Methods involving delta connection of modules as well as symmetric control 

over thyristors have been proposed in literature to address some harmonic issues.  

2.2.4 Constraints with controlling low-voltage meshed grids 

FACTS-based solutions have shown some promise as power flow controllers on the 

bulk power level. However, when dealing with low voltage meshed grids in urban centers 

some key considerations ensure that FACTS based solutions do not address voltage and 

(a) (b) 
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asset loading problems. The low impedance of the network along with the high degrees of 

coupling observed between transformers poses significant problems. Geospatial loading 

variations on low voltage meshes significantly alter the voltage profiles, relative asset 

loading and reactive power flows. Shunt capacitors and FACTS-based VAR support has 

been studied extensively for radial networks [90], [91] However, bulk VAR support often 

results in reactive power loops on such networks. Thus, the desired volt-var solutions need 

to be more distributed to affect voltage profiles locally and efficiently. Small amounts of 

control exercised in multiple locations have more value than centralized bulk VAR 

deployment. Another key consideration is the high amounts of current (> 50kA) observed 

on these low voltage meshes. Thus, any control device would have to be able to sustain 

these fault current levels. In addition, there are numerous environmental constraints that 

are desirable. Low voltage meshed networks in urban centers are typically underground 

with a network of cables and transformers lying in underground mains. Thus, any solution 

deployed would have to sustain operation in such tight spaces and exhibit high water 

resistance. This ensures that FACTS based solutions cannot be deployed under these 

constraints. Thus, cheaper, more resilient control solutions that can be retrofitted at points 

of interest in the grid are required. 

2.2.5 Control of Physical Grid Parameters - Discussion 

Legacy physical grid control approaches have been shaped around the assumption 

that control over system flows can only be achieved by altering source dispatch points. It 

is clear that this approach cannot scale to future grids where fast dynamics, increased 

volatility and grid edge sources will be commonplace. As DER penetration levels on the 

system rise, it becomes necessary to add solutions that can make the passive grid more 
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active. FACTS based solutions have enabled faster response times and increased 

controllability over grid phenomenon. However, most of these approaches show poor 

resiliency owing to certain failure modes. Further, most of these solutions are significantly 

expensive and involve massive infrastructure upgrades and dedicated links. 

Thus, an ideal grid control solution would be one that adds significant control at 

numerous points without adding tremendous cost in terms of implementation. The solution 

would have to be retrofittable. Further, the solution would have to be designed in a way 

where failure modes don’t cripple existing links. Moreover, the solution would have to 

embed the attributes of all the devices summarized in this section. Hybrid Transformers 

are presented as a resilient and cost-effective grid control solution in this document. 

2.3 Existing transactive control mechanisms to leverage flexibility 

The non-dispatchable nature of DERs and their fluctuating availability make 

operation and control aspects of DER heavy grid structures challenging. Grid operators 

often use dispatchable sources to cover fluctuations in DER availability. As the resource 

mix moves towards one that is dominated by PV, relying on a slack bus becomes infeasible. 

Moreover, as millions of consumers turn into generation asset owners, it becomes 

necessary to create a formal incentive structure to ensure that global supply-demand 

balances are met. With wide variations in supply-demand balances, incentivizing demand 

flexibility is key to stabilizing and managing future grids. Moreover, by reflecting the state 

of the system to the users in real-time, end nodes could be incentivized to fulfil local 

objectives while globally stabilizing the system.  
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 Dynamic pricing as an instrument to leverage demand flexibility has been 

extensively investigated to manage supply-demand imbalances.[92], [93] Federal Energy 

Regulatory Commission (FERC)  defines demand response (DR) as “Changes in electric 

usage by end-use customers from their normal consumption patterns in response to changes 

in the price of electricity over time, or to incentive payments designed to induce lower 

electricity use at times of high wholesale market prices or when system reliability is 

jeopardized” [94]. Long term demand response programs aim at designing structures, to 

shift power consumptions over long periods of time, allowing significant changes in 

investments into resource mixes and portfolios [95]. Demand response programs aid in 

assessing long-term planning needs for generation, transmission and distribution levels 

[96]–[98].  

The advent of intelligent end devices [99] and smart home energy management 

systems has allowed DR to be leveraged more effectively. Demand response programs to 

aid intra-day phenomenon have been created and exercised by numerous system operators. 

As the FERC definition states, most demand response frameworks are designed around 

creating incentives or exposing connected agents to real-time prices [100]. An overview of 

some schemes is presented next. 

2.3.1 Incentive-based Mechanisms 

With the advent of the AMI infrastructure, grid operators gained visibility into 

consumption dynamics. Grid operators realized that sporadic system overloads could be 

reduced by creating time-based incentive structures for consumers. These rate or tariff 
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structures are quite prevalent and are exercised by numerous utilities to reduce stress on 

their grid structures. 

2.3.1.1 Time-of-Use (TOU) Pricing 

 

Figure 2.13 TOU-D-PRIME Pricing Scheme (SCE) [102] 

TOU pricing has been adopted by a large number of utilities across the world. The 

scheme involves designing a rate structure where the price of energy varies over different 

times across the day [101]. A utility operator could look at historical trends and analyze 

periods where the cost of generation has been traditionally high or periods where there is 

an incentive to reduce system stresses by incentivizing demand reduction. This could mean 

that TOU pricing schemes could incentivize different consumption patterns across a season 

or even on an intra-day basis. Southern California Edison (SCE) has instituted a TOU 

pricing framework as that seen in Fig. 2.13 as part of their ‘TOU-D-PRIME’ scheme [102]. 

TOU schemes allow utilities to ensure that demand levels are maintained at manageable 

levels. A key point to note here is that TOU schemes do not require bidirectional 

communication. Since this is a tariff structure, the user is informed of the rate plan and 

billed accordingly. 
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2.3.1.2 Critical Peak Pricing (CPP) 

Utilities and system operators may anticipate heavily loaded intervals owing to 

weather phenomenon or other factors. CPP involves sending updated prices for these 

intervals to incentivize reduction in consumption. This pricing structure is very similar to 

the TOU structure where multiple prices are established depending on the expected load 

profiles and dispatch procedures [103]. The key difference with CPP is that it is typically 

implemented for a limited number of times annually. For instance, Xcel energy utilizes a 

CPP program where consumers may be subjected to peak prices upto 15 times a year., for 

a maximum of 4 hours and between noon and 8 PM [104]. The main takeaway is that both 

these methods involve a planning decision to pre-declare these prices for a significant 

amount of time. These prices are set in a way to ensure that generation and transmission 

costs are covered. Moreover, a one-way communication link suffices for CPP. 

2.3.1.3 Peak-Time Rebate (PTR) 

Another implementation of a price-based demand response algorithm would be a 

peak-time rebate mechanism [105]. This structure relies on offering incentives to users to 

drop their collective consumption. This is exactly opposite to the CPP structure. The rebate 

is awarded by calculating the reduction in consumption as compared to the baseline load 

curve. However, this involves analyzing and creating a base line load curve which can be 

challenging [106]. Another key point of consideration is that the user pays the same rate 

for higher consumption while only a reduction is awarded. This structure is created to offer 

price protection to consumers while educating a consumer to provide support to the grid. 
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2.3.1.4 Challenges with Incentive-based Mechanisms 

The incentive-based schemes described above have shown limited impact in terms 

of leveraging demand flexibility. Some of the more favorable structures proposed above 

involve some form of load estimation procedures. This is quite challenging as it involves 

characterizing each consumer’s baseline load consumption and their elasticity to decide an 

appropriate incentive. Another drawback of this scheme is that there is no penalty system 

in place for higher than expected consumption. More direct methods involve direct load 

control or revolving blackouts. These schemes are invasive and result in consumer 

dissatisfaction.  The implication of this is that the system administrator needs to carefully 

design these price points to hedge the actual generation price volatility. It is apparent that 

by updating prices more frequently, a lower hedging premium needs to be maintained as 

the market dynamics can be reflected more effectively in terms of prices. 

2.3.2 Real-time Pricing (RTP) 

From a system operator’s perspective, spot market pricing mechanisms are designed 

to hedge the uncertainty and generation price volatility in real-time. It is immediately 

apparent that by updating price more frequently to reflect the true cost, a lower hedging 

premium can be maintained while operating with lower risk. Real-time pricing (RTP) 

mechanisms aim to achieve just that by leveraging maximum elasticity from all connected 

agents [107].  

In 1988, Schweppe et.al proposed a framework based on spot pricing of electricity 

which is considered to be the foundation for all modern nodal pricing mechanisms [108]. 

The framework focused on realizing an energy marketplace where the commodity (energy) 
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was being bought and sold in a manner where the prices reflected the time and geospatial 

aspects of power delivery. This method was proposed to maximize benefits for the 

producers and the consumers. This framework has been adopted into the nodal price 

frameworks seen today.  

Locational Marginal Prices (LMPs) and Distribution Locational Marginal Prices (DLMPs) 

are used to convey real-time prices in most implementations. LMP has worked  

great at the transmission level in terms of capturing congestion and geospatial marginal 

costs of production [8]. The system relies on data from PMUs and AMI meters [109]. The 

energy component of the price is decided using the marginal prices of all participating 

sources. The congestion component involves running power flows based on the apparent 

load to calculate the congestion patterns to calculate flows across the system 

 

 

Energy Component
Collect power output data from the sources in 

the network to assess generation prices

Run power flows after monitoring 
system topology, and AMI/ Load data

Calculate Congestion in the 
corridors based on flows

Calculate losses across systems and 
assign loss components to each source

Calculate nodal prices based on dispatch 
points and congestion parameters

Congestion Component

Loss component

LMP/DLMP

Every 5-15 minutes

Figure 2.14 LMP Calculation Procedure 
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every 5-15 minutes. Further, by calculating losses and factoring the cost of those, a loss 

component of price can be estimated. A nodal price for each location can be provided in 

the form of an LMP metric. Fig. 2.14 illustrates the LMP calculation procedure. Fig. 2.15 

shows a map of the nodal prices across the MISO operating region. LMPs are calculated 

by using the same OPF procedure described in Section 2.2.1. The lagrangian variable is an 

indication of the variation of prices across different geospatial points and captures the effect 

of congestion [110]. This system is an efficient means of calculating the locational price 

when all dispatch points, loading levels and topologies are known on a real- time basis. 

DLMP is an emulation of this process on a distribution level. 

Calculating a price becomes a process of retrieving states, performing computations 

and communicating the rate back to all consumers. Owing to this process, most real-time 

pricing algorithms update the prices on a 15-minute basis while some ISOs have been seen 

to update them every 5 minutes [111]. Complex computations and communication 

bottlenecks will only become more of an impediment in future grids with multiple asset 

Figure 2.15 LMP Contour across the MISO territory 
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owners and faster dynamics. These mechanisms require accurate knowledge of system 

topology and feeder configuration. Additionally, these are largely based on incremental 

costs of generation observed while ignoring transient phenomenon like ramp-rate 

violations. 

Lack of accurate information about distribution network topologies, impedances and 

status of control devices makes deriving DLMPs challenging. With PV becoming 

increasingly prevalent, fast and dynamic phenomenon need to be captured effectively and 

encoded into these pricing dynamics. This will allow collective stabilization using supply 

and demand elasticity. From a resilience perspective, the LMP and DLMP mechanisms fail 

in the event of damage to the communication infrastructure or when volatile phenomenon 

that are faster than DLMP tracking cycles occur. It is essential to note that when such events 

occur, running a scalable and topology-independent market structure can ensure that 

smaller microgrids can continue to operate and supply critical loads. The discussion shows 

that RTP is an efficient way of running electricity markets to leverage supply and demand 

side elasticity. However, there is a need for a decentralized and autonomous 

implementation for RTP. Moreover, there is a need to couple the device operational layer 

and the market layer in a more integrated fashion. 

2.4 Required Attributes and Functionality from Future Grid Architectures 

Certain requirements emerge out of the previous discussions for future grid 

architectures. With faster phenomenon being observed on the grid, the scalability of the 

operation paradigm will be limited. Managing congestion patterns, addressing volatility 

and maintaining supply-demand balances will be extremely challenging as generating 
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structures move to the grid edge and maintaining visibility over low-latency 

communications becomes challenging. Centralized control principles often assume that the 

resource availability is far higher than the possible demand and that a slack bus can absorb 

disturbances and deviations. The application of such a centralized control paradigm to 

managing such grid structures will be challenging. However, it is worth evaluating the 

utility of a grid structure in itself. The function of the physical grid is to deliver energy 

without violating physical constraints. Meanwhile, energy balance is managed through the 

transactive processes to ensure that energy is bought and sold as a commodity. 

Thus, the future grid architecture will have to be one that can enable stable operation 

in real-time by adding flexibility to the passive physical grid while incorporating a 

decentralized marketplace to allow collective stabilization of power balance constraints for 

this multi-owner paradigm with minimal reliance on centralized coordination or 

communication. Moreover, by managing physical and power balance constraints in a 

decentralized fashion based on local parameters, the architecture could break apart into 

smaller fractals while relying on the marketplace to provide signals conveying energy 

constraints to sustain operation at varying levels of degradation. This is of special 

importance during High Intensity Low Frequency (HILF) events such as natural disasters, 

cyber and physical attacks where the fragility of the current operation mechanisms is 

exposed. 

It becomes necessary to implement a highly resilient, flexible and scalable 

architecture that can manage the transactive and physical attributes in a more integrated 

and decentralized fashion while being agnostic to communication failures and topology. It 

is key to design efficient market structures that incentivize usage in a way that matches 
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resource availability better, while operating at the most economical operation point. 

Moreover, reliance on a global control signal that reflects the physics of the network is 

essential to ensure independence from coordinated control. It is important to ensure that 

operation is still economic or close to the optimal point of operation while achieving all 

these objectives.  

It is also important to ensure that any augmentation that adds control to grid 

structures does not cripple the network when it fails. While, failure modes are inevitable, 

an architecture needs to be realized that can sustain sub-optimal operation while limiting 

the effect of the failure. Another key component is the cost of the added solutions. The 

solution needs to be cost-effective to allow widespread implementation and adoption. 

An architecture is proposed here where congestion and voltage issues are dealt with 

autonomously while letting individual agents transact the fundamental quantity -power, in 

a viable marketplace to extract maximum elasticity out of the system. This research 

presents hybrid transformers as an effective means to manage physical grid constraints. A 

powerful transactive framework is presented next to manage supply-demand imbalances 

in PV-dominant grid settings. Finally, an integration of the novel integrated physical and 

transactive architecture is presented. 
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CHAPTER 3. DECENTRALIZED MANAGEMENT OF 

PHYSICAL GRID PARAMETERS 

The meshed grid architecture –critical for reliability, is difficult to control 

dynamically in terms of power flows and voltages Unprecedented, rapid and sustained 

growth of distributed energy resources (DERs) on the power grid further accentuates this 

problem by introducing fast volatility on the system, severely undermining the centralized 

control scheme. This results in congestion, curtailment of DER sources, and an inability to 

utilize the full capacity of the transmission system. The physical grid has traditionally been 

managed using slow source-side controls or slow phase shifting transformers. These 

solutions are robust but often too slow to handle volatility. FACTS-based controllers, do 

allow fast control over grid parameters but are expensive, require a full link to be built and 

cripple the entire link in the event of component failure. 

This chapter proposes the use of hybrid transformers to achieve significant control 

over traditionally passive networks. The proposed approach relies on using fractionally 

rated power electronic topologies to exercise large amounts of control on the target system. 

The approach manages to embody all the favorable attributes of the approaches discussed 

in Chapter 2. In addition, the approach demonstrates an increase in net resiliency and helps 

speed up recovery times in the event of a contingency. The core objective of this technology 

is to add tremendous flexibility to the passive grid to leverage the infrastructure in the best 

way possible while allowing the grid to become a true enabler of energy transactions.  
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3.1 Hybrid Transformers - Concept 

It has become necessary for localized, dynamic and decentralized controls and 

intelligence to be embedded in grid components. Power transformers present optimal 

locations to add cost-effective control solutions owing to their abundance in the grid. The 

high X/R ratio of these units makes it feasible to exercise high amounts of control on both 

the medium and high voltage sections of the grid. Moreover, the geospatial locations of 

these transformers in existing grids make them ideal candidates to improve system 

resiliency, derive more capacity utilization out of existing grid assets, achieve better 

recovery from contingencies and optimize system parameters such as voltage and power 

flows.  

        Rather than building dedicated links for control, hybrid transformers leverage existing 

transformer locations to realize points of grid control.  Fig. 3.1 shows the hybrid 

transformer concept as proposed by Divan et.al [112]. The hybrid transformer approach 

relies on a fractionally rated converter, typically in the range of 5-10% of the application’s 

power, integrated to a conventional power transformer with a tertiary low-voltage winding 
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Figure 3.1 Hybrid Transformer Concept and Equivalent 
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Figure 3.2 Detailed Schematic of Hybrid Transformers 

in addition to the standard high voltage windings. Thus, with minimal modifications to a 

standard power transformer, controllability over power flows can be attained. Previous 

versions of this technology – the Grounded compact dynamic phase angle regulator (G-

CDPAR) and the grounded controllable network transformer (G-CNT) have showcased the 

efficacy of this approach experimentally and in field deployments [113], [114]. 

Fig. 3.2 shows the detailed schematic for the hybrid transformer implementation. The 

primary and secondary transformer windings are the standard high voltage windings and 

are connected to the line. A delta or wye configuration of the primary winding is possible 

to accommodate the application requirements while the secondary winding is in open-wye 

configuration to interface with the power converter. Finally, the tertiary low voltage 

winding is in delta configuration and sources or sinks power depending on the operating 
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point of the unit. The power converter is a standard three-level back-to-back (BTB) neutral-

point clamped (NPC) converter, rated for 5-10% of the nominal voltage, and offering an 

additional leg on the line side to interface with the system neutral and operate under 

unbalanced line conditions. In this configuration, the converter dynamically injects a 

fractional voltage of controllable magnitude and phase angle, in series with the line voltage 

to achieve the desired control action in a precise and granular fashion. The fractionally 

rated converter is significantly cheaper than fully rated approaches and is much easier to 

cool. As shown in Fig. 3.2, three “fail-normal” switches are connected across the output of 

the converter to bypass and protect the power converter in case of line fault and retain basic 

transformer functionality upon converter failure. Thus, the system-level reliability of the 

hybrid transformer approach is close to that of traditional power transformers. The 

operation principle has been elaborated in Section 2.2.2.1. Control over power flows, 

voltages and apparent impedances can be exercised as shown in Fig. 3.3 by altering the 

phase angle of the injected voltage.   

