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SUMMARY

The objective of this dissertation is to provide a set of methods by which a graceful

transition is synthesised for a large class of nonlinear and hybrid systems. A special focus

of this thesis is on transitioning between periodic orbits. The primary motivation for this

is in the application to legged locomotion. The Gluskabi Raccordation provides a general

framework to accomplish this. In this thesis, we utilize the Gluskabi raccordation as a

general framework for encapsulating the abstract notion of gracefulness. We extend the

kernel method to a certain class of hybrid systems. We show how to construct a carefully

formulated optimization problem, the solution of which yields graceful transitions. This is

illustrated on hopping systems on elastic and granular terrain. The image method, which

is dual to the kernel method, is also used as an alternative method to realize graceful tran-

sitions. This involves the careful formulation of a parameterized optimal control problem,

the solution of which yields parameterized periodic orbits. A dynamically feasible trajec-

tory is then constructed staying close to this orbit family, which yields a different notion of

gracefulness. The method is illustrated on fully actuated and underactuated planar bipedal

robots. Finally, energy efficient locomotion is also considered in the context of bipedal

robots. The partial hybrid zero dynamics framework is employed to generate stable energy

efficient periodic walking gaits. An optimal control problem is solved which generates

energy efficient transitions between these stable periodic walking gaits.

xv



CHAPTER 1

INTRODUCTION

The objective of this thesis is to present new methods for transitioning gracefully between

different periodic orbits of dynamical systems. The primary motivation for this work is

transitioning between different gaits for legged robotic systems.

Animals have a wide variety of agile, dynamic and efficient gaits for locomotion. These

gaits vary based on the traveling speed, environment terrain type, etc. However, it may

not be possible to switch between these different gaits instantaneously due to the inertia

of the system, mechanical constraints and actuator limitations. Thus, one of the goals

of this thesis is to present methods that achieve transitions between different gaits in an

elegant and graceful manner for legged robotic systems such as hoppers and bipedal robots.

Intuitively, transiting gracefully between different gaits may be connected to more efficient

locomotion, and may also be used as a measure of safety for the system. There may be other

compelling reasons for not wanting to transit instantaneously: aesthetics in dance is one,

perhaps also to hide intentions (e.g. when stalking prey) [1]. The problem of transitioning

between different gaits has received attention by the research community. However, owing

to the high dimensionality of these systems and highly nonlinear dynamics, the problem of

graceful transitions have largely been left unaddressed. Our goal in this thesis is to take the

first steps to tackle this problem.

As noted in [2, 3], the problem of transitioning between different gaits can be viewed as

part of a larger set of problems, namely connecting distinct trajectories but of a similar type

of a dynamical system in a smooth and graceful manner. The trajectories being connected

could be stationary (constant) solutions, periodic (non constant) solutions, or non-periodic

solutions. A related problem in thermodynamics is a quasi-static transition between equi-

librium points, where a transition occurs very slowly, in such a way that the system could
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be assumed to be in equilibrium at each time. The Gluskabi Raccordation problem was

introduced in [4, 5] and sets up the basic framework to mathematically define the abstract

notion of gracefulness. A fundamental question related to transitions is that of reachability

or controllability. If the system is not completely reachable, then transiting between dis-

tinct trajectories could be infeasible. On the other hand, there could be a set of ways to

transit between trajectories. The Gluskabi raccordation problem seeks to define and select

from this set, a graceful transition in a systematic and principled manner.

As introduced in [4, 5] there are two basic approaches to define gracefulness as per

the gluskabi raccordation framework. They are the kernel method and the image method

respectively. These two methods can be seen as dual to each other. In the kernel method the

trajectories to be connected are nulled by an operator. The kernel of this operator defines

the type of the trajectories. During transition, this type condition could be violated, but we

would like to find a transition in which this condition maximally persists. This involves

constructing a cost functional to measure this type violation condition and minimizing this

subject to the necessary boundary conditions and dynamics constraints. Solution of this

optimal control problem yields a transition that is graceful. In the image method, the de-

sired trajectories are in the image of a parameter set under a (possibly nonlinear) operator.

In other words, we have a parameterized family of trajectories. In order to transit between

distinct trajectories in this family, a reference trajectory is constructed from this parame-

terized family by formulating suitable dynamics for the parameter variation. The goal then

is to stay as close to this reference as possible, which provides an alternative notion of

gracefulness.

The work in [2] initially focused on transitioning between signals in a graceful manner

while ignoring any dynamical constraints. Subsequently, it focused on transitioning be-

tween periodic orbits of linear systems and uniformly convergent nonlinear systems. The

work in [3] focused on applying the kernel method to transit between trajectories of contin-

uous time Linear Time Invariant (LTI) Systems, LTI systems with Commensurate Delays

2



and discrete time LTI systems. The work in [3] culminated in obtaining graceful transi-

tions between different gaits for the biomimetic worm which was modeled as a switched

linear system. A special focus of this thesis is on synthesis of graceful transitions between

periodic orbits of hybrid systems.

This thesis is organized as follows. Chapter 2 introduces the relavent background ma-

terial necessary. The behavioral theory [6] is introduced as it is helpful to define types of

trajectories. The kernel and the image methods are also introduced. Hybrid systems are

also defined as they serve as very useful models for legged locomotion. Pre-existing gait

transition methods are briefly explained. Chapter 3 uses the kernel method to synthesize

raccordations for controllable linear systems. Chapter 4 introduces the image method for

smooth nonlinear systems. Chapter 5 takes the first steps towards synthesizing transitions

for simple low order hybrid systems. Chapter 6 synthesizes transitions for hopping robots

on deformable terrain using the kernel method. Chapter 7 focuses on transitions between

walking gaits of bipeds using the image method. Chapter 8 examines transitions between

walking gaits of fully actuated bipedal robots in the context of energy efficiency.

3



CHAPTER 2

BACKGROUND MATERIAL

This chapter first introduces the behavioral theory developed by Jan Willems [6]. It is a

general framework for modeling of systems and interconnections between them, and is

more general than state space models. The kernel method is introduced which makes use

of the behavioral theory. The image method is also introduced as part of the raccordation

framework. Subsequently, a hybrid system and its solutions are defined. Finally, a brief

overview is provided of related pre-existing gait transitions methods.

2.1 Behavioral Theory

The behavioral approach is a broad framework encompassing state space models and trans-

fer function models. The basic idea is to construct a universum that contains all possible

events. The behavior then constrains these to only those events that respect the physical

laws of the system under consideration. Precise definitions follow.

Definition 2.1.1. A dynamical system is a tuple Σ = (T,W,B). Here T represents the time

set which is either a subset of R or Z. W is a set in which the signals of interest take their

values and B is a subset of WT =

{
w

∣∣∣∣w : T→W
}

the set of functions from T to W. The

set B is called a behavior.

Usually the set W is a vector space i.e. Rn. The dynamical system is said to be linear

if B is a subspace of WT. It is said to time invariant if Sτw ∈ B ⇐⇒ w ∈ B where Sτ

is the shift operator by τ seconds. The dynamical system as defined above in the sense of

behavioral theory encompasses state space models of the form

ẋ = f(x, u), y = h(x, u) (2.1)

4



where x ∈ Rn , u ∈ Rm and y ∈ Rk. The full behavior Bf ⊂WT
f where Wf = Rm×Rk×

Rn consisting of tuples (u, y, x) and Bf is the subset of signals (u(t), y(t), x(t)) satisfying

(Equation 2.1). Here x is typically called the latent variable while the variables (u, y)

are called the manifest variables. The manifest behavior Bm is then
{

(u(t), y(t))

∣∣∣∣∃x(t) :

(u(t), y(t), x(t)) ∈ Bf
}

. The manifest variables are variables that are of interest to the

modeller while latent variables are auxiliary variables used for the modelling process [6].

2.2 Kernel Method

At a very high level, the kernel method involves setting up an optimal control problem,

the solution of which will be defined as a graceful transition. We define the type of the

trajectories that we wish to transit between as follows.

Definition 2.2.1. A type T ⊂ B is the kernel of an operator Op : A → V , i.e. T =

{w(t) ∈ A : Opw(t) = 0} where A ⊂ B is the domain of definition of this operator. The

set V is a function space. In other words, Op maps functions in the set A to functions in

the set V .

Essentially, the type T restricts the behavior to a certain set of trajectories that we

wish to transit between. For example, the type of constant functions could be described

as a kernel of the operator Op = D, where D is the differentiation operator. As another

example, the type T of periodic signals with period T can be described as the kernel of the

linear operator Op = I − ST . Equivalently (for smooth functions) it can be described as

the kernel of Op = D ·Π∞i=0(D2 + i2ω2I) where ω = 2π
T

. Our focus in this thesis is on the

type of periodic functions.

For the definition below, we adopt the following notation. Given a function f defined

on a time set T ⊂ R we define f restricted to an interval I denoted f |I as f defined on

T ∩ I. In this way, given a function space V we can define V|I as functions in V restricted

to I.
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Definition 2.2.2. Given a type T described by an operator Op and two signalsw1 ∈ T and

w2 ∈ T i.e. they satisfy Opw1 = 0 and Opw2 = 0 and a raccordation interval I = [t0, t1].

The gluskabi raccordation is a function w̄ ∈ B such that w̄(t) = w1(t) for t ≤ t0 and

w̄(t) = w2(t) for t ≥ t1 and further, in the interval I = [t0, t1] it minimizes ‖Opw
∣∣
I‖

where ‖ · ‖ is an appropriate norm on V|I .

From the definition above we see that the gluskabi raccordation w̄ connects two given

functions w1 and w2 of the same type over an interval I = [t0, t1] and moreover does this

in a maximally persistent way during the transition, i.e. by minimizing ‖Opw
∣∣
I‖. Thus

the transition is such that the given type persists during the transition which encapsulates a

notion of gracefulness. In essence, the kernel method is a formalism to set up an optimal

control problem. Solving this optimal control problem produces maximally persistent or

graceful transfer. The optimal control problem formed from the kernel method depends on

the choice of Op, the choice of ‖ · ‖ and even the choice of B.

Definition 2.2.3. A trait (Tθ ⊂ T ) is a subtype of the type, i.e. it described by an operator

Oθ
p and

Tθ = {w ∈ T
∣∣Oθ

pw = 0} (2.2)

The trait is useful when we want to enforce greater restrictions (e.g. smoothness con-

ditions on state and input) on the type of signals to transit between. The kernel method

has been applied to obtain graceful transitions for signals of the same type for a variety of

different types (not necessarily periodic) [7, 8]. It has also been used to obtain graceful

transitions for systems with dynamics such as linear time invariant systems [3, 2, 9]. It has

also been used to obtain graceful transition for the biomimetic worm, which is a switched

linear system (i.e a system where the different modes are linear and the state is continuous)

in [10]. The kernel method is also used for a simple two dimensional nonlinear systems in

[11] where the operator Op = I − ST and the norm is chosen as ‖ · ‖Q for some positive

definite matrix Q.

6



2.3 Image Method
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Figure 2.1: Schematic of the image method. (b) represents the parameter law variation. In
(a) the green line represents the image of the the parameter law variation under the map φ
which represents the desired reference.

In the image method, we assume that we have a (smooth) map φ : A → X where A

is a manifold that represents the parameter space and X is an infinite dimensional function

space. Thus for each parameter α ∈ A, φ(α) ∈ X is a function φ(α) : T → Rn. We can

represent this equivalently as a (smooth) function with two arguments x(t, α) where for

each α we have x(·, α) = φ(α) as functions.

Let αi and αf be two distinct parameters and x(t, αi) represent the initial function and

x(t, αf ) represents the final function. Let a raccordation interval I = [ti, tf ] be given. Then

we choose a path α(t) connecting αi and αf in the interval I and also set α(t) = αi for

t ≤ ti and α(t) = αf for t ≥ tf . Then xtr(t) = x(t, α(t)) is a graceful transition from

x(t, αi) to x(t, αf ).

There are several different choices of paths α(t) connecting αi and αf . In [4] the

authors, first construct a Riemannian metric on Θ as follows: assume X is the space of

square integrable functions, then we have the inner product 〈x, y〉 =
∫
T x
>(t)y(t)dt. Since

X is a vector space, this same inner product can be considered for tangent spaces TxX .

Now given tangent vectors v and w in TαA. We can define 〈v, w〉A = 〈∂φ
∂θ
v, ∂φ

∂θ
w〉X . This

induces a Riemannian metric on A.
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More concretely, if φ(α)(t) = x(t, α) then ∂φ
∂α

(α)(t) = ∂x
∂α

(t, α). Therefore

〈v, w〉A = v>G(α)w = v> ·
∫
T

∂x

∂α
(t, α)>

∂x

∂α
(t, α)dt · w (2.3)

which defines the metric G(α) for α ∈ A. With the Riemannian metric defined on A,

the path α(t) can be chosen as a geodesic connecting αi and αf , i.e. by minimizing the

integral given by
∫
α̇>(t)G(α(t))α̇(t)dt. The image method has been applied in [5] to

connect signals ignoring dynamics and also to connect periodic orbits of linear systems

ẋ = Ax + Bu. It is also applied in [12] where periodic signals are parameterized by their

Fourier coefficients. Here, the authors also discuss an extension of the image method to

uniformly convergent nonlinear systems.

Remark : Note that the kernel and image methods only give open loop signals u(t)

when applied to systems with dynamics.

2.4 Hybrid Systems

Our definition of a hybrid system is related to [13]. Hybrid systems encompass continuous

time dynamical systems and have been used as models for a wide variety of applications

including Automated Highway Systems, Air Traffic Management, Thermal Systems, Gear

Shifters for Automobiles, and for Legged Locomotion [13].

Definition 2.4.1. A hybrid system is a tupleH = (I, {Xi}, {Ui}, {fi}, E ,G,R) where :

• I is a discrete indexing set.

• Xi are manifolds (also called domains) for i ∈ I.

• Ui is an input set for i ∈ I.

• fi( · , · ) : Xi × Ui → T Xi are controlled smooth vector fields.

• E ⊆ I × I is a set of edges.
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• With e = (i1, i2) ∈ E , G(e) ∈ P(Xi × Ui) is collection of guard conditions for each

edge. Here P(Xi × Ui) denotes power set of Xi × Ui.

• R(e) : Xi1 → Xi2 is collection of reset maps where e = (i1, i2) ∈ E .

Broadly speaking, a hybrid system is a combination of a continuous time ordinary dif-

ferential equation to describe continuous evolution and a state machine to describe discrete

transitions. The idea of a solution of a continuous time differential equation can be readily

extended to hybrid systems as follows [13].

Definition 2.4.2. A hybrid time set is a sequence of intervals τ = {I0, I1, ...., IN} =

{Ii}Ni=0, finite or infinite (i.e. N <∞ or N =∞) such that

• Ii = [τi, τ
′
i ] for each i.

• if N <∞, then either In = [τn, τ
′
n] or [τn, τ

′
n) possibly with τ ′n =∞.

• τi ≤ τ ′i = τi+1 for all i.

With the definition of a hybrid time set, we now define the trajectory of a hybrid system

as follows.

Definition 2.4.3. A trajectory of a hybrid system consists of (τ, {Xi}, {Ui}) where τ is a

hybrid time set, and the following are satisfied :

• Continuous evolution, for each i ∈ τ :

dxi
dt

= fqi(xi(t), ui(t)) (2.4)

where xi : Ii → Xqi and ui : Ii → Uqi .

• Discrete transitions, for τ ′i ∈ Ii and τi+1 ∈ Ii+1 we have (qi, qi+1) ∈ E , (x(τ ′i), ui(τ
′
i)) ∈

G(qi, qi+1) and x(τi+1) = R(qi, qi+1)x(τ ′i).
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Essentially, this means that the system follows the vector field specified by the given

domain until a guard condition is met. Once the guard is reached, the discrete transition

occurs to transfer the state to a new domain with it’s corresponding vector field.

Remark 2.4.1. The manifolds Xi could be of different dimensions in the hybrid system.

This results in multi mode multi-dimensional (M3D) systems. One example is running gaits

for bipedal robots where the ground phase has a smaller dimension because of holonomic

constraints on the foot, while the entire robot body is unconstrained in the flight phase.

Existence and Uniqueness of Solutions : From our definition of hybrid systems, local

existence and uniqueness of the solution is guaranteed. To see this, we know from standard

results on Ordinary Differential Equations [14], local existence and uniqueness of the solu-

tion is guaranteed on each domain because of our assumption of smooth vector fields. The

discrete transitions serve only to reset the state to a (possibly) different domain. However

similar to ODEs, global existence of the solution is not guaranteed, as finite escape time

may occur in any particular domain. This will not occur if all of the domains of the hybrid

system are compact, or if all vector fields in all domains are affine (i.e. a piecewise affine

system). This is the case, for example, for the hopper on a trampoline discussed later.

Hybrid Systems may also exhibit Zeno behavior. This means that there are infinitely

many transitions in a finite amount of time. A classic example of a hybrid system exhibiting

zeno phenomenon is the bouncing ball system [13].

2.5 Related Work on Gait Transitions

2.5.1 Raibert Hoppers and Related Models

The most famous examples of robots exhibiting dynamic and graceful locomotion are Marc

Raibert’s hopping robots developed in the 1980’s [15]. We briefly describe his approach

here for planar hoppers. The hopper in Figure 2.2 consists of a radial actuator for the leg

length and an angular actuator to control the relative angle of the leg with respect to the
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(a) Raibert’s Hopper

Terrain

Neutral Point

Net DecelerationNet Acceleration

𝜃𝑡𝑑

𝑥𝑛

Direction of Travel

(b) Neutral Point Illustration

Figure 2.2: Figure (a) represents Raibert’s Hopper taken from [15]. (b) illustrates the
neutral point. Placing the foot at the neutral point leads to zero net velocity change during
the subsequent ground phase.

body. In their approach, they used a fixed duration thrust in stance to regulate vertical jump

height. The larger the duration of thrust, the larger the jump height and vice versa. The

second ingredient was control of body posture during stance via PD control. These two

subtasks completely determine the control in stance. We move to the flight phase where

forward velocity is constant.

To regulate forward velocity, they observed that there is a point on the ground (during

flight phase) where, if the swing leg were placed there, the robot would have zero net ac-

celeration in the subsequent stance phase. This point was called the neutral point. Placing

the swing leg before the neutral point results in a net positive acceleration in the next stance

phase while placing it ahead of the neutral point results in negative acceleration. Thus, in

the flight phase, the swing leg is controlled to the desired location by the angular torque

PD controller. This is the essence of their approach and it is also called a “foot placement

strategy” to regulate forward velocity. To transition between gaits from a lower to a higher

speed, an appropriate foot placement strategy can be used, and to increase/decrease the

vertical jump height, the duration of thrust can be changed to achieve transitions in height.

A limitation of this approach is that the control strategy is somewhat ad-hoc. This

strategy relied on the fact that the mass of the body is much larger than the mass of leg and

so coupling effects between body posture and swing leg movement is minimal. A proof

that approximately explains stability of this approach can be found in [16].
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Spring Loaded Inverted Pendulum

The Spring Loaded Inverted Pendulum (SLIP) is related to Raibert’s hopper if we ignore

body pitch angle and consider the closed loop feedback dynamics of the system [16]. It

is also commonly observed as the center of mass dynamics of many biological organisms

for walking and running [17]. In the formalism of anchors and templates proposed in

[18], the SLIP model serves as a template for walking/running that can be anchored onto

robots with complex joints and many degrees of freedom. This has precisely been done

in [19, 20, 21, 22]. Owing to the simplicity of the model, it is suitable for analyzing the

periodic gaits and their regions of attraction and this is done in [23]. Transition between

different gaits for a SLIP model was achieved in [24]. Here the apex-to-apex Poincare map

was numerically calculated and a two step deadbeat touchdown angle control was used to

transition between different fixed points of the Poincare map. [25] switches between limit

cycles of a SLIP model through funnel based switching. The limit cycles were stabilized

by a discrete control lyapunov function.

2.5.2 ZMP based locomotion and related methods

Figure 2.3: Architecture of the ZMP Method.

Figure 2.3 shows the basic architecture of the ZMP method. Based on the environment

and other user defined parameters, one first has a footstep planner that generates the future

desired trajectories of the footsteps. Given the footstep trajectories, Linear Inverted Pen-

dulum (LIP) models are used to generate desired Center of Mass (COM) trajectories. With

the future COM positions and foot positions defined, inverse kinematics can be used to

find joint configurations q(t) that satisfy these requirements. A feedback controller is then
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used to track this reference q(t). This is the method followed in [26, 27]. More generally,

one can use centroidal linear and angular momentum dynamics along with footstep plans

or full kinematics to generate whole body plans q(t) as is done in [28, 29, 30]. In [28]

this involves solving a trajectory optimization but does not involve the full dynamics (Mass

Matrices, Coriolis etc) of the robot.

