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SUMMARY 

With the exponential increase in the data rate of high-speed serial channels, their 

efficient and accurate analysis and design has become of crucial importance. Signal 

integrity analysis of these channels is often done with the eye diagram analysis, which 

demonstrates jitter and noise of the channel. Conventional methods for this type of analysis 

are either exorbitantly time and memory consuming, or only applicable to linear time 

invariant (LTI) systems. On the other hand, recently advancements in numerical methods 

and machine learning has shown a great potential for analysis and design of high-speed 

electronics. Therefore, in this dissertation we introduce two novel approaches for efficient 

eye analysis, based on machine learning and numerical techniques. These methods are 

focused on the data dependent jitter and noise, and the intersymbol interference. In the first 

approach, a complete surrogate model of the channel is trained using a short transient 

simulation. This model is based on the Polynomial Chaos theory. It can directly and quickly 

provide distribution of the jitter and other statistics of the eye diagram. In addition, it 

provides an estimation of the full eye diagram. The second analysis method is for faster 

analysis when we are interested in finding the worst-case eye width, eye height, and inner 

eye opening, which would be achieved by the conventional eye analysis if its transient 

simulation is continued for an arbitrary amount of time. The proposed approach quickly 

finds the data patterns resulting in the worst signal integrity; hence, in the closest eye. This 

method is based on the Bayesian optimization. Although majority of the contributions of 

this dissertation are on the analysis part, for the sake of completeness the final portion of 

this work is dedicated to design of high-speed channels with machine learning since the 



 xiv 

interference and complex interactions in modern channels has made their design 

challenging and time consuming too. The proposed design approach focuses on inverse 

design of CTLE, where the desired eye height and eye width are given, and the algorithm 

finds the corresponding peaking and DC gain of CTLE. This approach is based on the 

invertible neural networks. Main advantage of this network is the possibility to provide 

multiple solutions for cases where the answer to the inverse problem is not unique. 

Numerical examples are provided to evaluate efficiency and accuracy of the proposed 

approaches. The results show up to 11.5X speedup for direct estimation of the jitter 

distribution using the PC surrogate model approach. In addition, up to 23X speedup using 

the worst-case eye analysis approach is achieved, and the inverse design of CTLE shows 

promising results. 
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CHAPTER 1. INTRODUCTION 

1.1 Objectives 

The problems under consideration in this dissertation are discussed in this chapter. 

Subsequently, the developed solutions are introduced, which includes two novel eye 

analysis methods and an inverse design approach. Next, the prior art is discussed, which is 

followed by the main challenges and contributions of this dissertation. The chapter ends 

with a section on organization of this document. 

1.2 Description of the Problem 

In the past decades the bandwidth of high-speed channels has increased 

exponentially. As frequency of systems increase, it becomes more challenging to avoid 

undesired deviations in the transmitted signal due to amplitude noise and timing jitter. 

Figure 1 shows an example of such deviations. In this figure, the noise shown as Δv causes 

a failure in data transmission if it pushes the signal beyond the threshold voltage of the 

receiver. Besides, the jitter shown as Δt, causes an error if it moves the rising or falling 

edge over the sampling point τ. Error caused by jitter and noise is often measured by bit 

error rate (BER). Additionally, the eye diagram, bathtub curve, and probability distribution 

functions (PDFs) are used to evaluate quality of the signal [1]. In this section we focus on 

jitter; however, a parallel discussion can be applied to noise as well. To study jitter, its 

various causes need to be considered. In general, jitter sources are divided into intrinsic 
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and non-intrinsic. The intrinsic jitter sources are based on physical properties of the 

materials, and the non-intrinsic sources are related to the design parameters. The latter 

includes duty cycle distortion (DCD), crosstalk and intersymbol interference (ISI). 

Amongst them, ISI is a result of memory and capacitive effects in circuits, which is 

challenging to model. On the other hand, jitter can be divided into random and 

deterministic types. Random jitter is mainly caused by intrinsic sources, which can be 

added to the signal in post-simulation with some considerations. The root cause of 

deterministic jitter is effects such as reflection, crosstalk, electromagnetic interference, etc. 

In other words, it is generated by design of the channel. Furthermore, deterministic jitter is 

divided into periodic jitter, bounded uncorrelated jitter, and data dependent jitter (DDJ). 

DDJ depends on the data pattern, and it is caused by DCD and ISI. Different jitter types 

are demonstrated in Figure 2 [1].   

 

Figure 1 – Ideal and noisy signal, showing voltage noise Δv, jitter Δt, and sampling 

point τ. 
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Current simulation methods are not always accurate in capturing the ISI and DDJ; 

thus, in the analysis part of this work we focus on estimating this type of jitter. The 

proposed approaches can be combined with other estimation methods to efficiently predict 

BER. Jitter is often evaluated by deriving an eye diagram. Traditionally, it is done with a 

lengthy transient simulation (transient eye). Although it is straightforward, generating the 

transient eye requires high computational time and memory storage. For instance, if the 

BER is 10-12, it is expected that data transmission of 1012 bits be simulated to observe one 

bit failure. Such a long simulation is not practical for complex circuits. Hence, methods 

based on extrapolation and approximation from a shorter transient simulation (e.g., 1010 

bits) are used, which reduce the accuracy. Furthermore, statistical methods have been 

developed to quickly estimate the eye diagram [2], [3]; however, these methods are only 

 

Figure 2 – Classification of jitter types. 
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applicable to LTI systems. To address these issues, we suggest two new efficient eye 

analysis methods, which are introduced in 1.3 and 1.4, respectively. 

The final portion of this dissertation is dedicated to inverse design of high-speed 

channels. Since data rate of the channels has increased exponentially, their design has 

become more challenging. Designers need to set many design parameters and consider 

several constraints to satisfy the performance criteria, including a low BER. One of the 

critical tasks in this process is design of the equalization, which is often done with feed 

forward equalizer (FFE), decision feedback equalizer (DFE), and continuous time linear 

equalizer (CTLE). FFE and DFE coefficients are often calculated adaptively. Although the 

frequency response of CTLE can be found theoretically, in reality it does not always 

provide a satisfactory result. Therefore, engineers depend on simulating the channel with 

all practical CTLE settings. Unfortunately, this method can be very time consuming. It is 

possible to utilize human tuning or optimization methods; however, the best solution may 

still not be achieved, or several satisfactory possibilities could be ignored due to the nature 

of these algorithms. To address these issues, in 1.5 we introduce an inverse design approach 

to find the CTLE settings, which includes the peaking and DC gain value of CTLE’s 

frequency response.  

1.3 Jitter and Eye Estimation with Polynomial Chaos Surrogate Models 

The first analysis approach is partially based on uncertainty quantification, which 

can be defined as the study of propagation of random variables in a system [4]. This method 
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can be applied to estimation of the data dependent jitter and noise which are a function of 

random input pulses. The most well-known uncertainty quantification method is Monte 

Carlo (MC) analysis. MC can be prohibitively time consuming; hence, more efficient 

methods have been developed [4], [5], [6], [7], [8], [9]. A popular concept used in such 

methods is the generalized Polynomial Chaos (PC) theory [10], where random variables 

are approximated as sum of an expansion of orthogonal polynomials. In the proposed 

approach, based on PC theory and uncertainty quantification, we propose a methodology 

to predict jitter, eye diagram, and statistics of high-speed channels’ output. This is done by 

training a surrogate model of the system using a transient simulation, which is significantly 

shorter than the simulation required for the transient eye analysis. In addition, this approach 

is applicable to non-LTI systems. 

1.4 Worst-case Eye Analysis with Bayesian Optimization 

Although the PC surrogate models reduce the computational costs of eye analysis 

and simplify the statistical equations, building the surrogate models can introduce some 

inaccuracy as a result of the simplifications. In addition, it can still be computationally 

expensive due to the overhead cost of training the models. Therefore, development of more 

advanced methods is appreciated. 

To further alleviate the computational costs and provide a higher accuracy, we 

propose a second approach, named Worst-eye. In this method, the bit patterns resulting in 

the worst-case signal integrity are identified with an optimization algorithm. Then, the eye 
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height, eye width, and the inner eye opening (worst-case eye) are found from the resulting 

signals. In this method, initially the search space is mapped to a low dimensional space 

using the reflected binary code (Gray code) [11] to reduce the dimensionality and sparsity. 

Then, after preparations based on the domain knowledge, Bayesian optimization (BO) [12] 

is applied to find the bit patterns resulting in the worst-case waveforms which pass through 

the points defining eye height and eye width as shown in Figure 3. BO is selected for this 

approach because the objective functions are nonlinear and nonconvex. Therefore, the 

classic optimization algorithms are not suitable. The worst-case eye is estimated by 

overlaying the resulting waveforms. Furthermore, this approach is extended to find the 

worst-case bit patterns of crosstalk resulting in the worst-case eye. Note that the advantage 

of the PC surrogate modeling approach over the worst-case eye method is providing the 

full eye diagram, statistics of the signal, and the jitter distribution, while the worst-case eye 

only reports the eye height, eye width, and the inner eye opening. On the other hand, the 

 

Figure 3 – Eye height (EH), eye width (EW), peak to peak jitter (PPJ), and unit 

interval (UI) shown on an eye diagram. 
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worst-case eye method is faster, and since it derives the results from actual transient 

simulations it can provide more accurate results. 

It is worth noting that, BO-based methods have been previously used in optimization 

of electronic designs [13], [14], [15]. In [13], BO is used to minimize the clock skew rate 

in 3D systems by co-optimization of thermal and electrical performance. The input 

parameters in this paper are geometrical and physical characteristics of the materials used 

in the 3D system such as thermal conductivity of the PCB, and thermal conductivity and 

thickness of the thermal interface material. In [13] the BO algorithm finds the optimal input 

values that result in the minimum clock skew rate. However, in the proposed approach we 

efficiently estimate the eye diagram for a fixed design. Here, the input parameters are the 

data patterns, and the proposed approach finds the patterns that result in the worst signal 

degradation to estimate the worst-case eye characteristics. In addition, [14] and [15] 

suggest variations of the BO algorithm to optimize design characteristics by finding 

optimal physical parameters, similar to [13]. Moreover, [16] suggests a BO-based approach 

to determine physical variables that produce the closest eye, where the closest eye refers to 

the worst signal quality caused by changing the physical variables. Novelty of the proposed 

approach is in finding the data patterns and waveforms causing the worst-case eye 

characteristics. In other words, the goal in this approach is to reduce the computational 

costs of finding the worst-case eye diagram for a set of fixed physical parameters. 

1.5 Inverse Design of CTLE with Invertible Neural Networks 
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In the traditional design and modeling process, from a combination of design 

parameters (inputs) the output of the system is found. In contrast, in the inverse approach 

we start from the output objectives and derive the corresponding input parameters that 

satisfy these objectives. The inverse problem has been a popular concept for decades. 

However, recently with the advancements in machine learning (ML), there has been several 

attempts for inverse design of high-speed electronics by exploiting the ML techniques [17], 

[18], [19], [20], [21], [22]. From these techniques, invertible neural networks (INNs) [23] 

have shown a great potential. A main advantage of these networks is providing distribution 

of the design parameters instead of deterministic values. This advantage can be used to 

deal with the non-uniqueness of the solution issue, which can be a major problem in inverse 

design with traditional approaches. Using INNs, we can derive several possible 

combinations of the design parameters instead of one. Then a satisfactory design can be 

selected based on other constraints. Previously INNs have been used for design of SIW 

filters in D-band [22]. In this work, we investigate to see if a similar approach can be used 

to derive the peaking and DC gain of CTLE from the desired eye height and eye width. 

This is a challenging problem because the considered CTLE settings are discrete. In 

addition, the outputs have a nonlinear relationship with the design parameters. 

1.6 Prior Art 

In this section various existing methods for the problems considered in this 

dissertation, namely full eye analysis, worst-case eye analysis, and inverse design of 
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electronics, are reviewed. In addition, shortcomings of these methods and the reason to 

develop a new approach is discussed.  

1.6.1 Transient Eye 

Transient eye is the conventional method to derive the eye diagram [1]. In this 

method, first a lengthy transient simulation is performed. Next, the received signal is 

divided to sections with length of one unit interval (UI), which are then superimposed. The 

resulting diagram has an eye shape; hence the name. A smaller eye opening implies higher 

jitter and noise, while a larger eye opening shows better quality of the signal. As discussed 

before, this method can be prohibitively time and memory consuming; therefore, various 

techniques are developed to increase the efficiency of eye analysis. 

1.6.2 Statistical Eye Estimation Methods 

To address limitations of the transient eye analysis, statistical methods have been 

developed. One of these methods is peak distortion analysis (PDA), which is used to find 

the worst-case eye opening of an LTI system [2], [24]. Initially in this method, the response 

to a single pulse is determined. The pulse response can be longer than one unit interval 

(UI), and it can overlap with response of another symbol, causing ISI. Therefore, the 

response of a sequence of pulses is found by superposition of shifted pulse responses, 

which is applicable if the system is LTI. The lowest logical one and the highest logical zero 

are calculated at the sampling point, and their difference is reported as the worst-case 
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vertical eye opening. The worst-case eye shape can also be found by repeating this analysis 

at multiple sampling points and superimposing the results [25].  

To extend the worst-case eye analysis, the StatEye method has been developed [3]. 

This method suggests that the same superposition technique can be used to find the 

response to any combination of input pulses. Based on this idea, a statistical method has 

been developed to find the distribution of receiver voltages. This is done statistically to 

avoid substantial CPU run times and high memory requirements. The StatEye method 

considers probability of different pulse combinations, and finds the distribution of ISI at 

an arbitrary sampling point. By connecting different sampling points, the statistical eye is 

formed. Furthermore, BER is calculated as the ratio of area in the jitter’s/noise’s PDF that 

crosses the time/voltage threshold. Finally, bathtub curve is determined by drawing the 

cumulative distribution function (CDF) of BER over one UI [1]. 

Although efficient, both PDA and Stat-Eye are only applicable to LTI systems since 

the result is based on linear superposition of the pulse responses. However, non-LTI 

components, such as I/O drivers and receivers, can be present in high-speed channels and 

can contribute to jitter and noise.  Notably, this is observed in single-ended signaling, such 

as DDR signaling in memory systems. In these systems rising and falling edge responses 

can be asymmetric, which shows that the system is non-LTI. Recent work has tried to 

extend statistical methods to non-LTI cases. In [26], it has been suggested to estimate the 

receiver voltage using the superposition of responses of a rising edge and a falling edge. 
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This method improves the result since the difference between the rising and falling edge is 

considered. However, calculating the statistical eye is challenging since edge responses are 

not independent of each other. Therefore, [26] develops an inductive technique to find the 

distribution of receiver voltage, which is derived from steady state responses step by step. 

However, using this approach, improvements in accuracy of non-LTI systems is not always 

sufficient. Therefore, [25] expands this method by using various edge responses, which are 

different in the bits prior to the rising or falling edge. For instance, if M bits are considered, 

2M responses are generated. Nevertheless, it is hard to generalize the edge response-based 

methods since their accuracy depends on number of considered responses, which increases 

exponentially with M. Moreover, they are an extension of the superposition method; thus, 

they fail for more complicated non-LTI systems.  

1.6.3 Analytical Eye Diagram Estimation 

If the analytical formula describing a system is known, it would be easy to estimate 

the eye diagram since such functions are often evaluated quickly for arbitrary inputs. In 

addition, if the derived transfer function is LTI, statistical methods can be applied. 

Therefore, there has been several attempts to develop mathematical models to describe 

high-speed channels [27], [28], [29], [30], [31], [32], [33]. In [27], the voltage transfer 

function of a channel with a single pair of differential microstrip lines on PCB is obtained 

from the ABCD parameters of its components. Then, a modified PDA method is proposed, 

that utilizes multiple pulse responses and the transfer function to address the asymmetrical 
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rise/ fall times.  In [28], based on RLGC models, Telegrapher’s equations, and a finite 

impulse response (FIR) equalization, a deterministic formula for crosstalk and ISI is 

derived. This formula describes noise and jitter, and it is used to find the bit patterns that 

cause worst-case noise and jitter, by using a binary search algorithm. Furthermore, 

assuming a linear channel, [29] does an extensive analysis to develop closed form 

equations for eye height and eye width from ISI and DDJ, respectively. This paper takes 

into account the effects of reflection, attenuation, shunt capacitance, and passive 

equalization.  

Unfortunately, analytical methods cannot be generalized since they use mathematical 

formulations that are limited to the considered systems. In addition, simplifications and 

assumptions are often made to make the derivation of analytical equations possible. 

Finally, designers need to have expert knowledge on nature of the system to derive these 

equations. Therefore, development of more general approaches is needed. 

1.6.4 Using Surrogate Models for Eye Estimation 

There are many candidates in machine learning for developing surrogate models. 

Using neural networks (NNs) has been previously suggested to generate surrogate models 

of nonlinear circuits. In [34] and [35], recurrent NNs is used to model nonlinear I/O drivers, 

and in [36] recurrent NNs is used to model SerDes channels. This is similar to our proposed 

approach where PC theory is exploited to develop surrogate model of the system. However, 

training NNS is generally more complicated and time consuming compared to PC models. 
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Moreover, NNs can accumulate error over time, and can become significantly large for 

channels with large memory. In addition, PC provides statistical moments of the output as 

a byproduct of the training process with no additional costs, while numerous evaluations 

using the NN model are necessary to determine the statistics.  

1.6.5 Eye Analysis with Simulating All Possible Waveforms 

As our computing resources increases, it becomes more enticing to simulate all 

possible combinations of the previous bits to obtain the eye diagram. In fact, in transient 

eye analysis we hope to achieve all the combinations in our random sequence. In [37] and 

[38], authors have developed methods that take advantage of simulating all possible ISI 

combinations. One advantage of this method is that it can confidently report the worst-case 

eye. Additionally, it handles non-linear systems because it is based on transient simulation. 