Impedance Control

Voltage ControlActive/ Reactive Power Flow Control

Basic Operating Principle

 
Figure 3.3 Dynamic Control over power flows, voltages and apparent impedances using Hybrid 

Transformers 
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Both the power converter and the power transformer are based on standard and 

proven technologies, widely available in the voltage and power range of interest to reach 

the transmission level, therefore ensuring the scalability of the proposed approach. The 

fractional rating of the power converter, both in terms of voltage and power, makes the 

solution cost-effective across the entire application spectrum. Finally, the power converter 

operates close to the ground level, therefore shifting the challenging Basic Insulation Level 

(BIL) requirements, as high as 350 kV for a 115 kV system [115], to the standard power 

transformer design. This eliminates a major constraint that has been plaguing the voltage 

scaling of solutions based on floating power electronics and reduces the overall cost of the 

proposed solution. Thus, a resilient, fast and granular grid control solution can be achieved 

at much lower costs. Moreover, hybrid transformers enable fast disruptions to be handled 

through local controls while not affecting the economics associated with dispatch or market 

procedures. A qualitative and economic comparison with traditional FACTS based 

approaches is presented next.  

3.2 Comparison with other grid control techniques 

Power electronics-based approaches for dynamic grid control like UPFC and HVDC-

light have been summarized in Section 2.2.2. A comparison is made here between the 

proposed hybrid transformer approach and these technologies.  

3.2.1 Qualitative Comparison 

Fully rated technologies like HVDC-light involve setting up a dedicated link to 

achieve a controllable corridor. This involves a fully rated BTB unit and two coupling 

transformers. The UPFC unit also involves two transformers and a fractionally rated (BTB) 
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unit. It is immediately apparent that the hybrid transformer approach relies on lower 

number of components. Adding control using UPFC or HVDC-light based solutions relies 

on complex modifications at the control locations. On the contrary, the hybrid transformer 

approach can be factored into the planning stage by building power transformers with the 

required taps and connections, enabling the ability to augment them with a converter in the 

future to add dynamic grid control. This is meaningful since the manufacturing cost of the 

power transformer does not change significantly from a regular replacement unit while 

providing the ability to add control as and when required. Moreover, location at a typical 

voltage change point is meaningful because control can be exerted between these two 

regions of the grid.  

Slow electromechanical functionality can be replaced with the hybrid transformer 

approach allowing fast granular control. Another important aspect is the failure modes seen 

on traditional FACTS solutions. When considering HVDC-light, failure of any one 

component hampers the operation of the entire unit. This is the same with failure modes 

associated with the series transformers of UPFC solutions. From a fault current 

management perspective, the series transformer in UPFC systems needs to be rated to 

handle full line currents which makes them prohibitively complex and expensive. On the 

other hand, the hybrid transformer approach is equipped with a ‘fail-normal’ function. This 

means that in the event of any failure on the augmented converter, the BTB converter 

output will be by-passed. This means that the transformer asset would continue to operate 

as a passive element while only losing the added control. 
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3.2.2 Economic Comparison 

The hybrid transformers approach requires fewer components than the HVDC-light 

and UPFC-based approaches. A preliminary analysis was done to quantify the cost-

effectiveness of this approach. Some cost assumptions for the same are stated below. While 

the cost points fluctuate significantly depending on the application, for different 

components, the analysis holds true in almost all cases. The base case presented here is that 

of a passive transformer. Since the passive transformer would be the one component that 

would have to exist at the change in voltage level in the grid, the cost of this component is 

considered as the base line. Approaches like UPFC, HVDC-light and the hybrid 

transformer approach are compared here. A 60 MVA target system is considered for the 

purpose of comparison.  

 The comparison points for both the qualitative and economic aspects are presented 

in Table I. The UPFC and hybrid transformer approaches implement series voltage 

injection, with varying phase and magnitude, to exercise control. It is assumed that both 

these approaches inject +/10% voltage in series, allowing +/- 10% control over voltage  

Table 1 Comparison of Dynamic Control Techniques – 60 MVA target system  
Cost Assumptions: Transformer cost: $30/kVA, UPFC series transformer cost: $60/kVA, Converter: 150/kVA 

 

Approach 
Hardware 

Cost 

Substation 

Cost 
Control Losses Cooling 

Fail-

Normal 

Fault 

Current 

Passive Transformer 

(60 MVA) 
~$1.8 Mill 1x No ~2% Air N/A Yes 

UPFC (including 60 

MVA LPT and 6 

MVA converter) 

~$4.14 Mill 4x Yes ~2.4% 
Deionized 

water 
Yes Yes 

BTB with DC link (60 

MVA transformer and 

converter) 

~$21.6 Mill 10x Yes ~6% 
Deionized 

water 
No No 

Hybrid Transformers 

(60 MVA transformer, 

6 MVA converter) 

~$3.3 Mill 1.2x Yes ~2.2% Air Yes Yes 
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magnitudes and full bidirectional control over real and reactive power flowing on the line.  

HVDC-light is also assumed to have full control over the real and reactive power over the 

link. However, every component is fully rated with this approach. Transformer costs are 

estimated to be at $30/kVA. An exception to this is the series transformer in the UPFC 

system. Fault management requirements on the series transformer push the estimated cost 

point to $60/kVA for the same. Converters in all these approaches are assumed to be 3-

level BTB units with an estimated cost point of $150/kVA. UPFCs and fully rated BTB 

based converters use deionized water to cool the systems. In contrast to this, the hybrid 

transformer approach uses air cooling making the cooling systems less complex and 

cheaper. As previously mentioned, the hybrid transformer-based approach is built with a 

‘fail-normal’ functionality rendering operation of the asset as a passive device possible in 

the event of a failure. While, UPFCs can exhibit the same, the operation could be hampered 

owing to issues with the series transformer. Fully rated BTB based approaches like HVDC-

light typically handle fault currents poorly.  

Table I clearly shows that hybrid transformer-based approaches provide a low-cost 

way of implementing dynamic control on the grid, particularly when the cost of the 

substation, cooling system and losses are included. It also provides the possibility of 

designing the power transformer as a passive device that can be retrofitted in the future 

with a converter to add control, allowing a deferred investment plan. This is an appealing 

economic incentive for grid planners and operators. The augmented control allows control 

over apparent impedances of the link eliminating, the need for building custom transformer 

units with customized impedances. Standardization of transformer units for different power 
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levels makes the cost of transformer manufacturing lower. The economic value added from 

attributes like active, reactive power flow control, voltage control, congestion control and 

resiliency improvement make the hybrid transformer approach the prime contender among 

these numerous control approaches. 

3.3 Dynamic control over grid parameters 

Deploying hybrid transformers at different points of control can allow precise control 

over voltages and power flows. This can help address a variety of issues associated with 

PV dominant grid structures such as voltage volatility and congestion. This subsection 

shows the value that can be gained by utilizing this functionality. In order to validate the 

controllability of the hybrid transformer approach, a few simulation studies were 

conducted. 

3.3.1 Simulation Setup 

This section presents some simulation cases to showcase the additional flexibility 

that can be realized from hybrid transformers. The hybrid transformer can be modelled as 

a transformer unit with a series voltage source that can represent the added fractional 

voltage. In the studies proposed next, a simulation scheme is followed where the network 

is modelled in OpenDSS with an additional controllable voltage source to represent the 

converter unit. Fig. 3.4 provides an overview of the quasi static simulation (QSS) scheme. 

The scheme involves solving a power flow problem to retrieve power flows. A DLL 

interface script is then written to compute the fractionally rated BTB unit’s response to the 

local parameters. This generates the required injection magnitude and phase angle in 

response to the local parameters. This response is then fed back over a COM interface to 
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the voltage source in the OpenDSS framework to represent the hybrid transformer’s new 

control set point. The QSS scheme exercises control at discrete time steps. For the next few 

simulation studies this time step is set to 0.1 seconds. 

3.3.2 Power Flow Control 

The system modelled in OpenDSS is a slightly modified IEEE 30 bus system as 

shown in Fig. 3.5. Transformer T6-10 is replaced with a hybrid transformer unit as the 

point of control with a 5 MVA converter. Thus, a 132/33 kV, 100 MVA control unit is  

t (t+h) (t+2h)
Simulation Time

Power flow solution
DLL script

Compute required injection 
magnitude and phase for converter

Retrieve local 
parameters (Voltage, 
Transformer loading) 

COM interface
Change OpenDSS 
converter model 

Run static power flow

Figure 3.4 Simulation Scheme to analyze the system level impacts of hybrid transformers 

T6-10

Replaced by 
Hybrid 

Transformers

Figure 3.5 Modified IEEE 30 bus system with hybrid transformer (T6-10) 
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Real Power Variation

29 % reduction in 
Transformer loading

Apparent Power Variation
 

Figure 3.6 (a) Real power and (b) apparent power variation affected by hybrid transformer T6-10 

realized in the form of hybrid transformers in this modified system. The nominal flow over 

this link in the modified system is 42.2 MVA. 

 In order to understand the full range of power flow control on this target system 

from the added point of control, a simulation case was generated where the COM interface 

was programmed to vary the phase angle of the injected voltage while keeping the 

magnitude fixed at 5% of the rated voltage. Thus, a 1.65 kV fractional voltage was 

maintained and varied over 360 degrees to the see the effect. Figs. 3.6 (a) and (b) show the 

variations in real and apparent power over the link in response to the injections. With just 

a 5% injection the loading levels on the transformer could be reduced by 29%. Active and 

reactive power flow could be controlled effectively on this corridor using the augmented 

converter. Thus, a fast power flow control device can be realized by simply augmenting an 

existing transformer on the system with a fractional converter.  

(a) (b) 
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3.3.3 Congestion control and DER management 

With DERs like PV introducing enormous amount of volatility, existing dispatch 

procedures and expected power flow patterns get significantly disturbed. Unexpected 

power flow patterns may often create congestion and violate line capacity constraints. A 

use case is simulated on the system detailed in Fig. 3.5. A 1.1 MW PV plant is modelled 

in at bus 16. The plant is assumed to be operating based on an MPPT algorithm. Figure 3.7 

(a) shows the modelled PV plant in the system. 

 

Figure 3.7 (a) Line 15-18 getting congested due to presence of PV plant (b) PV output and spilled output 

due to congestion 

It is observed that owing to the excess energy, line 15-18 gets congested to a 

maximum of 107% of its rated capacity. This would result in the PV output being curtailed 

to avoid congestion patterns. Over a 24-hour cycle, the power being shed is shown in Fig. 

3.7 (b). Hybrid transformers offer a fast and easy way to alleviate line loading concerns. 

Utilizing the hybrid transformer at T6- 10, the line loading across 15-18 can be kept under 

100%. Fig. 3.8 shows the loading patterns across the line with the added control. 
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 It is also important to note that by exercising control no other line across the system 

breaches its line capacity limit. The maximum injection required in quadrature is 2%. Thus, 

by utilizing a 5 MVA fractionally rated converter, alternative transmission paths can be 

utilized in real-time to maximize DER absorption without violating any physical 

constraints. Converters within these ratings are commonly available commercially, making 

this approach easily deployable. 

3.3.4 Enhanced voltage management with high PV penetration 

In addition to congestion issues, DERs also cause significant voltage volatility on the 

grid. Slow electromechanical solutions like Load Tap Changers (LTCs) or Line Voltage 

Regulator (LVRs) are commonly deployed at substations to manage this issue. A 

simulation case is presented here on a modified IEEE 13 bus system as shown in Fig. 3.9 

(a). To understand the effect of PV penetration, a 0.5 MW PV plant is added to the system 

at the end of the feeder. The voltage variation seen at bus 650 is plotted in Fig. 3.9 (b). 

Even with the LTC deployed at bus 650, the voltage variation is only kept within 1% range. 

This is assuming that the switching action is without any delays. LTCs are typically 

Figure 3.8 Dynamic congestion control on line 15-18 
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designed to switch a few time (~10) on a daily basis but with high PV penetration on 

feeders, these devices are having to operate far more than they were designed for. The 

switching actions are often accompanied by significant delays making them an ineffective 

solution to deal with voltage volatility seen in DER heavy systems. 

By deploying a hybrid transformer at bus 650, the voltage can be corrected extremely 

fast and in a precise and granular fashion. By simulating the hybrid transformer in voltage 

control mode using the COM object, the voltage profile attained is shown in Fig. 3.10. This 

shows that the hybrid transformer outperforms existing LTCs and LVRs while enabling 

Taps still lead to 
+/-1% deviations

(a) (b)

Figure 3.9 (a) 13 bus system with 0.5 MW PV farm (b) Voltage management with an LTC 

Figure 3.10 Comparison between voltage management using an LTC and a hybrid transformer 
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higher PV penetrations. The hybrid transformer approach allows numerous forms of 

control in a fast fashion across the grid.  

3.4 Impact on Grid Resiliency 

Large power transformers (LPTs) are highly custom components that are critical to 

the operation of power systems. The customized nature of these products has ensured long 

lead times for component replacement. Moreover, the logistics of installing the component 

once a replacement has arrived are challenging and further delay the restoration time. It is 

critical to develop solutions for this issue to ensure that the system remains resilient. 

With all these vulnerabilities in mind, efforts have been made by federal bodies in 

the U.S to understand and improve the resiliency of critical pieces of infrastructure in the 

grid. In response to this a broad range of solutions were developed. In an attempt to 

minimize the recovery time following a power transformer failure, transformer 

manufacturers have developed mobile transformer units. These units typically consist of 

either a single-phase or three phase transformers mounted on a truck and characterized by 

compact form factors. By reducing the assembly time and transport time these units offer 

a fast and temporary solution to power transformer failures. Several efforts led by DOE, 

EEI and NERC have led to the RecX program. RecX transformers consist of single phase 

transformers transported on specialized assemblies to enable fast restoration and minimal 

installation time [116]. NERC and EEI have instituted transformer sharing programs like 

Spare Equipment Database (SED) as well as Spare Transformer Equipment Database 

(STEP) which encourage utilities to maintain and share power transformers [117]. 
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The initiatives listed above only focus on minimizing recovery time and increasing 

redundancy. With limited flexibility incorporated in these LPT replacements, the resiliency 

assessment would largely be a function of the parameters of the replacement unit. Owing 

to the customized nature of these units, replacement transformers are bound to have 

differing impedance characteristics. Thus, maintaining a set of mismatched spares might 

not help in addressing resiliency issues associated with LPTs. Moreover, the power flows 

and voltage profiles within the network are sensitive to this change in impedance creating 

deviations in loading levels of other units spread out across the system. The efficiency of 

these fully rated mobile transformer units is also lower since these are temporary solutions.  

The proposed hybrid transformer technology in the previous sections is extended to 

the transmission level. To promote lower probability of complete failure, the approach 

deals with splitting a large 200 MVA unit into multiple smaller modular units with 

Figure 3.11 Concept of Modular Controllable Transformers (MCTs) 
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augmented converters. Fig. 3.11 shows an illustration of the same. Thus, this technology  

is aptly name Modular Controllable Transformers (MCTs). These units can be standardized 

to enable fast replacement and manufacturing. However, on large transmission systems the 

power flow over any particular corridor is largely dependent on the apparent impedance 

 seen. This makes the base power flow very sensitive to small variations in transformer 

impedances. As illustrated in Fig. 3.3 the augmented converter enables changes to be made 

to the apparent impedance over a corridor. Owing, to this, a large cache of smaller modular 

units can be maintained as replacement units while avoiding custom designs to meet strict 

impedance requirements. Grijalva et. Al have proposed a framework to quantify system 

level resiliency improvements while using this approach [118]  

The same IEEE 30 bus system and the setup proposed in Section 3.3.1 is utilized to 

conduct some simulation studies. The two (LPTs) of interest are T4-12 and T6-10. Fig. 

T6-10

2x 60 MVA 
Hybrid 

Transformers

Replaced By

T4-12

Figure 3.12 IEEE 30 bus system modelled with MCTs 
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3.12 shows the modular approach where one 100 MVA unit is replaced by two 60 MVA 

units. The MCT approach involves replacing the large LPT with two 60 MVA units with 

lower impedances and the same voltage ratings. This pushes the power flow through the 

corridor to 68 MVA. Corrective actions are taken by the MCT units to correct the 

mismatch. Fig. 3.13 shows the net impedance being altered by the MCT converters in 

response to the changed units. Fig. 3.14 shows the power flow reverting back to 42.2 MVA. 

This is achieved with a 5% voltage injection. Thus, replacement of damaged units becomes 

extremely easy owing to the MCT approach. Moreover, multiple modular units ensure 

partial operation in case of a single failure making the approach extremely resilient. By 

Impedance (three MCTs without any 
injection

Ability to adjust the net impedance to that 
of the LPT replaced

Impedance control

Ability to adjust apparent 
impedance

Impedance 
Control

Impedance to be corrected

Figure 3.13 Impedance control to match replaced unit 
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Figure 3.14 Power flow matched to base case using mismatched unit with added control 
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switching out one large unit for multiple modular ones the MCT approach reduces the 

probability of complete failure. Further, with the fail-normal approach, in the event of 

converter failure, the assets simply revert back to being passive transformers. The total loss 

of transmission corridors is minimized. Thus, the approach enables higher resistance to 

failures, redundancy and reliability. 

3.5 Sensitivity of System Flows and the effect of Hybrid Transformers 

The previous simulation studies prove that hybrid transformers can have enormous 

impact on making traditionally passive networks more active and flexible. However, the 

previous studies involve some system awareness to exercise the control. It is necessary to 

develop metrics to understand the effect of the added flexibility on passive parts of the 

network. The analysis presented in Section 3.3.1.1 allows the complete range of control for 

a hybrid transformer to be defined. This section proposes certain metrics to analytically 

define the effect of hybrid transformers on global system flows. These metrics will become 

a key component in defining autonomous control signals for such devices in a decentralized 

architecture. The system flows are a consequence of the base power flows over the passive 

network and the effect of the hybrid transformer itself. The next two sections present 

sensitivities that provide a framework to analyze the system. 

3.5.1 Power Transfer Distribution Factors (PTDFs) 

The power flows across different corridors in a given passive system are a function 

of the loading levels as well as the source dispatch pattern. This is the basis for generating 

power flow equations and solving a power flow. Thus, it is possible to derive power flows 

across any given line based on knowledge of the power injection or loading on any given 
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network. PTDFs are a measure of the sensitivity of line flows to these injection patterns. A 

brief review of the principle behind PTDFs is presented next. Equation (5) shows the power 

flow equations that are used to compute AC power flows. 