2.5.3 Full Body Dynamics Optimization

In these methods the full dynamics of the robot is used to formulate a trajectory optimiza-

tion to yield optimal feasible trajectories (q(t), q̇(t), u(t)) that satisfy all dynamics and

physical constraints and yield walking/running gaits. Feedback control is then used to track

these trajectories. This is the approach used in [31] wherein a full body dynamics optimiza-

tion is performed as a motion planner to generate references, ans subsequently LQR is used

around this trajectory to construct a value function. Finally, an online Quadratic Program

is formulated to descend this value function in presence of ground forcing constraints to

achieve trajectory tracking. Alternatively an optimal trajectory and a feedback stabilizing

controller can be achieved in one shot by solving a single trajectory optimization by the

Hybrid Zero Dynamics (HZD) Framework [32, 33, 34]. These methods as presented can

be easily extended to achieve transitions between different gaits by formulating suitable

full dynamics optimization problems.

Remark 2.5.1. The methods based on full dynamics optimization are slower but are appli-

cable (with suitable tracking controllers) to underactuated robots because the references

satisfy the dynamics. In contrast, motion planners based on ZMP and related methods

might not produce feasible joint references if the system is underactuated, although they

are faster.
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2.5.4 Funnel Based Approaches to Transitions

A popular approach to motion planning and transitioning uses the concept of funnels. For

a robot executing a maneuver with feedback control, there is an associated funnel or an

invariant set that the closed loop system is constrained to lie in. If the outlet of one funnel,

pours into the next one at the end, then one can switch between controllers to execute dif-

ferent maneuvers. This idea is first proposed in [35], but the funnels were obtained through

tedious experiments. More recently, [36] uses Sums of Squares (SOS) methods for comput-

ing funnels for fixed wing aircraft and used it for online obstacle avoidance. This has also

been done in the context of bipedal walkers for motion planning in [37]. Similarly [38]

generates a continuum of walking gaits based on forward velocity but switches between

them to achieve transitions.
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CHAPTER 3

KERNEL METHOD FOR LINEAR SYSTEMS

3.1 Introduction

In this chapter we apply the kernel method for linear systems. We seek to obtain graceful

transitions between periodic orbits. Thus the type (see § 2.2) that we focus on is the type of

periodic signals. A novel operator describing all periodic signals with fixed period is given.

The kernel method (see § 2.2) is applied with this operator to formulate the optimal control

problem. First order necessary conditions for optimality are derived. This is extended to

cover the case where we want to transit the input in a graceful manner in addition to the

state. To transit between periodic orbits of different periods a time warping function is

constructed [9], to reduce this to the equal period raccordation case. Finally, we discuss

how these methods can be extended to certain classes of nonlinear systems. Throughout

this chapter, we assume that the linear system is completely controllable to ensure that a

transition exists. Much of the work presented in this chapter is based on [3]. The main

novelty in this chapter is the consideration of a different operator describing the type of

periodic signals, namely the operator given by (Equation 3.2). In contrast, previous works

[3] considered the operator given in (Equation 3.3) to describe the type of periodic signals

of a given period.

3.1.1 System Model

In the sense of behavioral theory, we have the system Σ = (T,W,B), where T = R,

W = Rm+n, and the behavior B ⊂WT is given by

[DI− A , −B]

x
u

 = 0 (3.1)
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where x(t) ∈ Rn and u(t) ∈ Rm. We assume that V = L2
loc(R,R

k) in Definition 2.2.2.

Hence, V|I is a hilbert space for compact connected intervals I when endowed with the

inner product 〈f, g〉 =
∫
I f
>g dt.

3.2 Raccordation of Periodic Signals.

3.2.1 Case of equal periods

We consider the behavioral system representation of ẋ = Ax + Bu. Suppose we want to

connect two periodic signals x0(t) and x1(t) of a common frequency ω0 on the interval

[t0, t1]. It is clear that xi(t) where i = 0, 1 satisfy the equation

D
∞∏
k=1

(
(D2 + k2ω2

0)I
)
xi = 0 (3.2)

The authors in [3] considered the operator describing the type as

(I− ST)xi = 0 (3.3)

where ST is the shift operator. The main novelty in this chapter is to consider the operator

describing the type as given by (Equation 3.2) instead of (Equation 3.3). We assume that

the signals to be connected only have n harmonic components. We make this assumption

as it simplifies analysis and further the Fourier coefficients of xi(t) go to zero as n → ∞

by the Riemann-Lebesgue lemma [39]. We also assume that the signals have the same DC

Fourier component, that is the average value of both signals across one period is the same.

Hence the operator that defines the trait is Ôp(x, u) = (
∏n

k=1(D2 + k2ω2
0)I)x. Let us

define the differential operator

a(D) =
n∏
k=1

(D2 + k2ω2
0)I (3.4)
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That is, the type T in Definition 2.2.2 is given by

T =
{

(x, u)
∣∣∣a(D)x = 0

}

We emphasize that the xi(t) (i = 1, 2) are solutions of the dynamical system,

[
DI− A(t) B(t)

]xi(t)
ui(t)

 = 0

To find a raccordation, we are thus led by Definition 2.2.2 and (Equation 3.4) to the follow-

ing optimization problem:

min
w(t)

J(w) = min
w(t)

∫ t1

t0

(a(D)x)>(a(D)x)dt (3.5)

where w = [x>, u>]> and subject to the constraints

[DI− A(t),−B(t)]w = 0. (3.6)

and the boundary conditions

σt0(D
jx) = σt0(D

jx0). (3.7)

σt1(D
jx) = σt1(D

jx1). (3.8)

for j = 1, 2, · · · , 2n− 1.

The conditions (Equation 3.7) and (Equation 3.8) above are needed to ensure the required

smoothness of the raccordation. In the definition of the behavior given in the previous

section, we required our functions w(t) in the behavior to be C2n−2.

Proposition 3.2.1. Consider the optimal control problem given by equations (Equation 3.5)-

(Equation 3.8). The first order necessary conditions for optimality can be obtained by solv-
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ing the system of differential equations


(DI− A(t)) −B(t) 0

a(D)2 0 −(DI + A(t))>

0 0 −B(t)>



x

u

λ

 =


0

0

0

 (3.9)

Proof. We recall that 〈f, g〉 =
∫ t1
t0
f>gdt.We can rewrite the cost as

J(w) =
1

2
〈a(D)x, a(D)x〉+ 〈λ, (DI− A)x−Bu〉. (3.10)

Now we use standard methods of optimal control theory [40]. We denote the variation in u

by u+ εv + o(ε2) and the corresponding variation in x as x+ εη + o(ε2). We obtain,

J(u+ εv) =
1

2
〈a(D)x, a(D)x〉+ ε〈a(D)x, a(D)η〉

+ 〈λ, (DI− A)x−Bu〉+ ε〈λ, (DI− A)η −Bv〉

+ o(ε2).

= J(u) + ε(〈a(D)x, a(D)η〉)

+ ε(〈λ, (DI− A)η −Bv〉) + o(ε2).

We obtain

lim
ε→0

J(u+ εv)− J(u)

ε
= 〈a(D)x, a(D)η〉 (3.11)

+ 〈λ, (DI− A)η −Bv〉.

We also see from equations (Equation 3.7) and (Equation 3.8) that the variation η satisfies

σt0(D
jη) = 0. (3.12)

σt1(D
jη) = 0. (3.13)
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for j = 1, 2, · · · , 2n − 1. Equations (Equation 3.12) and (Equation 3.13) combined with

repeated integration by parts yields

δJ(v) = 〈a(−D)a(D)x− (DI + A>)λ, η〉 − 〈B>λ, v〉. (3.14)

The Euler-Lagrange equations and optimality conditions yield

a(−D)a(D)x− (DI + A>)λ = 0 (3.15)

−B>λ = 0 (3.16)

(Equation 3.15), (Equation 3.16) and (Equation 3.1) combined with the fact that a(D)∗ =

a(−D) = a(D) yield (Equation 3.9).

We are left with a system of higher order differential equations, which in principle can

be solved for instance by a generalization of the gaussian elimination.

3.2.2 Case of different periods

Suppose that the two periodic functions x0(t) and x1(t) to be connected are of different

frequencies ω0 and ω1 respectively. Let us define now,

a(D, ω(t)) =

(
n∏
k=1

(D2 + k2ω2(t))I

)
. (3.17)

We want the solution of the raccordation problem x(t) such that a(D, ω(t))x(t) is close to

zero, but we also want to ensure that ω(t) changes slowly. Since ω(t) is a function of time,

we have to augment the behavior by defining ŵ = [w>ω]>. The operator Op that defines

the trait is now given by

Op(ŵ) =

a(D, ω)x

Dω

 (3.18)
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where we recall also that w = [x>, u>]>. The trajectories to be connected in the extended

behavior are ŵ0(t) = [x>0 (t), ω0]> and ŵ1(t) = [x>1 (t), ω1]T where ω0 and ω1 are the

respective frequencies of x1 and x2. Looking back at Definition 2.2.2 of the raccordation

problem, we arrive at the following optimal control problem,

min
w,ω

J(w, ω) =
1

2
(〈a(D, ω)x, a(D, ω)x〉+ 〈Dω,Dω〉) (3.19)

subject to the constraints given in (Equation 3.1), (Equation 3.7) and (Equation 3.8) and the

additional constraints for ω given by

σt0(ω) = ω0. (3.20)

σt0(D
jω) = 0. (3.21)

and the boundary conditions,

σt1(ω) = ω1. (3.22)

σt1(D
jω) = 0. (3.23)

for j = 1, 2, · · · , 2n− 1. Proceeding as earlier, we introduce the augmented cost

Ĵ (ŵ) =
1

2
(〈a(D, ω)x, a(D, ω)x〉+ 〈Dω,Dω〉) (3.24)

+ 〈λ, (DI− A)x−Bu〉. (3.25)

Computing the Gateaux variation in the same way as detailed previously yields the follow-

ing necessary conditions which we state as a proposition :
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Proposition 3.2.2.


(DI− A(t)) −B(t) 0

a(D, ω)∗a(D, ω) 0 −(DI + A(t))>

0 0 −B(t)>



x

u

λ

 =


0

0

0

 (3.26)

where ω satisfies an ODE

D2ω = f(x,Dx, ...,D2n−1x, ω,Dω, ...,D2n−1ω) (3.27)

Once again a(D, ω)∗ is the adjoint operator given by

a(D, ω)∗ = (D2 + n2ω2(t))(D2 + (n− 1)2ω2(t))...(D2 + ω2(t)) (3.28)

Compare (Equation 3.26) with (Equation 3.9). Note that a(D, ω)∗ is not the same as

a(D, ω) as ω now is a function of time and the operators (D2 + m2ω2) and (D2 + n2ω2)

no longer commute. (Equation 3.26) and (Equation 3.27) coupled with the boundary condi-

tions given by equations (Equation 3.7) -(Equation 3.8) and (Equation 3.20)-(Equation 3.23)

correspond to the optimality conditions given by the first variation.

3.2.3 Raccordation of State and Input

So far, we only considered, a raccordation of the state and not the input. If the signals xi(t)

(i = 1, 2 ) to be connected are periodic then so are the associated inputs ui(t) ( i = 1, 2) if

the system is linear and time invariant. We once again make the assumption that all signals

have the same period. In this case, we define the operator that yields the trait as,

Ôp(w) =

a(D)x

c(D)u

 (3.29)
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where a(D) is as in (Equation 3.4) and c(D) divides a(D). We make this assumption

because x(t) is smoother that u(t). Denote the degree of the polynomial c(x) by m. The

raccordation problem in Definition 2.2.2 yield :

min
x,u

J(x, u) =
1

2
(〈a(D)x, a(D)x〉+ 〈c(D)u, c(D)u〉) (3.30)

subject to the constraints (Equation 3.1), (Equation 3.7) and (Equation 3.8) and the follow-

ing additional boundary constraints for u :

σt0(D
ju) = σt0(D

ju0). (3.31)

σt1(D
ju) = σt1(D

ju1). (3.32)

where j = 1, 2, · · · ,m. We state the necessary conditions for the optimal x(t) and u(t)

formally as follows:

Proposition 3.2.3. Consider the optimal control problem with cost (Equation 3.30) and

boundary conditions (Equation 3.31)-(Equation 3.32). The optimal solution (x(t), u(t))

satisfies the following differential equation


(DI− A) −B 0

a(D)2 0 (DI + A)>

0 c(D)2 −B>



x

u

λ

 =


0

0

0

 (3.33)

Proof. We introduce the augmented cost

Ĵ =
1

2

(
〈a(D)x, a(D)x〉+ 〈c(D)u, c(D)u〉

)
(3.34)

+ 〈λ, (DI− A)x−Bu〉. (3.35)
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Proceeding as earlier, we compute the variation

δJ = 〈a(−D)a(D)x− (DI + A>)λ, η〉+ 〈c(−D)c(D)−B>λ, v〉. (3.36)

By equating the coefficients of η and v to zero, we arrive at the equations described.

3.3 Multi step method to generate raccordation

Consider the case when the two periodic orbits x1(t) and x2(t) have different periods T0

and T1 respectively. Assume a raccordation is sought over [t0, t1] . Fix a common period

T > 0 and any two numbers a and b such that b > a. Consider the functions x̂1(z) =

x1(T0
T

(z − a) + t0) and x̂2(z) = x2(T1
T

(z − b) + t1). We can check that x̂1 and x̂2 have the

same period T . Hence we can construct a raccordation y(z) to connect x̂1 and x̂2 over the

interval [a, b] by solving the optimal control problem given by equations (Equation 3.5) -

(Equation 3.8) . We want to use this function y to construct a raccordation of the original

functions x1 and x2 (of different periods) over the interval [t0, t1]. To do this we need

to generate a “time warping function” τ(t). The function τ(t) must satisfy the following

properties :

1. τ(t) = T
T0

(t− t0) + a for t ≤ t0. This ensures that x̂1(τ(t)) = x1(t).

2. τ(t) = T
T1

(t− t1) + b for t ≥ t1. This ensures that x̂2(τ(t)) = x2(t).

3. τ needs to be a C∞ function on R and also be a bijection between [t0, t1] and [a, b].

4. τ̇(t0) = T
T0

and τ̇(t1) = T
T1

and τ̇ > 0.

We want τ to be C∞ because we do not want the smoothness properties of y(z) to be lost

under under the composition of y with τ(t). We explain property 4 as follows. Suppose we

have a smooth function y(z). As y(τ(t)) is a reparametrization of y(z), τ̇ represents the

speed at which we run along the graph of y. Hence, τ̇ can be thought of as the “instanta-

neous frequency”. Property 4 above simply requires that the “instantaneous frequency” of
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y(τ(t)) at t0 and t1 match up with the frequencies of x1(t) and x2(t) respectively. Since the

function y(τ(t)) would be a raccordation between the signals x1(t) and x2(t), we would

like the “instantaneous frequency” to change slowly from ω0 to ω1 as time goes from t0 to

t1. Hence, we are led to the following optimization problem :

min
τ

∫ t1

t0

τ̈ 2(t)dt. (3.37)

subject to the constraints

τ(t0) = a (3.38)

τ̇(t0) =
T

T0

(3.39)

τ̇(t1) =
T

T1

. (3.40)

τ̇(t) > 0. (3.41)

σt0(D
jτ) = 0 (3.42)

σt1(D
jτ) = 0 (3.43)

for all j ≥ 2. Unfortunately, the optimal control problem above does not have a C∞

solution τ(t). However, we can find smooth functions τ(t) that are arbitrarily close to the

minimum value as we now explain. We know from (Equation 3.39) and (Equation 3.40)

that
∫ t1
t0
τ̈(t)dt = T

(
1
T1
− 1

T0

)
. The Cauchy-Schwartz inequality applied to the functions

τ̈(t) and 1(t) implies
∫ t1
t0
τ̈ 2(t)dt ≥ c2

t1−t0 where c = T
(

1
T1
− 1

T0

)
. Furthermore, the bound

is actually attained for a (non C∞ ) function τ(t). Consider τ(t) = a +
∫ t
t0

T
T0

+ (s −

t0)
(
T
T1
− T

T0

)
ds for t lying between t0 and t1 . One can check by direct calculation that∫ t1

t0
τ̈ 2dt = c2

t1−t0 . It is also clear that τ is not smooth as τ̈ = T
(

1
T1
− 1

T0

)
in the interval

[t0, t1] but τ̈ = 0 outside this interval. Hence τ is a unique global optimum for the problem

given by (Equation 3.37) - (Equation 3.43) if we ignore the boundary constraints given by

(Equation 3.42) - (Equation 3.43).
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If we include the constraints (Equation 3.42) - (Equation 3.43) then there is no global

optimal solution. However, given any ε > 0 we can find aC∞ function τ(t) that satisfies the

boundary constraints (Equation 3.38)-(Equation 3.43) and also satisfies c2

t1−t0 ≤
∫ t1
t0
τ̈ 2dt <

c2

t1−t0 + ε. Let g(t) be a C∞ function such that

g(t) =


0 if t ≤ t0

T ( 1
T1
− 1

T0
) + γ if t0 + δ ≤ t ≤ t1 − δ

0 if t ≥ t1

(3.44)

To construct such a function first consider

f(t) =


exp

(
− 1
t2

)
if t ≥ 0

0 if t ≤ 0

It can be verified that f(t) is C∞.Then define

f̂(t) = f(t− t0)f(t0 + δ − t).

Define

h(t) =

∫ t
−∞ f̂(s)ds∫∞
−∞ f̂(s)ds

It can be verified that h(t) is C∞ that h(t) = 0 for t ≤ t0 and h(t) = 1 for t ≥ t0 + δ. Now

it can be verified that

g(t) =

(
T

(
1

T1

− 1

T2

)
+ γ

)
h(t)h(t1 + t0 − t).

satisfies all the properties listed and is C∞. We can choose the constant γ in (Equation 3.3)

to arrange that
∫ t1
t0
g(t) = T ( 1

T1
− 1

T0
). For instance, if we define q(δ) =

∫ t0+δ

t0
(T ( 1

T1
−

1
T0

) − g(t))dt +
∫ t1
t1−δ(T ( 1

T1
− 1

T0
) − g(t))dt then we can set γ =

T ( 1
T1
− 1

T0
)−q(δ)

1−2δ
. We then
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define

τ(t) = a+

∫ t

t0

(
T

T0

+

∫ y

t0

g(s)ds

)
dy (3.45)

One can also check that we can ensure
∫ t1
t0
τ̈ 2dt < c2

t1−t0 + ε by choosing δ sufficiently

small. We can also set a = 0 in (Equation 3.45) as we can find a raccordation y(z) between

[0, b− a] instead of [a, b].

To summarise, we have the following algorithm :

1. Given x0(t) and x1(t) with periods T0 and T1 select an arbitrary common period T

and a desired tolerance ε. Construct τ(t) with (Equation 3.45) to satisfy boundary

conditions and meet the optimality tolerance ε.

2. Construct the auxiliary signals x̂1(z) = x1(T0
T
z+ t0) and x̂2(z) = x2(T1

T
(z−τ(t1))+

t1) and the auxiliary system

ẏ(z) =
A

τ̇ (τ−1(z))
y(z) +Bu(z).

Solve the optimal control problem (Equation 3.5)-(Equation 3.8) to construct y(z)

on the interval [0, τ(t1)] for the auxiliary signals x̂1 and x̂2 with the auxiliary ẋ =

A
τ̇
x+Bu.

3. Construct the full raccordation y(τ(t)) for the original system. The input to the

original system is τ̇(t)u(τ(t)).

3.4 Results

3.4.1 Kernel Method for State Raccordation

Equal Periods

We consider a first order system ẋ = ax+ bu where a and b are not zero. The optimization

problem being considered here is given by (Equation 3.5)-(Equation 3.8). In this case,
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Figure 3.1: Raccordation between signals of equal period x1(t) and x2(t)

(Equation 3.9) reduces to :

bλ(t) = 0. (3.46)

a(D)2x(t) = (DI + A>)λ(t) (3.47)

This reduces to λ(t) = 0 and

(D2 + ω2
0)2(D2 + 4ω2

0)2....(D2 + n2ω2
0)2x(t) = 0. (3.48)

We can write the general solution

x(t) =
n∑
k=1

(ak + ckt) cos(kωt) + (bk + dkt) sin(kωt). (3.49)
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The 4n constants ak, bk,ck and dk can be determined from the 4n boundary conditions given

by equations (Equation 3.7) and (Equation 3.8). We show in Figure 3.1 the raccordation

between x1(t) = 10 cos(2πt) and x2(t) = 7 cos(2πt+ π
4
) + 2 cos(6πt+ π

4
) + cos(8πt+ π

4
).

Different Periods

Figure 3.2: Kernel Method for generating raccordation between x1(t) and x2(t) of different
periods

With the same system ẋ = ax + bu we now try to connect signals of different peri-

ods using the cost (Equation 3.19). In this case, the system of equations (Equation 3.26)
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reduces to:

bλ(t) = 0. (3.50)

(D2 + ω2(t))(D2 + ω2(t))x(t) = 0 (3.51)

and (Equation 3.27) becomes

D2ω = 2ω(t)x(t)
(
(D2 + ω2(t))x(t)

)
(3.52)

It can be verified that this is equivalent to the following sixth order system:



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



x2

−x1x
2
3 − x5

−x6

x5x
2
3

−x4

2x3x5x1


(3.53)

There are boundary conditions given by (Equation 3.7)-(Equation 3.8) and (Equation 3.20)-

(Equation 3.23). These translate to initial conditions on x1(t0), x2(t0) and x3(t0) and final

conditions on x1(t1), x2(t1) and x3(t1). We have shown here the raccordation between

x1(t) = A1 cos(2πt
7

) and x2(t) = A2 cos(2πt
3

+ π
4
) in Figure 3.2. The raccordation interval

is [30, 75]. The boundary value problem was solved numerically with MATLABs bvp4c

package. A sinusoidal profile for x(t) and a linear profile for ω(t) was given for the initial

guess.