However, this method is reasonable when number of symbols with effective ISI is small 

since 2𝑛 simulations are needed for n symbols. Moreover, unlike transient eye, simulations 

are done separately. The overhead cost of calling the simulation software 2𝑛 times, and 

waiting for the channel to achieve steady state before simulating the intended sequence, 

can be prohibitive. In, fact it might be faster to run the transient eye simulation. 

1.6.6 Worst-case Eye Diagram with Evolution Based Optimization 

To improve the previous approach, one can apply evolution-based optimization 

algorithms, where each transient simulation is a sample, to find the worst bit pattern which 
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corresponds to the worst-case eye. [39] and [40] use the genetic algorithm and particle 

swarm optimization, respectively, to find the worst bit pattern. However, evolution-based 

optimization methods are proved to have a low convergence rate. Besides, as the number 

of bits with effective ISI increases it would be more challenging to run enough simulations 

for these algorithms due to curse of dimensionality. 

1.6.7 Worst-case Eye Diagram with Random Tree Based Optimization 

A random tree optimization approach to find the eye diagram of high-speed CMOS 

circuits is suggested in [41]. However, this method only considers a very short sequence 

of deterministic input symbols. Then, it introduces random processes as perturbations on 

timing of signals, and voltages of different nodes of the circuit. The perturbation parameters 

are simply modeled as truncated Gaussian random processes. Finally, this method finds 

impact of the introduced random processes on the output eye diagram. Applying this 

method on high-speed channels can be problematic because considering a very short input 

bit sequence results in missing certain ISI patterns. Moreover, assuming Gaussian 

distributions for voltage and timing variables on input of the receiver is oversimplification 

and can result in inaccurate results. 

1.6.8 Inverse Design with Neural Networks 

Neural networks have been used for the inverse design of electromagnetic systems 

in several works in the past decades. In the following some of these papers are discussed. 
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In [42], an inverse problem approach is suggested, which is used to reconstruct the 

permittivity and conductivity of a medium from its measured scattered electromagnetic 

fields. This approach trains a Hopfield neural network, which is connected to a linear 

programming network, to find the solution of inverse problem. 

In [43], a simple multilayer perceptron (MLP), with one hidden layer, is trained in 

the forward direction to model the relationship of the geometrical variables and 

electromagnetic fields in sample test cases. Although this network is not inherently 

invertible, [43] tackles the inverse problem by defining an error threshold for the objective 

functions and iteratively updating the outputs and inputs of the hidden layer, and 

subsequently the input design parameters, until achieving a viable solution.  

An inverse design approach for determination of the geometrical variables of 

microstrip bandpass filters from the desired filter response is suggested in [17]. In this 

method, two neural networks, each of them including only one hidden layer, are trained for 

the forward and inverse mapping of the design parameters and the output objective 

functions. The inverse network receives the target response and yields an initial guess of 

the design parameters. Then, the forward mapping network along with an optimization 

algorithm is used iteratively to tune these variables in order to achieve the desired response. 

A similar approach is developed in [18] for inverse design of the Raman amplifier 

by deriving the design parameters from the desired gain values. In this method, multi-layer 

NNs are used for inverse and forward mapping. Furthermore, approximation result of the 
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inverse network is fine-adjusted using the forward network and the gradient descent 

algorithm. 

It is observed that the methods described above make an approximation of the target 

variables using relatively simple NNs, which is then fine-tuned with different methods. 

Although this approach can be successful for relatively simple cases, it does not provide a 

general solution for complicated systems where multiple designs can result in the same 

response. Hence, development of more advanced inverse design methods is necessary. 

Larger NNs have been used in [44] for inverse design of plasmonic nanostructures, 

where the required nanostructure geometry is found from the target optical response 

spectrum. The idea behind this method is similar to [17] and [18]; however, in addition to 

the difference in the size of NNs, [44] suggests simultaneous training of the cascaded 

inverse and forward mapping networks instead of using an optimization algorithm for 

tuning the inverse response. Note that, larger networks require more training samples (the 

example in [44] takes 15000 samples), and it still does not provide a general solution for 

the inverse problems. 

Finally, we like to mention the application of generative adversarial networks 

(GANs) for inverse design of electronics. GAN is a neural network comprised of a 

generative network and a discriminative network. The generative network seeks to generate 

samples similar to the training data, while the discriminative network is tasked to 

distinguish the original samples and the ones fabricated by the generative model. The 
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competition between the two result in generation of realistic samples by GAN which have 

never been seen before [45]. In [46] authors have exploited this structure for inverse design 

of metasurface structures. This method receives the desired optical spectra and generates 

the candidate patterns matching that spectra. Nevertheless, GANs are not an ideal candidate 

for inverse design because of the possible instability in their training process. In addition, 

they cannot systematically solve the non-uniqueness problem because the model needs to 

estimate the multi-modal distribution of the design parameters in such problems, which can 

be problematic for GANs [22]. 

1.7 Challenges and Contributions 

As mentioned earlier, the rapid increase in bandwidth of high-speed channels and the 

decrease in the required BER has made channels’ analysis and design more complicated 

and time consuming.  In this section, the challenges in this area that are addressed by the 

proposed methods and the main contributions of this dissertation are discussed. 

Traditional eye analysis of high-speed channels can be memory and time consuming. 

Fast statistical approaches exist; however, they are generally only applicable to LTI 

systems. Our first analysis method alleviates these issues by introducing a quick surrogate 

modeling approach, based on the Polynomial Chaos theory, for DDJ, DDN, and ISI 

analysis. We have focused on this type of jitter and noise because it is challenging to 

estimate them by traditional methods. This approach is trained with a much shorter 

transient simulation, and it is applicable to LTI systems. Additionally, since the surrogate 
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model is comprised of orthogonal polynomials, it simplifies the statistical equations of the 

received signal, which will be further explained in CHAPTER 2. After further examination 

it was observed that size of the surrogate model increases near exponentially with delay of 

the channel. This is because a channel with a larger delay needs to consider a higher number 

of previous bits for determining ISI, which increases the size of the surrogate model. 

Therefore, we use a modified PC expansion, called the hyperbolic Polynomial Chaos 

(HPC) expansion, and develop a smaller model for channels with large delays. The 

modified model significantly reduces computational costs with minimal decline of 

accuracy. This work provides the instructions to choose between the PC and HPC models 

to balance accuracy and efficiency. Other considerations for channels with large delays are 

provided as well. Furthermore, we have suggested use of the ridge regression for training 

the proposed surrogate models to provide more stable results, which to our knowledge has 

not been used before for PC surrogate models. Another contribution of this work is 

providing a direct jitter model to estimate distribution and statistics of the jitter. This model 

is much faster than finding the complete eye diagram, and it provides a comprehensive 

evaluation of jitter. Moreover, the computational cost analysis of this approach is provided, 

and its performance is evaluated on complex examples. 

The second approach provides a higher speedup for cases where we are primarily 

interested in the eye height, eye width, and the inner eye opening (worst-case eye) caused 

by DDJ and DDN. For this task, the proposed approach finds the bit patterns causing the 

worst ISI signals by searching the random space of several previous bits. To find such bit 



 

 

 

19 

patterns, we have taken advantage of the Bayesian optimization. The proposed approach is 

advantageous compared to earlier works that search for the worst-case eye opening by 

means of the evolutionary algorithms [39], [40] since BO’s convergence rate is proven to 

be faster. For instance, a comparison of BO and the genetic algorithm has been previously 

done in [13], where the genetic algorithm needed more than 26 times samples compared to 

BO for optimization of a complex function. Nevertheless, finding the target bit patterns is 

still a challenging problem because the objective functions are nonconvex and nonlinear. 

In addition, the search space is high-dimensional and sparse. Therefore, we have developed 

a mapping algorithm based on the domain knowledge and the Gray code to simplify the 

optimization. Another contribution of this work is incorporating the crosstalk in this 

problem and predicting its effect on the worst-case eye. Furthermore, an iterative algorithm 

is suggested to ensure accuracy of the worst-case eye by repeating the proposed approach 

at different sampling points. Finally, numerical examples along with their computational 

costs and convergence rates are provided to show performance of the proposed approach. 

On the design side, we have proposed an inverse design approach to configure the 

CTLE. We have focused on CTLE since its design can be complicated and time consuming 

and require sweeping over all the possible designs. In inverse design, design parameters 

are derived from the desired outputs, which is moving in the opposite direction of the 

traditional forward design approach. The main challenge in inverse design is the possibility 

of existence of multiple designs that result in the same output, which is called non-

uniqueness of the solution. In these cases, a regular regression approach would be incapable 
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of finding a solution since the system would be ill-posed. To address this issue, we have 

used the invertible neural network. This network provides distribution of the input variables 

based on the desired outputs. Therefore, it can facilitate prediction of multiple solutions for 

a single objective. This approach is advantageous compared to forward optimization 

techniques since it does not become trapped in local minima. In addition, providing 

multiple solutions is advantageous for the designer since it provides the flexibility to 

choose from the possible solutions based on other design constraints. Nevertheless, the 

CTLE design is not a straightforward problem, and the proposed approach needs to address 

other challenges including the nonlinear relationship between the CTLE parameters and 

the output signal. Additionally, in the past INN has been studied for continuous input 

variables, while the CTLE parameters are discrete. In this work, we evaluate performance 

of the INN for such variables with a numerical example. 

1.8 Organization of This Dissertation 

In this dissertation two novel eye analysis methods, and an inverse design approach 

for CTLE are proposed. Each approach is preceded by a review of the main required 

knowledge and techniques for that approach. Organization of the rest of this dissertation is 

as follows. In CHAPTER 2, the PC theory and its training process is reviewed, which is 

followed by the proposed PC surrogate modeling approach, its computational cost analysis, 

and numerical examples. Next, the Gray Code and Bayesian optimization are reviewed in 

CHAPTER 3. Then, the proposed worst-case eye analysis approach with examples is 
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presented in the same chapter. INN is discussed at the beginning of CHAPTER 4. 

Afterwards, the basics of CTLE is reviewed in this chapter. Then, the proposed CTLE 

inverse design approach is introduced and its performance is evaluated on an example. 

Finally, the dissertation is concluded in CHAPTER 5, which includes a discussion on the 

proposed methods, possible future works, and list of the publications resulted from this 

work. 

1.9 Summary 

This chapter covered an introduction on the problems addressed in this dissertation, 

which includes improvements to efficiency of the analysis and design of high-speed 

channels using numerical and machine learning approaches. The proposed approaches are 

based on Polynomial Chaos theory, Bayesian optimization, and invertible neural networks. 

Additionally, several state-of-the-art methods in this area and their pitfalls were reviewed. 

Challenges and contributions of this work were discussed, and the chapter ended with 

describing the organization of this document. 
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CHAPTER 2. POLYNOMIAL CHAOS SURROGATE 

MODELING APPROACH FOR HIGH-SPEED CHANNELS 

2.1 Objectives 

In this chapter our first efficient eye diagram analysis approach is presented. This 

approach develops a surrogate model for the high-speed channel to quickly perform the 

eye analysis. In addition, it directly provides the jitter distribution and other statistics of the 

eye diagram with significantly less computational costs. The surrogate model is based on 

the Polynomial Chaos (PC) theory. Therefore, the PC theory is discussed at the beginning 

of this chapter. Afterwards, the proposed approach is discussed in detail. Finally, the 

chapter ends with numerical examples, demonstrating the performance of this approach. 

2.2 Polynomial Chaos Theory 

In this section, PC surrogate models, and a training method are discussed. 

Generalized PC theory suggests approximating a smooth function of random variables as: 

 

𝑓(𝝀) ≈ ∑𝑐𝑖𝜙𝑖(𝝀)

𝑃

𝑖=0

 (1) 

where 𝝀 = [𝜆1, 𝜆2, … , 𝜆𝑛] represents a vector of random variables, 𝑐𝑖 are unknown 

coefficients, P is truncated length of the expansion, and 𝜙𝑖(𝝀) are multidimensional 
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polynomials, which are orthonormal with respect to the distribution of λ [4], [10]. Using 

the orthogonality condition, mean and variance are found analytically: 

 𝐸(𝑓(𝝀)) ≈ 𝑐0 (2) 

 𝑣𝑎𝑟(𝑓(𝝀)) = 𝜎2 = ∑ 𝑐𝑖
2

𝑖=1,2,…

, (3) 

where 𝜎 is the standard deviation. It is worth noting, that mean and variance are found 

directly from coefficients of the PC expansion at no extra cost. When analyzing jitter, we 

use (3) to find Jitter RMS value since it has zero mean. Finally, to determine the PDF from 

the PC expansion, an approach similar to MC analysis is taken, by evaluating the PC 

expansion of (1) at numerous sample points, which is relatively quick since it is done 

analytically and without the need for circuit simulations. Furthermore, the 

multidimensional polynomials, 𝜙𝑖(𝝀), are found as: 

 
𝜙𝑖(𝝀) = ∏𝜙𝛼𝑗

(𝜆𝑗)

𝑛

𝑗=1

, (4) 

where 𝜙𝛼𝑗
(𝜆𝑗) is a 1-D polynomial at the j-th dimension, and 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝑛] shows 

index of selected 1-D polynomials. Traditionally, 𝛼𝑗 are selected with a linear constraint: 

 ‖𝜶‖1 = 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑛 ≤ 𝑚. (5) 



 

 

 

24 

Number of terms selected in (5) determines length of the expansion in (1): 

 
𝑃 + 1 = (

𝑚 + 𝑛
𝑚

) =
(𝑚 + 𝑛)!

𝑚! 𝑛!
, (6) 

where m shows the maximum order of each polynomial term in the expansion. For smooth 

functions, good approximation is achieved with m set to 2 or 3. Unfortunately, P scales 

near exponentially with n, and size of the PC expansion becomes prohibitive when n is 

greater than 20. For the problems addressed in this work, expansions with n as large as 50 

are required; hence, development of a modified approach is necessary. We propose using 

the hyperbolic Polynomial Chaos (HPC) expansion [9], when it is necessary. HPC uses, 

the following constraint instead of (5), to select the multidimensional polynomial basis: 

 

‖𝜶‖𝑢 = √∑𝛼𝑗
𝑢

𝑛

𝑗=1

𝑢

≤ 𝑚. (7) 

Here the first norm of α is replaced by its u-norm, where 𝑢 < 1 to provide a concise 

selection of the basis. This process drastically reduces length of the expansion in (1). 

The next step is finding the 𝑐𝑖 coefficients in (1), which alternatively can be called training 

the model. For this purpose, a non-intrusive linear regression method can be used [6], [7]. 

In this method, N random training samples are generated from distribution of 𝝀, where 𝑁 =
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 𝑘(𝑃 + 1), and 𝑘 ≥ 2. We show these samples as 𝝀1 to 𝝀𝑁. By placing them in the PC 

expansion of (1) and writing them in matrix form, we have: 

 𝑨𝚪 = 𝑬, (8) 

 

𝑨 = [
𝜙0(𝝀

1) … 𝜙𝑃(𝝀
1)

⋮ ⋱ ⋮
𝜙0(𝝀

𝑁) … 𝜙𝑃(𝝀
𝑁)

] , 𝚪 = [

𝑐0

⋮
𝑐𝑃

] , 𝐄 = [
 𝑓(𝝀1)

⋮
 𝑓(𝝀𝑁)

]. (9) 

Next, the solution is found by using the least squares method. Although this approach 

minimizes the error for training data, it does not always provide the best result for testing 

data. In other words, the solution does not always generalize well. Therefore, we suggest 

improving the model by using Ridge Regression, which is a regularized regression method 

[47]. This approach suggests adding a regularization term to the least squares method: 

 𝚪̂ =
𝐴𝑟𝑔𝑚𝑖𝑛

𝚪
‖𝑬 − 𝑨𝚪‖2

2 + ‖𝐁𝚪‖2
2, (10) 

with B being equal to √𝛽𝐈, except that  𝐁(0,0) is kept at zero. Moreover, I is the unity 

matrix, and β is a constant that determines the weight of regularization. With optimization, 

it can be shown that (10) is minimized when: 

 𝚪̂ = (𝑨𝜏𝑨 + 𝑩𝜏𝑩)−1𝑨𝜏𝑬. (11) 

2.3 Modified PC Modeling Approach 
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Jitter and noise parameters in the eye diagram have stochastic characteristics, which 

enables using uncertainty quantification approaches to calculate them. In fact, this work is 

inspired by the similarities between the transient eye [48] and the MC [49] analysis. In the 

MC approach, random variables in the system are sampled at numerous points. Then, the 

system is simulated at the samples, and the results are used to estimate distribution of 

output random variables. Similarly, in the transient eye, a long physical simulation is 

performed to calculate the uncertainty of output. This simulation is the response to a long 

sequence of random pulses, and it is equivalent to finding the output at various sample 

points in the MC analysis. In this case the outputs are noise and jitter. Both methods are 

straightforward and accurate if given enough time to complete; however, their computation 

costs can be prohibitive for complex systems. On the other hand, modern uncertainty 

quantification methods, such as PC theory, are substantially more efficient than MC. The 

idea behind this approach is to use PC to develop surrogate models for estimating jitter and 

eye diagram, as an efficient alternative to the transient eye. 

The simplified process is illustrated in Figure 4, where random input patterns, and a 

falling edge in the output are shown. Intuitively, it can be said that different previous bits 

cause different jitter. Figure 4 (a) shows the response to a falling edge after a sample signal. 

However, the response can be shifted from its original place by changing the previous bits, 

as shown in Figure 4 (b). Moreover, Figure 4 (c) shows all possible combinations of 

previous bits and the corresponding outputs. Both previous bits and jitter are random and 

lead to the memory effect described in Figure 4. The goal in this work is therefore to find 
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the relationship between them, and determine how the randomness propagates from data 

to jitter. Unlike statistical methods, in this approach the system does not have to be LTI. 

As mentioned earlier, PC methods are suitable for smooth variations in the output. 