                                  ∑𝑉𝑖𝑉𝑘(𝐺𝑖𝑘 cos 𝜃𝑖𝑘 +  𝑖𝑘 sin 𝜃𝑖𝑘) = 𝑃𝐺𝑖 − 𝑃𝐷𝑖  

𝑛

𝑘=1

                           (5) 

                                  ∑𝑉𝑖𝑉𝑘(𝐺𝑖𝑘 sin 𝜃𝑖𝑘 − 𝑖𝑘 cos 𝜃𝑖𝑘) =  𝐺𝑖 −  𝐷𝑖 

𝑛

𝑘=1

                           (6)  

Where, 

n – number of buses  

𝐺𝑖𝑘 – conductance of link i,k  

 𝑖𝑘 – susceptance of link i,k  

𝜃𝑖𝑘 – phase angle difference between buses  

𝑃𝐺𝑖   𝐺𝑖- Active and reactive power injection at bus i  

𝑃𝐷𝑖  𝐷𝑖 – Active and reactive power drawn at bus i 

Equations (5) and (6) are iteratively solved using the Newton-Raphson method as shown 

in (7). 

                                                     [
Δ𝜃
Δ𝑉

] = − [

𝜕𝑃

𝜕𝜃

𝜕𝑃

𝜕𝑉
𝜕 

𝜕𝜃

𝜕 

𝜕𝑉

]

−1

[
Δ𝑃
Δ 

]                                                  (7) 

The DC power flow approximation is a simplified version of the above process that 

is widely used in most economic optimization tools deployed today in SCADA and EMS 

systems. The DC power flows approximation is based off the assumption that only active 
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power flows are of consequence. Thus, reactive power flows and active power losses are 

neglected in this formulation. This means that |𝐺𝑖𝑘| ≪ | 𝑖𝑘| and 𝜃𝑖𝑘is very small. The 

consequence of these assumptions is that the partial differentials in the power flow 

solutions can now be simplified to (8)-(10) 

𝜕𝑃𝑖
𝜕𝜃𝑖

= ∑ 𝑖𝑘

𝑛

𝑘=1
𝑘≠𝑖 

                                                                                                                                  (8) 

𝜕𝑃𝑖
𝜕𝜃𝑘

= − 𝑖𝑘                                                                                                                                      (9) 

𝜕𝑃𝑖
𝜕𝑉𝑖

=
𝜕𝑃𝑖
𝜕𝑉𝑘

= 0                                                                                                                              (10) 

Thus, the power flow solution presented in (7) can be simplified using this DC 

approximation. The DC power flows equations can then be summarized in (11). 

                                                                   𝜃 = −[ ′]−1𝑃                                                            (11) 

Where, 

𝜃 – vector of phase angles for all buses except the slack bus  

 ′- matrix of susceptances without the slack bus  

𝑃 – vector of power injections at buses 

Thus, for any given transfer of power between buses i and j, a transfer vector T can 

be developed. For instance, in a 5 bus system, a 1 MW transfer from 2 to 5 would imply a 

vector seen in (12). The slack bus (bus 1) entry is removed. 
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                                                       𝑇 = [ 1 0 0 -1]                                                        (12) 

For an arbitrary power ‘p’ to be transmitted between two nodes, the power flow 

equation presented in (11) becomes that seen in (13). The resultant relation shown in (14) 

denotes the sensitivity of phase angles to a given transfer of power in the system. 

                                                               Δ𝜃 = −[ ′]−1𝑝𝑇                                                           (13) 

                                                              [
𝜕𝜃

𝜕𝑝
] = −[ ′]−1𝑇                                                           (14) 

For a given line ‘lm’ on the same system, the sensitivity of a transfer T can be 

expressed by a PTDF metric like that seen in (15). Using the DC power flow assumptions 

(8)-(10), the PTDF for line ‘lm’, for a transfer T  becomes that seen in (16). 

          𝑃𝑇𝐷𝐹𝑙𝑚  =
𝜕𝑃𝑙𝑚
𝜕𝑝

= (
𝜕𝑃𝑙𝑚
𝜕𝜃𝑙

𝜕𝜃𝑙
𝜕𝑝

+
𝜕𝑃𝑙𝑚
𝜕𝜃𝑚

𝜕𝜃𝑚
𝜕𝑝

+
𝜕𝑃𝑙𝑚
𝜕𝑉𝑙

𝜕𝑉𝑙
𝜕𝑝

+
𝜕𝑃𝑙𝑚
𝜕𝑉𝑚

𝜕𝑉𝑚
𝜕𝑝

)𝑇      (15) 

                                       𝑃𝑇𝐷𝐹𝑙𝑚  = (
𝜕𝑃𝑙𝑚
𝜕𝜃𝑙

𝜕𝜃𝑙
𝜕𝑝

+
𝜕𝑃𝑙𝑚
𝜕𝜃𝑚

𝜕𝜃𝑚
𝜕𝑝

)                                        (16) 

Thus, the sensitivity of power flow over a given line for a specific power transfer pT 

can be computed analytically using this formulation. This allows, the power flow 

sensitivity for a given line to be computed in a passive network. This methodology has 

been highlighted in detail in [60]. However, the sensitivity of any control action that the 

hybrid transformer may affect is yet to be calculated. The next subsection presents the 

same. 
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3.5.2 Flow Sensitivity to Hybrid Transformers 

The passive system flows can be linearly captured using the PTDFs summarized 

above. However, the hybrid transformer significantly alters flows across the entire system 

due to its voltage injection. In this subsection, a methodology based on the PTDF 

sensitivities is presented to analyze the same. A similar approach has been presented by 

Thomas et.al in [119]. The hybrid transformer turns a passive link into a fully controllable 

one. This ensures, that any additional amount of power that the hybrid transformer may 

choose to dispatch over the link must loop all over the system and affect system flows.  

 

Figure 3.16 Equivalent to capture the effect of additional MW on other system flows 

Consider the Fig. 3.15 which shows a link that may be equipped with a hybrid 

transformer. The effect of dispatching an additional MW of power over the link is the same 

as adding a generation unit to push and additional MW into the system at bus j and a 1 MW 

load at bus i. The increased power flow must loop through all the other meshed lines to 

i j

Rest of the 
system

Rest of the 
system

1 MW

1 MW

Effect of additional MW as it flows 
through all other lines

X
Additional 1MW

i j

Rest of the 
system

Rest of the 
system

Figure 3.15 Link with hybrid transformer to add 1 MW above nominal flow 
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reach the load as seen in Fig. 3.16. This is equivalent to generating a transfer matrix T 

between bus j and i. The PTDFs of all the lines for this transfer indicate their sensitivity to 

the hybrid transformer itself. These PTDFs will be called hybrid transformer flow 

sensitivities (HTFS) in this document.  

3.5.3 Power Flow Sensitivity with hybrid transformers- Simulation Study 

In order to verify these proposed sensitivities, a simulation study is conducted. Fig. 

3.17 shows the network being simulated. Since, we are interested in steady state power 

flows, the MATPOWER package is utilized for this study. The system is divided into two 

areas with their respective loading. Source 1 is set to dispatch 7 MWs to it’s own control 

area and Source 2 is set to dispatch 5 MWs. A hybrid transformer is placed on link 2-4 to 

add controllability. In the base case, the power flows without any added control from the 

hybrid transformer are seen in Fig. 3.17.  

Analytically, the PTDFs are derived for each of these lines. First, the line PTDFs for 

a 7 MW transfer from bus 1 to 3 as well as a 5 MW transfer from bus 2 to 5 are derived  

1

2

3

5

4

Area 1

Area 2

No injection

7 MW

5 MW

7 MW

5 MW

3.8776 MW

3.1224 MW

4.004 MW
2.421 MW

2.4526 MW

0.1264 MW

2.5474 MW

Figure 3.17 Base flows on passive 5 bus system 
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Table 2 PTDFs and system flows for passive 5-bus system 

 and shown in Table 2. The actual system flows are a sum of these individual flows. Fig. 

3.18 shows the system flows with an additional 1 MW being dispatched over link 2-4 by 

the hybrid transformer. The corresponding distribution factor sensitivities associated with 

a hybrid transformer are presented next. The sensitivities are then scaled to the transfer  

Line 
PTDF (1 MW between bus 1-3) 

x7 

PTDF (1 MW transfer bus 2-5) 

x5 

Actual Flows on 

links 

1-2 4.1006 MW -0.2230 MW 3.8776 MW 

1-3 2.8994 MW 0.2230 MW 3.1224 MW 

2-3 3.2680 MW 0.7360 MW 4.0040 MW 

2-4 0.5204 MW 1.9006 MW 2.4210 MW 

2-5 0.3122 MW 2.1404 MW 2.4526 MW 

3-4 -0.8326 MW 0.9560 MW 0.1264 MW 

4-5 -0.3122 MW 2.8596 MW 2.5474 MW 

Figure 3.18 Power flows on 5-bus network (Hybrid transformer increasing flow by 1 MW) 
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Area 1
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2% injection (1 
MW extra flow)
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3.9838 MW

3.0162 MW

3.6534 MW 3.421 MW

1.9094 MW

0.3304 MW

3.0906 MW
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Table 3 Hybrid Transformer Sensitivities 

 

 size. In this case since only 1 MW of additional power is being pushed, the sensitivities 

can be presented directly. Table 3 shows the calculated HTFS sensitivity. The net power 

flows across the system are a sum of the PTDFs for the passive system and the sensitivities 

associated with the hybrid transformer (HTFSs). Fig. 3.19 shows the methodology that 

could be followed to understand the effect of any hybrid transformer on any given system. 

It is key to note that in Fig. 3.19, the required global data is the matrix of power injections 

and loading levels. However, to make this a decentralized solution we propose an 

estimation scheme in a later section.  

While the ability to exercise control over voltage and power flows across meshed 

bulk power systems has been achieved with hybrid transformers, implementing power 

electronic solutions becomes challenging in low voltage, high power systems where 50 kA 

fault current levels must be met. A retrofittable version of the hybrid transformer concept 

called Stacked Isolated Voltage Optimization Modules (SIVOM) is proposed for the same. 

Line Base Case Flows (MW) HTFS (MW) Actual Flows (MW) 

1-2 3.8776  0.1062 3.9838 

1-3 3.1224  -0.1062 3.0162 

2-3 4.0040  -0.3506 3.6534 

2-4 2.4210  1 3.4210 

2-5 2.4526  -0.5432 1.9094 

3-4 0.1264  -0.4568 -0.3304 

4-5 2.5474  0.5432 3.0906 
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The concept is elaborated in Appendix A along with promising use cases. The validity of 

this approach was ensured on Consolidated Edison’s network as part of this study [120]. 

3.6 Discussion and Contributions 

In contrast to relying on controlling power flows through centralized dispatch, low 

cost hardware control devices can be added to make passive networks controllable. Hybrid 

transformers provide control over numerous grid parameters at bulk power, medium 

voltage and low voltage levels, while being retrofittable and low cost. Moreover, the 

infrastructure cost of deploying these solutions is kept low since they do not require new 

links to be built.  

Each of these solutions responds extremely fast to volatile phenomenon allowing 

management of congestion issues and voltage profiles in a precise granular fashion. Hybrid 

transformers may be controlled by a system operator by issuing set points for maintaining 

Figure 3.19 Methodology to analyze effect of hybrid transformers on arbitrary systems 

Conduct system studies to calculate complete range of 
power flow control at given location for hybrid transformers
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hybrid transformers

Calculate system flows and effect of injections 
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desired system level flows. However, in the event of communication failure, hybrid 

transformers can still regulate the power on their respective links to safe levels and ensure 

that the line of interest does not get overloaded. This can dramatically increase the 

utilization of system capacity and promote the resiliency of the system.  

In case of HILF events or cyber physical attacks where LPTs may be damaged and 

require replacement, the long turn around times and lack of replacements remain major 

issues. The hybrid transformer approach allows an LPT unit to be replaced with a slightly 

mismatched spare LPT unit, while controlling the apparent impedance of the corridor using 

the augmented power electronic converter. This greatly reduces post contingency recovery 

times and increased the resiliency of the system. 

The ability of hybrid transformers to affect power flows and address congestion is 

showcased using some simulation studies in this chapter. Simulation studies have also been 

conducted to show that this technology far outperforms slow voltage regulating devices 

like OLTCs. A methodology was discussed to analyze the effect of hybrid transformers on 

system flows using PTDFs. This methodology will be utilized to intelligently operate 

hybrid transformers in the complete decentralized transactive and physical framework 

proposed in this research. Hybrid transformers thus, become a highly effective solution to 

tackling numerous problems associated with control over physical grid parameters.  

Given that the physical layer of this architecture is managed in real-time, utilizing 

these devices to add flexibility, without affecting the economics of the system, the issue of 

creating a real-time decentralized marketplace for this multi-agent system remains. This 
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will be key to ensuring supply-demand balances in DER heavy grid structures. A 

decentralized architecture to manage the transactive layer is highlighted next.  
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CHAPTER 4. DECENTRALIZED TRANSACTIVE CONTROL 

ARCHITECTURE 

Hybrid transformers show mechanisms to achieve unprecedented control over 

system flows and local parameters like voltage and congestion in a decentralized fashion. 

However, managing supply demand balances with ever changing resource availabilities 

and volatility is extremely challenging. The complexity is only accentuated when these 

assets belong to multiple owners across a system. There is a strong need to develop an 

architecture that can incentivize both demand and supply-side flexibility. Transactive 

mechanisms are key to ensuring that massively multi-agent systems can be stabilized 

effectively.  

Real-time pricing is an efficient mechanism to achieve real-time stabilization through 

incentivization. However, centralized RTP mechanisms are often constrained by 

computation and communication bottlenecks. Thus, it is necessary to design a 

decentralized RTP mechanism that allows price to be derived instantaneously and locally, 

while reflecting grid constraints, without relying on central computations or low latency 

communications with a central controller. Moreover, an implementation that remains 

agnostic to topology information would be highly scalable and fractal, enabling operation 

even when parts of the system are damaged and separated. Such an architecture would 

allow the grid to be a means of enabling transactions, while independent devices such as 

hybrid transformers would ensure that physical grid limitations are not violated. Frequency 

is a ubiquitous signal that has been traditionally used to indicate the loading level of the 

system. This parameter could be used as a universal system-wide parameter that could 
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allow all loads and sources to transact and match supply-demand imbalances in real-time. 

This chapter proposes a frequency-based pricing transactive framework to achieve 

decentralized market operation and dynamic balancing. The chapter first discusses the role 

of frequency and how it can be leveraged as a signal and proposes market rules for different 

participating agents. A decentralized market architecture is then proposed. The proposed 

architecture is based on utilizing global signals to retrieve important system information to 

enable multiple geographically dispersed agents to transact power and contribute to grid 

stabilization. 

4.1 Grid frequency as a global signal  

Frequency is a key parameter that has been used to indicate imbalances between 

supply and demand levels. The nominal frequency is maintained at 60 Hz in the United 

States and 50 Hz in other parts of the world; a standard that was selected to ensure that 

direct grid connected electric machines and clocks can continue to operate safely and 

predictably. The frequency does however deviate in real-time. When the loading level rises, 

the frequency drops to a certain value and vice versa. The steady state settling frequency is 

a function of the droop curve for all the participating sources. Traditionally, droop was 

used as an indicator for the loading level across the system. By setting up a common droop 

curve for the entire system, the collective loading level of the system could be inferred. 

However, with the advent of modern control logic and fast communication infrastructure, 

the automatic generation control (AGC) and Area Control Error (ACE) schemes were 

implemented [121]. This was done to ensure that at any predefined dispatch point the 

frequency would be set back to 60 Hz irrespective of the loading level of the generators. 

This is done by introducing a bias to shift the droop curve [122].  
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Fig. 4.1 shows an example of the biasing mechanism. The ACE parameter ensures 

that the other sources do not budge significantly from their predefined dispatch point and  

export excess power to different control areas. Thus, the grid frequency no longer indicates 

the net loading level, but a deviation from a predetermined operating point. The droop 

characteristic, however, is still implemented. This is done to ensure that the load sharing 

between sources can be managed if a transient occurs. However, one important 

development to note is that most modern devices do not require the frequency to be 

maintained strictly at 60 Hz. Since most frequency sensitive equipment is now interfaced 

to the grid through power electronics, the grid frequency could vary significantly. By 

letting the frequency vary, valuable information about the system’s loading level can be 

derived. Moreover, transient phenomenon like ramp rates are made visible through 

frequency dynamics. Thus, by removing the AGC bias and reintroducing an open-loop 

droop implementation, the frequency can become a global parameter indicating the health 

of the system.  
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Although frequency has not been used traditionally as a system level pricing 

mechanism, some sparse adaptations have been found. Availability-based Tariff (ABT) is 

a scheme where a frequency dependent price is added to unscheduled interchange between 

different operating areas [123]. The unit commitment pattern for the sources is adjusted 

accordingly. Gupta et al. have proposed achieving load frequency control using demand 

response by assigning prices to frequency deviations [124]. Other approaches in literature 

have also been proposed to create an integrated mechanism for real-time markets and 

frequency regulation [125], [126]. Another adaptation of a frequency dependent pricing 

scheme is seen in [127]. This scheme uses a closed loop PI controller to generate prices 

that can stabilize the system based on frequency deviations. All these approaches either try 

to emulate some sort of frequency regulation scheme or leverage demand response while 

using the signals to perform a certain function. None of these schemes present a holistic 

and integrated market structure which performs like a regular wholesale market while 

embedding demand response, frequency regulation and economic dispatch. Moreover, 

even with these solutions, the other aspects of the grid architecture still remain centralized 

and coordinated rather than decentralized and distributed. The proposed approach in the 

subsequent subsection introduces a frequency dependent price that ensures that even with 

varying frequencies sources droop to the desired dispatch point that corresponds with their 

price preferences locally. 

4.2 Decentralized Marketplace based on grid frequency 

The approach proposed here relies on using global frequency signal to generate real-

time prices in a distributed fashion. Frequency is a system-wide parameter reflecting the 

supply-demand imbalance. By using frequency to generate real-time prices, the need for  
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𝑃𝑟𝑖𝑐𝑒 =  −0.2492𝑧7 + 0.3864𝑧6 + 0.5796𝑧5 − 0.6244𝑧4 − 1.0397𝑧3 + 1.3161𝑧2 

−1.9701𝑧 + 22.4365                                                                                                            (17) 

 ℎ𝑒𝑟𝑒 𝑧 =
(𝑓𝑟𝑒𝑞 𝑒𝑛𝑐𝑦 − 59.2420)

0.4417
                                       ∀ 58.5 ≤ 𝑓𝑟𝑒𝑞 𝑒𝑛𝑐𝑦 ≤ 60 

𝑃𝑟𝑖𝑐𝑒 =  −0.2492𝑧7 − 0.3864𝑧6 + 0.5796𝑧5 + 0.6244𝑧4 − 1.0397𝑧3 − 1.3161𝑧2 

−1.9701𝑧 + 17.5637                                                                                                               (18) 

 ℎ𝑒𝑟𝑒 𝑧 =
𝑓𝑟𝑒𝑞 𝑒𝑛𝑐𝑦 − 60.758

0.4417
                                             ∀ 60 ≤ 𝑓𝑟𝑒𝑞 𝑒𝑛𝑐𝑦 ≤ 61.5 

extensive communication infrastructure can be eliminated. The real-time price for energy 

can be derived locally at every node. 