3.4.2 Multi Step Method

We also show in Figure 3.3, a raccordation between periodic signals of different periods us-

ing the multi step method. The raccordation interval is [30, 75]. The time warping function

29



τ(t) was generated by numerical integration of the C∞ function g(t).

Figure 3.3: Multi Step Method for generating raccordation between x1(t) and x2(t) of
different periods

3.4.3 Input and State Raccordation

We consider a scalar system ẋ = ax + bu. We solved the optimal control problem (30)

by setting ω = 1, a(D) = (D2 + 1)(D2 + 4) and c(D) = (D2 + 1). This was solved

numerically by converting the optimal control problem to a nonlinear programming prob-

lem by parameterising x(t) and u(t) as splines. The differential equation was imposed as

constraints on a set of collocation points in the desired interval [t0, t1]. The integral cost

is approximated as a sum in terms of the spline coefficients. This process can be found

in [41]. The software used to achieve this transcription was OPTRAGEN. The resulting

nonlinear optimisation problem was solved by SNOPT, a nonlinear programming solver.
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We show the results in Figure 3.4. We remark that this result was obtained by discretization

and not by solving (Equation 3.26). Hence, we cannot guarantee that the result is globally

optimal. However we clearly see the pinching effect in the amplitude during the transition.

This phenomenon was explained earlier from a differential geometric viewpoint in [5].

(a) Raccordation of State Part (b) Raccordation of Input Part

Figure 3.4: Raccordation for both states and inputs.

3.4.4 Different Averages

We consider in the following two signals of different averages. We reduce it to a problem

of a raccordation of signals with the same average as follows. Let us assume that the

average of x1 is less than average of x2. If the signals to be connected are x1(t) and

x2(t) then we can assume that average of x1(t) is zero by subtracting the DC component

of x1 from both signals. Now subtract the DC component of x2 (which we denote by

F2), i.e ensure that x1(t) and x2(t) both have zero average. Now we solve the problem

(Equation 3.5)-(Equation 3.8) to get a transition x̂r(t) between the signals. Then define

xr(t) = F2

t1−t0 t+ x̂r(t). The result is illustrated in Figure 3.5.
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Figure 3.5: Raccordation of Signals with Different Average

3.5 Extensions to Nonlinear Systems

The method proposed above can be readily extended to feedback linearizable nonlinear

systems. Consider an affine system of the form

ẋ = f(x) + g(x)u. (3.54)

If the system is feedback linearizable, there exists an output y = h(x) and a feedback

controller [42]

u = unom(x) + v (3.55)
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that transforms the system into the form

dny

dtn
= v (3.56)

which is a completely controllable linear systems. The results of this chapter can be ap-

plied to this linear system to determine v. The full control could then be recovered from

(Equation 3.55). Examples of feedback linearizable system include fully actuated fixed

base robot manipulators [43]. Similar extensions hold for differentially flat systems (i.e.

dynamically feedback linearizable systems) such as quadrotors, wheeled mobile robots

[44, 43].
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CHAPTER 4

IMAGE METHOD FOR SMOOTH NONLINEAR SYSTEMS

4.1 Introduction

In this chapter we will focus on transitions between periodic orbits of smooth nonlinear

underactuated systems. Thus it may not be feasible to make transitions between arbitrary

regions in the state space. However, in the framework of the image method (see § 2.3)

applied to periodic orbits, we assume that our nonlinear systems have a parameterized fam-

ily of periodic orbits. Examples of this are certain mechanical systems such as a mass

spring damper system, an inverted spherical pendulum on a cart [45] and systems under-

going super critical hopf bifurcation [46]. It can also occur in controlled (possibly hybrid)

dynamical systems such as bipedal robots where there are a family of open loop or closed

loop control signals to generate a family of periodic gaits [32].

We first assume that we have a parameterized family of smooth autonomous system ẋ =

f(x, α) and each system has an exponentially stable periodic orbitO(α). We first establish

a stable raccordation theorem which states that a slow parameter variation keeps the state

close to this family of orbits. Stability of the final orbit then guarantees that the state

transits to the final orbit. We then move to the case where we have a control system ẋ =

f(x, u), which has a parameterized family of (not necessarily stable) periodic orbits O(α).

A parameterized family of controllers u(x, α) are derived based on existing methods in the

literature, to yield the parameterized autonomous system ẋ = f(x, u(x, α)). Application

of the stable raccordation theorem then allows us to achieve graceful transitions. Examples

are provided which illustrate the method.
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4.2 Raccordation for Stable Periodic Orbits

Consider a dynamical system of the form

ẋ = f(x, α) (4.1)

where x ∈ Rn and α ∈ A ⊂ Rk. HereA is a compact subset of Rk. In this section, we think

of A both as a parameter and an input to the system. We assume that f is smooth and that

the partial Jacobians ∂f
∂x

and ∂f
∂α

are locally bounded, i.e. ∀(x, α) there exists a neighborhood

U of (x, α) with compact closure such that they are bounded on Ū . We assume that for each

fixed α ∈ Rk the dynamical system has an exponentially stable periodic orbit that varies

smoothly with α and with smoothly varying period T (α). We denote each orbit by O(α).

We denote by φ(t, x, α) the flow of the differential equation at time t with initial condition

x and parameter α.

We briefly indicate how this can occur. Suppose we have a nominal periodic orbit

φ(t, x0, α) and we choose a Poincare Section S (a hyperplane transversal to the periodic

orbit) and define the Poincare return map as Pr|S(x, α) = φ(Tim(x), x, α) where Tim is the

Time to Impact function, then Pr(x0, α) = x0 is a fixed point of the map. By the implicit

function theorem [47] we have that if

rank

(
dPr
dx0

∣∣∣∣
S
(x0, α)− In−1

)
= n− 1 (4.2)

then we have a family of initial conditions x0(α) on the hyperplane S such that Pr(x0(α), α) =

x0(α). Then x0(α) would be an initial condition for a periodic orbit of f(x, α) andψ(t, α) =

φ(t, x0(α), α) where 0 ≤ t ≤ T (x0(α)) would be a parameterization for a two dimensional

surface of orbits over A. The matrix dPr

dx0
− I has full rank, for example, when the orbit is

locally exponentially stable (all the eigenvalues of dPr

dx0
lie in the interior of the unit ball).

It is clear that all such periodic orbits for nearby parameters α will also be exponentially
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stable because the eigenvalues of the Poincare map are continuous functions of α.

We introduce the notation ‖x‖O(α) = infy∈O(α) ‖x− y‖. We will need the following

Lemma from [48].

Lemma 4.2.1. There exists a smooth (converse) lyapunov function V (x, α) and positive

constants c1,c2,c3 and c4 (independent of α) such that

c1 ‖x‖2
O(α) ≤ V (x, α) ≤ c2 ‖x‖2

O(α) (4.3)

∂V

∂x
f(x, α) ≤ −c3 ‖x‖2

O(α) (4.4)

∥∥∥∥∂V∂x (x, α)

∥∥∥∥ ≤ c4 ‖x‖O(α) (4.5)

Proof. In [48], where the lemma is proved for a single exponentially stable periodic orbit.

Here we have a family of exponentially stable periodic orbits parametrized by α. Hence we

need to show that all inequalities hold independent of α. From [48] we have a collection of

converse lyapunov functions (for each parameter α)

V (x, α) = ρ>P (θ, α)ρ (4.6)

where ρ is a set of transverse coordinates along the orbit and θ ∈ S1 is a variable that

describes the phase of the orbit. P (θ, α) is a positive definite matrix for all θ and α.

We know that the maximum and minimum values c2 = maxθ,α λmax (P (θ, α)) and c1 =

minθ,α λmin (P (θ, α)) exist because of compactness of S1 × A and continuity of λmax(.)

and λmin(.). With these definitions of c1 and c2, (Equation 4.3) holds. Similarly because

the induced norm ‖.‖ of a matrix is continuous we have that (Equation 4.5) holds. Finally

we have,
dV

dx
f = −ρ>Q(θ)ρ+O(‖x‖3

O , z) ≤
−ρ>Q(θ)ρ

2
(4.7)
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in a small neighborhood surrounding each periodic orbit. Defining c3 = maxθ λmax

(
−Q(θ)

2

)
establishes (Equation 4.4).

Fix a α0 ∈ A. We are interested in obtaining an upper bound for ‖x(t)‖O(α0) whenever

we have ẋ = f(x, α(t)) where |α(t) − α0| < b. We also want this upper bound to be

independent of α0.

Consider the system

ẋ = f(x, α(t)) (4.8)

where |α(t)− α0| < b. This can be viewed as a perturbation of the system

ẋ = f(x, α0) + g(t, x) (4.9)

where

g(t, x) = f(x, α(t))− f(x, α0) (4.10)

Let us for clarity also denote the Lyapunov function V (x, α0) for the nominal system

f(x, α0) by Vα0(x). We calculate the derivative of Vα0(x) along trajectories of the sys-

tem (Equation 4.9).

V̇α0(x) =
∂Vα0

∂x
(f(x, α0) + g(t, x)) . (4.11)

Note that by the mean value theorem

g(t, x) =
∂f

∂α
(x, ζ)(α(t)− α0) (4.12)

for some ζ(t) in the line segment joining α(t) and α0. We can assume that Jacobians

are bounded on a fixed compact set K containing the surface of all periodic orbits. Now

(Equation 4.12) yields

|g(t, x)| ≤ L1b (4.13)
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while (Equation 4.11) yields

V̇α0(x) ≤ −c3 ‖x‖2
O(α0) + c4 ‖x‖O(α0) L1b

= −(0.5)c3 ‖x‖2
O(α0) − (0.5)c3 ‖x‖2

O(α0) + c4 ‖x‖O(α0) L1b

≤ −(0.5)c3 ‖x‖2
O(α0)

≤ −(0.5)
c3

c2

Vα0(x) (4.14)

whenever

‖x‖O(α0) ≥
2c4L1b

c3

(4.15)

Now using (Equation 4.14) we see using the comparison theorem for ODEs that

Vα0(x(t)) ≤ Vα0(x(t0)) exp

(
−(0.5)

c3

c2

(t− t0)

)
(4.16)

whenever (Equation 4.15) holds. On the set

‖x‖O(α0) =
2c4L1b

c3

(4.17)

we see that V̇α0(x) < 0. Hence the set defined by

‖x‖O(α0) ≤
2c4L1b

c3

(4.18)

is forward invariant. Combining all these facts, we finally upperbound ‖x(t)‖O(α0) by

max
{2c4L1b

c3

,

√
c2

c1

‖x(t0)‖O(α0) exp

(
− c3

4c2

(t− t0)

)}
(4.19)

Theorem 4.2.1. Consider the dynamical system (Equation 4.1) and assume that it has a

surface of smoothly varying (with respect to α) periodic orbitsO(α) with smoothly varying

periods T (α). Let a parameter interval [αi, αf ] and a tolerance ε > 0 be given. Then there
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exists a δ > 0 such that for all monotonic functions αg : [0, R]→ [αi, αf ] with |α̇g(t)| < δ

we have that the solution ẋg(t) = f(xg, αg) satisfies ‖xg(t)‖O(αg(t)) < ε.

Proof. First let us choose a smooth initial condition function x0(α) ∈ O(α). For each

α0 ∈ [αi, αf ] there exists an interval Iα centered at α0 such that for all α1 ∈ Iα and α2 ∈ Iα,

we have |φ(t, x0(α1), α1) − φ(t, x0(α2), α2)| < ε̄
2

and for all 0 ≤ t ≤ supα∈[αi,αf ] T (α).

Here ε̄ is given by √
c2

c1

ε̄ =
ε

2
(4.20)

Note that ε̄ < ε
2

as c2 > c1 by (Equation 4.3). The collection of all Iα covers [αi, αf ] and by

compactness we can select a finite subcover. Let us denote by δα be the minimum length

of all the intervals in this subcover. Let us then choose b =
αf−αi

N
for some (large enough)

integer N such that b < δα and
2c4L1b

c3

<
ε̄

2
(4.21)

We now define αk = αi + kb where 1 ≤ k ≤ N . By our choice of δα we have for all α1

and α2 in [αj, αj+1],

|φ(t, x0(α1), α1)− φ(t, x0(α2), α2)| < ε̄

2
(4.22)

Given any monotonic function w, the times tk (which depend on w) are defined so that

w(tk) = αk. We now are going to find the required δ inductively. We now prove the

following : suppose there exists a δk > 0 such that for all monotonic functions wk with

wk([0, tk]) = [αi, αk] and |ẇk| < δk we have that the solution xk(t) satisfies

• ‖xk(t)‖O(wk(t)) < ε.

• ‖xk(tk)‖O(αk) < ε̄.

Then there exists a δk+1 > 0 such that for all monotonic functionswk+1 withwk+1([0, tk+1]) =

[αi, αk+1] we have that the solution xk+1(t) satisfies 1) ‖xk+1(t)‖O(wk+1(t)) < ε and 2)

‖xk+1(tk+1)‖O(αk+1) < ε̄.
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To do this let us choose T such that

ε

2
exp

(
− c3

4c2

T

)
<
ε̄

2
(4.23)

and set δk+1 as

δk+1 = min
{ b
T
, δk

}
(4.24)

We claim that δk+1 is the required one. To see this, let wk+1 : [0, tk+1] → [αi, αk+1]

be any monotonic function with ẇk+1 < δk+1. We note that in the interval [0, tk] where

wk+1([0, tk]) = [αi, αk] the induction hypothesis is satisfied i.e ‖xk+1‖O(wk+1)(t) ≤ ε for

0 ≤ t ≤ tk and ‖xk+1(tk)‖O(αk) < ε̄.

By our choice of δk+1 it follows that tk+1 − tk ≥ T . In the interval [tk, tk+1] we have

‖xk+1(t)‖O(αk) <
ε
2

from the inductive hypothesis ‖xk+1(tk)‖O(αk) < ε̄ and (Equation 4.19).

Combining this with (Equation 4.22) we get ‖xk+1(t)‖O(wk+1(t)) < ε.

From (Equation 4.23) and (Equation 4.19) we also get ‖xk+1(tk+1)‖O(αk) <
ε̄
2
. Com-

bining this with (Equation 4.22)) we get ‖xk+1(tk+1)‖O(αk+1) < ε̄. This completes the

induction hypothesis. Finally we see the required δ = mink δk which is positive since the

minimum is over a finite set.

Remark 4.2.1. For a general parameter space A one can choose a smooth path γ :

[pi, pf ] → A such that γ(pi) = αi and γ(pf ) = αf . Then apply the Theorem 4.2.1 to

f(x, γ(p)) which depends smoothly on x and p.

Example : We consider the simplified Selkov Model for glycolysis [49] :

ẋ1 = −x1 + ax2 + x2
1x2 (4.25)

ẋ2 = b− ax2 − x2
1x2 (4.26)

This has a stable limit cycle for a = 0.1 and 0.4 ≤ b ≤ 0.9. We show the raccordation

from b = 0.43 to b = 0.85 and a fixed to 0.1. The function b was a ramp from 0.43 to 0.85.
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Figure 4.1: Plot of Raccordation for Selkov System

4.3 Raccordation for Unstable Periodic Orbits

Consider the nonlinear system

ẋ = f(x, u) (4.27)

and suppose it has an unstable periodic orbitO(α) generated by a nominal controller unα(t)

for each parameter α. We also denote the resulting nominal periodic solution generated by

the nominal controller unα(t) as xnα(t). If for each α we can find a stabilizing state feedback

controller u(x, α) such that the autonomous system

ẋ = f(x, u(x, α)) (4.28)
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has O(α) as a locally exponentially stable periodic orbit for each fixed α, then we can use

Theorem 4.2.1 to move from the initial orbit αi to the final orbit αf in a graceful manner.

Note that such a stabilizing state feedback controller must of necessity satisfy

f(xnα(t), u(xnα(t), α)) = f(xnα(t), unα(t)) (4.29)

i.e. the vector fields obtained by substituting u(x, α) and unα(t) in f(· , ·) must coincide on

the orbit O(α) but can differ away from the orbit.

Remark 4.3.1. A special case where we have a family of parameterized (unstable) periodic

orbits O(α) generated by nominal controllers unα(t) is for the parameterized system ẋ =

f(x, α). This can be viewed as a system ẋ = f(x, u) where the nominal controller unα(t) =

α generates the (unstable) periodic orbit O(α).

There are several methods to stabilize an unstable periodic orbit, two of which we

explain in this chapter. One is Transverse Feedback Linearization [50] and the other is

Transverse Linearization [51].

4.3.1 Transverse Feedback Linearization

We reproduce the definition from [50].

Definition 4.3.1. Consider the nonlinear affine system

ẋ = f(x) + g(x)u (4.30)

The system is said to be Transverse Feedback Linearizable (TFL) at the Orbit O if there

exists a (local) coordinate transformation in a neighborhood of O given by T (x) = [θ, ρ]>

where θ ∈ R and ρ = [ρ1, ρ2, ...., ρn−1] ∈ Rn−1 such that

θ̇ = 1 + f1(θ, ρ) + g0(θ, ρ)v (4.31)
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where f1(θ, 0) = 0 and for j = 1, 2, · · · , n− 2 we have

ρ̇j = ρj+1 (4.32)

ρ̇n−1 = v (4.33)

The orbit O in the transformed coordinates is [θ, 0n−1]. The orbit O for a Transverse

Feedback Linearizable system can be easily stabilized. Indeed choose a gain vector Kg

so that v = −Kgρ yields an exponentially stable closed loop system for the transverse

dynamics ρ̇ = Aclρ. It is clear that this stabilizes the whole system because f1(θ, 0) = 0 and

v = −Kgρ = 0 when ρ = 0. Necessary and Sufficient Conditions for Transverse Feedback

Linearization can be found in [50]. In our application, we assume that (Equation 4.30) has

a family of periodic orbits O(α) generated by nominal controllers uα(t). For each α and

each orbit O(α) we find a coordinate transformation Tα(x) = [θα, ρα] where θα ∈ R and

ρα ∈ Rn−1 such that θα and ρα satisfy (Equation 4.31) - (Equation 4.33)). Then v = −kρα

stabilizes each orbit O(α) for the system (Equation 4.30). We see that such a stabilizing

controller depends on ρα and hence depends on both x and α.

Example : Consider the nonlinear affine system in R2 given by

ẋ1 = −ux2 +

(
1

x2
1 + x2

2

− u
)
x1 (4.34)

ẋ2 = ux1 +

(
1

x2
1 + x2

2

− u
)
x2 (4.35)

This system has an unstable periodic orbit at ‖x‖2 = 1
α

generated by a (constant) nominal

controller unα(t) = α. This system is transverse feedback linearizable with coordinate

transformation

Tα(x) =

 1
α

tan−1
(
x2
x1

)
1
2
(x2

1 + x2
2 − 1

α
)

 (4.36)

43



In the new coordinates the equations are

θ̇α =
u

α
(4.37)

ρ̇α = 1− ‖x‖2 u (4.38)

This is not quite in the form (Equation 4.31) - (Equation 4.33), however the feedback

u(x, α) =
1

‖x‖2 (1− v) (4.39)

puts it in the required form. Then choosing v = −kρα for any k > 0 exponentially

stabilizes the orbit. Note that each of the controllers u(x, α) in (Equation 4.39) are dif-

ferent since v = −kρα and ρα clearly depends on α. Thus, we have the parameterized

autonomous system ẋ = f(x, u(x, α)) that has an exponentially stable periodic orbit O(α)

given by ‖x‖2 = 1
α

for each α. We then use Theorem 4.2.1 to obtain the raccordation

from αi to αf . Note also here that the necessary condition (Equation 4.29) is satisfied i.e

u(x, α) = α = unα(t) on the set ‖x‖2 = 1
α

.

We show in Figure 4.2 the raccordation from αi = 1 to αf = 0.2. The raccordation

interval is R = 100. The initial orbit is shown in red. The final orbit is shown in black. The

raccordation is shown in blue.

4.3.2 Transverse Linearization

Transverse Linearization is a general method to stabilize unstable periodic orbits for un-

deractuated mechanical systems [51],[52]. Roughly speaking, Tranverse Feedback Lin-

earzation can be compared to Feedback Linearization while Transverse Linearization can

be compared to the Jacobian Linearization (discarding the phase). The key part is identi-

fying a set of transverse coordinates to the periodic orbit where analytical computation of

the linearization is feasible. Our main reference was [51]. We summarize the method as

follows. We recall that any underactuated mechanical system has the following equations
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Figure 4.2: Plot of Raccordation Using TFL

of motion :

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu (4.40)

We recall that this is a system of dimension 2n since that states are the generalized co-

ordinates q and their derivatives q̇. We assume here that (Equation 4.40) has a family of

periodic orbits denoted by O(α) and generated by uα(t).