However, the output signal of a channel can show a wide variation, between logical zero 

and one, as shown in Figure 5. Therefore, directly applying the existing PC approaches to 

this problem can yield inaccurate results. To address this issue, we suggest breaking the 

problem to four smaller cases and developing four sub-models. Figure 5  (a) shows a typical 

eye diagram of an NRZ signal, where at an arbitrary point on the X-axis, shown with a blue 

line, four possible transitions can be seen. The transitions are zero to zero, zero to one, one 

to zero, and one to one. The response to each transition is disturbed from its average value 

by variations in the previous bits. Moreover, Figure 5 (b) shows distribution of the signal 

at the blue line in Figure 5 (a). Each Gaussian curve in this figure shows distribution of one 

of the possible transitions. It is observed that, by modeling each transition separately the 

 

                   (a)                                          (b)                                             (c) 

Figure 4 – Simplified input and output signals of a channel for illustrating cause 

of data dependent jitter in a falling edge. a) A sample signal. b) Small change in 

previous bits of (a). c) All possible combinations of previous bits. 
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variation of output is significantly limited, which makes the PC methods applicable. 

Similarly, this approach can be extended to other coding schemes such as PAM4. 

In this approach, inputs are the previous bits that cause effective ISI, while the last 

two bits show the transition. These two bits are used to divide the training and testing data 

into four categories, and show which sub-model needs to be used for each category. The 

remainder of the previous bits disturbs output of each transition from its average value, and 

they are therefore inputs to the four sub-models. In the remainder of this chapter, we label 

these bits as 𝝀 = [𝜆1, 𝜆2, … , 𝜆𝑛−2]. Furthermore, we define two types of outputs for two 

different ways of evaluating the degraded signal. The first method is a quick and direct 

method to find jitter, which can also be applied to other eye parameters such as eye height 

and eye width. Training data is obtained directly by measuring jitter at each instance. 

Moreover, only rising and falling transition sub-models are needed because steady one and 

steady zero do not have a zero crossing. Using (1), the surrogate models for rising and 

falling edge jitter, 𝐽𝑟(𝝀) and 𝐽𝑓(𝝀), are defined as: 

 

                                       (a)                                                        (b) 

Figure 5 – A typical eye diagram with distributions of possible transitions at a 

sample time point. a) Eye diagram. b) Distribution of transitions. 
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𝐽𝑟(𝝀) ≈ ∑𝐶r_i𝜙𝑖(𝝀),   

𝑃

𝑖=0

𝐽𝑓(𝝀) ≈ ∑𝐶𝑓_𝑖𝜙𝑖(𝝀)

𝑃

𝑖=0

, (12) 

where 𝐶𝑟_𝑖 and 𝐶𝑓_𝑖 are unknown coefficients for the rising edge and falling edge models, 

respectively. Using these coefficients, the RMS value of jitter for rising and falling edges, 

and the jitter distribution are calculated. 

To create the full eye, we define a second type of output, which is the voltage of 

each time point on the X-axis of the eye diagram. In other words, V(t, λ) is modeled over 

one UI. Training data is obtained by measuring the voltage of each time point over a 

number of intervals, and the surrogate models is found as: 

 

        𝑉rs(𝑡, 𝝀) ≈ ∑𝐶𝑟𝑠_𝑖(𝑡)𝜙𝑖(𝝀)

𝑃

𝑖=0

, (13) 

where 0 ≤ 𝑡 ≤ 𝑇, and 𝑟, 𝑠 ∈ {0,1}, which represent the four sub-models needed for 

modeling the receiver voltage.  Thus, C00_i, C01_i, C10_i, and C11_i, are the unknown 

coefficients for steady zero, rising edge, falling edge, and steady one models, respectively. 

With these coefficients, mean and variance of the receiver voltage are found using (2) and 

(3), respectively. Furthermore, to draw the eye diagram, (13) is evaluated at an arbitrary 

number of possible samples, then the results are overlaid over one UI. 

There are 2n-2 possible combinations of 𝝀 in (12) and (13). If 𝑛 ≤ 20, all possible 

combinations are calculated for drawing the jitter distribution and the eye diagram. Note 

that using more samples does not improve the results since all the possible values are 
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included. If 𝑛 > 20,  it is not practical to estimate all possible outputs. Hence, a large 

enough subset of the samples is selected randomly. 

Next, we discuss the training process. It is not efficient to run a separate simulation 

for each training sample. Hence, all necessary information is extracted from a single short 

transient simulation, with length of the simulation being much greater than P+1 and much 

smaller than the traditional eye. This process is illustrated in Figure 6. In this figure, input 

and output signals of the channel are shown. Imagine a box, with length of n bits, moving 

from end of the input signal to the left, with n being number of bits with effective ISI. 

Similarly, imagine a box with length of one bit, moving from end of the output signal to 

the left. We crop the signals at each instance, then boxes are moved one bit to the left. Each 

pair of corresponding inputs and outputs shows one sample or experiment. Number of input 

bits, n, is calculated based on the channel, using some heuristics. However, we use a rule 

of thumb, which states that 𝑛 ∗ 𝑇 ≈ 3 ∗ 𝐷, where T is length of one unit interval, and D is 

delay of the channel. This formula considers effective ISI for a signal traveling through a 

 

Figure 6 – Extraction of training samples from a single transient simulation. 

OUTPUTSINPUTS
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channel and its two reflections. For 𝑛 ≤ 20, size and cost of creating the regular PC model 

is justifiable; however, for channels with a longer memory the computational cost can be 

prohibitive. Therefore, we suggest a hybrid methodology where the regular PC expansion 

is used for channels with 𝑛 ≤ 20 to obtain more accurate results, and the HPC expansion 

is applied for channels with a longer memory to reduce CPU costs. We show PC and HPC 

models with the same formulation; nevertheless, polynomials 𝜙𝑖, and length of the 

expansions, shown with P, are different. 

To find the coefficients with the regularized regression approach, suggested in 2.2, 

N samples are extracted from a short transient simulation, which provides 𝝀1 to 𝝀𝑁 and 

𝑓(𝝀1) to 𝑓(𝝀𝑁). Using these values, matrices A and E in (8) are filled. Matrix A needs to 

be full rank in order to do the matrix inversion in (11). Initially, this might not be true 

because all the input variables are 0 or 1, which makes some of the columns a linear 

combination of other columns. Therefore, we remove the repeated columns and their 

corresponding polynomials 𝜙𝑖 since they do not provide any additional information. This 

would not cause a problem for estimation of new test samples because they are a 

combination of zeros and ones as well. After this modification, matrix A becomes full rank, 

and the unknown coefficients are found with the matrix inversion in (11). For example, 

coefficients in the surrogate model of the rising edge are found as: 

 𝚪𝟎𝟏̂(t) = (𝑨𝑇𝑨 + 𝑩𝜏𝑩)−1𝑨𝑇𝑬(𝑡), (14) 
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where 𝚪𝟎𝟏̂(t) is a vector of 𝐶𝑟𝑠_𝑖 coefficients. After training the models, we use the surrogate 

models of (13) for a validation step, where they are used to estimate the receiver voltage 

for a short sequence of random input pulses, not used for model training. If this matches 

with the actual transient simulation, we proceed to find the statistics and the estimated eye. 

Otherwise, the parameters are further tuned to provide a more accurate surrogate model. 

It is worth noting, that random jitter can be added to this analysis later as single or 

multiple Gaussian distributions. Adding random jitter in post-processing is a common 

practice in commercial solvers such as HSSCDR, a specialized channel simulator, used by 

IBM [50]. Therefore, we suggest the same technique to integrate the random jitter with 

results of the proposed approach. 

2.4 Computational Cost Analysis 

The proposed approach can reduce cost of the physical transient simulation 

significantly. We suggest using this approach for problems where overhead cost of 

developing the surrogate models is negligible compared to the transient simulation. Note 

that, 𝜙𝑖 polynomials are known beforehand, and by keeping the same sequence of random 

training data, all the parameters of (𝑨𝜏𝑨 + 𝑩𝜏𝑩)−1𝑨𝜏 in (11) can be calculated and stored 

in advance. Therefore, the main overhead cost in the training process is the remaining 

matrix vector multiplication in (11). The computations cost of this multiplication is 

𝑂((𝑃 + 1)2), and it needs to be calculated for every sub-model in (13). There are four sub-

models, and assuming there are Ψ time points in one UI, the corresponding overhead cost 
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is 𝑂(4𝛹(𝑃 + 1)2) = 𝑂(𝛹𝑃2). Cost of the direct method for training the jitter models in 

(12) is negligible in comparison since the matrix vector multiplication is done only twice. 

Furthermore, the testing process and calculating the full eye diagram involves evaluating 

(13) at 𝜈 samples, where the 𝜙𝑖(𝝀) values can be calculated beforehand. In the matrix form, 

this process is similar to (8), where A is computed in advance and Γ is known. Hence, the 

computational cost to find E is of a matrix vector multiplication, which is O (𝜈(𝑃 + 1)). 

With 𝛹 time points in one UI, the corresponding cost for evaluating the voltage models is 

𝑂(𝛹𝜈(𝑃 + 1)) = 𝑂(𝛹𝜈𝑃). Again, the CPU cost of directly finding jitter for 𝜈 samples is 

negligible in comparison. Therefore, the total overhead cost is 𝑂(𝛹𝜈𝑃 + 𝛹𝑃2). It is worth 

noting, this approach is highly parallelizable; hence, its computation time can significantly 

decrease with parallelization 

2.5 Numerical Examples 

In this section the proposed approach is applied to numerical examples to evaluate the 

performance of the PC based surrogate models. PC calculations and modeling are done in 

MATLAB R2015a, while transient simulation is performed using available commercial 

software. 

2.5.1 Example 1 

The circuit in Figure 7 (a) is considered for observing performance of the proposed 

approach, when memory of the channel is relatively small, and a full PC expansion can be 
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used. This example shows a single-ended signaling system, which includes two sets of 

coupled microstrip lines and nonlinear terminations. The cross section of microstrip lines 

is shown in Figure 7 (b). The first set of lines are three coupled lines that are 4 inches long, 

while the second set consists of two coupled lines with length of 2 inches. All conductors 

are copper; dielectric permittivity is 4.5, and tan 𝛿 = 0.02. The PMOS and NMOS 

 
(a) 

 
(b) 

Figure 7 – Example 1: A single-ended signaling high-speed link with coupled 

transmission lines and nonlinear terminations. a) Circuit schematics. b) Cross 

section of the transmission lines. 
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transistors in the terminations are Schicman-Hodges models. Supply voltage is +/- 1 V, and 

the circuit is fed through a voltage source with 50 Ω resistance, using a random trapezoidal 

pulse with Vhigh = 1 V and VLow = -1 V. Bit rate is 1 Gb/s; rise time and fall time are both 

100 ps, and output voltage is observed at the shown eye probe. Finally, the transient 

simulation is done using ANSYS Electronics Desktop 17.2 circuit simulator [51]. 

In this example, 20 bits are considered to capture the effective ISI. Hence, we use the 

regular PC expansion. In addition, there are 220 possible combinations of these bits; 

therefore, all possible outputs are estimated. Note that using more samples does not change 

the result since all the possible combinations are included. The results are compared with 

an actual transient simulation with one million random bits. We did not use more than one 

million samples for the transient eye since variations in the outcome were minimal, and we 

were limited by the memory of our machine. Moreover, maximum order of expansion, m, 

is set to 3. For training the models, first a short transient simulation is performed, with its 

length being more than 60000 bits. From this simulation, four sets of training data are 

extracted. Each set shows a different transition and has about 15000 samples. Using them 

and the proposed method, jitter and voltage surrogate models are generated. For validation, 

the receiver voltage for a short sequence of random pulses is estimated. The result is shown 

in Figure 8, and compared with the actual circuit simulation. Since the model shows perfect 

accuracy, we continue to calculate the statistical results and the eye diagram. Next, the jitter 

RMS is directly calculated, and it is presented in Table 1. Additionally, distribution of jitter 
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is calculated and shown in Figure 9 and compared with transient simulation, showing a 

good agreement. 

In the next step, the mean and standard deviation of receiver voltage is calculated over 

one UI, and the results are shown in Figure 10. In this figure, the mean and mean +/- 

standard deviation of the four possible transitions are shown, and compared with the 

transient simulation. Figure 10 gives us an idea about quality of the signal. The mean and 

standard deviation in this figure are found using only coefficients of the voltage model; 

 

Figure 8 – Estimation of the output voltage for validation of the surrogate models 

in example 1. 

Table 1 – RMS jitter values of Example 1.  

 Low to high RMS jitter High to low RMS jitter 

Transient eye analysis 87.2 ps 87.9 ps 

Proposed PC approach 87.3 ps 87.8 ps 

 



 

 

 

37 

hence, it reduces time and memory. Finally, the eye diagram is evaluated, and shown in 

Figure 11 (b). The eye diagram, from the transient simulation with one million bits, is 

shown in Figure 11 (a). Peak to peak jitter is also displayed in the Figure 11 (a) and (b), 

which is calculated from the final eye diagram. In all the results it is observed that the 

 

Figure 9 – Distribution of jitter seen in the output of Example 1. 

 

Figure 10 – Mean +/- Standard deviation of the four possible transitions of the 

output in Example 1. 
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proposed approach matches well with the transient simulation. Moreover, computation 

time of the main steps, except the initialization, are reported in Table 2. It is observed that 

the CPU cost for determining jitter and statistics is negligible. The full eye diagram 

 

                                   (a)                                                          (b) 

Figure 11 – Eye diagram and peak to peak jitter of the output in Example 1, 

showing 10000 out of one million random bits. a) Transient eye. b) Proposed 

approach. 

 

Table 2 – Computation times of different steps in Example 1. 

 Time 

60000 bits sim. with Ansys 663 s 

Training jitter and voltage models 102 s 

Jitter Distribution 196 s 

1 million bits estimation with PC 3827 s 

1 million bits sim. with Ansys 11055 s 
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evaluation is more time consuming; however, it is about 3 times faster than the transient 

eye. Note that this time can be significantly reduced by using a shorter expansion. 

Moreover, the required memory for finding mean and variance values is reduced by about 

35%. 

2.5.2 Example 2 

The purpose of this example is to show performance of the proposed approach for 

a channel with long memory, where the Hyperbolic PC expansion needs to be used. 

Therefore, a commercial SerDes channel with differential signaling is considered, provided 

by IBM. This channel is shown in Figure 12 (a), and its frequency response is presented in 

Figure 12 (b). Output of the system is the receiver voltage. Moreover, the channel is 

comprised of two processor packages, communicating with each other and interfaced to a 

board with two hybrid land grid array (LGA) connectors. The transmitter and receiver 

processor packages contain 85 Ohm differential stripline wiring in GZ41 material (Dk ~ 

3.31 and Df ~ 0.0092 at 1 GHz), and have 31 mm and 34 mm lengths, respectively. The 

 

                                   (a)                                                                             (b) 

Figure 12 – Example 2: A SerDes channel including packages, vias and differential 

wiring. a) Schematics of the channel. b) Frequency response. 
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board contains two differential PCB vias with an active via length of 150 mil, and stub 

length of 20 mil. It contains 4 inches of total wiring, including 1 inch of necked down pin 

area wiring in the shadow of each processor, and 2 inches of 85 Ohm differential open area 

wiring. The dielectric material utilized for the board is a low loss material, having a Dk ~ 

3.95 and Df ~ 0.0084 at 1GHz. This channel is simplified and does not include crosstalk. 

The passive channel loss at 8 GHz is ~11 dB. The high-speed link, including the channel, 

transmitter and receiver is tested with a bit rate of 16 Gb/s. For transient simulations the 

channel is simulated with HSSCDR [50]. In addition, to ensure nonlinearity a low 

compression point for the receiver is considered. To show the impact, eye diagrams of the 

output before and after decreasing the compression point, are shown in Figure 13 and 

Figure 17 (a), respectively. Moreover, the difference of maximum and minimum of the 

receiver voltage is indicated in both figures. Comparison of the figures shows that eye 

 

Figure 13 – Transient eye diagram of the output in example 2 before decreasing the 

compression point of the receiver, showing 10000 out of one million random bits. 
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diagram is considerably affected by the low compression point. Note that the compression 

is nonlinear. 

 In this example, due to long delay of the channel, 50 bits are considered for 

capturing the ISI effect. Since size of the regular PC expansion would be prohibitive, we 

use the HPC expansion. The maximum order of polynomials m is set to 3, and the 

constraining factor u is set to 0.7. Moreover, there are 250 possible combinations of input 

bits; therefore, we select a random subset from them with one million samples to estimate 

the outputs. Furthermore, a transient simulation with a different one million random bits is 

simulated using HSSCDR for comparison. We did not use more than one million samples 

since variations in the outcome were minimal, and we were limited by the memory of our 

machine. 

 

Figure 14 – Estimation of the receiver voltage for validation of the surrogate 

models in example 2. 
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For training the models, first a short transient simulation is performed, with its 

length being more than 50000 bits. From this simulation, four sets of training data are 

extracted. Each set shows a different transition and has 12500 samples. Next, jitter and 

voltage surrogate models are generated. For validation, a short random sequence of 

receiver voltage is estimated and shown in Figure 14. Since the model shows perfect 

accuracy, we continue to calculate the statistical results and the eye diagram. 

The jitter RMS is found directly, and presented in Table 3. Distribution of jitter is 

calculated and shown in Figure 15. Next, mean and standard deviation of the receiver 

voltage is found over one UI, and results are shown in Figure 16. Finally, the eye diagram 

is evaluated, and shown in Figure 17 (b). The eye diagram from the transient simulation 

with one million bits, is shown in Figure 17 (a). The difference of maximum and minimum 

of the receiver voltage is also displayed in Figure 17 (a) and (b). Peak to peak jitter values 

calculated with the transient eye and the proposed approach are 34.7 ps and 35.1 ps, 

respectively. In this example, it is observed that replacing the PC expansion with an HPC 

expansion provides for a good estimation. All training and testing steps, including 

obtaining the eye diagram, were completed in about 50 minutes. This includes calculation 

Table 3 – RMS jitter values of Example 2. 