Fig. 4.2 shows one possible mapping curve that could be used. The mapping is 

designed to leverage the exponential demand elasticity observed in literature as much as 

Figure 4.2 Real-time price vs frequency mapping 
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possible. The mapping in Fig. 4.2 is designed using the relations (17) and (18). The seventh 

order polynomials closely approximate the exponential nature and allow the global 

characteristic to be updated by pushing 16 coefficients to all involved entities. The global 

characteristic for the whole system may be updated sporadically. 

The intelligence of the system is then decentralized and distributed globally. Every 

node becomes a Universal Market Node (UMN) capable of sensing frequency, calculating 

the real-time price and making local decisions to alter behavior. Thus, an ecosystem of 

smart nodes is created where every node has visibility into price dynamics instantaneously. 

The approach tries to leverage a common economic principle while letting every agent 

incorporate that into their unique local controls. The local control and the required 

modifications are made locally to reflect autonomous operation. Every UMN possesses the 

ability to respond, to govern consumption, schedule generation, dispatch storage or 

participate in arbitrage. Moreover, by using price as reference, dispatch procedures may 

use local droops to enter a negotiation process that tries to settle to a common frequency 

which also reflects the transactive equilibrium. Each node then is exposed to market 

dynamics and can choose to balance local and global objectives. This allows all agents to 

have access to a market mechanism without adding costs of elaborate communication 

infrastructure and reducing complexity.  

Fig. 4.3 shows the ecosystem and functionality that can be realized using the same 

global rule. These UMNs can be implemented on a low-cost Internet of Things (IoT) 

platform such as the GAMMA platform [128]. The platform provides ultra-low-cost 

sensing and computation hardware that helps in realizing this architecture. The nature of 

the curve incentivizes consumption when there is excess availability and the frequency is 
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high and discourages it otherwise. This creates a framework for managing PV-dominant 

systems. All agents could then prioritize their consumption preferences and criticality of 

loads at the local level and react to changing global prices. Thus, frequency is not intrinsic 

to the system. It is merely a pricing mechanism that allows sources and consumers to 

transactively manage supply-demand ratios without any central coordination. 

In extremely resource constrained situations in off-grid emerging grids, the real-time 

price reflects the availability and ensures that only critical loads are met at the high prices. 

Real-time prices reflects the availability of connected resources or contingencies, while 

ensuring the highest possible quality of service and respecting consumer preferences in 

such environments. One significant advantage of this approach is that the architecture does 

not require any information about the topology of the system, any knowledge of the system 
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Figure 4.3 Decentralized transactive architecture based on global signals and edge intelligence 
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states or reliance on AMI or PMU data. The universal market node paradigm allows for a 

day-ahead market optimization to set a baseline for calculations while deriving spot market 

prices in real-time, based on frequency. The approach can also work in real-time without 

elaborate day-ahead planning by utilizing droops while ignoring the AGC signals. By 

strongly integrating physical and transactive operations, every node contributes to 

collective stabilization of grid parameters. Moreover, the approach remains agnostic to 

system topology. Demand response becomes an integrated feature in this approach 

allowing higher flexibility. The variable nature of PV sources is actually reflected in the 

form of cheaper real-time prices. This ensures higher absorption of volatility using demand 

flexibility. Moreover, the cyclic nature of PV power outputs and lower prices during high 

PV intervals, ensures that consumers would actively consume power in intervals where the 

solar irradiation is higher. 

Fast acting sources like batteries or flywheels may participate to provide quick 

responses without the need for a separate market structure for frequency support. This 

creates an ecosystem that strongly ties the physics of the network to the economics without 

relying on synchronous communication or central computation. This mapping becomes 

entirely scalable irrespective of the grid size. Thus, in the event of a HILF event, smaller 

broken grid sections can utilize the same control principle while utilizing energy at higher 

prices depending on the available resource mix, nature of the broken fractals and resource 

availability. This helps maintain a certain level of service rather than relying on central co-

ordination to issue dispatch commands. Thus, by using price as a tool to leverage supply-

demand flexibility a truly fractal, decentralized, and autonomous transactive architecture 

can be realized. In contrast to the approaches presented in literature, the proposed approach 
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creates a marketplace that centers on one global rule while letting the market dynamics 

dictate functionality and control. Hybrid transformers are key to ensuring that the physical 

grid phenomenon like congestion and voltage profiles are managed while letting the 

frequency-based market enable market dynamics to balance supply and demand in real-

time. 

The UMNs take on control actions based on the type of agent it represents. Thus, the 

local controls and their augmentations for different agents needs to be specified. The next 

two subsections aim to capture the nuances and complexity that need to be embedded to 

ensure that this architecture can be realized. 

4.3 Market participation mechanism for Sources using Universal Market Nodes 

(UMNs) 

One of the key issues with decentralized pricing schemes is market efficiency. 

Although, real-time prices may optimize load behavior, it is still important to ensure that 

the market prices are competitive. This involves ensuring that economic dispatch 

procedures are maintained. However, this needs to be done in a decentralized and 

autonomous manner. The subsequent section provides an overview of the conventional 

market procedure to derive merit order curves. The merit order curve determines dispatch 

procedures. Merit order curves do not capture the congestion costs and turn on and turn off 

costs. Since, hybrid transformers are proposed in this research to add flexibility, the cost 

of losses is socialized in the real-time pricing component. The subsequent sections show 

how decentralized economic dispatch can be attained in the proposed decentralized 

transactive framework based on the global frequency-price curve. 
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4.3.1 Conventional Merit Order Curves and Dispatch 

Conventional economic dispatch is performed at the system level either by an 

Independent System Operator (ISO) or other system operator. This process involves a 

bidding procedure. Every participating source in the market structure submits a list of bids 

indicating the cost of each block of energy supplied. Fig. 4.4 shows [129] sample bids for 

two sources. The ISO then estimates the expected load profile for the next 24 hours based 
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$ 95/MW
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Figure 4.4 Production cost bids for two sample generators 
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on historical data. At each point on this estimated load profile the cheapest combination of 

resources is then finalized in the form of an economic dispatch procedure. This generates 

a dispatch schedule for all the participating sources. This procedure is only adequate when 

the expected load profile is actually realized, which seldom happens. The consequence of 

this is that the economic dispatch procedure is updated on a periodic basis in real-time 

based on the current loading levels. For instance, in case the two sources shown here are 

the only participants, the economic dispatch schedule for increasing load is shown in Fig. 

4.5. As illustrated, there are loading levels where Source 1 takes up the load, intervals 

where both the sources share and intervals where the larger source takes the peak load. 

4.3.2 Source control using the price-frequency rule to achieve decentralized economic 

dispatch 

The merit order curve from the previous section showcases how the economics of 

generation determine the dispatch pattern for multiple sources. This process requires 

retrieving bids from source and issuing AGC commands over low-latency communications 

in real-time. This is susceptible to failure in the event of damage to the communication 

infrastructure. A different way to realize this is proposed in this section based on the price-

frequency mapping shown in Fig. 4.2. The dispatch procedure can be thought of as a way 

of calculating real-time price and dispatching the corresponding amount of power in the 

cheapest combination possible. In the proposed paradigm, the price-frequency mapping 

translates real-time frequency to price. The supply bids are a mapping between market 

price and supplied power. It is intuitive that using these two mappings, a curve relating 

frequency to power can be synthesized locally for each source. This curve would represent 
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a nonlinear droop curve. Nonlinear droop curves for the two sources shown in Fig. 4.4 are 

presented in Fig. 4.6.  

The droops ensure that at every given frequency, the dispatch is always economical 

and that the power is shared in correct proportion within all sources. A similar procedure 

involving designing nonlinear droops is presented in [130]. However, this approach relies 

Source 1

Source 1 and 2 sharing

Source 2

Figure 4.6 Nonlinear locally synthesized droops 
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on every source having access to incremental costs for all involved units making it a 

centralized implementation.  

A test system is utilized to showcase the proposed economic dispatch procedure. Fig. 

4.7 shows the test system. The two sources involved, have the same cost curves as those 

shown in Fig. 4.4. The test system is run with the nonlinear droops from Fig. 4.6. It is 

important to note that the droops are derived locally based on personal cost preferences 

and the global price-frequency mapping that is common to all participants. A detailed 

model for the governor is presented in Fig. 4.8. This shows that the nonlinear droop can be 

implemented with just a slight modification to the existing droop controller on existing 

governor systems. Thus, the function of the UMN for sources would be synthesizing local 

droops based on the entities bids and interface these with the governor unit. 
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A varying ramp of loads is applied to the test system. The droops create a power 

sharing pattern as seen in Fig. 4.9. This shows that the procedure is exactly equivalent to 

an economic dispatch procedure shown in Fig 4.5, in real-time, without elaborate co-

ordination or communication mechanisms. Thus, this helps establish that the proposed 

price-frequency mapping can achieve the same performance as existing market procedures 

with no communication and co-ordination between the participants and the regulating 

body. It is however of interest to note that in large existing grids where such procedures 

are implemented, the requirements on frequency might be more stringent with a focus on 

operating closer to 60 Hz. The subsequent section details how the proposed nonlinear 

droops in this section can accommodate existing dispatch procedures while realizing an 

autonomous and decentralized frequency regulation market in real-time.  
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4.3.3 Source Control to achieve better transient performance while augmenting existing 

market processes in regulated environments 

In markets where a stricter control over range of frequencies is desired, control 

principles like Automatic Generation Control (AGC) and Area Control Error (ACE) are 

implemented. These signals ensure that every source adds a biasing term that sets the power  

output corresponding to the dispatch schedule at 60 Hz on the droop curve. In most cases 

a constant droop curve is implemented for all the sources that ensures that any disturbance 

is shared equally in proportion to each unit’s capacity. While preserving the dispatch 

procedure decided by the ISO, it is possible to implement a modified price-frequency curve 

for frequency deviations. Fig. 4.10 shows one such curve. The implementation essentially 

augments the constant or TOU price set by the regulating authority. Thus, a frequency 

deviation indicates a deviation from the expected TOU or constant price in real-time.  
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Δ
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Figure 4.10 Modified price-frequency mapping for operation around day-ahead setpoints 



 93 

This implies that all sources only make the expected revenue when the frequency is 

60 Hz. However, when a deviation occurs it is essential to re-dispatch the correct source in 

the correct order. The result is that at every dispatch point, a nonlinear droop curve can be 

realized which indicates the excess power that each source should supply when the 

frequency deviates. A load profile at 15-minute intervals is shown in Fig. 4.11. While 

utilizing the cost curves of the two sources shown in Fig. 4.4, the economic dispatch  

schedule can be computed for this load profile. The economic dispatch schedules for the 

two sources are shown in Fig. 4.12. This has two implications. The first one states that the 

two sources must follow the dispatch procedure if the real-time load is equal to that 

expected. The second implication is that the frequency should stay at 60 Hz if the economic 

Figure 4.12 Economic dispatch set points for the given load curve 

Figure 4.11 Sample load profile (15-minute intervals) 
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dispatch schedule is realized. However, it is of interest to note that the units are individually 

operating at cost points governed by their cost curves. In this case at 6.24 MW source 1 is 

being compensated $100/MWh. The regulating authority usually designs a flat rate or TOU 

scheme that generates equivalent total revenue and closes the market on a 24-hour basis. 

Thus, as the frequency deviates and a change in price is seen, each of the units will actually  

have varying preferences about the amount of power that they want to supply based on 

their current cost point of operation. 
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As an illustration, consider when source 1 is operating at 6.24 MW. As stated earlier 

the actual revenue source 1 is making is $100. The incremental price needed to ensure that 

operation is economical for source 1 is shown in Fig. 4.13. Considering the modified price-

frequency curve shown in Fig. 4.10, this would mean that these operation points would be 

realized at certain frequencies resulting in a droop curve at this dispatch point shown in 

Fig. 4.14.  

Thus, over the dispatch schedule shown in Fig. 4.12 a droop curve can be generated 

for each 15-minute interval or the rate at which economic dispatch signals are dispatched. 

It is important to note, that these curves are set locally while utilizing the dispatch schedule 

provided and the global price-frequency curve shown in Fig. 4.10. This is achieved without 

any coordination or communication between sources or with the ISO or regulating entity. 

The set of required droop curves generated locally, for source 1 and source 2 are shown in 

Fig. 4.15 and Fig. 4.16 respectively. The UMN then becomes a smart node that can retrieve 

local bids and market dispatch points to enforce time-varying droops on the governor of 

Economic Dispatch 
at 60 Hz

Figure 4.15 Nonlinear droops for all dispatch points (source 1) 
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each unit. In both these figures it is seen that the red line indicates the 60 Hz points of 

operation which correspond to the economic dispatch schedule. 

This serves to establish a base line where current grid functionality can be realized 

in an equivalent if not better manner in most cases. This is achieved with lower reliance on 

continuous communication and co-ordination mechanisms. The approach proposed here 

for regulated market structures allows better performance to be achieved while ensuring 

that the existing market processes are maintained. A test scenario to showcase the 

distributed droop paradigm is shown here. For the purpose of this simulation the two 

dispatch points at hour 6 and 7 are considered. These dispatch points will have droop curves 

corresponding to these load intervals in Fig. 4.15 and 4.16. The simulation shows the 

loading level varying in each of these intervals. The performance with a standard 5% droop 

characteristic is compared here. The scenario is implemented on the same two source test 

system shown in figure 4.7.  

A deviation from the economic operating point is created here. Fig. 4.17 shows the 

performance at these two points with the nonlinear droop curve. Fig. 4.18 shows the power 

Economic Dispatch 
at 60 Hz

Figure 4.16 Nonlinear droops for all dispatch points (source 2) 
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drawn from each of the sources with a standard uniform droop (5%) curve. It is seen that 

the sources share power in the most economic fashion for these intervals using the modified 

nonlinear droop curves. Thus, the UMN can embed these smart functionalities and augment 

existing sources and their control principles. The resultant framework allows resource 

availabilities and resource loading information to be embedded into the real-time price 

component. This information can be conveyed to every connected participant and made 

globally available through the real-time frequency.  
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4.4 Distributed Demand Response through robust edge intelligence 

The previous subsection shows that by embedding edge intelligence, sources in the 

system can be regulated based on the new transactive framework while achieving 

decentralized economic dispatch. However, the true merit of this architecture lies in the 

ability to leverage demand flexibility successfully in a way that supports grid behavior. 

The architecture highlighted above relies on UMNs with edge intelligence, that can 

prioritize consumption in a real-time pricing framework. It is important for this embedded 

intelligence to consider individual consumer preferences as well as global conditions of the 

entire system. These considerations would play a key role in developing a robust algorithm 

to leverage demand flexibility in a multi-agent system and assessing the efficacy of the 

architecture. This section summarizes the constraints and nuances that need to be captured 

to develop a robust control framework. An optimization algorithm to effectively leverage 

demand flexibility is then presented in this section. This algorithm will be deployed on 

UMNs on the consumer side in this architecture. 

4.4.1 Edge intelligence constraints and nuances 

The edge intelligence needs to use the entire temporal flexibility rather than only 

during certain critical intervals [131], [132]. This section discusses the different nuances 

of consumer behavior that need to be considered to leverage this flexibility. A given 

consumer may require certain loads must be consumed at their designated times to derive 

any benefit at all. This could be any critical load like lighting loads or life support 

equipment depending on whether the agent is a consumer or a critical community load like 

a hospital. Similarly, there may be other loads that could be moved to different times of the 
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day but may cause some discomfort to the consumer. These could include flexible loads 

like the dishwasher or washing machines. Lastly, there may be low priority loads that could 

be consumed opportunistically. These typically would provide low benefit values. Thus, it 

is apparent that different loads possess different temporal characteristics and differing 

benefits. A simplified approach towards modelling load behavior is presented below. 

Based on this, each agent’s loads could be thought of as lying within 3 priorities for 

any given consumer with the actual contents of each priority level being subjective to the 

agent or value of the service to the community. Priority 1 loads would be those that have 

extremely high benefits associated with them and are largely inflexible. Priority 2 loads are 

moderate benefit loads that are relatively flexible, but any temporal movement of loads 

comes at a slight discomfort. Priority 3 loads could be thought of as the lowest benefit loads 

that may be consumed or curtailed freely across a 24-hour cycle when the opportunity 

presents itself. A consumer’s willingness to reschedule loads would largely depend on their 

flexibility as well as personal discomfort associated with the same. Finally, it is also 

important to state that within each priority level, different loads may provide different 

amounts of value from consumption. The classification of loads into these priority levels 

ensures that a consumer can actively decide or change the priorities for any given load 

without having to rely on detailed disaggregation approaches [133]. It is also important to 

levy certain rules that ensure that any agent does not destabilize the system. Every agent is 

free to perform arbitrage or schedule consumption as long as they do not consume 

erratically and create instabilities. 

The proposed decentralized transactive architecture allows the real-time price to be 

derived instantly and locally. However, in PV dominant system with volatility there is only 
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a slight notion of the possible future prices. Further, ramp-rate issues are prevalent in PV 

dominant systems and are typically addressed by using storage. This makes it challenging 

to scale optimization approaches [134], [135] where all data points about price and 

consumer loads are known. At any given time ‘t’ every agent can derive the global real-

time price of energy based on the frequency being observed, but the future prices over the 

remaining 24−𝑡 intervals are still uncertain. If an agent is to defer a certain amount of load 

into the remaining time horizon, the agent algorithm must consider the uncertainty of price, 

personal discomfort and the benefit derived from deferring loads to make the decision. 

Thus, the intelligence that is built into each UMN must account for past decisions, 

future uncertainties, local consumer preferences and grid-friendly constraints. A robust 

approach over a receding horizon is proposed in the next section to achieve the same. The 

algorithm relies on sporadic communications to receive the global price vs frequency 

mapping and a rough forecast of possible prices from the market operator. Based on local 

preferences about flexibility, sensitivity to uncertainty and criticality of loads the proposed 

algorithm optimizes consumption for each agent at the current instant of time t while 

capturing future uncertainty. 