Step 1 For each fixed α we compute the Transverse Linearization of (Equation 4.40)

about the orbit O(α) which is a Linear Time Varying System (LTV) of dimension 2n− 1

ẋlin = A(t, α)xlin +B(t, α)vlin (4.41)
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The matrices A(.) and B(.) can be explicitly computed. The A(.) and B(.) are smooth with

respect to α because the orbits O(α) smoothly vary with respect to α.

Step 2: Construct a stabilizing state feedback controller for the LTV system above

(Equation 4.41)

vlin(x, α) = H(t, α)x (4.42)

For example, H(t, α) can be obtained by solving the Periodic Riccati Differential Equation

(PRDE) for each orbit O(α). We solved it by the method outlined in [53]. This method

involves solving a Semidefinite Program (SDP). We used the MATLAB software CVX to

solve the SDP [54]. The number of Fourier Coefficients we use is 20.

Step 3: Use theH(t, α) obtained in Step 2 to construct a stabilizing nonlinear controller

by parameterizing time in terms of state i.e.

v = H(τ(q, q̇), α)x⊥ (4.43)

Here τ(q, q̇) can be found by solving the equation (for τ )

[q − q∗(τ), q̇ − q̇∗(τ)]

q̇∗(τ)

q̈∗(τ)

 = 0 (4.44)

τ(q, q̇) always exists locally. It is clear that the v in Step 3 is a state feedback controller that

depends on α because for each α we want to stabilize the particular orbit O(α). In other

words v = v(q, q̇, α).

The steps detailed above yield an autonomous parameterized system

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bv(q, q̇, α) (4.45)

with stable family of periodic orbits O(α) for each α. We can then use Theorem 4.2.1 to

move across the orbits.
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Figure 4.3: Schematic for Spherical Pendulum

(a) q(t) (b) q̇(t)

Figure 4.4: Plot of raccordations for the inverted pendulum
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Spherical Pendulum on a Cart

Here, we use the method of Transverse Linearization to obtain graceful transitions between

distinct (unstable) periodic orbits of the Pendulum on the Cart studied in [51]. The gener-

alized coordinates are

q =



x1

x2

e1

e2


(4.46)

where x1 and x2 denote the positions and e1 and e2 denotes the angles (see Figure 4.3). The

cart has two thrusters u1 and u2 to control the x1 and x2 positions of the cart respectively.

The Lagrangian of the system is

L(.) = Kpuck(.) +Kpend − Potpend(.) (4.47)

where Potpend = mgL cos e2 and

Kpuck =
1

2
M

[(
dx1

dt

)2

+

(
dx2

dt

)2
]

(4.48)

Kpend =
1

2
m

[
d

dt
{x1 + L cos(e1) sin(e2)}

]2

+
1

2
m

[
d

dt
{x2 + L sin(e1) sin(e2)}

]2

+
1

2
m

[
d

dt
{L cos(e2)}

]2

From [51] we know that this system has a family of Periodic Orbits (parameterized by

R and ce given by

x1 = R cos(e1(t)), x2 = R sin(e2(t)) (4.49)
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where

e1 =

√
g sin(−e2)

(R + L sin(e2)) cos(e2)
t (4.50)

e2(t) = ce (4.51)

In this example the parameter spaceA is two dimensional i.eA = {R, ce|R, ce > 0}. Note

here that the nominal controller un(t, R, ce) that generates the periodic orbit O(R, ce) is

not constant. It can be explicitly computed to be a sinusoidal function of time. For each R

and ce we construct a stabilizing controller u(q, q̇, R, ce) so that the resulting autonomous

system (Equation 4.40) has an exponentially stable orbitO(R, ce) given by (Equation 4.49)

- (Equation 4.50) using Transverse Linearization. We then apply Theorem 4.2.1 to the

autonomous system to get our required transition. We show below in Figure 4.4a and

Figure 4.4b a transition from R = 4.5 and ce = −0.08 radians to R = 11.5 and ce = −0.38

radians. The initial orbit is shown in red. The final orbit is shown in black. The raccordation

is shown in blue.
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CHAPTER 5

KERNEL METHOD FOR SIMPLE HYBRID SYSTEMS

5.1 Introduction

The previous chapters focused on smooth linear and nonlinear systems respectively. In this

chapter, we will take the first steps to synthesize graceful transitions to some simple low

order hybrid systems.

The first system we consider in this chapter is a simple one dimensional system on

spring like terrain (see Figure 5.1). The motivation for considering this system is to un-

derstand the most critical aspects of dynamics and locomotion on deformable terrain. We

strip away any longitudinal motion and consider only vertical motion. We first characterize

the periodic orbits of this system by giving necessary and sufficient conditions for period-

icity. We then illustrate different types of periodic orbits along with their timing diagrams.

Finally an optimization problem is posed based on the kernel method, that synthesizes a

graceful transition between the different periodic orbits of the system.

The second system we consider is a rimless wheel with impulsive inputs (see Fig-

ure 5.10). This system exhibits periodic orbits with only a ground phase where one spoke

is in contact with the ground, and periodic orbits that contain both a ground phase and a

flight phase where all spokes are above the ground. The motivation for considering this

system is to better understand how to transit between different types of gaits for legged

robots, such as walking gaits to running gaits, or trotting gaits to bounding gaits in the case

of quadrupeds. For example, in the case of transitions from walking to running, there is

an appearance of a flight phase for the running gait, which is not present in a walking gait.

In this chapter, we first describe completely the system model of this rimless wheel which

locomotes on hard, flat ground. An impulsive input is described to inject the requisite en-
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ergy into the system that is lost in impacts. An algorithm for generating different periodic

orbits is given based on the choice of angular velocity. Finally, an algorithm is presented

which transits the system between different periodic orbits of the system. In this chapter

and the subsequent one, we assume complete knowledge of the terrain forces. In presence

of unknown (or partly unmodeled) terrain forces learning based approaches for estimating

substrate forces exist [55, 56].

5.2 System Model for Simple Vertical Hopper

(a)

Impulse (p)

(x,v)

Just After Collision

Impulse (p) Chosen such that net 
change in Energy = 0 for Periodicity.

Height = 0

(b)

Figure 5.1: Vertical Jumper on Spring Like Terrain.

Our model is a controlled extension of an autonomous system analyzed in [57]. It

was shown that the autonomous model has a discrete set of initial conditions for which

the energy in the system is conserved, thus exhibiting periodic behavior. These energy

states are akin to Bohr’s quantum model of the atom, and defines quantum-like behavior

in this macroscopic system. The focus here is to consider transitions between such energy

states, and more generally, any induced periodic behavior. In Figure 5.1a, the yellow mass

represents the jumper, while the blue mass and the spring represent the trampoline. The

mass of the platform is M , while the mass of the jumper is m. The spring constant is

denoted by kg. Two distinct modes (ground phase and ballistic phase) exist if the system

51



has sufficient energy, as shown below.

5.2.1 Ground Phase

In this mode, the jumper remains on the platform, and the two masses coalesce into a single

mass. The dynamics is obtained from Newton’s laws.

(M +m)ẍ = −kgx− (M +m)g (5.1)

x represents the position of the combined mass. The normal force is N = m(ẍ + g) =

− kgm

M+m
x. The masses remain together as long as N ≥ 0, i.e., x ≤ 0. Thus transition to the

ballistic flight phase occurs if x ≥ 0 and ẋ > 0.

5.2.2 Flight Phase

In this mode, the two masses separate, and the yellow mass in Figure 5.1 is in flight. We

denote by xp the position of the trampoline (blue mass) and by xj the position of the jumper

(yellow mass). The equations of motion are given by Newton’s laws

Mẍp = −kgxp −Mg , mẍj = −mg (5.2)

Transition to the ground phase occurs whenever, xp = xj and ẋj − ẋp ≤ 0. The combined

post-impact velocity of the jumper-trampoline is obtained from the law of conservation of

momentum, and is given by

v =
Mẋp +mẋj
M +m

. (5.3)

5.2.3 Control Input

The control input is an impulsive kick that can be applied by the jumper at any point of

time in the ground phase. The strength of the impulse is denoted by p (see Figure 5.1).

Once the impulsive kick is applied, the transition from ground phase to flight phase occurs,
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where xj = xp = x and the corresponding velocities are given as

m(vj − v) = p , M(vp − v) = −p (5.4)

where v is the velocity of the combined jumper-trampoline just before application of the

impulse, and vj and vp are the velocities of the jumper and trampoline respectively post

application of the impulse.

5.3 Obtaining Periodic Orbits

In this section, we set up the conditions for the periodicity of the behavior of the alternating

two-mode system from energetic considerations.

5.3.1 Conditions for Periodicity

Change in Energy due to Application of Impulse

We denote by (x, v) the combined position and velocity of the jumper-trampoline just be-

fore the application of the impulse (see Figure 5.1b). The change in energy is given by

∆Eg→f = ∆ Kinetic Energy

=
1

2
M
(
v − p

M

)2

+
1

2
m
(
v +

p

m

)2

− 1

2
(M +m)v2 (5.5)

On simplifying, this is

∆Eg→f (p) =

(
p2

2

)
M +m

Mm
(5.6)
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Change in Energy due to impact of jumper and trampoline

If we denote by v the combined velocity of the jumper-trampoline post-impact, and denote

the velocity of the jumper and trampoline pre-impact by vj and vp, then the change in

energy is given by,

∆Ef→g =
1

2
(M +m)v2 − 1

2
Mv2

p −
1

2
mv2

j (5.7)

which, since v is given by (Equation 5.3) allows us to express

∆Ef→g(vp, vj) = −1

2

Mm

M +m
(vp − vj)2 (5.8)

Necessary and Sufficient Condition for periodicity are given in the proposition below.

Proposition 5.3.1. A necessary and sufficient condition for the periodic behavior of the

jumper system in Figure 5.1 is that

∆Enet = ∆Eg→f + ∆Ef→g = 0 (5.9)

Proof. Necessity follows from the fact that energy injected into the system due to the im-

pulse is exactly lost during impact to maintain periodicity. This condition is also seen to

be sufficient. Applying an impulse p to make ∆Enet = 0 during a jump (say at position

x), the ground phase energy of the jumper-trampoline does not change. Thus, when the

jumper-trampoline reaches position x, the velocity remains unchanged and the application

of p reproduces the same trajectories in the flight phase for the jumper and the trampoline

respectively.
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5.3.2 Numerical Computation of a Periodic Orbit

We fix the ground phase energy Eg of the periodic orbit we wish to find. Note that this is

given by

Eg =
1

2
(M +m)v2 + (M +m)gx+

1

2
kx2. (5.10)

We also fix the position x (in the ground phase) at which the impulse is applied. Note

that given x and Eg, v ≥ 0 can be solved from (Equation 5.10). The net change in energy

∆Enet(p) can be expressed as a function of impulse strength p as follows. The solutions of

the jumper and trampoline in flight phase are given by:

xj(t) = x+ (v +
p

m
)t− 1

2
gt2 (5.11)

xp(t) = A sin(ωt+ φ)− Mg

g

(5.12)

A =

√(
x+

Mg

kg

)2

+

(
Mv − p
Mω

)2

(5.13)

φ = tan−1

(
x+ Mg

kg
Mv−p
Mω

)
(5.14)

ω =

√
kg
M

(5.15)

Here xj(t) and xp(t) are the positions of the jumper and the trampoline respectively. The

coefficients A , φ and ω represent the amplitude, phase shift and frequency and can be

obtained from the system parameters and appropriate boundary conditions. Let Tp > 0 be

the smallest time such that xj(Tp) = xp(Tp) (i.e. Tp is the duration of the flight phase).

Here, xj(t) and xp(t) are given by (Equation 5.11)-(Equation 5.12). Then

∆Enet(p) = ∆Eg→f (p) + ∆Ef→g(ẋp(Tp), ẋj(Tp)), (5.16)

with ∆Eg→f (·) and ∆Ef→g(·, ·) respectively from (Equation 5.6) and (Equation 5.8).
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Thus, by Proposition Equation 5.9, we need to find p > 0 such that ∆Enet(p) = 0. This

can be done numerically by a nonlinear root finding method such as fsolve in MATLAB.

Remark 5.3.1. There are multiple values of p satisfying (Equation 5.9) for a fixed x (posi-

tion where the impulse is applied) and ground phase energy Eg. This gives rise to different

types of periodic orbits, differing in the duration of the ballistic phase. This will be dis-

cussed in more detail below.

5.3.3 Timing Diagram

Suppose the ground phase energy Eg is fixed, but the position x ≤ 0 at which the impulse

p is applied is varied. As Eg is fixed, we can obtain the pre-impulse velocity v(x) ≥ 0 from

(Equation 5.10). Then, for each x there is a p(x) that satisfies ∆Enet(p) = 0, ensuring pe-

riodicity. Shown in Figure 5.2 is a plot of the impulse p(x) (obtained from (Equation 5.9))

versus the departure position x for a fixed ground phase energy Eg. These plots are called

timing diagrams since they details what the impulse p(x) must be to generate a periodic

orbit for a given departure position. The relevance for the name “timing diagram” stems

from the fact the position x of a periodic motion of a mass-spring system can be related to

the time along the orbit. The different curves in Figure 5.2 represent timing diagrams of

p versus x for different ground phase energies. In Figure 5.3 different periodic orbits are

plotted along the timing diagram for a fixed ground phase energy of Eg = −300J.

5.3.4 Periodic Orbit Types

In Remark 5.3.1 it was mentioned that there could be multiple solutions of p satisfying

(Equation 5.9), for fixed Eg and x. This gives rise to different types of orbits which we now

define.

Definition 5.3.1. Let Tn be the period of oscillation of the trampoline. A periodic motion

of the hybrid system of type κ is such that the duration of the flight phase Tf satisfies

κTn ≤ Tf ≤ (κ+ 1)Tn where κ ∈ N ∪ {0}.
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(a) Timing Diagram for different Eg (b) Timing Diagram for different types

Figure 5.2: Plot of Timing Diagrams.

(a) (b)

(c) (d)

Figure 5.3: Plot of trajectories of the jumper and trampoline for orbits along the Timing
Diagram for Eg = −300J. Throughout this chapter the blue and red curves represent
the flight phase trajectory of the jumper and trampoline respectively. The black curve
represents the ground phase trajectory of the combined jumper-trampoline mass.
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(a) Type 0 (b) Type 1

(c) Type 2 (d) Type 3

Figure 5.4: Plot of Orbits of different types for fixed Eg = −300J.

Referring to Figure 5.4 we see that we have periodic orbits of types zero, one, two and

three respectively. All of these orbits have the same ground phase energy of Eg = −300J .

These were obtained from numerical solutions of (Equation 5.9), for the same x which is

the position of the impulse application. The smallest p gives rise to type zero, the next

larger solution to type one, etc.

Timing Diagrams

We can construct timing diagrams corresponding to orbits of higher types. The timing

diagrams in Figure 5.2a were for orbits of type zero. In Figure 5.2b, we show timing

diagrams for orbits of type zero, one, and two all for a fixed ground phase energy of Eg =

−300J.
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(a) Eg = −300J (b) Eg = −100J

Figure 5.5: Raccordation with timing diagram.

5.4 Graceful Transitions

In this section, we synthesize graceful transitions between periodic orbits. First, the timing

diagram will be used to obtain transitions between orbits lying on the same timing dia-

gram. Subsequently, an optimization problem is proposed the solution of which will yield

a graceful transition between periodic orbits of different types and energy.

5.4.1 Raccordation based on Timing Diagram

We denote by O(xinit) and O(xfinal) two different periodic orbits on a timing diagram with

timing xinit and xfinal respectively. Suppose a raccordation is required in N hops. We

choose successive departure points xj given by

xj = xinit +
j

N + 1
(xfinal − xinit)

where j is an integer satisfying 1 ≤ j ≤ N . Then, at the jth hop the impulse p(xj) at

position xj is applied whenever the departure velocity is positive. This will yield a feasible

transition by virtue of the timing diagram. Because of the continuity of the timing diagram,

the transition will be also graceful for N sufficiently large.
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(a) Raccordations (b) Energy

(c) Position (d) Impulses

Figure 5.6: Raccordation between Orbits of Type 0.

5.4.2 Optimization Problem for Raccordations

We seek to obtain transitions in N hops. Define

S =
{
xi, vi, pi, T

F
i , x

′
i, v
′
i, T

G
i

}N
i=1

(5.17)

Here xi represents the combined jumper-trampoline ground phase terminal position, vi

represents the combined jumper-trampoline ground phase terminal velocity, pi represents

the impulse strength, T Fi represents the flight phase duration, x′i represents the ground phase

initial position, v′i represents the ground phase initial velocity and TGi represents the ground

phase duration. The subscript i is present to represent the fact that these are the variables

for the i-th hop of the raccordation. S is the vector of all variables stacked together which
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(a) Raccordations (b) Energy

(c) Position (d) Impulses

Figure 5.7: Raccordation between Orbits of Type 0 and Type 1.

is the decision vector for the optimization problem below.

min
S
J (S) =

N∑
i=1

wp(pi − pi−1)2 + wx(xi − xi−1)2 (Obj)

subject to AFi sin(ωFT Fi + φFi )− Mg

kg
− x′i = 0 (C1)

xi + (vi +
pi
m

)T Fi −
1

2
g(T Fi )2 − x′i = 0 (C2)

v′i = ∆
(
vi +

pi
m
− gT Fi , AFi ωFi cos(ωFT Fi + φFi )

)
(C3)

AGi sin(ωGTGi + φGi )− (M +m)g

kg
= xi+1 (C4)

AGi ω
G
i cos(ωGTGi + φGi )− vi+1 = 0 (C5)

where, in (Equation C3)

∆(vp, vj) =
Mvp +mvj
M +m

(5.18)
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(a) Raccordations (b) Energy

(c) Position (d) Impulses

Figure 5.8: Raccordation between Orbits of Type 0 and Type 2.

as the reset map for the velocities. We also have the following expressions for AFi , ωF ,

φFi ,AGi , ωG, φGi ,

AFi =

√(
xi +

Mg

kg

)2

+

(
Mvi − pi
MωF

)2

(5.19)

φFi = tan−1

(
xi + Mg

kg
Mvi−pi
MωF

)
(5.20)

ωF =

√
kg
M

(5.21)

AGi =

√(
x′i +

(M +m)g

kg

)2

+

(
v′i
ωG

)2

(5.22)

φGi = tan−1

(
x′i + (M+m)g

kg

v′i
ωG

)
(5.23)

ωG =

√
kg

M +m
(5.24)
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(a) Raccordations (b) Energy

(c) Position (d) Impulses

Figure 5.9: Raccordation between Orbits of Type 0 and 3.

the optimization objective (Equation Obj) is motivated by the desire to make a transition

between the two orbits O1 and O2 as gracefully as possible, i.e., with minimal variation

of the given periodic behaviors. To this end, we minimize the change in impulse strength

and the points of application of the impulse. Note that if O2 = O1, then the cost in

(Equation Obj) is zero. The constraints expressed in (Equation C1) - (Equation C5) are just

the closed form expressions for the solutions of the dynamics in the flight and ground phase.

This is a kernel method (see § 2.2) since we can view this as minimizing 〈Opw,Opw〉W (a

weighted metric) where

Opw =

(I− S1)p

(I− S1)x

 (5.25)

63



with S1 being a shift operator that shifts a sequence x to the left. Finally, (Equation Obj) -

(Equation C5) can be expressed as a Nonlinear Program

min
S
J (S) (5.26)

s.t. F(S) = 0 (5.27)

lb ≤ S ≤ ub (5.28)

We solved this problem numerically with fmincon in MATLAB.

5.4.3 Examples

We provide a few examples to the solution of the optimization problem described. Through-

out Figure 5.6-Figure 5.9 (a) represents the trajectories of the system. (b) represents the

ground phase energy of the system at each hop. (c) represents the position at which the

impulse is applied. (d) shows the strength of the impulse. Shown in Figure 5.6 - Figure 5.9

are raccordations between an initial orbit of type 0 and final orbits of type 0, type 1, type

2 and type 3 respectively. We note that even as the strength of the impulses increase (we

are injecting energy), the ground phase energy of the system across multiple hops does

not necessarily do so as energy is also lost during impacts. The impulses do not increase

linearly, but they transfer the system from the initial to the final orbit.

5.5 Rimless Wheel with Impulse

Shown in Figure 5.10 is a schematic of a rimless wheel. The rimless wheel is a popular

reduced order model used for understanding locomotion [58, 59] due to the fact that is

easy to analyze and can be used for fast motion planning. In this section, we consider

the motion of a rimless wheel on hard flat ground. We also consider an impulsive input

that can be applied to the system when two spokes are on the ground. Such an input is

depicted in Figure 5.10 and the strength of the impulse is denoted by p. The impulses serve
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Figure 5.10: Schematic of a 2D Rimless wheel with impulsive kicks.

to inject energy into the system, while the impact of the spokes with the ground dissipates

energy. The primary motivation to investigate this system is to consider transitions between

different types of periodic orbits, i.e. a periodic orbit with only a ground phase, and a

second periodic orbit which contains both a ground phase and a flight phase. We believe

that this system could serve as a stepping stone to study transitions between walking to

running for bipedal robots. For the system depicted in Figure 5.10 the length of the spoke

is L. The angle between spokes is θw.