 Low to high RMS jitter High to low RMS jitter 

Transient eye analysis 7.1 ps 7.1 ps 

Proposed PC approach 7.0 ps 7.0 ps 
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of mean and variance values of the receiver voltage and jitter, which takes negligible time. 

Besides, the required memory for finding mean and variance values was reduced by about 

50%. We have published the work presented in this chapter in [52]. 

2.6 Summary 

 

Figure 15 – Distribution of jitter seen in the receiver voltage of example 2. 

 

Figure 16 – Mean +/- σ of four possible transitions in example 2. 
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This chapter covers the background knowledge needed for the first proposed approach 

for efficient eye analysis. Moreover, development steps of this approach are discussed. 

Numerical examples demonstrate that the proposed approach provides the full eye diagram 

faster than the traditional transient eye analysis. In addition, the jitter distribution and other 

eye diagram statistics are provided with a significantly higher speedup. 

  

 

                                        (a)                                                                          (b) 

Figure 17 – Eye diagrams of the output in example 2 after decreasing compression 

point of the receiver, showing 10000 out of one million random bits. a) Transient 

eye. b) Proposed approach. 
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CHAPTER 3. WORST-CASE EYE ANALYSIS OF HIGH-SPEED 

CHANNELS BASED ON BAYESIAN OPTIMIZATION 

3.1 Objectives 

In this chapter our second eye diagram analysis approach is presented. This approach 

takes an optimization perspective to find the input waveforms that result in the inner 

opening of the eye diagram. We refer to the inner eye opening as the worst-case eye. This 

approach provides a higher speedup compared to the previous approach since the full eye 

diagram is not calculated. However, the eye height, eye width, and the worst-case eye 

which are the desired measurements in many applications are found with a significantly 

higher speedup. Initially the theoretical background needed for this approach is reviewed, 

which includes the Gray Code and the Bayesian Optimization. Then, the proposed 

approach is discussed in detail. Finally, the chapter ends with numerical examples, 

demonstrating the performance of this approach. 

3.2 Background Review 

3.2.1 Reflected Binary Code (Gray Code) 

The reflected binary code or the Gray code, originally introduced by Frank Gray in 

1947 [53], refers to a reordering of the binary numbers where each two subsequent values 

only differ in a single binary bit [11]. Gray code is particularly helpful in digital 
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communication since it reduces the potential errors in reading the successive binary values. 

For instance, in binary numbers “0111” is followed by “1000”, which means every bit is 

inverted. However, in the Gray code sequence, only one bit switches at a time, reducing 

the chances of error. The binary numbers with 3 bits, and their corresponding Gray code 

are shown in Table 4. Gray codes can be generated recursively from the list of Gray codes 

with one bit, which is {0,1}. To find the Gray codes with 𝑘 bits, the Gray codes with 𝑘 − 1 

bits are listed. Then, the list is mirrored resulting in a second list in the reverse order. Next, 

members of the first list are prefixed with a 0, and members of the second list are prefixed 

with a 1. Finally, the two lists are concatenated. Alternatively, the Gray codes can be 

generated directly. The decimal number corresponding to the k-th Gray code is generated 

as [54]: 

 𝑘^(𝑘 >> 1), (15) 

 

Table 4 – Binary numbers with 3 bits and their corresponding Gray Codes. 

 Binary Gray 

0 000 000 

1 001 001 

2 010 011 

3 011 010 

4 100 110 

5 101 111 

6 110 101 

7 111 100 
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where, ^ and >> are bitwise exclusive OR and shift-right operators, respectively. In this 

work we have used (15) since it is more efficient than the recursive method. 

3.2.2 Bayesian Optimization (BO) 

BO [12], [55] is an active learning optimization algorithm which has shown a good 

performance in optimizing nonconvex and nonlinear complex functions. Here, we discuss 

maximizing a black-box function 𝑓(𝑥); nevertheless, minimizing is done similarly. This 

technique is inspired by the Bayes’ theorem since an estimated prior distribution is assigned 

to 𝑓(𝑥); then the system is evaluated at a new sample point, and a posterior distribution is 

determined as: 

 𝑃(𝑓(𝑥)|𝐷1:𝑡)  ∝ 𝑃(𝐷1:𝑡|𝑓(𝑥))𝑃(𝑓(𝑥)), (16) 

where 𝐷1:𝑡 = {𝑥1:𝑡, 𝑓1:𝑡} is the set of t samples and evaluations. 𝑃(𝑓(𝑥)) and 𝑃(𝑓(𝑥)|𝐷1:𝑡) 

are prior and posterior distributions, respectively. Moreover, 𝑃(𝐷1:𝑡|𝑓(𝑥)) is the likelihood 

of observing 𝐷1:𝑡, given our prior belief of 𝑃(𝑓(𝑥)). In other words, BO corrects our belief 

of distribution of the objective function. BO is an iterative algorithm, which adds a new 

sample point at each iteration and updates the posterior distribution. The algorithm 

continues until it converges to the true value of 𝑚𝑎𝑥(𝑓(𝑥)). To find the next sample point, 

BO estimates mean (𝜇(𝑥)), and standard deviation (𝜎(𝑥)) of the objective function using 

𝐷1:𝑡. Then, the next sample is selected by maximizing an acquisition function, which is a 
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function of 𝜇(𝑥) and 𝜎(𝑥). The acquisition function is responsible for balancing 

exploitation and exploration. Exploitation is setting the next point where mean is high to 

reach the maximum in that area. On the other hand, exploration is probing areas where 

variance is high to find the global maximum. A popular choice for determining the 

posterior is the Gaussian process (GP). In BO, the system is initially sampled at a number 

of points, and the prior is set as a normal distribution: 𝑓𝑡  ~ 𝒩(𝜇, 𝐊), with 𝜇 and 𝐊 

representing the mean and covariance matrix, respectively. For convenience, 𝜇 is initially 

set to zero. Moreover, 𝐊𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗), with 𝑘 being the kernel function, and 1 ≤ 𝑖, 𝑗 ≤ 𝑡. 

A suitable choice for the kernel which we have used in this work is the Matérn function 

with smoothness factor of 2.5 [56]: 

 
𝑘(𝑟) = (1 +

√5𝑟

𝜆
+

5𝑟2

3𝜆2
) exp(−

√5𝑟

𝜆
), (17) 

where 𝑟 = ‖𝑥𝑖 − 𝑥𝑗‖, and 𝜆 is an optimizable length factor (see the documentation in [57]). 

Using this kernel, posterior distribution of 𝑓 at 𝑡 + 1 is calculated as: 

 𝑃(𝑓𝑡+1|𝐷1:𝑡, 𝑥𝑡+1) = 𝒩(𝜇𝑡+1, 𝜎𝑡+1
2 ), 

𝜇𝑡+1 = 𝐾⃗⃗ 𝑇𝑲−1𝑓1:𝑡 , 𝜎𝑡+1
2 = 𝑘(𝑥𝑡+1, 𝑥𝑡+1) − 𝐾⃗⃗ 𝑇𝑲−1𝐾⃗⃗ , 

(18) 

where 𝐾⃗⃗ = [𝑘(𝑥1, 𝑥𝑡+1), 𝑘(𝑥2, 𝑥𝑡+1),… , 𝑘(𝑥𝑡, 𝑥𝑡+1)]. We can assume GP is a surrogate 

model of 𝑓(𝑥) that yields its mean and variance. Additionally, these values are used in the 
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acquisition function, to determine the next sample point (i.e. 𝑥𝑡+1). Common acquisition 

functions are probability of improvement (PI), expected improvement (EI), and upper 

confidence bound (UCB), which are defined as: 

 
𝑃𝐼(𝑥) = 𝑃(𝑓(𝑥) ≥ 𝑓(𝑥+) + 𝜀) = Φ(

𝜇(𝑥) − 𝑓(𝑥+) − 𝜀

𝜎(𝑥)
), (19) 

 
𝐸𝐼(𝑥) = {

(𝜇(𝑥) − 𝑓(𝑥+) − 𝜀)𝛷(𝑍) + 𝜎(𝑥)𝜙(𝑍)  𝑖𝑓 𝜎(𝑥) > 0
0                                                                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

𝑍 =
𝜇(𝑥) − 𝑓(𝑥+) − 𝜀

𝜎(𝑥)
, 

(20) 

 𝑈𝐶𝐵(𝑥) = 𝜇(𝑥) + 𝜅𝜎(𝑥), (21) 

where Φ(. ) and 𝜙(. ) show CDF and PDF of the standard normal distribution, respectively. 

𝑓(𝑥+) is the maximum value observed so far. In addition, 𝜀 ≥ 0 and 𝜅 ≥ 0 are 

hyperparameters to balance exploration and exploitation. 𝑥𝑡+1 is found as 𝑥𝑡+1 =

argmax
𝑥

𝑢(𝑥| 𝐷1:𝑡), with 𝑢(. ) being one of the acquisition functions. To further improve 

convergence of BO, we use the GP_Hedge acquisition function, which probabilistically 

selects one of the above three functions at each iteration [58]. It is worth mentioning that 

BO is a repetitive approach, meaning it reproduces the same results given the same starting 

random points. This has been tested in the numerical examples in this paper. 

3.3 Proposed Worst-eye Approach 
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3.3.1 Intuition 

Although for a comprehensive examination of the signal, the distributions of noise 

and jitter is required, engineers often use eye height and eye width for a quick evaluation 

of the channel. Therefore, it would be immensely helpful to find these values without 

simulating all possible bit pattern combinations. As shown in Figure 3, eye height (EH) is 

the difference between the lowest high and the highest low received symbols at the 

sampling time. Moreover, eye width (EW) is equal to a unit interval minus the peak to peak 

jitter. Note that the peak to peak jitter is difference of the rightmost and the leftmost level-

crossing time points, caused by the rising and falling edges. Since in this paper we are only 

concerned with DDN, DDJ, ISI and crosstalk, one can use optimization techniques to find 

the sequences of symbols that results in the waveforms passing through the mentioned four 

points. Next, the worst-case eye is estimated by overlaying the four obtained waveforms. 

However, the estimated worst-case eye is reliable around the four worst-case points. To 

increase the accuracy, number of the sampling time points, for evaluating the received 

symbol, is simply increased. Then, additional lowest high and highest low points at the 

new sampling points are calculated, and the waveforms that pass through them are added 

on top of the previous waveforms to provide a better estimate of the worst-case eye. It is 

worth noting that, the proposed approach is designed for non-return-to-zero (NRZ) pulses; 

however, the idea can be expanded to other signaling methods. Hereinafter, the proposed 

approach is referred to as Worst-eye. 
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We acknowledge that BER is the ultimate measure for the overall evaluation of 

high-speed channels. However, the motivation for this work was a stage in the design 

process where the circuit is not fixed yet. Sometimes in the design process we need to have 

an intermediate objective, which the eye height and eye width fulfills in this case. The 

channel designer needs to select the settings that maximizes the eye opening to provide the 

maximum flexibility for the circuit designer. 

Moreover, the focus of this paper is on data dependent jitter and noise (DDJ and 

DDN). In the numerical examples we show that DDJ and DDN do not necessarily cause a 

bit transmission to fail. The random jitter (RJ) and random noise (RN) are a key part in 

calculating the BER. The worst-case BER can be calculated by superimposing distribution 

of RJ and RN on the worst-case eye diagram reported by the proposed approach. By worst-

case BER we mean BER if we consider RJ and RN and only transmit the worst-case data 

pattern found in this paper. Therefore, the final BER directly depends on the worst-case 

eye height and eye width. Hence, we need to maximize the eye opening when designing 

the channel to achieve a lower BER. 

3.3.2 Mapping Scheme 

The optimization suggested in the previous section is in fact a challenging problem 

because the search space is high-dimensional, discrete, and sparse. The cause of high-

dimensionality is that the single pulse response of modern channels can span through 
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several unit intervals (e.g. > 20). In addition, the search space is discrete and sparse because 

value of each dimension can only be either zero or one. 

To address these issues, we suggest reformulating the problem based on our 

knowledge of high-speed channels and ISI. We know that ISI is caused by a sequence of 

symbols that can be shown as: 

 𝝀 = [𝜆−𝑛, 𝜆−𝑛+1, … , 𝜆−1, 𝜆0, 𝜆1, … , 𝜆𝑚 ], (22) 

where n precursors and m postcursors are considered. In addition, size of the sample space 

(‖Ω𝝀‖) is equal to 2𝑛+𝑚+1. The goal of Worst-eye is to determine such sequences resulting 

in the worst-case voltage and timing values. For simplicity, we assume that 𝑚 = 1, which 

means the effect of rest of the postcursors is negligible. In addition, the state of 𝜆1 is given 

based on the pulse response. For instance, the lowest high is always followed by a low 

symbol for the cases considered in this paper. Intuitively, it can be said that the following 

low symbol pulls the high symbol down. Furthermore, it is known that the ISI from each 

symbol decreases as it gets further from the current symbol. Hence, the state of 𝜆−𝑛 has the 

least impact on noise and jitter, and the state of 𝜆−1 has the most impact. By setting 𝜆−𝑛 as 

the least important bit (LIB) and 𝜆−1 as the most important bit (MIB), we obtain a unique 

binary index number, 𝐼(𝝀), for each possible bit pattern. Note that 0 ≤ 𝐼(𝝀) < 2𝑛. This 

format is shown in Figure 18. 
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Next step would be to find the 𝐼(𝝀) that minimizes or maximizes the objective 

functions. This technique maps the problem from n-dimensions to one. However, as stated 

in section 3.2.1, there are sudden changes, including total inversions, in successive binary 

numbers. Subsequently, this causes sudden changes in the objective functions. To alleviate 

this issue, we suggest reordering the index numbers as Gray codes and generating a new 

index, labeled as 𝐼𝑔(𝝀). For example, the values shown in Figure 18 are reordered as {0000, 

0001, 0011, 0010, 0110, …}. For comparison, an example of corresponding sections of 

𝑉𝑟(𝑡𝑠, 𝐼(𝝀)|𝜆0=1, 𝜆1=0) and 𝑉𝑟(𝑡𝑠, 𝐼𝑔(𝝀)|𝜆0=1, 𝜆1=0) is illustrated in Figure 19 (a) and Figure 

19 (b), respectively. Note that 𝑉𝑟(𝑡𝑠, 𝑖) is the receiver voltage caused by the bit pattern with 

index i, at the sampling time 𝑡𝑠. It is seen that, the Gray code order leads to smaller jumps 

in the objective function. Additionally, our numerical tests have confirmed that the Gray 

code indices results in a faster convergence, which is a result of subsequent values being 

different in only one symbol.  

 

Figure 18 – Indexing of the bit patterns for n=4 in the binary format. 
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Finally, it is worth noting that variations of the Gray code [11] and other coding 

schemes exist, which have characteristics similar to the ones discussed here. However, in 

this paper we have settled for the original Gray code [53], and did not experiment with 

other coding mechanisms. 

3.3.3 Optimization 

The mapping scheme results in objective functions that are suitable for BO. 

Therefore, we use the BO algorithm, reviewed in section 3.2.2, to find the lowest high 

symbol (𝑉𝐿𝐻), the highest low symbol (𝑉𝐻𝐿), the leftmost level crossing point (𝑡𝐿𝑋), and 

the rightmost level crossing point (𝑡𝑅𝑋). It is worth noting, when calculating 𝑉𝐿𝐻 and 𝑉𝐻𝐿, 

we can further improve the convergence rate by manually setting value of 𝜆−1 in the same 

manner that we assigned 𝜆1. In other words: 

 

                                (a)                                                                   (b) 

Figure 19 – Receiver voltage as a function of the index values corresponding to the 

previous bit patterns. a) Binary order. b) Gray code order.  
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 𝑉𝐿𝐻 = min
𝐼𝑔

 𝑉𝑟(𝑡𝑠, 𝐼𝑔(𝝀)|𝜆−1=0,𝜆0=1, 𝜆1=0), (23) 

 𝑉𝐻𝐿 = m𝑎𝑥
𝐼𝑔

 𝑉𝑟(𝑡𝑠, 𝐼𝑔(𝝀)|𝜆−1=1,𝜆0=0, 𝜆1=1), (24) 

On the other hand, 𝑡𝐿𝑋 and 𝑡𝑅𝑋 are the result of falling edges or rising edges. Therefore, 

both types of the edges need to be considered for either of them: 

 

𝑡𝐿𝑋 = min{

min
𝐼𝑔

 t(𝑉0, 𝐼𝑔(𝝀)|𝜆−1=0,𝜆0=1, 𝜆1=1) ,

min
𝐼𝑔

 t(𝑉0, 𝐼𝑔(𝝀)|𝜆−1=1,𝜆0=0, 𝜆1=0)
}, (25) 

 

𝑡𝑅𝑋 = max{

max
𝐼𝑔

 t(𝑉0, 𝐼𝑔(𝝀)|𝜆−1=0,𝜆0=1, 𝜆1=0) ,

max
𝐼𝑔

 t(𝑉0, 𝐼𝑔(𝝀)|𝜆−1=1,𝜆0=0, 𝜆1=1)
}, (26) 

where 0 ≤ t(𝑉0, i) < 𝑈𝐼, and t(𝑉0, i) is the time when the receiver voltage crosses the 

threshold voltage 𝑉0, when applying the bit pattern marked by the index i. Additionally, 

 𝜆1 is determined intuitively, similar to the 𝑉𝐿𝐻 and 𝑉𝐻𝐿 cases. Furthermore, instead of 

performing two rounds of BO in (25) or in (26), we prefer to add a new symbol to the right 

side of the active symbols in 𝝀, which means it has the highest impact on the output. We 

name this symbol 𝜆𝑗. If 𝜆𝑗 is low the first term in the brackets is chosen; otherwise, the 

second term is selected. It is worth mentioning that the minimums in (23) and (25) can be 

calculated by finding the maximum of the negative objective functions using BO. 
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Next, we introduce another technique to further improve the efficiency of Worst-

eye. It is observed that when n is too large, determination of the final k symbols (i.e. −𝑛 to 

−𝑛 + 𝑘 − 1) becomes much harder. Note that, the last k symbols represent 2k patterns that 

share the remaining (𝑛 + 2 − 𝑘) symbols. When k is small (e.g. 𝑘 ≤ 10), often sweeping 

over these 2k patterns can be quickly done in a single transient simulation by concatenating 

all the 2k patterns. This simulation can be more efficient than including the final k symbols 

in BO. Therefore, in the proposed approach a BO sample does not include the final k 

symbols. The objective function receives this sample and sweeps over the final k symbols 

that can be added to the sample; then it reports the one yielding the maximum output. That 

is to say, in the finalized approach, 𝝀 and size of the sample space of BO in (23) and (24) 

are: 

 𝝀 = [𝜆−𝑛+𝑘, … , 𝜆−2, 𝜆−1, 𝜆0, 𝜆1 ],   ‖Ω𝝀‖ = 2𝑛−𝑘−1. (27) 

Moreover, 𝝀 and size of the sample space of BO in (25) and (26) are: 

 𝝀 = [𝜆−𝑛+𝑘, … , 𝜆−2, 𝜆𝑗 , 𝜆−1, 𝜆0, 𝜆1 ],   ‖Ω𝝀‖ = 2𝑛−𝑘. (28) 

For illustration, in an example eye diagram the waveforms that correspond to the bit 

patterns ending in {𝜆−1 = 1, 𝜆0 = 0,  𝜆1 = 1} are shown in blue color in Figure 20. Worst-

eye determines 𝑉𝐻𝐿 by finding the highest voltage of such waveforms at the sampling time 

point, shown by a red line in this figure. In addition, Figure 21 illustrates the objective 
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function passed to BO, which corresponds to theses waveforms. In this example it is 

assumed 𝑛 = 30 and 𝑘 = 8. Furthermore, maximum of this function is marked with a red 

circle in Figure 21. 