4.4.2 Local Optimization Framework for UMNs 

In any transactive framework, the market structure is only efficient if all associated 

parties derive as much benefit as possible from the service. A social welfare function can 

be defined to capture and maximize the net benefit derived [136]. 

                                                   𝑀𝑖𝑛𝑒𝑡 ∑ 𝜆𝑡𝑒𝑡 − 𝑈𝑡(𝑒𝑡)
24

𝑡=1
                                                   (19𝑎) 

                                                             ℎ𝑒𝑟𝑒 𝑈𝑡(𝑒𝑡) = 𝑏. 𝑒𝑡                                                       (19𝑏)                  
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Equations (19a-19b) present the conventional social welfare maximization problem. 

Here, 𝜆𝑡 represents the varying prices. In a dynamic pricing framework, 𝜆𝑡𝑒𝑡 corresponds 

to the cost of consuming a given amount of energy 𝑒𝑡 in each interval t. Similarly, U(t) 

represents the value or benefit derived from the consumption. A benefit function where the 

benefit is linearly proportional to the load consumed is considered in (19b). The benefit b 

may correspond to the criticality of the load or value of service each consumer derives from 

the consumed load. It is apparent that the solution to the minimization problem set in (19) 

would enable each agent to get the best value of service. However, none of the 

considerations presented in Section 4.4.1 are captured in this problem. Thus, using this 

minimization problem as a basis, the problem is progressively modified to incorporate the 

nuances highlighted earlier. 

4.4.2.1 Priority Levels and Varying Benefit Levels 

To accommodate for the three levels of priorities that were described earlier, the 

problem’s benefit function is modified as shown in (20). This helps account for each 

consumer’s varying benefits associated with consuming loads within each priority level. 

Here, 𝑏1 𝑏2 and 𝑏3 represent the benefits associated with consuming priority 1,2 and 3 

loads. The decision variables are now the vectors {𝑒1, 𝑒2, 𝑒3}. The solution to (20) would 

determine the optimal consumption patterns for loads within each priority level based on 

the benefits a consumer may derive.  

                                          𝑀𝑖𝑛
𝑒1 𝑒2 𝑒3

∑
{𝜆𝑡 − 𝑏1(𝑡)}𝑒1 + {𝜆𝑡 − 𝑏2(𝑡)}𝑒2

     +{𝜆𝑡 − 𝑏3(𝑡)}𝑒3 

24

𝑡=1
                          (20) 
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4.4.2.2 Consumer discomfort and load rescheduling 

While it is desirable to have each consumer shift their consumption to peak PV 

intervals, this can often be challenging owing to consumer preferences and discomfort. 

Any connected consumer would only prefer to reschedule consumption in a dynamic 

pricing framework to a later point, if the value of service derived at a later point outweighs 

the sum of the cost of consumption now and the cost of discomfort associated with 

rescheduling. Thus, we define a cost of discomfort 𝑐  which is proportional with the 

number of intervals a given load is shifted [137]. As an example, if at time 𝑡 the price is 𝜆𝑡 

and the price at (𝑡 + ℎ) it is 𝜆𝑡+ℎ, a consumer would only shift consumption of energy 𝑒𝑥 

with a benefit b from t to (𝑡 + ℎ) if the condition in (21) and subsequently (22) is met. 

Thus, an augmented shifted benefit (𝑏 ℎ𝑖𝑓𝑡) can be defined as a benefit function that 

accounts for the cost of discomfort associated with rescheduling consumption and is 

summarized in (23). 

                                        𝜆𝑡𝑒𝑥 − 𝑏𝑒𝑥 > 𝜆𝑡+ℎ𝑒𝑥 + 𝑐 . ℎ. 𝑒𝑥 − 𝑏𝑒𝑥        (21) 

                                     𝑜𝑟     (𝜆𝑡 − 𝑏)𝑒𝑥   > (𝜆𝑡+ℎ − 𝑏 ℎ𝑖𝑓𝑡𝑡 𝑡+ℎ)𝑒𝑥                                     (22) 

                                     ℎ𝑒𝑟𝑒 𝑏 ℎ𝑖𝑓𝑡𝑡 𝑡+ℎ = 𝑏 − 𝑐 . ℎ                                                            (23) 

The indices under 𝑏 ℎ𝑖𝑓𝑡 operator indicate the interval the load is being shifted from 

and the interval the load is being shifted to in that order. It is important to note that in 

accordance with the discussion in Section 4.4.1, only priority 2 and 3 loads can be 

temporally shifted. While priority 3 loads can be shifted with ease, priority 2 loads are the 
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ones that have some discomfort associated with them. 𝑏 ℎ𝑖𝑓𝑡 only captures the augmented 

shifted benefit associated with all priority 2 loads.  

𝑀𝑖𝑛{𝑒1 𝑡∪ 𝑒2 𝑡  ∪ 𝑒3 𝑡 ∪  𝑒𝑠ℎ𝑖𝑓𝑡𝑖 𝑗} 

∑ {𝜆𝑡 − 𝑏1(𝑡)}𝑒1 + {𝜆𝑡 − 𝑏2(𝑡)}𝑒2 + {𝜆𝑡 − 𝑏3(𝑡)}𝑒3 
24

𝑡=1
 

+∑ ∑ {𝜆𝑡 − 𝑏 ℎ𝑖𝑓𝑡i j}. 𝑒 ℎ𝑖𝑓𝑡𝑖 𝑗
24

𝑗=1

24

𝑖=1
                                                                              (24) 

Formulation (24) here incorporates these shifting characteristics into the problem 

shown in (20). These indicate the optimal patterns to consume energy within the 3 priority 

levels as well as optimal rescheduling patterns for priority 2 loads to maximize consumer 

benefit. Any non-zero values in the in the solution corresponding to the vector 𝑒 ℎ𝑖𝑓𝑡𝑖 𝑗 

would indicate possible shifts in priority 2 loads that could maximize the consumer’s 

derived value of service.  The actual priority 2 consumption at 𝑡 would be that seen in (25). 

   𝑒2(𝑡) +∑ 𝑒 ℎ𝑖𝑓𝑡𝑖 𝑡
24

𝑖=𝑡
                                                                                                            (25) 

This shows that for a given amount of consumer discomfort and a given set of 

benefits a consumer may derive, the solution to (24) would indicate the optimal 

consumption and rescheduling pattern. 

4.4.2.3 Uncertain Prices in the Receding Horizon and ‘Grid-friendly’ Behavior 

The minimization problem summarized in (24) works well in terms of scheduling 

consumption while accounting for temporal shifts in consumption. However, one key 
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assumption in the formulation is that prices over the entire horizon are completely known. 

This is seldom the case in any real-time market. At best, a consumer agent has a rough 

forecast of future prices with a varied amount of uncertainty. In a PV dominant network, it 

is expected that with high PV outputs around solar noon the frequency is higher and 

consequently the price is the lowest. Each agent has complete knowledge of the price at 

the current time instant 𝑡 based on the real-time frequency and has a forecast of the future 

prices over (𝑡 + 1) to 24 provided by the market operator which may or may not be 

realized. These parameters are sent once a day to each agent by the market operator. Fig. 

4.19 provides a clarification for the notation being used to denote time intervals. Certain 

consumers may want their edge intelligence to be more wary to uncertainty while others 

may want to be more opportunistic in their response. To incorporate this sensitivity to risk 

in future prices into the algorithmic framework, each user may add a band of prices to their 

UMN that they are willing to tolerate throughout the day. This means that an opportunistic 

consumer would prefer a band of prices (𝜆𝑚𝑎𝑥 𝑡+ℎ − 𝜆𝑚𝑖𝑛 𝑡+ℎ) like those seen in Fig. 4.21 

while an extravagant consumer may prefer a range of prices as seen in Fig. 4.20.  

An optimization problem is presented in (26) by considering certainty intervals at the 𝛼 

confidence levels within the band of prices (𝜆𝑚𝑎𝑥 𝑡+ℎ − 𝜆𝑚𝑖𝑛 𝑡+ℎ). The formulation 

considers all the local constraints specified above to solve an optimization problem to 

reschedule, curtail or consume with the given parameters. The first part of the problem (26)  

0 241 t Current interval

h horizon

Figure 4.19 Notation used to signify time intervals 
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 is based on known quantities at the current interval 𝑡, while the second part is based on 

predictions with uncertainties. The second part of the minimization problem formulated 

here is created using well known techniques [138] to create a dual of the problem. It is the 

important to note that at each interval 𝑡 the algorithm solves the optimization problem for 

current instant 𝑡 as well as the entire future horizon (24 − 𝑡) based on the forecasts. Thus, 

all considerations about rescheduling and discomfort are captured while ensuring that the 

uncertainty in future forecasts is embedded in the solution. At each interval the 

consumption pattern determined by the solution to (26) for the current instant 𝑡 is followed. 

This process is repeated at each interval as the real-time price changes and the 24 hour 

horizon shortens.   

𝜆𝑚𝑎𝑥 ,𝑡  

𝜆𝑚𝑖𝑛 ,𝑡  Price dip with PVce
n

ts
/k

W
h

Hour0 24

Figure 4.20 Acceptable band of prices for a risk averse consumer 

worst case

Best casece
n

ts
/k

W
h

Hour0 24

𝜆𝑚𝑎𝑥 ,𝑡  

𝜆𝑚𝑖𝑛 ,𝑡  

Figure 4.21 Acceptable band of prices for an opportunistic consumer 
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𝑀𝑖𝑛{𝑒1 𝑡 𝑒2 𝑡 𝑒3 𝑡 𝑒1 𝑡+ℎ 𝑒2 𝑡+ℎ 𝑒3 𝑡+ℎ 𝑒𝑠ℎ𝑖𝑓𝑡  1 𝑡+ℎ  2 𝑡+ℎ  3 𝑡+ℎ 𝜉𝑡+ℎ 𝛽 𝑦𝑡+ℎ} 

{𝜆𝑡 − 𝑏1 𝑡}𝑒1 𝑡 + {𝜆𝑡 − 𝑏2 𝑡}𝑒2 𝑡 + {𝜆𝑡 − 𝑏3 𝑡}𝑒3 𝑡  

+∑ {𝜆𝑡 − 𝑏 ℎ𝑖𝑓𝑡𝑡+ℎ 𝑡}𝑒 ℎ𝑖𝑓𝑡𝑡+ℎ 𝑡
24−𝑡

ℎ=1
 

+∑ {𝜆𝑚𝑖𝑛 𝑡+ℎ

24−𝑡

ℎ=1
− 𝑏1 𝑡+ℎ}𝑒1 𝑡+ℎ + {𝜆𝑚𝑖𝑛 𝑡+ℎ − 𝑏2 𝑡+ℎ}𝑒2 𝑡+ℎ 

+{𝜆𝑚𝑖𝑛 𝑡+ℎ − 𝑏3 𝑡+ℎ}𝑒3 𝑡+ℎ  

+∑ ∑ {𝜆𝑚𝑖𝑛 𝑡+ℎ − 𝑏 ℎ𝑖𝑓𝑡𝑖 𝑡+ℎ}𝑒 ℎ𝑖𝑓𝑡𝑖 𝑡+ℎ 
24−𝑡

𝑖=𝑡

24−𝑡

ℎ=1
 

+𝛽Γ +∑ ξt+h
24−𝑡

ℎ=1
…………………………………………………………………………(26) 

  𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 

𝑒1 𝑡+ℎ =
𝑑1 𝑡+ℎ + 𝑑1 𝑡+ℎ+1

2
                                                                 ∀ ℎ = 0 …  24 − 𝑡 (26𝑎) 

𝑒2 𝑡+ℎ +∑ 𝑒 ℎ𝑖𝑓𝑡 𝑖 𝑡+ℎ
24

𝑖=1
=
𝑑2 𝑡+ℎ + 𝑑2 𝑡+ℎ+1

2
                         ∀ ℎ = 0 … .24 − 𝑡 (26𝑏) 

𝑒3 𝑡+ℎ =
𝑑3 𝑡+ℎ + 𝑑3 𝑡+ℎ+1

2
                                                                ∀ ℎ = 0 … .24 − 𝑡 (26𝑐) 

{𝑑1 𝑡+ℎ+1 + 𝑑2 𝑡+ℎ+1 + 𝑑3 𝑡+ℎ+1} − (1 + 𝑟𝑢){𝑑1 𝑡+ℎ + 𝑑2 𝑡+ℎ + 𝑑3 𝑡+ℎ} ≤ 0  

                                                                                                                  ∀ ℎ = 0 … .24 − 𝑡 (26𝑑) 

(1 − 𝑟 ){𝑑1 𝑡+ℎ + 𝑑2 𝑡+ℎ + 𝑑3 𝑡+ℎ} − {𝑑1 𝑡+ℎ+1 + 𝑑2 𝑡+ℎ+1 + 𝑑3 𝑡+ℎ+1} ≤ 0  

                                                                                                                  ∀ ℎ = 0 … .24 − 𝑡 (26𝑒) 
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𝑒3 𝑡 +∑ 𝑒3 𝑡+ℎ ≤ 𝑒3  𝑒𝑠 −∑ 𝑒3 ℎ
𝑡−1

ℎ=1
                                           ∀ 𝑡 = 1 .  24 (26𝑓)

24−𝑡

ℎ=1
 

∑ (𝑒1 𝑡 + 𝑒2 𝑡 + 𝑒3 𝑡}
24

𝑡=1
+∑ ∑ 𝑒 ℎ𝑖𝑓𝑡𝑖 𝑗

24

𝑗=1

24

𝑖=1
   

≤∑𝑒1  𝑒𝑠 +∑𝑒2  𝑒𝑠 +∑𝑒3  𝑒𝑠                                                                               (26𝑔) 

∑ [∑ 𝑒 ℎ𝑖𝑓𝑡𝑖 ℎ + 𝑒2 ℎ 
24

𝑖=𝑡
]

24

ℎ=𝑡
≤ {∑𝑒2  𝑒𝑠 −∑ 𝑒2 ℎ

𝑡−1

ℎ=1
−∑ ∑ 𝑒 ℎ𝑖𝑓𝑡 𝑖 ℎ

24

𝑖=1
}

𝑡−1

ℎ=1
 

                                                                                                                   ∀ 𝑡 = 1 … . .  24 (26ℎ) 

∑ 𝑒 ℎ𝑖𝑓𝑡𝑡 𝑗 + 𝑒2 𝑡 ≤ 𝑒2  𝑒𝑠(𝑡)                                                    ∀ 𝑡 = 1 ……  24 (26𝑖)
24

𝑗=1
 

𝑒 ℎ𝑖𝑓𝑡𝑖 𝑖 = 0                                                                                          ∀ 𝑖 = 1 … . .  24 (26𝑗) 

𝛽 + 𝜉𝑡+ℎ ≥ (𝜆𝑚𝑎𝑥 𝑡+ℎ − 𝜆𝑚𝑖𝑛 𝑡+ℎ)𝑦𝑡+ℎ                                         ∀ℎ = 1 .  24 − 𝑡 (26𝑘) 

𝑒1 𝑡+ℎ + 𝑒2 𝑡+ℎ + 𝑒3 𝑡+ℎ +∑ 𝑒 ℎ𝑖𝑓𝑡 𝑖 𝑡+ℎ ≤ 𝑦𝑡+ℎ       
24

𝑖=1
        ∀ ℎ = 1 .  24 − 𝑡 (26𝑙) 

0 ≤ 𝑒1 𝑡+ℎ ≤ 𝑒1  𝑒𝑠(𝑡 + ℎ)                                                                ∀ ℎ = 0 .  24 − 𝑡 (26𝑚)  

𝑑1 𝑡+ℎ 𝑑2 𝑡+ℎ 𝑑3 𝑡+ℎ 𝑒 ℎ𝑖𝑓𝑡 𝑖 𝑗 ≥ 0          ∀ ℎ = 0 … .24 − 𝑡   ∀ 𝑖 𝑗 = 1 … . .24 (26𝑛) 

𝛽 ≥ 0  𝜉𝑡+ℎ ≥ 0 𝑦𝑡+ℎ ≥ 0                                                             ∀ ℎ = 1 … .24 − 𝑡 (26𝑜) 

The decision variables for problem (26) are {𝑒1 𝑡 ∪ 𝑒2 𝑡 ∪ 𝑒3 𝑡 ∪ 𝑒1 𝑡+ℎ ∪ 𝑒2 𝑡+ℎ ∪

𝑒3 𝑡+ℎ ∪ 𝑒 ℎ𝑖𝑓𝑡 ∪ 𝑑1 𝑡+ℎ ∪ 𝑑2 𝑡+ℎ ∪ 𝑑3 𝑡+ℎ ∪ 𝜉𝑡+ℎ ∪ 𝛽 ∪ 𝑦𝑡+ℎ} ∀ ℎ = 0 …  24 − 𝑡. The 

variables 𝛽 and 𝜉 are dual variables to the initial problem meant to capture the uncertainty 
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in the prices. The variable Γ models how conservative the solution tends to be. Γ takes 

values based on the number of intervals left in the horizon. So, over 24-hourly intervals 

throughout a day, Γ starts out with 23 and ends with 0. Thus, as the problem is solved at 

every interval and the horizon recedes, the conservativeness of the solutions drops. This is 

valuable as it makes the algorithm greedier as the horizon recedes. Moreover, the problem 

still attempts to capture all possible shifts in case the forecast 𝜆𝑚𝑖𝑛 𝑡+ℎ is realized. 