5.5.1 System Model

We now describe the system model. We can model this as a hybrid system with a ground

phase and an aerial phase respectively.

Ground Phase

From Newton’s laws we have

mL2θ̈ = mgL sin(θ) (5.29)
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which can also be written as

θ̈ =
g

L
sin(θ) (5.30)

which is the same as the dynamics of a pendulum. We provide conditions for completing a

step, where a step is defined as the wheel successfully traversing forward in the horizontal

direction while rotating about the spoke in contact with the ground. From energy conserva-

tion, the kinetic energy will get completely converted to potential energy when the wheel

has a spoke completely vertical

1

2
m
(
Lθ̇min

)2

= mgL (1− cos(θw)) . (5.31)

In other words, the minimum angular velocity is

θ̇min =

√
2g

L

(
1− cos(θw)

)
(5.32)

if θ̇(0) > θ̇min, the rimless wheel completes a step. The acceleration (along the vertical

direction) of the mass is given by

ÿ = −L sin(θ)θ̈ − Lθ̇2 cos(θ) (5.33)

The normal force exerted by the ground on the mass is given by

N = mg +mÿ (5.34)

= mg −mL sin(θ)θ̈ −mLθ̇2 cos(θ) (5.35)

=
(
mg cos(θ)−mLθ̇2

)
cos(θ) (5.36)

The wheel is in the ground phase as long as N ≥ 0 i.e. as long as

‖θ̇‖ ≤
√
g cos(θ)

L
(5.37)
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when N = 0, transition to flight phase occurs.

Ground Phase to Ground Phase Impact: In the event thatN ≥ 0 throughout the ground

phase, transition to flight does not occur, resulting in an additional spoke hitting the ground.

In that case, by conservation of angular momentum,

θ̇+ = θ̇−cos(θw) (5.38)

where θ̇− is the angular velocity just before impact and θ̇+ is the angular velocity just after

impact.

Flight Phase

To model the dynamics in the flight phase, we use the generalized coordinates q = [x, y, θ]>,

where x and y represent the Cartesian position of the mass. θ represents the rotation of the

spoke w.r.t. vertical as shown in Figure 5.10.

Ground Phase to Flight Phase Reset: Since the generalized coordinates is three dimen-

sional as opposed to being one dimensional in the ground phase, we have the reset map

from the ground phase to the flight phase given by q = ∆q(θ), where

∆q(θ) =


L sin(θ) + px

L cos(θ)

θ

 (5.39)

where px is the x position of the ground contact point. Then it also follows that

q̇ =
∂∆q

∂θ
(θ)θ̇ (5.40)
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Dymamics: The dynamics of the system is given once again by Newton’s Laws

ẍ = 0 (5.41)

ÿ = −g (5.42)

θ̈ = 0. (5.43)

During the flight phase, all spokes are above the ground. Whenever, any of the spokes

touch the ground, the system transits back to the ground phase as discussed below.

Flight Phase to Ground Phase Reset: From Appendix A we know that the position

components q are continuous during impact, however, the velocity components undergo a

discontinuous change due to inelastic impact. We can represent this as

q+

q̇+

 =

 q

∆q̇(q)q̇
−

 (5.44)

We need to reset the state from the three dimensional position components q to the one

dimensional quantity θ for the subsequent ground phase dynamics. This can be done by

θ+ = ∆θ(q
+) = tan−1

(
x+ − px
y+

)
(5.45)

where px is the x position of the point of contact of the spoke with the ground. The angular

velocity can be given as

θ̇+ =
∂∆θ

∂q
(q+)q̇+. (5.46)

This completes the full reset map.
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Control Input

The control input can only be applied when two spokes are on the ground. The change in

the angular velocity is again obtained from Newton’s laws

θ̇after = θ̇cur +
p

mL
sin(θw) (5.47)

where p denotes the strength of the impulse. Given a desired angular velocity θ̇des, we can

solve for the impulses using (Equation 5.47) as

p =
mL

sin(θw)

(
θ̇after − θ̇cur

)
(5.48)

where θ̇cur represents the current angular velocity just before application of the impulse.

5.5.2 Determination of Periodic Orbits

The impulsive control input can only be applied when two spokes are on the ground, which

occurs during a ground phase to ground phase transition or (in the unlikely case of) a

flight phase to ground phase transition with two spokes on the ground. Thus to generate a

periodic orbit we need to

1. Choose a θ̇+
des at the start of a ground phase.

2. Simulate the hybrid system forward until it reaches a spot where two spokes are on

the ground.

3. Choose the impulse p according to (Equation 5.48).

5.5.3 Transitions

We can assume that the orbits are respectively characterized by their angular velocities θ̇+
init

and θ̇+
fin respectively. We find a transition in M steps. To find a control input to steer the
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system from orbit O1 to O2 , we choose

θ̇+
i = θ̇+

init +
i

M
(θ̇+

fin − θ̇
+
init) (5.49)

where i = 1, 2, · · · ,M − 1. Once the θ̇+
i are determined, we can obtain the impulses as

pi =
mL

sin(θw)
(θ̇+
i − θ̇−i ) (5.50)

where θ̇−i are the angular velocities of the wheel at the ith step obtained by forward evalu-

ation of the dynamics.

5.5.4 Results

Shown in Figure 5.11 are a plot of two different periodic orbits of this system. The blue

curves represent the ground phase of the system, while the red curves represent the flight

phase of the system. The components plotted are the Cartesian position of the mass, and

it’s angular position. Shown in Figure 5.12 are the transitions between these types of or-

bits. One can see the wheel moves progressively faster by looking at the velocity plots vx

in Figure 5.12. One can also inspect the vertical motion (y[m]) of the rimless wheel in

Figure 5.12.
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(a) Periodic Orbit with only ground phase

(b) Periodic Orbit with both Ground and Flight Phase

Figure 5.11: Plot of Periodic Orbits. Red and blue curves represent flight and ground phase
respectively.
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Figure 5.12: Plot of Transitions for the rimless wheel.
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CHAPTER 6

KERNEL METHOD FOR HOPPING ROBOTS ON GRANULAR TERRAIN

6.1 Introduction

In this chapter, we continue our study of hopping robots initiated in Chapter 5. We con-

sider hopping robots on deformable, granular terrain. This also furnishes more involved

examples of hybrid dynamical systems for which we demonstrate the kernel method. The

raccordations obtained in this chapter are between periodic orbits that traverse the same

domain sequences in the same order. As a result, these methods are not directly extensible

to transitions between gaits of different types, e.g. walking to running.

The first system we consider is a hopping robot on granular media as depicted in Fig-

ure 6.1. Granular media is a substrate whose forces have both solid-like and fluid like

behaviors [60]. Several methods exist for describing such forces such as discrete element

methods (DEM) and Coloumb friction based resistive force theories (RFT). However, these

models have drawbacks such as being too computationally expensive to simulate quickly,

or not being accurate for certain object-substrate interactions (like high speed intrusions)

[60]. More recently added mass models have been proposed to describe substrate forces of

granular media [61]. These models are relatively simple, and have been demonstrated to

be accurate [61, 60] on experimental platforms. We use this as a model for the substrate

force for the hopping robot in Figure 6.1. We include this in our optimization to determine

periodic orbits and for transitioning between orbits.

The second system we consider is a 2D kicker on deformable terrain. Here a simple

one-way spring is used as a model of the granular substrate force owing to the complexities

of rotational, longitudinal and vertical dynamics, as opposed to the added mass model. The

periodic orbits and transitions between them are determined via numerical optimization.
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6.2 Obtaining Graceful Transitions

We refer the reader to § 2.4 for our definition of hybrid systems and the associated ter-

minology. We denote by D =
⋃
iXi, i.e it is the union of all the domains of the hybrid

system.

Definition 6.2.1. A Cycle is a trajectory of the hybrid system with the initial domain the

same as the final domain. Two Cycles are of the same type if their domain sequences are

the same.

Definition 6.2.2. A periodic orbit γ : [0, T ] → D of a hybrid system is a cycle such that

(γ(T ), u(T )) ∈ G(qk, q1) and R(qK , q1)γ(T ) = γ(0). Here G(·, ·) and R(·, ·) denote the

guard set and the reset map respectively.

A periodic orbit is a cycle with the initial point same as the final point. Note that a cycle

is more general than a periodic orbit. Let γ1 : [0, T1] → D and γ2 : [0, T2] → D be two

periodic orbits of the Hybrid SystemH generated by control signals v1 and v2 respectively.

Let N be a given positive integer. We formulate an optimal control problem that captures

the notion of a graceful transition from γ1 to γ2 in N cycles.

We say that a function x : [0, T ]→ D is a transition in N cycles from the periodic orbit

γ1 to the orbit γ2 if

• x(t) is a solution of the hybrid systemH for some u(t) and consists of N cycles.

• x(t) starts at the initial orbit, i.e. x(0) = γ1(0).

• x(t) ends at the start of the final orbit, i.e. the guard condition (x(T ), u(T )) ∈

G(qK , q1) holds and the reset map conditionR(qK , q1)x(T ) = γ2(0) holds.

We denote by xij : [ti−1
j , tij] → Xqi the portion of the transition x(t) which lies com-

pletely in the domain Xqi during the jth cycle with ti−1
j , the point of entry into Xqi and(

xij(t
i
j), u(tij)

)
∈ G(qi, qi+1) i.e. tij is the time of departure fromXqi . Here j = 0, · · · , N+1
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is the index of the cycle and i = 1, · · · , K represents the ith domain during the jth cycle.

Here, the zeroth cycle x0(t) denotes the initial periodic orbit γ1(t) and the (N + 1)th cycle

xN+1(t) denotes the final periodic orbit γ2(t).

Let Z be any set. To any function f : [t1, t2] → Z we denote by Sf : [0, 1] → Z to be

the function defined by

Sf(t) = f ((t2 − t1)t+ t1) (6.1)

Definition 6.2.3. The transition x(t) from γ1 to γ2 is said to be graceful if it minimizes the

cost functional

J(x) =
N+1∑
j=1

K∑
i=1

∫ 1

0

(Sxij − Sxij−1)>W i
j (Sx

i
j − Sxij−1)dt. (6.2)

where W i
j is a sequence of positive semidefinite matrices.

Hence we need to determine a function x(t) that minimizes (Equation 6.2) subject to

the constraints that it be a transition from γ1(t) to γ2(t).

The motivation for the cost function can be seen as follows: The cost is a measure of

the difference between the signals xij(t) and xij−1(t) for each domain i. Thus we expect the

first cycles xi1(t) to be close to the initial periodic orbit γi1(t) in each domain. We also have

a similar situation for xiN and γi2. Thus a minimizing function of eqn (Equation 6.2) can be

expected to start out at periodic orbit γ1 and gradually change to reach the periodic orbit γ2

by keeping the differences in consecutive cycles small. Since the signals xij(t) and xij−1(t)

may be defined on different intervals, we use the scaling operator to ensure that Sxij and

Sxij−1 are defined on [0, 1] in the cost function (Equation 6.2).

Remark 6.2.1. Instead of the cost (Equation 6.2) one can also minimize the difference

between a general function of the scaled and translated states, by replacing the scaled

version of the states Sxij by h(Sxij) in (Equation 6.2). This can be used when we don’t

require all of the states to be periodic but only a subset of it’s components.
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Remark 6.2.2. One can also consider the case where the the vector fields f i depend on

a set of parameters p, i.e f i = f i(x, u; p). Assume that γj for j = 1, 2 are two distinct

periodic orbits satisfying γ̇ij = f i(γij, v
i
j; pj) in each Xqi . Assuming that the parameter set

p changes from p1 to p2 at t = t0 when (γ1(t0), u(t0)) ∈ G(Xq1 , Xq2), we can use the same

cost (Equation 6.2) to obtain a graceful transition from the orbit γ1 to γ2. In the example

hybrid system of the 2D actuated rod discussed in § 6.4, the parameter set p will represent

the type of terrain. The terrain changing will represent the parameter set p changing. As the

rod enters the second terrain at t = 0, the dynamics constraint is given by f i(x, u; p2) ∀i.

The number of cycles, N , in transition period is one of the design parameter. In contrast,

K is a fixed quantity and is a property of the hybrid system.

6.2.1 Transforming the optimal control problem

We write the optimal control problem (Equation 6.2) in an equivalent standard form. We

know that xij(t) satisfies the differential equation

ẋij = f i
(
xij, u

i
j

)
(6.3)

for some function uij : [ti−1
j , tij] → U . Let us define x̄ij = Sxij and ūij = Suij . Then one

can easily verify that
d

dt
x̄ij = (tij − ti−1

j )f i(x̄ij, ū
i
j) (6.4)

Let us also define τ ij = tij − ti−1
j . Then the optimization problem (Equation 6.2) can be

written as

min
xij ,u

i
j ,τ

i
j

N+1∑
j=1

K∑
i=1

∫ 1

0

(x̄ij − x̄ij−1)>W i
j (x̄

i
j − x̄ij−1)dt. (6.5)

subject to the dynamical system constraints:

dx̄ij
dt

= τ ijf
i(x̄ij, ū

i
j) (6.6)
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and the initial constraint:

x̄1
1(0) = γ1(0). (6.7)

Assuming that the domain Xqi admits defining functions di(x) ≤ 0 for all x ∈ Xqi (in some

ambient space), we can write the domain constraint as

di
(
x̄ij(t)

)
≤ 0. (6.8)

Similarly assuming that the guard set in each domain admits a defining functions gi(x) = 0

and mi(x, u) < 0 we write the guard conditions as

gi(x̄ij(1)) = 0. (6.9)

mi(x̄ij(1), ūij(1)) < 0. (6.10)

If we denote the reset map in the guard set of the ith domain by Ri the reset condition is

(for i = 1, · · · , K − 1).

x̄i+1
j (0) = Ri

(
x̄ij(1)

)
. (6.11)

For i = K and j = 1, · · · , N the reset condition takes the form

x̄1
j+1(0) = RK

(
x̄Kj (1)

)
. (6.12)

For j = N , (Equation 6.12) is actually the final constraint. We can also consider τ ij as a

state variable by introducing τ̇ ij = 0 with the inequality constraint τ ij > 0. If we define

Xs to be the vector obtained by stacking the states Xs = {x1
1, τ

1
1 , . . . , x

K
N , τ

K
N } and Us

to be the vector of inputs U>s = {u1
1, u

2
1, . . . , u

K
N} then the optimal control problem

(Equation 6.5) becomes

min
Xs,Us

∫ 1

0

L(Xs)dt. (6.13)
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subject to the constraints

Ẋs = F (Xs, Us). (6.14)

b(Xs(0), Xs(1)) = 0. (6.15)

p(Xs(t)) ≤ 0. (6.16)

ms(Xs(1), Us(1)) < 0. (6.17)

where L(Xs) is an equivalent expression for the integrand of (Equation 6.2) using the aug-

mented states, b represents reset conditions and equality guard constraints, ms represents

strict inequality guard constraints, and p represents domain constraints.

Transcription of Optimal Control Problem to Nonlinear Programming Problem

The optimal control problem detailed above can be transcribed into nonlinear programming

problems by using a MATLAB based software, OPTRAGEN [41]. The resulting nonlinear

program was solved by IPOPT 3.12.6, a software using interior point method to solve the

nonlinear program [62].

6.3 1D Hopper

Our aim in this section is to obtain graceful transitions for the 1D Hopper jumping on

deformable granular media. More detailed physics of the hopper can be found in [60, 61].

6.3.1 Granular Media Model

The visualization of 1D Hopper jumping on deformable granular media is shown in Fig-

ure 6.1. As the foot intrudes the granular media, the grain on the ground gets compacted

forming a cone shape, which behaves as if a mass was added to the foot (Figure 6.1b).

Throughout this subsection we assume that zf ≤ 0 where zf is the position of the foot
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Figure 6.1: (a) A sketch of the 1D jumping hopper. (b) Depiction of the added mass model
of the granular media.

(Figure 6.1a). The added mass model can be written as

Aflat(zf ) = π

(
R +

µzf
tan(θ)

)2

(6.18)

Acone(zf ) =
πR2 − Aflat(zf )

cos(θ)
. (6.19)

The added mass mg to the foot is then given by

mg(zf ) = −cgφρµ
∫ zf

0

Aflat(s)ds. (6.20)

Finally the substrate force exerted by the granular media on the foot is given by

ψg(zf , żf ) =
ksh
πR2

∫ zf

0

Aflat(s)ds+ σrft

∫ zf

0

Acone(s)

− bṁgżf . (6.21)

Fg = ψg(zf , żf )−mgz̈f (6.22)
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Stance Domain Flight Domain 1

Flight Domain 2

𝑧𝑓 = 0
ሶ𝑧𝑓 > 0

−𝐹𝑠 −𝑚𝑓𝑔 > 0

ሶ𝑧𝑓 < 0

ሶ𝑧𝑓 = 0

𝑧𝑓 ≥ 0

𝑧𝑓 ≤ 0 & ሶ𝑧𝑓 ≥ 0

𝑧𝑓 = 0

𝑧𝑓 ≤ 0 & ሶ𝑧𝑓 ≤ 0

Figure 6.2: Schematic Description of Hybrid System for 1D Hopper.

The values and meaning of all parameters can be found in [60].

6.3.2 Hybrid System Model of Hopper.

We define the configuration space of the system to be q> = [zm, zr, zf ] where zm is the

motor position, zr is the rod position, zf is the foot position (Figure 6.1a). The states are

given by x> =
[
q>, q̇>

]
. We denote by u = Fm the motor force. The spring force can be

written as

Fs(x) = ks(zf − zr + `0)− cs(żr − żf ) (6.23)

where ks is the spring coefficient and cs is the damping coefficient. Three discrete domains

Q = (Stance, F light1, F light2), the guard condition G, and each domain are shown in

Figure 6.2.
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Stance domain

During the stance domain, the model can be written as

Mgr(q)q̈ + Cgr(q, q̇) = Bu. (6.24)

where Mgr = diag(mm,mr,mf + mg) and Cgr = [mmg,−Fs + mrg,+Fs + mfg −

ψg(zf , żf )] and B is given by B> = [1,−1, 0]. We assume that zf ≤ 0 (foot is penetrating

the media) and żf ≤ 0 (the granular media has no restorative motion). The substrate force

must always be positive i.e Fg ≥ 0. The transition to the flight domain occurs when the

foot velocity żf = 0. To prevent zeno executions we assume that the spring force is large

enough to lift the foot against it’s weight i.e −Fs −mfg > 0.

Flight Domain 1

In the Flight Domain 1 the equations are:

Mfl(q)q̈ + Cfl(q, q̇) = Bu. (6.25)

Mfl is given by Mgr with mg = 0. Cfl is given by Cgr with ψg = 0. Once the granular

media is deformed, it has no restoring force and it stays deformed. In this domain, the foot

position needs to satisfy zendf ≤ zf ≤ 0 where zendf is the final foot position at the end of

the stance domain and zero is the undeformed (initial) level of the granular media. More

concretely In Flight Domain 1, the foot has lost contact with the deformed media. Instead

of imposing zendf ≤ zf ≤ 0 as the constraint we introduce a stronger set of constraints

zf ≤ 0 and żf ≥ 0, i.e we want the foot position to monotonically increase from zendf up to

zero. Transition from Flight Domain 1 to Flight Domain 2 occurs when the foot position

zf = 0 and the foot velocity żf > 0.
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Flight Domain 2

In the Flight Domain 2 the dynamics equation is the same as Flight Domain 1, i.e is given by

(Equation 6.25). The force experienced by the hopper foot when it reintrudes the granular

media is not well known. For this reason, we assume that the hopper sees new ground as

the foot position zf rises above zero. For this reason, we assume that we reinitialize the

granular media to its undeformed level (which is zero) whenever the foot position zf rises

above zero. For the purposes of vertical 1D hopping, this is not physically possible but

it would be true if there was a horizontal component of motion (see § 6.4). Thus Flight

Domain 2 defined by the foot position zf (t) ≥ 0. Transition from Flight Domain 2 to

Stance Domain occurs when the foot position zf = 0 (comes in contact with new ground)

and the foot velocity żf < 0. Transition from Flight Domain 2 back to the Stance Domain

occurs when the foot position zf = 0 and foot velocity żf < 0.

6.3.3 Results

We have here a hybrid system with three domains: Stance Domain, Flight Domain 1 and

Flight Domain 2. We show in Figure 6.3 a transition between two distinct periodic orbits.