 

Figure 20 – Example eye diagram and the waveforms corresponding to the bit 

patterns ending in {𝝀−𝟏 = 𝟏, 𝝀𝟎 = 𝟎,  𝝀𝟏 = 𝟏}, shown in blue. 

 

Figure 21 – The objective function which is passed to BO to find 𝑽𝑯𝑳 in Figure 20. 
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Next, eye height and eye width are calculated as: 

 𝐸𝐻 = 𝑉𝐻𝐿 − 𝑉𝐿𝐻, (29) 

 𝐸𝑊 = 𝑈𝐼 − (𝑡𝑅𝑋 − 𝑡𝐿𝑋). (30) 

It is worth noting that BO has been extensively studied and used for continuous 

variables, while its use for discrete variables has been limited. In Worst-eye, although the 

variables are discrete, they take subsequent integer values after mapping with Gray codes; 

therefore, adjacent samples are equidistant. For integer numbers, we followed the common 

practice of rounding the next BO sample to the nearest integer number. This strategy is 

used in popular developed modules for BO [59], [60]. More advanced methods for BO 

with discrete variables exist in the literature [61], [62], [63], which were not used in this 

study since satisfactory results were achieved with the rounding approach. 

Finally, the worst-case eye is estimated by overlaying the four waveforms that pass 

through the points determined by (23) to (26). If higher accuracy for the worst-case eye is 

desired, additional 𝑡𝑠 sampling points are defined. Then, (23) and (24) are solved at the 

new sampling points, and the corresponding worst-case waveforms are added on top of the 

previous waveforms to provide a better estimate of the worst-case eye. To decide how 

many and where the extra sampling points should be selected, we suggest the following 

strategy: 
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1- Start with one sampling point at center of the eye and carry out the proposed 

approach. 

2- Superimpose all waveforms found by the proposed approach in addition to the 

worst-case waveforms. 

3- See if the worst-case waveforms are suboptimal at other time points. 

4- If there are time points with considerable difference, find the lowest high and 

highest low at these points using the proposed approach. Then go back to step 

2. Otherwise, end the algorithm. 

There is no need to compare the results with Monte Carlo to find new sampling points in 

step 2. The comparison is done with already existing simulations in the proposed approach. 

Generally, the signal integrity is worse for these waveforms compared to randomly selected 

ones because in optimization we have searched toward the worst-cases. 

3.3.4 Crosstalk 

Crosstalk is one of the major issues in signal integrity, which needs to be carefully 

modeled when designing a high-speed channel. Therefore, in this section, we expand 

Worst-eye to find the worst-case eye in presence of the crosstalk. 

In order to do so, one variable per aggressor line is added to the optimization 

problems in (23) to (26). These variables represent new index numbers for the possible 

patterns of symbols on each aggressor line. We show symbols of each line as 𝝃𝑗, where j 
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is an integer number, and 1 ≤ 𝑗 ≤ 𝑞, with q being the number of aggressor lines. The new 

indices are shown as 𝐽𝑔(𝝃
𝑗). Similar to the index 𝐼𝑔(𝝀), 𝐽𝑔(𝝃

𝑗) is determined using the 

Gray code. However, we do not manually assign values of the first few symbols since their 

values is not intuitively clear, and it is better to leave their determination to the optimization 

algorithm. In addition, no postcursor is taken into account, and number of the considered 

precursors is small because the effect of further symbols is negligible on the victim line. 

Therefore, the additional computational costs due to estimating the worst-case crosstalk is 

not cumbersome. Considering crosstalk, the new optimization problems are: 

 𝑉𝐿𝐻 = min
𝐼𝑔,𝐽𝑔

1,𝐽𝑔
2,…,𝐽𝑔

𝑞
 𝑉𝑟(𝑡𝑠, 𝐼𝑔|𝜆−1=0,𝜆0=1, 𝜆1=0, 𝐽𝑔

1, 𝐽𝑔
2, … , 𝐽𝑔

𝑞), (31) 

 𝑉𝐻𝐿 = m𝑎𝑥
𝐼𝑔,𝐽𝑔

1,𝐽𝑔
2,…,𝐽𝑔

𝑞
 𝑉𝑟(𝑡𝑠, 𝐼𝑔|𝜆−1=1,𝜆0=0, 𝜆1=1, 𝐽𝑔

1, 𝐽𝑔
2, … , 𝐽𝑔

𝑞), (32) 

 

𝑡𝐿𝑋 = min{

min
𝐼𝑔,𝐽𝑔

1,𝐽𝑔
2,…,𝐽𝑔

𝑞
 t(𝑉0, 𝐼𝑔|𝜆−1=0,𝜆0=1, 𝜆1=1, 𝐽𝑔

1, 𝐽𝑔
2, … , 𝐽𝑔

𝑞) ,

min
𝐼𝑔,𝐽𝑔

1,𝐽𝑔
2,…,𝐽𝑔

𝑞
 t(𝑉0, 𝐼𝑔|𝜆−1=1,𝜆0=0, 𝜆1=0, 𝐽𝑔

1, 𝐽𝑔
2, … , 𝐽𝑔

𝑞)
}, (33) 

 

𝑡𝑅𝑋 = max{

max
𝐼,𝐽𝑔

1,𝐽𝑔
2,…,𝐽𝑔

𝑞
 t(𝑉0, 𝐼𝑔|𝜆−1=0,𝜆0=1, 𝜆1=0, 𝐽𝑔

1, 𝐽𝑔
2, … , 𝐽𝑔

𝑞) ,

max
𝐼,𝐽𝑔

1,𝐽𝑔
2,…,𝐽𝑔

𝑞
 t(𝑉0, 𝐼𝑔|𝜆−1=1,𝜆0=0, 𝜆1=1, 𝐽𝑔

1, 𝐽𝑔
2, … , 𝐽𝑔

𝑞)
}, (34) 
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where for simplicity 𝐼𝑔(𝝀) and 𝐽𝑔(𝝃
𝑗) are shown as 𝐼𝑔 and 𝐽𝑔

𝑗
, respectively. Here, 𝝀 and 

size of its sample space is similar to (23) to (26). Moreover, 𝝃𝑗and size of its sample space 

is: 

 𝝃𝑗 = [𝜉
−ℎ𝑗−1

𝑗
, 𝜉

−ℎ𝑗−2

𝑗
, … , 𝜉0

𝑗
 ],   ‖Ω𝝃𝑗‖ = 2ℎ𝑗

, (35) 

where ℎ𝑗 is the number of effective symbols considered for the j-th aggressor line. Next, 

EH and EW are calculated using (29) and (30), respectively. Finally, the worst-case eye 

with crosstalk is estimated by overlaying the four waveforms that pass through the points 

determined by (31) to (34). To increase accuracy of the worst-case eye, similar to the case 

with no crosstalk, additional waveforms are generated by changing  𝑡𝑠 and repeating (31) 

and (32). 

It is possible to extend the proposed approach to PAM-4 signaling. The main 

difference is that instead of the 4 critical values {𝑉𝐿𝐻, 𝑉𝐻𝐿, 𝑡𝐿𝑋, 𝑡𝑅𝑋}, 12 critical values 

need to be calculated, which can be shown as {𝑉𝐿𝐻𝑖
, 𝑉𝐻𝐿𝑖

, 𝑡𝐿𝑋𝑖
, 𝑡𝑅𝑋𝑖

, for i ∈ [1,2,3]}. 

Similar to the mapping of NRZ, first the bit pattern samples of optimization need to be 

ordered in the Gray code representation. Then, every two subsequent bits of each sample 

is converted to PAM-4 signaling. Using Gray codes for PAM-4 is a standard practice [64]. 

For instance, for two bits 00, 01, 11, and 10 correspond to -1. -1/3, +1/3, and +1, 

respectively. Advantage of using this mapping for PAM-4 is that each two subsequent 
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samples in the design space are only different in one third of the amplitude. Therefore, the 

objective function becomes smoother than the binary mapping. 

3.4 Numerical Examples 

In this section, application of the proposed Worst-eye approach is demonstrated on 

three examples to evaluate its performance and compare it with the conventional transient 

eye analysis. Worst-eye is coded in Python 3, and the Scikit-Optimize library [59] is used 

for BO, which is based on [57], [65]. In this library, BO is coded in the minimization 

format; hence, maximizing is done by finding the minimum of negative objective 

functions. Moreover, for the covariance kernel in BO we used the Matern function with 

smoothness factor of 2.5, which is the recommended value in Scikit-Optimize. We suggest 

using this kernel for the general use of Worst-eye since it has shown a satisfactory 

performance for BO in the literature [62], [66]. Nevertheless, we acknowledge that using 

lower smoothness factors (0.5 and 1.5) can be helpful since they result in less smooth 

approximated functions (see the documentation in [57]), and the Worst-eye functions can 

show such behavior. 

3.4.1 Example 1 

The purpose of this example is to evaluate Worst-eye when ISI is dominant. 

Therefore, the SerDes channel in Figure 22, which was introduced in the previous Chapter, 

is utilized. As a reminder, this channel does not have any crosstalk, and it includes two 
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processor packages connected to a board with hybrid land grid array (LGA) connectors. 

The passive channel loss is ~11 dB at 8 GHz. 85 Ohm differential stripline wiring is used 

in the transmitter and receiver processor packages with 31 mm and 34 mm lengths, 

respectively. These striplines are embedded in the GZ41 material which has Dk ~ 3.31 and 

Df ~ 0.0092 at 1 GHz. In addition, the board includes, two differential PCB vias with an 

active via length of 150 mil, and stub length of 20 mil. It also contains 1 inch of necked 

down pin area wiring in the shadow of each processor, and 2 inches of 85 Ohm differential 

wiring in the open area, which amounts to 4 inches of wiring on the board.  

Moreover, the dielectric of the board is a low loss material with Dk ~ 3.95 and Df 

~ 0.0084 at 1GHz.  This channel is simulated in a custom-build solver named HSSCDR 

[50], [67], which is developed by IBM and used for fast simulation of SerDes channels. 

For comparison, a conventional transient eye analysis with 10 million random bits is 

performed. This long simulation is done in portions of one million bits each for better 

handling of the data. We increased the number of bits in the transient eye, compared to the 

 

Figure 22 – The high-speed SerDes channel in Example 1, comprised of two 

packages, vias, and differential wiring. 
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previous chapter, to ensure capturing the worst-case bit patterns. The transient eye includes 

no more than 10 million bits because variations in the results are negligible after this point, 

and we were limited by the computational costs. 

In this example the channel operates at 16Gb/s; hence, the unit interval is equal to 

62.5 ps. Pulse response of the channel is shown in Figure 23. From this figure, it is observed 

that the channel response is about 32 UIs. Therefore, the total number of symbols with 

effective ISI is set to 32 (i.e. 𝑛 + 2 = 32). Furthermore, k is set to 8; thus, each sample 

includes 256 bit patterns, where length of each pattern is 32. This results in simulating 

transmission of 256 ∗ 32 = 8,192 bits for each sample. It is worth noting that transient 

simulation of this many bits can be done in negligible time using HSSCDR. Next, Worst-

eye is used to find the values of 𝑉𝐿𝐻, 𝑉𝐻𝐿, 𝑡𝐿𝑋, 𝑡𝑅𝑋, and subsequently EH and EW. For  𝑉𝐿𝐻 

or 𝑉𝐻𝐿, BO determines value of 21 bits, while for 𝑡𝐿𝑋 or 𝑡𝑅𝑋 BO determines value of 22 

bits. However, for each of them only a one-dimensional optimization is performed since 

 

Figure 23 – Pulse response of the channel in Figure 22 when pulse width = 62.5 ps. 
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the bit patterns are mapped to a single dimension using the Gray code. The algorithm is 

stopped after 100 iterations for each objective function. For comparison, in this example 

we have also used the simple binary mapping instead of the Gray code mapping and kept 

everything else the same. The results are shown in Table 5, where they are compared with 

the transient eye analysis as well. The comparison shows that Worst-eye with Gray code 

mapping provides slightly smaller eye height and eye width values than the transient eye. 

Nevertheless, since 𝑉𝐿𝐻, 𝑉𝐻𝐿, 𝑡𝐿𝑋, and 𝑡𝑅𝑋 correspond to real simulation results, and they 

are not estimated, this means in this example Worst-eye with Gray code mapping is more 

accurate than the transient eye with 10 million bits. In other words, a longer transient eye 

analysis can eventually capture the waveforms found by Worst-eye with Gray code 

mapping, and provide the same or better accuracy; however, it would be even more time 

Table 5 – Transient eye and worst-eye analysis results in Example 1. 

 

Lowest 

high 

(mV) 

Highest 

low 

(mV) 

Leftmost 

crossing 

(ps) 

Rightmost 

crossing 

(ps) 

Eye 

height 

(mV) 

Eye 

width 

(ps) 

Number of 

bits 

Worst-eye, 

binary 

mapping 

25.6 -25.6 12.0 47.1 51.2 27.4 1,720,320 

Worst-eye, 

Gray code 

mapping 

23.2 -25.7 11.5 47.1 48.9 26.9 2,547,712 

Transient 

Eye 
24.4 -25.3 11.8 47.3 49.7 27 10,000,000 
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consuming than simulating transmission of 10 million bits. Furthermore, it is seen from the 

results in Table 5 that using the binary mapping instead of the Gray code mapping in Worst-

eye can make the proposed approach converge to suboptimal values. Moreover, the number 

of simulated bits in HSSCDR for each approach is shown in the last column of  Table 5. 

Number of bits for either of the Worst-eyes is less than number of bits per sample 

multiplied by the total number of iterations since this algorithm saves simulation results 

and reuses them if BO selects a point that has been sampled before for any of the objective 

functions. This strategy leads to further reduction of the computational costs. 

Although equal number of BO iterations were used with both mappings, it is 

observed that the total number of simulated bits with binary mapping is about 800,000 less 

than the Gray code method. This means the binary method has repeated the sampling at 

more points and has used the saved data. Adding this observation to the fact that binary 

mapping leads to less accurate results makes us believe it is more prone to getting stuck in 

local optima. In the remainder of the paper only the Gray code mapping is considered, and 

Worst-eye refers to the proposed approach with this type of mapping. 

In this example evaluation of additional LH and HL at new sampling points is not 

necessary because overlaying only the waveforms from the original four worst-case points 

provides a good estimate of the worst-case eye. The transient eye and the waveforms that 

pass through the four worst-case points of Worst-eye are illustrated in Figure 24. For 

aesthetic reasons we have shifted the eye diagram and waveforms found by Worst-eye. 
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Hence, there is some difference between the level-crossing time points in Table 5 and 

Figure 24; nevertheless, both show the same EH and EW.  Next, the convergence curves 

of BO for the four objective functions are presented in Figure 25. The curves show that the 

minimum value decreases drastically which is due to the fast convergence rate of BO. 

Nevertheless, Figure 25 (b) suggests that achieving even lower −𝑉𝐻𝐿 values might be 

possible by increasing number of the iterations. 

Finally, to compare the computational costs, the number of simulated bits in the 

last two rows of Table 5 is considered. The HSSCDR simulation for the transient eye and 

the Worst-eye roughly takes 34 and 9 minutes, respectively. Moreover, the overhead 

optimization cost of the proposed Worst-eye approach is about 6 minutes, leading to an 

overall speedup of greater than 2 times. It is worth noting, this speedup can significantly 

increase based on the example and the Worst-eye’s settings. We recommend using the 

 

Figure 24 – Transient eye and the Worst-eye waveforms in Example 1. 
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Worst-eye approach when the optimization cost is negligible compared to the channel’s 

simulation time. HSSCDR is a relatively fast solver since it is custom-build for this type 

of channels, and it takes advantage of several preexisting models. 