Constraints (27a-26c) relate energy (𝑒1 𝑡 𝑒2 𝑡 𝑒3 𝑡)consumed within each of the priority 

levels to demand (𝑑1 𝑡 𝑑2 𝑡 𝑑3 𝑡) using a trapezoidal summation approach. In order to 

ensure that none of the agents engage in erratic behavior to destabilize the system, a set of 

grid-friendly constraints are imposed. Constraint (26d) and (26e) ensure that the ramp up 

and down rate is limited to 𝑟𝑢and 𝑟  respectively. So, for a maximum ramp up or down rate 

of 5%, 𝑟𝑢or 𝑟  would be 0.05. These may correspond to rules set up by the market operator 

for residential, commercial and industrial customers. Constraints (26f-26h) limit the total 

consumption over a 24-hour period as well as within each priority category. These limits 

reflect each agent’s desired consumption within each priority level. The constraint (26i) 

ensures that the load being shifted is limited to that specified in 𝑒2  𝑒𝑠. This ensures that 

the movement of priority 2 loads is tracked. Constraints (26j-26o) capture the constraints 

embedding uncertainty into the problem as well as bounds on all variables. Thus, a robust 

algorithm is presented that can control every consumer’s consumption in a decentralized 

manner without real-time coordination or communication, to maximize personal benefit 

while contributing to grid stabilization.  
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4.4.2.4 Implementation of Edge Intelligence 

The edge intelligence operates on some global rules and some local ones.  The global 

price to frequency mapping is updated once a day by the system operator and sent to each 

agent along with a forecast of expected intra-day prices. Each UMN then collects 

information about the user’s preferences about the desired consumption within each 

priority level (𝑒1  𝑒𝑠 𝑒2  𝑒𝑠 𝑒3  𝑒𝑠), the time varying benefits associated with consuming 

these loads (𝑏1(𝑡) 𝑏2(𝑡) 𝑏3(𝑡)), their personal discomfort associated with rescheduling 

loads (𝑐 ) and their averseness to uncertainty in future prices in the form of the band 

(𝜆𝑚𝑎𝑥 𝑡+ℎ − 𝜆𝑚𝑖𝑛 𝑡+ℎ). The forecasted intra-day prices sent by the market operator are 

assumed to be 𝜆𝑚𝑖𝑛 for all consumers. Depending on the nature of each consumer 

Start

Price/Frequency global rule and 
forecast of prices updated on UMN

UMN preloaded with ramp rate 
constraints for each consumer class 
(residential/commercial/industrial)

Collect local preferences 
(uncertainty/discomfort/benefits/ 

load priorities) from consumer

Market 
Operator

t=1
Agent initialized with all parameters

Solve Optimization Problem (8) based on 
current price, forecast and uncertainty

Priority 1,2,3 
consumption with 
all shifts at time ‘t’

Consumption over 
horizon if forecast 

holds true

Consume/Curtail now

t=24?

End

Is the forecasted 
price correct?

𝑟𝑑/𝑟  

Consumer Preferences

(𝑒1,𝑑𝑒 , 𝑒2,𝑑𝑒 , 𝑒3,𝑑𝑒 ) (𝑏1(𝑡), 𝑏2(𝑡), 𝑏3(𝑡)) 

𝑐𝑑  (𝜆𝑚𝑎𝑥 ,𝑡+ℎ − 𝜆𝑚𝑖𝑛 ,𝑡+ℎ) 

(Local)

(Global)

Yes

No

Yes

No

t=t+15 mins

Figure 4.22 Implementation scheme for algorithm (26) on UMNs 
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(residential, commercial or industrial), certain ramp rate limits are already built into the 

edge intelligence. These characteristics may be updated by the operator. The robust model 

(26) is implemented on each individual agent. The algorithm is recursively solved at each 

interval with knowledge of past decisions and uncertainty about the future prices. Fig. 4.22 

shows a flowchart of the implementation. 

In each interval 𝑡 the problem considers the past consumption within each priority 

level, calculates the known current price and solves problem (26) over the receding 

horizon. The solution then computes the optimal consumption for the current interval as 

well as a projection for future intervals. This whole process is repeated every 15 minutes 

locally. Moreover, at any point a given agent can change their preferences about flexibility 

or consumption preferences. These are reflected in the solution generated in the next 15-

minute interval. The UMNs can directly control connected loads within each priority level. 

It is intuitive to see that if the price is high enough to outweigh any benefit in any priority 

category, formulation (26) would curtail the load. This is key in contingency scenarios 

where the demand reduction could support operation of resource constrained communities. 

This allows an edge intelligence algorithm to be realized that dynamically reacts within 

reasonable parameters to the state of the grid and collectively realizes demand response. 

4.4.2.5 Simulation Test Case for Consumer UMN 

In order to show the algorithm’s efficacy a couple of simulation studies are presented in 

this subsection. A single consumer is modelled with the profile shown in Fig. 4.23. The 

three priorities of loads are assumed to be those shown in the same figure. The time varying 
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benefits for priority 2 loads are shown in Fig. 4.24. These correspond to the time varying 

priority 2 load shown in Fig. 4.23. The personal benefits for priority 1 loads are modelled 

to be a constant 120 cents/kWh to convey that these are critical while the priority 3 benefits 

are kept at 10.5 cents/kWh to convey that these are lower in terms of criticality to the 

consumer.  The ramp up and down rate 𝑟  𝑟𝑢is limited to 8%. A price variation is simulated 

to analyze the behavior of this agent and it shown in Fig. 4.25. With these parameters a 

Figure 4.23 Sample residential consumer profile with three priority categories 

Figure 4.24 Modelled time varying benefits for priority 2 loads 
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first study is done to analyze the effect of varying levels of discomfort that users may have 

locally and how the algorithm responds in response to the changing price. The value of 

𝑐 is varied between 0.1 to 0.6. This would imply a consumer that is extremely opportunistic 

or extremely extravagant respectively. Fig. 4.26 shows the varying consumption patterns 

that the local optimization framework would generate based on different discomfort values. 

The extreme ends of Fig. 4.26 are also shown in the Figs. 4.27 and 4.28. 

Figure 4.25 Sample real-time price profile 
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 Figure 4.26 UMN response to varying consumer discomfort 
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Figure 4.27 UMN real-time consumption for extravagant consumer 

 

Figure 4.28 UMN real-time consumption for an opportunistic consumer 

Another important scenario to analyze is contingencies where the resource 

availability is extremely scarce. In this scenario, the observed prices would be consistently 

high. This is simulated by charging the same agent a constant price of 20 cents/ kWh with  
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the same set of parameters. Fig. 4.29 shows the resultant consumption pattern. The UMN  

algorithm sheds both the priority 2 and 3 loads in this scenario while only operating the 

highest priority tier 1 loads for this agent. Thus, based on local parameters the intelligence 

algorithm can scale and react to the same varying global prices. Moreover, in the event of 

a HILF event, the UMN algorithm can prioritize critical loads and sustain small resource 

constrained communities till restoration actions can be taken.  

4.5 Need for Physical Grid Control in Transactive Frameworks 

The proposed transactive framework allows real-time stabilization of grid structures 

by utilizing edge intelligence and incentivizing participants through price dynamics. While, 

power balance constraints across the network can be managed effectively, the transactive 

architecture allows little control over the physical distribution of grid flows. Line 

congestion management and voltage management becomes challenging without visibility 

into the precise geospatial distribution of sources and loads and their power injections. 

Figure 4.29 UMN drops consumption to priority 1 loads during high price contingency intervals 
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Hybrid transformers are an effective distributed mechanism to manage these physical 

constraints on grid structures. These devices could function in parallel with the transactive 

framework and allow control over physical aspects of power delivery. The next subsection 

highlights the role of hybrid transformers in the proposed decentralized transactive 

framework. 

4.6 Role of Hybrid Transformers in a Decentralized Transactive Framework 

The dynamics of the transactive mechanisms have an effect on physical parameters 

like line flows and voltage patterns on the system. Hybrid transformers have been proposed 

to address these challenges. Hybrid transformers are power control solutions that can be 

augmented to address congestion issues and alter power flows in meshed networks. 

However, the metrics proposed in Section 3.5 rely on knowledge of power injections to 

estimate flows. In order to realize an autonomous implementation however, 

it is important recognize the parameters that the hybrid transformer in a given system has 

access to.  

Figure 4.30 5-bus system with two areas 
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5

4
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Source 1 Load 1 PV (MPPT)

Source 2 Load 2
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Consider a 5-bus system shown in Fig. 4.30. The system is divided into two areas 

each with a source and a load bus. Area 1 also has a community PV plant. The two sources 

have nonlinear droops embedded based on their production cost. The PV plant is assumed 

to function on a maximum power point tracking (MPPT) basis. The hybrid transformer is 

located on link 2-5. 

In this particular system, the hybrid transformer has access to the loading level of its 

own link and the current frequency of the system. While, the current injections from the 

sources are not accessible to the unit, historical dispatch points for the given frequency can 

be made available to the hybrid transformer unit. This allows a local estimate of the power 

injections from sources 1 and 2 to be extrapolated locally at the hybrid transformer. The 

three variables in this system are the loading levels at buses 3 and 5 as well as the PV plants 

injection. The load being supplied by sources at buses 1 and 2 may be distributed between 

buses 3 and 5 in any combination. This information cannot be extracted from global 

variables. However, the PTDFs as well as HTFSs are based on the impedance 

characteristics of the network. These parameters are known and fixed unless the system 

changes. The next section presents a methodology to use this information to extrapolate 

the flows on other lines based on these known parameters. 

4.6.1 Estimation of system flows 

The example system presented in Fig. 4.30 is utilized to illustrate the methodology. 

In this system 5 key PTDF patterns for all lines need to be precalculated based on system 

impedances. The first transfer pattern 𝑇1 is for a 1 MW transfer from source 1 to load 1. 

The second is a transfer pattern 𝑇2for a transfer of 1 MW from source 2 to load 2. The third 
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is 𝑇3 for a transfer of 1 MW from bus 3 to bus 5. The fourth pattern is 𝑇4 that implies a 

transfer of 1 MW from bus 4 to bus 3 that implies a 1 MW transfer from the PV plant to 

load 1. Finally, the fourth PTDF vector is for a 1 MW transfer between bus 4 and bus 5 

which implies a transfer from the PV plant to load 2. The 5 transfer vectors for this 5 bus 

system are presented in (27a)-(27e). The index for the slack bus is removed form each of 

these vectors. 

𝑇1 = [0 − 1 0 0]                                                                                                                         (27a) 

𝑇2 = [1 0 0 − 1]                                                                                                                         (27b) 

𝑇3 = [0 − 1 0 1]                                                                                                                         (27c) 

𝑇4 = [0 − 1 1 0]                                                                                                                         (27d) 

𝑇5 = [0 0 1 − 1]                                                                                                                         (27e) 

The PTDFs for all lines for each of these transfer patterns can be precalculated. These 

PTDFs would indicate a sensitivity for the flow on each line for any of these transfer 

patterns. Since, PTDFs are a linear metric, the effect of two such transfers would simple 

be a summation of the PTDF vectors. PTDF vectors can defined for each of these transfer 

patterns. 𝑃𝑇𝐷𝐹 𝑚
𝑛 is the notation used for the same where n indicates the line of interest and 

m stands for the transfer pattern of interest. 𝑇1 and 𝑇2 stand for a transfer from the source 

to load within their respective control areas. However, it is possible that the net load may 

be unevenly distributed between buses 3 and 5. 𝑇3stands for a fictitious transfer between 

the two loads. The effect of this is the same as shifting a MW of load from bus 3 to 5. 

Similarly, 𝑇4 and 𝑇5 imply a portion of the load that is not reflected in the frequency and is 
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being supplied by the PV plant. HTFSs are also precalculated. Based on these sensitivities, 

a 2-step process is proposed to allow the power flow patterns to be estimated. 

4.6.1.1 Assumption of base case loading in control areas  

The initial assumption that the hybrid transformer algorithm locally makes is to 

assume that source 1 is supplying all it’s power to load 1 and vice versa. Here 𝐺1 and 𝐺2 

are the outputs of sources 1 and 2 while  1 and  2 represent the load at buses 3 and 5 

respectively. The PTDFs computed above for patterns 𝑇1 and 𝑇2 should corroborate the 

system flow on the hybrid transformers own link if this is the case. Thus, the hybrid 

transformer unit locally computes, the theoretical line flow over its own link based on these 

expected load values  1𝑒𝑥𝑝 and  2𝑒𝑥𝑝 based on the formulation (28). 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑙𝑜 25 = 𝑃𝑇𝐹𝐷 1
25.  1𝑒𝑥𝑝 + 𝑃𝑇𝐹𝐷 2

25.  2𝑒𝑥𝑝                                                      (28) 

However, if the expected flow over its own link doesn’t match the 𝐴𝑐𝑡 𝑎𝑙 𝑓𝑙𝑜 25 

on its own link it is the effect of a combination of transfers 𝑇3-𝑇5.  

4.6.1.2 Estimation of worst-case system flows based on error 

Uneven loading between buses 3 and 5 as well as unknown PV injections may result 

in 𝐴𝑐𝑡 𝑎𝑙 𝑓𝑙𝑜 25 ≠ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑙𝑜  25. Multiple solutions may exist where the line 

loading across the link 25 matches the 𝐴𝑐𝑡 𝑎𝑙 𝑓𝑙𝑜 25  However, the function of the hybrid 

transformer in this self-stabilizing framework is to simply estimate the worst case line 

loading that could take place on the system and prevent it. Thus, it is possible to estimate 

the worst-case loading levels on the other links in the system by formulating a 

maximization problem based on 𝑇3-𝑇5 and take remedial action. 
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Formulation (29) is a maximization problem that can be used to estimate the worst 

possible loading on any line ‘n’ across the system, subject to certain constraints. The 

decision variables are 𝑃𝑉𝐿1, 𝑃𝑉𝐿2 and Δ 1. The decision variables 𝑃𝑉𝐿1 and 𝑃𝑉𝐿2 imply 

any load at bus 3 and bus 5 that may be supplied by some power from the PV plant at bus 

4. Similarly, Δ 1 aims to capture the spatial variation in the loading level between bus3 

and 5 for the same total load being supplied by sources 1 and 2. 

𝑀𝑎𝑥 {𝑃𝑇𝐷𝐹 3
𝑛 . Δ 1 + 𝑃𝑇𝐷𝐹 4

𝑛 . 𝑃𝑉𝐿1 + 𝑃𝑇𝐷𝐹 5
𝑛 . 𝑃𝑉𝐿2}                                                      (29) 

Subject to, 

𝑃𝑉𝐿1 + 𝑃𝑉𝐿2 ≤ 1.05. 𝑃𝑉𝑓 𝑟𝑒𝑐𝑎𝑠𝑡(𝑡)                                                                                        (29a) 

−  2𝑒𝑥𝑝 ≤  Δ 1 ≤  1𝑒𝑥𝑝                                                                                                           (29𝑏) 

𝑃𝑇𝐷𝐹 3
25. Δ 1 + 𝑃𝑇𝐷𝐹 4

25. 𝑃𝑉𝐿1 + 𝑃𝑇𝐷𝐹 5
25. 𝑃𝑉𝐿2 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑙𝑜 25 − 𝐴𝑐𝑡 𝑎𝑙 𝑓𝑙𝑜 25  

                                                                                                                                                        (29𝑐) 

0 ≤ 𝑃𝑉𝐿1 ≤ 1.05. 𝑃𝑉𝑓 𝑟𝑒𝑐𝑎𝑠𝑡(𝑡)                                                                                             (29𝑑) 

0 ≤ 𝑃𝑉𝐿2 ≤ 1.05. 𝑃𝑉𝑓 𝑟𝑒𝑐𝑎𝑠𝑡(𝑡)                                                                                             (29𝑒) 

Constraint (29c) imposes the known quantity which is the difference between the 

expected and actual flow as an effect of a combination of 𝑇3-𝑇5. Constraint (29a), (29d) 

and (29e) limit the expected total PV injection to 5% above the expected forecast. 

Similarly, Δ 1is bound in (29b) to ensure that the spatial loading is limited to that which is 

feasible. This implies the maximum load that can be shifted from bus 3 to bus 5 to capture 

the spatial loading is limited to the loading seen by sources 1 and 2. The lower bound on 
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the variables 𝑃𝑉𝐿1and 𝑃𝑉𝐿2 is kept at zero to capture the worst case loading condition for 

each respective line in case the PV output completely drops. Thus, using a relatively simple 

formulation, the worst-case loading for each line ‘n’ can be computed to achieve the load 

flow that is being seen by the hybrid transformer.  

In case that the estimates show that a line across the system may be loaded heavily, 

the hybrid transformer then uses the precomputed HTFSs to change its own flow to remedy 

this situation. In the eventuality, that the hybrid transformer is unable to relieve load on the 

given line without overloading another based on its estimates, the hybrid transformer sends 

an alert to the operator.  

4.7 Discussion and Contributions 

The approaches highlighted above present a set of principles for all connected agents 

to participate in a transactive platform. The real-time pricing mechanism proposed in this 

section relies on one global rule while allowing local entities to change their control 

principles based on personal objectives and on ensuring that the grid operates as an 

ecosystem of UMNs. The price allows numerous phenomena like resource constraints and 

system loading levels to be expressed in the form of a locally derived global price. Rather 

than designing an architecture that focuses on generation following loads, the architecture 

implements demand response, autonomous economic dispatch and frequency regulation 

into one common and integrated control structure which ensures that loads and sources can 

interact better. All this is achieved without any low latency peer-to-peer communication or 

any communication with centralized supervisory control schemes. The architecture also 

paves the way for deploying very low-cost grid microgrid structures with a PV dominant 
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resource mix in developing economies. The system framework remains extremely 

lightweight, highly resilient, dependent on edge intelligence and resilient to 

communication failures making it ideal for these environments.  

This chapter highlighted the nuances of such a decentralized architecture. A robust 

set of rules and mechanisms for operating such systems was highlighted in this chapter. A 

methodology to operate sources in the form of local nonlinear droops was proposed. In 

addition to this a methodology to exercise better load sharing between dispatched sources 

in regulated market structures was also showcased. The results showed the ability to enable 

economic dispatch for multiple sources without any central coordination. The proposed 

methodology will be a key feature embedded in UMNs responsible for controlling sources. 

Demand flexibility is a key feature of this framework. Modelling consumer behavior 

is key to extracting all the possible flexibility from the system. An approach towards 

modelling nuances of consumer behavior was proposed in this chapter. A robust algorithm 

was then proposed to allow consumers to react to varying global prices in the transactive 

framework while ensuring that their local objectives and constraints were satisfied. The 

ability to leverage demand flexibility under varying resource availabilities was shown 

through simulation studies. The developed algorithm will be deployed in this multi-agent 

system at every node and be incorporated into the UMNs. 

The role of hybrid transformers in managing the physical flows across such 

decentralized market structures was then highlighted. Using global signals like frequency 

and the local flows across the hybrid transformer link, an estimate can be developed for 

system flows across the grid structure. The hybrid transformer then attempts to calculate a 
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worst-case overloading pattern and attempts to alleviate it. The system operator may issue 

signals to the hybrid transformer sporadically to issue set points based on centralized 

computations. However, the device can continue operation based on historical knowledge 

of the system. 

Analyzing such a complex multi-agent system over long periods of time while 

capturing physical and transactive dynamics is often challenging. A simulation framework 

is presented in the next chapter to address the same. The framework is designed to 

understand the behavior of both the physical and transactive aspects to ensure the efficacy 

of this integrated decentralized physical and transactive architecture. 