The initial periodic orbit is shown in blue and was obtained by minimizing the integral of

the actuator velocity
∫
ż2
mdt (minimizing the energy of the input typically yields oscillatory

solutions), subject to the hybrid dynamics constraints and periodicity constraints. This

results in a low jump height of 1.2 mm, where jump height is defined as the maximum

position of the foot zf above zero (the undeformed level of granular media). The final

periodic orbit shown in pink, was obtained by maximizing the integral of the foot position∫
z2
fdt. This results in a high jump height of 36 mm. Figure 6.3 show a graceful transition

of all the state components from the initial periodic orbit to the final one. One can see the

jump height gradually rising from 1.2 mm to 36 mm in N = 3 cycles. Similar transitions

occur for the other components e.g zr(t) and zm(t). Throughout all cycles, an actuator

bound of −80N ≤ u ≤ 80N was given where u is the force provided by the motor.
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Initial Orbit

Cycle 1

Cycle 2

Cycle 3

Final Orbit

(a) zm and żm

Initial Orbit

Cycle 1

Cycle 2

Cycle 3

Final Orbit

(b) zr and żr

Initial Orbit

Cycle 1

Cycle 2

Cycle 3

Final Orbit

(c) zf and żf

Figure 6.3: Plot of state trajectories for raccordation.

Parameter Values

The mass of the motor mm = 0.948 Kg, the mass of the rod was mr = 0.165 Kg, the

mass of the foot was assumed to be mf = 0.044 Kg. The spring constant was assumed

to be ks = 2730 N/m and natural length 5 cm. The damping coefficient bs was assumed

to be 500 N s/m. The foot is a circular disk (see Figure 6.1b) with diameter 7.6 cm. All

other parameters pertaining to the granular media can be found in [60]. We used the cost

(Equation 6.2) with the weight values W i
j = diag(0.1, 0.05, 5) for j = 1, 2, 3 cycles and

i = 1, 2, 3 domains.
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(a)

Stance Domain Flight Domain 1

Flight Domain 2

𝑦1 ≤ 0 &  𝑦1 ≤ 0

 𝑦1 = 0
𝑢 sin 𝜃 − 𝑚1𝑔 > 0

𝑦1 ≥ 0

𝑦1 = 0

 𝑦1 > 0 𝑦1 < 0

𝑦1 ≤ 0 &  𝑦1 ≥ 0

𝑦1 = 0

(b)

Figure 6.4: Schematic of an actuated rod and it’s hybrid system description

6.4 2D Actuated Jumper on Springy Terrain

Figure 6.4 shows a 2D rod with two point massesm1 andm2 moving on elastic, deformable

terrain. The two masses are connected by a massless rod that is actuated by a force u. The

substrate force exerted by the media will be approximated by a simple one way spring

damper model instead of (Equation 6.22). The distances from masses m1 and m2 to the

Center of Mass (CoM) is denoted by `1 and `2 respectively. From Figure 6.4 and definition

of `1, we see that the position of massm1 which we denote by [x1, y1] is given by [x1, y1] =

[xcm + `1 cos θ, ycm − `1 sin θ]. We note that this model is a simplification of the rimless

wheel, described in [63] and [64] where its potential multiple gaits, by individual actuation

of the spokes, were demonstrated. Here we take the model of the rimless wheel with

actuated spokes a bit further by allowing each spoke to enable a kicking acting (as opposed

to slower extension) in the radial direction (i.e. similar to the above 1-D hopper).

6.4.1 Hybrid System Model

We have q> = [xcm, ycm, θ, `1]> and x> = [q>, q̇>]. We define mtot = m1 + m2 and c =

m1(1 + m1

m2
). Three discrete states Q = (Stance, F light1, F light2), the guard condition
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G, and each domain are shown in Figure 6.4.

Stance domain

In the stance domain, the dynamics model is given by (Equation 6.24). Since the terrain can

only deform, the substrate force acts only when foot velocity is negative (ẏ1 ≤ 0). Hence

the domain is defined by the constraint d1(t) ≤ 0 where d1(x) = [ycm − `1 sin θ, ẏcm −

`1θ̇ cos θ − ˙̀
1 sin θ]>. Transition from stance domain occurs when the velocity of mass m1

becomes zero ẏ1 = 0 and when the input force is larger than the weight of mass m1 i.e

u sin θ −m1g > 0.

Flight Domain 1

In the flight domain, the dynamics are given by eq (Equation 6.25). As in the 1D case, the

massm1 has left contact with the deformed terrain in this domain, and is in flight. Recalling

that y1 is the vertical position of mass m1, Flight Domain 1 is defined by d2(x) ≤ 0 where

d2(x) = [y1,−ẏ1]>. Transition to Flight Domain 2 occurs when y1 = 0 and ẏ1 > 0.

Flight Domain 2

Once the position of mass m1 rises above zero, we assume that the rod sees new ground

as it is traversing horizontally. Hence we reset the terrain to it’s original undeformed state.

Consequently Flight Domain 2 is defined by d3(x) ≤ 0 where d3(x) = y1. Transition to

stance domain occurs when position of mass one g3(x) = y1 = 0 and velocity m3(x, u) =

ẏ1 < 0. In all the domains (Stance Domain, Flight Domain 1 and Flight Domain 2) we add

constraints to ensure that the vertical position of mass m2 given by y2(t) > 0. We are only

interested in finding controls u(t) where a stance domain can only occur when mass m1 is

on the ground (and never m2). The reset map is trivial in all cases.
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Initial Orbit

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Final Orbit

(a)

Initial Orbit

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Final Orbit

(b)

Figure 6.5: Raccordation for the actuated rod showing the cartesian states.

Initial Orbit

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Final Orbit

(a)

Initial Orbit

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Final Orbit

(b)

Figure 6.6: Raccordation for the actuated rod showing the radial and angular states.

6.4.2 Results

As before, we have a hybrid system with three domains. We have shown the raccordations

in Figure 6.5 - Figure 6.6. The blue and pink parts of the figures are periodic in all the state

components except xcm and θ as we move forward horizontally and rotate in the clockwise

direction. For the initial and final gaits we do have however that the final angle θ(tf ) and

the initial angle θ(ti) differ as θ(tf ) = θ(ti) + 2π as we identify angles differing by integer

multiples of 2π. The initial gait (cycle) shown in blue was obtained for kg = 500 N/m

and bg = 100 N s/m. The performance index being minimized was the integral of ˙̀2
1. At

t = 0 we assume that the terrain changes to a ‘harder granular media’. To model this, we
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assumed kg = 1000 N/m and bg = 200 N s/m. We minimized the same performance index

integral of ˙̀2
1 to obtain the final gait shown in pink. Figure 6.5-Figure 6.6 show a graceful

transition between these two distinct orbits. The rod makes a full revolution in each cycle.

One can see in the figures a gradual transition in ycm from a smaller jump height to a larger

jump height. A similar situation occurs for the horizontal velocity ẋcm where it gradually

transitions from a low ẋcm to a high ẋcm. The raccordation is done in N = 4 cycles.

Parameter Values

As mentioned above, the terrain is assumed to change, hence we need to use the parameters

kg = 1000 N/m and bg = 200 N s/m during the raccordation interval. Other parameter

values are fg = 500 N s/m. Mass m1 = 0.2085 Kg and m2 = 0.9484 Kg. The function

used for the raccordation was not the full state but was taken to be h(x) = [ẋcm, ycm, c`
2
1θ̇].

The final component of h(x) is just the angular momentum about CoM. All the weightsW i
j

were the identity.
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CHAPTER 7

IMAGE METHOD FOR BIPEDAL ROBOTS

7.1 Introduction

In this chapter, we use the image method (see § 2.3) to synthesize graceful transitions

for bipedal robots. As mentioned in § 2.3 and in chapter 4, we require a parameterized

family of periodic orbits O(α). Thus, we first set up a parameterized optimal control

problem to obtain parameterized periodic orbits. Subsequently, a reference trajectory is

constructed offline based on work in [65, 66]. Subsequently, an online tracking controller

is constructed to track this reference that takes into account the ground contact forces and

actuator limits. Finally, this is also illustrated on an underactuated planar bipedal robot is

provided to indicate how this can be extended to underactuated hybrid systems. Throughout

this chapter, we only focus on the case of transitions between walking gaits.

7.2 Walking Robot Model

The robot shown in Figure 7.1 is fully actuated i.e. all joints are actuated. The robot has

only a single support phase where the stance foot is flat on the ground and the non stance

foot is above the ground. Once the non stance foot impacts on the ground, the stance foot

is assumed to lift off instantaneously and we relabel legs to label the non stance leg as the

stance leg and vice versa, thereby exploiting the symmetry of the walking behavior. With

these modeling assumptions one can define a hybrid system model of the robot by

H = (D,G,∆, f, g) (7.1)

The details ofH are provided below.

88



Figure 7.1: Schematic of the planar 5 dof walking robot

7.2.1 Robot Dynamics

We use floating base coordinates of the walking robot as shown in Figure 7.1. The configu-

ration space isQ = R2×T6. In local coordinates, q is depicted in Figure 7.1. The function

defining the holonomic constraints is given as follows h(q) = (pcom
sfx (q), pcom

sfy (q), θsf(q))

where pcom
sfx (q) , pcom

sfy (q) denote the (global) horizontal and vertical position and θsf(q) is

the global orientation of the stance foot link with respect to the horizontal. In the single

support phase, the stance foot is flat on the ground, so pcom
sfx (q) = constant , pcom

sfy (q) = 0

and θsf(q) = 0 are the holonomic constraints. The equations of motion for the robot in

floating base coordinates can be written as [32]

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+
∂h

∂q

>
λ (D1)

∂h

∂q
q̈ +

d

dt

(
∂h

∂q

)
q̇ = 0 (D2)
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Table 7.1: Inertial Parameters of the Robot

Link Name Mass (kg) Inertia (kg m2) Length (m)
Torso 36.044 0 0
Femur 9.149 0.331 0.4000
Tibia 3.000 0.149 0.4000
Foot 0.625 0.100 0.1600

The inertial parameters of the robot are shown in Table 7.1. The matrix M(q) represent

the generalized mass matrix, C(q, q̇) represent the terms due to Coriolis Forces, and G(q)

represents the generalized forces due to gravity. λ are forces of constraint and can be

explicitly obtained by substituting q̈ from (Equation D1) into (Equation D2). B is a matrix

that maps joint torques to generalized forces and has full rank. The continuous dynamics

of the robot are represented by (Equation D1) - (Equation D2). When the non stance foot

impacts flat on the ground, we relabel legs and declare the non stance foot prior impact as

the stance foot after impact. This corresponds to a relabeling in the configuration space

q+ = ∆qq
− (7.2)

∆q is a relabeling matrix that does not change the global coordinates and ∆2
q = I . The post

impact joint velocity can be obtained from the pre impact joint velocity by solving

M(q) −∂pnsf
∂q

>

∂pnsf
∂q

0


v+

δλ

 =

M(q)q̇−

0

 (7.3)

as in [32]. Here pnsf(q) represents the global x, y position and orientation of the center of

mass of the non stance foot link. We also relabel joint velocities to obtain

q̇+ = ∆qv
+ (7.4)
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Hence the reset map can be represented as a function

(q+, q̇+) = ∆(q−, q̇−) (7.5)

where

∆(q, q̇) =

 ∆qq

∆q̇(q)q̇

 (7.6)

is obtained from (Equation 7.2)-(Equation 7.4). The domain of the single support phase

can be formally represented as

D =
{

(q, q̇) ∈ TQ
∣∣∣ pleft

nsfy(q) ≥ 0, pright
nsfy (q) ≥ 0

}
(7.7)

where pleft
nsfy(q) and pright

nsfy (q) represent the vertical position of the left end and right end of the

non-stance foot link. TQ represents the tangent bundle of the robot configuration space Q

where the full state (representing generalized positions and velocities) evolves. The Guard

Set can be represented as

G =
{

(q, q̇) ∈ TQ
∣∣∣ pleft

nsfy(q) = 0, pright
nsfy (q) = 0,

dpcom
nsfy(q)q̇ < 0

}
(7.8)

Finally, f and g can be obtained from (Equation D1) - (Equation D2) as

ẋ = f(x) + g(x)u (7.9)

where x = (q, q̇) ∈ TQ.
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7.2.2 Contact Forces

In order for the model described earlier to be valid, the stance foot must remain flat on the

ground and not slip. This imposes constraints on the contact forces. From the definition of

the holonomic constraints we see that λ(1) represents the total (tangential) frictional force

on the robot, λ(2) is the total normal force exerted by the ground on the robot and λ(3)

is the net moment exerted by the ground contact forces on the stance foot center of mass.

Since the stance foot is not slipping, the friction cone constraint must be satisfied

−µλ(2) ≤ λ(1) ≤ µλ(2) (D3)

Also the total normal force must be positive

λ(2) ≥ 0 (D4)

Since the stance foot is not rotating the Zero Moment Point (ZMP) constraint must be

satisfied [32]

−Lfoot

2
λ(2) ≤ λ(3) ≤ Lfoot

2
λ(2) (D5)

where Lfoot is the total length of the foot. If the ZMP constraint is violated the stance foot

rotates and our assumption that the robot is fully actuated is no longer valid.

7.3 Obtaining Parameterized Periodic Orbits

In this section, we discuss the optimization problem involved in finding a continuous family

of dynamically feasible periodic orbits (q(t, α), q̇(t, α)) for each parameter α varying from

[0, 1].
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7.3.1 Physically motivated parameter set

A physically inspired parameter which changes the performance of walking gaits is pro-

posed. Suppose that dtotal(α) is the step length, i.e. the total distance traveled by the

non-stance foot over a step and vavg(α) is the average speed indexed by α ∈ [0, 1],

vavg(α) = vl + α(vu − vl) (7.10)

dtotal(α) = dl + α(du − dl) (7.11)

and vl, vu, dl and du are fixed parameters such that we get walking speeds in [vl, vu] and

different step lengths in [dl, du]. The period of each gait can also be indexed by α,

T (α) =
dtotal(α)

vavg(α)
. (7.12)

7.3.2 Finding a family of orbits via optimization

Given the above performance parameters the periodic gait for each α is obtained by con-

sidering the trajectory optimization problem. The performance index used is

Jα(u) =
1

mgdtotal

∫ T (α)

0

u>(t)u(t) dt (7.13)

where m is the total mass of the robot, g is the acceleration due to gravity and dtotal is the

step length. Since we are interested in finding periodic orbits, we need to add the following

constraints

(q(T (α)), q̇(T (α))) ∈ G (CO1)

i.e. the switching surface is reached at the end of the step. We also need to add the reset

map constraint

(q(T (α)+), q̇(T (α)+)) = ∆ (q(T (α)−), q̇(T (α)−)) (CO2)
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and the periodicity constraint

π1(q(T (α)+))

q̇(T (α)+)

 =

π1(q(0))

q̇(0)

 (CO3)

where π1 is the projection of q onto the last n− 1 coordinates (as the first coordinate is the

hip x position which is monotonically increasing). The α in the second tuples of q(t, α) is

ignored for the sake of brevity. In addition,(Equation 7.10) constrains the average walking

speed and (Equation 7.11) constrains the step length based on α.

The overall optimization problem is formulated as

min
u(t)
Jα(u)

s.t. (Equation D1)− (Equation D5),

(Equation CO1)− (Equation CO3)

(Equation 7.10)− (Equation 7.11) (7.14)

We stress here that in this optimization α is a user defined fixed value between [0, 1]. Dif-

ferent values of α give gaits of different step lengths and walking speeds. The solution to

the optimization problem (Equation 7.14) is an open loop control denoted u(t, α) and a cor-

responding periodic orbit (q(t, α), q̇(t, α)) for 0 ≤ t ≤ T (α) where T (α) is the period of

the periodic orbit. Please see Figure 7.2 where the vertical yellow lines denote the periodic

orbits O(α) for each α. We also note that if we define the set F = ∪αO(α) × {α}, then

F ⊂ TQ× A and π : F → A is a fiber bundle of periodic orbits over A where A = [0, 1].

The green surface in Figure 7.2 is the set F . The reader can perhaps visualize pictorially

that F (the green surface) comprises of infinitely many yellow vertical lines (periodic orbits

O(α)).

Remark 7.3.1. The trajectory optimization problem (Equation 7.14) is solved numerically
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using direct collocation methods. This works by first transcribing the infinite dimensional

optimization problem into a finite dimensional optimization by parameterizing the states

and control as splines and enforcing modeling and path constraints at a discrete set of

points. The problem is then converted to a finite dimensional Nonlinear Program (NLP)

over the spline coefficients which can be solved efficiently with solvers like IPOPT [62].

Several frameworks for transcribing exist such as the ones described in [31],[33]. We used

the one described in [33].

7.4 Static Raccordation

From section 7.3 we obtain a continuous family of periodic orbits denoted as (q(t, α), q̇(t, α))

where 0 ≤ α ≤ 1. Fix a raccordation interval (transition duration) [0, R]. Choose a smooth

monotonic function αar : [0, R] → [0, 1] such that αar(0) = 0 and αar(R) = 1, where the

subscript ar stands for area law (a particular choice of the smooth monotonic function in

[65]). It is worth to mention that the theory proposed in this paper holds for any choice of

smooth monotonic function.

Definition 7.4.1. The Static Raccordation is defined as

xsr(t) = (qsr(t), vsr(t))

= (q(β(t), αar(t)), q̇(β(t), αar(t))) (7.15)

where β(t) = t− tp and tp is the previous time such that xsr(t−p ) ∈ G.

Note that for each t, (xsr(t), αar(t)) ∈ π−1(αar(t)) ⊂ F where π : F → A is the

bundle projection. Thus pictorially, the static raccordation can be thought of as starting

at the initial orbit O(0) and ends at the final orbit O(1) while xsr(t) ∈ O(αar(t)) for ∀t.

This picture is depicted in Figure 7.2 where all the state space, TQ, is compressed in one

dimension for the visualization purpose. Each vertical line (yellow) with the arrow shows
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the periodic orbit for a given parameter αar, and the orange lines represents that static

raccordation connecting two orbits.

Static Raccordation

Figure 7.2: Picture of Static Raccordation

7.4.1 Generation of Static Raccordations

Although the conceptual idea of static raccordation is simple, generation of such a path is

challenging due to the hybrid structure of the model. In this section, an numerical algorithm

to generate a static raccordation is considered.

First, at a given time t, to evaluate qsr(t), we first need to evaluate αar(t), and solve

the optimization problem (Equation 7.14) with α = αar(t) to access the periodic orbit,

O(αar(t)). This gives us the optimal trajectory (q(τ, αar(t)), q̇(τ, αar(t))). We then evalu-

ate q(τ, αar(t)) at τ = β(t) = t− tp.

Observe that at each time t, the position (or joint angles) of static raccordation in

(Equation 7.15) stays in its corresponding orbit but it does not satisfies the kinematic con-

straints as

vsr(t) =
d

dτ
q(β(τ), αar(t))|τ=t (7.16)
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whereas
d

dt
qsr(t) = vsr(t) +

∂qsr
∂α

(β(t), αar(t))α̇ar(t) (7.17)

and so q̇sr(t) 6= vsr(t). Therefore, the static raccordation given by (Equation 7.15) is dy-

namically infeasible.

7.5 Feasible Reference Trajectory Generation via Static Raccordation

In this section, a new raccordation is proposed which can be shown to be dynamically

feasible i.e. satisfying the continuous dynamics. The error in the discrete reset map can be

made arbitrarily small by slowing down the speed of parameter sweeping of αar.

Let the new raccordation be defined as

xtr(t) = (qsr(t), q̇sr(t)) (7.18)

where qsr is the static raccordation.

Sweeping the αar from 0 to 1, the new raccordation is obtained by xtr(t) = (qsr(t), q̇sr(t)),

where this trajectory will be used as a reference trajectory to follow in Sec section 7.6. Note

that there exist a finite set with 0 ∈ {t1, t2, ..., tn} from the construction of β(t), such that

xtr(t
−
i ) ∈ G for all i. Also in the open interval (ti, ti+1) we have that xtr(t) ∈ D and

xtr(t) 6∈ G ∪∆(G).

7.5.1 Continuous Dynamics

We show that the trajectory xtr(t) = (qsr(t), q̇sr(t)) satisfies the continuous dynamics.

First, we check that the holonomic constraints is satisfied. Note that on ti ≤ t ≤ ti+1 we

have

h(qsr(t)) = h(q(β(t), αar(t))) = 0 ∀t (7.19)
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because q(τ, αar(t))|τ=β(t) is obtained from the trajectory optimization (Equation 7.14).

Differentiating (Equation 7.19) we see

dh

dq
(qsr)q̇sr = 0 (7.20)

dh

dq
(qsr)q̈sr +

d

dt

(
dh

dq
(qsr)

)
q̇sr = 0 (7.21)

Thus, we see that (qsr(t), q̇sr(t)) satisfies (Equation D2). To see that (qsr, q̇sr) satisfies

(Equation D1), we need to find utr(t) and λtr(t) such that

M(qsr)q̈sr + C(qsr, q̇sr) +G(qsr) =

[
B dh

dq

>
(qsr)

]utr
λtr


But, since the system is fully actuated the matrix

[
B, dh

dq

]
has full rank, and we can solve

for utr and λtr. Thus xtr = (qsr, q̇sr) satisfies the continuous dynamics (Equation D1) -

(Equation D2). We see that the trajectory xtr = (qsr(t), q̇sr(t)) can be made to satisfy the

continuous dynamics in ti ≤ t ≤ ti+1.