3.4.2 Example 2 

In this example, performance of the proposed approach is studied when it is applied 

to a nonlinear system. For this purpose, once more the SerDes channel in Example 1 is 

 

 (a) (b) 

 

 (c) (d) 

Figure 25 – Convergence plots of the four worst-case variables in Example 1. a) 

𝑽𝑳𝑯. b) −𝑽𝑯𝑳. c) 𝒕𝑳𝑿. d) −𝒕𝑹𝑿. 
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considered; however, the compression point of the receiver is reduced far enough to affect 

the eye height. This change results in a nonlinear decrease of the received voltages. Other 

configurations of the channel and the input pulse are same as Example 1. 

For the proposed Worst-eye algorithm, n is set to 32, k is set to 8, and the BO 

algorithm is stopped after 100 iterations for each objective function, similar to Example 1. 

In addition, hyperparameters of BO are same as Example 1. In this example we show that 

accurate results can be achieved without a major effort to tune the parameters after 

modifying the channel in the design process. For comparison, a transient eye analysis with 

10 million random bits is performed, which was done in portions of one million bits each 

for better handling of the data. Results are presented in Table 6, where it is observed that 

results of the proposed Worst-eye approach closely match results of the transient eye 

analysis. 

Table 6 – Transient eye and Worst-eye analysis results in Example 2. 

 

Lowest 

high 

(mV) 

Highest 

low 

(mV) 

Leftmost 

crossing 

(ps) 

Rightmost 

crossing 

(ps) 

Eye 

height 

(mV) 

Eye 

width 

(ps) 

Number of 

bits 

Worst-eye,  20.6 -20.7 11.5 47.1 41.3 26.9 2,310,144 

Transient 

Eye 
20.1 -20.5 11.8 47.3 40.6 27 10,000,000 
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Similar to Example 1, additional sampling points are not necessary since accuracy 

of the estimated worst-case eye is adequate. The shifted transient eye and the waveforms 

that pass through the 𝑉𝐿𝐻, 𝑉𝐻𝐿, 𝑡𝐿𝑋, and 𝑡𝑅𝑋 points are illustrated in Figure 26, showing a 

good match between the predicted worst-case eye and the eye opening of the transient eye. 

Furthermore, the nonlinear compression in this example can be observed by comparing 

Figure 24 and Figure 26, which show the eye diagram before and after reducing the 

compression point. 

Moreover, the convergence curves of BO of the four objective functions is 

presented in Figure 27, showing a fast convergence rate. By comparing Figure 25 and 

Figure 27 we draw the following conclusions. Figure 27 c) and d) are almost the same as 

Figure 25 c) and d), respectively, and they converge to the same final values. This results 

in equal eye widths for example 1 and 2. This observation means that the low compression 

 

Figure 26 – Transient eye and the Worst-eye waveforms in Example 2. 
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point only affects the eye height and not the eye width, which is expected since the low 

compression does not affect the signals near center of the eye; hence, their zero crossing 

points stays the same. Furthermore, it is observed that Figure 27 a) and b) show faster 

convergence compared to Figure 25 a) and b). The reason might be that the lowest high 

and the highest low values are compressed in Example 2 since they are close to the 

receiver’s compression point. Therefore, the voltage variations reduce, and the 

corresponding functions can have close or equal values for different inputs. 

 

 (a) (b) 

 

 (c) (d) 

Figure 27 – Convergence plots of the four worst-case variables in Example 2. a) 

𝑽𝑳𝑯. b) −𝑽𝑯𝑳. c) 𝒕𝑳𝑿. d) −𝒕𝑹𝑿. 
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Number of bits simulated in HSSCDR for each approach is shown in the last 

column of Table 6. Although number of the BO iterations and bits per sample is same as 

the previous example, the total number of bits for Worst-eye is less because more samples 

have been repeated in this example. Furthermore, the HSSCDR simulation for the transient 

eye and the Worst-eye roughly takes 34 and 8 minutes, respectively. Additionally, the 

overhead optimization cost of the proposed approach is about 6 minutes, leading to an 

overall speedup of greater than 2 times. As mentioned before, the speedup can significantly 

increase based on the example. For instance, a much higher speedup is achieved in the next 

example. 

3.4.3 Example 3 

Purpose of this example is demonstration of a higher speedup and evaluation of the 

proposed approach in presence of crosstalk. Therefore, the high-speed channel illustrated 

in Figure 28 (a) is considered. In this channel, the middle line is the victim, and the output 

    

 (a) (b) 

Figure 28 – The high-speed channel of Example 3. a) Schematics. b) Physical 

design of the embedded microstrip lines.  
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is observed before the receiver of this line. Value of each capacitor and resistor is 936 mF 

and about 22 Ω, respectively. The channel is from a system-on-package design, with single 

ended signaling. It is formed of 3 coupled embedded microstrip lines over two meshed 

PDN layers, as illustrated in Figure 28 (b). In addition, width, height, distance, and total 

length of the lines are 12 μm, 9 μm, 12 μm, and 19,200 μm, respectively. The structure is 

embedded in liquid crystal polymer (LCP), with a thickness of 25 μm. Moreover, the 

network is simulated in HSPICE O-2018. It is worth noting, that the embedded microstrip 

lines, transmitters, and receivers in this example have realistic and complex models, which 

results in increased circuit simulation times. Furthermore, the data rate is 1 Gb/s, and the 

low and high logics are 0V and 0.9V, respectively. For comparison, a conventional 

transient eye analysis with 1 million bits is performed. HSPICE does not perform well with 

simulation of millions of bits. To get around this issue, we limited each HSPICE simulation 

to only 1000 bits after reaching the steady state. A thousand of such simulations were 

performed and put together to obtain the results of the transient eye simulation. The 

transient eye includes no more than 1 million bits because variations in the results are 

negligible after this point, and we were limited by the computational costs. 

A total of 10 precursors on the victim line is considered; thus, 𝑛 + 2 = 12. k is set 

to 0 since number of the precursors is already small and manageable. In addition, q is equal 

to 2 because two aggressor lines are present. It is assumed that state of the last four symbols 

on each aggressor line has nontrivial crosstalk effects; hence, ℎ = 4. Next, Worst-eye is 

used to find the values of 𝑉𝐿𝐻, 𝑉𝐻𝐿, 𝑡𝐿𝑋, 𝑡𝑅𝑋, and subsequently EH and EW. Note that, the 
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optimization algorithm solves a three-dimensional problem per objective function since the 

patterns are mapped using the Gray code scheme. For  𝑉𝐿𝐻 and 𝑉𝐻𝐿, the optimization 

algorithm determines values of 9 bits on the victim line and 4 bits on each aggressor line, 

while for 𝑡𝐿𝑋 and 𝑡𝑅𝑋 the optimization algorithm determines values of 10 bits on the victim 

line and 4 bits on each aggressor line. The algorithm is stopped after 200 iterations for each 

objective function. Number of iterations is the only hyperparameter of BO which is 

different from the previous examples. However, this example is significantly different from 

the previous examples, and some effort to tune the parameters is expected. The results and 

the total number of simulated bits are shown in Table 7, where it is compared with the 

transient eye analysis. The results show that Worst-eye closely matches the eye height and 

eye width results of the transient eye. 

In this example, at some time points it is observed that the worst-case waveforms 

are suboptimal when all the waveforms found by the proposed approach are superimposed. 

Table 7 – Transient eye and Worst-eye analysis results in Example 3. 

 

Lowest 

high 

(mV) 

Highest 

low 

(mV) 

Leftmost 

crossing 

(ps) 

Rightmost 

crossing 

(ps) 

Eye 

height 

(mV) 

Eye 

width 

(ps) 

Number of 

bits 

Worst-eye  

(1st round) 
775 136 19 274 639 745 5,760 

Transient 

Eye 
775 136 19 275 639 744 1,000,000 
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This comparison is presented in Figure 29, where the worst mismatches is seen at t = 371 

ps and t = 843 ps. The mismatches appeared when we introduced the crosstalk to this 

example. Therefore, we believe that the mismatch is caused by the crosstalk. In addition, 

the reason for having two mismatches can be that crosstalk is strongest near the rising and 

falling edges or the switchings. The mismatches happen near t = 371 ps and 843 ps; thus, 

 

Figure 29 – Comparison of the worst-case waveforms and other waveforms found in 

the first round of the proposed approach in Example 3. 

 

Figure 30 – Transient eye and 3 rounds of worst-case waveforms in Example 3. 
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it should be were the switching noise reaches the victim line. Next, we find the lowest high, 

the highest low, and the corresponding waveforms at these two points. Superimposing all 

the worst-case waveforms on the transient eye of this example is shown in Figure 30. It is 

observed that superimposing the worst-case waveforms results in a good approximation of 

the inner opening of the transient eye. It is worth noting that in rounds 2 and 3 only 2412 

and 1476 additional bits have been simulated, respectively, because the proposed approach 

takes advantage of the previously saved data. 

Furthermore, the convergence curves of BO for the four objective functions are 

presented in Figure 31, showing a fast convergence rate. As presented in Table 7, number 

of the simulated bits in the first round of the proposed algorithm is 5,760, which is orders 

of magnitude smaller than the one million bits in the transient eye analysis. The HSPICE 

simulation time of the transient eye and the first round of Worst-eye are roughly 1,356 

minutes and 8 minutes, respectively. In addition, the overhead optimization cost of the first 

round of Worst-eye is about 21 minutes. Hence, the proposed approach provides a speedup 

of roughly 47 times for calculating the eye height and eye width. Furthermore, in the second 

round, transient simulation and overhead of Worst-eye are roughly 3 minutes and 13 

minutes, respectively. In the third round, transient simulation and overhead of Worst-eye 

are roughly 2 minutes and 13 minutes, respectively. The overhead is higher in the first 

round since 𝑡𝐿𝑋 and 𝑡𝑅𝑋 are only calculated in this round.  In total, the three rounds of 

Worst-eye take about 60 minutes; therefore,  it provides a speedup of roughly 23 times for 
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finding the worst-case eye opening. We have published the work presented in this chapter 

in [68]. 

3.5 Summary 

This chapter covers a novel approach to efficiently predict the worst-case eye opening 

based on the input waveforms, which results in the fast estimation of the eye height, eye 

width, and the inner eye opening. Necessary background knowledge for development of 

 

 (a) (b) 

 

 (c) (d) 

Figure 31 – Convergence plots of the four worst-case variables in Example 3. a) 

𝑽𝑳𝑯. b) −𝑽𝑯𝑳. c) 𝒕𝑳𝑿. d) −𝒕𝑹𝑿. 
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this approach, including the Gray code and Bayesian optimization, are reviewed. 

Afterwards, the development steps of this approach are discussed in detail. Numerical 

examples show that the proposed approach can provide a significant speedup compared to 

the traditional transient eye analysis.  
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CHAPTER 4. INVERTIBLE NEURAL NETWORKS FOR 

INVERSE DESIGN OF CTLE 

4.1 Objectives  

 Finding the parameters that shape the frequency response of the continuous time 

linear equalization (CTLE) can be challenging and time-consuming. Therefore, in this 

chapter a novel approach for inverse design of CTLE with the invertible neural network 

(INN) is proposed. In this inverse approach, the desired eye height and eye width are given, 

and the algorithm derives the corresponding design parameters. This chapter starts with a 

brief description of the INN. Next, the CTLE circuit is reviewed. Then, inverse design of 

CTLE with INN is presented. Finally, a numerical example for evaluation of this approach 

is presented. The proposed approach is a preliminary work, and further improvements and 

modifications are encouraged. 

4.2 Invertible Neural Networks 

4.2.1 INN Structure 

In the proposed inverse design approach INNs [23] are used. The general INN 

network is illustrated in Figure 32, which shows it is comprised of several reversible 

blocks. This reversible structure permits bidirectional training of the network. In this figure, 

X shows the input parameters, and Y is the output. Z is a set of latent variables with normal 

distribution that do not exist in the actual system. These variables are added in the output 
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to store the lost information in the forward mapping from X to Y. In the training process, 

a supervised loss function, such as the mean square error, is used for Y since it represents 

deterministic variables. On the other hand, because X and Z are stochastic variables and 

represent distributions, the maximum mean discrepancy (MMD) is used as their loss 

function. Here, MMD serves as an unsupervised loss function, and it only needs samples 

from two distributions to compare them. This function is discussed in the next section. 

Relative weights of the loss functions in INN are tuned as hyperparameters in order to 

make their effect about equal. 

4.2.2 Maximum Mean Discrepancy  

The Two-Sample Test in statistics is defined as follows. Given a random variable x 

with probability distribution p, and a random variable y with probability distribution q, it 

is intended to find if 𝑝 ≠ 𝑞, only from observations 𝑋 ≔ {𝑥1, … , 𝑥𝑚} and 𝑌 ≔

 {𝑦1, … , 𝑦𝑛}, which are independently and identically distributed (i.i.d) from p and q, 

 

Figure 32 – Structure of the invertible neural networks. 
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respectively. The maximum mean discrepancy is a method to conduct this test. MMD can 

be formulated as: 

 𝑀𝑀𝐷2(𝑝, 𝑞) =  𝑬𝑥,𝑥′[𝑘(𝑥, 𝑥′)] − 2𝑬𝑥,𝑦[𝑘(𝑥, 𝑦)] + 𝑬𝑦,𝑦′[𝑘(𝑦, 𝑦′)], (36) 

where 𝑥′ and 𝑦′ are independent copies of 𝑥 and 𝑦, respectively, with the same 

distributions. A larger MMD means a larger difference between p and q [69], [70]. 

Moreover, k is a kernel function required for this method. When using MMD as a loss 

function for INN, the Inverse Multiquadratic function is selected as the kernel, which is 

defined as [23]: 

 
𝑘(𝑥, 𝑥′) =

1

1 + ‖(𝑥 − 𝑥′)/ℎ‖2
2. (37) 

4.2.3 Reversible Blocks in INN 

Inner structure of the reversible blocks in INN is illustrated in Figure 33 (inspired by 

[71]). Each block needs an even and equal number of inputs and outputs, which is enforced 

with zero padding if needed. Inputs and outputs are divided into two halves, which are 

shown as [𝑿𝟏, 𝑿𝟐] and [𝒀𝟏, 𝒀𝟐], respectively. The forward path of each block is equivalent 

to: 

 𝒚𝟏 = 𝒙𝟏 .  𝑒𝑥𝑝(𝑆2(𝒙𝟐)) + 𝑡𝟐(𝒙𝟐), (38) 
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𝒚𝟐 = 𝒙𝟐 .  𝑒𝑥𝑝(𝑆1(𝒚𝟏)) + 𝑡1(𝒚𝟏). 

And the reverse path of each block is equivalent to: 

 𝒙𝟐 = (𝒚𝟐 − 𝑡1(𝒚𝟏)) . 𝑒𝑥𝑝(−𝑆1(𝒚𝟏)) , 

𝒙𝟏 = (𝒚𝟏 − 𝑡2(𝒙𝟐)) . 𝑒𝑥𝑝(−𝑆2(𝒙𝟐)), 

(39) 

 

Figure 33 – Structure of a single INN block. 
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where, 𝑆1, 𝑆2, 𝑡1, and 𝑡2 are neural networks themselves. Note that although these 

subnetworks are not invertible, (38) and (39) are always invertible. The individual blocks 

are connected with shuffling layers. For additional details refer to [23]. 

4.3 Continuous Time Linear Equalizer  

The high-speed channels have a limited bandwidth, which causes a higher 

attenuation of the signal at high frequencies. In other words, the channel behaves as a low 

pass filter making the data pattern lose its sharp corners. Thus, the transitions take longer 

to complete, which results in a higher ISI, closer eye diagram, and subsequently a higher 

BER. Therefore, equalization techniques have been developed to compensate the low-pass 

filtering effect of the channel. A common equalization circuit used in high-speed channels 

is the continuous time linear equalizer (CTLE) [72], [73]. CTLE’s frequency response has 

a peaking at high frequencies. This results in boosting the overall frequency response of 

the channel at high frequencies when CTLE is connected in series at the receiver side. 

Advantages of CTLE includes its relatively low power, small area, and low complexity. 

As an example, frequency response of a sample channel is shown in Figure 34 (a), 

which shows the low pass behavior of the channel. In addition, frequency response of a 

sample CTLE is presented in Figure 34 (b) showing the peaking at high frequencies. These 

frequency responses are derived from realistic component models provided by IBM, which 

are used in their custom-build channel simulator called HSSCDR [50]. The frequency 

response of cascaded channel and CTLE is found by calculating product of their frequency 
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responses, which is shown in Figure 34 (c). It is observed in this figure that CTLE flattens 

response of the channel and increases its bandwidth, resulting in an equalized channel.  

Transfer function of a simple channel can be approximated with one pole as: 

 
𝐻𝑐ℎ(𝑠) =

𝑘𝑐ℎ

𝑠 + 𝑝𝑐ℎ
 , (40) 

where 𝑝𝑐ℎ is the dominant pole, and 𝑘𝑐ℎ is a constant. Moreover, transfer function of a 

simple CTLE is described as: 

 

 (a) (b) 

 

 (c) 

Figure 34 – Frequency responses of a sample channel and CTLE. a) Channel. b) 

CTLE. c) Cascaded channel and CTLE. 
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𝐻𝐶𝑇𝐿𝐸(𝑠) =

𝑘𝐶𝑇𝐿𝐸(𝑠 + 𝑧1)

(𝑠 + 𝑝1)(𝑠 + 𝑝2)
 , (41) 

where 𝑝1and 𝑝2 are the poles. 𝑧1is the single zero of CTLE, and 𝑘𝐶𝑇𝐿𝐸 is a constant. An 

equalized channel can be achieved by matching 𝑝𝑐ℎ and 𝑧1since they cancel one another 

and the resulting transfer function would be: 

 
𝐻𝑒𝑞(𝑠) =

𝑘𝑒𝑞

(𝑠 + 𝑝1)(𝑠 + 𝑝2)
, (42) 

where 𝑘𝑒𝑞 = 𝑘𝑐ℎ𝑘1. Note that the bandwidth can be increased by setting the first pole of 

CTLE higher than the dominant pole of the channel [73]. 