  



 123 

CHAPTER 5. SIMULATION PLATFORM FOR MASSIVELY 

DISTRIBUTED MULTI-AGENT SYSTEMS 

The solutions presented in this work solve a range of issues from a transactive and 

physical perspective. However, it is computationally challenging to simulate the effect of 

a massively distributed multi-agent system with many nodes reacting in different ways. 

Since, frequency is a key parameter in the proposed real-time transactive framework it is 

essential to capture some dynamics on a continuous basis. Thus, a design of a novel 

simulation platform was required for the same. Similarly, each agent only observes local 

signals and frequency to decide their local behavior. All these agents decide their next 

control action in parallel. Consequently, the result of these actions is a change in frequency. 

Another key aspect is the role of hybrid transformers. Hybrid transformers have 

tremendous value when the flows in the system are known, these devices will have very 

little access to global system flows in this decentralized architecture. However, these 

devices are capable of exercising control based on some global variables and historical 

knowledge of system parameters as suggested in Chapter 4 making them another 

independent agent in this multi-agent system. This section proposes a simulation scheme 

that can enable the analysis of such a distributed multi-agent architecture. 

5.1 Simulation platform for long-term studies involving frequency dynamics 

This section highlights a methodology developed to capture frequency dynamics in 

the this transactive framework to allow the efficacy of the platform to be tested for multi-

agent systems. The platform is based on the quasi-steady state (QSS) approximation that 
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is typically used to analyze long term voltage and frequency dynamics. The distinguishing 

factor however, is that the platform proposed here also captures the multi-agent response 

of the system based on those frequency dynamics. A brief overview of the QSS method is 

presented here. Then an overview of the implementation to couple the frequency domain 

and multi-agent network is presented next. 

5.1.1 Power System Equation Types and Characteristics  

For the purpose of stability studies, the power system equations cane be widely 

divided into the three types [139] shown in (30), (31) and (32). 

0 = 𝑔(𝑥 𝑦 𝑧)                                                                                                                                (30) 

�̇� = 𝑓(𝑥 𝑦 𝑧)                                                                                                                                (31) 

𝑧(𝑡𝑘+1) = ℎ(𝑥 𝑦 𝑧(𝑡𝑘))                                                                                                             (32) 

Where, 

𝑥 – state terms which evolve with differential equations  

𝑦 – linear terms in balance equations or algebraic variables  

𝑧 – states of components with discrete switching actions  

Here, the equation (30) denotes the network equations that enforce constraints about 

power balance at buses or Kirchhoff’s current law (KCL). Equation (31) comprises of the 

differential equations that determine the dynamics for state variables like frequency or 

voltage. These embed all the dynamics associated governors, turbines and automatic 
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voltage regulators. The equations (32) capture the dynamics of components with discrete 

switching actions like OLTCs or capacitor banks.  

The QSS technique focuses on decomposing the state variables 𝑥 into different 

categories based on the speed of their evolution. For instance, the dynamics governing 

frequency are much slower than those governing voltage. For long term analyses based off 

frequency only the dynamics of the slow components need to be captured. The QSS 

technique breaks down the vector 𝑥 into a fast component 𝑥1and a slow component 𝑥2. The 

fast component can then be assumed to be infinitely fast and become a discrete switching 

variable while the differential equations governing the slow variables are preserved. Thus, 

the new power system equations (33)-(36) can be summarized as follows. 

0 = 𝑔(𝑥1 𝑥2 𝑦 𝑧)                                                                                                                        (33) 

0 = 𝑓1(𝑥1 𝑥2 𝑦 𝑧)                                                                                                                       (34) 

𝑥2̇ = 𝑓2(𝑥1 𝑥2 𝑦 𝑧)                                                                                                                     (35) 

𝑧(𝑡𝑘+1) = ℎ(𝑥1 𝑥2 𝑦 𝑧)                                                                                                            (36) 

The equations 𝑓1and 𝑓2represent the fast and slow parts of the state equations. Using 

this theory, a simulator design is proposed in the next section. 

5.1.2 QSS simulator with frequency dynamics 

For the research presented in this document, the frequency dynamics are of interest. 

Thus, the entire mechanical dynamics of a governor-turbine-generator (GTG) need to be 

captured. However, the rest of the system is assumed to be infinitely fast in accordance 

with the QSS framework.  



 126 

A full model of the network can be constructed in OpenDSS. OpenDSS can 

programmatically solve a static load flow at each instant in time. In this instance two 

sources are modelled into the OpenDSS framework as voltage sources. The full dynamic 

model including the GTG dynamics is modelled in Simulink. Both the governors embed 

the nonlinear droops that are a result of their own local bids as well as the price frequency 

curve. Automatic voltage control (AVR) and exciter dynamics are neglected, and the 

voltage is assumed to be held by both sources at 1p.u. Thus, for the proposed framework, 

all dynamic equations such as governor reactions, turbine dynamics as well as the effect of 

generator masses on frequency dynamics are maintained and correspond to 𝑥2 from the 

previous discussion. All the network level dynamics such as travelling waves, voltage 

transients are assumed to be infinitely fast from timestep to timestep and are updated by 

solving a static load flow. These states correspond to the variables 𝑥1 in the previous 

simulation. 

The simulation scheme then goes as follows and is represented in Fig. 5.1. A static 

load flow is first run in the OpenDSS solver. The loading level on each source is then 

retrieved. This loading level is then updated in the dynamic simulator in Simulink and the 

resultant frequency dynamics are simulated for one timestep ℎ. The load is picked up by 

both sources in accordance to their locally synthesized droop curves.  

The new loading level for both sources is then converter to rotor angles that the 

voltage sources in the static OpenDSS domain must follow. Similarly, the resultant 

frequency from the dynamic simulation is sent to all the independent consumer agents in 

the MATLAB script to curtail, consume or shift load. The resultant control action is then 
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reflected in the OpenDSS domain in the next time step and the whole loop is repeated for 

the duration of the simulation. By reducing the number of dynamics that have to be 

simulated, the simulation time can be driven down, and the complexity can be lowered. 

Further, by allowing a script that simulates the reaction of all UMNs in response to the 

frequency to be inserted, the effect of the multi-agent framework in response to the 

dynamic can be analyzed. Previous studies have benchmarked the performance of such a 

QSS framework in terms of analyzing long term frequencies and the error observed is quite 

minimal [140]. Thus, a robust method to analyze network dynamics of multi-agent systems 

while capturing the continuous frequency dynamics is proposed here. 

Figure 5.1 Simulation Scheme based on QSS approach 
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5.2 Multi-agent System Simulation Scheme  

A complex architecture with numerous intelligent agents is realized when the 

transactive and physical elements proposed above are coupled. This needs to be effectively 

captured in simulation scheme to capture the effect. A simulation scheme is proposed here 

to achieve the same. The simulation scheme has numerous stages that use serial or parallel 

computing. Fig. 5.2 shows an overview of the same. The execution begins with initializing 

all connected agents. All agents are initialized with the global price-frequency mapping as 

well as some price forecasts. These agents are initialized as independent scripts in 

MATLAB with their local preferences.  For clusters of consumers this implies the nuance 

such as consumer discomfort, sensitivity to forecast errors as well as personal priority 

levels for load blocks. This information is local and unique to each agent. Similarly, sources 

can synthesize their own local bids and production cost preferences into nonlinear droops 

based on the global characteristic. Hybrid transformers across the system also receive the 

same global data as well as any updates to topology since the previous market clearing 

cycle. Thus, all agent scripts in MATLAB initialize their own frameworks based on the 

global parameter.  

These agents then show up as loads, voltage sources for generators and series voltage 

sources for hybrid transformers in the static OpenDSS framework. OpenDSS is used to 

create snapshots of static power flows. A static load flow solution is then run in OpenDSS. 

The physical aspects of the network in terms of flows as well as voltages are analyzed using  
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Figure 5.2 Multi-agent simulation scheme to analyze the effects of the proposed transactive and physical architecture 
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this solver. From the OpenDSS load flow, the loading levels of the two sources being  

represented as voltage sources is retrieved. The total load is then retrieved over a COM 

interface from OpenDSS and used as an initialization parameter for the frequency domain 

simulation in Simulink. The model in Simulink contains the detailed GTG models with all 

their parameters. The continuous simulation with frequency dynamics is run for a timestep 

and paused. The new distribution of the load between two sources as well as the new 

frequency is retrieved at the end of this time step. This information is fed to all the 

independent scripts representing the consumers and hybrid transformers in the system. In 

addition, the nonlinear droops ensure that the load is shared in a certain pattern. To capture, 

the same the required power angles for the static simulation in OpenDSS are calculated. 

This ensures that the voltage sources representing the two sources share load in the same 

pattern that the dynamics dictate.  

Locally, the frequency and local parameters are used by each agent to compute their 

action over the next time step. This could mean decisions about curtailing, consuming or 

load rescheduling for consumers or changes in control actions for the hybrid transformers. 

Each agent script then runs in parallel. Multiple computational cores have been used to 

parallelly allow algorithms on each agent to be executed. Parallel execution ensures that 

the simulation time can be driven down. Each agent then initiates a python script that allows 

their next control action to be conveyed to the OpenDSS network over a COM interface. 

The execution loop is then repeated for the next time step. Thus, a scheme is realized where 

the physical flows and network dynamics are captured in OpenDSS, the frequency 

dynamics are simulated in Simulink, agent dynamics and computations are carried out in 
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MATLAB and the interfaces between the physical and frequency domain are executed in 

Python.  

The notation for clustering as well as the different platforms used in each time step 

are conveyed in the legend in Fig. 5.2. The control flow for the executing the entire flow 

chart and calling respective platforms through scripts is managed in MATLAB. This 

creates a powerful platform to simulate such multi-agent systems while using parallel 

resources effectively.  

5.3 Contributions 

The architecture and control solutions presented in this research involve numerous 

agents exercising control based on some global signals. However, the challenge with 

analyzing the impact and efficacy of such frameworks is the computational complexity. 

Different agents respond to changing conditions based on the local and global preferences.  

A robust scheme was developed to enable modelling of such systems. In order to 

leverage different platforms, the scheme utilizes different existing platforms and packages 

to analyze steady state power flow and frequency dynamics. Each agent is also modelled 

in with varying local preferences and their suitable UMN algorithms. Parallel processing 

is utilized to allow the reaction of every agent to be calculated in a computationally efficient 

manner. This scheme will be utilized as the platform to prove the efficacy of the proposed 

solutions as well as to analyze their role in this multiagent architecture. 
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CHAPTER 6. DECENTRALIZED INTEGRATED 

TRANSACTIVE AND PHYSICAL ARCHITECTURE 

The proposed approaches present techniques to add flexibility to grid structures. The 

transactive framework proposed here is one that relies on edge intelligence to stabilize the 

system using global signals to signify market dynamics. This allows supply-demand 

imbalances to me stabilized through the transactive layer. Hybrid transformers add a 

significant amount of flexibility on physical grid structures to allow this transactive 

mechanism to be exercised. This section validates these mechanisms by presenting 

simulation studies to support the claim. The section also showcases the ability to use global 

and local signals to ensure that a resilient architecture is realized while effectively using 

edge intelligence. 

The simulation test case is first presented. The case is modelled with nuances of all 

agents. The simulation scheme presented in Chapter 5 will be utilized. The setup is 

designed to showcase the integration of the physical and transactive solutions presented in 

this research. The test bed also captures the multi-agent and multi-objective nature of this 

system. 

6.1 Multi-Agent Test Bed 

Fig. 6.1 shows a schematic of the test bed. The test bed consists of 2 sources (1.344 

MW and 2.256 MW) and a PV plant (2.5 MW). There are two communities of consumers 

modelled into the system. A hybrid transformer is placed on the link 2-5 as well and will 
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operate on the estimation principles highlighted in Section 4.5.1. Different aspects of the 

agents are specified in the next few subsections. 

 

6.1.1 Source UMN Agents 

Two sources are modelled into the system at buses 1 and 2. These units represent the 

areas 1 and 2 being represented. Unit 1 and 2 are sized at 1.344 MWs and 2.256 MWs 

respectively. The local bids for the two sources are those shown in Fig 4.4 and are scaled 

Figure 6.1 Multi-agent test bed 
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down by a factor of 10 for this system.  In accordance with the approach highlighted in 

Section 4.3.2, the sources possess local information about their bids as well as the global 

price frequency curve. The price frequency curve utilized for the studies presented in this 

section is shown in Fig. 6.2.  

The modelled PV output pattern in shown in Fig. 6.3. The PV plant is modelled to 

function in MPPT mode.  The two source bids are locally synthesized as nonlinear droops 

Figure 6.2 Price-frequency characteristic deployed on test bed 

Figure 6.3 PV output pattern 
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and are illustrated in Fig. 6.4. Thus, the frequency is a true reflection of the production cost 

of the dispatchable sources. 

6.1.2 Consumer UMN Agents 

The two communities modelled in at buses 3 and 5 and are represented by IEEE 13-

bus feeders [141]. Each node on the IEEE 13-bus feeder is modelled as a cluster of 

consumers. The modelled consumers are a mix of residential, commercial and industrial 

profiles. Baseline profiles used for these consumers are those seen in [142] and shown in 

Fig. 6.5. 

A total of 1111 unique agents including 754 residential, 60 commercial and 297 

industrial consumers are modelled in and dispersed in these clusters. Some of these agents 

are duplicated to realize the baseline load curve shown in Fig 6.6. Each agent is assigned a 

random variation of benefits, breakdowns for the priority levels as well as a randomly 

Figure 6.4 Locally synthesized nonlinear droops with global characteristic and local preferences 

Source 1 droop 

Source 2 droop 
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assigned cost of discomfort within certain bounds. Residential consumers have fewer  

critical loads and a lower discomfort cost while commercial and industrial agents may have 

a larger portion of their loads being critical and higher discomfort costs associated with 

rescheduling them. 

Similarly, the ramp rate limits are tighter for large industrial consumers to avoid large 

load steps on the system. Table 4 shows the ranges used for these parameters for each  

Figure 6.5 Baseline load profiles for modelled consumers 

 

Figure 6.6 Baseline load curve and expected PV output 



 137 

 

profile and its associated agents. The ramp rate limits are enforced by the system operator 

to ensure that stability is ensured and are encoded into the UMNs as a rule for connection. 

The value for 𝑏1is fixed at 50 for all critical loads for the purposes of this simulation study. 

The priority 3 loads are any loads that remain after the priority 1 and 2 loads are decided. 

The personal time varying benefits are modelled for each consumer by randomly varying 

the value between the given ranges for 𝑏1 and 𝑏3. Thus, unique consumers with their 

individual preferences can be modelled. Each UMN has the global characteristic shown in 

Fig 6.2 built into it to derive price and is modelled with the algorithm presented in (26). 

 

 

Table 4 Characteristics of the 1111 modelled agents 

Profile Type 

Number 

of agents 

𝒄𝒅 

(Range) 
𝒃𝟐 

(Range) 

𝒃𝟑 

(Range) 

Priority 1 

loads (% of 

total load) 

Priority 2 

loads (% of 

total load) 

𝒓𝒅
 𝒓𝒖 

Profile 

1 

Residential 454 0.1-0.2 11.4-

11.8 

10.5-

10.6 

25-35% 45-60% 0.08 

Profile 

2 

Residential 300 0.45-

0.75 

11.4-

12.1 

10-11.4 20-25% 45-60% 0.1 

Profile 

3 

Commercial 40 1-1.4 12.4-

12.5 

11.8-

11.9 

50-60% 25-40% 0.3 

Profile 

4 

Commercial 20 0.7-1.02 12.25-

12.35 

11.8-

11.85 

30-60% 20-55% 0.3 

Profile 

5 

Industrial 115 0.7-0.8 13-13.5 12-12.5 50-60% 28-40% 0.05 

Profile 

6 

Industrial 182 1.2-1.5 13-14.5 12.9-

13.05 

50-70% 20-45% 0.02 

 



 138 

6.1.3 Hybrid Transformer UMN Agents 

A hybrid transformer unit is modelled into the system on link 2-5. The architecture 

involves using historic data about the sources and their droops to extrapolate data about the 

system To this end, the nonlinear droops shown in Fig. 6.4 are made available to the hybrid 

transformer agent along with the [ ′] matrix representing the system impedances. The 

subsequent section presents the results of a simulation study with all these agents. 

6.2 Simulation Study 

With all the parameters specified, a 24-hour simulation study is conducted using the 

simulation scheme presented in Section 5.2. As the PV output starts increasing throughout 

the day, the frequency starts increasing. The real-time price starts dropping as cheap PV 

energy starts flooding the test system as shown in Fig. 6.7. It is important to note that the 

real-time price reflects the resource mix as well as the loading level of the system. The 

dispatchable sources maintain economic dispatch in accordance with their merit order 

curves in an autonomous fashion.  

Figure 6.7 Real-time price variation in response to changing frequency 
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Each consumer UMN agent then reacts based on their local preferences as well as 

the global price that is derived locally. Fig. 6.8 shows the behavior of the 1111 agents 

across the system in response to changing prices. Each UMN updates its consumption 

pattern based on the real-time price. It is important to note how every agent takes a 

conservative approach in the beginning and becomes more opportunistic moving forward 

owing to the decreasing value of Γ. This is the desired behavior and a feature of the UMN 

consumer optimization framework detailed in Section 4.4.2. It is also seen in Fig. 6.8 that 

k
W

(a) Hour (b) Hour

(c) Hour (d) Hour

(e)Hour (f) Hour

454 Agents
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40 Agents 20 Agents

115 Agents
182 Agents

Ramp rate 
violations 
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Figure 6.8 Behavior of 1111 consumers in response to real-time prices 
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the grid-friendly ramp rate constraints prevent erratic consumption behavior in consumers 

following Profile 2. 

Fig 6.9(a), (b) and (c) show the consumption within the 3 priority levels for 454 

agents following Profile 1. While critical priority 1 loads are always consumed priority 2 

loads are shifted as much as possible by each UMN while respecting each consumer’s 

individual cost of discomfort. Similarly, it is seen that the lowest priority loads are 

(a) Hour

(b) Hour

(c) Hour

k
W

k
W

k
W

Figure 6.9 Consumption pattern for 454 agents (Profile 1) for (a) priority 1 (b) priority 2 and (c) priority 

3 loads 
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exclusively consumed when energy is the cheapest. Thus, an approach is created that can 

enable the operation of communities in a resilient manner while reducing the dependence 

on real-time communications and coordination. Fig. 6.10 shows how the edge intelligence 

embedded in every UMN collectively alters the net load profile. All of this is achieved 

while ensuring that the constraints set by the consumer are respected. Rather than leverage 

supply flexibility to balance loads in a generation follows load paradigm an architecture is 

created where the supply availability is conveyed in real-time to leverage flexibility from 

both ends of the system. Moreover, when the price is higher in the event of resource 

scarcity, the price conveys this information ensuring that critical loads can be supplied 

while flexible loads are voluntary curtailed.  