7.5.2 Discrete Dynamics

We now examine whether xtr(t) satisfies the discrete dynamics on this discrete set {t1, t2, ..., tn}.

Theorem 7.5.1. With xtr(t) = (qsr(t), q̇sr(t)), let ti be a point such that xtr(t−i ) ∈ G. Then

the following is true:

1. The position component of xtr is invariant under reset at ti, i.e.

π1qsr(t
+
i ) = π1∆q

(
qsr(t

−
i )
)
.

2. The error for the velocity component e = q̇sr(t
+
i )−∆q̇ q̇sr(t

−
i )→ 0 as α̇→ 0.

Proof. First, note that xtr(t−i ) ∈ G ⇐⇒ xsr(t
−
i ) ∈ G where xsr is from Defini-
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tion 1. We know from (Equation 7.15) that the static raccordation xsr takes values in

O(αar(t)) for each t ∈ [0, R]. Thus xsr(t−i ) ∈ G precisely when limt→t−i
β(t) = T (αar(ti))

,where T (αar) is the period of the orbit O(αar). Since β(t) is reset to zero at ti, we have

limt→t+i
β(t) = 0, and so

qsr(t
+
i ) = lim

t→t+i
q(β(t), αar(t)) = q(0, αar(ti)) (7.22)

holds where q(·, α) is the solution of (Equation 7.14).

On the other hand, t ≤ ti implies that

qsr(t
−
i ) = lim

t→t−i
q(β(t), αar(t)) = q(T (αar(ti))

−, αar(ti)) (7.23)

where T (αar(ti))
− := limε→0+ T (αar(ti))− ε. Now, since O(αar) is a periodic orbit,

π1q(0, αar(t)) = π1∆qq(T (αar(ti))
−, αar(ti)) (7.24)

holds where ∆q is the relabeling matrix. Combining (Equation 7.22) - (Equation 7.24), we

obtain

π1qsr(t
+
i ) = π1∆qqsr(t

−
i ) (7.25)

We have established that the position component of xtr(t) is invariant under the reset map.

Next, we turn to the velocity component q̇sr(t). Looking at (Equation 7.17) we see that

dqsr(t
+
i )

dt
= vsr(t

+
i ) +

∂q

∂α
(0+, αar(ti))α̇(ti) (7.26)

The left limit of q̇sr(t) at ti is

dqsr(t
−
i )

dt
= vsr(t

−
i ) +

∂q

∂α
(T (αar)

−, αar(ti))α̇(ti) (7.27)

We know that because O(αar) is a periodic orbit and because the reset map is fiber wise
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linear on TQ (see (Equation CO3) and (Equation 7.6))

vsr(t
+
i ) = ∆q̇(qsr(t

−
i ))vsr(t

−
i ) (7.28)

This implies that the error

e = q̇sr(t
+
i )−∆q̇(qsr(t

−
i ))q̇sr(t

−
i ) (7.29)

is given by (using (Equation 7.26) - (Equation 7.27))

e =

(
∂q

∂α
(0+, αar(ti))−∆q̇

∂q

∂α
(T (αar)

−, αar(ti))

)
α̇(ti) (7.30)

Since q(t, α) is smooth we can assume a bound on the jacobian ‖ ∂q
∂α

(t, α)‖ for 0 ≤ α ≤ 1,

and 0 ≤ t ≤ T (α). This means that the error e can be made to go to zero by making α̇ go

to zero.

7.6 Dynamic Raccordation

The previous sections dealt with the computation of a reference trajectory, a computa-

tionally intensive process that is done offline. With the reference trajectory at hand, we

use online QP based controllers to track this reference trajectory. This QP based tracking

controller is discussed in the current section. However, before discussing the QP based

controller, we discuss our implementation on how to track xtr(t) = (qsr(t), q̇sr(t)).

7.6.1 Tracking Control Scheme

Let xtr(t) be the reference trajectory obtained from Sec section 7.5. Suppose that the

switching times are given by {t1, t2, ..., tn} such that xtr(t−i ) ∈ G, xtr(t) ∈ D and xtr(t) 6∈

G∪∆(G) whenever t ∈ (ti, ti+1) for all i. Observe that there are n steps in the raccordation.

Since the dynamics are hybrid, there are no guarantees that the actual switching time, is
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Robot Model

Foot Impact Detector

Tracking Controller

If Foot Impact :

Reference Trajectory

(CLF-QP)

Current Step Index

Figure 7.3: Schematic of Tracking Control Architecture. Given the current step i, qsr(t) for
ti ≤ t ≤ ti+1 is given as a reference trajectory to the CLF-QP.

matched to the above prescribed switching time. In this section, we propose an architecture,

to select the appropriate reference step to follow despite mismatches in switching time.

Our desired output is

yr(t) = Hqr(t) +Hbias (7.31)

Following the methodology proposed in [67], we now construct a (time dependent)

Control Lyapunov Function (CLF) and construct a feedback controller uqp(q, q̇, t) to de-

crease it by solving a Quadratic Program (QP) at each state (q, q̇). Let the output coordi-

nates be defined as η, and satisfies

η(q, q̇, t) =

η1

η2

 =

 y(q)− yr(t)

ẏ(q, q̇)− ẏr(t)

 . (7.32)
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We know that the feedback linearization control

ufl(q, q̇, t) =− LgLfη−1
1 (q, q̇, t)

(
L2
fη1(q, q̇, t)+

d

dt

∂η1

∂t
(q, t) +Kpη1 +Kdη̇1

)
(7.33)

yields the dynamics

η̇ = Aη (7.34)

when (q, q̇) satisfies the continuous dynamics and

A =

 0 I

−Kp −Kd

 . (7.35)

whereKp and Kd are positive gains. Since the system (Equation 7.34) is exponentially

stable, we can guarantee that η → 0 under (Equation 7.33) to succesfully achieve tracking.

This shows the existence of the Control Lyapunov Function (CLF).

Now, we use (Equation 7.34) to construct a Control Lyapunov Function (CLF) for the

system. Let P solve the Lyapunov Equation

A>P + PA = −Q (7.36)

and

Iε =

εI 0

0 I

 . (7.37)

Define

Vε(q, q̇, t) = η>IεPIεη (7.38)

Then Vε is a valid one parameter family of CLFs dependent on ε [67] which determines the

convergence rate.
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Among many benefits of using online CLF-QP, our main objective to use the optimiza-

tion framework is to include ground contact force constraints and input bounds as a part of

state feedback control law. Therefore, the cost function is formulated such that it allows

to check if the current feedback linearization controller allows dynamically feasible con-

tact force constraints and input bounds (if not find a nearby controller which are feasible).

Hence the cost function is chosen as J(u) = (u − ufl(q, q̇, t))2. Let the free parameter in

the numerical optimization program be p = [q̈, u, λ]>.

This objective is quadratic in p, i.e (u−ufl(q, q̇, t))2 = 1
2
p>Hobj(q, q̇, t)p+F>obj(q, q̇, t)p

and the dynamics constraints in (Equation D1) - (Equation D2) can be formulated as equal-

ity constraints cdyn(q, q̇)p = ddyn(q, q̇) for some cdyn(q, q̇) ∈ R11×16 and ddyn(q, q̇) ∈ R11.

The constraints for ground forces (Equation D3) - (Equation D5) can be written as cgrfp ≤

dgrf for some constant cgrf ∈ R5×16 and dgrf ∈ R5. The constraints for CLF is given by

∂Vε
∂q

q̇ +
∂Vε
∂q̇

q̈ +
∂Vε
∂t
≤ −γclfεVε (7.39)

can be written as cclf(q, q̇, t)p ≤ dclf(q, q̇, t) where cclf(q, q̇) ∈ R1×16 and dclf ∈ R. The

input saturation constraints−umax ≤ u ≤ umax can be written as csatp ≤ dsat where csat ∈

R2×16 and dsat ∈ R2. Finally, the overall Control Lyapunov Function based Quadratic

Program (CLF-QP) [67] is formulated as

p∗(q, q̇, t) = arg min
p

1

2
p>Hobj(q, q̇, t)p+ F>obj(q, q̇, t)p

s.t. cdyn(q, q̇)p = ddyn(q, q̇)

cgrfp ≤ dgrf

cclf(q, q̇, t)p ≤ dclf(q, q̇, t)

csatp ≤ dsat (7.40)
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(a) Average speed (b) Step length

Figure 7.4: Average speed and step length vs number of steps

The applied feedback control is a function of (q, q̇) and is given by,

uqp(q, q̇, t) = πup
∗(q, q̇, t) (7.41)

where πu is the projection of p onto u. This QP must be solved at each step of the ode

integration for all (q, q̇). The solution of the hybrid system (Equation D1) - (Equation D5)

undergoing impacts (Equation 7.5) with the control input uqp(q, q̇, t) is denoted xd(t) =

(qd(t), q̇d(t)) and is called the dynamic raccordation.

7.6.2 Results

In this section, we demonstrate the raccordation method in simulation. The parameter

vl = 0.40 m/s and vu = 0.85 m/s in (Equation 7.10). The parameter dl = 0.15 m and

du = 0.20 m in (Equation 7.11). Varying 0 ≤ α ≤ 1 gives us a variety of gaits with varying

average walking speeds and step lengths. The raccordation interval R was chosen to be 4

seconds. The monotonic function αar(t) was selected based on the area law, according

to [65]. The position component of the reference trajectory qsr(t) was computed which

involves solving a very large number of trajectory optimization problems.

The solution of the hybrid system (where uqp(x, t) is obtained from the CLF-QP given

by (Equation 7.40)) is denoted as xd(t) = (qd(t), q̇d(t)) (the dynamic raccordation). The
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Initial Orbit
Transition
Final Orbit

(a) phx(m) (b) ṗhx(m/s) (c) phy(m)

(d) θst(rad) (e) θsk(rad) (f) θsa(rad)

(g) θnst(rad) (h) θnsk(rad) (i) θnsa(rad)

Figure 7.5: Plot of joint coordinates for transitions between the orbits O(0) and O(1).

initial orbit consists of the first three steps and is depicted in blue. The final orbit consists

of the last three steps and is depicted in red, the transition steps are N = 14 depicted in

green. The total number of steps when we include 3 steps of the initial and final orbit as

seen in Figure 7.4. The average speed of xd(t) changes gradually from vl = 0.4 m/s to

vu = 0.85 m/s. Similarly the step length of xd(t) changes from dl = 0.15 m to du = 0.20

in Figure 7.4.

105



𝑞𝑠𝑓𝑒𝑚
𝑞𝑛𝑠𝑓𝑒𝑚

𝑞𝑡𝑜𝑟

𝑞𝑛𝑠𝑘
𝑞𝑠𝑘

𝜆

ℎ𝑠𝑓 𝑞 = 0

ℎ𝑛𝑠𝑓 𝑞

Ground

Figure 7.6: Schematic of the planar underactuated walking robot

7.7 Extension to Underactuated Bipeds

We consider the case where the robot is underactuated. Shown in Figure 7.6 is a walking

robot with point feet. As a result the robot is underactuated since it does not have an ankle

and does not have direct control of the angle of the tibia with respect to the ground. More

concretely, we have

rank(B) < dim(Q)− number of holonomic constraints

where B is the actuation matrix and Q is the configuration space.
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7.7.1 Correction to the static raccordation

We saw in § 7.4.1 that the static raccordation does not respect kinematic considerations.

Namely, from (Equation 7.17) we know that

d

dt
qsr 6= vsr.

Thus, the static raccordation cannot satisfy the dynamics equations for bipedal robots since

they have second order dynamics. Recall from § 7.4.1 that the static raccordation can

be split up into steps as depicted in Figure 7.2. Thus we seek to solve a sequence of

optimization problems to correct each step of the static raccordation, i.e. find a dynamically

feasible trajectory as close as possible to the static raccordation. We would thus like to set

up an optimal control problem to achieve this. For what follows below we denote by

xiref(t) =

qiref(t)

q̇iref(t)

 (7.42)

the reference of the ith step of the static raccordation. To this end, we formulate the fol-

lowing optimization problem.

minJ =

∫ T i

0

(x− xiref(t))
>Q(x− xiref(t))dt+ (x− xiref(T

i))>Qf (x− xiref(T
i)) (7.43)
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subject to

q(0) = qiref(0) (7.44)

q̇(0) = q̇init (7.45)

qi+1
ref (0) = ∆qq(Ti) (7.46)

‖q̇i+1
ref (0)−∆q̇(q(T

i))q̇(T i)‖ < ε (7.47)

Robot Dynamics : (Equation D1)− (Equation D5),

(Equation CO1)− (Equation CO2) (7.48)

The (Equation 7.44) is the initial condition for the joint position. (Equation 7.45) is

the initial condition for the joint velocity. Here, q̇init is an initial condition provided to the

optimization as follows: for the first step of the static raccordation, q̇init = q̇sr(0). For all

other subsequent steps,

q̇init = ∆q̇(qprev(T i))q̇prev(T i) (7.49)

where qprev(t) and q̇prev(t) are the solutions of the optimal control problem (Equation 7.43)

- (Equation 7.48) obtained in the preceding step. This serves to ensure that stitching to-

gether the solutions of these optimization problems across multiple steps results in a dy-

namically feasible trajectory that also respects the discrete dynamics of the hybrid system.

(Equation 7.46) - (Equation 7.47) are final constraints on the trajectory. (Equation 7.47) is

formulated as an inequality constraint to avoid infeasibility of the optimal control problem.

Finally (Equation 7.48) includes the robot dynamics (the continuous dynamics of the hy-

brid system). Stitching together the trajectories of the various steps results in a dynamically

feasible trajectory of the hybrid system.

Remark 7.7.1. The optimization problem (Equation 7.43) - (Equation 7.48) obtains trajec-

tories that satisfy the continuous dynamics for a single step. The initial and final boundary

constraints, serve to ensure that all the discrete reset maps are satisfied and the trajecto-

108



ries can be stitched together. However, it is also possible to formulate a (larger) optimal

control problem that includes the full dynamics across multiple steps, and have the cost

(Equation 7.43) summed over multiple steps. This approach is expected to yield trajecto-

ries closer to the static raccordation. We follow the single step approach as it is cheaper

computationally.

7.7.2 Tracking the Reference

Let the continuous dynamics of the robot be represented as

ẋ = f(x, u) (7.50)

Given a dynamically feasible reference trajectory (xref(t), uref) we can linearize around

the trajectory :

˙δx =
∂f

∂x

∣∣∣∣
xref(t),uref(t)

δx +
∂f

∂u

∣∣∣∣
xref(t),uref(t)

δu (7.51)

We can stabilize the trajectory via Time Varying Linear Quadratic Controller (TV-LQ):

minJ =

∫ Tp

0

(δx)>Q(δx) + (δu)>R(δu) dt+ (δx)>Qf (δx) (7.52)

subject to

˙δx = A(t)δx+B(t)δu (7.53)

where

A(t) =
∂f

∂x

∣∣∣∣
xref(t),uref(t)

(7.54)

B(t) =
∂f

∂u

∣∣∣∣
xref(t),uref(t)

(7.55)
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The optimal solution is :

δu(δx, t) = −R−1(t)B>(t)P (t)δx (7.56)

−Ṗ (t) = P (t)A(t) + A>(t)P (t)− P (t)B(t)R−1(t)B>(t)P (t) (7.57)

The final closed loop control is given by

u(x, t) = uref(t) + δu(δx, t) (7.58)

= uref(t)−R−1(t)B>(t)P (t) (x− xref(t)) (7.59)

7.7.3 Results

In Figure 7.7 we show the raccordations for the planar underactuated robot by following the

above mentioned approach. The black dotted lines in the figure represents the static raccor-

dation. However, we know that it does not satisfy the dynamics. The blue, green and red

curves represent the trajectories of the hybrid system under the control law (Equation 7.59).

The blue curve represents the initial walking gait. The red curve represents the final walk-

ing gait. The green curve represents the trajectories during the transition.
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Figure 7.7: Plot of raccordations for the under-actuated robots.
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CHAPTER 8

OPTIMAL TRANSITIONS BASED ON PARTIAL HYBRID ZERO DYNAMICS

8.1 Introduction

In this chapter, we focus primarily on the energy efficiency of locomotion. It is well known

that existing methods based on zero moment point methods are not energy efficient. In this

chapter, we utilize the partial hybrid zero dynamics (PHZD) framework [68] to generate

energy efficient stable periodic walking gaits. A popular measure for energy efficiency

for bipedal robots is the mechanical cost of transport [69]. We generate periodic orbits

on the PHZD manifold by minimizing cost of transport. The solution to this optimization

problem actually gives an infinite family of walking gaits indexed by walking speed on the

PHZD manifold [68]. However, these gaits are not energy efficient as we demonstrate with

an empirical simulation study. We show the importance of optimizing a PHZD manifold

for each walking speed as it significantly improves energy efficiency, especially during

transitions. Once again, we focus only on walking gaits.

8.2 Partial Hybrid Zero Dynamics Optimization

We discuss in this section the optimization problem involved in finding a continuous fam-

ily of stable periodic orbits, based on the PHZD framework. We first discuss about the

controller design and then we discuss the optimization problem involved.

8.2.1 Controller Design

The controller on the robot seeks to drive certain outputs to zero as we now describe. We

define

z1(q) = phx − pcom
sfx (q) (8.1)

112



to be the horizontal displacement of the hip with respect to stance foot center of mass. We

have the relative degree one output

y1(q, q̇, vf ) = z2(q, q̇)− vf (8.2)

where z2(q, q̇) represents the hip velocity given by

z2(q, q̇) =
∂z1

∂q
(q)q̇ (8.3)

and vf ∈ R represents a desired fixed walking speed. The (vector) relative degree two

outputs are

y2(q) = ya(q)− yd(τ(q), α) (8.4)

where ya(q) represents the “actual outputs” given by

ya(q) =



π
2

+ θnst − θnsk + θnsa

θsk

θnst − θst

θnsk


(8.5)

and yd(t, α) represent the desired outputs given by Bezier polynomials

yd(t, α) =
M∑
k=1

αk
M !

k!(M − k)!
tk(1− t)M−k (8.6)

where each αk is a 4× 1 vector and α = {αk}Mk=1 is a column vector of all the αk stacked

together and the parameter M = 6. τ(q) is monotonic throughout a step and is known as

the phase variable and is given by

τ(q) =
z1(q)− z+

1

z−1 − z+
1

(8.7)
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where the parameters z+
1 and z−1 are chosen to ensure that τ(q) ∈ [0, 1] throughout a step,

i.e., they are chosen based upon the initial and final position of the robot during a step.

With these outputs the feedback control

uε(q, q̇, α, vf ) = A−1
α (q, q̇)


 0

L2
fy2(q, q̇)


+

 Lfz2(q, q̇)

2εLfy2(q, q̇)

+

ε (z2(q, q̇)− vf )

ε2y2(q)


 (8.8)

where the decoupling matrix

Aα(q, q̇) =

 Lgz2(q, q̇)

LgLfy2(q, q̇, α)

 (8.9)

yields the output dynamics

ẏ1 + εy1(q, q̇, vf ) = 0 (O1)

ÿ2 + 2εẏ2(q, q̇, α) + ε2y2(q, α) = 0. (O2)

Here Lfy represents the lie derivative of the output y along the vector field f . The pa-

rameter ε serves as a controller gain parameter and serves to control the rate of the output

to zero. Because we have rendered these dynamics stable, the solutions converge to the

(1-dimensional) surface defined by these functions being identically zero, i.e., to the full

zero dynamics surface:

FZα =
{

(q, q̇) ∈ TQ
∣∣∣y1(q, q̇, vf ) = 0,

y2(q, α) = ẏ2(q, q̇, α) = 0
}

(8.10)
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We are interested in varying the desired velocity, vf , and thus we wish to consider the

surface where the output y1 is allowed to vary but the output y2 is identically zero. This is

termed the partial zero dynamics surface and given by:

PZα =
{

(q, q̇) ∈ TQ
∣∣∣y2(q, α) = ẏ2(q, q̇, α) = 0

}
(8.11)

The control given by (Equation 8.8) renders both FZα and PZα forward invariant. How-

ever, in the presence of impacts, we only enforce invariance of PZα as discussed in the

optimization problem below. We note that on PZα, the dynamics of the system

ẋ = f(x) + g(x)uε(x, α, vf ) (8.12)

can be represented by a second order system

ż1 = z2

ż2 = −ε(z2 − vf ) (8.13)

and the state (q, q̇) can be reconstructed as

(q, q̇) = (φPZ(z1), ψPZ(z1)z2) (8.14)

Finally, we note that given (z−1 , z
−
2 ) ∈ G ∩ PZα, we can obtain the equivalent (q−, q̇−) ∈

G ∩ PZα according to (Equation 8.14), then apply the reset map to obtain (q+, q̇+) =

∆(q−, q̇−) and finally (z+
1 , z

+
2 ) = (z1(q+), z2(q+, q̇+)) where z1(q) and z2(q, q̇) are given

in (Equation 8.1) and (Equation 8.3). We thus obtain:

(
z+

1 , z
+
2

)
= ∆PZ

(
z−1 , z

−
2

)
(8.15)
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We have thus constructed a reduced order two dimensional hybrid system (assuming hybrid

invariance) inside the full hybrid system with continuous dynamics given by (Equation 8.13)

and reset map given by (Equation 8.15).