4.4 Inverse Design of CTLE 

The CTLE implementations in this work are characterized by a DC gain value and 

peaking parameter instead of poles and zeros. Although gain and peaking are continuous 

variables, in reality a limited number of CTLE hardware designs are available to the 

designer. Therefore, the possible DC gain and peaking values are discrete, and we show 

them as  [𝑝1, 𝑝2, … 𝑝𝑁] and [𝑔1, 𝑔2, … 𝑔𝑀], respectively, where, N and M are the number of 

possible implementations. In total we have the 𝑁 ∗ 𝑀 combinations for the CTLE design. 

For illustration, a set of IBM’s CTLE frequency responses are shown in Figure 35. In 

Figure 35 (a), the peaking is kept constant and the DC gain is varied. However, in Figure 

35 (b), the DC gain is kept constant and the peaking is varied. 
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Goal of the proposed approach is to derive the suitable 𝑝𝑖 and 𝑔𝑗 for the desired eye 

height (EH) and eye width (EW) values, using the INN. The inverse problem is equivalent 

to: 

 [𝑝𝑖, 𝑔𝑗] = 𝑓−1(𝐸𝐻, 𝐸𝑊,𝒁), (43) 

where, Z is the latent variables, and 𝑓−1 is the inverse mapping, which is found by training 

the INN. After training the network, (43) is evaluated numerously to derive the joint 

distribution of 𝑝𝑖 and 𝑔𝑗. Note that in these evaluations EH and EW are fixed while Z is 

sampled from its normal distribution. Afterwards, the closest available input parameters to 

the most likely point from distribution of 𝑝𝑖 and 𝑔𝑗 is selected as peaking and DC gain 

values. If the distribution is multi-modal, multiple candidate designs are produced. Finally, 

the eye diagram is simulated for the design(s) to evaluate the resulting eye height and eye 

width, and compare with the target values. The proposed approach is implemented in 

 

 (a) (b) 

Figure 35 – Variations of CTLE by DC gain and peaking. a) Constant peaking and 

variable DC gain. b) Constant DC gain and variable peaking.  
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Python 3.7 using the INN source code published in [74]. Flow of the inverse algorithm is 

represented in Figure 36. 

4.5 Numerical Example 

To investigate effectiveness of the proposed approach for inverse design of CTLE, 

once again the SerDes channel, used in the previous chapters and pictured in Figure 37, is 

considered. To recap, this channel includes two processor packages, connected to the board 

with hybrid land grid array connectors. The board contains 4 inches of differential wiring 

in total, which is connected to the connectors with differential vias. No crosstalk is 

considered. This channel is simulated with HSSCDR. Furthermore, the channel operates at 

16 Gb/s; resulting in a unit interval of 62.5 ps. For the CTLE design, 10 possible peaking 

parameters and 16 possible DC gain values are considered. These values are shown 

symbolically as [𝑝1, 𝑝2, … 𝑝10] and [𝑔1, 𝑔2, … 𝑔16], which are ordered sequentially. 

Frequency response of the channel is the one shown in Figure 34 (a), and some of the CTLE 

responses are shown in Figure 35. 

 

Figure 36 – Flow of the algorithm for inverse design of CTLE. 
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As a rule of thumb, often about 80% of the total number of samples is selected for 

training and validation, which is subsequently divided to 80% and 20% sections for training 

and validation, respectively. The remaining 20% of the total number of samples is used for 

testing. Therefore, from the 160 combinations of 𝑝𝑖 and 𝑔𝑗, 102 samples are randomly 

selected for training the network. Another 25 random samples are used for validation and 

tuning the hyperparameters of the network. After tuning, number of the latent variables in 

Z is set to 2. INN is comprised of 4 reversible blocks. 𝑆1, 𝑆2, 𝑡1, and 𝑡2 are fully connected 

neural networks, and each of them has 1 hidden layer with 100 nodes and the ReLU 

activation function. Number of dimensions in the input and output is increased to 16 with 

zero-padding, and the training takes 200 epochs. 

The remaining 33 samples are used for testing. The resulting EH and EW values, 

reported by the inverse design, show a wide range of accuracy. For some test samples a 

 

Figure 37 – High-speed SerDes channel in the numerical example. 
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good match with the desired EH and EW is achieved. While, for some others the results 

 

Figure 38 – Joint distribution of CTLE peaking (𝒑𝒊) and CTLE DC gain (𝒈𝒋) in 

the numerical example. Candidate designs are shown with red stars and the 

accurate design is shown with a blue star. 

 

 (a) (b) 

Figure 39 – Marginal distributions of the CTLE parameters in the numerical 

example. Candidate designs are shown with red dashed lines and the accurate 

design is shown with a black line. a) CTLE peaking (𝒑𝒊). b) CTLE DC gain (𝒈𝒋). 
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were not satisfactory. Next, we show the results for a case with moderate accuracy, and 

discuss the other test cases afterwards. In this test case the desired EH and EW are 175 mV 

and 44.6 ps, respectively. We sampled (43) for 30,000 times to derive distribution of 𝑝𝑖 

and 𝑔𝑗. Note that this evaluation is almost instant because INN translates to an analytical 

calculation. Joint distribution of 𝑝𝑖 and 𝑔𝑗, and their marginal distributions are shown in 

Figure 38 and Figure 39, respectively. It is seen that the distribution is multi-modal. In 

other words, the proposed approach suggests four possible solutions which are 

(𝑝2, 𝑔6), (𝑝2, 𝑔12), (𝑝8, 𝑔6),  and (𝑝8, 𝑔12). These solutions and their corresponding EH and 

EW values are presented in Table 8. In addition, the accurate selection of 𝑝𝑖 and 𝑔𝑗 for the 

desired EH and EW is included in Figure 38, Figure 39, and Table 8. We know the accurate 

𝑝𝑖 and 𝑔𝑗 since we had swept over all of their possible values. From the results in Table 8 

it is observed that the INN approach has achieved a design (INN2) which is only one step 

Table 8 – Accurate and candidate CTLE designs and their corresponding EH and 

EW. 

Design Peaking parameter Gain value EH (mV) EW (ps) 

Accurate 𝑝3 𝑔12 175 44.6 

INN1 𝑝2 𝑔6 186 49.9 

INN2 𝑝2 𝑔12 153 42.4 

INN3 𝑝8 𝑔6 235 37.1 

INN4 𝑝8 𝑔12 292 44.3 
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away from the accurate design in the peaking parameter, and it has the same DC gain value. 

EH and EW of this design are close to the target values. On the other hand, results of the 

INN1 design are also close to the target values, while its gain is not close to the accurate 

gain. This design can be selected if INN2 is not possible due to other constraints, and it 

shows that the INN approach can find multiple solutions for a single target objective. The 

eye diagram obtained from the INN2 design is illustrated in Figure 40. 

Although the results achieved in this test case are close to the target values, they are 

not a perfect match. In the 33 test cases, more accurate results were observed; however, 

some other test cases had a higher mismatch rate, including some unacceptable results. 

Overall, we conclude that the INN structure is not a universal solution in its current state 

and needs improvements. One of the issues that can cause the mismatch is handling of 

discrete variables. The proposed approach derives the CTLE variables by selecting the 

 

Figure 40 – Eye diagram of the channel in the numerical example when the INN2 

design is used for CTLE. 
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closest possible values to the candidate points taken from the distribution provided by INN. 

However, it is seen in Table 8 that even one step mismatch in the peaking parameter can 

result in nontrivial mismatch with the target values. Addressing this issues is left for future 

work. We have published the work presented in this chapter in [75]. 

4.6 Summary 

This chapter covers a novel inverse design approach to find the possible CTLE 

parameters from the given eye height and eye width to significantly reduce the design time. 

This approach is based on an invertible neural network (INN) structure. Initially the INN 

structure, and the traditional CTLE design are discussed. Afterwards, development of the 

proposed approach is described. Finally, a numerical example is provided showing the 

application of the proposed approach. Promising results are achieved in this preliminary 

work, and further improvements are left for future endeavors. 
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CHAPTER 5. CONCLUSION 

5.1  Discussion 

 With the rapid increase in the bandwidth and complexity of high-speed serial 

channels, their design and analysis has become more challenging and time consuming. On 

the other hand, recent advancements in machine learning and numerical methods has 

shown a great potential to be used in design and analysis of high-speed electronics. 

Therefore, in this dissertation novel methods, based on these advancements, are introduced 

to accelerate design and analysis of the high-speed channels. 

 Our focus is mainly on the eye-diagram analysis of high-speed channels with an 

NRZ pulse sequence. The first analysis approach is a methodology for estimation of data 

dependent jitter and the corresponding eye diagram. Using a short transient simulation, the 

proposed approach trains surrogate models to efficiently estimate jitter, eye diagram, and 

statistics of the output signal. The surrogate models are trained with a Polynomial Chaos 

method to model behavior of the system. Moreover, the expansion is altered based on 

memory of the channel to either increase the accuracy or decrease the computation costs. 

Finally, numerical examples are provided, showing a good match between results of the 

proposed approach and the traditional transient eye simulation, with savings in memory 

and CPU time. In the examples up to 2.4 times speedup for the full eye diagram and up to 

11.5 times speedup for the jitter distribution were observed.  

 Next, an optimization-based algorithm for quick evaluation of eye height, eye 

width, and the inner eye opening (worst-case eye) is suggested. This approach, dubbed 
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Worst-eye, focuses on DDJ, DDN, ISI, and crosstalk. Worst-eye finds data patterns that 

result in 𝑉𝐿𝐻, 𝑉𝐻𝐿, 𝑡𝐿𝑋, and 𝑡𝑅𝑋, which are the boundary points on the worst-case eye 

opening. Using these points, eye height and eye width are calculated, and the waveforms 

passing through the worst-case points are overlaid to estimate the worst-case eye opening. 

Worst-eye takes advantage of a mapping scheme based on the Gray code to reduce 

complexity. In addition, after necessary considerations based on the domain knowledge, 

Bayesian optimization is used to find the worst-case points and waveforms. Finally, Worst-

eye is evaluated by its application on a high-speed SerDes channel on PCB, and a channel 

in a system-on-package design. Numerical results show that the proposed approach can 

accurately find the eye width and eye height with up to 47 times speedup, and the worst-

case eye opening with up to 23 times speedup, when compared with the transient eye. 

 The final section of this dissertation is focused on the design part, where an 

approach for inverse design of CTLE of high-speed channels is proposed in order to 

decrease the time taken for design of such system. The algorithm receives the desired eye 

height and eye width, and it derives the required peaking and DC gain of CTLE. This 

approach is based on invertible neural networks, which can be trained and used in both 

directions. An example with moderate accuracy is provided. However, it is observed that 

the algorithm can produce inaccurate results in some other test cases. Therefore, 

improvements to the algorithm are needed. 

5.2 Future Work 

The eye analysis methods, proposed in this dissertation, have focused on DDJ, DDN 

and ISI. Also, the data dependent crosstalk is included in the Worst-eye approach. Thus, 
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the next logical step would be inclusion of other sources of noise and jitter, including RJ, 

RN, and DCD. Subsequently, the final BER and the bathtub curve could be derived. 

Although, similar to some other eye analysis methods we have suggested integration of RJ 

and RN in post analysis, it is not completely clear how the nonlinear systems would affect 

the impact of RJ and RN. Therefore, further studies on these variables is suggested.  

For the PC surrogate modeling approach, inclusion of crosstalk can be included in 

future work. Similar to Worst-eye, symbols on the aggressor lines can be included in the 

PC models as additional random variables. However, this approach might prohibitively 

increase the computational costs due to the curse of dimensionality. Therefore, decoupling 

the transmission lines might be a better approach. Regarding the Worst-eye, improvements 

on BO for discrete variables is suggested. In this work, we settled for the practice of 

rounding the next BO sample to the nearest integer number since satisfactory results were 

achieved. However, a better convergence might be achieved with more advanced discrete 

BO as suggested in [62]. 

As discussed in CHAPTER 4, the CTLE design with INN does not always provide 

accurate results. Therefore, improvements on this approach are needed. One possible way 

can be involving additional eye measurements such as jitter RMS, noise RMS, average 

rise/fall time, etc. on the output side of INN to preserve more of the lost information in the 

forward mapping. However, distribution of these variables would be considered instead of 

their deterministic values, similar to the latent variables. Furthermore, as mentioned at the 
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end of CHAPTER 4 a better handling of the discrete design parameters needs to be 

developed since the INN structure is originally developed for continuous variables. 

Moreover, in this work we performed inverse design for target values that have at least one 

existing solution. If the solution does not exist, the algorithm needs to provide the solution 

resulting in the closest possible response. Moreover, for this study it would be interesting 

to examine lossier channels as well. It would be interesting to see how the inverse CTLE 

design works for a lossy channel which has a closed eye without equalization. These 

channels should also be examined to see if the multi-modal behavior of the inverse design 

persists for them. 

5.3 State of ML for electronics design and analysis 

Similar to this work, in recent years many studies have been performed to develop 

machine learning (ML) methods for design and analysis of high-speed electronics. Many 

of these studies have been referenced in this dissertation. In general, this is a promising 

field, which seems to continue to provide more opportunities in the future. Although, many 

ML algorithms have been around for many years, and we had seen excitements and 

expectations around them, the situation seems to be different this time for applications in 

electronics design and analysis due to the following reasons. First, the computing power 

has significantly increased, which makes application of ML algorithms possible when 

working with costly EM simulations. Moreover, open-source ML algorithms and codes are 

now abundant and easily accessible, which has encouraged many engineers to start working 
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in this area. Finally, for many applications, the amount of data has significantly increased, 

making application of more data-hungry ML algorithms possible. Nevertheless, the 

industry still seems reluctant to adapt these new algorithms, which can be due to the 

fundamental differences with the stablished algorithms and in some cases reliability of the 

ML algorithms. However, this indicates that there are more opportunities for research in 

this developing field to make it more reliable for commercial use. 

It also should be noted that, due to the abundance and accessibility of ML algorithms, 

some of new research papers have been blindly applying off-the-shelf algorithms to 

electronics design and analysis problems. Of course, this approach is not helpful, and the 

researcher needs to understand which algorithms are more suitable for their applications. 

In other words, domain knowledge and modifications to the existing algorithms is 

necessary.  

5.4 List of Publications  

Journal Papers: 

• M. Ahadi Dolatsara, J. Hejase, W. Becker, M. Swaminathan, “Methods for Jitter 

and Eye Diagram Estimation in High-Speed Serial Channels Using Polynomial 

Chaos Surrogate Models”, IEEE ACCESS, April 2019. 



 

 

 

98 

• M. Ahadi Dolatsara, J. Hejase, W. Becker, J. Kim, S. Lim, M. Swaminathan, 

“Worst-case Eye Analysis of High-speed Channels Based on Bayesian 

Optimization,” IEEE Transactions on Electromagnetic Compatibility, 2020. 

• H. Park, J. Kim, V. C. K. Chekuri, M. Ahadi Dolatsara, M. Nabeel, A. Bojesomo, 

S. Patnaik, O. Sinanoglu, M. Swaminathan, S. Mukhopadhyay, J. Knechtel, S. K. 

Lim, “Design Flow for Active Interposer-Based 2.5D ICs and Study of RISC-V 

Architecture with Secure NoC,” IEEE Transactions on Components, Packaging 

and Manufacturing Technology, vol. 10, no. 12, pp. 2047-2060, 2020. 

• G. Murali, H. Park, E. Qin, H. Torun, M. Ahadi Dolatsara, M. Swaminathan, T. 

Krishna, S. K. Lim, “Clock Delivery Network Design and Analysis for Interposer-

Based 2.5-D Heterogeneous Systems”, IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, vol. 29, no. 4, pp. 605-616, 2021. 

Conference Papers: 

• M. Ahadi Dolatsara, J. Hejase, W. Becker, M. Swaminathan “Development of 

Polynomial Chaos based Surrogate Models for Channel Simulation”, IEEE 

Conference on Electromagnetic Compatibility, Signal & Power Integrity 

EMC+SIPI, July 2018. 

• M. Ahadi Dolatsara, H. Yu, J. Hejase, W. Becker, M. Swaminathan, “Polynomial 

Chaos modeling for jitter estimation in high-speed links”, International Test 

Conference, October 2018. 

https://ieeexplore.ieee.org/abstract/document/9361749/
https://ieeexplore.ieee.org/abstract/document/9361749/


 

 

 

99 

• M. Ahadi Dolatsara, J. Hejase, W. Becker, M. Swaminathan “Jitter and Eye 

Estimation in SerDes Channels using Modified Polynomial Chaos Surrogate 

Models”, IEEE Conference on Electrical Performance of Electronic Packaging 

and Systems, October 2018. 

• M. Ahadi Dolatsara, A. Varma, K. Keshavan, M. Swaminathan, “Design Space 

Exploration with Polynomial Chaos Surrogate Models for Analyzing Large System 

Designs”, DesignCon 2019, Jan. 2019. 

• M. Ahadi Dolatsara, J. Hejase, W. Becker, M. Swaminathan, “Eye Diagram and 

Jitter Estimation in SerDes Designs using Surrogate Models Generated with the 

Polynomial Chaos Theory”, DesignCon 2019, Jan. 2019. 

• M. Ahadi Dolatsara, A. Varma, K. Keshavan, M. Swaminathan, “A Modified 

Polynomial Chaos Modeling Approach for Uncertainty Quantification”, 

International Applied Computational Electromagnetics Society (ACES) 

Symposium, April 2019. 

• K. Roy, M. Ahadi Dolatsara, H. Torun, R. Trinchero, M. Swaminathan, “Inverse 

Design of Transmission Lines with Deep Learning”, IEEE Conference on 

Electrical Performance of Electronic Packaging and Systems, October 2019. 