 
Hour

Better overall consumption of 
cheap PV energy

Figure 6.10 Load flexibility leveraged using edge intelligence to achieve better consumption patterns 

in PV dominant systems 

Figure 6.11 Controlled local power flow on 2-5 by hybrid transformer 
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In addition, as this transactive framework attempts to balance supply-demand 

imbalances in real-time, the power flow patterns vary significantly over the test case. The 

hybrid transformer modelled in uses the frequency and local line flow to estimate global 

flows. All lines across the network are assumed to have a capacity of 1 MW. Fig. 6.11 

shows the power flow being controlled on link 2-5 in this test system. The hybrid 

transformer makes local decisions based on global estimates.  

Fig. 6.12 shows the actual line flows as well as the hybrid transformer estimates of 

line flows. The estimates are locally derived using local line flow and frequency with an 

estimate of the amount of PV energy flooding the system. Line flows are shown to be 

(a) (b)

(c) (d)

(e) (f)Figure 6.12 Line flows controlled by hybrid transformer to avoid congestion 
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positive or negative depending on the flow direction across the line. The figure also shows 

the passive flows that would have occurred without a hybrid transformer unit on line 2-5. 

It is seen in the same figure that the hybrid transformer estimates a possible congestion 

pattern on line 4-5 and diverts power based on its own HTFSs. While, hybrid transformers 

show great potential, there are certain extreme scenarios where the solution’s efficacy is 

limited. An example of such a scenario is presented in Appendix B. 

Thus, a self-stabilizing physical grid is achieved. A grid architecture is achieved 

where a robust transactive mechanism allows supply-demand balances to be met in real-

time without any communication while ensuring that all physical grid constraints are met.   
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CHAPTER 7. CONCLUSIONS, CONTRIBUTIONS AND FUTURE 

WORK 

7.1 Conclusions 

Future grid architectures are bound to be ones characterized by huge amounts of PV 

due to lower LCOEs as well as federal mandates and incentives associated with grid 

independence. Distributed ownership of assets makes coordination of such grid structures 

extremely challenging. Physical aspects such as volatility and congestion will become 

commonplace in such structures. Supply-demand imbalances are challenging to stabilize 

in such milt-agent grid structures Moreover, today’s transactive framework lacks 

scalability to accommodate millions of active agents with varying personal objectives and 

transactive goals. Reliance on continuous and synchronous communications for operation 

also compromises the resiliency of the system as a whole. Thus, a new architecture that can 

leverage more flexibility on both the transactive and physical sides of the grid is the need 

of the hour. 

The work presented in this research attempts to create a robust transactive framework 

to allow supply-demand balances to be met in real-time while leveraging flexibility from 

all connected agents in the system. This creates an ecosystem of nodes that balance local 

objectives while actively contributing to global goals. The architecture is designed around 

utilizing edge intelligence without relying on continuous communication and computations 

at central entities. By using global signals effectively, the architecture eliminates the need 

for low latency communication and makes the system highly robust and resilient. The 
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architecture shows enormous value in sustaining operations in periods of lower resource 

availability while encouraging consumption in situations with resource surplus. Rather 

than designing an architecture that focuses on generation following loads, the architecture 

implements demand response and autonomous economic dispatch into one common and 

integrated control structure. A completely decentralized operational and market 

architecture is thus achieved.  

 

A system based on transactive principles is often challenging to manage from a 

perspective of managing physical constraints. Dynamic control on the grid is becoming 

increasingly necessary to handle the fast volatility introduced by DERs. Hybrid 

transformers are proposed in this research as an elegant solution to achieve high amounts 

Figure 7.1 Decentralized Integrated Physical and Transactive Architecture 
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of flexibility in a cost-effective fashion. The approach shows enormous resiliency 

compared to other FACTS based counterparts. Precise and dynamic control over voltages, 

power flows and impedances across any given network. The devices show merit in 

addressing congestion related issues and maximize efficient usage of transmission 

capacity. Fig. 7.1 shows a picture of the framework when it’s integrated. Thus, a 

decentralized integrated transactive and physical control architecture for such grid 

structures can be realized. 

7.2 Contributions 

7.2.1 Analysis of hybrid transformers as an effective grid control tool 

System operators utilize source controls and dispatch procedures to control flows 

across the grid. This is going to be extremely challenging in future grids with a large 

number of active agents with varying objectives. Source side controls also affect the 

economics of generation. Distributed hardware devices like hybrid transformer can affect 

changes in power flows by making traditionally passive meshed networks active.  

 The efficacy of the hybrid transformer approach as a grid control tool was analyzed 

in this work. The system level impacts of this approach were also analyzed to evaluate the 

value of power flow control and voltage management. Further some metrics were 

developed to allow hybrid transformers to be integrated with the proposed decentralized 

transactive framework. This work has enabled one DOE report, one NEETRAC report  and 

two conference publications. 
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7.2.2 Novel Decentralized Transactive Architecture 

Managing supply-demand imbalances in geographically dispersed, DER-heavy 

multi-agent systems is extremely challenging using centralized management approaches. 

Moreover, the reliance on low-latency communications and complex computations could 

make the system vulnerable during failure modes. Yet, the ability to operate critical loads 

operation based on locally available sources is extremely valuable. 

In order to enable such a paradigm, a novel decentralized transactive architecture was 

proposed. The architecture relies on global signals to manage the transactions across the 

system. Each connected agent controls their own consumption, dispatch or rescheduling 

decisions based on global frequency. The framework enables the architecture to become 

an ecosystem with millions of active agents. Further, the control principles remain fractal 

and agnostic to topology. The resiliency of this approach as well as the scalability was 

shown in this work. The architecture shows tremendous value in terms of operating grid 

structures with high penetration of volatile resource. Local control methodologies for 

sources and consumers in such systems were developed in this work. These algorithms 

become key elements of the local intelligence and allow such an architecture to be 

exercised. This work has enabled two journal publications and three conference 

publications. 

7.2.3 Simulation engine to analyse multi-agent decentralized architectures 

A large part of this work was developing tools to understand the effect of edge 

intelligence on grid structures. A novel simulation engine was developed using numerous 

packages to allow rigorous analysis of such systems. The tool allowed the effects of agents 
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to be captured on physical grid flows while providing a platform to model individual 

agents.  

7.3 Future Work 

In this work a novel mechanism of managing PV dominant grid structures is 

presented. There are still some concepts that could be explored further to prove the efficacy 

of this approach. 

7.3.1 Quantification of Stability 

While, the architecture proposed above does show value in managing real-time 

supply-demand imbalances as well as ways to address volatility, it is quite challenging to 

quantify the stability for such massively distributed multi-agent frameworks. Formulations 

that can identify modes of potential instability in such systems need to be quantified. These 

metrics then need to be translated to robust rules that would apply to all connected nodes. 

7.3.2 Policy, Regulation and Role of the System Operator 

The architecture highlighted above allows transactions between different entities 

without requiring any central coordination entity. However, a system operator is still 

essential to ensuring that the network is maintained and serviced. The grid-as-a-service 

paradigm seems to be a logical application. Grid operators could operate as a co-op while 

simply charging a service fee to connected agents. Correct regulations and policies for such 

operators (DSOs or aggregators) need to be designed and explored. The procedures to 

update the price-frequency characteristics and the associated algorithm need to be 

developed. 
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7.3.3 Rules of Connection, penalties and load tripping 

While the architecture does provide key signals to convey resource adequacy, it is 

often challenging to ensure that an extravagant consumer doesn’t hit the grid structure with 

a large load step. Rules need to be built in to every UMN to gauge the impact a load step 

may have on the system and it’s impacts on stability. Further, if a load step does occur and 

the energy is being transiently supplied by some other agent, adequate penalties and 

compensation mechanisms need to be established.  

An investigation into embedding open ledger functionality typically seen in 

blockchain frameworks needs to be conducted. As with any multi-agent transactive system, 

there may be potential for gaming between agents. Sufficient rules and policies need to be 

designed to prevent gaming and to levy penalties in case it does occur. Compliance rules 

need to be designed and enforced by the system operator in charge. 

7.3.4 Role of Storage and Prosumers 

The work presented in this research allows grid structures to be operated with large 

DER penetration levels. However, the local optimization framework and it’s nuances need 

to be explored for prosumers. Adequate set of rules and optimization algorithms need to be 

deployed for the same. 

Storage adds tremendous value in terms of aiding transient stability as well as 

arbitrage opportunities. Local optimization frameworks also need to be designed for 

storage entities in such architectures. A rigorous approach towards identifying the impact 

of storage on both the proposed transactive and physical elements needs to be developed. 
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It may be possible for the system operator to deploy the storage as a community 

asset. Quantifying the minimum amount of storage, nature of subscriptions to this service 

for connected agents, its structure and role in the proposed transactive mechanism could 

be key to making this approach more robust. 
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APPENDIX A. RETROFITTABLE HYBRID TRANSFORMERS FOR 

LOW-VOLTAGE MESHED GRIDS 

While the ability to exercise control over voltage and power flows across meshed 

bulk power systems has been achieved with hybrid transformers, implementing power 

electronic solutions becomes challenging in low voltage, high power systems where 50 kA 

fault current levels must be met. A retrofittable version of the hybrid transformer concept 

is proposed for the same. Geospatial loading across meshed low voltage networks causes 

overloads in nearby transformers. Moreover, uneven loading of transformers also ensures 

that a poor voltage profile might be observed. Volt-VAR control on radial systems has been 

achieved with capacitor banks. However, in highly coupled systems like these underground 

low voltage meshed networks, single-point bulk Volt-VAR solutions often lead to 

unexpected reactive power loops. Operators of such systems have often resorted to 

replacing overloaded transformer units on these grids with larger ones, which is often an 

expensive approach. Thus, there is a need for deploying the same fractional control 

approach seen in hybrid transformers in these low voltage systems.  

Stacked Isolated Voltage Optimization Modules (SIVOM) are presented here as a 

scaled retrofittable implementation of hybrid transformers for low voltages meshed grids. 

SIVOM units are implemented using coaxial winding transformers (CWTs). CWTs are 

single turn transformers with a multi-turn secondary as shown in Fig. A.1. CWT geometries 

are highly robust, can withstand high fault currents and show extremely low leakage 

impedances [143], [144]. The configuration in which these would be deployed is shown in 

Fig. A.2. SIVOM units are connected in series with the 26.4 KV/208 V transformers  
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A. 2 SIVOM deployment in meshed LV systems 

on the secondary. The single turn primary copper tube is connected in series with the line. 

By injecting an out-of-phase voltage on the multi-turn secondary, a fractional out-of-phase 

voltage can be reflected in series with the primary voltage. Moreover, this out-of-phase 

voltage is synthesized by using the existing phase connections at the 208 V terminal. As 

shown in Fig A.3, a quadrature voltage to phase A can be synthesized using the line-to-line 

voltage vector BC. Thus, using the other phases, a quadrature voltage can be synthesized 
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for all three phases. In order to add more control at any geospatial location, these units can 

be stacked to increase the injection magnitudes as shown in Fig A.4. Thus, a modular, low-

loss, compact, stackable and retrofittable realization of hybrid transformers is achieved. 

These units can also be bypassed to achieve the ‘fail-normal’ mode of operation where the 

outer copper tube simply becomes a current carrying conductor.  

The key difference here is that only certain injection patterns can be achieved based 

on the phase connections available at 208 V secondary. Another key difference is that the 

injection magnitude remains fixed with the turn ratio of the CWT unit. Increased injection 

can be achieved with stacking units. However, the value in this approach is that it can be 
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retrofitted into small tight spaces such as underground mains to provide the same 

functionality in meshed low voltage systems. Since these are passive transformers with 

added controls, they are very robust, can survive faults, can sustain extreme temperatures 

and could sustain operation even under water-logged conditions. A few simulation cases 

are presented next to showcase the value of this approach.  

Consolidated Edison operates a highly meshed low voltage underground system in 

the Manhattan area. This makes it a prime use case to test out the concept. The area network 

was modelled in OpenDSS and the model was carefully benchmarked to confirm its 

validity. Although the entire system was modelled, a small sub grid with 6 relevant 

transformers is presented here. The sub grid of interest is illustrated in Fig. A.5 (a). The 

base case loading pattern for the 6 transformers is shown in Fig. A.5 (b). Transformer 1 is 

identified as the target transformer that will be retrofitted with the SIVOM units. SIVOM 

units are modelled into the OpenDSS system as simple series transformers with a fixed 

turns ratio. The unit can switch between injection modes by changing the phase 

Rest of the meshed system

-26.4 kV/208 V Underground Transformer Unit

XFMR 1 1 
301.9 kVA

XFMR 2
313 kVA
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A. 5 (a)Target low voltage sub grid (b) Base case loading pattern for 6 transformers. 
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connections to the CWT unit. These control actions are modelled as a DLL script that 

interacts with the simulation over a COM interface.  

In order to study the effect of various injection modes, a 1% injection is carried out 

in all 12 patterns on the target transformer. A 1% injection magnitude is achieved by setting 

the turns ratio for the CWTs and rounding to the nearest integer. The loading variation in 

response to these injection patterns is shown in Fig. A.6. From this analysis, two modes of 

operation stand out as the ones of interest – loading reduction (quadrature injection) and 

voltage support (inline injection) as shown in Fig. A.7. These modes help address overloads 

on certain transformer units in the meshed system or provide Volt-VAR support in a given 

area. A few simulation cases were generated to understand the effect of different injection 

magnitudes in these two modes. While keeping the SIVOM unit at transformer 1, the turn 
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ratio is varied to achieve a 1% and 2% injection. Fig. A.8 (a) shows the power flow control 

that can be achieved with these injections in loading reduction mode. Thus, better load 

sharing between connected transformers can be achieved while alleviating heavily loaded 

units. Similarly, the effect of the voltage boost mode is shown in Fig. A.8 (b) where the 

area voltage profile can be improved using these units.  

Meshed low voltage systems are designed to be highly tolerant to contingencies. 

However, depending on the contingency’s spatial location and the coupling between 
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adjacent transformer units, the loading levels on operating units could drastically change. 

The most optimal solution would be to redistribute the loading proportionately across the 

under loaded units. In order to verify this, an (N-1) condition was simulated. Transformer 

6 was taken out of service to investigate the effect of lost system capacity. The change in 

transformer loading patterns is shown in Fig. A.9. 

The load is largely distributed unevenly across the sub-grid. Further, another 

contingency on this system would overload at least one of these transformers. The  

distribution of the load in this case would depend on a variety of network parameters 

making it entirely unpredictable. This scenario serves to show that centralized controls over 
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A. 9 Transformer loading levels (post contingency) 

A. 10 Improved transformer loading under (N-1) contingencies 
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power flows through the medium voltage feeder network wouldn’t help rectify this issue. 

Moreover, a high degree of observability on the entire network would have to be 

maintained to exercise centralized controls. Although, the case shown here doesn’t 

showcase overloads it is apparent that the result of any contingency is unpredictable and 

can alter transformer loading patterns in drastic fashions. By introducing SIVOM into the 

system, it is possible to control power flows to alter transformer loading under such 

contingencies. This can drive the system to a more optimal loading state. By introducing 

SIVOM at Transformer 1 an even loading pattern can be achieved through a 1% quadrature 

injection. Fig. A.10 presents the distribution of load with added control in the form of 

SIVOM modules. 

Another (N-1) contingency was simulated to understand its effect on the area’s 

voltage profile. Transformer 5 was taken out of service. The area voltage profile is shown 

in Fig. A.11. A pronounced voltage drop is observed in the area where the transformer was 

lost. SIVOM modules are installed at transformers 1, 2, 3, 4 and 6 for this simulation study. 

The control logic implemented in each module only observes the local voltage and 

Drop in voltage profile where transformer was lost

A. 11 Area voltage profile (post contingency) 
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performs an in-phase injection to correct the local voltage profile based on set points. It is 

seen that when each module injects a 1% in-phase voltage, the net voltage profile in the 

area significantly improves as seen in Fig. A.12.  

Thus, SIVOM modules demonstrate the ability to optimize voltage profiles and 

transformer loading patterns across the system. Moreover, by introducing controllability 

even under the face of contingencies, a more resilient and optimum operation state can be 

achieved. By utilizing the same concept as the hybrid transformer, an implementation is 

achieved that can provide control over numerous grid parameters at bulk power, medium 

voltage and low voltage levels, while being retrofittable and low cost. All of this achieved 

while ensuring that harsh environmental and fault current requirements are met and managed. 

  

A. 12 Improved voltage profile under (N-1) contingencies 
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APPENDIX B. LIMITATIONS OF HYBRID TRANSFORMERS 

UNDER EXTREME SCENARIOS 

Hybrid transformers showed the ability to exercise control over line flows in the 

simulation test case presented in Section 6.2. However, there are extreme scenarios where 

the ability to affect control over power flows is limited by the physical impedances of the 

grid structure itself. An extreme scenario for the test system presented in Section 6.1 is 

shown in Fig. B.1. The PV injection at bus 4 has been raised to 3.26 MW for the purposes 

of this study. The system seen in Fig. B.1 shows several points of congestion, with line 2-

3 loaded to 107% and line 4-5 loaded to 204% of their individual capacities.  

B. 1 Line flows under extreme scenarios with high PV penetration 
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The hybrid transformer could relieve the line loading on line 4-5 by attempting to 

maximize the ampacity of its own link. Fig. B.2 shows the line flows when the hybrid 

transformer utilizes its own link to reduce congestion patterns. However, this leads to a 

new violation on line 2-3. Moreover, the loading level for line 4-5 remains extremely high. 

Under such scenarios, the hybrid transformer would raise an urgent flag to signal the 

operator. Such extreme scenarios may only be addressed through centralized control. 

However, in most normal scenarios, hybrid transformers remain an effective grid 

management tool.  

 

1

2

3

5

4

Area 2

Source 1
PV (MPPT)

Source 2

Hybrid Transformer

646_b 645_b 632_b 633_b 634_b

675_b692_b671_b684_b611_b

652_b

646_a 645_a 632_a 633_a 634_a

675_a692_a671_a684_a611_a

652_a

680_a

680_b

All equipped 
with UMNs

3.26 MW0.99 MW

0.33 MW

Area 1

Community of consumers

Community of consumers

2.395 MW

2.185 MW

0.458 MW

0.532 MW

0.863 MW
1.075 MW

1 MW (max)

1 (max)

1.185 MW

118%
107%

B. 2 Inability to resolve congestion issues using hybrid transformers 
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