8.2.2 Optimization

With the controller design in place, we now discuss an optimization problem to find a PZα

that contains a periodic orbit that is optimal with respect to a prescribed performance index,

subject to physical constraints. The performance index is taken as (motivated by the cost

of transport [69])

J1 =
1

mgd

∫ T

0

u>u dt (8.16)

where m is the total mass of the robot, g is the acceleration due to gravity and d is the step

length, i.e the total horizontal distance traveled by the non stance foot over a step. We also

would like to obtain parameters α satisfying

∆(G ∩ PZα) ⊂ PZα (N1)

This makes the partial zero dynamics surface hybrid invariant, thereby creating partial

hybrid zero dynamics (PHZD). As discussed in [68], we only enforce impact invariance

of the relative degree two outputs, since there is a discontinuous change in the cartesian

velocities of the links across impacts. In contrast, the cartesian positions of the links are

always continuous. We thus allow for change in the relative degree one outputs (which is

the hip velocity) to account for this. To ensure the trajectory begins in PZα we enforce

y2(q(0), α) = ẏ2(q(0), q̇(0), α) = 0 (N2)

We also have the boundary condition

(q(T−), q̇(T−)) ∈ G (N3)
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i.e the switching surface is reached at the end of a step. Finally, we also have domain

constraints which are inequality constraints

(q(t), q̇(t)) ∈ D, t ∈ [0, T ] (N4)

The optimization problem solved is

min
α
J1(α, vf )

s.t. (Equation D1)− (Equation D5),

(Equation O1)− (Equation O2),

(Equation N1)− (Equation N4) (8.17)

Note that we did not explicitly enforce periodicity constraints, however by [68] for large

ε in (Equation 8.8) there will be a stable periodic orbit in PZα. The end result of the

optimization problem is a set of coefficients α that result in stable walking.

Remark 8.2.1. It is important to note that the parameter vf given in (Equation O1) is

a user defined parameter that determines how fast the robot travels. The solution α∗ to

(Equation 8.16) depends on vf . Different choices of vf would yield different Bezier coeffi-

cients α∗. We denote the solution as α(vf ) and the resulting surface as PZα(vf ) henceforth.

8.3 Transitions between Orbits

In this section, we first discuss transitions between periodic orbits that live on a fixed sur-

face PZα(vf ) where vf is a fixed desired walking speed. Subsequently, we discuss transi-

tions between periodic orbits that are in distinct PHZD surfaces.
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Figure 8.1: Sketch of Transitions on PZα(vf ). Yellow lines are Periodic Orbits and orange
line is transition.

8.3.1 Transitions between orbits on same PHZD

We assume that we can solve (Equation 8.17) for a user defined fixed vf obtaining a fixed

optimal α(vf ) and hence a PHZD surface PZα(vf ). However, by results of [68], we get an

infinite family of stable periodic orbits on PZα(vf ) for different values of walking speeds

vd (which replaces vf in (Equation 8.2) but α(vf ) in (Equation 8.4) is fixed as before) as

depicted in Figure 8.1. We denote such periodic orbits byO(vd, α(vf )). Two such periodic

orbits O(v1, α(vf )) and O(v2, α(vf )) are depicted in Figure 8.1 for different velocities v1

and v2. The orange line depicts a transition between these orbits. Given the two distinct pe-

riodic orbits O(v1, α(vf )) and O(v2, α(vf )) on PZα(vf ), we discuss an optimization prob-

lem to transition between them.

To obtain transitions, we use the feedback control given by (Equation 8.8) where vf ∈
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R is replaced by a function of time vd(t) which result in the dynamics on PZα(vf ) given by

ż1 = z2 (8.18)

ż2 = −ε(z2 − vd(t)) (8.19)

where the full state can still be reconstructed according to (Equation 8.14). Hence, we

can view (Equation 8.18) as a controlled hybrid system [70] with control input vd(t) where

the reset map is still given by (Equation 8.15). This control input enables us to transition

between any two periodic orbits on PZα(vf ), while still staying in PZα(vf ). We want to

transition between orbits in N steps in an optimal manner, where N is a user defined

parameter. We formulate the objective function

J2 =
1

mgdtotal

∫ tN

t0

φ(t) dt (8.20)

where N represents the number of steps in the transitions, dtotal represents the total hori-

zontal distance traveled by the non stance foot overN steps, and φ(t) represents the control

effort given by

φ(t) = uα(vf )(z1(t), z2(t), vd(t))
>uα(vf )(z1(t), z2(t), vd(t)) (8.21)

The control uα(vf )(z1(t), z2(t), vd(t)) is obtained from (Equation 8.14) and (Equation 7.33).

The states (z1(t), z2(t)) are continuous at all times except at a discrete set of times denoted

{tk}, 1 ≤ k ≤ N . At these impact times we need to have the discrete reset map

z1(t+k )

z2(t+k )

 = ∆PZ


z1(t−k )

z2(t−k )


 (T2)
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We also impose continuity of vd(t) at the points of impact, namely

vd(t
+
k ) = vd(t

−
k ) (T3)

for 0 ≤ k ≤ N where vd(t−0 ) = v1 represents the initial walking speed and vd(t+N) = v2

represents final walking speed. We also impose the boundary conditions ensuring we start

at the initial orbit and end at the final orbit.

(z1(t0), z2(t0)) ∈ O (v1, α(vf )) (T4)(
z1(t+N), z2(t+N)

)
∈ O (v2, α(vf )) (T5)

Hence, the overall optimization problem solved is

min
vd(t)
J2(vd(t))

s.t (Equation 8.18)− (Equation 8.19)

(Equation T2)− (Equation T5) (8.22)

Remark 8.3.1. We note that since (Equation 8.18)-(Equation 8.19) is an exponentially sta-

ble linear system, appropriately ramping vd(t) from v1 to v2 will effect a transition from

O(v1, α(vf )) to a neighborhood of O(v2, α(vf )) in N steps and it would do so exponen-

tially fast. However, it is not optimal with respect to J2(vd(t)) which we illustrate in the

subsequent sections.

8.3.2 Transition between orbits on different PHZD surfaces

The periodic orbit O(vf , α(vf )) ⊂ PZα(vf ) is optimal w.r.t J1(α, vf ) by definition of

α(vf ) in subsection 8.3.1. However, the orbits O(vd, α(vf )) ⊂ PZα(vf ) are not optimal

for J1(α, vd) where vd 6= vf (see Remark 8.2.1). This motivates optimizing several PHZD

surfaces PZα for various walking speeds vd and constructing transition controllers between
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Figure 8.2: Sketch of connecting PHZD surface PZβ between PZα(v1) and PZα(v2).

them. This is pictorially depicted in Figure 8.2 where the yellow lines denote periodic or-

bits on optimized surfaces PZα(v1) and PZα(v2). The periodic orbits on these surfaces are

denoted by O(v1, α(v1)) and O(v2, α(v2)). We connect PZα(v1) and PZα(v2) over a single

step. The objective function used is given by J1 given in (Equation 8.16) where u is given

in (Equation 7.33) is a function of β (the bezier coefficients) and vd(t). This means that

on the connecting surface PZβ , the dynamics evolve as in (Equation 8.18). However, the

constraint (Equation N1) is replaced by

∆(G ∩ PZα(v1)) ⊂ PZβ (8.23)

∆(G ∩ PZβ) ⊂ PZα(v2) (8.24)
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The optimization problem solved is

min
β,vd(t)

J1(β, vd(t))

s.t (Equation D1)− (Equation D5),

(Equation O1)− (Equation O2),

(Equation 8.23)− (Equation 8.24),

(Equation N3)− (Equation N4) (8.25)

Optimizing (Equation 8.25) results in a (optimized connecting) PHZD surface denoted

PZβ(v1,v2) shown in Figure 8.2. To implement (Equation 8.24), we do the following, we

first impose the constraint (q(0−), q̇(0−)) ∈ G ∩ PZα(v1) by



y2(q(0−), α(v1))

pcom
nsfy(q(0−))

h(q(0−))

dy2(q(0−), α(v1))q̇(0−)

dh(q(0−))q̇(0−)


= 0 (8.26)

where h is the holonomic constraints and pcom
nsfy defines the switching surface. The con-

straints (q(0+), q̇(0+)) = ∆(q(0−), q̇(0−)) are added, i.e., (q(0+), q̇(0+)) is related to

(q(0−), q̇(0−)) by the reset map and the transversality condition dpcomnsfy(q(0
−))q̇(0−) < 0

is also added. Finally we add

 y2(q(0+), β)

dy2(q(0+), β)q̇(0+)

 = 0 (8.27)

These set of constraints ensure ∆(G ∩PZα(v1)) ⊂ PZβ by Theorem 1 of [68]. By a similar

set of constraints we can achieve ∆(G ∩ PZβ) ⊂ PZα(v2).
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Figure 8.3: Comparison of objective function J1 for the periodic orbits O (vd, α(vd)) i.e.
J1(uα(vd)(z1, z2, vd)) (blue) and O (vd, α(vf )) ⊂ PZα(vf ) i.e. J1(uα(vf )(z1, z2, vd)) (red)
respectively. vf = 0.3 m/s is fixed.

8.4 Results

This section provides the simulation results for the 5 DOF robot explained in § 7.2. We

first compare the performance index J1 of the orbits O(vd, α(vf )) i.e. the cost of transport

given by J1(uα(vf )(z1, z2, vd)) (depicted in Figure 8.1) and the periodic orbitsO(vd, α(vd))

i.e, J1(uα(vd)(z1, z2, vd)) (depicted in Figure 8.2) for different values of vd. In this paper,

we chose vf = 0.3 m/s and solved (Equation 8.17) to obtain PZα(vf ). The performance

index of these orbits is shown in red in Figure 8.3. We also solved (Equation 8.16) for

different vd to obtain the orbits O(vd, α(vd)) shown in blue in Figure 8.3. We see that

the performance index J1 for O(vd, α(vf )) gets larger as vd further deviates from vf as
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Table 8.1: Comparison of Performance Metrics for 3 step Transition Controllers

Speed Transition
Performance Index Performance Improvement

J2(u1) J2(u2) J2(u3) J2(u1)−J2(u2)
J2(u1)

× 100 J2(u2)−J2(u3)
J2(u2)

× 100

0.15→ 0.20 m/s 0.9862 0.7062 0.3033 28.3908 57.0518
0.15→ 0.22 m/s 0.9687 0.7297 0.3544 24.6650 51.4321
0.15→ 0.24 m/s 0.9864 0.7849 0.4138 20.4228 47.2799
0.15→ 0.26 m/s 1.0351 0.8662 0.4993 16.3183 42.3574
0.15→ 0.28 m/s 1.1123 0.9791 0.5961 11.9716 39.1176
0.15→ 0.30 m/s 1.2244 1.1251 0.7116 8.1151 36.7523

0.30→ 0.25 m/s 0.3346 0.3149 0.2681 5.8885 14.8619
0.30→ 0.23 m/s 0.3835 0.3509 0.3101 8.5029 11.6272
0.30→ 0.21 m/s 0.4444 0.4128 0.3519 7.1226 14.7529
0.30→ 0.19 m/s 0.5327 0.4962 0.4324 6.8565 12.8577
0.30→ 0.17 m/s 0.6540 0.6026 0.5308 7.8580 11.9150
0.30→ 0.15 m/s 0.7989 0.7311 0.6434 8.4821 11.9956

mentioned in Remark 8.2.1.

Definition of Performance Index

In this paper, all the controllers are designed to achieve transitions in N = 3 steps. The

performance index used is

J2 =
1

mgdtotal

∫ T

0

u>u dt (8.28)

where dtotal is the total step length of the robot. Here [0, T ] is defined such that it is ex-

actly the duration of five steps of the robot, the first step being the initial periodic orbit,

the subsequent three steps being the transitions and the fifth step being the final orbit.

The motivation for including one step of the initial and final orbit in the performance in-

dex calculation is to enable us to compare transitions O(v1, α(vf )) → O(v2, α(vf )) and

O(v1, α(v1))→ O(v2, α(v2)).
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Initial Orbit
Step 1
Step 2
Step 3
Final Orbit

(a) phx (b) ṗhx (c) ṗhy vs phy

(d) θ̇st vs θst (e) θ̇sk vs θsk (f) θ̇sa vs θsa

(g) θ̇nst vs θnst (h) θ̇nsk vs θnsk (i) θ̇nsa vs θnsa

Figure 8.4: Plot of states for 3 step transitions from 0.15 m/s to 0.30 m/s

8.4.1 Comparison between Transition Controllers on PZα(vf )

In Remark 8.3.1, we stated that we could use a linear ramp to transition betweenO(v1, α(vf ))

andO(v2, α(vf )) since the dynamics of the robot on PZα(vf ) is an exponentially stable sys-

tem given by (Equation 8.18). That is given initial and final velocities v1 and v2, the control

input is v1
d(t) = c1t + c2 is applied to the system (Equation 8.18) such that at time t = ti

we have v1
d(ti) = v1 and after three steps of transitions we have v1

d(tf ) = v2 where [ti, tf ]

is the transition duration. The full control is given by u1(t) = uα(vf )(z1, z2, v
1
d(t)) where

z1(t) and z2(t) are the solutions of (Equation 8.18) with v1
d as a control input.

Solving (Equation 8.22) gives the optimal input denoted v2
d(t) that transfers the system

125



(a) v1
d(t) (b) v2

d(t) (c) v3
d(t)

(d) u1(t) (e) u2(t) (f) u3(t)

Figure 8.5: Plot of reduced control vid(t) (top row) and full control ui(t) (bottom row) ,
i = 1, 2, 3.

from O(v1, α(vf )) toO(v2, α(vf )) subject to being in PZα(vf ) in 3 steps. Given the control

v2
d(t), we can get the full control u2(t) = uα(vf )(z1, z2, v

2
d(t)). The performance index J2

given in (Equation 8.28) is evaluated on both u1 and u2. The results are illustrated in Table

Table 8.1. We see that for increasing transitions (v1 < v2), there is a lot of improvement

when the gap between v2−v1 is small but it decreases with increasing gap between v2−v1.

For decreasing transitions (v1 > v2). In all cases the performance improvement is larger

than 5 percent.

8.4.2 Comparison between Optimal Transition Controllers on PZα(vf ) and Transition

Controllers connecting different PHZD surfaces

We obtain one step optimal controllers to transition between orbitsO(v1, α(v1)) ⊂ PZα(v1)

andO(v2, α(v2)) ⊂ PZα(v2) by solving (Equation 8.25) to obtain β(v1, v2) and a vd(t). The

full control over one step is then uβ(v1,v2)(z1, z2, vd(t)) We then compose these controllers

to obtain multi step transitions. For example, to obtain a transition 0.15 → 0.30 m/s, we
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obtain one step transition controllers 0.15→ 0.20 m/s , 0.20→ 0.25 m/s and 0.25→ 0.30

m/s and execute these controllers one after the other. The resulting net transition controller

(over all the three steps) is denoted u3(t) and the corresponding reduced controller is v3
d(t).

The resulting performance index J2 given in (Equation 8.28) is evaluated to obtain J2(u3).

This approach was followed for several different cases and is illustrated in Table Table 8.1.

We see that for increasing transitions there is a tremendous improvement of J2(u3) over

J2(u2). The reason is because u2 attempts to transition fromO(v1, α(vf ))→ O(v2, α(vf )).

ButO(v1, α(vf )) has a very high performance index J1 for v1 = 0.15 m/s (see Figure 8.3).

On the other hand vf = 0.30 m/s so for decreasing transitions (0.30→ 0.15 m/s for exam-

ple) the performance improvement is comparatively lower. In all cases the improvement

was over 11.91 percent.

In Figure 8.4 we show a plot of transitions in 3 steps from 0.15 → 0.30 m/s with the

control u3(t). The blue curves represent the initial orbit, the red curves represent the final

orbit and all other colors represent a step in the transitions. As seen in Figure 8.4(b), the hip

velocity ṗhx = z2(q, q̇) given in (Equation 8.3) changes from about 0.15 m/s to 0.30 m/s.

The corresponding u3(t) ∈ R5 is plotted in Figure 8.5(f). The reduced order control v3
d(t) is

plotted in Figure 8.5(c). As a comparison, u1(t) and u2(t) are also plotted in Figure 8.5 that

achieve transitions 0.15→ 0.30 m/s, along with their corresponding reduced controllers.

8.4.3 Solving the Optimization Problems

All the optimal control problems (Equation 8.17), (Equation 8.22) and (Equation 8.25),

were solved numerically using the method of direct collocation. The method works by

considering the state and control as polynomials and enforcing dynamics and path con-

straints at a discrete set of points. This results in a finite dimensional Non Linear Program

(NLP) that can be solved by solvers such as IPOPT [62]. The FROST toolkit achieves this

transcription and is described in detail in [33]. We used the FROST toolkit throughout this

chapter.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

This thesis focused on applying the Gluskabi raccordation frameowrk to synthesize tran-

sitions between periodic motions of smooth nonlinear systems and hybrid systems. The

kernel method was used in the context of hopping gaits and the image method was used

for walking gaits. The kernel method typically involves solving a single optimal control

problem which can be readily related to an abstract notion of gracefulness by minimizing

a carefully chosen objective. However, the kernel method could become numerically chal-

lenging to perform as the raccordation interval increases, the number of hopping steps or

walking steps during transition increases, or if the system complexity increases. In contrast,

the image method (typically) involves solving a sequence of (parameterized) optimization

problems to generate a family of periodic orbits (an orbit library). Relatively computation-

ally inexpensive controllers or optimal control problems can be formulated to stay close

to this orbit family while transiting between periodic orbits. However, generating an orbit

library is (currently) computationally intensive and must be done offline and also requires

careful formulation of a parameterized optimal control problem to shape the orbit library.

Future work involves the problem of transitions between types of gaits, i.e. between

walking to running for bipedal robots, or trotting to bounding for quadrupeds. Efforts to

mitigate the computational complexity of solving a single large optimal control problem

(in the case of Kernel method) and a large sequence of optimization problems (in the case

of the Image method) are interesting directions to pursue. We also briefly focused on

energy efficency of locomotion in the final chapter of this thesis. The relation of energy

efficiency of locomotion to a notion of gracefulness (if any) remains to be examined. In

recent years, control barrier functions have emerged as a promising tool to guarantee safety

of the system. The relation of safety and gracefulness is also another direction to pursue.
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APPENDIX A

IMPACT DYNAMICS

In order to make the thesis more self contained, we briefly provide details on the robot

impact dynamics. We follow the derivation provided in [58]. For the purposes of this

derivation, we assume that we can compute a smooth distance function φ(q) that represents

the distance between the two objects. φ(q) = 0 means that the two objects are in contact

and φ(q) > 0 means the objects are not in contact. In the example of the bipedal robot,

φ(q) could represent the height of the non stance foot above the ground. We denote by

J = ∂φ
∂q

. We can write

M(q)q̈ + C(q, q̇) = Bu+ J>(q)λ (A.1)

where λ = 0 when φ(q) > 0 and λ 6= 0 only when φ(q) = 0. Let tc be the first time when

φ(q(tc)) = 0. Then,

∫ t+c

t−c

(
M(q)q̈ + C(q, q̇)

)
dt =

∫ t+c

t−c

(
Bu+ J>(q)λ

)
dt (A.2)

Since M(q), C(q, q̇) and u are constants we have

Mq̇+ −Mq̇− = J>
∫ t+c

t−c

λdt (A.3)

multiplying both sides by J(q)M−1, we get

Jq̇+ − Jq̇− = JM−1(q)J>
∫ t+c

t−c

λdt (A.4)
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On the other hand, after impact we have φ(q(t)) = 0. this means

J(q)q̇+ = lim
t↓tc

d

dt
φ(q(t)) = 0 (A.5)

Using this in (Equation A.4), we get

∫ t+c

t−c

λdt = −
(
JM−1J>

)†
J(q)q̇− (A.6)

Substituting this in (Equation A.3), we get

Mq̇+ =
(
M − J>

(
JM−1J>

)†
J
)
q̇− (A.7)

q̇+ =
(
I −M−1J>

(
JM−1J>

)†
J
)
q̇− (A.8)

we can represent this as

q̇+ = ∆q̇(q)q̇
−. (A.9)

The position variables are continuous across the collisions, namely

q+ = q− = q (A.10)

Remark A.0.1. In the case of bipedal robots, the position variables are also discontinuous

due to relabeling the left and right legs. This means

qrelabel = Rq+ (A.11)

q̇relabel = Rq̇+ (A.12)

where q+ and q̇+ are given by (Equation A.10) - (Equation A.9).

131



Remark A.0.2. q̇+ can also be obtained by solving

M(q) −J>(q)

J(q) 0


 q̇+∫ t+c

t−c
λdt

 =

M(q)q̇−

0

 (A.13)

This can be seen from (Equation A.3)-(Equation A.5). The closed form solution for q̇+ is

given by (Equation A.8).
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