• R. Trinchero, M. Ahadi Dolatsara, K. Roy, M. Swaminathan, F. G. Canavero, 

“Design of High-Speed Links via a Machine Learning Surrogate Model for the 

Inverse Problem”, IEEE Electrical Design of Advanced Packaging and Systems 

(EDAPS), Kaohsiung, Taiwan, 2019. 



 

 

 

100 

• M. Ahadi Dolatsara, M. Swaminathan, “Determining worst-case eye height in low 

BER channels using Bayesian optimization.”, LASCAS 2020 - 11th IEEE Latin 

American Symposium on Circuits and Systems, San José, Costa Rica, 2020. 

• J. Kim, V. C. K. Chekuri, N. M. Rahman, M. Ahadi Dolatsara, H. Torun, M. 

Swaminathan, S. Mukhopadhyay, S. K. Lim, "Silicon vs. Organic Interposer: PPA 

and Reliability Tradeoffs in Heterogeneous 2.5D Chiplet Integration," IEEE 

International Conference on Computer Design (ICCD), Oct. 2020 

• M. Ahadi Dolatsara, H. Yu, J. Hejase, W. Becker, M. Swaminathan, “Invertible 

Neural Networks for Inverse Design of CTLE in High-speed Channels”, IEEE 

Electrical Design of Advanced Packaging and Systems (EDAPS), Virtual, 2020.  



 

 

 

101 

REFERENCES 

[1]  M. P. Li, Jitter Noise and Signal Integrity at High-Speed, Upper Saddle River, NJ: 

Prentice Hall, 2007.  

[2]  B. K. Casper, M. Haycock and R. Mooney, "An accurate and efficient analysis 

method for multi-Gb/s chip-to-chip signaling schemes," in IEEE Symp. Very Large 

Scale Integr. (VLSI) Circuits, 2002.  

[3]  A. Sanders, M. Resoo and D. Ambrosia, "Channel Compliance Testing Using 

Novel Statistical Eye Methodology," in DesignCon, Santa Clara, CA, 2004.  

[4]  P. Manfredi, High-speed interconnect models with stochastic parameter variability, 

Turin, Italy: Ph.D. dissertation, Informat. Comm. Tech., Politecnico di Torino, 

2013.  

[5]  D. Xiu, "Fast numerical methods for stochastic computations: A review," Commun. 

Comput. Phys., vol. 5, no. 2-4, pp. 242-272, 2009.  

[6]  D. Spina, F. Ferranti, G. Antonini, T. Dhaene and L. Knockaert, "Non intrusive 

polynomial chaos-based stochastic macromodeling of multiport systems," in IEEE 

18th Workshop Signal Power Integrity, 2014.  

[7]  D. Spina and e. al., "Stochastic macromodeling of nonlinear systems via poly-

nomial chaos expansion and transfer function trajectories," IEEE Trans. Microw. 

Theory Tech., vol. 62, no. 7, pp. 1454-1460, 2014.  

[8]  P. Manfredi and F. G. Canavero, "`Efficient statistical simulation of microwave 

devices via stochastic testing-based circuit equivalents of nonlinear components," 

IEEE Trans. Microw. Theory Techn., vol. 63, no. 5, pp. 1502-1511, 2015.  



 

 

 

102 

[9]  M. Ahadi, K. Prasad and S. Roy, "Hyperbolic polynomial chaos expansion (HPCE) 

and its application to statistical analysis of nonlinear circuits," in IEEE 20th 

Workshop Signal Power Integrity (SPI), May, 2016.  

[10]  D. Xiu and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic 

differential equations," SIAM journal on scientific computing, vol. 24, no. 2, pp. 

619-644, 2002.  

[11]  H. S. Wilf, Combinatorial algorithms: an update. Vol. 55., Philadelphia, PA : 

SIAM, 1989.  

[12]  E. Brochu, V. M. Cora and N. De Freitas, "A tutorial on Bayesian optimization of 

expensive cost functions, with application to active user modeling and hierarchical 

reinforcement learning," arXiv preprint, arXiv:1012.2599, 2010.  

[13]  S. J. Park, B. Bae, J. Kim and M. Swaminathan, "Application of machine learning 

for optimization of 3-D integrated circuits and systems," IEEE Transactions on 

Very Large Scale Integration (VLSI) Systems, vol. 25, no. 6, pp. 1856-1865, 2017.  

[14]  H. M. Torun, M. Swaminathan, A. K. Davis and M. L. F. Bellaredj, "A global 

bayesian optimization algorithm and its application to integrated system design," 

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 4, 

p. 792.802, 2018.  

[15]  H. M. Torun and M. Swaminathan, "High-Dimensional Global Optimization 

Method for High-Frequency Electronic Design," IEEE Transactions on Microwave 

Theory and Techniques, vol. 67, no. 6, pp. 2128-2141, 2019.  

[16]  H. Torun, J. A. Hejase, J. Tang, W. D. Becker and M. Swaminathan, "Bayesian 

active learning for uncertainty quantification of high speed channel signaling," in 

2018 IEEE 27th Conference on Electrical Performance of Electronic Packaging 

and Systems (EPEPS), San Jose, 2018.  



 

 

 

103 

[17]  M. Ohira, A. Yamashita, Z. Ma and X. Wang, "Automated Microstrip Bandpass 

Filter Design Using Feedforward and Inverse Models of Neural Network," in Asia-

Pacific Microwave Conference (APMC), 2018.  

[18]  D. Zibar, A. M. R. Brusin, U. C. Moura, F. D. Ros, V. Curri and A. Carena, 

"Inverse System Design Using Machine Learning: The Raman Amplifier Case," 

Journal of Lightwave Technology, vol. 38, no. 4, pp. 736-753, 2020.  

[19]  H. Ma, E. Li, A. C. Cangellaris and X. Chen, "High-Speed Link Design 

Optimization Using Machine Learning SVR-AS Method," in IEEE 29th Conference 

on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2020.  

[20]  K. Roy, M. Ahadi Dolatsara, H. M. Torun, R. Trinchero and M. Swaminathan, 

"Inverse Design of Transmission Lines with Deep Learning," in IEEE 28th 

Conference on Electrical Performance of Electronic Packaging and Systems 

(EPEPS), 2019.  

[21]  R. Trinchero, M. Ahadi Dolatsara, K. Roy, M. Swaminathan and F. G. Canavero, 

"Design of high-speed links via a machine learning surrogate model for the inverse 

problem," in Electrical Design of Advanced Packaging and Systems (EDAPS), 

2019.  

[22]  H. Yu, H. M. Torun, M. U. Rehman and M. Swaminathan, "Design of SIW Filters 

in D-band Using Invertible Neural Nets," in IEEE/MTT-S International Microwave 

Symposium (IMS), 2020.  

[23]  L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. 

Maier-Hein, C. Rother and U. Köthe, "Analyzing Inverse Problems with Invertible 

Neural Networks," in International Conference on Learning Representations, 2019.  

[24]  J. G. Proakis, Digital Communication, 4th ed., Singapore: McGraw-Hill, 2001, pp. 

617-618. 



 

 

 

104 

[25]  J. Ren and K. S. Oh, "Multiple edge responses for fast and accurate system 

simulations," IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 741-748, Nov. 2008.  

[26]  M. Tsuk, D. Dvorscak, C. S. Ong and J. White, "An electrical-level superposed-

edge approach to statistical serial link simulation," in IEEE/ACM Int. Conf. 

Comput.-Aided Design Dig. Tech. Papers,, Nov. 2009.  

[27]  J. Cho, E. Song, J. Shim, J. Kim and J. Kim, "A Precise Analytical Eye-diagram 

Estimation Method for Non-ideal High-Speed Channels," in 18th IEEE Conference 

on Electrical Performance of Electronic Packaging and Systems, 2009.  

[28]  W. Yao, Y. Shi, L. He, S. Pamarti and Y. Hu, "Worst case timing jitter and 

amplitude noise in differential signaling," in IEEE 10th International Symposium on 

Quality Electronic Design, 2009.  

[29]  J. F. Buckwalter, "Predicting microwave digital signal integrity," IEEE 

Transactions on Advanced Packaging, vol. 32, no. 2, pp. 280-289, 2009.  

[30]  D. Kim, H. Kim and Y. Eo, "Efficient eye diagram determination of strongly 

coupled lines for differential signals," in IEEE 2010 International SoC Design 

Conf., 2010.  

[31]  J. Lee and Y. Eo, "An efficient eye-diagram determination technique for multi-

coupled interconnect lines," in IEEE 23rd International Workshop on Power and 

Timing Modeling, Optimization and Simulation (PATMOS), 2013.  

[32]  W. D. Guo, J. H. Lin, C. M. Lin, T. W. Huang and R. B. Wu, "Fast methodology 

for determining eye diagram characteristics of lossy transmission lines," IEEE 

Transactions on Advanced Packaging, vol. 32, no. 1, pp. 175-183, 2009.  



 

 

 

105 

[33]  H. Kim and e. al., "A fast and accurate statistical eye-diagram estimation method 

for high-speed channel including non-linear receiver buffer circuit," in IEEE Asia-

Pacific Symposium on Electromagnetic Compatibility (APEMC), 2015.  

[34]  B. Mutnury, M. Swaminathan and J. P. Libous, "Macromodeling of nonlinear 

digital I/O drivers," IEEE Trans. Adv. Packag., vol. 29, no. 1, pp. 102-113, Feb. 

2006.  

[35]  H. Yu, H. Chalamalasetty and M. Swaminathan, "Behavioral modeling of steady-

state oscillators with buffers using neural networks," in 27th IEEE Conf. Elect. 

Perform. Electron. Packag. Syst., Oct. 2018.  

[36]  T. Nguyen and e. al., "Transient simulation for high-speed channels with recurrent 

neural network," in 27th IEEE Conf. Elect. Perform. Electron. Packag. Syst., 2018.  

[37]  Z. Chen and G. Katopis, "Searching for the worst-case eye diagram of a signal 

channel in electronic packaging system including the effects of the nonlinear I/O 

devices and the crosstalk from adjacent channels," in IEEE 59th Electronic 

Components and Technology Conference, 2009.  

[38]  Z. Chen, W. D. Becker and G. Katopis, "A new approach to deriving packaging 

system statistical eye diagram based on parallel non-linear transient simulations 

using multiple short signal bit patterns," in IEEE 62nd Electronic Components and 

Technology Conference, 2012.  

[39]  S. M. Ulrich, A. M. Wirick, D. de Araujo, N. Pham and M. Cases, "The nittany 

genome project: A genetic algorithm approach to optimize a worst case bitstream 

for package simulation," in IEEE Electrical Performance of Electrical Packaging, 

2003.  

[40]  N. Singh, B. Mutnury, N. Pham, M. Cases and C. Wesley, "Bit-pattern optimization 

for accurate analysis of complex high-speed interfaces," in IEEE 58th Electronic 

Components and Technology Conference, 2008.  



 

 

 

106 

[41]  S. N. Ahmadyan, C. Gu, S. Natarajan, E. Chiprout and S. Vasudevan, "Fast eye 

diagram analysis for high-speed CMOS circuits," in EDA Consortium Design, 

Automation & Test in Europe Conference & Exhibition, 2015.  

[42]  I. Elshafiey, L. Udpa and S. S. Udpa, "Application of neural networks to inverse 

problems in electromagnetics," IEEE transactions on magnetics, vol. 30, no. 5, pp. 

3629-3632, 1994.  

[43]  D. Cherubini, A. Fanni, A. Montisci and P. Testoni, "Inversion of MLP neural 

networks for direct solution of inverse problems," IEEE transactions on magnetics, 

vol. 41, no. 5, pp. 1784-1787, 2005.  

[44]  I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf and H. Suchowski, "Plasmonic 

nanostructure design and characterization via Deep Learning," Light: Science & 

Applications, vol. 7, no. 1, pp. 1-8, 2018.  

[45]  I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. 

Courville and Y. Bengio, "Generative adversarial networks," in Advances in Neural 

Information Processing Systems, 2014.  

[46]  Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee and W. Cai, "Generative Model for the 

Inverse Design of Metasurfaces," Nano letters, vol. 18, no. 10, pp. 6570-6576, 

2018.  

[47]  M. Mohri, A. Rostamizadeh and A. Talwakar, Foundations of Machine Learning, 

Cambridge, MA: MIT Press, 2012.  

[48]  S. H. Hall and H. L. Heck, Advanced Signal Integrity for High-Speed Digital 

Designs, Hoboken, NJ: Wiley, 2009, Ch. 13.  

[49]  G. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, Newyok, NY: 

Springer-Verlag, 1996.  



 

 

 

107 

[50]  S. Chun, J. Hejase, J. Tang, J. Audet, D. Becker, D. Dreps, G. Wiedemeier, M. 

Nguyen, L. Walls, F. Preda and D. Douriet, "Package and printed circuit board 

design of a 19.2 Gb/s data link for high-performance computing," in IEEE 67th 

Electronic Components and Technology Conference (ECTC), 2017.  

[51]  ANSYS Inc., "ANSYS Electronics Desktop," [Online]. Available: 

https://www.ansys.com/products/electronics/ansys-electronics-desktop. [Accessed 

25 Feb. 2019]. 

[52]  M. Ahadi Dolatsara, J. Hejase, W. D. Becker and M. Swaminathan, "A Hybrid 

Methodology for Jitter and Eye Estimation in High-Speed Serial Channels Using 

Polynomial Chaos Surrogate Models," IEEE ACCESS, vol. 7, pp. 53629-53640, 

2019.  

[53]  F. Gray, "Pulse code communication". U. S. Patent 2,632,058, 17 March 1953. 

[54]  H. G. Dietz, "The Aggregate Magic Algorithms," University of Kentucky, 2011. 

[Online]. Available: http://aggregate.org/MAGIC/. [Accessed March 2020]. 

[55]  P. I. Frazier, "A tutorial on bayesian optimization," arXiv preprint, 

arXiv:1807.02811, 2018.  

[56]  C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, 

Cambridge, MA: MIT Press, pp. 84-85, 2006.  

[57]  "Scikit-learn," [Online]. Available: https://scikit-learn.org/stable/. [Accessed June 

2020]. 

[58]  M. D. Hoffman, E. Brochu and N. de Freitas, "Portfolio Allocation for Bayesian 

Optimization," in 27th Conference on Uncertainty in Artificial Intelligence, 

Barcelona, Spain, 2011.  



 

 

 

108 

[59]  "scikit-optimize," [Online]. Available: https://scikit-optimize.github.io/stable/. 

[Accessed Oct. 2019]. 

[60]  "Spearmint," [Online]. Available: https://github.com/HIPS/Spearmint. [Accessed 

June 2020]. 

[61]  E. C. Garrido-Merchán and D. Hernández-Lobato, "Dealing with integer-valued 

variables in Bayesian optimization with Gaussian processes," arXiv preprint 

arXiv:1706.03673, 2017.  

[62]  E. C. Garrido-Merchán and D. Hernández-Lobato, "Dealing with categorical and 

integer-valued variables in bayesian optimization with gaussian processes," 

Neurocomputing, vol. 380, pp. 20-35, 2020.  

[63]  R. Baptista and M. Poloczek, "Bayesian optimization of combinatorial structures," 

arXiv preprint arXiv:1806.08838, 2018.  

[64]  H. Zhang, B. Jiao, Y. Liao and G. Zhang, "PAM4 signaling for 56G serial link 

applications—A tutorial," in DesignCon, 2016.  

[65]  F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel and et. al., "Scikit-

learn: Machine Learning in Python," the Journal of machine learning research, vol. 

12, pp. 2825-2830, 2011.  

[66]  J. Snoek, H. Larochelle and R. P. Adams, "Practical Bayesian Optimization of 

machine learning algorithms," in Advances in Neural Information Processing 

Systems, pp. 2951-2959, 2012.  

[67]  T. Beukema, "Topics in Design and Analysis of High Data Rate SERDES 

Systems," in IEEE SSCS Denver Section Seminar, Fort Collins, CO, September, 

2009.  



 

 

 

109 

[68]  M. Ahadi Dolatsara, J. Hejase, W. Becker, J. Kim, S. Lim and M. Swaminathan, 

"Worst-Case Eye Analysis of High-Speed Channels Based on Bayesian 

Optimization," IEEE Transactions on Electromagnetic Compatibility, 2020.  

[69]  A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf and A. Smola, "A kernel 

two-sample test," The Journal of Machine Learning Research, vol. 13, no. 1, pp. 

723-773, 2012.  

[70]  C. L. Li, W. C. Chang, Y. Cheng, Y. Yang and B. Póczos, "MMD GAN: Towards 

deeper understanding of moment matching network," in Advances in neural 

information processing systems (NIPS), 2017.  

[71]  L. Dinh, J. Sohl-Dickstein and S. Bengio, "Density estimation using real NVP," 

arXiv preprint arXiv:1605.08803, 2016.  

[72]  C. G. Gasca, S. C. Pueyo and C. A. Chagoyen, CMOS continuous-time adaptive 

equalizers for high-speed serial links, New York, USA: Springer International 

Publishing, 2015.  

[73]  W. T. Beyene, "The design of continuous-time linear equalizers using model order 

reduction techniques," in IEEE-EPEP Electrical Performance of Electronic 

Packaging, 2008.  

[74]  L. Ardizzone, J. Kruse and et al., "Framework for Easily Invertible Architectures 

(FrEIA), Source code," [Online]. Available: https://github.com/VLL-HD/FrEIA. 

[Accessed June 2020]. 

[75]  M. Ahadi Dolatsara, H. Yu, J. Hejase, W. Becker and M. Swaminathan, "Invertible 

Neural Networks for Inverse Design of CTLE in High-speed Channels," in IEEE 

Electrical Design of Advanced Packaging and Systems (EDAPS) Symposium, 2020.  



 

 

 

110 

[76]  S. Chun and e. al., "Package and printed circuit board design of a 19.2 Gb/s data 

link for high-performance computing," in IEEE 67th Electronic Components and 

Technology Conference (ECTC), 2017.  

 

 


